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Preface

In the data analysis for my own research work, I was often slowed down by two
things: (1) I did not know enough statistics, and (2) the books available would
provide a theoretical background, but no real practical help. The book you are
holding in your hands (or on your tablet or laptop) is intended to be the book that
will solve this very problem. It is designed to provide enough basic understanding
so that you know what you are doing, and it should equip you with the tools you
need. I believe that the Python solutions provided in this book for the most basic
statistical problems address at least 90 % of the problems that most physicists,
biologists, and medical doctors encounter in their work. So if you are the typical
graduate student working on a degree, or a medical researcher analyzing the latest
experiments, chances are that you will find the tools you require here—explanation
and source-code included.

This is the reason I have focused on statistical basics and hypothesis tests in this
book and refer only briefly to other statistical approaches. I am well aware that most
of the tests presented in this book can also be carried out using statistical modeling.
But in many cases, this is not the methodology used in many life science journals.
Advanced statistical analysis goes beyond the scope of this book and—to be frank—
exceeds my own knowledge of statistics.

My motivation for providing the solutions in Python is based on two considera-
tions. One is that I would like them to be available to everyone. While commercial
solutions like Matlab, SPSS, Minitab, etc., offer powerful tools, most can only use
them legally in an academic setting. In contrast, Python is completely free (“as in
free beer” is often heard in the Python community). The second reason is that Python
is the most beautiful coding language that I have yet encountered; and around 2010
Python and its documentation matured to the point where one can use it without
being a serious coder. Together, this book, Python, and the tools that the Python
ecosystem offers today provide a beautiful, free package that covers all the statistics
that most researchers will need in their lifetime.
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For Whom This Book Is

This book assumes that:

• You have some basic programming experience: If you have done no program-
ming previously, you may want to start out with Python, using some of the great
links provided in the text. Starting programming and starting statistics may be a
bit much all at once.

• You are not a statistics expert: If you have advanced statistics experience, the
online help in Python and the Python packages may be sufficient to allow you
to do most of your data analysis right away. This book may still help you to
get started with Python. However, the book concentrates on the basic ideas
of statistics and on hypothesis tests, and only the last part introduces linear
regression modeling and Bayesian statistics.

This book is designed to give you all (or at least most of) the tools that you
will need for statistical data analysis. I attempt to provide the background you need
to understand what you are doing. I do not prove any theorems and do not apply
mathematics unless necessary. For all tests, a working Python program is provided.
In principle, you just have to define your problem, select the corresponding program,
and adapt it to your needs. This should allow you to get going quickly, even if you
have little Python experience. This is also the reason why I have not provided the
software as one single Python package. I expect that you will have to tailor each
program to your specific setup (data format, plot labels, return values, etc.).

This book is organized into three parts:

Part I gives an introduction to Python: how to set it up, simple programs to get
started, and tips how to avoid some common mistakes. It also shows how to read
data from different sources into Python and how to visualize statistical data.
Part II provides an introduction to statistical analysis. How to design a study,
and how best to analyze data, probability distributions, and an overview of the
most important hypothesis tests. Even though modern statistics is firmly based
in statistical modeling, hypothesis tests still seem to dominate the life sciences.
For each test a Python program is provided that shows how the test can be
implemented.
Part III provides an introduction to statistical modeling and a look at advanced
statistical analysis procedures. I have also included tests on discrete data in this
section, such as logistic regression, as they utilize “generalized linear models”
which I regard as advanced. The book ends with a presentation of the basic ideas
of Bayesian statistics.

Additional Material

This book comes with many additional Python programs and sample data, which
are available online. These programs include listings of the programs printed in the
book, solutions to the examples given at the end of most chapters, and code samples
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with a working example for each test presented in this book. They also include the
code used to generate the pictures in this book, as well as the data used to run the
programs.

The Python code samples accompanying the book are available at http://www.
quantlet.de. All Python programs and data sets can be found on GitHub: https://
github.com/thomas-haslwanter/statsintro_python.git. Links to all material are avail-
able at http://www.springer.com/de/book/9783319283159.
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Part I
Python and Statistics

The first part of the book presents an introduction to statistics based on Python. It is
impossible to cover the whole language in 30 or 40 pages, so if you are a beginner,
please see one of the excellent Python introductions available in the internet for
details. Links are given below. This part is a kick-start for Python; it shows how
to install Python under Windows, Linux, or MacOS, and goes step-by-step through
documented programming examples. Tips are included to help avoid some of the
problems frequently encountered while learning Python.

Because most of the data for statistical analysis are commonly obtained from text
files, Excel files, or data preprocessed by Matlab, the second chapter presents simple
ways to import these types of data into Python.

The last chapter of this part illustrates various ways of visualizing data in Python.
Since the flexibility of Python for interactive data analysis has led to a certain
complexity that can frustrate new Python programmers, the code samples presented
in Chap. 3 for various types of interactive plots should help future Pythonistas avoid
these problems.



Chapter 1
Why Statistics?

Statistics is the explanation of variance in the light of what remains unexplained.

Every day we are confronted with situations with uncertain outcomes, and must
make decisions based on incomplete data: “Should I run for the bus? Which stock
should I buy? Which man should I marry? Should I take this medication? Should
I have my children vaccinated?” Some of these questions are beyond the realm
of statistics (“Which person should I marry?”), because they involve too many
unknown variables. But in many situations, statistics can help extract maximum
knowledge from information given, and clearly spell out what we know and what we
don’t know. For example, it can turn a vague statement like “This medication may
cause nausea,” or “You could die if you don’t take this medication” into a specific
statement like “Three patients in one thousand experience nausea when taking this
medication,” or “If you don’t take this medication, there is a 95 % chance that you
will die.”

Without statistics, the interpretation of data can quickly become massively
flawed. Take, for example, the estimated number of German tanks produced during
World War II, also known as the “German Tank Problem.” The estimate of the
number of German tanks produced per month from standard intelligence data was
1,550; however, the statistical estimate based on the number of tanks observed
was 327, which was very close to the actual production number of 342 (http://en.
wikipedia.org/wiki/German_tank_problem).

Similarly, using the wrong tests can also lead to erroneous results.
In general, statistics will help to

• Clarify the question.
• Identify the variable and the measure of that variable that will answer that

question.
• Determine the required sample size.
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4 1 Why Statistics?

• Describe variation.
• Make quantitative statements about estimated parameters.
• Make predictions based on your data.

Reading the Book Statistics was originally invented—like so many other things—
by the famous mathematician C.F. Gauss, who said about his own work, “Ich habe
fleissig sein müssen; wer es gleichfalls ist, wird eben so weit kommen.” (“I had to
work hard; if you work hard as well, you, too, will be successful.”). Just as reading a
book about playing the piano won’t turn you into a great pianist, simply reading this
book will not teach you statistical data analysis. If you don’t have your own data
to analyze, you need to do the exercises included. Should you become frustrated or
stuck, you can always check the sample Solutions provided at the end of the book.

Exercises Solutions to the exercises provided can be found at the end of the book.
In my experience, very few people work through large numbers of examples on their
own, so I have not included additional exercises in this book.

If the information here is not sufficient, additional material can be found in other
statistical textbooks and on the web:

Books There are a number of good books on statistics. My favorite is Altman
(1999): it does not dwell on computers and modeling, but gives an extremely useful
introduction to the field, especially for life sciences and medical applications. Many
formulations and examples in this manuscript have been taken from that book.
A more modern book, which is more voluminous and, in my opinion, a bit harder to
read, is Riffenburgh (2012). Kaplan (2009) provides a simple introduction to modern
regression modeling. If you know your basic statistics, a very good introduction
to Generalized Linear Models can be found in Dobson and Barnett (2008), which
provides a sound, advanced treatment of statistical modeling.

WWW In the web, you will find very extensive information on statistics in
English at

• http://www.statsref.com/
• http://www.vassarstats.net/
• http://www.biostathandbook.com/
• http://onlinestatbook.com/2/index.html
• http://www.itl.nist.gov/div898/handbook/index.htm

A good German web page on statistics and regulatory issues is http://www.
reiter1.com/.

I hope to convince you that Python provides clear and flexible tools for most of
the statistical problems that you will encounter, and that you will enjoy using it.

http://www.statsref.com/
http://www.vassarstats.net/
http://www.biostathandbook.com/
http://onlinestatbook.com/2/index.html
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Chapter 2
Python

Python is a very popular open source programming language. At the time of writing,
codeeval was rating Python “the most popular language” for the fourth year in a
row (http://blog.codeeval.com/codeevalblog). There are three reasons why I have
switched from other programming languages to Python:

1. It is the most elegant programming language that I know.
2. It is free.
3. It is powerful.

2.1 Getting Started

2.1.1 Conventions

In this book the following conventions will be used:

• Text that is to be typed in at the computer is written in Courier font, e.g.,
plot(x,y).

• Optional text in command-line entries is expressed with square brackets and
underscores, e.g., [_InstallationDir_]\bin. (I use the underscores in addi-
tion, as sometimes the square brackets will be used for commands.)

• Names referring to computer programs and applications are written in italics,
e.g., IPython.

• I will also use italics when introducing new terms or expressions for the first
time.

© Springer International Publishing Switzerland 2016
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6 2 Python

Code samples are marked as follows:

Python code samples.

All the marked code samples are freely available, under http://www.quantlet.de.
Additional Python scripts (the listings of complete programs, as well as the

Python code used to generate the figures) are available at github: https://github.com/
thomas-haslwanter/statsintro_python.git, in the directory ISP (for “Introduction to
Statistics with Python”). ISP contains the following subfolders:

Exercise_Solutions contains the solutions to the exercises which are presented at
the end of most chapters.

Listings contains programs that are explicitly listed in this book.
Figures lists all the code used to generate the remaining figures in the book.
Code_Quantlets contains all the marked code samples, grouped by book-chapter.

Packages on github are called repositories, and can easily be copied to your
computer: when git is installed on your computer, simply type

git clone [_RepositoryName_]

and the whole repository—code as well as data—will be “cloned” to your system.
(See Sect. 2.4.4 for more information on git, github and code-versioning.)

2.1.2 Distributions and Packages

a) Python Packages for Statistics

The Python core distribution contains only the essential features of a general
programming language. For example, it does not even contain a specialized module
for working efficiently with vectors and matrices! These specialized modules are
being developed by dedicated volunteers. The relationship of the most important
Python packages for statistical applications is delineated in Fig. 2.1.

Fig. 2.1 The structure of the most important Python packages for statistical applications

http://www.quantlet.de
https://github.com/thomas-haslwanter/statsintro_python.git
https://github.com/thomas-haslwanter/statsintro_python.git


2.1 Getting Started 7

To facilitate the use of Python, the so-called Python distributions collect
matching versions of the most important packages, and I strongly recommend using
one of these distributions when getting started. Otherwise one can easily become
overwhelmed by the huge number of Python packages available. My favorite Python
distributions are

• WinPython recommended for Windows users. At the time of writing, the latest
version was 3.5.1.3 (newer versions also ok).
https://winpython.github.io/

• Anaconda by Continuum. For Windows, Mac, and Linux. Can be used to install
Python 2.x and 3.x, even simultaneously! The latest Anaconda version at time of
writing was 4.0.0 (newer versions also ok).
https://store.continuum.io/cshop/anaconda/

Neither of these two distributions requires administrator rights. I am presently
using WinPython, which is free and customizable. Anaconda has become very
popular recently, and is free for educational purposes.

Unless you have a specific requirement for 64-bit versions, you may want
to install a 32-bit version of Python: it facilitates many activities that require
compilation of module parts, e.g., for Bayesian statistics (PyMC), or when you want
to speed up your programs with Cython. Since all the Python packages required for
this course are now available for Python 3.x, I will use Python 3 for this book.
However, all the scripts included should also work for Python 2.7. Make sure that
you use a current version of IPython/Jupyter (4.x), since the Jupyter Notebooks
provided with this book won’t run on IPython 2.x.1

The programs included in this book have been tested with Python 2.7.10 and
3.5.1, under Windows and Linux, using the following package versions:

• ipython 4.1.2 : : : For interactive work.
• numpy 1.11.0 : : : For working with vectors and arrays.
• scipy 0.17.1 : : : All the essential scientific algorithms, including those for basic

statistics.
• matplotlib 1.5.1 : : : The de-facto standard module for plotting and visualization.
• pandas 0.18.0 : : : Adds DataFrames (imagine powerful spreadsheets) to Python.
• patsy 0.4.1 : : : For working with statistical formulas.
• statsmodels 0.8.0 : : : For statistical modeling and advanced analysis.
• seaborn 0.7.0 : : : For visualization of statistical data.

In addition to these fairly general packages, some specialized packages have also
been used in the examples accompanying this book:

• xlrd 0.9.4 : : : For reading and writing MS Excel files.
• PyMC 2.3.6 : : : For Bayesian statistics, including Markov chain Monte Carlo

simulations.

1During the writing of this book, the former monolithic IPython was split into two separate
projects: Jupyter is providing the front end (the notebook, the qtconsole, and the console), and
IPython the computational kernel running the Python commands.

https://winpython.github.io/
https://store.continuum.io/cshop/anaconda/


8 2 Python

• scikit-learn 0.17.1 : : : For machine learning.
• scikits.bootstrap 0.3.2 : : : Provides bootstrap confidence interval algorithms for

scipy.
• lifelines 0.9.1.0 : : : Survival analysis in Python.
• rpy2 2.7.4 : : : Provides a wrapper for R-functions in Python.

Most of these packages come either with the WinPython or Anaconda distribu-
tions, or can be installed easily using pip or conda. To get PyMC to run, you may
need to install a C-compiler. On my Windows platform, I installed Visual Studio 15,
and set the environment variable SET VS90COMNTOOLS=%VS14COMNTOOLS%.

To use R-function from within Python, you also have to install R. Like Python,
R is available for free, and can be downloaded from the Comprehensive R Archive
Network, the latest release at the time of writing being R-3.3.0 (http://cran.r-project.
org/).

b) PyPI: The Python Package Index

The Python Package Index (PyPI) (Currently at https://pypi.python.org/pypi, but
about to migrate to https://pypi.io) is a repository of software for the Python
programming language. It currently contains more than 80,000 packages!

Packages from PyPI can be installed easily, from the Windows command shell
(cmd) or the Linux terminal, with

pip install [_package_]

To update a package, use

pip install [_package_] -U

To get a list of all the Python packages installed on your computer, type

pip list

Anaconda uses conda, a more powerful installation manager. But pip also works
with Anaconda.

2.1.3 Installation of Python

a) Under Windows

Neither WinPython nor Anaconda require administrator rights for installation.

WinPython

In the following, I assume that [_WinPythonDir_] is the installation directory for
WinPython.

http://cran.r-project.org/
http://cran.r-project.org/
https://pypi.python.org/pypi
https://pypi.io
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Tip: Do NOT install WinPython into the Windows program directory (typically
C:\Program Files or C:\Program Files (x86)), because this typically leads to
permission problems during the execution of WinPython.

• Download WinPython from https://winpython.github.io/.
• Run the downloaded .exe-file, and install WinPython into the

[_WinPythonDir_] of your choice.
• After the installation, make a change to your Windows Environment,

by typing Win -> env -> Edit environment variables for your

account:

– Add[_WinPythonDir_]\python-3.5.1;[_WinPythonDir_]
\python-3.5.1\Scripts\; to your PATH. (This makes Python and ipython
accessible from the standard Windows command-line.)2

– If you do have administrator rights, you should activate
[_WinPythonDir_]\WinPython Control Panel.exe ->

Advanced -> Register Distribution.
(This associates .py-files with this Python distribution.)

Anaconda

• Download Anaconda from https://store.continuum.io/cshop/anaconda/.
• Follow the installation instructions from the webpage. During the installation,

allow Anaconda to make the suggested modifications to your environment PATH.
• After the installation: in the Anaconda Launcher, click update (besides the

Apps), in order to ensure that you are running the latest version.

Installing Additional Packages

Important Note: When I have had difficulties installing additional packages, I
have been saved more than once by the pre-compiled packages from Christoph
Gohlke, available under http://www.lfd.uci.edu/~gohlke/pythonlibs/: from there you
can download the [_xxx_x].whl file for your current version of Python, and then
install it simply with pip install [_xxx_].whl.

b) Under Linux

The following procedure worked on Linux Mint 17.1:

• Download Anaconda for Python 3.5 (I used the 64 bit version, since I have a
64-bit Linux Mint Installation).

2In my current Windows 10 environment, I have to change the path directly by using the command
“regedit” to modify the variable “HKEY_CURRENT_USER | Environment”

https://winpython.github.io/
https://store.continuum.io/cshop/anaconda/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
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• Open terminal, and navigate to the location where you downloaded the file to.
• Install Anaconda with bash Anaconda3-4.0.0-Linux-x86.sh

• Update your Linux installation with sudo apt-get update

Notes

• You do NOT need root privileges to install Anaconda, if you select a user writable
install location, such as ~/Anaconda.

• After the self extraction is finished, you should add the Anaconda binary
directory to your PATH environment variable.

• As all of Anaconda is contained in a single directory, uninstalling Anaconda is
easy: you simply remove the entire install location directory.

• If any problems remain, Mac and Unix users should look up Johansson’
installations tips:
(https://github.com/jrjohansson/scientific-python-lectures).

c) Under Mac OS X

Downloading Anaconda for Mac OS X is simple. Just

• go to continuum.io/downloads
• choose the Mac installer (make sure you select the Mac OS X Python 3.x

Graphical Installer), and follow the instructions listed beside this button.
• After the installation: in the Anaconda Launcher, click update (besides the

Apps), in order to ensure that you are running the latest version.

After the installation the Anaconda icon should appear on the desktop. No admin
password is required. This downloaded version of Anaconda includes the Jupyter
notebook, Jupyter qtconsole and the IDE Spyder.

To see which packages (e.g., numpy, scipy, matplotlib, pandas, etc.) are featured
in your installation look up the Anaconda Package List for your Python version.
For example, the Python-installer may not include seaborn. To add an additional
package, e.g., seaborn, open the terminal, and enter pip install seaborn.

2.1.4 Installation of R and rpy2

If you have not used R previously, you can safely skip this section. However, if you
are already an avid R used, the following adjustments will allow you to also harness
the power of R from within Python, using the package rpy2.

https://github.com/jrjohansson/scientific-python-lectures
continuum.io/downloads
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a) Under Windows

Also R does not require administrator rights for installation. You can download the
latest version (at the time of writing R 3.0.0) from http://cran.r-project.org/, and
install it into the [_RDir_] installation directory of your choice.

With WinPython

• After the installation of R, add the following two variables to your Windows
Environment, by typing
Win -> env -> Edit environment variables for your account:

– R_HOME=[_RDir_]\R-3.3.0

– R_USER=[_YourLoginName_]

The first entry is required for rpy2. The last entry is not really necessary, just
better style.

With Anaconda

Anaconda comes without rpy2. So after the installation of Anaconda and R, you
should:

• Get rpy2 from http://www.lfd.uci.edu/~gohlke/pythonlibs/: Christoph Gohlkes
Unofficial Windows Binaries for Python Extension Packages are one of the
mainstays of the Python community—Thanks a lot, Christoph!

• Open the Anaconda command prompt
• Install rpy2 with pip. In my case, the command was

pip rpy2-2.6.0-cp35-none-win32.whl

b) Under Linux

• After the installation of Anaconda, install R and rpy2 with
conda install -c https://conda.binstar.org/r rpy2

2.1.5 Personalizing IPython/Jupyter

When working on a new problem, I always start out with the Jupyter qtconsole (see
Sect. 2.3). Once I have the individual steps working, I use the IPython command
%history to get the sequence of commands I have used, and switch to an IDE
(integrated development environment), typically Wing or Spyder (see below).

http://cran.r-project.org/
http://www.lfd.uci.edu/~gohlke/pythonlibs/


12 2 Python

In the following, [_mydir_] has to be replaced with your home-directory (i.e.,
the directory that opens up when you run cmd in Windows, or terminal in Linux).
And [_myname_] should be replaced by your name or your userID.

To start up IPython in a folder of your choice, and with personalized startup
scripts, proceed as follows.

a) In Windows

• Type Win+R, and start a command shell with cmd

• In the newly created command shell, type ipython. (This will launch an ipython
session, and create the directory [_mydir_]\.ipython).

• Add the Variable IPYTHONDIR to your environment (see above), and set it to
[_mydir_]\.ipython. This directory contains the startup-commands for your
ipython-sessions.

• Into the startup folder [_mydir_].ipython\profile_default\startup

place a file with, e.g., the name 00_[_myname_].py, containing the startup
commands that you want to execute every time that you launch ipython. My
personal startup file contains the following lines:

import pandas as pd
import os
os.chdir(r'C:\[_mydir_]')

This will import pandas, and start you working in the directory of your choice.
Note: since Windows uses \ to separate directories, but \ is also the escape

character in strings, directory paths using a simple backslash have to be preceded
by “r,” indicating “raw strings”.

• Generate a file “ipy.bat” in mydir, containing

jupyter qtconsole

To see all Jupyter Notebooks that come with this book, for example, do the
following:

• Type Win+R, and start a command shell with cmd

• Run the commands

cd [_ipynb-dir_]
jupyter notebook

• Again, if you want, you can put this command sequence into a batch-file.

b) In Linux

• Start a Linux terminal with the command terminal

• In the newly created command shell, execute the following command

ipython

(This generates a folder :ipython)
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• Into the sub-folder .ipython/profile_default/startup, place a file with
e.g., the name 00[_myname_].py, containing the lines

import pandas as pd
import os
os.chdir([_mydir_])

• In your .bashrc file (which contains the startup commands for your shell-
scripts), enter the lines

alias ipy='jupyter qtconsole'
IPYTHONDIR='~/.ipython'

• To see all Jupyter Notebooks, do the following:

– Go to [_mydir_]

– Create the file ipynb.sh, containing the lines

#!/bin/bash
cd [wherever_you_have_the_ipynb_files]
jupyter notebook

– Make the file executable, with chmod 755 ipynb.sh

Now you can start “your” IPython by just typing ipy, and the Jupyter Notebook
by typing ipynb.sh

c) In Mac OS X

• Start the Terminal either by manually opening Spotlight or the shortcut
CMD + SPACE and entering Terminal and search for “Terminal.”

• In Terminal, execute ipython, which will generate a folder under [_mydir_]/.
ipython.

• Enter the command pwd into the Terminal. This lists [_mydir_]; copy this for
later use.

• Now open Anaconda and launch an editor, e.g., spyder-app or TextEdit.3

Create a file containing the command lines you regularly use when writing code
(you can always open this file and edit it). For starters you can create a file with
the following command lines:

import pandas as pd
import os
os.chdir('[_mydir_]/.ipython/profile_[_myname_]')

• The next steps are somewhat tricky. Mac OS X hides the folders that start with
“.”. So to access .ipython open File -> Save as n . . . . Now open a Finder
window, click the Go menu, select Go to Folder and enter

3More help on text-files can be found under http://support.smqueue.com/support/solutions/articles/
31751-how-to-create-a-plain-text-file-on-a-mac-computer-for-bulk-uploads.

http://support.smqueue.com/support/solutions/articles/31751-how-to-create-a-plain-text-file-on-a-mac-computer-for-bulk-uploads
http://support.smqueue.com/support/solutions/articles/31751-how-to-create-a-plain-text-file-on-a-mac-computer-for-bulk-uploads
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[ _mydir_ ]/.ipython/profile_default/startup. This will open a Finder
window with a header named “startup”. On the left of this text there should be
a blue folder icon. Drag and drop the folder into the Save as. . . window open
in the editor. IPython has a README file explaining the naming conventions. In
our case the file must begin with 00-, so we could name it 00-[ _myname_ ].

• Open your .bash_profile (which contains the startup commands for your
shellscripts), and enter the line
alias ipy='jupyter qtconsole'

• To see all Jupyter Notebooks, do the following:

– Go to [_mydir_]

– Create the file ipynb.sh, containing the lines

#!/bin/bash
cd [wherever_you_have_the_ipynb_files]
jupyter notebook

– Make the file executable, with chmod 755 ipynb.sh

2.1.6 Python Resources

If you have some programming experience, this book may be all you need to get
the statistical analysis of your data going. But if required, very good additional
information can be found on the web, where tutorials as well as good free books are
available online. The following links are all recommendable sources of information
if you are starting with Python:

• Python Scientific Lecture Notes If you don’t read anything else, read this!
(http://scipy-lectures.github.com)

• NumPy for Matlab Users Start here if you have Matlab experience.
(https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html; also
check http://mathesaurus.sourceforge.net/matlab-numpy.html)

• Lectures on scientific computing with Python Great Jupyter Notebooks, from JR
Johansson!
(https://github.com/jrjohansson/scientific-python-lectures)

• The Python tutorial The official introduction.
(http://docs.python.org/3/tutorial)

In addition free Python books are available, for different levels of programming
skills:

• A Byte of Python A very good book, at the introductory level.
(http://swaroopch.com/notes/python)

• Learn Python the Hard Way (3rd Ed) A popular book that you can work through.
(http://learnpythonthehardway.org/book/)

http://scipy-lectures.github.com
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
http://mathesaurus.sourceforge.net/matlab-numpy.html
https://github.com/jrjohansson/scientific-python-lectures
http://docs.python.org/3/tutorial
http://swaroopch.com/notes/python
http://learnpythonthehardway.org/book/
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• Think Python For advanced programmers.
(http://www.greenteapress.com/thinkpython)

• Introduction to Python for Econometrics, Statistics and Data Analysis Introduces
Python with a focus on statistics (Sheppard 2015).

• Probabilistic Programming and Bayesian Methods for Hackers An excellent
introduction into Bayesian thinking. The section on Bayesian statistics in this
book is also based on that book (Pilon 2015).

I have not seen many textbooks on Python that I have really liked. My favorite
introductory books are Harms and McDonald (2010), and the more recent Scopatz
and Huff (2015).

When I run into a problem while developing a new piece of code, most
of the time I just google; thereby I stick primarily (a) to the official Python
documentation pages, and (b) to http://stackoverflow.com/. Also, I have found user
groups surprisingly active and helpful!

2.1.7 First Python Programs

a) Hello World

Python Shell

Python is an interpreted language. The simplest way to start Python is to type
python on the command line. (When I say command line I refer in Windows to
the command shell started with cmd, and in Linux or Mac OS X to the terminal.)
Then you can already start to execute Python commands, e.g., the command to print
“Hello World” to the screen: print('Hello World'). On my Windows computer,
this results in

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 6 2015, 01:54:25) [
MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more
information.

>>> print('Hello World')
Hello World
>>>

However, I never use the basic Python shell any more, but always start out with
the IPython/Jupyter qtconsole described in more detail in Sect. 2.3. The Qt console
is an interactive programming environment which offers a number of advantages.
For example, when you type print( in the Qt console, you immediately see
information about the possible input arguments for the command print.

http://www.greenteapress.com/thinkpython
http://stackoverflow.com/
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Python Modules

Often we want to store our commands in a file for later reuse. Python files have the
extension .py, and are referred to as Python modules. Let us create a new file with
the name helloWorld.py, containing the line

print('Hello World')

This file can now be executed by typing python helloWorld.py on the
command line.

In Windows you can actually run the file by double-clicking it, or by simply
typing helloWorld.py if the extension .py is associated with the Python program
installed on your computer. In Linux and Mac OS X the procedure is slightly more
involved. There, the file needs to contain an additional first line specifying the path
to the Python installation.

#! \usr\bin\python
print('Hello World')

On these two systems, you also have to make the file executable, by typing
chmod +x helloWorld.py, before you can run it with helloWorld.py.

b) SquareMe

To increase the level of complexity, let us write a Python module which prints out
the square of the numbers from zero to five. We call the file squareMe.py, and it
contains the following lines

Listing 2.1 squareMe.py

1 # This file shows the square of the numbers from 0 to 5.
2

3 def squared(x):
4 return x**2
5

6 for ii in range(6):
7 print(ii, squared(ii))
8

9 print('Done')
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Let me explain what happens in this file, line-by-line:

1 The first line starts with “#”, indicating a comment-line.
3–4 These two lines define the function squared, which takes the variable x as

input, and returns the square (x**2) of this variable.
Note: The range of the function is defined by the indentation! This is a
feature loved by many Python programmers, but often found confusing by
newcomers. Here the last indented line is line 4, which ends the function
definition.

6–7 Here the program loops over the first 6 numbers. Also the range of the for-
loop is defined by the indentation of the code.
In line 7, each number and its corresponding square are printed to the output.

9 This command is not indented, and therefore is executed after the for-loop
has ended.

Notes

• Since Python starts at 0, the loop in line 6 includes the numbers from 0 to 5.
• In contrast to some other languages Python distinguishes the syntax for function

calls from the syntax for addressing elements of an array etc: function calls, as
in line 7, are indicated with round brackets ( ... ); and individual elements of
arrays or vectors are addressed by square brackets [ ... ].

2.2 Python Data Structures

2.2.1 Python Datatypes

Python offers a number of powerful data structures, and it pays off to make yourself
familiar with them. One can use

• Tuples to group objects of different types.
• Lists to group objects of the same types.
• Arrays to work with numerical data. (Python also offers the data type matrix.

However, it is recommended to use arrays, since many numerical and scientific
functions will not accept input data in matrix format.)

• Dictionaries for named, structured data sets.
• DataFrames for statistical data analysis.

Tuple ( ) A collection of different things. Tuples are “immutable”, i.e., they
cannot be modified after creation.

In [1]: import numpy as np

In [2]: myTuple = ('abc', np.arange(0,3,0.2), 2.5)

In [3]: myTuple[2]
Out[3]: 2.5
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List [] Lists are “mutable”, i.e., their elements can be modified. Therefore lists
are typically used to collect items of the same type (numbers, strings, : : :). Note
that “+” concatenates lists.

In [4]: myList = ['abc', 'def', 'ghij']

In [5]: myList.append('klm')

In [6]: myList
Out[6]: ['abc', 'def', 'ghij', 'klm']

In [7]: myList2 = [1,2,3]

In [8]: myList3 = [4,5,6]

In [9]: myList2 + myList3
Out[9]: [1, 2, 3, 4, 5, 6]

Array [] vectors and matrices, for numerical data manipulation. Defined in
numpy. Note that vectors and 1-d arrays are different: vectors CANNOT be
transposed! With arrays, “+” adds the corresponding elements; and the array-
method .dot performs a scalar multiplication of two arrays. (From Python 3.5
onward, this can also be achieved with the “@” operator.).

In [10]: myArray2 = np.array(myList2)

In [11]: myArray3 = np.array(myList3)

In [12]: myArray2 + myArray3
Out[12]: array([5, 7, 9])

In [13]: myArray2.dot(myArray3)
Out[13]: 32

Dictionary { } Dictionaries are unordered (key/value) collections of content,
where the content is addressed as dict['key']. Dictionaries can be created with
the command dict, or by using curly brackets {...}:

In [14]: myDict = dict(one=1, two=2, info='some information')

In [15]: myDict2 = {'ten':1, 'twenty':20,
'info':'more information'}

In [16]: myDict['info']
Out[16]: 'some information'

In [17]: myDict.keys()
Out[17]: dict_keys(['one', 'info', 'two'])

DataFrame Data structure optimized for working with named, statistical data.
Defined in pandas. (See Sect. 2.5.)
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2.2.2 Indexing and Slicing

The rules for addressing individual elements in Python lists or tuples or in numpy
arrays are pretty simple really, and have been nicely summarized by Greg Hewgill
on stackoverflow4:

a[start:end] # items start through end-1
a[start:] # items start through the rest of the array
a[:end] # items from the beginning through end-1
a[:] # a copy of the whole array

There is also the step value, which can be used with any of the above:

a[start:end:step] # start through not past end, by step

The key points to remember are that indexing starts at 0, not at 1; and that
the :end value represents the first value that is not in the selected slice. So, the
difference between end and start is the number of elements selected (if step is 1,
the default).

The other feature is that start or end may be a negative number, which means
it counts from the end of the array instead of the beginning. So:

a[-1] # last item in the array
a[-2:] # last two items in the array
a[:-2] # everything except the last two items

As a result, a[:5] gives you the first five elements (Hello in Fig. 2.2), and a[-5:]
the last five elements (World).

2.2.3 Vectors and Arrays

numpy is the Python module that makes working with numbers efficient. It is
commonly imported with

import numpy as np

Fig. 2.2 Indexing starts at 0, and slicing does not include the last value

4http://stackoverflow.com/questions/509211/explain-pythons-slice-notation.

http://stackoverflow.com/questions/509211/explain-pythons-slice-notation
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By default, it produces vectors. The commands most frequently used to generate
numbers are:

np.zeros generates zeros. Note that it takes only one(!) input. If you
want to generate a matrix of zeroes, this input has to be a
tuple, containing the number of rows/columns!

In [1]: import numpy as np

In [2]: np.zeros(3)
Out[2]: array([ 0., 0., 0.])

In [3]: np.zeros( (2,3) )
Out[3]: array([[ 0., 0., 0.],

[ 0., 0., 0.]])

np.ones generates ones.
np.random.randn generates normally distributed numbers, with a mean of 0 and

a standard deviation of 1.
np.arange generates a range of numbers. Parameters can be

start, end, steppingInterval. Note that the end-value
is excluded! While this can sometimes be a bit awkward, it
has the advantage that consecutive sequences can be easily
generated, without any overlap, and without missing any data
points:

In [4]: np.arange(3)
Out[4]: array([0, 1, 2])

In [5]: np.arange(1,3,0.5)
Out[5]: array([ 1. , 1.5, 2. , 2.5])

In [6]: xLow = np.arange(0,3,0.5)
In [7]: xHigh = np.arange(3,5,0.5)

In [8]: xLow
Out[8]: array([ 0., 0.5, 1., 1.5, 2., 2.5])

In [9]: xHigh
Out[9]: array([ 3., 3.5, 4., 4.5])

np.linspace generates linearly spaced numbers.

In [10]: np.linspace(0,10,6)
Out[10]: array([ 0., 2., 4., 6., 8., 10.])
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np.array generates a numpy array from given numerical data.

In [11]: np.array([[1,2], [3,4]])
Out[11]: array([ [1, 2],

[3, 4] ])

There are a few points that are peculiar to Python, and that are worth noting:

• Matrices are simply “lists of lists”. Therefore the first element of a matrix gives
you the first row:

In [12]: Amat = np.array([ [1, 2],
[3, 4] ])

In [13]: Amat[0]
Out[13]: array([1, 2])

• A vector is not the same as a one-dimensional matrix! This is one of the few
really un-intuitive features of Python, and can lead to mistakes that are hard to
find. For example, vectors cannot be transposed, but matrices can.

In [14]: x = np.arange(3)

In [15]: Amat = np.array([ [1,2], [3,4] ])

In [16]: x.T == x
Out[16]: array([ True, True, True], dtype=bool)

In [17]: Amat.T == Amat
Out[17]: array([[ True, False],

[False, True]], dtype=bool)

2.3 IPython/Jupyter: An Interactive Programming
Environment

A good workflow for source code development can make a very big difference
for coding efficiency. For me, the most efficient way to write new code is as
follows: I first get the individual steps worked out interactively in IPython (http://
ipython.org/). IPython provides a programming environment that is optimized for
interactive computing with Python, similar to the command-line in Matlab. It comes
with a command history, interactive data visualization, command completion,
and lots of features that make it quick and easy to try out code. When the
pylab mode is activated with %pylab inline, IPython automatically loads numpy
and matplotlib.pyplot (which is the package used for generating plots) into
the active workspace, and provides a very convenient, Matlab-like programming
environment. The optional argument inline directs plots into the current qtcon-
sole/notebook.

http://ipython.org/
http://ipython.org/
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IPython uses Jupyter to provide different interface options, my favorite being the
qtconsole:

jupyter qtconsole

A very helpful addition is the browser-based notebook, with support for code,
text, mathematical expressions, inline plots and other rich media.

jupyter notebook

Note that many of the examples that come with this book are also available
as Jupyter Notebooks, which are available at github: https://github.com/thomas-
haslwanter/statsintro_python.git.

2.3.1 First Session with the Qt Console

An important aspect of statistical data analysis is the interactive, visual inspection
of the data. Therefore I strongly recommend to start the data analysis in the ipython
qtonsole.

For maximum flexibility, I start my IPython sessions from the command-line,
with the command jupyter qtconsole. (Under WinPython: if you have problems
starting IPython from the cmd console, use the WinPython Command Prompt
instead—it is nothing else but a command terminal with the environment variables
set such that Python is readily found.)

To get started with Python and IPython, let me go step-by-step through the
IPython session in Fig. 2.3:

• IPython starts out listing the version of IPython and Python that are used, and
showing the most important help calls.

• In [1]: The first command %pylab inline loads numpy and matplotlib into the
current workspace, and directs matplotlib to show plots “inline”.

To understand what is happening here requires a short detour into the structure
of scientific Python.

Figure 2.1 shows the connection of the most important Python packages that
are used in this book. Python itself is an interpretative programming language,
with no optimization for working with vectors or matrices, or for producing
plots. Packages which extend the abilities of Python must be loaded explicitly.
The most important package for scientific applications is numpy , which makes
working with vectors and matrices fast and efficient, and matplotlib, which is
the most common package used for producing graphical output. scipy contains
important scientific algorithms. For the statistical data analysis, scipy.stats
contains the majority of the algorithms that will be used in this book. pandas
is a more recent addition, which has become widely adopted for statistical
data analysis. It provides DataFrames, which are labeled, two-dimensional data
structures, making work with data more intuitive. seaborn extends the plotting

https://github.com/thomas-haslwanter/statsintro_python.git
https://github.com/thomas-haslwanter/statsintro_python.git
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Fig. 2.3 Sample session in the Jupyter QtConsole

abilities of matplotlib, with a focus on statistical graphs. And statsmodels
contains many modules for statistical modeling, and for advanced statistical
analysis. Both seaborn and statsmodels make use of pandas DataFrames.

IPython provides the tools for interactive data analysis. It lets you quickly dis-
play graphs and change directories, explore the workspace, provides a command
history etc. The ideas and base structure of IPython have been so successful that
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the front end has been turned into a project of its own, Jupyter, which is now also
used by other languages like Julia, R, and Ruby.

• In [2]: The command t = r_[0:10:0.1] is a shorthand version for
t = arange(0, 10, 0.1), and generates a vector from 0 to 10, with a step
size of 0.1. r_ (and arange) are commands in the numpy package. (r_ generates
row vectors, and c_ is the corresponding numpy command to generate column
vectors.) However, since numpy has already been imported into the current
workspace by %pylab inline, we can use these commands right away.

• In [4]: Since t is a vector, and sin is a function from numpy, the sine-value is
calculated automatically for each value of t.

• In [5]: In Python scripts, changes of the current folder have to be performed
with os.chdir(). However, tasks common with interactive computing, such
as directory changes (%cd), bookmarks for directories (%bookmark), inspection
of the workspace (%who and %whos), etc., are implemented as “IPython magic
functions”. If no Python variable with the same name exists, the “%” sign can be
left away, as here.

• In [6]: Since we have started out with the command %pylab inline, IPython
generates plots in the Jupyter QtConsole, as shown in Fig. 2.3. To enter multi-line
commands in IPython, one can use CTRL+Enter for additional command lines,
indicated in the terminal by .... (The command sequence gets executed after the
next empty line.)
Note that also generating graphics files is very simple: here I generate the PNG-
file “Sinewave.png”, with a resolution of 200 dots-per-inch.

I have mentioned above that matplotlib handles the graphics output. In the
Jupyter QtConsole, you can switch between inline graphs and output into an
external graphics-window with %matplotlib inline and %matplotlib qt4

(see Fig. 2.4). (Depending on your version of Python, you may have to replace
%matplotlib qt4 with %matplotlib tk.) An external graphics window allows
to zoom and pan in the figure, get the cursor position (which can help to find
outliers), and get interactive input with the command ginput. matplotlib’s plotting
commands closely follow the Matlab conventions.

2.3.2 Notebook and rpy2

Many of the code samples accompanying this book are also available as Jupyter
Notebooks, and can be downloaded from https://github.com/thomas-haslwanter/
statsintro_python.git. Therefore the concept of Notebooks and their integration with
the R-language are briefly presented here.

https://github.com/thomas-haslwanter/statsintro_python.git
https://github.com/thomas-haslwanter/statsintro_python.git
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Fig. 2.4 Graphical output window, using the Qt-framework. This allows you to pan, zoom, and
get interactive input

a) The Notebook

Since approximately 2013 the IPython Notebook has become a very popular way to
share research and results in the Python community. In 2015 the development of the
interface has become its own project, called Jupyter, since the notebook can be used
not only with Python language, but also with Julia, R, and 40 other programming
languages. The notebook is a browser based interface, which is especially well
suited for teaching and for documentation. It allows to combine a structured layout,
equations in the popular LaTeX format, and images, and can include resulting
graphs and videos, as well as the output from Python commands (see Fig. 2.5).

b) rpy2

While Python is my preferred programming language, the world of advanced
statistics is clearly dominated by R. Like Python, R is completely free and has a
very active user community. While Python is a general programming language, R
is optimized for the interactive work with statistical data. Many users swear that
ggplot provides the best-looking graphs for statistical data.

To combine the best of both worlds, the package rpy2 provides a way to transfer
data from Python into R, execute commands in R, and transfer the results back into
Python. In the Jupyter Notebook, with rpy2 even R graphics can be fully utilized
(see Fig. 2.6)!
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Fig. 2.5 The Jupyter Notebook makes it easy to share research, formulas, and results

2.3.3 IPython Tips

1. Use IPython in the Jupyter QtConsole, and customize your startup as described
in Sect. 2.1.5: it will save you time in the long run!

2. For help on e.g., plot, use help(plot) or plot?. With one question mark the
help gets displayed, with two question marks (e.g., plot??) also the source code
is shown.

3. Check out the help tips displayed at the start of IPython.
4. Use TAB-completion, for file- and directory names, variable names, AND for

commands.
5. To switch between inline and external graphs, use %matplotlib inline and

%matplotlib qt4.
6. By default, IPython displays data with a very high precision. For a more concise

display, use %precision 3.
7. You can use edit [_fileName_] to edit files in the local directory, and

%run [_fileName_] to execute Python scripts in your current workspace.
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Fig. 2.6 The output from
R-commands is not working
properly yet, and has been
“hacked” here. However, this
issue should be resolved soon

2.4 Developing Python Programs

2.4.1 Converting Interactive Commands into a Python
Program

IPython is very helpful in working out the command syntax and sequence. The next
step is to turn these commands into a Python program with comments, that can be
run from the command-line. This section introduces a fairly large number of Python
conventions and syntax.

An efficient way to turn IPython commands into a function is to

• first obtain the command history with the command %hist or %history.
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• copy the history into a good IDE (integrated development environment): I either
use Wing (my clear favorite Python IDE, although it is commercial; see Fig. 2.7)
or Spyder (which is good and free; see Fig. 2.8). PyCharm is another IDE with a
good debugger, and with very good vim-emulation.

• turn it into a working Python program by adding the relevant package informa-
tion, etc.

Converting the commands from the interactive session in Fig. 2.3 into a program,
we get

Listing 2.2 L2_4_pythonScript.py

1 '''
2 Short demonstration of a Python script.
3

4 author: Thomas Haslwanter
5 date: May-2015
6 ver: 1.0
7 '''
8

9 # Import standard packages
10 import numpy as np
11 import matplotlib.pyplot as plt
12

13 # Generate the time-values
14 t = np.r_[0:10:0.1]
15

16 # Set the frequency, and calculate the sine-value
17 freq = 0.5
18 x = np.sin(2*np.pi*freq*t)
19

20 # Plot the data
21 plt.plot(t,x)
22

23 # Format the plot
24 plt.xlabel('Time[sec]')
25 plt.ylabel('Values')
26

27 # Generate a figure, one directory up
28 plt.savefig(r'..\Sinewave.png', dpi=200)
29

30 # Put it on the screen
31 plt.show()

The following modifications were made from the IPython history:

• The commands were put into a files with the extension “.py”, a so-called Python
module.

• 1–7: It is common style to precede a Python module with a header block. Multi-
line comments are given between triple inverted commas ''' [_ xxx _] '''.
The first comment block describing the module should also contain information
about author, date, and version number.
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Fig. 2.7 Wing is my favorite development environment, with probably the best existing debugger
for Python. Tip: If Python does not run right away, you may have to go to Project ->
Project Properties and set the Custom Python Executable and/or Python Path

Fig. 2.8 Spyder is a very good, free IDE
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• 9: Single-line comments use “#”.
• 10–11: The required Python packages have to be imported explicitly. (In IPython,

this is done for numpy and matplotlib.pyplot by the command %pylab.) It is
customary to import numpy as np, and matplotlib.pyplot, the matplotlib module
containing all the plotting commands, as plt.

• 14 etc: The numpy command r_ has to be addressed through the corresponding
package name, i.e., np.r_. (In IPython, %pylab took care of that.)

• 18: Note that also “pi” is in numpy, so np.pi is needed!
• 21 etc: All the plotting commands are in the package plt.
• 28: Care has to be taken with backslashes in pathnames: in Windows, directories

in path-names are separated by "\", which is also used as the escape-character in
strings. To take "\" literally, a string has to be preceded by “r” (for “r”aw string),
e.g., r'C:\Users\Peter' instead of 'C:\\Users\\Peter'.

• 34: While IPython automatically shows graphical output, Python programs don’t
show the output until this is explicitly requested by plt.show(). The idea behind
this is to optimize the program speed, only showing the graphical output when
required. The output looks the same as in Fig. 2.4.

2.4.2 Functions, Modules, and Packages

Python has three different levels of modularization:

Function A function is defined by the keyword def, and can be defined anywhere
in Python. It returns the object in the return statement, typically at the
end of the function.

Modules A module is a file with the extension “.py”. Modules can contain
function and variable definitions, as well as valid Python statements.

Packages A package is a folder containing multiple Python modules, and must
have a file named __init__.py. For example, numpy is a Python
package. Since packages are mainly important for grouping a larger
number of modules, they won’t be discussed in this book.

a) Functions

The following example shows how functions can be defined and used.

Listing 2.3 L2_4_pythonFunction.py

1 '''Demonstration of a Python Function
2

3 author: thomas haslwanter, date: May-2015
4 '''
5

6 # Import standard packages
7 import numpy as np
8
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9 def incomeAndExpenses(data):
10 '''Find the sum of the positive numbers, and the sum of

the negative ones.'''
11 income = np.sum(data[data>0])
12 expenses = np.sum(data[data<0])
13

14 return (income, expenses)
15

16 if __name__=='__main__':
17 testData = np.array([-5, 12, 3, -6, -4, 8])
18

19 # If only real banks would be so nice ;)
20 if testData[0] < 0:
21 print('Your first transaction was a loss, and will be

dropped.')
22 testData = np.delete(testData, 0)
23 else:
24 print('Congratulations: Your first transaction was a

gain!')
25

26 (myIncome, myExpenses) = incomeAndExpenses(testData)
27 print('You have earned {0:5.2f} EUR, and spent {1:5.2f}

EUR.'.format(myIncome, -myExpenses))

• 1–4: Comment header.
• 6: Since numpy will be required in that module, it has to be imported. To reduce

the writing to a minimum, it is conventionally called np.
• 9/10: Function definition, and a comment describing the function. Note that in

Python the function block is defined by the indentation, not by any brackets
or end statements! This is a feature that irritates many Python novices, but
really helps to keep code clear and nicely formatted. Important: Python makes
a difference between a tab and the equivalent amount of spaces. This can lead
to errors which are really hard to detect, so use a good IDE that automatically
converts tabs to spaces!

• 11:

– The sum command is taken from numpy, so it has to be preceded by .np.
– In Python, function arguments are indicated by round brackets (...), whereas

elements of lists, tuples, vectors, and arrays are indicated by square brackets
[...].

– In numpy you can select elements of an array either with an index (see line
20), or with a boolean array (line 11).

• 14: Python also uses round brackets to form groups of elements, the so-called
tuples. And the return statement does the obvious things: it returns elements
from a function.

• 16: Here quite a few new aspects of Python come together:

– Just like function definitions, if-loops or for-loops use indentation to define
their context.
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– Python conventionally uses underscores (_) to indicate private variables,
which are not used for typical programming tasks.

– Here we check the variable with the name __name__, which is denoting
the context of a module evaluation. If the module is run as a Python script,
__name__ is set to __main__. But if a module is imported, it is set to the name
of the importing module. This way it is possible to add code to a function that
is only used when the module is executed, but not when the functions in this
module are imported by other modules (see below).

• 17: Definition of a numpy array.
• 26: The two elements returned as a tuple from the function incomeAndExpenses

can be immediately assigned to two different Python objects
(myIncome, myExpenses).

• 27: While there are different ways to produce formatted strings, this is probably
the most elegant one: curly brackets { ... } indicate values that will be
inserted, and can also contain formatting statements. The corresponding values
are then passed into the string by the method format, e.g., print('The value

of pi is {0}'.format(np.py)).

b) Modules

To execute the module pythonFunction.py from the command-line, type
python pythonFunction.py. In Windows, if the extension “.py” is associated

with the Python program, it suffices to double-click the module, or to type
pythonFunction.py on the command-line. In WinPython the association of the

extension “.py” with the Python function is set by the WinPython Control Panel.exe,
by the command Register Distribution : : : in the menu Advanced.

To run a module in IPython, use the magic function %run:

In [56]: %run pythonFunction
Your first transaction was a loss, and will be dropped.
You have earned 23.00 EUR, and spent 10.00 EUR.

Note that you either have to be in the directory where the function is defined, or
you have to give the full pathname.

If you want to use a function or variable that is defined in a different module,
you have to import that module. This can be done in three different ways. For the
following example, assume that the other module is called newModule.py, and the
function that we want from there newFunction.

• import newModule: The function can then be accessed with
newModule.newFunction().

• from newModule import newFunction: In this case, the function can be
called directly newFunction().

• from newModule import *: This imports all variables and functions from
newModule into the current workspace; again, the function can be called directly
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with newFunction(). However, use of this syntax is discouraged as it clutters
up the current workspace.

If you import a module multiple times, Python recognizes that the module is
already known, and skips later imports. If you want to override this, and explicitly
want to re-import a module that has changed, you have to use the command reload

from the package importlib:

from importlib import reload
reload(pythonFunction)

Python 2.x: reload does NOT need to be imported from importlib, but is
available as a core module.

The next example shows you how to import functions from one module into
another module:

Listing 2.4 L2_4_pythonImport.py

1 '''Demonstration of importing a Python module
2

3 author: ThH, date: May-2015'''
4

5 # Import standard packages
6 import numpy as np
7

8 # additional packages: this imports the function defined
above

9 import L2_4_pythonFunction
10

11 # Generate test-data
12 testData = np.arange(-5, 10)
13

14 # Use a function from the imported module
15 out = L2_4_pythonFunction.incomeAndExpenses(testData)
16

17 # Show some results
18 print('You have earned {0:5.2f} EUR, and spent {1:5.2f} EUR.'

.format(out[0], -out[1]))

• 9: Here the module pythonFunction (that we have just discussed above) is
imported. Note that the code in the section if __name__ == '__main__' in
pythonFunction.py is NOT executed when the module is imported!

• 15: To access the function incomeAndExpenses from the module
pythonFunction, module- and function-name have to be given:
incomeAndExpenses.pythonFunction(...)
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2.4.3 Python Tips

1. Stick to the standard conventions.

• Every function should have a documentation string on the line below the
function definition.

• Packages should be imported with their commonly used names:
import numpy as np

import matplotlib.pyplot as plt

import scipy as sp

import pandas as pd

import seaborn as sns

2. To get the current directory, use os.path.abspath(os.curdir). And in Python
modules a change of directories can NOT be executed with cd (as in IPython),
but instead requires the command os.chdir(...).

3. Everything in Python is an object: to find out about “obj”, use type(obj) and
dir(obj).

4. Learn to use the debugger. Personally, I always use the debugger from the IDE,
and rarely resort to the built-in debugger pdb.

5. Know lists, tuples, and dictionaries; also, know about numpy arrays and pandas
DataFrames.

6. Use functions a lot, and understand the if __name__=='__main__': construct.
7. If you have all your personal functions in the directory mydir, you can add this

directory to your PYTHONPATH with the command

import sys
sys.path.append('mydir')

8. If you are using non-ASCII characters, such as the German \"{o}\"{a}\"{u}{\ss}

or the French \`{e}\'{e}, you have to let Python know, by adding
# -*- coding: utf-8 -*-

in the first or second line of your Python module. This has to be done, even if
the non-ASCII characters only appear in the comments! This requirement arises
from the fact that Python will default to ASCII as standard encoding if no other
encoding hints are given.

2.4.4 Code Versioning

Computer programs rarely come out perfect at the first try. Typically they are
developed iteratively, by successively eliminating the known errors. Version control
programs, also known as revision control programs, allow tracking only the
modifications, and storing previous versions of the program under development.
If the latest changes cause a new problem, it is then easy to compare them to earlier
versions, and to restore the program to a previous state.
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I have been working with a number of version control programs, and git is the
first one I am really happy with. git is a version control program, and github is a
central source code repository. If you are developing computer software, I strongly
recommend the use of git. It can be used locally, with very little overhead. And it
can also be used to maintain and manage a remote backup copy of the programs.
While the real power of git lies in its features for collaboration, I have been very
happy with it for my own data and software. An introduction to git goes beyond the
scope of this book, but a very good instruction is available under https://git-scm.
com/. Good, short, and simple starting instructions—in many languages—can be
found at http://rogerdudler.github.io/git-guide/.

I am mostly working under Windows, and tortoisegit (https://tortoisegit.org/)
provides a very useful Windows shell interface for git. For example, in order to clone
a repository from github to a computer where tortoisegit is installed, simply right-
click in the folder on your computer where you want the repository to be installed,
select Git Clone ..., and enter the repository name—and the whole repository
will be cloned there. Done!

github (https://github.com/) is an online project using git, and the place where
the source code for the majority of Python packages is hosted.

2.5 Pandas: Data Structures for Statistics

pandas is a widely used Python package which has been contributed by Wes
McKinney. It provides data structures suitable for statistical analysis, and adds
functions that facilitate data input, data organization, and data manipulation. It is
common to import pandas as pd, which reduces the typing a bit (http://pandas.
pydata.org/).

A good introduction to pandas has been written by Olson (2012).

2.5.1 Data Handling

a) Common Procedures

In statistical data analysis, labeled data structures have turned out to be immensely
useful. To handle labeled data in Python, pandas introduces the so-called
DataFrame objects. A DataFrame is a two-dimensional labeled data structure
with columns of potentially different types. You can think of it like a spreadsheet or
SQL table. DataFrames are the most commonly used pandas objects.

https://git-scm.com/
https://git-scm.com/
http://rogerdudler.github.io/git-guide/
https://tortoisegit.org/
https://github.com/
http://pandas.pydata.org/
http://pandas.pydata.org/


36 2 Python

Let me start with a specific example, by creating a DataFrame with three
columns, called “Time,” “x,” and “y”:

import numpy as np
import pandas as pd

t = np.arange(0,10,0.1)
x = np.sin(t)
y = np.cos(t)

df = pd.DataFrame({'Time':t, 'x':x, 'y':y})

In pandas, rows are addressed through indices and columns through their name.
To address the first column only, you have two options:

df.Time
df['Time']

If you want to extract two columns at the same time, ask for several variables in
a list:

data = df[['Time', 'y']]

To display the first or last rows, use

data.head()
data.tail()

To extract the six rows from 5 to 10, use

data[4:10]

as 10 � 4 D 6. (I know, the array indexing takes some time to get used to. Just
keep in mind that Python addresses the locations between entries, not the entries,
and that it starts at 0!)

The handling of DataFrames is somewhat different from the handling of numpy
arrays. For example, (numbered) rows and (labeled) columns can be addressed
simultaneously as follows:

df[['Time', 'y']][4:10]

You can also apply the standard row/column notation, by using the method iloc:

df.iloc[4:10, [0,2]]



2.5 Pandas: Data Structures for Statistics 37

Finally, sometimes you want to have direct access to the data, not to the
DataFrame. You can do this with

data.values

which returns a numpy array.

b) Notes on Data Selection

While pandas’ DataFrames are similar to numpy arrays, their philosophy is
different, and I have wasted a lot of nerves addressing data correctly. Therefore I
want to explicitly point out the differences here:

numpy handles “rows” first. E.g., data[0] is the first row of an array
pandas starts with the columns. E.g., df['values'][0] is the first element of

the column 'values'.

If a DataFrame has labeled rows, you can extract for example the row “rowlabel”
with df.loc['rowlabel']. If you want to address a row by its number, e.g., row
number “15,” use df.iloc[15]. You can also use iloc to address “rows/columns,”
e.g., df.iloc[2:4,3].

Slicing of rows also works, e.g., df[0:5] for the first 5 (!) rows. A sometimes
confusing convention is that if you want to slice out a single row, e.g., row “5,” you
have to use df[5:6]. If you use df[5] alone, you get an error!

2.5.2 Grouping

pandas offers powerful functions to handle missing data which are often replaced by
nan’s (“Not-A-Number”). It also allows more complex types of data manipulation
like pivoting. For example, you can use data-frames to efficiently group objects,
and do a statistical evaluation of each group. The following data are simulated (but
realistic) data of a survey on how many hours a day people watch the TV, grouped
into “m”ale and “f”emale responses:

import pandas as pd
import matplotlib.pyplot as plt

data = pd.DataFrame({
'Gender': ['f', 'f', 'm', 'f', 'm',

'm', 'f', 'm', 'f', 'm', 'm'],
'TV': [3.4, 3.5, 2.6, 4.7, 4.1, 4.1,

5.1, 3.9, 3.7, 2.1, 4.3]
})

#--------------------------------------------
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# Group the data
grouped = data.groupby('Gender')

# Do some overview statistics
print(grouped.describe())

# Plot the data:
grouped.boxplot()
plt.show()

#--------------------------------------------
# Get the groups as DataFrames
df_female = grouped.get_group('f')

# Get the corresponding numpy-array
values_female = grouped.get_group('f').values

produces

TV
Gender
f count 5.000000

mean 4.080000
std 0.769415
min 3.400000
25% 3.500000
50% 3.700000
75% 4.700000
max 5.100000

m count 5.000000
mean 3.360000
std 0.939681
min 2.100000
25% 2.600000
50% 4.000000
75% 4.000000
max 4.100000
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For statistical analysis, pandas becomes really powerful if you combine it with
statsmodels (see below).

2.6 Statsmodels: Tools for Statistical Modeling

statsmodels is a Python package contributed to the community by the statsmodels
development team (http://www.statsmodels.org/). It has a very active user commu-
nity, and has in the last five years massively increased the functionality of Python
for statistical data analysis. statsmodels provides classes and functions for the
estimation of many different statistical models, as well as for conducting statistical
tests and statistical data exploration. An extensive list of result statistics are available
for each estimator.

statsmodels also allows the formulation of models with the popular formula
language based on the notation introduced by Wilkinson and Rogers (1973), and
also used by S and R. For example, the following example would fit a model that
assumes a linear relationship between x and y to a given dataset:

import numpy as np
import pandas as pd
import statsmodels.formula.api as sm

# Generate a noisy line, and save the data in a pandas-DataFrame
x = np.arange(100)
y = 0.5*x - 20 + np.random.randn(len(x))
df = pd.DataFrame({'x':x, 'y':y})

http://www.statsmodels.org/


40 2 Python

# Fit a linear model, using the "formula" language
# added by the package "patsy"
model = sm.ols('y~x', data=df).fit()
print( model.summary() )

Another example would be a model that assumes that “success” is determined
by intelligence” and “diligence,” as well as the interaction of the two. Such a model
could be described by

success � intelligence � diligence

More information on that topic is presented in Chap. 11 (“Statistical Models”).
An extensive list of result statistics are available for each estimator. The results

of all statsmodels commands have been tested against existing statistical packages
to ensure that they are correct. Features include:

• Linear Regression
• Generalized Linear Models
• Generalized Estimating Equations
• Robust Linear Models
• Linear Mixed Effects Models
• Regression with Discrete Dependent Variables
• ANOVA
• Time Series analysis
• Models for Survival and Duration Analysis
• Statistics (e.g., Multiple Tests, Sample Size Calculations, etc.)
• Nonparametric Methods
• Generalized Method of Moments
• Empirical Likelihood
• Graphics functions
• A Datasets Package

2.7 Seaborn: Data Visualization

seaborn is a Python visualization library based on matplotlib. Its primary goal is
to provide a concise, high-level interface for drawing statistical graphics that are
both informative and attractive http://stanford.edu/~mwaskom/software/seaborn/
(Fig. 2.9).

For example, the following code already produces a nice regression plot
(Fig. 2.9), with line-fit and confidence intervals:

import numpy as np
import matplotlib.pyplot as plt

http://stanford.edu/~mwaskom/software/seaborn/
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Fig. 2.9 Regression plot,
from seaborn. The plot shows
the data, the best-fit line, and
the confidence intervals for
the fit

import pandas as pd
import seaborn as sns

x = np.linspace(1, 7, 50)
y = 3 + 2*x + 1.5*np.random.randn(len(x))
df = pd.DataFrame({'xData':x, 'yData':y})
sns.regplot('xData', 'yData', data=df)
plt.show()

2.8 General Routines

In the examples used later in this book, a few tasks come up repeatedly: reading
in data, setting the desired font size and formatting parameters, and generating
graphical output files. The two following modules handle those tasks. If you are
interested you can check them out; but their understanding is not really required:

Code: “ISP_mystyle.py”5: sets commonly used
formatting options, and provides functions for standardized graphics-output into
files.

5https://github.com/thomas-haslwanter/statsintro_python/blob/master/ISP/Code_Quantlets/
Utilities.

https://github.com/thomas-haslwanter/statsintro_python/blob/master/ISP/Code_Quantlets/Utilities
https://github.com/thomas-haslwanter/statsintro_python/blob/master/ISP/Code_Quantlets/Utilities
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2.9 Exercises

2.1 Data Input
Read in data from different sources:

• A CVS-file with a header (’.\Data\data_kaplan\swim100m.csv’). Also show the
first 5 data points.

• An MS-Excel file (’.\Data\data_others\Table 2.8 Waist loss.xls’). Show the last
five data points.

• Read in the same file, but this time from the zipped archive http://cdn.crcpress.
com/downloads/C9500/GLM_data.zip.

2.2 First Steps with Pandas

• Generate a pandas DataFrame, with the x-column time stamps from 0 to 10 s, at a
rate of 10 Hz, the y-column data values with a sine with 1.5 Hz, and the z-column
the corresponding cosine values. Label the x-column “Time”, and the y-column
“YVals”, and the z-column “ZVals”.

• Show the head of this DataFrame.
• Extract the data in lines 10–15 from “Yvals” and “ZVals”, and write them to the

file “out.txt”.
• Let the user know where the data have been written to.

http://cdn.crcpress.com/downloads/C9500/GLM_data.zip
http://cdn.crcpress.com/downloads/C9500/GLM_data.zip


Chapter 3
Data Input

This chapter shows how to read data into Python. Thus it forms the link between
the chapter on Python, and the first chapter on statistical data analysis. It may be
surprising, but reading data into the system in the correct format and checking for
erroneous or missing entries is often one of the most time consuming parts of the
data analysis.

Data input can be complicated by a number of problems, like different separators
between data entries (such as spaces and/or tabulators), or empty lines at the end of
the file. In addition, data may have been saved in different formats, such as MS
Excel, Matlab, HDF5 (which also includes the Matlab-format), or in databases.
Understandably, we cannot cover all possible input options. But I will try to give
an overview of where and how to start with data input.

3.1 Input from Text Files

3.1.1 Visual Inspection

When the data are available as ASCII-files, you should always start out with a visual
inspection of the data! In particular, you should check

• Do the data have a header and/or a footer?
• Are there empty lines at the end of the file?
• Are there white-spaces before the first number, or at the end of each line? (The

latter is a lot harder to see.)
• Are the data separated by tabulators, and/or by spaces? (Tip: you should use a

text-editor which can visualize tabs, spaces, and end-of-line (EOL) characters.)

© Springer International Publishing Switzerland 2016
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3.1.2 Reading ASCII-Data into Python

In Python, I strongly suggest that you start out reading in and inspecting your data
in the Jupyter QtConsole or in an Jupyter Notebook. It allows you to move around
much more easily, try things out, and quickly get feedback on how successful your
commands have been. When you have your command syntax worked out, you can
obtain the command history with %history, copy it into your favorite IDE, and turn
it into a program.

While the a numpy command np.loadtxt allows to read in simply formatted
text data, most of the time I go straight to pandas, as it provides significantly more
powerful tools for data-entry. A typical workflow can contain the following steps:

• Changing to the folder where the data are stored.
• Listing the items in that folder.
• Selecting one of these items, and reading in the corresponding data.
• Checking if the data have been read in completely, and in the correct format.

These steps can be implemented in IPython with the following commands:

In [1]: import pandas as pd
In [2]: cd 'C:\Data\storage'
In [3]: pwd # Check if you were successful
In [4]: ls # List the files in that directory
In [5]: inFile = 'data.txt'
In [6]: df = pd.read_csv(inFile)
In [7]: df.head() # Check if first line is ok
In [8]: df.tail() # Check the last line

After “In [7]” I often have to adjust the options of pd.read_csv, to read in all
the data correctly. Make sure you check that the number of column headers is equal
to the number of columns that you expect. It can happen that everything gets read
in—but into one large single column!

a) Simple Text-Files

For example, a file data.txt with the following content

1, 1.3, 0.6
2, 2.1, 0.7
3, 4.8, 0.8
4, 3.3, 0.9
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can be read in and displayed with

In [9]: data = np.loadtxt('data.txt', delimiter=',')

In [10]: data
Out[10]:

array([[ 1. , 1.3, 0.6],
[ 2. , 2.1, 0.7],
[ 3. , 4.8, 0.8],
[ 4. , 3.3, 0.9]])

where data is a numpy array. Without the flag delimiter=',', the function
np.loadtxt crashes. An alternative way to read in these data is with

In [11]: df = pd.read_csv('data.txt', header=None)

In [12]: df
Out[12]:

0 1 2
0 1 1.3 0.6
1 2 2.1 0.7
2 3 4.8 0.8
3 4 3.3 0.9

where df is a pandas DataFrame. Without the flag header=None, the entries of the
first row are falsely interpreted as the column labels!

In [13]: df = pd.read_csv('data.txt')

In [14]: df
Out[14]:

1 1.3 0.6
0 2 2.1 0.7
1 3 4.8 0.8
2 4 3.3 0.9

The pandas routine has the advantage that the first column is recognized as
integer, whereas the second and third columns are float.

b) More Complex Text-Files

The advantage of using pandas for data input becomes clear with more complex
files. Take for example the input file “data2.txt,” containing the following lines:

ID, Weight, Value
1, 1.3, 0.6
2, 2.1, 0.7
3, 4.8, 0.8
4, 3.3, 0.9

Those are dummy values, created by ThH.
June, 2015
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One of the input flags of pd.read_csv is skipfooter, so we can read in the
data easily with

In [15]: df2 = pd.read_csv('data.txt',
skipfooter=3, delimiter='[ ,]*')

The last option, delimiter='[ ,]*', is a regular expression (see below)
specifying that “one or more spaces and/or commas may be used to separate entry
values.” Also, when the input file includes a header row with the column names, the
data can be accessed immediately with their corresponding column name, e.g.:

In [16]: df2
Out[16]:

ID Weight Value
0 1 1.3 0.6
1 2 2.1 0.7
2 3 4.8 0.8
3 4 3.3 0.9

In [17]: df2.Value
Out[17]:
0 0.6
1 0.7
2 0.8
3 0.9
Name: Value, dtype: float64

c) Regular Expressions

Working with text data often requires the use of simple regular expressions. Regular
expressions are a very powerful way of finding and/or manipulating text strings.
Many books have been written about them, and good, concise information on regular
expressions can be found on the web, for example at:

• https://www.debuggex.com/cheatsheet/regex/python provides a convenient cheat
sheet for regular expressions in Python.

• http://www.regular-expressions.info gives a comprehensive description of regu-
lar expressions.

Let me give two examples how pandas can make use of regular expressions:

1. Reading in data from a file, separated by a combination of commas, semicolons,
or white-spaces:
df = pd.read_csv(inFile, sep='[ ;,]+')

The square brackets indicate a combination (“[: : :]”) of : : :

The plus indicates one or more (“+”)

https://www.debuggex.com/cheatsheet/regex/python
http://www.regular-expressions.info
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2. Extracting columns with certain name-patterns from a pandas DataFrame. In the
following example, I will extract all the columns starting with Vel:

In [18]: data = np.round(np.random.randn(100,7), 2)

In [19]: df = pd.DataFrame(data, columns=['Time',
'PosX', 'PosY', 'PosZ', 'VelX', 'VelY', 'VelZ'])

In [20]: df.head()
Out[20]:

Time PosX PosY PosZ VelX VelY VelZ
0 0.30 -0.13 1.42 0.45 0.42 -0.64 -0.86
1 0.17 1.36 -0.92 -1.81 -0.45 -1.00 -0.19
2 -3.03 -0.55 1.82 0.28 0.29 0.44 1.89
3 -1.06 -0.94 -0.95 0.77 -0.10 -1.58 1.50
4 0.74 -1.81 1.23 1.82 0.45 -0.16 0.12

In [21]: vel = df.filter(regex='Vel*')

In [22]: vel.head()
Out[22]:

VelX VelY VelZ
0 0.42 -0.64 -0.86
1 -0.45 -1.00 -0.19
2 0.29 0.44 1.89
3 -0.10 -1.58 1.50
4 0.45 -0.16 0.12

3.2 Input from MS Excel

There are two approaches to reading a Microsoft Excel file in pandas: the function
read_excel, and the class ExcelFile.1

• read_excel is for reading one file with file-specific arguments (i.e., identical
data formats across sheets).

• ExcelFile is for reading one file with sheet-specific arguments (i.e., different
data formats across sheets).

Choosing the approach is largely a question of code readability and execution
speed.

1The following section has been taken from the pandas documentation.
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The following commands show equivalent class and function approaches to read
a single sheet:

# using the ExcelFile class
xls = pd.ExcelFile('path_to_file.xls')
data = xls.parse('Sheet1', index_col=None,

na_values=['NA'])

# using the read_excel function
data = pd.read_excel('path_to_file.xls', 'Sheet1',

index_col=None, na_values=['NA'])

If this fails, give it a try with the Python package xlrd.
The following advanced script shows how to directly import data from an Excel

file which is stored in a zipped archive on the web:

Listing 3.1 L3_2_readZip.py

1 '''Get data from MS-Excel files, which are stored zipped on
the WWW. '''

2

3 # author: Thomas Haslwanter, date: Nov-2015
4

5 # Import standard packages
6 import pandas as pd
7

8 # additional packages
9 import io

10 import zipfile
11

12 # Python 2/3 use different packages for "urlopen"
13 import sys
14 if sys.version_info[0] == 3:
15 from urllib.request import urlopen
16 else:
17 from urllib import urlopen
18

19 def getDataDobson(url, inFile):
20 '''Extract data from a zipped-archive on the web'''
21

22 # get the zip-archive
23 GLM_archive = urlopen(url).read()
24

25 # make the archive available as a byte-stream
26 zipdata = io.BytesIO()
27 zipdata.write(GLM_archive)
28

29 # extract the requested file from the archive, as a
pandas XLS-file

30 myzipfile = zipfile.ZipFile(zipdata)
31 xlsfile = myzipfile.open(inFile)
32

33 # read the xls-file into Python, using Pandas, and return
the extracted data
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34 xls = pd.ExcelFile(xlsfile)
35 df = xls.parse('Sheet1', skiprows=2)
36

37 return df
38

39 if __name__ == '__main__':
40 # Select archive (on the web) and the file in the archive
41 url = 'http://cdn.crcpress.com/downloads/C9500/GLM_data.

zip'
42 inFile = r'GLM_data/Table 2.8 Waist loss.xls'
43

44 df = getDataDobson(url, inFile)
45 print(df)
46

47 input('All done!')

3.3 Input from Other Formats

Matlab Support for data input from Matlab files is built into scipy,
with the command scipy.io.loadmat.

Clipboard If you have data in your clipboard, you can import them
directly with pd.read_clipboard()

Other file formats Also SQL databases and a number of additional formats are
supported by pandas. The simplest way to access them is
typing pd.read_ + TAB, which shows all currently available
options for reading data into pandas DataFrames.

3.3.1 Matlab

The following commands return string, number, vector, and matrix variables from a
Matlab file “data.mat”, as well as the content of a structure with two entries (a vector
and a string). The Matlab variables containing the scalar, string, vector, matrix, and
structure are called number, text, vector, matrix, and structure, respectively.

from scipy.io import loadmat
data = loadmat('data.mat')

number = data['number'][0,0]
text = data['text'][0]
vector = data['vector'][0]
matrix = data['matrix']
struct_values = data['structure'][0,0][0][0]
strunct_string = data['structure'][0,0][1][0]



Chapter 4
Display of Statistical Data

The dominant task of the human cortex is to extract visual information from the
activity patters on the retina. Our visual system is therefore exceedingly good at
detecting patterns in visualized data sets. As a result, one can almost always see
what is happening before it can be demonstrated through a quantitative analysis of
the data. Visual data displays are also helpful at finding extreme data values, which
are often caused by mistakes in the execution of the paradigm or mistakes in the
data acquisition.

This chapter shows a number of different ways to visualize statistical data sets.

4.1 Datatypes

The choice of appropriate statistical procedure depends on the data type. Data can
be categorical or numerical. If the variables are numerical, we are led to a certain
statistical strategy. In contrast, if the variables represent qualitative categorizations,
then we follow a different path.

In addition, we distinguish between univariate, bivariate, and multivariate data.
Univariate data are data of only one variable, e.g., the size of a person. Bivariate
data have two parameters, for example, the x=y position in a plane, or the income as
a function of age. Multivariate data have three or more variables, e.g., the position
of a particle in space, etc.

4.1.1 Categorical

a) Boolean

Boolean data are data which can only have two possible values. For example,

© Springer International Publishing Switzerland 2016
T. Haslwanter, An Introduction to Statistics with Python, Statistics and Computing,
DOI 10.1007/978-3-319-28316-6_4

51



52 4 Display of Statistical Data

• female/male
• smoker/nonsmoker
• True/False

b) Nominal

Many classifications require more than two categories. Such data are called nominal
data. An example is married/single/divorced.

c) Ordinal

In contrast to nominal data, ordinal data are ordered and have a logical sequence,
e.g., very few/few/some/many/very many.

4.1.2 Numerical

a) Numerical Continuous

Whenever possible, it is best to record the data in their original continuous format,
and only with a meaningful number of decimal places. For example, it does not
make sense to record the body size with more than 1 mm accuracy, as there are
larger changes in body height between the size in the morning and the size in the
evening, due to compression of the intervertebral disks.

b) Numerical Discrete

Some numerical data can only take on integer values. These data are called
numerical discrete. For example Number of children: 0 1 2 3 4 5 : : :

4.2 Plotting in Python

Visualization is most important for numerical data, so I will focus on the following
on this data type.

In practice the display of data can be a bit tricky, as there are so many options:
graphical output can be displayed as a picture in an HTML-page, or in an interactive
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graphics window; plots can force the attention of the user, or can automatically
close after a few seconds, etc. This section will therefore focus on general aspects
of plotting data; the next section will then present different types of plots, e.g.,
histograms, errorbars, 3D-plots, etc.

The Python core does not include any tools to generate plots. This functionality
is added by other packages. By far the most common package for plotting is
matplotlib. If you have installed Python with a scientific distribution like WinPython
or Anaconda, it will already be included. matplotlib is intended to mimic the style
of Matlab. As such, users can either generate plots in the Matlab style, or in the
traditional Python style (see below).

matplotlib contains different modules and features:

matplotlib.pyplot This is the module that is commonly used to generate plots. It
provides the interface to the plotting library in matplotlib, and is by convention
imported in Python functions and modules with
import matplotlib.pyplot as plt.
pyplot handles lots of little details, such as creating figures and axes for the plot,
so that the user can concentrate on the data analysis.

matplotlib.mlab Contains a number of functions that are commonly used in
Matlab, such as find, griddata, etc.

“backends” matplotlib can produce output in many different formats, which are
referred to as backends:

• In a Jupyter Notebook, or in a Jupyter QtConsole, the command
%matplotlib inline directs output into the current browser window.
(%pylab inline is a combination of loading pylab, and directing plot-output
inline.)

• In the same environment, %matplotlib qt41 directs the output into a
separate graphics window (Fig. 2.4). This allows panning and zooming the
plot, and interactive selection of points on the plot by the user, with the
command plt.ginput.

• With plt.savefig output can be directed to external files, e.g., in PDF, PNG,
or JPG format.

pylab is a convenience module that bulk imports matplotlib.pyplot (for
plotting) and numpy (for mathematics and working with arrays) in a single name
space. Although many examples use pylab, it is no longer recommended, and should
only be used in IPython, to facilitate interactive development of code.

1Depending on your build of Python, this command may also be %matplotlib tk.
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4.2.1 Functional and Object-Oriented Approaches to Plotting

Python plots can be generated in a Matlab-like style, or in an object oriented, more
pythonic way. These styles are all perfectly valid, and each have their pros and cons.
The only caveat is to avoid mixing the coding styles in your own code.

First, consider the frequently used pyplot style:

# Import the required packages,
# with their conventional names
import matplotlib.pyplot as plt
import numpy as np

# Generate the data
x = np.arange(0, 10, 0.2)
y = np.sin(x)

# Generate the plot
plt.plot(x, y)

# Display it on the screen
plt.show()

Note that the creation of the required figure and an axes is done automatically by
pyplot.

Second, a more pythonic, object oriented style, which may be clearer when
working with multiple figures and axes. Compared to the example above, only the
section entitled “# Generate the plot” changes:

# Generate the plot
fig = plt.figure() # Generate the figure
ax = fig.add_subplot(111) # Add an axis to that figure
ax.plot(x,y) # Add a plot to that axis

For interactive data analysis, it is convenient to load the most common commands
from numpy and matplotlib.pyplot into the current workspace. This is achieved with
pylab, and leads to a Matlab-like coding style:

from pylab import *
x = arange(0, 10, 0.2)
y = sin(x)
plot(x, y)
show()

So, why all the extra typing as one moves away from the pure Matlab-style? For
very simple things like this example, the only advantage is academic: the wordier
styles are more explicit, more clear as to where things come from and what is
going on. For more complicated applications, this explicitness and clarity becomes
increasingly valuable, and the richer and more complete object-oriented interface
will likely make the program easier to write and to maintain. For example, the
following lines of code produce a figure with two plots above each other, and clearly
indicate which plot goes into which axis:
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# Import the required packages
import matplotlib.pyplot as plt
import numpy as np

# Generate the data
x = np.arange(0, 10, 0.2)
y = np.sin(x)
z = np.cos(x)

# Generate the figure and the axes
fig, axs = plt.subplots(nrows=2, ncols=1)

# On the first axis, plot the sine and label the ordinate
axs[0].plot(x,y)
axs[0].set_ylabel('Sine')

# On the second axis, plot the cosine
axs[1].plot(x,z)
axs[1].set_ylabel('Cosine')

# Display the resulting plot
plt.show()

Code: “ISP_gettingStarted.py”2 gives a short

demonstration of Python for scientific data analysis.

4.2.2 Interactive Plots

matplotlib provides different ways to interact with the user. Unfortunately, this
interaction is less intuitive than in Matlab. The examples below may help to bypass
most of these problems. They show how to

• Exactly position figures on the screen.
• Pause between two plots, and proceed automatically after a few seconds.
• Proceed on a click or keyboard hit.
• Evaluate keyboard entries.

Listing 4.1 L4_1_interactivePlots.py

# Source: http://scipy-central.org/item/84/1/simple-
interactive-matplotlib-plots

2https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/
04_DataDisplay/gettingStarted.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/04_DataDisplay/gettingStarted
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/04_DataDisplay/gettingStarted
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'''Interactive graphs with Matplotlib have haunted me. So
here I have collected a number of

tricks that should make interactive use of plots simpler. The
functions below show how to

- Position figures on the screen (e.g. top left half of
display)

- Pause to display the plot, and proceed automatically after
a few sec

- Proceed on a click, or a keyboard hit
- Evaluate keyboard inputs

author: Thomas Haslwanter
date: Nov-2015
ver: 1.1
license: CC BY-SA 4.0

'''
# Import standard packages
import numpy as np
import matplotlib.pyplot as plt

# additional packages
try:

import tkinter as tk
except ImportError: #different capitalization in Python

2.x
import Tkinter as tk

t = np.arange(0,10,0.1)
c = np.cos(t)
s = np.sin(t)

def normalPlot():
'''Just show a plot. The progam stops, and only continues

when the plot is closed,
either by hitting the "Window Close" button, or by typing

"ALT+F4". '''

plt.plot(t,s)
plt.title('Normal plot: you have to close it to continue\

nby clicking the "Window Close" button, or by hitting
"ALT+F4"')

plt.show()

def positionOnScreen():
'''Position two plots on your screen. This uses the

Tickle-backend, which I think is the default on all
platforms.'''

# Get the screen size
root = tk.Tk()
(screen_w, screen_h) = (root.winfo_screenwidth(), root.

winfo_screenheight())
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root.destroy()

def positionFigure(figure, geometry):
'''Position one figure on a given location on the

screen.
This works for Tk and for Qt5 backends, but may fail

on others.'''

mgr = figure.canvas.manager
(pos_x, pos_y, width, height) = geometry
try:

# positioning commands for Tk
position = '{0}x{1}+{2}+{3}'.format(width, height

, pos_x, pos_y)
mgr.window.geometry(position)

except TypeError:
# positioning commands for Qt5
mgr.window.setGeometry(pos_x, pos_y, width,

height)

# The program continues after the first plot
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t,c)
ax.set_title('Top Left: Close this one last')

# Position the first graph in the top-left half of the
screen

topLeft = (0, 0, screen_w//2, screen_h//2)
positionFigure(fig, topLeft)

# Put another graph in the top right half
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
ax2.plot(t,s)
# I don't completely understand why this one has to be

closed first. But otherwise the program gets unstable.
ax2.set_title('Top Right: Close this one first (e.g. with

ALT+F4)')

topRight = (screen_w//2, 0, screen_w//2, screen_h//2)
positionFigure(fig2, topRight)

plt.show()

def showAndPause():
'''Show a plot only for 2 seconds, and then proceed

automatically'''
plt.plot(t,s)
plt.title('Don''t touch! I will proceed automatically.')

plt.show(block=False)
duration = 2 # [sec]
plt.pause(duration)
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plt.close()

def waitForInput():
''' This time, proceed with a click or by hitting any key

'''
plt.plot(t,c)
plt.title('Click in that window, or hit any key to

continue')

plt.waitforbuttonpress()
plt.close()

def keySelection():
'''Wait for user intput, and proceed depending on the key

entered.
This is a bit complex. But None of the versions I tried

without
key binding were completely stable.'''

fig, ax = plt.subplots()
fig.canvas.mpl_connect('key_press_event', on_key_event)

# Disable default Matplotlib shortcut keys:
keymaps = [param for param in plt.rcParams if param.find(

'keymap') >= 0]
for key in keymaps:

plt.rcParams[key] = ''

ax.plot(t,c)
ax.set_title('First, enter a vowel:')
plt.show()

def on_key_event(event):
'''Keyboard interaction'''

#print('you pressed %s'%event.key)
key = event.key

# In Python 2.x, the key gets indicated as "alt+[key]"
# Bypass this bug:
if key.find('alt') == 0:

key = key.split('+')[1]

curAxis = plt.gca()
if key in 'aeiou':

curAxis.set_title('Well done!')
plt.pause(1)
plt.close()

else:
curAxis.set_title(key + ' is not a vowel: try again

to find a vowel ....')
plt.draw()

if __name__ == '__main__':
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normalPlot()
positionOnScreen()
showAndPause()
waitForInput()
keySelection()

4.3 Displaying Statistical Datasets

The first step in the data analysis should always be a visual inspection of the raw-
data. Between 30 and 50 % of our cortex are involved in the processing of visual
information, and as a result our brain is very good at recognizing patterns in visually
represented data. The trick is choosing the most informative type of display for your
data.

The easiest way to find and implement one of the many image types that
matplotlib offers is to browse their gallery (http://matplotlib.org/gallery.html), and
copy the corresponding Python code into your program.

For statistical data analysis, the Python package seaborn (http://www.stanford.
edu/~mwaskom/software/seaborn/) builds on matplotlib, and aims to provide a con-
cise, high-level interface for drawing statistical graphics that are both informative
and attractive. Also pandas builds on matplotlib and offers many convenient ways
to visualize DataFrames.

Other interesting plotting packages are:

• plot.ly is a package that is available for Python, Matlab, and R, and makes
beautiful graphs (https://plot.ly).

• bokeh is a Python interactive visualization library that targets modern web
browsers for presentation. bokeh can help anyone who would like to quickly and
easily create interactive plots, dashboards, and data applications (http://bokeh.
pydata.org/).

• ggplot for Python. It emulates the R-package ggplot, which is loved by many
R-users (http://ggplot.yhathq.com/).

4.3.1 Univariate Data

The following examples all have the same format. Only the “Plot-command” line
changes.

# Import standard packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as stats
import seaborn as sns

http://matplotlib.org/gallery.html
http://www.stanford.edu/~mwaskom/software/seaborn/
http://www.stanford.edu/~mwaskom/software/seaborn/
https://plot.ly
http://bokeh.pydata.org/
http://bokeh.pydata.org/
http://ggplot.yhathq.com/
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# Generate the data
x = np.random.randn(500)

# Plot-command start ---------------------
plt.plot(x, '.')
# Plot-command end -----------------------

# Show plot
plt.show()

a) Scatter Plots

This is the simplest way to represent univariate data: just plot each individual data
point. The corresponding plot-command is either

plt.plot(x, '.')

or, equivalently,

plt.scatter(np.arange(len(x), x))

Note: In cases where we only have few discrete values on the x-axis (e.g.,
Group1, Group2, Group3), it may be helpful to spread overlapping data points
slightly (also referred to as “adding jitter”) to show each data point. An exam-
ple can be found at http://stanford.edu/~mwaskom/software/seaborn/generated/
seaborn.stripplot.html)

Fig. 4.1 Scatter plot

http://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.stripplot.html
http://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.stripplot.html
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Fig. 4.2 Histogram

b) Histograms

Histograms provide a first good overview of the distribution of your data. If you
divide by the overall number of data points, you get a relative frequency histogram;
and if you just connect the top center points of each bin, you obtain a relative
frequency polygon.

plt.hist(x, bins=25)

c) Kernel-Density-Estimation (KDE) Plots

Histograms have the disadvantage that they are discontinuous, and that their shape
critically depends on the chosen bin-width. In order to obtain smooth probability
densities, i.e., curves describing the likelihood of finding an event in any given
interval, the technique of Kernel Density Estimation (KDE) can be used. Thereby
a normal distribution is typically used for the kernel. The width of this kernel
function determines the amount of smoothing. To see how this works, we compare
the construction of histogram and kernel density estimators, using the following six
data points:

x = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2].
For the histogram, first the horizontal axis is divided into subintervals or bins

which cover the range of the data. In Fig. 4.3, left, we have six bins each of width 2.
Whenever a data point falls inside this interval, we place a box of height 1/12. If
more than one data point falls inside the same bin, we stack the boxes on top of
each other.

For the kernel density estimate, we place a normal kernel with variance 2.25
(indicated by the red dashed lines in Fig. 4.3, right) on each of the data points xi.
The kernels are summed to make the kernel density estimate (solid blue curve). The
smoothness of the kernel density estimate is evident. Compared to the discreteness
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Fig. 4.3 Comparison of the histogram (left) and kernel density estimate (right) constructed using
the same data. The six individual kernels are the red dashed curves, the kernel density estimate the
solid blue curve. The data points are the rug plot on the horizontal axis

of the histogram, the kernel density estimates converge faster to the true underlying
density for continuous random variables.

sns.kdeplot(x)

The bandwidth of the kernel is the parameter which determines how much we
smooth out the contribution from each event. To illustrate its effect, we take a
simulated random sample from the standard normal distribution, plotted as the
blue spikes in the rug plot on the horizontal axis in Fig. 4.4, left. (A rug plot is
a plot where every data entry is visualized by a small vertical tick.) The right plot
shows the true density in blue. (A normal density with mean 0 and variance 1.) In
comparison, the gray curve is undersmoothed since it contains too many spurious
data artifacts arising from using a bandwidth h D 0:1 which is too small. The green
dashed curve is oversmoothed since using the bandwidth h D 1 obscures much of
the underlying structure. The red curve with a bandwidth of h D 0:42 is considered
to be optimally smoothed since its density estimate is close to the true density.

It can be shown that under certain conditions the optimal choice for h is

h D
�

4 O�5

3n

� 1
5

� 1:06 O�n�1=5; (4.1)

where O� is the standard deviation of the samples (“Silverman’s rule of thumb”).
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Fig. 4.4 Left: Rug plot, histogram, and Kernel density estimate (KDE) of a random sample of 100
points from a standard normal distribution. Right: True density distribution (blue), and KDE with
different bandwidths. Gray dashed: KDE with h D 0:1; red: KDE with h D 0:42; green dashed:
KDE with h D 1:0

d) Cumulative Frequencies

A cumulative frequency curve indicates the number (or percent) of data with less
than a given value. This curve is very useful for statistical analysis, for example
when we want to know the data range containing 95 % of all the values. Cumulative
frequencies are also useful for comparing the distribution of values in two or more
different groups of individuals.

When you use percentage points, the cumulative frequency presentation has the
additional advantage that it is bounded: 0 � cumfreq.x/ � 1

plt.plot(stats.cumfreq(x,numbins)[0])
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Fig. 4.5 Cumulative frequency function for a normal distribution

e) Error-Bars

Error-bars are a common way to show mean value and variability when comparing
measurement values. Note that it always has to be stated explicitly if the error-bars
correspond to the standard deviation or to the standard error of the data. Using
standard errors has a nice feature: When error bars for the standard errors for
two groups overlap, one can be sure the difference between the two means is not
statistically significant (p > 0:05). However, the opposite is not always true!

index = np.arange(5)
y = index**2
errorBar = index/2 # just for demonstration
plt.errorbar(index,y, yerr=errorBar, fmt='o',

capsize=5, capthick=3)
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Fig. 4.6 Errorbars

f) Box Plots

Boxplots are frequently used in scientific publications to indicate values in two or
more groups. The bottom and top of the box indicate the first quartile and third
quartile, respectively, and the line inside the box shows the median. Care has to be
taken with the whiskers, as different conventions exist for them. The most common
form is that the lower whisker indicates the lowest value still within 1.5 * inter-
quartile-range (IQR) of the lower quartile, and the upper whisker the highest value
still within 1.5 * IQR of the upper quartile. Outliers (outside the whiskers) are
plotted separately. Another convention is to have the whiskers indicate the full data
range.

There are a number of tests to check for outliers. The method suggested by Tukey,
for example, is to check for data which lie more than 1.5 * IQR above or below the
first/third quartile (see Sect. 6.1.2).

plt.boxplot(x, sym='*')

Boxplots can be combined with KDE-plots to produce the so-called violin plots,
where the vertical axis is the same as for the box-plot, but in addition a KDE-plot is
shown symmetrically along the horizontal direction (Fig. 4.8).
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Fig. 4.7 Box plot

Fig. 4.8 Violinplot, produced with seaborn

# Generate the data
nd = stats.norm
data = nd.rvs(size=(100))

nd2 = stats.norm(loc = 3, scale = 1.5)
data2 = nd2.rvs(size=(100))

# Use pandas and the seaborn package
# for the violin plot
df = pd.DataFrame({'Girls':data, 'Boys':data2})
sns.violinplot(df)
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g) Grouped Bar Charts

For some applications the plotting abilities of pandas can facilitate the generation
of useful graphs, e.g., for grouped barplots (Figs. 4.9, 4.10, 4.11, and 4.12):

df = pd.DataFrame(np.random.rand(10, 4),
columns=['a', 'b', 'c', 'd'])

df.plot(kind='bar', grid=False)

Fig. 4.9 Grouped barplot, produced with pandas
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h) Pie Charts

Pie charts can be generated with a number of different options, e.g.

import seaborn as sns
import matplotlib.pyplot as plt

txtLabels = 'Cats', 'Dogs', 'Frogs', 'Others'
fractions = [45, 30, 15, 10]
offsets =(0, 0.05, 0, 0)

plt.pie(fractions, explode=offsets, labels=txtLabels,
autopct='%1.1f%%', shadow=True, startangle=90,
colors=sns.color_palette('muted') )

plt.axis('equal')

Fig. 4.10 “Sometimes it is raining cats and dogs”
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i) Programs: Data Display

Code: “ISP_showPlots.py”3 shows how the plots in

this section have been generated.

4.3.2 Bivariate and Multivariate Plots

a) Bivariate Scatter Plots

Simple scatter plots are trivial. But pandas also makes fancy scatter plots easy:

df2 = pd.DataFrame(np.random.rand(50, 4),
columns=['a', 'b', 'c', 'd'])

df2.plot(kind='scatter', x='a', y='b', s=df['c']*300);

Fig. 4.11 Scatterplot, with scaled datapoints

3https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/
04_DataDisplay/showPlots.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/04_DataDisplay/showPlots
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/04_DataDisplay/showPlots
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b) 3D Plots

3D plots in matplotlib are a bit awkward, because separate modules have to be
imported, and axes for 3D plots have to be explicitly declared. However, once the
axis is correctly defined, the rest is straightforward. Here are two examples:

# imports specific to the plots in this example
import numpy as np
from matplotlib import cm
from mpl_toolkits.mplot3d.axes3d import get_test_data

# Twice as wide as it is tall.
fig = plt.figure(figsize=plt.figaspect(0.5))

#---- First subplot
# Note that the declaration "projection='3d'"
# is required for 3d plots!
ax = fig.add_subplot(1, 2, 1, projection='3d')

# Generate the grid
X = np.arange(-5, 5, 0.1)
Y = np.arange(-5, 5, 0.1)
X, Y = np.meshgrid(X, Y)

# Generate the surface data
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

# Plot the surface
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,

cmap=cm.GnBu, linewidth=0, antialiased=False)
ax.set_zlim3d(-1.01, 1.01)

fig.colorbar(surf, shrink=0.5, aspect=10)

#---- Second subplot
ax = fig.add_subplot(1, 2, 2, projection='3d')
X, Y, Z = get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)

outfile = '3dGraph.png'
plt.savefig(outfile, dpi=200)
print('Image saved to {0}'.format(outfile))
plt.show()
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Fig. 4.12 Two types of 3D graphs. (Left) surface plot. (Right) wireframe plot

4.4 Exercises

4.1 Data Display

1. Read in the data from ‘Data\amstat\babyboom.dat.txt’.
2. Inspect them visually, and give a numerical description of the data.
3. Are the data normally distributed?



Part II
Distributions and Hypothesis Tests

This part of the book moves the focus from Python to statistics.
The first chapter serves to define the statistical basics, like the concepts of popula-

tions and samples, and of probability distributions. It also includes a short overview
of study design. The design of statistical studies is seriously underestimated by
most beginning researchers: faulty study design produces garbage data, and the best
analysis cannot remedy those problems (“Garbage in–garbage out”). However, if
the study design is good, but the analysis faulty, the situation can be fixed with a
new analysis, which typically takes much less time than an entirely new study.

The next chapter shows how to characterize the position and the variability of
a distribution, and then uses the normal distribution to describe the most important
Python methods common to all distribution functions. After that, the most important
discrete and continuous distributions are presented.

The third chapter in this part first describes a typical workflow in the analysis
of statistical data. Then the concept of hypothesis tests is explained, as well as the
different types of errors, and common concepts like sensitivity and specificity.

The remaining chapters explain the most important hypothesis tests, for con-
tinuous variables and for categorical variables. A separate chapter is dedicated to
survival analysis (which also encompasses the statistical characterization of material
failures and machine breakdowns), as this question requires a somewhat different
approach than the other hypothesis tests presented here. Each of these chapters also
includes working Python sample code (including the required data) for each of the
tests presented. This should make it easy to implement the tests for different data
sets.



Chapter 5
Background

This chapter briefly introduces the main concepts underlying the statistical analysis
of data. It defines discrete and continuous probability distributions, and then gives
an overview of various types of study designs.

5.1 Populations and Samples

In the statistical analysis of data, we typically use data from a few selected samples
to draw conclusions about the population from which these samples were taken.
Correct study design should ensure that the sample data are representative of the
population from which the samples were taken.

The main difference between a population and a sample has to do with how
observations are assigned to the data set (see Fig. 5.1).

Population Includes all of the elements from a set of data.
Sample Consists of one or more observations from the population.

More than one sample can be derived from the same population.
When estimating a parameter of a population, e.g., the weight of male Euro-

peans, we typically cannot measure all subjects. We have to limit ourselves to
investigating a (hopefully representative) random sample taken from this group.
Based on the sample statistic, i.e., the corresponding value calculated from the
sample data, we use statistical inference to find out what we know about the
corresponding parameter in the population.

Parameter Characteristic of a population, such as a mean or standard
deviation. Often notated using Greek letters.

Statistic A measurable characteristic of a sample. Examples of
statistics are:

• the mean value of the sample data

© Springer International Publishing Switzerland 2016
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Fig. 5.1 With statistical inference, information from samples is used to estimate parameters from
populations

Table 5.1 Comparison of
sample statistics and
population parameters

Population parameter Sample statistic

Mean � Nx
Standard deviation � s

• the range of the sample data
• deviation of the data from the sample mean

Sampling distribution The probability distribution of a given statistic based on
a random sample.

Statistical inference Enables you to make an educated guess about a popu-
lation parameter based on a statistic computed from a
sample randomly drawn from that population.

Examples of parameters and statistics are given in Table 5.1. Population param-
eters are often indicated using Greek letters, while sample statistics typically use
standard letters.

5.2 Probability Distributions

The mathematical tools to describe the distribution of numerical data in populations
and samples are probability distributions.
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5.2.1 Discrete Distributions

A simple example of a discrete probability distribution is the game of throwing dice:
for each of the numbers i D 1; : : : ; 6, the probability that at the throw of a die the
side showing the number i faces upward, Pi, is

Pi D 1

6
; i D 1 : : : 6 (5.1)

The set of all these probabilities fPig makes up the probability distribution for
rolling dice.

Note that the smallest possible value for Pi is 0. And since one of the faces of the
die has to turn up at every throw of the dice, we have

6X
iD1

Pi D 1 (5.2)

Generalizing this, we can say that a discrete probability distribution has the
following properties

• 0 � Pi � 1 8 i 2 N
•
Pn

iD1 Pi D 1

For a given discrete distribution, the Pi are called the probability mass function
(PMF) of that distribution.

5.2.2 Continuous Distributions

Many measurements have an outcome that is not restricted to discrete integer values.
For example, the weight of a person can be any positive number. In this case, the
curve describing the probability for each value, i.e., the probability distribution, is a
continuous function, the probability density function (PDF).

The PDF, or density of a continuous random variable, is a function that describes
the relative likelihood of a random variable X to take on a given value x. In the
mathematical fields of probability and statistics, a random variate x is a particular
outcome of a random variable X: the random variates which are other outcomes of
the same random variable might have different values.

Since the likelihood of finding any given value cannot be less than zero, and
since the variable has to have some value, the PDF p.x/ has the following properties
(Fig. 5.2):

• p.x/ � 0 8 x 2 R

•
1R

�1
p.x/dx D 1
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Fig. 5.2 p.x/ is the Probability Density Function of a value x. The integral over p.x/ between a
and b represents the likelihood of finding the value of x in that range

5.2.3 Expected Value and Variance

a) Expected Value

The PDF also defines the expected value E[X] of a continuous distribution of X:

EŒX� D
Z 1

�1
xf .x/ dx: (5.3)

For discrete distributions, the integral over x is replaced by the sum over all
possible values:

EŒX� D
X

i

xiPi D 1: (5.4)

where xi represents all possible values that the measured variable can have.
The expected value is a function of the probability distribution of the observed

value in our population. The sample mean of our sample is the observed mean
value of our data. If the experiment has been designed correctly, the sample mean
should converge to the expected value as more and more samples are included in the
analysis.

b) Variance

The variability of the data is characterized by the variance of the data:

Var.X/ D EŒ.X � EŒX�/2� (5.5)

D EŒX2� � .EŒX�/2
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5.3 Degrees of Freedom

The concept of degrees of freedom (DOF), which in mechanics appears to be crystal
clear, is harder to grasp for statistical applications.

In mechanics, a particle which moves in a plane has “2 DOF”: at each point in
time, two parameters (the x=y-coordinates) define the location of the particle. If the
particle moves about in space, it has “3 DOF”: the x=y=z-coordinates.

In statistics, a group of n values has n DOF. If we look only at the shape of the
distribution of the values, we can subtract from each value the sample mean. Then,
the remaining data only have n � 1 DOF. (This is clearest for n D 2: if we know the
mean value and the value of sample1, then we can calculate the value of sample2 by
val2 D 2 � mean � val1.)

The case becomes more complex when we have many groups. For example,
in Sect. 8.3.1, there is an example with 22 patients, divided into 3 groups. In the
analysis of variance (ANOVA), the DOFs in this example are divided as follows:

• 1 DOF for the total mean value.
• 2 DOF for the mean value of each of the three groups (remember, if we know the

mean values of two groups and the total mean, we can calculate the mean value
of the third group).

• 19 DOF (D 22 � 1 � 2) are left for the residual deviations from the group means.

5.4 Study Design

The importance of a good study design has been demonstrated recently by an
investigation showing the effect of the introduction of the clinicaltrials.gov registry
(Kaplan and Irvin 2015): A 1997 US law mandated the creation of the registry,
requiring researchers from 2000 onwards to record their trial methods and outcome
measures before collecting data. Kaplan et al looked at studies evaluating drugs
or dietary supplements for the treatment or prevention of cardiovascular disease.
They found that before the introduction of clinicaltrials.gov, 57 % of the studies
showed a positive outcome, while after the introduction, this number was reduced
dramatically to only 8 %. In other words, without rigorous study design, there is a
significant bias towards getting the result that you hope for.

5.4.1 Terminology

In the context of study design, various terminology can be found (Fig. 5.3):

• The controlled inputs are often called factors or treatments.
• The uncontrolled inputs are called cofactors, nuisance factors, or confoundings.
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Fig. 5.3 Process schematic

The term covariate refers to a variable that is possibly predictive of the outcome
being studied, and can be a factor or a cofactor.

When we try to model a process with two inputs and one output, we can formulate
a mathematical model for example as

Y D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ12X1X2 C � (5.6)

The terms with the single X (ˇ1; ˇ2) are called main effects, and the terms with
multiple X (ˇ12) interaction terms. And since the ˇ parameters enter the equation
only linearly, this is referred to as a general linear model. The � are called residuals,
and are expected to be distributed approximately normally around zero if the model
describes the data correctly.

5.4.2 Overview

The first step in the design of a study is the explicit clarification of the goal of the
study. Do we want to

1. Compare two or more groups, or one group to a fixed value?
2. Screen the observed responses to identify factors/effects that are important?
3. Maximize or minimize a response (variability, distance to target, robustness)?
4. Develop a regression model to quantify the dependence of a response variable on

the process input?

The first question leads to a hypothesis test. The second one is a screening
investigation, where one must be watchful of artifacts if the factors in the model
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are not completely independent. The third task is an optimization problem. And the
last one brings us into the realm of statistical modeling.

Once we have determined what we want to do, we have to decide how we want
to do this. Either controlled experiments or observations can be used to obtain the
necessary data. In a controlled experiment we typically try to vary only a single
parameter, and investigate the effects of that parameter on the output.

5.4.3 Types of Studies

a) Observational or Experimental

In an observational study, the researcher only collects information, but does
not interact with the study population. In contrast, in an experimental study the
researcher deliberately influences events (e.g., treats the patient with a new type
of medication) and investigates the effects of these interventions.

b) Prospective or Retrospective

In a prospective study, the data are collected from the beginning of the study. In
contrast, a retrospective study takes data acquired from previous events, e.g., routine
tests done at a hospital.

c) Longitudinal or Cross-Sectional

In longitudinal investigations, the researcher collects information over a period of
time, maybe multiple times from each patient. In contrast, in cross-sectional studies
individuals are observed only once. For example, most surveys are cross-sectional,
but experiments are usually longitudinal.

d) Case–Control and Cohort studies

In a case–control study, first the patients are treated, and then they are selected for
inclusion in the study, based on certain criteria (e.g., whether they responded to a
certain medication). In contrast, in a cohort study, subjects of interest are selected
first, and then these subjects are studied over time, e.g., for their response to a
treatment.

e) Randomized Controlled Trial

The gold standard for experimental scientific clinical trials, and the basis for the
approval of new medications, is the randomized controlled trial. Here bias is avoided
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by splitting the subjects to be tested into an intervention group and a control group.
Group allocation is random.

In a designed experiment, there may be several conditions, called factors, that
are controlled by the experimenter. By having the groups differ in only one aspect,
the factor treatment, one should be able to detect the effect of the treatment on the
patients.

Through randomization, confoundings should be balanced across the groups.

f) Crossover Studies

An alternative to randomization is the crossover design of studies. A crossover
study is a longitudinal study in which subjects receive a sequence of different
treatments. Every subject receives every treatment. (The subject “crosses over” from
one treatment to the next.) To avoid causal effects, the sequence of the treatment
allocation should be randomized.

For example, in an investigation that tests the effect of standing and sitting on the
concentration of subjects, each subject performs both the execution of tasks while
standing and the execution of tasks while sitting. The sequence of standing/sitting
is randomized, to cancel out any sequence effects.

5.4.4 Design of Experiments

Block whatever you can; and randomize the rest!

I have mentioned above that we have factors (which we can control) and nuisance
factors, which influence the results, but which we cannot control and/or manipulate.
Assume, for example, that we have an experiment where the results depend on the
person who performs the experiment (e.g., the nurse who tests the subject), and on
the time of the day. In that case we can block the factor nurse, by having all tests
performed by the same nurse. But it won’t be possible to test all subjects at the same
time. So we try to average out time effects, by randomly mixing the timing of the
subjects. If, in contrast, we measure our patients in the morning and our healthy
subjects in the afternoon, we will invariably bring some bias into our data.

a) Sample Selection

When selecting the subjects, one should pay attention to the following:

1. The samples should be representative of the group to be studied.
2. In comparative studies, groups must be similar with respect to known sources of

variation (e.g., age, : : :).



5.4 Study Design 83

3. Important: Make sure that your selection of samples (or subjects) sufficiently
covers all of the parameters that you need! For example, if age is a nuisance
factor, make sure you have enough young, middle aged, and elderly subjects.

Ad (1) For example, randomly selected subjects from patients at a hospital
automatically bias the sample towards subjects with health problems.

Ad (3) For example, tests of the efficacy of a new rehabilitation therapy for stroke
patients should not only include patients who have had a stroke: make sure that there
are equal numbers of patients with mild, medium, and severe symptoms. Otherwise,
one may end up with data which primarily include patients with few or no after-
effects of the stroke. (This is one of the easiest mistakes to make, and cost me many
months of work!)

Many surveys and studies fall short on these criteria (see section on Bias above).
The field of “matching by propensity scores” (Rosenbaum and Rubin 1983) attempts
to correct these problems.

b) Sample Size

Many studies also fail because the sample size is too small to observe an effect of
the desired magnitude. In determining the sample size, one has to know

• What is the variance of the parameter under investigation?
• What is the magnitude of the expected effect, relative to the standard deviation

of the parameter?

This is known as power analysis. It is especially important in behavioral research,
where research plans are not approved without careful sample size calculations.
(This topic will be discussed in more detail in Sect. 7.2.5.)

c) Bias

To explain the effects of selection bias on a statistical analysis, consider the
1936 presidential elections in the USA. The Republican Landon challenged the
incumbent president, F.D. Roosevelt. Literary Digest, at the time one of the most
respected magazines, asked ten million Americans who they would vote for. 2.4
million responded, and Literary Digest predicted Landon would win 57 % of the
vote compared with 41 % for Roosevelt. However, the actual election results were
62 % for Roosevelt and 38 % for Landon. In other words, despite the huge sample
size, the predictions were a whopping 19 % off!

What went wrong?
First, the sample was poorly chosen, and not representative of the American

voter: the mailing lists for the survey were taken from telephone directories, club
membership lists, and lists of magazine subscribers. Thus, they were strongly biased
towards the American middle- and upper-class. And second, only about one-fourth
of the people asked responded. And people who respond to surveys are different
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from people who don’t, the so-called non-response bias. This example shows that
a large sample size alone does not guarantee a representative response. One has to
watch out for selection bias and non-response bias.

In general, when selecting the subjects one tries to make them representative
of the group to be studied; and one tries to conduct the experiments in a way
representative of investigations by other researchers. However, it is very easy to
get biased data.

Bias can have a number of sources:

• The selection of subjects.
• The structure of the experiment.
• The measurement device.
• The analysis of the data.

Care should be taken to avoid bias in the data as much as possible.

d) Randomization

This may be one of the most important aspects of experimental planning. Random-
ization is used to avoid bias as much as possible, and there are different ways to
randomize an experiment. For randomization, random number generators, which
are available with most computer languages, can be used. To minimize the chance
of bias, the randomly allocated numbers should be presented to the experimenter as
late as possible.

Depending on the experiment, there are various ways to randomize group
assignment:

Simple Randomization

This procedure is robust against selection and accidental bias. The disadvantage is
that the resulting group size can differ significantly.

For many types of data analysis it is important to have the same sample number
in each group. To achieve this, other options are possible:

Block Randomization

This is used to keep the number of subjects in the different groups closely balanced
at all times. For example, with two types of treatment, A and B, and a block-size
of four, one can allocate the two treatments to the blocks of four subjects in the
following sequences:

1. AABB
2. ABAB
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3. ABBA
4. BBAA
5. BABA
6. BAAB

Based on this, one can use a random number generator to generate random
integers between 1 and 6, and use the corresponding blocks to allocate the respective
treatments. This will keep the number of subjects in each group always almost equal.

Minimization

A closely related, but not completely random way to allocate a treatment is
minimization. Here one takes whichever treatment has the smallest number of
subjects, and allocates this treatment with a probability greater than 0.5 to the next
patient.

Assume, for example, that you are conducting a randomized controlled trial of
a new medication, with a “placebo-group” and a “real medication group.” Halfway
through the trials you realize that your placebo-group already contains 60 subjects,
while your medication-group only has 40. You can now solve this imbalance, by
giving each remaining subject with 60 % probability (instead of the previously used
50 %) the medication instead of the placebo.

Stratified Randomization

Sometimes one may want to include a wider variety of subjects, with different
characteristics. For example, one may choose to have younger as well as older
subjects. In this case, one should try to keep the number of subjects within each
stratum balanced. In order to do this, separate lists of random numbers should be
kept for each group of subjects.

e) Blinding

Consciously or not, the experimenter can significantly influence the outcome of an
experiment. For example, a young researcher with a new “brilliant” idea for a new
treatment will be biased in the execution of the experiment, as well in the analysis
of the data, to see the hypothesis confirmed. To avoid such subjective influence,
ideally the experimenter as well as the subject should be blinded to the therapy.
This is referred to as double blinding. When also the person who does the analysis
does not know which group the subject has been allocated to, we speak about triple
blinding.
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f) Factorial Design

When each combination of factors is tested, we speak of full factorial design of the
experiment.

In planning the analysis, one must distinguish between within subject compar-
isons, and between subjects comparisons. The former, within subject comparisons,
allows to detect smaller differences with the same number of subjects than between
subject comparisons.

5.4.5 Personal Advice

1. Be realistic about your task.
2. Plan in sufficient control/calibration experiments.
3. Take notes.
4. Store your data in a well-structured way.

1) Preliminary Investigations and Murphy’s Law

Most investigations require more than one round of experiments and analyses.
Theoretically, you state your hypothesis first, then do the experiments, and finally
accept or reject the hypothesis. Done.

Most of my real investigations have been less straightforward, and often took
two rounds of experiments. Typically, I start out with an idea. After making
sure that nobody else has found the solution yet, I sit down, do the first rounds
of measurements, and write the analysis programs required to analyze the data.
Through this I find most of the things that can go wrong (they typically do, as stated
by Murphy’s Law: “Anything that can go wrong will go wrong.”), and what I should
have done differently in the first place. If the experiments are successful, that first
round of investigation provides me with a “proof of principle” that my question
is tractable; in addition, I also obtain data on the variability of typical responses.
This allows me to obtain a reasonable estimate of the number of subjects/samples
needed in order to accept or reject my hypothesis. By this time I also know whether
my experimental setup is sufficient or whether a different or better setup is required.
The second round of investigations is in most cases the real thing, and (if I am lucky)
provides me with enough data to publish my findings.

2) Calibration Runs

Measurements of data can be influenced by numerous artifacts. To control these
artifacts as much as possible, one should always start and end experimental
recordings with something known. For example, during movement recordings, I try
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to start out by recording a stationary point, and then move it 10 cm forward, left, and
up. Having a recording with exact knowledge of what is happening not only helps to
detect drift in the sensors and problems in the experimental setup. These recordings
also help to verify the accuracy of the analysis programs.

3) Documentation

Make sure that you document all the factors that may influence your results, and
everything that happens during the experiment:

• The date and time of the experiment.
• Information about the experimenters and the subjects.
• The exact paradigm that you have decided on.
• Anything noteworthy that happens during the experiment.

Be as brief as possible, but take down everything noteworthy that happens during
the experiment. Be especially clear about the names of the recorded data-files, as
they will be the first thing you need when you analyze the data later. Often you
won’t need all the details from your notes. But when you have outliers or unusual
data points, these notes can be invaluable for the data analysis.

4) Data Storage

Try to have clear, intuitive, and practical naming conventions. For example, when
you perform experiments with patients and with normals on different days, you
could name these recordings “[p/n][yyyy/mm/dd]_[x].dat,” e.g., n20150329_a.
With this convention you have a natural grouping of your data, and the data are
automatically sorted by their date.

Always store the raw data immediately, preferably in a separate directory. I prefer
to make this directory read-only, so that I don’t inadvertently delete valuable raw-
data. You can in most cases easily redo an analysis run. But often, you will not be
able to repeat an experiment.

5.4.6 Clinical Investigation Plan

To design a medical study properly, a clinical investigation plan is not only
advisable, it is even required by ISO 14155-1:2003, for Clinical investigations
of medical devices for human subjects. This norm specifies many aspects of
clinical studies. It enforces the preparation of a clinical investigation plan (CIP),
specifying

1. Type of study (e.g., double-blind, with or without control group, etc.).
2. Discussion of the control group and the allocation procedure.
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3. Description of the paradigm.
4. Description and justification of primary endpoint of study.
5. Description and justification of chosen measurement variable.
6. Measurement devices and their calibration.
7. Inclusion criteria for subjects.
8. Exclusion criteria for subjects.
9. Point of inclusion (“When is a subject part of the study?”)

10. Description of the measurement procedure.
11. Criteria and procedures for subjects who drop out.
12. Chosen sample number and level of significance, and their justification.
13. Procedure for documentation of negative effects or side-effects.
14. List of factors that can influence the measurement results or their interpretation.
15. Procedure for documentation, also for missing data.
16. Statistical analysis procedure.
17. The designation of a monitor for the investigation.
18. The designation of a clinical investigator.
19. Specifications for data handling.



Chapter 6
Distributions of One Variable

Distributions of one variable are called univariate distributions. They can be divided
into discrete distributions, where the observations can only take on integer values
(e.g., the number of children); and continuous distributions, where the observation
variables are float values (e.g., the weight of a person).

The beginning of this chapter shows how to describe and work with statistical
distributions. Then the most important discrete and continuous distributions are
presented.

6.1 Characterizing a Distribution

6.1.1 Distribution Center

When we have a data sample from a distribution, we can characterize the center of
the distribution with different parameters. Thereby the data can be evaluated in two
ways:

1. By their value.
2. By their rank (i.e., their list-number when they are ordered according to

magnitude).

a) Mean

By default, when we talk about the mean value we refer to the arithmetic mean Nx:

Nx D

nP
iD1

xi

n
(6.1)
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Not surprisingly, the mean of an array x can be found with the command
np.mean.

Real life data often include missing values, which are in many cases replaced
by nan’s (nan stands for “Not-A-Number”). For statistics of arrays which include
nan’s, numpy has a number of functions starting with nan: : :

In [1]: import numpy as np

In [2]: x = np.arange(10)

In [3]: np.mean(x)
Out[3]: 4.5

In [4]: xWithNan = np.hstack( (x, np.nan) ) # append nan

In [5]: np.mean(xWithNan)
Out[5]: nan

In [6]: np.nanmean(xWithNaN)
Out[6]: 4.5

b) Median

The median is the value that comes half-way when the data are ranked in order. In
contrast to the mean, the median is not affected by outlying data points. The median
can be found with

In [7]: np.median(x)
Out[7]: 4.5

Note that when a distribution is symmetrical, as is the case here, the mean and
the median value coincide.

c) Mode

The mode is the most frequently occurring value in a distribution.
The easiest way to find the mode value is the corresponding function in

scipy.stats, which provides value and frequency of the mode value.

In [8]: from scipy import stats

In [9]: data = [1, 3, 4, 4, 7]

In [10]: stats.mode(data)
Out[10]: (array([4]), array([ 2.]))
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d) Geometric Mean

In some situations the geometric mean can be useful to describe the location of a
distribution. It can be calculated via the arithmetic mean of the log of the values.

meangeometric D
 

NY
iD1

xi

!1=N

D exp

�P
i ln.xi/

n

�
(6.2)

Again, the corresponding function is located in scipy.stats:

In [11]: x = np.arange(1,101)

In [12]: stats.gmean(x)
Out[12]: 37.992689344834304

Note that the input numbers for the geometric mean have to be positive.

6.1.2 Quantifying Variability

a) Range

The range is simply the difference between the highest and the lowest data value,
and can be found with

range = np.ptp(x)

ptp stands for “peak-to-peak.” The only thing that should be watched is outliers,
i.e., data points with a value much higher or lower than the rest of the data. Often,
such points are caused by errors in the selection of the sample or in the measurement
procedure.

There are a number of tests to check for outliers. One of them is to check for data
which lie more than 1.5*inter-quartile-range (IQR) above or below the first/third
quartile (“quartiles” are defined in the next section).

b) Percentiles

The simplest way to understand centiles, also called percentiles, is to first define the
Cumulative Distribution Function (CDF):

CDF.x/ D
xZ

�1
PDF.x/dx (6.3)
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Fig. 6.1 Probability density function (left) and cumulative distribution function (right) of a normal
distribution

The CDF is the integral of the PDF from minus infinity up to the given value
(see Fig. 6.1), and thus specifies the percentage of the data that lie below this value.
Knowing the CDF simplifies the calculation of how likely it is to find a value x
within the range a to b (Fig. 5.2): The probability to find a value between a and b is
given by the integral over the PDF in that range (see Fig. 5.2), and can be found by
the difference of the corresponding CDF-values:

P.a � X � b/ D
bZ

a

PDF.x/dx D CDF.b/ � CDF.a/ (6.4)

For discrete distributions, the integral has to be replaced by a sum.
Coming back to percentiles: those are just the inverse of the CDF, and give the

value below which a given percentage of the data values occur (see Fig. 6.5, lower
left plot). While the expression “percentiles” does not come up very often, one will
frequently encounter specific centiles:

• To find the range which includes 95 % of the data, one has to find the 2:5th and
the 97:5th percentile of the sample distribution.

• The 50th percentile is the median.
• Also important are the quartiles, i.e., the 25th and the 75th percentile. The

difference between them is called the inter-quartile range (IQR).
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Median, upper, and lower quartile are used for the data display in box plots
(Fig. 4.7).

c) Standard Deviation and Variance

Figure 5.1 shows a sketch of how a sample statistic relates to the corresponding
population parameter. Applying this concept to the variance of a data set, we
distinguish between the sample variance, i.e., the variance in the data sampled, and
the population variance, i.e., the variance of the full population. The maximum
likelihood estimator of the sample variance is given by

var D

nP
iD1

.xi � Nx/2

n
(6.5)

However, Eq. 6.5 systematically underestimates the population variance, and is
therefore referred to as a “biased estimator” of the population variance. In other
words, if you take a population with a given population standard deviation, and
one thousand times selects n random samples from that population and calculate the
standard deviation for each of these samples, then the mean of those one thousand
sample standard deviations will be below the population standard deviation.

Figure 6.2 tries to motivate why the sample variance systematically underes-
timates the population variance: the sample mean is always chosen such that the
variance of the given sample data is minimized, and thereby underestimates the
variance of the population.

It can be shown that the best unbiased estimator for the population variance is
given by

var D

nP
iD1

.xi � Nx/2

n � 1
(6.6)

Equation 6.6 is referred to as sample variance.
The standard deviation is the square root of the variance, and the sample standard

deviation the square root of the sample variance:

s D p
var (6.7)

As indicated in Table 5.1, in statistics it is common to denote the population
standard deviation with � , and the sample standard deviation with s.

Watch out: in contrast to other languages like Matlab or R, numpy by default
calculates the variance for “n.” To obtain the sample variance one has to set
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Fig. 6.2 Gaussian distributions fitted to selections of data from the underlying distribution: While
the average mean of a number of samples converges to the real mean, the sample standard deviation
underestimates the standard deviation from the distribution

“ddof=1”:

In [1]: data = np.arange(7,14)

In [2]: np.std(data, ddof=0)
Out[2]: 2.0

In [3]: np.std(data, ddof=1)
Out[3]: 2.16025

Note: In pandas, the default for the calculation of the standard deviation is set to
ddof=1.

d) Standard Error

The standard error is the estimate of the standard deviation of a coefficient. For
example, in Fig. 6.3, we have 100 data points from a normal distribution about 5.
The more data points we have to estimate the mean value, the better our estimate of
the mean becomes.
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Fig. 6.3 One hundred random data points, from a normal distribution about 5. The sample mean
(solid line) is very close to the real mean. The standard deviation of the mean (long dashed line), or
standard error of the mean (SEM), is ten times smaller than the standard deviation of the samples
(short dashed line)

For normally distributed data, the sample standard error of the mean (SE or
SEM) is

SEM D sp
n

D

vuuut
nP

iD1

.xi � Nx/2

n � 1
� 1p

n
(6.8)

So with 100 data points the standard deviation of our estimate, i.e., the standard
error of the mean, is ten times smaller than the sample standard deviation.

e) Confidence Intervals

In the statistical analysis of data it is common to state the confidence interval of an
estimated parameter. The ˛% confidence interval (CI) reports the range that contains
the true value for the parameter with a likelihood of ˛%.

If the sampling distribution is symmetrical and unimodal (i.e., decaying smoothly
on both sides of the maximum), it will often be possible to approximate the
confidence interval by

ci D mean ˙ std � NPPF

�
1 � ˛

2

�
(6.9)
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where std is the standard deviation, and NPPF the percentile point function (PPF) for
the standard normal distribution (see Fig.6.5). For the 95 % two-sided confidence
intervals, for example, you have to calculate the PPF(0.025) of the standard normal
distribution to get the lower and upper limit of the confidence interval. For a Python
implementation for a normal distribution, see for example the code-sample on
p. 106.

Notes

• To calculate the confidence interval for the mean value, the standard deviation
has to be replaced by the standard error.

• If the distribution is skewed, Eq. 6.9 is not appropriate and does not provide the
correct confidence intervals!

6.1.3 Parameters Describing the Form of a Distribution

In scipy.stats, continuous distribution functions are characterized by their
location and their scale. To give two examples: for the normal distribution,
(location/shape) are given by (mean/standard deviation) of the distribution; and for
the uniform distribution, they are given by the (start/end-start) of the range where
the distribution is different from zero.

a) Location

A location parameter x0 determines the location or shift of a distribution:

fx0.x/ D f .x � x0/

Examples of location parameters include the mean, the median, and the mode.

b) Scale

The scale parameter describes the width of a probability distribution. If the scale
parameter s is large, then the distribution will be more spread out; if s is small then
it will be more concentrated. If the probability density exists for all values of s, then
the density (as a function of the scale parameter only) satisfies

fs.x/ D f .x=s/=s

where f is the density of a standardized version of the density.
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c) Shape Parameters

It is customary to refer to all of the parameters beyond location and scale as shape
parameters. Thankfully, almost all of the distributions that we use in statistics have
only one or two parameters. It follows that the skewness and kurtosis of these
distribution are constants.

Skewness

Distributions are skewed if they depart from symmetry (Fig. 6.4, left). For example,
for measurements that cannot be negative, which is usually the case, we can infer
that the data have a skewed distribution if the standard deviation is more than half
the mean. Such an asymmetry is referred to as positive skewness. The opposite,
negative skewness, is rare.

Fig. 6.4 (Left) Normal distribution, and distribution with positive skewness. (Right) The (lep-
tokurtic) Laplace distribution has an excess kurtosis of 3, and the (platykurtic) Wigner semicircle
distribution an excess kurtosis of �1
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Kurtosis

Kurtosis is a measure of the “peakedness” of the probability distribution (Fig. 6.4,
right). Since the normal distribution has a kurtosis of 3, the excess kurtosis =
kurtosis-3 is 0 for the normal distribution. Distributions with negative or positive
excess kurtosis are called platykurtic distributions or leptokurtic distributions,
respectively.

6.1.4 Important Presentations of Probability Densities

Figure 6.5 shows a number of functions that are equivalent to the PDF, but each
represents a different aspect of the probability distribution. I will give examples
which demonstrate each aspect for a normal distribution describing the size of male
subjects.

• Probability density function (PDF): Note that to obtain the probability for the
variable appearing in a certain interval, you have to integrate the PDF over that
range.
Example: What is the chance that a man is between 160 and 165 cm tall?

Fig. 6.5 Utility functions for continuous distributions, here for the standard normal distribution
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• Cumulative distribution function (CDF): gives the probability of obtaining a
value smaller than the given value.
Example: What is the chance that a man is less than 165 cm tall?

• Survival Function .SF/ D 1 � CDF: gives the probability of obtaining a value
larger than the given value. It can also be interpreted as the proportion of data
“surviving” above a certain value.
Example: What is the chance that a man is larger than 165 cm?

• Percentile Point Function (PPF): the inverse of the CDF. The PPF answers the
question “Given a certain probability, what is the corresponding input value for
the CDF?”
Example: Given that I am looking for a man who is smaller than 95 % of all other
men, what size does the subject have to be?

• Inverse Survival Function (ISF): the name says it all.
Example: Given that I am looking for a man who is larger than 95 % of all other
men, what size does the subject have to be?

• Random Variate Sample (RVS): random variates from a given distribution. (A
variable is the general type, a variate is a specific number.)

Note: In Python, the most elegant way of working with distribution functions is a
two-step procedure:

• In the first step, you create the distribution (e.g., nd = stats.norm() ). Note
that this is a distribution (in Python parlance a “frozen distribution”), not a
function yet!

• In the second step, you decide which function you want to use from this
distribution, and calculate the function value for the desired x-input (e.g.,
y = nd.cdf(x)).

import numpy as np
from scipy import stats

myDF = stats.norm(5,3) # Create the frozen distribution

x = np.linspace(-5, 15, 101)
y = myDF.cdf(x) # Calculate the corresponding CDF

6.2 Discrete Distributions

Two discrete distributions are frequently encountered: the binomial distribution and
the Poisson distribution.

The big difference between those two functions: applications of the binomial
distribution have an inherent upper limit (e.g., when you throw dice five times, each
side can come up a maximum of five times); in contrast, the Poisson distribution
does not have an inherent upper limit (e.g., how many people you know).
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6.2.1 Bernoulli Distribution

The simplest case of a univariate distribution, and also the basis of the binomial
distribution, is the Bernoulli distribution which has only two states, e.g., the simple
coin flipping test. If we flip a coin (and the coin is not rigged), the chance that
“heads” comes up is pheads D 0:5. And since it has to be heads or tails, we must
have

pheads C ptails D 1 (6.10)

so the chance for “tails” is ptails D 1 � pheads.
We see that one parameter, p D pheads, completely determines everything, and

we can fix the distribution with the commands

In [1]: from scipy import stats
In [2]: p = 0.5
In [3]: bernoulliDist = stats.bernoulli(p)

In Python this is called a “frozen distribution function”, and it allows us to
calculate everything we want for this distribution. For example, the probability if
head comes up zero or one times is given by the probability mass function (PMF)

In [4]: p_tails = bernoulliDist.pmf(0)
In [5]: p_heads = bernoulliDist.pmf(1)

And we can simulate 10 Bernoulli trials with

In [6]: trials = bernoulliDist.rvs(10)

In [7]: trials
Out[7]: array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0])

In In[6], rvs stands for random variates.

6.2.2 Binomial Distribution

If we flip a coin multiple times, and ask “How often did heads come up?” we
have the binomial distribution (Fig. 6.6). In general, the binomial distribution is
associated with the question “Out of a given (fixed) number of trials, how many will
succeed?” Some example questions that are modeled with a binomial distribution
are:

• Out of ten tosses, how many times will this coin land heads?
• From the children born in a given hospital on a given day, how many of them will

be girls?
• How many students in a given classroom will have green eyes?
• How many mosquitoes, out of a swarm, will die when sprayed with insecticide?
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Fig. 6.6 Binomial distribution. Note that legal values exist only for integer x. The dotted lines in
between only facilitate the grouping of the values to individual distribution parameters

We conduct n repeated experiments where the probability of success is given by
the parameter p and add up the number of successes. This number of successes is
represented by the random variable X. The value of X is then between 0 and n.

When a random variable X has a binomial distribution with parameters p and n
we write it as X 2 B.n; p/ and the probability mass function at X D k is given by
the equation:

P ŒX D k� D
( �n

k

�
pk .1 � p/n�k 0 � k � n

0 otherwise
0 � p � 1; n 2 N (6.11)

P ŒX D k� D pk .1 � p/n�k 0 � p � 1; n 2 N (6.12)

where
�n

k

� D nŠ
kŠ.n�k/Š

In Python, the procedure is the same as above for the Bernoulli distribution, with
one additional parameter, the number of coin tosses. First we generate the frozen
distribution function, for example for four coin tosses:

In [1]: from scipy import stats
In [2]: import numpy as np

In [3]: (p, num) = (0.5, 4)
In [4]: binomDist = stats.binom(num, p)

and then we can calculate, e.g., the probabilities how often heads come up during
those four tosses, given by the PMF for the values zero to four:

In [5]: binomDist.pmf(np.arange(5))
Out[5]: array([ 0.0625, 0.25 , 0.375 , 0.25 , 0.0625])

For example, the chance that heads never comes up is about 6 %, the chance that
it comes up exactly once is 25 %, etc.
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Also note that the sum of all probabilities has to add up exactly to one:

p0 C p1 C : : : C pn�1 D
n�1X
iD0

pi D 1 (6.13)

b) Example: Binomial Test

Suppose we have a board game that depends on the roll of a die and attaches special
importance to rolling a 6. In a particular game, the die is rolled 235 times, and
6 comes up 51 times. If the die is fair, we would expect 6 to come up 235/6 D
39.17 times. Is the proportion of 6’s significantly higher than would be expected by
chance, on the null hypothesis of a fair die?

To find an answer to this question using the Binomial Test, we consult the
binomial distribution with n D 235 and p D 1=6, to determine the probability
of finding exactly 51 sixes in a sample of 235 if the true probability of rolling a 6 on
each trial is 1/6. We then find the probability of finding exactly 52, exactly 53, and
so on up to 235, and add all these probabilities together. In this way, we calculate
the probability of obtaining the observed result (51 sixes) or a more extreme result
(> 51 sixes) assuming that the die is fair. In this example, the result is 0.0265, which
indicates that observing 51 sixes is unlikely (not significant at the 5 % level) to come
from a die that is not loaded to give many sixes (one-tailed test).

Clearly a die could roll too few sixes as easily as too many and we would be just
as suspicious, so we should use the two-tailed test which (for example) splits the
5 % probability across the two tails. Note that to do this we cannot simply double
the one-tailed p-value unless the probability of the event is 1/2. This is because
the binomial distribution becomes asymmetric as that probability deviates from 1/2.
“scipy.stats” therefore provides for the two-sided test the function “binom_test”.
(See also the explanation of one- and two-tailed t-tests, p. 141.)

Code: “ISP_binomial.py”1: Example of a one-

and two-sided binomial test.

Table 6.1 Properties of
discrete distributions

Mean Variance

Binomial n � p np.1 � p/

Poisson � �

1https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Dist
ributions/binomialTest.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/binomialTest
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/binomialTest
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6.2.3 Poisson Distribution

Any French speaker will notice that “Poisson” means “fish,” but really there’s
nothing fishy about this distribution. It’s actually pretty straightforward. The name
comes from the mathematician Siméon-Denis Poisson (1781–1840).

The Poisson distribution is very similar to the binomial distribution. We are
examining the number of times an event happens. The difference is subtle. Whereas
the binomial distribution looks at how many times we register a success over a fixed
total number of trials, the Poisson distribution measures how many times a discrete
event occurs, over a period of continuous space or time. There is no “total” value n,
and the Poisson distribution is defined by a single parameter.

The following questions can be answered with the Poisson distribution:

• How many pennies will I encounter on my walk home?
• How many children will be delivered at the hospital today?
• How many products will I sell after airing a new television commercial?
• How many mosquito bites did you get today after having sprayed with insecti-

cide?
• How many defects will there be per 100 m of rope sold?

What’s a little different about this distribution is that the random variable X
which counts the number of events can take on any nonnegative integer value. In
other words, I could walk home and find no pennies on the street. I could also find
one penny. It’s also possible (although unlikely, short of an armored-car exploding
nearby) that I would find 10 or 100 or 10,000 pennies.

Instead of having a parameter p that represents a component probability as in
the binomial distribution, this time we have the parameter “lambda” or � which
represents the “average or expected” number of events to happen within our
experiment (Fig. 6.7). The probability mass function of the Poisson distribution is

Fig. 6.7 Poisson distribution. Again note that legal values exist only for integer x. The dotted lines
in between only facilitate the grouping of the values to individual distribution parameters
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given by

P.X D k/ D e���k

kŠ
(6.14)

.

Code: “ISP_distDiscrete.py”2 shows different

discrete distribution functions.

6.3 Normal Distribution

The Normal distribution or Gaussian distribution is by far the most important of all
the distribution functions (Fig. 6.8). This is due to the fact that the mean values of
all distribution functions approximate a normal distribution for large enough sample
numbers (see Sect. 6.3.2). Mathematically, the normal distribution is characterized
by a mean value �, and a standard deviation � :

f�;� .x/ D 1

�
p

2�
e�.x��/2=2�2

(6.15)

Fig. 6.8 Normal distributions, with different parameters for � and �

2https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Dist
ributions/distDiscrete.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/distDiscrete
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/distDiscrete
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where �1 < x < 1, and f�;� is the Probability Density Function (PDF) of the
normal distribution. In contrast to the PMF (probability mass function) of discrete
distributions, which is defined only for discrete integers, the PDF is defined for
continuous values. The standard normal distribution is a normal distribution with
a mean of zero and a standard deviation of one, and is sometimes referred to as
z-distribution.

For smaller sample numbers, the sample distribution can show quite a bit
of variability. For example, look at 25 distributions generated by sampling 100
numbers from a normal distribution (Fig. 6.9)

The normal distribution with parameters � and � is denoted as N.�; �/

(Table 6.2). If the random variates (rvs) of X are normally distributed with
expectation � and standard deviation � , one writes: X 2 N.�; �/ (Fig. 6.10).

Fig. 6.9 Twenty-five randomly generated samples of 100 points from a standard normal distribu-
tion

Table 6.2 Tails of a normal
distribution, with the distance
from the mean expressed in
standard deviations (SDs)

Probability of being

Range Within range Outside range

Mean ˙ 1SD 68.3 % 31:7 %

Mean ˙ 2SD 95.4 % 4:6 %

Mean ˙ 3SD 99.7 % 0:27 %
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Fig. 6.10 Area under ˙ 1, 2, and 3 standard deviations of a normal distribution

Code: “ISP_distNormal.py”3 shows simple

manipulations of normal distribution functions.

In [1]: import numpy as np
In [2]: from scipy import stats

In [3]: mu = -2
In [4]: sigma = 0.7
In [5]: myDistribution = stats.norm(mu, sigma)
In [6]: significanceLevel = 0.05

In [7]: myDistribution.ppf(
[significanceLevel/2, 1-significanceLevel/2] )

Out[8]: array([-3.38590382, -0.61409618]

Example of how to calculate the interval of the PDF containing 95 % of the data,
for the blue curve in Fig. 6.8

3https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Dist
ributions/distNormal.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/distNormal
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/distNormal
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Sum of Normal Distributions
An important property of normal distributions is that the sum (or difference) of two
normal distributions is also normally distributed. i.e., if

X 2 N.�X ; �2
X/

Y 2 N.�Y ; �2
Y /

Z D X ˙ Y;

then

Z 2 N.�X ˙ �Y ; �2
X C �2

Y /: (6.16)

In words, the variance of the sum is the sum of the variances.

6.3.1 Examples of Normal Distributions

• If the average man is 175 cm tall with a standard deviation of 6 cm, what is the
probability that a man selected at random will be 183 cm tall?

• If cans are assumed to have a standard deviation of 4 g, what does the average
weight need to be in order to ensure that 99 % of all cans have a weight of at least
250 g?

• If the average man is 175 cm tall with a standard deviation of 6 cm, and the
average woman is 168 cm tall with a standard deviation of 3 cm, what is the
probability that a randomly selected man will be shorter than a randomly selected
woman?

6.3.2 Central Limit Theorem

The central limit theorem states that the mean of a sufficiently large number of
identically distributed random variates will be approximately normally distributed.
Or in other words, the sampling distribution of the mean tends toward normality,
regardless of the distribution. Figure 6.11 shows that averaging over ten uniformly
distributed data already produces a smooth, almost Gaussian distribution.

Code: “ISP_centralLimitTheorem.py”4 demon-

strates that already averaging over ten uniformly distributed data points produces
an almost Gaussian distribution.

4https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Dist
ributions/centralLimitTheorem.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/centralLimitTheorem
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/centralLimitTheorem
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Fig. 6.11 Demonstration of the Central Limit Theorem for a uniform distribution: (Left) His-
togram of uniformly distributed random data between 0 and 1. (Center) Histogram of average
over two data points. (Right) Histogram of average over ten data points

6.3.3 Distributions and Hypothesis Tests

To illustrate the connection between distribution functions and hypothesis tests, let
me go step-by-step through the analysis of the following problem:

The average weight of a newborn child in the USA is 3.5 kg, with a standard
deviation of 0.76 kg. If we want to check all children that are significantly different
from the typical baby, what should we do with a child that is born with a weight of
2.6 kg?

We can rephrase that problem in the form of a hypothesis test: our hypothesis
is that the baby comes from the population of healthy babies. Can we keep the
hypothesis, or does the weight of the baby suggest that we should reject that
hypothesis?

To answer that question, we can proceed as follows:

• Find the distribution that characterizes healthy babies ! � D 3:5; � D 0:76.
• Calculate the CDF at the value of interest ! CDF.2:6 kg/ D 0:118. In other

words, the probability that a healthy baby is at least 0.9 kg lighter than the average
baby is 11.8 %.

• Since we have a normal distribution, the probability that a healthy baby is at least
0.9 kg heavier than the average baby is also 11.8 %.
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Fig. 6.12 The chance that a healthy baby weighs 2.6 kg or less is 11.8 % (darker area). The chance
that the difference from the mean is as extreme or more extreme than for 2.6 kg is twice that much,
as the lighter area must also be considered

• Interpret the result ! If the baby is healthy, the chance that its weight deviates
by at least 0.9 kg from the mean is 2*11.8 % = 23.6 %. This is not significant,
so we do not have sufficient evidence to reject our hypothesis, and our baby is
regarded as healthy (see Fig. 6.12).

In [1]: from scipy import stats

In [2]: nd = stats.norm(3.5, 0.76)

In [3]: nd.cdf(2.6)
Out[3]: 0.11816

Note: The starting hypothesis is often referred to as null hypothesis. In our example
it would mean that we assume that there is null difference between the distribution
the baby comes from and the population of healthy babies.

6.4 Continuous Distributions Derived from the Normal
Distribution

Some frequently encountered continuous distributions are closely related to the
normal distribution:

• t-Distribution: The sample distribution of mean values for samples from a
normally distributed population. Typically used for small sample numbers, when
the true mean/SD are not known.

• �-Square distribution: For describing variability of normally distributed data.
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• F-distribution: For comparing variabilities of two sets of normally distributed
data.

In the following we will discuss these continuous distribution functions.

Code: “ISP_distContinuous.py”5 shows different

continuous distribution functions.

6.4.1 t-Distribution

In 1908 W.S. Gosset, who worked for the Guinness brewery in Dublin, was
interested in the problems of small samples, for example the chemical properties
of barley where sample sizes might be as low as 3. Since in these measurements
the true variance of the mean was unknown, it must be approximated by the
sample standard error of the mean. And the ratio between the sample mean and the
standard error had a distribution that was unknown till Gosset, under the pseudonym
“Student,” solved that problem. The corresponding distribution is the t-distribution,
and converges for larger values towards the normal distribution (Fig. 6.13). Due to
Gosset’s pseudonym, “Student,” it is now also known as Student’s distribution.

Since in most cases the population mean and its variance are unknown, one
typically works with the t-distribution when analyzing sample data.

Fig. 6.13 t-Distribution

5https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Dist
ributions/distContinuous.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/distContinuous
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/06_Distributions/distContinuous


6.4 Continuous Distributions Derived from the Normal Distribution 111

If Nx is the sample mean, and s the sample standard deviation, the resulting
statistic is

t D Nx � �

s=
p

n
D Nx � �

SE
(6.17)

A very frequent application of the t-distribution is in the calculation of confidence
intervals for the mean. The width of the 95 %-confidence interval (CI), i.e., the
interval that contains the true mean with a chance of 95 %, is the same width about
the population mean that contains 95 % of the sample means (Eq. 6.17):

ci D mean ˙ se � tdf ;˛ (6.18)

The following example shows how to calculate the t-values for the 95 %-CI, for
n = 20. The lower end of the 95 % CI is the value that is larger than 2.5 % of the
distribution; and the upper end of the 95 %-CI is the value that is larger than 97.5 %
of the distribution. These values can be obtained either with the percentile point
function (PPF), or with the inverse survival function (ISF). For comparison, I also
calculate the corresponding value from the normal distribution:

In [1]: import numpy as np
In [2]: from scipy import stats
In [3]: n = 20
In [4]: df = n-1
In [5]: alpha = 0.05

In [6]: stats.t(df).isf(alpha/2)
Out[6]: 2.093

In [7]: stats.norm.isf(alpha/2)
Out[7]: 1.960

In Python, the 95 %-CI for the mean can be obtained with a one-liner:

In [8]: alpha = 0.95
In [9]: df = len(data)-1
In [10]: ci = stats.t.interval(alpha, df,

loc=np.mean(data), scale=stats.sem(data))

Since the t-distribution has longer tails than the normal distribution, it is much
less affected by extreme cases (see Fig. 6.14).

6.4.2 Chi-Square Distribution

a) Definition

The chi-square distribution is related to the normal distribution in a simple way: if
a random variable X has a normal distribution (X 2 N.0; 1/), then X2 has a chi-
square distribution, with one degree of freedom (X2 2 �2

1). The sum squares of n
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Fig. 6.14 The t-distribution is much more robust against outliers than the normal distribution.
(Top) Best-fit normal and t-distribution, for a sample from a normal population. (Bottom) Same
fits, with 20 “outliers,” normally distributed data about 5, added

Fig. 6.15 Chi-square distribution

independent and standard normal random variables have a chi-square distribution
with n degrees of freedom (Fig. 6.15):

nX
iD1

X2
i 2 �2

n (6.19)
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b) Application Example

A pill producer is ordered to deliver pills with a standard deviation of � D 0:05.
From the next batch of pills n D 13 random samples have a weight of 3.04, 2.94,
3.01, 3.00, 2.94, 2.91, 3.02, 3.04, 3.09, 2.95, 2.99, 3.10, 3.02 g.

Question Is the standard deviation larger than allowed?

Answer Since the chi-square distribution describes the distribution of the summed
squares of random variates from a standard normal distribution, we have to
normalize our data before we calculate the corresponding CDF-value:

SF�2
.n�1/

D 1 � CDF�2
.n�1/

�X
.
x � Nx

�
/2

�
D 0:1929 (6.20)

Interpretation If the batch of pills is from a distribution with a standard deviation of
� D 0:05, the likelihood of obtaining a chi-square value as large or larger than the
one observed is about 19 %, so it is not atypical. In other words, the batch matches
the expected standard deviation.

Note The number of the DOF is n � 1, because we are only interested in the shape
of the distribution, and the mean value of the n data is subtracted from all data
points.

In [1]: import numpy as np
In [2]: from scipy import stats
In [3]: data = np.r_[3.04, 2.94, 3.01, 3.00, 2.94, 2.91, 3.02,

3.04, 3.09, 2.95, 2.99, 3.10, 3.02]
In [4]: sigma = 0.05
In [5]: chi2Dist = stats.chi2(len(data)-1)
In [6]: statistic = sum( ((data-np.mean(data))/sigma)**2 )

In [7]: chi2Dist.sf(statistic)
Out[7]: 0.19293

6.4.3 F-Distribution

a) Definition

This distribution is named after Sir Ronald Fisher, who developed the F distribution
for use in determining critical values in ANOVAs (“ANalysis Of VAriance,” see
Sect. 8.3.1).

If we want to investigate whether two groups have the same variance, we have to
calculate the ratio of the sample standard deviations squared:

F D S2
x

S2
y

(6.21)
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Fig. 6.16 F-distribution

where Sx is the sample standard deviation of the first sample, and Sy the sample
standard deviation of the second sample.

The distribution of this statistic is the F distribution. For applications in ANOVAs
(see Sect. 8.3.1), the cutoff values for an F distribution are generally found using
three variables:

• ANOVA numerator degrees of freedom
• ANOVA denominator degrees of freedom
• significance level

An ANOVA compares the size of the variance between two different samples.
This is done by dividing the larger variance by the smaller variance. The formula
for the resulting F statistic is (Fig. 6.16):

F.r1; r2/ D �2
r1=r1

�2
r2=r2

(6.22)

where �2
r1 and �2

r2 are the chi-square statistics of sample one and two respectively,
and r1 and r2 are their degrees of freedom.

b) Application Example

Take for example the case where we want to compare the precision of two methods
to measure eye movements. The two methods can have different accuracy and
different precision. As shown in Fig. 6.17, the accuracy gives the deviation between
the real and the measured value, while the precision is determined by the variance
of the measurements. With the test we want to determine if the precision of the two
methods is equivalent, or if one method is more precise than the other.
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Fig. 6.17 Accuracy and
precision of a measurement
are two different
characteristics

When you look 20ı to the right, you get the following results:

Method 1: [20.7, 20.3, 20.3, 20.3, 20.7, 19.9, 19.9, 19.9, 20.3, 20.3, 19.7, 20.3]
Method 2: [ 19.7, 19.4, 20.1, 18.6, 18.8, 20.2, 18.7, 19. ]

The F statistic is F D 0:244, and has n � 1 and m � 1 degrees of freedom, where
n and m are the number of recordings with each method. The code sample below
shows that the F statistic is in the tail of the distribution (p_oneTail=0.019), so we
reject the hypothesis that the two methods have the same precision.

import numpy as np
from scipy import stats

method1 = np.array([20.7, 20.3, 20.3, 20.3, 20.7, 19.9,
19.9, 19.9, 20.3, 20.3, 19.7, 20.3])

method2 = np.array([ 19.7, 19.4, 20.1, 18.6, 18.8, 20.2,
18.7, 19. ])

fval = np.var(method1, ddof=1)/np.var(method2, ddof=1)
fd = stats.f(len(method1)-1,len(method2)-1)
p_oneTail = fd.cdf(fval) # -> 0.019

if (p_oneTail<0.025) or (p_oneTail>0.975):
print('There is a significant difference'

' between the two distributions.')
else:

print('No significant difference.')

6.5 Other Continuous Distributions

Some common distributions which are not directly related to the normal distribution
are described briefly in the following:

• Lognormal distribution: A normal distribution, plotted on an exponential scale.
A logarithmic transformation of the data is often used to convert a strongly
skewed distribution into a normal one.

• Weibull distribution: Mainly used for reliability or survival data.
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Fig. 6.18 Lognormal distribution, plotted against a linear abscissa (left) and against a logarithmic
abscissa (right)

• Exponential distribution: Exponential curves.
• Uniform distribution: When everything is equally likely.

6.5.1 Lognormal Distribution

Normal distributions are the easiest ones to work with. In some circumstances a set
of data with a positively skewed distribution can be transformed into a symmetric,
normal distribution by taking logarithms. Taking logs of data with a skewed
distribution will often give a distribution that is near to normal (see Fig. 6.18).

6.5.2 Weibull Distribution

The Weibull distribution is the most commonly used distribution for modeling
reliability data or “survival” data. It has two parameters, which allow it to handle
increasing, decreasing, or constant failure-rates (see Fig. 6.19). It is defined as

fx.x/ D
(

k
�

�
x
�

�k�1
e�.x=�/k

x � 0;

0 x < 0;
(6.23)
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Fig. 6.19 Weibull distribution. The scale parameters for all curves is � D 1

where k > 0 is the shape parameter and � > 0 is the scale parameter of the
distribution. (It is one of the rare cases where we use a shape parameter different
from skewness and kurtosis.) Its complementary cumulative distribution function is
a stretched exponential function.

If the quantity x is a “time-to-failure,” the Weibull distribution gives a distribution
for which the failure rate is proportional to a power of time. The shape parameter, k,
is that power plus one, and so this parameter can be interpreted directly as follows:

• A value of k < 1 indicates that the failure rate decreases over time. This happens
if there is significant “infant mortality,” or defective items failing early and the
failure rate decreasing over time as the defective items are weeded out of the
population.

• A value of k D 1 indicates that the failure rate is constant over time. This might
suggest random external events are causing mortality, or failure.

• A value of k > 1 indicates that the failure rate increases with time. This happens
if there is an “aging” process, or parts that are more likely to fail as time goes on.
An example would be products with a built-in weakness that fail soon after the
warranty expires.

In the field of materials science, the shape parameter k of a distribution of
strengths is known as the Weibull modulus.
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6.5.3 Exponential Distribution

For a stochastic variable X with an exponential distribution, the probability distribu-
tion function is:

fx.x/ D
(

�e��x; if x � 0

0; if x < 0
(6.24)

The exponential PDF is shown in Fig. 6.20.

6.5.4 Uniform Distribution

This is a simple one: an even probability for all data values (Fig. 6.21). Not very
common for real data.

Fig. 6.20 Exponential distribution

Fig. 6.21 Uniform distribution
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6.6 Exercises

6.1 Sample Standard Deviation
Create an numpy-array, containing the data 1; 2; 3; : : : ; 10. Calculate mean and
sample(!)-standard deviation. (Correct answer for the SD: 3.03.)

6.2 Normal Distribution

• Generate and plot the Probability Density Function (PDF) of a normal distribu-
tion, with a mean of 5 and a standard deviation of 3.

• Generate 1000 random data from this distribution.
• Calculate the standard error of the mean of these data. (Correct answer: ca.

0.096.)
• Plot the histogram of these data.
• From the PDF, calculate the interval containing 95 % of these data. (Correct

answer: [ �0.88, 10.88].)
• Your doctor tells you that he can use hip implants for surgery even if they are

1 mm bigger or smaller than the specified size. And your financial officer tells
you that you can discard 1 out of 1000 hip implants, and still make a profit.

What is the required standard deviation for the producer of the hip implants,
to simultaneously satisfy both requirements? (Correct answer: � D 0:304 mm.)

6.3 Continuous Distributions

• t-Distribution: Measuring the weight of your colleagues, you have obtained the
following weights: 52, 70, 65, 85, 62, 83, 59 kg. Calculate the corresponding
mean, and the 99 % confidence interval for the mean. Note: with n values you
have n � 1 DOF for the t-distribution. (Correct answer: 68:0 C = � 17:2 kg.)

• Chi-square Distribution: Create three normally distributed data sets (mean D
0, SD D 1), with 1000 samples each. Then square them, sum them (so that you
have 1000 data-points), and create a histogram with 100 bins. This should be
similar to the curve for the chi-square distribution, with 3 DOF (i.e., it should
come down at the left, see Fig. 6.22).

• F-Distribution: You have two apple trees. There are three apples from the first
tree that weigh 110, 121, and 143 g, respectively, and four from the other which
weigh 88, 93, 105, and 124 g, respectively. Are the variances from the two trees
different?

Note: calculate the corresponding F-value, and check if the CDF for the
corresponding F-distribution is < 0:025. (Correct answer: no.)

6.4 Discrete Distributions

• Binomial Distribution: “According to research, pure blue eyes in Europe
approach greatest frequency in Finland, Sweden, and Norway (at 72 %), followed
by Estonia, Denmark (69 %); Latvia, Ireland (66 %); Scotland (63 %); Lithuania
(61 %); The Netherlands (58 %); Belarus, England (55 %); Germany (53 %);
Poland, Wales (50 %); Russia, The Czech Republic (48 %); Slovakia (46 %);
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Fig. 6.22 Chi2 distribution
with three degrees of freedom

Belgium (43 %); Austria, Switzerland, Ukraine (37 %); France, Slovenia (34 %);
Hungary (28 %); Croatia (26 %); Bosnia and Herzegovina (24 %); Romania
(20 %); Italy (18 %); Serbia, Bulgaria (17 %); Spain (15 %); Georgia, Portugal
(13 %); Albania (11 %); Turkey and Greece (10 %). Further analysis shows that
the average occurrence of blue eyes in Europe is 34 %, with 50 % in Northern
Europe and 18 % in Southern Europe.”

If we have 15 Austrian students in the classroom, what is the chance of finding
three, six, or ten students with blue eyes? (Correct answer: 9, 20.1, and 1.4 %.)

• Poisson Distribution: In 2012 there were 62 fatal accidents on streets in Austria.
Assuming that those are evenly distributed, we have on average 62=.365=7/ D
1:19 fatal accidents per week. How big is the chance that in a given week there
are no, two, or five accidents? (Correct answer: 30.5, 21.5, 0.6 %.)



Chapter 7
Hypothesis Tests

This chapter describes a typical workflow in the analysis of statistical data. Special
attention is paid to visual and quantitative tests of normality for the data. Then the
concept of a hypothesis tests is explained, as well as the different types of errors,
and the interpretation of p-values is discussed. Finally, the common test concepts of
sensitivity and specificity are introduced and explained.

7.1 Typical Analysis Procedure

In “the old days” (before computers with almost unlimited computational power
were available), the statistical analysis of data was typically restricted to hypothesis
tests: you formulate a hypothesis, collect your data, and then accept or reject the
hypothesis. The resulting hypothesis tests form the basic framework for by far most
analyses in medicine and life sciences, and the most important hypotheses tests will
be described in the following chapters.

The advent of powerful computers has changed the game. Nowadays, the analysis
of statistical data is (or at least should be) a highly interactive process: you look at
the data, and generate models which may explain your data. Then you determine the
best fit parameters for these models, and check these models, typically by looking at
the residuals. If you are not happy with the results, you modify the model to improve
the correspondence between models and data; when you are happy, you calculate the
confidence intervals for your model parameters, and form your interpretation based
on these values. An introduction into this type of statistical analysis is provided in
Chap. 11.

In either case, one should start off with the following steps:

• Visually inspect the data.
• Find extreme samples, and check them carefully.
• Determine the data-type of the values.

© Springer International Publishing Switzerland 2016
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• If the data are continuous, check whether or not they are normally distributed.
• Select and apply the appropriate test, or start with the model-based analysis of

the data.

7.1.1 Data Screening and Outliers

The first step in data analysis is the visual inspection of the data. Our visual system is
enormously powerful, and if the data are properly displayed, trends that characterize
the data can be clearly visible. In addition to checking if the first and the last data
values have been read in correctly, it is recommendable to check for missing data
and outliers.

There is no unique definition for outliers. However, for normally distributed
samples they are often defined as data that lie either more than 1.5*IQR (inter-
quartile range), or more than two standard deviations, from the sample mean.
Outliers often fall in one of two groups: they are either caused by mistakes in the
recording, in which case they should be excluded; or they constitute very important
and valuable data points, in which case they have to be included in the data analysis.
To decide which of the two is the case, you have to check the underlying raw data
(for saturation or invalid data values), and the protocols from your experiments (for
mistakes that may have occurred during the recording). If an underlying problem is
detected, then—and only then—one may eliminate the outliers from the analysis. In
every other case, the data have to be kept!

7.1.2 Normality Check

Statistical hypothesis tests can be grouped into parametric tests and nonparametric
tests. Parametric tests assume that the data can be well described by a distribution
that is defined by one or more parameters, in most cases by a normal distribution. For
the given data set, the best-fit parameters for this distribution are then determined,
together with their confidence intervals, and interpreted.

However, this approach only works if the given data set is in fact well approx-
imated by the chosen distribution. If not, the results of the parametric test can be
completely wrong. In that case nonparametric tests have to be used which are less
sensitive, but therefore do not depend on the data following a specific distribution.

a) Probability-Plots

In statistics different tools are available for the visual assessments of distributions.
A number of graphical methods exist for comparing two probability distributions by
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plotting their quantiles, or closely related parameters, against each other:

QQ-Plots The “Q” in QQ-plot stands for quantile. The quantiles of a
given data set are plotted against the quantiles of a reference
distribution, typically the standard normal distribution.

PP-Plots Plot the CDF (cumulative-distribution-function)of a given data
set against the CDF of a reference distribution.

Probability Plots Plot the ordered values of a given data set against the quantiles
of a reference distribution.

In all three cases the results are similar: if the two distributions being compared
are similar, the points will approximately lie on the line y D x. If the distributions
are linearly related, the points will approximately lie on a line, but not necessarily
on the line y D x (Fig. 7.1).

In Python, a probability plot can be generated with the command

stats.probplot(data, plot=plt)

To understand the principle behind those plots, look at the right plot in Fig. 7.2.
Here we have 100 random data points from a chi2-distribution, which is clearly
asymmetrical (Fig. 7.2, left). The x-value of the first data point is (approximately)
the 1=100-quantile of a standard normal distribution (stats.norm().ppf(0.01)),
which corresponds to �2.33. (The exact value is slightly shifted, because of a small
correction, called “Filliben’s estimate”.) The y-value is the smallest value of our
data-set. Similarly, the second x-value corresponds approximately to
stats.norm().ppf(0.02), and the second y-value is the second-lowest value of
the data set, etc.

Fig. 7.1 Probability-plot, to
check for normality of a
sample distribution
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Fig. 7.2 (Left) Probability-density-function for a Chi2-distribution (k D 3), which is clearly non-
normal. (Right) Corresponding probability-plot

b) Tests for Normality

In tests for normality, different challenges can arise: sometimes only few samples
may be available, while other times one may have many data, but some extremely
outlying values. To cope with the different situations different tests for normality
have been developed. These tests to evaluate normality (or similarity to some
specific distribution) can be broadly divided into two categories:

1. Tests based on comparison (“best fit”) with a given distribution, often specified
in terms of its CDF. Examples are the Kolmogorov–Smirnov test, the Lilliefors
test, the Anderson–Darling test, the Cramer–von Mises criterion, as well as the
Shapiro–Wilk and Shapiro–Francia tests.

2. Tests based on descriptive statistics of the sample. Examples are the skewness
test, the kurtosis test, the D’Agostino–Pearson omnibus test, or the Jarque–Bera
test.

For example, the Lilliefors test, which is based on the Kolmogorov–Smirnov
test, quantifies a distance between the empirical distribution function of the sample
and the cumulative distribution function of the reference distribution (Fig. 7.3),
or between the empirical distribution functions of two samples. (The original
Kolmogorov–Smirnov test should not be used if the number of samples is ca. �300.)

The Shapiro–Wilk W test, which depends on the covariance matrix between the
order statistics of the observations, can also be used with �50 samples, and has been
recommended by Altman (1999) and by Ghasemi and Zahediasl (2012).

The Python command stats.normaltest(x) uses the D’Agostino–Pearson
omnibus test. This test combines a skewness and kurtosis test to produce a single,
global “omnibus” statistic.
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Fig. 7.3 Illustration of the Kolmogorov–Smirnov statistic. The dashed line is the CDF for the
normal distribution, the solid line is the empirical CDF for a chi2-distribution (Fig.7.2), and the
black arrow is the K–S statistic which is integrated

Below the output of the Python-module C7_1_checkNormality.py is shown,
which checks 1000 random variates from a normal distribution for normality.
Note that while for the full data set all tests correctly indicate that the underlying
distribution is normal, the effects of extreme values strongly depend on the type of
test if only the first 100 random variates are included.

p-values for all 1000 data points: ----------------
Omnibus 0.913684
Shapiro-Wilk 0.558346
Lilliefors 0.569781
Kolmogorov-Smirnov 0.898967

p-values for the first 100 data points: ----------------
Omnibus 0.004530
Shapiro-Wilk 0.047102
Lilliefors 0.183717
Kolmogorov-Smirnov 0.640677

Code: “ISP_checkNormality.py”1 shows how to

check graphically, as well as with different quantitative tests, if a given distribution
is normal.

1https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/
07_CheckNormality_CalcSamplesize/checkNormality.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/07_CheckNormality_CalcSamplesize/checkNormality
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/07_CheckNormality_CalcSamplesize/checkNormality
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7.1.3 Transformation

If the data deviate significantly from a normal distribution, it is sometimes possible
to make the distribution approximately normal by transforming the data. For
example, data often have values that can only be positive (e.g., the size of persons),
and that have long positive tail: such data can often be made normal by applying a
log transform. This is demonstrated in Fig. 6.18.

7.2 Hypothesis Concept, Errors, p-Value, and Sample Size

7.2.1 An Example

Assume that you are running a private educational institution. Your contract says
that if your students score 110 in the final exam, where the national average is 100,
you get a bonus. When the results are significantly lower, you loose your bonus
(because the students are not good enough), and you have to hire more teachers; and
when the results are significantly higher, you also loose your bonus (because you
have spent too much money on teachers), and you have to cut back on the number
of teachers.

The final exam of your ten students produce the following scores (Fig. 7.4):

In [1]: import numpy as np
In [2]: scores = np.array([ 109.4, 76.2, 128.7, 93.7, 85.6,

117.7, 117.2, 87.3, 100.3, 55.1])

Fig. 7.4 The question we ask: based on our sample mean (dashed-dotted line) and the observed
variance of the data (the sample variance), do we believe that the population mean is different
from 110 (dashed line)? Or in other words: our null hypothesis is that the difference between the
population mean and 110 is zero. Can we keep our null hypothesis, or do we have to reject it based
on the data?
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The question we want to answer: Is the mean value of the scores (97.1)
significantly different from 110?

A normality test (stats.normaltest(scores)) indicates that the data are
probably taken from a normal distribution. Since we don’t know the population
variance of the results of students tested, we have to take our best guess, the sample
variance (see also Fig. 5.1). And we know that the normalized difference between
sample and the population mean, the t-statistic, follows the t-distribution (Eq. 6.17).

The difference between our sample mean and the value we want to compare it
to ( np.mean(scores) - 110 ) is –12.9. Normalized by the sample standard error
(Eq. 6.17), this gives a value of t D �1.84. Since the t-distribution is a known curve
that depends only on the number of samples, and we can calculate the likelihood
that we obtain a t-statistic of jtj > 1:84:

In [3]: tval = (110-np.mean(scores))/stats.sem(scores) # 1.84
In [4]: td = stats.t(len(scores)-1) # "frozen" t-distribution
In [5]: p = 2*td.sf(tval) # 0.0995

(The factor 2 in the last line of the code is required, since we have to combine the
probability of t < �1:84 and t > 1:84.) Expressed in words, given our sample data,
we can state that the likelihood that the population mean is 110 is 9.95 %. But since
a statistical difference is only given by convention if the likelihood is less than 5 %,
we conclude that the observed value of 97.1 is not significantly different from 110,
and the bonus has to be paid out.

7.2.2 Generalization and Applications

a) Generalization

Based on the previous example, the general procedure for hypothesis tests can be
described as follows (the sketch in Fig. 5.1 indicates the meaning of many upcoming
terms):

• A random sample is drawn from a population. (In our example, the random
sample is our scores).

• A null hypothesis is formulated. (“There is null difference between the popula-
tion mean and the value of 110.”)

• A test-statistic is calculated, of which we know the probability distribution. (Here
the sample mean, since we know that the mean value of samples from a normal
distribution follows the t-distribution.)

• Comparing the observed value of the statistic (here the obtained t-value) with the
corresponding distribution (the t-distribution), we can find the likelihood that a
value as extreme as or more extreme than the observed one is found by chance.
This is the so-called p-value.

• If the p-value is p < 0:05, we reject the null hypothesis, and speak of a
statistically significant difference. If a value of p < 0:001 is obtained, the result
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is typically called highly significant. The critical region of a hypothesis test is the
set of all outcomes which cause the null hypothesis to be rejected.

In other words, the p-value states how likely it is to obtain a value as extreme or
more extreme by chance alone, if the null hypothesis is true.

The value against which the p-value is compared is the significance level, and is
often indicated with the letter ˛. The significance level is a user choice, and typically
set to 0:05.

This way of proceeding to test a hypothesis is called statistical inference.
Remember, p only indicates the likelihood of obtaining a certain value for the

test statistic if the null hypothesis is true—nothing else!
And keep in mind that improbable events do happen, even if not very frequently.

For example, back in 1980 a woman named Maureen Wilcox bought tickets for
both the Rhode Island lottery and the Massachusetts lottery. And she got the correct
numbers for both lotteries. Unfortunately for her, she picked all the correct numbers
for Massachusetts on her Rhode Island ticket, and all the right numbers for Rhode
island on her Massachusetts ticket. Seen statistically, the p-value for such an event
would be extremely small—but it did happen anyway.

b) Additional Examples

Example 1 Let us compare the weight of two groups of subjects. The null hypothe-
sis is that there is null difference in the weight between the two groups. If a statistical
comparison of the weight produces a p-value of 0.03, this means that the probability
that the null hypothesis is correct is 0.03, or 3 %. Since this probability is less than
0.05, we say that “there is a significant difference between the weight of the two
groups.”

Example 2 If we want to check the assumption that the mean value of a group is
7, then the corresponding null hypothesis would be: “We assume that there is null
difference between the mean value in our population and the value 7.”

Example 3 (Test for Normality) If we check if a data sample is normally distributed,
the null hypothesis is that “there is no difference between my data and normally
distributed data”: here a large p-value indicates that the data are in fact normally
distributed!

7.2.3 The Interpretation of the p-Value

A value of p < 0:05 for the null hypothesis has to be interpreted as follows: If
the null hypothesis is true, the chance to find a test statistic as extreme as or more
extreme than the one observed is less than 5 %. This is not the same as saying that
the null hypothesis is false, and even less so, that an alternative hypothesis is true!
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Stating a p-value alone is no longer state of the art for the statistical analysis of
data. In addition also the confidence intervals for the parameters under investigation
should be given.

To reduce errors in the data interpretation research is sometimes divided into
exploratory research and confirmatory research. Take for example the case of Matt
Motyl, a Psychology PhD student at the University of Virginia. In 2010, data from
his study of nearly 2000 people indicated that political moderates saw shades of grey
more accurately than people with more extreme political opinions, with a p-value
of 0.01. However, when he tried to reproduce the data, the p-value dropped down
to 0.59. So while the exploratory research showed that a certain hypothesis may be
likely, the confirmatory research showed that the hypothesis did not hold (Nuzzo
2014).

An impressive demonstration of the difference between exploratory and confir-
matory research is a collaborative science study, where 270 researchers set down
and tried to replicate the findings of 100 experimental and correlational studies
published in three leading psychology journals in 2008. While 97 % of the studies
had statistically significant results, only 36 % of replications were statistically
significant (OSC 2015)!

Sellke (2001) has investigated this question in detail, and recommends to use a
“calibrated p-value” to estimate the probability of making a mistake when rejecting
the null hypothesis, when the data produce a p-value p:

˛. p/ D 1

1 C 1
�e p log. p/

(7.1)

with e D exp.1/, and log the natural logarithm. For example, p D 0:05 leads to
˛ D 0:29, and p D 0:01 to ˛ D 0:11. However, I have to admit that I have not seen
that idea applied in practical research.

7.2.4 Types of Error

In hypothesis testing, two types of errors can occur.

a) Type I Errors

Type I errors are errors where the result is significant despite the fact that the null
hypothesis is true. The likelihood of a Type I error is commonly indicated with ˛,
and is set before the start of the data analysis. In quality control, a Type I error
is called producer risk, because you reject a produced item despite the fact that it
meets the regulatory requirements.

In Fig. 7.7, a Type I error would be a diagnosis of cancer (“positive” test result),
even though the subject is healthy.
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Example

For example, assume that the population of young Austrian adults has a mean IQ
of 105 (i.e., if Austrian males were smarter than the rest) and a standard deviation
of 15. We now want to check if the average FH student in Linz has the same IQ
as the average Austrian, and we select 20 students. We set ˛ D 0:05, i.e., we set
our significance level to 95 %. Let us now assume that the average student has in
fact the same IQ as the average Austrian. If we repeat our study 20 times, we will
find one of those 20 times that our sample mean is significantly different from the
Austrian average IQ. Such a finding would be a false result, despite the fact that our
assumption is correct, and would constitute a Type I error.

b) Type II Errors and Test Power

If we want to answer the question “How much chance do we have to reject the
null hypothesis when the alternative is in fact true?,” or in other words, “What’s the
probability of detecting a real effect?,” we are faced with a different problem. To
answer these questions, we need an alternative hypothesis.

Type II errors are errors where the result is not significant, despite the fact that
the null hypothesis is false. In quality control, a Type II error is called a consumer
risk, because the consumer obtains an item that does not meet the regulatory
requirements.

In Fig. 7.7, a Type II error would be a “healthy” diagnosis (“negative” test result),
even though the subject has cancer.

The probability for this type of error is commonly indicated with ˇ. The “power”
of a statistical test is defined as .1�ˇ/�100, and is the chance of correctly accepting
the alternative hypothesis. Figure 7.5 shows the meaning of the power of a statistical
test. Note that for finding the power of a test, you need an alternative hypothesis.

c) Pitfalls in the Interpretation of p-Values

In other words, p-values measure evidence for a hypothesis. Unfortunately, they are
often incorrectly viewed as an error probability for rejection of the hypothesis, or,
even worse, as the posterior probability (i.e., after the data have been collected) that
the hypothesis is true. As an example, take the case where the alternative hypothesis
is that the mean is just a fraction of one standard deviation larger than the mean
under the null hypothesis: in that case, a sample that produces a p-value of 0.05 may
just as likely be produced if the alternative hypothesis is true as if the null hypothesis
is true!
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Fig. 7.5 Power of a statistical test, for comparing the mean value of two sampling distributions

7.2.5 Sample Size

The power or sensitivity of a binary hypothesis test is the probability that the test
correctly rejects the null hypothesis when the alternative hypothesis is true.

The determination of the power of a statistical test, and the calculation of the
minimum sample size required to reveal an effect of a given magnitude, is called
power analysis. It involves four factors:

1. ˛, the probability for Type I errors
2. ˇ, the probability for Type II errors ( ) power of the test)
3. d, the effect size, i.e., the magnitude of the investigated effect relative to � , the

standard deviation of the sample
4. n, the sample size

Only three of these four parameters can be chosen, the 4th is then automatically
fixed. Figure 7.6 shows for example how an increase in the number of subjects
increases the power of the test.

The absolute size of the difference D.D d��/ between mean treatment outcomes
that will answer the clinical question being posed is often called clinical significance
or clinical relevance.

For example, the motor function of arms and hands after a stroke is commonly
graded with the Fugl-Meyer Assessment of the Upper Extremities, which has a
maximum score of 66. In 2014, a multi-center study of task-specific robot therapy of
the arm after stroke showed that this therapy leads to a significant improvement of
0.78 points (Klamroth-Marganska 2014). But while this improvement is significant,
it is so small that it does not make any difference in the treatment of the patient, and
therefore is of no clinical relevance.
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Fig. 7.6 Effect of an increase in sample size on the power of a test

a) Examples

Test on One Mean

If we have the hypothesis that the population we draw our samples from has a mean
value of x1 and a standard deviation of � , and the actual population has a mean
value of x1 C D and the same standard deviation, we can find such a difference with
a minimum sample number of

n D .z1�˛=2 C z1�ˇ/2

d2
(7.2)

Here z is the standardized normal variable (see also Sect. 6.3)

z D x � �

�
: (7.3)

and d D D
�

the effect size.
In words, if the real mean has a value of x1, we want to detect this correctly in at

least 1 � ˛% of all tests; and if the real mean is shifted by D or more, we want to
detect this with a likelihood of at least 1 � ˇ%.

Test Between Two Different Populations

For finding a difference between two normally distributed means, with standard
deviations of �1 and �2, the minimum number of samples we need in each group to
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detect an absolute difference D is

n1 D n2 D .z1�˛=2 C z1�ˇ/2.�2
1 C �2

2 /

D2
: (7.4)

b) Python Solution

statsmodels makes clever use of the fact that three of the four factors mentioned
above are independent, and combines it with the Python feature of “named
parameters” to provide a program that takes 3 of those parameters as input, and
calculates the remaining 4th parameter. For example,

In [1]: from statsmodels.stats import power

In [2]: nobs = power.tt_ind_solve_power(
effect_size = 0.5, alpha =0.05, power=0.8 )

In [3]: print(nobs)
Out[3]: 63.76561177540974

tells us that if we compare two groups with the same number of subjects and the
same standard deviation, require an ˛ D 0:05 and a test power of 80 %, and we want
to detect a difference between the groups that is half the standard deviation, we need
to test 64 subjects in each group.

Similarly,

In [4]: effect_size = power.tt_ind_solve_power(
alpha =0.05, power=0.8, nobs1=25 )

In [5]: print(effect_size)
Out[5]: 0.8087077886680407

tells us that if we have an ˛ D 0:05, a test power of 80 %, and 25 subjects in
each group, then the smallest difference between the groups is 81 % of the sample
standard deviation.

The corresponding command for one sample t-tests is tt_solve_power.

c) Programs: Sample Size

Code: “ISP_sampleSize.py”2: direct sample size

calculation for normally distributed data with arbitrary standard deviations,

2https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/
07_CheckNormality_CalcSamplesize/sampleSize.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/07_CheckNormality_CalcSamplesize/sampleSize
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/07_CheckNormality_CalcSamplesize/sampleSize
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for detecting changes within a group, and for comparison of two independent
groups with different variances; more flexible than the statsmodel function
power.tt_in_solve_power.

7.3 Sensitivity and Specificity

Some of the more confusing terms in statistical analysis are sensitivity and
specificity. Related topics are the positive predictive value (PPV) and the negative
predictive value (NPV) of statistical tests. The diagram in Fig. 7.7 shows how the
four are related:

Sensitivity Also called power. Proportion of positives
that are correctly identified by a test (= prob-
ability of a positive test, given the patient is
ill).

Specificity Proportion of negatives that are correctly
identified by a test (= probability of a negative
test, given that patient is well).

Positive Predictive Value (PPV) Proportion of patients with positive test
results who are correctly diagnosed.

Negative Predictive Value (NPV) Proportion of patients with negative test
results who are correctly diagnosed.

Fig. 7.7 Relationship between sensitivity, specificity, positive predictive value, and negative
predictive value
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For example, pregnancy tests have a high sensitivity: when a woman is pregnant,
the probability that the test is positive is very high.

In contrast, an indicator for an attack with atomic weapons on the White House
should have a very high specificity: if there is no attack, the probability that the
indicator is positive should be very, very small.

While sensitivity and specificity characterize a test and are independent of
prevalence, they do not indicate what portion of patients with abnormal test results
are truly abnormal. This information is provided by the positive/negative predictive
value (PPV/NPV). These are the values relevant for a doctor diagnosing a patient:
when a patient has a positive test result, how likely is it that the patient is in fact sick?
Unfortunately, as Fig. 7.8 indicates, these values are affected by the prevalence of the
disease. The prevalence of a disease indicates how many out of 100,000 people are
affected by it; in contrast, the incidence gives the number of newly diagnosed cases
per 100,000 people. In summary, we need to know the prevalence of the disease as
well as the PPV/NPV of a test to provide a sensible interpretation of medical test
results.

Take for example a test where a positive test results implies a 50 % chance
of having a certain medical condition. If half the population has this condition,
a positive test result tells the doctor nothing. But if the condition is very rare, a
positive test result indicates that the patient has a fifty–fifty chance of having this
rare condition—a piece of information that is very valuable.

Figure 7.8 shows how the prevalence of a disease affects the interpretation
of diagnostic results, with a test with a given specificity and sensitivity: a high
prevalence of the disease increases the PPV of the test, but decreases the NPV;
and a low prevalence does exactly the opposite. Figure 7.9 gives a worked example.

Fig. 7.8 Effect of prevalence on PPV and NPV. “T” stands for “test,” and “P” for “patient.” (For
comparison with below: T+P+ = TP, T�P� = TN, T+P� = FP, and T�P+ = FN.)
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Fig. 7.9 Worked example

7.3.1 Related Calculations

In evidence-based medicine, likelihood ratios are used for assessing the value of
performing a diagnostic test. They use the sensitivity and specificity of the test to
determine whether a test result changes the probability that a condition (such as a
disease state) exists. Two versions of the likelihood ratio exist, one for positive and
one for negative test results. They are known as the positive likelihood ratio (LRC)
and negative likelihood ratio (LR�), respectively.

• False positive rate (˛) = type I error = 1 � specificity = FP
FPCTN = 175

175C2000
= 8 %

• False negative rate (ˇ) = type II error = 1 � sensitivity = FN
TPCFN = 10

25C10
= 29 %

• Power = sensitivity = 1 � ˇ

• positive likelihood ratio = sensitivity
1�specificity = 71 %

1�92 % = 8.9

• negative likelihood ratio = 1�sensitivity
specificity = 1�71 %

92 % = 0.32

Hence with large numbers of false positives and few false negatives, a positive
test outcome in this example is in itself poor at confirming cancer (PPV = 12.5 %)
and further investigations must be undertaken; it does, however, correctly identify
71 % of all cancers (the sensitivity). However as a screening test, a negative result
is very good at reassuring that a patient does not have cancer (NPV = 99.5 %), and
this initial screen correctly identifies 92 % of those who do not have cancer (the
specificity).

7.4 Receiver-Operating-Characteristic (ROC) Curve

Closely related to sensitivity and specificity is the Receiver-Operating-
Characteristic (ROC) curve. This is a graph displaying the relationship between the
true positive rate (on the vertical axis) and the false positive rate (on the horizontal
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axis). The technique comes from the field of engineering, where it was developed to
find the predictor which best discriminates between two given distributions: ROC
curves were first used during WWII to analyze radar effectiveness. In the early days
of radar, it was sometimes hard to tell a bird from a plane. The British pioneered
using ROC curves to optimize the way that they relied on radar for discriminating
between incoming German planes and birds.

Take the case that we have two different distributions, for example one from
the radar signal of birds and one from the radar signal of German planes, and
we have to determine a cut-off value for an indicator in order to assign a test
result to distribution one (“bird”) or to distribution two (“German plane”). The only
parameter that we can change is the cut-off value, and the question arises: is there
an optimal choice for this cut-off value?

The answer is yes: it is the point on the ROC-curve with the largest distance to
the diagonal (arrow in Fig.7.10).3

Fig. 7.10 Top: Probability density functions for two distributions. Bottom: Corresponding ROC-
curve, with the largest distance between the diagonal and the curve indicated by the arrow

3Strictly speaking this only holds if Type I errors and Type II errors are equally important.
Otherwise, the weight of each type of error also has to be considered.



Chapter 8
Tests of Means of Numerical Data

This chapter covers hypothesis tests for the mean values of groups, and shows how
to implement each of these tests in Python:

• Comparison of one group with a fixed value.
• Comparison of two groups with respect to each other.
• Comparison of three or more groups with each other.

In each case we distinguish between two cases. If the data are approximately
normally distributed, the so-called parametric tests can be used. These tests are
more sensitive than nonparametric tests, but require that certain assumptions are
fulfilled. If the data are not normally distributed, or if they are only available in
ranked form, the corresponding nonparametric tests should be used.

8.1 Distribution of a Sample Mean

8.1.1 One Sample t-Test for a Mean Value

To check the mean value of normally distributed data against a reference value, we
typically use the one sample t-test, which is based on the t-distribution.

If we knew the mean and the standard deviation of a normally distributed
population, we could calculate the corresponding standard error, and use values
from the normal distribution to determine how likely it is to find a certain value.
However, in practice we have to estimate the mean and standard deviation from the
sample; and the t-distribution, which characterizes the distribution of sample means
for normally distributed data, deviates slightly from the normal distribution.

© Springer International Publishing Switzerland 2016
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a) Example

Since it is very important to understand the basic principles of how to calculate the
t-statistic and the corresponding p-value for this test, let me illustrate the underlying
statistics by going through the analysis of a specific example, step-by-step. As an
example we take 100 normally distributed data, with a mean of 7 and with a standard
deviation of 3. What is the chance of finding a mean value at a distance of 0.5 or
more from the mean? Answer: The probability from the t-test in the example is 0.057,
and from the normal distribution 0.054.

• We have a population, with a mean value of 7 and a standard deviation of 3.
• From that population an observer takes 100 random samples. The sample mean

of the example shown in Fig. 8.1 is 7:10, close to but different from the real mean.
The sample standard deviation is 3.12, and the standard error of the mean 0.312.
This gives the observer an idea about the variability of the population.

• The observer knows that the distribution of the sample mean follows a
t-distribution, and that the standard error of the mean (SEM) characterizes
the width of that distribution.

Fig. 8.1 Left: Frequency histogram of the sample data, together with a normal fit (green line). The
sample mean, which is very close to the population mean, is indicated with a yellow triangle; the
value to be checked is indicated with a red triangle. Right: sampling distribution of the mean value
(t-distribution, for n � 1 degrees of freedom). At the bottom the normalized value of the sample
mean (yellow triangle) and the normalized value to be checked (red triangle). The sum of the red
shaded areas, indicating values as extreme or more extreme than the red arrow, corresponds to the
p-value
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• How likely it is that the real mean has a value of x0 (e.g., 6.5, indicated by the
red triangle in Fig. 8.1, left)? To find this out, the value has to be transformed by
subtracting the sample mean and dividing by the standard error (Fig. 8.1, right).
This provides the t-statistic for this test (�1.93).

• The corresponding p-value, which tells us how likely it is that the real mean has
a value of 6.5 or more extreme relative to the sample mean, is given by the red
shaded area under the curve-wings: 2 � CDF.t-statistic/ D 0:057, which means
that the difference to 6.5 is just not significant. The factor “2” comes from the
fact that we have to check in both tails, and this test is therefore referred to as a
two-tailed t-test.

• The probability to find a value of 6.5 or less is half as much (p=0.0285. Since in
this case we only look in one tail of the distribution, this is called a one-tailed
t-test.

In Python, test statistic and p-value for the one sample t-test can be calculated
with

t, pVal = stats.ttest_1samp(data, checkValue)

Code: “ISP_oneGroup.py”1: Sample analysis for

one group of continuous data.

8.1.2 Wilcoxon Signed Rank Sum Test

If the data are not normally distributed, the one-sample t-test should not be used
(although this test is fairly robust against deviations from normality, see Fig. 6.14).
Instead, we must use a nonparametric test on the mean value. We can do this by
performing a Wilcoxon signed rank sum test. Note that in contrast to the one-sample
t-test, this test checks for a difference from null:

(rank, pVal) = stats.wilcoxon(data-checkValue)

This method has three steps2:

1. Calculate the difference between each observation and the value of interest.
2. Ignoring the signs of the differences, rank them in order of magnitude.
3. Calculate the sum of the ranks of all the negative (or positive) ranks, correspond-

ing to the observations below (or above) the chosen hypothetical value.

1https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_Test
sMeanValues/oneGroup.
2The following description and example have been taken from (Altman 1999, Table 9.2).

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/oneGroup
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/oneGroup
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Table 8.1 Daily energy intake of 11 healthy women with rank order of differences (ignoring their
signs) from the recommended intake of 7725 kJ

Subject Daily energy intake (kJ) Difference from 7725 kJ Ranks of differences

1 5260 2465 11

2 5470 2255 10

3 5640 2085 9

4 6180 1545 8

5 6390 1335 7

6 6515 1210 6

7 6805 920 4

8 7515 210 1.5

9 7515 210 1.5

10 8230 �505 3

11 8770 �1045 5

In Table 8.1 you see an example, where the significance to a deviation from the
value of 7725 is tested. The rank sum of the negative values gives 3C5 D 8, and can
be looked up in the corresponding tables to be significant. In practice, your computer
program will nowadays do this for you. This example also shows another feature of
rank evaluations: tied values (here 7515) get accorded their mean rank (here 1:5).

8.2 Comparison of Two Groups

8.2.1 Paired t-Test

In the comparison of two groups with each other, two cases have to be distinguished.
In the first case, two values recorded from the same subject at different times
are compared to each other. For example, the size of students when they enter
primary school and after their first year, to check if they have grown. Since we
are only interested in the difference in each subject between the first and the second
measurement, this test is called paired t-test, and is essentially equivalent to a one-
sample t-test for the mean difference (Fig. 8.2).

Therefore the two tests stats.ttest_1samp and stats.ttest_rel provide the
same result (apart from minute numerical differences):

In [1]: import numpy as np
In [2]: from scipy import stats

In [3]: np.random.seed(1234)
In [4]: data = np.random.randn(10)+0.1
In [5]: data1 = np.random.randn(10)*5 # dummy data
In [6]: data2 = data1 + data # same group-difference as "data"
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Fig. 8.2 Paired t-tests can detect differences that would be insignificant otherwise. For this
example all the inner-subject differences are positive, and the paired t-test yields a p-value of
p < 0:001, while the unpaired t-test leads to p D 0:81

In [7]: stats.ttest_1samp(data, 0)
Out[7]: (-0.12458492298731401, 0.90359045085470857)

In [8]: stats.ttest_rel(data2, data1)
Out[8]: (-0.1245849229873135, 0.9035904508547089)

8.2.2 t-Test between Independent Groups

An unpaired t-test, or t-test for two independent groups, compares two groups. An
example would be the comparison of the effect of two medications given to two
different groups of patients.

The basic idea is the same as for the one-sample t-test. But instead of the variance
of the mean, we now need the variance of the difference between the means of the
two groups. Since the variance of a sum (or difference) of independent random
variables equals the sum of the variances, we have:

se.Nx1 ˙ Nx2/ D p
var.Nx1/ C var.Nx2/

D
q

fse.Nx1/g2 C fse.Nx2/g2 (8.1)

D
q

s2
1

n1
C s2

2

n2

where Nxi is the mean of the ith sample, and se indicates the standard error.

t_statistic, pVal = stats.ttest_ind(group1, group2)
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8.2.3 Nonparametric Comparison of Two Groups:
Mann–Whitney Test

If the measurement values from two groups are not normally distributed we have
to resort to a nonparametric test. The most common nonparametric test for the
comparison of two independent groups is the Mann–Whitney(–Wilcoxon) test.
Watch out, because this test is sometimes also referred to as Wilcoxon rank-sum
test. This is different from the Wilcoxon signed rank sum test! The test-statistic for
this test is commonly indicated with u:

u_statistic, pVal = stats.mannwhitneyu(group1, group2)

Code: “ISP_twoGroups.py”3: Comparison of two

groups, paired and unpaired.

8.2.4 Statistical Hypothesis Tests vs Statistical Modeling

With the advent of cheap computing power, statistical modeling has been a booming
field. This has also affected classical statistical analysis, as most problems can be
viewed from two perspectives: one can either make a statistical hypothesis, and
verify or falsify that hypothesis; or one can make a statistical model, and analyze
the significance of the model parameters.

Let me use a classical t-test as an example.

a) Classical t-Test

Let us take performance measurements from a racing team, on two different
occasions. During Race1, the members of the team achieve a score of [79, 100,
93, 75, 84, 107, 66, 86, 103, 81, 83, 89, 105, 84, 86, 86, 112, 112, 100, 94], and
during Race2 a score of [92, 100, 76, 97, 72, 79, 94, 71, 84, 76, 82, 57, 67, 78, 94,
83, 85, 92, 76, 88].

3https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_Test
sMeanValues/twoGroups.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/twoGroups
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/twoGroups
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To generate these numbers and to compare the two groups with a t-test, the
following Python commands can be used:

import numpy as np
from scipy import stats

# Generate the data
np.random.seed(123)
race_1 = np.round(np.random.randn(20)*10+90)
race_2 = np.round(np.random.randn(20)*10+85)

# t-test
(t, pVal) = stats.ttest_rel (race_1, race_2)

# Show the result
print('The probability that the two distributions '

'are equal is {0:5.3f} .'.format(pVal))

which produce

The probability that the two distributions are equal is 0.033 .

The command random.seed(123) initializes the random number generator with
the number 123, which ensures that two consecutive runs of this code produce the
same result, corresponding to the numbers given above.

b) Statistical Modeling

Expressed as a statistical model, we assume that the difference between the first
and the second race is simply a constant value. (The null hypothesis would be that
this value is equal to zero.) This model has one parameter: the constant value. We
can find this parameter, as well as its confidence interval and a lot of additional
information, with the following Python code:

import pandas as pd
import statsmodels.formula.api as sm

np.random.seed(123)
df = pd.DataFrame({'Race1': race_1, 'Race2':race_2})

result = sm.ols(formula='I(Race2-Race1) ~ 1', data=df).fit()

print(result.summary())

The important line is the last but one, which produces the result. Thereby the
function sm.ols (“ols” for “ordinary least square”) function from statsmodels tests
the model which describes the difference between the results of Race1 and those of
Race2 with only an offset, also called Intercept in the language of modeling. The
results below show that the probability that this intercept is zero is only 0:033: the
difference from zero is significant.
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OLS Regression Results
==============================================================================
Dep. Variable: I(Race2 - Race1) R-squared: 0.000
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: nan
Date: Sun, 08 Feb 2015 Prob (F-statistic): nan
Time: 18:48:06 Log-Likelihood: -85.296
No. Observations: 20 AIC: 172.6
Df Residuals: 19 BIC: 173.6
Df Model: 0
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept -9.1000 3.950 -2.304 0.033 -17.367 -0.833
==============================================================================
Omnibus: 0.894 Durbin-Watson: 2.009
Prob(Omnibus): 0.639 Jarque-Bera (JB): 0.793
Skew: 0.428 Prob(JB): 0.673
Kurtosis: 2.532 Cond. No. 1.00
==============================================================================

The output from OLS-models is explained in more detail in Chap. 11. The
important point here is that the t- and p-value for the intercept obtained with the
statistical model are the same as with the classical t-test above.

8.3 Comparison of Multiple Groups

8.3.1 Analysis of Variance (ANOVA)

a) Principle

The idea behind the Analysis of Variance (ANOVA) is to divide the variance into the
variance between groups, and that within groups, and see if those distributions match
the null hypothesis that all groups come from the same distribution (Fig. 8.3). The
variables that distinguish the different groups are often called factors or treatments.

(By comparison, t-tests look at the mean values of two groups, and check if
those are consistent with the assumption that the two groups come from the same
distribution.)

For example, if we compare a group with No treatment, another with treatment A,
and a third with treatment B, then we perform a one factor ANOVA, sometimes also
called one-way ANOVA, with treatment the one analysis factor. If we do the same
test with men and with women, then we have a two-factor or two-way ANOVA,
with gender and treatment as the two treatment factors. Note that with ANOVAs,
it is quite important to have exactly the same number of samples in each analysis
group! (This is called a balanced ANOVA: a balanced design has an equal number
of observations for all possible combinations of factor levels.)

Because the null hypothesis is that there is no difference between the groups, the
test is based on a comparison of the observed variation between the groups (i.e.,
between their means) with that expected from the observed variability within the
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Fig. 8.3 In both cases, the difference between the two groups is the same. But left, the difference
within the groups is smaller than the differences between the groups, whereas right, the difference
within the groups is larger than the difference between

groups (i.e. between subjects). The comparison takes the general form of an F-test
to compare variances, but for two groups the t-test leads to exactly the same result,
as demonstrated in the code-sample C8_3_anovaOneway.py.

The one-way ANOVA assumes all the samples are drawn from normally
distributed populations with equal variance. The assumption of equal variance can
be checked with the Levene test.

ANOVA uses traditional terminology. DF indicates the degrees of freedom (DF)
(see also Sect. 5.3), the summation is called the Sum-of-Squares (SS), the ratio
between the two is called the Mean Square (MS), and the squared terms are
deviations from the sample mean. In general, the sample variance is defined by

s2 D 1

DF

X
.yi � Ny/2 D SS

DF
(8.2)

The fundamental technique is a partitioning of the total sum of squares SS into
components related to the effects used in the model (Fig. 8.4). Thereby ANOVA
estimates three sample variances: a total variance based on all the observation
deviations from the grand mean (calculated from SSTotal), a treatment variance (from
SSTreatments), and an error variance based on all the observation deviations from their
appropriate treatment means (from SSError). The treatment variance is based on the
deviations of treatment means from the grand mean, the result being multiplied by
the number of observations in each treatment to account for the difference between
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Fig. 8.4 The long blue line indicates the grand mean over all data. The SSError describes the
variability within the groups, and the SSTreamtent (summed over all respective points!) the variability
between groups

the variance of observations and the variance of means. The three sums-of-squares
are related by:

SSTotal D SSError C SSTreatment (8.3)

where SSTotal is sum-squared deviation from the overall mean, the SSError the sum-
squared deviation from the mean within a group, and the SSTreatment the sum-squared
deviation between each group and the overall mean (Fig. 8.4). If the null hypothesis
is true, all three variance estimates (Eq. 8.2) are equal (within sampling error).

The number of degrees of freedom DF can be partitioned in a similar way:
one of these components (that for error) specifies a chi-squared distribution which
describes the associated sum of squares, while the same is true for treatments if
there is no treatment effect.

DFTotal D DFError C DFTreatments (8.4)

b) Example: One-Way ANOVA

As an example, take the red cell folate levels (�g=l) in three groups of cardiac bypass
patients given different levels of nitrous oxide ventilation (Amess et al. 1978),
described in the Python code example below. In total 22 patients were included
in the analysis.

The null hypothesis of ANOVAs is that all groups come from the same
population. A test whether to keep or reject this null hypothesis can be done with

from scipy import stats
F_statistic, pVal = stats.f_oneway(group_1, group_2, group_3)
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where the data of group i are in a vector group_i. (The whole program can be
found in ISP_anovaOneway.py.)

A more detailed output of the ANOVA is provided by the implementation in
statsmodels:

import pandas as pd
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

df = pd.DataFrame(data, columns=['value', 'treatment'])
model = ols('value ~ C(treatment)', df).fit()
anovaResults = anova_lm(model)
print(anovaResults)

where the numerical values are in the first column of the array data, and the
(categorical) group variable in the second column. This produces the following
output:

DF SS MS F p(>F)
C(treatment) 2 15515.76 7757.88 3.71 0.043
Residual 19 39716.09 2090.32 NaN NaN

• First the “Sums of squares (SS)” are calculated. Here the SS between treatments
is 15,515.76, and the SS of the residuals is 39,716.09 . The total SS is the sum of
these two values.

• The mean squares (MS) is the SS divided by the corresponding degrees of
freedom (DF).

• The F-test or variance ratio test is used for comparing the factors of the total
deviation. The F-value is the larger mean squares value divided by the smaller
value. (If we only have two groups, the F-value is the square of the corresponding
t-value. See ISP_anovaOneway.py).

F D variance_between_treatments

variance_within_treatments

F D MSTreatments

MSError
D SSTreatments=.ngroups � 1/

SSError=.ntotal � ngroups/
(8.5)

• Under the null hypothesis that two normally distributed populations have equal
variances we expect the ratio of the two sample variances to have an F Distribu-
tion (see Sect. 6.5). From the F-value, we can look up the corresponding p-value.

Code: “ISP_anovaOneway.py”4: Different

aspects of one-way ANOVAs: how to check the assumptions (with the Levene

4https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_Test
sMeanValues/anovaOneway.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/anovaOneway
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/anovaOneway
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test), different ways to calculate a one-way ANOVA, and a demonstration that for
the comparison between two groups, a one-way ANOVA is equivalent to a t-test.

8.3.2 Multiple Comparisons

The null hypothesis in a one-way ANOVA is that the means of all the samples are
the same. So if a one-way ANOVA yields a significant result, we only know that
they are not the same.

However, often we are not just interested in the joint hypothesis if all samples are
the same, but we would also like to know for which pairs of samples the hypothesis
of equal values is rejected. In this case we conduct several tests at the same time,
one test for each pair of samples. (Typically, this is done with t-tests.)

These tests are sometimes referred to as post-hoc analysis. In the design and
analysis of experiments, a post hoc analysis (from Latin post hoc, “after this”)
consists of looking at the data—after the experiment has concluded—for patterns
that were not specified beforehand. Here this is the case, because the null hypothesis
of the ANOVA is that there is no difference between the groups.

This results, as a consequence, in a multiple testing problem: since we perform
multiple comparison tests, we should compensate for the risk of getting a significant
result, even if our null hypothesis is true. This can be done by correcting the p-values
to account for this. We have a number of options to do so:

• Tukey HSD
• Bonferroni correction
• Holms correction
• : : : and others : : :

a) Tukey’s Test

Tukey’s test, sometimes also referred to as the Tukey Honest Significant Difference
test (HSD) method, controls for the Type I error rate across multiple comparisons
and is generally considered an acceptable technique. It is based on a statistic that we
have not come across yet, the studentized range, which is commonly represented by
the variable q. The studentized range computed from a list of numbers x1; : : : ; xn is
given by

qn D maxf x1; : : : xn g � minf x1; : : : xng
s

(8.6)

where s is the sample standard deviation. In the Tukey HSD method the sample
x1; : : : ; xn is a sample of means and q is the basic test-statistic. It can be used as post-
hoc analysis to test between which two group-means there is a significant difference
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Fig. 8.5 Comparing the means of multiple groups—here three different treatment options

(pairwise comparisons) after rejecting the null hypothesis that all groups are from
the same population, i.e. all means are equal (Fig. 8.5).

Code: “ISP_multipleTesting.py”5: This script

provides an example where three treatments are compared.

b) Bonferroni Correction

Tukey’s studentized range test (HSD) is a test specific to the comparison of all
pairs of k independent samples. Instead we can run t-tests on all pairs, calculate
the p-values and apply one of the p-value corrections for multiple testing problems.
The simplest—and at the same time quite conservative—approach is to divide
the required p-value by the number of tests that we do (Bonferroni correction).
For example, if you perform four comparisons, you check for significance not at
p D 0:05, but at p D 0:05=4 D 0:0125.

While multiple testing is not yet included in Python standardly, you can get a
number of multiple-testing corrections done with the statsmodels package:

In [7]: from statsmodels.sandbox.stats.multicomp \
... : import multipletests

In [8]: multipletests([.05, 0.3, 0.01], method='bonferroni')
Out[8]:

5https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_Test
sMeanValues/multipleTesting.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/multipleTesting
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/multipleTesting
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(array([False, False, True], dtype=bool),
array([ 0.15, 0.9 , 0.03]),
0.016952427508441503,
0.016666666666666666)

c) Holm Correction

The Holm adjustment, sometimes also referred to as Holm–Bonferroni method,
sequentially compares the lowest p-value with a Type I error rate that is reduced
for each consecutive test. For example, if you have three groups (and thus three
comparisons), this means that the first p-value is tested at the 0.05/3 level (0.017),
the second at the 0.05/2 level (0.025), and third at the 0.05/1 level (0.05). As stated
by Holm (1979) “Except in trivial non-interesting cases the sequentially rejective
Bonferroni test [i.e., the Holm–Bonferroni method] has strictly larger probability of
rejecting false hypotheses and thus it ought to replace the classical Bonferroni test
at all instants where the latter usually is applied.”

8.3.3 Kruskal–Wallis Test

When we compare two groups to each other, we use the t-test when the data are
normally distributed, and the nonparametric Mann–Whitney test otherwise. For three
or more groups, the test for normally distributed data is the ANOVA-test; for not-
normally distributed data, the corresponding test is the Kruskal–Wallis test. When
the null hypothesis is true the test statistic for the Kruskal–Wallis test follows the
chi-square distribution.

Code: “ISP_kruskalWallis.py”6: Example of a

Kruskal–Wallis test (for not normally distributed data).

8.3.4 Two-Way ANOVA

Compared to one-way ANOVAs, the analysis with two-way ANOVAs has a new
element. We can look not only if each of the factors is significant; we can also
check if the interaction of the factors has a significant influence on the distribution

6https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_Test
sMeanValues/kruskalWallis.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/kruskalWallis
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/kruskalWallis
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of the data. Let us take for example measurements of fetal head circumference,
by four observers in three fetuses, from a study investigating the reproducibility of
ultrasonic fetal head circumference data.

The most elegant way of implementing a two-way ANOVAs for these data is
with statsmodels:

import pandas as pd
from C2_8_getdata import getData
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

# Get the data
data = getData('altman_12_6.txt', subDir='..\Data\data_altman')

# Bring them in DataFrame-format
df = pd.DataFrame(data, columns=['hs', 'fetus', 'observer'])

# Determine the ANOVA with interaction
formula = 'hs ~ C(fetus) + C(observer) + C(fetus):C(observer)'
lm = ols(formula, df).fit()
anovaResults = anova_lm(lm)

print(anovaResults)

This leads to the following result:

df sum_sq mean_sq F PR(>F)
C(fetus) 2 324.00 162.00 2113.10 1.05e-27
C(observer) 3 1.19 0.39 5.21 6.497-03
C(fetus):C(observer) 6 0.56 0.09 1.22 3.29e-01
Residual 24 1.84 0.07 NaN NaN

In words: While—as expected—different fetuses show highly significant differ-
ences in their head size (p < 0:001), also the choice of the observer has a significant
effect (p < 0:05). However, no individual observer was significantly off with any
individual fetus (p > 0:05).

Code: “ISP_anovaTwoway.py”7: Two-way Anal-

ysis of Variance (ANOVA).

7https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_Test
sMeanValues/anovaTwoway.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/anovaTwoway
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/anovaTwoway
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Fig. 8.6 Three-way ANOVA

8.3.5 Three-Way ANOVA

With more than two factors, it is recommendable to use statistical modeling
for the data analysis (see Chap. 11). However, as always with the analysis of
statistical data, one should first inspect the data visually. seaborn makes this quite
simple. Figure 8.6 shows for example the pulse-rate after (1/15/30) minutes of
(resting/walking/running), in two groups who are eating different diets.

import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid")

df = sns.load_dataset("exercise")

sns.factorplot("time", "pulse", hue="kind", col="diet", data=df,
hue_order=["rest", "walking", "running"],
palette="YlGnBu_d", aspect=.75).despine(left=True)

plt.show()
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8.4 Summary: Selecting the Right Test for Comparing
Groups

8.4.1 Typical Tests

Table 8.2 shows typical tests for statistical problems for nominal and ordinal data.
When we have univariate data and two groups, we can ask the question: “Are they
different?” The answer is provided by hypothesis tests: by a t-test if the data are
normally distributed, or by a Mann–Whitney test otherwise.

So what happens when we have more than two groups?
To answer the question “Are they different?” for more than two groups, we have

to use the Analysis of Variance (ANOVA)-test for data where the residuals are
normally distributed. If this condition is not fulfilled, the Kruskal–Wallis Test has to
be used.

What should we do if we have paired data?
If we have matched pairs for two groups, and the differences are not normally

distributed, we can use the Wilcoxon-signed-rank-sum test. The rank test for more
than two groups of matched data is the Friedman test.

An example for the application of the Friedman test: Ten professional piano
players are blindfolded, and are asked to judge the quality of three different pianos.
Each player rates each piano on a scale of 1–10 (1 being the lowest possible grade,
and 10 the highest possible grade). The null hypothesis is that all three pianos rate
equally. To test the null hypothesis, the Friedman test is used on the ratings of the
ten piano players.

Table 8.2 Typical tests for statistical problems, for nominal and ordinal data

No. of groups compared Independent samples Paired samples

Groups of nominal data
1 One-sample t-test or Wilcoxon

signed rank sum test
–

2 or more Fisher’s exact test or chi-square
test

McNemar’s test

Groups of ordinal data
2 Mann–Whitney U test Wilcoxon signed rank test

3 or more Kruskal–Wallis test Friedman test

Groups of continuous data
2 Student’s t-test or Mann–

Whitney test
Paired t-test or Wilcoxon signed-
rank sum test

3 or more ANOVA or Kruskal–Wallis test Repeated measures ANOVA or
Friedman test

Note that the tests for comparing one group to a fixed value are the same as comparing two groups
with paired samples
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It may be worth mentioning that in a blog Thom Baguley suggested that in cases
where one-way repeated measures ANOVA is not appropriate, rank transformation
followed by ANOVA will provide a more robust test with greater statistical power
than the Friedman test.
(http://www.r-bloggers.com/beware-the-friedman-test/)

8.4.2 Hypothetical Examples

1 group, nominal Average calory intake. E.g. “Do our children eat more
than they should?”

1 group, ordinal Sequence of giant-planets. E.g. “In our solar sys-
tem, are giant planets further out than average in the
sequence of planets?”

2 groups, nominal male/female, blond-hair/black-hair. E.g. “Are females
more blond than males?”

2 groups, nominal, paired 2 labs, analysis of blood samples. E.g. “Does the
blood analysis from Lab1 indicate more infections
than the analysis from Lab2?”

2 groups, ordinal Jamaican/American, ranking 100 m sprint. E.g. “Are
Jamaican sprinters more successful than American
sprinters?”

2 groups, ordinal, paired sprinters, before/after diet. E.g. “Does a chocolate diet
make sprinters more successful?”

3 groups, ordinal single/married/divorces, ranking 100 m sprint. E.g.
“Does the marital status have an effect on the success
of sprinters?”

3 groups, ordinal, paired sprinters, before/after diet. E.g. “Does a rice diet make
Chinese sprinters more successful?”

2 groups, continuous male/female, IQ. E.g. “Are women more intelligent
than men?”

2 groups, continuous, paired male/female, looking at diamonds. E.g. “Does
looking at sports cars raise the male heart-beat more
than the female?

3 groups, continuous Tyrolians, Viennese, Styrians; IQ. E.g. “Are Tyro-
lians smarter than people from other Austrian federal
states?”

3 groups, continuous, paired Tyrolians, Viennese, Styrians; looking at moun-
tains. E.g. “Does looking at mountains raise the heart-
beat of Tyrolians more than those of other people?”

http://www.r-bloggers.com/beware-the-friedman-test/
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8.5 Exercises

8.1 One or Two Groups

• Paired t-Test and Wilcoxon signed rank sum test
The daily energy intake from 11 healthy women is [5260., 5470., 5640., 6180.,
6390., 6515., 6805., 7515., 7515., 8230., 8770.] kJ.
Is this value significantly different from the recommended value of 7725?
(Correct answer: yes, pttest D 0:018, and pWilcoxon D 0:026.)

• t-Test of independent samples
In a clinic, 15 lazy patients weigh [76, 101, 66, 72, 88, 82, 79, 73, 76, 85, 75, 64,
76, 81, 86.] kg, and 15 sporty patients weigh [ 64, 65, 56, 62, 59, 76, 66, 82, 91,
57, 92, 80, 82, 67, 54] kg.
Are the lazy patients significantly heavier? (Correct answer: yes, p D 0:045.)

• Normality test
Are the two data sets normally distributed? (Correct answer: yes, they are.)

• Mann–Whitney test
Are the lazy patients still heavier, if you check with the Mann–Whitney test?
(Correct answer: no, p D 0:077. Note, however, that the answer would be "yes"
for a one-sided test!)

8.2 Multiple Groups
The following example is taken from the really good, but somewhat advanced book
by A.J. Dobson: “An Introduction to Generalized Linear Models”:

• Get the data
The file Data/data_others/Table 6.6 Plant experiment.xls, which can also
be found on https://github.com/thomas-haslwanter/statsintro/tree/master/Data/
data_others, contains data from an experiment with plants in three different
growing conditions. Read the data into Python. Hint: use the module xlrd.

• Perform an ANOVA
Are the three groups different? (Correct answer: yes, they are.)

• Multiple Comparisons
Using the Tukey test, which of the pairs are different? (Correct answer: only
TreamtmentA and TreatmentB differ.)

• Kruskal–Wallis
Would a nonparametric comparison lead to a different result? (Correct answer:
no.)

https://github.com/thomas-haslwanter/statsintro/tree/master/Data/data_others
https://github.com/thomas-haslwanter/statsintro/tree/master/Data/data_others


Chapter 9
Tests on Categorical Data

In a data sample the number of data falling into a particular group is called the
frequency, so the analysis of categorical data is the analysis of frequencies. When
two or more groups are compared the data are often shown in the form of a
frequency table, sometimes also called contingency table. For example, Table 9.1
gives the number of right/left-handed subjects, contingent on the subject being male
or female.

If we have only one factor (i.e., a table with only one row), the analysis options
are somewhat limited (Sect. 9.2.1). In contrast, a number of statistical tests exist for
the analysis of frequency tables:

Chi-square test This is the most common type. It is a hypothesis test, which
checks if the entries in the individual cells in a frequency
table (e.g., Table 9.1) all come from the same distribution.
In other words, it checks the null hypothesis H0 that the
results are independent of the row or column in which they
appear. The alternative hypothesis Ha does not specify the
type of association, so close attention to the data is required
to interpret the information provided by the test.

Fisher’s Exact Test While the chi-square test is approximate, the Fisher’s Exact
Test is an exact test. It is computationally more expensive
and intricate than the chi-square test, and was originally used
only for small sample numbers. However, in general it is now
the more advisable test to use.

McNemar’s Test This is a matched pair test for 2 	 2 tables. For example,
if you want to see if two doctors obtain comparable results
when checking (the same) patients, you would use this test.

Cochran’s Q Test Cochran’s Q test is an extension to the McNemar’s test
for related samples that provides a method for testing for
differences between three or more matched/paired sets of
frequencies or proportions. For example, if you have exactly

© Springer International Publishing Switzerland 2016
T. Haslwanter, An Introduction to Statistics with Python, Statistics and Computing,
DOI 10.1007/978-3-319-28316-6_9
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Table 9.1 Example of a
frequency table. (The row and
column totals are always
written in italics.)

Right handed Left handed Total

Males 43 9 52

Females 44 4 48

Total 87 13 100

the same samples analyzed by 3 different laboratories, and
you want to check if the results are statistically equivalent,
you would use this test.

9.1 One Proportion

9.1.1 Confidence Intervals

If we have one sample group of data, we can check if the sample is representative
of the standard population. To do so, we have to know the proportion p of the
characteristic in the standard population. The occurrence of a characteristic in a
group of n people is described by the binomial distribution, with mean D p � n. The
standard error of samples with this characteristic is given by

se.p/ D p
p.1 � p/=n (9.1)

and the corresponding 95 % confidence interval is

ci D mean ˙ se � tn;0:025

Thereby tn;0:025 can be calculated as the inverse survival function (ISF) of the t-
distribution, at the value 0.025. If the data lie outside this confidence interval, they
are not representative of the population.

9.1.2 Explanation

The innocent looking equation 9.1 is more involved than it seems at first:
If we have n independent samples from a binomial distribution B.k; p/, the

variance of their sample mean is

var

 
1

n

nX
iD1

Xi

!
D 1

n2

nX
iD1

var.Xi/ D n var.Xi/

n2
D var.Xi/

n
D kpq

n
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where q D 1 � p. This follows since

1. var.cX/ D c2var.X/, for any random variable, X, and any constant c.
2. the variance of a sum of independent random variables equals the sum of the

variances.

The standard error of the sample mean NX is the square root of the variance:
q

kpq
n .

Therefore,

• When k D n, we get se D p
pq.

• When k D 1, and the Binomial variables are just Bernoulli trials, the standard

error is given by se D
q

pq
n .

9.1.3 Example

For example, let us look at incidence and mortality for breast cancer, and try
to answer the following two questions: among the students at the Upper Austria
University of Applied Sciences, how many occurrences of breast cancer should we
expect per year? And how many of the female FH-students will probably die from
breast cancer at the end of their life?

We know that:

• the Upper Austrian University of Applied Sciences has about 5000 students,
about half of which are female.

• breast cancer hits predominantly women.
• the incidence of breast cancer in the age group 20–30 is about 10, where

incidence is typically defined as the new occurrences of a disease per year per
100,000 people.

• 3.8 % of all women die of cancer.

From these pieces of information, we can obtain the following parameters for our
calculations:

• n D 2500

• pincidence D 10=100;000

• pmortality D 3:8=100.

The 95 % confidence interval for the incidence of breast cancer is �0.7–1.2, and
for the number of deaths 76–114. So we expect that every year most likely none or
one of the FH-students will be diagnosed with breast cancer; but between 76 and
114 of the current female students will eventually die from this disease.
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9.2 Frequency Tables

If the data can be organized in a set of categories, and they are given as frequencies,
i.e., the total number of samples in each category (not as percentages), the tests
described in this section are appropriate for the data analysis.

Many of these tests analyze the deviation from an expected value. Since the
chi-square distribution characterizes the variability of data (in other words, their
deviation from a mean value), many of these tests refer to this distribution, and are
accordingly termed chi-square tests.

When n is the total number of observations included in the table, the expected
value for each cell in a two-way table is

expectedFrequency D RowTotal � ColumnTotal

n
(9.2)

Assume that we have observed absolute frequencies oi and expected absolute fre-
quencies ei. Under the null hypothesis all the data come from the same population,
and the test statistic

V D
X

i

.oi � ei/
2

ei
� �2

f (9.3)

follows a chi square distribution with f degrees of freedom. i might denote
a simple index running from 1; : : : ; f or a multi-index .i1; : : : ; in/ running from
.1; : : : ; 1/ to .f1; : : : ; fn/, and f D Pn

iD1 fi.

9.2.1 One-Way Chi-Square Test

For example, assume that you go hiking with your friends. Every evening, you draw
lots who has to do the washing up. But at the end of the trip, you seem to have done
most of the work:

You Peter Hans Paul Mary Joe

10 6 5 4 5 3

You expect that there has been some foul play, and calculate how likely it is that
this distribution came up by chance. The

expectedFrequency D ntotal

npeople
(9.4)
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is 5.5. The likelihood that this distribution came up by chance is

V, p = stats.chisquare(data)
print(p)
>>> 0.373130385949

In other words, you doing a lot of the washing up really could have been by
chance!

9.2.2 Chi-Square Contingency Test

When data can be arranged in rows and columns, we can check if the numbers in
the individual columns are contingent on the row value. For this reason, this test is
sometimes called contingency test. Using the example in Table 9.1, if females were
more left-handed than males, the ratio left-handed

right-handed would be contingent on the row
and larger for females than for males.

The chi-square contingency test is based on a test statistic that measures the
divergence of the observed data from the values that would be expected under the
null hypothesis of no association (e.g., Table 9.2).

a) Assumptions

The test statistic V is approximately �2 distributed, if

• for all absolute expected frequencies ei holds: ei � 1, and
• for at least 80 % of the absolute expected frequencies ei holds: ei � 5.

For small sample numbers, corrections should be made for some bias that is
caused by the use of the continuous chi-squared distribution, while the frequencies
are by definition integers. This correction is referred to as Yates correction.

b) Degrees of Freedom

The degrees of freedom (DOF) can be computed by the numbers of absolute
observed frequencies which can be chosen freely. For example, only one cell of
a 2 	 2 table with the sums at the side and bottom needs to be filled, and the others

Table 9.2 Corresponding
expected values for Table 9.1

Right handed Left handed Total

Males 45.2 6.8 52

Females 41.8 6.2 48

Total 87 13 100



164 9 Tests on Categorical Data

Table 9.3 General structure
of 2 � 2 frequency tables

B

0 1 Total

A 0 a b a C b

1 c d c C d

Total a C c b C d N D a C b C c C d

can be found by subtraction. In general, an r 	 c table with r rows and c columns
has

df D .r � 1/ 	 .c � 1/ (9.5)

degrees of freedom. We know that the sum of absolute expected frequencies is

X
i

oi D n (9.6)

We might have to subtract from the number of degrees of freedom the number
of parameters we need to estimate from the sample, since this implies further
relationships between the observed frequencies.

c) Example 1

The Python command stats.chi2_contingency returns the following list:
(�2-value, p-value, degrees-of-freedom, expected values).

data = np.array([[43,9],
[44,4]])

V, p, dof, expected = stats.chi2_contingency(data)
print(p)
>>> 0.300384770391

For the example data in Table 9.1, the results are (�2 D 1:1; p D 0:3; df D 1). In
other words, there is no indication that there is a difference in left-handed people vs
right-handed people between males and females.

Note: These values assume the default setting, which uses the Yates correction.
Without this correction, i.e., using Eq. 9.3, the results are �2 D 1:8; p D 0:18.

d) Example 2

The chi-square test can be used to generate a “quick and dirty” test of normality,
e.g.

H0 W The random variable X is symmetrically distributed versus
H1 W the random variable X is not symmetrically distributed.
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We know that in case of a symmetrical distribution the arithmetic mean Nx and
median should be nearly the same. So a simple way to test this hypothesis would
be to count how many observations are less than the mean (n�) and how many
observations are larger than the arithmetic mean (nC). If mean and median are the
same, then 50 % of the observation should be smaller than the mean and 50 % should
be larger than the mean. It holds

V D .n� � n=2/2

n=2
C .nC � n=2/2

n=2
� �2

1 (9.7)

e) Comments

The chi-square test is a pure hypothesis test. It tells you if the observed frequency
can be due to a random sample selection from a single population. A number of
different expressions have been used for chi-square tests, which are due to the
original derivation of the formulas (from the time before computers were pervasive).
Expression such as 2	2 tables, r–c tables, or chi-square test of contingency all refer
to frequency tables and are typically analyzed with chi-square tests.

9.2.3 Fisher’s Exact Test

If the requirement that 80 % of cells should have expected values of at least 5 is not
fulfilled, Fisher’s exact test should be used. This test is based on the observed row
and column totals. The method consists of evaluating the probability associated with
all possible 2 	 2 tables which have the same row and column totals as the observed
data, making the assumption that the null hypothesis (i.e., that the row and column
variables are unrelated) is true. In most cases, Fisher’s exact test is preferable to
the chi-square test. But until the advent of powerful computers, it was not practical.
You should use it up to approximately 10–15 cells in the frequency tables. It is
called “exact” because the significance of the deviation from a null hypothesis can
be calculated exactly, rather than relying on an approximation that becomes exact in
the limit as the sample size grows to infinity, as with many statistical tests.

In using the test, you have to decide if you want to use a one-tailed test or a two-
tailed test. The former one looks for the probability to find a distribution as extreme
as or more extreme than the observed one. The latter one (which is the default in
Python) also considers tables as extreme in the opposite direction.

Note: The python command stats.fisher_exact returns by default the p-value
for finding a value as extreme or more extreme than the observed one. According to
Altman (1999), this is a reasonable approach, although not all statisticians agree on
that point.
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Fig. 9.1 First milk, then tea
(left)—or first tea, then milk
(right): Could you taste the
difference? (Published with
the kind permission of ©
Thomas Haslwanter 2015. All
rights reserved.)

a) Example: “A Lady Tasting Tea”

R.A. Fisher1 was one of the founding fathers of modern statistics. One of his early
experiments, and perhaps the most famous, was to test an English lady’s claim
that she could tell whether milk was poured before tea or not (Fig. 9.1). Here is
an account of the seemingly trivial event that had the most profound impact on the
history of modern statistics, and hence, arguably, modern quantitative science (Box
1978).

Already, quite soon after he had come to Rothamstead, his presence had transformed one
commonplace tea time to an historic event. It happened one afternoon when he drew a cup
of tea from the urn and offered it to the lady beside him, Dr. B. Muriel Bristol, an algologist.
She declined it, stating that she preferred a cup into which the milk had been poured first.
“Nonsense,” returned Fisher, smiling, “Surely it makes no difference.” But she maintained,
with emphasis, that of course it did. From just behind, a voice suggested, “Let’s test her.” It
was William Roach who was not long afterward to marry Miss Bristol. Immediately, they
embarked on the preliminaries of the experiment, Roach assisting with the cups and exulting
that Miss Bristol divined correctly more than enough of those cups into which tea had been
poured first to prove her case.
Miss Bristol’s personal triumph was never recorded, and perhaps Fisher was not satisfied
at that moment with the extempore experimental procedure. One can be sure, however,
that even as he conceived and carried out the experiment beside the trestle table, and the
onlookers, no doubt, took sides as to its outcome, he was thinking through the questions it
raised.

The real scientific significance of this experiment is in these questions. These are,
allowing incidental particulars, the questions one has to consider before designing
an experiment. We will look at these questions as pertaining to the “lady tasting tea,”
but you can imagine how these questions should be adapted to different situations.

• What should be done about chance variations in the temperature, sweetness, and
so on? Ideally, one would like to make all cups of tea identical except for the
order of pouring milk first or tea first. But it is never possible to control all
of the ways in which the cups of tea can differ from each other. If we cannot

1Adapted from Stat Labs: Mathematical statistics through applications by D. Nolan and T. Speed,
Springer-Verlag, New York, 2000.
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control these variations, then the best we can do—we do mean the “best”—is by
randomization.

• How many cups should be used in the test? Should they be paired? In what order
should the cups be presented? The key idea here is that the number and ordering
of the cups should allow a subject ample opportunity to prove his or her abilities
and keep a fraud from easily succeeding at correctly discriminating the order of
pouring in all the cups of tea served.

• What conclusion could be drawn from a perfect score or from one with one
or more errors? If the lady is unable to discriminate between the different
orders of pouring, then by guessing alone, it should be highly unlikely for that
person to determine correctly which cups are which for all of the cups tested.
Similarly, if she indeed possesses some skill at differentiating between the orders
of pouring, then it may be unreasonable to require her to make no mistakes so as
to distinguish her ability from a pure guesser.

An actual scenario described by Fisher and told by many others as the “lady
tasting tea” experiment is as follows.

• For each cup, we record the order of actual pouring and what the lady says the
order is. We can summarize the result by a table like this:

Order of actual pouring

Tea first Milk first Total

Lady says Tea first a b a C b

Milk first c d c C d

Total a C c b C d n

Here n is the total number of cups of tea made. The number of cups where tea
is poured first is a C c and the lady classifies a C b of them as tea first. Ideally,
if she can taste the difference, the counts b and c should be small. On the other
hand, if she cannot really tell, we would expect a and c to be about the same.

• Suppose now that to test the lady’s abilities, eight cups of tea are prepared, four
tea first, four milk first, and she is informed of the design (that there are four cups
milk first and four cups tea first). Suppose also that the cups are presented to her
in random order. Her task then is to identify the four cups milk first and four cups
tea first.

This design fixes the row and column totals in the table above to be 4 each.
That is,

a C b D a C c D c C d D b C d D 4:
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With these constraints, when any one of a; b; c; d is specified, the remaining
three are uniquely determined:

b D 4 � a; c D 4 � a; and d D a

In general, for this design, no matter how many cups (n) are served, the row
total a C b will equal a C c because the subject knows how many of the cups are
“tea first” (or one kind as supposed to the other). So once a is given, the other
three counts are specified.

• We can test the discriminating skill of the lady, if any, by randomizing the
order of the cups served. If we take the position that she has no discriminating
skill, then the randomization of the order makes the four cups chosen by her
as tea first equally likely to be any four of the eight cups served. There are�

8

4

�
D 70 (in Python, choose scipy.misc.comb(8,4,exact=True)) possible

ways to classify four of the eight cups as “tea first.” If the subject has no ability
to discriminate between two preparations, then by the randomization, each of
these 70 ways is equally likely. Only one of 70 ways leads to a completely
correct classification. So someone with no discriminating skill has 1/70 chance
of making no errors.

• It turns out that, if we assume that she has no discriminating skill, the number
of correct classifications of tea first (“a” in the table) has a “hypergeometric”
probability distribution (hd=stats.hypergeom(8,4,4) in Python). There are
five possibilities: 0, 1, 2, 3, 4 for a and the corresponding probabilities (and
Python commands for computing the probabilities) are tabulated below.

Number of correct calls Python command Probability

0 hd.pmf(0) 1/70

1 hd.pmf(1) 16/70

2 hd.pmf(2) 36/70

3 hd.pmf(3) 16/70

4 hd.pmf(4) 1/70

• With these probabilities, we can compute the p-value for the test of the hypothesis
that the lady cannot tell between the two preparations. Recall that the p-value
is the probability of observing a result as extreme or more extreme than the
observed result assuming the null hypothesis. If she makes all correct calls, the
p-value is 1/70 and if she makes one error (three correct calls) then the p-value is
1=70 C 16=70 � 0:24.

The test described above is known as “Fisher’s exact test,” and the implementa-
tion is quite trivial:

oddsratio, p = stats.fisher_exact(obs, alternative='greater')

where obs is the matrix containing the observations.
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9.2.4 McNemar’s Test

Although the McNemar test bears a superficial resemblance to a test of categorical
association, as might be performed by a 2 	 2 chi-square test or a 2 	 2 Fisher
exact probability test, it is doing something quite different. The test of association
examines the relationship that exists among the cells of the table. The McNemar test
examines the difference between the proportions that derive from the marginal sums
of the table (see Table 9.3): pA D .a C b/=N and pB D .a C c/=N. The question
in the McNemar test is: do these two proportions, pA and pB, significantly differ?
And the answer it receives must take into account the fact that the two proportions
are not independent. The correlation of pA and pB is occasioned by the fact that both
include the quantity a in the upper left cell of the table.

McNemar’s test can be used for example in studies in which patients serve as
their own control, or in studies with “before and after” design.

a) Example

In the following example, a researcher attempts to determine if a drug has an
effect on a particular disease. Counts of individuals are given in the table, with
the diagnosis (disease: present or absent) before treatment given in the rows, and
the diagnosis after treatment in the columns (Table 9.4). The test requires the same
subjects to be included in the before-and-after measurements (matched pairs).

In this example, the null hypothesis of “marginal homogeneity” would mean
there was no effect of the treatment. From the above data, the McNemar test statistic
with Yates’s continuity correction is

�2 D .jb � cj � correctionFactor/2

b C c
: (9.8)

where �2 has a chi-squared distribution with one degree of freedom. For small
sample numbers the correctionFactor should be 0.5 (Yates’s correction) or 1.0
(Edward’s correction). (For b C c < 25, the binomial calculation should be
performed, and indeed, most software packages simply perform the binomial
calculation in all cases, since the result then is an exact test in all cases.) Using
Yates’s correction, we get

�2 D .j121 � 59j � 0:5/2

121 C 59
(9.9)

Table 9.4 McNemar’s test:
example

After: present After: absent Total

Before: present 101 121 222

Before: absent 59 33 92

Total 160 154 314
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The resulting value is 21:01, which is extremely unlikely from the distribution
implied by the null hypothesis (pb D pc). Thus the test provides strong evidence to
reject the null hypothesis of no treatment effect.

To implement the McNemar’s test in Python, use

from statsmodels.sandbox.stats.runs import mcnemar

obs = [[a,b], [c, d]]
chi2, p = mcnemar(obs)

with obs again representing the observation matrix.

9.2.5 Cochran’s Q Test

Cochran’s Q test is a hypothesis test where the response variable can take only two
possible outcomes (coded as 0 and 1). It is a nonparametric statistical test to verify
if k treatments have identical effects. Cochran’s Q test should not be confused with
Cochran’s C test, which is a variance outlier test.

a) Example

Twelve subjects are asked to perform three tasks. The outcome of each task is
success or failure. The results are coded 0 for failure and 1 for success. In the
example, subject 1 was successful in task 2, but failed tasks 1 and 3 (see Table 9.5).

Table 9.5 Cochran’s Q test:
success or failure for 12
subjects on 3 tasks

Subject Task 1 Task 2 Task 3

1 0 1 0

2 1 1 0

3 1 1 1

4 0 0 0

5 1 0 0

6 0 1 1

7 0 0 0

8 1 1 0

9 0 1 0

9 0 1 0

10 0 1 0

11 0 1 0

12 0 1 0
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The null hypothesis for the Cochran’s Q test is that there are no differences
between the variables. If the calculated probability p is below the selected sig-
nificance level, the null hypothesis is rejected, and it can be concluded that the
proportions in at least 2 of the variables are significantly different from each other.
For our example (Table 9.5), the analysis of the data provides Cochran’s Q = 8.6667
and a significance of p D 0:013. In other words, at least one of the three tasks is
easier or harder than the others.

To implement the Cochran’s Q test in Python, use

from statsmodels.sandbox.stats.runs import cochrans_q

obs = [[a,b], [c, d]]
q_stat, p = cochrans_q(obs)

Code: “ISP_compGroups.py”2: Analysis of cate-

gorical data: once the correct test is selected, the computational steps are trivial.

9.3 Exercises

9.1 Fisher’s Exact Test: The Tea Experiment
At a party, a lady claimed to be able to tell whether the tea or the milk was added
first to a cup. Fisher proposed to give her eight cups, four of each variety, in random
order. One could then ask what the probability was for her getting the number she
got correct, but just by chance.

The experiment provided the Lady with eight randomly ordered cups of tea—
four prepared by first adding milk, four prepared by first adding the tea. She was to
select the four cups prepared by one method. (This offered the Lady the advantage
of judging cups by comparison.)

The null hypothesis was that the Lady had no such ability. (In the real, historical
experiment, the lady got all eight cups correct.)

• Calculate if the claim of the Lady is supported if she gets three out of the four
pairs correct.
(Correct answer: No. If she gets three correct, that chance that a selection of
“three or greater” was random is 0.243. She needs to get all four correct, if we
set the rejection threshold at 0.05.)

2https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/09_Test
sCategoricalData/compGroups .

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/09_TestsCategoricalData/compGroups
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/09_TestsCategoricalData/compGroups
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9.2 Chi2 Contingency Test (1 DOF)
A test of the effect of a new drug on the heart rate has yielded the following results:

Heart rate

Increased NOT-increased Total

Treated 36 14 50

Not treated 30 25 55

Total 66 39 105

• Does the drug affect the heart rate? (Correct answer: no.)
• What would be the result if the response in one of the not-treated persons would

have been different? Perform this test with and without the Yates-correction.
(Correct answer:
without Yates correction: yes, p D 0:042

with Yates correction: no, p D 0:067.)

Heart rate

Increased NOT-increased Total

Treated 36 14 50

Not treated 29 26 55

Total 65 40 105

9.3 One Way Chi2-Test (>1 DOF)
The city of Linz wants to know if people want to build a long beach along the
Danube. They interview local people, and decide to collect 20 responses from each
of the five age groups: (<15, 15–30, 30–45, 45–60, >60)

The questionnaire states: “A beach-side development will benefit Linz.” and the
possible answers are

1 2 3 4

Strongly agree Agree Disagree Strongly disagree

The city council wants to find out if the age of people influenced feelings about
the development, particularly of those who felt negatively (i.e., “disagreed” or
“strongly disagreed”) about the planned development.
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Age group Frequency of negative responses

(type) (observed values)

<15 4

15–30 6

30–45 14

45–60 10

>60 16

The categories seem to show large differences of opinion between the groups.

• Are these differences significant? (Correct answer: yes, p D 0:034.)
• How many degrees of freedom does the resulting analysis have? (Correct answer:

4.)

9.4 McNemar’s Test
In a lawsuit regarding a murder the defense uses a questionnaire to show that the

defendant is insane. As a result of the questionnaire, the accused claims “not guilty
by reason of insanity.”

In reply, the state attorney wants to show that the questionnaire does not work.
He hires an experienced neurologist, and presents him with 40 patients, 20 of whom
have completed the questionnaire with an “insane” result, and 20 with a “sane”
result. When examined by the neurologist, the result is mixed: 19 of the “sane”
people are found sane, but 6 of the 20 “insane” people are labeled as sane by the
expert.

Sane by expert Insane by expert Total

Sane 19 1 20

Insane 6 14 20

Total 22 18 40

• Is this result significantly different from the questionnaire? (Correct answer: no.)
• Would the result be significantly different, if the expert had diagnosed all “sane”

people correctly? (Correct answer: yes.)



Chapter 10
Analysis of Survival Times

When analyzing survival times, different problems come up than the ones discussed
so far. One question is how to deal with subjects dropping out of a study. For
example, assume that we test a new cancer drug. While some subjects die, others
may believe that the new drug is not effective, and decide to drop out of the study
before the study is finished.

The term used for this type of study is survival analysis, although the same
methods are also used to analyze similar problems in other areas. For example,
these techniques can be used to investigate how long a machine lasts before it breaks
down, or how long people subscribe to mailing lists (where the “death” corresponds
to unsubscribing from a mailing list).

10.1 Survival Distributions

The Weibull distribution is often used for modeling reliability data or survival data.
Since it was first identified by Fréchet (in 1927), but described in detail by Weibull
(in 1951), it is sometimes also found under the name Fréchet distribution.

In scipy.stats, the Weibull distribution is available under the name
weibull_min, or equivalently frechet_r for Fréchet right. (The complementary
weibull_max, also called frechet_l for Fréchet left, is simply mirrored about the
origin.)

The Weibull distribution is characterized by a shape parameter, the Weibull
Modulus k (see also Sect. 6.5.2). All Python-distributions offer a convenient method

© Springer International Publishing Switzerland 2016
T. Haslwanter, An Introduction to Statistics with Python, Statistics and Computing,
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fit, which allows quick fitting of the distribution parameters:

Listing 10.1 L10_1_WeibullDemo.py

''' Example of fitting the Weibull modulus. '''

# author: Thomas Haslwanter, date: Jun-2015

# Import standard packages
import matplotlib.pyplot as plt
import scipy as sp
from scipy import stats

# Generate some sample data, with a Weibull modulus of 1.5
WeibullDist = stats.weibull_min(1.5)
data = WeibullDist.rvs(500)

# Now fit the parameter
fitPars = stats.weibull_min.fit(data)

# Note: fitPars contains (WeibullModulus, Location, Scale)
print('The fitted Weibull modulus is {0:5.2f}, compared to

the exact value of 1.5 .'.format(fitPars[0]))

10.2 Survival Probabilities

For the statistical analysis of survival data, Cam Davidson-Pilon has developed the
Python package lifelines. It can be installed with

pip install lifelines

A very extensive documentation, which also includes an introduction to sur-
vival analysis and survival regression modeling, is available under http://lifelines.
readthedocs.org/.

10.2.1 Censorship

The difficulty of using data for survival analysis is that at the end of a study,
many individuals may be still “alive.” In statistics, the expression for measurement
values that are only partially known is censorship or censoring. As an example let
us consider a mailing list, whose subscribers fall into two subgroups. Group One
quickly gets tired of the emails, and unsubscribes after three months. Group Two

http://lifelines.readthedocs.org/
http://lifelines.readthedocs.org/
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Fig. 10.1 Dummy results
from a study on the
subscription behavior of a
mailing list

enjoys it, and typically subscribes for one and a half years (Fig. 10.1). We perform a
study which lasts one year, and want to investigate the average subscription duration:

Code: “ISP_lifelinesDemo.py”1: Graphical rep-

resentation of lifelines.

The red lines denote the subscription time of individuals where the dropout
event has been observed, and the blue lines denote the subscription time of the
right-censored individuals (dropouts have not been observed). If we are asked to
estimate the average subscription time of our population, and we naively decided
not to include the right-censored individuals, it is clear that we would be severely
underestimating the true average subscription time.

A similar, further problem occurs if some subjects increase their privacy-settings
in the middle of the study, i.e., they forbid us to monitor them before the study is
over. Also these data are right-censored data.

10.2.2 Kaplan–Meier Survival Curve

A clever way to deal with these problems is the description of such data with
the Kaplan–Meier curve, described in detail in Altman (1999). First, the time
is subdivided into small periods. Then the likelihood is calculated that a subject

1https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/
10_SurvivalAnalysis/lifelinesDemo.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/10_SurvivalAnalysis/lifelinesDemo
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/10_SurvivalAnalysis/lifelinesDemo
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Fig. 10.2 Survival probability of two groups of Drosophila flies. The shaded areas indicate the
95 % confidence intervals

survives a given period. The survival probability is given by

pk D pk�1 � rk � fk
rk

(10.1)

where pk is the probability to survive period k; rk is the number of subjects still
at risk (i.e., still being followed up) immediately before the kth day, and fk is
the number of observed failures on the day k. The curve describing the resulting
survival probability is called life table, survival curve, or Kaplan–Meier curve (see
Fig. 10.2).

The following data show results from a study with fruitflies of the genus
Drosophila. The numbers give the genotypes of the flies and the number of days
survived. Since we work with flies, we don’t need to worry about left-censoring: we
know the birth date of all flies. We do have issues with accidentally killing some or
if some escape. These would be right-censored as we do not actually observe their
death due to “natural” causes.

Listing 10.2 L10_2_lifelinesSurvival.py

''' Graphical representation of survival curves, and
comparison of two

curves with logrank test.
"miR-137" is a short non-coding RNA molecule that functions

to regulate
the expression levels of other genes.
'''
# author: Thomas Haslwanter, date: Jun-2015

# Import standard packages
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import matplotlib.pyplot as plt

# additional packages
import sys
sys.path.append(r'..\Quantlets\Utilities')
import ISP_mystyle

from lifelines.datasets import load_waltons
from lifelines import KaplanMeierFitter
from lifelines.statistics import logrank_test

# Set my favorite font
ISP_mystyle.setFonts(18)

# Load and show the data
df = load_waltons() # returns a Pandas DataFrame

print(df.head())
'''

T E group
0 6 1 miR-137
1 13 1 miR-137
2 13 1 miR-137
3 13 1 miR-137
4 19 1 miR-137
'''

T = df['T']
E = df['E']

groups = df['group']
ix = (groups == 'miR-137')

kmf = KaplanMeierFitter()

kmf.fit(T[~ix], E[~ix], label='control')
ax = kmf.plot()

kmf.fit(T[ix], E[ix], label='miR-137')
kmf.plot(ax=ax)

plt.ylabel('Survival Probability')
outFile = 'lifelines_survival.png'
ISP_mystyle.showData(outFile)

# Compare the two curves
results = logrank_test(T[ix], T[~ix], event_observed_A=E[ix],

event_observed_B=E[~ix])
results.print_summary()
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This code produces the following output:

Results
t 0: -1
alpha: 0.95
df: 1
test: logrank
null distribution: chi squared

p-value _|_ test statistic _|_ test result _|_ is significant
0.00000 | 122.249 | Reject Null | True

Note that the survival curve changes only when a “failure” occurs, i.e., when a
subject dies. Censored entries, describing either when a subject drops out of the
study or when the study finishes, are taken into consideration at the “failure” times,
but otherwise do not affect the survival curve.

10.3 Comparing Survival Curves in Two Groups

The most common test for comparing independent groups of survival times is the
logrank test. This test is a nonparametric hypothesis test, testing the probability that
both groups come from the same underlying population. To explore the effect of
different variables on survival, more advanced methods are required. For example,
the Cox Regression model, also called Cox Proportional Hazards model introduced
by Cox in 1972 is used widely when it is desired to investigate several variables at
the same time.

These tests, as well as other models for the analysis of survival data, are available
in the lifelines package, and are easy to apply once you know how to use Python.



Part III
Statistical Modeling

While hypothesis tests can decide if two or more sets of data samples come from
the same population or from different ones, they cannot quantify the strength of a
relationship between two or more variables. This question, which also includes the
quantitative prediction of variables, is addressed in the third part of this book. The
basic algebraic tools that come with Python may suffice for simple problems like
line-fits or the determination of correlation coefficients. But a number of packages
significantly extend the power of Python for statistical data analysis and modeling.
This part will show applications of the following packages:

• statsmodels
• PyMC
• scikit-learn
• scikits.bootstrap

In addition, a very short introduction to generalized linear models is included.
The section on logistic regression has also been placed in this part, as logistic
regression is a generalized linear model. An introduction to Bayesian statistics,
including a practical example of a running Markov-chain–Monte-Carlo simulation,
rounds off the chapter.



Chapter 11
Linear Regression Models

There is a substantial difference in approach between hypothesis tests and statistical
modeling. With hypothesis tests, one typically starts out with a null hypothesis.
Based on the question and the data, one then selects the appropriate statistical
test as well as the desired significance level, and either accepts or rejects the null
hypothesis.

In contrast, statistical modeling typically involves a more interactive analysis of
the data. One starts out with a visual inspection of the data, looking for correlations
and/or relationships. Based on this first inspection, a statistical model is selected that
may describe the data. In simple cases, the relationship in the data can be described
with a linear model

y D k � x C d:

Next

• the model parameters (e.g., k and d) are determined,
• the quality of the model is assessed,
• and the residuals (i.e., the remaining errors) are inspected, to check if the

proposed model has missed essential features in the data.

If the residuals are too large, or if the visual inspection of the residuals shows
outliers or suggests another model, the model is modified. This procedure is repeated
until the results are satisfactory.

This chapter describes how to implement and solve linear regression models in
Python. The resulting model parameters are discussed, as well as the assumptions
of the models and interpretations of the model results. Since bootstrapping can be
helpful in the evaluation of some models, the final section in this chapter shows a
Python implementation of a bootstrapping example.

© Springer International Publishing Switzerland 2016
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11.1 Linear Correlation

For two related variables, the correlation measures the association between the two
variables. In contrast, a linear regression is used for the prediction of the value of
one variable from another.

11.1.1 Correlation Coefficient

The correlation coefficient between two variables answers the question: “Are the
two variables related? That is, if one variable changes, does the other also change?”
If the two variables are normally distributed, the standard measure of determining
the correlation coefficient, often ascribed to Pearson, is

r D

nP
iD1

.Xi � NX/.Yi � NY/

s
nP

iD1

.Xi � NX/2

s
nP

iD1

.Yi � NY/2

(11.1)

With the sample covariance sxy defined as

sxy D

nP
iD1

.Xi � NX/.Yi � NY/

n � 1
(11.2)

and sx; sy the sample standard deviations of the x and y values, respectively, Eq. 11.1
can also be written as

r D sxy

sx � sy
: (11.3)

Pearson’s correlation coefficient, sometimes also referred to as population
correlation coefficient or sample correlation, can take any value from �1 to C1.
Examples are given in Fig. 11.1. Note that the formula for the correlation coefficient
is symmetrical between x and y—which is not the case for linear regression!

11.1.2 Rank Correlation

If the data distribution is not normal, a different approach is necessary. In that case
one can rank the set of data for each variable and compare the orderings. There are
two commonly used methods of calculating the rank correlation.

Spearman’s � is exactly the same as the Pearson correlation coefficient r, but
calculated on the ranks of the observations and not on the original numbers.
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Fig. 11.1 Several sets of .x; y/ points, with the correlation coefficient of x and y for each set. Note
that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the
slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the
figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because
the variance of Y is zero. (In Wikipedia. Retrieved May 27, 2015, from http://en.wikipedia.org/
wiki/Correlation_and_dependence.)

Kendall’s � is also a rank correlation coefficient, measuring the association
between two measured quantities. It is harder to calculate than Spearman’s 	,
but it has been argued that confidence intervals for Spearman’s 	 are less reliable
and less interpretable than confidence intervals for Kendall’s 
-parameters.

Code: “ISP_bivariate.py”1: Analysis of multivari-

ate data (regression, correlation).

11.2 General Linear Regression Model

We can use the method of Linear Regression when we want to predict the value of
one variable from the value(s) of one or more other variables (Fig. 11.2).

For example, when we search for the best-fit line to a given data set .xi; yi/, we are
looking for the parameters .k; d/ which minimize the sum of the squared residuals
�i in

yi D k � xi C d C �i (11.4)

1https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_Line
arModels/bivariate.

http://en.wikipedia.org/wiki/Correlation_and_dependence
http://en.wikipedia.org/wiki/Correlation_and_dependence
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/bivariate
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/bivariate
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Fig. 11.2 Best-fit linear regression line to a given set of data

Fig. 11.3 Best-fit linear regression line (dashed line) and residuals (solid lines)

where k is the slope or inclination of the line, and d the intercept. The residuals are
the differences between observed values and predicted values (see Fig.11.3).

Since the linear regression equation is solved to minimize the square sum of the
residuals, linear regression is sometimes also called Ordinary Least-Squares (OLS)
Regression.

This is in fact just the one-dimensional example of a more general technique,
which is described in the next section.

Note that in contrast to the correlation, this relationship between x and y is not
symmetrical any more: it is assumed that the x-values are known exactly, and that
all the variability lies in the residuals.
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11.2.1 Example 1: Simple Linear Regression

Suppose there are seven data points fyi; xig, where i D 1; 2; : : : ; 7. The simple linear
regression model is

yi D ˇ0 C ˇ1xi C �i; (11.5)

where ˇ0 is the y-intercept and ˇ1 is the slope of the regression line. This model can
be represented in matrix form as

2
6666666664

y1

y2

y3

y4

y5

y6

y7

3
7777777775

D

2
6666666664

1 x1

1 x2

1 x3

1 x4

1 x5

1 x6

1 x7

3
7777777775

�
ˇ0

ˇ1

�
C

2
6666666664

�1

�2

�3

�4

�5

�6

�7

3
7777777775

(11.6)

where the first column of ones in the matrix on the right-hand side represents the
y-intercept term, while the second column is the x-values associated with the
y-values. (Section 11.4 shows how to solve these equations for ˇi with Python.)

11.2.2 Example 2: Quadratic Fit

The equation for a quadratic fit to the given data is

yi D ˇ0 C ˇ1xi C ˇ2x2
i C �i; (11.7)

This can be rewritten in matrix form:

2
6666666664

y1

y2

y3

y4

y5

y6

y7

3
7777777775

D

2
6666666664

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

1 x5 x2
5

1 x6 x2
6

1 x7 x2
7

3
7777777775

2
4ˇ0

ˇ1

ˇ2

3
5C

2
6666666664

�1

�2

�3

�4

�5

�6

�7

3
7777777775

(11.8)

Note that unknown parameters ˇi enter only linearly, and the quadratic compo-
nents are restricted to the (known) data matrix.
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11.2.3 Coefficient of Determination

A data set has values yi, each of which has an associated modeled value fi
(sometimes also referred to as Oyi). Here, the values yi are called the observed values,
and the modeled values fi are sometimes called the predicted values.

In the following Ny is the mean of the observed data:

Ny D 1

n

nX
iD1

yi (11.9)

where n is the number of observations.
The “variability” of the data set is measured through different sums of squares:

• SSmod D Pn
iD1.Oyi �Ny/2 is the Model Sum of Squares, or the sum of squares for the

regression. This value is sometimes also called the Explained Sum of Squares.
• SSres D Pn

iD1.yi � Oyi/
2 is the Residuals Sum of Squares, or the sum of squares

for the errors.
• SStot D Pn

iD1.yi � Ny/2 is the Total Sum of Squares, and is equivalent to the sample
variance multiplied by n � 1.

For linear regression models (Fig. 11.4),

SSmod C SSres D SStot (11.10)

The notations SSR and SSE should be avoided, since in some texts their meaning
is reversed to “Regression sum of squares” and “Explained sum of squares,”
respectively.

Fig. 11.4 The better the linear regression (on the right) fits the data in comparison to the simple
average (on the left graph), the closer the value of R2 is to one. The areas of the blue squares
represent the squared residuals with respect to the linear regression. The areas of the red squares
represent the squared residuals with respect to the average value
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With these expressions, the most general definition of the coefficient of determi-
nation, R2, is

R2 
 1 � SSres

SStot
: (11.11)

Since

SStot D SSmod C SSres (11.12)

Equation 11.11 is equivalent to

R2 D SSmod

SStot
(11.13)

In words: The coefficient of determination is the ratio between the sum-of-
squares explained by the model, and the total sum-of-squares.

For simple linear regression (i.e., line-fits), the coefficient of determination or
R2 is the square of the correlation coefficient r. It is easier to interpret than the
correlation coefficient r: values of R2 close to 1 correspond to a close correlation,
values close to 0 to a poor one. Note that for general models it is common to write
R2, whereas for simple linear regression r2 is used.

a) Relation to Unexplained Variance

In a general form, R2 can be seen to be related to the unexplained variance, since
the second term in Eq. 11.11 compares the unexplained variance (variance of the
model’s errors) with the total variance (of the data).

b) “Good” Fits

How large R2 values must be to be considered as “good” depends on the discipline.
They are usually expected to be larger in the physical sciences than in biology or the
social sciences. In finance or marketing, it also depends on what is being modeled.

Caution: the sample correlation and R2 are misleading if there is a nonlinear
relationship between the independent and dependent variables (see Fig. 11.1)!
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11.3 Patsy: The Formula Language

The mini-language commonly used now in statistics to describe formulas was first
used in the languages R and S, but is now also available in Python through the
Python package patsy.

For instance, if we have a variable y, and we want to regress it against another
variable x, we can simply write

y � x (11.14)

A more complex situation where y depends on the variables x; a; b, and the
interaction of a and b, can be expressed by

y � x C a C b C a W b (11.15)

This formula language is based on the notation introduced by Wilkinson and
Rogers (1973). The symbols in Table 11.1 are used on the right-hand side to
denote different interactions. A complete set of the description can be found under
http://patsy.readthedocs.org.

11.3.1 Design Matrix

a) Definition

A very general definition of a regression model is the following:

y D f .x; �/ (11.16)

In the case of a linear regression model, the model can be rewritten as:

y D Xˇ C �; (11.17)

Table 11.1 Most important elements of the formula syntax

Operator Meaning

� Separates the left-hand side from the right-hand side. If omitted, a formula
is assumed right-hand side only

+ Combines terms on either side (set union)

� Removes terms on the right from set of terms on the left (set difference)

* a � b is shorthand for the expansion a C b C a W b

/ a=b is shorthand for the expansion a C a W b. It is used when b is nested
within a (e.g., states and counties)

: Computes the interaction between terms on the left and right

** Takes a set of terms on the left and an integer n on the right and computes
the * of that set of terms with itself n times

http://patsy.readthedocs.org
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The matrix X is sometimes called the design matrix for the model. For a simple
linear regression and for multilinear regression, the corresponding design matrices
are given in 11.6 and 12.2, respectively.

Given a data set fyi; xi1; : : : ; xipgn
iD1 of n statistical units,2 a linear regression

model assumes that the relationship between the dependent variable yi and the
p-vector of regressors xi is linear. This relationship is modeled through a disturbance
term or error variable �i, an unobserved random variable that adds noise to the linear
relationship between the dependent variable and regressors. Thus the model takes
the form

yi D ˇ1xi1 C � � � C ˇpxip C "i D xT
i ˇ C "i; i D 1; : : : ; n; (11.18)

where T denotes the transpose, so that xT
i ˇ is the inner product between the vectors

xi and ˇ.
Often these n equations are stacked together and written in vector form as

y D Xˇ C "; (11.19)

where

y D

0
BBB@

y1

y2

:::

yn

1
CCCA ; X D

0
BBB@

xT
1

xT
2
:::

xT
n

1
CCCA D

0
BBB@

x11 � � � x1p

x21 � � � x2p
:::

: : :
:::

xn1 � � � xnp

1
CCCA ; ˇ D

0
B@

ˇ1

:::

ˇp

1
CA ; " D

0
BBB@

"1

"2

:::

"n

1
CCCA :

(11.20)

Some remarks on terminology and general use:

• yi is called the regressand, endogenous variable, response variable, measured
variable, or dependent variable. The decision as to which variable in a data set
is modeled as the dependent variable and which are modeled as the independent
variables may be based on a presumption that the value of one of the variables is
caused by, or directly influenced by the other variables. Alternatively, there may
be an operational reason to model one of the variables in terms of the others, in
which case there need be no presumption of causality.

• xi are called regressors, exogenous variables, explanatory variables, covariates,
input variables, predictor variables, or independent variables. (The expression
independent variables is meant in contrast to dependent variables, but not to
be confused with independent random variables, where “independent” indicates
that those variables don’t depend on anything else).

2This section has been taken from Wikipedia https://en.wikipedia.org/wiki/Linear_regression, last
accessed 21 Oct 2015.

https://en.wikipedia.org/wiki/Linear_regression
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– Usually a constant is included as one of the regressors. For example we can
take xi1 D 1 for i D 1; : : : ; n. The corresponding element of ˇ is called the
intercept. Many statistical inference procedures for linear models require an
intercept to be present, so it is often included even if theoretical considerations
suggest that its value should be zero.

– Sometimes one of the regressors can be a nonlinear function of another
regressor or of the data, as in polynomial regression and segmented regression.
The model remains linear as long as it is linear in the parameter vector ˇ (see
Eq. 11.8, where a linear regression is used to fit a quadratic curve to the data.).

• ˇ is a p-dimensional parameter vector. Its elements are also called effects, or
regression coefficients. Statistical estimation and inference in linear regression
focuses on ˇ.

• "i is called the residuals, error term, disturbance term, or noise. This variable
captures all other factors which influence the dependent variable yi other than
the regressors xi. The relationship between the error term and the regressors, for
example whether they are correlated, is a crucial step in formulating a linear
regression model, as it will determine the method to use for estimation.

• If i D 1 and p D 1 in Eq.11.18, we have a simple linear regression,
corresponding to Eq.11.4. If i > 1 we talk about multilinear regression or
multiple linear regression (see Eq. 12.2).

b) Examples

One-Way ANOVA (Cell Means Model)

This example demonstrates a one-way analysis of variance (ANOVA) with three
groups and seven observations. The given data set has the first three observations
belonging to the first group, the following two observations belong to the second
group, and the final two observations are from the third group. If the model to be fit
is just the mean of each group, then the model is

yij D �i C �ij ; i D 1; 2; 3 (11.21)

which can be written as

2
6666666664

y1

y2

y3

y4

y5

y6

y7

3
7777777775

D

2
6666666664

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

3
7777777775

2
4�1

�2

�3

3
5C

2
6666666664

�1

�2

�3

�4

�5

�6

�7

3
7777777775

(11.22)
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It should be emphasized that in this model �i represents the mean of the ith
group.

One-Way ANOVA (Offset from Reference Group)

The ANOVA model could be equivalently written as each group parameter 
i being
an offset from some overall reference. Typically this reference point is taken to be
one of the groups under consideration. This makes sense in the context of comparing
multiple treatment groups to a control group and the control group is considered the
“reference.” In this example, group 1 was chosen to be the reference group. As such
the model to be fit is:

yij D � C 
i C �ij ; i D 1; 2; 3 (11.23)

with the constraint that 
1 is zero.

2
6666666664
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y3

y4

y5

y6
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3
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�6

�7

3
7777777775

(11.24)

In this model � is the mean of the reference group and 
i is the difference from
group i to the reference group. 
1 is not included in the matrix because its difference
from the reference group (itself) is necessarily zero.

11.4 Linear Regression Analysis with Python

11.4.1 Example 1: Line Fit with Confidence Intervals

For univariate distributions, the confidence intervals based on the standard deviation
indicate the interval that we expect to contain 95 % of the data, and the confidence
intervals based on the standard error of the mean indicate the interval that contains
the true mean with 95 % probability. We also have these two types of confidence
intervals (one for the data, and one for the fitted parameters) for line fits, and they
are shown in Fig. 11.5.

The corresponding equation is Eq.11.4, and the formula syntax is given by
Eq.11.14.
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Fig. 11.5 Regression, with confidence intervals for the mean, as well as for the predicted data. The
red dotted line shows the confidence interval for the mean; and the green dotted line the confidence
interval for predicted data. The corresponding code can be found in ISP_fitLine.py

Code: “ISP_fitLine.py”3: Linear regression fit,

with the output shown in Fig. 11.5.

11.4.2 Example 2: Noisy Quadratic Polynomial

To see how different models can be used to evaluate a given set of data, let us look
at a simple example: fitting a noisy, slightly quadratic curve. Let us start with the
algorithms implemented in numpy, and fit a linear, quadratic, and a cubic curve to
the data.

In [1]: import numpy as np
...: import matplotlib.pyplot as plt

In [2]: ''' Generate a noisy, slightly quadratic dataset '''
...: x = np.arange(100)
...: y = 150 + 3*x + 0.03*x**2 + 5*np.random.randn(len(x))
...:

In [3]: # Create the Design Matrices for the linear, quadratic,
... # and cubic fit

3https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_Line
arModels/fitLine.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/fitLine
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/fitLine
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...: M1 = np.vstack( (np.ones_like(x), x) ).T

...: M2 = np.vstack( (np.ones_like(x), x, x**2) ).T

...: M3 = np.vstack( (np.ones_like(x), x, x**2, x**3) ).T

...:

...: # an equivalent alternative solution with statsmodels would be

...: # M1 = sm.add_constant(x)

...:
In [4]: # Solve the equations

...: p1 = np.linalg.lstsq(M1, y)

...: p2 = np.linalg.lstsq(M2, y)

...: p3 = np.linalg.lstsq(M3, y)

...:

In [5]: np.set_printoptions(precision=3)

In [6]: print('The coefficients from the linear fit: {0}'
...: .format(p1[0]))

The coefficients from the linear fit:
[ 100.42 5.98]

In [7]: print('The coefficients from the quadratic fit: {0}'
...: .format(p2[0]))

The coefficients from the quadratic fit:
[ 1.48e+02 3.10e+00 2.91e-02]

In [8]: print('The coefficients from the cubic fit: {0}'
...: .format(p3[0]))

The coefficients from the cubic fit:
[ 1.47e+02 3.12e+00 2.84e-02 4.81e-06]

With this simple analytical solution we can obtain the fitted coefficients (ˇi in
Eq.11.18) for a linear, a quadratic, and a cubic model. And as we see in Fig.11.6,
the quadratic and the cubic fit are both very good and essentially undistinguishable.

Fig. 11.6 A noisy, slightly
quadratic data set, with a
linear, a quadratic, and a
cubic fit superposed. The
quadratic and the cubic lines
are almost exactly the same
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If we want to find out which is the “better” fit, we can use the tools provided by
statsmodels to again fit the model. Using statsmodels we obtain not only the best-fit
parameters, but a wealth of additional information about the model:

In [9]: '''Solution with the tools from statsmodels'''
...: import statsmodels.api as sm
...:
...: Res1 = sm.OLS(y, M1).fit()
...: Res2 = sm.OLS(y, M2).fit()
...: Res3 = sm.OLS(y, M3).fit()

In [10]: print(Res1.summary2())

Results: Ordinary least squares
=================================================================
Model: OLS Adj. R-squared: 0.983
Dependent Variable: y AIC: 909.6344
Date: 2015-06-27 13:50 BIC: 914.8447
No. Observations: 100 Log-Likelihood: -452.82
Df Model: 1 F-statistic: 5818.
Df Residuals: 98 Prob (F-statistic): 4.46e-89
R-squared: 0.983 Scale: 512.18
-------------------------------------------------------------------

Coef. Std.Err. t P>|t| [0.025 0.975]
-------------------------------------------------------------------
const 100.4163 4.4925 22.3519 0.0000 91.5010 109.3316
x1 5.9802 0.0784 76.2769 0.0000 5.8246 6.1358
-----------------------------------------------------------------
Omnibus: 10.925 Durbin-Watson: 0.131
Prob(Omnibus): 0.004 Jarque-Bera (JB): 6.718
Skew: 0.476 Prob(JB): 0.035
Kurtosis: 2.160 Condition No.: 114
=================================================================

In [11]: print('The AIC-value is {0:4.1f} for the linear fit,\n
...: {1:4.1f} for the quadratic fit, and \n
...: {2:4.1f} for the cubic fit'.format(Res1.aic, Res2.aic,
...: Res3.aic))

The AIC-value is 909.8 for the linear fit,
578.7 for the quadratic fit, and
580.2 for the cubic fit

In the next section we will explain the meaning of all these parameters in detail.
Here I just want to point out the AIC-value, the Akaike Information Criterion, which
can be used to assess the quality of the model: the lower the AIC value, the better
the model. We see that the quadratic model has the lowest AIC value and therefore
is the best model: it provides the same quality of fit as the cubic model, but uses
fewer parameters to achieve that quality.
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Before we move to the next example, let me show how the formula language
can be used to perform the same fits, but without having to manually generate the
design matrices, and how to extract, e.g., the model parameters, standard errors, and
confidence intervals. Note that the use of pandas DataFrames allows Python to add
information about the individual parameters.

In [14]: '''Formula-based modeling '''
...: import pandas as pd
...: import statsmodels.formula.api as smf
...:
...: # Turn the data into a pandas DataFrame, so that we
...: # can address them in the formulas with their name
...: df = pd.DataFrame({'x':x, 'y':y})
...:
...: # Fit the models, and show the results
...: Res1F = smf.ols('y~x', df).fit()
...: Res2F = smf.ols('y ~ x+I(x**2)', df).fit()
...: Res3F = smf.ols('y ~ x+I(x**2)+I(x**3)', df).fit()

In [15]: #As example, display parameters for the quadratic fit
...: Res2F.params

Out[15]:
Intercept 148.022539
x 3.043490
I(x ** 2) 0.029454
dtype: float64

In [16]: Res2F.bse
Out[16]:
Intercept 1.473074
x 0.068770
I(x ** 2) 0.000672
dtype: float64

In [17]: Res2F.conf_int()
Out[17]:

0 1
Intercept 145.098896 150.946182
x 2.907001 3.179978
I(x ** 2) 0.028119 0.030788

The confidence intervals (Out[17]) are of particular interest, as parameters whose
confidence intervals overlap zero are not significant.
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Code: “ISP_modelImplementations.py”4: Three

ways how to solve a linear regression model in Python.

11.5 Model Results of Linear Regression Models

The output of linear regression models, such as the one on page 196, can at first
be daunting. Since understanding this type of output is a worthwhile step towards
more complex models, I will in the following present a simple example, and explain
the output step-by-step. We will use Python to explore measures of fits for linear
regression: the coefficient of determination (R2), hypothesis tests (F, T, Omnibus),
and other measures.5

11.5.1 Example: Tobacco and Alcohol in the UK

First we will look at a small data set from the DASL library (http://lib.stat.cmu.
edu/DASL/Stories/AlcoholandTobacco.html), regarding the correlation between
tobacco and alcohol purchases in different regions of the United Kingdom. The
interesting feature of this data set is that Northern Ireland is reported as an
outlier (Fig. 11.7). Notwithstanding, we will use this data set to describe two tools
for calculating a linear regression. We will alternatively use the statsmodels and
sklearn modules for calculating the linear regression, while using pandas for data
management, and matplotlib for plotting. To begin, we will import the modules, get
the data into Python, and have a look at them:

In [1]: import numpy as np
...: import pandas as pd
...: import matplotlib as mpl
...: import matplotlib.pyplot as plt
...: import statsmodels.formula.api as sm
...: from sklearn.linear_model import LinearRegression
...: from scipy import stats
...:

4https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_Line
arModels/modelImplementations.
5The following is based on the blog of Connor Johnson (http://connor-johnson.com/2014/02/18/
linear-regression-with-python/), with permission from the author.

http://lib.stat.cmu.edu/DASL/Stories/AlcoholandTobacco.html
http://lib.stat.cmu.edu/DASL/Stories/AlcoholandTobacco.html
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/modelImplementations
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/modelImplementations
http://connor-johnson.com/2014/02/18/linear-regression-with-python/
http://connor-johnson.com/2014/02/18/linear-regression-with-python/
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In [2]: data_str = '''Region Alcohol Tobacco
...: North 6.47 4.03
...: Yorkshire 6.13 3.76
...: Northeast 6.19 3.77
...: East_Midlands 4.89 3.34
...: West_Midlands 5.63 3.47
...: East_Anglia 4.52 2.92
...: Southeast 5.89 3.20
...: Southwest 4.79 2.71
...: Wales 5.27 3.53
...: Scotland 6.08 4.51
...: Northern_Ireland 4.02 4.56'''
...:
...: # Read in the data. Note that for Python 2.x,
...: # you have to change the "import" statement
...: from io import StringIO
...: df = pd.read_csv(StringIO(data_str), sep=r'\s+')
...:

In [3]: # Plot the data
...: df.plot('Tobacco', 'Alcohol', style='o')
...: plt.ylabel('Alcohol')
...: plt.title('Sales in Several UK Regions')
...: plt.show()
...:

Fig. 11.7 Sales of alcohol vs tobacco in the UK. We notice that there seems to be a linear trend,
and one outlier, which corresponds to Northern Ireland
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Fitting the model, leaving the outlier (which is the last data point) for the moment
away is then very easy:

In [4]: result = sm.ols('Alcohol ~ Tobacco', df[:-1]).fit()
...: print(result.summary())
...:

Note that using the formula.api module from statsmodels, an intercept is
automatically added. This gives us

OLS Regression Results
==============================================================================
Dep. Variable: Alcohol R-squared: 0.615
Model: OLS Adj. R-squared: 0.567
Method: Least Squares F-statistic: 12.78
Date: Sun, 27 Apr 2014 Prob (F-statistic): 0.00723
Time: 13:19:51 Log-Likelihood: -4.9998
No. Observations: 10 AIC: 14.00
Df Residuals: 8 BIC: 14.60
Df Model: 1
==============================================================================

coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 2.0412 1.001 2.038 0.076 -0.268 4.350
Tobacco 1.0059 0.281 3.576 0.007 0.357 1.655
==============================================================================
Omnibus: 2.542 Durbin-Watson: 1.975
Prob(Omnibus): 0.281 Jarque-Bera (JB): 0.904
Skew: -0.014 Prob(JB): 0.636
Kurtosis: 1.527 Cond. No. 27.2
==============================================================================

And now we have a very nice table of numbers—which at first looks fairly
daunting. To explain what the individual numbers mean, I will go through and
explain each one. The left column of the first table is mostly self explanatory. The
degrees of freedom (Df ) of the model are the number of predictors, or explanatory,
variables. The Df of the residuals is the number of observations minus the degrees
of freedom of the model, minus one (for the offset).

Most of the values listed in the summary are available via the result object.
For instance, the R2 value can be obtained by result.rsquared. If you are using
IPython, you may type result. and hit the TAB key, to see a list of all possible
attributes for the result-object.

11.5.2 Definitions for Regression with Intercept

The Sum-of Squares variables SSxx have already been defined above, in Sect. 11.2.3.
n is the number of observations, and k is the number of regression parameters. For
example, if you fit a straight line, k D 2. And as above (Sect. 11.2.3) Oyi will indicate
the fitted model values, and Ny the mean. In addition to these, the following variables
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will be used:

• DFmod D k � 1 is the (Corrected) Model Degrees of Freedom. (The “�1” comes
from the fact that we are only interested in the correlation, not in the absolute
offset of the data.)

• DFres D n � k is the Residuals Degrees of Freedom
• DFtot D n � 1 is the (Corrected) Total Degrees of Freedom. The Horizontal line

regression is the null hypothesis model.

For multiple regression models with intercept, DFmod C DFres D DFtot.

• MSmod D SSmod=DFmod : Model Mean of Squares
• MSres D SSres=DFres : Residuals Mean of Squares. MSres is an unbiased estimate

for �2 for multiple regression models.
• MStot D SStot=DFtot : Total Mean of Squares, which is the sample variance of the

y-variable.

11.5.3 The R2 Value

As we have already seen in Sect. 11.2.3, the R2 value indicates the proportion of
variation in the y-variable that is due to variation in the x-variables. For simple linear
regression, the R2 value is the square of the sample correlation rxy. For multiple
linear regression with intercept (which includes simple linear regression), the R2

value is defined as

R2 D SSmod

SStot
(11.25)

11.5.4 NR2: The Adjusted R2 Value

For assessing the quality of models, many researchers prefer the adjusted R2 value,
commonly indicated with the bar above the NR, which is penalized for having a large
number of parameters in the model.

Here is the logic behind the definition of NR2: R2 is defined as R2 D 1�SSres=SStot

or 1 � R2 D SSres=SStot. To take into account the number of regression parameters
p, define the adjusted R-squared value as

1 � NR2 D ResidualVariance

TotalVariance
(11.26)
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where (Sample) Residual Variance is estimated by SSres=DFres D SSres=.n � k/, and
(Sample) Total Variance is estimated by SStot=DFtot D SStot=.n � 1/. Thus,

1 � NR2 D SSres=.n � k/

SStot=.n � 1/

D SSres

SStot

n � 1

n � k
(11.27)

so

NR2 D 1 � SSres

SStot

n � 1

n � k

D 1 � .1 � R2/
n � 1

n � k
(11.28)

a) The F-Test

For a multiple regression model with intercept,

Yj D ˛ C ˇ1X1j C : : : C ˇnXnj C �i

D ˛ C
nX

iD1

ˇiXij C �j (11.29)

D E.YjjX/ C �j

In the last line E.YjjX/ indicates the “expected value for Y, given X.”
We want to test the following null hypothesis and alternative hypothesis:

H0: ˇ1 D ˇ2 D : : : D ˇn D 0

H1: ˇj ¤ 0, for at least one value of j

This test is known as the overall F-test for regression.
Remember, if t1; t2; : : : ; tm are independent, N.0; �2/ random variables, thenPm
iD1

t2i
�2 is a �2 (chi-squared) random variable with m degrees of freedom. It can

be shown that if H0 is true and the residuals are unbiased, homoscedastic (i.e., all
function values have the same variance), independent, and normal (see Sect. 11.6),
then:

1. SSres=�2 has a �2 distribution with DFres degrees of freedom.
2. SSmod=�2 has a �2 distribution with DFmod degrees of freedom.
3. SSres and SSmod are independent random variables.

If u is a �2 random variable with n degrees of freedom, v is a �2 random variable
with m degrees of freedom, and u and v are independent, then F D u=n

v=m has an F
distribution with .n; m/ degrees of freedom.
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If H0 is true,

F D .SSmod=�2/=DFmod

.SSres=�2/=DFres

D SSmod=DFmod

SSres=DFres
(11.30)

D MSmod

MSres
;

has an F distribution with .DFmod; DFres/ degrees of freedom, and is independent
of � .

We can test this directly in Python with

In [5]: N = result.nobs
...: k = result.df_model+1
...: dfm, dfe = k-1, N - k
...: F = result.mse_model / result.mse_resid
...: p = 1.0 - stats.f.cdf(F,dfm,dfe)
...: print('F-statistic: {:.3f}, p-value: {:.5f}'
...: .format( F, p ))
...:
F-statistic: 12.785, p-value: 0.00723

which corresponds to the values in the model summary above.
Here, stats.f.cdf(F, m, n) returns the cumulative sum of the F-distribution

with shape parameters m = k-1 = 1, and n = N - k = 8, up to the F-statistic F.
Subtracting this quantity from one, we obtain the probability in the tail, which
represents the probability of observing F-statistics more extreme than the one
observed.

b) Log-Likelihood Function

A very common approach in statistics is the idea of maximum likelihood estimation.
The basic idea is quite different from the OLS (least square) approach: in the least
square approach the model is constant, and the errors of the response are variable;
in contrast, in the maximum likelihood approach, the data response values are
regarded as constant, and the likelihood of the model is maximized. (The concept of
maximum likelihood estimation is very well explained in Duda (2004).)

For the classical linear regression model (with normal errors) we have

� D yi �
nX

kD1

ˇkxik D yi � Oyi 2 N.0; �/ (11.31)
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so the probability density is given by

p.�i/ D ˚.
yi � Oyi

�
/ (11.32)

where ˚.z/ is the standard normal probability distribution function. The probability
of independent samples is the product of the individual probabilities

˘total D
nY

iD1

p.�i/ (11.33)

The Log Likelihood function is defined as

ln.L / D ln.˘total/

D ln

"
nY

iD1

1

�
p

2�
exp

�
� .yi � Oyi/

2

2�2

�#

D
nX

iD1

�
ln

�
1

�
p

2�

�
�
�

.yi � Oyi/
2

2�2

��

It can be shown that the maximum likelihood estimator of �2 is

E.�2/ D SSres

n
(11.34)

We can calculate this in Python as follows:

In [6]: N = result.nobs
...: SSR = result.ssr
...: s2 = SSR / N
...: L = (1.0/np.sqrt(2*np.pi*s2)) ** N*np.exp(-SSR/(s2*2.0))
...: print('ln(L) =', np.log( L ))
...:

ln(L) = -4.99975869739

which again matches the model summary.

c) Information Content of Statistical Models: AIC and BIC

To judge the quality of a model, one should first visually inspect the residuals. In
addition, one can also use a number of numerical criteria to assess the quality of a
statistical model. These criteria represent various approaches for balancing model
accuracy with parsimony.

We have already encountered the adjusted R2 value (Sect. 11.5.4), which—in
contrast to the R2 value—decreases if there are too many regressors in the model.
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Other commonly encountered criteria are the Akaike Information Criterion (AIC)
and the Schwartz or Bayesian Information Criterion (BIC), which are based on the
log-likelihood described in the previous section. Both measures introduce a penalty
for model complexity, but the AIC penalizes complexity less severely than the BIC.
The Akaike Information Criterion (AIC) is given by

AIC D 2 � k � 2 � ln.L / (11.35)

and the Schwartz or Bayesian Information Criterion (BIC) by

BIC D k � ln.N/ � 2 � ln.L /: (11.36)

Here, N is the number of observations, k is the number of parameters, and L is
the likelihood. We have two parameters in this example, the slope and intercept. The
AIC is a relative estimate of information loss between different models. The BIC
was initially proposed using a Bayesian argument and does not relate to ideas of
information. Both measures are only used when trying to decide between different
models. So, if we have one regression for alcohol sales based on cigarette sales, and
another model for alcohol consumption that incorporated cigarette sales and lighter
sales, then we should choose the model with the lower AIC or BIC value.

11.5.5 Model Coefficients and Their Interpretation

The second table in the model summary on page 200 contains the model coefficients
and their interpretation.

a) Coefficients

The coefficients or weights of the linear regression are contained in result.params,
and returned as a pandas Series object, since we used a pandas DataFrame as input.
This is nice, because the coefficients are named for convenience.

In [7]: result.params
Out[7]:
Intercept 2.041223
Tobacco 1.005896
dtype: float64

We can obtain this directly by computing

ˇ D .XTX/�1XT � y: (11.37)

Here, X is the design matrix, i.e., the matrix of predictor variables as columns,
with an extra column of ones for the constant term; y is the column vector of the
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response variable, and ˇ is the column vector of coefficients corresponding to the
columns of X. In Python:

In [8]: df['Ones'] = np.ones( len(df) )
...: Y = df.Alcohol[:-1]
...: X = df[['Tobacco','Ones']][:-1]
...:

Note: the “�1” in the indices excludes the last data point, i.e., the outlier Northern
Ireland.

b) Standard Error

To obtain the standard errors of the coefficients we will calculate the covariance-
variance matrix, also called the covariance matrix, for the estimated coefficients ˇ

of the predictor variables using

C D cov.ˇ/ D �2.XXT/�1: (11.38)

Here, �2 is the variance, or the mean-squared-error of the residuals. The standard
errors are the square roots of the elements on the main diagonal of this covariance
matrix. We can perform the operation above and calculate the element-wise square
root using the following Python code,

In [9]: X = df.Tobacco[:-1]
...:
...: # add a column of ones for the constant intercept term
...: X = np.vstack(( np.ones(X.size), X ))
...:
...: # convert the numpy array to a matrix
...: X = np.matrix( X )
...:
...: # perform the matrix multiplication,
...: # and then take the inverse
...: C = np.linalg.inv( X * X.T )
...:
...: # multiply by the mean squared error of the residual
...: C *= result.mse_resid
...:
...: # take the square root
...: SE = np.sqrt(C)
...:
...: print(SE)
...:

[[ 1.00136021 nan]
[ nan 0.28132158]]
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c) t-Statistic

We use the t-test to test the null hypothesis that the coefficient of a given predictor
variable is zero, implying that a given predictor has no appreciable effect on the
response variable. The alternative hypothesis is that the predictor does contribute
to the response. In testing we set some threshold, ˛ D 0:05 or 0:001, and if
Pr.T � jtj/ < ˛, then we reject the null hypothesis at our threshold ˛, otherwise
we fail to reject the null hypothesis. The t-test generally allows us to evaluate the
importance of different predictors, assuming that the residuals of the model are
normally distributed about zero. If the residuals do not behave in this manner,
then that suggests that there is some nonlinearity between the variables, and that
their t-tests should not be used to assess the importance of individual predictors.
Furthermore, it might be best to try to modify the model so that the residuals do
tend the cluster normally about zero.

The t statistic is given by the ratio of the coefficient (or factor) of the predictor
variable of interest and its corresponding standard error. If ˇ is the vector of
coefficients or factors of our predictor variables, and SE is our standard error, then
the t-statistic is given by,

ti D ˇi=SEi;i (11.39)

So, for the first factor, corresponding to the slope in our example, we have the
following code

In [10]: i = 1
...: beta = result.params[i]
...: se = SE[i,i]
...: t = beta / se
...: print('t =', t)
...:

t = 3.57560845424

Once we have a t-statistic, we can calculate the probability of observing a statistic
at least as extreme as what we have already observed, given our assumptions about
the normality of our errors by using the code

In [11]: N = result.nobs
...: k = result.df_model + 1
...: dof = N - k
...: p_onesided = 1.0 - stats.t( dof ).cdf( t )
...: p = p_onesided * 2.0
...: print('p = {0:.3f}'.format(p))
...:

p = 0.007

Here, dof are the degrees of freedom, which should be eight: the number of
observations, N, minus the number of parameters, which is two. The CDF is the
cumulative sum of the PDF. We are interested in the area under the right-hand tail,
beyond our t-statistic, t, so we subtract the cumulative sum up to that statistic from



208 11 Linear Regression Models

one in order to obtain the tail probability on the other side. Then we multiply this
tail probability by two to obtain a two-tailed probability.

d) Confidence Interval

The confidence interval is built using the standard error, the p-value from our t-test,
and a critical value from a t-test having N � k degrees of freedom, where k is the
number of observations and P is the number of model parameters, i.e., the number of
predictor variables. The confidence interval is the range of values in which we would
expect to find the parameter of interest, based on what we have observed. You will
note that we have a confidence interval for the predictor variable coefficient, and
for the constant term. A smaller confidence interval suggests that we are confident
about the value of the estimated coefficient, or constant term. A larger confidence
interval suggests that there is more uncertainty or variance in the estimated term.
Again, let me reiterate that hypothesis testing is only one perspective. Furthermore,
it is a perspective that was developed in the late nineteenth and early twentieth
centuries when data sets were generally smaller and more expensive to gather, and
data scientists were using books of logarithm tables for arithmetic.

The confidence interval is given by,

CI D ˇi ˙ z � SEi;i (11.40)

Here, ˇi is one of the estimated coefficients, z is a critical-value, which is the
t-statistic required to obtain a probability less than the alpha significance level,
and SEi;i is the standard error. The critical value is calculated using the inverse
of the cumulative distribution function. In code, the confidence interval using a t-
distribution looks like

In [12]: i = 0
...:
...: # the estimated coefficient, and its variance
...: beta, c = result.params[i], SE[i,i]
...:
...: # critical value of the t-statistic
...: N = result.nobs
...: P = result.df_model
...: dof = N - P - 1
...: z = stats.t( dof ).ppf(0.975)
...:
...: # the confidence interval
...: print(beta - z * c, beta + z * c)
...:

-0.267917709371 4.35036388305
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11.5.6 Analysis of Residuals

The third table in the model summary on page 200 contains the parameters that
characterize the residuals. If those clearly deviate from a normal distribution, then
the model most likely has missed an essential element of the data.

The OLS command from statsmodels.formula.api provides some additional
information about the residuals of the model: Omnibus, Skewness, Kurtosis,
Durbin–Watson, Jarque–Bera, and the Condition number. In the following we will
briefly describe these parameters.

a) Skewness and Kurtosis

Skew and kurtosis refer to the shape of a distribution. Skewness is a measure of the
asymmetry of a distribution, and kurtosis is a measure of its curvature, specifically
how pointed the curve is. (For normally distributed data it is approximately 3.) These
values are defined by
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As you see, the O�3 and O�4 are the third and fourth central moments of a
distribution.

The excess kurtosis is defined as K � 3, to ensure that its value for a normal
distribution is equal to zero.

One possible Python implementation would be

In [13]: d = Y - result.fittedvalues
...:
...: S = np.mean( d**3.0 ) / np.mean( d**2.0 )**(3.0/2.0)
...: # equivalent to:
...: # S = stats.skew(result.resid, bias=True)
...:
...: K = np.mean( d**4.0 ) / np.mean( d**2.0 )**(4.0/2.0)
...: # equivalent to:
...: # K = stats.kurtosis(result.resid, fisher=False,
...: # bias=True)
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...: print('Skewness: {:.3f}, Kurtosis: {:.3f}'.format(S,K))

...:
Skewness: -0.014, Kurtosis: 1.527

b) Omnibus Test

The Omnibus test uses skewness and kurtosis to test the null hypothesis that a
distribution is normal. In this case, we are looking at the distribution of the residuals.
If we obtain a very small value for P(Omnibus), then the residuals are not normally
distributed about zero, and we should maybe look at our model more closely. The
statsmodels OLS function uses the stats.normaltest() function:

In [14]: (K2, p) = stats.normaltest(result.resid)
...: print('Omnibus: {0:.3f}, p = {1:.3f}'.format(K2, p))
...:

Omnibus: 2.542, p = 0.281

Thus, if either the skewness or kurtosis suggests non-normality, this test should
pick it up.

c) Durbin–Watson

The Durbin–Watson test is used to detect the presence of autocorrelation (a
relationship between values separated from each other by a given time lag) in the
residuals. Here the lag is one:
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In [15]: DW = np.sum( np.diff( result.resid.values )**2.0 ) \
...: / result.ssr
...: print('Durbin-Watson: {:.5f}'.format( DW ))
...:

Durbin-Watson: 1.97535

d) Jarque–Bera Test

The Jarque–Bera test is another test that considers skewness (S), and kurtosis (K).
The null hypothesis is that the distribution is normal, that both the skewness and
excess kurtosis equal zero, or alternatively, that the skewness is zero and the regular
run-of-the-mill kurtosis is three. Unfortunately, with small samples the Jarque–Bera
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test is prone to rejecting the null hypothesis—that the distribution is normal—when
it is in fact true.
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Calculating the Jarque–Bera statistic using the �2 distribution with two degrees
of freedom we have

In [16]: JB = (N/6.0) * ( S**2.0 + (1.0/4.0)*( K - 3.0 )**2.0 )
...: p = 1.0 - stats.chi2(2).cdf(JB)
...: print('JB-statistic: {:.5f}, p-value: {:.5f}'
...: .format( JB, p ))
...:

JB-statistic: 0.90421, p-value: 0.63629

e) Condition Number

The condition number measures the sensitivity of a function’s output to its input.
When two predictor variables are highly correlated, which is called multicollinear-
ity, the coefficients or factors of those predictor variables can fluctuate erratically for
small changes in the data or the model. Ideally, similar models should be similar,
i.e., have approximately equal coefficients. Multicollinearity can cause numerical
matrix inversion to crap out, or produce inaccurate results (see Kaplan 2009). One
approach to this problem in regression is the technique of ridge regression, which is
available in the Python package sklearn.

We calculate the condition number by taking the eigenvalues of the product of
the predictor variables (including the constant vector of ones) and then taking the
square root of the ratio of the largest eigenvalue to the smallest eigenvalue. If the
condition number is greater than 30, then the regression may have multicollinearity.

In [17]: X = np.matrix( X )
...: EV = np.linalg.eig( X * X.T )
...: print(EV)
...:

(array([ 0.18412885, 136.51527115]),
matrix([[-0.96332746, -0.26832855],

[ 0.26832855, -0.96332746]]))

Note that X:T �X should be .PC1/	.PC1/, where P is the number of degrees of
freedom of the model (the number of predictors) and the +1 represents the addition
of the constant vector of ones for the intercept term. In our case, the product should
be a 2 	 2 matrix, so we will have two eigenvalues. Then our condition number is
given by

In [18]: CN = np.sqrt( EV[0].max() / EV[0].min() )
...: print('Condition No.: {:.5f}'.format( CN ))
...:

Condition No.: 27.22887

Our condition number is just below 30 (weak!), so we can sort of sleep okay.
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11.5.7 Outliers

Now that we have seen an example of linear regression with a reasonable degree of
linearity, compare that with an example of one with a significant outlier. In practice,
outliers should be understood before they are discarded, because they might turn out
to be very important. They might signify a new trend, or some possibly catastrophic
event.

In [19]: X = df[['Tobacco','Ones']]
...: Y = df.Alcohol
...: result = sm.OLS( Y, X ).fit()
...: result.summary()
...:

OLS Regression Results
==============================================================================
Dep. Variable: Alcohol R-squared: 0.050
Model: OLS Adj. R-squared: -0.056
Method: Least Squares F-statistic: 0.4735
Date: Sun, 27 Apr 2014 Prob (F-statistic): 0.509
Time: 12:58:27 Log-Likelihood: -12.317
No. Observations: 11 AIC: 28.63
Df Residuals: 9 BIC: 29.43
Df Model: 1
==============================================================================

coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 4.3512 1.607 2.708 0.024 0.717 7.986
Tobacco 0.3019 0.439 0.688 0.509 -0.691 1.295
==============================================================================
Omnibus: 3.123 Durbin-Watson: 1.655
Prob(Omnibus): 0.210 Jarque-Bera (JB): 1.397
Skew: -0.873 Prob(JB): 0.497
Kurtosis: 3.022 Cond. No. 25.5
==============================================================================

11.5.8 Regression Using Sklearn

scikit-learn is arguably the most advanced open source machine learning package
available (http://scikit-learn.org). It provides simple and efficient tools for data
mining and data analysis, covering supervised as well as unsupervised learning.

It provides tools for

• Classification Identifying to which set of categories a new observation belongs
to.

• Regression Predicting a continuous value for a new example.
• Clustering Automatic grouping of similar objects into sets.
• Dimensionality reduction Reducing the number of random variables to con-

sider.
• Model selection Comparing, validating, and choosing parameters and models.
• Preprocessing Feature extraction and normalization.

http://scikit-learn.org
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Here we use it for the simple case of a regression analysis.
In order to use sklearn, we need to input our data in the form of vertical vectors.

Therefore, in our case, we will cast the DataFrame to np.matrix so that vertical
arrays stay vertical once they are sliced off the data set. (This is made necessary
by the awkward Python property that a one-dimensional slice of a numpy array is a
vector, and so by definition is always horizontally oriented.)

In [20]: data = np.matrix( df )

Next, we create the regression objects, and fit the data to them. In this case, we
will consider a clean set, which will fit a linear regression better, which consists of
the data for all of the regions except Northern Ireland, and an original set consisting
of the original data

In [21]: cln = LinearRegression()
...: org = LinearRegression()
...:
...: X, Y = data[:,2], data[:,1]
...: cln.fit( X[:-1], Y[:-1] )
...: org.fit( X, Y )
...:
...: clean_score = '{0:.3f}'.format(

cln.score( X[:-1], Y[:-1] ) )
...: original_score = '{0:.3f}'.format( org.score( X, Y ) )
...:

The next piece of code produces a scatter plot of the regions, with all of the
regions plotted as empty blue circles, except for Northern Ireland, which is depicted
as a red star.

In [22]: mpl.rcParams['font.size']=16
...:
...: plt.plot( df.Tobacco[:-1], df.Alcohol[:-1], 'bo',
...: markersize=10, label='All other regions,
...: $R^$ = '+clean_score )
...:
...: plt.hold(True)
...: plt.plot( df.Tobacco[-1:], df.Alcohol[-1:], 'r*',
...: ms=20, lw=10, label='N. Ireland, outlier,
...: $R^2$ = '+original_score)
...:

The next part generates a set of points from 2.5 to 4.85, and then predicts the
response of those points using the linear regression object trained on the clean and
original sets, respectively.

In [23]: test = np.c_[np.arange(2.5, 4.85, 0.1)]
...: plt.plot( test, cln.predict( test ), 'k' )
...: plt.plot( test, org.predict( test ), 'k--' )
...:

Finally, we limit and label the axes, add a title, overlay a grid, place the legend at
the bottom, and then save the figure.
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In [24]: xlabel('Tobacco') ; xlim(2.5,4.75)
...: ylabel('Alcohol') ; ylim(2.75,7.0)
...: title('Regression of Alcohol from Tobacco')
...: grid()
...: legend(loc='lower center')
...: plt.show()
...:

11.5.9 Conclusion

Before you do anything, visualize your data. If your data is highly dimensional,
then at least examine a few slices using boxplots. At the end of the day, use your
own judgement about a model based on your knowledge of your domain. Statistical
tests should guide your reasoning, but they should not dominate it. In most cases,
your data will not align itself with the assumptions made by most of the available
tests. A very interesting, openly accessible article on classical hypothesis testing
has been written by Nuzzo (2014). A more intuitive approach to hypothesis testing
is Bayesian analysis (see Chap. 14).

11.6 Assumptions of Linear Regression Models

Standard linear regression models with standard estimation techniques make a
number of assumptions about the predictor variables, the response variables, and
their relationship. Numerous extensions have been developed that allow each of
these assumptions to be relaxed (i.e., reduced to a weaker form), and in some
cases eliminated entirely. Some methods are general enough that they can relax
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multiple assumptions at once, and in other cases this can be achieved by combining
different extensions. Generally these extensions make the estimation procedure
more complex and time-consuming, and may also require more data in order to
get an accurate model.

The following are the major assumptions made by standard linear regression
models with standard estimation techniques (e.g., ordinary least squares):

1. The independent variables (i.e., x) are exactly known.
2. Validity: Most importantly, the data you are analyzing should map to the research

question you are trying to answer. This sounds obvious but is often overlooked
or ignored because it can be inconvenient. For example, a linear regression does
not properly describe a quadratic curve. A valid model should also result in the
normality of errors.

3. Additivity and linearity: The most important mathematical assumption of the
regression model is that its deterministic component is a linear function of the
separate predictors.

4. Equal variance of errors.
5. Independence of errors from the values of the independent variables.
6. Independence of the independent variables.

Code: “ISP_anscombe.py”6: Code for the gener-

ation of Anscombe’s Quartet.
Let me discuss each of them in some more detail7:

1. Weak exogeneity. This essentially means that the predictor variables x can be
treated as fixed values, rather than random variables. This means, for example,
that the predictor variables are assumed to be error-free, that is they are not
contaminated with measurement errors. Although not realistic in many settings,
dropping this assumption leads to significantly more difficult errors-in-variables
models.

2. Validity. Figure 11.8 (Anscombe’s quartet) shows how a linear fit can be
meaningless if the wrong model is chosen, or if some of the assumptions are
not met.

3. Linearity. This means that the mean of the response variable is a linear combina-
tion of the parameters (regression coefficients) and the predictor variables. Note
that this assumption is much less restrictive than it may at first seem. Because
the predictor variables are treated as fixed values (see above), linearity is really
only a restriction on the parameters. The predictor variables themselves can

6https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_Line
arModels/anscombe.
7This section and the next chapter are based on Wikipedia https://en.wikipedia.org/wiki/
Linear_regression, last accessed 21 Oct 2015.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/anscombe
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/anscombe
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
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Fig. 11.8 The sets in the “Anscombe’s quartet” have the same linear regression line but are
themselves very different

be arbitrarily transformed, and in fact multiple copies of the same underlying
predictor variable can be added, each one transformed differently. This trick is
used, for example, in polynomial regression, which uses linear regression to fit
the response variable as an arbitrary polynomial function (up to a given rank) of
a predictor variable (see Sect. 11.2.2). This makes linear regression an extremely
powerful inference method. In fact, models such as polynomial regression are
often “too powerful,” in that they tend to overfit the data. As a result, some kind of
regularization must typically be used to prevent unreasonable solutions coming
out of the estimation process. Common examples are ridge regression and lasso
regression. Bayesian linear regression can also be used, which by its nature is
more or less immune to the problem of overfitting. (In fact, ridge regression
and lasso regression can both be viewed as special cases of Bayesian linear
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regression, with particular types of prior distributions placed on the regression
coefficients.)

4. Constant variance (aka homoscedasticity). This means that different response
variables have the same variance in their errors, regardless of the values of
the predictor variables. In practice this assumption is invalid (i.e., the errors
are heteroscedastic) if the response variables can vary over a wide scale. In
order to determine for heterogeneous error variance, or when a pattern of
residuals violates model assumptions of homoscedasticity (error is equally
variable around the ‘best-fitting line’ for all points of x), it is prudent to look
for a “fanning effect” between residual error and predicted values. This is to
say there will be a systematic change in the absolute or squared residuals when
plotted against the predicting outcome. Error will not be evenly distributed
across the regression line. Heteroscedasticity will result in the averaging over
of distinguishable variances around the points to get a single variance that is
inaccurately representing all the variances of the line. In effect, residuals appear
clustered and spread apart on their predicted plots for larger and smaller values
for points along the linear regression line, and the mean squared error for the
model will be wrong. Typically, for example, a response variable whose mean is
large will have a greater variance than one whose mean is small. For example,
a given person whose income is predicted to be $100,000 may easily have
an actual income of $80,000 or $120,000 (a standard deviation]] of around
$20,000), while another person with a predicted income of $10,000 is unlikely
to have the same $20,000 standard deviation, which would imply their actual
income would vary anywhere between �$10,000 and $30,000. (In fact, as this
shows, in many cases—often the same cases where the assumption of normally
distributed errors fails—the variance or standard deviation should be predicted
to be proportional to the mean, rather than constant.) Simple linear regression
estimation methods give less precise parameter estimates and misleading infer-
ential quantities such as standard errors when substantial heteroscedasticity is
present. However, various estimation techniques (e.g., weighted least squares and
heteroscedasticity-consistent standard errors) can handle heteroscedasticity in a
quite general way. Bayesian linear regression techniques can also be used when
the variance is assumed to be a function of the mean. It is also possible in some
cases to fix the problem by applying a transformation to the response variable
(e.g., fit the logarithm of the response variable using a linear regression model,
which implies that the response variable has a log-normal distribution rather than
a normal distribution).

5. Independence of errors. This assumes that the errors of the response variables
are uncorrelated with each other. (Actual statistical independence is a stronger
condition than mere lack of correlation and is often not needed, although it
can be exploited if it is known to hold.) Some methods (e.g., generalized least
squares) are capable of handling correlated errors, although they typically require
significantly more data unless some sort of regularization is used to bias the
model towards assuming uncorrelated errors. Bayesian linear regression is a
general way of handling this issue.
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6. Lack of multicollinearity in the predictors. For standard least squares esti-
mation methods, the design matrix X must have full column rank p; otherwise,
we have a condition known as multicollinearity in the predictor variables. (This
problem is analyzed clearly and in detail by Kaplan (2009).) It can be triggered
by having two or more perfectly correlated predictor variables (e.g., if the same
predictor variable is mistakenly given twice, either without transforming one of
the copies or by transforming one of the copies linearly). It can also happen
if there is too little data available compared to the number of parameters to
be estimated (e.g., fewer data points than regression coefficients). In the case
of multicollinearity, the parameter vector ˇ will be non-identifiable, it has no
unique solution. At most we will be able to identify some of the parameters,
i.e., narrow down its value to some linear subspace of Rp. Methods for fitting
linear models with multicollinearity have been developed. Note that the more
computationally expensive iterated algorithms for parameter estimation, such
as those used in generalized linear models, do not suffer from this problem—
and in fact it’s quite normal when handling categorically valued predictors
to introduce a separate indicator-variable predictor for each possible category,
which inevitably introduces multicollinearity.

Beyond these assumptions, several other statistical properties of the data strongly
influence the performance of different estimation methods:

• The statistical relationship between the error terms and the regressors plays an
important role in determining whether an estimation procedure has desirable
sampling properties such as being unbiased and consistent.

• The arrangement or probability distribution of the predictor variables in X has
a major influence on the precision of estimates of ˇ. Sampling and design of
experiments are highly developed subfields of statistics that provide guidance for
collecting data in such a way to achieve a precise estimate of ˇ.

11.7 Interpreting the Results of Linear Regression Models

A fitted linear regression model can be used to identify the relationship between a
single predictor variable xj and the response variable y when all the other predictor
variables in the model are “held fixed.” Specifically, the interpretation of ˇj is the
expected change in y for a one-unit change in xj when the other covariates are held
fixed—that is, the expected value of the partial derivative of y with respect to xj.
This is sometimes called the unique effect of xj on y. In contrast, the marginal effect
of xj on y can be assessed using a correlation coefficient or simple linear regression
model relating xj to y; this effect is the total derivative of y with respect to xj.

Care must be taken when interpreting regression results, as some of the regressors
may not allow for marginal changes (such as dummy variables, or the intercept
term), while others cannot be held fixed. (Recall the example from the polynomial
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fit in Sect. 11.2.2: it would be impossible to “hold tj fixed” and at the same time
change the value of t2i .)

It is possible that the unique effect can be nearly zero even when the marginal
effect is large. This may imply that some other covariate captures all the information
in xj, so that once that variable is in the model, there is no contribution of xj

to the variation in y. Conversely, the unique effect of xj can be large while its
marginal effect is nearly zero. This would happen if the other covariates explained
a great deal of the variation of y, but they mainly explain variation in a way that is
complementary to what is captured by xj. In this case, including the other variables
in the model reduces the part of the variability of y that is unrelated to xj, thereby
strengthening the apparent relationship with xj.

The meaning of the expression “held fixed” may depend on how the values of the
predictor variables arise. If the experimenter directly sets the values of the predictor
variables according to a study design, the comparisons of interest may literally
correspond to comparisons among units whose predictor variables have been “held
fixed” by the experimenter. Alternatively, the expression “held fixed” can refer to
a selection that takes place in the context of data analysis. In this case, we “hold a
variable fixed” by restricting our attention to the subsets of the data that happen to
have a common value for the given predictor variable. This is the only interpretation
of “held fixed” that can be used in an observational study.

The notion of a “unique effect” is appealing when studying a complex system
where multiple interrelated components influence the response variable. In some
cases, it can literally be interpreted as the causal effect of an intervention that is
linked to the value of a predictor variable. However, it has been argued that in
many cases multiple regression analysis fails to clarify the relationships between
the predictor variables and the response variable when the predictors are correlated
with each other and are not assigned following a study design.

Code: “ISP_simpleModels.py”8 shows an exam-

ple.

11.8 Bootstrapping

Another type of modeling is bootstrapping. Sometimes we have data describing a
distribution, but do not know what type of distribution it is. So what can we do if we
want to find out, e.g., confidence values for the mean?

8https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_Line
arModels/simpleModels.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/simpleModels
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/simpleModels
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The answer is bootstrapping. Bootstrapping is a scheme of resampling, i.e.,
taking additional samples repeatedly from the initial sample, to provide estimates
of its variability. In a case where the distribution of the initial sample is unknown,
bootstrapping is of special help in that it provides information about the distribution.

The application of bootstrapping in Python is much facilitated by the
package scikits.bootstrap by Constantine Evans (http://github.org/cgevans/scikits-
bootstrap).

Code: “ISP_bootstrapDemo.py”9: Example of

bootstrapping the confidence interval for the mean of a sample distribution.

11.9 Exercises

11.1 Correlation
First read in the data for the average yearly temperature at the Sonnblick, Austria’s
highest meteorological observatory, from the file Data/data_others/AvgTemp.xls.
Then calculate the Pearson and Spearman correlation, and Kendall’s tau, for the
temperature vs. year.

11.2 Regression
For the same data, calculate the yearly increase in temperature, assuming a linear
increase with time. Is this increase significant?

11.3 Normality Check
For the data from the regression model, check if the model is ok by testing if the
residuals are normally distributed (e.g., by using the Kolmogorov–Smirnov test).

9https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_Line
arModels/bootstrapDemo.

http://github.org/cgevans/scikits-bootstrap
http://github.org/cgevans/scikits-bootstrap
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/bootstrapDemo
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/11_LinearModels/bootstrapDemo


Chapter 12
Multivariate Data Analysis

When moving from two to many variables, the correlation coefficient gets replaced
by the correlation matrix. And if we want to and predict the value of many other
variables, linear regression has to be replaced by multilinear regression, sometimes
also referred to as multiple linear regression.

However, many pitfalls loom when working with many variables! Consider the
following example: golf tends to be played by richer people; and it is also known
that on average the number of children goes down with increasing income. In other
words, we have a fairly strong negative correlation between playing golf and the
number of children, and one could be tempted to (falsely) draw the conclusion that
playing golf reduces the fertility. But in reality it is the higher income which causes
both effects. Kaplan (2009) nicely describes where those problems come from, and
how best to avoid them.

12.1 Visualizing Multivariate Correlations

12.1.1 Scatterplot Matrix

If we have three to six variables that may be related to each other, we can use
a scatterplot matrix to visualize the correlations between the different variables
(Fig. 12.1):

import seaborn as sns
sns.set()

df = sns.load_dataset("iris")
sns.pairplot(df, hue="species", size=2.5)

© Springer International Publishing Switzerland 2016
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Fig. 12.1 Scatterplot matrix

12.1.2 Correlation Matrix

An elegant way to visualize the correlation between a large number of
variables is the correlation matrix. Using seaborn, the following example shows
how to implement a correlation matrix. In the example, the parameter for
np.random.RandomState is the seed for the random number generation. The
data are normally distributed dummy data, simulating 100 recordings from 30
different variables. The command sns.corrplot calculates and visualizes the
cross correlation between each possible combination of variables (Fig.12.2):

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="darkgrid")

rs = np.random.RandomState(33)
d = rs.normal(size=(100, 30))
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Fig. 12.2 Visualization of the correlation matrix

f, ax = plt.subplots(figsize=(9, 9))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
sns.corrplot(d, annot=False, sig_stars=False,

diag_names=False, cmap=cmap, ax=ax)
f.tight_layout()

12.2 Multilinear Regression

If we have truly independent variables, multilinear regression (or multiple regres-
sion) is a straightforward extension of the simple linear regression.

As an example, let us look at a multiple regression with covariates (i.e.,
independent variables) wi and xi. Suppose that the data are seven observations, and
for each observed value to be predicted (yi) there are two covariates that were also
observed, wi and xi. The model to be considered is

yi D ˇ0 C ˇ1wi C ˇ2xi C �i (12.1)



224 12 Multivariate Data Analysis

Fig. 12.3 Visualization of a multilinear regression

This model can be written in matrix terms as
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(12.2)

Figure 12.3 shows how a data set with two covariates can be visualized as a
three-dimensional surface. The code example in C12_2_multipleRegression.py

shows how to generate this 3D plot, and how to find the corresponding regression
coefficients.
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Code: “ISP_multipleRegression.py”1: Multiple

regression example, including solution for the regression coefficients and
visualization.

1https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Mul
tivariate/multipleRegression.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression


Chapter 13
Tests on Discrete Data

Data can be discrete for different reasons. One is that they were acquired in a discrete
way (e.g., levels in a questionnaire). Another one is that the paradigm only gives
discrete results (e.g., rolling dice). For the analysis of such data, we can build on the
tools for the analysis of ranked data that have already been covered in the previous
chapters. Extending this analysis to statistical models of ranked data requires the
introduction of Generalized Linear Models (GLMs). This chapter shows how to
implement logistic regression, one frequently used application of GLMs, with the
tools provided by Python.

13.1 Comparing Groups of Ranked Data

Ordinal data have clear rankings, e.g., “none–little–some–much–very much.” How-
ever they are not continuous. For the analysis of such rank ordered data we can use
the rank order methods described in Chap. 8:

Two groups When comparing two rank ordered groups, we can use
the Mann–Whitney test (Sect. 8.2.3)

Three or more groups When comparing three or more rank ordered groups, we
can use the Kruskal–Wallis test (Sect. 8.3.3)

Hypothesis tests allow to state quantitative probabilities on the likelihood of
a hypothesis. Linear Regression Modeling allows to make predictions and gives
confidence intervals for output variables that depend linearly on given inputs. But a
large class of problems exceeds these requirements. For example, suppose we want
to calculate the probability that a patient survives an operation, based on the amount
of anesthetic he/she receives, and we want to find out how much anesthetic we can
give the patient so that the chance of survival is at least 95 %.

© Springer International Publishing Switzerland 2016
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The answer to this question involves statistical modeling, and the tool of logistic
regression. If more than two ordinal (i.e., naturally ranked) levels are involved, the
so-called ordinal logistic regression is used.

To cover such questions Generalized Linear Models (GLMs) have been intro-
duced, which extend the technique of linear regression to a wide range of other
problems. A general coverage of GLMs is beyond the goals of this book, but can
be found in the excellent book by Dobson and Barnett (2008). While Dobson only
gives solutions in R and Stata, I have developed Python solutions for almost all
examples in that book (https://github.com/thomas-haslwanter/dobson).

In the following chapter I want to cover one commonly used case, logistic
regression, and its extension to ordinal logistic regression. The Python solutions
presented should allow the readers to solve similar problems on their own, and
should give a brief insight into Generalized Linear Models.

13.2 Logistic Regression

So far we have been dealing with linear models, where a linear change on the input
leads to a corresponding linear change on the output (Fig. 11.2):

y D k � x C d C � (13.1)

However, for many applications this model is not suitable. Suppose we want to
calculate the probability that a patient survives an operation, based on the amount
of anesthetic he/she receives. This probability is bounded on both ends, since it has
to be a value between 0 and 1.

We can achieve such a bounded relationship, though, if we don’t use the output
of Eq. 13.1 directly, but wrap it by another function. Here we achieve this with the
frequently used logistic function

p.y/ D 1

1 C e˛Cˇy
(13.2)

13.2.1 Example: The Challenger Disaster

A good example for logistic regression is the simulation of the probability of an O-
ring failure as a function of temperature for space shuttle launches. Here we analyze
it with a logistic regression model, whereas in the next chapter we will look at it
with the tools of Bayesian modeling.

On January 28, 1986, the twenty-fifth flight of the U.S. space shuttle program
ended in disaster when one of the rocket boosters of the Shuttle Challenger exploded
shortly after lift-off, killing all seven crew members. The presidential commission

https://github.com/thomas-haslwanter/dobson
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Fig. 13.1 Failure of O-rings
during space shuttle launches,
as a function of temperature

on the accident concluded that it was caused by the failure of an O-ring in a field
joint on the rocket booster, and that this failure was due to a faulty design that
made the O-ring unacceptably sensitive to a number of factors including outside
temperature. Of the previous 24 flights, data were available on failures of O-rings
on 23 (one was lost at sea), and these data were discussed on the evening preceding
the Challenger launch, but unfortunately only the data corresponding to the 7 flights
on which there was a damage incident were considered important and these were
thought to show no obvious trend (top row points in Fig. 13.1). However, the full set
of data indicates a trend to O-ring failure with lower temperatures. The full data set
is shown in Fig. 13.1.

To simulate the probability of the O-rings failing, we can use the logistic function
(Eq. 13.2):

With a given p-value, the binomial distribution (Sect. 6.2.2) determines the
probability-mass-function for a given number n of shuttle launches. This tells us
how likely it is to have 0; 1; 2; : : : failures during those n launches.

Listing 13.1 L13_1_logitShort.py

# Import standard packages
import numpy as np
import os
import pandas as pd

# additional packages
from statsmodels.formula.api import glm
from statsmodels.genmod.families import Binomial

# Get the data
inFile = 'challenger_data.csv'
challenger_data = np.genfromtxt(inFile, skip_header=1,

usecols=[1, 2], missing_values='NA',
delimiter=',')
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# Eliminate NaNs
challenger_data = challenger_data[~np.isnan(challenger_data

[:, 1])]

# Create a dataframe, with suitable columns for the fit
df = pd.DataFrame()
df['temp'] = np.unique(challenger_data[:,0])
df['failed'] = 0
df['ok'] = 0
df['total'] = 0
df.index = df.temp.values

# Count the number of starts and failures
for ii in range(challenger_data.shape[0]):

curTemp = challenger_data[ii,0]
curVal = challenger_data[ii,1]
df.loc[curTemp,'total'] += 1
if curVal == 1:

df.loc[curTemp, 'failed'] += 1
else:

df.loc[curTemp, 'ok'] += 1

# fit the model

# --- >>> START stats <<< ---
model = glm('ok + failed ~ temp', data=df, family=Binomial())

.fit()
# --- >>> STOP stats <<< ---

print(model.summary())

Code: “ISP_logisticRegression.py”1 shows the

full code for Fig. 13.2.

To summarize, we have three elements in our model

1. A probability distribution, which determines the probability of the outcome for a
given trial (here the binomial distribution).

2. A linear model that relates the covariates (here the temperature) to the variates
(the failure/success of an O-ring).

3. A link-function that wraps the linear model to produce the parameter for the
probability distribution (here the logistic function).

1https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/13_Log
isticRegression/LogisticRegression.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/13_LogisticRegression/LogisticRegression
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/13_LogisticRegression/LogisticRegression
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Fig. 13.2 Probability for O-ring failure

13.3 Generalized Linear Models

The model above is an example of a Generalized Linear Model (GLM), a powerful
tool for the analysis of wide range of statistical models. Here only the general
principles will be described. For details please refer to the excellent book by Dobson
and Barnett (2008).

A GLM consists of three elements:

1. A probability distribution from the exponential family.
2. A linear predictor � D X � ˇ .
3. A link function g such that E.Y/ D � D g�1.�/.

13.3.1 Exponential Family of Distributions

The exponential family is a set of probability distributions of a certain form,
specified below. This special form is chosen for mathematical convenience, on
account of some useful algebraic properties, as well as for generality, as exponential
families are in a sense very natural sets of distributions to consider. The exponential
families include many of the most common distributions, including the normal,
exponential, chi-squared, Bernoulli, Poisson distribution, and many others. (A
common distribution that is not from the exponential family is the t-distribution.)

In mathematical terms, a distribution from the exponential family has the general
form

fX.xj�/ D h.x/g.�/ exp .�.�/ � T.x// (13.3)



232 13 Tests on Discrete Data

where T.x/; h.x/; g.�/, and �.�/ are known functions. While Eq. 13.3 is dauntingly
abstract, it provides the theocratical basis for a common consistent treatment of a
large number of different statistical models.

13.3.2 Linear Predictor and Link Function

The linear predictor for GLM is the same as the one used for linear models. The
resulting terminology is unfortunately fairly confusing:

General Linear Models are models of the form y D X�ˇC�, where � is normally
distributed (see Chap. 11).

Generalized Linear Models encompass a much wider class of models, including
all distributions from the exponential family and a link function. The linear
predictor � D X � ˇ is now “only” an element of the distribution function any
more, which provides the flexibility of GLMs.

The link function is an arbitrary function, with the only requirements that it is
continuous and invertible.

13.4 Ordinal Logistic Regression

13.4.1 Problem Definition

Section 13.2 has shown one example of a GLM, logistic regression. In this section
I want to show how further generalization, from a yes/no decision to a decision
for one-of-many groups (Group1=Group2=Group3), leads into the area of numerical
optimization.

The logistic ordinal regression model,2 also known as the proportional odds
model, was introduced in the early 1980s by McCullagh (1980; McCullagh and
Nelder 1989) and is a generalized linear model specially tailored for the case of
predicting ordinal variables, that is, variables that are discrete (as in classification)
but which can be ordered (as in regression). It can be seen as an extension of the
logistic regression model described above to the ordinal setting (Fig. 13.3).

P.y � jjXi/ D .�j � wTXi/ D 1

1 C exp.wTXi � �j/
(13.4)

2This section has been taken with permission from Fabian Pedregosa’s blog on ordinal logistic
regression, http://fa.bianp.net/blog/2013/logistic-ordinal-regression/.

http://fa.bianp.net/blog/2013/logistic-ordinal-regression/
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Fig. 13.3 Toy example with three classes denoted in different colors. Also shown are the vector
of coefficients w and the thresholds �0 and �1. (Figure from Fabian Pedregosa, with permission.)

where w and � are vectors to be estimated from the data, and  is the logistic
function defined as .t/ D 1

1Cexp.�t/ .
Compared to multiclass logistic regression, we have added the constraint that the

hyperplanes that separate the different classes are parallel for all classes, that is, the
vector w is common across classes. To decide to which class will Xi be predicted
we make use of the vector of thresholds � . If there are K different classes, � is
a nondecreasing vector (that is, �1 � �2 � : : : � �K�1) of size K � 1. We will
then assign the class j if the prediction wT X (recall that it’s a linear model) lies in
the interval Œ�j�1; �jŒ. In order to keep the same definition for extremal classes, we
define �0 D �1 and �K D C1.
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The intuition is that we are seeking a vector w such that X � w produces a set of
values that are well separated into the different classes by the different thresholds
�i. We choose a logistic function to model the probability P.y � jjXi/, but other
choices are also possible. In the proportional hazards model (McCullagh 1980) the
probability is modeled as

� log.1 � P.y � jjXi// D exp.�j � wTXi/ (13.5)

Other link functions are possible, where the link function satisfies link.P.y �
jjXi// D �j � wTXi. Under this framework, the logistic ordinal regression model
has a logistic link function, and the proportional hazards model has a log-log link
function.

The logistic ordinal regression model is also known as the proportional odds
model, because the ratio of corresponding odds for two different samples X1 and X2

is exp.wT.X1 � X2// and so does not depend on the class j but only on the difference
between the samples X1 and X2.

13.4.2 Optimization

Model estimation can be posed as an optimization problem. Here, we minimize the
loss function for the model, defined as minus the log-likelihood:

L .w; �/ D �
nX

iD1

log..�yi � wT Xi/ � .�yi�1 � wTXi// (13.6)

In this sum all terms are convex on w, thus the loss function is convex over w.
We use the function fmin_slsqp in scipy.optimize to optimize L under the
constraint that � is a nondecreasing vector.

Using the formula log..t//0 D .1 � .t//, we can compute the gradient of the
loss function as

rwL .w; �/ D
nX

iD1

Xi.1 � .�yi � wT Xi/ � .�yi�1 � wTXi//

r�L .w; �/ D
nX

iD1

eyi

�
1 � .�yi � wTXi/ � 1

1 � exp.�yi�1 � �yi/

�

C eyi�1

�
1 � .�yi�1 � wT Xi/ � 1

1 � exp.�.�yi�1 � �yi//

�

where ei is the ith canonical vector.
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13.4.3 Code

The attached code sample implements a Python version of this algorithm using
scipy’s optimize.fmin_slsqp function. This takes as arguments the loss function,
the gradient denoted before and a function that is >0 when the inequalities on � are
satisfied.

13.4.4 Performance

Fabian Pedregosa has compared the prediction accuracy of this model in the sense of
mean absolute error on the Boston house-prices data set. To have an ordinal variable,
he rounded the values to the closest integer, which resulted in a problem of size
506 � 13 with 46 different target values (Fig. 13.4). Although not a huge increase in
accuracy, this model did give better results on this particular data set:

Here, ordinal logistic regression is the best-performing model, followed by
a Linear Regression model and a One-versus-All Logistic regression model as
implemented in scikit-learn.
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Fig. 13.4 Errors in predicting house-prices in Boston, for three different types of models. Ordinal
logistic regression produces the best predictions. Figure from Fabian Pedregosa, with permission
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Code: “ISP_ordinalLogisticRegression.py”3 cor-

responding code by Fabian Pedregosa.

3https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/13_Log
isticRegression/OrdinalLogisticRegression.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/13_LogisticRegression/OrdinalLogisticRegression
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/13_LogisticRegression/OrdinalLogisticRegression


Chapter 14
Bayesian Statistics

Calculating probabilities is only one part of statistics. Another is the interpretation
of them—and the consequences that come with different interpretations.

So far we have restricted ourselves to the frequentist interpretation, which
interprets p as the frequency of an occurrence: if an outcome of an experiment has
the probability p, it means that if that experiment is repeated N times (where N is a
large number), then we observe this specific outcome N �p times. Or in other words:
given a certain model, we look at the likelihood to find the observed set of data.

The Bayesian interpretation of p is quite different, and interprets p as our belief
of the likelihood of a certain outcome. Here we take the observed data as fixed, and
look at the likelihood to find certain model parameters. For some events, this makes
a lot more sense. For example, a presidential election is a one-time event, and we
will never have a large number of N repetitions.

14.1 Bayesian vs. Frequentist Interpretation

In addition to this difference in interpretation, the Bayesian approach has another
advantage: it lets us bring in prior knowledge into the calculation of the probability
p, through the application of Bayes’ Theorem:

In its most common form, it is:

P.AjB/ D P.BjA/ P.A/

P.B/
� (14.1)

In the Bayesian interpretation, probability measures a degree of belief. Bayes’
theorem then links the degree of belief in a proposition before and after accounting
for evidence. For example, suppose it is believed with 50 % certainty that a coin
is twice as likely to land heads than tails. If the coin is flipped a number of times

© Springer International Publishing Switzerland 2016
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and the outcomes observed, that degree of belief may rise, fall, or remain the same
depending on the results.

John Maynard Keynes, a great economist and thinker, said “When the facts
change, I change my mind. What do you do, sir?” This quote reflects the way a
Bayesian updates his or her beliefs after seeing evidence.

For proposition A and evidence B,

• P.A/, the prior probability, is the initial degree of belief in A.
• P.AjB/, the posterior probability, is the degree of belief having accounted for B.

It can be read as “the probability of A, given that B is the case”.
• the quotient P.BjA/=P.B/ represents the support B provides for A.

If the number of available data points is large, the difference in interpretation does
typically not change the result significantly. If the number of data points is small,
however, the possibility to bring in external knowledge may lead to a significantly
improved estimation of p.

14.1.1 Bayesian Example

Suppose a man told you he had a nice conversation with someone on the train. Not
knowing anything about this conversation, the probability that he was speaking to
a woman is 50 % (assuming the speaker was as likely to strike up a conversation
with a man as with a woman). Now suppose he also told you that his conversational
partner had long hair. It is now more likely he was speaking to a woman, since
women are more likely to have long hair than men. Bayes’ theorem can be used to
calculate the probability that the person was a woman.

To see how this is done, let W represent the event that the conversation was
held with a woman, and L denote the event that the conversation was held with a
long-haired person. It can be assumed that women constitute half the population
for this example. So, not knowing anything else, the probability that W occurs is
P.W/ D 0:5.

Suppose it is also known that 75 % of women have long hair, which we denote as
P.LjW/ D 0:75 (read: the probability of event L given event W is 0:75, meaning that
the probability of a person having long hair (event “L”), given that we already know
that the person is a woman (“event W”) is 75 %). Likewise, suppose it is known that
15 % of men have long hair, or P.LjM/ D 0:15, where M is the complementary
event of W, i.e., the event that the conversation was held with a man (assuming that
every human is either a man or a woman).

Our goal is to calculate the probability that the conversation was held with a
woman, given the fact that the person had long hair, or, in our notation, P.WjL/.
Using the formula for Bayes’ theorem, we have:

P.WjL/ D P.LjW/P.W/

P.L/
D P.LjW/P.W/

P.LjW/P.W/ C P.LjM/P.M/
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where we have used the law of total probability to expand P.L/. The numeric answer
can be obtained by substituting the above values into this formula (the algebraic
multiplication is annotated using “�”). This yields

P.WjL/ D 0:75 � 0:50

0:75 � 0:50 C 0:15 � 0:50
D 5

6
� 0:83;

i.e., the probability that the conversation was held with a woman, given that the
person had long hair, is about 83 %.

Another way to do this calculation is as follows. Initially, it is equally likely that
the conversation is held with a woman as with a man, so the prior odds are 1:1. The
respective chances that a man and a woman have long hair are 15 and 75 %. It is five
times more likely that a woman has long hair than that a man has long hair. We say
that the likelihood ratio or Bayes factor is 5:1. Bayes’ theorem in odds form, also
known as Bayes’ rule, tells us that the posterior odds that the person was a woman
is also 5:1 (the prior odds, 1:1, times the likelihood ratio, 5:1). In a formula:

P.WjL/

P.MjL/
D P.W/

P.M/
� P.LjW/

P.LjM/
:

14.2 The Bayesian Approach in the Age of Computers

Bayes’ theorem was named after the Reverend Thomas Bayes (1701–1761), who
studied how to compute a distribution for the probability parameter of a binomial
distribution. So it has been around for a long time. The reason Bayes’ theorem
has become so popular in statistics in recent years is the cheap availability of
massive computational power. This allows the empirical calculation of posterior
probabilities, one-by-one, for each new piece of evidence. This, combined with
statistical approaches like Markov-chain–Monte-Carlo simulations, has allowed
radically new statistical analysis procedures, and has led to what may be called
“statistical trench warfare” between the followers of the different philosophies. If
you don’t believe me, check the corresponding discussions on the WWW.

For more information on that topic, check out (in order of rising complexity)

• Wikipedia, which has some nice explanations under “Bayes : : :”
• Bayesian Methods for Hackers (http://camdavidsonpilon.github.io/Probabilistic-

Programming-and-Bayesian-Methods-for-Hackers/), a nice, free ebook, provid-
ing a practical introduction to the use of PyMC (see below).

• The PyMC User Guide (http://pymc-devs.github.io/pymc/): PyMC is a very
powerful Python package which makes the application of MCMC techniques
very simple.

http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
http://pymc-devs.github.io/pymc/
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• Pattern Classification, does not avoid the mathematics, but uses it in a practical
manner to help you gain a deeper understanding of the most important machine
learning techniques (Duda 2004).

• Pattern Recognition and Machine Learning, a comprehensive, but often quite
technical book by Bishop (2007).

14.3 Example: Analysis of the Challenger Disaster
with a Markov-Chain–Monte-Carlo Simulation

In the following we will reanalyze the data from the Challenger disaster already used
in the previous chapter, but this time with a Markov-chain–Monte-Carlo (MCMC)
simulation. [This chapter is an excerpt of the excellent ‘Bayesian Methods for
Hackers’ (Pilon 2015, with permission from the author).]

The data are again from the Challenger disaster (see Sect. 13.2.1). To perform the
simulation, we are going to use PyMC, a Python module that implements Bayesian
statistical models and fitting algorithms, including MCMC-simulations (http://
pymc-devs.github.io/pymc/). Its flexibility and extensibility make it applicable to
a large suite of problems. Along with core sampling functionality, PyMC includes
methods for summarizing output, plotting, goodness-of-fit, and convergence diag-
nostics.

PyMC provides functionalities to make Bayesian analysis as painless as possible.
Here is a short list of some of its features:

• Fits Bayesian statistical models with Markov chain Monte Carlo and other
algorithms.

• Includes a large suite of well-documented statistical distributions.
• Includes a module for modeling Gaussian processes.
• Creates summaries including tables and plots.
• Traces can be saved to the disk as plain text, Python pickles, SQLite or MySQL

database, or hdf5 archives.
• Extensible: easily incorporates custom step methods and unusual probability

distributions.
• MCMC loops can be embedded in larger programs, and results can be analyzed

with the full power of Python.

To simulate the probability of the O-rings failing, we need a function that goes
from one to zero. We again apply the logistic function:

p.t/ D 1

1 C e˛Cˇt

In this model, the variable ˇ that describes how quickly the function changes
from 1 to 0, and ˛ indicates the location of this change.

http://pymc-devs.github.io/pymc/
http://pymc-devs.github.io/pymc/
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Using the Python package PyMC, a Monte-Carlo simulation of this model can
be done remarkably easily:

# --- Perform the MCMC-simulations ---
temperature = challenger_data[:, 0]
D = challenger_data[:, 1] # defect or not?

# Define the prior distributions for alpha and beta
# 'value' sets the start parameter for the simulation
# The second parameter for the normal distributions is the
# "precision", i.e. the inverse of the standard deviation
beta = pm.Normal("beta", 0, 0.001, value=0)
alpha = pm.Normal("alpha", 0, 0.001, value=0)

# Define the model-function for the temperature
@pm.deterministic
def p(t=temperature, alpha=alpha, beta=beta):

return 1.0 / (1. + np.exp(beta * t + alpha))

# connect the probabilities in `p` with our observations
# through a Bernoulli random variable.
observed = pm.Bernoulli("bernoulli_obs", p, value=D,

observed=True)

# Combine the values to a model
model = pm.Model([observed, beta, alpha])

# Perform the simulations
map_ = pm.MAP(model)
map_.fit()
mcmc = pm.MCMC(model)
mcmc.sample(120000, 100000, 2)

From this simulation, we obtain not only our best estimate for ˛ and ˇ, but also
information about our uncertainty about these values (Fig. 14.1).

Fig. 14.1 Probabilities for alpha and beta, from the MCMC simulations
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Fig. 14.2 Probability for an O-ring failure, as a function of temperature

Fig. 14.3 Ninety-five percent confidence intervals for the probability for an O-ring failure

The probability curve for an O-ring failure thus looks as shown in Fig. 14.2.
One advantage of the MCMC simulation is that it also provides confidence

intervals for the probability (Fig. 14.3).
On the day of the Challenger disaster, the outside temperature was 31 ıF.

The posterior distribution of a defect occurring, given this temperature, almost
guaranteed that the Challenger was going to be subject to defective O-rings.

Code: “ISP_bayesianStats.py”1: Full implemen-

tation of the MCMC simulation.

1https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/
14_Bayesian/bayesianStats.

https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/14_Bayesian/bayesianStats
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/14_Bayesian/bayesianStats
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14.4 Summing Up

The Bayesian approach offers a natural framework to deal with parameter and model
uncertainty, and has become very popular, especially in areas like machine learning.
However, it is computationally much more intensive, and therefore typically
implemented with the help of existing tools like PyMC or scikit-learn.

This also shows one of the advantages of free and open languages like Python:
they provide a way to build on the existing work of the scientific community, and
only require your enthusiasm and dedication. Therefore I would like to finish this
book by thanking the Python community for the incredible amount of work that they
have put into the development of core Python and Python packages. And I hope that
this book allows you to share some of my enthusiasm for this vibrant language.



Solutions1

Problems of Chap. 2

2.1 Data Input

Listing 14.1 S2_python.py

''' Solution to Exercise "Data Input" '''

# author: Thomas Haslwanter, date: Oct-2015

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import urllib
import io
import zipfile

def getDataDobson(url, inFile):
'''Extract data from a zipped-archive'''

# get the zip-archive
GLM_archive = urllib.request.urlopen(url).read()

# make the archive available as a byte-stream
zipdata = io.BytesIO()
zipdata.write(GLM_archive)

# extract the requested file from the archive, as a
pandas XLS-file

1Published with the kind permission of © Thomas Haslwanter 2015. Published under the Creative
Commons Attribution-ShareAlike International License (CC BY-SA 4.0).

© Springer International Publishing Switzerland 2016
T. Haslwanter, An Introduction to Statistics with Python, Statistics and Computing,
DOI 10.1007/978-3-319-28316-6
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myzipfile = zipfile.ZipFile(zipdata)
xlsfile = myzipfile.open(inFile)

# read the xls-file into Python, using Pandas, and return
the extracted data

xls = pd.ExcelFile(xlsfile)
df = xls.parse('Sheet1', skiprows=2)

return df

if __name__ == '__main__':
# 1.1 Numpy --------------------
# Read in a CSV file, and show the top:
inFile1 = 'swim100m.csv'
data = pd.read_csv(inFile1)
print(data.head())

# Read in an excel file, and show the bottom
inFile2 = 'Table 2.8 Waist loss.xls'

xls = pd.ExcelFile(inFile2)
data = xls.parse('Sheet1', skiprows=2)
print(data.tail())

# Read in a zipped data-file from the WWW
url = r'http://cdn.crcpress.com/downloads/C9500/GLM_data.

zip'
inFile = r'GLM_data/Table 2.8 Waist loss.xls'

df = getDataDobson(url, inFile)
print(df.tail())

2.2 First Steps with pandas

Listing 14.2 S2_pandas.py

''' Solution to Exercise "First Steps with pandas":
Generate a sine and cosine wave using pandas' DataFrames,
and write them to an out-file.
'''

# author: Thomas Haslwanter, date: Sept-2015

import numpy as np
import pandas as pd

# Set the parameters
rate = 10
dt = 1/rate
freq = 1.5

# Derived quantities
omega = 2*np.pi*freq



Solutions 247

# Generate the data
t = np.arange(0,10,dt)
y = np.sin(omega*t)
z = np.cos(omega*t)

# Assemble them in a DataFrame
df = pd.DataFrame({'Time':t, 'YVals':y, 'ZVals':z})

# Show the top 5 values
print(df.head())

# Save lines 10-15 of the y- and z-values to an outfile
outfile = 'out.txt'
df[10:16][['YVals', 'ZVals']].to_csv(outfile)
print('Data written to {0}'.format(outfile))
input('Done')
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Problems of Chap. 4

4.1 Displaying Data

Listing 14.3 S4_display.py

''' Solution for Exercise "Data Display"
Read in weight-data recorded from newborns, and analyze the
data based on the gender of the baby.'''

# author: Thomas Haslwanter, date: Oct-2015

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import seaborn as sns
import os

def getData():
'''Read in data from a text-file, and return them as

labelled DataFrame'''

# Set directory and infile
dataDir = '.'
inFile = 'babyboom.dat.txt'

# Read and label the data
os.chdir(dataDir)
data = pd.read_csv(inFile, sep='[ ]*', header=None,

engine='python',
names= ['TOB', 'sex', 'Weight', '

Minutes'])

# Eliminate "Minutes", since this is redundant
df = data[['Minutes', 'sex', 'Weight']]

return(df)

def showData(df):
'''Graphical data display'''

# Show the data: first all of them ....
plt.plot(df.Weight, 'o')

plt.title('All data')
plt.xlabel('Subject-Nr')
plt.ylabel('Weight [g]')
plt.show()

# To make the plots easier to read, replace "1/2" with "
female/male"
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df.sex = df.sex.replace([1,2], ['female', 'male'])

# ... then show the grouped plots
df.boxplot(by='sex')
plt.show()

# Display statistical information numerically
grouped = df.groupby('sex')
print(grouped.describe())

# This is a bit fancier: scatter plots, with labels and
individual symbols

symbols = ['o', 'D']
colors = ['r', 'b']

fig = plt.figure()
ax = fig.add_subplot(111)

# "enumerate" provides a counter, and variables can be
assigned names in one step if

# the "for"-loop uses a tuple as input for each loop:
for (ii, (sex, group)) in enumerate(grouped):

ax.plot(group['Weight'], marker = symbols[ii],
linewidth=0, color = colors[ii], label=sex)

ax.legend()
ax.set_ylabel('Weight [g]')
plt.show()

# Fancy finish: a kde-plot
df.Weight = np.double(df.Weight) # kdeplot requires

doubles

sns.kdeplot(grouped.get_group('male').Weight, color='b',
label='male')

plt.hold(True)
sns.kdeplot(grouped.get_group('female').Weight, color='r'

, label='female')

plt.xlabel('Weight [g]')
plt.ylabel('PDF(Weight)')
plt.show()

# Statistics: are the data normally distributed?
def isNormal(data, dataType):

'''Check if the data are normally distributed'''
alpha = 0.05
(k2, pVal) = stats.normaltest(data)
if pVal < alpha:

print('{0} are NOT normally distributed.'.format(
dataType))

else:
print('{0} are normally distributed.'.format(dataType

))
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def checkNormality(df):
'''Check selected data vlaues for normality'''

grouped = df.groupby('sex')

# Run the check for male and female groups
isNormal(grouped.get_group('male').Weight, 'male')
isNormal(grouped.get_group('female').Weight, 'female')

if __name__ == '__main__':
'''Main Program'''

df = getData()
showData(df)
checkNormality(df)

# Wait for an input before exiting
input('Done - Hit any key to continue')
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Problems of Chap. 6

6.1 Sample Standard Deviation

Listing 14.4 S6_sd.py

''' Solution to Exercise "Sample Standard Deviation" '''

# author: Thomas Haslwanter, date: Sept-2015

import numpy as np

x = np.arange(1,11)
print('The standard deviation of the numbers from 1 to 10 is

{0:4.2f}'.format(np.std(x, ddof=1)))

6.2 Normal Distribution

Listing 14.5 S6_normDist.py

''' Solution to Exercise "Normal Distribution" '''

# author: Thomas Haslwanter, date: Sept-2015

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import seaborn as sns

# Generate a PDF, with a mean of 5 and a standard deviation
of 3

nd = stats.norm(5,3)

# Generate 1000 data from this distribution
data = nd.rvs(1000)

# Standard error
se = np.std(data, ddof=1)/np.sqrt(1000)
print('The standard error is {0}'.format(se))

# Histogram
plt.hist(data)
plt.show()

# 95% confidence interval
print('95% Confidence interval: {0:4.2f} - {1:4.2f}'.format(

nd.ppf(0.025), nd.ppf(0.975)))

# SD for hip implants
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nd = stats.norm()
numSDs = nd.isf(0.0005)
tolerance = 1/numSDs
print('The required SD to fulfill both requirements = {0:6.4f

} mm'.format(tolerance))

6.3 Other Continuous Distributions

Listing 14.6 S6_continuous.py

'''Solution for Exercise "Continuous Distribution Functions"
'''

# author: Thomas Haslwanter, date: Oct-2015

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

# T-distibution
---------------------------------------------------

# Enter the data
x = [52, 70, 65, 85, 62, 83, 59]
''' Note that "x" is a Python "list", not an array!
Arrays come with the numpy package, and have to contain all

elements of the same type.
Lists can mix different types, e.g. "x = [1, 'a', 2]"
'''

# Generate the t-distribution: note that the degrees of
freedom is the

# length of the data minus 1.
# In Python, the length of an object x is given by "len(x)"
td = stats.t(len(x)-1)
alpha = 0.01

# From the t-distribution, you use the "PPF" function and
multiply it with the standard error

tval = abs( td.ppf(alpha/2)*stats.sem(x) )
print('mean +/- 99%CI = {0:3.1f} +/- {1:3.1f}'.format(np.mean

(x),tval))

# Chi2-distribution, with 3 DOF
------------------------------------------------

# Define the normal distribution
nd = stats.norm()

# Generate three sets of random variates from this
distribution

numData = 1000
data1 = nd.rvs(numData)
data2 = nd.rvs(numData)
data3 = nd.rvs(numData)
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# Show a histogram of the sum of the squares of these random
data

plt.hist(data1**2+data2**2 +data3**2, 100)
plt.show()

# F-distribution
--------------------------------------------------

apples1 = [110, 121, 143]
apples2 = [88, 93, 105, 124]
fval = np.std(apples1, ddof=1)/np.std(apples2, ddof=1)
fd = stats.distributions.f(len(apples1),len(apples2))
pval = fd.cdf(fval)
print('The p-value of the F-distribution = {0}.'.format(pval)

)
if pval>0.025 and pval<0.975:

print('The variances are equal.')

6.4 Discrete Distributions

Listing 14.7 S6_discrete.py

'''Solution for Exercise "Continuous Distribution Functions"
'''

# author: Thomas Haslwanter, date: Sept-2015

from scipy import stats

# Binomial distribution
--------------------------------------------------

# Generate the distribution
p = 0.37
n = 15
bd = stats.binom(n, p)

# Select the interesting numbers, and calculate the "
Probability Mass Function" (PMF)

x = [3,6,10]
y = bd.pmf(x)

# To print the result, we use the "zip" function to generate
pairs of numbers

for num, solution in zip(x,y):
print('The chance of finding {0} students with blue eyes

is {1:4.1f}%.'.format(num, solution*100))

# Poisson distribution
--------------------------------------------------

# Generate the distribution.
# Watch out NOT to divide integers, as "3/4" gives "0" in

Python 2.x!
prob = 62./(365./7)
pd = stats.poisson(prob)
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# Select the interesting numbers, calculate the PMF, and
print the results

x = [0,2,5]
y = pd.pmf(x)*100
for num, solution in zip(x,y):

print('The chance of haveing {0} fatal accidents in one
week is {1:4.1f}%.'.format(num,solution))

# The last line just makes sure that the program does not
close, when it is run from the commandline.

input('Done! Thanks for using programs by thomas.')



Solutions 255

Problems of Chap. 8

8.1 Comparing One or Two Groups

Listing 14.8 S8_twoGroups.py

'''Solution for Exercise "Comparing Groups" '''

# author: Thomas Haslwanter, date: Sept-2015

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import scipy as sp
import os

def oneGroup():
'''Test of mean value of a single set of data'''

print('Single group of data
=========================================')

# First get the data
data = np.array([5260, 5470, 5640, 6180, 6390, 6515,

6805, 7515, 7515, 8230, 8770], dtype=np.float)
checkValue = 7725 # value to compare the data to

# 4.1.1. Normality test
# We don't need the first parameter, so we just assign

the output to the dummy variable "_"
(_, p) = stats.normaltest(data)
if p > 0.05:

print('Data are distributed normally, p = {0}'.format
(p))

# 4.1.2. Do the onesample t-test
t, prob = stats.ttest_1samp(data, checkValue)
if prob < 0.05:

print('With the one-sample t-test, {0:4.2f} is
significantly different from the mean (p={1:5.3f})
.'.\

format(checkValue, prob))
else:

print('No difference from reference value with
onesample t-test.')

# 4.1.3. This implementation of the Wilcoxon test checks
for the "difference" of one vector of data from zero

(_,p) = stats.wilcoxon(data-checkValue)
if p < 0.05:
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print('With the Wilcoxon test, {0:4.2f} is
significantly different from the mean (p={1:5.3f})
.'.\

format(checkValue, p))
else:

print('No difference from reference value with
Wilcoxon rank sum test.')

def twoGroups():
'''Compare the mean of two groups'''

print('Two groups of data
=========================================')

# Enter the data
data1 = [76., 101., 66., 72., 88., 82., 79., 73., 76.,

85., 75., 64., 76., 81., 86.]
data2 = [64., 65., 56., 62., 59., 76., 66., 82., 91.,

57., 92., 80., 82., 67., 54.]

# Normality test
print('\n Normality test

--------------------------------------------------')

# To do the test for both data-sets, make a tuple with
"(... , ...)", add a counter with

# "enumerate", and and iterate over the set:
for ii, data in enumerate((data1, data2)):

(_, pval) = stats.normaltest(data)
if pval > 0.05:

print('Dataset # {0} is normally distributed'.
format(ii))

# T-test of independent samples
print('\n T-test of independent samples

-------------------------------------------')

# Do the t-test for independent samples
t, pval = stats.ttest_ind(data1, data2)
if pval < 0.05:

print('With the T-test, data1 and data2 are
significantly different (p = {0:5.3f})'.format(
pval))

else:
print('No difference between data1 and data2 with T-

test.')

# Mann-Whitney test
------------------------------------------------------

print('\n Mann-Whitney test
------------------------------------------------------
')

# Watch out: the keyword "alternative" was introduced in
scipy 0.17, with default"two-sided";
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if np.int(sp.__version__.split('.')[1]) > 16:
u, pval = stats.mannwhitneyu(data1, data2,

alternative='two-sided')
else:

u, pval = stats.mannwhitneyu(data1, data2)
pval *= 2 # because the default was a one-sided p-

value
if pval < 0.05:

print('With the Mann-Whitney test, data1 and data2
are significantly different(p = {0:5.3f})'.format(
pval))

else:
print('No difference between data1 and data2 with

Mann-Whitney test.')

if __name__ == '__main__':
oneGroup()
twoGroups()

# And at the end, make sure the results are displayed,
even if the program is run from the commandline

input('\nDone! Thanks for using programs by thomas.\nHit
any key to finish.')

8.2 Comparing Multiple Groups

Listing 14.9 S8_multipleGroups.py

''' Solution for Exercise "Comparing Multiple Groups" '''

# author: Thomas Haslwanter, date: Sept-2015

# Load the required modules
----------------------------------------------------------

# Standard modules
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd

# Modules for data-analysis
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
from statsmodels.stats import multicomp

# Module for working with Excel-files
import xlrd

def get_ANOVA_data():
'''Get the data for the ANOVA'''

# First we have to get the Excel-data into Python. This
can be done e.g. with the package "xlrd"
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# You have to make sure that you select a valid location
on your computer!

inFile = 'Table 6.6 Plant experiment.xls'
book = xlrd.open_workbook(inFile)
# We assume that the data are in the first sheet. This

avoids the language problem "Tabelle/Sheet"
sheet = book.sheet_by_index(0)

# Select the columns and rows that you want:
# The "treatment" information is in column "E", i.e. you

have to skip the first 4 columns
# The "weight" information is in column "F", i.e. you

have to skip the first 5 columns
treatment = sheet.col_values(4)
weight = sheet.col_values(5)

# The data start in line 4, i.e. you have to skip the
first 3

# I use a "pandas" DataFrame, so that I can assign names
to the variables.

data = pd.DataFrame({'group':treatment[3:], 'weight':
weight[3:]})

return data

def do_ANOVA(data):
'''4.3.2. Perform an ANOVA on the data'''

print('ANOVA:
----------------------------------------------')

# First, I fit a statistical "ordinary least square (ols)
"-model to the data, using the

# formula language from "patsy". The formula 'weight ~ C(
group)' says:

# "weight" is a function of the categorical value "group"
# and the data are taken from the DataFrame "data", which

contains "weight" and "group"
model = ols('weight ~ C(group)', data).fit()

# "anova_lm" (where "lm" stands for "linear model")
extracts the ANOVA-parameters

# from the fitted model.
anovaResults = anova_lm(model)
print(anovaResults)

if anovaResults['PR(>F)'][0] < 0.05:
print('One of the groups is different.')

def compare_many(data):
'''Multiple comparisons: Which one is different? '''

print('\n MultComp:
--------------------------------------')



Solutions 259

# An ANOVA is a hypothesis test, and only answers the
question: "Are all the groups

# from the same distribution?" It does not tell you which
one is different.

# Since we now compare many different groups to each
other, we have to adjust the

# p-values to make sure that we don't get a Type I error.
For this, we use the

# statscom module "multicomp"
mc = multicomp.MultiComparison(data['weight'], data['

group'])

# There are many ways to do multiple comparisons. Here,
we choose

# "Tukeys Honest Significant Difference" test
# The first element of the output ("0") is a table

containing the results
print(mc.tukeyhsd().summary())

# Show the group names
print(mc.groupsunique)

# Generate a print ----------------

res2 = mc.tukeyhsd() # Get the data

simple = False
if simple:

# You can do the plot with a one-liner, but then this
does not - yet - look that great

res2.plot_simultaneous()
else:

# Or you can do it the hard way, i.e. by hand:

# Plot values and errorbars
xvals = np.arange(3)
plt.plot(xvals, res2.meandiffs, 'o')
errors = np.ravel(np.diff(res2.confint)/2)
plt.errorbar(xvals, res2.meandiffs, yerr=errors, fmt=

'o')

# Set the x-limits
xlim = -0.5, 2.5
# The "*xlim" passes the elements of the variable "

xlim" elementwise into the function "hlines"
plt.hlines(0, *xlim)
plt.xlim(*xlim)

# Plot labels (this is a bit tricky):
# First, "np.array(mc.groupsunique)" makes an array

with the names of the groups;
# and then, "np.column_stack(res2[1][0])]" puts the

correct groups together
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pair_labels = mc.groupsunique[np.column_stack(res2.
_multicomp.pairindices)]

plt.xticks(xvals, pair_labels)

plt.title('Multiple Comparison of Means - Tukey HSD,
FWER=0.05' +

'\n Pairwise Mean Differences')

plt.show()

def KruskalWallis(data):
'''Non-parametric comparison between the groups'''

print('\n Kruskal-Wallis test
----------------------------------------------------')

# First, I get the values from the dataframe
g_a = data['weight'][data['group']=='TreatmentA']
g_b = data['weight'][data['group']=='TreatmentB']
g_c = data['weight'][data['group']=='Control']

#Note: this could also be accomplished with the "groupby"
function from pandas

#groups = pd.groupby(data, 'group')
#g_a = groups.get_group('TreatmentA').values[:,1]
#g_c = groups.get_group('Control').values[:,1]
#g_b = groups.get_group('TreatmentB').values[:,1]

# Then do the Kruskal-Wallis test
h, p = stats.kruskal(g_c, g_a, g_b)
print('Result from Kruskal-Wallis test: p = {0}'.format(p

))

if __name__ == '__main__':
data = get_ANOVA_data()
do_ANOVA(data)
compare_many(data)
KruskalWallis(data)

input('\nThanks for using programs by Thomas!\nHit any
key to finish')
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Problems of Chap. 9

9.1 A Lady Drinking Tea

Listing 14.10 S9_fisherExact.py

'''Solution for Exercise "Categorical Data"
"A Lady Tasting Tea"
'''

# author: Thomas Haslwanter, date: Sept-2015

from scipy import stats
obs = [[3,1], [1,3]]
_, p = stats.fisher_exact(obs, alternative='greater')

#obs2 = [[4,0], [0,4]]
#stats.fisher_exact(obs2, alternative='greater')

print('\n--- A Lady Tasting Tea (Fisher Exact Test) ---')
print('The chance that the lady selects 3 or more cups

correctly by chance is {0:5.3f}'.format(p))

9.2 Chi2 Contingency Test

Listing 14.11 S9_chi2Contingency.py

'''Solution for Exercise "Categorical Data":
Chi2-test with frequency tables
'''

# author: Thomas Haslwanter, date: Sept-2015

from scipy import stats

obs = [[36,14], [30,25]]
chi2, p, dof, expected = stats.chi2_contingency(obs)

print('--- Contingency Test ---')
if p < 0.05:

print('p={0:6.4f}: the drug affects the heart rate.'.
format(p))

else:
print('p={0:6.4f}: the drug does NOT affect the heart

rate.'.format(p))

obs2 = [[36,14], [29,26]]
chi2, p, dof, expected = stats.chi2_contingency(obs2)
chi2, p2, dof, expected = stats.chi2_contingency(obs2,

correction=False)
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print('If the response in 1 non-treated person were different
, \n we would get p={0:6.4f} with Yates correction, and p
={1:6.4f} without.'.format(p, p2))

9.3 Chi2 Oneway Test

Listing 14.12 S9_chi2OneWay.py

'''Solution for Exercise "Categorical Data" '''

# author: Thomas Haslwanter, date: Sept-2015

from scipy import stats

# Chi2-oneway-test
obs = [4,6,14,10,16]
_, p = stats.chisquare(obs)

print('\n--- Chi2-oneway ---')
if p < 0.05:

print('The difference in opinion between the different
age groups is significant (p={0:6.4f})'.format(p))

else:
print('The difference in opinion between the different

age groups is NOT significant (p={0:6.4f})'.format(p))

print('DOF={0:3d}'.format(len(obs)-1))

9.4 McNemar Test

Listing 14.13 S9_mcNemar.py

'''Solution for Exercise "Categorical Data"
McNemar's Test
'''

# author: Thomas Haslwanter, date: Sept-2015

from scipy import stats
from statsmodels.sandbox.stats.runs import mcnemar

obs = [[19,1], [6, 14]]
obs2 = [[20,0], [6, 14]]

_, p = mcnemar(obs)
_, p2 = mcnemar(obs2)

print('\n--- McNemar Test ---')
if p < 0.05:

print('The results from the neurologist are significanlty
different from the questionnaire (p={0:5.3f}).'.

format(p))
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else:
print('The results from the neurologist are NOT

significanlty different from the questionnaire (p
={0:5.3f}).'.format(p))

if (p<0.05 == p2<0.05):
print('The results would NOT change if the expert had

diagnosed all "sane" people correctly.')
else:

print('The results would change if the expert had
diagnosed all "sane" people correctly.')
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Problems of Chap. 11

11.1 Correlation

Listing 14.14 S11_correlation.py

'''Solution for Exercise "Correlation" in Chapter 11 '''

# author: Thomas Haslwanter, date: Oct-2015

import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns

def getModelData(show=True):
''' Get the data from an Excel-file '''

# First, define the in-file and get the data
in_file = 'AvgTemp.xls'

# When the data are neatly organized, they can be read in
directly with the pandas-function:

# with "ExcelFile" you open the file
xls = pd.ExcelFile(in_file)

# and with "parse" you get get the data from the file,
from the specified Excel-sheet

data = xls.parse('Tabelle1')

if show:
data.plot('year', 'AvgTmp')
plt.xlabel('Year')
plt.ylabel('Average Temperature')
plt.show()

return data

if __name__=='__main__':
data = getModelData()

# Correlation
------------------------------------------------------

# Calculate and show the different correlation
coefficients

print('Pearson correlation coefficient: {0:5.3f}'.format(
data['year'].corr(data['AvgTmp'], method = 'pearson')
))

print('Spearman correlation coefficient: {0:5.3f}'.format
( data['year'].corr(data['AvgTmp'], method = 'spearman
') ))
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print('Kendall tau: {0:5.3f}'.format( data['year'].corr(
data['AvgTmp'], method = 'kendall') ))

11.1 Regression

Listing 14.15 S11_regression.py

'''Solution for Exercise "Regression" '''

# author: Thomas Haslwanter, date: Sept-2015

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import seaborn as sns
import statsmodels.formula.api as sm

# We don't need to invent the wheel twice ;)
from S11_correlation import getModelData

if __name__== '__main__':

# get the data
data = getModelData(show=False)

# Regression
------------------------------------------------------

# For "ordinary least square" models, you can do the
model directly with pandas

#model = pd.ols(x=data['year'], y=data['AvgTmp'])

# or you can use the formula-approach from statsmodels:
# offsets are automatically included in the model
model = sm.ols('AvgTmp ~ year', data)
results = model.fit()
print(results.summary())

# Visually, the confidence intervals can be shown using
seaborn

sns.lmplot('year', 'AvgTmp', data)
plt.show()

# Is the inclination significant?
ci = results.conf_int()

# This line is a bit tricky: if both are above or both
below zero, the product is positive:

# we look at the coefficient that describes the
correlation with "year"

if np.prod(ci.loc['year'])>0:
print('The slope is significant')
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11.1 Normality Check

Listing 14.16 S11_normCheck.py

'''Solution for Exercise "Normality Check" in Chapter 11 '''

# author: Thomas Haslwanter, date: Sept-2015

from scipy import stats
import matplotlib.pyplot as plt
import statsmodels.formula.api as sm
import seaborn as sns

# We don't need to invent the wheel twice ;)
from S11_correlation import getModelData

if __name__== '__main__':

# get the data
data = getModelData(show=False)

# Fit the model
model = sm.ols('AvgTmp ~ year', data)
results = model.fit()

# Normality check
----------------------------------------------------

res_data = results.resid # Get the values for the
residuals

# QQ-plot, for a visual check
stats.probplot(res_data, plot=plt)
plt.show()

# Normality test, for a quantitative check:
_, pVal = stats.normaltest(res_data)
if pVal < 0.05:

print('WARNING: The data are not normally distributed
(p = {0})'.format(pVal))

else:
print('Data are normally distributed.')
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bias Systematic deviation of a sample statistic from the corresponding population
statistic. Often caused by poor selection of subjects.

blocking To reduce the variability of a variable that cannot be randomized by
fixating it.

box-plot A common visualization of the distribution of data, expressed by a box
with a line inside that box, and whiskers at the top and bottom. The box indicates
the first and third quartile, and the line the median value of the data sample. The
whiskers can indicate either the range of the data or the most extreme value within
1.5*the inner-quartile-range.

case–control study A type of observational study in which two existing groups
differing in outcome are identified and compared on the basis of some supposed
causal attribute. (“First treat, then select.”)

categorical data Data that can take on one of a limited, and usually fixed, number
of possible values, with no natural order. (If a “mean value” makes no sense.)

cohort study A type of observational study, where you first select the patients, and
then follow their development. For instance, in medicine a cohort study starts with
an analysis of risk factors. Then the study follows a group of people who do not have
the disease. Finally, correlations are used to determine the absolute risk of subject
contraction. (“First select, then treat.”)

confidence interval Interval estimate of a population parameter, which contains
the true value of the parameter with a defined percent-likelihood (e.g., 95 %-CI).

correlation Any departure of two or more random variables from independence.

crossover study A longitudinal study in which all subjects receive a sequence of
different treatments.
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cumulative distribution function The probability to find a random variable with
a value lower than the given one.

degrees of freedom The number of degrees of freedom is the number of values in
the final calculation of a statistic that are free to vary.

density A continuous function that describes the relative likelihood for a random
variable to take on a given value. For example kernel-density estimation (KDE), or
probability-density function (PDF).

design matrix The data matrix X in the regression model y D X � ˇ C �.

distribution A function which assigns a probability to each measurable subset of
the possible outcomes of a random experiment.

experimental study Study where the selection of the subjects as well as the
conditions of the study are under the control of the investigator.

factor Also called treatment or independent variable, is an explanatory variable
manipulated by the experimenter.

function A Python object that accepts input data, executes commands and calcula-
tions with them, and can return one or more return objects.

hypothesis test A method of statistical inference used for testing a statistical
hypothesis.

IPython The IPython kernel is an interactive shell that allows the immediate
execution of Python commands, and extends these with “magic functions” (e.g.,
“%cd,” or “%whos”) which facilitate the interactive work. It has been so successful
that its development has been split into two separate projects: IPython now handles
the computational kernel; and Jupyter provides the frontend. This allows IPython
to be executed in a terminal modus (which is rarely used on its own, but allows
it to embed IPython in other applications), in a Jupyter QtConsole which allows
the display of help and the graphical outputs in the command window, and in a
Jupyter notebook, a browser-based implementation with support for code, rich text,
mathematical expressions, inline plots, and other rich media.

kurtosis Measure of the peakedness of a distribution. It is approximately 3 for
normally distributed data. “Excess kurtosis” is the kurtosis relative to the normal
distribution.

linear regression Modeling a scalar variable (dependent variable) using a linear
predictor function. The unknown model parameters are estimated from the data.

Simple linear regression: y D k � x C d.
Multiple linear regression: y D k1 � x1 C k2 � x2 C : : : C kn � xn C d.

location Parameter that shifts the mean of a probability distribution.
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logistic regression Also called logit regression.The probabilities describing the
possible outcomes of a single trial are modeled, as a function of the explanatory
(predictor) variables, using a logistic function: f .x/ D L

1Ce�k.x�x0/ .

Markov Chain Stochastic model of a process where the probability of each state
only depends on the previous state.

Matplotlib A Python package which provides the ability to generate 2D and 3D
plots. This includes the plotting commands, as well as the functionality of different
output media, also called backends: an output can for example be into the Jupyter
Notebook, into a PDF file, or into a separate graphics window.

maximum likelihood For a fixed set of data and an underlying statistical model,
the method of maximum likelihood selects the set of values of the model parameters
that maximizes the likelihood function. Intuitively, this maximizes the “agreement”
of the selected model with the observed data, and for discrete random variables
it indeed maximizes the probability of the observed data under the resulting
distribution.

median value The value separating the higher half of the data sample from the
lower half.

minimization Closely related to randomization. Thereby one takes whichever
treatment has the smallest number of subjects, and allocates this treatment with a
probability greater than 0.5 to the next patient.

mode value The highest value in a discrete or continuous probability distribution.

module A file containing Python variables and function definitions.

Monte Carlo Simulation Repeated simulation of the behavior of some parameter
based on repeated sampling of a random variable.

numerical data Data that can be expressed by a (continuous or discrete) number.

numpy Python package for numerical data manipulation. Provides efficient han-
dling of mathematical manipulations on vectors and on arrays of two or more
dimensions.

observational study Study where the assignment of subjects into a treated group
versus a control group is outside the control of the investigator.

paired test Two data sets are paired when the following one-to-one relationship
exists between values in the two data sets: (1) Each data set has the same number of
data points. (2) Each data point in one data set is related to one, and only one, data
point in the other data set.

percentile Also called centile. Value that is larger or equal than p% of the data,
where 1 <D p < 100.

population Includes all of the elements from a set of data.



270 Glossary

power analysis Calculation of the minimum sample size required so that one can
be reasonably likely to detect an effect of a given size.

power Same as sensitivity. Denoted by 1 � ˇ, with ˇ the probability of Type II
errors.

probability density function (PDF) A continuous function which defines the
likelihood to find a random variable with a certain value. The probability to find
the value of the random variable in a given interval is the integral of the probability
density function over that interval.

probability mass function (PMF) A discrete function which defines the probabil-
ity to obtain a given number of events in an experiment or observation.

prospective study A prospective study watches for outcomes, such as the develop-
ment of a disease, during the study period and relates this to other factors such as
suspected risk or protection factor(s).

pylab pylab is a convenience Python module that bulk imports matplotlib.pyplot
(for plotting) and numpy (for mathematics and working with arrays) in a single name
space.

package A folder containing one or more Python modules and an “.ini”-file.

quantile Value that is larger or equal than p�100 % of the data, where 0 < p <D 1.

quartile Value that is larger or equal than 25 %=50 %=75 % of the data (first/sec-
ond/third quartile). The 2nd quartile is equivalent to the median.

randomization A method to eliminate bias from research results, by dividing a
homogeneous group of subjects into a control group (which receives no treatment)
and a treatment group.

ranked data Numbered data where the number corresponds to the rank of the data,
i.e., the number in the sequence of the sorted data, and not to a continuous value.

regular expression A sequence of characters that define a search pattern, mainly
for use in pattern matching with strings. Available for Unix, and for Python, Perl,
Java, C++, and many other programming languages.

residual Difference between the observed value and the estimated function value.

retrospective study A retrospective study looks backwards and examines expo-
sures to suspected risk or protection factors in relation to an outcome that is
established at the start of the study.

sample One or more observations from a population.

scale Parameter that controls the variance of a probability distribution.

scipy Python package for scientific computation. Based on numpy.
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sensitivity Proportion of actual positives which are correctly identified as such
(e.g., the percentage of sick people who are correctly identified as having the
condition).

shape parameter Parameters beyond location and scale which control the shape
of a probability distribution. Rarely used.

skewness Measure of the asymmetry of a distribution.

specificity Proportion of actual negatives which are correctly identified as such
(e.g., the percentage of healthy people who are correctly identified as not having the
condition).

standard deviation Square root of variance.

standard error Often short for standard error of the mean. Square root of the
variance of a statistic.

treatment Same as factor.

type I error A type I error occurs when one rejects the null hypothesis when it is
true. The probability of a type I error is the level of significance of the hypothesis
test, and is commonly denoted by ˛.

type II error A type II error occurs when one rejects the alternative hypothesis
(fails to reject the null hypothesis) when the alternative hypothesis is true. Therefore
it is dependent on an alternative hypothesis. The probability of a type II error is
commonly denoted by ˇ.

unpaired test Test with two sets of independent data.

variance Measure of how far a set of numbers is spread out. Mathematically, it is
the expected value of the squared deviation from the mean: Var.X/ D EŒ.X � �/2�.
The variance of a sample gives an estimate of the population variance that is biased
by a factor of n�1

n . The best unbiased estimate of the population variance is therefore
given by s2 D 1

n�1

Pn
iD1 .yi � y/2 which is called (unbiased) sample variance.
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acronyms, list of, xvii
Akaike Information Criterion AIC, 196, 205
alternative hypothesis, 130
Anaconda, 7
ANOVA, 146

balanced, 146
three-way, 154
two-way, 152

Anscombe’s quartet, 216
array, 18
assumptions, 214

backend, 53
Bayes’ rule, 239
Bayes’ Theorem, 237
Bayesian Information Criterion BIC, 205
Bayesian Statistics, 237
bias, 83
biased estimator, 93
bivariate, 51
blinding, 85
block randomization, 84
Bonferroni correction, 151
bootstrapping, 219

cell means model, 192
censoring, see censorship
censorship, 176
centiles, 91
central limit theorem, 107
chi-square tests, 159, 162
clinical investigation plan, 87
clinical relevance, 131

clinical significance, 131
co-factors, 79
code versioning, 34
coefficient of determination, 189

adjusted, 201
condition number, 211
confidence interval, 95, 111, 160
confirmatory research, 129
confoundings, 79
consumer risk, 130
contingency table, 159
control group, 82
conventions, 5
correlation

Kendall’s 
 , 184
Pearson, 184
Spearman, 184

correlation coefficient, 184
Correlation matrix, 222
correlation matrix, 221
covariance, 184
covariate, 80, 191
Cox proportional hazards model, 180
Cox regression model, 180
cumulative distribution function, 91, 98
cumulative frequency, 63

data
categorical, 51
nominal, 52
numerical, 52
ordinal, 52

data input, 43
dataframe, 18
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degrees of freedom, DOF, 79
density, 77
dependent variable, 191
design matrix, 191
design of experiments

factorial, 86
observational, 81

dictionary, 18
distribution

location, 96
scale, 96

distribution center, 89
distributions

Bernoulli, 100
binomial, 100
chi square, 111
continuous, 115
discrete, 99
exponential, 118
exponential family, 231
F distribution, 113
Fréchet, 175
lognormal, 116
normal, 104
poisson, 103
t-distribution, 110
uniform, 118
Weibull, 116
z, 105

documentation, 87

effects, 192
endogenous variable, 191
error

Type I, 129
Type II, 130

Excel, 47
excess kurtosis, 98
exogenous variable, 191
expected value, 78
explanatory variable, 191
exploratory research, 129

factorial design, 86
factors, 79
Filliben’s estimate, 123
frequency, 159
frequency table, 159
frequency tables, 162
frozen distribution, 99
frozen distribution function, 100

Gaussian distribution, 104
Generalized Linear Models, 231
Generalized Linear Models, GLM, 228
geometric mean, 91
git, 35
github, 35

Holm correction, 152
Holm–Bonferroni correction, 152
homoscedasticity, 217
hypotheses, 126
hypothesis test, 183

incidence, 161
independent variable, 191
indexing, 19
inference, 75
inter-quartile-range, IQR, 65, 92
interactions, 80
intercept, 145, 192
interpretation

Bayesian, 237
frequentist, 237

IPython, 21
notebook, 24
personalization, 11
Tips, 26

Jupyter, 7, 22

Kaplan–Meier survival curve, 177
Kernel Density Estimator (KDE), 61
kurtosis, 98, 209

excess, 209

likelihood ratio, 136
linear predictor, 231, 232
linear regression, 185
link function, 230, 232
list, 18
log likelihood function, 204
logistic function, 228
Logistic Ordinal Regression, 232
Logistic Regression, 228
logistic regression, 228

main effects, 80
Markov chain Monte Carlo modeling, 240
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Matlab, data input from, 49
matplotlib, 53
Maximum likelihood, 203
mean, 89
median, 90
minimization, 85
mode, 90
module, 16
multicollinearity, 211
Multiple Comparisons, 150
multivariate, 51

nan’s, 90
negative likelihood ratio, 136
negative predictive value, 134
non-parametric tests, 122, 139
non-response bias, 84
normal distribution, 104

examples, 107
sum of, 107

normality check, 122
nuisance factors, 79
null hypothesis, 109, 127
numpy, 22

one-tailed t-test, 141
ordinal logistic regression, 228
ordinary least-squares OLS, 186
outliers, 65, 122

p-value, 127
pandas, 35
parametric test, 139
parametric tests, 122
patsy, 190
percentiles, see centiles
plot

rug, 62
plots

3D, 70
boxplot, 65
errorbars, 64
histogram, 61
interactive, 55
kde, 61
pp-plot, 123
probability plot, 122, 123
probplot, 122
qq-plot, 123
scatter, 60
surface, 70

violinplot, 65
wireframe, 70

population, 75
positive likelihood ratio, 136
positive predictive value, 134
post-hoc analysis, 150
posterior probability, 238
power, 129, 131
power analysis, 83, 131
predictor variable, 191
predictor, linear, see linear predictor
preface, vii
prevalence, 135
prior probability, 238
probability density function, 77, 105
probability distribution, 77
probability mass function, 77
probability mass function, PMF, 100
producer risk, 129
pylab, 53
pyplot, 53
Python

data structures, 17
distributions, 6
IDEs, 28
installation, 8
plotting, 52
resources, 14
Tips, 34

Qt Console, 22

R (programming language), 25
random variate, 77
randomization, 84
randomized controlled trial, 81
range, 91
rank correlation, 184
regressand, 191
regression

linear, 185
multilinear, 192, 221, 223
multiple, 223

regression coefficients, 192
regressor, 191
regular expressions, 46
repository, 6
residuals, 80, 186
response variable, 191
revision control, 34
right-censored data, 177
ROC curve, 136



278 Index

rpy2, 25

sample, 75
sample mean, 78
sample selection, 82
sample size, 131
sample standard deviation, 93
sample variance, 93, 147
Scatterplot matrix, 221
scipy, 22
seaborn, 40
sensitivity, 134
shape parameters, 97
significance level, 128
simple linear regression, 187
skewness, 97, 209
slicing, 19
specificity, 134
Spyder, 29
standard deviation, 93
standard error, 94
standard normal distribution, 105
statistical inference, 128
statistical modeling, 183
statsmodels, 39
stratified randomization, 85
studentized range, 150
study

case control , 81
cohort, 81
cross-sectional, 81
crossover, 82
experimental, 81
longitudinal, 81
prospective, 81
retrospective, 81

study design, 81
sum of squares, 147
survival analysis, 175
survival times, 175

test
t-test, independent groups, 143

t-test, one sample, 139
t-test, paired, 142
ANOVA, 146, 152
binomial, 102
chi square, contingency, 163
chi square, one way, 162
Cochran’s Q, 159, 170
Durbin–Watson, 210
F-test, 149
Fisher’s exact, 165
Friedman, 155
Jarque–Bera, 210
Kolmogorov–Smirnov, 124
Kruskal–Wallis, 152
Levene, 147
Lilliefors, 124
logrank, 180
Mann–Whitney, 144
McNemar’s, 169
omnibus, 124, 210
Shapiro–Wilk, 124
Tukey’s, 150
variance ratio, 149
Wilcoxon signed rank sum, 141

transformation, 126
treatments, 79
tuple, 17
two-tailed t-test, 141

unexplained variance, 189
unimodal, 95
univariate, 51, 89

variability, 78
variance, 78, 93
variate, 99, 107
vectors, 18
version control, 34

Weibull modulus, 117
Wing, 29
WinPython, 7
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