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Chapter 1

Introduction

Abstract This chapter introduces the topics that are covered in this book. The goal

of the book is to provide reviewers with advanced strategies for strengthening

the planning, conduct and interpretations of meta-analyses. The topics covered

include planning a meta-analysis, computing power for tests in meta-analysis,

handling missing data in meta-analysis, including individual level data in a tradi-

tional meta-analysis, and generalizations from a meta-analysis. Readers of this text

will need to understand the basics of meta-analysis, and have access to computer

programs such as Excel and SPSS. Later chapters will require more advanced

computer programs such as SAS and R, and some advanced statistical theory.

1.1 Background

The past few years have seen a large increase in the use of systematic reviews in

both medicine and the social sciences. The focus on evidence-based practice in

many professions has spurred interest in understanding what is both known and

unknown about important interventions and clinical practices. Systematic reviews

have promised a transparent and replicable method for summarizing the literature to

improve both policy decisions, and the design of new studies. While I believe in the

potential of systematic reviews, I have also seen this potential compromised by

inadequate methods and misinterpretations of results.

This book is my attempt at providing strategies for strengthening the planning,

conduct and interpretation of systematic reviews that include meta-analysis. Given

the amount of research that exists in medicine and the social sciences, policy-

makers, researchers and consumers need ways to organize information to avoid

drawing conclusions from a single study or anecdote. One way to improve the

decisions made from a body of evidence is to improve the ways we synthesize

research studies.
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Much of the impetus for this work derives frommy experience with the Campbell

Collaboration, where I have served as the co-chair of the Campbell Methods group,

Methods editor, and teacher of systematic research synthesis. Two different issues

have inspired this book. As Rothstein (2011) has noted, there are a number of

questions always asked by research reviewers. These questions include: how many

studies do I need to do a meta-analysis? Should I use random effects or fixed effects

models (and by the way, what are these anyway)? How much is too much heteroge-

neity, andwhat do I do about it? I would add to this list questions about how to handle

missing data, what to do with more complex studies such as those that report

regression coefficients, and how to draw inferences from a research synthesis.

These common questions are not yet addressed clearly in the literature, and I hope

that this book can provide some preliminary strategies for handling these issues.

My second motivation for writing this book is to increase the quality of the

inferences we can make from a research synthesis. One way to achieve this goal is to

improve both the methods used in the review, and the interpretation of those results.

Anyone who has conducted a systematic review knows the effort involved. Aside

from all of the decisions that a reviewer makes throughout the process, there is the

inevitable question posed by the consumers of the review: what does this all mean?

What decisions are warranted by the results of this review? I hope the methods

discussed in this book will help research reviewers to conduct more thorough and

thoughtful analyses of the data collected in a systematic review leading to a better

understanding of a given literature.

The book is organized into three sections, roughly corresponding to the stages of

systematic reviews as outlined by Cooper (2009). These sections are planning a

meta-analysis, analyzing complex data from a meta-analysis, and interpreting meta-

analysis results. Each of these sections are outlined below.

1.2 Planning a Systematic Review

One of the most important aspects of planning a systematic review involves

formulating a research question. As I teach in my courses on research synthesis,

the research question guides every aspect of a synthesis from data collection

through reporting of results. There are three general forms of research questions

that can guide a synthesis. The most common are questions about the effectiveness

of a given intervention or treatment. Many of the reviews in the Cochrane and

Campbell libraries are of this form: How effective is a given treatment in addressing

a given condition or problem? A second type of question examines the associations

between two different constructs or conditions. For example, Sirin’s (2005) work

examines the strength of the correlation between different measures of socio-

economic status (such as mother’s education level, income, or eligibility for

free school lunches) and various measures of academic achievement. Another

emerging area of synthesis involves synthesizing information on the specificity

and sensitivity of diagnostic tests.
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After refining a research question, reviewers must search and evaluate the studies

considered relevant for the review. Part of the process for evaluating studies includes

the development of a coding protocol, outlining the information that will be impor-

tant to extract from each study. The information coded from each study will not only

be used to describe the nature of the literature collected for the review, but also may

help to explain variations that we find in the results of included studies. As a frequent

consultant on research syntheses, I know the importance of deep knowledge of the

substantive issues in a given field for both decisions on what needs to be extracted

from studies in the review, and what types of analyses will be conducted.

In Chap. 3, I focus on two common issues faced by reviewers: the choice of fixed

or random effects analysis, and the planning of moderator analyses for a meta-

analysis. In this chapter, I argue for the use of logic models (Anderson et al. 2011)

to highlight the important mechanisms that make an intervention effective, or the

relationships that may exist between conditions or constructs. Logic models not

only clarify the assumptions a reviewer is making about a given research area, but

also help guide the data extracted from each study, and the moderator models that

should be examined. Understanding the research area and planning a priori the

moderators that will be tested helps avoid problems with “fishing for significance”

in a meta-analysis. Researchers have paid too little attention to the number of

significance tests often conducted in a typical meta-analysis, sometimes reporting

on a series of single variable moderators, analogous to conducting a series of one-

way ANOVAs or t-tests. These analyses not only capitalize on chance, increasing

Type I error, but they also leave the reader with an incomplete picture of how

moderators are confounded with each other. In Chap. 3, I advocate for the use of

logic models to guide the planning of a research synthesis and meta-analysis, for

carefully examining the relationships between important moderators, and for the

use of meta-regression, if possible, to examine simultaneously the association of

several moderators with variation in effect size.

Another common question is: How many studies do I need to conduct a

meta-analysis? Though my colleagues and I have often answered “two” (Valentine

et al. 2010), the more complete answer lies in understanding the power of the

statistical tests in meta-analysis. I take the approach in this book that power of tests

in meta-analysis like power of any statistical test needs to be computed a priori,

using assumptions about the size of an important effect in a given context, and the

typical sample sizes used in a given field. Again, deep substantive knowledge of a

research literature is critical for a reviewer in order to make reasonable assumptions

about parameters needed for power. Chapters 4, 5, 6 discuss how to compute a

priori power for a meta-analysis for tests of the mean effect size, homogeneity, and

moderator analyses under both fixed and random effects models. We are often

concerned about power of tests in meta-analysis in order to understand the strength

of the evidence we have in a given field. If we expect few studies to exist on a given

intervention, we might check a priori to see how many studies are needed to find

a substantive effect. If we ultimately find fewer studies than needed to detect a

substantive effect, we have a more powerful argument for conducting more primary

studies. For these chapters, readers need to understand basic meta-analysis, and

have access to Excel or a computer program such as SPSS or R.
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1.3 Analyzing Complex Data from a Meta-analysis

One problem encountered by researchers is missing data. Missing data occurs

frequently in all types of data analysis, and not just a meta-analysis. Chapter 7

provides strategies for examining the sensitivity of the results of a meta-analysis to

missing data. As described in this chapter, studies can be missing, or missing data

can occur at the level of the effect size, or for moderators of effect size variance.

Chapter 7 provides an overview of strategies used for understanding how missing

data may influence the results drawn from a review.

The final chapter in this section (Chap. 8) provides background on individual

participant meta-analysis, or IPD. IPD meta-analysis is a strategy for synthesizing

the individual level or raw data from a set of primary studies. While it has been used

widely in medicine, social scientists have not had the opportunity to use it given the

difficulties in locating the individual participant level data. I provide an overview of

this technique here since agencies such as the National Science Foundation and the

National Institutes of Health are requiring their grantees to provide plans for data

sharing. IPD meta-analysis provides the opportunity to examine how moderators

are associated with effect size variance both within and between studies. Moderator

analyses in meta-analysis inherently suffer from aggregation bias – the relation-

ships we find between moderators and effect size between studies may not hold

within studies. Chapter 9 provides a discussion and guidelines on the conduct of

IPD meta-analysis, with an emphasis on how to combine aggregated or study-level

data with individual level data.

1.4 Interpreting Results from a Meta-analysis

Chapter 9 centers on generalizations from meta-analysis. Though Chap. 9 does not

provide statistical advice, it does address a concern I have about the interpretation

of the results of systematic reviews. For example, the release of the synthesis

on breast cancer screening in women by the US Preventive Services Task Force

(US Preventive Services Task Force 2002) was widely reported and criticized since

the results seemed to contradict current practice. In education, the syntheses

conducted by the National Panel on Reading also fueled controversy in the field

(Ehri et al. 2001), including a number of questions about what the results actually

mean for practice. Chapter 9 reviews both of these meta-analyses as a way to begin

a conversation about what types of actions or decisions can be justified given the

nature of meta-analytic data. All researchers involved in the conduct and use

of research synthesis share a commitment to providing the best evidence available

to make important decisions about social policy. Providing the clearest and

most accurate interpretation of research synthesis results will help us all to reach

this goal.
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The final chapter, Chap. 10, provides a summary of elements I consider important

in a meta-analysis. The increased use of systematic reviews and meta-analysis for

policy decisions needs to be accompanied by a corresponding focus on the quality

of these syntheses. The final chapter provides my view of elements that will lead to

both higher quality syntheses, and then to more reasoned policy decisions.

1.5 What Do Readers Need to Know to Use This Book?

Most of the topics covered in this book assume basic knowledge of meta-analysis

such as is covered in the introductory texts by Borenstein et al. (2009), Cooper

(2009), Higgins and Green (2011), and Lipsey and Wilson (2000). I assume, for

example, that readers are familiar with the stages of a meta-analysis: problem

formulation, data collection, data evaluation, data analysis, and reporting of results

as outlined by Cooper (2009). I also assume an understanding of the rationale for

using effect sizes. A review of the most common effect sizes and the notation used

throughout the text are given in Chap. 2. In terms of data analysis, readers should

know about the reasons for using weighted means for computing the mean effect,

the importance of examining the heterogeneity of effect sizes, and the types of

analyses (categorical and meta-regression) used to investigate models of effect size

heterogeneity. I also assume that researchers conducing systematic reviews have

deep knowledge of their area of interest. This knowledge of the substantive issues is

critical for making choices about the kinds of analyses that should be conducted in a

given area as will be demonstrated later in the text.

Later chapters of the book cover advanced topics such as missing data, and

individual participant data meta-analysis. These chapters require some familiarity

with matrix algebra and multi-level modeling to understand the background for the

methods. However, I hope that readers without this advanced knowledge will be

able to see when these methods might be useful in a meta-analysis, and will be able

to contact a statistical consultant to assist in these techniques.

In terms of computer programs used to conduct meta-analysis, I assume that the

reader has access to Excel, and a standard statistical computing package such as

SPSS. Both of these programs can be used for most of the computations in the

chapters on power analysis. Unfortunately, the more advanced techniques presented

for missing data and individual participant data meta-analysis will require the use of

R, a freeware statistical package, and SAS. Each technical chapter in the book

includes an appendix that provides a number of computing options for calculating

the models discussed. The more complex analyses may require the use of SAS, and

may also be possible using the program R. Sample programs for conducting the

analyses are given in the appendices to the relevant chapters.

In addition, all of the data used in the examples are given in the Data Appendix.

Readers will find a brief introduction to each data set as it appears in the text,

with more detail provided in the Data Appendix. The next chapter provides an

overview of the notation used in the book as well as a review of the forms of effect

sizes used throughout.
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Chapter 2

Review of Effect Sizes

Abstract This chapter provides an overview of the three major effect sizes that

will be used in the book: the standardized mean difference, the correlation coeffi-

cient, and the log odds ratio. The notation that will be used throughout the book is

also introduced.

2.1 Background

This chapter reviews the threemajor types of effect sizes that will be used in this text.

These three general types are those used to compare the means of two continuous

variables (such as the standardized mean difference), those used for the association

between twomeasures (such as the correlation), and those used to compare the event

or incidence rate in two samples (such as the odds ratio). Below I outline the general

notation that will be used when talking about a generic effect size, followed by a

discussion of each family of effect sizes that will be encountered in the text. For a

more thorough and complete discussion of the range of effect sizes used in meta-

analysis, the reader should consult any number of introductory texts (Borenstein

et al. 2009; Cooper et al. 2009; Higgins and Green 2011; Lipsey and Wilson 2000).

2.2 Introduction to Notation and Basic Meta-analysis

In this section, I introduce the notation that will be used for referring to a generic

effect size, and review the basic techniques for meta-analysis. I will use Ti as
the effect size in the ith study where i ¼ 1,. . .k, and k is the total number of

studies in the sample. Note that Ti can refer to any of the three major types of

effect size that are reviewed below. Also assume that each study contributes

only one effect size to the data. The generic fixed-effects within-study variance of
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Ti will be given by vi; below I give the formulas for the fixed effects within-study

variance of each of the three major effect sizes.

The fixed-effects weighted mean effect size, T�, is written as

�T� ¼
Pk
i¼1

Ti
vi

Pk
i¼1

1
vi

¼
Pk
i¼1

wiTi

Pk
i¼1

wi

(2.1)

where wi is the fixed-effects inverse variance weight or 1/vi. The fixed-effects

variance, v�, of the weighted mean, T�, is

v� ¼ 1

Pk
i¼1

wi

: (2.2)

The 95% confidence interval for the fixed effects weighted mean effect size is

given as T� � 1:96ðpv�Þ.
Once we have the fixed-effects weighted mean and variance, we need to examine

whether the effect sizes are homogeneous, i.e., whether they are likely to come from

a single distribution of effect sizes. The homogeneity statistic, Q, is given by

Q ¼
Xk
i¼1

ðTi � T�Þ2
vi

¼
Xk
i¼1

wiðTi � T�Þ2 ¼
Xk
i¼1

wiT
2
i �

Pk
i¼1

ðwiTiÞ2

Pk
i¼1

wi

: (2.3)

If the effect sizes are homogeneous, Q is distributed as a chi-square distribution

with k–1 degrees of freedom.

2.3 The Random Effects Mean and Variance

As will be discussed in the next chapter, the random effects model assumes that the

effect sizes in a synthesis are sampled from an unknown distribution of effect sizes

that is normally distributed with mean, y, and variance, t2. Our goal in a random

effects analysis is to estimate the overall weighted mean and the overall variance.

The weighted mean will be estimated as in (2.1), only with a weight for each study

that incorporates the variance, t2, among effect sizes. One estimate of t2 is the

method of moments estimator given as

t̂2 ¼
Q�ðk�1Þ

c if Q � k � 1

0 if Q< k � 1

" #
(2.4)
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where Q is the value of the homogeneity test for the fixed-effects model, k is the

number of studies in the sample, and c is based on the fixed-effects weights,

c ¼
Xk
i¼1

wi �
Pk
i¼1

w2
i

Pk
i¼1

wi

: (2.5)

The random effects variance for the ith effect size is v�i and is given by

v�i ¼ vi þ t̂2 (2.6)

where vi is the fixed effects, within-study variance of the effect size, Ti. Chapter 9,
on individual participant meta-analysis, will describe other methods for obtaining

an estimate of the between-subjects variance, or t̂2. The random-effects weighted

mean is written as T�� , and is given by

T�� ¼
Pk
i¼1

Ti
v�i

Pk
i¼1

1
v�i

¼
Pk
i¼1

w�
i Ti

Pk
i¼1

w�
i

(2.7)

with the variance of the random-effects weighted mean given by v�� below.

v�� ¼
Xk
i¼1

1

vi þ t̂2
¼

Xk
i¼1

w�
i (2.8)

The 95% confidence interval for the random effects weighted mean is given by

T�� � 1:96ðpv��Þ.
Once we have computed the random effects weighted mean and variance,

we need to test the homogeneity of the effect sizes. In a random effects model,

homogeneity indicates that the variance component, t2, is equal to 0, that is, that

there is no variation between studies. The test that the variance component zero is

given by

Q ¼
Xk
i¼1

wi ðTi � �TiÞ2 (2.9)

If the test of homogeneity is statistically significant, then the estimate of t2 is
significantly different from zero.
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2.4 Common Effect Sizes Used in Examples

In this section, I introduce the effect sizes used in the examples. The three effect

sizes used in the book are the standardized mean difference, denoted as d, the
correlation coefficient, denoted as r, and the odds-ratio, denoted as OR. I describe
each of these effect sizes and their related family of effect sizes below.

2.4.1 Standardized Mean Difference

When our studies examine differences between two groups such as men and women

or a treatment and control, we use the standardized mean difference. If �Xi and �Yi are
the means of the two groups, and sX and sY the standard deviations for the two

groups, the standardized mean difference is given by

d ¼ cðdÞ
�Xi � �Yi

s2p
(2.10)

where s2p is the pooled standard deviation given by

s2p ¼
ðnX � 1Þs2X þ ðnY � 1Þs2Y
ðnX � 1Þ þ ðnY � 1Þ ; (2.11)

where the sample sizes for each group are nX and nY, and the small sample bias

correction for d, c(d), is given by

cðdÞ ¼ 1� 3

4ðnX þ nYÞ � 9
: (2.12)

The variance of the standardized mean difference is given by

vd ¼ nX þ nY
nXnY

þ d2

2ðnX þ nYÞ : (2.13)

The standardized mean difference, d, is the most common form of the effect size

when the studies focus on estimating differences among two independent groups

such as a treatment and a control group, or between boys and girls. Note that in the

case of the standardized mean difference, d, we assume that the unit of analysis is

the individual, not a cluster or a group.

2.4.2 Correlation Coefficient

When we are interested in the association between two measures, we use the

correlation coefficient as the effect size, denoted by r. However, the correlation

10 2 Review of Effect Sizes



coefficient, r, is not normally distributed, and thus we use Fisher’s z-transformation

for our analyses. Fisher’s z-transformation is given by

z ¼ :5 ln
1þ r

1� r

� �
: (2.14)

The variance for Fisher’s z is

vz ¼ 1

n� 3
(2.15)

where n is the sample size in the study. After computing the mean correlation and

its confidence interval in the Fisher’s z metric, the results can be transformed back

into a correlation using

r ¼ e2z � 1

e2z þ 1
(2.16)

The correlation coefficient, r, and Fisher’s z are typically used when synthe-

sizing observational studies, when the research question is concerned with

estimating the strength of the relationship between two measures. In Chap. 9, I

also provide an analysis using the raw correlation, r, rather than Fisher’s z.

2.4.3 Log Odds Ratio

When we are interested in differences in incidence rates between two groups, such

as comparing the number of cases of a disease in men and women, we can use a

number of effect sizes such as relative risk or the odds ratio. In this book, we will

use the odds ratio,OR, and its log transformation, LOR. While there are a number of

effect sizes used to synthesize incidence rates or counts, here we will focus on the

log odds ratio since it has desirable statistical properties (Lipsey and Wilson 2000).

To illustrate the odds ratio, imagine we have data in a 2 � 2 table as displayed in

Table 2.1.

The odds ratio for the data above is given by

OR ¼ ad

bc
(2.17)

Table 2.1 Example of data for a log odds ratio

Group A Group B

Condition present a b

Condition not present c d
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with the log-odds ratio given by

LOR ¼ lnðORÞ :

The variance of the log-odds ratio, LOR, is given by

vLOR ¼ 1

a
þ 1

b
þ 1

c
þ 1

d
: (2.18)

We use the log odds ratio, LOR, since the odds ratio, OR, has the undesirable

property of being centered at 1, and with a range from 0 to 1. The log odds ratio,

LOR, is centered at 0, and ranges from �1 to 1. The reader interested in other

types of effect sizes and in more details about the distributions of these effect sizes

should examine any number of texts of meta-analysis (Borenstein et al. 2009; Cooper

2009; Cooper et al. 2009; Higgins and Green 2011; Lipsey and Wilson 2000).
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Chapter 3

Planning a Meta-analysis

in a Systematic Review

Abstract This chapter provides guidance on planning a meta-analysis. The topics

covered include choosing moderators for effect size models, considerations for

choosing between fixed and random effects models, issues in conducting moderator

models in meta-analysis such as confounding of predictors, and computing

meta-regression. Examples are provided using data from a meta-analysis by Sirin

(2005). The chapter’s appendix also provides SPSS and SAS program code for the

analyses in the examples.

3.1 Background

Many reviewers have difficulties in planning and estimating meta-analyses as part

of a systematic review. There are a number of stages in planning and executing a

meta-analysis including: (1) deciding on what information should be extracted from

a study that may be used for the meta-analysis, (2) choosing among fixed, random

or mixed models for the analysis, (3) exploring possible confounding of moderators

in the analyses, (4) conducting the analyses, (5) interpreting the results. Each of

these steps is interrelated, and all depend on the scope and nature of the research

question for the review. Like any data analysis project, a meta-analysis, even if it is

considered a small one, provides complex data that the researcher needs to inter-

pret. Thus, while the literature retrieval and coding phases may take a large

proportion of the time needed to complete a systematic review, the data analysis

stage requires some careful thought about how to examine the data and understand

the patterns that may exist. This chapter reviews the steps for conducting a

moderator analysis, and provides some recommendations for practice. The justifi-

cation for many of the recommendations here is best practice statistical methods;

there have been many instances in the meta-analytic literature where the analytic

procedures have not followed standard statistical analysis practices. If we want our

research syntheses to have influence on practice, we need to make sure our results

are conducted to the highest standard.
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3.2 Deciding on Important Moderators of Effect Size

As many other texts on meta-analysis have noted (Cooper et al. 2009; Lipsey and

Wilson 2000), one critical stage of a research synthesis is coding of the studies. It is

in this stage that the research synthesist should have identified important aspects

of studies that need to be considered when interpreting the effects of an intervention

or the magnitude of a relationship across studies. One strategy for identifying

important aspects of studies is to develop a logic model (Anderson et al. 2011).

A logic model outlines how an intervention should work, and how different

constructs are related to one another. Logic models can be used as a blueprint to

guide the research synthesis; if the effect sizes in a review are heterogeneous, the

logic model suggests what moderator analyses should be conducted, a priori, to

avoid fishing for statistical significance in the data. Part of the logic model may be

suggested by prior claims made in the literature, i.e., that an intervention is most

effective for a particular subset of students. These claims also guide the choice of

moderator analyses. Figure 3.1 is taken from the Barel et al. (2010) meta-analysis of

the long-term sequelae of surviving genocide. As seen in the Figure, prior research

suggests that survivors’ adjustment relates to the age, gender, country of residence,

and type of sample (clinical versus non-clinical). In addition, research design

quality is assumed related to the results of studies examining survivors’ adjustment.

Fig. 3.1 Logic model from Barel et al. (2010)
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The model shown in Fig. 3.1 also indicates the range of outcome measures

included in the literature. This conceptual model guides not only the types of codes

to use in the data collection phase of the synthesis, but also the analyses that will

add to our understanding of these processes. Identifying a set of moderator analyses

a priori that are tied to a conceptual framework avoids looking for relationships

after obtaining the data, thus, capitalizing on chance to discover spurious findings.

In medical research, a number of researchers have also discussed the importance of

the use of logic models and causal diagrams in examining research findings

(Greenland et al. 1999; Joffe and Mindell 2006).

Raudenbush (1983) illustrates another method for generating a priori ideas about

possible moderator analyses. In his chapter for the Evaluation Studies Review

Annual, Raudenbush outlines the controversies surrounding studies of teacher

expectancy’s effects on pupil IQ that were debated in the 1970s and 1980s.

Researchers used the same literature base to argue both for and against the existence

of a strong effect of teacher expectancy on students’ measured IQ. These studies

typically induced a teacher’s expectancy about a student’s potential by informing

these teachers about how a random sample of students was expected to make large

gains in their ability during the current school year. Raudenbush describes how a

careful reading of the original Pygmalion study (Rosenthal and Jacobson 1968)

generated a number of ideas about moderator analyses. For example, the critics of

both the original and replication studies generated a number of interesting

hypotheses. One of these hypotheses grew out of the failure of subsequent studies

to replicate the original findings – that the timing of the expectancy induction may

be important. If teachers are provided the expectancy induction after they have

gotten to know the children in their class, any information that does not conform to

their own assessment of the child’s abilities may be discounted, leading to a smaller

effect of the expectancy induction. Raudenbush illustrates how the timing of the

induction does relate to the size of the effect found in these studies. An understand-

ing of a particular literature, and as Raudenbush emphasizes, controversies in that

literature can guide the research reviewer in planning a priori moderator analyses in

a research synthesis.

Other important moderator analyses might be suggested by prior work in

research synthesis as detailed by Lipsey (2009). In intervention research, the nature

of the randomization used often relates to the size of the effect; randomized

controlled trials often result in effect size estimates that are different from studies

using quasi-experimental techniques. Much research has been conducted on the

difference between published and unpublished studies, given the tendency in the

published literature to favor statistically significant results. Littell et al. (2005) have

also found that studies where the program’s developer acts as the researcher/

evaluator result in larger effects for the program than studies using independent

evaluators. No matter how moderators may be chosen, like in any statistical

analysis, a reviewer should have a priori theories about the relationships of interest

that will guide any moderator analysis.
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3.3 Choosing Among Fixed, Random and Mixed

Effects Models

Many introductory texts on meta-analysis have discussed this issue in depth such as

Borenstein et al. (2009), as well as the Cochrane Handbook (Higgins and Green

2011). My aim here is not to repeat these thorough summaries, but to clarify what

each of these choices means for the statistical analysis in a research review. These

terms have been used in various ways in both the medical and social science meta-

analysis literature.

The terms fixed, random and mixed effects all refer to choices that a meta-analyst

has in deciding on amodel for ameta-analysis. In order to clarify how these terms are

used, we need to describe the type of model we are looking at in meta-analysis as

well as the assumptions we are making about the error variance in the model. The

first stage in a meta-analysis is usually to estimate the mean effect size and its

variance, and also to examine the amount of heterogeneity that exists across studies.

It is in this stage of estimating a mean effect size that the analyst needs to make

a decision about the nature of the variance that exists among studies in their effect

size estimates.

If we estimate the mean effect size using the fixed effects assumption, we are

assuming that the variation among effect sizes can be explained by sampling error

alone – that the fact that different samples are used in each study accounts for the

differences in effect size magnitude. The heterogeneity among effect sizes is

entirely due to the fact that the studies use different samples of subjects. Hedges

and Vevea (1998) emphasize that in assuming fixed effects, the analyst wishes to

make inferences only about the studies that are gathered for the synthesis. The

studies in a fixed effects model are not representative of a population of studies, and

are not assumed to be a random sample of studies.

If we estimate the mean effect size using the random effects assumption, we are

making a two stage sampling assumption as discussed by Raudenbush (2009). We

first assume that each study’s effect size is a random draw from some underlying

population of effect sizes. This population of effect sizes has a mean y, and variance,
t2. Thus, one component of variation among effect size estimates is t2, the variation
among studies. Within each study, we use a different sample of individuals so our

estimate of each study’s effect size will vary from its study mean by the sampling

variance, vi . The variance among effect size estimates in a random effects model

consists of within-study sampling variance, vi, and between-study variance, t2.
Hedges and Vevea (1998) note that when using a random effects model, we are

assuming that our studies are sampled from an underlying population of studies, and

that our results will generalize to this population. We are assuming in a random

effects model that we have carefully sampled our studies from the literature,

including as many as fit our a priori inclusion criterion, and including studies from

published and unpublished sources to represent the range of possible results.

When our effect sizes are heterogeneous, and we want to explore reasons for this

variation among effect size estimates, we make assumptions about whether this
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variation is fixed, random, or a mix of fixed and random. These choices apply to both

categorical models of effect size (one-way ANOVAs, for example), or to regression

models.With fixed effects models of effect size with moderators, we assume that the

differences among studies can be explained by sampling error, i.e., the differences

among studies in their samples and their procedures. In the early history of

meta-analysis, the fixed effects assumption was the most common. More recently,

reviewers have tended to use random effects models since there are multiple

sources of variation among studies that reviewers do not want to attribute only to

sampling variation. Random effects models also provide estimates with larger

confidence levels (larger variances) since we assume a component of between

study, random variance.

The confusion over mixed and fully random effects models occurs when we are

talking about effect size models with random components. The most common use

of the term "mixed" model refers to the hierarchical linear model formulation of

meta-analysis. At one stage, each study’s effect size estimate is assumed sampled

from a normal distribution with mean y, and variance, t2. At the level of the study,
we sample individuals into the study. The two components of variation between

study effect sizes are then t2 and vi, the sampling variance of the study effect size.

This is our typical random effects model specification. We assume that some

proportion of the variation among studies can be accounted for by differences in

study characteristics (i.e., sampling variance), and some is due to the underlying

distribution of effect sizes.

Raudenbush (2009) also calls this mixed model variation the conditional random

effect variance, conditional on the fixed moderators that represent differences in

study characteristics. What is left over after accounting for fixed differences among

studies in their procedures, methods, sample, etc. is the random effects variation. t2.
Thus, some of the differences among studies may be due to fixed moderator effects,

and some due to unknown random variation. For example, when we have groups

such as girls versus boys, we might assume that the grouping variable or factor is

fixed – that the groups in our model are not sampled from some universe of groups.

Gender is usually considered a fixed factor since it has a finite number of levels.

When we assume random variation within each group, but consider the levels of the

factor as fixed, we have a mixed categorical model.

If, however, we consider the levels of the factor as random, such as we might do

if we have sampled schools from the population of districts in a state, then we have

a fully random effects model. We consider the effect sizes within groups as sampled

from a population of effect sizes, and the levels of factor (the groups) as also

randomly sampled from a population of levels for that factor.

Borenstein et al. (2009) provide a useful and clear description of random

and mixed effects models in the context of categorical models of effect size.

As they point out, if we are estimating a random effects categorical model of

effect size, we also have to make some assumptions about the nature of the random

variance. We can make three different choices about the nature of the ran-

dom variance among the groups in our categorical model. The simplest assumption

is that the random variance component is the same within each of our groups,
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and thus we estimate the random variance assuming that the groups differ in their

true mean effect size, but have the same variance component. A second assumption

is that the variance components within each group differ; one group might

be assumed to have more underlying variability than another. In this scenario, we

estimate the variance component within each group as a function of the differences

among the effect size estimates and their corresponding group mean. For example,

we might have reason to suspect that an intervention group has a larger variance

after the treatment than the control group. We might also assume that each group

has a separate variance component, and the differences among the means are also

random. This assumption, rare in meta-analysis, is a fully random model.

All of the examples in this book will assume a common variance component

among studies. Borenstein et al. (2009) discuss the difficulties in estimating the

variance component with small sample sizes. Chapter 2 provided one estimate for

the variance component, the method of moments, also called the DerSimonian nd

Laird estimator (Dersimonian and Laird 1986). Below I illustrate another estimate

of the variance component that requires iterative methods of estimation that are

available in SAS or R.

3.4 Computing the Variance Component in Random

and Mixed Models

The most difficult part of computing random and mixed effects models is the

estimation of the variance component. As outlined by Raudenbush, to compute the

random effects mean and variance in a simple random effects model requires two

steps. The first step is to compute the random effects variance, and the second uses

that variance estimate to compute the random effects mean. There are at least three

methods for computing the random effect variance: (1) the method of moments

(Dersimonian and Laird 1986), (2) full maximum likelihood, and (3) restricted

maximum likelihood. Only the method of moments provides a closed solution for

the random effects variance. This estimate, though easy to compute, is not efficient

given that it is not based on assumptions about the likelihood. Both the full

maximum likelihood and the restricted maximum likelihood solutions require itera-

tive solutions. Fortunately, several common computing packages will provide

estimates of the variance component using maximum likelihood methods. Below

is an outline of how to obtain the variance component using two of these methods,

the method of moments, and restricted maximum likelihood, in a simple random

effects model with no moderator variables. Raudenbush (2009) compares the per-

formance of both full maximum likelihood and restricted maximum likelihood

methods, concluding that the restricted maximum likelihood method (REML)

provides better estimates. The Appendix provides examples of programs used to

compute the variance components using these methods.
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Method of moments. This estimate can be obtained using any program that can

provide the sums of various quantities of interest. SPSS Descriptives options allow

the computation of the sum, and Excel can also be used. The closed form solution

for the variance component t2 is given by Raudenbush (2009) as

t2 ¼
Pk
i¼1

Ti � �Tð Þ2

k � 1
� �v

where �T ¼ Pk
i¼1

Ti=k; and �v ¼ Pk
i¼1

vi=k. Raudenbush calls this estimate the method of

moments using ordinary least squares regression – all studies are weighted the same

in computing the variance component.

A more common method for computing the variance component is what

Raudenbush calls the method of moments using weighted least squares. This method

of computing the variance component is included in several computer programs that

compute meta-analysis models such as RevMan (Cochrane Information Manage-

ment System 2011) and CMA (Comprehensive Meta-Analysis Version 2 2006).

The solution given below is equivalent to the estimator described in (2.3) in Chap. 2.

Raudenbush gives the closed form solution of the methods of moments estimator

using weighted least squares as

t̂2 ¼
Pk
i¼1

1=vi Ti � �Tð Þ2
h i

� ðk � 1Þ
trðMÞ ; where

trðMÞ ¼
Xk
i¼1

1=vi �
Pk
i¼1

1=v 2
i

Pk
i¼1

1=vi

; and

�T ¼
Pk
i¼1

1=vi Ti

Pk
i¼1

1=vi

:

Since these methods are already implemented in two common meta-analysis

computting packages, it is not necessary for the research reviewer to understand

these details.

Restricted maximum likelihood and full maximum likelihood estimates require

an iterative solution. These can be programmed in R; an example code is provided

in the Appendix. Estimates of the variance component can also be obtained

using HLM software (Raudenbush et al. 2004), following the directions for esti-

mating a v-knownmodel. (Note that in the latest version of HLM, the program needs

to be run from a DOS prompt in batch mode). These estimates can also be obtained
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using SAS ProcMixed; a sample program is included in the Appendix. The program

R can also be used conducting a simple iterative analysis to compute the restricted

maximum likelihood estimate of the variance component. The Appendix contains a

program that computes the overall variance component as given in Table 3.1. Note

that the most common method for computing the variance component remains the

method of moments. Most research reviewers do not have the computing packages

needed to obtain the REML estimate.

Once the reviewer has made the decision about fixed or random effects models,

and then computed the variance component, if necessary, the analysis proceeds by

first computing the weighted mean effect size (fixed or random), and then testing for

homogeneity of effect sizes. In the fixed effects case, this requires the computation

of the Q statistic as outlined in Chap. 2. In the random effects case, this requires the

test that the estimated variance component, t2, is different from zero as seen in

Chap. 2. More detail about these analyses can be found in introductory texts

(Borenstein et al. 2009; Higgins and Green 2011; Lipsey and Wilson 2000).

3.4.1 Example

Sirin (2005) reports on a meta-analysis of studies estimating the relationship

between measures of socio-economic status and achievement. The socio-economic

status measures used in the studies in the meta-analysis include parental income,

parental education level, and eligibility for free or reduced lunch. The achievement

measures include grade point average, achievement tests developed within each

study, state developed tests, and also standardized tests such as the California

Achievement Test. Below is an illustration of the different options for conducting

a random effects and mixed effects analysis with categorical data. There are eleven

studies in the subset of the Sirin data that use free lunch eligibility as the measure of

SES. Five of these studies use a state-developed test as a measure of achievement,

and six use one of the widely used standardized achievement tests such as the

Stanford or the WAIS. Table 3.1 gives the variance components as computed by

the DerSimonian and Laird (1986) method (also called the method of moments),

and SAS (the programs are given in the Appendix to this chapter). The SAS

estimates use restricted maximum likelihood. Note that I provide both the common

estimate of the variance component, and separate estimates within the two groups.

Table 3.1 Comparison of two methods to compute random effects variance

Test type n Q

Method of moments

estimate

SAS estimate

using REML

State test 5 60.99a 0.0872 0.086

Standardized

achievement test

6 75.14a 0.0247 0.0417

Total 11 514.86a 0.111 0.0957
ap < 0.05, indicating significant heterogeneity
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In this example, both groups have significant variability among the effect sizes,

indicating that the variance components are all significantly different from zero. We

also see that the method of moments estimate and the estimate using REML differ

in the case of the standardized achievement tests, complicating both the choice of

estimation method and of whether to use separate variance component estimates

within each group or a common estimate.

As Borenstein et al. (2009) point out, the estimates for the variance component

are biased when samples are small. Given the potential bias in the estimates and the

differences in the two estimates for the studies using standardized achievement

tests, the analysis in Table 3.2 uses the SAS estimate of the common variance

component, t2 ¼ 0.0957 to compute the random effects ANOVA. While the

state tests have a mean Fisher’s z-score that is larger than that for the standardized

tests, their confidence intervals do overlap indicating that these two means are not

significantly different.

3.5 Confounding of Moderators in Effect Size Models

As mentioned earlier, there are several examples of meta-analyses that do not follow

standard statistical practice. One example concerns the use of multiple statistical tests

without adjusting the Type I error rate. Many of the meta-analyses in the published

literature report on a series of one-wayANOVAmodelswhen examining the effects of

moderators (Ehri et al. 2001; Sirin 2005). Often the results of examining one modera-

tor at a time are provided, with confidence intervals for each of the mean effect sizes

within groups, and the results of an omnibus test of significance among the mean

values. Examining a series of one-way ANOVA models in meta-analysis has all the

same difficulties as conducting these in any other statistical analysis context. Primary

studies rarely report one-wayANOVAs, relyingmore onmultivariate analyses such as

multi-factor ANOVAor regression.Why themeta-analytic literature has not followed

these recommendations is not clear.

There are a number of reasons why meta-analysts need to be careful about

reporting a series of single-variable analyses. The first is the issue of confounding

moderators. It could easily be the case that the mean effect sizes using different

measures of a construct are significantly different from one another, and that there

are also significant differences among the means for groups of studies whose

participants are of different age ranges. If we only conduct these one-way analyses

Table 3.2 Analysis with a single variance component estimate

Type of achievement

test n Weighted mean

SD of mean

effect size

Lower

95% CI

Upper

95% CI

State 5 0.614 0.146 0.327 0.900

Standardized 6 0.265 0.129 0.012 0.517

Total 11 0.417 0.096 0.228 0.606
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without examining the relationship between age of participants and type of measure,

wewill not know if these two variables are confounded. Related to this problem is one

of interpretation. How do we translate a series of one-way ANOVAs results into

recommendations for practice? In our example, which of the twomoderators are more

important? Should we recommend that only one type of measure be used? Or, should

we focus on the effectiveness of the intervention for particular age groups?

A final issue relates to the problem of multiple comparisons. As we learned in

our first statistics course, conducting a series of statistical tests all at the p ¼ 0.05

level will increase our chances of finding a spurious result. The more statistical tests

we conduct, the more likely we will find a statistically significant result by chance.

But, we do not seem to heed this advice in the practice of meta-analysis. We often

see a series of analyses reported, each testing the significance of the mean effect

size or the between-group homogeneity test. Fortunately, more recent research

syntheses have also reported on the confidence intervals for these means, obviating

the problems that may occur with singular reliance on statistical tests. Hedges and

Olkin (1985) discuss the adjustment of the significance level for multiple

comparisons using Bonferroni methods, but few meta-analyses use these methods

across the meta-analysis itself.

What should meta-analysts do when trying to examine the relationship of a

number of moderators to effect size magnitude? The first is to recognize that

moderators are bound to suffer from confounding given the nature of meta-analysis.

Especially in the social sciences, the studies in the synthesis are rarely replications

of one another, and use various samples, measures and procedures. Research

reviewers should examine the relationships among moderators. These relationships

can be examined using correlations, two-way tables of frequencies, or other

methods. Understanding the patterns of moderators across studies will not only

help researchers and readers understand how to interpret the moderator analyses, it

will also highlight the nature of the literature itself. It could be that no study uses the

highest quality measure of a construct with a particular sample of participants, and

thus, we do not know how effective an intervention is with that sample.

Research synthesists should also focus more on the confidence interval for the

mean effect sizes within a given grouping of studies, rather than on the significance

tests. The overlap among the confidence intervals for the mean effect sizes will

provide the same information as the statistical significance test, but is not subject to

the problems with multiple comparisons (Valentine et al. 2010).

More researchers should also use meta-regression to examine the relationship of

multiple predictors on effect magnitude. Once a researcher has explored the possible

confounding among moderators in the literature, a set of moderators could be used

with meta-regression to see how they relate to effect size net of the other variables in

the effect size model. Lipsey (2009) advocates the use of hierarchical regression; the

first set of predictors in the model may be control variables such as type of measure

used, and then themoderators of substantive interest are entered to examine howmuch

of the residual variation is accounted for by these predictors. If one of the goals for

research synthesis is to provide evidence for practice and policy, we need to under-

stand what contextual and study level moderators may explain the differences among

studies in their results.
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3.5.1 Example

In the Sirin (2005) study, the results of a number of one-way ANOVA models are

reported. For example, in Table 3.3, I present a subset of the Sirin studies, examin-

ing the mean effect size for groups defined by type of achievement measure and by

type of SES measure. These studies are only a subset of those from the paper, and

do not necessarily reflect the results of the original analysis; they are here for

illustration purposes only. Since the between-group QB test is significant for both

achievement and SES measures, we can state that there is at least one effect size

within each grouping that is not equal to the other means.

What is not clear from this table is whether these two variables, type of achieve-

ment measure and type of SES measure are associated with one another. Table 3.4

below shows the crosstabulation for the number of effect sizes within the cells defined

by these two variables. The Pearson’s chi-square test of independence is significant,

w2ð6Þ ¼ 16:67, p ¼ 0.011. The chi-square test indicates a relationship between type

of SES measure and type of achievement measure. Examining the table, we see that

Table 3.3 One-way fixed effects ANOVA models based on Sirin (2005)

Moderator n z (sd) Lower CI Upper CI QB p

Achievement

GPA 10 0.26(0.011) 0.24 0.29 QB ¼ 23.73 <0.001

Achievement 5 0.27(0.019) 0.24 0.31

State 6 0.21(0.005) 0.20 0.22

Standardized 12 0.22(0.012) 0.20 0.24

SES

Free lunch 11 0.24(0.014) 0.21 0.26 QB ¼ 27.24 <0.001

Income 4 0.21(0.005) 0.20 0.22

Education 18 0.26(0.009) 0.25 0.28

Total 33 0.22(0.004) 0.22 0.23

Table 3.4 Crosstabulation of SES and Achievement

SES measures

Achievement measures Free lunch Income Education

GPA 1 0 9

9.1% 0% 50%

Achievement 0 1 4

0% 25% 22.2%

State 4 2 0

36.4% 50% 0%

Standardized 6 1 5

54.5% 25% 27.8%

Total 11 4 18

100% 100% 100%
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most of the studies using GPA for achievement also use education as the proxy for

SES. Studies employing state tests tended to use free lunch status as the proxy for SES,

with the remainder of those studies using income.

The results in Table 3.5 show the random effect size means for the groups defined

by both these variables simultaneously. What we do see is that the four studies using

both state tests and free lunch as the SES proxy have a weighted mean effect size that

is almost twice as large as the other cells that have at least two effects. Figure 3.2

provides an error bar chart for the means and their 95% confidence interval for the

studies using either free lunch or education as the measure of SES. Though all the

confidence intervals overlap, there is some evidence that the studies using free lunch

for SES and the state test for achievement have a larger estimate of the correlation

Table 3.5 Random effects mean effect sizes, and 95% confidence intervals for studies classified

by Achievement and SES measures

SES measures

Achievement measures Free lunch Income Education

GPA 0.41 – 0.16

[0.02, 0.81] [0.03, 0.30]

k ¼ 1 k ¼ 9

Achievement – 0.46 0.28

[0.01, 0.91] [0.07, 0.49]

k ¼ 1 k ¼ 4

State 0.54 0.20 –

[0.32, 0.76] [�0.07, 0.47]

k ¼ 4 k ¼ 2

Standardized 0.26 0.15 0.30

[0.10, 0.43] [�0.24, 0.54] [0.13, 0.48]

k ¼ 6 k ¼ 1 k ¼ 5
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Fig. 3.2 Error bar plot for random effects means in Sirin (2005)
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between SES and achievement. For this subset of studies, there is an interaction

between two moderator variables that can influence the interpretation of results.

This small example illustrates the need for reviewers to examine carefully

the relationships among moderators. As indicated above, meta-regression is a

recommended strategy when there are sufficient numbers of effect sizes since we can

examine the influence of multiple moderators on effect size at the same time. If meta-

regression is not possible, then the reviewer needs to provide evidence that

confounding among the target moderators will not impact the interpretation of the

findings.

3.6 Conducting a Meta-Regression

When a reviewer has a larger sample of studies, conducting a meta-regression can

help a reviewer avoid conducting multiple significance tests, and instead examine

the conditional relationship among the predictors and effect size magnitude. Intro-

ductory text books (Borenstein et al. 2009; Lipsey and Wilson 2000) provide

more detail about the background for conducting a meta-regression; here I will

provide an example of meta-regression using another subset of the Sirin (2005)

data. The Appendix provides both SPSS and SAS sample programs for computing

the model discussed below.

We conduct a meta-regression when we want to examine how a set of p predictor
variables relate to the variation among effect sizes. Our hypothetical linear model

can be written as

yi ¼ b0 þ b1xi1 þ :::þ bpxip;

where yi is the effect size in study i, the xi1,. . .,xip are the values of the predictor

variable for study i, and the b0,. . .,bp are the unknown regression coefficients.

In the fixed effects case, we will use our values of Ti as our estimates of the yi
with vi as the variance of these effect size estimates. We use weighted least squares

regression to estimate the model where our weights are equal to wi ¼ 1/vi. For a
random effects meta-regression, the weights are w�

i ¼ 1=ðvi þ t2Þwhere t2 is

estimated from one of the methods from Sect. 3.4 (For the interested reader,

Chap. 8 illustrates how to estimate the random effects meta-regression using

restricted maximum likelihood methods).

3.6.1 Example

Below I provide sample output from SPSS to illustrate how fixed effects meta-

regression analysis is conducted (The Appendix contains the steps needed

to conduct the meta-regression in SPSS, as well as a sample program for SAS).
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The data used in this example are given in the Data Appendix at the end of the book.

Let us say that we are interested in examining how the values of Fisher’s z-

transformation in the Sirin data are related to the grade level of the students in

the study, the percent of minority students represented in the study’s sample

(percmin), and the way that income was measured in the study. For this example,

I have included two dummy codes, free lunch, which indicates that the study used

eligibility for free lunch to identify low-income students, and education, which

indicates that the study used the level of education of the parent as a indicator of

income. The default SPSS output is given in Fig. 3.3.

The first table in Fig. 3.3 provides the Model Summary. This table should be

ignored. The adjusted R-square value cannot be interpreted as in usual practice

since, as Konstantopolous and Hedges (2009) point out, the maximum value for the

population multiple correlation in this case is often much less than one. The second

table provides the summary of the F-tests for the meta-regression. In this table,

Fig. 3.3 SPSS output for Sirin (2005) meta-regression example
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the Sum of Squares for the Residual is the statistic called QE, which provides a test

of the goodness of fit of the linear model. This statistic is the weighted residual sum

of squares about the regression line. When the statistic is significant, the variation

around the regression line is greater than expected given that the model is a good fit

to the data. The statistic QE is compared to a chi-square distribution with (k – p – 1)
degrees of freedom. In this case, we have QE ¼ 1,053.85, compared to the 95%

critical value of a chi-square with 34 degrees of freedom which is equal to 48.60.

Thus, we have greater than expected residual variance around our regression line,

indicating that our model is not a good fit to the data.

The third table presents the estimated regression coefficients. As many textbooks

point out (Borenstein et al. 2009; Konstantopolous and Hedges 2009; Lipsey and

Wilson 2000), the standard errors and tests of significance for the coefficients

printed in many weighted regression routines in common statistical packages are

incorrect since they are based on a model slightly different than the one used for

fixed-effects meta-regression. The corrected standard errors and tests of signifi-

cance must be computed by hand. The corrected standard errors are given as

Sj ¼ SEjffiffiffiffiffiffiffiffiffiffi
MSE

p (3.1)

where the SEj are the printed standard errors, and MSE is the mean square error

given in ANOVA table for the regression. The correct tests of significance use the Z
distribution. If we wish to test that a given regression coefficient is equal to 0, we

use a two-sided test where we compute the statistics Zj given by

Zj ¼
bj
�� ��
Sj

where bj is the estimated regression coefficient, and Sj is the corrected standard

error given in (3.1). Table 3.6 provides the corrected standard errors and tests of

significance for the Sirin data.

In this example, where k ¼ 39, all of the coefficients are significantly different

from zero. We see that the larger the percent minority included in the sample, the

smaller the Fisher z-transformation (and by extension, correlation) between socio-

economic status and achievement. Higher grade levels have larger Fisher z’s as do

Table 3.6 Corrected table for meta-regression results using Sirin (2005)

Coefficient Estimate SEj Sj Zj p-value

Intercept 0.041 0.081 0.0150 2.73 0.003

% minority �0.001 0.001 0.0002 �5.00 0.000

Grade 0.073 0.024 0.0043 16.98 0.000

Free lunch 0.354 0.068 0.0120 29.50 0.000

Education level 0.104 0.059 0.0110 9.45 0.000
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studies where free lunch or education level are used as the indicators of income.

The comparison category to the indicator of income are rating scales of the

occupational status and actual reported income. Though the value of the QE statistic

indicates that significant residual variation remains, this model does provide insight

into the variation among the effect sizes in this data.

3.7 Interpretation of Moderator Analyses

As seen in the example above, reviewers need to exercise caution in their interpre-

tation of the results of moderator analyses when potential confounding occurs.

Discovering what variables may be confounded is difficult in meta-analysis since

many reviews include only a small number of studies. However, the example

provided above adds to our understanding of the complex relationships among

measures of SES and source of the achievement measures.

Adding to the complexity of the interpretation of moderator analyses is the

nature of these analyses themselves. Research reviewers do not have control over

the population of studies and how these studies were conducted. Thus, unlike a

primary study, we cannot randomly assign particular studies to using just males or

just females, or to assessing achievement only using a single measure. The analyses

in a research synthesis are exploratory and observational. We usually have little

evidence from a meta-analysis about why study characteristics relate to effect

magnitude. We can only describe what the relationships are among achievement

and SES measures, for example. These analyses are observational only, and do not

provide information about why or how these relationships operate. Chapter 9

discusses the nature of the inferences that are possible from a meta-analysis.

Preliminary stages of meta-analysis should conform to standard statistical

analysis practice, such as providing a plot of the data, choosing a priori the

moderators that are of most interest, and exploring homogeneity of the effect

sizes. Choosing these analyses ahead of time ensures that the research reviewer

does not capitalize on chance by conducting a series of analyses without adjusting

the overall Type I error rate. In addition, it is difficult to interpret a series of single

variable analyses since we do not know which moderator should be considered

important. As in the example above, we find that studies using state tests tend to use

eligibility for free lunch as the measure of SES, a measure that is not as sensitive as

income. The ultimate goal of a meta-analysis is to help clarify what is known about

a given intervention or phenomenon, and the analyses we present should aim at

illuminating what is and is not yet known in a given research area. Carefully

interpreting the analyses is ultimately the responsibility of the reviewer.
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Appendix

Computing the Variance Component Using SAS

The example in Sect. 3.4.1 involves the computation of the variance component

using restricted maximum likelihood. Below is a SAS program that computes the

estimates for the analyses in Tables 3.1–3.3. The first program enters the data used

in this example. The variables are the study name, the correlation, Fisher’s z

corresponding to the correlation, the variance of Fisher’s z, a code that takes the

value 1 for studies using state tests for achievement, and 2 for standardized tests,

and the study weight. The second program provides the code to compute the

variance component using restricted maximum likelihood. The first line calls

Proc Mixed, with cl proving the confidence limits, and method indicating the

used of restricted maximum likelihood. Themodel statement indicates that Fisher’s

z is the outcome, and the model is a simple random effects model with no

predictors. The options S and CL provide the fixed-effects parameter estimates,

and the confidence interval, respectively. The class statement indicates that study is

a class variable, which will be designated as the random effect later in the code. The

random statement designates the random effect, and the option solution prints

the estimate of the random effect, or in this case, the random effects variance.

The repeated statement specifies the covariance structure of the error term. For

meta-analysis, we use the option group to allow between-group (in this case, study)

heterogeneity. The parms statement provides the starting values for the covariance

parameters. The first value is the starting value for the overall variance component

for this model. The next 11 elements are the within-study estimates of the variance

of the effect size. The option eqcons fixes the variances for the 11 studies in the

analysis since these are considered known in a meta-analysis model.

data sirinch6ex;

input study $ corr zval varz achmeas wt;

cards;

alspurb .7190 .9055717 .0278 1 36.00

alsprur .0720 .0721248 .0097 1 103.00

calban1 .6800 .8291140 .0008 1 1298.00

dixflo .4670 .5062267 .0122 1 82.00

grelan .6500 .7752987 .0086 1 116.00

gulbur .1240 .1246415 .0006 2 1570.00

johnlin .1750 .1768200 .0006 2 1683.00

kling .5400 .6041556 .0030 2 329.00

recste .0600 .0600722 .0077 2 130.00

schu .4300 .4598967 .0077 2 130.00

shawal .1660 .1675505 .0030 2 332.00

;

run;
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proc mixed cl method¼reml data¼sirinch6ex;

class study;

model zval ¼/S CL;

random int/SUBJECT¼study S;

repeated/GROUP¼study;

Parms (0.01 to 2.00 by 0.01)

(.0278) (.0097) (.0008) (.0122)

(.0086) (.0006) (.0006) (.0030)

(.0077) (.0077) (.0030)

/EQCONS¼2 to 12;

run;

Computing the Variance Component Using R

Below is a simple iterative program to obtain the restricted maximum likelihood

estimates from R. The estimates are described by Raudenbush (2009). The first two

lines set up the starting values for the random effects mean and variance, namely a

vector of 100 elements, all having the value of zero. The 100 iterations take place

within the brackets, “{}”. First, the value for the new variance for the vector of

effect sizes is computed as adding our current value of the random effects variance,

sigrmle[i] to the within-study variation, sirin$ztrans. Given this value of the vector

of the within-study variances, vstar, we recomputed a new value of the random

effects mean, beta0. Given this value of the random effects mean, beta0, we

recalculate the value of the variance component sigrmle. We cycle back and forth

for 100 iterations in this program. Below the program are the results from R using

this example.

beta0<�rep(0, c(100))

sigrmle<�rep(0,c(100))

for (i in 1:100) {

vstar<�sirin$var+sigrmle[i]

beta0[i]<�sum(sirin$ztrans/vstar)/sum(1/vstar)

sigrmle[i+1]<�(sum((((sirin$ztrans-beta0[i])**2)-sirin$var)/(vstar**2))/sum(1/

(vstar**2)))+(1/sum(1/vstar))

}

> beta0

[1] 0.3551265 0.4162903 0.4169039 0.4169685 0.4169757 0.4169765 0.4169766

[8] 0.4169766 0.4169766 0.4169766 0.4169766 0.4169766 0.4169766 0.4169766

. . .. . .. . ...
> sigrmle

[1] 0.00000000 0.08408039 0.09172159 0.09258992 0.09268741 0.09269834

[7] 0.09269957 0.09269971 0.09269972 0.09269972 0.09269972

0.09269972. . .. . ..
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We can see that by the 8th iteration, both the variance component and the

random effects mean do not change. The estimates from R correspond to those

obtained using SAS.

Computing the Fixed Effects Meta-regression Using SPSS

The analysis in Table 3.6 can be computed from the Analyze menu in SPSS, under

Regression, and then under Linear Regression. The Dependent variable will be the

Fisher z-transformations of the correlation coefficients. In this example, the Inde-

pendent variables are the percent minority in the sample, the dummy code

indicating whether free lunch was used as the measure of socio-economic status,

the dummy code indicating whether parent education level was used as the measure

of socio-economic status, and grade level. The WLS Weight for the analysis is the

inverse of the Fisher’s z-transformation variance, or 1/(n – 3).

Computing the Fixed Effects Meta-regression Using SAS

To compute the fixed effects meta-regression in SAS, we use Proc Reg as illustrated

in the code given below. The model statement begins with the outcome, the Fisher

z-transformation, an equals sign, and the list of predictors. An option to the model

statement is given by the slash /and followed by I which indicates that we want the

inverse of the crossproducts matrix. The inverse of the crossproducts matrix will

provide the correct variances for the regression coefficients. The weight statement

indicates that the variable wt should be used in the weighted least squares

regression.

proc reg data¼Chap. 3;

model ztrans¼grade percmin freelunch educ/I;

weight wt;

print;

run;

The output provided by SAS is first the inverse of the crossproducts matrix:

X0X Inverse, Parameter Estimates, and SSE

Intercept Grade % minority Free lunch Parent’s education

Intercept 0.000218 0.0000594 �4.746E-7 �0.0000666 �0.0000709

Grade �0.0000594 0.0000198 3.834E-8 0.0000126 0.0000143

% minority �4.745E-7 3.834E-8 9.403E-9 7.456E-8 5.824E-8

Free lunch �0.0000666 0.0000126 7.456E-8 0.000154 0.0000362

Parent’s education �0.0000709 0.0000143 5.824E-8 0.0000362 0.000117
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The diagonal elements of this matrix are the correct variances for the weighted

regression coefficients. For example, the correct standard error for Parent’s educa-

tion level is √0.000117 ¼ 0.0108, which corresponds to that computed using the

adjusted SPSS values in Table 3.6. Next, SAS provides the ANOVA table for the

regression and the R-squared values.

Analysis of Variance

Source DF Sum of squares Mean square F value Pr > F

Model 4 1081.426 270.356 8.98 <.0001

Error 35 1053.852 30.110

Corrected total 39 2135.278

Root MSE 5.487 R-Square 0.5065

Dependent mean 0.272 Adj R-Sq 0.4501

Coeff var 2014.675

As in the example with SPSS, we will use the square root of the mean square

error given in the output above to correct the standard errors and the significance

tests of the regression coefficients given below.

Variable DF Parameter estimate Standard error t-value Pr >

Intercept 1 0.0408 0.0811 0.50 0.6176

Grade 1 0.0729 0.0244 2.98 0.0052

% minority 1 �0.000999 0.00053 �1.88 0.0686

Free lunch 1 0.353 0.0681 5.19 <.0001

Parent’s education 1 0.104 0.0594 1.75 0.0885
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Chapter 4

Power Analysis for the Mean Effect Size

Abstract This chapter provides methods for computing the a priori power of the

test of the mean effect size. Both fixed and random effects models tests are

discussed. In addition, examples are provided for computing the number of studies

needed to detect a substantively important effect size, and the detectable effect size

with a given number of studies.

4.1 Background

Researchers planning new primary studies use power analysis to increase their odds

of finding results that they believe are present. Power analysis allows the researcher

to determine a priori the number of participants needed in a study to find statistical

significance. For example, if we want to know that an intervention has a substantive

effect, we need to plan a study with sufficient numbers of participants, and ade-

quately sensitive measures and analysis strategies to detect that effect. Few primary

researchers would risk conducting an intervention study without a power analysis.

In research synthesis and meta-analysis, reviewers plan systematic reviews in

areas that have matured enough to have a sufficient body of evidence, and where a

careful review may enhance the overall understanding of a field. Unlike primary

researchers, reviewers cannot plan in advance the sample size (in this case, the

number of primary studies) needed to find important substantive effects. Thus, on

the surface, power analysis in meta-analysis, especially a priori power analyses,

might appear a futile exercise.

I take an alternative view of the value of a power analysis in research synthesis.

As emphasized in Chap. 3, knowledge of an area is critical to the planning of a

synthesis, especially with regard to planning the moderator analyses carefully so as

to avoid Type I errors. The same could be argued for the importance of a power

analysis as preliminary to a systematic review. Though a reviewer might not know

the exact number of studies that will ultimately be relevant to the review, the

reviewer should have a clear understanding of the size of the effect that would be
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considered substantively important and of the statistical methods (such as moderator

analyses) that will be used. Examining the potential power of a meta-analysis prior

to collecting and evaluating the studies will add strength to the reviewer’s later

decisions about conducting particular analyses. Say, for example, we are interested

in understanding the potential magnitude of an adverse effect of a given medical

treatment, but believe the incidence of this effect is rare. The reviewer would know a

priori that an estimate of this adverse effect cannot be examined if there are not a

sufficient number of studies. In an educational setting, if we are interested in

understanding the magnitude of the effect of a dropout prevention program, we

might find that we do not have enough studies to detect, for example, a standardized

mean difference of 0.5 between the treatment and control groups. This information

can then provide a rationale for the statistical analyses conducted (or not) with the

effect size data.

In order to conduct a power analysis a priori, the reviewer must be transparent

about the assumptions he or she is making at the outset of the synthesis. This

transparency can serve as a check for the analysis of the effect size data so that

reviewers do not conduct too many statistical analyses that may capitalize on

chance. Reviewers can also inform policymakers prior to a synthesis of the numbers

of studies that are needed to find a significant effect of an intervention. There are

circumstances where we do not have enough primary research to make an informed,

research-based decision, and an a priori power analysis of a systematic review

would provide empirical evidence for that claim.

As mentioned above, the reviewer conducting a power analysis in meta-analysis

needs to have informed judgments about important characteristics of studies, such

as the typical within-study sample size, and the magnitude of a substantively

important effect size. Since reviewers need to make assumptions about these

quantities, there is a temptation to compute power after analyzing the data. The

use of retrospective power analyses is not new; much has been written in the

medical, natural and behavioral sciences about the limitations and advantages of

power analysis after the study is complete (Goodman and Berlin 1994; Hayes and

Steidl 1997; Reed and Blaustein 1995; Thomas 1997; Zumbo and Hubley 1998).

In many fields, retrospective power analysis has been suggested as a way to

interpret null results. For example, one often-cited study of amphibian populations

by Reed and Blaustein (1995) concludes that prior studies finding a lack of decline

in populations “cannot be supported statistically” (p. 1299) since the statistical

power in these studies ranges from less than 0.06 to 0.45. In medicine, Freiman

et al. (1978) computed the retrospective power of 71 “negative” trials, finding that a

majority of studies had power levels less than 0.80 for detecting a 25% or a 50%

reduction in mortality.

Critics of retrospective power analysis (Goodman and Berlin 1994; Hayes and

Steidl 1997; Zumbo and Hubley 1998) point out the logical flaws in using the

observed results to compute retrospective power. The major issue is that power is

related to statistical significance; once a researcher obtains a finding of no

significant difference, then the researcher knows that power was inadequate.

The observed power, power calculated after the analysis is completed, does not
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provide any more evidence than the p-value for a given test. Power makes sense

only in relation to a specific effect size; in other words, power is computed as the

power to detect a specific difference between groups, or size of association

between constructs. It is redundant to compute power for a non-significant test

since we already know that our test is underpowered for our obtained result. For

researchers using research synthesis, power computations need to occur in the

early stages of the review to determine if adequate evidence exists to test a given

hypothesis. As I will discuss later, reviewers should start with substantively

significant values for an average effect size and compute power given a range

of values for the effect size variances, sample sizes within studies, and number

of studies.

The following chapters provide an overview of power analysis in meta-analysis,

and illustrate its use with examples. This chapter begins with a review of power

analysis in general and then in meta-analysis, focusing on tests of the mean effect

size, under both the fixed and random effects model.

4.2 Fundamentals of Power Analysis

All power analyses are conducted with a specific statistical test in mind, and are

described in relation to a null hypothesis and a particular alternative hypothesis.

Though organizations such as the American Psychological Association (Ameri-

can Psychological Association 2009) are emphasizing the interpretation of effect

sizes rather than statistical significance, power computations remain in the realm

of the null and alternative hypothesis. In order to compute power, researchers use

a value for the alternative hypothesis that represents some substantively important

quantity, such as the smallest effect size that would be considered substantively

critical, and then discuss the power of a statistical test under the specific alterna-

tive hypothesis posed.

The computation of power analysis for most statistical tests depends on four

general quantities: the sample size of the study, the substantively important effect

size that will be tested against the null hypothesis, the desired significance level of

the statistical test, and the desired level of power (Cohen 1988; Murphy and Myors

2004). Any three of these four quantities can be used to solve for the fourth one. For

example, researchers often ask about the number of participants needed to find a

given difference between the treatment and control groups. With the particular

value for the difference between the groups, the desired significance level and

power level, the researcher can find the optimal sample size. Alternatively, the

researcher may know how many participants are available, and can compute the

power level for the test given a particular value for the group difference.

When we compute power, we are actually comparing two distributions: that of

our test statistic given that the null hypothesis is true, and that of our test statistic

when the alternative hypothesis is correct. The power of our test is the probability

that our obtained test statistic will be considered significant under the null
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hypothesis when the alternative hypothesis is really true. Thus, power depends on

both the null and the alternative hypothesis in a given context, and is typically

decided upon prior to computing the test.

Computation of power in a meta-analysis is similar to that for other statistical

tests. For example, we need the number of studies in the review (the “sample

size”), the anticipated overall mean effect size, and the criterion for statistical

significance. Since our unit of analysis is a primary study, power in meta-analysis

also depends on the sample size within studies. Table 4.1 outlines the steps to

compute the power of a meta-analysis. The first three steps are analogous to those

for power computations in primary studies; the fourth step requires knowledge

about the size of the sample and the effect sizes of the individual studies. These

quantities are usually variable across studies, and requires the reviewer to have

deep knowledge about the types of studies typically conducted in a given research

area in order to make accurate assumptions for computing power. Table 4.2

provides more details about the information needed for computing power at two

levels of a systematic review: at the level of the review itself, and at the level of

the individual studies.

The rest of this chapter covers power for the statistical test of the mean effect

size, in both fixed and random effects models. The power for the mean effect size

will be important for planning reviews when the interest is in the overall effect of an

intervention, an estimate of the mean association between two constructs, or the

overall incidence rate of a condition. For example, a policymaker may be interested

in knowing if the average effect of an expensive intervention will be worth the cost.

A reviewer might then want to know the minimum number of studies needed to

detect a substantively important effect size that would justify the cost of the

Table 4.1 Steps for determining power in meta-analysis

1. Establish a critical value for statistical significance, ca
2. Posit an overall effect size, y
3. Estimate the number of studies included in the meta-analysis, k

4. Decide on fixed or random effects models

a. Posit “typical” within-study samples sizes and effect size variances for fixed effects

b. For random effects also posit typical variance component, t2

5. Compute power for specific tests in a meta-analysis

Table 4.2 Information needed to compute power in meta-analysis

Information needed at the level of the research synthesis

• Critical value/criterion for statistical significance, ca
• Effect size of practical significance, y
• Number of studies for the meta-analysis, k

• For random effects: variance component (between-studies variance), t2

Information needed at the level of the studies included in the research synthesis

• Within-study sample sizes, N

• Study effect size variances (related to sample size), v
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intervention. Alternatively, I may want to know the size of the effect I could detect

with a given number of studies – and whether this detectable effect will be of

substantive interest.

4.3 Test of the Mean Effect Size in the Fixed Effects Model

The first step in any meta-analysis is to examine the mean effect size. In planning a

research synthesis, reviewers may be interested in understanding the average effect

for an intervention, or the average incidence rate across studies. In any given area of

research, a reviewer should have a good understanding of the size of an effect that

would be considered substantively important. The reviewer can then compute the

minimum number of studies needed to detect that effect size with a particular

power. Alternatively, the reviewer might have a rough idea of the number of studies

that exist, perhaps because of the results of a prior review. This information could

help a reviewer to compute the size of an effect that will be able to be detected with

a particular power.

As discussed above, reviewers must make an educated guess about the quantities

given in Table 4.2. Given knowledge of the within-study information (typical

sample sizes and effect size variances), the reviewer can use guesses about two of

the three quantities at the level of the synthesis for a fixed effects model to solve for

the third one. Before illustrating this process, I review the overall test for the mean

effect size under the fixed effects model below.

4.3.1 Z-Test for the Mean Effect Size in the Fixed
Effects Model

One of the first steps in a meta-analysis is to compute the mean effect size across all

studies. In this section, I outline the steps of the Z-test for the mean effect size under

the fixed effects model, followed by a discussion of how to conduct the power for

this test. If we are interested in the effectiveness of a treatment, we may be

interested in understanding if our mean effect size is different from zero, namely,

if the treatment group differs significantly from the control group. In this case, our

null hypothesis would be H0 : y ¼ 0; that our mean effect size indicates no

difference between the treatment and control groups. We would use the same null

hypothesis to determine if the mean correlation or log-odds ratio was different from

zero. We use y to designate the population mean, estimated by �T� given in (2.1).

We truly expect, however, that our treatment is effective, so that we have an

alternative hypothesis that our mean effect size will be greater than 0. In this

case, our alternative hypothesis is Ha : y � 0. This is the case of a directional

alternative hypothesis which would result in a one-tailed statistical test. If we have
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little information about the intervention, we might have a less specific alternative

hypothesis, allowing either the treatment or the control group to have the larger

mean. This non-directional alternative hypothesis is given by Ha : y 6¼ 0, which

results in a two-tailed test.

The test of the mean effect size compares the estimated mean effect size to 0, by

comparing our obtained test statistic to a standard normal distribution. Recall from

Chap. 2 that we designate the estimated effect sizes for each study as Ti, i ¼ 1, 2,

. . ., k where k is the total number of studies. In the fixed effects model, we have a

mean effect size across all the k studies, �T� given in (2.1), and this value estimates

the underlying population mean effect, y. To examine whether our obtained mean

effect size, �T�, is statistically different from 0, we compute the following statistic

Z ¼
�T� � 0ffiffiffiffiffi

v�
p (4.1)

where v� is the sampling variance of �T� given in (2.2). Once we have our value of Z,
we compare it to the standard normal distribution. If our alternative hypothesis is

Ha : y� ya, we reject the null hypothesis if Z is larger than the critical value, ca,
where a is our designated significance level, the 100(1 � a) percentile of the

standard normal distribution. For example, if we want to know that our mean effect

size is greater than ya ¼ 0, our ca for a one-tailed test with a ¼ 0.05 is 1.645.

Figure 4.1 displays a standard normal curve. When H0 : y ¼ 0, the curve in

Fig. 4.1 represents the distribution of our Z test statistics. The shaded part of the

curve to the right is the proportion of Z statistics that exceed ca when the null

hypothesis is true.

We might also have a situation where we are not sure of the direction of the

effect size, namely, that the treatment group may score higher or lower than the

control group. In this situation, we have a non-directional alternative hypothesis, or,

Fig. 4.1 Standard normal distribution with shaded area greater than ca ¼ 1.64
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Ha : y 6¼ 0. For a two-tailed test, we reject the null hypothesis H0 : y ¼ 0 when

our obtained value of Z is either greater than or less than ca=2, or more formally

when the absolute value of Z exceeds ca=2, or Z � ca=2
�� ��.

4.3.2 The Power of the Test of the Mean Effect
Size in Fixed Effects Models

The power of a statistical test is the probability that we will reject the null

hypothesis in favor of some specific alternative hypothesis. As we see in (4.1),

we need to have a value for y, the mean effect size we are testing, and the variance

of the mean effect size in a given meta-analysis in order to compute Z, and thus, in

order to compute power. Below, I will discuss how we might compute these

quantities prior to collecting the studies for our synthesis. For now, imagine that

we do have an educated guess about these values, we have computed the statistic Z
given our guesses about y and v�, and we are testing that our mean effect size is

greater than zero. When the null hypothesis is true, as in H0 : y ¼ 0, the statistic Z
has the standard normal distribution with a mean of 0, and a standard deviation of 1.

When the null hypothesis is false, Z has a normal distribution with a variance of

1 and a mean that is not 0 but is given by

l ¼ y� 0ffiffiffiffiffi
v�

p : (4.2)

where the value y is our mean effect size, and v� is the sampling variance of this

mean effect size. Thus, we have two different normal distributions we are going to

compare: the standard normal distribution that corresponds to the null hypothesis,

and the normal distribution that represents our alternative hypothesis. To compute

power, we need to know the proportion of test statistics that exceed ca in the normal

distribution for the alternative hypothesis with mean l from (4.2), and variance 1.

We get this proportion, the power of our test, by computing p

p ¼ 1� Fðca � lÞ (4.3)

where FðxÞ is the cumulative distribution function of the standard normal distribu-

tion, i.e., the area under the standard normal curve from �1 to x. For example,

Fig. 4.2 shows both the standard normal distribution and the normal distribution of

Z test statistics when y 6¼ 0, in this illustration when y ¼ 2:5. The proportion of

tests in the cross-hatched area is equal to the area under the standard normal curve

that exceeds the value of ca � l when Ca ¼ 1:64 and l ¼ 2.50. The exact value of

this area is 1� FðCa � lÞ ¼ 1� Fð�0:86Þ ¼ 1� 0:19 ¼ 0:81. Thus, the power of
the test under this alternative hypothesis, Ha : y� 0, is 0.81.
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A two-tailed test follows similar logic, except that we are interested in the

proportion of test statistics that are either greater than or less than ca=2, or

Z � ca=2
�� ��. The test statistics are in the two tails of the distribution so that the

power for our two-tailed test is given by

p ¼ 1� Fðca=2 � lÞ � Fð�ca=2 � lÞ� �
¼ 1� Fðca=2 � lÞ þ Fð�ca=2 � lÞ (4.4)

4.3.3 Deciding on Values for Parameters to Compute Power

In order to compute power of the mean effect size, we need to designate a number of

quantities. Our first task is to arrive at a value for y, the mean effect size of interest,

or, in other words, the value of a substantively important effect. This value should

be evident from the context of the review and the typical measures used. For

example, we may know that increasing a child’s reading scores from the 25th to

the 50th percentile is associated with higher achievement in later elementary

grades. We would then be interested in the power of a test to detect an effect size

corresponding to an increase of 25 percentile points. As seen in (4.2), we also need

an estimate of the variance for the mean effect size of interest. This quantity is more

difficult to determine. Looking at (2.2), we see that the variance for the mean effect

size, v�, depends on the variances for the effect sizes within each study, which in

turn depend on the individual study effect sizes and the within-study sample sizes.

One way to think about an estimate for v� is to assume that all studies have the same

within-study sample size, and the same effect size equal to y, our effect size of

interest. With the same within-study sample size and effect size, our studies would

then all have the same within-study effect size variance, v. Note that we compute

v� in this case as
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Fig. 4.2 Power when normal distribution has a mean of 2.5 and ca ¼ 1.64
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v� ¼ 1

Pk
i¼1

w

¼ 1

Pk
i¼1

1=v

¼ 1

k=v
¼ v

k
: (4.5)

Finally, we need a value of k, the number of studies we are likely to find as relevant

in the review. In sum, to compute the power for the mean effect size in a fixed

effects model, we need a value for the effect size of interest, y, the within-study

sample size (to compute v), and the total number of studies, k. Below I provide a

number of examples.

4.3.4 Example: Computing the Power of the Test of the Mean

One of the examples we will be examining throughout the text is a meta-analysis of

studies on the effectiveness of coaching programs to increase the SAT-Math and

SAT-Verbal scores of high school students. (The SAT is a common standardized

test used by US colleges and universities in their enrollment decisions). If I am a

parent of a high school student, I would be interested in investing in a coaching

program if my child had the potential to increase their score by 50 points. Since the

SAT test has standard deviation of 100 points, I am interested in an effect size of

y ¼ 50=100 ¼ 0:5. To compute power for this effect size, I also need to have a

guess about the number of studies that I will include in the synthesis and the typical

sample size within those studies in order to estimate the variance of the mean effect

size. Let us say that the typical study has a total of 40 participants, 20 in the

coaching group and 20 in the control. Let us also guess that we will find 10 studies

that are relevant to our review.

Given these numbers, we can compute the common within-study variance, v,
using (2.13), as

v ¼ 20þ 20

20 � 20 þ 0:52

2ð20þ 20Þ ¼ 0:10:

With k ¼ 10 studies, we have a value of v� ¼ 0:10=10ð Þ ¼ 0:01 using (4.5). We

can now compute the power for our test given an effect size of interest equal to 0.5,

by first computing l, the mean for our alternative hypothesis,

l ¼ 0:5� 0ffiffiffiffiffiffiffiffiffi
0:01

p ¼ 5:

In this case, we are interested in whether the coaching group outperforms the

control group as represented by a mean effect size of 5.0, so we will compute the

power for a one-tailed test as given in (4.3). For a ¼ 0.05, we have power of

p ¼ 1 � F(1.645 � 5.0) ¼ 1 � F(�3.36) ¼ 1. Thus, we have sufficient power

to find an effect size of 0.5 with only 10 studies that have a sample size of 40.
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Let us keep the same number of studies, but decrease both the within-study

sample sizes and the effect size of interest to examine how the power changes. Let

us say that we expect to find 10 studies, but the within-study sample size is now

N ¼ 20, with 10 participants in each group. In addition, we want to know the power

for an effect size of 0.20, which corresponds to a 20 point difference between the

coaching and control groups since the standard deviation of the SAT is 100 points. In

this case, let us also use a non-directional test – either the control group or

the treatment group may obtain the higher SAT score. With a total N ¼ 20, with

10 in each group, we would compute a value of v ¼ 0.201. If we have k ¼ 10

studies, then

v� ¼ 1=ð
X

1=viÞ ¼ 1=ð10=0:201Þ ¼ 0:02

The value of l in the SAT coaching study is given by

l ¼ 0:20� 0:00ffiffiffiffiffiffiffiffiffi
0:02

p ¼ 0:20

0:14
¼ 1:41

The next step is to determine the proportion of Z test statistics that are either

greater or less than a given critical value in a normal distribution with mean 1.41

and variance 1. If we are interested in a two-tailed test with a ¼ 0.05, then the

critical value ca=2 is equal to the 97.5 percentile of the standard normal distribution,

or 1.96. In the other tail, we are interested in the critical value equal to the 2.25

percentile or �1.96. We obtain the proportion of Z-test statistics above 1.96 and

below�1.96 by using the cumulative normal distribution function. To compute this

value, we use (4.4) and obtain test statistics that are greater than a value of

1.96 � (1.41) ¼ 0.55 and that are less than �1.96 � (1.41) ¼ �3.37 in the stan-

dard normal distribution.

The power of the two-sided test for the standardized mean difference is then

computed as

p ¼ 1� Fð1:96� 1:41Þ � Fð�1:96� 1:41Þ½ �
¼ 1� Fð0:55Þ þ Fð�3:37Þ
¼ 1� 0:71þ 0

¼ 0:29

We have low power to find that an effect size of 0.20 is significantly different

from zero, or correspondingly, to detect a test-score difference of 20 points when

we assume that our studies have total samples sizes of N ¼ 20. Figure 4.3 shows the

power for the two-sided test in this example; note that only the value to the right of

the standard normal curve is nonzero. The Appendix to this chapter provides
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information about how to compute the values of the cumulative normal distribution

in Excel, SPSS, and R.

4.3.5 Example: Computing the Number of Studies Needed
to Detect an Important Fixed Effects Mean

The National Research Council (1986) examined a number of studies of the

effects of exposure to secondhand smoke, and found that non-smoking spouses

exposed to tobacco smoke had a higher risk of developing lung cancer than

non-exposed spouses. This report estimated an odds ratio of 1.30 for developing

lung cancer in exposed spouses versus non-exposed spouses from a set of US

studies completed at the time of the report. If we were planning to update this

review, we might want to know how many studies we need to find an odds ratio

of 1.30 as statistically significant, with power of .80. Estimating the number of

studies needed before collecting the data will help both to guide and to interpret

our findings.

The number of studies needed, k, relates to power through the estimate of our the

common variance of our effect size, v�, as given in (4.5). We will work backwards,

given our value for power of 0.8 and a significance level, a, of 0.05, first obtaining a
value for l, and then solving for v� given an odds ratio of 1.30. To arrive at power

0.8 in a one-tailed test with a ¼ 0.05, we solve the following

1� Fð1:645� lÞ ¼ 0:8

Fð1:645� lÞ ¼ 0:2

1:645� l ¼ �0:842

l ¼ 2:487
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1.41 and ca ¼ 1.96
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We have an odds ratio of 1.3, which we convert to a log-odds ratio for our

computations, LOR ¼ ln(1.3) ¼ 0.252. Solving for v� given our value of l and our
log-odds ratio gives us

0:252� 0ffiffiffiffiffi
v�

p ¼ 2:487

ffiffiffiffiffi
v�

p ¼ 0:101

v� ¼ 0:010

To compute k, we need to get an estimate of the common within-study variance.

Equation 2.18 provides the formula for the variance of a log-odds ratio, which

requires knowing the actual values in the 2 � 2 table of results. We can reproduce

that table by assuming sample sizes for the number of exposed and non-exposed

spouses. The studies that estimate of the risk of lung cancer with secondhand

smoking exposure are usually large epidemiological studies. Let us assume that

there are a total of 2,000 cases, with 1,000 cases within each group. In the general

population, the current probability of contracting lung cancer between the ages

of 50 and 70 is 2.89% for men and 2.27% for women (National Cancer Institute

2011). If we take a conservative control base rate of 2%, with 1,000 cases for

both exposed and non-exposed spouses, we could create a 2 � 2 table as seen in

Table 4.3.

The table above results in an odds ratio of 1.31, and a variance of the log-odds

ration of

v ¼ 1

26
þ 1

974
þ 1

20
þ 1

980

v ¼ 0:09

Given this value of v, we can now solve for k using (4.5), where v� ¼ v=k, or
in our case, 0.01 ¼ 0.09/k so that k ¼ 9. Thus, if our search finds at least 9 studies

that have 2,000 participants within each study, we will have sufficient power to

detect an odds ratio of 1.3.

4.3.6 Example: Computing the Detectable Fixed Effects
Mean in a Meta-analysis

We might also be interested in knowing the size of the effect that would be

considered statistically significant (as opposed to substantively significant) given

Table 4.3 Hypothetical lung

cancer incidence rate for

exposure to secondhand

smoke

Group Lung cancer No lung cancer

Exposed spouses 26 974

Not exposed spouses 20 980
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k, the number of studies relevant to the review, a particular value of power, and

typical within-study sample sizes. Note that this computation will be possible with

the odds-ratio and correlation as effect sizes since the within-study variance of

the effect size for these two indices depends only on the sample size. For the

standardized mean difference, it will be more difficult to solve for the detectable

effect size given that the within-study variance depends on the effect size itself.

For this example, suppose we have a set of studies that examines the relationship

between student evaluations of instructors and student course grades. Let us assume

that we will find k ¼ 15 studies, each with a within-study sample size of 20. For

power of 0.80, we can solve for the effect size that we will be able to find

statistically different from zero. Using (4.3), we could solve for the value of l
that will produce a power of 0.8 as we did in Example 4.3.4, obtaining a value of

l ¼ 2.487. We need the variance of the effect size given in (2.15), noting that we

typically use Fisher’s z-transformation instead of the correlation. For Fisher’s

z-transformation, we would compute the within-study variance is given as v ¼ 1/

(n � 3) ¼ 1/(20 � 3) ¼ 1/17 ¼ 0.059 when N ¼ 20. Our estimated value for the

variance of the mean effect is found in (4.5), resulting in v� ¼ 0:059=15 ¼ 0:004.
We can now solve for y, as

y� 0ffiffiffiffiffiffiffiffiffiffiffi
0:004

p ¼ 2:487

y
0:063

¼ 2:487

y ¼ 0:16

Our estimate of the effect size is given as Fisher’s z-transformation.

Transforming back to the correlation metric using (2.16) gives us an estimated

r ¼ 0.16. Thus, with k ¼ 15 studies, each with a sample size of 20, we can find a

correlation equal to 0.16 as significantly different from zero with power 0.80.

4.4 Test of the Mean Effect Size in the Random Effects Model

Recall that in the random effects model, we are assuming that the variation among

studies’ effect sizes has two components, one due to sampling variance designated

by vi, and one due to the variance in the underlying distribution of effect sizes, or t2.
As we see in Table 4.2, the power of the test of the mean effect size in a random

effects model depends on one additional parameter from the fixed effects model,

the random effects variance, t2. In order to compute power for the random effects

mean, we will need to have an educated guess about the value of t2. Below I

provide the details for the power of the random effects mean effect size, and then

discuss how we might arrive at a value for t2.
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4.4.1 The Power of the Test of the Mean Effect Size
in Random Effects Models

The test of the mean effect size in the random effects model takes a form similar to

the test for the fixed effects mean. We will again compare our estimated mean effect

size to 0, by comparing our obtained test statistic to a standard normal distribution.

To examine whether our obtained mean effect size, �T�
� (as given in (2.7)) is

statistically different from 0, we compute the following statistic

Z� ¼
�T�
� � 0ffiffiffiffiffi
v��

p (4.6)

where v�� is the variance of �T�
� given in (2.8). Once we have our value of Z*, we

compare it to the standard normal distribution.

As I discuss above, the power of a statistical test is the probability that we will

reject the null hypothesis in favor of some specific alternative hypothesis. To

compute power, we need to have a value for y*, the random mean effect size we

are testing, and the random effects variance of the mean effect size in a given meta-

analysis in order to compute Z*. Below, I will discuss how we might compute a

value for the random effects variance of the mean effect size prior to collecting

the studies for our synthesis. For now, imagine that we have computed the statistic

Z* given our guesses about y* and v��, and we are testing that our mean effect size is

greater than zero. When the null hypothesis is true, as inH0 : y
� ¼ 0, the statistic Z*

has the standard normal distribution with a mean of 0, and a standard deviation of 1.

When the null hypothesis is false, Z* has a normal distribution with a variance

of 1 and a mean that is not 0 but is given by

l� ¼ y� � 0ffiffiffiffiffi
v��

p : (4.7)

where y* is our random effects mean effect size, and v�� is the variance of our

random effects mean. To compute power, we need to know the proportion of test

statistics that exceed ca in the normal distribution for the alternative hypothesis with

mean l* from (4.7), and variance 1. We get this proportion, the power of our test, by

computing p

p ¼ 1� Fðca � l�Þ (4.8)

where FðxÞ is the cumulative distribution function of the standard normal distribu-

tion, i.e., the area under the standard normal curve from �1 to x.
A two-tailed test follows similar logic, except that we are interested in the pro-

portion of test statistics that are either greater than or less than ca=2, or Z
� � ca=2

�� ��.
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The test statistics are in the two tails of the distribution so that the power for our

two-tailed test is given by

p ¼ 1� Fðca=2 � l�Þ � Fð�ca=2 � l�Þ� �
¼ 1� Fðca=2 � l�Þ þ Fð�ca=2 � l�Þ (4.9)

4.4.2 Positing a Value for t2 for Power Computations
in the Random Effects Model

The power of the random effects mean requires us to posit a value of the mean

effect size, y*, the number of studies, k, and a value for l*, which depends on the

variance of the random effects mean, v��. In the section on the power of test of the

fixed effects mean, I illustrate ways we could think about important values for y, k,
and v, the common effect size variance. An added complication in the test of the

random effects mean is the need to have a guess about the value of the variance

component t2 in order to compute the variance of the random effects mean.

In Sect. 4.3.3, I suggest that we assume that all effect sizes have the same within-

study variance, or v, in the fixed effects model. This simplification allows us to

estimate the variance of the fixed effects mean equal to v/k. Since the random

effects variance of an individual effect size is equal to v�i ¼ vþ t2, we can use our

convention for assuming a common effect size variance v for part of our estimate of

the random effects variance.

For estimating a value of t2, we can adopt conventions suggested by Higgins and
Thompson (2002). Higgins and Thompson’s paper introduces another index of

heterogeneity, I2, that is interpreted as the percent of variation that is due to

heterogeneity among effect sizes rather than sampling variance. Higgins and

Thompson consider values of I2 equal to 25%, 50%, and 75% as small, moderate

and large degrees of heterogeneity. We can write I2 in terms of a target value of the

variance component, t2, and a “typical” value for the within-study effect size

variance that we have been denoting as v, or,

I2 ¼ t2

t2 þ v
(4.10)

We can then posit values of I2 that could be plausible for a given set of studies.

If I2 is equal to .75, a large degree of heterogeneity, then we could solve (4.10) as

t2

t2 þ v
¼ :75

t2 ¼ :75ðt2 þ vÞ
:25t2 ¼ :75v

t2 ¼ 3v
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For a moderate degree of heterogeneity, t2 ¼ v. A low degree of heterogeneity

would correspond to t2 ¼ (1/3)v. Given a value of v, we can obtain an estimate for

t2, and thus can compute our value for v�� as

v�� ¼
1

Pk
i¼1

w��

¼ 1

Pk
i¼1

1=ðvþ t2Þ
¼ 1

k=ðvþ t2Þ ¼
vþ t2

k
(4.11)

4.4.3 Example: Estimating the Power of the Random
Effects Mean

In Example 4.3.4, we estimated the power of the fixed effects mean for a hypo-

thetical set of studies on the effects of coaching on SAT scores. Recall that we

wanted to be able to detect an effect size of y ¼ 50=100 ¼ 0:5. We also assumed

that the typical study has a total of 40 participants, 20 in the coaching group

and 20 in the control, and that we will find 10 studies that are relevant to our

review. We also assumed that the coaching group would score higher than the

control group, leading us to use a one-tailed test with a ¼ 0.5. Given these

assumptions, we find a common within-study effect size variance of v ¼ 0.10.

For the random effects mean, we also need an estimate of the random effects

variance, or, t2. Let us compute power for two different values of t2, one assuming

a large degree of heterogeneity, and one assuming a small degree of hetero-

geneity. With our value of v, we can compute for a large degree of heterogeneity,

t2 ¼ 3v ¼ 0:30, and for a small degree of heterogeneity, t2 ¼
1=3ð Þv ¼ 1=3ð Þ0:10 ¼ 0:033. With k ¼ 10 studies and a large degree of hetero-

geneity, we have v�� ¼ ð0:10þ 0:30Þ=10 ¼ 0:04 as given by (4.11). For a small

degree of heterogeneity, we have v�� ¼ ð0:10þ 0:033Þ=10 ¼ 0:133=10 ¼ 0:0133.
A large degree of heterogeneity gives us l ¼ (0.5 � 0)/√0.04 ¼ 2.5, and power

of 1 � F(1.645 � 2.5) ¼ 1 � F(�0.855) ¼ 1 � 0.20 ¼ 0.80. A small degree

of heterogeneity gives us l ¼ (0.5 � 0)/√0.0133 ¼ 4.34 and power of 1 �
F(1.645 � 4.34) ¼ 1 � F(�2.69) ¼ 1 � 0.003 ¼ 0.997. When we have a large

degree of heterogeneity, we have less power to detect an effect size of 0.5 since

we have more variability among our effect size estimates than when we have a

small degree of heterogeneity.

Now let us compute power for two values of t2 when we assume a smaller effect

size, y ¼ 0.2, within-study sample sizeN ¼ 20, or 10 for each group, and a two-tailed

test with a ¼ 0.05. As in the second half of Example 4.3.4, with the values above, we

obtain an estimate of the common within-study variance, v, equal to 0.20. For a large
degree of heterogeneity, our t2 ¼ 3v ¼ 3 � 0:20 ¼ 0:6. A small degree of heteroge-

neity results in t2 ¼ v=3 ¼ 0:20=3 ¼ 0:07. With k ¼ 10 studies and a large degree
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of heterogeneity, we have v�� ¼ ð0:20þ 0:6Þ=10 ¼ 0:08 as given by (4.11).

For a small degree of heterogeneity, we have v�� ¼ ð0:20þ 0:07Þ=10 ¼
0:27=10 ¼ 0:027. A large degree of heterogeneity gives us l ¼ (0.2 � 0)/

√0.08 ¼ 0.71. If we are interested in a non-directional test, the power for a large

degree of heterogeneity is 1 � F(1.96 � 0.71) + F(�1.96 � 0.71) ¼ 1 �
F(1.25) + F(�2.67) ¼ 1�0.89 + 0 ¼ 0.11. A small degree of heterogeneity gives

us l ¼ (0.2 � 0)/√0.027 ¼ 1.22 and power of 1 � F(1.96 � 1.22) + F(�1.96 �
1.22) ¼ 1 � F(0.74) + F(�3.18) ¼ 1 � 0.77 + 0 ¼ 0.23. In general, the power

is lower for the test of the random effects mean as we see in the example above

compared to Example 4.3.4. In addition, larger degrees of heterogeneity result in less

powerful tests of the mean effect size.

4.4.4 Example: Computing the Number of Studies Needed
to Detect an Important Random Effect Mean

In Example 4.3.5, we computed the number of studies needed to detect an odds ratio

of 1.3 for the non-smoking spouse of a smoker compared to the non-smoking

spouse of a non-smoker of contracting lung cancer. We can use the results we

obtained in this example to find the number of studies needed to detect this odds

ratio given a large and a small degree of heterogeneity. In Example 4.3.5, we found

a value of l ¼ 2.487. Using the same reasoning, we then would obtain a value for

our v�i ¼ 0:010. If we use the hypothetical data given in Table 4.3 for an odds ratio

of 1.31, we obtain a common value of v ¼ 0.09. Given v�i , v and a value for t2, we
can solve for k.A large degree of heterogeneity would give us t2 ¼ 3 0:09ð Þ ¼ 0:27.
We then must solve

0:01 ¼ 0:09þ 0:27ð Þ
k

k ¼ 0:36

0:01

k ¼ 36

For a small degree of heterogeneity, we obtain t2 ¼ 1=3ð Þ0:09 ¼ 0:03, and
solving for k given the values above yields k ¼ 12. Note that we need more studies

to detect an odds ratio of 1.3 when we assume a random effects model, and more

studies still when we have more heterogeneity among effect sizes.
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4.4.5 Example: Computing the Detectable Random
Effects Mean in a Meta-analysis

Extending example 4.3.6, we can compute the size of the random effects mean

correlation that we would find statistically significant given k, a value of power, the
typical within-study variance and a value for t2. In example 4.3.6, we assumed

k ¼ 15, and the common within-study variance, v, for Fisher’s z-transformation as

0.059 (for N ¼ 20) for the association between instructor ratings and student

grades. For a large degree of heterogeneity, we have t2 ¼ 3 0:059ð Þ ¼ 0:18, and
for a small degree of heterogeneity, we have t2 ¼ 1=3ð Þ0:059 ¼ 0:02. For a one-

tailed test with power of 0.8, we have l ¼ 2.487. Our corresponding values for

v�i ¼ ð0:059þ 0:18Þ=15 ¼ 0:016 for a large degree of heterogeneity, and

v�i ¼ ð0:059þ 0:02Þ=15 ¼ 0:005 for a small degree. We solve for y* with a large

degree of heterogeneity as

y� � 0ffiffiffiffiffiffiffiffiffiffiffi
0:016

p ¼ 2:487

y�

0:13
¼ 2:487

y� ¼ 0:32

With a small degree of heterogeneity, we obtain y* ¼ 0.19. Both values are

larger than the effect we can detect as statistically significant when we assume a

fixed effects model.

Appendix

Computing Power for Examples in Section 4.3

The examples require the computation of the area under the standard normal

distribution that is either less than or greater than a given critical value, ca. Below

I give the functions and commands necessary to obtain the power for the example

in Sect. 4.3.4.

Excel

In Excel, the function NORMSDIST(x) is the cumulative normal distribution. For

Example 4.3.4,

NORMSDIST(0:55Þ ¼ 0:709

The value given in Excel is the cumulative area less than or equal to x.
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SPSS

Using the Compute menu in SPSS, the function CDF.NORMAL(quant, mean, sd)

provides the values for the cumulative normal distribution. To compute the power

for Example 4.3.4,

value = CDF.NORMAL(0:55; 0; 1Þ

returns the value 0.71, or in other words, the cumulative area that is less than

or equal to 0.71.

SAS

In SAS, the function CDF(‘NORMAL’, x, mean, sd) provides the value of the cumula-

tive normal distribution function that is less than x for a normal distribution with the

specified mean and standard deviation. To compute the power for Example 4.3.1,

value ¼ CDFð‘NORMAL’; 0:55; 0; 1Þ:

The above function results in a value of 0.709.

R

In R, the function PNORM(x) gives the area for the cumulative standard normal

distribution to the right of a positive value of x and to the left of a negative value of

x. For Example 4.3.4, the following command produces the area that is greater than

x (since x is positive), or, P(X > x). The command pnorm(0.55) in R would

produce the same result as we see below.

> pnormð0:55Þ
> 0:709

References

American Psychological Association. 2009. Publication manual of the American Psychological
Association, 6th ed. Washington, DC: American Psychological Association.

Cohen, J. 1988. Statistical power analysis for the behavioral sciences, 2nd ed. Mahwah: Lawrence

Erlbaum.

Freiman, J.A., T.C. Chalmers, H. Smith, and R.R. Kuebler. 1978. The importance of beta, the type

II error and sample size in the design and interpretations of the randomized control trial.

The New England Journal of Medicine 229: 690–694.

References 53



Goodman, S.N., and J. Berlin. 1994. The use of predicted confidence intervals when planning

experiments and the misuse of power when interpreting results. Annals of Internal Medicine
121: 201–206.

Hayes, J.P., and R.J. Steidl. 1997. Statistical power analysis and amphibian population trends.

Conservation Biology 11: 273–275.
Higgins, J.P.T., and S.G. Thompson. 2002. Quantifying heterogeneity in a meta-analysis. Statistics

in Medicine 21: 1539–1558.
Murphy, K.R., and B. Myors. 2004. Statistical power analysis, 2nd ed. Mahwah: Lawrence

Erlbaum.

National Cancer Institute. 2011. Cancer fact sheet: Cancer of the lung and bronchus. National

Institutes of Health. http://seer.cancer.gov/statfacts/html/lungb.html. Accessed 25 July 2011.

National Research Council. 1986. Environmental tobacco smoke: Measuring exposures and
assessing health effects. Washington, DC: National Academy Press.

Reed, J.M., and A.R. Blaustein. 1995. Assessment of “nondeclining” amphibian populations using

power analysis. Conservation Biology 9: 1299–1300.
Thomas, L. 1997. Retrospective power analysis. Conservation Biology 11: 276–280.
Zumbo, B.D., and A.M. Hubley. 1998. A note on misconceptions concerning prospective and

retrospective power. The Statistician 47: 385–388.

54 4 Power Analysis for the Mean Effect Size

http://seer.cancer.gov/statfacts/html/lungb.html


Chapter 5

Power for the Test of Homogeneity in Fixed

and Random Effects Models

Abstract This chapterwill illustratemethods for the power of the test of homogeneity

in fixed and random effects models. In fixed effects models, the test of homogeneity

provides evidence about whether the effect sizes in a meta-analysis are measuring a

common effect size. The test of homogeneity in random effects models is a test of

the statistical significance of the variance component, the between-studies variance.

The chapter gives examples of how to compute the power for the test of homogeneity

in both fixed and random effects models.

5.1 Background

The prior chapter provided background on power analysis in general, and outlined

the specific tests for the power of the mean effect size in both fixed and random

effects models. This chapter will discuss the power for tests of homogeneity

of effect sizes in both fixed and random effects models. For fixed effects, the test

of homogeneity examines whether the amount of variation among effect sizes is

greater than we would expect due to sampling error alone. For random effects

models, the test of homogeneity is the test of whether the variance component, t2,
is different from zero. Though each of these tests uses the same computational

form, their underlying distribution is different for the computation of power.

As seen in the prior chapter, one challenge in examining power is deciding on the

values to use for computing power. The test of homogeneity requires an a priori

guess about the amount of variation that we expect among effect sizes in a meta-

analysis. While we often have a priori ideas about values for the mean effect size,

it is more difficult to quantify an amount of heterogeneity. I present two options in

this chapter, one by thinking about the average amount of difference between the

effect sizes and the mean effect in standard deviation units, and one by using

percentages of I2. Below I provide the power for the tests of homogeneity in fixed

and random effects models, and suggest ways to choose values for the parameters

needed to compute power.
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5.2 The Test of Homogeneity of Effect Sizes

in a Fixed Effects Model

In Chap. 3, I discussed the assumptions we make in fixed and random effects

models. The major distinction between these models lies in the source of the

variation among effect size estimates. For a fixed effects model, we assume that

the effect size estimates from studies differ due only to sampling error. Each study

is estimating a common mean effect size, and the estimates differ from each other

since each study uses a different sample of participants. We test this assumption

using the homogeneity statistic, Q. In a meta-analysis, after we estimate our overall

fixed effects mean effect size, we are interested in testing the null hypothesis that

all studies estimate a common effect size, or H0 : y1 ¼ y2 ¼ . . . ¼ yk ¼ y.
This test was given in (2.3), and can be written as

Q ¼
Xk
i¼1

ðTi � �T�Þ2
vi

¼
Xk
i¼1

wi ðTi � �T�Þ2

where wi ¼ 1/vi, the inverse of the sampling variance of the effect size estimates,

Ti, and the mean of the effect size estimates, �T�, is given by (2.1). We use y to

designate the common population mean estimated by �T�.
We compare the obtained value of Q to a chi-square distribution with k � 1

degrees of freedom. We reject the null hypothesis if the value of Q is larger than

the critical value, ca, where a is our designated significance level, the 100(1 � a)
percentile of the chi-square distribution with k � 1 degrees of freedom. The test of

homogeneity is a one-tailed test where we reject H0 when Q � ca. Note that a non-
significant value of the chi-square distribution indicates that our effect sizes are

homogeneous, that they are estimating a single common mean effect size.

5.2.1 The Power of the Test of Homogeneity
in a Fixed Effects Model

In order to compute the power of the test of homogeneity in fixed effects models,

we will need to have an estimate ofQ.Below I discuss howwemight posit values for

the homogeneity statistic. For now, imagine that we are able to arrive at a value

for Q. As indicated above, when the null hypothesis is true, i.e., when all effect

sizes estimate a commonmean,Q has the chi-square distribution with k � 1 degrees

of freedom. When at least one of the effect sizes differs, i.e., when the alter-

native hypothesis, Ha: yi 6¼ y for some value of i, then Q has a non-central
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chi-square distribution with k � 1 degrees of freedom and non-centrality parameter

equal to

l ¼
Xk
i¼1

wiðyi � �y�Þ2: (5.1)

where �y� is the weighted mean of y1, y2, . . ., yk, and can be written as

�y� ¼
Pk
i¼1

wi yi

Pk
i¼1

wi

: (5.2)

As in the power of the test of the mean effect size, we want to know the proportion

of Q statistics that are greater than ca when we have a non-central chi-square

distribution with a non-centrality parameter l and k � 1 degrees of freedom.

Note that the value of ca is the critical value from a central chi-square distribution

with k � 1 degrees of freedom. Note that (5.1) has the same form as the homogeneity

test,Q.Wewill propose a value ofQ to estimate the non-centrality parameter, l, when
we compute power. The power of the test of homogeneity in the fixed effects case is

given by

p ¼ 1� Fðca j k � 1; lÞ (5.3)

where Fðca j k � 1; lÞ is the area that is larger than ca of the non-central chi-square
with k � 1 degrees of freedom and non-centrality parameter l.

5.2.2 Choosing Values for the Parameters Needed
to Compute Power of the Homogeneity
Test in Fixed Effects Models

The non-centrality parameter is key in computing power for the homogeneity of

effect sizes in a fixed effects context. Looking at (5.1), we see that one component of

the non-centrality parameter is the difference between each effect size, yi, and the

mean effect size y. We could think about this difference in terms of the units of

the standard deviation of the mean effect size, √v•. We might want to see if we could

detect heterogeneity if the average difference between the effect sizes and the mean

effect was .5√v•, one-half of a standard deviation of the mean effect size. If we also

have assumptions about the typical sample size within studies, N, and the number of

studieswe expect to find, k,we can compute a value for the common variance for each
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effect size, and the estimated variance for the mean of those effect sizes as we did

in Chap. 4. We can then compute a non-centrality parameter l, in this example, as

l ¼
Xk
i¼1

w ð0:5 ffiffiffiffiffi
v�

p Þ2

¼ k w v�ð0:5 Þ2

¼ k v�ð0:5 Þ2
v

¼ k

v

v

k
ð0:5Þ2

¼ ð0:5Þ2 (5.4)

In (5.4), the estimate of v• is given in (2.2), and w ¼ 1/v is the inverse of the

common variance for each effect size. Given that we estimate v• ¼ v/k, one estimate

of l is equal to the square of the number of standard deviations we propose as the

average difference between effect sizes and their mean. We could consider other

values for the average difference between each study’s effect size and the mean

effect size such as 1v• or 2v•, resulting in a value of l as 1, or 4, respectively. Below
I provide an example of these computations.

5.2.3 Example: Estimating the Power of the Test
of Homogeneity in Fixed Effects Models

In Chap. 4, we used an example of studies on the effectiveness of coaching

programs to increase the SAT-Math and SAT-Verbal scores of high school

students. In that example, we were interested in a standardized mean difference

of 0.5, and assumed that a typical study had a total sample size of 40, with

20 participants each in the experimental and control groups. In this example, we

obtained a value of the common effect size of v ¼ 0.10. With k ¼ 10 studies,

we have v• ¼ (0.10/10) ¼ 0.01. If we assume that the average difference among the

effect sizes and the mean effect size is 0.5 √v•, then we would compute a value of

the non-centrality parameter equal to

l ¼ ð0:5Þ2 ¼ 0:25

The critical value of the central chi-square is 16.92 for a central chi-square with

k � 1 ¼ 9 degrees of freedom and a ¼ 0.05 meaning that 95% of the central chi-

square distribution with 9 degrees of freedom lies below the value of 16.92. The

power of the homogeneity test in this case is p ¼ 1� Fðca j k � 1; lÞ ¼ 1� F�
16:92j9; 0:25ð Þ ¼ 0:058. We do not have much power to detect heterogeneity when

the average difference between effect sizes and the mean is only 0.5√v•. If we
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assume that the average difference between effect sizes and the mean is larger,

say 2v•, we would obtain a value of the non-centrality parameter equal to l ¼ 4.

The power of the homogeneity test is p ¼ 1� Fðca j k � 1; lÞ ¼
1� F 16:92j9; 4ð Þ ¼ 0:22. When we have more heterogeneity, say when the aver-

age difference between the effect sizes and the mean is 3√v•, the power is p ¼
1� Fðca j k � 1; lÞ ¼ 1� F 16:92j9; 9ð Þ ¼ 0:51. Figure 5.1 provides a graph of the
power for this example using different values for the average difference between

the effect sizes and the mean in standard deviations from 0 to 6. Note that our power

to detect heterogeneity reaches 0.8 only when our effect sizes are on average

4 standard deviations away from the mean effect size.

5.3 The Test of the Significance of the Variance

Component in Random Effects Models

As discussed in Chap. 3, we assume that the variation between effect sizes in a

random effects model consists of two components: one due to sampling error, and

one to the variation in the underlying distribution of effect sizes. When we are

testing homogeneity in the random effects model, we are interested in whether the

underlying variation in the distribution of effect sizes is zero, i.e., whether the only

source of variation is credibly sampling error. Thus, the test of homogeneity in the

random effects model is a test of whether the variance component, t2, is equal to 0.
Thus, the null hypothesis for the test of the variance component in random effects

models is H0: t
2 ¼ 0, with the alternative hypothesis of Ha: t

2 6¼ 0.

The test that the variance component is equal to zero, t2 ¼ 0, in the random-

effects model has a form that is similar to the homogeneity test,Q, in the fixed effects
case. As in (2.9), the test is given as,

Q ¼
Xk
i¼1

wiðTi � �T�Þ2
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Fig. 5.1 Power for differences between the effect size estimates and the mean in SD units
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We compare the value of Q to a chi-square distribution with k � 1 degrees of

freedom. When the value of Q exceeds the 100(1�a) percentile of the central

chi-square distribution with k � 1 degrees of freedom, we reject the null hypothesis,

and report that our variance component is different from zero.

5.3.1 Power of the Test of the Significance of the Variance
Component in Random Effects Models

As I discuss above, when the null hypothesis is true, i.e., when H0 : t2 ¼ 0,

the statistic Q has the chi-square distribution with k � 1 degrees of freedom.

However, when the null hypothesis is false, then Q has a complex distribution

under the random effects model. This distribution is a weighted combination of

chi-square distributions and must be approximated. As given in Hedges and Vevea

(1998) and in Hedges and Pigott (2001), one approximation, derived by

Satterthwaite (1946), uses a gamma distribution with mean and variance equal to

functions of the mean and variance of the distribution of Q, this weighted combi-

nation of chi-square distributions. The mean of theQ distribution is given by mQ and

can be written as

mQ ¼ c t2 þ ðk � 1Þ (5.5)

where c is given in (2.5), and t2 is the value of the variance component that we are

testing as significantly different from 0. The variance of Q, s2Q, is computed using

the fixed effects weights and is given by

s2Q ¼2ðk � 1Þ þ 4
X

wi �
P

w2
iP

wi

� �
t2

þ 2
X

w2
i � 2

P
w3
iP

wi
þ
P

w2
i

� �2
P

wið Þ2
 !

t4 (5.6)

We can then use a central chi-square distribution with non-integer degrees of

freedom to approximate the gamma distribution with mean given in (5.5), and

variance in (5.6). To compute the correct approximation, we need to compute

two more quantities based on the mean and variance of given in (5.5 and 5.6).

These quantities are r, given by

r ¼ s2Q
2mQ

(5.7)

and s, given by
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s ¼ 2ðmQÞ2
s2Q

: (5.8)

Then the power of the test when t2 ¼ 0 is given by

Fðca=rj s; 0Þ (5.9)

where F (ca=rj s; 0) is the cumulative distribution function of the central chi-square

with s degrees of freedom (a non-integer value), and ca is the 100(1 � a) percentile
point of the chi-square distribution with (k � 1) degrees of freedom. Tabled values

of the chi-square and functions that compute the chi-square cumulative distribution

traditionally give the area under the curve that is larger than ca, the critical value.
This area larger than the critical value is the power of the test. The Appendix gives

options for computing the distribution of a central chi-square distribution with

non-integer degrees of freedom.

5.3.2 Choosing Values for the Parameters Needed to Compute
the Variance Component in Random Effects Models

As seen in Sect. 5.2.1, the test of the variance component requires the researcher to

pose a value for the variance component that the reviewer wishes to test as signifi-

cantly different from 0. Section 4.4.2 presents a method for suggesting values of the

variance component, t2, using conventions suggested by Higgins and Thompson

(2002). Recall that we can use conventions based on values of I2 corresponding to

25% for low heterogeneity, 50% for moderate heterogeneity, and 100% for a large

degree of heterogeneity. Given the relationship in (4.10), where

I2 ¼ t2

t2 þ v

and v is our common value for the within-study sampling variance of the effect size,

we can pose values for t2 equal to (1/3)v, v, and 3v, as our values for low, moderate,

and large degrees of heterogeneity, respectively. As seen in (5.6), we will also need

a value for the common fixed effects weights, w ¼ 1/v. We computed the common

value of v by assuming that each study in the meta-analysis has the same sample

size, and in the case of the standardized mean difference, that each study has the

same effect size. This simplifying assumption allows us to compute a common

value for the sampling variance, v, of the effect size of choice. Example 4.3.4

illustrates how we pose a value for v.
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5.3.3 Example: Computing Power for Values of t2,
the Variance Component

In Chap. 4, we used an example of studies on the effectiveness of coaching

programs to increase the SAT-Math and SAT-Verbal scores of high school

students. Let us say that we are interested in a standardized mean difference of

0.2, and assume that a typical study has a total sample size of 40, with 20

participants each in the experimental and control groups. We obtain a value of

the common effect size of v below as

v ¼ 20þ 20

20 � 20 þ ð0:2Þ2
2ð20þ 20Þ ¼ 0:10

Given a value of v,we can compute the power for values of t2. For example, with

a small degree of heterogeneity, we would compute t2 ¼ (1/3)v ¼ 0.033, and with

a large degree of heterogeneity, we would have t2 ¼ 3(0.10) ¼ 0.30. With the

number of studies equal to k ¼ 10, we can compute c, given in (2.5), and equal to

c ¼
X10
i¼1

w�
P10
i¼1

w2

P10
i¼1

w

¼ 10w� 10w2

10w
¼ 10

0:10
� ð1=0:10Þ2

ð1=0:10Þ

¼ 100� 10 ¼ 90:

Let us beginwith the computations assuming a small degree of heterogeneity.With

k ¼ 10 studies, and c ¼ 90, we compute a value of mQ ¼ 90(0.033) + (10�1) ¼
2.97 + 9 ¼ 11.97. Computing s2Q is more computationally intense as seen in (5.6),

and is given by

s2Q ¼ 2ð10� 1Þ þ 4
X

1=0:10�
P ð1=0:10Þ2P

1=0:10

 !
ð0:033Þ2

þ 2
X

ð1=0:10Þ2 � 2

P ð1=0:10Þ3P
1=0:10

þ
P ð1=0:10Þ2
� �2
P

1=0:10ð Þ2

0
B@

1
CA ð0:033Þ4

¼ 18þ 0:39þ 2½1000� 200þ 100�ð0:001Þ2
¼ 18:39þ 0:002 ¼ 18:392 (5.10)

Using (5.7), r ¼ 18.392/(2*11.97) ¼ 0.77, and s ¼ 2(11.97)2/18.392 ¼ 15.58.

With values of r, and s, we can compute the power of the test of the variance

component when t2 ¼ 0.033, a small degree of heterogeneity in this case.

Our critical value for the central chi-square distribution with degrees of freedom,
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k � 1 ¼ 9, and a ¼ 0.05 is ca ¼ 16.92. The power of the test of the variance

component using (5.9), and a ¼ 0.05 is Fðca=rj s; 0Þ ¼ F 16:92=0:77j15:58; 0ð Þ ¼
0:13. We have little power to find t2 ¼ 0.033 significantly different from zero in

this example.

If we assume a large degree of heterogeneity, in this case, that t2 ¼ 0.3, we have

mQ ¼ 90(0.3) + (10 � 1) ¼ 27 + 9 ¼ 36. For s2Q, we obtain

s2Q ¼ 2ð10� 1Þ þ 4
X

1=0:10�
P ð1=0:10Þ2P

1=0:10

 !
ð0:3Þ2

þ 2
X

ð1=0:10Þ2 � 2

P ð1=0:10Þ3P
1=0:10

þ
P ð1=0:10Þ2
� �2
P

1=0:10ð Þ2

0
B@

1
CA ð0:3Þ4

¼ 18þ 32:4þ 2½1000� 200þ 100�ð0:09Þ2
¼ 50:4þ 14:58 ¼ 64:98 (5.11)

Using (5.7), r ¼ 64.98/(2*36) ¼ 0.90, and s ¼ 2(36)2/64.98 ¼ 20.81. With

values of r, and s, we can compute the power of the test of the variance component

when t2 ¼ 0.3, a large degree of heterogeneity in this case. As above, our critical

value is ca ¼ 16.92. The power of the test of the variance component using (5.9),

is Fðca=rj s; 0Þ¼ F(16.92/0.90| 20.81; 0) ¼ 0.59. We have more power to find

t2 ¼ 0.3 significantly different from zero than in the prior example, though we

still do not reach the level of power ¼ 0.8. Figure 5.2 shows a chi-square distribu-

tion with 18.8 degrees of freedom. The area to the right of x ¼ 20.81 is the power in

this example. See the Appendix for computing options to obtain the values of a

chi-square with non-integer degrees of freedom.
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Fig. 5.2 Chi-square distribution with 18.8 degrees of freedom
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Appendix

Computing Power for the Tests of Homogeneity
and the Variance Component

The examples in this chapter require the computation of the area under the non-central

chi-square that is either less than or greater than a given critical value, ca. Below I give

the functions and or commands necessary to obtain the power for the test of homoge-

neity in fixed effects, and the test of the variance component in random effects.

The program Exel only provides the values of the cumulative central chi-square

distribution, and thus cannot be used for the examples in this chapter.

SPSS

Using the Compute menu in SPSS, the function IDF.CHISQ(p, df) provides the

critical value ca for a central chi-square distribution where p equals the area in

the left tail, and df equals the degrees of freedom. The following command returns

the critical value for the example in Sect. 5.2.3.

critval ¼ IDF:CHISQð0:95; 9Þ

SPSS gives the critical value for the command above as 16.919. The function

given by NCDF.CHISQ(quant, df, nc) gives the area less than or equal to quant ¼ ca
for a non-central chi-square distribution with df degrees of freedom and non-

centrality parameter equal to nc. To compute the power for Example 5.2.3,

power ¼ 1� NCDF:CHISQð16:92; 9; 4Þ

returns the value 0.225.

The example in Sect. 5.3.3 uses the central chi-square distribution with non-

integer degrees of freedom. The command in SPSS

power ¼ 1� CDF:CHISQð21:974; 15:58Þ

returns the value 0.128.

SAS

In SAS, the function CINV(p, df) provides the critical value, ca, of the cumulative

central chi-square distribution function with df degrees of freedom that is less than

ca. The function CDF(‘CHISQUARE’, x, df, ncp) provides the area in the left tail
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that is less than or equal to x in a non-central chi-square distribution with df degrees
of freedom and non-centrality parameter equal to ncp. To compute the power for

the example in Sect. 5.2.3, we first obtain the critical value for the central chi-square

distribution with 9� of freedom at the a ¼ 0.05 level as below

critval ¼ cinvð0:95; 9Þ:

The command above returns a value of 16.9190. The power of the first test in

Sect. 5.2.3 is computed in SAS as

power ¼ 1� cdf ð‘chisquare’; 16:92; 9; 4Þ

The above function results in a value of 0.22536. The example in Sect. 5.3.3

requires the central chi-square distribution with non-integer degrees of freedom.

Power for the first example in Sect. 5.2.3 is computed as

power ¼ 1� cdf ð‘chisquare’; 21:974; 15:58; 0Þ

This command results in a value of 0.12834.

R

In R, the function qchisq(p, df, ncp, lower.tail ¼ TRUE, log.p ¼ FALSE) gives the

critical value for the cumulative chi-square distribution with df degrees of freedom
for the area equal to p. The option lower.tail ¼ TRUE indicates that we want p to

equal the area in the lower tail. The option log.p ¼ FALSE indicates that we do not

want the value of p in log units. The command below computes the critical value for

the 95% point of the chi-square distribution with 9 degrees of freedom and non-

centrality parameter ¼ 0. When the non-centrality parameter is equal to 0, the

distribution is a central chi-square distribution.

> qchisq 0:95; 9; ncp ¼ 0; lower:tail ¼ TRUE; log:p ¼ FALSEð Þ
1½ �16:91898

To obtain the power for the second computation in Example 5.2.3, we use the

command

> pchisq 16:919; 9; ncp ¼ 9; lower:tail ¼ FALSE; log:p ¼ FALSEð Þ
1½ �0:5104429

Note that in this example, we are asking for the area in the upper tail as indicated

by the option lower.tail ¼ FALSE. The first example in Sect. 5.3.3 is computed as
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> pchisq(21.97, 15.58, ncp = 0, lower.tail = FALSE, log.p = FALSE)

1½ � 0:1284637

As in the prior example, we want the upper tail, so lower.tail ¼ FALSE.
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Chapter 6

Power Analysis for Categorical Moderator

Models of Effect Size

Abstract This chapter provides methods for computing power with moderator

models of effect size. The models discussed are analogues to one-way ANOVA

models for effect sizes. Examples are provided for both fixed and random effects

categorical moderator models. The power for meta-regression models requires

knowledge of the values of the predictors for each study in the model, and is not

provided here.

6.1 Background

The prior two chapters outlined the procedures for computing power to test the mean

effect size and homogeneity in both fixed and random effects models. As discussed

in Chap. 3, reviewers plan many syntheses to test theories about why effect sizes

differ among studies. These theories are formally examined in the form of moderator

analyses in meta-analysis. Given the variability we expect among studies especially

in the social sciences, moderator analyses provide important information about, for

example, how the effects of an intervention vary in different contexts and with

different participants. Computing the power of moderator analyses is critical when

planning a meta-analysis, since examining potential reasons for variance among

effect sizes is an important focus of a systematic review. This chapter will provide

the computations for power for categorical models of effect sizes that are analogous

to one-way ANOVA. These models can be computed under both the fixed or random

effects assumptions, and I discuss the power calculations under both assumptions.

As we have seen in the prior chapters, we face challenges in posing important

values for the parameters needed in the power computations. For categorical

models, we will need to arrive at values for the differences among the means of

groups of effect sizes, and for the degree of heterogeneity within groups. When

using random effects models, we also need to provide plausible values for the

variance component, t2. Both fixed effects and random effects models will be

discussed as well as strategies for providing values for the power parameters.
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6.2 Categorical Models of Effect Size: Fixed Effects

One-Way ANOVA Models

The simplest moderator models for effect size are analogues to one-way ANOVA

models where the researcher is interested in comparing the mean effect sizes across

groups of studies. The groups of studies are formed from a small number of levels of

a categorical factor. For example, one moderator included in many syntheses is

whether the study used random assignment to place individuals into experimental

groups. Computation of categorical models with a single factor in meta-analysis

proceeds in the same manner as one-way ANOVA. In meta-analysis, instead of

computing the sums of squares, we compute between-group and within-group

homogeneity tests. Below I outline the procedures for computing the statistics for

the one-way fixed effects ANOVAmodel in meta-analysis, followed by a discussion

of how to compute power.

6.2.1 Tests in a Fixed Effects One-Way ANOVA Model

As discussed in Chap. 2, we refer to our set of effect sizes using Ti; i ¼ 1; 2; ::: ; k,
where k is the total number of studies. Now let us assume that our k studies fall into
p groups as defined by a moderator variable. For example, the moderator variable

might be the grade level where the intervention takes place, say elementary or high

school. We assume that p is a small number of categories. We can then designate mi

as the number of studies in the ith group, so that k is the total number of studies,

k ¼ m1 þ m2 þ :::þ mp.

Our interest in a one-way ANOVA effect size model is to examine whether the

means for the groups are equal. We will also want to know if the effect sizes within

each group are homogeneous. We will compute two values of the Q statistic, QB, the

test of between-group homogeneity, and QW, the test of within-group homogeneity.

The QB is analogous to the F-test between groups, and is an omnibus test of whether

all groupmeans are equal. TheQW is an overall test ofwithin-group homogeneity, and

is equal to the sum of the homogeneity tests within each group. Thus, QW ¼ QW1
þ

QW2
þ :::þ QWp where QWi

, i ¼ 1, 2, . . ., p are the tests of homogeneity within each

group. In addition, the two tests of homogeneity, like the F-tests in ANOVA, sum to

the overall homogeneity test across all effect sizes, or, QT ¼ QB + QW. The power

computations for these two tests of homogeneity are given below.

6.2.2 Power of the Test of Between-Group Homogeneity,
QB, in Fixed Effects Models

The first concern in the ANOVA model is whether the group mean effect sizes are

equal. When there are p group means, the omnibus test of the null hypothesis that

the group mean effect sizes are equal is given by
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H0 : �y1� ¼ �y2� ¼ ::: ¼ �yp� (6.1)

To test this hypothesis, we compute the between-groups homogeneity test

given by

QB ¼
Xp
i¼1

wi� ð �Ti� � �T�� Þ2 (6.2)

where wi• is the sum of the weights in the ith group, �Ti� is the mean effect size in the

ith group, and �T�� is the overall mean effect size. These quantities are more

formally given as

wi� ¼
Xmi

j¼1

wij ; where i ¼ 1; :::; p; and j ¼ 1; :::;mi

�Ti� ¼

Pmi

j¼1

wijTij

Pmi

j¼1

wij

�T�� ¼

Pp
i¼1

Pmi

j¼1

wijTij

Pp
i¼1

Pmi

j¼1

wij

(6.3)

When the null hypothesis in (6.1) is true, that is when all the group means are

equal, QB has the chi-square distribution with (p � 1) degrees of freedom. When

QB > ca where ca is the 100(1 � a) percentile point of the chi-square distribution
with (p � 1) degrees of freedom, we reject the null hypothesis. When the null

hypothesis is false, that is when at least one of the means differs from the other

group means, QB has a non-central chi-square distribution with (k � 1) degrees of
freedom and non-centrality parameter lB given by

lB ¼
Xp
i¼1

wi� ð�yi� � �y�� Þ2: (6.4)

The power of the test of QB is

1� Fðca j p� 1; lB Þ (6.5)

where F(ca |p-1;lB) is the cumulative distribution of the non-central chi-square with

(p � 1) degrees of freedom and non-centrality parameter, lB.
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6.2.3 Choosing Parameters for the Power
of QB in Fixed Effects Models

As in prior chapters, our challenge is to pose important values for the parameters

in the power computations. Our main interest in the test of between-group homo-

geneity is the difference among the group effect sizes. Thus, we can pose a

substantively important difference that we would like to test among the group

means. If we, for example, want to know if the mean effect size for studies that

use random assignment is at least 0.5 standard deviations smaller than the mean

effect size for quasi-experiments, we could assume that the group mean effect size

for the randomized studies is 0.0, and that for the quasi-experimental studies is 0.5.

Thus, to test the between-group homogeneity, we can pose values for the mean

effect sizes in each group, or at least the difference we would like to test between

groups. We then need to suggest the number of effect sizes we will have in each

group, and compute values for wij, the weights for the individual effect sizes.

In prior chapters, we have made the simplifying assumption that all studies have

the same sample sizes to obtain a common value of the wij, by assuming a “typical”

within-study sample size. Table 6.1 summarizes the values needed to compute

power for a fixed effects categorical moderator model.

6.2.4 Example: Power of the Test of Between-Group
Homogeneity in Fixed Effects Models

One of the data sets used in the book is based on Sirin (2005), a meta-analysis of the

correlations between measures of socio-economic status and academic achieve-

ment. The studies included in this meta-analysis used samples of students at several

grade levels. Let us say that we want to make sure our meta-analysis will have

enough power to detect differences in the mean effect size for studies that use

students at three different grade levels: elementary (K-3), middle (4–8), and high

school (9–12). We may be interested in whether the difference in the mean

Table 6.1 Steps for computing power in fixed effects one-way ANOVA model

1. Establish a critical value for statistical significance, ca
2. Decide on the magnitude of the difference between the group means in the effect size metric

used. For example, with standardized mean differences, decide on the number of standard

deviations that are substantively important. For correlations, decide on the difference in

correlations that is important

3. Assign values to the group means, y1,. . .,yp corresponding to the differences between group

means in (2)

4. Estimate the number of studies within each group, m1,. . .,mp

5. Compute wij, the common value of the weights for each effect size, given “typical” values for

the within-study sample sizes
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correlation between elementary and middle school is 0.1, and between elementary

and high school is 0.5 (implying a difference of 0.4 for middle versus high school).

We have three groups, p ¼ 3, and we can assume that our mean effect sizes are
�y1 ¼ 0:0, �y2 ¼ 0:1, and �y3 ¼ 0:5. In terms of Fisher’s z-transformations, these

means would be equal to �yz1 ¼ 0:0, �yz2 ¼ 0:10, and �yz3 ¼ 0:55, respectively.

Let us also assume that we have 5 studies per group, and our common within-

group sample size is n ¼ 15. To compute the non-centrality parameter, lB, we first
need our common value of wij. For Fisher’s z, wij ¼ 1/vij ¼ nij -3 (vij for

correlations is given in 2.15). Thus, we can compute

wi� ¼
X5
j¼1

wij ¼
X5
j¼1

ð15� 3Þ ¼
X5
j¼1

12 ¼ 60

as given in (6.3). The overall mean effect size is �yi� ¼ ð0:0þ 0:10þ 0:55Þ=3 ¼ 0:22,
since all effect sizes have the same weight, and we have equal numbers of studies

within each group. (With different weights for each effect size and different numbers

of effect sizes within groups, we would need to use a weighted mean as given in

(6.3). We can compute the non-centrality parameter as

lB ¼
X3
i¼1

wi� ð�yi� � �y��Þ2

¼ 60ð0:0� 0:22Þ2 þ 60ð0:10� 0:22Þ2 þ 60ð0:55� 0:22Þ2

¼ 60ð�0:22Þ2 þ 60ð�0:12Þ2 þ 60ð0:33Þ2
¼ 10:302

The central chi-square distribution with p � 1 ¼ 3�1 ¼ 2 degrees of freedom

has a critical value equal to 5.99 with a ¼ 0.05. The power of the omnibus test that

H0 : �yz1 ¼ �yz2 ¼ �yz3 is given by 1 � F(5.99 | 2;10.302) ¼ 1 � 0.17 ¼ 0.83.

The Appendix in Chap. 5 provides options for computing values of the non-central

chi-square distribution.

6.2.5 Power of the Test of Within-Group Homogeneity,
QW, in Fixed Effects Models

If a reviewer finds that the effect size means do differ between groups, then a second

question centers on whether the effect sizes within those groups are homogeneous.

The rationale for this question is similar to that for the overall test of homogeneity.

While the mean effect sizes may differ among groups, we also need to know if the

effect sizes within the group are estimating a common mean effect size. Hedges and

Pigott (2004) refer to the test of within-group homogeneity as a test of the goodness

of fit of the fixed effects model. In other words, the ANOVAmodel proposed fits the
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data well if the effect sizes within groups are homogeneous, i.e., that the effect sizes

within each group estimate a common mean value. The overall test of within-group

homogeneity is the omnibus test that the effect sizes within each group estimate a

common mean. We can write the null hypothesis as

H0 : yij ¼ �yi� ; i ¼ 1; :::; p; j ¼ 1; :::;mi (6.6)

where the alternative hypothesis is that at least one of the effect sizes in group i
differs from the group mean, and there are mi effect sizes within the ith group. The

test for overall within-group homogeneity is

QW ¼
Xp
i¼1

Xmi

j¼1

wij ðTij � �Ti� Þ2 ¼
Xp
i¼1

QWi
: (6.7)

Note that this sum can also be written as the sum of the within-group homoge-

neity statistics. QWi
. When every group in the model is homogeneous, QW has

the central chi-square distribution with (k � p) degrees of freedom, where k is the
number of effect sizes and p is the number of groups. We reject the null hypothesis

when, QW > ca where ca is the 100(1 � a) percentile point of the chi-square

distribution with (k� p) degrees of freedom. Rejecting the null hypothesis indicates

that at least one group is heterogeneous, i.e., that at least one effect size differs

significantly from its group mean.

When the null hypothesis is false, the statistic QW has a non-central chi-square

distributionwith (k� p) degrees of freedom, and non-centrality parameter lW given by

lW ¼
Xp
i¼1

Xmi

j¼1

wij ðyij � �yi� Þ2: (6.8)

The power of the test of QW is given by

1� Fðca j k � p; lW Þ; (6.9)

where F(ca | k � p;lW) is the cumulative distribution of the non-central chi-square

with (k � p) degrees of freedom and noncentrality parameter lW, evaluated at ca,
the desired critical value of the central w2.

6.2.6 Choosing Parameters for the Test
of QW in Fixed Effects Models

The difficulty in computing the power of within-group heterogeneity is in posing a

substantively important value of heterogeneity. As we did in Chap. 5, we could

decide on the amount of heterogeneity we would want to detect within groups based
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on the standard error of the group mean effect size. For example, we might want to

determine the power to detect heterogeneity if one of the groups had effect sizes

that differed from the mean by 3 standard errors of the mean. Below I illustrate an

example of this strategy.

6.2.7 Example: Power of the Test of Within-Group
Homogeneity in Fixed Effects Models

Let us continue with the example in Sect. 6.2.4. In that example, we have three

groups, p ¼ 3, corresponding to studies with elementary, middle and high school

students, respectively. The mean Fisher z-transformations for each group are given

by �yz1 ¼ 0:0, �yz2 ¼ 0:10, and �yz3 ¼ 0:55, respectively. Let us also assume that we

have 5 studies per group (for a total k ¼ 15), and our common within-group sample

size is n ¼ 15. Thus, we have a common effect size variance of v ¼ 1/(n� 3) ¼ 1/

(15 � 3) ¼ 1/12, with a common weight equal to w ¼ 1/(1/12) ¼ 12. As we did in

Chap. 5, we can decide on how much variation we expect within the groups for our

power computations. Given our within-group sample sizes, we can compute the

variance (and standard error) of our mean effect sizes as

vi� ¼ 1

P5
j¼1

w

¼ 1

P5
j¼1

12

¼ 1

60
¼ 0:017

ffiffiffiffiffiffi
vi�

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:017

p
¼ 0:13

Let us say that the effect sizes using elementary school samples and those from

middle school samples differ by one standard deviation on average from their group

mean, while the effect sizes using high school samples differ by four standard

deviations on average from its group mean. We can compute the non-centrality

parameter, lW, from (6.8) as

lW ¼
Xp
i¼1

Xmi

j¼1

wij ðyij � �yi� Þ2

¼
X5
j¼1

12ð0:13Þ2 þ
X5
j¼1

12ð0:13Þ2 þ
X5
j¼1

12ð4 � 0:13Þ2

¼ 5 � 12ð0:017Þ þ 5 � 12ð0:017Þ þ 5 � 12ð0:52Þ2
¼ 60ð0:017Þ þ 60ð0:017Þ þ 60ð0:27Þ
¼ 1:02þ 1:02þ 16:20

¼ 18:24
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In the computation above, we replace the difference between the individual

effect sizes and their group mean, ðyij � �yi� Þ2, by the proposed number of standard

deviations, √vi• among the means. To compute power, we need the c0.05 critical

value of a central chi-square with k � p ¼ 15 � 3 ¼ 12 degrees of freedom, which

is equal to 21.03. Equation 6.9 gives the power as 1 � Fðca j k � p; lW Þ ¼
1� F 21:03j12; 18:24ð Þ ¼ 1� 0:18 ¼ 0:82. In this example, we have adequate

power to find that at least one of our groups of effect sizes is not homogeneous.

The Appendix in Chap. 5 provides the program code needed to compute values for

the non-central chi-square distribution.

6.3 Categorical Models of Effect Size: Random Effects

One-Way ANOVA Models

As discussed in Chap. 3, a random effects model for effect sizes assumes that each

study’s effect size is a random draw from a population of effect sizes. Thus, each

effect size differs from the overall mean effect size due to the underlying variance

of the population, designated as t2, and due to within-study sampling variance, vi.
Our goal in the random effects analysis is to first compute the variance component,

t2, and then to use the variance component to compute the random effects weighted

mean effect size.

When we are interested in estimating a random effects categorical model for

moderators, we will conduct a similar analysis for each group defined by our

categorical factor. As indicated in Chap. 3, we will make the assumption that

there is a common variance component, t2, across studies, regardless of the study’s
value for the categorical factor. Given that we will assume the same variance

component across studies, we will only focus on the test of between-group hetero-

geneity. The test of the significance of the variance component given in Chap. 5 for

the random effects model would apply to the case where we are assuming a

common variance component across studies.

As in Sect. 6.2.1, our k studies fall into p groups as defined by a moderator

variable where, k ¼ m1 þ m2 þ :::þ mp. The effect size in the jth study in the ith
group is then designated by T�

ij with variance of v
�
ij. The variance of each effect size

contains two components, one due to sampling error in an individual study, denoted

by vij and one due to the variance component, t2. The random effects variance for

the effect size T�
ij can be written as v�ij ¼ vij þ t2.

6.3.1 Power of Test of Between-Group Homogeneity
in the Random Effects Model

Similar to the fixed effects case, our test for between-group mean differences is an

omnibus test. The null hypothesis for the test that the random effects group means

differ can be written as
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H0 : y�1� ¼ y�2� ¼ ::: ¼ y�p� (6.10)

where the y�i� the random effects means for the i ¼ 1,. . ., p groups. We test this

hypothesis by computing the between-groups random effects homogeneity test

given by

Q�
B ¼

Xp
i¼1

w�
i� ð �T�

i� � �T�
��Þ2 : (6.11)

where w�
i� is the sum of the weights in the ith group, �T�

i� is the mean effect size in the

ith group, and �T�
�� is the overall mean effect size, all in the random effects model.

These quantities are more formally given as

w�
i� ¼

Xm1

j¼1

w�
ij
; where i ¼ 1; :::; p; and j ¼ 1; :::;mi

�T�
i� ¼

Pmi

j¼1

w�
ij
T�

ij

Pmi

j¼1

w�
ij

�T�
�� ¼

Pp
i¼1

Pmi

j¼1

w�
ij
T�

ij

Pp
i¼1

Pmi

j¼1

w�
ij

When the null hypothesis is true, i.e., when all the means are equal, Q�
B is

distributed as a central chi-square distribution with (p � 1) degrees of freedom.

When the value of Q�
B exceeds the critical value ca which is the 100(1 � a)

percentile point of the central chi-square distribution with (p � 1) degrees of

freedom, we assume that at least one of the random effects group means is

significantly different from the rest of the means. In the case where we reject the

null hypothesis,Q�
B has a non-central chi-square distribution with (p� 1) degrees of

freedom, and non-centrality parameter l�B given by

l�B ¼
Xp
i¼1

w�
i� ðy�i� � y��� Þ2: (6.12)

The power of the test for the between-group mean difference in a random effects

model is given as

1� Fðca j p� 1; l�BÞ (6.13)

where Fðca j p� 1; l�BÞ is the cumulative distribution function at ca of the non-

central chi-square with (p� 1) degrees of freedom and non-centrality parameter l�B.
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6.3.2 Choosing Parameters for the Test of Between-Group
Homogeneity in Random Effects Models

To compute the power of the test of between-group mean differences, we will need

to decide on the size of the difference between the group means that is of substan-

tive importance. In random effects models, we will also need to decide how much

variation we have between studies, i.e., we need a value for t2. We can use the

convention based on Higgins and Thompson (2002). Recall in Chap. 4 that we

chose a value of t2 based on the value of v, the “typical” within-study sampling

variance of effect sizes. A large degree of heterogeneity, and thus a large value

of t2, was assumed to be t2 ¼ 3v, which corresponds to an I2 value of .75.

A moderate degree of heterogeneity is t2 ¼ v, corresponding to an I2 value of .5,

and a small degree of heterogeneity is t2 ¼ (1/3)v, corresponding to an I2 value

of .25. We can amend the steps in Table 6.1 for the power for differences of random

effects means as seen in Table 6.2.

Thus, to compute the power of the test of the between-group random effects

means, we need to pose values for the number of studies within each group, the

within-study sample size, the degree of heterogeneity we expect, and the magnitude

of the differences between the means that is substantively important.

6.3.3 Example: Power of the Test of Between-Group
Homogeneity in Random Effects Models

Let us return to the example in Sect. 6.2.4. Recall that we have three groups, p ¼ 3,

and we can assume that our mean effect sizes are �y1 ¼ 0:0, �y2 ¼ 0:1, and �y3 ¼ 0:5.
In terms of Fisher’s z-transformations, these means would be equal to �yz1 ¼ 0:0,
�yz2 ¼ 0:10, and �yz3 ¼ 0:55, respectively. Let us also assume that we have 5 studies

Table 6.2 Steps for computing power in random effect categorical moderator model

1. Establish a critical value for statistical significance, ca
2. Decide on the magnitude of the difference between the group means in the effect size metric

used. For example, with standardized mean differences, decide on the number of standard

deviations that are substantively important. For correlations, decide on the difference in

correlations that is important

3. Assign values to the group means, y1,. . .,yp corresponding to the differences between group

means in (2)

4. Estimate the number of studies within each group, m1,. . .,mp

5. Compute v, the common value of the sampling variance for each effect size, given “typical”

values for the within-study sample sizes

6. Compute t2 for levels of heterogeneity based on v. Large degree of heterogeneity is t2 ¼ 3v,
moderate level is t2 ¼ v, and a small degree is t2 ¼ (1/3)v

7. Compute the values for the common weight, w ¼ 1/(v + t2)
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per group (with k ¼ 15), and our common within-group sample size is n ¼ 15.

To compute the non-centrality parameter l�B, we first need to posit a value of the

common value of the variance component, t2, across studies, based on our common

value of v. For Fisher’s z-transformation, the common value of the within-group

sampling variance in this example is v ¼ 1/(n � 3) ¼ 1/12 ¼ 0.083. For a large

degree of heterogeneity, the variance component would equal t2 ¼ 3

(0.083) ¼ 0.25, a moderate degree of heterogeneity, t2 ¼ 0.083, and a small

degree of heterogeneity, t2 ¼ (1/3)0.083 ¼ 0.028. Thus, our value for the random

effects variance, v*, is given as v* ¼ 0.083 + t2. Assuming a small degree of

heterogeneity, the value of the weight for the random effects means, w�
i�, is given as

w�
i� ¼

1

P5
i¼1

1

vþ t2

¼ 1

P5
i¼1

1

0:083þ 0:028

¼ 1

5 � 9:01 ¼ 0:022

Given our value of w�
i�, we can compute the non-centrality parameter l�B as

l�B ¼
X3
i¼1

w�
i� ðy�i � y�� Þ2

¼ 0:022ð0� 0:22Þ2 þ 0:022ð0:1� 0:22Þ2 þ 0:022ð0:55� 0:22Þ2
¼ 0:022ð0:048Þ þ 0:022ð0:014Þ þ 0:022ð0:11Þ
¼ 0:004

The power of the test of the between-group differences is given as 1� F�
ðca j p� 1; l�BÞ in (6.13). With p � 1 ¼ 2 degrees of freedom, the c0.05 critical

value of a central chi-square distribution is 5.99. Thus, the power in this example

with a small degree of heterogeneity is 1� Fð5:99 j 2; 0:004Þ¼ 1 � 0.95 ¼ 0.05.

We can also compute the power with a large degree of heterogeneity as a

comparison. With a large degree of heterogeneity, we have a value for the random

effects variance, v*, as v* ¼ 0.083 + 0.25 ¼ 0.33. Assuming a large degree of

heterogeneity, the value of the weight for the random effects means, w�
i�, is given as

w�
i� ¼

1

P5
i¼1

1

vþ t2

¼ 1

P5
i¼1

1

0:33

¼ 1

5 � 3:033 ¼ 1

15:01
¼ 0:067

Given our value of w�
i�, we can compute the non-centrality parameter l�B as

l�B ¼
X3
i¼1

w�
i� ðy�i � y�� Þ2

¼ 0:067ð0� 0:22Þ2 þ 0:067ð0:1� 0:22Þ2 þ 0:067ð0:55� 0:22Þ2
¼ 0:067ð0:048Þ þ 0:067ð0:014Þ þ 0:067ð0:11Þ
¼ 0:012
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With p � 1 ¼ 2 degrees of freedom, the c0.05 critical value of a central

chi-square distribution is 5.99. Thus, the power in this example with a large degree

of heterogeneity is 1� Fð5:99 j 2; 0:012Þ ¼ 1� 0:95 ¼ 0:05. In the random effects

model, we have little power to detect a difference among the mean effect sizes.

6.4 Linear Models of Effect Size (Meta-regression)

When a reviewer wishes to test a model with a number of moderators, including

continuous predictors, the relatively simple ANOVA models discussed above have

limited utility. Large-scale reviews often include multiple moderators that

reviewers would like to test simultaneously in a linear model, commonly called a

meta-regression. The use of meta-regression models instead of a series of one-way

ANOVA models helps reviewers avoid conducting too many statistical tests.

However, computing the power of meta-regression models a priori is problematic.

As seen in Hedges and Pigott (2004), we need to know the exact values of the

moderators for each study in order to compute power for tests in meta-regression.

These values cannot be guessed a priori, and thus, I will not present the details of

these tests here.
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Chapter 7

Missing Data in Meta-analysis: Strategies

and Approaches

Abstract This chapter provides an overview of missing data issues that can occur

in a meta-analysis. Common approaches to missing data in meta-analysis are

discussed. The chapter focuses on the problem of missing data in moderators of

effect size. The examples demonstrate the use of maximum likelihood methods and

multiple imputation, the only two methods that produce unbiased estimates under

the assumption that data are missing at random. The methods discussed in this

chapter are most useful in testing the sensitivity of results to missing data.

7.1 Background

All data analysts face the problem of missing data. Survey researchers often find

respondents may refuse to answer a question, or may skip an item on a question-

naire. Experimental studies are also subject to drop-outs in both the treatment and

control group. In meta-analysis, there are three major sources of missing data:

missing studies from the review, missing effect sizes or outcomes for the analysis,

and missing predictors for models of effect size variation. This chapter will provide

strategies for testing the sensitivity of results to problems with missing data. As

discussed throughout this chapter, current methods for missing data require strong

assumptions about the reasons why data are missing, and about the distribution of

the hypothetically complete data that cannot be verified empirically. Instead, re-

analyzing the data under a number of differing assumptions provides the reviewer

with evidence of the robustness of the results.

Over the past 20 years, statisticians have conducted an extensive amount of

research into methods for dealing with missing data. Schafer and Graham (2002)

point out that the main goal of statistical methods for missing data is not to recover

or estimate the missing values but to make valid inferences about a population of

interest. Thus, Schafer and Graham note that appropriate missing data techniques

are embedded in the particular model or testing procedure used in the analysis. This

chapter will take Schafer and Graham’s perspective and provide missing data
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methods adapted from the statistical literature (Little and Rubin 1987; Schafer

1997) for use in meta-analysis. This chapter will focus on the sensitivity of results

to missing data rather than on providing an alternative set of estimates that

compensate for the missing data. For many missing data methods, the strategy

involves recognizing the greater amount of uncertainty in the data caused by the

missing information. Thus, many missing data methods result in a larger variance

around the model estimates. This chapter will focus on methods that formally

incorporate a larger amount of variance when missing data occurs.

The twomost commonstrategies suggested formissingeffect sizes inmeta-analysis

do not take into account the true level of uncertainty caused by missing data. These

two strategies involve filling in either the observedmean using studies that report that

missing variable, and filling in a zero for studies missing an effect size. Filling in the

same value for missing observations in any data set will reduce the variance in the

resulting estimate, making the estimates seem to contain more information than is

truly available. Later in the chapter, we will discuss imputation strategies that

incorporate a larger degree of uncertainty in the estimates reflecting the missing

information in the data, and we will use these estimates to judge the sensitivity of

results to assumptions about missing data.

7.2 Missing Studies in a Meta-analysis

One common form of missing data in a meta-analysis is missing studies. The most

common cause of missing studies is publication bias. As many researchers have

shown (Begg and Berlin 1988; Hemminki 1980; Rosenthal 1979; Smith 1980),

there is a bias in the published literature toward statistically significant results. If a

search strategy for a meta-analysis focuses only on published studies, then there is a

tendency across many disciplines for the overall effect size to be biased toward

statistically significant effects, thus over-estimating the true difference between the

treatment and control group or the strength of the association between two

measures. One strategy for addressing publication bias is the use of thorough search

strategies that focus on published, unpublished and fugitive literatures. This section

will provide an overview of strategies detecting and examining the potential for

publication bias; more detailed information can be found in Rothstein et al. (2005).

7.2.1 Identification of Publication Bias

Even when a search strategy aims for a wide range of published and unpublished

studies, the resulting sample of studies may still suffer from publication bias. One

set of strategies associated with missing studies focuses on the identification of

publication bias. The simplest and most widely known of these strategies is the

funnel plot (Sterne et al. 2005). Funnel plots are scatterplots of the effect size on the
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x-axis and the sample size, variance, or study level weight of the effect size on the

y-axis. (Recall that the study level weight is the inverse of the variance of the effect

size). With no publication bias, the plot should resemble a funnel with the wider end

of the funnel associated with studies of small sample sizes and large variances. The

smaller end of the funnel should have effect sizes that have larger sample sizes

and smaller variances, centered around the mean of the effect size distribution.

If publication bias exists, then the plot will appear asymmetric. If small studies with

small sample sizes are missing, then the funnel plot will appear to have a piece

missing at its widest point. The quadrant with small effect sizes and small sample

sizes would be those most likely to be censored in the published literature. If small

effect sizes are, in general, more unlikely to appear in the literature, then the funnel

will have fewer studies in the area of the graph corresponding to effect sizes close

to zero, despite the sample size.

7.2.1.1 Example of Funnel Plot

Figure 7.1 is a funnel plot of data taken from Hackshaw et al. (1997) study of the

relationship between passive smoking and lung cancer in women. The 33 studies

in the meta-analysis compare the number of cases of lung cancer diagnosed in

individuals whose spouses smoke with the number of cases of lung cancer in

individuals whose spouses are non-smokers. The data used to construct this plot

are given in the Data Appendix. The x-axis is the log-odds ratio, and the y-axis is the

standard error of the log-odds ratio. There is a gap in the lower left-hand corner of

the funnel plot, indicating that some studies with large standard errors and negative

log-odds ratios could be missing. Thus, we see some evidence of publication bias

here (Fig. 7.1).
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Fig. 7.1 Funnel plot for passive smoking data
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While funnel plots are easily constructed, they can be difficult to interpret. Many

conditions can lead to asymmetric plots even when the sample of studies is not

affected by publication bias. A more formal test of publication bias was proposed

by Egger et al. (1997) using regression techniques. Egger et al.’s method provides a

test of whether a funnel plot shows evidence of asymmetry. The method involves

standardizing the effect size into a standard normal deviate and regressing this

transformed effect size on the precision of the effect size, defined as the inverse of

the standard error of the effect size. The regression equation can be expressed as

Tiffiffiffiffi
vi

p ¼ b̂0 þ b̂1
1ffiffiffiffi
vi

p (7.1)

where Ti is the effect size for study i, and vi is the standard error for the effect size
in study i. When the funnel plot is symmetric, that is, when there is no evidence of

publication bias, then b̂0 is close to zero. Symmetric funnel plots will produce an

estimated regression equation that goes through the origin. Standardizing small

effect sizes using the standard error should create a small standard normal deviate.

In contrast, larger studies will produce larger standard normal deviates since their

standard errors will be small. When publication bias is present, we may have large

studies with normal deviates that are smaller than studies with small sample

sizes – indicating that the small studies differ from large studies in their estimates

of effect size.

Figure 7.2 provides the scatterplot of the standardized effect size by the inverse

of the standard error of the effect size in the passive smoking data. The dotted line in

the graph is the regression line given in (7.1). Table 7.1 provides the regression

coefficients for (7.1) fit to the passive smoking data. The value for the intercept,

b0, is statistically different from zero, thus indicating that there is evidence of

publication bias in the passive smoking data.

7.2.2 Assessing the Sensitivity of Results to Publication Bias

If a reviewer suspects publication bias in the meta-analytic data, there are two

general classes of methods for exploring the sensitivity of results to publication

bias. The first method, trim-and-fill (Duval and Tweedie 2000) is fairly easy to

implement, but relies on strong assumptions about the nature of the missing studies.

As Vevea and Woods (2005) point out, the trim-and-fill method assumes that the

missing studies are one-to-one reflections of the largest effect sizes in the data set,

in essence, that the missing studies have effect sizes values that are the negative of

the largest effect sizes observed in the data set. In addition, the trim-and-fill method

may lead to biased results if the effect sizes are in fact heterogeneous. Vevea and

Woods present a second method that produces estimates for models of effect size

under a series of possible censoring mechanisms, addressing the shortcomings they
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find with the trim-and-fill method This second method provides more flexibility

than trim-and-fill since it allows the examination of sensitivity for a range of models

of effect size.

The trim-and-fill method (Duval and Tweedie 2000) is based on asymmetry in

the funnel plot. This method builds on the funnel plot by “filling in” effect sizes that

are missing from the funnel and then estimating the overall mean effect size

including these hypothetical values. The assumption in this method is that there

are a set of missing effect sizes that are “mirror images” of the largest effect sizes

in the data set. In other words, the method inserts missing effect sizes that are of the

opposite sign, and are mirror reflections of the largest observed effect sizes

with similar sample sizes. The theoretical basis for the method is beyond the

scope of this text, but the analysis itself is fairly simple. The idea is to first estimate

how many effect sizes are “missing” in order to create a symmetric funnel plot.

This computation may require a few iterations to obtain the estimate. Once the

researcher computes the number of missing effect sizes, hypothetical values

for these missing observations are used to re-estimate the mean effect size.

This new mean effect size incorporates the possible effects of publication bias.

Table 7.1 Egger’s test for the passive smoking data set

Coefficient Estimate SE t-Value p

b0 0.933 0.417 2.236 0.033

b1 �0.0155 0.098 �0.158 0.875
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Fig. 7.2 Egger’s test for publication bias for passive smoking data
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In practice, knowing how much bias is possible allows a test of the sensitivity of

results. The reviewer should decide if the difference in these two values is of

substantive importance, and should report these values to readers. While space

does not permit a full example illustrating trim-and-fill, Duval (2005) provides

a step-by-step outline for completing the method. Figure 7.3 is a funnel plot of

the smoking data with the “missing” effect sizes represented by solid circles.

The bottom of the plot shows the mean effect size computed with only the observed

studies, and the mean effect size when the “missing” studies are included. As seen

in Fig. 7.3, the mean effect size does not change significantly if we assume some

publication bias.

A second strategy involves modeling publication bias using a censoring mecha-

nism as described by Vevea andWoods (2005). The model illustrated by Vevea and

Woods proposes a number of censoring mechanisms that could be operating in the

literature. These censoring mechanisms are based on the type of censoring and the

severity of the problem. In general, Vevea and Woods examine the impact of

censoring where the smallest studies with the smallest effect sizes are missing

(one-tailed censoring) and where the studies with non-significant effect sizes (two-

tailed censoring) are missing. Vevea and Woods point out that the trim-and-fill

method assumes that the missing studies are one-to-one reflections of statistically

significant effect sizes, and that the method can only examine the sensitivity of

estimates of the mean effect size. Vevea and Woods’ method can examine the

sensitivity of fixed, random and mixed effects models of effect size to publication

bias. These methods do require the use of more flexible computing environments,

and reviewers may find them more difficult. Readers interested in methods for

publication bias will find more details in Rothstein et al. (2005).
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Fig. 7.3 Funnel plot for passive smoking data with Trim and Fill results
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7.3 Missing Effect Sizes in a Meta-analysis

When effect sizes are missing from a study, there are few missing data strategies to

analyze the data. The most common method used by reviewers is to drop these

studies from the analysis. The problem is similar to missing data in primary studies.

If an individual patient does not have a measure for the target outcome, then that

patient cannot provide any information about the efficacy of the treatment.

One reason for missing effect sizes is that reviewers either cannot compute an

effect size from the information given in a study or do not know how to compute an

effect size from the results of the study. For example, studies may fail to report

summary statistics needed to compute an effect size such as means and standard

deviations for standardized mean differences, or frequencies for the odds ratio.

Other studies may report only the summary test statistic such as a t-test or an F-test,
or only the p-value for the test. These difficulties often occur with older studies

since professional organizations such as the American Psychological Association

and the American Medical Association now have standards for reporting that assist

reviewers in extracting information from a meta-analysis.

Another reason for missing effect sizes in more recently published studies arises

when a reviewer does not know how to translate complex statistical results derived

from techniques such as factorial ANOVA, regression models, or hierarchical

linear models into an effect size for the review. A related problem occurs when

the studies in the review report a wide variety of statistics. For example, one study

in the review may report a t-test from a quasi-experimental study, while another

study may report a correlation coefficient from an observational study. The question

is whether these differing measures of effect size can and should be combined in the

meta-analysis, or whether the reviewer should consider certain types of effect sizes

as missing. Lipsey andWilson (2001) and Shadish et al. (1999) provide a number of

tools for computing effect sizes from commonly provided information in a study.

Wilson (2010) provides a free, web-based, effect size calculator that obtains effect

sizes from a large array of reported statistics. In practice, the reviewer should try

multiple methods for computing an effect size from the data given in the study, and

to contact primary authors for available information. If effect sizes are still not

available, then the reviewer should explore the sensitivity of results to publication

bias. One suggestion often used by reviewers is to impute a value of 0 for all

missing effect sizes. While this method seemingly provides a conservative estimate

of the mean effect size, the standard errors for the mean effect size will be

underestimated. As will be discussed in the next sections, imputing a single value

for any missing observation will not reflect accurately the uncertainty in the data.

A second reason for missing outcomes in a study is selective reporting. A number

of researchers in medicine have documented primary studies where researchers have

not reported on an outcome that was gathered. In many cases, these outcomes are

also ones that are not statistically significant, or may be outcomes reporting on an

adverse outcome. In the Cochrane Collaboration, reviewers are required to report

on whether selective reporting of outcomes has occurred in a study in the Risk of

7.3 Missing Effect Sizes in a Meta-analysis 85



Bias table. Reviewers who suspect outcome reporting bias have few strategies for

dealing with this problem aside from contacting the primary authors for the missing

information. Researchers (Chan et al. 2004; Williamson et al. 2005) have also

developed methods for assessing the potential bias in results when some outcomes

are selectively missing. In the long term, reporting standards and registries of

primary studies may be the most effective strategies for ensuring complete reporting

of all outcomes gathered in a study.

7.4 Missing Moderators in Effect Size Models

Another form of missing data in a meta-analysis is missing moderators or predictors

in effect size models. This form of missing data occurs when the reviewer wants to

code particular aspects of the primary study, but this information is not provided in

the study report. A reviewer examining a body of research on a topic has, in one

sense, fewer constraints than a primary researcher. When a primary researcher

plans a study, they must make decisions about the number and type of measures

used, the optimal design and methods, and in the final report, about what informa-

tion is most relevant. In contrast, a reviewer can examine questions about how the

different decisions made by the primary researcher about study design, measures,

and reporting relates to variation in study results.

Disciplinary practices in a given area of research may constrain how primary

authors collect, measure and report information in a study. Orwin and Cordray

(1985) use the term macrolevel reporting to refer to practices in a given research

area that influence how constructs are defined and reported. In a recent meta-

analysis, Sirin (2005) found multiple measures of socioeconomic status in studies

examining the relationship between income and academic achievement. These

measures included ratings of parents’ occupational status, parental income, parental

education, free lunch eligibility, as well as composites of these measures.

Researchers in some fields may be more inclined to use ratings of parents’ occupa-

tion status whereas other educational researchers may only have a measure of free

lunch eligibility available. Thus, parents’ occupation status may be missing in some

studies since the researchers in one field may rely on free lunch eligibility, for

example, as the primary measure of socioeconomic status. Differences in reporting

among primary studies could be related to disciplinary practices in the primary

author’s field. Primary authors may also be constrained by a particular journal’s

publication practices, and thus do not report on information a reviewer may

consider important.

Researchers also differ in their writing styles and thoroughness of reporting.

Orwin and Cordary (1985) use the term microlevel reporting quality to refer to

individual differences among researchers in their reporting practices. In some cases,

a moderator that is not reported among all studies in a review could be missing in a

random way due to the individual differences among researchers.
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Another reason study descriptors may be missing from primary study reports

relates to bias for reporting only statistically significant results. For example, a

primary researcher may be interested in the relationship between the percentage of

low-income children in a classroom and classroom achievement. If the primary

researcher finds that the percentage of low-income children in a classroom is not

related to classroom achievement, then they may report only that the statistic did

not reach statistical significance. Williamson et al. (2005) provide a discussion of

this problem raising the possibility that the likelihood of a study reporting a given

descriptor variable is related to the statistical significance of the relationship

between the variable and the outcome. In this case, we have selective predictor

reporting that operates in a similar manner to selective outcome reporting as

described above.

Researchers may also avoid reporting study descriptors when those values are

not generally acceptable. For example, if a researcher obtains a racially homoge-

neous sample, the researcher may hesitate to report fully the actual distribution of

ethnicity in the sample. This type of selective reporting may also occur when

reporting in a study is influenced by a desire to “clean up” the results. For example,

attrition information may not be reported in a published study in order to present a

more positive picture. In both of these cases, the values of the study descriptor

influence whether the researcher reports those values.

Missing data in a meta-analysis occur in the form of missing studies from the

review, missing effect sizes and missing predictors. The cases of missing studies

and missing effect sizes correspond to missing an outcome in a primary study. The

only approach to missing outcomes is checking the sensitivity of results to publica-

tion bias or censoring. The major class of missing data methods in the statistical

literature applies most directly to missing data on predictors in models of effect

size. The remainder of this chapter discusses the assumptions, techniques and

interpretations of missing data methods applied to meta-analysis with an emphasis

on handling missing predictors in effect size models.

7.5 Theoretical Basis for Missing Data Methods

The general approach used in current missing data methods involves using the data

at hand to draw valid conclusions, and not to recover all the missing information to

create a complete data set. This approach is especially applicable to meta-analysis

since missing data frequently occur because a variable was not measured, and is

not recoverable. Thus, the approaches taken in this chapter do not attempt to

replace individual missing observations, but instead either estimate the value for

summary statistics in the presence of missing data or sample several possible

values for the missing observations from a hypothetical distribution based on the

data we do observe.

The methods used in this chapter make strong assumptions about the distribution

of the data, and about the mechanism that causes the missing observations.
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Generally, the methods here require the assumption that the joint distribution of the

effect size and moderator variables is multivariate normal. A second assumption is

that the reasons for the missing data do not depend on the values of the missing

observations. For example, if our data are missing measures of income for studies

with a large proportion of affluent participants, then the methods we discuss here

could lead to biased estimates. One major difficulty in applying missing data

methods is that assumptions about the nature of the missing data mechanism cannot

be tested empirically. These assumptions can only be subjected to the “is it

possible” test, i.e., is it possible that the reasons for missing observations on a

particular variable do not depend directly on the values of that variable? Missing

observations on income usually fail the test, since it is a well-known result in survey

sampling that respondents with higher incomes tend not to report their earnings.

The following section examines these assumptions in the context of meta-analysis.

7.5.1 Multivariate Normality in Meta-analysis

The missing data methods used in this chapter rely on the assumption that the joint

distribution of the data is multivariate normal. Thus, meta-analysts must assume

that the joint distribution of the effect sizes and the variables coded from the studies

in the review follow a normal distribution. One problematic issue in meta-analysis

concerns the common incidence of categorical moderators in effect size models.

Codes for characteristics of studies often take on values that indicate whether a

primary author used a particular method (e.g., random assignment or not) or a

certain assessment for the outcome (e.g., standardized protocol or test, researcher

developed rating scale, etc.). Schafer (1997) indicates that in the case of categorical

predictors, the normal model will still prove useful if the categorical variables are

completely observed, and the variables with missing observations can be assumed

multivariate normal conditional on the variables with complete data. The example

later in the chapter examines a meta-analysis on gender differences in transforma-

tional leadership. Say we have missing data from some studies on the percent of

men in the sample of participants who are surveyed in each study. We can still

fulfill the multivariate normality condition if we can assume that the variable with

missing observations, the percent of males in the sample, is normally distributed

conditional on a fully observed categorical variable such as whether or not the first

author is a woman. If the histogram of the percent of male subjects in the sample is

normally distributed for the set of studies with male first authors and for the set of

studies with female first authors, then we have not violated the normality assump-

tion. Some ordered categorical predictors can also be transformed to allow the

normal assumption to apply. If key moderators of interest are non-ordered categor-

ical variables, and these variables are missing observations, then missing data

methods based on the multinomial model may apply. There is currently no research

on how to handle missing categorical predictors in meta-analysis.
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7.5.2 Missing Data Mechanisms or Reasons for Missing Data

In addition to assuming that the joint and/or conditional distribution of the data is

multivariate normal, the methods discussed in this chapter also require the

assumption that the missing data mechanism is ignorable. There are two

conditions that meet the conditions of ignorability, missing completely at random

(MCAR) data, and missing at random (MAR) data (Rubin 1976). Missing data are

missing completely at random when the cases with completely observed data are a

random sample of the original data. When there are small amounts of missing data

on an important variable, often analysts assume that the completely observed

cases are as representative of the target population as the original sample. Thus,

when data are missing completely at random, the data analyst does not need to

know the exact reasons or mechanisms that caused the missing data; analyzing

only the cases with complete observations will yield results that provide unbiased

estimates of population parameters.

As applied to meta-analysis, individual differences among primary authors in

their reporting practices may result in missing predictors that could be considered

missing completely at random. The difficulty lies in gathering evidence that the

missing predictors are missing completely at random. One strategy suggested is

using logistic regression models to examine the relationships between whether a

given predictor is observed or not and values of other variables in the data set. The

difficulty arises when these models do not adequately explain the probability of

missing a predictor. The relationships between observed variables and missing

variables could be more complex than represented in the logistic regression

model, or the probability of observing a value could be dependent on other

unknown information. Schafer (1997) suggests that a more practical solution is to

use as much information in the data set to estimate models in the presence of

missing data, a point that will be elaborated later in the chapter.

A second condition that meets the conditions of ignorability is data missing at

random. Unlike MCAR data, the cases with completely observed data are not a

random sample of the original data. When data are MAR, the probability of missing

an observation depends on the values of completely observed variables. Data are

MAR if the conditional distribution of the missing values depends only on

completely observed variables and not on variables with missing observations.

This assumption is less stringent than MCAR, and is plausible in many missing

data situations in meta-analysis. For example, some studies may report the income

level of subjects as a function of the percent of students who qualify for free lunch,

while others report income level as the average income reported by parents. The

differences between these studies could be due to the discipline of the primary

author – studies in education tend to use the percent of students with low income in

a school while larger-scale studies may have the resources to conduct a survey of

parents to obtain a more direct measure of income. A missing value for a particular

measure of income in a particular study is not necessarily related to the value of

income itself but to the choices of the primary author and constraints on the
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published version of the study. Thus, if we can posit a plausible mechanism for the

missing observations, say the disciplinary background of the primary author, and

this variable is completely observed in the data, then we can consider income in this

instance MAR.

One set of methods that cannot be addressed fully in this chapter are methods for

nonignorable missing data. Nonignorable missing data occur when the reason for a

missing observation is the value of that observation. For example, self-reports of

income are more frequently missing for those respondents with high income, a

classic example of nonignorable missing data. In the case of nonignorable missing

data, the analysis must incorporate a model for the missing data mechanism instead

of ignoring it as in the case of MCAR and MAR data. A special case of

nonignorable missing data is publication bias. As discussed earlier in the chapter,

these methods usually require specialized computing environments, and provide

information about the sensitivity of results to assumptions about the missing data.

7.6 Commonly Used Methods for Missing Data

in Meta-analysis

Prior to Little and Rubin’s (1987) work, most researchers employed one of three

strategies to handle missing data: using only cases with all variables completely

observed (listwise deletion), using available cases that have particular pairs of

variables observed (pairwise deletion), or replacing missing values on a given

variable with a single value such as the mean for the complete cases (single value

imputation). The performance of these methods depends on the validity of the

assumptions about why the data are missing. In general, these methods will produce

unbiased estimates only when data are missing completely at random. The main

problem with the use of these methods is that the standard errors do not accurately

reflect the fact that variables have missing observations.

7.6.1 Complete-Case Analysis

In complete-case analysis, the researcher uses only those cases with all variables

fully observed. This procedure, listwise deletion, is usually the default procedure

for many statistical computer packages. When the missing data are missing

completely at random, then complete-case analysis will produce unbiased results

since the complete cases can be considered a random sample from the originally

identified set of cases. Thus, if a synthesist can make the assumption that values

are missing completely at random, using only complete cases will produce

unbiased results.
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In meta-analysis as in other analyses, using only complete cases can seriously

limit the number of observations available for the analysis. Losing cases decreases

the power of the analysis, and also ignores the information contained in the

incomplete cases (Kim and Curry 1977; Little and Rubin 1987).

When data are missing because of a nonignorable response mechanism or are

MAR, complete case analysis yields biased estimates since the complete cases

cannot be considered representative of the original sample. With nonignorable

missing data, the complete cases observe only part of the distribution of a particular

variable. With MAR data, the complete cases are also not a random sample of the

original sample. But with MAR data, the incomplete cases still provide information

since the variables that are completely observed across the data set are related to the

probability of missing a particular variable.

7.6.1.1 Example: Complete-Case Analysis

The data for the examples that follow are adapted from a meta-analysis by Eagly

et al. (2003) that examines gender differences in transformational, transactional,

and laissez-faire leadership styles. Six moderators are used in this example: Year

the study was published (Year), if the first author is female, the average age of the

participants, the size of the organization where the study was conducted, whether

random methods were used to select the participants from the organization, and the

percent of males in the leadership roles in the organization. Table 7.2 provides the

complete case results for a meta-regression of the transformational leadership data.

Only 22 or 50% of the cases include all five predictor variables. Positive effect sizes

indicate that males were found to score higher on transformational leadership

scales, while negative effect sizes favor females. For this sample of studies, gender

differences in favor of females are associated with more recently published studies,

with studies that have older samples of participants, when the study’s first author is

female, and in studies conducted in larger organizations. Gender differences in

favor of males are found in studies with a higher percentage of men in leadership

roles in the sample, and when random methods were used to select the sample from

the target population. The complete case results can be obtained from any weighted

regression program usually by default. Most statistical computing packages auto-

matically delete any cases missing at least one variable in the model.

Table 7.2 Complete case analysis using the gender and leadership data

Variable Coefficient SE Z p

Intercept 58.033 22.650 2.562 0.005

Publication year �0.028 0.011 �2.446 0.007

Average age of sample �0.040 0.005 �7.946 0.000

Percent of male leaders 0.001 0.002 4.472 0.000

First author female �0.372 0.087 �4.296 0.000

Size of organization �0.308 0.103 �2.989 0.001

Random selection used 0.110 0.035 3.129 0.000
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7.6.2 Available Case Analysis or Pairwise Deletion

An available-case analysis or pairwise deletion estimates parameters using as much

data as possible. In other words, if three variables in a data set are missing 0%, 10%

and 40% of their values, respectively, then the correlation between the first and

third variable would be estimated using the 60% of cases that observe both

variables, and the correlation between the first and second variable would use the

90% of cases that observe these two variables. A different set of cases would

provide the estimate of the correlation of the second and third variables since

there is the potential of having between 40% and 50% of these cases missing

both variables. For example, Table 7.3 shows the pairs of cases that would be

used to estimate parameters using available case analysis in the leadership data. The

letter O indicates that the variable was observed in that missing data pattern.

Assuming the effect sizes are completely observed, the estimate of the correlation

between the effect size and the percentage of men in leadership roles would be

based on 37 studies or 84% of the studies. The correlation between effect size and

average age of the sample would use 25 studies or 57% of the sample. The

estimated correlation of percentage of men in leadership roles and average age of

the sample would use only 22 studies or 50% of the sample.

This simple example illustrates the drawback of using available case analysis –

each correlation in the variance-covariance matrix estimated using available cases

could be based on different subsets of the original data set. If data are MCAR, then

each of these subsets are representative of the original data, and available case

analysis provides estimates that are unbiased. If data are MAR, however, then

each of these subsets is not representative of the original data and will produce

biased estimates.

Much of the early research on methods for missing data focuses on the perfor-

mance of available case analysis versus complete case analysis (Glasser 1964;

Haitovsky 1968; Kim and Curry 1977). Fahrbach (2001) examines the research

on available case analysis and concludes that available case methods provide more

efficient estimators than complete case analysis when correlations between two

independent variables are moderate (around 0.6). This view, however, is not shared

by all who have examined this literature (Allison 2002).

One statistical problem that could arise from the use of available cases under any

form of missing data is a non-positive definite variance-covariance matrix, i.e., a

Table 7.3 Missing data patterns in leadership data

Pattern Effect size % male leaders Average age N

0 O O O 22 (50%)

1 O O – 15 (34%)

2 O – O 3 (7%)

3 O – – 4 (9%)

N 44 (100%) 37 (84%) 25 (57%) 44 (100%)

O indicates observed in data
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variance-covariance matrix that cannot be inverted to obtain the estimates of slopes

for a regressionmodel. One reason for this problem is that different subsets of studies

are used to compute the elements of the variance-covariancematrix. Further, Allison

(2002) points out that a more difficult problem in the application of available case

analysis concerns the computation of standard errors of available case estimates.

At issue is the correct sample size when computing standard errors since each

parameter could be estimated with a different subset of data. Some of the standard

errors could be based on the whole data set, while others may be based on the subset

of studies that observe a particular variable or pair of variables. Though many

statistical computing packages implement available case analysis, how standard

errors are computed differs widely.

7.6.2.1 Example: Available Case Analysis

Table 7.4 provides the results from SPSS estimating a meta-regression for the

leadership studies using pairwise deletion. In this analysis, gender differences

favoring females are associated with an older sample and with studies whose first

author is female. Gender differences favoring males are associated with a higher

percentage of men in leadership roles, larger organizations in the sample, and with

more recent studies. The last two findings, related to larger organizations and more

recent findings, contradicts the findings from the complete case analysis.

While available case analysis is easy to understand and implement, there is little

consensus in the literature about the conditions where available case analysis

outperforms complete case analysis when data are MCAR. As described above,

the performance of available case analysis may relate to the size of the correlations

between variables in the data, but there is no consensus about the optimal size of

these correlations needed to produce unbiased estimates.

7.6.3 Single Value Imputation with the Complete Case Mean

When values are missing in a meta-analysis (or in any statistical analysis), many

researchers have replaced the missing value with a “reasonable” value such as the

Table 7.4 Available case analysis

Variable Coefficient SE Z p

Intercept �46.283 19.71 �2.348 0.009

Publication year 0.024 0.010 2.383 0.009

Average age of sample �0.047 0.006 �7.625 0.000

Percent of male leaders 0.013 0.002 6.166 0.000

First author female �0.260 0.058 �4.455 0.000

Size of organization 0.185 0.062 3.008 0.001

Random selection used 0.037 0.041 0.902 0.184
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mean for the cases that observed the variable. Little and Rubin (1987) refer to this

strategy as single-value imputation. Researchers commonly use two different

strategies to fill in missing values. One method fills in the complete case mean,

and the other uses regression with the complete cases to estimate predicted values

for missing observations given the observed values in a particular case.

Replacing the missing values in a variable with the complete case mean of the

variable is also referred to as unconditional mean imputation. When we substitute a

single value for all the missing values, the estimate of the variance of that variable is

decreased. The estimated variance thus does not reflect the true uncertainty in the

variable – instead the smaller variance wrongly indicates more certainty about the

value. These biases get compounded when using the biased variances to estimate

models of effect size. Imputation of the complete case mean never leads to unbiased

variances of variables with missing data.

7.6.3.1 Example: Mean Imputation

In Table 7.5, the missing values of average age and percent of men in leadership

roles were imputed with the complete case mean. These values are given under the

complete case means and standard deviations. While the means for the variables

remains the same, the standard deviations are smaller for the variables when

missing values are replaced by the complete case mean. The problem is

compounded in the regression analysis in Table 7.6. These results would lead us

to different conclusions from those based on either the complete-case or pairwise

deletion analyses.

Using mean imputation in this example would lead us to conclude that men score

higher on transformational leadership scales only in studies that have a larger

Table 7.5 Comparison of complete-case and mean imputation values

Variable N Mean SD

Average age of sample 22 44.88 6.629

Average age, mean imputed 44 44.88 4.952

Percent of male leaders 22 64.97 17.557

Percent of male leaders, mean imputed 44 64.97 16.060

Table 7.6 Linear model of effect size for leadership data using mean imputation

Variable Coefficient SE Z p

Intercept 21.165 11.468 1.846 0.032

Publication year �0.01 0.006 �1.783 0.037

Average age of sample �0.024 0.004 �6.537 0.000

Percent of male leaders 0.006 0.001 4.753 0.000

First author female �0.076 0.035 �2.204 0.014

Size of organization �0.064 0.034 �1.884 0.030

Random selection used �0.013 0.028 �0.469 0.319
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percentage of male leaders in the sample. The use of random selection is not related

to variability in the effect size across studies. All the other predictors favor

women’s scores on transformational leadership.

7.6.4 Single Value Imputation Using Regression Techniques

A single-value imputation method that provides less biased results with missing

data was first suggested by Buck (1960). Instead of replacing each missing value

with the complete case mean, each missing value is replaced with the predicted

value from a regression model using the variables observed in that particular case as

predictors and the missing variable as the outcome. This method is also referred to

as conditional mean imputation or as regression imputation. For each pattern of

missing data, the cases with complete data on the variables in that pattern are used

to estimate regressions using the observed variables to predict the missing values.

The end result is that each missing value is replaced by a predicted value from a

regression using the values of the observed variables in that case. When data are

MCAR, then each of the subsets used to estimate prediction equations are repre-

sentative of the original sample of studies. This method results in more variation

than in unconditional mean imputation since the missing values are replaced with

values that depend on the regression equation. However, the standard errors using

Buck’s method are still too small. This underestimation occurs since Buck’s

method replaces the missing values with predicted values that lie directly on the

regression line used to impute the values. In other words, Buck’s method results in

imputing values that are predicted exactly by the regression equation without error.

Little and Rubin (1987) present the form of the bias for Buck’s method and

suggest corrections to the estimated variances to account for the bias. If we have

two variables, Y1 and Y2, and Y2 has missing observations, then the form of the bias

using Buck’s method to fill in values for Y2 is given by

ðn� nð2ÞÞðn� 1Þ�1s22:1;

where n is the sample size, n(2) is the number of cases that observe Y2, and s22:1 is
the residual variance from the regression of Y2 on Y1. Little and Rubin also provide
the more general form of the bias with more than two variables. Table 7.7 compares

the complete case means and standard deviations of average age of the sample and

percent of male leaders with those obtained using regression imputation (Buck’s

method) and Little and Rubin (1987) correction.

The standard deviations for the corrected regression imputation results are larger

than for both complete cases and for the uncorrected regression imputation.

The correction reflects the increased uncertainty in the estimates due tomissing data.

Note that correcting the bias in Buck’s method involves adjusting the variance of

the variable with missing observations. Using Little and Rubin (1987) correction
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results in a corrected covariance matrix, and not individual estimates for each

missing observation. Thus, estimating the linear model of effect size in our example

will require estimating the coefficients using only the variance-covariance matrix.

To date, there has not been extensive research on the performance of Buck’s

method to other more complex methods for missing data in meta-analysis. As seen

above, one advantage of using Buck’s method with the corrections suggested by

Little and Rubin is that the standard errors of estimates reflect the uncertainty in the

data and lead to more conservative and less biased estimates than complete case and

available case methods. While using Buck’s method is fairly simple, the

adjustments of the variances and covariances of variables with missing

observations adds another step to the analysis. In addition, it is not clear how to

utilize the corrected variances and covariances when estimating weighted regres-

sion models of effect sizes in meta-analysis. While it is possible to estimate a linear

model using a covariance matrix in the major statistical packages, it is not clear how

to incorporate the weights into the corrected covariance matrix.

When missing predictors are MCAR, then complete case analysis, available case

analysis and conditional mean imputation have the potential for producing unbiased

results. The cost of using these methods lies in the estimation of standard errors. For

complete case analysis, the standard errors will be larger than those from the

hypothetically complete data. In available case and conditional mean imputation,

the standard errors will be too small, though those from conditional mean imputa-

tion can be adjusted. When data are MAR or are missing due to a nonignorable

response mechanism, none of the simpler methods produce unbiased results.

7.6.4.1 Example: Regression Imputation

Table 7.8 provides the estimates of the linear model of effect size when using

regression imputation. The results in the table were produced using SPSS Missing

Values Analysis, saving a data set where missing values are imputed using

regression.

These results differ from the mean imputation results in that both when the first

author is female and whether random selection was used are not related to effect

size magnitude. As in the mean imputation results, only percent of male leaders is

related to high scores on transformational leadership for men. These results are

again not consistent with the available case or complete case results.

Table 7.7 Comparison of methods for imputing missing data

Complete cases

N ¼ 22

Regression imputation

(uncorrected) N ¼ 44

Regression imputation

(corrected) N ¼ 44

Variable Mean SD Mean SD Mean SD

Average age of sample 45.23 6.70 44.52 5.52 44.52 6.91

Percent of male leaders 64.23 17.44 65.44 16.22 65.44 17.52
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7.7 Model-Based Methods for Missing Data in Meta-analysis

The simple methods for missing data discussed above do not provide unbiased

estimates under all circumstances. The general problem with these ad hoc methods

is that they do not take into account the distribution of the hypothetically complete

data. For example, filling in a zero for a missing effect size may be a reasonable

assumption, but it is not based on a plausible distribution for the effect sizes in a

review. The missing data methods outlined in this section begin with a model for

the observed data. Maximum-likelihood methods using the EM algorithm are based

on the observed data likelihood while multiple imputation techniques are based on

the observed data posterior distribution. Given the assumptions of ignorable miss-

ing data and multivariate normal data, the observed data likelihood and the

observed data posterior distribution will provide the information needed to estimate

important data parameters. The next sections outline both methods, providing an

example of its application.

7.7.1 Maximum-Likelihood Methods for Missing Data
Using the EM Algorithm

In statistical inference, we are interested in obtaining an estimate of a parameter

from our data that has optimal properties such as minimum variance and bias. The

method most often used to obtain parameter estimates is maximum likelihood.

Maximum likelihood methods are based on a joint density distribution of the data.

For example, if we assume that our data consist of a sample of n observations from
the normal distribution, then we can write down our joint density as a product of a

series of n normal densities. The maximum value for this density function is a

parameter estimate that has optimal properties. For example, the arithmetic average

of a set of observations from a normal distribution is the maximum likelihood

estimate of the mean of the population.

Table 7.8 Linear model of effect size for leadership data using

regression imputation

Variable Coefficient SE Z p

Intercept 38.436 11.181 3.438 0.001

Publication year �0.019 0.005 �3.515 <0.001

Average age of sample �0.024 0.003 �7.105 <0.001

Percent of male leaders 0.008 0.001 5.921 <0.001

First author female �0.044 0.035 �1.252 0.105

Size of organization �0.079 0.034 �2.339 0.010

Random selection used �0.018 0.028 �0.65 0.258
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When the data include missing observations, our data likelihood becomes

complicated. Since our goal is to make inferences about the population, the

relevant likelihood for our problem is the hypothetically complete data likelihood.

This complete data likelihood includes the density of the observed data given the

unknown parameters of the population distribution and the density of the missing

data given the observed data and the unknown population parameters. Since we do

not know the density of the missing data, it would seem impossible to compute the

maximum likelihood estimates of the complete data. However, Dempster et al.

(1977) developed an algorithm called the Expectation-Maximization algorithm,

or EM algorithm. As its name denotes, obtaining maximum likelihood estimates

requires an iterative process. In the first step, the Expectation or E-step, the

algorithm uses an estimate of the data parameters (such as the mean and covari-

ance matrix) to estimate plausible values for the missing observations. These

missing observations are then “filled in” for the Maximization or M-step where

the algorithm re-estimates the population parameters. Thus, in the E-step, we

assume that we have estimates of the population parameters, and we use these to

obtain values for the missing observations. In the M-step, we assume that the

missing observations are “real” and use them to re-compute the population

parameters. The iterations continue until the estimates of the population

parameters do not change, i.e., when the algorithm converges.

When we can assume the data is multivariate normal, the distribution for the

missing values given the observed values is also multivariate normal. It is important

to note that the algorithm provides the maximum likelihood estimates of the

sufficient statistics, the means and covariance matrix, and not the maximum

likelihood of any particular missing observation. Thus, we have maximum likeli-

hood estimates of the means, variances and covariances of our data that we can use

to obtain estimates of other parameters such as regression coefficients for a linear

model. We must also assume that the response mechanism is ignorable, i.e., that our

data are either MCAR or MAR so that the distribution of our data does not need to

include a specification of the response mechanism.

7.7.1.1 Example Using the EM Algorithm

There are a number of options available in commercially-available statistical

packages and in freeware for use in computing the EM estimates. Using Schafer’s

NORM (1999) program, we obtain the maximum likelihood estimates of the means

and standard deviations for our two variables with missing data, average of the

sample and percent of male leaders as seen in Table 7.9. These estimates are

compared with the estimates from the complete case and corrected regression

imputation analyses. The standard deviation from the EM algorithm falls between

the complete case and regression imputation estimates. The standard deviations are

of the same magnitude as the complete case estimates, generally reflecting the same

amount of “information” as in complete cases.
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The difficulty with using the EM algorithm in the context of meta-analysis is

similar to that of the corrected regression imputation analysis – it is not clear how to

estimate the weighted regression coefficients using the sufficient statistics matrix

(the matrix of means, variances and covariances). Thus, the EM algorithm has

limited applicability to meta-analysis since we do not yet have a method for

computing the weighted regression coefficients from the means, variances and

covariances of the variables in the data.

7.7.2 Multiple Imputation for Multivariate Normal Data

Multiple imputation has become the method of choice in many contexts of missing

data. The main advantage of multiple imputation is that the analyst uses the same

statistical procedures in the analysis phase that were planned for completely

observed data. In other words, in the analysis phase of multiple imputation, the

researcher does not need to adjust standard errors as in Buck’s method, and does not

need to estimate a regression from the covariance matrix as in maximum likelihood

with the EM algorithm. Multiple imputation, as its name implies, is a technique that

generates multiple possible values for each missing observation in the data. Each of

these values is used in turn to create a complete data set. The analyst uses standard

statistical procedures to analyze each of these multiply imputed data sets, and then

combines the results of these analyses for statistical inference.

Thus, multiple imputation consists of three phases. The first phase consists of

generating the possible values for each missing observation. The second phase then

analyzes each completed data set using standard statistical procedures. The third

phase involves combining the estimates from the analyses of the second phase to

obtain results to use for statistical inference. Each of these phases is discussed

conceptually below. Readers interested in more details should consult the following

works (Enders 2010; Schafer 1997).

7.7.2.1 Generating Multiple Imputations

Multiple imputation, like maximum likelihood methods for missing data, relies on a

model for the distribution of missing data given the observed data under the

Table 7.9 Comparison of estimates from the EM algorithm, complete-case analysis and regres-

sion imputation

Complete cases

N ¼ 22

Regression imputation

(corrected) N ¼ 44

EM algorithm

N ¼ 44

Variable Mean SD Mean SD Mean SD

Average age of sample 45.23 6.70 44.52 6.91 44.44 6.67

Percent of male leaders 64.23 17.44 65.44 17.52 65.65 17.21
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condition of MAR data. As in maximum likelihood, this distribution is complex.

The previous section discussed the use of the EM algorithm to estimate sufficient

statistics from this distribution assuming that the hypothetically complete data is

multivariate normal. Multiple imputation uses Bayesian methods to obtain random

draws from the posterior predictive distribution of the missing observations given

the observed observations. These random draws are completed in an iterative

process much like the EM algorithm. Given the means and covariance matrix of

our hypothetically complete multivariate normal data, we can then obtain the form

of the distribution of the missing observations given the observed data, and draw a

random observation from that distribution. That observation would be one plausible

value for a missing value for a given case. Once we have drawn plausible values for

all our missing observations, we obtain a new estimate of our means and covariance

matrix, and repeat the process. Note that again we are assuming that our response

mechanism is ignorable so that the posterior distribution also does not include a

specification of the response mechanism.

In order to generate these random draws, however, we need to use simulation

techniques such as Markov Chain Monte Carlo. These methods allow the use of

simulation to obtain random draws from a complex distribution. While this phase is

the most complex statistically, there are many commercial software packages and

freeware available to generate these imputations, especially in the case where we

can assume the complete data is multivariate normal. The Appendix provides

details about these computer packages.

7.7.2.2 Analyzing the Completed Data Sets

Multiple imputation was first developed in large-scale survey research to assist

researchers who wanted to use public data sets. The idea was to provide researchers

with a way to handle missing data that did not require specialized computer

programming skills or statistical expertise when using these publicly-available

data sets. In this second step, the researcher will obtain a series of completed data

sets, with each missing observation filled in using the methods in the prior section.

Once the imputations are generated, the analyst uses whatever methods were

originally planned for the data. These analyses are repeated for each completed

data set. As Schafer (1997) argues, for most applications of multiple imputation,

five imputations is sufficient to obtain estimates for statistical inference. In this

phase, the analyst takes each completed data set and obtains estimates for the

originally planned model. Table 7.10 provides the estimates for the linear model

of effect size for each of five imputations generated as discussed in the Appendix.

7.7.2.3 Combining the Estimates

Rubin (1987) provides the formulas for combining the multiply-imputed estimates

to obtain overall estimates and their standard errors. Let us denote the mean of our

target estimate for the ith parameter across all j imputations as
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where qij is the estimate of the ith parameter from the jth completed-data sets. To

obtain the standard errors of the qij, we need two estimates of variance. Denote the

variance of the estimate, qij, from the jth completed sets as se2(qi). The variance

across the j data sets of the estimate qi is given by
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Table 7.11 presents the multiply-imputed results for the leadership data. In this

analysis, none of the coefficients are significantly different from zero with

p ¼ 0.05.

Table 7.11 Multiply-imputed regression coefficients

Variable Coefficient SE Z p

Intercept 21.393 27.726 0.77 0.29

Publication year �0.010 0.014 �0.75 0.30

Average age of sample �0.021 0.009 �2.34 0.13

Percent of male leaders 0.006 0.003 2.06 0.14

First author female �0.138 0.094 �1.47 0.19

Size of organization �0.001 0.059 �0.02 0.49

Random selection used 0.033 0.076 0.43 0.37

Table 7.10 Imputations for the leadership data

Variable Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

Intercept 17.219 3.276 31.380 0.429 54.661

Publication year �0.008 �0.001 �0.016 0.000 �0.027

Average age of sample �0.018 �0.026 �0.010 �0.021 �0.031

Percent of male leaders 0.005 0.004 0.003 0.007 0.009

First author female �0.174 �0.186 �0.004 �0.147 �0.181

Size of organization �0.016 0.015 �0.046 �0.021 0.063

Random selection used 0.047 0.068 �0.043 �0.018 0.112
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Multiple imputation is now more widely implemented in statistical computing

packages. SAS (Yuan 2000) implements multiple imputation procedures with

multivariate normal data. The examples in this chapter were computed with

Schafer (1999) NORM program, a freeware program for conducting multiple

imputation with multivariate normal data. The Appendix provides information

about options for obtaining multiple imputation estimates and for combining

those estimates.

In general, multiple imputation is the recommended method for handling

missing data in any statistical analysis, including meta-analysis. The methods

illustrated in this chapter produce divergent results, indicating that the results of

this analysis are sensitive to missing data. A potential difficulty in this data could

be power since there are just slightly over 40 studies available for analysis. More

research is needed to understand the conditions where meta-analysts should use

multiple imputation.

Appendix

Computing Packages for Computation of the Multiple
Imputation Results

There are a number of options for obtaining multiple imputation results in a meta-

analysis model. Two freeware programs are available. The first is the program

Norm by Schafer and available at http://www.stat.psu.edu/~jls/misoftwa.html. The

Norm program runs as a stand alone program onWindows 95/98/NT. The second is

a program available in R by Honaker et al. called Amelia II and available at http://

gking.harvard.edu/amelia/. Schafer’s norm program was used for the example

given earlier.

The program SAS includes two procedures, one for generating the multiple

imputations, PROC MI, and a second for analyzing the completed data sets,

PROC MIANALYZE. For obtaining the weighted regression results for meta-

analysis, the SAS procedure PROC MIANALYZE will have limited utility since

the standard errors of the weighted regression coefficients will need to be adjusted

as detailed by Lipsey and Wilson (2001). Below is an illustration of the use of

PROC MI for the leadership data.

R Programs

One program available in R for generating multiple imputations is Amelia II

(Honaker et al. 2011). Directions for using the program are available at http://

gking.harvard.edu/amelia/. Once the program is loaded into R, the following

command was used to generate m ¼ 5 imputed data sets.

> a.out < �amelia(leadimp, m ¼ 5, idvars ¼ "ID")
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The imputed data sets can be saved for export into another program to complete

the analyses using the command,

>write.amelia(obj ¼ a.out, file.stem ¼ "outdata").

where “obj” refers to the name given to the object with the imputed data sets (the

result of using the command Amelia), and “file.stem” provides the name of the data

sets that will be written from the program.

Table 7.12 are the weighted regression estimates for the effect size model from

each imputation obtained in Amelia. The two variables missing observations are

average age of subjects and percent of male leaders. There is variation among the

five data sets in their estimates of the regression coefficients. This variation signals

that there is some uncertainty in the data set due to missing observations.

Table 7.13 provides the multiply-imputed estimates for the linear model of effect

size. These estimates were combined in Excel, and are fairly consistent with the

Table 7.12 Regression estimates from each imputation generated using Amelia

Variable Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

Intercept 51.05a

(11.28)b*

68.56

(12.03)*

45.79

(11.061)*

41.854

(10.984)*

�5.974

(13.665)

Year �0.025

(0.006)*

�0.034

(0.006)*

�0.023

(0.006)*

�0.020

(0.005)*

0.003

(0.007)

Average age �0.033

(0.004)*

�0.019

(0.003)*

�0.022

(0.003)*

�0.037

(0.004)*

�0.019

(0.003)*

Percent of male

leaders

0.009

(0.001)*

0.006

(0.001)*

0.006

(0.001)*

0.007

(0.001)*

0.002

(0.001)*

First author

female

�0.284

(0.045)*

�0.127

(0.040)*

�0.060

(0.033)*

�0.338

(0.048)*

�0.154

(0.041)*

Size of

organization

�0.113

(0.039)*

�0.056

(0.037)

�0.140

(0.042)*

�0.237

(0.047)*

�0.001

(0.034)*

Random

selection used

0.049

(0.019)*

0.101

(0.023)*

0.059

(0.019)*

0.075

(0.020)*

0.068

(0.021)*
aCoefficient estimate
bStandard error of coefficient in parentheses
*Coefficient is significantly different from zero

Table 7.13 Multiply-imputed estimates from Amelia

Variable Coefficient SE Z p

Intercept 40.255 32.660 1.232 0.217

Year �0.0198 0.016 �1.207 0.210

Average age �0.026 0.010 �2.617 0.116

Percent of men 0.006 0.003 1.989 0.148

First author female �0.193 0.133 �1.451 0.192

Size of organization �0.110 0.106 �1.039 0.127

Random selection used 0.070 0.030 2.377 0.244
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earlier multiple imputation analysis using Schafer’s Norm program. None of the

coefficients are significantly different from zero.

SAS Proc MI

The SAS procedure PROC MI provides a number of options for analyzing data

with missing data. For the example illustrated in this chapter, we use the Monte

Carlo Markov Chain with a single chain for the multiple imputations. We also

use the EM estimates as the initial starting values for the MCMC analysis.

The commands below were used with the leadership data to produce the five

imputed data sets:

proc mi data ¼ work.leader out ¼ work.leaderimp seed ¼ 101897;

var year ageave perlead gen2 sizeorg2 rndm2 effsize;

mcmc;

The first line of the command gives the name of the data set to use, the name of

the created SAS data set with the imputations, and the seed number for the pseudo-

random number generator. The second command line provides the variables to use

in the imputations. Note that the effect size is included in this analysis. The third

line specifies the use of Markov Chain Monte Carlo to obtain the estimates of the

joint posterior distribution as described by Rubin (1987). Note that the number of

imputations are not specified; the default number of imputed data sets generated is

five, the number recommended by Schafer (1997).

SAS Proc MI provides a number of useful tables, including one outlining the

missing data patterns and the groupmeans for each variable within eachmissing data

pattern. Once the imputations are generated, the procedure gives the estimates for

the mean and standard error of the variables with missing data as illustrated below.

Multiple Imputation Parameter Estimates

Variable Mean SE 95% confidence limits DF

Average age

of sample

44.109 1.619 40.341 47.877 7.596

Percent of male

leaders

65.691 2.898 59.743 71.640 26.869

Variable Minimum Maximum Mu0
t for Mean

¼ Mu0 Pr > |t|

Average age

of sample

42.659 45.481 0 27.25 <.0001

Percent of male

leaders

64.586 67.390 0 22.67 <.0001

To obtain the weighted regression results for each imputation, we use Proc Reg

with weights. The command lines are shown below.
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proc reg data ¼ work.leaderimp outest ¼ work.regout covout;

model effsize ¼ year ageave perlead gen2 sizeorg2 rndm2;

weight wt;

by _Imputation_;

run;

The lines given above use the SAS data set generated by Proc MI, and estimate

the coefficients for the effect size model using weighted regression. The results are

computed for each imputation as indicated in the by statement. Table 7.14 provides

the weighted regression results for each imputation.

Table 7.15 gives the multiply-imputed estimates for the weighted regression

results. As in the prior analyses, none of the regression coefficients were signifi-

cantly different from zero.

Table 7.14 Multiple imputations generated using SAS Proc MI

Variable Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

Intercept 29.36a

(14.38)b*

23.70

(11.49)*

�7.962

(14.16)

71.548

(12.560)*

14.935

(11.71)

Year �0.012

(0.006)*

�0.012

(0.006)*

0.004

(0.007)

�0.036

(0.006)*

�0.007

(0.006)

Average age �0.026

(0.004)*

�0.026

(0.004)*

�0.019

(0.004)*

�0.013

(0.003)*

�0.024

(0.003)*

Percent of male

leaders

0.009

(0.001)*

0.009

(0.001)*

0.004

(0.001)*

0.005

(0.001)*

0.004

(0.001)*

First author female �0.198

(0.042)*

�0.198

(0.042)*

�0.171

(0.042)*

�0.053

(0.037)

�0.202

(0.040)*

Size of organization �0.038

(0.034)

�0.038

(0.034)

�0.072

(0.034)*

�0.084

(0.034)*

0.072

(0.041)*

Random selection

used

0.006

(0.031)*

0.062

(0.031)*

0.066

(0.033)*

�0.021

(0.028)*

0.034

(0.029)
aCoefficient estimate
bStandard error of coefficient in parentheses
*Coefficient is significantly different from zero

Table 7.15 Multiply-imputed estimates generated by SAS

Variable Coefficient SE t p

Intercept 26.315 34.305 0.767 0.292

Year �0.013 0.017 �0.749 0.295

Average age �0.020 0.007 �2.744 0.111

Percent of men 0.005 0.003 1.706 0.169

First author female �0.143 0.084 �1.705 0.169

Size of organization �0.026 0.078 �0.336 0.397

Random selection used 0.030 0.050 0.591 0.330

Appendix 105



References

Allison, P.D. 2002. Missing data. Thousand Oaks: Sage.

Begg, C.B., and J.A. Berlin. 1988. Publication bias: A problem in interpreting medical data (with

discussion). Journal of the Royal Statistical Society Series A 151(2): 419–463.

Buck, S.F. 1960. A method of estimation of missing values in multivariate data suitable for use

with an electronic computer. Journal of the Royal Statistical Society Series B 22(2): 302–303.

Chan, A.-W., A. Hrobjartsson, M.T. Haahr, P.C. Gotzsche, and D.G. Altman. 2004. Empirical

evidence for selective reporting of outcomes in randomized trials. Journal of the American
Medical Association 291(20): 2457–2465.

Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society Series B 39(1): 1–38.

Duval, S. 2005. The Trim and Fill method. In Publication bias in meta-analysis: Prevention,
assessment and adjustments, ed. H.R. Rothstein, A.J. Sutton, and M. Borenstein. West Sussex:

Wiley.

Duval, S., and R. Tweedie. 2000. Trim and fill: A simple funnel plot based method of testing and

adjusting for publication bias in meta-analysis. Biometrics 56(2): 455–463.
Eagly, A.H., M.C. Johannesen-Schmidt, and M.L. van Engen. 2003. Transformational, transac-

tional, and laissez-faire leadership styles: A meta-analysis comparing women and men.

Psychological Bulletin 129(4): 569–592.

Egger, M., G.D. Smith, M. Schneider, and C. Minder. 1997. Bias in meta-analysis detected by a

simple, graphical test. British Medical Journal 315(7109): 629–634.
Enders, C.K. 2010. Applied missing data analysis. Methodology in the Social Sciences. New York:

Guilford.

Fahrbach, K.R. 2001. An investigation of methods for mixed-model meta-analysis in the presence
of missing data. Lansing: Michigan State University.

Glasser, M. 1964. Linear regression analysis with missing observations among the independent

variables. Journal of the American Statistical Association 59(307): 834–844.

Hackshaw, A.K., M.R. Law, and N.J. Wald. 1997. The accumulated evidence on lung cancer and

environmentaly tobacco smoke. British Medical Journal 315(7114): 980–988.
Haitovsky, Y. 1968. Missing data in regression analysis. Journal of the royal Statistical Society

Series B 30(1): 67–82.

Hemminki, E. 1980. Study of information submitted by drug companies to licensing authorities.

British Medical Journal 280(6217): 833–836.
Honaker, J., G. King, and M. Blackwell (2011) Amelia II: A program for missing data. http://r.iq.

harvard.edu/src/contrib/

Kim, J.-O., and J. Curry. 1977. The treatment of missing data in multivariate analysis. Sociological
Methods and Research 6(2): 215–240.

Lipsey, M.W., and D.B. Wilson. 2001. Practical meta-analysis. Thousand Oaks: Sage

Publications.

Little, R.J.A., and D.B. Rubin. 1987. Statistical analysis with missing data. New York: Wiley.

Orwin, R.G., and D.S. Cordray. 1985. Effects of deficient reporting on meta-analysis: A concep-

tual framework and reanalysis. Psychological Bulletin 97(1): 134–147.

Rosenthal, R. 1979. The file drawer problem and tolerance for null results. Psychological Bulletin
86(3): 638–641.

Rothstein, H.R., A.J. Sutton, and M. Borenstein. 2005. Publication bias in meta-analysis: Preven-
tion, Assessment and Adjustments. West Sussex: Wiley.

Rubin, D.B. 1976. Inference and missing data. Biometrika 63(3): 581–592.

Rubin, D.B. 1987. Multiple imputation for nonresponse in surveys. Wiley, New York, NY

Schafer, J.L. 1997. Analysis of incomplete multivariate data. London: Chapman Hall.

Schafer, J.L. 1999. NORM: Multiple imputation of incomplete multivariate data under a normal
model. Software for Windows. University Park: Department of Statistics, Penn State

University.

106 7 Missing Data in Meta-analysis: Strategies and Approaches

http://r.iq.harvard.edu/src/contrib/
http://r.iq.harvard.edu/src/contrib/


Schafer, J.L., and J.W. Graham. 2002. Missing data: Our view of the state of the art. Psychological
Methods 7(2): 147–177.

Shadish, W.R., L. Robinson, and C. Lu. 1999. ES: A computer program and manual for effect size
calculation. St. Paul: Assessment Systems Corporation.

Sirin, S.R. 2005. Socioeconomic status and academic achievement: A meta-analytic review of

research. Review of Educational Research 75(3): 417–453. doi:10.3102/00346543075003417.

Smith, M.L. 1980. Publication bias and meta-analysis. Evaluation in Education 4: 22–24.

Sterne, J.A.C., B.J. Becker, and M. Egger. 2005. The funnel plot. In Publication bias in meta-
analysis: Prevention, assessment and adjustment, ed. H.R. Rothstein, A.J. Sutton, and M.

Borenstein. West Sussex: Wiley.

Vevea, J.L., and C.M. Woods. 2005. Publication bias in research synthesis: Sensitivity analysis

using a priori weight functions. Psychological Methods 10(4): 428–443.
Williamson, P.R., C. Gamble, D.G. Altman, and J.L. Hutton. 2005. Outcome selection biase in

meta-analysis. Statistical Methods in Medical Research 14(5): 515–524.

Wilson, D.B. 2010. Practical meta-analysis effect size calculator. Campbell Collaboration. http://

www.campbellcollaboration.org/resources/effect_size_input.php. Accessed 16 July 2011.

Yuan, Y.C. 2000. Multiple imputation for missing data: Concepts and new developments. http://

support.sas.com/rnd/app/papers/multipleimputation.pdf. Accessed 2 April 2011.

References 107

http://dx.doi.org/10.3102/00346543075003417
http://www.campbellcollaboration.org/resources/effect_size_input.php
http://www.campbellcollaboration.org/resources/effect_size_input.php
http://support.sas.com/rnd/app/papers/multipleimputation.pdf
http://support.sas.com/rnd/app/papers/multipleimputation.pdf


Chapter 8

Including Individual Participant

Data in Meta-analysis

Abstract This chapter introduces methods for including individual participant

data in a traditional meta-analysis. Since meta-analyses use data aggregated to

the study, there is potential for aggregation bias, finding relationships between the

effect size and study characteristics that may hold only at the level of the study.

The potential of aggregation bias may limit the application of meta-analysis results

to practice and policy. This chapter provides an example of including publicly

available data in a traditional meta-analysis.

8.1 Background

Since Glass (1976) coined the term “meta-analysis,” researchers have continued to

develop statistical techniques for synthesizing results across studies (Cooper et al.

2009; Hedges and Olkin 1985; Hunter and Schmidt 2004; Rosenthal 1991).

In education and psychology, these developments have centered on aggregated

data meta-analysis, using summary statistics from primary studies to compute an

effect size that is combined across studies. In all meta-analyses, the results depend

on the quality and depth of the information provided in a primary study. Cooper and

Patall (2009) note that research reviewers are constrained by the information

provided by the primary authors, and often face difficulties since authors’ reporting

practices differ. Researchers conducting syntheses also find that studies fail to

report enough statistical data to compute an effect size, or incompletely report

information about the study itself for use in moderator analyses. In medicine, meta-

analysis researchers have advocated the use of individual patient data as one

possible solution to the problem of missing data across studies. Meta-analyses

using individual participant data (IPD) have been conducted in a number of

reviews, including in colorectal cancer treatments, the effects of anti-depressant

drugs in moderately depressed patients (Fournier et al. 2009), and in the study of the

relationship between maternal age and type I diabetes (Cardwell et al. 2010).
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In medicine, IPD meta-analysis has been referred to as the gold standard of

meta-analysis (Simmonds and Higgins 2007). Analyses that use individual level

data may lead to conclusions that differ from meta-analyses that use only the

aggregated data presented in a study (Schmid et al. 2004) due to problems

associated with aggregation and ecological bias. Relationships found between

effect size and study methods across studies may not reflect the relationship that

exists within studies. One advantage of IPD meta-analysis over traditional or

aggregated data meta-analysis (AD) is the increased opportunities to fit nested

models of the effects of interventions, recognizing that variation in treatment

effects could be due to factors both within and between studies.

This chapter will illustrate methods for including individual participant data in a

traditional meta-analysis. The methods discussed in this chapter focus on meta-

analyses that include a mix of individual participant data and aggregated study level

data, a situation likely to be the most common application of IPD meta-analysis in

the social sciences. The example used is the meta-analysis by Sirin (2005) that

includes several publicly available data sets that can illustrate how to combine

individual participant data with aggregated data from a study into a single meta-

analysis.

8.2 The Potential for IPD Meta-analysis

While IPD meta-analysis has been used in medicine, there exists only one example

of its use in the social sciences; Goldstein et al. (2000) combined data from studies

of the effects of class size with primary data from the Tennessee STAR experiment.

IPD appears more in medicine since there is a longer tradition in the medical

sciences to register clinical trials and to archive data. The opportunities to analyze

pooled data sets in the social sciences are expanding given the increased attention

given to data warehousing by both the National Institute of Health (2003) and the

National Science Foundation (n.d.). The National Institute of Health (2003) state-

ment on sharing research data indicates that all applications with direct costs above

$500,000 must address data sharing. The Social and Economic Science division of

the National Science Foundation (n.d.) requires investigators to have a written plan

for the archiving of quantitative social and economic data sets collected with NSF

support. Journals are also making use of websites for posting computer code or

technical appendices that cannot be included in the published article, and may also

be a forum for archiving primary study data.

There exist a number of advantages for individual participant data meta-analysis.

As mentioned above, individual-level data may alleviate problems with missing

data, either for missing effect sizes, or for potential moderators. With the original

data, effect sizes can be computed with full information, and analyses of effect size

variation can use more detailed background characteristics of the study and

participants.
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Another potential benefit of IPD meta-analysis is in statistical power. Lambert

et al. (2002) compare the power for detecting interactions among study level

characteristics and effect sizes in an ADmeta-analysis versus an IPDmeta-analysis.

Under many conditions, an IPD meta-analysis has greater power than an AD meta-

analysis. These conditions depend on the within- and between-study variation in the

moderators of study effect sizes. When studies have moderators whose values differ

widely across studies, then AD meta-analysis using meta-regression will have at

least as much power as an IPD meta-analysis, and is much less costly (Cooper and

Patall 2009). Alternatively, when moderators vary within studies and are related to

the within-study outcome, only an IPD meta-analysis will be able to estimate these

within-study interactions. Increased statistical power has also been cited as a reason

for encouraging the use of pooled data analysis and data warehousing (Schneider

2010). Many studies of educational interventions use small samples, and pooling

these studies could provide more power for investigating the differential effects of

these interventions.

As researchers using multi-level modeling have long stressed, aggregation bias

operates within nested educational data (Raudenbush and Bryk 2002) and should be

carefully monitored in conclusions of AD meta-analysis (Cooper and Patall 2009;

Schmid et al. 2004). Having the individual participant data allows the examination

of differences in treatment effectiveness at the level of the individual rather than at

the level of the study. Being able to make inferences at the individual participant

level not only avoids aggregation bias, it may lead to inferences for a meta-analysis

that are more readily applied to practice. If we can model how treatment effective-

ness varies across studies and also across students within those studies, we have

much more information about what works.

A negative example of how AD meta-analysis results can be misinterpreted is

the controversy over the use of mammography as a screening tool for breast cancer.

While an AD meta-analysis may find that across studies, there is little benefit for

screening in women aged 39–49, the meta-analysis cannot tell us about how

screening may work for an individual woman with particular characteristics, an

analysis that can only be carried out with individual level information about

participants. The AD meta-analysis cannot necessarily provide evidence for indi-

vidual women to make a decision about mammography, only how the benefits of

screening vary across studies. More refined analyses using individual student

characteristics could lead to inferences that are more directly related to practice

than those from data aggregated to the level of the study. One goal of research

synthesis is the ability to contribute to decisions about effective treatments. In an

IPD meta-analysis, information at the level of student allows stronger inferences

without the threat of aggregation bias.

While there are many potential benefits for IPD meta-analysis in educational

research, the fact remains that the costs of IPD are much higher than for AD meta-

analysis (Shrout 2009; Cooper and Patall 2009). A study estimating the relationship

between oral contraceptive use and ovarian cancer (Steinberg et al. 1997) found that

the individual participant data meta-analysis on this topic cost approximately five

times that of the aggregated meta-analysis. The most costly activities concern the
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gathering of the data from multiple researchers, and organizing the data into a form

that is comparable across studies. Social scientists use of IPD will likely be limited

to supplementing aggregated study data with individual level data from data

sources that are publicly available. Below I introduce the basic methods of IPD

meta-analysis, and illustrate how to use these methods when there is a mix of both

aggregated data as in a traditional meta-analysis, and individual-level data.

8.3 The Two-Stage Method for a Mix of IPD and AD

There are two methods for analyzing a mix of individual participant data and

aggregated data: the one-stage method, and the two-stage method. The one-stage

method is based on multi-level modeling techniques, while the two-stage method

aggregates the individual participant data to the study level, obtaining essentially

the same information as a reviewer would extract from a primary research study,

and then uses standard meta-analysis methods. In order to present the models that

will be used, I begin with a brief outline of random effects models for aggregated

data meta-analysis, and then discuss the two-stage model for combining both

aggregated data and individual-level data.

8.3.1 Simple Random Effects Models with Aggregated Data

In order to present the models in this chapter, I will need to introduce notation for

the simple random effects model. Recall from Chap. 2 we refer to our generic effect

size as Ti where i¼1,. . ., k with a within-study variance for the effect size denoted

by vi. When we use a random effects model, we assume that the variance of our

effect sizes has two components, one due to sampling variance, vi, and one due to

the variance in the underlying population of effect sizes, t2. The random effects

variance for our effect size is denoted by v�i ¼ vi þ t2. We can write the random

effects model using two levels. With y�i as our underlying population effect size for
study i, we can write our estimated effect size, Ti, as in Raudenbush (2009) as

Ti ¼ y�i þ ei ; where ei � �ð0; viÞ: (8.1)

The residual for study i, ei, is normally distributed with a mean of 0 and a

variance of vi, which is known in ADmeta-analysis. Level-2 is the model of the true

effect sizes, y�i , given as

y�i ¼ y� þ ui ; where ui � �ð0; t2Þ (8.2)
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and where y� is the overall mean effect size in the population, and the residual ui is
assumed normally distributed with mean 0 and variance, t2. Thus the total variance
in the observed effect sizes, Ti, is v

�
i ¼ vi þ t2. The random effects variance, t2, can

be estimated either directly using the method of moments, or with restricted

maximum likelihood as detailed by Raudenbush (2009) and illustrated later in the

chapter when discussing one-stage methods. We then estimate the mean effect

size y�as the random effects weighted mean of the Ti, or

ŷ� ¼ �T�
� ¼

Pk
i¼1

Ti=v
�
i

Pk
i¼1

1=v�i

: (8.3)

with variance given by

varðŷ�Þ ¼ 1

Pk
i¼1

1=v�i

: (8.4)

The model above can be used with the standardized mean difference. With

correlation coefficients, the AD model is different from the one we normally use

in standard meta-analysis practice. Common practice in the synthesis of

correlations is to use Fisher’s z-transformation to normalize the distribution of the

correlations as detailed in many texts on meta-analysis (Borenstein et al. 2009;

Lipsey and Wilson 2000). In this paper, we will use the correlation as the effect size

without transforming it in order to be consistent with the one-stage models

presented later. Thus, we can write our simple random effects model for the

correlations, ri, from each study i ¼1,. . .,k, as

ri ¼ y�i þ ei

y�i ¼ y� þ ui

ei � �ð0; viÞ
ui � �ð0; t2Þ

(8.5)

where within studies, the correlation, ri, estimates the underlying population value,

y�i , and ei is distributed normally with mean 0 and variance vi which is considered

known in the meta-analysis context, and is given below. Each studies’ underlying

population mean effect size is also considered sampled from a distribution of effects

sizes with overall mean equal to y* and ui distributed normally with mean 0 and

variance equal to t2. Within studies, the variance of the correlation is considered

known and is given by

vi ¼ ð1� r2i Þ2
n

(8.6)
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Hedges and Olkin (1985) note that this approximation to the variance for the

correlation is unbiased when the sample size of the study is at least 15, a situation

that holds in our example

8.3.2 Two-Stage Estimation with Both Individual Level
and Aggregated Data

As Riley et al. (2008) state, the easiest method to employ with a mix of IPD and AD

is a two-stage model. The researcher first computes the study level effect sizes from

each IPD study, and then continues with estimating the random effects model

given in (8.1) for the standardized mean difference, and in (8.5) for the correlation

coefficient. For example, if we are using the standardized mean difference between

the treatment and control group as our effect size, we would use the individual level

data from study i to compute the treatment and control group means, �Ytrt, and �Ycntl,
and the pooled standard deviation of the outcome, sp. We would then obtain the

effect size, Ti, for study i, and estimate the model given in (8.1). Chapter 3 provides

computing options for estimating the variance component, t2.

8.3.2.1 Example: Two-Stage Method Using Correlation as the Effect Size

Sirin (2005) reports on a meta-analysis of studies that estimate the association

between socioeconomic status and academic achievement. Included in the Sirin

(2005) meta-analysis is a number of publicly-available data sets, including the

National Educational Longitudinal Survey (NELS), the National Longitudinal

Study of Youth (NLSY), the Longitudinal Study of American Youth, and the

National Transition Demonstration Project. These data sets can be used at the

individual-participant level to obtain an estimate of the correlation between

measures of socioeconomic status and achievement. The table in the Data Appendix

provides the correlations between SES and achievement for the NELS and the

NLSY data set that will be used for the two-stage analysis.

For the two-stage method, we take the correlations estimated from NELS and

NLSY along with those from the aggregated data in the Data Appendix and compute

a simple random effects model. Note that we are using the correlation in this

model rather than Fisher’s z-transformation. Using SAS Proc Mixed (the code is

given in the Appendix) yields an estimate of the random effects mean correlation of

ŷ� ¼ 0:283with an estimate of the variance component, t2¼ 0.0336. The histograms

of the correlations and their Fisher-z transformations both appear fairly normal, and

thus the analysis is assumed robust to the distribution of the correlations in this data.

The variance component and mean correlation in this example are computed using

restricted maximum likelihood (REML). The output from SAS Proc Mixed gives

both the random effects mean and the variance component in one step, unlike the
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method of moments discussed in Chap. 3. Recall that in the method of moments, we

first compute t2, add this value to our fixed effects study weights, and then compute

the mean effect size with the newly constructed weights. Using REML in SAS, we

can do the estimation of t2 and y* in one step.
Though the two-stage method is easily computed, it suffers from the same issues

as all aggregated data analysis – only relationships at the level of the study are

estimated leaving open the possibility of aggregation bias. Reviewers must exercise

caution in applying results from a meta-analysis using only aggregated study-level

data to within-study relationships. For example, while we may find that an inter-

vention effect is not homogeneous across studies, this result does not imply that the

intervention effect is not homogeneous among participants within a study.

8.4 The One-Stage Method for a Mix of IPD and AD

In order to illustrate the one-stage method, we begin with a model for the data from

a study that provides only individual participant data. The model with only indivi-

dual participant data will use the individual level measures, with a parameter in the

model that represents the target effect size. I will illustrate the model for IPD with

both the standardized mean difference and the correlation.

8.4.1 IPD Model for the Standardized Mean Difference

The standardized mean difference is used when we have a study that utilizes two

experimental groups, say a treatment group and a control group. The outcome for

the IPD model is the individual participant’s response on the target measurement,

denoted for participant j, in study i, denoted as yij. In order to make the outcomes

parallel in an IPD analysis with an AD analysis using the standardized mean

difference, we will use the standardized outcome, denoted here by ZYij for student
j, j ¼ 1,. . ., nj, in study i, i¼1,. . .,k. Thus, each students’ outcome will be

standardized using the overall mean and standard deviation of the outcome

observed in that study. We can write a hierarchical linear or mixed model for our

IPD data following Riley et al. (2008). For a study that uses the standardized mean

difference as the effect size, the model can be given as

ZYij ¼ fi þ y�i xij þ eij

y�i ¼ y� þ ui

eij � �ð0; 1Þ
ui � �ð0; t2Þ

(8.7)
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where xij is a 0/1 code designating control or treatment group membership, the fixed

study effect is fi, with the random treatment effect in study i given by y�i . Given the
parameters in (8.7), the value for y�iwill be the difference between the treatment

and control group, standardized by the pooled sample standard deviation which

is equivalent to the standardized mean difference in an AD meta-analysis, Ti.
The variance within each study for the outcome is 1, since we have standardized

our outcomes, and the variance for the y�i is t
2. Our goal in an IPD meta-analysis

would be to estimate the mean treatment effect, y�, and its variance, t2, using
standard methods of hierarchical linear models (Raudenbush and Bryk 2002).

The individual level models rely on parameterizing the variables in IPD so that

one of the regression coefficients will be equal to the estimate of the effect size in a

meta-analysis that uses aggregated data.

8.4.2 IPD Model for the Correlation

As in the model for IPD with the standardized mean difference, we can write a

model for our correlation effect sizes that includes the target correlation as a

coefficient in the model. If we are interested in the correlation between Y and X,
using the standardized version of X to predict the standardized version of Y results

in the regression coefficient equal to the correlation between the two variables.

Between studies, we remain interested in the estimate of the random effect mean

correlation and its random effects variance. Using the standardized versions of our

variables Yij and Xij as given by ZYij and ZXij, our model can be written as

ZYij ¼ fi þ y�i ZXij þ eij

y�i ¼ y� þ ui

eij � �ð0; 1Þ
ui � �ð0; t2Þ

(8.8)

where fi is the fixed effect for study i, y�i is the target correlation for the meta-

analysis, and eij is distributed normally with mean 0 and variance 1 since we

standardized the variables. Note that i¼1,. . .,k where k is the number of studies,

and j¼1,. . ., ni where ni is the number of cases in study i. The second line of (8.8)

is the same as in (8.5), where the correlation from each study is assumed to

estimate a grand mean, y�, with ui distributed normally with mean 0 and variance

equal to t2.

8.4.3 Model for the One-Stage Method with Both IPD and AD

One-stagemethods for amix of IPD andADwould be analogous to fitting hierarchical

linear models when some of the level-2 units do not provide individual level data.
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When we combine both types of data using the one-stage method, the AD studies

will contribute only the effect size and its variance, while the studies with IPD will

contribute individual level data. For the standardizedmean difference this will be the

standardized outcome, and for correlations, the standardized versions of the two

variables whose correlation is the review’s focus.

We will use the models given in (8.7) and (8.8) for both AD and IPD, but

the values that the IPD studies and the AD studies contribute to the model will be

different. For example, the AD studies will have a single value for ZYij when we are
interested in the standardized mean difference. For correlations, the value for ZXij
will be equal to 1 and ZYij will equal the study correlation, ri, so that (8.8) simplifies

to the level 1 model given in (8.5) for the AD studies.

To combine AD and IPD in the one-stage method, we will add a dummy

variable, Di, that takes the value 1 when the study contributes individual level

data, and 0 when the study contributes aggregated data. For the standardized mean

difference, the model given by Riley et al. (2008) is

Z0
Yij ¼ Di fi þ y�i xij þ e0ij
y�i ¼ y� þ ui

e0ij � �ð0; v0iÞ
ui � �ð0; t2Þ

(8.9)

For each IPD study, the outcome is ZYij, the standardized value of the outcome,

and the v0i ¼ 1since we have standardized our outcomes within studies. The dummy

code Di ¼ 1, and øi is the fixed study effect. In the AD studies, we assume only one

observation (j¼ 1), and we set xij¼1, and Di ¼ 0. The response in the AD studies is

the estimate of the effect size in that study, Z0
Yij ¼ Ti, and v0ij ¼ vi, the within-study

sampling variance of Ti.
When the outcome is the correlation coefficient, the model is given by

Z0
Yij ¼ Di fi þ y�i Z

0
Xij þ e0ij

y�i ¼ y� þ ui

e0ij � �ð0; v0iÞ
ui � �ð0; t2Þ

(8.10)

For the IPD studies, the outcome is Z0
Yij ¼ ZYij and Z0

Xij ¼ ZXij, the standardized
versions of the variables in the target correlation. As in the standardized

mean difference case, the v0i ¼ 1 since the variables are standardized. The dummy

code Di ¼ 1, and øi is the fixed study effect. In the AD studies, we also assume

only one observation per study, and we set our outcome equal to Z0
Yij ¼ ri. We also

set Di ¼ 0, and Z0
Xij ¼ 1so that for the AD studies, (8.10) reduces to (8.5), with vi

defined in (8.6).
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8.4.3.1 Example: One-Stage Method with Correlations

In the Sirin data, we are interested in estimating the correlation between measures

of student achievement and measures of socio-economic status. The estimated

parameter y�is then the correlation of interest in the meta-analysis. The one-stage

model for correlations can be written as

Z0achij ¼ Di fi þ y�i Z
0sesij þ e0ij

y�i ¼ y� þ ui

e0ij � �ð0; v0iÞ
ui � �ð0; t2Þ

(8.11)

Following the model given by Riley et al., the dummy code Di takes the value 1

when the study provides individual participant data, and 0 when the study provides

only aggregated data. For each IPD study, the outcome, Z0achij, is the standardized
value for the achievement test in study i, Z0sesij is the standardized value for the

measure of SES in study i, and thus, v0i ¼ 1 since we have standardized the

variables. When both variables are standardized, then the y�i estimated in the first

equation above is equal to the correlation between the two variables. In the AD

studies, we assume only one observation so that j ¼ 1, Z0achij ¼ ri, Z
0sesij ¼ 1, and

the variance is approximated by v0i ¼ vi given in (8.6). This formulation for the AD

studies then simplifies to the equation for the one-way random effects model.

Using SAS Proc Mixed (the code is given in the Appendix), the one-step method

provides an estimate of the random effects mean correlation, ŷ� ¼ 0:312, with an

estimate of the variance component, t2 ¼ 0:03404. Both estimates are slightly

larger than that for the two-step method.

8.5 Effect Size Models with Moderators

Using a Mix of IPD and AD

One advantage of IPD emphasized in the literature (Cooper and Patall 2009;

Higgins et al. 2001; Riley et al. 2008) is the ability to fit effect size moderator

models that have more power than meta-regression models with only aggregated

data. Simmonds and Higgins (2007) demonstate that the power of meta-regression

in aggregated data meta-analysis as compared to individual level data depends on

the variation in the target moderator. If the effects of treatment vary within studies

as a function of the moderator, then an IPD analysis will have more power.

However, if the moderator values vary across studies, then the AD meta-analysis

will have more power to detect these study-level relationships. With a mix of IPD

and AD, the models discussed in this section can examine the relationships between
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potential moderators and effect size both within and between studies. For example,

we may see that within a study, age may not be related to the effectiveness of a

treatment, but across studies, due to the variation in samples, age does appear

related to effect size magnitude. Below I present the two-stage method for meta-

regression models with a mix of IPD and AD, and then the one-stage method.

8.5.1 Two-Stage Methods for Meta-regression
with a Mix of IPD and AD

As in the two-stage method for computing the mean effect size, the two-stage

method for a meta-regression involves aggregating the individual level data to the

level of the study, and then proceeding with standard meta-regression techniques.

For a two-stage analysis using both IPD and AD, and with the standardized mean

difference as our effect size, we would fit a random effects meta-regression given by

Ti ¼ y�i þ b �mi� þ ei

y�i ¼ y� þ ui

ei � �ð0; viÞ
ui � �ð0; t2Þ

(8.12)

The mean value of the moderator variable (for example, mean grade level) is

denoted by �mi� for study i. This random effects meta-regression model is a simple

bivariate model examining the relationship between a single moderator and the

effect size. In a standard meta-regression application, b is the weighted least-

squares regression coefficient for the predictor m. For studies with IPD, we would

estimate the effect size Ti and the mean of the moderator �mi� using the individual

level data, and then add those values to the aggregated data set to estimate the meta-

regression model.

When the effect sizes in our studies are correlations, we have a model similar to

that in (8.12). We have an estimate of the correlation, ri, and the variance of that

correlation, vi, given in (8.6). We also have a moderator variable, �mi�, or the study
level mean of a moderator, m, such as the average age of the study participants, or

the percentage of minority students included in the sample. We can write the

random effects meta-regression as

ri ¼ y�i þ b �mi� þ ei

y�i ¼ y� þ ui

ei � �ð0; viÞ
ui � �ð0; t2Þ

(8.13)
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As in the model for the standardized mean differences, with IPD, we would

compute the target correlation, and the study level mean for the moderator, and add

these values to the aggregated data.

8.5.1.1 Example: Two-Stage Model with a Mix of IPD and AD

One of the potential moderators in the Sirin (2005) meta-analysis of the correlation

between socio-economic status and academic achievement is the percent of minor-

ity students in the study sample. In the NELS and NLSY studies, we have the racial

background for each individual, and thus can aggregate to the study level the

percentage of minority (non-white) students in each of these two data sets.

The data table in the Data Appendix gives the aggregated percent of minority

students for the sample of NELS and NLSY participants in this meta-analysis,

and the percent of minority students in the AD studies. Using SAS Proc Mixed

(code given in the Appendix), we find in Table 8.1 that the percentage of minority

students included in the study was inversely related to the study’s correlation,

however this effect was not statistically significant, (b ¼ -0.146, S.E. ¼ 0.082,

C.I.: -0.306, 0.014). The estimate of the random effects mean correlation, y�, was
0.356 (with S.E.¼ 0.050, 95% C.I.: 0.258, 0.454), slightly larger than in the simple

random effects analysis. The estimate of the random effects variance was slightly

smaller than in the simple mixed effects model (t2¼ 0.0321). The small decrease in

the variance estimate is due to the inclusion of the across-study moderator, percent

minority students in the sample.

As in the example in Sect. 8.3.2.1, we are using REML as our estimation

procedure for the variance component. SAS Proc Mixed allows the estimation of

ŷ�; b̂ and t2 in one step.

8.5.2 One-Stage Method for Meta-regression
with a Mix of IPD and AD

As in the discussion of the simple random effects model for IPD and AD, I will

first present a model that assumes only individual level data. Then we will combine

that model with the one given in 8.12 and (8.13). If we only had individual

level data, we would be adding a moderator to the model given in (8.7) and (8.8).

For the standardized mean difference, the model in (8.7) uses the standardized

outcome, ZYij, and a dummy code, xij, to indicate membership in the treatment

or control group. For correlations, the model in (8.8) has the standardized version

of one of our variables, ZYij, as the outcome and one predictor, the standardized

version of the other variable, ZXij.

Table 8.1 Estimates from

meta-regression using

two-step method

Effect Estimate SE Lower CI Upper CI

y* 0.356 0.050 0.258 0.454

% minority �0.146 0.082 �0.306 0.014
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8.5.3 Meta-regression for IPD Data Only

I first present the model for the standardized mean difference when we only have

IPD. Let mij be the value for the moderator variable centered at the mean for the

study i, person j. This value could be for example, the actual age of the participant,

or a dummy code for whether the individual is a minority or not, centered at the

study mean value for the predictor. The IPD model, with interactions between the

predictors, is given by

ZYij ¼ fi þ y�i xij þ g1 mij þ g2 xij mij þ b xij �mi� þ eij

y�i ¼ y� þ ui

eij � �ð0; viÞ
ui � �ð0; t2Þ

(8.14)

In this model, we have interaction effects with the moderator at both the within-

study and between-study levels. The two coefficients, g1 and g2, capture the

within-study effect of the moderator mij and its interaction with xij, respectively.
At the between-study level, we have the interaction effect between xij and the

study-level mean of the moderator, �mi�, for study i.
The model for studies with only IPD and correlations as the effect size is similar

to (8.14), and is given by

ZYij ¼ fi þ y�i ZXij þ g1 mij þ g2 ZXij mij þ bZXij �mi� þ eij

y�i ¼ y� þ ui

eij � �ð0; viÞ
ui � �ð0; t2Þ

(8.15)

As in the model in (8.14), we estimate two coefficients within the study, one for

the effect for the moderator, mij, and the second for the interaction between ZXij and
the moderator, mij. At the between-study level, we have the interaction effect

between ZXij and the study-level mean of the moderator, �mi�, for study i.

8.5.4 One-Stage Meta-regression with a Mix of IPD and AD

To add studies with aggregated data to the model in (8.14) and (8.15), we need to

use the dummy code, Di, which takes the value 1 when the study contributes

individual level data and 0 when the study contributes aggregated data. For the

standardized mean difference, the model is

Z0
Yij ¼ Difi þ y�i xij þ Di g1 mij þ Di g2 xij mij þ b xij �mi� þ e0ij
y�i ¼ y� þ ui

e0ij � �ð0; v0iÞ
ui � �ð0; t2Þ

(8.16)
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As in (8.9), the outcome for IPD studies is the standardized value of yij, or
Z0
Yij ¼ ZYij, and v0i ¼ 1. For AD studies, we assume only one observation for that

study, and set the outcome as Z0
Yij ¼ Ti, the standardized mean difference for that

study. The other values are set as xij ¼ 1, the Di ¼ 0, and v0i ¼ vi, the within study

sampling variance for the effect size, Ti .
For the correlation coefficient, the model is

Z0
Yij ¼ Di fi þ y�i Z

0
Xij þ Di g1 mij þ Di g2 Z

0
Xij mij þ b Z0

Xij �mi� þ e0ij
y�i ¼ y� þ ui

e0ij � �ð0; v0iÞ
ui � �ð0; t2Þ

(8.17)

The values for IPD studies are the same as in (8.10), where Z0
Yij ¼ ZYij and Z

0
Xij ¼

ZXij are the standardized versions of the variables in the target correlation. The value
of the variance is v0i ¼ 1 since the variables are all standardized. In the AD studies,

we only have one observation where Z0
Yij ¼ ri and Z0

Xij ¼ 1. The variance v0i ¼ vi,
the within-study sampling variance of the ri. Since Di ¼ 0, (8.17) simplifies to

(8.13) when the study contributes only aggregated data.

8.5.4.1 Example: One-Stage Method for Meta-regression

with Correlations

As in Example 8.5.1.1, an important study-level moderator in the Sirin (2005) data

is the percent of minority students in the sample. The magnitude of the correlation

between achievement and socioeconomic status may vary with race. Within the IPD

studies, we can code each observation using a dummy code mij which takes the

value 0 if the student is identified as White, and 1 if the student is either Asian,

Black, Hispanic or Native American. We will use the centered version of the

dummy code in the analysis to be consistent with the AD model at the study

level. At the study level, the mean of these dummy codes, �mi�, corresponds to the

percent of minority students in the sample. For the one-step method, the combined

model for the Sirin data can be given as

Z0achij ¼ Di fi þ y�i Z
0sesij þ Di g1 mij þ Di g2 Z

0sesij mij

þ b Z0sesij �mi� þ e0ij
y�i ¼ y� þ ui

e0ij � �ð0; v0iÞ
ui � �ð0; t2Þ

(8.18)

122 8 Including Individual Participant Data in Meta-analysis



Using SAS Proc Mixed (the code is given in the Appendix) to fit the model in

(8.18) across both AD and IPD studies, we obtain the following:

The variance component for this analysis is t2 ¼ 0.0328. Note that in this

analysis, the between-studies moderator, percent minority students in the sample,

is significantly related to the correlation, as indicated by the estimate for b. We have

more power in this analysis given the individual participant data to estimate this

relationship than in the two-step method. Across studies, the correlation between

achievement and SES is smaller for studies with a larger percentage of minority

students. Within the NELS and NLSY studies, minority students, in general, have a

lower correlation between SES and achievement, as indicated by the estimate for g1.
There is also a significant interaction between minority and SES. As seen in

the value for g2, minority students with higher SES have an even lower correlation

between SES and achievement than White students with a similar SES.

This interaction is not apparent unless we have individual level data.

The procedures used here can be applied beyond the context of traditional meta-

analysis. The current federal education policies are moving toward state-based

accountability systems. In order to compare differences across states, we will

need methodology that can combine data across states that use different types

of assessments, where some of the individual-level data will be available, while

other data will be aggregated to the state or district. The methods of IPD meta-

analysis could provide more sensitive analyses that take into account the nested

nature of the data. As in the Sirin (2005) example above, there could be

relationships between variables within studies that cannot be examined with a

typical AD meta-analysis.

Appendix: SAS Code for Meta-analyses

Using a Mix of IPD and AD

SAS Code for Simple Random Effects Model
Using the Two-Step Method

Below is the code needed to run a random effects meta-analysis with the raw

correlation. The model for this analysis is given in (8.5). The data for this analysis

should include a variable “outcome” that holds the effect size for each study (in this

case, the correlation coefficient), a variable that provides a unique identifier for each

Effect Estimate SE Lower CI Upper CI

y* 0.362 0.022 0.319 0.406

g1 (minority) �0.200 0.018 �0.235 �0.166

g2 (interaction of minority and SES) �0.089 0.016 �0.122 �0.056

b (% minority in study) �0.167 0.058 �0.280 �0.054
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study, labeled “study” in this example. We also need the variances for each effect

size estimate, in this example, the estimated variance of the correlation coefficient as

given in (8.6). The first line of code calls the SAS procedure ProcMixed. The options

in this line, noclprint and covtest are options for output. The noclprint suppresses

the printing of class level information, or the list of all studies in this example. The

covtest prints out the standard errors and test statistics for the variance and covari-

ance parameters. The class statement indicates that “study” is a class variable, which

will be designated as the random effect later in the code. Themodel statement asks

for a simple random effects model with “outcome” as the dependent variable. The

option solution prints out the fixed-effects parameter estimates, which in this

example is the estimate of the mean effect size (“outcome”). The random statement

designates the random effect, and the option solution prints the estimate of the

random effect, or in this case, the random effects variance. The repeated statement

specifies the covariance matrix for the error terms, and in this case, allows between

group heterogeneity. The parms statement provides the starting values for the

covariance parameters. The first value is the starting value for the overall variance

component for this model. The next 42 elements are the within-study estimates of

the variance of the effect size, here the correlation. The option eqcons fixes the

variances for the 42 studies in the analysis since these are considered known in a

meta-analysis model.

proc mixed noclprint covtest;

class study;

model outcome ¼/solution;

random study/solution;

repeated/group ¼ study;

parms

(0.05)

(.000071) (.000311) (.001584) (.008978) (.000222) (.000041) (.000072)

(.004656) (.002213) (.007193) (.002426) (.008054) (.002803) (.003252)

(.000616) (.005791) (.000557) (.001512) (.000676) (.001345) (.002302)

(.002746) (.003254) (.007465) (.010415) (.004995) (.008849) (.002823)

(.002765) (.000083) (.000221) (.002669) (.000665) (.002237) (.000598)

(.000924) (.000813) (.001663) (.003136) (.001659) (.027218) (.005051)

/eqcons¼2 to 43;

run;

Output from Two-Stage Simple Random Effects Model

Table 8.2 gives the estimate of the variance component in the first line along with its

standard error and test of significance. Table 8.3 provides the random effects mean

for the overall effect size.
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SAS Code for Meta-regression Using the Two-Stage Method

The code here is the same as for the aggregated data simple random effects model

except for the addition of a moderator in the model statement. The model for this

analysis is given in (8.8). The moderator in this example is permin, the percent of

minority students in the study sample. As in the example above, restricted maxi-

mum likelihood is the default estimation method.

proc mixed noclprint covtest;

class study;

model outcome ¼ permin/solution;

random study/solution;

repeated/group ¼ study;

parms

(0.05)

(.000071) (.000311) (.001584) (.008978) (.000222) (.000041) (.000072)

(.004656) (.002213) (.007193) (.002426) (.008054) (.002803) (.003252)

(.000616) (.005791) (.000557) (.001512) (.000676) (.001345) (.002302)

(.002746) (.003254) (.007465) (.010415) (.004995) (.008849) (.002823)

(.002765) (.000083) (.000221) (.002669) (.000665) (.002237) (.000598)

(.000924) (.000813) (.001663) (.003136) (.001659) (.027218) (.005051)

/eqcons¼2 to 43;

run;

Table 8.2 Estimate of variance component from SAS Proc Mixed

Covariance parameter estimates

Cov parm Group Estimate Standard error Z value Pr > Z

Study 0.03362 0.007880 4.27 < .0001

Residual Study 1Nels 0.000071 0 . .

Residual Study 2Nlsy 0.000311 0 . .

Residual Study alexent 0.001584 0 . .

. . .. . .. . . .. . .. . . .. . ...

Residual Study watk 0.005051 0 . .

Table 8.3 Estimate of random effects mean from SAS Proc Mixed

Solution for fixed effects

Effect Estimate Standard error DF t value Pr > |t|

Study 0.2830 0.02954 41 9.58 < .0001
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Output from Meta-regression Using the Two-Stage Method

Table 8.4 gives the estimate of the variance component in the first line along with

its standard error and test of significance conditional on the moderator permin.

Table 8.5 provides the random effects mean for the overall effect size given the

percent of minority students in the sample. Note that the slope for permin is not

statistically significant, and thus in this analysis, the percent of theminority students in

the sample is not associated with the correlation between SES and achievement in

these studies.

SAS Code for Simple Random Effects Model
Using the One-Stage Model

The code below estimates a simple random effects model with both IPD and AD

data. The data is set up as in Table 8.6. Two of the AD studies are given in the first

two lines of the table. The AD studies contribute one observation (Person¼1), does

not provide individual level data (IPD ¼ 0), has a value of the standardized SES of

Table 8.4 Estimate of variance component from SAS Proc Mixed for meta-regression

Covariance parameter estimates

Cov parm Group Estimate Standard error Z value Pr > Z

Study 0.03207 0.007574 4.23 < .0001

Residual Study 1Nels 0.000071 0 . .

Residual Study 2Nlsy 0.000311 0 . .

Residual Study alexent 0.001584 0 . .

. . .. . .. . . .. . .. . . .. . ...

Residual Study watk 0.005051 0 . .

Table 8.5 Estimates for meta-regression using SAS Proc Mixed

Solution for fixed effects

Effect Estimate Standard error DF t value Pr > |t|

Intercept 0.3560 0.05016 40 7.10 < .0001

Permin �0.1456 0.08170 0 �1.78 .

Table 8.6 Example of data for a mixed IPD and AD analysis

Study Person ipd Zses Outcome

Watk 1 0 1 0.3600

Whitr 1 0 1 0.1540

NELS 0001 1 1.38817 1.90799

NLSY 0803 1 1.38817 0.87512
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1, and has an outcome equal to the correlation estimated in that study. The last lines

provide examples of data from individuals in the NELS and NLSY data set. Each

individual has a person identification number, has a value of IPD¼1 since individ-

ual level data is provided, and also provides a standardized value for SES and for

the outcome which is achievement in our example.

Given the values for the variables in Table 8.6, the SAS code follows the general

structure of the examples for the AD random effects models. The first line calls

the SAS Proc Mixed, with option cl and noclprint defined as in earlier sections.

The optionmethod ¼ reml specifies the estimation method as restricted maximum

likelihood (the default). Since we have two levels in our model – the within-study

level for the studies that provide IPD, and the between-study level, we have two class

variables, person and study. The model statement reflects the model discussed in

(8.13). The outcome for the IPD studies, achievement in its standardized form, will

be modeled with study as a factor, and zses as a predictor. Since ipd ¼0 for the AD

studies and zses ¼ 1, the model for the AD studies will be equivalent to the model

given for simple random effects as given above. The options for the model command

are noint which fits a no-intercept model, s which is short for solution and provides

the solution for the fixed effects parameters. The option cl produces the confidence

limits for the covariance parameter estimates, and covb gives the estimated vari-

ance-covariance matrix of the fixed-effects parameters. The random command line

indicates that study is a random effect. The command line for repeated specifies

the variance-covariance matrix for the mixed model. The option type¼ un specifies

that the variance-covariance matrix is unstructured. The option subject ¼ study

(person) indicates that the variable persons is nested within study. The option

group¼study indicates that observations having the same value of study are at

the same level and should have the same covariance parameters. The parms

command provides a number of values for the variance parameters. The first three

values after parms are the starting values for the random effects variances, the first

for the overall random effects variance between studies, the second two for the

NELS and the NLSY studies. The next set of parameters is the within-study

variances for the outcome or effect size.

proc mixed noclprint cl method¼reml;

class person study;

model outcome ¼ study*ipd zses/noint s cl covb;

random study;

repeated/type ¼ un subject ¼ study(person) group ¼ study;

parms

(0.05) (0.05) (0.05)

(0.001584129) (0.008978216) (0.000222147) (4.14666E-05)

(7.23005E-05) (0.004655734) (0.002213119) (0.007192762)

(0.000221388) (0.002668852) (0.000664976) (0.002236663)

(0.002425768) (0.008054047) (0.002802574) (0.00325176)

(0.000616328) (0.005790909) (0.000557348) (0.000597936)

(0.000923595) (0.001511538) (0.000676163) (0.001345186)
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(0.002302425) (0.002746439) (0.003253767) (0.000812903)

(0.007464759) (0.010414583) (0.004995399) (0.008849115)

(0.002822828) (0.002765381) (8.29676E-05) (0.001659)

(0.001662966) (0.003136358) (0.02721837) (0.005050641)

/eqcons¼ 4 to 43;

run;

Output from One-Stage Simple Random Effects Model

The important parts of this output are under Covariance Parameter Estimates, which

gives the estimate of the variance component for the simple random effects model

with both individual-level and study-level data. The table below looks different

from the one in the simple random effects model with only study-level data since

one option used here was cl, the confidence limits for the covariance parameters.

The second table gives the estimate of the random effects mean effect size, as the

solution for the fixed effects for the variable Zses (Tables 8.7 and 8.8).

Table 8.7 Estimate of variance component from SAS Proc Mixed for simple random effects

model using the one-step method

Covariance parameter estimates

Cov parm Subject Group Estimate Alpha Lower Upper

Study 0.03404 0.05 0.0223 0.0583

UN(1,1) Study(person) Study 1Nels 0.8937 0.05 0.8709 0.9176

UN(1,1) Study(person) Study 2Nlsy 0.9324 0.05 0.8853 0.9835

UN(1,1) Study(person) Study alexent 0.001584 . . .

. . .. . .. . . .. . .. . . .. . ...

UN(1,1) Study(person) Study watk 0.005051 . . .

Table 8.8 Estimates for simple random effects model using SAS Proc Mixed

Solution for fixed effects

Effect Study Estimate Standard error DF t value Pr > |t|

ipd*study Nels 0.000 0.1847 1403 0.00 1.000

ipd*study Nlsy �0.00052 0.1854 1403 0.00 0.9978

ipd*study Alexent 0 . . . .

. . . . . . .. .. .. .. ..

ipd*study Watk 0 .. .. .. ..

Zses 0.3125 0.007769 1403 40.22 <.0001
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SAS Code for a Meta-regression Model Using the One-Step Method

The SAS code for ameta-regressionmoderatormodel in the one-stepmethod includes

the same code as for the simple random effects models as given above. The main

difference occurs in the “model” statement, where we add a number of variables and

interactions to the model. The “ipd*min” variable is the within-study effect of being a

minority student on the association between achievement and SES within the IPD

studies. The dummy code for minority student has also been centered at the study

mean. The factor “idp*zses*min” is the interaction effect between SES and being a

minority student on student achievement. The “zses*permin” effect is the between-

study association of the percent of minority students with the study-level correlation

between achievement and SES. The rest of the command lines are the same as in the

one-step method for the simple random effects model.

proc mixed cl noclprint method¼reml;

class person study;

model outcome ¼ newid*ipd zses ipd*min ipd*zses*min zses*permin/noint s cl

covb;

random study;

repeated/type ¼ un subject ¼ study(person) group ¼ study;

parms

(0.05) (0.05) (0.05)

(0.001584129) (0.008978216) (0.000222147) (4.14666E-05)

(7.23005E-05) (0.004655734) (0.002213119) (0.007192762)

(0.000221388) (0.002668852) (0.000664976) (0.002236663)

(0.002425768) (0.008054047) (0.002802574) (0.00325176)

(0.000616328) (0.005790909) (0.000557348) (0.000597936)

(0.000923595) (0.001511538) (0.000676163) (0.001345186)

(0.002302425) (0.002746439) (0.003253767) (0.000812903)

(0.007464759) (0.010414583) (0.004995399) (0.008849115)

(0.002822828) (0.002765381) (8.29676E-05) (0.001659)

(0.001662966) (0.003136358) (0.02721837) (0.005050641)

/eqcons¼ 4 to 43;

run;

Output for Meta-regression Using the One-Step Method

Table 8.9 below gives the conditional random variance component for the model,

0.0319, which is similar to the meta-regression estimate using the two-step method.

In Table 8.10, we see the estimates for the multilevel model for the one-step method.

The overall estimate of the random effects conditional mean is 0.362, similar to the

two-step result, with the overall estimate of the between-study effect of percent of
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minority students as �0.167, which in this analysis is statistically significant.

The two within-study factors, being a minority study, and the interaction between

minority status and SES, are also both significant as seen in the lines just before the

bottom of the second table.
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Chapter 9

Generalizations from Meta-analysis

Abstract This chapter discusses the kinds of inferences and generalizations we

can make from a meta-analysis. The chapter reviews the framework outlined by

Shadish et al. (2002) for meta-analysis, and provides examples from two recent

syntheses that had an influence on policy.

9.1 Background

What kinds of decisions can we make from a meta-analysis? Are we justified in

making policy decisions from the results of a meta-analysis about implementation of

an intervention, such as the use of systematic phonics instruction? What about

decisions of a more personal nature – such as should I have a mammography

annually in my forties? These are questions asked about meta-analyses from policy

makers, practitioners, and consumers of this information. This chapter reviews the

basis whereby we can make inferences from a meta-analysis, and the kinds of

inferences that can be supported. It also argues for the transparency that reviewers

of evidence should provide so that the results of systematic reviews can be used

appropriately.

As many researchers have pointed out, the results of meta-analyses are observa-

tional. Reviewers cannot manipulate the kinds of methods used, or the participants in

the sample, and thus cannot fulfill the requirements of an experimental study that

aims to identify causes. In a meta-analysis, we do not have the ability to assign the

conditions of the study. The studies already exist, and use a variety of procedures,

methods, participants, in a variety of settings. Despite this fact, we still want to make

decisions about the types of interventions that are most effective, or about what

personal choice I should make about my own health. Given the nature of meta-

analysis, we cannot use statistical reasoning as we do in a randomized controlled trial

to reach a causal inference. Instead, we need a different basis for arguing about cause.
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AsMatt andCook (2009) and Shadish et al. (2002) point out, causal inferences can be

supported in a meta-analysis using a logic or basis different from classic arguments

about cause. These researchers argue that the warrant formaking causal claims from a

meta-analysis depends on ruling out threats to the validity of that inference. In other

words, we argue a causal claim from ameta-analysis by systematically addressing all

other plausible explanations for the causal relationship we propose.

Shadish et al. outline how we can proceed by arguing from the five principles of

generalized causal inference: (1) surface similarity, (2) ruling out irrelevancies,

(3) making discriminations, (4) interpolation and extrapolation, and (5) causal

explanation. Causal inferences from a meta-analysis require examining the

conditions and methods used across studies. As Shadish et al. argue, the number

of methods and conditions represented across studies in a meta-analysis allows us to

have more evidence about how an intervention or a relationship varies than in a

single study that cannot include all of these conditions.

This chapter will use the Preventive Health Services (Nelson et al. 2009) report on

breast cancer screening and Ehri et al. (2001) meta-analysis on the effects of

systematic phonics instruction to illustrate the five principles of generalized causal

inference described by Shadish et al. In the discussion that follows, I use

Cronbach (1982) acronym, UTOS, as a shorthand for the generalizations we

want to make from the meta-analysis. UTOS stands for the Units (persons) who

receive the treatment and to whomwewish to generalize, the Treatments in the study

and those treatments we want to generalize about, the Observations (measures) used

in the study and those we wish to generalize to, and the Settings where the study

takes place, and settings where we want to generalize these findings. Below is an

introduction to the report on breast cancer screening as well as to the work of the

National Reading Panel (2000) followed by a discussion of each of the five principles

of generalized causal inference in the context of these reviews.

9.1.1 The Preventive Health Services (2009) Report
on Breast Cancer Screening

In 2009, the United States Preventive Health Services (USPHS) released an update

of their previous synthesis on studies focusing on the outcomes of breast cancer

screening. The update included two new trials, the Age trial from the United

Kingdom (Moss et al. 2006), and an update of the data from the Gothenburg trial

conducted in Sweden (Bjurstam et al. 2003). The Age trial specifically targeted

outcomes in women aged 40–49, and resulted in the USPHS revising their original

(US Preventive Services Task Force 2002) recommendations for this specific group

of women. Essentially, the recommendations were that the evidence no longer

supported routine, annual mammography for women aged 40–49, given the risk

of false positive results and over diagnosis. The release of the results coincided with

the healthcare reform debates that were occupying the US Congress and the media.
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In some instances, the report’s recommendations were linked to the healthcare

reform debate (Woolf 2010), one clear example of how the results of this review

were misinterpreted. There have been many commentaries in the media and in the

medical literature discussing what conclusions can be drawn, and how women

should respond to the report.

9.1.2 The National Reading Panel’s Meta-analysis
on Learning to Read

The U. S. Congress in 1997 asked that a panel be convened to review research on

strategies to teach children to read. The panel, appointed by the National Institute of

Child Health and Human Development (NICHD) and the Department of Education

conducted a series of systematic reviews of the evidence. One of these subgroup

analyses is a meta-analysis conducted by Ehri et al. (2001) on the effects of system-

atic phonics instruction on students’ ability to read words. The National Panel’s

report had wide-spread influence, contributing to the language in the No Child Left

Behind Act (Allington 2006) that calls for the use of research-based teaching

strategies. The National Panel’s report was widely criticized on various grounds

(Camilli et al. 2006; Hammill and Swanson 2006; Pressley et al. 2004), with many

researchers questioning how well the results could generalize to real classrooms.

Below I outline the five principles of generalized causal inference, using both the

Ehri et al. meta-analysis and the breast cancer screening study as examples.

9.2 Principles of Generalized Causal Inference

9.2.1 Surface Similarity

Surface similarity was first discussed by Campbell (1957) in terms of construct

validity. We can more safely apply a generalization from one measure to another

measure that is based on a similar construct. In the context of meta-analysis, we can

apply a finding from a meta-analysis to those UTOS that are represented in the

studies included in the synthesis. Conversely, we may caution about generalizing

from a meta-analysis to a context that is not represented in the meta-analysis.

One criticism of the breast cancer screening meta-analysis was that the studies in

the meta-analysis did not include a sufficient number of African-American women,

and thus the results should not be generalized to this group of women. For example,

Murphy (2010) cautions that clinicians applying the findings of the report need to

keep in mind that African-American women have a higher risk of mortality from

breast cancer, and women of Ashkenazi Jewish descent are at higher risk of

genetically mediated breast cancer. The synthesis did not include studies with a
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large sample of these groups of women, and thus the synthesis provides no evidence

about how breast cancer screening is related to the mortality from breast cancer for

these two groups. In terms of other groups of women who might be at higher risk,

such as women exposed to high levels of radiation, there is not enough specific

information included about the characteristics of women in the trial to make

generalizations about particular sub-groups. Our ability to examine surface similarity

from the report itself is limited. The report does update findings about one particular

group of women, those aged 40–49, since new evidence from the Age Trial (Moss

et al. 2006) provides more direct evidence about this group. There were, however,

no new trials that could provide insight for the screening ofwomen over the age of 70,

and thus the report does not revise the guidelines for women in this age group.

In the debate over the National Reading Panel’s meta-analysis on systematic

phonics, Garan (2001) questioned the use of measures of different reading outcomes

as equivalent in the meta-analysis. The Ehri et al. meta-analysis used the construct of

general literacy to include decoding regular words, decoding pseudowords, spelling

words and reading text orally to name a few. To Garan, these measures are not

sufficiently similar to each other to constitute a single construct. In the Ehri et al.

review, the effect sizes for the different measures are reported separately though they

are treated as measuring the effectiveness of programs on systematic phonics.

9.2.2 Ruling Out Irrelevancies

Related to surface similarity is the principle of ruling out irrelevancies. In order to

generalize a finding to a set of UTOS that were not represented in the meta-analysis,

we need to understand whether a given situation is similar to the ones represented in

the meta-analysis, and what differences between our given situation and those in the

meta-analysis are irrelevant to the findings. In the breast cancer screening review,

one issue deemed irrelevant to mortality of breast screening is whether the mam-

mography used film or digital technology. The research question guiding the review

includes both of these mammography procedures, but does not provide a compari-

son of their effectiveness on mortality outcomes in the review. Thus, the reviewers

conducted the review on the assumption that film and digital mammography lead to

the same mortality rates. However, some researchers do raise issues about whether

the method of screening is really irrelevant. For example, Berg (2010) presents

evidence that magnetic resonance imaging (MRI) for women at high risk improves

detection by 40% over mammography and ultrasound combined. The report

does not compare outcomes using MRI versus film or digital technology. Murphy

(2010) also suggests that to avoid higher rates of false positives, younger women

should consider having their screening at facilities with radiologists that focus

on breast imaging and that use digital technology. Here Murphy questions whether

film versus digital technology is actually an irrelevant factor. It may not be possible
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to test empirically whether outcomes are different between film and digital

mammography with the current evidence, so this may be an area that needs more

research.

Camilli et al. (2006), in their review of the findings of the National Reading

Panel on systematic phonics, note that the meta-analysis compares treatments that

received various levels of systematic phonics with a no-treatment control. Camilli

et al. argues that while the report’s findings (as indicated in the title the Ehri et al.

2001) states that systematic phonics increases student reading achievement, the

meta-analysis itself did not and could not examine the differences among the

different types of systematic phonics programs represented in the sample of studies.

Thus, we are not able to determine from this meta-analysis whether the difference

among systematic phonics programs in the amount of phonics instruction is an

irrelevant factor.

9.2.3 Making Discriminations

As Shadish et al. (2002) describe, we make discriminations in a meta-analysis about

the conditions where the cause and effect relationship does not hold, or, in other

words, for those persons, treatments, measures and settings where the findings are

found not to apply. This principle is different from surface similarities in that it

refers to the examination of moderators of a given cause and effect relationship.

For example, Littell et al. (2005) has found that the reported effectiveness of

multisystemic therapy for at-risk children varies as a function of the involvement

of the researcher in the development of the intervention. Studies that were

conducted by researchers other than the original developers have smaller effect

sizes. We can think of this finding as discriminating about the conditions where the

treatment is most effective. The breast cancer screening study is limited in its ability

to make discriminations partly due to the lack of information about the backgrounds

of the women involved in the studies, and partly due to the small number of trials

(seven). Moderator analyses examining how the results might vary systematically

among persons, treatments, measures and settings are not possible since there are

only seven trials that meet the inclusion criterion. We do not have enough statistical

power to make discriminations about the relative effectiveness of screening across

different UTOS.

One finding from the Ehri et al. (2001) meta-analysis that was not subject to

debate was that systematic phonics instruction did not appear as effective for older

elementary school children as for those in kindergarten and first grade. This finding

was based on a number of studies that included older children. In fact, Ehri et al.

used simple moderator analyses to examine both grade and reading ability, finding

that kindergartners and first graders at risk had the largest benefit from systematic

phonics instruction. Children in 2nd through 6th grade had little benefit.
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9.2.4 Interpolation and Extrapolation

Another interrelated principle is interpolation and extrapolation. In examining a

causal claim from a meta-analysis, we need to specify the range of characteristics of

UTOSwhere the cause and effect relationship applies. In a single, primary study, we

are careful not to extrapolate to contexts outside of the ones represented in the study

itself – a single study cannot provide much evidence about whether the findings hold

outside of the UTOS used in the study. In somemeta-analyses, we could have a wide

range of persons, treatments, measures and settings represented across studies, and

we can systematically examine whether the cause and effect relationship applies

across the studies. One method for interpolating and extrapolating studies is to use

modeling strategies with effect sizes, using meta-regression, for example, to see

what combinations of characteristics of studies may find larger or smaller effect

sizes. As described above, the breast cancer screening review does not include

enough studies to model the range of possible study characteristics where the results

do or do not apply. The breast cancer screening review does not make

recommendations on the effects of screening on women older than 70 – the sample

of studies simply does not provide evidence about this group, and the authors of the

review do not extrapolate the results. One classic example of the use of modeling

in this way is illustrated in Raudenbush and Bryk (1985). Using a random effects

meta-regression model, Raudenbush shows that the effect size in the teacher expec-

tancy studies drops off considerably when the induction of expectancy is performed

after the teachers have known their students for 3 weeks or more.

One issue of extrapolation and interpolation raised in the systematic phonics

meta-analysis relates to the nature of the phonics programs. As Camilli et al. (2006)

explains, the reading treatment described in the literature can rarely be classified as

including systematic phonics instruction versus less systematic phonics instruction

as might occur in a classroom where phonics is only taught when needed. Under-

lying this criticism of the phonics meta-analysis is the question of whether the

phonics treatment as described in these studies is implemented in a similar way in

classrooms. Pearson (2004) raises this question in a history of the whole language

movement prior to the National Reading Panel report; teachers were less involved

and invested in the critiques around the National Reading Panel and No Child Left

Behind than academics. The realities of systematic instruction of phonics in a

classroom may not resemble the studies in the meta-analysis, and may also be

difficult to classify.

9.2.5 Causal Explanation

The fifth principle is causal explanation. Though a meta-analysis may not include

information about how an intervention works, Shadish et al. (2002) argue that with

good theory, meta-analyses can contribute to our understanding about causes.
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Causal explanation can be facilitated in a meta-analysis by breaking down the

intervention reviewed into its component parts, and positing a theory about both

the critical ingredients of an intervention and how those ingredients relate to one

another. A meta-analysis can then focus on the parts of this theory of action, using

effect size modeling to examine what components of the intervention are most

strongly associated with the magnitude of the effect size. In addition, a logic model

or theory of action can provide a map of what evidence exists in the literature about

particular aspects of a mediating process, and where more studies are needed to

provide insight into aspects of the model. In the breast cancer screening study, there

are not enough studies to map out an elaborated logic model. However, there are

areas in the social sciences that may have the potential of supporting this type of

analysis.

Pressley et al. (2004) raise the issue of theory of action or model of reading that

is implied by the National Reading Panel work. For Pressley et al., the Reading

Panel focused on a set of skills that are related to reading but may be much more

narrow than intended. Pressley et al. argue that the theory of reading underlying the

National Panel work suggests that “beginning reading only requires instruction in

phonemic awareness, phonics, fluency, vocabulary, and comprehension strategies”

(p. 41). The criticism of the report may have been tied to this difference in theory of

how reading develops in children. The report may not have emphasized enough that

the meta-analyses examined component parts of an effective reading program, and

were not intended to define a comprehensive reading curriculum.

9.3 Suggestions for Generalizing from a Meta-analysis

Both the breast cancer screening study and the meta-analysis on systematic phonics

instruction captured much attention due to the characterization of their findings by

various groups. In the breast cancer screening case, the findings appeared to

contradict current practice (yearly mammography) particularly in women aged

39–50. The meta-analysis on systematic phonics stirred controversy since its

findings were influential on subsequent education policy. The question is what

can reviewers do to decrease potential for misinterpreting meta-analysis findings

and misapplying them to policy and practice? One suggestion is based on the

Cochrane Handbook’s (Higgins and Green 2011) risk of bias tables. With the

assistance of experts in the field of study, reviewers might attempt a summary of

what aspects of UTOS in a given field appear to have enough evidence to make a

recommendation, and where we have equivocal or no evidence. Table 9.1 below is

an attempt at a table for the Ehri et al. (2001) work.

Table 9.1 is not complete, but may serve as a way to summarize where we do

have evidence to take an action. For each element of UTOS, I indicate the level of

evidence for particular generalizations from Ehri et al. Both Pearson (2004) and

Pressley et al. (2004) mention the role of policymakers in using the results of the

National Panel report in ways that went beyond the data gathered. We do need ways
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to communicate complex findings to those who may use our reviews. Those who

are interested in this book are by nature interested in meta-analysis and

summarizing the evidence in an area, and thus we also must be as careful in how

we describe what actually can be done with our results.
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Chapter 10

Recommendations for Producing

a High Quality Meta-analysis

Abstract This chapter provides a set of recommendations based on prior chapters

in the book for improving the quality of meta-analyses.

10.1 Background

The prior chapters of the book illustrate methods for advanced meta-analysis, with

the goal of increasing the quality of both the meta-analytic techniques used and the

inferences drawn from these reviews. As a summary, this chapter provides

recommendations for increasing the quality of the meta-analyses that are produced

to inform evidence-based decisions. Systematic reviews that include ameta-analysis

represent one consideration used by policymakers to make decisions; as

Gibbs (2003) states, preferences of the clients, values of the organization, and the

resources available all enter into policy debates for good reason. What I hope is that

when a systematic review andmeta-analysis can bring evidence to bear on a problem

that the review itself fairly represents the literature available, and the data itself.

Below I provide recommendations for raising the quality of the meta-analysis part of

a systematic review.

10.2 Understanding the Research Problem

A systematic review and meta-analysis requires a deep substantive understanding

of the focus area of the review. Completing a research synthesis and meta-analysis

requires patience, and many small decisions about how to handle particular studies

and data within those studies. Though not every problem can be anticipated prior to

conducting a systematic review and meta-analysis, a substantive understanding of

the area of research can serve as a guide for making important decisions about the

meta-analysis. For example, Chaps. 4, 5, and 6 provide examples of how to
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compute the power of the statistical tests in a meta-analysis. A researcher cannot

compute power without knowledge of what constitutes a substantively important

effect, the typical sample sizes of studies in the area, and the likely number of

studies that may exist for synthesis. Another reason for having substantive knowl-

edge of an area appears in Chap. 3. Reviewers need to make decisions about the use

of random versus fixed effects models based on the nature of the focus intervention,

and/or the characteristics of the studies. Interventions that include multiple

components, are difficult to implement with fidelity, or that are widely used may

include variability that is likely due to unknown between-study differences and thus

is more realistically modeled with random effects.

Another advantage of substantive expertise is the opportunity to include indi-

vidual participant data. As discussed in Chap. 8, IPD meta-analysis allows analyses

of associations within studies, and can add more specific understanding of how

interventions, for example, are related to participant characteristics rather than

average features of a study sample. A substantive expert may know which publicly

available data sets have been used in the area, and may also have informal contacts

for obtaining individual-level data from a primary author.

Having deep knowledge of the research problem will also increase the likelihood

that the results of the meta-analysis are discussed in ways that contribute to policy

and practice. If the reviewer knows the major controversies in the literature either

about differential effectiveness of an intervention or about how constructs relate to

each other, then the reviewer can direct attention in the research synthesis and meta-

analysis toward those issues. If the literature base does not support analyses directed

at these issues, then the reviewer is contributing just by pointing out a major gap in

the knowledge base. One problem that might not be alleviated by substantive

expertise is over-generalizing from meta-analytic results. As Chap. 9 discusses,

researchers cannot make causal inferences from meta-analyses in the same way as

they can from well-controlled randomized experiments. The process for making

inferences from a meta-analysis about possible causal relationships has to be based

on ruling out possible reasons for the association found between study character-

istics and study results. However, substantive experts may have more background

for examining alternative explanations for associations found in a meta-analysis

than those new to a field.

10.3 Having an a Priori Plan for the Meta-analysis

With substantive expertise, the reviewers can also develop an a priori plan for the

meta-analysis. Creating a logic model or a map of how constructs relate to one

another identifies the potential moderators for the analysis. Having a plan can also

help avoid the problem of Type I errors when reviewers conduct a series of statistical

tests. Reviewers should have an a priori idea of what analyses will be critical, and

how to minimize the number of statistical tests included. With an a priori plan, a

reviewer can also conduct power analyses of the most substantively important tests
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to see howmany studies would be needed to detect a given effect. Once the literature

search and coding are complete, then the reviewer will have a clearer idea of what

tests are possible, and what tests will also provide adequate power.

An a priori plan identifying potential moderators will also help reviewers handle

missing data when it occurs. If particular moderators are likely to be missing, then

reviewers can make sure that other data is coded from a study that could serve as

proxies for those moderators, or could be used in a multiple imputation to help

model the complete data distribution as illustrated in Chap. 7.

10.4 Carefully and Thoroughly Interpret the Results

of Meta-analysis

An understanding of the research problem and an a priori analysis plan should lead

a reviewer to a more thorough interpretation of meta-analytic results. Substantive

expertise can highlight the important controversies in the literature that can then

serve as a basis for an analysis plan. The plan can also alert reviewers to areas where

power to test a given question might be inadequate. Identifying the critical issues,

and carrying out analyses to address those issues then allows the reviewer to

examine carefully the nature of the evidence that can apply to a given problem.

In the interpretation of results, reviewers with substantive knowledge should

also focus on ways to transform effect sizes to metrics that readers can understand.

Often standardized mean differences can be translated to a metric familiar to

readers such as points on a common standardized test like the SAT. Odds ratios

can also be discussed in ways that emphasize the different risks between two

groups. Not knowing how to interpret effect sizes in substantively useful ways

limits readers’ understanding and subsequent application of the review’s results.

The identified research issues and a priori plan may help researchers being

overwhelmed by the amount of data collected in the meta-analysis, and also

allow reviewers to be guided by theory rather than the data. An example of this

problem is meta-analyses that include a series of one-way ANOVA models.

The fact that study results vary on the basis of a single variable at a time does not

lead to a coherent conclusion. I find myself wanting to know about combinations of

these potential moderators, i.e., whether instruction programs are more effective

with all low-income children regardless of age, or whether their effectiveness

depends on both income level and grade level. These analyses are possible with

meta-regression, and even if meta-regression is not feasible due to limited numbers

of studies, exploring how these moderators are related to one another would add to

our understanding of what programs work for what types of students.

If the reviewer makes an informed and careful interpretation of the results, then

we may also decrease the potential of misinterpretation of the meta-analysis.

Presenting tables of one-way ANOVA results increases the likelihood that a reader

will make a causal inference based on a single one-way ANOVA, and apply that

inference to a policy decision.

10.4 Carefully and Thoroughly Interpret the Results of Meta-analysis 145

http://dx.doi.org/10.1007/978-1-4614-2278-5_7


Thinking carefully about Shadish et al. (2002) principles of generalized causal

inference will also provide a check on the types of inferences made from a meta-

analysis. Even if the systematic review yields equivocal results, a well-conducted

systematic review should help to illuminate the issues. Using tables such as the one

at the end of Chap. 9 to summarize the limits of the inferences possible could lead to

better studies in the future, or at least acknowledgement that an evidence-based

decision may not be possible given the state of the literature.

More careful and more nuanced interpretation, while not necessarily palatable to

policy-makers, may, in fact, increase the usefulness of meta-analyses by providing

an accurate picture of how the effectiveness of interventions can vary. In this way,

reviewers may help policy-makers to avoid non-evidence-based decision-making,

a goal all systematic reviews share.
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Chapter 11

Data Appendix

11.1 Sirin (2005) Meta-analysis on the Association

Between Measures of Socioeconomic Status

and Academic Achievement

Sirin (2005) conducted a systematic review of studies reporting a correlation

between socioeconomic status (SES) and academic achievement. A number of

different measures have been used in the literature for both SES and achievement;

the goal of the meta-analysis was to examine whether variation in the strength of the

association between SES and achievement varies depending on the types of

measures used, and characteristics of the studies and their samples. The data used

to construct Table 3.1 through 3.6 are given in Table 11.1 below.

The data below are the cases from Sirin (2005) used in the meta-regression in

Chap. 3 (Table 11.2).
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Table 11.1 Selected cases from Sirin (2005)

Case N r Achievement measure SES measure

1 453 0.391 GPA Free lunch

2 39 0.719 State Test Free lunch

3 106 0.072 State Test Free lunch

4 85 0.467 State Test Free lunch

5 119 0.65 State Test Free lunch

6 1,573 0.124 Standardized Test Free lunch

7 1,686 0.175 Standardized Test Free lunch

8 332 0.54 Standardized Test Free lunch

9 133 0.06 Standardized Test Free lunch

10 133 0.43 Standardized Test Free lunch

11 335 0.166 Standardized Test Free lunch

12 74 0.43 Achievement Test Income

13 21,263 0.247 State Test Income

14 13,279 0.142 State Test Income

15 415 0.15 Standardized Test Income

16 120 0.13 GPA Education

17 302 0.095 GPA Education

18 696 0.18 GPA Education

19 113 0.005 GPA Education

20 3,533 0.34 GPA Education

21 372 0.06 GPA Education

22 1,368 0.215 GPA Education

23 446 0.035 GPA Education

24 150 0.36 GPA Education

25 213 0.307 Achievement Test Education

26 1,328 0.33 Achievement Test Education

27 1,028 0.16 Achievement Test Education

28 29 0.334 Achievement Test Education

29 317 0.403 Standardized Test Education

30 335 0.202 Standardized Test Education

31 563 0.18 Standardized Test Education

32 286 0.23 Standardized Test Education

33 392 0.44 Standardized Test Education

Table 11.2 Data for the meta-regression in Table 3.7

Case Grade

Percent

minority

Free

lunch

Education

level r N

1 Primary 0 0 1 1,328 0.33

2 Primary 21 1 0 1,573 0.124

3 Primary 48 0 1 29 0.334

4 Primary 60 1 0 453 0.391

5 Primary 83 0 1 317 0.403

6 Primary 100 0 1 1,028 0.16

7 Elementary 17 0 0 168 0.34

(continued)
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11.2 Hackshaw et al. (1997) Meta-analysis on Exposure

to Passive Smoking and Lung Cancer

We use data from Hackshaw et al. (1997) study of the relationship between passive

smoking and lung cancer in women to illustrate computations using odds-ratios.

The 37 studies included in the meta-analysis compare the number of cases of lung

cancer diagnosed in a group of individuals whose spouses smoke with the number

of cases of lung cancer diagnosed in individuals whose spouses were non-smokers.

Table 11.3 presents the data used in the odds-ratio examples.

Table 11.2 (continued)

Case Grade

Percent

minority

Free

lunch

Education

level r N

8 Elementary 19 1 0 332 0.54

9 Elementary 23 0 1 150 0.36

10 Elementary 36 0 0 143 0.3

11 Elementary 38 0 0 868 0.4

12 Elementary 38 1 0 119 0.65

13 Elementary 55 0 1 392 0.44

14 Elementary 96 0 1 113 0.005

15 Elementary 100 0 1 563 0.18

16 Elementary 100 1 0 133 0.06

17 Elementary 100 1 0 133 0.43

18 Middle 0 0 0 74 0.43

19 Middle 2 0 1 302 0.095

20 Middle 6 1 0 335 0.166

21 Middle 19 0 0 357 0.08

22 Middle 33 1 0 1,686 0.175

23 Middle 49 0 0 398 0.132

24 Middle 75 1 0 85 0.467

25 Middle 100 0 1 120 0.13

26 Middle 100 0 1 286 0.23

27 High school 0 0 0 21,263 0.247

28 High school 0 0 1 3,533 0.34

29 High school 0 0 1 1,368 0.215

30 High school 28 0 1 335 0.202

31 High school 60 0 0 415 0.15

32 High school 76 0 1 696 0.18

33 High school 85 0 0 96 0.01

34 High school 100 0 0 13,279 0.142

35 High school 100 0 1 372 0.06

36 High school 100 0 1 446 0.035

37 Post-secondary 27 1 0 2,307 0.75

38 Post-secondary 31 0 1 1,200 0.315

39 Post-secondary 44 1 0 1,301 0.68

40 Post-secondary 50 0 0 116 0.621
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The table provides the total sample sizes for the group of non-smoking women

whose spouses smoked, the group of non-smoking women whose spouses did

not smoke, the odds-ratio, and the 95% confidence interval for the odds-ratio.

The odds-ratio is the ratio of the odds of being diagnosed with lung cancer given

exposure to secondhand smoking to the odds of being diagnosed with lung cancer

given no exposure to secondhand smoke. In all but six of the studies, the odds of

non-smoking women being diagnosed with lung cancer were higher when they had

a spouse who smoked versus non-smoking women whose spouse did not smoke

(Table 11.3).

Table 11.3 Passive smoking and lung cancer studies

Study Exposed Not exposed Log odds-ratio Variance

Liu et al. 84 139 �0.301 0.18

Chan et al. 22 133 �0.288 0.08

Kabat et al. 62 190 �0.236 0.339

Wu-Williams et al. 41 196 �0.236 0.016

Buffler et al. 24 25 �0.223 0.193

Brownson et al. 60 144 �0.03 0.013

Lee et al. 134 402 0.03 0.217

Pershagen et al. 29 62 0.03 0.072

Sobue 94 270 0.058 0.034

Shimizu et al. 32 66 0.077 0.071

Kabat et al. 86 136 0.095 0.086

Wang et al. 70 294 0.104 0.066

Sun et al. 20 162 0.148 0.036

Du et al. 199 335 0.174 0.089

Gao et al. 246 375 0.174 0.036

Wu et al. 19 47 0.182 0.231

Garfinkel et al. 54 93 0.207 0.046

Fontham et al. 90 163 0.231 0.01

Akiba et al. 22 47 0.419 0.08

Brownson et al. 90 116 0.419 0.484

Koo et al. 144 731 0.438 0.077

Stockwell et al. 417 602 0.47 0.114

Kalandidi et al. 54 202 0.482 0.09

Lam et al. 23 45 0.501 0.032

Liu et al. 431 1,166 0.507 0.176

Zaridze et al. 210 301 0.507 0.04

Lam 75 128 0.698 0.098

Correa et al. 38 69 0.728 0.227

Trichopolous et al. 651 1,253 0.756 0.089

Geng et al. 67 173 0.77 0.124

Jockel 162 285 0.82 0.317

Humble et al. 230 230 0.85 0.293

Inoue et al. 135 135 0.936 0.398
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11.3 Eagly et al. (2003) Meta-analysis on Gender Differences

in Transformational Leadership

The data in Table 11.4 is adapted from a meta-analysis by Eagly et al. (2003)

focusing on gender differences in transformational, transactional and laissez-faire

leadership styles. Eagly et al. found that female leaders were more transformational

than male leaders, while men tended to use more transactional and laissez-faire

types than women. In the examples in the rest of the text using this data, we focus on

gender differences in transformational leadership, using characteristics of studies as

potential moderators of this gender difference: (a) publication year, (b) average age

of the participants, (c) percentage of males in leadership roles in the organization

studied, (d) whether the first author is female (1¼ female, 0¼male), (e) size of the

organization (0 ¼ small, 1 ¼ mixed, 2 ¼ large), (f) whether random selection was

used (0 ¼ random, 1 ¼ unsuccessful random, 2 ¼ nonrandom).

Table 11.4 Selected cases from Eagly et al. (2003)

Case

Male

N

Female

N

Effect

size Variance

Pub

year Age

% male

leaders

Female

1st author

Size

of org

Random

selection

AMA1 963 149 �0.16 0.007761 2001 85 1.00 1.00 1.00

AMA2 613 421 �0.14 0.004016 2001 58 1.00 1.00 2.00

Ay 58 51 �0.19 0.037015 2000 1.00 1.00 1.00

B1 15 8 �0.37 0.194643 1985 65 0.00 2.00 2.00

B2 29 16 �0.24 0.097623 1985 64 0.00 1.00 2.00

B21 574 303 �0.26 0.005081 1996 66 0.00 2.00 2.00

B22 164 107 �0.23 0.015541 1996 60 0.00 1.00 0.00

B23 420 493 �0.09 0.004414 1996 43 46 0.00 1.00 2.00

BJ 112 77 �0.10 0.021942 2000 39 1.00 1.00 1.00

BO 30 31 �0.62 0.068742 1994 50 49 1.00 2.00 1.00

CA 368 240 �0.17 0.006908 1998 38 61 1.00 2.00 1.00

CH 209 111 �0.22 0.013869 1996 45 65 0.00 1.00 1.00

CLS 6,098 2,856 �0.11 0.000515 2000 0.00 1.00 2.00

CU 65 53 �0.17 0.034375 2002 38 1.00 1.00 2.00

CW 456 50 0.61 0.022561 1998 49 90 0.00 2.00 2.00

CW 1,236 132 0.20 0.008399 1999 44 90 0.00 2.00 0.00

DA 27 24 �0.15 0.078924 1996 50 1.00 2.00 2.00

DF 130 72 �0.25 0.021736 1997 49 64 1.00 2.00 2.00

ER 821 699 �0.06 0.002650 1998 1.00 1.00 1.00

EV 16 109 �0.43 0.072414 1997 28 0.00 2.00 0.00

FL 116 77 �0.47 0.022180 1997 90 1.00 1.00 1.00

GM 92 19 �0.10 0.063546 2000 46 83 1.00 2.00 2.00

GO 128 26 �0.25 0.046477 1999 83 1.00 2.00 1.00

HI 29 11 �0.36 0.127012 2000 49 73 1.00 2.00 1.00

JB 134 160 �0.13 0.013741 2000 39 46 0.00 1.00 1.00

JL 288 135 �0.29 0.010979 1996 49 68 1.00 2.00 1.00

JO 6 5 �0.04 0.366739 1992 55 1.00 0.00 0.00

(continued)
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Table 11.4 (continued)

Case

Male

N

Female

N

Effect

size Variance

Pub

year Age

% male

leaders

Female

1st author

Size

of org

Random

selection

KO 296 383 0.31 0.006060 1991 28 42 1.00 2.00 0.00

KP 4,571 1,267 0.04 0.001008 1995 78 0.00 1.00 2.00

KUG 34 7 �0.31 0.173441 1999 35 77 0.00 2.00 1.00

KUU 73 31 0.09 0.045996 1999 55 70 0.00 2.00 1.00

LAN 7 9 �0.26 0.256081 1996 1.00 1.00 2.00

LAV 39 22 �0.33 0.071988 1998 64 1.00 2.00 1.00

LJ 965 288 �0.35 0.004557 1997 59 77 0.00 2.00 1.00

MA 44 59 �0.08 0.039707 2000 43 43 1.00 0.00 1.00

MCG 42 32 �0.72 0.058562 1997 48 57 0.00 2.00 1.00

PO 192 26 �0.27 0.043837 1998 88 1.00 1.00 1.00
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WI 29 55 �0.87 0.057170 1999 50 35 0.00 2.00 0.00
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