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Series Introduction

The correlation between the toxicity of molecules and their physicochemical 

properties can be traced to the 19th century. Indeed, in a French thesis entitled 

Action de l’alcool amylique sur l’organisme (Action of amyl alcohol on the body), 

which was presented in 1863, by A. Cros before the Faculty of Medicine at the 

University of Strasbourg, an empirical relationship was made between the toxicity 

of alcohols and their number of carbon atoms as well as their solubility. In 1875, 

Dujardin-Beaumetz and Audigé were the first to stress the mathematical charac-

ter of the relationship between the toxicity of alcohols and their chain length and 

molecular weight. In 1899, Hans Horst Meyer and Fritz Baum, at the University of 

Marburg, showed that narcosis or hypnotic activity was in fact linked to the affin-

ity of substances to water and lipid sites within the organism. At the same time at 

the University of Zurich, Ernest Overton came to the same conclusion, providing 

the foundation of the lipoid theory of narcosis. The next important step was made 

in the 1930s, by Lazarev in St. Petersburg who first demonstrated that different 

physiological and toxicological effects of molecules were correlated with their oil–

water partition coefficient through formal mathematical equations in the form: 

log C = a log Poil/water + b. Thus, the Quantitative Structure-Activity Relationship 

(QSAR) discipline was born. Its foundations were definitively fixed in the early 

1960s, by the seminal works contributed by C. Hansch and T. Fujita. Since that 

period, the discipline has gained tremendous interest, and now the QSAR models 

represent key tools in the development of drugs as well as in the hazard assess-

ment of chemicals. The new REACH (Registration, Evaluation, Authorization, and 

Restriction of Chemicals) legislation on substances, which recommends the use of 

QSARs and other alternative approaches instead of laboratory tests on vertebrates, 

clearly reveals that this discipline is now well established and is an accepted prac-

tice in regulatory systems.

In 1993, the journal SAR and QSAR in Environmental Research was launched 

by Gordon and Breach to focus on all of the important works published in the field 

and to provide an international forum for the rapid publication of SAR (Structure-

Activity Relationship) and QSAR models in (eco)toxicology, agrochemistry, and 

pharmacology. Today, the journal, which is now owned by Taylor & Francis and 

publishes twice more issues per year, continues to promote research in the QSAR 

field by favoring the publication of new molecular descriptors, statistical techniques, 

and original SAR and QSAR models. This field continues to grow rapidly, and many 

subject areas that require larger development are unsuitable for publication in a jour-

nal due to space limitations.

This prompted us to develop a series of books entitled QSAR in Environmental 
and Health Sciences to act in synergy with the journal. I am extremely grateful to 

Colin Bulpitt and Fiona Macdonald for their enthusiasm and invaluable help in mak-

ing the project become a reality.
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This book is the first of the series. Since it is also the first dedicated to endo-

crine disruption modeling, it clearly illustrates the aim of the series, which is to 

bring together the opinions of different experts to discuss important new topics 

in QSAR.

At the time of going to press, two books are in the pipeline. One deals with three-

dimensional (3D) QSAR methods, and the other focuses on the topological descrip-

tion of molecules. I gratefully acknowledge Hilary Rowe for her willingness to assist 

me in the development of this series.

James Devillers
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1

1 In Silico Methods for 
Modeling Endocrine 
Disruption

James Devillers

ABSTRACT

A number of xenobiotics released into the environment have the potential 

to disturb the normal functioning of the endocrine system. These chemicals 

termed “endocrine disrupting chemicals” act by mimicking or antagonizing 

the normal functions of natural hormones and may pose serious threats to the 

reproductive capability and development of living species. Batteries of labora-

tory tests exist for detecting these chemicals. However, due to time and cost 

limitations, they cannot be used for all chemicals that can be found in ecosys-

tems. In silico approaches are particularly suited to overcome these problems. 

The principles and interest of these computational tools are briefly presented.

KEYWORDS

Computational methods

Endocrine disruptors

Environmental contamination

Xenobiotics

1.1 ENDOCRINE FUNCTION DISORDERS 
IN WILDLIFE AND HUMANS

In a huge number of species, including human, endocrine signaling is involved in 

pivotal physiological functions such as reproduction, embryo development, and 

growth [1–3]. Hormones trigger such complex functions by interacting with their 
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receptors, which are present at a nuclear as well as cellular level, in various organs 

and tissues as part of a complex feedback system [4]. Any disruption of this balance 

can yield injury in the physiological status of the whole organism, especially during 

the early stages of development. If the regulatory role of the endocrine system is dis-

rupted, adverse effects on the functioning of the reproductive, nervous, and immune 

systems may occur [4].

Endocrine disruption became an issue when associations were made between 

chemical contaminations of the environment and the onset of diseases, reproductive 

failure, and death of wildlife species [5]. Thus, for example, until the late 1950s, 

sparrowhawks (Accipiter nisus L) were common and widespread in Britain but they 

suddenly showed a marked decline in numbers, almost disappearing from some dis-

tricts. Their population crash followed the widespread introduction of organochlo-

rine pesticides, namely, aldrin, dieldrin, and dichlorodiphenyltrichloroethane (DDT) 

[6]. Such declines in bird populations occurred not only in Britain, but extended 

over much of Europe, North America, and Australia wherever highly hydrophobic 

organochlorine pesticides were commonly used [6–8].

Another well-known example of endocrine disruption in wildlife, also discovered 

accidentally, deals with the effect of tributyltin (TBT) on the mollusks. Although 

neogastropod mollusks are gonochoristic (that is, sexes are separate), in 1970, Blaber 

[9] observed that many female dogwhelk (Nucella lapillus) had a penis-like structure 

behind the right tentacle. Shortly thereafter, Smith [10] reported similar reproductive 

abnormalities in the American mud snail (Ilyanassa obsoleta; formerly Nassarius 
obsoletus) on the Connecticut coast and coined the term “imposex” to describe this 

superimposition of male characters onto females [11]. At this stage, no link had been 

made with pollution, but 10 years later, Smith [12,13] showed that levels of imposex 

in I. obsoleta were elevated close to marinas where the mollusks were exposed to 

antifouling paints including TBT.

The detection of reproductive abnormalities and failures in American alligators 

(Alligator mississippiensis) from contaminated lakes in Florida at the end of the 

1980s was also unexpected, the populations in Florida being protected and con-

trolled since these reptiles were listed as endangered species in the early 1970s [14]. 

Whereas many alligator populations were healthy, in one location, Lake Apopka, a 

dramatic decline was observed. Lake Apopka, one of Florida’s largest lakes, became 

polluted with dicofol and DDT metabolites from several sources. A combination 

of agricultural runoff due to historically intensive activity around the lake and a 

1980 pesticide spill from the former Tower Chemical Company resulted in sev-

eral adverse health outcomes for the lake’s wildlife, mainly in the population of A.
mississippiensis. Thus, for example, the female alligators exhibited abnormal ovar-

ian morphology, and the males presented poorly organized testes and abnormally 

small phalli. About 80% to 95% of the alligator eggs at Lake Apopka failed to hatch. 

These adverse effects and others in relation to the endocrine system were linked to 

the chemical contaminations [14–17].

The ability of environmental contaminants to influence reproduction and develop-

ment of invertebrates and vertebrates in the aquatic and terrestrial ecosystems is now 

well documented (see, for example, [18–22] and references therein). Unfortunately, 

adverse effects of xenobiotics on the reproductive system of humans have also been 
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clearly demonstrated [4,23–28]. The historical example of diethylstilbestrol (DES) 

clearly illustrates the situation. DES, a synthetic form of estrogen, was commonly 

given to pregnant women in the United States, Europe, and Australia to prevent spon-

taneous abortions from 1948 until 1971, when its use for this purpose was banned 

[18]. Daughters born to women who took DES in the first months of their pregnancy 

may have structural abnormalities in their vagina, cervix, or uterus. They may also 

have difficulties in pregnancy, such as infertility, miscarriage, ectopic pregnancy, and 

premature births. As young adults, these women also may suffer from vaginal clear-

cell adenocarcinomas [29,30]. Maternal ingestion of DES during early pregnancy 

also may result in an increased incidence of malformations of testes, the develop-

ment of epididymal cysts, and impaired sperm quality in male offspring [30,31].

A variety of pesticides can lead to significant adverse health effects for both farm 

workers and consumers. Thus, for example, chlordecone (also termed kepone) is 

an organochlorine insecticide that was massively used for controlling banana crop 

pests in the French Caribbean islands. Suspected to be a carcinogen, it was banned 

in 1993, although there are indications of illegal uses after this date. Consequently, 

the environment is highly contaminated by this persistent pollutant known to have 

impact on human health [32]. Indeed, neurological illness involving tremor and ner-

vousness but also abnormalities of the livers and testes were first described in the 

1970s, after an excessive and uncontrolled occupational exposure to chlordecone in 

a small chemical plant in Virginia as well as the exposure of the population in the 

vicinity of the plant [33]. Chlordecone, which is also known to interfere with repro-

duction and to be fetotoxic to experimental animals [34,35], is suspected to be at the 

origin of the increased rates of prostate cancer, congenital malformations, and infer-

tility in the French Caribbean islands of Martinique and Guadeloupe [35,36]. In the 

same way, it has been shown that simultaneous maternal consumption of soy, includ-

ing the phytoestrogen genistein, and the fungicide vinclozolin, such as can occur in 

a nonorganic vegetarian diet, might result in an increase in hypospadias frequency 

[37], and precocious puberty as well as altered breast development were noted in 

young girls living in agricultural environments highly contaminated by pesticides 

[38]. All these xenobiotics, which directly or indirectly interact on the functioning 

of the endocrine system of the invertebrates and vertebrates, are termed “endocrine 

disrupting chemicals” (EDCs).

1.2 WHAT IS AN ENDOCRINE DISRUPTING CHEMICAL (EDC)?

An EDC is an exogenous substance or mixture that alters the functions of the endo-

crine system and consequently causes adverse health effects in an intact organism, 

its progeny, or its (sub)population [4]. EDCs are believed to exert their effects by 

(1) mimicking normal hormones such as estrogens and androgens; (2) antagoniz-

ing hormones; (3) altering the pattern of synthesis and metabolism of hormones; 

(4) modifying hormone receptor levels; or (5) interfering in other signaling systems, 

which are indirectly in relation with the endocrine system, such as the immune and 

nervous systems [8,39].

Although the EDCs are generally less potent than the hormones, such as estra-

diol, it is now admitted that they additively act with them [40], even if deviations to 
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this rule have been found [41]. In the same way, some EDCs can induce an inverted 

U-shaped dose-response relationship, resulting from low-dose response stimulation 

[42,43]. In other words, lower doses induce more profound effects than higher doses. 

This type of behavior challenges the elaboration of methods for the hazard and risk 

assessment of EDCs.

Numerous xenobiotics, provided from direct and indirect sources of contami-

nations (Figure 1.1) have the ability to interfere with the endocrine system. These 

EDCs present a high variety of structures and physicochemical properties. They 

include persistent organic pollutants (POPs) such as the p,p -DDT and its metabo-

lites, the dioxins, and the polychlorinated biphenyls (PCBs), agrochemicals, bio-

cides, and industrial organic chemicals such as bisphenol A and several phthalates. 

Unfortunately, chemicals included in cosmetics, toiletries, and foods can also be 

EDCs. Thus, for example, parabens (p-hydroxybenzoic acid esters), which are the 

most commonly used preservatives in cosmetics, toiletries, pharmaceuticals, and 

foods due to their rather low human toxicity and their effective antimicrobial activ-

ity, show an endocrine disrupting activity [44]. Some ultraviolet (UV)-absorbing 

chemicals that are widely employed in sunscreens and various cosmetic products for 

protection against UV radiation present an estrogenic activity [45]. Last, if a good 

dietary intake of phytoestrogens might be protective against some cancers, in high 

doses, especially in vegetarian diets, the adverse effects may outweigh their benefi-

cial ones [37,46,47].

Indoor Pollution

Indirect

Sources

Direct

Sources

Environmental

Pollution

Agricultural

Pollution

Occupational

Pollution

Food and

Drinking Water

Consumer and

Cosmetic

Products

FIGURE 1.1 Sources of human exposure to EDCs.
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During the last three decades, substantial efforts have been made to develop 

various in vivo and in vitro tests allowing the detection of the potential endocrine 

effects of chemicals [48–54]. The challenge with the EDCs is the need to evaluate 

thousands of chemical structures for their potential impact on the different endo-

crine targets. Unfortunately, due to time and cost limitations, the task is unrealistic. 

Computational (eco)toxicology in its various forms offers a practical approach to 

meet this challenge but can also allow us to better understand the mechanisms of 

action of the EDCs as well as their environmental fate.

1.3 MODELING EDCs

A mathematical model is a simplified representation of a system. Generally, a model 

has an information input, an information processor, and an output of expected 

result(s). Its construction requires making some assumptions about the essential 

structure of the studied system and about the relationships existing between its con-

stitutive elements. This means that to make a model, certain compromises have to 

be made with reality. In other words, a model will never be able to fully reproduce 

a real-world system. There exist different categories of models that are classified 

according to the nature and/or functions of their output, the nature of their constitu-

tive equations, and so on [55,56]. Regarding the EDCs, it is obvious that the most 

interesting models are those able to predict the endocrine activity of chemicals in a 

quantitative or qualitative way and to explain the mechanisms of action of EDCs. 

The different models presented in this book belong to these categories. They are 

rooted on various methodologies and deal with different endpoints. Rather than cata-

log all the existing models on EDCs in this book, the main axes of research in the 

field are presented. Moreover, even though the first motivation of the book is the 

modeling of the adverse effects of EDCs on wildlife and humans, it is noteworthy 

that computational techniques are increasingly used to design new endocrine thera-

peutic agents such as selective estrogen receptor modulators (SERMs) and selective 

androgen receptor modulators (SARMs) (for example, [57–61]; see also Chapters 9 

and 11). In the same way, modeling approaches are also widely used in the search for 

chemicals acting on the endocrine system of insects for the development of insec-

ticides disrupting their development and metamorphosis (for example, [62–65]; see 

also Chapter 13, this volume).

Despite their differences, all these models share common characteristics. First, 

they are built for a specific endocrine target. This makes sense when the goal of 

the modeling process is to produce a new therapeutic agent or a new insecticide. 

Conversely, this is more annoying when the objective of the model is the detection of 

xenobiotics that could adversely affect the endocrine system because the targets are 

multiple. It is worthy to note that recently, attempts have been made to predict the 

endocrine disruption profile of chemicals from a unique model [66]. There is a need 

for such models or for collections of models allowing for the prediction of the mul-

tifaceted aspects of the endocrine disruption phenomenon. All these models present 

an applicability domain that depends on the diversity and quality of the information 

used for their design and that has to be respected for securing reliable simulation 

results. Last, the endocrine disruption models suffer from a lack of activity data 
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for facilitating and securing their validation, and for extending their domain of appli-

cation. This lack of experimental data represents the main hurdle in the development 

of models for different endpoints [39] (see Chapter 14, this volume).

Even if the case studies presented in the different chapters clearly show that there 

exist powerful models allowing for the prediction of the endocrine disruption poten-

tial of chemicals and for insights to be provided into some of their mechanisms of 

action, it is obvious that endocrine disruption modeling is still in its infancy; hence, 

there is a need to pursue modeling efforts in various directions to be able, in the 

future, to correctly detect and simulate this complex activity.
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ABSTRACT

The term “endocrine disrupting chemicals” (EDCs) is used to define a structur-

ally diverse class of synthetic and natural compounds that possess the ability 

to alter various components of the endocrine system and potentially induce 

adverse effects in exposed individuals and populations.

Research on these compounds has revealed that they act through a variety of 

receptor-mediated and nonreceptor-mediated mechanisms to modulate differ-

ent components of the endocrine system. Receptor-mediated mechanisms have 

received the most attention, and EDCs are typically identified as compounds that 

interact with receptors and thus act as agonists or antagonists of endogenous hor-

mones. Nevertheless, research has clearly shown that EDCs can act at multiple 

sites via multiple mechanisms of action. For example, growing evidence shows 

that they may modulate the activity or expression of steroidogenic enzymes or 

interact with hormone transport and metabolism. EDCs are generally described 

as substances with (anti)estrogenic or (anti)androgenic effect, but other targets 

have been evidenced such as the thyroid and immune system. In addition, EDCs 

alter a wide variety of behaviors, including sexual and other reproductive behav-

iors, social behaviors, and learning and other cognitive abilities.

Because of cross talk between different components of the endocrine systems, 

effects may occur unpredictably in endocrine target tissues other than the system 

predicted to be affected. Moreover, critical periods of reproductive and nervous 

system development during early life stages are especially sensitive to hormonal 

disruption. Although there is considerable information on the early molecular 

events involved in EDC response, there is very little knowledge concerning the 

relationship between those molecular events and adverse health effects. This 

knowledge gap is perhaps the most limiting factor in our ability to evaluate 

exposure–response relationships. For most associations reported between expo-

sure to EDCs and a variety of biological outcomes, the mechanisms of action 

are poorly understood. This makes it difficult to distinguish between direct and 

indirect effects and primary versus secondary effects of exposure to EDCs. It 

also indicates that considerable caution is necessary in extrapolating from in 
vitro data to in vivo effects, in predicting effects from limited in vivo data, and 

in extrapolating from experimental data to human or wildlife situations.

It is beyond the scope of this chapter to describe all the possible disruption 

events of the endocrine systems of vertebrates; instead the focus will be on 

little known or new modes of action through which EDCs might act.

KEYWORDS

Endocrine disrupting chemicals (EDCs)

Interactions

Mechanisms

Nuclear receptors

Steroidogenesis
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2.1 INTRODUCTION

It is now well established that a number of environmental contaminants (from agricul-

tural, industrial, and household origins) are able to disturb the normal physiology and 

endocrinology of organisms. These substances, termed “endocrine disrupting chem-

icals” (EDCs), have been defined as “an exogenous substance or mixture that alters 

function(s) of the endocrine system and consequently causes adverse health effects in an 

intact organism or its progeny or (sub)population” [1]. Concerns regarding exposure to 

these EDCs are due primarily to adverse effects observed in wildlife, but the increased 

incidence of certain endocrine-related human diseases is also generating concern.

Endocrine systems are found in most varieties of animal life and play an essential 

role in many and varied functions of an organism (for example, growth and develop-

ment, tissue function, and metabolism). Considerable homology exists in the endo-

crinology of vertebrates; hence, toxicants that alter endocrine function in one species 

are likely to produce adverse effects in another. However, there are significant dif-

ferences between some species in endocrine function that warrant consideration for 

further interspecies extrapolations. Although the hormones, hormone synthesis, and 

their receptors are highly conserved, the role of specific hormones in reproductive 

function and development can vary greatly. Classically, the endocrine system was 

considered as made up of glands that secrete hormones, and receptors that detect and 

react to the hormones. Hormones are released by glands and travel throughout the 

body, acting as chemical messengers. Recently, our concept of “endocrine” has been 

broadened by the discovery of other chemical regulators, such as chemicals secreted 

into the blood by neurons, and include growth factors, paracrine and autocrine regu-

lators, second messengers, and transcription factors [1].

Endocrine disruptors are commonly considered to be compounds that mimic or 

block the transcriptional activation elicited by naturally circulating hormones by 

binding to steroid hormone receptors.

EDCs encompass a variety of natural (phytoestrogens, toxins, natural hormones 

released by animals) or man-made substances including some pesticides (including 

vinclozolin, organochlorine insecticides such as endosulfan, DDT and its deriva-

tives), pharmaceuticals (including ethinylestradiol), plastic additives, and a number of 

industrial chemicals (including polychlorinated biphenyls, dioxins, and phthalates).

Chemicals can exert their effect through a number of different mechanisms. They 

may mimic the biological activity of a hormone by binding to a cellular receptor, 

leading to an unwarranted response by initiating the cell’s normal response to the 

naturally occurring hormone at the wrong time or to an excessive extent (agonist 

effect). They may bind to the receptor but not activate it, so the presence of the 

chemical on the receptor will prevent binding of the natural hormone (antagonist 

effect). They may bind to transport proteins in the blood, thus altering the amounts 

of natural hormones that are present in the circulation. They may interfere with the 

metabolic processes in the body, affecting the synthesis or breakdown rates of the 

natural hormones (Figure 2.1).

It is beyond the scope of this chapter to describe all the possible disruptions of the 

endocrine systems of vertebrates; instead, the focus will be on little known or new 

modes of action through which EDCs might act.
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Because of cross talk between different components of the endocrine systems, 

effects may occur unpredictably in endocrine target tissues other than the system pre-

dicted to be affected. Moreover, critical periods of reproductive and nervous system 

development during early life stages are especially sensitive to hormonal disruption. 

Although there is considerable information on the early molecular events involved 

in EDC response, there is very little knowledge concerning the relationship between 

those molecular events and adverse health effects. This knowledge gap is perhaps the 

most limiting factor in our ability to evaluate exposure–response relationships.

2.2 RECEPTOR-MEDIATED MECHANISMS

The first characterized mechanism of action for endocrine disruptors is to act directly 

as ligands to steroid hormone nuclear receptors (NRs), in particular, estrogen, andro-

gen, and thyroid hormone nuclear receptors. Nuclear receptors are a class of proteins 

found within the interior of cells that are responsible for sensing the presence of hor-

mones. In response, these receptors work in concert with other proteins to regulate 

the expression of specific genes. Nuclear receptors have the ability to directly bind to 

DNA and regulate the expression of adjacent genes; hence, these receptors are clas-

sified as transcription factors [2]. The regulation of gene expression happens when 

ligand binding to a nuclear receptor results in a conformation change, which in turn 

activates the receptor, resulting in up-regulation of gene expression. Nuclear recep-

tors may be classified according to either mechanisms [3–5] or homology [6,7].

Schematically, NRs may be classified into four classes according to their dimeriza-

tion and DNA-binding properties. Class I NRs include the known steroid receptors, 

which in absence of ligand are located in the cytosol. Hormone binding triggers 

dissociation of heat shock proteins (HSPs), homodimerization, and translocation to 

Biosynthesis of

hormones

Action

(target tissues)

Metabolism

Excretion

EDC Transport

Steroidogenesis:

     aromatase (CYP19)

Steroid hormone

receptors:

           ER, AR, TR, …

PXR (CYP3A)

AhR (CYP1A)

SHBG

FIGURE 2.1 Hormonal dynamics and endocrine disruption.
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the nucleus where it binds to a specific sequence of DNA half-sites organized as 

inverted repeats. The nuclear receptor DNA complex in turn recruits other proteins 

that are responsible for transcription of downstream DNA into mRNA, which is 

eventually translated into protein, which results in change in cell function. The class II 

NRs, in contrast, are retained in the nucleus regardless of the binding status. Class II 

receptors heterodimerize with retinoid X receptor (RXR) and characteristically bind 

to direct repeat. Exclusive of the steroid hormones, this group includes all other 

known ligand-dependent receptors. In the absence of ligand, type II NRs are often 

complexed with corepressor proteins. Ligand binding to the nuclear receptor causes 

dissociation of corepressor and recruitment of coactivator proteins. Additional pro-

teins including RNA polymerase are then recruited to the NR/DNA complex, which 

transcribe DNA into mRNA. Class III receptors bind primarily to direct repeats as 

homodimers. Class IV receptors typically bind to extended core sites as monomers. 

Most of the orphan receptors fall into class III and IV categories [4].

Sequence alignment and phylogenetic tree construction resulted in a classifica-

tion of the human NR family into six evolutionary groups of unequal size [3,7]. 

Group 1 contains thyroid (TRs), retinoic acids (RARs), vitamin D (VDR) and perox-

isome proliferator-activated receptors (PPARs), as well as orphan receptors such as 

RORs, Rev-erbs, CAR, PXR LXRs, and others. Group 2 includes retinoid X (RXRs), 

COUP-TF, and HNF-4 receptors. Group 3 includes the steroid receptors with estro-

gen (ERs), glucuronid (GRs), progesterone (PRs), and androgen (ARs) receptors, 

as well as estrogen-related receptors (ERRs). Group 4 contains the nerve growth 

factors-induced clone B group of orphan receptors (NGFI-B, NURR1, and NOR1). 

Group 5 is another small group that includes the steroidogenic factor 1 and the recep-

tors related to the Drosophila FTZ-F1. Group 6 contains only the GCNF1 receptor, 

which does not fit well into any other subfamilies. A correlation exists between the 

DNA-binding and dimerization abilities of each given NR and its phylogenetic posi-

tion, which is not the case for ligand-binding activity.

Nuclear receptors form a superfamilly of phylogenetically related proteins, with 

21 genes in the complete genome of Drosophila melanogaster, 48 in humans, 68 

in the teleost fish (Fugu rubripes), and more than 270 genes in the nematode worm 

Caenorhabditis elegans [8]. Comparison of these gene families has provided and 

continues to provide valuable information regarding the origin and function of spe-

cific NR family members. The C. elegans NR set displays a high degree of duplica-

tion and divergence relative to both Drosophila and human sets. Conversely, all 68 

Fugu receptors have a clear human homolog and are expressed, indicating that the 

majority of the additional Fugu receptors are likely to be functional [9].

Nuclear receptors share a common structural organization (Figure 2.2) including 

five domains [8,10]. The N-terminal region (A/B domain) is highly variable and con-

tains at least one constitutionally active transactivation region (AF-1) whose action 

is independent of the presence of the ligand, and several autonomous transactivation 

domains. A/B domains are variable in length, from less than 50 to more than 500 

amino acids. The most conserved region is DNA binding domain (DBD, C domain), 

which notably contains a short motif involved in dimerization of nuclear receptor 

and two zinc-fingers, which bind to specific sequences of DNA called hormone 

response element (HRE). A less conserved flexible hinge region (D domain) contains 
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the nuclear localization signal (NLS) influencing intracellular trafficking and sub-

cellular distribution. Its flexibility can provide DBD rotation along LBD by 180° that 

is important for the interaction of receptor dimmers with asymmetric HREs. The 

ligand-binding domain (LBD, E domain) is moderately conserved in sequence and 

highly conserved in structure between the various nuclear receptors. The E domain 

is responsible for many functions, mostly ligand induced, notably the AF-2 transac-

tivation function, a strong dimerization interface, another NLS, and often a repres-

sion function. Nuclear receptors may or may not contain an extremely variable final 

C-terminal domain (F domain).

NRs are highly regulated DNA-binding transcription factors that control tran-

scription via several distinct mechanisms, which include both activation and repres-

sion activities. After site-specific DNA binding, their final transcription activity 

depends on the set of associated proteins, the coactivators and corepressors, interact-

ing with them. The functions of these coregulators are varied and include chromatin 

remodeling (making the target gene either more or less accessible to transcription) 

or bringing function to stabilize the binding of other regulatory proteins. The bind-

ing of agonist ligands to nuclear receptors induces a conformation of the receptor 

that preferentially binds coactivator proteins. These proteins often have an intrinsic 

histone acetyltransferase (HAT) activity that weakens the association of histones to 
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DNA, and therefore promotes gene transcription. The binding of antagonist ligands 

to nuclear receptors, in contrast, induces a conformation of the receptor that preferen-

tially binds corepressor proteins. These proteins in turn recruit histone deacetylases 

(HDACs), which strengthen the association of histones to DNA and therefore repress 

gene transcription. Depending on the receptor involved, the chemical structure of 

the ligand, and the tissue that is being affected, nuclear receptor ligands may dis-

play dramatically diverse effects ranging in a spectrum from agonism to antagonism 

to inverse agonism. NR signaling is remarkably complex because many receptors 

respond to cellular signals through ligand-dependent or ligand-independent mecha-

nisms and because many accessory coregulators dictate cell-specific transcriptional 

responses to a given receptor [3].

The activity of endogenous ligands when bound to their cognate receptors is nor-

mally to up-regulate gene expression. This stimulation of gene response by the ligand 

is referred to as an agonist response. The agonist effect of the endogenous hormones 

can also be mimicked by xenobiotics. Agonist ligands work by inducing a conforma-

tion of the receptor that favors coactivator binding. Other nuclear receptor ligands 

have no apparent effect on gene transcription in the absence of an endogenous ligand. 

However, they block the effect of an agonist through competitive binding to the same 

binding site in the nuclear receptor. These ligands are referred to as antagonists. 

Antagonist ligands work by inducing a conformation of the receptor that prevents 

coactivators and promotes corepressor binding. Finally, some nuclear receptors pro-

mote a low level of gene transcription in the absence of agonists (also referred to as 

basal or constitutive activity). Xenobiotics that reduce this basal level of activity in 

nuclear receptors are known as inverse agonists.

A number of ligands that work through nuclear receptors display an agonist 

response in some tissues and an antagonistic response in other tissues. Selective 

receptor modulator (SRM) describes the ability of a ligand to manifest receptor ago-

nist activity in some tissues but blocks receptor activity in other tissues [11,12]. The 

mechanism of action of SRMs may vary depending on the chemical structure of the 

ligand and the receptor involved; however, it is thought that many SRMs work by 

promoting a conformation of the receptor that is closely balanced between agonism 

and antagonism. In tissues where the concentration of coactivator proteins is higher 

than corepressors, the equilibrium is shifted in the agonist direction. Conversely, 

in tissues where corepressors dominate, the ligand behaves as an antagonist [13]. 

The properties of SRMs are due in part to unique ligand-induced conformational 

changes in the hormone receptor that affect the subsequent tissue-specific recruit-

ment of other nuclear factors required for ligand-induced gene expression [14]. The 

antiestrogenic drug tamoxifen is an example of a selective estrogen receptor modu-

lator, but structurally diverse natural and synthetic compounds can have selective 

receptor modulating activity.

The most common mechanism of nuclear receptor action involves direct bind-

ing of the nuclear receptor to a DNA hormone response element. This mechanism 

is referred to as transactivation. However, some nuclear receptors not only have the 

ability to directly bind to DNA, but also to other transcription factors. This binding 

often results in deactivation of the second transcription factor in a process known as 

transrepression [15].
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It has been observed that some effects from the application of hormones such as 

estrogens occur within minutes, which is inconsistent with the classical genomic 

mechanism of nuclear receptor action. It has been hypothesized that there are vari-

ants of nuclear receptors that are membrane associated instead of being localized in 

the cytosol or nucleus. These nongenomic mechanisms or membrane-initiated sig-

nals are activated quickly and are refractory to transcription and translation inhibi-

tors [16–19].

From a toxicological point of view, two superfamilies of nuclear signaling mol-

ecules have gained enormous attention in the past years, in particular because our 

understanding of the molecular basis of their activation and downstream effects has 

been greatly increasing. These superfamilies include the steroid hormone receptors 

and PAS receptors. The first family includes (each with different subtypes) the per-

oxisome proliferator-activated receptor (PPAR), the thyroid hormone receptor (TR), 

the estrogen receptor (ER), the androgen receptor (AR), and others. The second fam-

ily includes the aryl hydrocarbon receptor (AhR).

A number of nuclear receptors, referred to as orphan receptors, have no known or 

at least generally agreed upon endogenous ligands. Some of these receptors, such as 

FXR, LXR, and PPAR, bind a number of metabolic intermediates such as fatty acids, 

bile acids, and sterols with relatively low affinity. These receptors hence may func-

tion as metabolic sensors. Other nuclear receptors, such as CAR and PXR, appear 

to function as xenobiotic sensors up-regulating the expression of cytochrome P450 

enzymes that metabolize these xenobiotics.

2.2.1 ESTROGEN RECEPTORS AS A TARGET FOR ENDOCRINE DISRUPTION

Initial concern regarding EDCs was focused on environmental estrogens. Estrogenic 

compounds exert pleiotropic effects in wildlife and humans, and endogenous estrogens, 

like 17 -estradiol, regulate growth and development of their target tissue. A vast range 

of both natural and man-made steroidal and nonsteroidal compounds has been investi-

gated for estrogen activities. Structural studies of the ligand-binding domains of nuclear 

hormone receptors have provided a wealth of information on the nature of ligand-binding 

and its role in receptor activation. Such studies have revealed numerous structural motifs 

that are able to bind to ER and exert either estrogenic or antiestrogenic activities.

ER ligands, known to produce distinct biological effects, induce distinct con-

formational changes in the receptors, providing a strong correlation between ER 

conformation and biological activity [20].

In humans, two estrogen receptors, alpha and beta, mediate the action of endog-

enous and environmental estrogens, including effects on cell proliferation and cancer 

induction. Each ER activates ERE containing target genes in the presence of estro-

gen. In most ERE contexts, ER  tends to be a weaker activator than ER , and the 

weaker activation is dominant in cells with both receptors [21,22]. Moreover, one role 

of ER  is to modulate ER  transcriptional activity, and thus the relative expression 

level of the two isoforms will be a key determinant of cellular responses to agonists 

and antagonists [14]. All three possible dimers (ER  or ER  homodimers and ER /

ER  heterodimers) are able to bind to ERE and, consequently, both homodimers and 

heterodimers can induce gene expression. ER  homodimers appear to be less active 
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than ER /ER  heterodimers, and evidence exists that ER  decreases activity of 

ER  when cotransfected to human cells [14]. The ligand-receptor complex induces 

differential gene expression depending on the target cell. It has to be able to interact 

with coactivators and to displace corepressors to modify chromatin structure and 

induce gene transcription.

The ERs,  and  (and possibly ), in fish, alone or in combination, may control 

different subsets of genes. Research indicates that E2 mimics may bind differently to 

these receptors, acting as agonist in one case and antagonist in another. This compli-

cates the issue of determining the risks of environmental exposure [23].

The receptor has a general tolerance for binding appropriately substituted phe-

nols and other classes of lipophilic compounds. Estradiol, estrone, and estriol are 

the principal endogenous mammalian estrogens. Because endogenous estrogens are 

hormones produced naturally and are essential for development, health, and repro-

duction, and because estrogen pharmaceuticals are administered for their hormonal 

effect in regulating fertility and for menopausal hormone replacement, these com-

pounds are not typically thought of as potential endocrine disruptors in humans. 

Nevertheless, there is evidence that some of these compounds can find their way 

into rivers and streams and can affect aquatic wildlife [24]. Estrogens from natural 

sources include natural products in food, such as soy isoflavones and whole grain 

lignans, as well as microbial products and components from wood. Aside from 

pharmaceutical, man-made estrogen ligands can be found in industrial products, 

such as alkyl phenols from nonionic detergents, bisphenols from plastics, indicator 

dye impurities, polymer chemicals, and chlorinated aromatics and pesticides [12].

The interior of the ligand-binding pocket exhibits a considerable degree of plas-

ticity, and reshapes itself around the contours of the ligand. It is not surprising, 

then, that the nuclear hormone receptors, with their large, flexible, and hydrophobic 

ligand-binding pockets, are able to interact with ligands that span a wide range of 

sizes and structures. The affinity with which exogenous ligands bind to these recep-

tors depends, of course, on their structure and their functional nature, and the degree 

to which they deviate in size, shape, functional nature, and hydrophobilicity from the 

natural high-affinity ligands. The relationship between ligand structure and binding 

affinity in nuclear hormone receptors, however, is not always a smooth one where 

predictions can be made with confidence. In some cases, small changes in structure 

and stereochemistry can have large effects on ligand binding, yet molecules of dif-

ferent size and shape can have comparable affinities [12].

The functions of estrogens in cellular metabolism and signaling have been increas-

ingly expanded beyond the now classical and conventional functions mediated by 

nuclear receptors. For example, E2 also modulates gene expression by an indirect 

mechanism that involves the interaction of ER with other transcription factors which, 

in turn, bind their cognate DNA element. In this case, ER modulates the activities of 

transcription factors such as the activator protein (AP-1), nuclear factor- B (NF- B), 

and stimulating protein-1 (SP-1), by stabilizing DNA-protein complexes and/or recruit-

ing coactivators [25]. In addition, E2 binding to ER may exert rapid actions that start 

with the activation of a variety of signal transduction pathways. The cell context-

specific environment (for example, differentiation, ER level, and ER coexpression) 

has an impact on the integration of rapid signaling by E2 from the membrane and 
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on subsequent nuclear transcription. This leads to different signal cascades, different 

gene expression in response to the same hormone, and different cell biological out-

comes. The debate about the contribution of different ER-mediated signaling pathways 

to coordinate the expression of specific sets of genes is still open [25]. The physiologi-

cal effect of ER action induced by a specific ligand is therefore not solely defined by 

the ligand structure, but rather by the interaction of the receptor-ligand complex with 

various modulating factors. The interplay between ligand-bound ER and these factors 

determines the response depending on the target cell. This explains the fact that in 
vitro tests are suitable for the identification of potentially endocrine-active compounds 

but cannot be used to deduce the risk of endocrine-related adverse effects [26].

Many estrogens have been identified using in vitro assays (for example, ER bind-

ing, cell proliferation, and transcriptional activation), and several also display estrogenic 

activity in vivo, including methoxychlor, chlordecone, octylphenol, nonylphenol, bisphe-

nol A, genistein, and ethynyl estradiol [1]. Other chemicals that have shown evidence in 
vitro of estrogenic activity have not shown similar evidence in in vivo systems, and so 

caution is warranted in interpreting in vitro results without in vivo confirmation.

2.2.2 ANDROGEN RECEPTORS AS A TARGET FOR ENDOCRINE DISRUPTION

The androgen receptor (AR) is a member of NR subfamily 3C and, alone or in com-

bination, plays a role in some of the most fundamental aspects of physiology such as 

immune function, metabolism, development, and reproduction. Multiple signaling 

pathways have been established. One main signaling pathway is via direct DNA 

binding and transcriptional regulation of responsive genes. Another is via protein–

protein interactions, mainly with other transcription factors, to regulate gene expres-

sion patterns. Both pathways can up-regulate and down-regulate gene expression. 

Both pathways require ligand activation of the receptor and interplay with multi-

ple protein factors such as chaperone and coregulator proteins [27]. The formation 

of a productive AR transcriptional complex requires the functional and structural 

interaction of the AR with its coregulators. In the last decade, a great amount and 

ever-increasing number of proteins have been proposed to possess AR coactivating 

or corepressing characteristics. A description of the AR regulation is beyond the 

scope of this chapter, but an overview of the androgen coregulators can be found in 

Heemers and Tindall [28]. In addition to the classical AR genomic pathway, rapid 

nongenomic effects of androgens emerge and are now generally accepted as contrib-

uting to the physiological effects of the steroids [17,29].

Although mammals are believed to possess a single AR [30], some piscivorous 

species have two distinct androgen receptors (ARs) with different characteristics. In 

the Atlantic croaker, Micropogonias undulatus, AR1 was identified in the brain and 

had high-affinity binding sites for testosterone. AR2 was found in the ovary and had 

high-affinity binding sites for 5 -dihydrotestosterone (DHT) [31]. It has physiochemi-

cal properties similar to those of other vertebrate ARs. AR2 has high-affinity binding 

for a broad spectrum of natural and synthetic androgens, including 17 -methyl-5 -

dihydrotestosterone. The cytosolic AR2 interacts with heat shock proteins in a similar 

manner to other steroid receptors. In contrast, AR1 is highly specific for only a few 

androgens and does not interact with heat shock proteins in the usual manner [31].
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A number of chemicals used in agriculture have been identified as precursors to 

environmental antiandrogens. Antiandrogenic chemicals alter sex differentiation by 

several different mechanisms. The cellular and molecular mechanisms of action of 

the antiandrogenic fungicide vinclozolin are some of the most thoroughly character-

ized. The ability of vinclozolin metabolites M1 and M2 to inhibit AR-dependent 

gene expression has been demonstrated both in vitro and in vivo. In addition, nei-

ther vinclozolin nor its metabolites display affinity for ER, although they do have 

a weak affinity for progesterone receptor [32,33]. Several other toxic substances 

have been shown to display AR-antagonist activity, including the DDT metabolite 

p,p -DDE [34], methoxychlor active metabolite HPTE [35,36], the organophosphate 

fenitrothion [37], and the dicarboximide fungicide procymidone [38]. Linuron is a 

urea-based herbicide that displays a weak affinity for the AR, but the reproductive 

malformations induced in male rat offspring indicate that it may alter mammalian 

sex differentiation by more than one mechanism of action [39]. Moreover, data indi-

cate that in utero exposure to linuron preferentially impairs testosterone-mediated, 

rather than DHT-mediated, reproductive development [40]. More recently, in vivo
antiandrogenic activity of both linuron and fenitrothion was evidenced in teleost fish 

(Gasterosteus aculeatus) by using spiggin measurement in the kidney [41]. Moreover, 

Kang et al. [42] used the rodent Hershberger assay to demonstrate that procymidone 

may act as a stronger androgen receptor antagonist than vinclozolin, linuron, and 

p,p -DDE.

In vertebrates such as fish, sexual dimorphism has been demonstrated to be 

affected by both estrogens and androgens [43]. Reproductive abnormalities, delayed 

sexual maturation, and modification of secondary sexual characteristics have been 

reported in fish exposed to pulp and paper mill effluents [44–49]. The androgen 

precursor androstenedione was identified in the river water and it was postulated 

that phytosterols from pine tree oil were metabolized to androstene-like compounds 

by Mycobacterium sp. bacteria [50]. Other studies have confirmed the presence of 

androgen activity in the river downstream of a paper mill, but several compounds 

might contribute to the effect and were not clearly identified [51]. However, bioactive 

substances originate from wood and are derived from lignin and terpenoids [45].

Another potential source for environmental androgens is excreted anabolic ste-

roids administered to cattle to improve beef production [52]. The anabolic steroid 

trenbolone acetate is rapidly converted in vivo into 17ß-trenbolone, an active metabo-

lite with androgen activity.

Recently, Chen et al. [53] reported a new category of endocrine disruption. In this 

report, the data presented on triclocarban (TCC; 3,4,4 -trichlorocarbanilide), a com-

mon ingredient in personal-care products, suggest that the bioactivity of endogenous 

hormones (testosterone) may be amplified by exposure to commercial personal-care 

products containing sufficient levels of TCC.

2.2.3 THYROID RECEPTORS AS A TARGET FOR ENDOCRINE DISRUPTION

In addition to the well-documented estrogen and androgen pathways, other hormonal 

systems are susceptible to disruption. Thyroid axis represents one potential target for 

environmental chemicals, and many different thyroid disruptions are possible.
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In contrast to steroid hormone receptors, thyroid hormone receptors bind DNA 

in the absence of hormone, usually leading to transcriptional repression. Hormone 

binding is associated with a conformational change in the receptor that causes it to 

function as a transcriptional activator.

Mammalian thyroid hormone receptors are encoded by two genes, designated 

alpha and beta. Further, the primary transcript for each gene can be alternatively 

spliced, generating different alpha and beta receptor isoforms. Currently, four differ-

ent thyroid hormone receptors are recognized: alpha-1, alpha-2, beta-1, and beta-2.

The different forms of thyroid receptors have patterns of expression that vary 

by tissue and by developmental stage. For example, almost all tissues express the 

alpha-1, alpha-2, and beta-1 isoforms, but beta-2 is synthesized almost exclusively 

in the hypothalamus, the anterior pituitary, and the developing ear. Receptor alpha-1 

is the first isoform expressed in the conceptus, and there is a profound increase in 

expression of beta receptors in the brain shortly after birth. Interestingly, the beta 

receptor preferentially activates expression from several genes known to be impor-

tant in brain development (for example, myelin basic protein), and up-regulation of 

this particular receptor may thus be critical to the well-known effects of thyroid 

hormones on development of the fetal and neonatal brain.

The presence of multiple forms of the thyroid hormone receptor, with tissue and 

stage-dependent differences in their expression, suggests an extraordinary level of 

complexity in the physiologic effects of thyroid hormone.

Thyroid hormone receptors bind to short repeated sequences of DNA called 

thyroid or T3 response elements (TREs) as monomers, as homodimers, or as het-

erodimers with the retinoid X receptor (RXR), another member of the nuclear 

receptor superfamily that binds 9-cis retinoic acid. The heterodimer affords the 

highest affinity binding and is thought to represent the major functional form of 

the receptor.

Thyroid hormone receptors bind to TRE DNA regardless of whether they are 

occupied by T3. However, in general, binding of thyroid hormone receptor alone to 

DNA leads to repression of transcription, whereas binding of the thyroid hormone-

receptor complex activates transcription.

In vertebrates, thyroid hormones are essential for postembryonic development, 

such as establishing the central nervous system in mammals and metamorphosis in 

amphibians. The regulation of thyroid hormone delivery to tissues and cells during 

development and in the adult represents a very complex web of feedback systems, 

providing redundant and compensatory regulatory responses to maintain thyroid hor-

mone signaling in the face of specific deficiencies in circulating levels of thyroid hor-

mones. Environmental factors and xenobiotics can perturb this web at various points 

of regulation, inducing a variety of responses ([54] for a review). However, more 

research is needed to truly understand the degree of thyroid disruption induced by a 

particular toxicant that is necessary to be considered either “compensatory/adaptive” 

or “adverse” with respect to noncancer endpoints. Changes in thyroid hormone levels 

due to chemical exposure are generally considered adverse, but the thyroid field is still 

new, and continued research on new endpoints of thyroid hormone action is needed to 

link the changes in thyroid hormone levels to doses of chemicals and clear downstream 

actions. Moreover, toxicants interfering with the hypothalamic–pituitary–thyroid 
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(HPT) axis by different mechanisms appear to produce different effects on the rela-

tionship among the various endpoints within the thyroid endocrine system.

In mammals, thyroid hormones T3 and T4 are secreted from the thyroid gland 

under the control of thyroid-stimulating hormone (TSH or thyrotropin), which, in 

turn, is controlled in part by thyrotropin-releasing hormone (TRH) from the hypo-

thalamus. The thyroid hormone triiodothyronine (T3) regulates gene expression by 

binding to a high-affinity nuclear receptor. Thyroid hormone receptors (TRs) bind 

DNA as heterodimers with the retinoid X-receptor. In general, T3-stimulated genes 

are involved in gluconeogenesis, glycogenolysis, lipogenesis, cell proliferation, and 

apoptosis, and genes repressed by T3 include some involved in insulin signal trans-

duction, cell immunity, extracellular matrix structure, cell architecture, protein gly-

cosylation, and mitochondrial functions [55].

Numerous environmentally relevant chemicals, including polychlorinated biphenyls 

(PCBs), pesticides, bisphenol A, polybrominated diphenyl ethers (PBDEs), and met-

als, exert acute or chronic effects on the thyroid cascade in various species, including 

rodents, fish, and amphibians [56–61]. However, the mechanisms underlying thyroid 

changes and their physiological consequences are usually poorly understood, because 

the thyroid cascade may respond indirectly and it has considerable capacity to compen-

sate for abuses that otherwise would disrupt thyroid hormone homeostasis.

2.2.4 OTHER NUCLEAR RECEPTORS

Recently, the PPAR/RXR system has also been identified as a target for endocrine 

disruption through organotin agents used as marine antifouling agents [62,63]. 

Furthermore, orphan nuclear receptors such as the pregnane X-receptor (PXR) and 

the constitutive androstane receptor (CAR), which are important regulators in the 

adaptation of chemical stress, are activated by a variety of ligands [64].

Pregnane X receptor (PXR), peroxisome proliferator activated receptors (PPARs), 

and the constitutive androstane receptor (CAR) have received particular attention 

because they bind to drugs and xenobiotics, which in turn activate the expression of 

genes involved in phase I [65], phase II [66], and phase III [67] of biotransformation 

pathways.

Moreover, PPARs, PXR, and vitamin D receptors act as sensors for various molecules 

encountered by the body on a daily basis. The effects of these ligands can be understood 

by the fact that numerous genes involved in the cellular processes, such as homeostasis, 

growth, and defense against microbes, are under the control of these NRs.

2.2.4.1 Peroxisome Proliferator-Activated Receptor/
Retinoid X Receptor (PPAR/RXR) System

The sequencing of mammalian genomes indicated that there are only three per-

oxisome proliferator-activated receptor (PPAR) isotypes [68]. In contrast to steroid 

hormone receptors, which act as homodimers, transcriptional regulation by PPARs 

requires heterodimerization with the RXR, which belongs to the same receptor 

superfamily [69,70]. When activated by a ligand, the dimer modulates transcription 

via binding to a specific DNA sequence element called a peroxisome proliferator 
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response element (PPRE) in the promoter region of target genes. Transcriptional control 

by PPAR/RXR heterodimers also requires interaction with coregulator complexes. 

Thus, selective action of PPARs in vivo results from the interplay at a given time 

between expression levels of each of the three PPAR and RXR isotypes, affinity for 

a specific promoter PPRE, and ligand and cofactor availabilities.

PPARs exhibit broad, isotype-specific tissue expression patterns, and many cel-

lular and systemic roles have been attributed to these receptors, such as cellular dif-

ferentiation and development and metabolism of carbohydrates, lipids, and proteins.

PPAR  is expressed at high levels in organs that carry out significant catabolism 

of fatty acids, such as brown adipose tissue, liver, heart, kidney, and intestine [71]. 

PPAR /  has the broadest expression pattern, and the levels of expression in cer-

tain tissues depend on the extent of cell proliferation and differentiation. PPAR  is 

expressed as two isoforms, of which PPAR 2 is found at high levels in the adipose 

tissues, whereas PPAR 1 has a broader expression pattern. Transcriptional regulation 

by PPARs requires heterodimerization with the RXR. Consistent with its distribu-

tion in tissues with high catabolic rates of fatty acids and high peroxisomal activity, 

the major role of PPAR  is the regulation of energy homeostasis [72].

PPAR /  is necessary for placental and gut development and is also involved in 

the control of energy homeostasis [73–77]. In addition, PPAR /  has an important 

role in the control of cell proliferation, differentiation, and survival and is involved 

in tissue repair [78–81].

PPAR  plays a major role in adipose tissue differentiation and in maintaining 

adipocyte-specific functions, such as lipid storage in the white adipose tissue and 

energy dissipation in the brown adipose tissue [82–86]. Furthermore, it is required 

for the survival of differentiated adipocytes [87]. In addition, PPAR  is involved in 

glucose metabolism through an improvement of insulin sensitivity and thus repre-

sents a molecular link between lipid and carbohydrate metabolism [88–92].

A wide variety of natural or synthetic compounds were identified as PPAR ligands. 

Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sen-

sitizers, thiazolidinediones, are PPAR  and PPAR   agonists, respectively, which 

underscore the important role of PPARs as therapeutic targets [68]. PPAR  was 

discovered as the receptor mediating hepatic peroxisome proliferation and carcino-

genesis in rodents in response to a wide range of chemicals including pesticides, 

industrial solvents, and plasticizers [93,94]. Recently, Feige et al. [95] demonstrated 

how monoethyl-hexyl-phthalate (MEHP), a metabolite of the most abundantly used 

phthalate (diethyl-hexyl-phthalate, DEHP), selectively activates different PPAR   tar-

get genes and promotes adipogenesis. These studies highlight some key mechanisms 

of endocrine disruption actions of DEHP through its metabolite MEHP and suggest 

that the metabolic function of PPAR  can be targeted by a subclass of endocrine 

disruptors defined as metabolic disruptors.

Another example of the implication of PPARs in endocrine disruption is given by 

organotin compounds, which have been widely used as agricultural fungicides, rodent 

repellents, and molluscicides and in antifouling paints for ships and fishing nets. In 

aquatic invertebrates, particularly marine gastropods, organotin compounds, such as 

tributyltin (TBT) and triphenyltin (TPT), induce irreversible sexual abnormality in 

females, which is termed “imposex” at very low concentrations. Imposex has been 
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established as a form of endocrine disruption caused by elevated testosterone lev-

els, leading to masculinization in organotin-exposed females [96–98]. Using in vitro
systems for human nuclear receptor activation, Kanayama et al. [63] found that TBT 

and TPT were potential agonists of RXR  and PPAR . In addition, these compounds 

induced the transactivation function of RXR  and PPAR  in mammalian cell culture, 

indicating that these organotin compounds function as RXR  and PPAR  agonists 

in mammalian cells. As the gene expression of human aromatase is regulated by the 

activation of PPAR   and/or RXR, the aromatase expression regulated by organotin 

compounds may involve the activation of PPAR  and RXR because the aromatase 

expression pattern induced in the human placenta and ovary by activation of PPAR

and/or RXR is similar to that induced by organotin compounds.

2.2.4.2 Pregnane X Receptor (PXR)

Two related nuclear receptors, the pregnane X receptor (PXR) and the constitutive 

androstane receptor (CAR), act as xenobiotic sensors that protect the body from a 

multitude of xenobiotics and play a central role in the metabolism and clearance of 

steroids and toxic endogenous lipids [99].

Like other type II nuclear receptors, when activated, it forms a heterodimer with 

the retinoid X receptor and binds to hormone response elements on DNA, which 

elicit the expression of gene products. The primary function of PXR is to sense the 

presence of xenobiotics and in response to up-regulate the expression of proteins 

involved in the detoxification and clearance of these substances from the body. CAR 

nuclear hormone receptors act in concert with PXRs to detoxify xenobiotics.

One of the primary targets of PXR activation is the induction of CYP3A4, an 

important phase I oxidative enzyme that is responsible for the metabolism of many 

drugs. In addition, PXR up-regulates the expression of phase II conjugating enzymes 

such as glutathione-S-transferase and phase III transport uptake.

The detoxification system consists of microsomal cytochrome P450 enzymes 

(CYPs) and other oxidizing and hydroxylating enzymes (phase I response), conjuga-

tion enzymes such as glucuronosyl- and sulfotransferases (phase II response), and 

membrane-bound drug pumps such as MDR1 (phase III) that function in a concerted 

fashion to inactivate and clear chemical compounds (reviewed in [100]). The same 

system is also utilized to metabolize endogenous compounds such as steroids, bile 

acids, thyroid hormones, retinoids, cytokines, and fatty acids. One characteristic of 

xenobiotic metabolizing enzymes and transporters is their inducibility by their sub-

strates. This allows enhanced production of these proteins only as needed. These 

compounds also induce a variety of other metabolic enzymes and transporters.

From the available studies, it is likely that many industrial and natural endocrine-

active substances bind and activate PXR, CAR, or both. PXR and CAR most likely 

play a protective role against most of these substances by promoting their detoxifica-

tion and clearance. However, in rare but relevant cases, PXR and CAR may inadver-

tently promote their deleterious effects. First, detoxification reactions, such as CYP3A 

induction, are also known to activate certain substrates to carcinogenic and cytotoxic 

products. For example, the first step in aflatoxin metabolism creates a reactive adduct 

for DNA, enabling its activity as a hepato-carcinogen. Thus, activation of PXR or CAR 
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may enhance the toxicity of some environmental chemicals. Second, because steroids 

and thyroid hormones are metabolized and typically inactivated by enzymes such as 

CYPs, UGTs, and SULTs, constitutive activation of PXR or CAR by environmental 

chemicals could alter endocrine systems. In fact, the chronic activation of PXR in 

transgenic mouse livers results in increased corticosterone in serum and urine and, by 

extension, most likely stimulates the production of gonadal steroids [101]. Furthermore, 

prototypical chemical activators for PXR or CAR induce increased metabolism and 

decreased level of thyroid hormones, consequential increase in thyroid-stimulating 

hormone, and thyroid hypertrophy in rats [102]. Further studies are required to clarify 

the effect of chronic activation or inactivation of the xenobiotic receptors on global 

endocrine physiology and disease progression [99].

2.2.5 ARYL HYDROCARBON RECEPTOR (AHR)

The aryl hydrocarbon receptor (AhR) is a member of the basic helix loop-helix 

(bHLH) PER-ARNT-SIM (PAS) family of nuclear transcription factors that heterodi-

merize with another PAS family member, the AhR nuclear translocator (ARNT), to 

mediate gene expression. The mechanism of AhR-mediated gene transactivation is 

similar to that of DNA binding proteins that belong to the steroid receptor family. 

AhR mediates the biological effects of polycyclic aromatic hydrocarbons (PAHs), 

polychlorinated dibenzodioxins (PCDDs), and polychlorinated dibenzofurans 

(PCDFs), by-products from incomplete combustion of fossil fuels, wood, and other 

organic substances [103].

AhR was originally identified and characterized as a result of its central role in 

the vertebrate response to many planar aromatic hydrocarbons. In this capacity, 

AhR binds exogenous ligand and transcriptionally activates a battery of enzymes 

that promote metabolic transformation and excretion of the xenobiotic from the 

organism. This AhR-mediated pathway is commonly viewed as an adaptive 

response toward these xenobiotics. The activated AhR/ARNT heterodimer com-

plex binds to its cognate DNA sequences, termed “xenobiotic response elements” 

(XREs), and activates the expression of AhR target genes, such as cytochrome 

P4501A1 (CYP1A1), and CYP1B1 [104]. This toxicity mediated by AhR receptor 

remains the most clearly understood aspect of AhR biology (see [105] for review). 

More recently, efforts have been made to understand the physiology of the AhR 

under normal cellular conditions (in the absence of xenobiotics) on cell proliferation 

and differentiation, endogenous mechanism of activation, gene regulation, tumor 

development, cell motility and migration, and so on [106]. Interestingly, significant 

differences in the metabolism of EDCs can result in market species differences in 

response to these chemicals.

Modulation of estrogen receptor signaling by association with activated AhR has 

been demonstrated [107]. Agonist-activated AhR/ARNT heterodimer directly asso-

ciates with estrogen receptors ER  and ER . This association results in the recruit-

ment of unliganded ER and coactivator p300 to estrogen-responsive gene promoters, 

leading to activation of transcription and attenuated estrogenic effects. Several 

studies have reported that activated AhR inhibits the expression of E2-induced genes 
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[108]. The precise molecular mechanisms for this cross talk are unclear and may 

be a combination of several different mechanisms: direct inhibition by the activated 

AhR/ARNT heterodimer through binding to inhibitory XRE present in ER target 

genes; squelching of shared coactivators, including ARNT; synthesis of an unknown 

inhibitory protein; increased proteosomal degradation of ER; and altered estrogen 

synthesis/metabolism through increase in aromatase and cytochrome P450 1A1 and 

1B1 expression [109]. Active AhR can also redirect ER from ER target genes to AhR 

target genes, suggesting that AhR can regulate ER  protein levels and, consequently, 

estrogenic responses [110].

2.3 ENDOCRINE DISRUPTION BY MODULATING 
STEROID HORMONE METABOLISM

2.3.1 STEROIDOGENIC ENZYMES

The ability of xenobiotics to disrupt steroidogenesis and the mechanisms by which 

these compounds interfere with the function of steroidogenic enzymes is a rela-

tively unexplored area of endocrine toxicology. Nevertheless, key enzymes involved 

in steroid hormone synthesis and metabolism are being considered as important 

targets for EDCs. The cytochrome P450 enzymes responsible for the highly spe-

cific reactions in the steroid biosynthesis pathway are particularly gaining interest 

as molecular targets, given their key role in the formation of various highly potent 

endogenous steroid hormones. It is possible for certain chemicals to cause or contrib-

ute to hormonal disruption by interfering with the function of key enzymes involved 

in steroid synthesis and breakdown [111]. Steroidogenic enzymes are responsible for 

the biosynthesis from cholesterol of various steroid hormones, including glucocor-

ticoids, mineralocorticoids, progestins, androgens, and estrogens. They consist of 

several specific cytochrome P450 enzymes (CYPs), hydroxysteroid deshydrogenases 

(HSDs), and steroid reductases [112]. The enzyme that has received the most atten-

tion with regard to enzyme modulation and endocrine disruptors has been aromatase 

(CYP19) that converts androgens to estrogens (Figure 2.3) [113]. The interference 

of EDCs with aromatase CYP19 expression or activity and the consequences for 

reproduction of teleost fish have been recently reviewed [114], and it was shown 

that expression and/or activity of aromatase CYP19 genes may be affected through 

a variety of mechanisms. Nevertheless, all the steroidogenic enzymes are potential 

targets for disruption. Table 2.1 [115–138] synthesizes the main examples of ste-

roidogenic enzyme disruptions in humans and fish.

2.3.2 METABOLISM OF STEROID HORMONES

Increasing or decreasing of steroid metabolism contributes to the detrimental effect 

of EDCs. In humans and rodents, 50% or more of the drugs and pesticides currently 

used induce the expression of the hepatic enzyme cytochrome P450 (CYP)3A [139]. 

Numerous steroids, including testosterone, 17 -estradiol, progesterone, and andros-

tenedione, are metabolized by CYP3A [139]. It is therefore conceivable that wildlife or 
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humans exposed to contaminated environments would exhibit elevated CYP3A activ-

ity that leads to increased clearance of such steroids as testosterone and 17 -estradiol 

from the plasma, as reported in chickens [140,141] and humans [142]. Transcription 

of CYP3A, as well as of other hepatic enzymes involved in the biotransformation of 

testosterone, pharmaceutical agents, and xenobiotics, appears to be regulated, at least 

in part, by SXR and related nuclear transcription factors [143,144]. Many vertebrates 

exhibit species-specific, sexually dimorphic patterns of hepatic enzyme activity that 

appear to be regulated by sex steroids and/or growth hormone [145]. For example, 

differences in the activity of the hepatic enzymes responsible for the biotransforma-

tion of sex steroids exist among alligators collected from contaminated and relatively 

uncontaminated sites in Florida [146,147]. The observed differences in plasma sex 

steroid concentrations could be caused, in part, by differences in hepatic clearance of 

these sex steroids [148] as demonstrated in other species [149,150].

Interestingly, several members of the nuclear receptor superfamily are known to 

be degraded through the ubiquitin-proteasome pathway in a ligand-dependent path-

way [151]. Inhibition of the ubiquitin-proteasome pathway down-regulates the tran-

scriptional activity of nuclear-steroid receptors such as progesterone receptor [152] and 

FIGURE 2.3 Steroid synthesis of the sex hormones and the steroidogenic enzymes in fish 

gonads (Onchorhynchus mykiss and Tilapia sparrmanii). Note that biosynthesis pathways 

for pregnenolone and androstenedione are the same in humans. 3 -HSD: 3 -hydroxysteroid 

dehydrogenase (Δ4/5-isomerase); P450c17: cytochrome P450/C17–20lyase; 17 -HSD: 17 -

hydroxysteroid dehydrogenases; 11- HSD: 11 -hydroxysteroid dehydrogenases; P450aro: 

cytochrome P450 19; P450c11 (11 -H): 11 hydroxylase. (Adapted from J. F. Baroiller, Y. 

Guigen, and A. Fostier, Cell. Mol. Life Sci., 55, 910, 1999. With permission.)
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TABLE 2.1
Examples of Environmental Chemicals Interacting with Steroidogenic Enzymes

Enzyme Substance Type of Effect Reference

AMPc Bisphenol A/octylphenols Inhibitor [127]

Lindane Inhibitor [130]

Atrazine Inductor [132]

StAR Protein Barbiturates Inhibitor [120]

Lindane Inhibitor [137]

“Roundup” Inhibitor [136]

AhR Agonists (TCDD) Inhibitor [115]

P450scc Cadmium chloride Inhibitor/inductor [118,123,207]

Lead Inhibitor [121]

Ketoconazole Inhibitor [122]

AhR agonists Inhibitor [115]

3 -HSD Cadmium chloride Inhibitor [123]

Lithium chloride Inhibitor [119]

Monobutyltin Inhibitor [125]

Tributyltin Inhibitor [125]

Isoflavonoids Inhibitor [128]

P450c17 Isoflavonoids Inhibitor [128]

Aroclor 1260 (Askarel®) Inhibitor [117]

17 -HSD / 17KSR Lithium chloride Inhibitor [119]

Dicofol Inhibitor [134]

Dibutyltin Inhibitor [134]

5 -reductase Dicofol Inhibitor [134]

Atrazine Inhibitor [134]

Organotins Inhibitor [134]

Phathalates Inhibitor [134]

TCDD Inhibitor [129]

Vinclozolin* Inhibitor [124]

Aromatase Fenarimol Inhibitor [135]

Prochloraz Inhibitor [116]

Propiconazole Inhibitor [132]

Endosulfan Inhibitor   [138]

Atrazine Inductor   [133]

Tributyltin Inhibitor/inductor [126,131]

* 2-[[(3,5-dichlorophenyl)-carbamoyl]-oxy]-2-methyl-3-butenoic acid and 3 ,5 -dichloro-2-hydroxy-2-
methylbut-3-enanilide are the main la 5 -reductase inhibitor degradation products of vinclozolin.
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AR [153,154]. ER  undergoes different rates of proteasome-mediated degradation 

in the presence of ER agonists, antagonists, and selective ER modulators, demon-

strating that transcriptional activity can be affected by modulating receptor stability 

[155]. This leads to the hypothesis that EDCs could act on proteasome-mediated 

degradation of nuclear receptors or coregulatory proteins to directly affect the mag-

nitude and duration of normal hormone responses, thereby causing endocrine dis-

rupting effects [151].

2.4 HORMONE TRANSPORT

In most vertebrate species, sex steroid hormones circulate in the plasma predomi-

nantly bound to a specific high-affinity sex hormone–binding globulin (SHBG) and 

low-affinity proteins such as corticosteroid-binding proteins and albumin (see [156] 

for review). In the blood, typically 97% to 99% of total estrogens and androgens are 

carried bound to these proteins. Although the functions of the SHBG are not fully 

understood, it is believed to be involved in regulating circulating endogenous sex 

steroids as well as cellular signal transduction to nuclear steroid receptors in sex 

steroid–sensitive tissues (see [157] for review). Interestingly, binding proteins have 

been reported to bind several endocrine disruptors [158–162] and to alter the biologi-

cal activity of natural and synthetic estrogens [163–165]. The consequence is that 

modulation of SHBG constitutes a new indirect pathway for regulating sex steroid 

action. In practice, the main regulators for SHBG production are the sex steroids as 

well as other regulators of SHBG production.

2.5 TRANSGENERATIONAL CONSEQUENCES OF EDC EXPOSURE

Recent studies have demonstrated the ability of EDCs to have epigenetic effects 

(DNA methylation) [166–170]. When these changes occur during certain stages of 

development, they are permanent and can be inherited by offspring. The term “epi-

genetic” means outside conventional genetic [171] and was coined by the develop-

mental biologist Conrad H. Waddington [172]. Epigenetics is the process by which 

the genotype of an organism interacts with the environment to produce its pheno-

type. It provides a framework to explain the source of variations in individual organ-

isms [173] and also explains what makes cells, tissues, and organs different despite 

the identical nature of the genetic information in every cell in the body. Currently, 

epigenetics is defined as the molecular phenomena that regulate gene expression 

without alterations to DNA sequence [174]. The most studied epigenetic modification 

is DNA methylation of CpG nucleotides that are essential for mammalian develop-

ment [175,176]. In most studies, increased DNA methylation is associated with gene 

silencing, and decreased methylation is associated with gene activation.

These epigenetic mechanisms help explain the transgenerational effects of some 

hormonally active chemicals. Diethylstilbestrol (DES) during pregnancy results in 

vaginal adenocarcinoma in female offspring in humans [177] and mice [178]. Female 

offspring of mice exposed to DES themselves express this same rare genital tract 

cancer [179]. Newbold and colleagues showed that specific rare testes cancers are 

also expressed and therefore transmitted to the male offspring of females treated 
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in utero with DES [169,180]. Rats treated with the estrogenic pesticide methoxy-

chlor or the antiandrogenic fungicide vinclozolin during pregnancy produce male 

offspring that have decreased sperm capacity and fertility [166]. Remarkably, the 

compromised fertility is passed through the adult male germ line for four genera-

tions. The authors demonstrated altered patterns of DNA methylation in germ cells 

of generations two and three. Interestingly, individuals initially are fertile, but with 

age, fertility is reduced. This study is an elegant demonstration of epigenetic altera-

tion in genes that is apparently important to reproductive function, by two kinds of 

EDCs in age-dependent manner. In addition to research linking EDCs and epige-

netic and reproductive diseases, a growing body of information suggests that epige-

netic effects might extend to gender differences in brain and behavior with potential 

evolutionary significance [181].

Other environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) [182], polychlorinated biphenyls (PCBs) [183,184], phthalate esters [167], 

and chlorine disinfection by-products [185] also affect the reproductive system 

or induce tumor development by altering DNA methylation and steroid hormone 

metabolism and signaling.

2.6 CROSS TALK BETWEEN COMPONENTS 
OF ENDOCRINE SYSTEMS

Cross talk between nuclear receptor–mediated and other signal-transduction path-

ways is an important aspect of nuclear receptor–based regulation. Phosphorylation, 

for example, has been extensively studied, but other types of modifications such as 

ubiquitylation and acethylation have been demonstrated [186].

Another type of nuclear receptor cross talk that has only recently been recognized 

is the “nongenomic” action of several nuclear receptors. It is now clear that some 

nongenomic actions of nuclear receptor ligands are apparently mediated through 

membrane receptors that are not part of the nuclear receptor superfamily.

2.7 MULTIPLE AND CRITICAL PERIODS OF EXPOSURES

2.7.1 EXPOSURE TO MULTIPLE CHEMICALS

Most research resources are devoted to single chemical studies with an almost com-

plete neglect of mixture studies. A contributing factor to this imbalance is no doubt 

the inaccessibility of theoretical concepts in mixture toxicology and the resulting 

uncertainty as to how to proceed experimentally [187]. Mixture studies are perceived 

to be challenging, both conceptually and experimentally, but despite these difficul-

ties, many articles on combination effects of EDCs have been published (reviewed 

in [187,188]). As estrogenic chemicals have been the focus of most of the work on 

EDCs, it is not surprising that this group of substances has been the topic of the 

majority of EDC mixture studies. Nevertheless, some studies have been performed 

on AR antagonists and to a lesser extent on mixtures of thyroid-disrupting chemicals. 

Globally, combined effects of EDCs belonging to the same category (for example, 
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estrogenic, antiandrogenic or thyroid-disrupting agents) can be predicted by using 

dose addition. This applies to a wide range of endpoints reflecting various levels of 

hormone actions in a variety of organisms [189–194]. Combinations of EDCs are 

able to produce significant effects, even when each chemical is present in low doses 

that individually do not induce observable effects. However, comparatively little 

work has been performed with mixtures of different classes of endocrine disruptors, 

such as estrogenic agent combined with antiestrogenic chemicals, or EDCs com-

bined with other toxicants. Perhaps the best-known example of effect modulation is 

the inhibitory effect of AhR agonists on the action of estrogenic chemicals.

2.7.2 DOSE-RESPONSE RELATIONSHIPS

A number of specific factors influence the dose of an EDC that reaches the target 

cells to produce a response. These factors include route of administration, distribu-

tion, metabolism, rate of clearance, plasma transport, cell uptake, affinity for the 

receptor subtype in the cell, and interaction of the ligand receptor complex with 

tissue-specific factors comprising the transcriptional apparatus.

The physiological and the environmentally relevant dose ranges typically fall 

well below the toxicological dose range based on using established protocols for 

examining acute toxic effects of chemicals. Furthermore, toxicology assumes that 

it is valid to extrapolate linearly from high doses over a very wide dose range to 

predict responses at doses within the physiological range of receptor occupancy for 

an EDC; however, because of receptor-mediated response saturate, this assumption 

is incorrect. Furthermore, receptor-mediated responses can first increase and then 

decrease as dose increases, contradicting the assumption that dose-response relation-

ships are monotonic. Exogenous hormones modulate a system that is physiologically 

active and thus is already above threshold, contradicting the traditional toxicological 

assumption of thresholds for endocrine responses to EDCs [195,196].

2.7.3 FETAL AND DEVELOPMENTAL BASIS OF ADULT DISEASE

The timing of exposure to exogenous hormonally active substances is critical to the 

outcome of that exposure, with early lifetime exposures particularly detrimental 

because they produce permanent effects [197]. It is generally accepted that EDCs 

have the greatest impact when exposure occurs during development [198,199]. 

During fetal life, endogenous hormones regulate the differentiation and growth of 

cells, and developmental processes appear to have evolved to be exquisitely sensitive 

to changes in hormone concentrations. Those life stages most vulnerable to ED are 

the prenatal and early postnatal periods, because these are times when organ and 

neural systems are changing most rapidly. Pubertal and perimenopausal periods may 

also be sensitive windows of exposure because of the changing hormonal effects 

during these periods [200]. Numerous strong examples of the fetal/developmental 

hypothesis can be found in the literature for a variety of systems and species: male 

infertility in rats [201], metabolism and obesity [202,203], mouse genital tracts [178], 

mammary glands [204], and so on.
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2.7.4 MULTIPLE EFFECTS INDUCED BY A SINGLE COMPOUND

It is actually assumed that a single chemical may disrupt the endocrine system via 

different mechanisms of action implying different targets. A good example is con-

stituted by an in vitro study on 200 pesticides for estrogen and androgen recep-

tor activities [205]. In this study, 29 pesticides had both hER  and hER  agonistic 

activities, and 34 pesticides possessed both estrogenic and antiandrogenic activities 

indicating pleiotropic effects on hER and hAR. A recent review, summarizing the 

endocrine properties of 127 pesticides, confirmed the complexity of the responses 

induced even with a single compound [206].

2.8 CONCLUSIONS

The potential mechanisms underlying the effects of EDCs are incredibly diverse, mak-

ing studies on their biological effects daunting. Endogenous hormones act through sev-

eral mechanisms. The classical mechanism of action for hormones such as estrogens, 

androgens, thyroid, and progesterone involves the binding of the hormone to the recep-

tor, the interaction of this hormone-receptor complex with other cofactors in a cell, and 

the activation or inactivation of transcription of a target gene. More recently, mem-

brane steroid hormone receptors using different intracellular signaling pathways have 

been identified. An important consideration is that a unique ligand activates a diversity 

of target receptors and signaling mechanisms and may interact with completely differ-

ent complements of cofactors depending upon the phenotype of the target cell.

Hormone signaling also involves the synthesis, degradation, or inactivation of the 

hormones by specific enzymes, any or all of which may be targeted by EDCs. Another 

consideration is that the endogenous hormones, particularly estrogens, androgens, 

and thyroid, bind to proteins in blood that reduce their bioavailability. EDCs may not 

bind to the same binding proteins, thereby increasing their bioavailability relative 

to endogenous hormones. Furthermore, if EDCs are not as rapidly metabolized as 

endogenous steroid hormones, they may remain bioavailable far longer and get incor-

porated to body burden, generally the fat tissues, as most EDCs are lipophilic.

Another challenge for endocrine disruption is to understand how extremely low doses 

of EDCs can exert potent effects on endocrine and homeostatic systems and why EDCs 

exert nonlinear dose-response curves, often U or inverted U in shape [195,197]. The 

overall shape of the dose-response curve thus reflects the cumulative action of EDCs 

upon a range of targets. It is now clear that low-dose EDC exposure, particularly at vul-

nerable development windows, can have long-term consequences on later health.

Related to the low-dose phenomenon is the question of whether thresholds for 

different EDCs actually exist. Environmental toxicological protocols continue to 

utilize a single dose of a single chemical at different concentrations, seeking the 

lowest dose at which no adverse effects are observed in the animal subject. This no 

observed adverse effect level (NOAEL) for the chemical in question is then used as 

a threshold dose for risk assessment. However, a power-analysis study revealed that 

thresholds may not exist for estrogenic EDCs, as any amount of the exogenous ste-

roidal agent automatically exceeds the organism’s threshold [196].
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Various chemicals will have a combination of effects on the endocrine system, as 

they may act as steroid receptor (ant)agonists, steroidogenic enzyme inducers/inhibitors, 

and, via other less well-understood mechanisms, cause net effects on the endocrine sys-

tem that will be highly concentration and endpoint dependent. Thus, it is to be expected 

that for many EDCs more than one mechanism will play a role, inevitably resulting in 

complex dose-response relationships for many different endocrine parameters.

Furthermore, EDCs rarely occur for a single substance, and for the most part, the 

environment is contaminated by complex mixtures.

Nevertheless, research has clearly shown that EDCs can act at multiple sites via 

multiple mechanisms of action. Because of cross talk between different components 

of the endocrine systems, effects may occur unpredictably in endocrine target tissues 

other than the system predicted to be affected. All these factors confirm that to make 

the prediction from in vitro and in vivo experiments to risk analysis for human and 

wildlife is extremely complex and indeed hazardous.
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ABSTRACT

Environmental risk assessment (in Europe) and equivalent processes includ-

ing ecological risk assessment (United States) and ecosystem risk assessment 

(Japan) are collectively referred to in this chapter as ERA. They each involve 

the scientific analysis and characterization of environmental hazards (fre-

quently chemicals) based on the predicted likelihood and level of exposure, 

versus the predicted severity of any consequent adverse effects. The discovery 

of “endocrine disruption” in wildlife due to natural hormones and synthetic 

mimics (endocrine disrupting chemicals, EDCs) in the last two decades has 

challenged the established ERA process, because very low exposure levels may 

illicit adverse effects including nonmonotonic responses in exposed organisms 

(Section 3.1.2). Accepting that it is impossible to legislate to protect every 

organism, especially when some natural losses are inevitable (for example, due 

to climatic stress or predation), the aims of ERA are to ensure the sustainability 

of populations to protect species and maintain the structure and functioning of 

ecosystems in which they live.

Ultimately, ERA requires clear understanding and communication of risks and 

objective decision making on the part of risk managers. This is based on an 

assessment of the most relevant data or facts (assessment endpoints) concern-

ing the predicted behavior, fate, and effects of chemicals in the environment. 

A number of mathematical models are available to risk assessors, which have 

enormous potential in helping to relate chemical properties to potential behav-

ior and to understand empirical data concerning exposure, uptake, and effects 

experienced by individual organisms (see Chapters 6, 7, 11, 13, this volume). 

Population modeling can offer additional help in linking individual exposure to 

population effect, extrapolating from laboratory to field, but more importantly 

by providing a means of communicating risk and uncertainty to risk manag-

ers in a form that they can clearly understand and apply. By focusing on eco-

logically relevant effects and scales, population-level ERA can aid regulatory 

decision making and help focus finite resources on managing ecologically sig-

nificant risks (Section 3.1.1). This chapter illustrates how population dynamics 

modeling can support the established ERA process. Case studies are presented 

concerning endocrine disruption in fish (Section 3.3).
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3.1 INTRODUCTION TO POPULATION DYNAMICS MODELING

Fish population dynamics models reflecting the life history of fish in the wild 

have been shown to be highly applicable in ecological risk assessments [1–3]. 

Many applications of models have been developed since the 1950s for the assess-

ment of fish populations, to assess stocks, potential yield, sustainability, and pre-

dation [4–6]. Also, effects such as habitat fragmentation, nutrient enrichment, and 

physical hazards such as power plant intakes have been studied using population 

models [7,8]. The application of models to assess the potential adverse effects of 

chemicals on fish populations is more recent. Barnthouse et al. [9] used a logistic 

model to investigate the effects of toxic contaminants to fish populations, and 

Schaaf et al. [10] and Barnthouse [1] applied Leslie matrix models to simulate the 

effects of pollution on fish populations with different life-history strategies. Delay 

differential equation (DDE) models have also been used to assess the effects of 

chemical stressors on fish populations [3,11] but have more generally been applied 

in agriculture and forestry [12,13], as well as in the conservation of terrestrial 

fauna [14]. Individual-based (IB) models are now generally widely used in many 

branches of species and population modeling and have been applied to assess the 

effects of poor environmental quality on fish populations [15–18].

3.1.1 THE APPLICATION OF POPULATION DYNAMICS

MODELING IN ENVIRONMENTAL RISK ASSESSMENT

The ultimate aim of environmental risk assessment [19] and, similarly, ecological 

risk assessment [20] and ecosystem risk assessment [21], is to determine, with a rea-

sonable degree of certainty, whether or not an environmental hazard (for example, 

chemical “x” at X concentration) is environmentally safe. Traditionally this involves 

relating the chemical’s predicted environmental concentration (PEC) with its pre-

dicted effects threshold, as determined by laboratory-based ecotoxicology studies. 

Risk is highlighted if toxicity is observed at exposure concentrations approaching 

or below the PEC. In the former case, when the risk is not so clear-cut, experi-

mental uncertainties surrounding the environmental fate and behavior of chemicals 

can be addressed relatively easily by measuring their environmental concentrations. 

However, field measurement of the environmental effects of chemical “x” is not so 

straightforward because there may be many other stressors or factors that can either 

compound or ameliorate the effects of the chemical being assessed. Hence, it is very 

difficult to link cause and effect in the field. The detection of specific biomarkers, 

such as the expression of a gene, or the induction of an enzyme or other immune 
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response, may help in this regard. However, gathering a significant body of evidence 

confirming adverse effects (versus a “normal” baseline) in potentially vulnerable 

species in the wild may not be practical or financially viable. One possible compro-

mise is to simulate environmental effects with greater realism than in the laboratory 

using mesocosms [22,23], although some concerns have been raised regarding exag-

gerated fish population growth in miniature experimental ecosystems [24]. Failing 

that, computational population modeling can be used to make the link between labo-

ratory data and potential field effects.

Population dynamics modelling is the simulation of changes in population numbers or 

biomass, reflecting the distribution of individuals of different ages or developmental 

stages within defined populations, and biological and environmental processes influ-

encing those changes.

As well as adding value in the interpretation of effects data in higher-tier risk 

assessment, population modeling has a potentially important role in helping to 

streamline the ERA process. This stems from the need to gather scientifically robust 

data on exposure and effects, while also optimizing the use of finite experimental 

and economic resources and, from an ethical standpoint, minimizing the use of ver-

tebrates [25]. Once set up and validated, population models are relatively quick and 

cheap to run, allowing a wide range of exposure and effects scenarios to be simu-

lated. This is one obvious reason why predictive modeling (for example, population 

dynamics) is considered useful in ERA [26,27].

However, the main synergies between ERA and population modeling may be 

derived from the improved use of environmental test data — that is, the inclusion 

of multiple effects endpoints in risk predictions made using population models, as 

opposed to the traditional emphasis on the most sensitive endpoint or lowest observed 

effect concentration (LOEC). Stochastic models, which account for the variability 

between individuals in a population, can be used to identify those effects endpoints 

that are most influential on the trajectory (success or failure) of that population over 

successive generations. This can be achieved by sensitivity analysis. Consequently, 

judgments regarding the importance of effects endpoints showing statistical signifi-

cance versus those considered to be ecologically relevant can be avoided for the most 

part. This is an issue that has challenged traditional ERA for decades.

Risk managers essentially need the following from an ERA:

To determine the likelihood and severity of any adverse environmental 

effect resulting from the hazard (chemical “x”)

To be able to demonstrate the validity of data and predictions, highlight-

ing any assumptions or limitations including any uncertainties in a clear 

and transparent way

Population modeling can also provide them with the following:

The interpretation/extrapolation of laboratory (ecotoxicological) effects 

data via the provision of more meaningful, environmentally relevant pre-

dictions of the sustainability of wild populations.
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A better understanding of the overall mechanism of toxicity of a chemical, 

helping to make the link between cause and effect via the identification of 

critical parameters affecting population sustainability.

The integration of the effects of the chemical (or chemicals) with other 

background stressors or environmental variables, predicting the overall 

net effect on a population.

3.1.2 THE APPLICATION OF POPULATION DYNAMICS MODELING

IN THE ASSESSMENT OF ENDOCRINE DISRUPTING CHEMICALS

Endocrine disruption is a phenomenon that was indentified in the field, for example, 

in marine invertebrates such as the dog whelk (Nucella lapillus) [28]. Their expo-

sure to trace, sublethal concentrations of the antifouling ingredient tri-butyl tin was 

observed to induce a condition of imposex (the growth of male genitalia in females) 

that affected their reproductive ability and resulted in localized impacts on popula-

tions inhabiting harbor areas [29]. Similar impacts were observed in other species’ 

populations in response to their exposure to other endocrine disrupting chemicals 

(EDCs) (Western gull [30], Pacific oyster [31], common seal [32], alligator [33], 

Florida panther [34], mosquito fish [35], roach [36]) and brought to the attention 

of the public in Theo Colborn’s book Our Stolen Future [37]. In each case, adverse 

ecological effects were first observed in the field, rather than in the laboratory (that 

is, all chemicals in question evaded traditional ERA).

The basic definition of an EDC is an exogenous substance that causes adverse health 

effects in an intact organism, or its progeny, consequent to changes in endocrine 

function [43].

Predicting the sublethal impacts of EDCs on fish populations has become a 

possibility, because in the past 10 years there have been major advances in knowl-

edge regarding reproductive ecotoxicology and endocrine disruption [38–40]. 

Experimental data are becoming more readily available following the inclusion of 

abbreviated fish reproduction studies in the regulatory testing of chemicals includ-

ing the “base set” for pharmaceuticals [41]. This will be further enhanced by the 

introduction of a 21-day fish reproduction test for EDC screening, which is currently 

under development on behalf of the Organization for Economic Cooperation and 

Development (OECD) [42]. Such screens will complement recent testing guidelines 

concerning the ERA of chemicals, for example, pharmaceuticals in Europe, which 

recognize the peculiarities of EDCs and require assessment of their potential fate 

and effects (including fish embryo-larval developmental effects), irrespective of the 

quantities released into the environment [41].

Endocrine disruption is an effect rather than a mode of action. EDCs may inter-

fere with the synthesis, secretion, transport, binding, action, or elimination of natu-

ral hormones in the body that are responsible for the maintenance of normal cell 

metabolism. In order to model the effects of EDCs on populations, it is necessary to 

appreciate how these physiological effects are manifested in an individual’s growth 

and development, reproductive capacity, and behavior.
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The following are challenges EDCs present to environmental risk assessment, 

with particular reference to fish:

EDCs are highly potent and can elicit adverse developmental, reproduc-

tive, or behavioral effects at very low environmental concentrations [38].

Effects may follow a nonmonotonic dose response, making them diffi-

cult to detect in typical laboratory range-finding studies — that is, low 

exposure concentrations may elicit an entirely different response to that 

observed at high concentrations [44,45].

The consequences of endocrine disruption may be multifaceted (for exam-

ple, as well as affecting sexual differentiation in fish, including sex rever-

sal, intersex may be combined with alterations in sexual maturation, sex 

ratio, male and female fertility, behavior, and so forth) [46–49].

The degree of intersex tends to increase with the age of an individual, 

which may be related to susceptibility as well as exposure [50].

Some fish are hermaphrodites and undergo sex change naturally in 

response to changes in temperature or food availability [51].

Preexposure of embryos may infer greater resistance or greater sensitivity 

to continued exposure of juvenile fish [52,53].

Endocrine effects may be passed on to future generations via the accumu-

lation of some EDCs in the egg yolk [54] or via epigenetic changes such 

as methylations [55].

3.1.3 INCREASING REGULATORY FOCUS ON POPULATION-LEVEL ASSESSMENT

Environmental regulations ultimately aim to protect ecosystem structure and function, 

but this tends to be an aspirational or implicit goal rather than an explicit goal [56,57]. 

Current guidelines stipulate the measurement of ecotoxicity endpoints such as individual 

survival, growth, and fecundity, which are intended to reflect population-level impact 

within a particular species. However, it is rarely stated how this level of assessment 

should be achieved or what level of impact is acceptable. In a recent review of chemical 

regulations in North America, only one set of state regulations (for Oregon) concerning 

chemical risk assessment was found to specifically require population-level ERA. This 

set a tolerance limit for adverse effects on 20% of wildlife populations [56].

Recent advances in population-level risk assessment have been made by govern-

ment, industry, and academia. For example, over the past two or three decades, the 

environmental regulation of pesticides (for example, via North America’s Federal 

Insecticide, Fungicide, and Rodenticide Act [FIFRA] and Europe’s Pesticides 

Directive 91/414/EEC) has required a tiered approach to product testing, in some 

cases culminating in the assessment of population- and community-level effects in 

field studies [5,58] or artificial mesocosms [24,59,60]. In turn, population modeling 

has been used to broaden some of these risk assessments by extrapolating the results 

to simulate wider agricultural field situations [61,62].

Initiatives concerned with the advancement and acceptance of population-level 

ERA within the existing regulatory framework for chemicals in general are currently 

being funded via the European Chemistry Council’s Long-Range Research Initiative 

[63] and other industry consortia [64]. As part of this work, a critical review of 
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computational models used in a population-level ERA context, published between 

2000 and 2007, identified 41 different models and several inconsistencies in their 

description and application. Model validation was another important issue that was 

raised [65] (see Section 3.2.3).

3.1.4 INTEGRATING POPULATION DYNAMICS MODELING INTO ERA

A reasonable first step toward integrating ERA and population modeling is to com-

pare basic ERA needs (inputs) with potential model outputs. Conducting this simple 

exercise immediately illustrates many complementary areas (Table 3.1).

TABLE 3.1
Potential Overlaps between ERA (Effects Assessment) and 
Population Dynamics Modeling

ERA Effects Assessment Needs (Inputs) Population Modeling Aims (Outputs)

1. Identify relevant test species and effects 

assessment endpoints along with their normal 

baseline/ reference values.

1a. Define the range of possible trajectories of 

potentially affected “assessment” or “meta- 

populations” (for example, a population or 

subpopulation within a defined river catchment 

or reach, under normal, reference conditions).

1b. Define acceptable, minimum viable population 

size [66] as a limit for specifying an 

unacceptable level of population effect.

2. Assess departure from normal “control” 

conditions due to simulated chemical exposure 

— identify effects threshold.

2. Assess the likelihood of an adverse population 

effect — that is, expressed as a range of interval 

decline probabilities from 0 to 1 that the 

population will decline by a critical amount (for 

example, 25%, 50%, or 75%) following 

chemical exposure at an expected concentration 

and duration (interval).

3. Evaluate the range of available effects data 

(endpoints). Interpretation relies on expert 

judgment to evaluate statistical significance of 

effects versus environmental relevance.

3. Identify the most influential input (effect) 

parameter(s) affecting the trajectory of the 

population (by sensitivity or elasticity analysis).

4. Place the observed effects data in the context of 

other environmental data — comparative risk 

assessment.

4. Assessment of the importance of other relevant 

environmental variables — abiotic (for example, 

temperature, resource availability, other 

chemicals) and biotic (for example, competition 

and predation).

5. Determine the likelihood and severity of an 

adverse environmental effect, presenting results 

clearly and transparently (for example, dose-

response relationships to facilitate communication 

of risk to risk managers).

5. Graphical or tabular presentation of results 

including interval decline probabilities (and 

population recovery rates for time-limited 

exposure scenarios).
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3.2 POPULATION DYNAMICS MODELS

3.2.1 SELECTING THE APPROPRIATE MODEL

It is important to appreciate the capabilities of different types of population dynam-

ics models and hence their suitability for particular risk assessments. Deterministic 

age- or stage-structured models can be used to simulate incremental changes in 

mean survivorship and fecundity of individual females from birth to death and ulti-

mately calculate the intrinsic rate of population increase. They are relatively easy 

to parameterize and use, satisfying many practical considerations concerning data 

availability and utility [67–70].

At the other end of the spectrum, individual-based (IB) models (also known as 

agent-based models) can account for the continuous development and interaction of 

individuals throughout their lifetime and may range considerably in terms of their 

complexity. However, added complexity provides increased scope for including addi-

tional assessment endpoints such as individual behavior [71], as well as the effects 

of environmental factors (for example, temperature [72], pesticide exposure [16,62], 

and intersex effects due to steroidal estrogens [73,74]). The predictive capabilities are 

summarized for these various types of models in Table 3.2.

TABLE 3.2
Capabilities of Different Population Dynamics Models

Predictive Capabilities

Model Type Minimum Unit Deterministic Stochastic

1. Matrix Group of individuals 

ascribed to a discrete age 

class or stage, females only

Population decline, population 

recovery, intrinsic rate of 

population increase (r) 

predicted in discrete time 

steps (usually annual)

Relative importance of 

vital rates

2. DDE Group of individuals 

ascribed to a discrete age 

class or stage, females only

Population decline, population 

recovery, intrinsic rate of 

population increase (r) 

predicted in continuous time 

steps (daily)

Interval decline risk, 

most influential effect 

parameter

3. IB Individuals, including males 

and females

Population decline, population 

recovery, intrinsic rate of 

population increase (r) 

predicted in continuous time

Most influential effect 

parameter

Notes:  Matrix: Leslie Matrix models (see P.H. Leslie, Biometrika, 35, 213, 1945 [75]); DDE: Delay Differential 

Equation models (see R.M. Nisbet, in Structured Population Models in Marine Terrestrial and Freshwater 
Systems, Chapman & Hall, New York, 1997 [76]); IB: individual-based models (see W. van Winkle, H.I. Jager, 

S.F. Railsback, B.D. Holcomb, T.K. Studley, and J.E. Baldrige, Ecol. Model., 110, 175, 1998 [77]).
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The suitability of different population dynamics models in ERA will depend on 

the questions being posed. These define the necessary level of complexity of the 

model, which is also limited by computer processing power, the availability of input 

data (control and effects), and the required level of user training [56]. In order that 

model outputs meet or exceed specific ERA requirements, models should be prop-

erly calibrated and validated (Section 3.2.3). This ensures that model outputs accu-

rately quantify population viability in terms of rate of decline and recovery, interval 

decline probability, extinction risk, and so forth. However, very few published popu-

lation models have been validated due to the lack of suitable field effects data [61,62]. 

The specificity of different chemical effects and the costs associated with validation 

are major contributory factors. The transparency of models is also of key importance 

in determining their usefulness in ERA. Modeling assumptions need to be explicitly 

stated and the implications understood by the risk assessor. The adoption of guide-

lines describing population models clearly and consistently (for example, overview, 

design concept, details [78]) should increase the availability and reliability of models 

and facilitate their uptake and use in ERA.

3.2.1.1 Deterministic or Stochastic Simulations?

Matrix or DDE models simulate population numbers as a whole and are basically 

deterministic — that is, a model run gives a unique answer for a given set of life-

history and exposure effects parameters. Figure 3.1 shows the structure of a deter-

ministic run output for one year, showing the different processes taking place and 

the influence on population numbers.

However, there is uncertainty in the normal vital rates (of survival and fecundity) 

and effects responses (for example, for perch in Windermere fecundity of year 2

to 6  fish varies with a mean value of 25,905 eggs and a standard deviation [sd] of 

3,776 eggs [67]). To allow for this, the model is often set in a Monte Carlo (MC) 

framework to generate a stochastic output by computing many different runs, where 

each of the parameters for a run is chosen at random from the statistical distribution 

of the parameter, for example,

fecundity  mean .sd

where  is a random number from a standard normal distribution (or other statisti-

cal distribution). The results for each run fall between the maximum and minimum 

curves shown in Figure 3.2. The deterministic curve on this plot is obtained using 

the mean values of all the parameters.

Often the MC is run 1,000 times and a statistical analysis of the results is carried 

out to give information such as the probability of a 50% population decline due to 

exposure. Also, if the exposure is stopped or reduced, the model will then predict the 

time for recovery to say 95% of the original population numbers [67].

An IB model simulates each fish individually and is inherently stochastic in that 

the variability of life-history parameters and effects parameters is incorporated into 

one model run. The output from the model looks like the deterministic prediction 

from the matrix or DDE model, but it is produced allowing for all the variability 
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between individuals. At a deeper level, the responses of the “weaker” and “stronger” 

fish can be assessed and the statistical distribution of the population at different times 

(for example, before exposure and at different times during exposure) can be output. 

The IB model framework can incorporate other types of variability that would not be 

considered in matrix or DDE models, such as different behaviors induced by exposure 

(for example, males behaving more aggressively during the spawning season) [48].

A single deterministic model prediction is generally not that useful on its own. 

These simple runs could be used to compare and rank the potential magnitude of 

effects on the population of different exposures to give an idea of which is the worst 

case. A stochastic prediction gives more robust information, because it allows for 

variability in the population and gives statistical output that can be used to assess 

the probability of risk. Further discussions on deterministic versus stochastic models 

can be found elsewhere [79–81].

3.2.2 MODEL DESIGN AND PARAMETERIZATION

3.2.2.1 Design

Model design should incorporate those parameters (assessment endpoints) that are 

pertinent to a particular risk assessment and accurately reflect their interrelationship. 

These parameters include vital, intrinsic (life-history) traits such as survival, growth, 

and reproduction, as well as extrinsic (environmental) variables such as chemical 

exposure and temperature (Figure 3.3).

Spawning

0+ juveniles

Initialization

FIGURE 3.3 The iteration of an individual-based model “ROACH” (described in more detail 

in Section 3.3.3).
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3.2.2.1.1 Control Simulation

A life stage of a group of fish or an individual has a range of attribute informa-

tion associated with it, including sex, age, maturity, survival, growth rate, weight 

and length, fecundity (females), male fertility, and spawning behavior. The essential 

parameters or “vital rates” are survival and fecundity.

The life cycle of the modeled species is divided into discrete phases, which for 

instance could be based on changes in mortality or growth rate. On moving into a 

new life stage, the vital rates are updated with new statistical distributions represent-

ing the natural variability of this life stage. Other vital rates (e.g., fecundity) can be 

derived from primary attributes or parameters (e.g., length).

For early life stages (for example, age 0 ), it may be necessary to estimate 

parameters such as survival based on stock recruitment curves or back-calculation 

methods, which assume stable recruitment [82]. Another parameter that is usually 

difficult to quantify is the immigration/emigration rate. This is invariably accounted 

for in estimates of annual stock-recruitment, which also includes age 0  survival. 

However, modern molecular and landscape population genetics techniques provide 

a potential means of estimating immigration/emigration rates (or average dispersal 

distance) based on assessments of genetic distance and gene flow between neighbor-

ing populations [83].

Most populations are limited in number by factors such as availability of food 

and space. Population growth is limited by reductions in the production of offspring, 

rate of offspring survival, rate of adult survival, and rate of maturation. These 

effects may be simulated via density dependence functions. Examples include the 

Beverton and Holt [84] and the Ricker [85] density dependence functions, which 

can be applied to the basic survival and fecundity rates. Whereas Beverton–Holt is 

applicable to species such as brook trout (Salvelinus fontinalis), in which there is 

unequal sharing of resources (biased toward stronger individuals), Ricker density 

dependence better describes equal sharing of resources in species such as fathead 

minnows (Pimephales promelas) [69]. Appropriate levels of density dependence can 

be calibrated against observed population numbers to implicitly account for environ-

mental factors such as predation, as well as the life-history strategy of the modeled 

species [86]. Accounting for density dependence in a population model improves 

environmental realism [86,87]. However, if exaggerated, it can overcompensate for 

losses due to chemical toxicity and can lead to an underestimation of the risk of 

population decline [87]. It has therefore been argued that ignoring density depen-

dence will give more protective estimates of risk [88], but there are exceptions in 

which density dependence can act synergistically with toxicant stress and promote 

population extinction. This is known as the “Allee effect” and it may be more com-

mon than previously thought [87].

A key environmental variable affecting fish recruitment, growth, and develop-

ment is temperature. This may need to be taken into account, especially if long-term 

predictions of population sustainability are required. There are a number of models 

in the literature, varying in complexity from empirical to more mechanistic models, 

which relate the effects of food ration and temperature to growth [89].
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Control (and effects) simulation results may be expressed as total population num-

ber, numbers of individuals in specific age/stage classes, or in terms of total or age-

specific biomass per unit area. Biomass is a particularly useful measure of population 

size, because it can be related directly to environmental carrying capacity (that is, 

maximum supportable fish stock) [85]. Numerical abundance may be misleading in 

this regard, due to the temporary, unsustainable explosion in numbers of fish fry imme-

diately after spawning. Therefore, if results are expressed in terms of abundance, a 

reliable, consistent approach is to focus on prespawning population numbers [3].

3.2.2.1.2 Effects Simulation

At the most basic level, the effects of individual EDCs can be simulated by altering 

the vital rates (survival and fecundity) in the control model based on observed labo-

ratory effects data. These “life-table response experiments” (LTREs) involve pre-

dicting net replacement rate (Ro), population growth rate ( ) or the intrinsic rate of 

population increase (r  ln ) and determining the exposure concentration at which 

there is zero increase (r  0,  1) [91]. These predictions (made using matrix mod-

els) may be further enhanced by directly relating the model response (measured in 

eigenvalues) to the perturbation (chemical exposure) via a transfer function [92].

Although predictions of ecotoxicity based on laboratory studies are enhanced 

via traditional LTREs [86,91,93], they ignore key ecological processes, such as den-

sity dependence, and lack environmental realism. On the other hand, by default, 

density-independent models have less parameter uncertainty associated with them 

[94]. There is no escaping the uncertainty introduced from “reading-across” effects 

from surrogate laboratory species to identical or other species in the wild. Having 

said that, extrapolating chronic data from one related species to another (however 

distant) is better than employing acute data for the same species or family in popula-

tion modeling [95].

For EDCs, it may be necessary to account for the mode of action of the chemi-

cal and how this manifests itself in terms of individual development, sexual dif-

ferentiation, and behavior. The emergence of “intelligent testing,” incorporating 

the measurement of these and other more specific biomarker endpoints, favors the 

development of more mechanistic IB models. These may include toxicokinetic/

dynamic submodels accounting for chemical uptake, receptor binding, and elimina-

tion [96,97]. However, it should be appreciated that describing these complex effect 

mechanisms in mathematical terms is a major challenge. Complex models can be 

perceived as less certain or reliable. For this reason, it is best to avoid overcomplex-

ity and concentrate on simulating the principal toxic effect mechanisms. A universal 

rule is to treat the results from all population dynamics models as a guide for deci-

sion making and not to accept them as the final answer [98].

3.2.2.2 Parameterization

Having selected an appropriate type of population model (for example, matrix, DDE, 

or IB), it is necessary to parameterize it with control data for the species in question. 
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The most basic data are laboratory control data [91,93], whereas the most realistic 

are life-history data reflecting baseline (control) conditions in the wild [67]. Generic 

life-history data for a wide range of fish species can be sourced from databases such 

as www.fishbase.org/search.php and www.freshwaterlife.org/. For case-specific risk 

assessments, life-history data may be acquired from wider peer-reviewed literature 

or, if necessary, derived from local fisheries data [67].

Details concerning the design and parameterization of model types 1 to 3 

(Table 3.3) were previously described [3,72] and are summarized in the case studies 

presented in Section 3.3.

Suitable effect data may be obtained relatively easily from laboratory or field-

based studies (see Table 3.5). The development of the Organization for Economic 

Cooperation and Development (OECD) 21-day fish reproduction test for EDC screen-

ing [42] and other intelligent testing protocols incorporating informative biomarker 

endpoints will benefit the risk assessment of chemicals with specific modes of action 

(Type IV compounds) as defined by Verhaar et al. [99]. It is likely that the uptake of 

population-level ERA will help propagate these changes in the design of higher-tier 

ecotoxicological studies. This will be justified if the accuracy and ecological rel-

evance of risk predictions are improved, providing an alternative approach to the use 

of overly conservative safety factors in traditional organism-level ERA.

3.2.3 MODEL CALIBRATION AND VALIDATION

3.2.3.1 Calibration

Calibration is the process that ensures that the model predictions of the control pop-

ulation reflect actual field data (or surrogate mesocosm or laboratory data). This 

is required because there are three major sources of uncertainty associated with 

TABLE 3.3
Parameterization of Population Dynamics Models

Input Control Data

Model Type
Intrinsic

(Life History) Extrinsic (Environmental)
Input Effects

Data

1. Matrix Mean (sd) annual 

survival, fecundity

Ignored [91] or implicit in 

life-history data [3]

Mean (sd) survival, fecundity

2. DDE Mean (sd) daily 

survival, fecundity

Implicit in life-history data 

[67]

Mean (sd) survival, fecundity, 

growth (via submodel)

3. IB Daily survival, growth, 

development, 

fecundity, male 

fertility, behavior

Environmental variables 

include temperature, habitat, 

and food availability, within 

and between species 

interaction [75]

Survival, growth, development, 

fecundity, male fertility, 

behavior, physiological effects

http://www.fishbase.org
http://www.freshwaterlife.org
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population dynamics models: natural variability in the environment (temporal and 

spatial heterogeneity and genetic variability within a population), potential errors 

in the estimation of model input parameters [94], and potential errors in the model 

structure [100].

Natural variability within a population is normally accounted for in the life-

history data used to parameterize the control model (Section 3.2.2).

Errors in model structure result from oversimplification of ecological pro-

cesses and the limitations of mathematics in describing these processes 

[98]. Therefore, the design and calibration of population dynamics models 

should be based on a clear conceptual model that identifies the relevant 

processes and suitable data (assessment endpoints) linking exposure and 

effect [101].

Errors in the estimation of model input parameters mainly concern stock 

recruitment and the contribution of under-yearling survival versus immi-

gration/emigration; density dependence [102]; and spawning behavior [47]; 

including the proportion of individuals contributing to spawning [103].

One or several of these parameters may require adjustment as part of the calibra-

tion process.

3.2.3.2 Validation

Validation concerns the checking of effects predictions versus actual effects, ide-

ally observed in the field. Simple models representing constant exposure (both 

spatially and temporally) to a single chemical are obviously easiest to validate, and 

it is feasible that this may be done in the laboratory. However, such models lack 

environmental realism. In reality, chemical exposure and the recipient organisms 

or populations are in a constant state of flux. As mentioned previously, biological 

variability is typically included in population dynamics models within the “con-

trol” life-history input data. Variable chemical exposure can also be incorporated 

in temporally or spatially explicit models [61]. However, their inclusion presents a 

greater challenge in terms of validation. In a recent critical review of 41 population 

dynamics models used in ERA, 30 models made no reference to validation [64]. 

This may be because suitable field effects data are lacking for many compounds. 

Having said that, there are numerous examples of multigeneration laboratory 

studies [104], mesocosm studies [59,60], and field studies [49,58] in the literature, 

which could be used to validate existing population dynamics models.

The modeling of open systems such as rivers presents a greater challenge in terms 

of validation than does the modeling of enclosed systems such as lakes, in which 

contaminants and populations are confined. The work reported by Palace et al. [47] 

and Blanchfield et al. [48], looking at the effects on fathead minnows in lake 260 

from the Canadian Experimental Lakes Area during an experiment where EE2 was 

dosed into the lake, is a prime example in which detailed population effects measure-

ments were made. However, in many cases, full validation is not possible, especially 

for models used to predict long-term population extinction probability [104].
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3.2.4 EXAMPLES OF MODEL APPLICATIONS

Despite the lack of validated population dynamics models and the fact that they 

are “nothing more than abstractions of reality,” they “simplify systems so that 

defensible decisions can be made” [105]. There are many potential applications for 

population dynamics models in an ERA context. These were reviewed elsewhere 

[65,102].

Selecting the most appropriate population dynamics model depends on the type 

of input data available and the regulatory goal or “question being asked.” The follow-

ing examples, which feature in a series of case studies in Section 3.3, illustrate the 

potential applications for different types of models (Table 3.4).

3.3 CASE STUDIES

Laboratory and field effects data for putative EDCs including methoxychlor (MXC), 

nonylphenol (NP), estrone (E1) 17-  estradiol (E2) and 17-  ethinylestradiol (EE2) con-

cerning individual fish survival, growth, and reproduction (Table 3.5), have been trans-

lated into predictions of population impact on the brook trout (Salvelinus fontinalis), 
fathead minnow (Pimephales promelas), perch (Perca fluviatilis), and roach (Rutilus 
rutilus). The selected case studies represent a range of chemical exposure scenarios, 

from seasonal, short-term, to continuous, long-term exposures, whereas the selected 

TABLE 3.4
Overview of Four Models with Potential Applications in Risk Assessment

Model Type Model Name Purpose (Application) References

1. Matrix BROOK (Brook trout) Assess long-term population 

impact of and recovery from 

continuous EDC exposure

[3]

2. DDE MINNOW (Fathead minnow) Assess long-term and short-term 

population impact of and recovery 

from continuous and periodic (for 

example, seasonal pesticide 

applications) EDC exposure

[3]

3. DDE PERCH (Eurasian perch) Assess the susceptibility of perch 

populations in Windermere 

pre- and postdisease outbreak to 

EDC exposure

[67]

4. IB ROACH (Roach) Assess long-term population 

impact related to intersex in 

males from continuous steroid 

estrogen exposure (as part of a 

program to devise Environmental 

Quality Standards in U.K. rivers)

[73]
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TABLE 3.5
Examples of Laboratory and Field Effects Data Used in Case Studies

Compound Exposure Effects (% of Control) Fish Species

Nonylphenol 

(NP) results 

from the 

degradation of 

detergents in 

sewage 

treatment. 

Ambient river 

concentrations 

range from 2

to 300 mg l–1

[108,118].

Low

(1 μg l–1)

Age 0  survival  73%

Age 0  survival  100%

New adult fecundity  105%

Older adult fecundity  87%

Growtha  95%

Salmo trutta — brown 

trout [106] (reduction 

in survival related to 

growtha)

Oncorhynchus mykiss
— rainbow trout [107]

Lepomis macrochirus
— bluegill sunfish [108]

Pimephales promelas
— fathead minnow [109]

[107]

[106]

[107]

Rutilus rutilus — roach

[110]

High

(50 μg l–1)

Age 0  survival  73%

Age 0  survival  95%

Fecundity  125%

Growtha  80%

Reduction in survival

related to growtha [106]

[107,108]

[107]

[107,110]

Methoxychlor 

(MXC) is used 

in the control of 

black fly larvae 

in rivers each 

spring, summer, 

and autumn. 

Pulse concen-

trations range 

from 2 to

200 μg l–1 [112].

Low

(500 μg l–1)

Age 0  survival  73%

Age 0  survival  95%

New adult fecundity  95%

Older adult fecundity  87%

Growtha  95%

Salmo trutta — brown

trout [106] (reduction

in survival related to

growtha)

Oncorhynchus mykiss
— rainbow trout 

[111,112]

Catostomus
commersoni — white

sucker [52] 

Jordinella floridae
— flagfish [113]

[111]

[52,112]

High

(10,000 μg l–1)

Survival (all ages)  60%

New adult fecundity  75%

Older adult fecundity  55%

Growtha  80%

Oncorhynchus mykiss
— rainbow trout

[111,114]

[52,113]

[106] (reduction in

fecundity related to 

growtha)

[111,114]

(continued)
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TABLE 3.5 (CONTINUED)
Examples of Laboratory and Field Effects Data Used in Case Studies

Compound Exposure Effects (% of Control) Fish Species

Ethinylestradiol

(EE2), a female

contraceptive,

is 10 times as

potent as the

natural hormone

17-  estradiol.

Ambient river

concentrations

range from

0.02 to 15 ngl–1

[119].

Low  

(0.001

μg l–1)

High

(0.01 μg l–1)

Survival (all ages)  100%

New adult fecundity  53%

Older adult fecundity  32%

Growtha  80%

Survival (all ages)  100%

Adult fecundity (all ages) 

 0%

Growtha  80% to 90%

Pimephales promelas
— fathead minnow

[115–117]

[115]

[106] (reduction in

fecundity related to

growtha)

[115]

[115–117]

[115]

[115–117]

Note: Exposure ranges (low to high) relate to environmental exposure concentrations.

a   Growth effects translated into effects on survival and fecundity.

species populations exhibit contrasting ecological life histories (strategies) and varying 

demographic structures that influence their susceptibilities to these exposures.

3.3.1 COMPARING THE EFFECTS OF TWO EDCS ON TWO FISH

SPECIES WITH DIFFERENT LIFE-HISTORY STRATEGIES

3.3.1.1 Overview and Model Setup

The first case study, adapted from Brown et al. [3], illustrates how the ecological 

impact of different EDCs, methoxychlor (MXC) and nonylphenol (NP), on fish may 

vary from one species to another — the fathead minnow (Pimephales promelas) and 

the brook trout (Salvelinus fontinalis). The former species is representative of the 

cyprinidae, the world’s largest family of fish [51], and is commonly used in regula-

tory studies to provide effects data for ERA. Another widely used test species is the 

rainbow trout (Oncorhynchus mykiss). This is representative of another major family 

of fish, the salmonidae, to which the brook trout also belongs.

Published life-history data were obtained for natural populations of fathead min-

now in Horseshoe Lake, Minnesota [120], and brook trout in Hunt Creek, Michigan 

[121], to parameterize basic control models for these species. These control models 

were run until they achieved steady state. Then we superimposed survival, growth, 
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and reproductive effects data from laboratory-based studies involving these or other 

related fish species (Table 3.5) to assess the impact of differential exposure of NP 

and MXC on population sustainability and recovery. Both the MINNOW model and 

the BROOK model simulate the population dynamics of female fish, based on the 

assumption that they limit fish reproduction rather than males [51,122].

The two modeled species have very different life-history strategies. The major-

ity of female brook trout mature at age 1 . They are k-strategists, exhibiting low 

egg production (38 to 303 eggs per female), high hatchling survival, and subsequent 

survival rates (0.42 survival probability from age 0  to age 1 ), leading to inher-

ently stable recruitment. This, coupled with a relatively long life span of up to 5 

years and a population growth rate (net replacement rate) of Ro  1.13 conferred 

stable population numbers in Hunt Creek [121], whose carrying capacity was limited 

according to the Beverton–Holt density dependence function [104]. On the other 

hand, female fathead minnows are r-strategists, maturing rapidly within 10 to 14 

weeks (under optimal environmental conditions), exhibiting higher egg production 

(255 to 2,400 eggs per female), lower hatching success, and lower survival rates (0.15 

survival probability from age 0  to age 1 ). Their overall population growth rate in 

Horseshoe Lake marginally exceeded Ro  1 [120], with a limited carrying capacity 

according to the Ricker density dependence function [85]. These density dependence 

functions were used as calibration parameters to limit fecundity in the BROOK and 

MINNOW models in order to simulate total estimated population numbers (preced-

ing spawning) and population growth rates in Hunt Creek [121] and Horseshoe Lake 

[120], respectively.

3.3.1.2 Results and Discussion

The BROOK model predicted that continuous NP exposure would not pose a risk to 

brook trout; in fact, high exposure concentrations of 50 μg l–1 could even enhance 

population numbers by up to 20%. On the other hand, the MINNOW model pre-

dicted that the same concentration of NP would cause a population decline of 15% 

[3]. Considering the stochasticity in both models, there is still a possibility that NP 

could cause a decline in both populations. The greater sensitivity of the MINNOW 

model to NP — that is, the higher probability of a 25% reduction in the popula-

tion — stems from the relatively low lifetime reproductive capacity of individu-

als. The majority of fathead minnows spawn only once, whereas brook trout may 

have up to three spawning seasons, over which time fecundity increases almost 

exponentially. Generally speaking, in brook trout, increasing fecundity appears 

to more than compensate for the observed reduction in survival rates (73% to 

95%) of laboratory controls (Table 3.5). This is not the case in fathead minnows, 

which supports the suggestion that life-history characteristics such as life span are 

important determinants of a species’ risk from exposure to estrogens and estrogen 

mimics [49].

With a time step of 1 day, the MINNOW model is capable of resolving the 

effects of chemicals with discrete seasonal applications such as MXC, whereas 

the BROOK model, with an annual time step, is not appropriate. Our predictions 
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indicated that MXC applications may potentially cause a 10% reduction in fathead 

minnow population size, but only if concentrations greatly exceed maximal pre-

dicted environmental exposure concentrations. Therefore, MXC presents a lower 

risk to the sustainability of fathead minnow populations than NP, mainly because 

NP exposure can be assumed to occur throughout the year. However, to put these 

predictions into context, the exposure simulations for neither MXC nor NP caused 

the fathead minnow population to decline by more than 50%. This level of effect is 

less than the natural variations observed in Horseshoe Lake [101] but greater than 

the 20% limit stated in one set of U.S. state regulations, albeit for Oregon rather 

than Minnesota [56].

3.3.2 ACCOUNTING FOR THE EFFECTS OF OTHER ENVIRONMENTAL

FACTORS IN CONJUNCTION WITH CHEMICAL EXPOSURE

3.3.2.1 Overview and Model Setup

The second case study, adapted from Brown et al. [67], illustrates how the ecologi-

cal impact of two EDCs, nonylphenol (NP) and ethinylestradiol (EE2), can vary 

within the same species and also within the same population, following significant 

changes in life-history strategy and demographic structure with time. Such changes 

may be linked to fishing pressure or environmental factors, such as temperature 

and food availability, affecting annual recruitment success, or major selection pres-

sures (for example, those associated with disease outbreaks). The subject of this case 

study, the population of perch (Perca fluviatilis) in Windermere, United Kingdom, 

has been affected by each of these “pressures” in the past 50 years. This highlights 

the importance of defining the “assessment” or “meta-population” not only spatially 

(for example, within a lake, river reach, or catchment), but also temporally. This is 

especially important given predictions of global climate change.

Although perch is not an accepted test species nor a close relation to those species 

commonly used in regulatory studies, there are several reasons to commend it as an 

environmental monitor or sentinel species. It has a wide geographical distribution 

extending from Great Britain through Northern Europe, including Scandinavia, to 

Northeast Asia. Despite this, individuals have a narrow home range [123], which, 

along with their position as predators in the aquatic food chain, means that perch 

could be particularly susceptible to point-source chemical discharges [67].

Extensive life-history data for perch inhabiting the North Basin of Windermere 

[124–128] were used to parameterize the PERCH control model. These data rep-

resented two distinct phases of stable recruitment and contrasting demographic 

structures preceding and following the outbreak of “perch disease” (ferunculosis). 

Between 1966 and 1976, environmental conditions favored high recruitment success 

and growth rates, and fish had life spans of up to 15 years. Following the disease out-

break in 1976, recruitment was temporarily impaired and, subsequently, the number 

of age classes was reduced to five or less.

Using the Ricker density dependence function [85] to limit individual fecundity, 

the pre- and postdisease control models were calibrated against estimates of total 
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population size based on mark-and-recapture data over these periods. Laboratory 

effects data concerning survival, growth, and reproduction in other fish species 

(Table 3.5) were superimposed on both control models to assess the impact of dif-

ferential exposure of NP and EE2 on population sustainability and recovery. Like 

the MINNOW and BROOK models, the PERCH model simulated the population 

dynamics of female fish.

3.3.2.2 Results and Discussion

Sustained high-level exposure of EE2 (0.01 μg l–1) had a high probability of caus-

ing the extinction of the confined fish population in Windermere due to reproduc-

tive failure in the majority of individuals [67]. However, such an exposure scenario 

is unlikely. Far greater uncertainty surrounds the prediction of effects due to low-

level exposure of fish populations. In the case of EE2, statistically significant effects 

observed in laboratory studies (that is, fecundity lowered by 30%) did not translate 

into significant population effects according to the PERCH model predictions. This 

is not surprising, as the control life-history data showed high natural variability in 

terms of individual vital rates, even during the selected periods of stable recruit-

ment. Our work suggests that for a decline in the perch population numbers to be 

significant in Windermere, it would have to be substantially more than 50%. Our 

model predictions indicated that the postdisease population was more vulnerable 

than the predisease population and had a significantly greater probability of declin-

ing by 50% following single chemical exposure. However, both populations were 

shown to be equally likely to decline following combined chemical exposure to NP 

and EE2, assuming additivity of effects [129]. This supports the “risk cup” concept, 

taking into account the effects of mixtures as well as other cumulative background 

stressors in the environment [2].

The PERCH model showed that the rate of recovery in population numbers was a 

more sensitive measure in terms of differentiating the effects of low and high chem-

ical exposure, as well as the vulnerability of populations with contrasting demo-

graphic structures, histories, or levels of background stress. However, properties 

such as genetic diversity within a population may take considerably longer to recover 

than its demographics (especially if it is confined), and reduction in genetic diversity 

(as opposed to reduction in fecundity) could have a far more pronounced effect, 

especially if the fitness of remaining individuals is eroded, eventually giving way to 

a sudden population crash [67].

3.3.3 USING FIELD BIOMARKER RESPONSES IN MALE AND FEMALE

FISH TO PREDICT POPULATION-LEVEL EFFECTS

3.3.3.1 Overview

The third case study concerns the assessment of the impact of steroidal estrogens 

estrone (E1), 17-  estradiol (E2) and the synthetic mimic 17-  ethinylestradiol 

(EE2) on roach populations in U.K. rivers to help enable the derivation of statutory 
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Environmental Quality Standards for these substances under the European Water 

Framework Directive. Roach (Rutilus rutilus) is an abundant freshwater fish species 

in many European rivers and lakes [18,130,131], particularly around treated sewage 

discharges, which are the main sources of steroidal estrogens in surface waters [46].

The evidence of endocrine disruption in wild fish populations (particularly roach) 

is substantial in terms of the occurrence of intersex males (possessing varying 

degrees of feminine characteristics) in rivers with elevated concentrations of ste-

roidal estrogens [36,38,132]. However, the consequences of endocrine disruption, 

including intersex, on the sustainability of the affected populations have been heav-

ily debated for some time [133,134]. Therefore, the assessment of endocrine disrup-

tion in roach on a catchment scale (EDCAT 7) is being coordinated by the U.K. 

Environment Agency (EA) and the Department for the Environment Fisheries and 

Rural Affairs (DEFRA). This assessment focuses on a series of spawning studies 

involving wild fish, in which the contribution of intersex fish (as percent parentage) 

is assessed. Data from these studies are being used to validate a roach population 

dynamics model (ROACH), which will then be used to extrapolate fisheries data 

combined with biomarker assessments of intersex incidence and severity for roach in 

U.K. rivers, to predict population impact.

Intersex, in gonochoristic (discrete sex) fish, refers to the alteration in normal sexual 

differentiation leading to the co-occurrence of male and female characteristics in the 

gonad and/or reproductive tract. It may be accompanied by: alteration of sex steroid 

hormone levels, delay in maturation rate; change in phenotypic sex ratio; reduction 

in male fertility; reduction in female fecundity; alteration in spawning behaviour. 

(Adapted from Jobling et al., p. 516 [46])

The ROACH model is an IB model, which incorporates the variability of ED 

effects in wild roach populations, including intersex and the consequences on male 

fertility and maturation rate, as well as female fecundity. This modeling framework 

also provides scope for the inclusion of behavioral effects reflecting the social domi-

nance of individuals, particularly in the act of spawning.

3.3.3.2 Control Model Setup

It is assumed that individuals progress through age classes distinguished, among other 

things, by differences in annual survival rates. These were estimated from the U.K. 

Environment Agency’s fisheries data, as well as wider published data for the ROACH 

model. It is accepted that the survival rate after maturity is fairly stable [135] and that 

females generally grow faster, mature later, and live longer than males [136].

A submodel for a dependency on external water temperature has also been included 

in the ROACH model; a base set of quintile temperatures for a U.K. river was used in 

the control model. The ROACH growth model was calibrated using the von Bertalanffy 

equation [137] (Figure 3.4). A repeating cyclic state was achieved in the control model 

(with the application of a single set of annual quintile temperatures), which predicts 

rapid growth in the spring and summer, with minimal growth during the autumn and 

winter months, reflecting the observed seasonal pattern. It should be noted that these 
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types of growth models do not account for the availability of food and necessary ration 

for optimal growth; therefore, we assumed that ration is not limiting.

Density dependence in the ROACH model was expressed as a multiplier that 

reduces the absolute fecundity according to the Beverton–Holt function, whose 

parameters were derived from EA fisheries stock recruitment data [138]. This den-

sity dependence model [84] was adopted because roach exhibit phenotypic plasticity 

in growth and maturation, leading to asymmetries in cohort size spectra — that is, 

some fish acquire more resources than others and this asymmetry increases as they 

grow larger [139,140].

3.3.3.3 Effects Parameterization

The ROACH model considers each of the individuals within a population inhabiting 

a specific or U.K. average lowland river and can allow for individual susceptibilities 

conferred by chance or inherent variation within a population.

Although there is a range of qualitative information on the histological condition 

of male roach associated with intersex, there is little in the literature quantifying the 

effects on male fertility. We concentrated on the results from the work by Jobling et al. 

[46], because quantitative effects on male fertility (and female fecundity) are reported 

for a range of intersex severities found in U.K. rivers. These effects are characterized 

in terms of the percent reduction in the number of males spermiating, reduction in 

percent survival (taken as percent hatch in the model), and percent reduction in fecun-

dity of females (Figure 3.5). During spawning it is assumed that sperm is in excess 

[51,122], and we assumed that each sperm has an equal chance of fertilizing an egg. 

Thus, the effect of intersex on male sperm production in terms of the contribution 

of individual males to spawning can be assumed to be proportionate to the fraction 
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relationship log (F)  a.log (L)-b, where “a” and “b” are constants. (See R.H.K. Mann, J. Fish 
Biol., 5, 707, 1973).
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of roach in each intersex category (based on feminization index). Then, using the 

percent survival factor (with uncertainty), the proportion of eggs that actually hatch 

was calculated. It is important to note that sperm competition was not quantified in 

the laboratory data used to estimate the fertility of intersex males [46] and therefore 

the above assumption may not be valid. Quantifying differences in the motility and 

viability of sperm from different classes of intersex fish in the wild may be equally if 

not more important than understanding the effects of EDCs on social dominance and 

estimating the contribution of individual males to spawning. It is intended that these 

data will be provided by the EDCAT 7 program in due course.

3.3.3.4 Results and Discussion

To date, our effects predictions concentrate on population effects associated with 

intersex in roach, mediated by changes in male fertility and female fecundity. Effects 

relating, for example, to reduced survival or delayed maturation in intersex males 

have so far been ignored. Conservative risk assessment dictates that these should be 

taken into account. Nevertheless, current model predictions serve to illustrate that 

quantitative biomarkers of intersex in roach may be related to detectable population 

effects for this species.

So far, we simulated the effects on male fertility and female fecundity assuming 

a range of intersex severities are associated with adult males such that 25% are allo-

cated randomly to each of the four classes or levels of intersex (Table 3.6). This is a 

crude way of simulating differential exposure and age-related intersex occurrence 

(that is, intersex increasing with age [50]), and our preliminary results indicate a 

20% reduction in postspawning population numbers (Figure 3.6).

There are potentially a number of other factors relating directly to roach and the 

ED effects of steroidal estrogens that are not accounted for in the above simulation, 

and this could positively or negatively affect population sustainability (Table 3.7).

Future experimental and field data (from the EDCAT 7 programme) quantifying 

the relative contribution of intersex roach to spawning will be used to further develop 

Parasites or tumors present?
Plasma VTG concentration 
Feminization index/severity 

score (level of oogenesis in

testes)
Spermatogenesis index 
Sperm density, volume, and

motility
Feminized sperm duct (Y/N) 
Gonadosomatic index 

Age-specific survival 
Age-specific growth rate 
% Mature in each age class 
Female fecundity (ovulating?) 
Male fertility (spermiating?)  

Contribution to spawning

(Fertilization success,

hatching success, parentage of

offspring)
Sex ratio 

FIGURE 3.5 The effects of intersex on the ROACH model: linking biochemical/somatic, 

individual-level, and population-level effects. (Conceptual model adapted from Jobling and 

Burn, personal communication. With permission.)
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TABLE 3.6
Individual Parameters Associated with Each Intersex Class

Level of Intersex in 
Males (Testes)

Percent Fecundity 
for Corresponding 

Females
Percent Males
Spermiating

Percent Hatching 
and Fry Surviving

All male features 100 97.6 45 (st. dev.  1.7)

Ovarian cavity 100 97.0 45 (st. dev.  1.7)

Some oocytes 100 82.6 45 (st. dev.  1.7)

Severely feminized 80 (st. dev.  3) 66.7 15 (st. dev.  1.7)

Source: Adapted from S. Jobling et al., Biol. Reprod., 67, 519–521, 2002. (With permission.)

and validate the ROACH model. Additional data (Table 3.5) will also be incorpo-

rated. As mentioned previously, the purpose of the model is to relate endocrine dis-

ruption, including intersex incidence and severity, to population-level impact in river 

catchments in order to determine the adequacy of Environmental Quality Standards 

for steroidal estrogens (E1, E2, and EE2). However, caution should be used when 

attempting to extrapolate between biomarker effects such as intersex and population-

level effects, and that there is no substitute for traditional effects endpoints including 

survival, growth, development, and reproduction in population-level ecological risk 

assessment [40,67].
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within the population (25% in each intersex class and 25% are unaffected).



© 2009 by Taylor & Francis Group, LLC

72 Endocrine Disruption Modeling

Determining an acceptable level of impact and risk is facilitated by stochastic mod-

els (Section 3.2.1.1) such as the ROACH model, but the ultimate decision is a policy 

decision, taking into account definitions of “acceptable ecological quality” or “refer-

ence conditions,” for example, under the European Water Framework Directive.

3.4 CONCLUSIONS

Population dynamics modeling is a mature science discipline with its roots in fisher-

ies and resource management, conservation biology, and increasingly, environmen-

tal toxicology [102]. Available models range from simple matrix models to more 

complex IB models, but those that are transparent, simple to use, and suitably cali-

brated and validated are particularly useful for ERA. It is important to treat model 

predictions as a guide for decision making [105]. As a general rule, providing that 

appropriate scientific rigor is applied, simple models are preferable as they are easier 

to parameterize and are less prone to compounding errors. Ultimately, model selec-

tion depends on the question being asked. For example, simple, stage-based models 

TABLE 3.7
Factors That Could Positively or Negatively Affect Population Sustainability

Positive Factors Negative Factors

aIncreasing annual mean temperatures (assuming 

they are tolerable) could have positive effects on 

fish growth and relative fecundity

Reduction in male fertility and female fecundity 

[46]

aReduced survival in intersex males
aDelayed maturation in intersex males [141]
aComplete blockage of the sperm duct (reported in 

some severe intersex cases) would prevent sperm 

release [36]
aSpawning behavior upset by increased male and 

female aggression [48,142]; altered courtship 

behavior, mate competition [143]
aReduced sperm competition [46]

Positive and Negative

General behavior including avoidance of noxious contaminants versus tendency to feed around 

organically enriched STP effluent discharges [46]

Immigration and emigration may reinvigorate or deplete populations by adding or removing num-

bers of individuals and or genetic diversity [144]

Note: The model domain (equating to an initial adult population of 5,000 fish, as illustrated in Figure 3.6)

is assumed to be large enough to minimize the influence of immigration and emigration, but if a significant 

number of more or less impacted fish exchange with fish from the model domain, this could significantly 

affect predictions.

a Not yet included in the ROACH simulations depicted in Figure 3.6.
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may be adequate for determining the inherent sensitivities of different species to 

chemicals, including EDCs, as illustrated in case study 1. This information may then 

be used to target appropriate laboratory testing or field monitoring effort as part of a 

refined risk assessment.

The utility of population dynamics models in regulatory decision making stems 

from their ability to quantify risk (for example, quasi-extinction risk), integrate mul-

tiple effects endpoints (rather than focus on the most sensitive endpoint or lowest 

observed effect concentration [LOEC]), extrapolate from laboratory measurements 

to predicted field effects, and optimize the use of finite experimental and economic 

resources [25–27,56]. Some models are specifically aimed at elucidating the subtle 

reproductive and transgenerational effects of EDCs on populations and their impact 

on population sustainability [54], whereas others may be used to assess the population-

level impact of particular EDC effects such as intersex [73] (case study 3).

In addition, population dynamics modeling enables the combined risk assessment 

of multiple stressors (e.g., EDC mixtures) and can take into account other existing or 

historical selective pressures (e.g., disease) acting on a population, as illustrated in 

case study 2. Stochastic models, which incorporate the inherent variability among 

individuals in a population, are able to highlight critical effects parameters (via 

sensitivity analysis) and determine the probability that the population will become 

extinct or fall below a predefined level. The acceptable level of risk (for example, 

probability of population extinction) is down to a relatively “straightforward” policy 

decision and may range from zero for critically endangered species to perhaps 0.2 

to 0.5 (20% to 50%) for more ubiquitous species. The crux is defining “What is the 

minimum level below which a population is no longer sustainable?” This question 

is addressed using population viability analysis [66], and the answer depends on the 

species or population to which it pertains. In the final analysis, the results from popu-

lation dynamics models should be interpreted in the context of the range of normal 

reference conditions for the population (or metapopulation) in question. However, 

natural variations in population numbers frequently involve population numbers ris-

ing and falling by as much as 50% in successive generations, as highlighted in case 

studies 1 and 2. This degree of tolerance is not typically included within traditional 

ERA, potentially leading to overconservatism.

Validation of models for predicting the effects of chemicals on fish populations 

is a key issue. Simple models representing constant exposure, both spatially and 

temporally, to a single chemical are obviously easiest to validate (for example, in the 

laboratory), but they lack environmental realism. In reality, chemical exposure and 

the recipient organisms or populations are in a constant state of flux. Biological vari-

ability is typically included within the “control” model via the input of life-history 

data. Variable chemical exposure can also be incorporated in temporally or spatially 

explicit models [61]. The modeling of open systems such as rivers presents a greater 

challenge in terms of validation than enclosed systems such as lakes, in which con-

taminants and populations are confined. However, full validation is invariably not 

possible, especially for models used to predict long-term population extinction prob-

ability [104].

The population dynamics models presented as case studies in this chapter are 

autecology models and as such do not specifically consider species interactions, 
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although competition and predation are included implicitly in life-history data used 

to parameterize the control models in each case. Alternative ecological modeling 

approaches such as food chain or ecosystem models may be more applicable than 

those presented here, especially if a chemical has the potential to bioaccumulate and 

biomagnify up the food chain. In cases such as these, it may also be advisable to con-

sider physiological responses, including the metabolism of the compound via toxi-

cokinetic- and toxicodynamic-based modeling approaches as described elsewhere in 

this book (see Chapter 4).

An interesting point highlighted by case study 2 is the fact that properties such as 

genetic diversity within a population may take considerably longer to recover than its 

demographics (especially if it is confined), and reduction in genetic diversity (as opposed 

to reduction in fecundity) could have a far more pronounced effect [67,144]. This kind of 

effects assessment is currently beyond the scope of population dynamics modeling.

Despite its considerable benefits, the main drawback concerning population-level 

ERA is that it is more complex than existing organism-level ERA. Therefore, its future 

use will depend on the availability of suitable modeling tools, input data, and guid-

ance and training for risk assessors and risk managers [56]. The emergence of ver-

satile model-making software and their intercalibration with a wide range of model 

scenarios and templates [146] will facilitate this greatly by providing a common plat-

form for population dynamics modeling, which is readily available to risk assessors.

REFERENCES

[1] L.W. Barnthouse, Population level effects, in Ecological Risk Assessment, Suter, ed., 
Lewis, Chelsea, MI, 1993, pp. 247–274.

[2] W.E. Schaaf, D.S. Peters, L. Coston-Clements, D.S. Vaughan, and C.W. Krouse, A
simulation model of how life history strategies mediate pollution effects on fish popu-
lations, Estuaries 16 (1993), pp. 697–702.

[3] A.R. Brown, A.M. Riddle, N.L. Cunningham, T.J. Kedwards, N. Shillabeer, and T.H. 
Hutchinson, Predicting the effects of endocrine disruptors on fish populations, Human
Ecol. Risk Assess. 9 (2003), pp. 761–788.

[4] J.A. Wilson, J. French, P. Kleban, S.R. McKay, and R. Townsend, Chaotic dynam-
ics in a multiple species fishery: A model of community predation. Ecol. Model. 58 
(1991), pp. 303–322.

[5] L.W. Barnthouse, Modelling ecological risks of pesticide application: A review of avail-
able approaches, Oak Ridge National Laboratory, for the Office of Pesticide Programs, 
U.S. Environmental Protection Agency, contract DE-AC05-84OR21400, 1996.

[6] A. Aubone, Threshold for sustainable exploitation of an age-structured fishery stock,
Ecol. Model. 173 (2004), 95–107.

[7] J.K. Summers, Simulating the indirect effects of power plant entrainment losses on an 
estuarine ecosystem, Ecol. Model. 49 (1989), pp. 31–47.

[8] K. Morita and A. Yokota, Population viability of stream-resident salmonids after habi-
tat fragmentation: A case study with white-spotted charr (Salvelinus leucomaenis) by 
an individual-based model, Ecol. Model. 155 (2002), pp. 85–94.

[9] L.W. Barnthouse, G.W. Suter, A.E. Rosen, and J.J. Beauchamp, Estimating responses 
of fish populations to toxic contaminants, Environ. Toxicol. Chem. 6 (1987), 
pp. 811–824.



© 2009 by Taylor & Francis Group, LLC

Population Dynamics Modeling 75

[10] W.E. Schaaf, D.S. Peters, D.S. Vaughan, L. Coston-Clements, and C.W. Krouse, Fish 
population responses to chronic and acute pollution: The influence of life history 
strategies. Estuaries 10 (1987), pp. 267–275.

[11] S.N. Wood, Semi-parametric population models, Aspects Appl. Biol. 53 (1999), 
pp. 41–49.

[12] M.F. Acevedo, D.L. Urban, and H.H. Shugart, Models of forest dynamics based on 
roles of tree species, Ecol. Model. 87 (1996), pp. 267–284.

[13] K. Louie, G.C. Wake, G. Lambert, A. MacKay, and D. Barker, A delay model for the 
growth of ryegrass-clover mixtures: Formulation and preliminary simulations. Ecol. 
Model. 155 (2002), pp. 31–42.

[14] D. Schley and M.A. Bees, Delay dynamics of the slug Deroceras reticulatum, an agri-
cultural pest, Ecol. Model. 162, (2003), pp. 177–198.

[15] K.A. Rose, E.S. Rutherford, D.S. McDermot, J.L. Forney, and E.L. Mills, Individual-
based model of yellow perch and walleye populations on Oneida Lake, Ecol. Monogr. 
62 (1999), pp. 127–154.

[16] W. van Winkle, K.A. Rose, and R.C. Chambers, Individual-based approach to fish 
population dynamics: An overview, Trans. Am. Fish Soc. 122 (1993), pp. 397–403.

[17] J.S. Jaworska, K.A. Rose, and A.L. Brenkert, Individual-based modelling of PCB 
effects on young-of-the-year largemouth bass in southeastern U.S. reservoirs. Ecol. 
Model. 99 (1997), pp. 113–135.

[18] F. Holker and B. Breckling, A spatio-temporal individual-based fish model to inves-
tigate emergent properties at the organismal and the population level, Ecol. Model. 
186 (2005), pp. 406–426.

[19] European Chemicals Bureau, Technical Guidance Document in support of Commission 
Directive 93/67/EEC on risk assessment for new notified substances and Commission 
Regulation (EC) No. 1488/94 on risk assessment for existing substances Part 2, 2006.

[20] U.S. EPA, Guidelines for ecological risk assessment, U.S. EPA, Washington, DC, 
EPA/630/R-95/002Fa, 1998a.

[21] METI, Risk Assessment of Endocrine Disrupters, February 2002 (revised May 2003), 
Ministry of Economy, Trade and Industry, Japan, 2003.

[22] W.H. Clements and P.M. Kiffney, Assessing contaminant effects at higher levels of 
biological organisation. Environ. Toxicol. Chem. 13 (1994), pp. 357–359.

[23] A. Joern and K.D. Hoagland, In defense of whole-community bioassays for risk 
assessment, Environ. Toxicol. Chem. 15 (1996), pp. 407–409.

[24] P.J. Campbell, D.J.S Arnold, T.C.M. Brock, N.J. Grandy, W. Heger, F. Heimbach, S.J. 
Maund, and M. Streloke, Guidance document on higher-tier aquatic risk assessment 
for pesticides (HARAP), SETAC-Europe, Brussels, 1999.

[25] S. Bradbury, T.C.J. Feijtel, and C.J. van Leeuwen, Meeting the scientific needs of ecological 
risk assessment in a regulatory context, Environ. Sci. Technol. 38 (2004), pp. 463–470.

[26] P. Calow, P. Armitage, P. Boon, P. Chave, E. Cox, A. Hildrew, M. Learner, L. Maltby, 
G. Morris, J. Seager, and B. Whitton, Ecological issues no. 1: River water quality.
British Ecological Society, Field Studies Council, 1990.

[27] S.J. Maund, T.N. Sherratt, T. Stickland, J. Biggs, P. Williams, N. Shillabeer, and P.C. 
Jepson, Ecological considerations in pesticide risk assessment for aquatic ecosys-
tems, Pestic. Sci. 49 (1997), pp. 185–190.

[28] P.E. Gibbs, P.L. Pascoe, and G.R. Burt, Sex change in the female dog whelk Nucella
lapillus, induced by tributyltin from anti-fouling paints, J. Mar. Biol. Ass. U.K. 68 
(1988), pp. 715–731.

[29] G.W. Bryan, P.E. Gibbs, and G.R. Burt, A comparison of the effectiveness of tri-n-
butyltin chloride and five other organotin compounds in promoting the development 
of imposex in the dog whelk, Nucella lapillus, J. Mar. Biol. Ass. U.K. 68 (1988), 
pp. 733–744.



© 2009 by Taylor & Francis Group, LLC

76 Endocrine Disruption Modeling

[30] D.M. Fry and C.K. Toone, DDT-induced feminisation of gull embryos, Science 213 
(1981), pp. 922–924.

[31] C.L. Alzieu, J. Sanjauna, J.P. Deltreil, and M. Borel, Tin contamination in Arcachon 
bay: Effects on oyster shell anomalies, Mar. Pollut. Bull. 17 (1986), pp. 494–498.

[32] P.J.H. Reijnders, Reproductive failure in common seals feeding on fish from polluted 
coastal waters, Nature 342 (1986), pp. 456–457.

[33] L.J. Guillette Jr., T.S. Gross, G.R. Masson, J.M. Matter, H.F. Percival, and A.R. 
Woodward, Developmental abnormalities of the gonad and abnormal sex hormone 
concentrations in juvenile alligators from contaminated and control lakes in Florida,
Environ. Health Perspect. 102 (1994), pp. 680–688.

[34] J. Raloff, The gender benders, Sci. News 145 (1994), pp. 24–27.
[35] S.A. Bortone and W.P. Davis, Fish intersexuality as an indicator of environmental 

stress, Bioscience 44 (1994), pp. 165–172.
[36] S. Jobling, M. Nolan, C.R. Tyler, G. Brighty, and J.P. Sumpter, Widespread sexual 

disruption in wild fish, Environ. Sci. Technol. 32 (1998), pp. 2498–2506.
[37] T. Colborn, D. Dumanoski, and J. Peterson Myers, Our Stolen Future: Are We 

Threatening Our Fertility, Intelligence, and Survival? A Scientific Detective Story,
Dutton, New York, 1996.

[38] J.P. Sumpter and A.C. Johnson, Lessons from endocrine disruption and their applica-
tion to other issues concerning trace organics in the aquatic environment, Environ. 
Sci. Technol. 39 (2005), pp. 4321–4332.

[39] D.E. Hinton, S.W. Kullman, R.C. Hardman, D.C. Voz, P.J. Chen, M. Carney, and D.C. 
Bencic, Resolving mechanisms of toxicity while pursuing ecotoxicological relevance?
Mar. Pollut. Bull. 51 (2005), pp. 635–648.

[40] T.H. Hutchinson, G.T. Ankley, H. Segner, and C.R. Tyler, Screening and testing for 
endocrine disruption in fish — biomarkers as “signposts not traffic lights” in risk 
assessment, Environ. Health Perspect. 114 (Suppl 1) (2006), pp. 106–114.

[41] European Medicines Agency, Pre-authorisation evaluation of medicines for human 
use. Guideline on the environmental risk assessment of medicinal products for human 
use, EMEA/CHMP/SWP/4447/00, 2006.

[42] J.W. Owens, Report of eight 21-day fish endocrine screening assays with additional 
test substances for phase-3 of the OECD validation program: Studies with octylphenol 
in the fathead minnow (Pimephales promelas) and zebrafish (Danio rerio) and with 
sodium pentachlorophenol and androstenedione in the fathead minnow (Pimephales 
promelas), OECD, 2007. Available at www.oecd.org/dataoecd/62/36/38784404.pdf.

[43] European Workshop on the impacts of endocrine disruptors on human health and 
wildlife, Report of the proceedings, Weybridge, United Kingdom, 1996.

[44] C.W. Schmidt, The lowdown on low-dose endocrine disruptors, Environ. Health 
Perspect. 109 (2001), pp. 420–421.

[45] L. Lin, M.E. Andersen, S. Heber, and O. Zhang, Non-monotonic dose–response rela-
tionship in steroid hormone receptor-mediated gene expression, J. Molec. Endocrinol. 
38 (2007), pp. 569–585.  

[46] S. Jobling, S. Coeya, J.G. Whitmore, D.E. Kime, K.J.W. van Look, B.G. McAllister, 
N. Beresford, A.C. Henshaw, G. Brighty, C.R. Tyler, and J.P. Sumpter, Wild intersex 
roach (Rutilus rutilus) have reduced fertility, Biol. Reprod. 67 (2002), pp. 515–524.

[47] V. Palace, R.E. Evans, K. Wautier, L. Vandenbyllardt, W. Vandersteen, and K. Kidd, 
Induction of vitellogenin and histological effects in wild fathead minnows from a lake 
experimentally treated with the synthetic estrogen, ethynylestradiol, Can. J. Water 
Qual. 37 (2002), pp. 637–650.

[48] P. Blanchfield, A. Majewski, V. Palace, K. Kidd, and K. Mills, Reproductive and pop-
ulation-level impacts of a synthetic estrogen on the fathead minnow, poster from the 
SETAC conference, Austin, TX, 2003.

http://www.oecd.org


© 2009 by Taylor & Francis Group, LLC

Population Dynamics Modeling 77

[49] K.A. Kidd, P.J. Blanchfield, K.H. Mills, V.P. Palace, R.E. Evans, J.M. Lazorchak, and 
R.W. Flick, Collapse of a fish population after exposure to a synthetic estrogen, Proc. 
Natl. Acad. Sci. USA 104 (2007), pp. 8897–8901.

[50] K.E. Liney, S. Jobling, J.A. Shears, P. Simpson, and C.R. Tyler, Assessing the sensi-
tivity of different life stages for sexual disruption in Roach (Rutilus rutilus) exposed 
to effluents from wastewater treatment works, Environ. Health Perspect. 113 (2005), 
pp. 1299–1307.

[51] G.S. Helfman, B.B. Collette, and D.E. Facey, The diversity of fish. Blackwell Science, 
London, 1997.

[52] D.A. Holdway, E.J. Kemp, and D.G. Dixon, Acute toxicity of methoxychlor to larva; 
white sucker (Catostomus commersoni) as modified by age, food availability and egg 
pre-exposure, Can. J. Fish. Aquat. Sci. 44 (1987), pp. 227–232.

[53] D.A. Holdway and D.G. Dixon, Effects of methoxychlor exposure of flagfish egg 
(Jordanella floridae) on hatchability, juvenile methoxychlor tolerance and whole-body 
levels of tryptophan, serotonin and 5-hydroxyindoleacetic acid, Water Res. 20 (1986), 
pp. 893–897.

[54] K. McTavish, H. Stech, and F. Stay, A modelling framework for exploring the pop-
ulation-level effects of endocrine disruptors, Environ. Toxicol. Chem. 17 (1998), 
pp. 58–67.

[55] M.D. Anway, A.S. Cupp, M. Uzumcu, and M.K. Skinner, Epigenetic transgen-
erational actions of endocrine disruptors and male fertility, Science 308 (2005), 
pp. 1466–1469. 

[56] G.R. Biddinger, P. Calow, P. Delorme, G. Harris, B. Hope, B.-L. Lin, M.T. Sorensen, 
and P. van den Brink, Managing risk to ecological populations, in Population-Level 
Ecological Risk Assessment, L.W. Barnthouse, W.R. Munns Jr., and M.T. Sorensen, 
eds., Taylor and Francis, New York, 2008, pp. 7–40.

[57] F. De Laender, K.A.C. De Schamphelaere, P.A. Vanrolleghem, and C.R. Janssen, 
Comparison of different toxic effect sub-models in ecosystem modelling for ecologi-
cal effects assessments and water standard setting, Ecotoxicol. Environ. Safety 69 
(2008), pp. 13–23.

[58] A.F.W. Schroer, J.D.M. Belgers, C.M. Brock, A.M. Matser, S.J. Maund, and P.J. van 
den Brink, Comparison of laboratory single species and field population-level effects 
of the pyrethroid insecticide cyhalothrin on freshwater invertebrates, Arch. Environ. 
Contam. Toxicol. 46 (2004), pp. 324–335.

[59] K. Knauer, S. Maise, G. Thoma, U. Hommen, and J. Gozalez-Valero, Long-term vari-
ability of zooplankton populations in aquatic mesocosms, Environ. Toxicol. Chem. 24 
(2005), pp. 1182–1189.

[60] G.H.P. Arts, L.L. Buijse-Bogdan, J.D.M. Belgers, C.H. va Rhene-Kersten, R. 
Winngaarden, I. Roessink, S.J. Maund, P.J. van den Brink, and T.C.M. Brock, 
Ecological impact in ditch mesocosms of simulated spray drift from a crop protection 
program for potatoes, Int. Environ. Assess. Manage. 2 (2006), pp. 105–125.

[61] C.J. Topping, T.S. Hansen, T.S. Jensen, J.U. Jepsen, F. Nikolajsen, and P. Odderskær, 
ALMaSS, an agent-based model for animals in temperate European landscapes, Ecol. 
Model. 167 (2003), pp. 65–82.

[62] P. van den Brink, H. Baveco, J. Verboom, and F. Heimbach, An individual-based 
approach to model spatial population dynamics of invertebrates in aquatic ecosystems 
after pesticide contamination, Environ. Toxicol. Chem. 26 (2007), pp. 2226–2236.

[63] P. van den Brink, Population modelling: A tool for Environmental Risk Assessment,
CEFIC Long-range Research Initiative, ECO10 (in progress).

[64] V. Grimm, P. Chapman, P. Thorbek, F. Heimbach, J. Wogram, P. van den Brink, and 
V. Forbes, Ecological models in support of regulatory risk assessments of pesticides: 
Developing a strategy for the future, LEMTOX Workshop (SETAC), 2007.



© 2009 by Taylor & Francis Group, LLC

78 Endocrine Disruption Modeling

[65] V. Grimm, P. Thorbeck, A. Schmolke, and P. Chapman, State-of-the-art of ecological 
modelling for pesticide risk assessment: a critical review, in Population-level ecologi-
cal risk assessment, in Ecological models in support of regulatory risk assessments of 
pesticides: developing a strategy for the future: Proceedings of the LEMTOX work-
shop Leipzig 2007, V.E. Forbes, U. Hommen, P. Thorbek, F. Heimbach, P.J. Van den 
Brink, J. Wogram, H-H. Thulke, and V. Grimm, eds., SETAC series, CRC/Taylor& 
Francis, New York, (in press).

[66] M.L. Shaffer, Minimum population sizes for species conservation, Bioscience 31 
(1981), pp. 131–134.

[67] A.R. Brown, A.M. Riddle, I.J. Winfield, J.M. Fletcher, and J.B. James, Predicting the 
effects of endocrine disrupting chemicals on healthy and disease impacted popula-
tions of perch (Perca fluviatilis), Ecol. Model. 189 (2005), pp. 377–395.

[68] V. Demyanov, S.N. Wood, and T.J. Kedwards, Improving ecological impact assessment by 
statistical data synthesis using process-based models, Appl. Stats. 55 (2006), pp. 41–62.

[69] M. Spencer and S. Ferson, RAMAS_ Ecotoxicology version 1.0a. Applied
Biomathematics, Setauket, NY, 1997.

[70] S. Tuljapurkar and H. Caswell, Structured population models in marine terrestrial 
and freshwater systems, Chapman & Hall, New York, 1997.

[71] D.L. De Angelis, D.K. Cox, and C.C. Coutant, Cannabilism and size dispersal in young-of-
the-year large mouth bass: experiment and model. Ecol. Model. 8 (1980), pp. 133–148.

[72] P.F. Robinson, A.R. Brown, A.M. Riddle, and I.J. Winfield, Modelling the combined 
effects of EDCs and temperature on perch (Perca fluviatilis) in Windermere, SETAC, 
Lille, France, 2005.

[73] P.F. Robinson, A.M. Riddle, A.R. Brown, and M. Gross-Sorokin, A model to predict 
the effects of intersex on roach (Rutilus rutilus) populations in English rivers, SETAC, 
Porto, Portugal, 2007.

[74] J.A. Tyler and K.A. Rose, Individual variability and spatial heterogeneity in fish pop-
ulation models, Rev. Fish Biol. Fisheries 4 (1994), pp. 91–123.

[75] P.H. Leslie, On the use of matrices in certain population mathematics, Biometrika 35 
(1945), pp. 213–245.

[76] R.M. Nisbet, Delay-differential equations for structured populations, in Structured 
Population Models in Marine Terrestrial and Freshwater Systems, S. Tuljapurkar and 
H. Caswell, eds., Chapman & Hall, New York, 1997.

[77] W. van Winkle, H.I. Jager, S.F. Railsback, B.D. Holcomb, T.K. Studley, and J.E. 
Baldrige, Individual-based model of sympatric populations of brown and rainbow 
trout for instream flow assessment: Model description and calibration, Ecol. Model. 
110 (1998), pp. 175–207.

[78] V. Grimm, U. Berger, F. Bastiansena, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, 
T. Grand, S.K. Heinz, G. Huse, A. Huth, J.U. Jepsen, C. Jørgensenc, W.M. Mooij, 
B. Muller, G. Pe’er, C. Piou, S.F. Railsback, A.M. Robbins, M.M. Robbins, E. 
Rossmanith, N. Ruger, E. Strand, S. Souissi, R.A. Stillman, R. Vabø, U. Visser, and 
D.L. DeAngelis, A standard protocol for describing individual-based and agent-
based models, Ecol. Model. 198 (2006), pp. 115–126.

[79] L. Maltby, T.J. Kedwards, V.E. Forbes, K. Grasman, J.E. Kammenga, W.R. Munns Jr., 
A.H. Ringwood, J.S. Weis, and S.N. Wood, Linking individual-level responses and 
population-level consequences, in Ecological Variability: Separating Natural From 
Anthropogenic Causes of Ecosystem Impairment, D.J. Baird and G.A. Burton, eds., 
Penascola, FL, SETAC, 2001, pp. 27–82.

[80] R.A. Pastorok, S.M. Bartell, S. Ferson, and L.R. Ginzburg, Ecological modelling in 
risk assessment: Chemical effects on populations, ecosystems and landscapes, CRC 
Press, Boca Raton, FL, 2002.



© 2009 by Taylor & Francis Group, LLC

Population Dynamics Modeling 79

[81] W.R. Munns Jr., J. Gervais, A.A Hoffman, U. Hommen, D. Nacci, M. Nakamaru, 
R. Sibly, and C.J. Topping, Modelling approaches to population-level ecological 
risk assessment, in Population-Level Ecological Risk Assessment, L.W. Barnthouse, 
W.R. Munns Jr., and M.T. Sorensen, eds., Taylor and Francis, New York, 2008, 
pp. 179–210.

[82] D.S. Vaughan and S.B. Saila, A method for determining mortality rates using the 
Leslie matrix, Trans. Amer. Fish. Soc. 105 (1976), pp. 380–383.

[83] S. Manel, M.K. Scwartz, G. Luikart, and P. Taberlet, Landscape genetics: Combining 
landscape ecology and population genetics, Trends Ecol. Evolut. 18 (2003), 
pp. 189–197.

[84] R.J.H. Beverton and S.J. Holt, On the dynamics of exploited fish populations, (Great 
Britain) Ministry of Agriculture, Fisheries and Food. Fish. Invest. (series 2) 19 (1957),
pp. 500–533.

[85] W.E. Ricker, Computation and interpretation of biological statistics of fish popu-
lations, Bulletin 191 of the Fish Research Board of Canada, Ottawa, Ontario, 
1975.

[86] A. Grant, Population consequences of chronic toxicity: Incorporating density depen-
dence into the analysis of life table response experiments, Ecol. Model. 105 (1998), 
pp. 325–335.

[87] S.J. Moe, Density dependence in ecological risk assessment, in Population-Level 
Ecological Risk Assessment, L.W. Barnthouse, W.R. Munns Jr., and M.T. Sorensen, 
eds., Taylor and Francis, New York, 2008, pp. 69–92.

[88] V.E. Forbes, P. Calow, and R.M. Sibly, Toxicant impacts on density-limited popu-
lations: A critical review of theory, practice and results, Ecol. Appl. 11 (2001), 
pp. 1249–1257.

[89] T.J. Pitcher and P.D.M. MacDonald, Two models of seasonal growth. J. Appl. Ecol. 10 
(1973), pp. 599–606.

[90] S.P. Cox, S.J.D. Martell, C.J. Walters, T.E. Essington, J.F. Kitchell, C. Boggs, and I. 
Kaplan, Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952–1998: 
Estimating population biomass and recruitment of tunas and billfishes, Can. J. Fish. 
Aquat. Sci. 59 (2002), pp. 1724–1735.

[91] E.P. Grist, N.C. Wells, P. Whitehouse, G. Brighty, and M. Crane, Estimating the effects 
of 17 -ethinylestradiol on populations of the fathead minnow Pimephales promelas:
Are conventional toxicological endpoints adequate? Environ. Sci. Technol. 37 (2003), 
pp. 1609–1616.

[92] D.J. Hodgson and S. Townley, Linking management changes to population dynamic 
responses: The transfer function of a projection matrix perturbation, J. Appl. Ecol. 41 
(2004), pp. 1155–1161.

[93] D.H. Miller and G.T. Ankley, Modelling impacts on populations: Fathead minnow 
(Pimephales promelas) exposure to the endocrine disruptor 17 -trenbolone as a case 
study, Ecotoxicol. Environ. Safety 59 (2004), pp. 1–9.

[94] R.V. O’Neill, R.H. Gardener, S.W. Christensen, W. van Winkle, J.H. Carney, and J.B. 
Mankin, Some effects of parameter uncertainty in density-independent and densi-
ty-dependent models for fish populations, Can. J. Fish. Aquat. Sci. 38 (1980), pp. 
91–100.

[95] L.W. Barnthouse, G.W. Suter, and A.E. Rosen, Risks of toxic contaminants to exploited 
fish populations: Influence of life history data uncertainty and exploitation intensity,
Environ. Toxicol. Chem. 9 (1990), pp. 297–311.

[96] T.P. Traas, K.A. Stab, P.R.G. Kramer, W.P. Cofino, and T. Aldenberg, Modelling and 
risk assessment of tributyltin accumulation in the food web of a shallow freshwater 
lake, Environ. Sci. Technol. 30 (1996), pp. 1227–1237.



© 2009 by Taylor & Francis Group, LLC

80 Endocrine Disruption Modeling

[97] T.P. Traas, A.P. van Wezel, J.L.M. Hermens, M. Zorn, A.G.M. van Hattum, and C.J. 
van Leeuwen, Environmental quality criteria for organic chemicals predicted from 
internal effect concentrations and a food web model, Environ. Toxicol. Chem. 23 
(2004), pp. 2518–2527.

[98] J.A. Gervais and H.M. Regan, What conservation biology and natural resource man-
agement can offer population-level ecological risk assessment, in Population-Level 
Ecological Risk Assessment, L.W. Barnthouse, W.R. Munns Jr., and M.T. Sorensen, 
eds., Taylor and Francis, New York, 2008, pp. 129–150.

[99] H.J.M. Verhaar, C.J. van Leeuwen, and J.L.M. Hermens, Classifying environmen-
tal pollutants 1: Structure-activity relationships for prediction of aquatic toxicity,
Chemosphere 25 (1992), pp. 471–491.

[100] D.S. Vaughan, An age structured model of yellow perch in western Lake Erie, in
Quantitative Population Dynamics, International Cooperative, Fairland, MD, 1981, 
pp. 189–219.

[101] U.S. EPA, Endocrine disrupter screening programme: Proposed statement of policy.
Federal Register 63 (1998b), pp. 71542–71568.

[102] L.W. Barnthouse, W.R. Munns Jr., and M.T. Sorensen,. Population-level ecological 
risk assessment. SETAC series, CRC/Taylor & Francis, New York, 2008.

[103] I.R. Franklin and R. Frankham, How large must populations be to retain evolutionary 
potential? Anim. Conserv. 1 (1998), pp. 69–73.

[104] B.W. Brook, J.J. O’Grady, A.P. Chapman, M.A. Burgman, H.R. Ackayaka, and R. 
Frankham,. Predictive accuracy of population viability analysis in conservation biol-
ogy, Nature 6776 (2000), pp. 385–387.

[105] F.L. Bunnell, Alchemy and uncertainty: What are good models? USDA Forest Service 
Pacific NW Research Station, Portland, OR, General Technical Report PNW-GTR-232, 
1989.

[106] J.M. Elliott, Numerical changes and population regulation in young migratory 
trout Salmo trutta in a lake district stream, 1966–1983, J. Animal Ecol. 53 (1984), 
pp. 327–350.

[107] L.A. Ashfield, T.G. Pottinger, and J.P. Sumpter, Exposure of female juvenile rainbow 
trout to alkyl-phenolic compounds results in modification to growth and ovosomatic 
index, Environ. Toxicol. Chem. 17 (1998), pp. 679–686.

[108] K. Lieber, J.A. Gangl, T.D. Corry, L.J. Heinis, and F.S. Stay, Lethality and bio-accu-
mulation of 4-nonylphenol in bluegill sunfish in littoral enclosures, Environ. Toxicol. 
Chem. 18 (1999), pp. 394–400.

[109] S.R. Miles-Richardson, S.L. Pieren, K.M. Schols, V.J. Kramerc, E.M. Snyderd, S.A. 
Snyderd, J.A. Renderb, S.D. Fitzgerald, and J.P. Giesy, Effects of waterborne expo-
sure to 4-nonylphenol and nonylphenol ethoxylate on secondary sex characteristics 
and gonads of fathead minnows (Pimephales promelas), Env. Res. A. 80 (1999), 
pp. 122–137.

[110] C.R. Tyler and E.J. Routledge, Oestrogenic effects in fish in English rivers with evi-
dence of their causation, Pure Appl. Chem. 70 (1998), pp. 1795–1804.

[111] M. Krisfalusi, V.P. Eroschenko, and J.G. Cloud, Methoxychlor and estradiol-17
affect alevin rainbow trout (Onchorhynchus mykiss) mortality, growth and pigmenta-
tion, Bull. Environ. Contam. Toxicol. 61 (1998), pp. 519–526.

[112] T.A. Heming, E.J McGuinness, L.M. George, and K.A. Blumhagen, Effects of pulsed 
and spiked exposure to methoxychlor on early life-stages of rainbow trout, Bull. 
Environ. Contam. Toxicol. 40 (1988), pp. 764–770.

[113] D.A. Holdway and D.G. Dixon, Acute toxicity of pulse-dosed methoxychlor on juve-
nile american flagfish (Jordinella floridae) as modified by age, food availability,
Aquatic Toxicol. 6 (1985), pp. 243–250.



© 2009 by Taylor & Francis Group, LLC

Population Dynamics Modeling 81

[114] M. Krisfalusi, V.P. Eroschenko, and J.G. Cloud, Exposure of juvenile rainbow trout 
(Onchorhynchus mykiss) to methoxychlor results in a dose-dependent decrease in 
growth and survival but does not alter male sexual differentiation, Bull. Environ. 
Contam. Toxicol. 60 (1998), pp. 659–666.

[115] R. Länge, T.H. Hutchinson, C.P. Croudace, F. Siegmund, H. Schweinfurth, P. Hampe, 
G.H. Panter, and J.P. Sumpter, Effects of the synthetic estrogen 17 -ethinylestradiol 
on the life-cycle of the fathead minnow (Pimephales promelas), Environ. Toxicol. 
Chem. 20 (2001), 1216–1227.

[116] S. Jobling, D. Casey, T. Rodgers-Gray, J. Oehlmann, U. Schulte-Oehlmann, S. Pawlowski, 
T. Baunbeck, A.P. Turner, and C.R. Tyler, Comparative responses of molluscs and 
fish to environmental estrogens and an estrogenic effluent, Aquat. Toxicol. 65 (2003),
pp. 205–220.

[117] G.H. Panter, The oestrogenicity of steroids and steroid conjugates to fish, Ph.D. diss., 
Brunel University, U.K., 1998.

[118] P. Whitehouse, M. Wilkinson, J.K. Fawell, and A. Sutton, Proposed environmen-
tal quality standards for nonylphenol: EQS aquatic-toxicity freshwater seawater in 
water, U.K. EA RandD Technical Report P42 by WRC, 1998.

[119] G.W. Ahern and R. Briggs, The relevance of the presence of certain synthetic steroids 
in the aquatic environment, J. Pharm. Pharmacol. 41 (1989), pp. 735–736.

[120] D. Isaak, The ecological life history of the fathead minnow, Ph.D. diss., Minnesota 
University, 1961.

[121] J.T. McFadden, G.R. Alexander, and D.S. Shetter, Numerical changes and population 
regulation in brook trout (Savelinus fontinalis). J. Fish. Res. Board Can. 24 (1967), pp. 
1425–1459.

[122] R.R. Warner, Sperm allocation in coral reef fish, strategies for coping with demands 
on sperm production, Bioscience 47 (1997), pp. 561–564.

[123] J.F. Craig, The biology of perch and related fish, Croom Helm, London and Sydney, 
1987.

[124] J.F. Craig, Growth and production of the 1955 to 1972 cohorts of perch, Perca fluvia-
tilis L., in Windermere, J. Animal Ecol. 49 (1980), pp. 291–315.

[125] E.D. Le Cren, Perch (Perca fluviatilis) and pike (Esox lucius) in Lake Windermere from 
1940 to 1985; studies in population dynamics, Can. J. Fish. Aquat. Sci. 44 (1987), 
pp. 216–228.

[126] C.A. Mills, M.A. Hurley, Long-term studies on the Windermere populations of perch 
(Perca fluviatilis), pike (Esox lucius) and arctic charr (Salvelinus alpinus), Freshwater 
Biol. 23 (1990), pp. 119–136.

[127] I.J. Winfield, D.G. George, J.M. Fletcher, and D.P. Hewitt, Environmental factors 
influencing the recruitment and growth of underyearling perch (Perca fluviatilis) in 
Windermere North Basin, U.K., from 1966 to 1990, in Proceedings of NATO Advanced 
Research Workshop on Management of Lakes and Reservoirs during Global Change,
D.G. George, J.G. Jones, P. Puncochar, C.S. Reynolds, and D.W. Sutcliffe, eds., 
Kluwer Academic, Dordrecht, 1998, pp. 245–261.

[128] I.J. Winfield, J.M. Fletcher, D.P. Hewitt, and J.B. James, Long-term trends in the tim-
ing of the spawning season of Eurasian perch (Perca fluviatilis) in the north basin of 
Windermere, U.K., in Proceedings of Percis III: The Third International Percid Fish 
Symposium, T.P. Barry and J.A. Malison, eds., University of Wisconsin Sea Grant 
Institute, Madison, WI, 2004, pp. 95–96.

[129] S.A.L.M. Kooijman, Toxic effects as process perturbations, in The Analysis of Aquatic 
Toxicity Data, S.A.L.M. Kooijman and J.J.M. Bedaux, eds., VU University Press, 
Amsterdam, 1996, pp. 25–28.

[130] P.S. Maitland and R.N. Campbell, Freshwater Fishes, Harper Collins, U.K., 1992.



© 2009 by Taylor & Francis Group, LLC

82 Endocrine Disruption Modeling

[131] C.E. Davies, J. Shelley, P.T. Harding, I.F.G. McLean, R. Gardiner, and G. Pierson, 
Freshwater fishes in Britain the species and their distribution, Harley Books, England, 
2004.

[132] C.R. Tyler, S. Jobling, and J.P. Sumpter, Endocrine disruption in wildlife: A critical 
review of the evidence, Crit. Rev. Toxicol. 28 (1998), pp. 319–361.

[133] L.D. Arcand-Hoy and W.H. Benson, Fish reproduction: An ecologically relevant indi-
cator of endocrine disruption. Environ. Toxicol. Chem. 17 (1998), pp. 49–57.

[134] P.M. Campbell and T.H. Hutchinson, Wildlife and endocrine disrupters: Requirements 
for hazard identification, Environ. Toxicol. Chem. 17 (1998), pp. 127–135.

[135] R.H.K. Mann, Observations on the age, growth, reproduction and food of the 
roach Rutilus rutilus in two rivers in southern England, J. Fish Biol. 5 (1973), 
pp. 707–736.

[136] L.A. Vøllestad and J.H. L’Abée-Lund, Reproductive biology of stream-spawning 
roach, Rutilus rutilus, Env. Biol. Fishes 18 (1987), pp. 219–227.

[137] L. von Bertalanffy, A quantitative theory of organic growth, Human Biol. 10 (1938), 
pp. 181–213.

[138] F. Eley and R. Sedgwick, Modelling the potential impacts of endocrine disruption 
on fish populations: Statistical model, U.K. Environment Agency Science Report, 
SC060002/TR1, 2008.

[139] B. Breckling, U. Middelhoff, and H. Reuter, Individual-based models as tools for 
ecological theory and application: Understanding the emergence of organisational 
properties in ecosystems, Ecol. Model. 194 (2005), pp. 102–113.

[140] J. Ylikarjula, M. Heino, U. Dieckmann, and K. Veijo, Does density-dependent indi-
vidual growth simplify dynamics in age-structure populations? A general model 
applied to Perch (Perca fluviatilis), Interim Report IR-01-025, International Institute 
for Applied Systems Analysis, Austria, 2001.

[141] S. Jobling, D. Sheahan, J.A. Osborne, P. Matthiessen, and J.P. Sumpter, Inhibition
of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic 
alkylphenolic chemicals, Environ. Toxicol. Chem. 15 (1996), pp. 194–202.

[142] T. Coe, P.B. Hamilton, D. Hodgson, G.C. Paull, J.R. Stevens, K. Sumner, and C.R. 
Tyler, An environmental estrogen alters reproductive hierarchies, disrupting sexual 
selection in group-spawning fish, Environ. Sci. Technol. 42 (2008), pp. 5020–5025.

[143] M.A. Gray, K.L. Teather, and C.D. Metcalfe, Reproductive success and behavior of 
Japanese medaka (Oryzias latipes) exposed to 4-tert-octylphenol, Environ. Toxicol. 
Chem. 18 (1999), pp. 2587–2594.

[144] D. Nacci and A.A. Hoffmann, Genetic variation in population-level ecological risk 
assessment, in Population-Level Ecological Risk Assessment, L.W. Barnthouse, W.R. 
Munns Jr., and M.T. Sorensen, eds., Taylor and Francis, New York, 2008, pp. 93–112.

[145] S.F. Railsback, S.L. Lytinen, and S.K. Jackson, Agent-based simulation platforms: 
Review and development recommendations, Simulation 82 (2006), pp. 609–623.



© 2009 by Taylor & Francis Group, LLC

83

4 Application of 
Pharmacokinetic 
Modeling to Understand 
the Mechanism of 
Action of Endocrine 
Disrupting Chemicals

James Devillers

ABSTRACT

Physiologically based pharmacokinetic (PBPK) modeling is now well recog-

nized for mechanistically simulating and predicting the absorption, distribu-

tion, metabolism, and excretion of chemicals in an organism. In this review, 

the basic concepts of this modeling technique are highlighted. Then, different 

examples of applications focusing on chemicals affecting the functioning of 

the endocrine system are presented. Last, some advantages and limitations of 

PBPK models are briefly discussed.
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4.1 INTRODUCTION

Much of the research in toxicology and ecotoxicology is focused on elucidating the 

mechanisms through which the chemicals exert their adverse effects [1]. Basically, 

the toxicological effect of a compound to living species depends on its physico-

chemical properties as well as its concentration and the time of exposure. To fully 

understand and predict the toxicity of a chemical, it is necessary to consider both 

its pharmacokinetics (the detailed mechanisms by which chemicals are distributed 

from the external environment to target tissues) and pharmacodynamics (the detailed 

mechanisms by which target tissue doses are transformed into adverse biological 

responses) [2]. This can be done by means of modeling approaches, the combination 

of pharmacokinetic and pharmacodynamic models allowing us to predict the dose 

response of an organism to a chemical, based on the exposure concentrations [3].

In this chapter, an attempt is made to review the main physiologically based 

pharmacokinetic (PBPK) models [4] that have been designed to study endocrine 

processes with a special emphasis on those dealing with endocrine disruption mech-

anisms, because they are the most widely used for modeling these adverse effects. 

After introducing the concepts fundamental to this approach, different examples of 

applications are presented focusing on chemicals that adversely affect the endocrine 

system of living species. Last, the advantages and limitations of this modeling tech-

nique are briefly discussed.

4.2 PHYSIOLOGICALLY BASED PHARMACOKINETIC 
(PBPK) MODELING

The idea behind PBPK modeling is to describe via mathematical equations the 

physicochemical, biochemical, and physiological processes that determine the phar-

macokinetics of a substance within an organism — namely, its absorption, distribu-

tion, metabolism, and excretion (ADME) [5]. The first step in the modeling process 

consists in dividing the studied organism into compartments, each representing a 

tissue or an organ. The physiological characteristics of the compartments and the 

behavior of the studied chemical between and within them are described by means 

of differential and algebraic equations that can be solved numerically to obtain the 

time-course concentrations of the chemical and its metabolites in the compartments 

[4,6–8].

Such a PBPK model contains a collection of parameters that have to be determined 

for specific simulations. These parameters can be broadly classified into two classes: 
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those in relation to the studied organism as well as the modeled endpoint, and those 

directly linked to the chemical under study. The first class includes basic physiologi-

cal parameters such as organ volumes, blood flow rates, ventilation rates, and surface 

areas for the permeation processes as well as specific parameters such as pH values at 

different locations. The second class contains chemical-dependent parameters such as 

organ/blood partition coefficients, permeability parameters for different cross-mem-

brane transports, and kinetic constants for the active processes [4,9].

As previously indicated, PBPK models allow the conversion of an exposure con-

centration to tissue dose, which can be used as input in a pharmacodynamic (PD) 

model to predict a biological response such as binding activity.

4.3 MODELING ENDOCRINE DYSFUNCTIONS

The endocrine system operates through a complex series of events triggered by 

glands and their messengers, called hormones. These substances are conveyed by 

the bloodstream and control many fundamental functions in the organisms such as 

homeostasis, reproduction, and development. From a modeling point of view, the 

endocrine system can be viewed as a complex compartmental system; hence, PBPK 

modeling appears particularly suited to model endocrine functions as well as endo-

crine dysfunctions. Rather than cataloging all the models in the field, some relevant 

case studies are summarized in the following paragraphs.

4.3.1 PBPK MODELING OF BISPHENOL A

Bisphenol A (4,4 -isopropylidene-2-diphenol; BPA) is a monomer constituting the 

starting material for the manufacture of polycarbonate plastics and epoxy resins 

used in many consumer products, including food-ware, baby formula bottles, water 

carboys, food can linings, and dental composite fillings and sealants [10]. BPA has 

been shown to leach from these materials due to incomplete polymerization and to 

degradation of the polymers by exposure to high temperatures, occurring under nor-

mal conditions of use [11]. Obviously, significant amounts of BPA are also released 

into the atmosphere during production. As a result, exposure to BPA in the general 

population is widespread. Unfortunately, there has been concern about the estrogenic 

potential of BPA [12] and several organs have been found to be affected by prenatal 

exposure to BPA [10,13,14].

Shin et al. [15] developed a PBPK model to simulate the tissue distribution and 

blood pharmacokinetics of BPA in nonpregnant rats and humans. The model, which 

included a lot of compartments, was basically constructed to predict the steady-state 

levels of BPA in blood and various tissues observed in rats after multiple intravenous 

injections. The PBPK model was further applied to predict blood and various BPA tis-

sue levels in a 70-kg human after a single intravenous injection (5-mg dose) and mul-

tiple oral administrations to steady state (100-mg doses every 24 hours). This model 

was highly criticized by Teeguarden and coworkers [16] who proposed a more realis-

tic PBPK model for BPA and BPA glucuronide (BPAG) to simulate blood and uterine 
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concentrations after exposure to BPA by oral and intravenous routes. The model was 

initially developed for adult male and female rats and was later extended to humans 

from data obtained from literature and experiments in male and female volunteers. 

A nested model structure was used, with submodels for BPA and BPAG comprising 

the overall model. The BPA model consisted of the following compartments: blood, 

uterus, liver, the lumen of the gastrointestinal (GI) tract, and a body compartment 

representing the remaining perfused tissues. In this model, BPA distributed to and 

from a nonmetabolizing body compartment. The other tissues were formulated the 

same as the body compartment, but they were described with additional terms repre-

senting processes affecting tissue concentrations of BPA (metabolism, protein or ER 

binding, uptake) [16]. Intravenous- and oral-route blood kinetics of BPA in rats and 

oral-route plasma and urinary elimination kinetics in humans were well described 

by the model. Simulations of rat oral-route BPAG pharmacokinetics were of lower 

quality. In the absence of BPA binding to plasma proteins, simulations showed high 

ER occupancy at doses without uterine effects. In contrast, the correlation between 

receptor occupancy and uterine response was stronger when the free available con-

centration of BPA was restricted by plasma protein binding. These results highlighted 

the importance of including plasma binding in BPA PBPK models [16].

In 2007, Kawamoto et al. [17] proposed a PBPK model for BPA in pregnant mice 

using oral administration. The model consisted of two analogous kinetic models 

for BPA and its metabolites connected to each other at the liver compartment in the 

metabolism phase. Because the brain is one of the targets of BPA, it was represented 

as a separate compartment in the model. For the sake of simplicity, the yolk sac and 

chorioallantoic placentas were modeled as a single placenta. Two gastrointestinal 

compartments, small and large intestines, and the gallbladder compartment were 

considered to model the enterohepatic circulation observed in a previous experimen-

tal study conducted by these authors [18]. Interestingly, the model was constructed 

from pharmacokinetic data obtained in experiments performed by the authors on 

pregnant mice following a single oral administration of BPA. The schematic dia-

gram of the PBPK model for BPA on pregnant mice is shown in Figure 4.1, and 

the main physiological and physicochemical parameter values used in the model 

are listed in Table 4.1. Model simulations were compared with the experimental 

pharmacokinetic data on pregnant mice after a single oral administration (10 mg/

kg), resulting in good consistency over the whole period after the administration 

regarding the concentrations in all tissues. A satisfying consistency was observed for 

BPA and its metabolite concentrations, as well as total concentrations in maternal 

blood and the liver. The model also described the rapid transfer of BPA through the 

placenta to the fetus and the slow disappearance from fetuses. The simulated time 

course after three-time repeated oral administrations of BPA by the model fitted the 

experimental data. Good consistency with experimental data was also obtained with 

a ten-time lower dose of BPA (1 mg/kg) [17].

4.3.2 PBPK MODELING OF PERCHLORATE

Ammonium perchlorate is an oxidizer used in the propulsion systems of solid fuel 

rockets and missiles. It is also employed in the manufacture of flares, fireworks, 
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and automobile airbags. Past use and disposal practices have resulted in important 

environmental contaminations yielding the production of the soluble anion (ClO4
–)

that is toxic to aquatic species [19] as well as to humans when found in drinking 

water. Human health concerns arise from the fact that ClO4
–, being similar in shape 

to iodide (I–), is able to bind to the sodium-iodide symporter (NIS), thus reducing the 

amount of iodide taken up into the thyroid [20].

A rather simple PBPK model was first derived by Fisher et al. [21] for describing 

the disposition of perchlorate in the adult male rat from limited experimental data. 
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FIGURE 4.1 The physiologically based pharmacokinetic (PBPK) model for bisphenol 

A (BPA) in pregnant mice. (Adapted from Y. Kawamoto, W. Matsuyama, M. Wada, J. 

Hishikawa, M. Pui Ling Chan, A. Nakayama, and S. Morisawa, Toxicol. Appl. Pharmacol.,
224, 182, 2007.)
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Clewell et al. [22] later proposed a suite of PBPK models that included important 

steps in the mode of action of ClO4
– and key life stages for perchlorate toxicity. The 

basic model structure was identical for the rat and human (Figure 4.2). Tissues with 

active uptake of iodide and perchlorate by NIS were described with multiple com-

partments and with Michaelis-Menten kinetics for saturable uptake. The thyroid was 

divided into three subcompartments representing the stroma, follicle, and colloid. 

The GI tract was similarly divided into the three following subcompartments: capil-

lary blood, tissue, and contents. The skin was partitioned into capillary blood and 

tissue. Due to the activation of NIS in the placenta during gestation, it was necessary 

to include two subcompartments in the placenta with saturable active uptake in the 

gestation model. In the same way, the activation of anion channels in the milk and 

NIS in the mammary gland required three compartments to be considered for the 

mammary gland in the lactation model — namely, capillary blood, mammary tissue, 

and milk, with active uptake into both the mammary gland and milk [22]. Active 

uptake was also included in the mammary gland of the pregnant rat. It is noteworthy 

that flow-limited compartments were also included for the liver, kidney, and fat. The 

I– and ClO4
– models were broadly the same assuming that similar size and charge 

of the anions would yield similar kinetics. Both models were based on the premise 

that only free anions would be available for uptake via diffusion or symporter. The 

models differed only in that ClO4
– was described with two compartments in the 

serum to account for the binding of the anion to serum proteins, such as albumin 

[22]. The kinetic parameters used in this suite of PBPK models are listed in Table 4.2 

and Table 4.3.

TABLE 4.1
Selected Physiological Parameters of Pregnant Mice (d 15) and Experimental 
Tissue/Blood Partition Coefficients (TBs) Used in the PBPK Model

Organ (Compartment) Blood Flow (l/h) Volume (ml) TB-BPA TB-BPAG

Kidney 0.154 0.733 0.858 3.18

Well perfused tissues 0.120 0.518 1.43 0.271

Poorly perfused tissues 0.948 33.1 0.682 0.387

Liver 0.344 2.92 384 6.76

Brain 0.056 0.733 1.34 0.125

Fat 0.147 3.77 1.16 0.22

Uterus 0.017 0.44 0.693 0.581

Mammary tissue 0.085 2.18 0.957 0.27

Placenta 0.097 1.73 0.88 0.68

Blood — 2.11 — —

Fetuses — 7.74 0.308 0.058

Notes: BPA, bisphenol A; BPAG, BPA glucuronide. (For more information, see Y. Kawamoto, 

W. Matsuyama, M. Morikawa, M. Morita, M. Sugimoto, N. Manabe, and S. Morisawa, Toxicol. Environ. 
Chem., 87, 199, 2005.)
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The gestation and lactation rat models were able to describe perchlorate dis-

tribution in serum and thyroid across drinking water doses ranging from 0.01 to 

10 mg/kg/day. The models were also able to reproduce I– concentrations in the adult, 

fetal, and neonatal rats as well as to describe the transfer kinetics during pregnancy 

and lactation. Preliminary PBPK models for human gestation and lactation were 

designed from the rat models. They were able to predict serum, thyroid, fetal, milk, 

and neonatal time-course data from several literature studies at different time points 

throughout gestation and lactation [22]. The suite of PBPK models was then used to 

derive more accurate models [23–26].

Iodide Perchlorate

FIGURE 4.2 Basic physiologically based pharmacokinetic (PBPK) model structure for 

iodide and perchlorate kinetics in male rats and humans. (Adapted from R.A. Clewell, E.A. 

Merrill, and P.J. Robinson, Toxicol. Ind. Health, 17, 210, 2001.)
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4.4 ADVANTAGES AND LIMITATIONS OF PBPK MODELS 
FOR ENDOCRINE-ACTIVE CHEMICALS

The case studies presented in the previous paragraphs clearly highlight the advantages 

of the PBPK models. Basically, they allow the study of the absorption, distribution, 

metabolism, and excretion (ADME) of chemicals, which are pivotal activities to deter-

mine for drugs and xenobiotics. More generally, the PBPK models appear particularly 

suited to summarize and rationalize information, to hypothesize and validate mecha-

nisms of action, to easily integrate time and dynamics of organism development in the 

modeling process, and to extrapolate to lower doses, across routes, and species [27–31]. 

These models basically consist of different interrelated compartments, which represent 

TABLE 4.2
Iodide Kinetic Parameters with Species and Gender Adjustments

Parameter (ng/l/h) Rat Male Human Male

Rat/Human
Species

Adjustment Rat Pregnant

Adjusted
Pregnant 
Human

Urinary clearance 0.05 0.1 2 0.03 0.06

Follicular uptake 5.94  104 1.5  105 2.52 4  104 1.01  105

Colloid uptake 4  107 1  108 2.5 6  107 1.5  108

Skin uptake 5  105 1  106 2 6  104 1.2  105

Gastric juice uptake 2  106 9  105 0.5 1  106 5  105

Placenta to fetus — — — 0.06 0.09

Fetus to placenta — — — 0.12 0.12

Note: See also R.A. Clewell, E.A. Merrill, and P.J. Robinson, Toxicol. Ind. Health, 17, 210, 2001.

TABLE 4.3
Perchlorate Kinetic Parameters with Species and Gender Adjustments

Parameter (ng/l/h) Rat Male
Human
Male

Rat/Human
Species

Adjustment
Rat

Pregnant

Adjusted
Pregnant 
Human

Urinary clearance 0.07 0.126 1.8 0.07 0.126

Follicular uptake 2.6  103 6  103 2.3 1.8  103 4.15  103

Colloid uptake 1  104 1.67  104 1.67 1  104 1.67  104

Skin uptake 6.2  105 1  106 1.61 6  105 9.7  105

Gastric juice uptake 2  105 1  105 0.5 8  105 4  105

Placenta to fetus — — — 0.065 0.09

Fetus to placenta — — — 0.12 0.12

Albumin binding 3.5  103 8  102 0.23 5  103 1.14  103

Note: See also R.A. Clewell, E.A. Merrill, and P.J. Robinson, Toxicol. Ind. Health, 17, 210, 2001.
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the different organs of the studied organism. The level of description of the organs and 

physiological processes directly depends on the studied phenomenon. Thus, for example, 

a pharmacokinetic model was developed by Barton and Andersen [32] to describe the 

dose-response behaviors of chemicals that interact with the testicular–hypothalamic–

pituitary axis of male rats and affect its reproductive functions. Consequently, the model 

focused only on this organ. Indeed, it consisted of compartments for the testes, periph-

eral venous and arterial blood, and the remainder of the body (Figure 4.3). The testes 

were divided into compartments including seminiferous tubules, interstitial tissue made 

up of interstitial fluid, and Leydig cells. Briefly, this model was able to describe behav-

iors of the central axis regulation of testosterone synthesis in response to perturbations 

such as castration, testosterone replacement, and exposure to antiandrogen [32].

Some modeling approaches, such as QSARs (Quantitative Structure-Activity 

Relationships) [33], are based on an accurate topological and physicochemical 

description of the chemicals, but this is not the case of the PBPK models for which the 

biological and physiological parameters are the key input parameters. Consequently, 

PBPK models can be successfully used to study the ADME of simple as well as 

complex chemical mixtures [34–36].

However, PBPK modeling shows some limitations. The design of a PBPK model 

needs first to identify the key organs, tissues, and mechanisms involved in the 

Clearance
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FIGURE 4.3 Physiological compartments included in the rat testicular–hypothalamic–pituitary 

axis model. (Adapted from H.A. Barton and M.E. Andersen, Toxicol. Sci., 45, 174, 1998.)
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ADME of the chemical and phenomenon of interest. To do so, it is required to have 

a good training in physiology and pharmacokinetics. In a second step, it is necessary 

to create all the mathematical equations encoding the physiological and biological 

processes occurring in these organs and tissues, which are represented by compart-

ments. Consequently, a good training in mathematics and informatics is also com-

pulsory to algorithmically describe the different tasks to perform within the model 

and compute the corresponding equations. As a result, it appears obvious that the 

design of a sound PBPK model requires intimate interdisciplinary collaborations. 

If this condition is not satisfied, this can yield the design of wrong or faulty models, 

which are often difficult to detect by individuals. Indeed, it seems logical that if an 

interdisciplinary communication is necessary to elaborate a PBPK model, this col-

laboration would also be required to critically analyze it.

The number of data values necessary to elaborate and validate a PBPK model is 

another hurdle with this modeling approach. Moreover, due to time and cost constraints, 

very often they are not obtained from dedicated experiments but are collected from vari-

ous sources. This may represent an important source of bias, especially if an uncertainty 

or a sensitivity analysis is not or is incorrectly performed. It is noteworthy that attempts 

have been made to use QSAR and QSPR (quantitative structure-property relationship) 

models to generate missing data [37–40].

Last, the PBPK models are not readily amenable to addition or deletion of com-

partments. In this regard, it should be interesting to test the agent-based models [41] 

in endocrine disruption modeling because they do not suffer from this limitation and 

they have proved to be particularly suited for modeling complex systems (see, for 

example, [42–44]; see also Chapter 3, this volume).

4.5 CONCLUSIONS

Physiologically based pharmacokinetic (PBPK) modeling is now commonly used for 

mechanistically simulating and predicting the ADME of a substance at the tissue/

organ/organism level. PBPK models allow individuals to be distinguished within a 

group because they are able to account for differences related to age, gender, race, 

and so on. This is particularly interesting for the simulation of a biological process 

within a specific population such as children or pregnant women. This is the reason 

why PBPK models have found successful applications for modeling endocrine activ-

ity. The combination of PBPK models with pharmacodynamic (PD) models allows 

for the transformation of target tissue doses into adverse biological responses. Even 

if the PBPK models show some limitations, they represent very promising tools for 

elucidating the mechanism of action of endocrine disrupting chemicals.
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ABSTRACT

Endocrine disrupting chemicals (EDCs) are either natural or synthetic chemi-

cals that directly or indirectly enhance (agonist effect) or inhibit (antagonist 

effect) the action of hormones that bind to specific nuclear receptors (NRs). 

NRs are important transcriptional regulators involved in diverse physiological 

functions such as control of homeostasis, cell differentiation, and embryonic 

development. In the absence of NR X-ray crystal structures, computer-aided 

molecular modeling becomes an alternative tool to provide in silico predic-

tions of three-dimensional (3D) models of such receptors. Moreover, advances 

in comparative (homology) modeling algorithms, in addition to the increase 

in experimental protein structure information, allow the generation of homol-

ogy models for a significant portion of known genomic protein sequences. 

The aim of this chapter is to provide an overview of the 3D homology mod-

els of the NR superfamily. Such models are of considerable value, allowing 

for the understanding of EDC–receptor interactions and the generation of 

Structure-Activity Relationship (SAR) or 3D Quantitative Structure-Activity 

Relationship (QSAR) models. The strengths and weaknesses of the homology 

models applied to the EDCs are also analyzed.

KEYWORDS
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Sequence identity
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5.1 INTRODUCTION

Three-dimensional protein structures are key to a detailed understanding of 

the molecular basis of protein functions. Techniques to experimentally deter-

mine protein structure (for example, nuclear magnetic resonance [NMR] spec-

troscopy, X-ray crystallography, and electron microscopy) have made great 

progress in recent years, and more than 47,000 experimental protein structures 

have been deposited in the Protein Data Bank (PDB) (www.rcsb.org/pdb) [1,2]. 

The knowledge of such three-dimensional (3D) structural information can give 

insight into the key molecular interactions between the EDCs and the nuclear 

receptor active site and enables us to determine how modifications to the ligand 

or the protein structure (by site-directed mutagenesis of several amino acids) may 

potentially affect the binding. Moreover, the experimental binding affinity data of 

several EDCs can be correlated to calculated binding energy values by using current 

molecular modeling methods (such as docking simulation).

http://www.rcsb.org
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However, the number of structurally characterized proteins is smaller than the 

number of known protein sequences in the Swiss-Prot and TrEMBL databases [3], 

which contain about five million sequence entries. For example, membrane-bound 

proteins are complex to crystallize in the aqueous environment required for X-ray 

diffraction experiments; other proteins are insufficiently soluble or too large for 

NMR studies or are not robust enough to obtain an electron micrograph. Thus, for 

the majority of protein sequences, there is no experimental structural information 

available. Therefore, to address this deficit, alternative methods have been developed 

to give insight into the functional role of a receptor in terms of its 3D structure. 

Among all the currently available computational approaches, homology (or com-

parative) modeling is the method that can reliably generate a 3D model for a protein 

[4]. Other techniques include Quantitative Structure-Activity Relationships (QSARs) 

and the use of pharmacophores.

This chapter focuses on the 3D homology models of nuclear receptors that are 

reported in the literature. The advantages and limitations of these different models 

are discussed.

5.2 NUCLEAR RECEPTOR SUPERFAMILY

5.2.1 NUCLEAR RECEPTOR (NR) FUNCTIONAL DOMAINS

Nuclear receptors (NRs), which belong to different classes [5–8] (see also Chapter 2, 

this volume), are involved in many important roles in eukaryotic development, dif-

ferentiation, reproduction, and metabolic homeostasis [9,10]. NRs exhibit a modular 

structure composed of five domains designated A through F [11] (Figure 5.1). The 

N-terminal region (A/B domain) varies considerably between the different proteins, 

both in sequence and size, ranging among classical NRs from 23 amino acids in the 

vitamin D receptor (VDR) to 602 amino acids in mineralocorticoid receptor (MR). 

The DNA-binding domain (DBD) including around 70 amino acids (C domain) and the 

Transactivation

(AF-1 domain)

DNA

binding

Ligand binding

domain

A/B C

D F

E

Transactivation

(AF-2 domain)

FIGURE 5.1 The structural and functional organization of nuclear receptors. (See color 
insert following page 244.)
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ligand-binding domain (LBD) with 250 amino acids (E domain) are the best con-

served regions throughout the superfamily [10,12,13]. A linker region known as 

D domain is located between the DBD and the LBD. In addition to the domains 

described above, we found the carboxyl-terminal region (F domain), which is not 

always present. Its function is poorly understood.

The C domain contains a P-box, which is a short motif responsible for DNA-

binding specificity and which is involved in the dimerization of nuclear recep-

tors including the formation of both heterodimers and homodimers. The D region 

serves as a flexible hinge between the C and E domains. It contains the nuclear 

localization signal. Phosphorylation of the hinge region is coupled with increased 

transcriptional activation. The LBD or E domain is responsible for the binding of 

cognate ligand or hormone. This domain also contains a ligand-dependent transac-

tivation function (AF-2) necessary for recruiting transcriptional coactivators inter-

acting with the general transcriptional activation machinery. Most NRs contain a 

transcriptional activation function (AF-1) in the variable A/B domain. Contrary to 

the moderately conserved AF-2 domain, the AF-1 is weakly conserved across the 

NR superfamily and may mediate differential promoter regulation in vivo.

5.2.2 NR MECHANISM OF SIGNALING

Present in vertebrates, arthropods, and nematodes, NRs control numerous pro-

cesses involved in development, growth, reproduction, cell differentiation, prolif-

eration, apoptosis, and homeostasis [11]. All NRs modulate gene transcription but 

in a different way depending on the class to which they belong [9,10,14]. In most 

cases, they activate transcription in response to the binding of a cognate ligand, 

generally a small lipophilic molecule. The mechanism of action of the steroid 

receptors has been characterized in considerable detail [15,16]. These receptors are 

transformed into active transcriptional factors by the binding of the specific ligand, 

the appropriate steroid hormone. The proteins are found within the target cells as 

soluble complexes with heat shock protein (HSP) [17]. Binding of the steroid to its 

cognate receptor results in dissociation of the HSP and binding as homodimers to 

DNA. Interaction with specific DNA sequences (hormone response elements) in 

the proximity of genes results in changes in the rate of transcriptional initiation 

(stimulation or repression). The resultant changes in activity of the target genes and 

the corresponding proteins lead to the biological effects associated with hormones. 

The association of thyroid receptor (TR), VDR, retinoic acid receptor (RAR), and 

peroxisome proliferator-activated receptor (PPAR) with the retinoid X receptor 

(RXR) forms a dimeric complex, which leads to direct repeat response elements 

[9,10,14,18]. Even in the absence of ligands and HSP, such heterodimers are bound 

to their response element.

5.2.3 NR X-RAY CRYSTALLOGRAPHIC STRUCTURES

X-ray crystallographic structures of studied NRs (Table 5.1) that were resolved and 

deposited in the Brookhaven PDB were collected with their PDB accession codes 

and the chemical name of the ligand cocrystallized (when existing). 
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TABLE 5.1
Studied Nuclear Receptors and Their Natural Ligands

Receptor Name Receptor Subtypes Natural Ligand

Estrogen receptor (ER) , , Estradiol

Androgen receptor (AR) Testosterone

Progesterone receptor (PR) Progesterone

Glucocorticoid receptor (GR) Cortisol

Mineralocorticoid receptor (MR) Aldosterone

Thyroid receptor (TR) , Thyroid hormone

Vitamin D receptor (VDR) Vitamin D

Retinoic acid receptor (RAR) , , Retinoic acid

Peroxisome proliferator activated 

receptor (PPAR)

, , Fatty acids

Retinoic X receptor (RXR) , , trans-Retinoic acid

Estrogen related receptor (ERR) , , —

Constitutive androstane receptor (CAR) —

Pregnane X receptor (PXR) —

RAR related orphan receptor (ROR) , , —

This information will help the modeler to have a global view of the existing NR 

crystallographic coordinates in order to select the appropriate template structure for 

a future comparative modeling of NRs.

5.3 PROTEIN MODELING

The ultimate goal of protein modeling is to predict a structure from its primary 

sequence with a comparable accuracy to the best results achieved experimentally. 

This would allow users to safely use generated in silico receptor models in all the 

research areas where only experimental structures provide a solid basis such as in the 

structure-based drug design and in the analysis of protein function or interactions. 

Moreover, protein modeling is the best approach to obtain structural information 

when experimental techniques fail. Homology or comparative modeling uses experi-

mentally determined protein structures to predict the conformation of another protein 

that has a similar amino acid sequence. The method relies on the observation that in 

nature the structural conformation of a protein is more highly conserved than its pri-

mary sequence and that changes in amino acid sequence typically result in only small 

changes in the 3D structure [19]. In homology modeling, a known sequence with an 

unknown structure is mapped against a known structure of one or several similar 

(homologous) proteins. It is claimed that two proteins of similar origin and function 

present reasonable structural similarity. Although the number of PDB entries is grow-

ing rapidly (~13 new entries daily), the 3D structure of only 1% to 2% of all known 

proteins has been experimentally characterized. The quality of homology models 

depends on the sequence identity between the protein of known structure (template) 
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and the protein to be modeled (target). To achieve the comparative modeling process, 

a large number of applications and services are freely available on the Internet [20].

In practice, homology modeling process can be summarized in five steps: (1) fold 

assignment and template selection, (2) sequence alignment, (3) model generation, 

(4) loop modeling, and (5) model optimization and validation [21]. These different 

steps are discussed in the following paragraphs.

5.3.1 FOLD ASSIGNMENT AND TEMPLATE SELECTION

In the fold assignment step, a set of template proteins of known 3D structure that are 

related to the target sequence of unknown structure is identified. The template 3D 

structure must be determined by reliable experimental methods (for example, X-ray 

crystallography and NMR) and published as an atomic coordinate “PDB” file avail-

able from the PDB Web site [1,2]. Several computerized search methods are avail-

able to assist in identifying homologs [20]. Next, a sequence database of proteins 

with known structures is searched with the target sequence. Template identification 

is performed using sequence identity search algorithms or threading techniques [22], 

which scan sequence and structure databases, such as PDB, structural classification 

of proteins (SCOP) [23], distance-matrix alignment [24], and Class, Architecture, 

Topology, and Homology (CATH) [25,26].

5.3.2 SEQUENCE ALIGNMENT

After identifying the template 3D structure(s), the next key step is the accurate align-

ment of the target sequence to the template sequence(s). An erroneous alignment 

will lead to the design of an incorrect model. The alignment between two sequences 

is typically calculated by optimizing an alignment scoring function [27]. Many pro-

grams are available to align a number of related sequences, such as CLUSTALW, 

and the resulting alignment contains useful additional information [28].

5.3.3 MODEL GENERATION

The next step in the homology modeling process is model generation. The target 

protein structure is built from the substitution, insertion and/or deletion of amino 

acids in the template protein 3D structure according to the sequence alignment. It 

is noteworthy that experimentally determined protein structures (templates) are not 

perfect. Most of the errors found range from poor electron density in the X-ray dif-

fraction map to human errors when generating the atomic coordinate PDB file. To 

build a good model, the selection of the template with the fewest errors is required. 

To help in such a task, the PDBREPORT database [28] freely available at www.cmbi.

nl/gv/pdbreport can be very useful.

5.3.4 LOOP MODELING

Generally, the alignment between the model and the template sequence contains 

gaps. There are two main approaches to loop modeling: the knowledge-based 

method and the energy-based method. The former technique is a database search 

http://www.cmbi.nl
http://www.cmbi.nl
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approach that scans a protein 3D structure database to find sequence segments fit-

ting the anchor core regions. All major molecular modeling programs and servers 

support this approach (for example, 3D-JIGSAW [30], INSIGHT [31], MODELLER 

[32], SWISS-MODEL [33], or WHAT IF [34]). In the energy-based method, as in 

true ab initio fold prediction, an energy function is used to evaluate the quality of a 

loop. Then, this function is minimized, using Monte Carlo [35] or molecular dynam-

ics simulation techniques [36] to reach the best loop conformation.

5.3.5 MODEL OPTIMIZATION AND VALIDATION

Once the comparative model is constructed, an energy minimization process using 

force field approaches is needed to correct all conformational troubles. A molecular 

dynamics simulation of the model can be used to follow the motions of the protein on 

a femtosecond (10–15 s) timescale, which mimics the true folding process.

There are many model evaluation programs and servers available on the Internet 

[20,37]. Two types of checks are generally used: (1) stereochemical quality where 

the model is more likely to be correct if its structure is the less strained and (2) 

side-chain environment where the model is more likely to be correct if its atoms are 

in the most thermodynamically favorable configuration. Moreover, to estimate the 

conformational space sampled by the homology model, it is useful to calculate the 

root mean square deviation (RMSD) between the main chain atoms of the model 

and the most homologous template X-ray structure. The main programs for veri-

fying stereochemistry are PROCHECK [38,39], PROCHECK-NMR [40], SQUID 

[41], and WHATCHECK [29]. VERIFY 3D [42] can be used to assess the amino 

acid environment. The model features checked by such programs include bond 

lengths and angles, peptide bond and side-chain ring planarities, backbone and 

side-chain torsion angles, chirality, and clashes between nonbonded pairs of atoms. 

It is important to note that results obtained from all these validation procedures 

have to be contextualized by comparison with the quality of the template structure. 

Obviously, it is impossible to expect that a model outperforms its template.

Finally, experimental findings can be valuable solutions to validate the homology 

model, such as site-directed mutagenesis data, which can give insight into potential 

structural and functional roles of the respective amino acids.

5.3.6 ERRORS IN HOMOLOGY MODELING

It is crucial for modelers to assess the accuracy of the methods they used. An attempt 

to address this problem was made by the Critical Assessment of Techniques for 

Protein Structure Prediction (CASP) and the Critical Assessment of Fully Automated 

Structure Prediction (CAFASP) experiments [43,44]. EVA is a Web server that auto-

matically assesses secondary structure prediction, residue clashes, fold assignment, 

and comparative modeling [45].

It is worth mentioning that the homology modeling process is based on template 

structures that are experimentally determined. However, every experiment, no mat-

ter how carefully carried out, may have errors. It is important to identify these errors 

before the structures are used for research. The X-ray diffraction technique contains 



© 2009 by Taylor & Francis Group, LLC

104 Endocrine Disruption Modeling

several difficult steps that could lead to errors such as the crystallization of the protein. 

If the crystallographic structure resolution is low, the number of errors is expected to 

increase and, therefore, these experimental errors will be transferred to the predicted 

models. Thus, the quality of the template structure selected for modeling is essential. 

With low-quality templates, homology models are likely to be incorrect.

Furthermore, the correctness of the homology models is dependent on the level of 

sequence identity between the protein of known structure and the protein to be mod-

eled [46,47]. The accuracy of a model can be estimated by calculating the RMSD 

with the used template structure. The model can be compared to X-ray determined 

structures if the percentage sequence identity is greater than 90%. From 50% to 90% 

identity, the deviation in the modeled atomic coordinates can be equal to 1.5 Å. If the 

sequence identity drops to 20%, the alignment leads to large errors. If the sequence 

identity decreases below 15%, structure modeling becomes speculative.

Errors can be due to incorrect alignments between the template and target struc-

ture. In some cases, gaps need to be inserted in the target sequence to reach a better 

alignment with the template. However, if a gap is inserted at a wrong position in the 

alignment, the quality of the final model will be affected.

5.4 NUCLEAR RECEPTOR MODELS

5.4.1 ESTROGEN RECEPTOR (ER)

Table 5.2 displays the numerous X-ray crystallographic structures of ER  and

 subtypes that are available in the Brookhaven PDB Web site. Diverse ligands are 

cocrystallized with the receptor leading to agonist and antagonist conformation of 

the protein. It is important to note that one theoretical model of hER  was deposited 

in the PDB and is accessible with the 1AKF PDB code [48].

The first 3D homology model of human ER (hER) reported in the literature was 

built by Lewis et al. [49] based on alignment with the -antitrypsin sequence of 

known crystal structure [49,50]. Although the identity and similarity percentages 

between the template and ER sequences were quite low (11% and 25%, respectively), 

they performed the alignment and assigned the coordinates of -antitrypsin amino 

acids to the target amino acids. The model was minimized, but the stereochemistry 

of the model was not verified with any of the existing programs available on the 

Internet (for example, PROCHECK [38,39]).

On the basis of the determined crystal structures of the ligand-binding domain 

(LBD) of the human retinoic acid receptor-  (hRAR ) [51], Wurtz et al. [52] devel-

oped a 3D molecular model of human estrogen receptor-  (hER ). The multiple 

sequence alignment between ER LBD of various organisms (human, rat, mouse, 

chicken, boar, and finch), hRXR , and hRAR   of known crystal structures revealed 

21% identity between hRAR  and hER . Large errors in the model are expected 

for 21% of sequence identity. However, the authors were aware of this low identity 

percentage and took special care with the evaluation of the hER  model. They car-

ried out a literature search to retrieve mutants affecting the binding properties of the 

human or mouse ER, which exhibits 96% sequence identity for the LBDs. After the 

energy minimization of the hER  model, a C -trace superposition with the hRAR 
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TABLE 5.2
X-ray Crystallographic Estrogen Receptor (ER) Structures Available in the 
Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hER 17 -Estradiol 1ERE (1997, [56]);1A52 (1998, [57]); 

1AKF (1998, [48]); 1G50 (2001, [66]); 

1QKT, 1QKU (2001, (63)]; 1GWR 

(2002, [67]); 1PCG (2003, [68])

Raloxifene 1ERR (1997, [56]); 1GWQ (2002, [67])

Diethylstilbestrol 3ERD (1998, [58])

4-Hydroxytamoxifen 3ERT (1998, [58]); 1PCG (2005, [69])

Genistein 1X7R (2004, [70])

(R,R)-5,11-cis-Diethyl-5,6,11,12-

tetrahydrochrysene-2,8-diol

1L2J (2002, [65])

2-Phenyl-1-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]- 

1,2,3,4-tetrahydro-isoquinolin-6-ol

1UOM (2003, [71])

(2S,3R)-2-(4-(2-(Piperidin-1-yl)ethoxy)

phenyl)-2,3-dihydro-3-(4-hydroxyphenyl)

benzo[b][1,4]oxathiin-6-ol

1SJ0 (2004, [72])

[5-hydroxy-2-(4-Hydroxyphenyl)-1-benzofuran-

7-yl] acetonitrile

1X7E (2004, [73])

(2E)-3-{4-[(1E)-1,2-Diphenylbut-1-enyl]phenyl} 

acrylic acid

1R5K (2005, [74])

(2S,3R)-2-(4-{2-[(3R,4R)-3,4-

Dimethylpyrrolidin-1-yl] ethoxy}phenyl)- 

3-(4-hydroxyphenyl)-2,3-dihydro-1,4-

benzoxathiin-6-ol

1XP1(2005, [75])

(2S,3R)-2-(4-{2-[(3S,4S)-3,4-Dimethylpyrrolidin-

1-yl]ethoxy}phenyl)-3-(4-hydroxyphenyl)- 

2,3-dihydro-1,4-benzoxathiin-6-ol

1XP6 (2005, [75])

(2S,3R)-3-(4-Hydroxyphenyl)-2-(4-{[(2S)-

2-pyrrolidin-1-ylpropyl]oxy}phenyl)-2, 

3-dihydro-1,4-benzoxathiin-6-ol

1XP9 (2005, [75])

(2S,3R)-3-(4-Hydroxyphenyl)- 

2-(4-{[(2R)-2-pyrrolidin-1-ylpropyl]oxy}

phenyl)-2,3-dihydro-1,4-benzoxathiin-6-ol

1XPC (2005, [75])

(1S)-1-{4-[(9aR)-Octahydro-2H-pyrido[1,2-a]

pyrazin-2-yl]phenyl}-2-phenyl-1,2,3,4-

tetrahydroisoquinolin-6-ol

1XQC (2005, [76])

(2R,3R,4S)-3-(4-Hydroxyphenyl)-4-methyl-2- 

[4-(2-pyrrolidin-1-ylethoxy)phenyl]chroman-6-ol

1YIM (2005, [77])

(2R,3R,4S)-5-Fluoro-3-

(4-hydroxyphenyl)-4-methyl-2-[4-(2-piperidin- 

1-ylethoxy)phenyl]chroman-6-ol

1YIN (2005, [77])

(continued)
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TABLE 5.2 (CONTINUED)
X-ray Crystallographic Estrogen Receptor (ER) Structures Available in the 
Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

6-(4-Methylsulfonyl-phenyl)-5-[4-(2-piperidin-1- 

ylethoxy)phenoxy]naphthalen-2-ol

2AYR (2005, [78])

4-[(1S,2S,5S)-5-(Hydroxymethyl)-6,8,9-

trimethyl-3-oxabicyclo[3.3.1]non-7-en-2-yl]

phenol

1ZKY (2006, [79])

4-[(1S,2S,5S)-5-(Hydroxymethyl)-8-methyl- 

3-oxabicyclo[3.3.1]non-7-en-2-yl]phenol

2B1V (2006, [79])

4-[(1S,2S,5S,9R)-5-(Hydroxymethyl)-8,9-dimethyl-

3-oxabicyclo[3.3.1]non-7-en-2-yl]phenol

2FAI (2006, [79])

4-[(1S,2R,5S)-4,4,8-Trimethyl-3-

oxabicyclo[3.3.1]non-7-en-2-yl]phenol

2G44 (2006, [80])

(3aS,4R,9bR)-4-(4-Hydroxyphenyl)-

1,2,3,3a,4,9b-hexahydrocyclopenta[c]

chromen-8-ol

2I0J (2006, [81])

(5R,6S)-6-Phenyl-5-[4-(2-pyrrolidin-1-ylethoxy)

phenyl]-5,6,7,8-tetrahydronaphthalen-2-ol

2OUZ (2007, [82])

(17 )-17-{(E)-2-[2-(Trifluoromethyl)phenyl]

vinyl}estra-1(10),2,4-triene-3,17-diol

2P15 (2007, [83])

4-[(Dimesitylboryl)(2,2,2-trifluoroethyl)amino]

phenol

2Q6J (2007, [84])

(3aS,4R,9bR)-2,2-Difluoro-4-(4-hydroxyphenyl) 

-1,2,3,3a,4,9b-hexahydrocyclopenta[c]

chromen-8-ol

2Q70 (2007, [85])

(3aS,4R,9bR)-4-(4-Hydroxyphenyl)-6-

(methoxymethyl)-1,2,3,3a,4,9b-

hexahydrocyclopenta[c]chromen-8-ol

2QE4 (2007, [86])

N-[(1R)-3-(4-Hydroxyphenyl)-1-methylpropyl]- 

2-[2-phenyl-6-(2-piperidin-1-ylethoxy)-1H-

indol-3-yl]acetamide

2IOG (2007, [87])

N-[(1R)-3-(4-Hydroxyphenyl)-1-methylpropyl]- 

2-(2-phenyl-1H-indol-3-yl)acetamide

2IOK (2007, [87])

hER Genistein 1QKM (1998, [60]); 1X7J (2004, [70])

(R,R)-5,11-cis-Diethyl-5,6,11,12-

tetrahydrochrysene-2,8-diol

1L2I (2002, [65])

5-Hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-

7-carbonitrile

1X76 (2004, [73])

[5-Hydroxy-2-(4-hydroxyphenyl)-1-benzofuran-

7-yl]acetonitrile

1X78 (2004, [73])

2-(3-Fluoro-4-hydroxyphenyl)-7-vinyl-1,3-

benzoxazol-5-ol

1X7B (2004, [73])

2-(4-Hydroxy-phenyl)benzofuran-5-ol 1U9E (2004, [73])
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TABLE 5.2 (CONTINUED)
X-ray Crystallographic Estrogen Receptor (ER) Structures Available in the 
Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

4-(2-{[4-{[3-(4-Chlorophenyl)propyl]sulfanyl}- 

6-(1-piperazinyl)-1,3,5-triazin-2-yl]amino} 

ethyl)phenol

1NDE (2002, [88])

4-(6-Hydroxy-benzo[d]isoxazol-3-yl)benzene-

1,3-diol

1U3Q (2004, [89])

2-(5-Hydroxy-naphthalen-1-yl)-

1,3-benzooxazol-6-ol

1U3R (2004, [89])

3-(6-Hydroxy-naphthalen-2-yl)-benzo[d]

isooxazol-6-ol

1U3S (2004, [89])

1-Chloro-6-(4-hydroxyphenyl)- 

2-naphthol

1YY4 (2005, [89])

3-(3-Fluoro-4-hydroxyphenyl)- 

7-hydroxy-1-naphthonitrile

1YYE (2005, [90])

3-Bromo-6-hydroxy-2- 

(4-hydroxyphenyl)-1H-inden-1-one

1ZAF (2005, [91])

4-Hydroxytamoxifen 2FSZ (2006, [92])

(9aS)-4-Bromo-9a-butyl-7-hydroxy-1,2,9,9 

a-tetrahydro-3H-fluoren-3-one

2GIU (2006, [93])

(3aS,4R,9bR)-4-(4-Hydroxyphenyl)-1,2,3,3a,4,9

b-hexahydrocyclopenta[c]chromen-8-ol

2IOG (2006, [81])

(3aS,4R,9bR)-2,2-Difluoro-4-

(4-hydroxyphenyl)-1,2,3,3a,4,9b-

hexahydrocyclopenta[c]chromen-8-ol

2Z4B (2007, [85])

(3aS,4R,9bR)-4-(4-Hydroxyphenyl)-6-

(methoxymethyl)-1,2,3,3a,4,9b-

hexahydrocyclopenta[c]chromen-8-ol

2JJ3 (2007, [86])

4-(4-Hydroxyphenyl)- 

1-naphthaldehyde oxime

2NV7 (2007, [94])

(3aS,4R,9bR)-4-(4-Hydroxyphenyl)-1,2,3,3a,4,9

b-hexahydrocyclopenta[c]chromen-9-ol

2POG (2007, [95])

(3aS,4R,9bR)-2,2-Difluoro-4-(4-hydroxyphenyl)- 

6-(methoxymethyl)-1,2,3,3a,4,9b-

hexahydrocyclopenta[c]chromen-8-ol

2QTU (2007, [96])

Rat ER Raloxifene 1QKN (1999, [60])

N-Butyl-11-[(7R,8R,9S,13S,14S,17S)-3,17-

dihydroxy-13-methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-7-yl]-

N-methylundecanamid

1HJ1 (2001, [97])
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LBDs revealed a RMSD of 0.7 Å. Finally, a PROCHECK analysis confirmed that the 

geometry and the dihedral angles of the model were in a range expected for a good 

protein structure (for example, more than 98% of the residues are in the most favor-

able or allowed regions of the Ramachandran plot).

Maalouf and coworkers [48] modeled the LBD of hER  protein by homology to 

the known crystal structure of the  isoform of human LBD hRXR. The secondary 

structure of the hER  model was deduced from the sequence alignment with mem-

bers of the NR superfamily — that is, hRXR, human retinoic acid receptor- , and 

rat thyroid receptor [51,53,54]. The 3D model was refined using molecular dynamics 

simulation and energy minimization. Then, the model obtained was inspected with 

PROCHECK. The authors deposited their model in the Brookhaven Protein Data 

Bank with 1AKF accession code. However, it would have been useful to report iden-

tity percentage between hER sequence and the NR sequences used in the alignment.

Mori and coworkers [55] reported the homology model of rainbow trout ER LBD 

built from the X-ray structure of 17 -estradiol complexed to ER  (1ERE PDB acces-

sion code) [56]. The pairwise sequence alignment of the LBDs of 1ERE and rtER 

was given as well as the homology percentage. But, it was not specified if it was the 

identity or similarity percentage. It would have been interesting and helpful to per-

form a multiple alignment with other X-ray crystal structures of ER in complex with 

17 -estradiol or diethylstilbestrol (1A52 and 3ERD PDB accession codes, respec-

tively) that were experimentally resolved before this article [57,58]. The rainbow 

trout estrogen receptor subtype ( , , or ) was not specified in the article. The 

authors did not provide computational details of the energy minimization procedure 

of the theoretical model. The RMSD value between the target and template atoms 

LBDs was 0.87 Å. Although this value is good, the major drawback of this modeling 

approach is that the quality of the homology model was not estimated by any of the 

existing programs (for example, PROCHECK or WHATCHECK).

A homology model of human estrogen receptor subtype  (hER ) was built using 

crystallographic structures of ER  in complex with estradiol (two structures), dieth-

ylstilbestrol, tamoxifen, and raloxifene (1ERE, 1ERR, 1A52, 3ERD, and 3ERT PDB 

accession codes, respectively) [56–59]. It is noteworthy that the authors specified the 

primary sequence of hER  used to build the theoretical model (GenBank accession 

number BAA24953). This information is crucial for anyone wanting to build such 

a model if the coordinates are not available. Even though the ER  and ER  LBD 

sequences hold more than 60% identity, the authors warned of the gaps in the ER

amino acid sequences due to either poor resolution or lack of order within particu-

lar domains [56–58]. All the computational details of the refinement procedure are 

given in the article. Moreover, DeLisle and coworkers [59] analyzed all the possible 

sources of errors in their comparative model, scanned it for possible clashes between 

amino acids of the side chains, and assessed it for appropriate rotamers, particularly 

at the points where random loops were inserted. Finally, to assess the structural 

accuracy of the ER  homology model, the crystal structure (resolved at the time of 

their work by Pike et al. [60]) and model were superimposed by structural alignment 

and led to an RMSD value less than 1.6 Å, which is correct. Although the model was 

conscientiously generated, the authors should have performed a validation of their 

3D ER  model with PROCHECK or WHATCHECK programs.
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Jacobs et al. [61] generated the 3D structure of human estrogen receptor  (hER )

ligand-binding domain by homology modeling to the human ER  crystallographic 

coordinates [56,61]. The sequence alignment was determined based on the article of 

Brzozowski and coworkers [56] but without any sequence identity and/or similarity 

information. Moreover, the hER  crystallographic structure was resolved by Pike 

et al. [60] in 1999, and was available in the PDB. It is surprising that such a template 

structure was not used in the sequence alignment. The major drawback relies on the 

lack of the stereochemical quality and the side-chain environment assessment.

A 3D model of the rainbow trout estrogen receptor-  (rtER ) was reported by 

Marchand-Geneste et al. [62] based on the human ER  X-ray crystallographic 

structure (1QKU PDB accession code) [62,63]. This X-ray structure was selected 

among the other ER crystallographic structures because it was the most complete (no 

missing residues). All the sequence FASTA codes are given in the publication, and 

the pairwise sequence alignment revealed 64% identity between rtER  and hER .

Manual and automatic homology modeling procedures were proposed and were 

compared leading to two analog 3D structures of rtER . Both models were energy 

minimized. The superimposition between C  atoms of both models and the crystal 

structure yielded acceptable RMSD values, although the automatic procedure gener-

ated a model with larger RMSD value than the manual procedure.

Homology models for the LBD of zebrafish estrogen receptors (zfERs) , 1, 

and 2 were constructed using X-ray crystal structures of human homologs (1ERE, 

1ERR, 3ERD, 3ERT, and 1L2I PDB accession codes for hER  structures and 1L2J 

and 1QKM PDB files for hER  structures) [56,58,60,64,65]. Human structures of 

ER agonist complexes (1ERE, 3ERD, 1L2I) yielded agonist zfER  structures, while 

antagonist template structures (1ERR and 1ERT) were used to model antagonist 

zfER . All zebrafish sequence accession numbers used are given in the article 

as well as the template accession numbers. The zebrafish homology models were 

minimized and superimposed to their corresponding human X-ray crystal homologs 

yielding RMSD values of 0.92 Å for  subtypes and 1.37 Å for  subtypes. Finally, 

the quality assessment of the models was validated with a PROSA analysis to cre-

ate energy graphs that provided diagnostic indicators of poorly calculated/folded 

regions of tertiary structure [47]. A PROCHECK analysis provided scores of overall 

quality of the models, and Ramachandran plots indicated the most favored regions 

of amino acids [38,39]. The homology modeling procedure performed by Costache 

et al. [64] leads to reliable zfER , 1, and 2 3D models.

5.4.2 ANDROGEN RECEPTOR (AR)

Table 5.3 presents the existing X-ray crystallographic structures of AR for rat, chim-

panzee, and human with their corresponding bound ligand that could be used to 

generate further homology models.

The homology models of human AR DNA-binding domain (DBD) and LBD were 

determined by McDonald et al. [98] based on rat glucocorticoid receptor (ratGR, 

1GLU PDB accession code) and human progesterone receptor (hPR, 1A28) known 

crystal structures, respectively [98–100]. Pairwise sequence alignments yielded 52% 

identity between hPR template structure and hAR LBD and 82% identity between 
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TABLE 5.3
X-ray Crystallographic Androgen Receptor (AR) Structures Available in the 
Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hAR Metribolone 1E3G (2000, [103]); 1XOW, 1XQ3, 2AO6 

(2004, [104])

9 -Fluorocortisol 1GS4 (2002, [105])

Dihydrotestosterone 1T5Z, 1T63, 1T65, 1XJ7 (2005, [106])

(R)-Bicalutamide 1Z95 (2005, [107])

Hydroxyflutamide 2AX6 (2005, [108])

(S)-3-(4-Fluorophenoxy)-2-hydroxy-2-

methyl-N-[4-nitro-3-(trifluoromethyl)

phenyl]propanamide

2AX7, 2AX8, 2AXA (2005, [108])

(R)-3-Bromo-2-hydroxy-2-methyl-N-

[4-nitro-3-(trifluoromethyl)phenyl]

propanamide

2AX9 (2005, [108])

Testosterone 2AM9 (2006, [109]); 2Q7I, 2Q7J, 2Q7K, 

2Q7L (2007, [110])

Dihydrotestosterone 2AMA (2006, [109])

Tetrahydrogestrinone 2AMB (2006, [109])

6-[bis(2,2,2-Trifluoroethyl)amino]- 

4-(trifluoromethyl)quinolin-2(1H)-one

2HVC (2006, [111])

Cyproterone acetate 2OZ7 (2007, [112])

(5S,8R,9S,10S,13R,14S,17S)-13-[2-

[(3,5-Difluorophenyl)methoxy]

ethyl]-17-hydroxy-10-methyl-1,2,4,5, 

6,7,8,9,11,12,14,15,16,17-

tetradecahydrocyclopenta[a]

phenanthren-3-one

2PNU (2007, [113])

Rat AR Dihydrotestosterone 1I37, 1I38 (2001, [114])

(3aR,4S,7R,7aS)-3a,4,7,7a-Tetrahydro-

2-(4-nitro-1-naphthalenyl)-4,7-ethano-

1H-isoindole-1,3(2H)-dione

1XNN (2005, [115])

4-[(7R,7aS)-7-Hydroxy-1,3-

dioxotetrahydro-1H-pyrrolo[1,2-c]

imidazol-2(3H)-yl]-1-naphthonitrile

2IHQ (2006, [116])

2-Chloro-4-[(7R,7aS)-7-hydroxy-1, 

3-dioxotetrahydro-1H-pyrrolo[1,2-c]

imidazol-2(3H)-yl]-3-

methylbenzonitrile

2NW4 (2007, [117])

Chimpanzee AR Dihydrotestosterone 1T73, 1T74, 1T76, 1T79, 1T7F, 1T7M, 

1T7R, 1T7T (2004, [118])
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ratGR template structure and hAR DBD. The sequences were aligned directly with-

out the introduction of gaps. Each human AR domain model was energy minimized 

with a different protocol. In fact, to avoid conformational collapse of the hAR active 

site model during the energy minimization procedure, testosterone was manually 

inserted into it. Close contacts and buried hydrophilic side chains were adjusted 

manually. Finally, the geometry and stereochemistry of final models were checked 

with PROCHECK, leading to 99% (LBD) and 91% (DBD) of residues in the allowed 

regions of the Ramachandran plot, and stereochemical parameters that fell within 

allowable limits for both models.

Models of the human AR LBD were constructed by Poujol and coworkers [101] 

using the RAR , hER , and hPR crystal structures [51,56,100,101]. The authors only 

described the model based on the hPR crystal structures. The alignment between 

hPR and hAR revealed 56% identity, suggesting that a reliable model could be built 

from this template structure. The 3D hAR model generated was energy minimized. 

Although the statistical details were not reported in the article, the quality of the 

model was checked by PROCHECK.

Marhefka and coworkers [102] proposed a 3D model for the human AR LBD 

bound to testosterone using the hPR known crystal structure (1A28) [100,102]. The 

sequence alignment revealed 56% identity and 88% similarity between the target 

and the template sequences. The absence of insertions or deletions within these 

sequences led to the direct mutation of the hPR residues to the corresponding resi-

dues of the hAR. Model refinement was performed by multiple molecular dynamics 

simulations. The major drawback of this model is the lack of quality assessment.

5.4.3 PROGESTERONE RECEPTOR (PR)

The hPR structures resolved by X-ray and deposited in the PDB are gathered in 

Table 5.4. Among these hPR crystal structures, that reported by Williams and Sigler 

[100] is the most used to generate theoretical models of NRs.

TABLE 5.4
X-ray Crystallographic Progesterone Receptor (PR) Structures Available 
in the Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hPR Progesterone 1A28 (1998, [100])

Estradiol 1A52 (1998, [57])

Metribolone 1E3K (2000, [103])

Norethindrone 1SQN (2004, [120])

Mometasone furoate 1SR7 (2004, [120])

5-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,

1-benzoxazin-6-yl)-1-methyl-1H-pyrrole- 

2-carbonitrile

1ZUC (2005, [121])

4-[(11 ,17 )-17-Methoxy-17-(methoxymethyl)- 

3-oxoestra-4,9-dien-11-yl]benzaldehyde oxime

2OVH, 2OVM (2007, [122])
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A progesterone receptor (PR) antagonist homology model was modeled by Jones 

et al. [119] from the crystal structure of PR complexed to the endogenous agonist 

progesterone (1A28 PDB accession code) and ER  complexed to the antagonist 

tamoxifen (3ERT) [58,100,119]. It is surprising that more recent hPR crystallographic 

structures (Table 5.4) were not selected, although these structures are bound with 

agonist ligands (except for 2OVH and 2OVM PDB files). Very few computational 

details are given in this article. No energy minimization and validation of the model 

built were reported.

5.4.4 GLUCOCORTICOID RECEPTOR (GR)

As few X-ray crystallographic structures of GR (uncomplexed to DNA or other NRs) 

are available in the PDB (Table 5.5), numerous comparative models were generated. 

They are briefly presented below.

Lind et al. [123] developed and optimized a homology model of the GR LBD based 

on the ER  crystal structure [56]. However, no sequence alignment was reported in 

the article and no identity or similarity percentages were given. Consequently, it is 

difficult to appreciate the validity of such a model. Moreover, the quality assessment 

of the constructed model was not performed.

Dey et al. [124] proposed a comparative model of mouse GR (mGR) LBD designed 

from the X-ray crystal structure of progesterone complexed to its receptor (1A28 

PDB accession code) [100]. The authors reported the PDB accession codes of all the 

X-ray template structures used to align the mouse GR sequence that were extracted 

from the SWISSPROT sequence data bank. The multiple sequence alignment among 

mGR, hPR, hAR and hER LDB is given and discussed. The identity and similar-

ity percentages are presented between the target and each template X-ray crystal 

structure. The refinement protocol of the homology model is well detailed, and the 

RMSD value between the mGR LBD backbone and hPR is 1.3 Å. The reliability of 

the theoretical model of mGR LBD was checked with PROCHECK. In conclusion, 

this mGR homology model is reliable because each step of the homology process has 

been respected.

Lewis et al. [125] reported the results of homology modeling of the human GR 

LBD (hGR) based on the LBD of human ER  (1ERE PDB code) [56]. Although the 

authors proposed a multiple sequence alignment, they did not report sequence iden-

tity and similarity information. Nevertheless, they argued that the hER  template 

structure was chosen for modeling due to the relatively high homology with the hGR 

TABLE 5.5
X-ray Crystallographic Glucocorticoid Receptor (GR)
Structures Available in the Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hGR Dexamethasone 1M2Z (2002, [127]); 1P93 (2003, [130])

Mifepristone 1NHZ (2003, [130])
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sequence. The model obtained was energy minimized using molecular mechanics 

to obtain a low-energy geometry and stable protein conformation by relaxing the 

molecule and relieving any unfavorable steric contacts. However, the weakness of 

their model comes from the absence of any quality assessment (for example, ste-

reochemical quality, side-chain environment, conformational space sampled by the 

homology model).

Honer et al. [126] created a homology model for the LBD of human GR based on 

the X-ray crystal structure of the progesterone bound to PR LBD (1A28) [99]. This 

template was chosen because the pairwise sequence alignment revealed 53% identity 

and 74% homology between hGR and hPR. The refinement and the quality assessment 

procedure of the hGR homology model built were not carried out. Moreover, it is sur-

prising that the X-ray crystal structure of hGR mentioned in the article was not used as 

a template for their alignment and was not compared to their 3D model [127].

In order to understand the potential structural differences between hGR  and 

hGR , Yudt et al. [128] modeled the hGR  and hGR  LBDs using the coordinates 

from the progesterone receptor (hPR) (1A28 PDB accession code) [100]. Multiple 

sequence alignment of hGR , hGR , and several other related receptors (hPR, hAR, 

hER , and RXR ) was carried out. However, no sequence identity between the tar-

get sequences and NR sequences was given. Energy minimization and dynamics of 

the 3D homology models were performed as part of the homology modeling pro-

cess. The models developed were checked using the PROCHECK and WHAT IF 

programs to insure that psi and phi angles occurred in the expected regions of the 

Ramachandran map and that there were no steric bumps or overlaps in the structure. 

As previously indicated, the X-ray crystal structure of hGR was resolved before the 

submission of this article [127]. Thus, it would have been interesting to add this 3D 

structure to the sequence alignment or to superimpose the model built to this X-ray 

structure.

A homology model of the human GR LBD based on the crystal structure of 

the human progesterone receptor (1A28 PDB accession code) was reported by von 

Langen et al. [100,129]. Table 5.5 displays the different crystal structures resolved 

before the work of von Langen and coworkers [129]. In 2002, Bledsoe and cowork-

ers [127] resolved the crystal structure of hGR LBD bound to dexamethasone and 

a coactivator motif. Moreover, in 2003, the 3D crystal structures of hGR LDB in 

complex with the antagonist RU-486 at 2.3 Å resolution and with the agonist dexam-

ethasone ligand together with a coactivator peptide at 2.8 Å was published by Kauppi 

et al. [130]. The drawback of this study comes from the template selected to build 

the hGR model. In fact, the hPR template structure chosen is surprising because 

both crystal structures of hGR were published prior to their article. However, the 

stereochemical correctness of their hGR model was checked with the PROCHECK 

program and the Ramachandran plot reported that 97% of the residues were in the 

most favored or allowed region. Although the authors did not select any of the hGR 

crystal structures available in the PDB, they performed the superimposition of the 

hGR homology model built with the X-ray crystal structure of hGR in complex with 

dexamethasone and found an RMSD value for the backbone atoms of 2.1 Å. The 

authors reported that such a high value was due to structural differences mainly at 

the loop regions in the outer parts and to helix 12. However, it is well known that the 
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helix 12 is involved in the conformational change observed between an agonist and 

antagonist receptor structure [56].

5.4.5 MINERALOCORTICOID RECEPTOR (MR)

Table 5.6 collects the X-ray crystallographic structures of hMR available from the 

PDB Web site.

Fagart et al. [131] proposed a homology model of the human MR LBD based on 

the crystal structure of the human retinoic acid receptor-  ligand-binding domain 

(hRAR , 2LBD PDB accession code) [51]. The major drawback of this model is 

the low sequence identity shared with the hRAR  sequence (<20%). This template 

was preferred by the authors because all 11 helices observed in the hRAR  X-ray 

structure are well matched and represented the anchoring points for the alignment 

process. Analysis of the homology procedure reveals that the refinement step of the 

model building was omitted as well as the superimposition of the 3D homology 

model of hMR with the hRAR  crystal structure, which allows us to assess the qual-

ity of the model. Nevertheless, the reported PROCHECK statistics show that more 

than 97% of the residues in the Ramachandran plot (not displayed in the article) 

are in the most favored or allowed regions and that side-chain stereoparameters are 

inside the range. PROSAII analysis gave a Z-score value close to the range observed 

for RAR  and RXR  structures [132]. These results suggest that the 3D homology 

model of hMR is of good quality despite the low sequence identity reported. It should 

have been useful to specify the primary sequence used for the hMR.

Another hMR LDB homology model was generated based on a sequence iden-

tity of 56% with hPR [100,133]. The model building was achieved according to the 

method described by Fagart et al. [131]. All the critical points stressed in the article 

by Fagart and coworkers are also applicable in this article.

A 3D X-ray structure of progesterone complexed to its receptor was used by Dey

and Roychowdhury [134] to develop a homology model of human MR LBD in a 

similar procedure as mouse GR LBD discussed previously [100]. All the homology 

modeling steps were followed, yielding a reliable 3D hMR model.

TABLE 5.6
X-ray Crystallographic Mineralocorticoid Receptor (MR) Structures 
Available in the Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hMR Desoxycorticosterone 1Y9R (2005, [135])
Progesterone 1YA3 (2005, [135]); 2AA5, 2AA6 (2005, [136])

Corticosterone 2A3I (2005, [137])

Aldosterone 2AA2 (2005, [136])

Desoxycorticosterone 2AA7 (2005, [136])

Cortisone 2AAX (2005, [136])

Spironolactone 2AB2 (2005, [136]); 2OAX (2007, [138])
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5.4.6 THYROID HORMONE RECEPTOR (TR)

Several X-ray crystallographic structures of TR have been resolved since 1998. Their 

PDB accession codes are gathered in Table 5.7. Concerning the theoretical models 

of TR, Schapira et al. [139] used the crystal structure of raloxifene bound to hER

(1ERR PDB accession code) as the template to derive, from the crystallographic 

structure of agonist bound TR  ligand-binding domain (1BSX), a predicted model 

of the thyroid receptor bound to an antagonist [54,56,139]. However, sequence align-

ment and identity percentage were not reported in this study. The model was refined 

by a Monte Carlo simulation but neither the quality of the model nor the RMS devia-

tion with the template was checked. Thus, the consistency of this model is doubtful.

5.4.7 VITAMIN D RECEPTOR (VDR)

The 3D VDR crystallographic coordinates for human, rat, and zebrafish, which 

are available in the PDB, are presented in Table 5.8. Very few models are reported 

in the literature. The first human vitamin D receptor (hVDR) LBD modeled was 

based on the crystal structure of the human retinoic acid receptor-  (hRAR , 2LBD 

TABLE 5.7
X-ray Crystallographic Thyroid Receptor (TR) Structures Available in the 
Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hTR [4-(4-Hydroxy-3-isopropylphenoxy)- 

3,5-dimethylphenyl]acetic acid

1NAV (2003, [140])

3,5,3 -Triiodothyronine 2H77, 2H79 (2006, [141])

hTR [4-(4-Hydroxy-3-isopropyl-phenoxy)- 

3,5-dimethylphenyl]-6-azauracil

1N46 (2003, [142])

[4-(4-Hydroxy-3-isopropylphenoxy)- 

3,5-dimethylphenyl]acetic acid

1NAX (2003, [140])

[4-(4-Hydroxy-3-iodo-phenoxy)-

3,5-diiodophenyl]acetic acid

1NQ0, 1NQ1 (2003, [143]); 1NQ2 

(2003, [144]); 1NUO (2003, [144])

[4-(3-Benzyl-4-hydroxybenzyl)- 

3,5-dimethylphenoxy]acetic acid

1Q4X (2003, [145])

2-[3,5-Dibromo-4-(4-hydroxy-3-

{hydroxy[(2-phenylethyl)amino]methyl}

phenoxy)phenyl]ethane-1,1-diol

1R6G (2004, [146])

3,5,3 '-Triiodothyronine 1BSX (1998, [54]); 1XZX (2004, [147]); 

2H6W (2006, [141])

3,5,3 ,5 -Tetraiodo-l-thyronine 1Y0X (2004, [147])

3,5-Dibromo-4-(3-isopropyl-phenoxy)

benzoic acid

2J4A (2006, [148])
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TABLE 5.8
X-ray Crystallographic Vitamin D Receptor (VDR) Structures Available 
in the Protein Data Bank

Receptor Ligand Cocrystallized
PDB Code, Year, 

Reference

hVDR 5-{2-[1-(5-Hydroxy-1,5-dimethylhexyl)-7a-methyl-

octahydro-inden-4-ylidene]-ethylidene}-4-methylene-

cyclohexane-1,3-diol

1DB1 (2000, [151]); 

1IE9 (2001, [152])

5-(2-{1-[1-(4-Ethyl-4-hydroxyhexyloxy)-ethyl]- 

7a-methyl-octahydro-inden-4-ylidene}-ethylidene)- 

4-methylene-cyclohexane-1,3-diol

1IE8 (2001, [152])

Seocalcitol 1S0Z (2004, [153])

Calcipotriol 1S19 (2004, [153])

(1R,3R)-5-((Z)-2-((1R,7aS)-Hexahydro-1-((S)-

6-hydroxy-6-methylhept-4-yn-2-yl)-7a-methyl-1

H-inden-4(7aH)-ylidene)ethylidene)cyclohexane-

1,3-diol

1TXI (2005, [154])

2 -Propyl-1 ,25-dihydroxyvitamin D3 2HAM (2006, [155])

2 -(3-Hydroxypropoxy)-1 ,25-dihydroxyvitamin D3 2HAR (2006, [155])

2 -Propoxy-1 ,25-dihydroxyvitamin D3 2HAS (2006, [155])

2 -(3-Hydroxypropyl)-1 ,25-dihydroxyvitamin D3 2HB7 (2006, [155])

2 -Methyl-1 ,25-dihydroxy-vitamin D3 2HB8 (2006, [155])

Rat VDR 5-{2-[1-(5-Hydroxy-1,5-dimethylhexyl)-7a-methyl-

octahydro-inden-4-ylidene]-ethylidene}-2-methylene-

cyclohexane-1,3-diol

1RJK (2004, [156])

5-{2-[1-(5-Hydroxy-1,5-dimethylhexyl)-7a-methyl-

octahydro-inden-4-ylidene]-ethylidene}-4-methylene-

cyclohexane-1,3-diol

1RK3 (2004, [156])

5-{2-[1-(1-Methyl-propyl)-7a-methyl-octahydro-inden- 

4-ylidene]-ethylidene}-2-methylene-cyclohexane- 

1,3-diol

1RKG (2004, [156])

5-{2-[1-(5-Hydroxy-1,5-dimethylhexyl)-7a-methyl-

octahydro-inden-4-ylidene]-ethylidene}-2-methyl-

cyclohexane-1,3-diol

1RKH (2004, [156])

(1R,3R,7E,17Z)-17-(5-Hydroxy-1,5-dimethylhexylidene) 

-2-methylene-9,10-secoestra- 

5,7-diene-1,3-diol

2O4J (2007, [157])

Rat VDR (1R,3R,7E,17E)-17-(5-Hydroxy-1,5-dimethylhexylidene) 

-2-methylene-9,10-secoestra- 

5,7-diene-1,3-diol

2O4R (2007, [157])

Zebrafish VDR 5-{2-[1-(5-Hydroxy-1,5-dimethyl-hexyl)-7a-methyl-

octahydro-inden-4-ylidene]-ethylidene}-4-methylene-

cyclohexane-1,3-diol

2HC4 (2007, [158])
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PDB accession code) [51,149]. The authors used this template for the following rea-

sons: RAR is a member of the same NR subfamily with VDR and from a sequence 

alignment with six NRs (hPPAR , TR , hRAR , hRXR , hER , and hPR). It has 

the highest homology percentage with VDR. However, from the multiple sequence 

alignment proposed, Yamamoto et al. [149] did not report any sequence identity or 

similarity percentage, which could give an idea about the correctness of the homol-

ogy model built that is strongly dependent on the level of sequence identity. The 3D 

homology model of hVDR obtained was energy minimized without and with solvent. 

Finally, the authors evaluated their model with PROCHECK, and Ramachandran 

plot analysis reported that 99% of the residues were in the most favored or allowed 

regions.

The second study concerning the comparative modeling of the rat vitamin D 

receptor (rat VDR) 3D structure was reported and evaluated by Rotkiewicz et al. 

[150]. The VDR sequence was aligned with all sequences of the NCBI nonredundant 

sequence database until convergence of multiple sequence alignment was achieved 

by using a PSI-BLAST procedure. The use of the whole sequence database improved 

the sensitivity of the search and the quality of the alignments. Sequence identity 

between the five NRs and rat VDR was given by the authors in addition to PSI-

BLAST scores. Five NRs of known crystallographic structures were found — namely, 

hPR (1A28), hTR (1BSX), hER (1ERE), hRAR (2LBD), and hPPAR (4PRG) — and 

were used as template structures in the modeling of rat VDR. A molecular dynamics 

minimization procedure of the obtained model was performed. The deviation of the 

model structure from the templates was on the same level as the deviation between 

various template structures. This suggests that this 3D rat VDR comparative model 

is of relatively high accuracy, probably close to the accuracy of crystallographic 

structures. However, it would have been interesting to check the model quality with 

PROCHECK to complete the study.

TABLE 5.8 (CONTINUED)
X-ray Crystallographic Vitamin D Receptor (VDR) Structures Available 
in the Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, 
Reference

Zebrafish VDR (1R,3S,5Z)-5-[(2E)-2-[(1R,3aS,7aR)-1-(2,10-Dihydroxy-2,

10-dimethyl-undecan-6-yl)-7a-methyl-2,3,3a,5,6,7-hexah

ydro-1H-inden-4-ylidene]ethylidene]-4-methylidene-cycl

ohexane-1,3-diol

2HCD (2007, [158])

Zebrafish VDR (1R,3S,5Z)-5-[(2E)-2-[(1S,3aS,7aS)-1-(5-Hydroxy-

5-methyl-hexa-1,3-diynyl)-7a-methyl-2,3,3a,5,6,7-

hexahydro-1H-inden-4-ylidene]

ethylidene]-4-methylidene-cyclohexane-1,3-diol

2HBH (2007, [159])
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5.4.8 RETINOIC ACID RECEPTOR (RAR)

Although the X-ray structure of RAR  bound to the agonist all trans-retinoic acid 

was available in the PDB with the 2LBD code (Table 5.9), the conformation of the 

receptor bound to an antagonist was not known [51]. Thus, a model of the antago-

nist bound structure of human retinoic acid receptor-  (hRAR ) was elaborated 

by Schapira et al. [160] using information derived from tamoxifen bound estrogen 

receptor-  (3ERT PDB accession code) [58]. The major drawbacks of this model 

rely on the lack of sequence alignment and sequence identity percentage allowing 

the modeler to judge the accuracy of the model, as well as the absence of any quality 

assessment. Later, Schapira and coworkers [161] built a model of the RAR-  ago-

nist-binding pocket from the crystal structure of the RAR-  ligand-binding domain 

(2LBD). However, the critical analysis of this model leads to the same drawbacks as 

previously noted.

A homology model of RAR  ligand-binding domain was built by Lund et al. [162] 

using known crystal structures of RAR -LBD as templates (Table 5.9) [51,162–165]. 

Sequence identity between the  and  isoforms of RAR was as high as 87%, which 

made modeling a straightforward procedure. Homology models built were subject 

to coarse molecular mechanics refinement with AMBER94 force field including the 

GB/SA solvation term. Models derived from various templates were found to be 

TABLE 5.9
X-ray Crystallographic Retinoic Acid Receptor (RAR) Structures Available 
in the Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hRAR 4-[(1E)-2-(5,5,8,8-Tetramethyl-5,6,7, 

8-tetrahydronaphthalen-2-yl)prop-1-enyl]benzoic acid

1XAP (2004, [166])

hRAR Retinoic acid 2LBD (1995, [51]); 3LBD 

(1998, [163])

3-Fluoro-4-[2-hydroxy-2-(5,5,8,8-tetramethyl-5,6,7,

8-tetrahydro-naphtalen-2-yl)-acetylamino]-benzoic acid

4LBD (1998, [163])

6-[Hydroxy-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-

naphtalen-2-yl)-methyl]-naphtalene-2-carboxylic acid

1FCX (2000, [164])

6-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydro-naphtalene-

2-carbonyl)-naphtalene-2-carboxylic acid

1FCY (2000, [164])

4-[3-Oxo-3-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-

naphthalen-2-yl)-propenyl]-benzoic acid

1FCZ (2000, [164])

6-[Hydroxyimino-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-

naphtalen-2-yl)-methyl]-naphtalene- 

2-carboxylic acid

1FD0 (2000, [164])

(R)-3-Fluoro-4-[2-hydroxy-2-(5,5,8,8-tetramethyl-5,6,7,8-

tetrahydro-naphtalen-2-yl)-acetylamino]-benzoic acid

1EXA (2000, [165])

(S)-3-Fluoro-4-[2-hydroxy-2-(5,5,8,8-tetramethyl-5,6,7,8-

tetrahydro-naphtalen-2-yl)-acetylamino]-benzoic acid

1EXX (2000, [165])
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highly consistent. The average RMSD of the positions of -carbons was around 0.26 

Å. However, a quality assessment would have been useful to complete the validation 

of the models.

5.4.9 PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR (PPAR)

Numerous hPPAR X-ray crystallographic structures of , , and  subunits have been 

experimentally reported since 1998. Lewis and Lake [167] built a homology model 

of the rat PPAR  LBD based on the crystal structure of the human retinoic acid X 

receptor-  (hRXR ) [53] (Table 5.10). The authors reported a multiple sequence 

alignment between rat, mouse, and human PPARs and hRXR, which exhibited a 

homology around 50%. However, they did not report the identity percentage between 

the protein of known structure (hRXR) and the target protein (PPAR), which is the 

most important percentage with which to evaluate the reliability of the model to 

build. Although the energy optimization of PPAR models was performed, the ste-

reochemistry quality, the side-chain environment, and the RMSD with the template 

structure were not checked. These PPAR homology models for rat, mouse, and 

human were rebuilt in 2002 by Lewis et al. [168] using the hPPAR  crystal structure 

instead of the hRXR  X-ray structure [169]. As displayed in Table 5.11, note that 

five X-ray crystal structures were deposited in 1999 in the PDB. It is surprising that 

these crystallographic structures were not included in the alignment procedure to 

improve the correctness of the model. Although the multiple sequence alignment 

between the template sequence of known structure and the target sequence was 

given, no identity or similarity percentage was reported. The models were refined 

and a close comparison between the PPAR  LBDs and that of the crystal structure 

template (hPPAR ) was carried out. It is rather surprising that without any RMS 

deviation evaluation or quality assessment with PROCHECK or WHAT IF pro-

grams, the authors concluded that their homology models were likely to bear a high 

degree of validity.

Blaney [170] used stereodiagrams from the RAR  and RXR  publications to 

generate the starting structure of the RAR  model as the coordinates of both NRs 

were not available [51,53]. Using the published sequences of the secondary struc-

tural elements, the author built an idealized 3D structure that was sequentially opti-

mized by constrained molecular dynamics. Then, an accurate alignment of three 

TABLE 5.10
X-ray Crystallographic Retinoic Acid X Receptor (RXR) Structures Available 
in the Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hRXR — 1LBD (1995, [53]); 1G1U (2000, [171])

Retinoic acid 1FBY (2000 [172]); 1G5Y (2000, [171])

Docosa-4,7,10,13,16,19-hexaenoic acid 1MV9 (2002, [173])

4-[2-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydro-

naphthalen-2-yl)-[1,3]dioxolan-2-yl]-benzoic acid

1MVC, 1MZN (2002, [173])
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TABLE 5.11
X-ray Crystallographic Peroxisome Proliferator Activated Receptor (PPAR)
Structures Available in the Protein Data Bank

Receptor Ligand Cocrystallized
PDB Code, Year, 

Reference

hPPAR (2S)-2-Ethoxy-3-[4-(2-{4-[(methylsulfonyl)oxy]

phenyl}ethoxy)phenyl]propanoic acid

1I7I, 1I7G (2001, [174])

2-(1-Methyl-3-oxo-3-phenyl-propylamino)-3- 

{4-[2- (5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-

phenyl}-propionic acid

1K7L (2001, [175])

N-((2S)-2-({(1Z)-1-Methyl-3-oxo-3-[4-

(trifluoromethyl)phenyl]prop-1-enyl}amino)-

3-{4-[2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)

ethoxy]phenyl}propyl)propanamide

1KKQ (2002, [176])

(2R,3E)-2-{4-[(5-Methyl-2-phenyl-1,3-oxazol-4-yl) 

methoxy]benzyl}-3-(propoxyimino)butanoic acid

2NPA (2007, [177])

2-Methyl-2-(4-{[({4-methyl-2-[4-(trifluoromethyl)

phenyl]-1,3-thiazol-5-yl}carbonyl)amino]methyl}

phenoxy)propanoic acid

2P54 (2007, [178])

hPPAR — 2GWX (1999, [179])

2-(4-{3-[1-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]- 

3-(2,3-dichloro-phenyl)-ureido]-propyl}-phenoxy)- 

2-methyl-propionic acid

1GWX (1999, [179])

5,8,11,14,17-Eicosapentaenoic acid 3GWX (1999, [179])

(2S)-2-(4-[2-(3-[2,4-difluorophenyl]-1-heptylureido) 

ethyl]phenoxy)-2-methylbutyric acid

1Y0S (2000, [180])

Vaccenic acid 2AWH, 2B50 (2006, [181])

Heptyl- -d-glucopyranoside 2BAW (2006, [182])

(3-{4-[2-(2,4-Dichloro-phenoxy)-ethylcarbamoyl]-

5-phenyl-isoxazol-3-yl}-phenyl)-acetic acid

2J14 (2006, [183])

hPPAR — 1PRG (1998, [169])

— 3PRG (1998, [184])

(5S)-5-[[4-[2-(Methyl-pyridin-2-yl-amino)ethoxy] 

phenyl]methyl]-1,3-thiazolidine-2,4-dione

2PRG (1998, [169]); 

1ZGY (2005, [185])

(2S,5S)-3-(4-(4-Carboxyphenyl)butyl)-2-heptyl- 

4-oxo-5-thiazolidine

4PRG (1999, [186])

(S)-3-(4-(2-Carbazol-9-yl-ethoxy)-phenyl)- 

2-ethoxy-propionic acid

1KNU (2002, [187])

(2S)-2-Ethoxy-3-{4-[2-(10H-phenoxazin-10-yl)

ethoxy]phenyl}propanoic acid

1NYX (2003, [188])

2-[(2,4-Dichlorobenzoyl)amino]-5-(pyrimidin- 

2-yloxy)benzoic acid

1WM0 (2004, [189]); 

2Q6S (2007, [190])

(2S)-(4-Isopropylphenyl)[(2-methyl-3-oxo- 

5,7-dipropyl-2,3-dihydro-1,2-benzisoxazol- 

6-yl)oxy]acetate

1ZEO (2005, [191])
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TABLE 5.11 (CONTINUED)
X-ray Crystallographic Peroxisome Proliferator Activated Receptor (PPAR)
Structures Available in the Protein Data Bank

Receptor Ligand Cocrystallized
PDB Code, Year, 

Reference

2-{5-[3-(7-Propyl-3-trifluoromethylbenzo[d]

isoxazol-6-yloxy) propoxy]indol-1-yl}ethanoic acid

2ATH (2005, [192])

(5-{3-[(6-Benzoyl-1-propyl-2-naphthyl)oxy]

propoxy}-1H-indol-1-yl)acetic acid

2F4B (2006, [193])

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxy-4-

{[4-(2-methoxyphenyl)piperidin-1-yl]methyl}

isoquinoline

2FVJ (2006, [194])

3-Fluoro-N-[1-(4-fluorophenyl)-3-(2-thienyl)-1 

H-pyrazol-5-yl]benzenesulfonamide

2G0G (2006, [195])

N-[1-(4-Fluorophenyl)-3-(2-thienyl)-1H-pyrazol-5-

yl]-3,5-bis(trifluoromethyl)benzenesulfonamide

2G0H (2006, [195])

(2S)-3-(1-{[2-(2-Chlorophenyl)-5-methyl-1, 

3-oxazol-4-yl]methyl}-1H-indol-5-yl)-2-

ethoxypropanoic acid

2GTK (2006, [196])

3-(4-Methoxyphenyl)-N-(phenylsulfonyl)-1- 

[3-(trifluoromethyl)benzyl]-1H-indole-2-

carboxamide

2HFP (2006, [197])

[(1-{3-[(6-Benzoyl-1-propyl-2-naphthyl)oxy]

propyl}-1H-indol-5-yl)oxy]acetic acid

2HWQ (2006, [198])

2-[(1-{3-[(6-Benzoyl-1-propyl-2-naphthyl)oxy]

propyl}-1H-indol-4-yl)oxy]-2-methylpropanoic 

acid

2HWR (2006, [198])

(2R)-2-(4-{2-[1,3-Benzoxazol-2-yl(heptyl)amino]

ethyl}phenoxy)-2-methylbutanoic acid

2I4J (2007, [199])

(2S)-2-(4-{2-[1,3-Benzoxazol-2-yl(heptyl)amino]

ethyl}phenoxy)-2-methylbutanoic acid

2I4P, 2I4Z (2007, [199])

(6aR,10aR)-3-(1,1-Dimethylheptyl)-1-hydroxy-6, 

6-dimethyl-6a,7,10,10a-tetrahydro-6H-benzo[c]

chromene-9-carboxylic acid

2OM9 (2007, [200])

(2S)-2-(2-{[1-(4-Methoxybenzoyl)-2-methyl- 

5-(trifluoromethoxy)-1H-indol-3-yl]methyl}

phenoxy)propanoic acid

2Q59 (2007, [190])

(2S)-2-(3-{[1-(4-Methoxybenzoyl)-2-methyl- 

5-(trifluoromethoxy)-1H-indol-3-yl]methyl}

phenoxy)propanoic acid

2Q5P (2007, [190])

5-Chloro-1-(4-chlorobenzyl)-3-(phenylthio)-1 

H-indole-2-carboxylic acid

2Q5S (2007, [190])

1-Benzyl-5-chloro-3-(phenylthio)-1H-indole-

2-carboxylic acid

2Q61 (2007, [190])

5-Chloro-1-(3-methoxybenzyl)-3-(phenylthio)- 

1H-indole-2-carboxylic acid

2Q6R (2007, [190])
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human PPAR subtype sequences with that of RAR  and RXR  was performed. 

A model of hPPAR  was obtained (few computational details are given) and refined. 

The quality assessment of the models was not carried out. The major weakness of 

this homology modeling procedure is the absence of any 3D crystallographic coor-

dinates. Moreover, the lack of sequence identity percentage makes the reliability of 

the model unlikely.

Jacobs et al. [61] built a model of human PPAR  by homology modeling using the 

human PPAR  ligand-binding domain crystallographic coordinates [169]. However, 

this model has several weaknesses, such as the absence of identity percentage from 

the sequence alignment using the hPPAR  crystal structure, the RMS deviation 

between the model and the template backbone atoms which was not given, and the 

quality of the hPPAR  model built which was not evaluated. Moreover, as shown in 

Table 5.11, four crystallographic structures of hPPAR  were already resolved and 

deposited in the PDB before the article was published.

No homology models of RXR were reported in the literature, and few crystal 

structures were deposited into the PDB data bank (Table 5.10).

5.4.10 ESTROGEN RELATED RECEPTOR (ERR)

The agonist bound form of estrogen related receptor-  (ERR ) was modeled by 

Chen et al. [201] using the DES bound structure of the estrogen receptor as a template 

(3ERD PDB accession code) [58]. The antagonist form was built using the tamoxifen 

bound form (PDB accession code: 3ERT) [58]. However, only few details are given 

by the authors concerning the comparative modeling procedure (no sequence align-

ment, no sequence identity, no minimization process, and no validation).

In the same way, two homology models of estrogen related receptor-  (ERR )

were built by Nam et al. [202] based on X-ray crystal structures of ER  in an 

agonist conformation (3ERD) and in an antagonist conformation (3ERT) [58]. As 

previously mentioned, few computational details of the homology modeling and 

minimization procedure are given in the article. The major drawback of this pub-

lication is the absence of any stereochemistry verification in order to validate both 

models.

Suetsugi et al. [203] generated a homology model of hERR  based on the ERR

free protein X-ray structure (PDB accession code: 1KV6) reported by Greschik et al. 

[204] as ERR  shared 57% amino acid sequence identity with the hERR   ligand-

binding domain (LBD). However, they found that the comparative model built pos-

sessed a very small ligand-binding pocket. More specifically, they reported that the 

side chain of Phe399 amino acid on helix 11 partially filled the cavity and interfered 

with the formation of hydrogen bonds between His398 and the ligand. The position 

of Phe399 led to a tightly packed pocket that is only about half of the size of ER , as 

indicated by Greschik et al. [204]. Consequently, they decided not to use this model for 

the screening of agonists of ERR . In order to generate a more accurate, diversified, 

and unbiased ligand-binding pocket of ERR , three hER  crystal structures with 

different agonist ligands (DES, (R,R)-5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-

2,8-diol, and 17 -estradiol) were used as templates (PDB codes 3ERD, 1L2I, and 

1GWR, respectively) [58,65,67]. The homology model of a mutant ERR  was built 
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from the same procedure. Both structures were energy minimized and their quality 

was evaluated by checking the stereochemistry, local geometry, solvent accessible 

surface areas, and side-chain conformational probabilities. They also performed a 

Ramachandran plot analysis showing that 97.5% of the residues in both models were 

in the most favored or allowed regions. The authors’ critical analysis toward the first 

model built strengthened the accuracy of their second model.

5.4.11 CONSTITUTIVE ANDROSTANE RECEPTOR (CAR)

Xiao et al. [205] derived a homology model of hCAR using hPXR (1ILH PDB acces-

sion code) and hVDR (1DB1 PDB accession code) X-ray structures [151,206]. The 

sequences of the LBD of hCAR homologs (hPXR and hVDR) were extracted from 

their PDB files, and multiple sequence alignment yielded, respectively, 43% and 34% 

of sequence identity with hCAR. Nevertheless, it would have been interesting to 

include the hPXR X-ray crystal structure unbound (1ILG PDB accession code) into 

the multiple alignment step [206]. The model was optimized, and several residue side 

chains around the binding cavity were manually adjusted to obtain side-chain torsion 

angles similar to those of the templates. The validation of this model yielded 90% 

of residues in the most favorable region of Ramachandran plot. Finally, the superim-

position of the hCAR model with hPXR and hVDR C  backbone was achieved and 

resulted in RMSD values of 0.25 Å and 0.65 Å, respectively, which suggest that the 

3D homology model of hCAR is reliable and of good quality.

Another 3D comparative model of hCAR was proposed by Dussault and cowork-

ers [207]. A multiple sequence alignment with different nuclear receptor sequences 

(1LBD, 3ERD, 2PRG, 2LBD, 1A28, 1DB1, 1BSX, and 1ILH PDB accession codes) 

revealed that hPXR and hVDR crystal structures were the most appropriate template 

for the modeling with 35.1% and 30.8% of sequence identity with hCAR. Although 

the sequence identity percentage is similar between hPXR and hVDR, the latter was 

not selected for the following two reasons: (1) the authors noted that steric clashes 

and exposed hydrophobic residues modified the structure of the two loops connect-

ing H1 and H3, leading to incompatible region conservation with CAR sequence; 

and (2) the active site was too small to accommodate a potent agonist 1,4-bis[2-

(3,5-dichloropyridyloxy)]benzene (TCPOBOP) ligand involved in the study. The 

refinement procedure was completed but not detailed. The  carbons of hPXR and 

CAR structural model were superimposed and yielded a RMSD of 3.15 Å. This value 

suggests that several differences are apparent. In fact, the authors reported that some 

loops of the template became shorter in the target structure and that three hydrophobic 

amino acids became smaller in size in the CAR model, which modified the binding 

ability of the CAR structure. The quality of the model was tested with PROCHECK, 

which revealed that 82.6% of residues fell within the most favored regions of the 

Ramachandran plot.

Jacobs et al. [61] reported a 3D homology model of CAR based on the hER  tem-

plate structure [56]. The model was refined, but the major drawbacks of this study 

are that the identity or similarity percentages were not reported, the RMS deviation 

was not specified, and the quality of the 3D model generated was not checked with 

any of the free available programs such as PROCHECK or WHAT IF.
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5.4.12 PREGNANE X RECEPTOR (PXR)

Jacobs et al. [61] built the 3D homology model of human PXR from the hER  crys-

tallographic coordinates [56]. However, the authors ignored both X-ray crystallo-

graphic structures of hPXR (1ILG and 1ILH accession codes, Table 5.12) resolved 

in 2001 by Watkins et al. [206]. These two template structures should have been 

added into their alignment. Neither identity nor similarity percentage were given 

from the alignment with the hER  template structure; hence, the validity of the tem-

plate structure selected is not proven. Finally, the quality of their 3D hPXR model 

was not checked.

Numerous X-ray crystal structures of PXR are available in the PDB (1ILG, 1ILH, 

1M13, 1NRL, 1SKX, and 1O9I PDB accession codes, Table 5.12), but none of them 

contain an intact LBD. Especially, a flexible loop of 15 amino acids is unresolved in 

these crystal structures. In the absence of ligands, PXR can repress gene expression 

by interacting with transcriptional corepressors, such as the silencing mediator for 

retinoid and thyroid hormone receptor (SMRT). From this observation, Wang et al. [208] 

proposed a homology model of PXR in complex with SMRT containing two inter-

acting domains (ID1 and ID2). The apo-form of PXR (1ILG PDB code) was chosen 

as the template structure to build the model of PXR and the X-ray crystal structure 

of SMRT-ID2 bound to PPAR  (1KKQ PDB accession code) to generate the final 

model of PXR/SMRT-ID2 complex [176]. Then, the ID2 sequence was mutated to the 

corresponding ID1 sequence while preserving the remaining structural components 

of PXR/SMRT-ID2 structure. Both models were refined with energy minimization 

and molecular dynamics simulations. Finally, the two refined structures of PXR/

SMRT complex were analyzed with PROCHECK, which revealed acceptable qual-

ity. The major drawback of this study is the lack of identity sequence percentage.

5.4.13 RAR RELATED ORPHAN RECEPTOR (ROR)

Few crystal structures of ROR have been deposed into the PDB database (Table 5.12). 

Moreover, only two homology models were found in the literature. Harris et al. [226] 

constructed a homology model of the ROR  using TR  (1BSX PDB code) as tem-

plate structure [54]. This structure was preferred to RAR   because the critical region 

for coactivator interaction showed much higher conservation with TR  than RAR .

The alignment revealed that the AF2 region was almost identical between ROR

and TR . However, the authors reported numerous missing side chains and an 

incomplete C  backbone between helix 2 and 3 in the template structure. To cir-

cumvent such problems, the ROR  homology model built was subjected to loop 

modeling through loop databank. Finally, the model was refined by energy minimi-

zation and validated with a Ramachandran, leading to 3% of residues in disallowed 

regions of the Ramachandran plot. Furthermore, a WHAT IF quality analysis was 

performed and yielded a robust and reliable ROR  homology model.

Kurebayashi et al. [227] built the homology model of the LBD ROR  from the 

LBD crystal structure of ROR  (1K4W PDB code) [224]. The modeling process was 

not detailed (no alignment and refinement) and the model quality was not reported.
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TABLE 5.12
X-ray Crystallographic Estrogen Related Receptor (ERR), Constitutive 
Androstane Receptor (CAR), Pregnane X Receptor (PXR), and RAR
(Retinoic Acid Receptor) Related Orphan Receptor (ROR) Structures 
Available in the Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

hERR — 1XB7 (2004, [209])

1-Cyclohexyl-N-{[1-(4-methylphenyl)-1 

H-indol-3-yl]methyl}methanamine

2PJL (2007, [210])

hERR — 1KV6 (2002, [204])

— 1TFC (2004, [211])

Diethylstilbestrol 1S9P (2004, [211])

4-Hydroxytamoxifen 1S9Q (2004, [211]); 2GPV 

(2006, [212])

(Z)-4-(1-{4-[2-(Dimethylamino)ethoxy]

phenyl}-5-hydroxy-2-phenylpent-1-enyl)

phenol

2EWP (2006, [213])

Bisphenol A 2E2R (2007, [214])

Mouse ERR 4-Hydroxytamoxifen 1VJB (2004, [211])

hCAR (5 )-Pregnane-3,20-dione 1XV9 (2004, [215])

6-(4-Chlorophenyl)imidazo[2,1-b][1,3]

thiazole-5-carbaldehyde O-(3,4-

dichlorobenzyl)oxime

1XVP (2004, [215])

Mouse CAR 3,5-Dichloro-2-{4-[(3,5-dichloropyridin-2-yl)

oxy]phenoxy}pyridine

1XLS (2004, [216])

16,17-Androstene-3-ol 1XNX (2004, [217])

hPXR — 1ILG (2001, [206])

[2-(3,5-di-tert-Butyl-4-hydroxy-phenyl)- 

1-(diethoxy-phosphoryl)-vinyl]-phosphonic 

acid diethlyl ester

1ILH (2001, [206])

4-Hydroxy-5-isobutyryl-6-methyl-1,3,7-tris- 

(3-methyl-but-2-enyl)-6-(4-methyl-pent-3-

enyl)-bicyclo[3.3.1]non-3-ene-2,9-dione

1M13 (2003, [218])

[2-(3,5-di-tert-Butyl-4-hydroxy-phenyl)- 

1-(diethoxy-phosphoryl)-vinyl]-phosphonic 

acid diethlyl ester

1NRL (2003, [219])

Rifampicin 1SKX (2005, [220])

N-(2,2,2-Trifluoroethyl)-N-{4-[2,2,2-trifluoro-

1-hydroxy-1-(trifluoromethyl)ethyl]phenyl}

benzenesulfonamide

1O9I (2007, [221])

hROR Cholesterol 1N83 (2002, [222])

Cholest-5-en-3-yl hydrogen sulfate 1S0X (2004, [223])

(continued)
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TABLE 5.12 (CONTINUED)
X-ray Crystallographic Estrogen Related Receptor (ERR), Constitutive 
Androstane Receptor (CAR), Pregnane X Receptor (PXR), and RAR
(Retinoic Acid Receptor) Related Orphan Receptor (ROR) Structures 
Available in the Protein Data Bank

Receptor Ligand Cocrystallized PDB Code, Year, Reference

Rat ROR Stearic acid 1K4W (2001, [224])

Retinoic acid 1N4H (2003, [225])

7-(3,5-di-tert-Butylphenyl)-3-methylocta- 

2,4,6-trienoic acid

1NQ7 (2003, [225])

5.5 CONCLUSIONS

In this chapter, an attempt was made to review the homology models dealing with the 

nuclear hormone receptor superfamily. These models are well suited to better under-

stand the mechanisms of action of the endocrine disruptor chemicals in relation with 

their 3D structure. This is particularly important because numerous studies have shown 

that the design of powerful SAR and QSAR models allowing us to estimate the endo-

crine disruption potential of chemicals needed the use of 3D molecular descriptors.

Despite an impressive bibliographical investigation, the number of models found in 

the literature is limited, even if it is interesting to note that most of the types of receptors 

have been subject to modeling investigations. Conversely, our review clearly reveals that 

a lot of them are of limited value, often suffering from a lack of validation and critical 

analysis. It seems surprising that existing resources, easily available via the Internet, are 

not considered, but they should be helpful in the design and refinement of the models.

The potentialities of homology modeling applied to the understanding of endo-

crine disruption mechanisms are still not fully exploited. Undoubtedly, a lot of work 

remains to be done in this field.
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ABSTRACT

Considerable scientific, regulatory, and popular press attention has been devoted to 

the endocrine disrupting chemicals (EDCs). A larger number of potential estrogenic 

EDCs are associated with products regulated by the Food and Drug Administration 

(FDA), including plastics used in food packaging, phytoestrogens, food additives, 

pharmaceuticals, and cosmetics. Given the huge number of chemicals, many com-

mercially important, and the expense of testing, Structure-Activity Relationship/

Quantitative Structure-Activity Relationship (SAR/QSAR) has been considered to 

be an important priority setting strategy for subsequent experimentation. At the 

U.S. FDA’s National Center for Toxicological Research (NCTR), we conducted 

the Endocrine Disruptor Knowledge Base (EDKB) project, of which SAR/QSARs 

is a major component. We developed predictive models for estrogen and andro-

gen receptor binding. The strengths and weaknesses of various QSAR methods 

were assessed to select those most appropriate for regulatory priority setting. This 

chapter, rather than presenting the work and results of the EDKB program in an 

exhaustive manner, selectively discusses salient concepts, issues, and challenges, 

endeavoring to achieve a tutorial outcome. In particular, concepts such as design-

ing training sets, living models, use of QSARs in a regulatory context, predictive 

model validation, QSAR applicability domain, and prediction confidence estimates 

are among topics the authors have chosen to highlight. The concepts are presented 

and discussed using EDKB program results to provide qualitative and quantitative 

illustrations and examples. We believe the experience and lessons learned in the 

EDKB program will prove valuable to practitioners of QSAR should they endeavor 

to extend predictive systems to real-world regulatory implementations.

KEYWORDS

Applicability domain

Chance correlation

Comparative molecular field analysis (CoMFA)

Decision Forest

Endocrine Disruptor Knowledge Base (EDKB)

EDKB datasets

EDKB Web database

Four-phase approach

Model validation

Structure-Activity Relationship/Quantitative Structure-Activity Relationship 

(SAR/QSAR)

6.1 INTRODUCTION

Evidence that certain man-made chemicals had the ability to disrupt the endocrine 

systems of vertebrates by mimicking endogenous hormones had sparked intense 

international scientific discussion and debate [1]. A growing national concern resulted 

in legislation, including reauthorization of the Safe Drinking Water Act (www.epa.

gov/safewater/sdwa/index.html) and passage of the 1996 Food Quality Protection 

http://www.epa.gov
http://www.epa.gov
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Act, mandating that the Environmental Protection Agency (EPA) develop a screen-

ing program for EDCs (www.epa.gov/endol). Under this requirement, at least 58,000 

existing chemicals would be experimentally evaluated for their potential to disrupt 

activities in the estrogen, androgen, and thyroid hormone systems. Some were asso-

ciated with products regulated by the FDA, including plastics used in food packag-

ing, phytoestrogens, food additives, pharmaceuticals, and cosmetics [2]. A battery of 

in vitro and short-term in vivo screening assays would be used to provide guidance 

for subsequent longer-term, more definitive in vivo tests for toxicity (www.epa.gov/

scipoly/oscpendo/).

There was thus a huge incentive to reduce the cost and speed the screening and testing 

process to identify those chemicals most likely to induce adverse effects. The objective of 

the EDC priority setting was to rank order a large number of chemicals from most impor-

tant to least important for more resource-intensive and costly experimental evaluations. 

Several criteria were identified for priority setting, such as production volume, persistence 

and fate in the environment, and human exposure levels, besides the magnitude of relevant 

endpoints. Most of the 58,000 chemicals without assay data were identified for screening, 

many of which were important industrial chemicals produced in vast quantity. QSARs 

were considered as the primary source of biological effect information for priority setting.

The FDA’s Endocrine Disruptor Knowledge Base (EDKB) program was initiated in 

the mid-1990s in the wake of enormous concerns about EDCs. The time period coin-

cided with the FDA’s National Center for Toxicological Research (NCTR) reorienting its 

strategic goals to begin to alter the paradigm of toxicological research, taking direct aim 

at increasing regulatory efficiency by reducing the time, expense, and animal use in the 

regulation process. The refocused strategies called for development of knowledge bases 

and in silico–based predictive systems. The EDKB program remained active for many 

years, and the resulting data and knowledge base remain important today. Knowledge 

bases are computer-based systems that unify germane literature and data and provide a 

computational searchable tool to explore structure and toxic information.

The EDKB includes SAR, QSAR, chemometric, and consensus models, and an 

online structure-searchable database to assist in risk assessments and regulatory 

decisions for exogenous compounds that may disrupt vertebrate endocrine systems. 

Model training data for SAR/QSAR were obtained from in vitro assays conducted at 

the NCTR/FDA for estrogen and androgen receptor binding affinity. Chemicals for 

training sets were selected to obtain a broad range of structure diversity and activity. 

Quantitative models to predict binding affinity were developed using three-dimen-

sional comparative molecular field analysis (CoMFA) as well as classical QSARs. 

Numerous qualitative SAR class predictors were also developed. A number of differ-

ent models were integrated in a hierarchical manner for use in priority setting based 

on likelihood of activity for tens of thousands of untested chemicals.

6.2 ENDOCRINE DISRUPTOR KNOWLEDGE BASE DATABASE

6.2.1 WEB DATABASE

In the fall of 1996, a National Science and Technology Council (NSTC, 1996) report 

on EDCs identified a need for new databases and information systems. The report 

http://www.epa.gov
http://www.epa.gov
http://www.epa.gov


© 2009 by Taylor & Francis Group, LLC

146 Endocrine Disruption Modeling

called for “a compilation of the results of chemicals in various short-term screen-

ing tests and in vivo assays to assist in the evaluation of their sensitivity, specificity 

and general predictiveness.” Although these assays and tests have been performed 

many times by different procedures in many laboratories, the experimental results 

were scattered throughout the literature, making it difficult for researchers to find, 

compare, and evaluate relevant data. The EDKB database remedies this situation 

by aggregating in one easily accessible location experimental data relevant to estro-

genic, androgenic, and other EDC data. This collection of experimental results for 

a wide variety of chemicals and species would provide raw data for modeling meth-

odologies such as QSAR, while serving as a collaborative testing ground for the 

resulting predictive models.

The primary access to the EDKB database is through the Internet (http://edkb.

fda.gov/databasedoor.html). EDKB Web database is a client-server application con-

sisting of a Java front-end and an Oracle database serving as the data repository at 

NCTR. It has a client application that runs on a user’s workstation. Java language 

programs allow researchers to interactively query the database from Web browsers 

and return the results to their desktops.

Although the EDKB database currently holds data on EDCs, it was designed 

to be extensible to other research areas, particularly for other toxicological end-

points where toxicity or disease is associated with chemical structure. Ultimately, 

the software infrastructure in an updated version may evolve to be a general reposi-

tory for toxicology data, supporting data mining and meta-analysis activities, as well 

as the development of robust and validated predictive systems. The EDKB is now 

integrated with the ArrayTrack software system [3]. ArrayTrack was developed by 

researchers at NCTR’s Center for Toxicoinformatics for a wide array of capabili-

ties in data analysis and pathway mapping of microarray data. ArrayTrack has been 

made freely available to public, private, and academic users.

User statistics are shown in Figure 6.1. The EDKB database has been maintained 

since 1997, and is among the few databases of chemical structure and associated 

biological activity that is open to the public [4,5].

6.2.2 DATABASE CONTENTS AND FEATURES

The EDKB contains chemical structures and endocrine disruptor activities for 

more than 3,200 records tested in several assays. Activity data are represented by 

binding to the estrogen and androgen nuclear receptors, uterotropic weight gain, 

E-screen (cell proliferation), and reporter gene assay (Table 6.1). All data are 

linked to their associated citations. Activities across different assays are scaled 

relative to the endogenous ligand, 17 -estradiol (E2), such that they can be viewed 

together in a Graphical Activity Profile (Figure 6.2). Note that in the graphical 

display, the biological activities for compounds are displayed first by assay type 

then by compound along the X-axis. The Y-axis gives relative potency on a log 

base 10 scale. Each bar for a particular compound and assay has maximum and 

minimum Y intercepts corresponding to the highest and lowest activity, respec-

tively, measured for that compound in the same assay. Boolean query logic is 

supported for bibliography fields, compounds, species, and endpoints. Query 

http://edkb.fda.gov
http://edkb.fda.gov
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results are returned in spreadsheet format and Graphic Activity Profile forms 

(Figure 6.2).

The user can link each chemical to external databases, such as Toxnet, Cactus, 

ChemACX, Chemfind, ChemIDplus, and NCI DTP, and can search data by assay type 

or assay type combinations or directly search query result columns in a spreadsheet-like 

manner. The user can also perform chemical structure or chemical similarity searches 

available in the upper-left panel. In a similarity search, the 50 most similar chemicals 

will be reported in a spreadsheet, one compound per row, with multiple columns list-

ing the activity information. The structure of a compound is displayed in the top-left 

panel when its name is clicked. The user, if interested in a particular compound, can 

highlight the compound and select Individual Compound from the pull-down list 

TABLE 6.1
Summary of Endocrine Disruptor Knowledge Base (EDKB)

Assay Type Number of Records
Standard Chemical

to Be Compared Endpoint

Estrogen receptor binding 616 Estradiol RBAa

Androgen receptor binding 230 R1881 RBA

Uterotropic 1,707 Estradiol RPb

Cell proliferation 160 Estradiol RPPc

Reporter gene 544 Estradiol RP

a RBA: relative binding affinity.
b RP: relative potency.
c RPP: relative proliferation potency.
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FIGURE 6.1 Endocrine Disruptor Knowledge Base (EDKB) database user statistics.
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of “More Info…,” and a new window will pop up showing the detailed compound 

information.

Because a broad query could result in a huge and cumbersome output, advanced 

query capability is available to allow the user to lock down and re-query the database 

across other data within the realm of the previous query (that is, within the previous 

output or other tables associated with the previous output).

6.3 EDKB DATASETS

A robust QSAR model to predict activity of a wide variety of chemical structures must 

start with a training set that contains a sufficiently large number of chemicals with diverse 

structures that reflect, to some degree, the dataset to be evaluated. Despite decades of 

studying estrogens, the EDKB program found the existing data to be inadequate to con-

struct sufficient models. Thus, the EDKB developed and validated a rat estrogen recep-

tor (ER) binding assay [6,7] and a human recombinant androgen receptor (AR) binding 

assay [8] in order to acquire designed training sets for QSAR model development.

The ER competitive binding assay was for many years considered the gold stan-

dard. However, many variants were developed, leading to some significant differ-

ences in results. The EDKB ER binding assay was rigorously validated to assure 

quality data requisite for reliable model development, and each experimental value 

was replicated at least twice. Assays were conducted for 232 chemicals for ER and 

202 chemicals for AR (called ER232 and AR202 hereafter) [6,7]. Both ER232 and 

AR202 contain chemicals that were selected to cover the structural diversity of 

FIGURE 6.2 Endocrine Disruptor Knowledge Base (EDKB) database interface. (See color 
insert following page 244.)
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chemicals that bind to both receptors with an activity distribution ranging over six 

orders of magnitude. They have extensively been used to build and validate a series 

of SAR/QSAR models [9–16].

SAR evaluations of the 232 diverse chemicals revealed five structural features 

most important for chemical binding to ER. These findings can be generalized as 

a set of “IF-THEN” rules for guidance to identify potential ER ligands, depicted in 

Figure 6.3, and summarized as follows:

1. IF a chemical contains no ring structure THEN it is unlikely to be an 

ER ligand.

2. IF a chemical has a nonaromatic ring structure THEN it is unlikely to be 

an ER ligand if it does not contain an O, S, N or other heteroatoms for 

H-bonding. Otherwise, its binding potential is dependent on the occurrence 

of the key structural features. Kepone, dihydrotestosteron, norethynodrel, 

3 - and 3 -androstanediol are active ER ligands that fall into this category.

Is this chemical likely to be an ER ligand? 

Yes, it is likely to be an ER ligand! 

Unlikely to

be an ER ligand

FIGURE 6.3 Flowchart for identification of ER ligands using a set of “IF-THEN” rules: 

(a) IF a chemical contains no ring structure THEN it is unlikely to be an ER ligand; (b) IF a 

chemical has a nonaromatic ring structure THEN it is unlikely to be an ER ligand if it does 

not contain an O, S, N, or other heteroatoms for H-bonding. Otherwise, its binding potential 

is dependent on the occurrence of the key structural features; (c) IF a chemical has a non-OH 

aromatic structure THEN its binding potential is dependent on the occurrence of the key 

structural features; and (d) IF a chemical contains a phenolic ring THEN it tends to be an 

ER ligand if it contains any additional key structural features. For the chemicals containing a 

phenolic ring separated from another benzene ring with the bridge atoms ranging from none 

to three, it will most likely be an ER ligand.
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3. IF a chemical has a non-OH aromatic structure THEN its binding poten-

tial is dependent on the occurrence of the key structural features. A total 

of 16 chemicals in the NCTR dataset, including o,p -DDT, 1,3-diphe-

nyltetramethyldisiloxane, 3-deoxyl-E2, mestranol and others, fall into 

this category.

4. IF a chemical contains a phenolic ring THEN it tends to be an ER ligand 

if it contains any additional key structural features. For the chemicals con-

taining a phenolic ring separated from another benzene ring with the bridge 

atoms ranging from none to three, it will most likely be an ER ligand.

Importantly, binding affinity on an ordinal scale tends to increase with increasing 

number of features.

6.4 EDKB MODELING APPROACHES

SARs/QSARs for estrogens date back more than six decades to the early work of 

Dodds et al. [17,18]. The succeeding two decades saw the discovery of nonsteroi-

dal estrogens, such as diethylstilbestrol (DES), based on an understanding of the 

important structural features governing potency for steroidal estrogens. A number 

of SAR studies were reported for steroidal estrogens [19] and nonsteroidal estrogens 

[20]. These were generally focused on identification of structural characteristics for 

chemicals within similar two-dimensional (2D) structural frameworks, such as E2

derivatives [19], DES derivatives [21], polychlorinated biphenyls (PCBs) [22], phy-

toestrogens [23], alkylphenols [24], raloxifenes [25], and others. Other computer-

based tools have enabled the development of QSAR models to identify steric and 

electrostatic features of a molecule in three-dimensional (3D) space for estrogenic 

activity [21,26–32]. A crystallographic structure of the human ER  subtype (hER )

with a number of ligands, including E2, DES, raloxifene and 4-OH-tamoxifene, were 

also reported [33,34]; aligning the four ligands based on the superposition of their 

ER binding sites demonstrates the common binding characteristics among them and 

adds the knowledge in the computational modeling process [15].

SAR/QSAR modeling employs statistical approaches to correlate and rational-

ize variations in the biological activity for a series of chemicals with variations in 

their molecular structures. The molecular structure is often represented by a set of 

independent variables commonly known as molecular descriptors. The Endocrine 

Disruptor Screening and Testing Advisory Committee (EDSTAC) considered SAR/

QSAR as an important part of a proposed priority setting process [35] appropri-

ate for use in determining priorities for further testing in biological assays [36–40]. 

The EDKB explored many SAR/QSAR methods, ranging from the simple structural 

alerts to the pharmacophore identification, classifiers, and 2D/3D QSARs.

6.4.1 QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

The EDKB evaluated three different techniques for QSAR modeling — CoMFA, 

CODESSA (COmprehensive DEscriptors for Structural and Statistical Analysis), 

and HQSAR (Hologram QSAR) — for their utility (predictivity, speed, accuracy, 
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and reproducibility) to quantitatively predict ER binding activity [15,29]. Common to 

the three QSAR methods is the use of the partial least squares (PLS) regression; the 

differences among these QSAR techniques are primarily in the type of the descrip-

tors used to represent chemical structure. Specifically, CoMFA employs steric and 

electrostatic field descriptors that encode 3D intermolecular interaction information. 

CODESSA calculates molecular descriptors on the basis of 2D and 3D structures 

and quantum-chemical properties, whereas HQSAR uses molecular holograms 

constructed from counts of substructural molecular fragments. For three relatively 

small datasets under investigation, the QSAR models generated using CoMFA and 

HQSAR techniques demonstrated comparable high quality for potential usage to 

identify ER ligands [29]. CoMFA and HQSAR were further investigated and com-

pared, particularly for their predictivity, by using the NCTR ER232 dataset and two 

other test sets [15]. CoMFA performed better for the training set as well as for pre-

dicting two different test sets.

To develop a CoMFA model, the molecules of interest must first be aligned to 

maximize superposition of their steric and electrostatic fields. Although a statisti-

cally robust CoMFA model is dependent on a number of factors, proper alignment 

is essential to produce a valid QSAR model. For chemical congeners, the align-

ment rule is typically defined based on the maximum common substructure among 

the training set chemicals, which usually leads to a statistically robust CoMFA 

model [13,15]. The drawback for such models is the unreliability in predicting 

activities of chemicals whose structures are not similar to the training set, like 

some previously reported models [21,26–30,41–43]. In contrast, a CoMFA model 

based on a structurally diverse dataset provides more robust predictions, but align-

ment can be exceedingly difficult. CoMFA models developed in the EDKB pro-

gram for ER and AR binding were particularly challenging due to the difficulty 

in choosing alignment rules, as active ligands have greatly differing structures. 

Fortunately, crystal structures of four ligands binding to the ER were published 

[33,34] and are available to guide derivation of rational CoMFA alignment rules. 

The resultant CoMFA model for ER binding based on the crystal structure-guided 

alignment met requirements for statistical robustness with conventional r2 and 

cross-validated q2
LOO of 0.91 and 0.66, respectively, indicative of both internal 

consistency and high predictiveness. The CoMFA-calculated versus experimental 

relative binding affinities (RBAs) (as logs) for the NCTR training set chemicals are 

plotted in Figure 6.4.

6.4.2 CLASSIFICATION MODELS (OR CLASSIFIERS)

Classification can be either supervised or unsupervised learning techniques. Unless 

specifically mentioned, classification models discussed in this chapter are associ-

ated with the supervised technique that provides categorical prediction (for example, 

binary active or inactive classification). A number of classification methods were 

evaluated to categorize chemicals as ER binders or nonbinders. Although the meth-

ods differ in a number of ways, they generally produce similar results [14,16,44]. 

It was found for EDKB models that the nature of the descriptors used, and more 

specifically the effectiveness with which descriptors encode the structural features 
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of the molecules related to the ER binding activity, is far more important than the 

specific method employed. The selection of biologically relevant descriptors is thus 

a critical step to develop a robust classification model.

Additionally, the Genetic Algorithm was found to be the preferred method to 

identify the most biological relevant descriptors from among a large set of descrip-

tors. For example, using the best 10 descriptors selected by the Genetic Function 

Approximation approach [45,46] from among 153 descriptors, a decision tree (DT) 

model consisting of 5 meaningful descriptors was constructed:

The Phenolic Ring Index indicates the presence or absence of the phenolic 

ring in a chemical, which is considered to be the most important structural 

feature for ER binding [19].

The Shadow-XY fraction is a geometric descriptor related to the breadth 

of a molecule [47]; this is consistent with our observation that substitution 

of a bulky group at the 7  and 11  positions of E2 increased the breadth 

of a chemical and enhanced ER binding [48].

The log P, Jurs-PNSA-2, and Jurs-RPCS reflect the hydrophobicity (log P) 

[49] and charged surface area (Jurs-PNSA-2, Jurs-RPCS) [50] that are, in 

principle, critical for all receptor-mediated activity.

The DT model combining the five primary descriptors is summarized in Figure 6.5. 

The model identified the Phenolic Ring Index as the most important descriptor for 

ER binding. If chemicals contained a phenolic moiety but also had log P values 

larger than 1.49, they were more likely to be ER binders. In contrast, chemicals with-

out a phenolic moiety were less likely to be ER binders unless they had relatively 

large hydrophobicity and charged surface area, and breadth of the structure.

3
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FIGURE 6.4 Plot of comparative molecular field analysis (CoMFA)-calculated log rela-

tive binding affinity (log RBA) versus experimental log RBA for the National Center for 

Toxicological Research (NCTR) dataset. r2  0.91; q2  0.66.
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6.4.3 FDA’S NATIONAL CENTER FOR TOXICOLOGICAL

RESEARCH (NCTR) “FOUR-PHASE” SYSTEM

The SAR/QSAR approaches described above have strengths and weaknesses, and 

they all produce a degree of prediction error. All models and particularly those that 

only provide active/inactive predictions can be optimized to minimize either the 

overall prediction error or the false negative or positive rate. Decreasing false nega-

tives is achieved at a cost of increasing false positives and vice versa. Because select-

ing an appropriate single model is problematic, we adopted an approach of rationally 

combining different QSAR models into a sequential “Four-Phase” scheme according 

to the strength of each type of model. A progressive phase paradigm is used to screen 

out chemicals and thus reduce the number of chemicals to be considered in each 

subsequent phase. The four phases work in a hierarchical manner, incrementally 

reducing the size of a dataset while increasing precision of prediction during each 

phase. Within each phase, different models are selected to work complementarily 

Contain a phenolic ring? 

log P < 4.655

No

No

Yes

NoYes

Yes Active if log P >=1.485

Inactive if log P < 1.485

Inactive 

Inactive 

Jurs PNSA-2 < –1078.66 

NoYes

Inactive 

Inactive

Inactive

Active

Inactive Active

NoYes

NoYes
NoYes

NoYes

log P < 5.71

log P < 5.405 Jurs RPCS < 0.395 

Jurs RPCS < 0.110 

Shadow XY < 0.525 

FIGURE 6.5 Decision Tree model. The model displays a series of YES/NO (Y/N) rules 

to classify chemicals into active (A) and inactive (I) categories based on five descriptors: 

Phenolic Ring Index, log P, Jurs PNSA-2, Shadow XY, and Jurs RPCS. The squares represent 

the rules and the circles represent the categorical results.
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in representing key activity-determining structure features in order to minimize the 

rate of false negatives.

The overall architecture of the NCTR “Four-Phase” system for identification of 

ER ligands is illustrated in Figure 6.6:

Phase I: Filtering — Two filters, the molecular weight range and ring-

structure indicator, were selected to efficiently eliminate chemicals very 

unlikely to have ER binding activity. The Nishihara dataset [51] was 

selected to evaluate the performance of these two filters. The Nishihara 

dataset contained 517 chemicals tested with the yeast two-hybrid assay, 

of which over 86% were pesticides and industrial chemicals, consistent 

with the intended application of the NCTR models. The two rejection fil-

ters correctly eliminated 98 inactive chemicals from the Nishihara data-

set with no false negatives. The data size was reduced some 21%. This 

Phase I: Filtering 

Phase II: Classification

Phase III:

Quantitative Prediction

Phase IV: Knowledge 

Based priority setting 

FIGURE 6.6 The NCTR “Four-Phase” approach for priority setting. In Phase I, chemicals 

with molecular weight 94 or 1,000 or containing no ring structure will be rejected. In 

Phase II, three approaches (structural alerts, pharmacophores, and classification methods) 

that include a total of 11 models are used to make a qualitative activity prediction. In Phase III, 

a three-dimensional (3D) Quantitative Structure-Activity Relationship (QSAR)/comparative 

molecular field analysis (CoMFA) model is used to make a more accurate quantitative activity 

prediction. In Phase IV, an expert system is expected to make a decision on priority setting 

based on a set of rules. Different phases are hierarchical; different methods within each phase 

are complementary.
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suggests that, for real-world applications, the two rejection filters signifi-

cantly reduce the number of chemicals for further evaluation with a mini-

mum risk of introducing false negatives.

Phase II: Active/Inactive Assignment — This phase categorizes chemi-

cals from Phase I as either active or inactive. The three structural alerts, 

seven pharmacophore queries, and the DT classification model discussed 

above were used in parallel to discriminate between active and inactive 

chemicals. To ensure the lowest possible false negative rate in Phase II, a 

chemical predicted to be active by any of the 11 models is presumed active 

and subsequently evaluated in Phase III, and only those predicted to be 

inactive by all these models are deemed inactive and eliminated for fur-

ther evaluation. Because structural alert, pharmacophore, and DT meth-

ods incorporate and weigh differently the various structural features that 

endow a chemical with the ability to bind the ER, the combined outputs 

derived from the three approaches are complementary in minimizing false 

negatives. All active chemicals in the NCTR, Waller [27], Kuiper [52], and 

Nishihara [51] datasets were identified by combining the 11 models.

Phase III: Quantitative Predictions — In Phase III, the CoMFA model 

was used to make a quantitative activity prediction for chemicals cate-

gorized as active in Phase II. Chemicals with higher predicted binding 

affinity are ranked at higher priority for further evaluation in Phase IV. 

The CoMFA model demonstrated good statistical reliability in both cross-

validation and external validation [15].

Phase IV: Rule-Based Decision-Making System — In this final stage of 

the integrated system, we believe that a set of rules needs to be developed 

as a knowledge-based or expert system to make a priority setting decision. 

The system is useful only after incorporating accumulated human knowl-

edge and expertise (that is, rules). This system can make decisions on indi-

vidual chemicals based on the rules in its knowledge base. Computational 

chemists, toxicologists, and regulatory reviewers should jointly develop 

and define the rules. The following are suggestions for such rules:

Special attention needs to be placed on the following chemicals, which 

may need to be reevaluated by assaying or modeling according to the 

“IF-THEN” scheme depicted in Figure 6.3 [48]:

The chemical is predicted to be inactive, but its structure is modified −
during structural preprocessing.

The chemical has a structure that is dissimilar to all those that have −
been used to train and test the models.

The chemical is active in Phase II but inactive in Phase III.−
Information on the level of human exposure and production, environ-

mental fate, and other public health–related parameters can be used 

independently or can be jointly incorporated for priority setting.

The NCTR “Four-Phase” system has been validated by a number of existing data-

sets, including the E-SCREEN assay data [53], the yeast two-hybrid reporter gene 

assay data [51], and other datasets [24,27,54–57].
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6.5 EDKB MODEL VALIDATION STRATEGY

The goodness-of-fit of a model based on the training set can be assessed using vari-

ous statistical measures. Concordance, specificity, and sensitivity [14] are commonly 

used quality metrics of a classification model, and a quantitative regression (or non-

linear) model is often assessed using r2 (the correlation coefficient) [26]. A qualita-

tive or quantitative model is generally deemed statistically significant if concordance 

or r2  0.9, respectively, a result not difficult to obtain within the training set if the 

dataset is of adequate size and quality. However, a QSAR’s model purpose is not 

predicting what is known, but what is unknown. Accurate prediction of the training 

set might be a necessary condition for accurate prediction of unknown chemicals, 

but it is not a sufficient condition. Validation of the model’s accuracy in predicting 

untested chemical activity is essential, for which several commonly used approaches 

are described below.

6.5.1 CROSS-VALIDATION

Cross-validation is widely employed in QSAR modeling to obtain an estimate of 

prediction accuracy outside the training set. However, modelers should be mindful 

that cross-validation tends to give overly optimistic estimates of prediction accuracy 

because, in fact, the entire training set is used for the estimate. In cross-validation 

a fraction of chemicals in the training set are excluded, and then their activity is 

predicted by a new model developed from the remaining chemicals. The process has 

to be repeated until all chemicals in the training set are left out at least once. When 

each chemical is left out one at a time, and the process repeated for each chemical, 

this is known as leave-one-out (LOO) cross-validation. A quantitative model with a 

value of cross-validated qLOO
2 0 5. is normally considered to possess at least a mar-

ginally statistically significant predictive ability. If the training set is divided into N 

groups with approximately equal numbers of chemicals, the process is called leave-

N-out (LNO) cross-validation. Generally, it becomes increasingly difficult to attain 

q2  0.5 with increasing N.

The EDKB CoMFA model for ER binding showed a q2
LOO  0.66, demonstrating 

a high predictive capability within the training set [15]. In addition to LOO, a more 

thorough LNO validation was conducted for this CoMFA model. Unlike q2
LOO that 

is a single value from the process, q2
LNO varies for a selected N group in each run 

because of the random nature of selection of chemicals in the process. Doing LNO 

100 times for each random N groups of chemicals (N  2–10, 13, 20, and 50) gave 

q2
LNO  0.5 even for the worst case of randomly leaving out 50% (N  2) of the train-

ing chemicals, lending confidence that the CoMFA model is reliable for the predic-

tion of structurally diverse chemicals (Figure 6.7).

For the ER classification models, in addition to using LNO, another validation 

procedure was used to assess the model’s predictive capability. In this “out-of-bag” 

procedure, the dataset was randomly divided into two portions, two-thirds for train-

ing and one-third for testing. The classification models were constructed using the 

training portion and were subsequently used to predict the test portion. The random 

process was repeated 2,000 times. The validation results for the DT classification 
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model are shown in Figure 6.8. In the training step, a narrowed distribution was 

observed in a concordance range of 89% to 99%, indicating that all 2,000 models 

show comparable results in measuring overall accuracy. In contrast, a much wider 

distribution of concordance was found in prediction for 2,000 test sets. The difference 
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FIGURE 6.8 An extensive cross-validation procedure to validate the Decision Tree clas-

sification model. In this method, the National Center for Toxicological Research (NCTR) 

dataset was divided into two groups, two-thirds for training and one-third for testing. The 

process was repeated 2,000 times. Concordance was calculated based on the misclassifica-

tions divided by the number of training chemicals for the training models and the misclas-

sifications divided by the testing chemicals for prediction.
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between the best and worst prediction was as large as 30%, or three times greater 

than for the training set. The results indicate that the differences in widths and peaks 

of the concordance distribution between training and testing might be another way 

to assess a model’s predictivity.

It is important to note that LOO and LNO and out-of-bag methods test the stabil-

ity of the model through perturbation of the correlation coefficients by consecutively 

omitting chemicals. The methods assess only the internal extrapolation in the train-

ing set and have limited indication in predicting untested chemicals, especially for 

the chemicals with structural disparity with the training chemicals. More specifi-

cally, because cross-validation incorporates all of the same chemicals in both train-

ing and predicting steps, its estimates are biased and tend to overstate accuracy that 

will be observed in groups of chemicals not explicitly in the training set.

6.5.2 EXTERNAL VALIDATION

When additional data are available, a model should be validated by predicting other 

chemicals not used in the training set but whose activities are known (an external 

test set), a process called external validation. The major differences between cross-

validation and external validation are (1) chemicals selected in the latter case are 

random in a sense, which provides a more rigorous evaluation of the model’s predic-

tive capability for untested chemicals than does cross-validation; (2) the external test 

is not biased by the test set chemicals that are excluded from training; and (3) the 

external set can be obtained from different populations, serving a better validation 

means. We feel strongly that the confidence in a model’s predictive capability can 

and should be tested and validated when robust prediction has been demonstrated 

with an external test set.

However, in many cases, a dataset from the same population is divided into the 

training and test sets in modeling, where the external set less resembles the real-world 

application. Moreover, a training dataset often contains barely enough chemicals to 

create a statistically robust model in the first place, much less enough to set aside an 

external test set (10% to 20% of the dataset is typically recommended). Thus, the 

advantage of external validation over cross-validation is limited in most situations.

The EDKB used several experimental estrogen activity datasets that were reported 

in the literature as external test set for estrogenic activity. These data were obtained 

from in vitro assays, including the ER binding assay [52,58], the yeast-based reporter 

gene assay [54], and the E-SCREEN assay [53,59,60]. Considerable activity dispar-

ity was found among them, including use of protein receptors from different species 

[61]. Some inconsistencies were corrected by correlating them with the NCTR data-

set based on shared chemicals in both datasets, and then adjusting the test set data 

with the correlation equation.

Another important consideration in selecting test set chemicals is that they are 

pertinent to the intended use of the model. Because the EDKB models were being 

developed to predict the activity of environmental chemicals, a dataset reported by 

Nishihara et al. [51] was also selected as a test set. After structure preprocessing, 

463 chemicals remained for a test set, of which 62 chemicals were measured to be 

active at 10% of 10–7M E2 [51]. The majority of the chemicals were inactive, which 
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was similar to the real-world situation, not training set distribution where inactive 

chemicals were expected to dominate.

It is important to note that the yeast two-hybrid assay used for the Nishihara 

dataset differed from the NCTR binding assay. The ER competitive binding assay 

measured the binding affinity of a chemical for ER, and the yeast two-hybrid assay 

measured ER binding–dependent transcriptional and translational activity. Thus, the 

two assays differed in their sensitivity to distinguish active from inactive chemi-

cals, particularly for weak estrogens and antiestrogens [61]. When assay results for 

80 chemicals common to both the Nishihara and NCTR datasets were compared, 

the assays disagreed for 12 chemicals. Specifically, of 30 active chemicals in the 

Nishihara dataset, one chemical was inactive in the NCTR dataset; and of 50 inac-

tive chemicals in the Nishihara dataset, 11 chemicals were active in the NCTR data-

set. These observations showed that using a model based on EDKB ER binding 

training set to predict the experimental results from the yeast two-hybrid assay (the 

Nishihara dataset) would likely result in about 15.0% (12/80) disparity with a 3.3% 

(1/30) false negative rate and a 22% (11/50) false positive rate. The result amplifies 

the need for caution in applying models based on one experimental construct to a 

markedly different experimental construct [14].

6.5.3 ASSESSMENT OF CHANCE CORRELATION

Testing whether a fitted QSAR model is, in fact, a chance correlation is highly rec-

ommended. Testing becomes increasingly imperative for smaller training datasets, 

with increasing numbers of descriptors, with increasing noise in biological data, 

and with an increasing skew of numbers of chemicals across activity categories. All 

of these conditions increase the omnipresent risk of obtaining a chance correlation 

lacking predictive value.

The randomization test is an effective means of evaluating the potential that a 

correlation that appears good is, in fact, a chance result, and thus useless for predic-

tion. This requires generation of many pseudo datasets (for example, a few thousand) 

where the activity class is randomly scrambled across all chemicals in the training 

set. Next, N-fold cross-validation is done for each pseudo dataset. The null distribu-

tion — that is, the distribution of prediction accuracy for all pseudo datasets — can 

then be compared with the distribution of multiple N-fold cross-validation results 

derived from the real dataset. The degree of chance correlation in the predictive 

model can be estimated from the overlap of the two distributions. Figure 6.9 shows 

the results of a test for chance correlation of Decision Forest (DF) classification mod-

els to predict liver carcinogenicity based on four different datasets. Although high 

cross-validation results were obtained for the models for all four datasets (Table 6.2), 

there was a significant overlap between the null and real distribution for each dataset 

(Figure 6.9), indicative of an expected high degree of chance correlations for these 

models.

In another example, a comparison of the null distribution for 2,000 pseudo 

datasets with real distribution based on 2,000 runs of tenfold cross-validation for 

ER binding for the EDKB ER232 training dataset is shown in Figure 6.10. The 

distribution of prediction accuracy of the real datasets centers is about 82%, and 
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the pseudo datasets are about 50%. The distribution for the real dataset is also 

much narrower than for the pseudo datasets. Thus, cross-validation shows consis-

tent and high prediction accuracy for the real datasets, whereas the pseudo dataset 

results vary widely, indicative of the expected large variability of signal/noise ratio. 

Importantly, there is no overlap between two distributions, indicating that a statisti-

cally and biologically relevant DF model could be developed from the real dataset.

TABLE 6.2
Decision Forest Tenfold Cross-Validation Results for Four Liver 
Carcinogenicity Datasets Obtained from Testing on Two Species, Rat 
and Mouse, for Both Sexes

Datasets
Number of 
Compounds

Number of 
Carcinogens 

Number of 
Noncarcinogens

Cross-Validation 
Accuracy (%)

Female mouse 247 60 187 74.6

Male mouse 241 48 193 80.1

Male rat 230 28 202 88.5

Female rat 237 21 216 89.8
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FIGURE 6.9 Assessment of the chance correlation in Decision Forest (DF) for four data-

sets listed in Table 6.2. For each graph, the null distribution (-------) is generated from the 

results of tenfold cross-validation on 2,000 pseudo datasets, and the real distribution ( )

is derived from 2,000 runs of tenfold cross-validation for the original dataset.
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6.5.4 LIVING MODEL CONCEPT

No matter how rigorous the validation procedure for a model, it is important to real-

ize that the model may give incorrect predictions for some chemicals because the 

entire chemistry space of active chemicals is unknown. Thus, any QSAR model 

could be considered as a living model that could be improved when new data become 

available, and the model can aid in deciding what new data are needed.

Such a living model concept views modeling as a recursive process that expands 

the chemistry space of the training set by alternately incorporating new data in 

the model and then using the model to choose new chemicals for assay [62,63]. As 

depicted in Figure 6.11, the process starts with an initial set of chemicals for QSAR 

modeling [26,28,29]. Next, the preliminary QSAR models are used prospectively 

to define and rationalize a set of chemicals that may further improve the model’s 

robustness and predictive capability. These new chemicals are assayed, and the data 

are then used to first challenge and then to refine the QSAR model.

Several benefits accrue from collaborative integration of the experimental and 

modeling efforts. Immediate feedback can be given to the experimentalists so that 

suspected assay problems can be rapidly investigated. Also, as the models evolve, the 

modelers can select the chemicals for subsequent testing, based on considerations of 

structural diversity and activity range. Each new assay data point directly from the 

laboratory becomes a challenge to the evolving model; the result is either further 

confirmation of its validity, identification of a limitation, or an outlier prediction. 

Failure of the model also provides important information, such as identification of 

the need for new data based on a rational understanding of the dependence of activ-

ity on structure. Regardless of the cause of model failure, a research hypothesis is 

spawned in each iteration, which should lead to new data and an improved training 

set, and an improvement to the living model. Despite the obvious benefits, QSAR 

history has few precedents outside the pharmaceutical industry for sustaining joint 

modeling and experimental efforts for multiple iterations.
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FIGURE 6.10 Assessment of the chance correlation in Decision Forest (DF) for ER232, an 

estrogenic dataset that contains 232 chemicals tested in an estrogen receptor binding assay. 

The same assessment described in Figure 6.8 was used in this test.
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6.6 APPLICABILITY DOMAIN

As demonstrated in the previous section, QSAR models need to be validated either 

by cross-validation or external test sets. Assessment of prediction accuracy compared 

with random chance is another important aspect of validation. Generally speaking, 

training data of small number, with skewed activity distributions and low signal to 

noise are most vulnerable to chance solutions, especially with a larger number of 

independent variables (for example, chemical structure descriptors).

Unfortunately, in both model validation and chance correlation assessment, it is 

not typical and often not possible to specify accuracy and prediction confidence 

for specific unknown chemicals with structures not well represented in the train-

ing set. It is also not typical and often not possible to specify accuracy and pre-

diction confidence for specific unknown chemicals with structures requiring that 

the model extrapolate beyond the chemistry space determined by the training set. 

Neither cross-validation nor randomization testing assess the ability of the model to 

extrapolate beyond the chemistry space. The chemistry space where predictions for 

unknown chemicals can be ascribed as reliable is known as the model’s applicability 

domain and is an important concept discussed in this section.

“Applicability domain” is a term often used to define an abstract response and 

chemical structure space wherein a model’s predictions will have known reliabil-

ity. In practice, applicability domain means different things to different people, 

and a specific definition is feasible only for a specific method or model. Related to 

SAR/QSAR

Modeling

Validation

Assays

Predicting new

chemicals

FIGURE 6.11 Depiction of the recursive process used by National Center for Toxicological 

Research (NCTR) to develop Quantitative Structure-Activity Relationship (QSAR) models 

for predicting estrogen receptor (ER) binding. The process starts with an initial set of chemi-

cals from the literature for QSAR modeling. Next, the preliminary QSAR models are used 

prospectively to define a set of chemicals that will further improve the model’s robustness and 

predictive capability. The new chemicals are assayed, and these data are then used to chal-

lenge and refine the QSAR models. Validation of the model is critical. The process empha-

sizes the living model concept.
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applicability domain is the chemistry space determined by the training set, and this 

should be assessed in conjunction with prediction accuracy to validate the limita-

tions of a model. Because a single simple definition of applicability domain is not 

feasible, and its conceptual purpose is in model quality, applicability domain might 

best be viewed for measures of confidence in each prediction when the overall qual-

ity of a model is acceptable.

Tong et al. [12] describe an approach to assess a QSAR’s applicability domain 

with two variables: (1) prediction confidence (that is, certainty for an individual 

chemical’s prediction) and (2) domain extrapolation (that is, the prediction accuracy 

for a chemical that is outside the chemistry space defined by the training chemicals). 

The approach is demonstrated using the DF consensus modeling method [12,44]. DF 

uses the consensus prediction of multiple, comparable, and heterogeneous decision 

trees. The critical, implicit assumption in consensus modeling is that multiple mod-

els will effectively identify and encode more aspects of the SAR relationship than 

will a single model. DF attempts to minimize overfitting by maximizing the differ-

ence among individual trees in order to cancel some random noise when combining 

the trees. Although applicability domain extrapolation can theoretically be defined 

for any QSAR method, the DF method has distinct advantages in specifying the 

applicability domain in terms of prediction confidence and domain extrapolation, 

and it is thus used here to illustrate the approach.

Prediction confidence is a measure of the certainty of prediction for a specific 

chemical. Prediction confidence is probabilistically calculated in DF for each 

unknown chemical by averaging the predictions over all trees that are combined 

to form the model. Figure 6.12 gives an example illustrating how prediction accu-

racy and prediction confidence are related. Prediction accuracy is plotted versus 

prediction confidence for both DF and DT for a problem with 2,000 runs of tenfold 

cross-validation for the EDKB ER232. A strong trend of increasing accuracy with 
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FIGURE 6.12 Decision Forest prediction accuracy versus confidence level for ER232 based 

on 2,000 runs of tenfold cross-validation.
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increasing confidence is readily apparent for both DF and DT, as is the substantially 

higher accuracy for DF across the entire range of confidence levels.

Domain extrapolation is the extent of extrapolation beyond the training domain for 

a specific chemical. For DF, it is probabilistically calculated as the average Euclidian 

distance that an unknown chemical’s descriptors in tree paths are outside of the 

range of those same descriptors across all chemicals in the training set that deter-

mines the applicability domain. Figure 6.13 shows the results of evaluation of DF 

domain extrapolation for two EDKB estrogen receptor binding datasets, ER232, and 

a larger ER1,092 (containing 1,092 chemicals). Specifically, the plot compares the 

overall prediction accuracy for chemicals within the training domain with accuracy 

for chemicals falling several degrees of extrapolation outside the focused domain. In 

general, the farther away the chemicals are from the training domain, the less the 

prediction accuracy, and the larger the dataset is, the more extrapolation is tolerated 

before accuracy decreases substantially.

6.7 QSAR APPLICATION IN PERSPECTIVE

QSAR is extensively used across a wide range of scientific disciplines, including 

chemistry, biology, and toxicology [64,65]. In both drug discovery and environmental 

toxicology [66], QSAR models are now regarded as scientifically credible tools for 

predicting and classifying the biological activities of untested chemicals. QSAR has 

been imbedded as an essential tool in lead discovery and optimization to lead devel-

opment in the pharmaceutical industry for more than a decade [67,68]. For example, 

QSAR is often used early in the drug discovery process as a screening and enrich-

ment tool to eliminate from further development those chemicals lacking drug-like 
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properties [69], or those chemicals predicted to elicit a toxic response. This paradigm 

portends the spread of QSAR beyond the pharmaceutical industry to human and 

environmental regulatory authorities for use in toxicology [15,70–75].

The incorporation of QSAR and related computer-based techniques in the drug 

discovery paradigm is a simple function of economics: if there is an economic ben-

efit, it is used. This is not so in the regulatory paradigm that has minimally changed 

regarding how efficacy, toxicity, and risk-benefit are evaluated. The regulatory para-

digm is anchored in law and precedent, raising the bar for incorporation of QSAR 

techniques. Decisions are largely adjudicated in animal studies and clinical trials 

with confidence determined statistically. The results are taken as definitive, by law 

and precedence, despite known limitations of experimentation and statistics, some 

of which are low sensitivity, insufficient statistical power to detect sensitive popula-

tions, and shortcomings of cross-species extrapolations.

 Wider acceptance of QSARs in regulation could result in a constellation of ben-

efits and savings to both the private and public sectors. One way to gain greater 

acceptance would be the ability to be more definitive about a model’s accuracy and 

limitations for a specific chemical, as opposed to a statistical accuracy across a pool 

of chemicals such as a blinded, external test set. If a model achieves high accuracy 

(based on, for example, sensitivity and specificity) for a certain test set, is it justifi-

able to assert that the same accuracy can be assumed for the next unknown chemi-

cal? Defining the model’s applicability domain in terms of prediction confidence and 

domain extrapolation takes a long stride toward being able to ascribe a definitive 

accuracy (probabilistic) to a specific untested chemical’s prediction [44].

As a last thought, caution must be taken against the temptation to overinterpret the 

SAR/QSAR results. The inherent limitations of SAR/QSAR have to be kept in mind 

when it becomes the major component and application of a project. For example,

It is important to point out that any QSAR model will produce some degree 

of error. This is partially due to the inherent limitation to predict a bio-

logical activity solely based on chemical structure. One can argue from 

the principles of chemistry that the molecular structure of a chemical is a 

determinate of its physicochemical properties and, ultimately, its biologi-

cal activity and influence on organisms. Because molecular structure and 

physicochemical properties are associated with the chemical, the relation-

ship between structure and physicochemical properties should be apparent 

and, therefore, accessible using QSARs. In contrast, the biological activity 

of a chemical is an induced response influenced by numerous factors dic-

tated by the level of biological complexity of the system under investigation. 

The relationship between structure and activity is thus more implicit and 

thereby poses a more challenging problem in QSAR applications.

In principle, a chemical can be represented in three distinct but also related 

structural representations: 2D substructures, 3D pharmacophores, and 

physicochemical properties. If a biological mechanism is mainly related to 

the chemical structure, which is probably the case for receptor binding, 

informative QSARs are possible using structural features. It is often 

found, however, that even for a simple mechanism such as ER binding, 
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some features may well represent binding dependencies for one structural 

class, and other features will better represent binding dependencies for 

a different structural class [48]. In such cases, caution must be taken in 

interpreting QSAR results for the chemical classes that are not well rep-

resented in the training set.

Despite widespread use of and success with QSARs, developers and users 

of them should always be mindful that predictions from any model are 

intrinsically no better than the experimental data employed for model-

ing. Any limitations of the assay used to generate the training data apply 

equally to the model’s predictions. Errors tend to increase toward the lim-

its of sensitivity of experimental assays, and these errors will be conveyed 

to a QSAR model. The increased experimental error in close proximity to 

the sensitivity limit will be transferred to the QSAR model, which, in turn, 

will increase false predictions for chemicals in the lower activity region.
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ABSTRACT

The number of environmental chemicals found to have some level of endocrine 

activity has led to concern about the possible adverse effects these compounds 

may have on human and environmental health. We describe herein the develop-

ment of a new set of structure-activity relationship (SAR) models for estrogenic 

activity using the categorical-SAR (cat-SAR) expert system. The cat-SAR models 

are built through a comparison of structural features found among categorized 

compounds in the model’s learning set (for example, estrogenic and not estro-

genic compounds). Several cat-SAR models were developed from in vitro data 

for 122 compounds tested for estrogenicity in the E-SCREEN assay. By leave-

one-out validation, of the models for the endpoint of relative proliferative potency, 

the concordance between experimental and predicted results ranged from 63% 

to 85%, and of the models based on the endpoint of relative proliferative effect, 

the concordance ranged from 82% to 90%. Evaluation of two-dimensional frag-

ments derived during the modeling process suggested the models are mechanisti-

cally sound. The models also compared similarly to previous E-SCREEN models 

developed by using the MCASE methodology. Based on the results described 

herein, the cat-SAR method would be a useful approach in screening compounds 

for estrogen activity as well as for investigating their mechanism of action.

KEYWORDS

Cancer

Categorical structure-activity relationship (cat-SAR)

Environmental estrogens

Structure-activity relationship

7.1 INTRODUCTION

7.1.1 ENVIRONMENTAL ESTROGENS

Of the many classes of chemicals that humans and the environment are exposed to, 

some of the most problematic and potentially serious are those associated with endo-

crine system disruption. An endocrine disruptor can be defined as “an exogenous 

agent that interferes with the production, release, transport, metabolism, binding, 

action, or elimination of natural hormones in the body responsible for the mainte-

nance of homeostasis and the regulation of developmental processes” [1]. Compounds 

that mimic the activity of 17 -estradiol (that is, estrogen agonist) or have the ability 

to bind to and interfere with the estrogen receptor in an antagonistic manner can 

alter the normal functioning of the estrogen signaling pathway. Endocrine disrupting 

7.4 Conclusions ................................................................................................... 194
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chemicals with estrogenic or antiestrogenic activity are commonly referred to as 

xenoestrogens or environmental estrogens. Likewise, chemicals with estrogenic 

activity found in plants are referred to as phytoestrogens.

The consequence of exposure to one or more estrogenic compounds has been 

shown to induce a number of toxicological and pharmacological responses including 

cancer [2–4], developmental abnormalities [2,3, 5–7], altered sexual differentiation 

[5,6], immune disturbances [7], as well as no observable adverse effects or even ben-

eficial responses [8]. Moreover, it is evident that the timing of exposure (for example, 

fetal versus adult) is of extreme importance in determining the overall effect from 

estrogenic compounds [9,10]. For example, in 2007, Cohn et al. found that the age of 

exposure to dichloro-diphenyl-trichloroethane (DDT) is an important risk factor for 

breast cancer, noting a fivefold increased risk for breast cancer in women who were 

exposed mostly under the age of 20 to the insecticide [11].

Even though a significant number of environmental chemicals have been found to 

possess estrogenic activity, they are mostly weaker estrogens than 17 -estradiol. It 

has been argued, given the typically weak nature of environmental estrogens along 

with their typical low concentrations, that the risk for adverse health effects from 

exposure is questionable [12]. On the other hand, studies have shown that exposure 

to even low concentrations of estrogenic compounds can induce significant biologi-

cal responses [13]. For instance, biological effects have been observed in rats treated 

with the weak estrogen equol and ones fed a soy-based diet (that is, a diet that con-

tains phytoestrogens) [14].

Another group of estrogenically active agents are of medicinal interest and value. 

These are the selective estrogen receptor modulators (SERMs) that are being used 

and investigated as both breast cancer chemotherapeutics and as hormone replacement 

therapies. The widely used tamoxifen and to a lesser extent raloxifene are two such 

examples. Additionally, interest is focusing on phytoestrogens as chemopreventative 

agents [8] as well as “alternative” approaches for postmenopausal hormone replace-

ment therapies [15,16]. The phytoestrogen hormone replacement therapies are gaining 

popularity, given the recent observation that women using pharmaceutical-based estro-

gen replacement therapy have a higher risk of breast cancer. Although early studies did 

not reach statistical significance [17], more recent work [18] and a review of the data 

[19] indicate a positive association between hormone replacement therapy and cancer.

With the obvious usefulness of SERMs, medicinal chemistry has added a great 

deal of understanding to the phenomena of estrogenicity and some of the beneficial 

and adverse health effects associated with these compounds. Although useful, the 

investigation of SERMs does not cover the entire range of toxicological effects or the 

structural diversity associated with environmental endocrine active agents [20].

The U.S. Environmental Protection Agency (EPA) was mandated under the 1996 

Food Quality Protection Act by the U.S. Congress to develop a screening and testing 

strategy to determine whether exogenous substances may have an effect in humans 

similar to those of natural hormones [21]. The EPA is considering 87,000 chemicals 

as potentially requiring analysis for endocrine activity [22], and a goal of the EPA is 

to pursue computational methods for their analysis [23]. Structure-activity relation-

ship (SAR) modeling has gained acceptance in the regulatory community for inves-

tigating ecological [24] and human health [25] effects.



© 2009 by Taylor & Francis Group, LLC

176 Endocrine Disruption Modeling

7.1.2 MODELING ESTROGENIC ACTIVITY

Briefly, Waller and others have used quantitative structure-activity relationship 

(QSAR) comparative molecular field analysis (CoMFA) to study the relative binding 

affinities (RBAs) of compounds for the estrogen receptor [26–29]. Due to the align-

ment requirements of CoMFA, these analyses relied on congeneric series of com-

pounds for the training sets, and these models are capable of predicting the activity 

of compounds that fit this model space.

The National Center for Toxicological Research (NCTR) published a set of rat 

uterine cytosol RBA data [30]. Shi et al. [31] produced predictive CoMFA and 

holographic quantitative structure-activity relationship (HQSAR) models, and they 

also demonstrated the use of structural alerts for estrogen activity in a logical tree-

based method to prioritize upward of 58,000 compounds that are of environmen-

tal concern [32]. The MCASE expert system was also successfully applied in the 

development of models based on the estrogen-like action of chemicals as measured 

in the E-SCREEN assay by us [33] and by Klopman and Chakravarti for estrogen 

RBA [34].

We report herein the development of a new set of qualitative SAR models from 

the same E-SCREEN data as we previously modeled with MCASE [33] using the 

categorical SAR (cat-SAR) expert system. The E-SCREEN assay measures estro-

gen-like proliferation of human MCF-7 breast cancer cells [35,36]. Given the wide 

spectrum of biological assays for estrogenicity, the E-SCREEN assay falls about in 

the middle of the range of biological complexity associated with estrogens (that is, 

above in vitro receptor binding and below in vivo whole animal assays). This assay is 

well characterized, and Soto and colleagues report the estrogenic response of chemi-

cals using two unique parameters. The relative proliferative potency (RPP) is the 

ratio between the least amount of 17 -estradiol needed to produce maximum pro-

liferation and the least amount of the test chemical needed to produce a comparable 

effect [37]. That is, RPP compares the estrogenic potency of a compound to the 

potency of the standard estrogen 17 -estradiol. On the other hand, because many 

estrogenic compounds, no matter how high the dose, will never produce cell prolifer-

ation at the rate of 17 -estradiol, the relative proliferative effect (RPE) measures this 

effect. The RPE is reported as 100 times the ratio of the greatest cell yield obtained 

with a test chemical and that obtained by 17 -estradiol [37].

7.1.3 OVERVIEW OF CAT-SAR EXPERT SYSTEM

The cat-SAR approach is a computational SAR or in silico toxicity prediction 

“expert system” as classified by Dearden [38]. In a previous analysis of human respi-

ratory sensitizers, the cat-SAR program was able to achieve an overall concordance 

between experimental and predicted values 92% with sensitivities between 89% and 

94% and specificities between 87% and 95% [39] (see Section 7.2 for explanation of 

validation methods).

The approach we have taken in developing the cat-SAR program diverges from 

existing commercial SAR expert systems and is more in tune with QSAR techniques 

wherein there is a high degree of user flexibility in both learning set development 
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and model parameterization. For instance, the user is presented with a number of 

selectable and adjustable modeling attributes including selection of fragment sizes, 

fragment types, and rules for identifying important fragments for the final model. 

Selection of compounds included in the learning set and control of model attributes 

provide the user with the ability to rigorously explore the relationships between 

chemical structure and biological activity. Ultimately, this rationale negates any a
priori requirements that a given set of data must fit the attributes of a predefined and 

often proprietary modeling process.

Basically, cat-SAR models are built through a comparison of structural features 

found among categorized compounds in the model’s learning set. Generically, these 

categories are toxicologically active and inactive compounds. Essentially, the cat-

SAR approach is transparent in the development of the learning set, the identification 

of fragments, and the determination of significant or important ones. Moreover, the 

approach allows user intervention and model optimization throughout the modeling 

process. This method includes the ability to examine the entire fragment base and to 

explore and optimize the fragments that have perceived biological relevance.

Moreover, because cat-SAR analyzes categorical data and two-dimensional frag-

ments rather than intact chemicals, the program can examine noncongeneric datasets 

that are divided into categories of activity (that is, rather than degrees of potency). 

Thus, unlike HQSAR and CoMFA approaches that require continuous-type data, cat-

SAR works by identifying molecular attributes associated with biological activity by 

comparing attributes of active (for example, estrogenic) to inactive (for example, non-

estrogenic) compounds. The models and subsequent predictions based on this dichot-

omy can then be used to examine structural features associated with estrogenicity and 

predict the likelihood of estrogenic activity of unknown compounds, respectively.

Overall, the cat-SAR modeling approach discussed herein for environmental estro-

gens, with its high degree of predictivity and mechanistically interpretable models, can 

provide a computational method singly or in combination with other techniques to pri-

oritize compounds for further testing and for regulatory classification. These methods 

could therefore reduce the cost, time, and use of animals associated with meeting the 

mandate to assess environmental compounds for endocrine disrupting ability.

7.2 MATERIALS AND METHODS

7.2.1 THE E-SCREEN LEARNING SETS

A set of compounds assayed for estrogenic activity in the E-SCREEN assay were 

chosen for this study. Estrogenic activity was reported as RPP and RPE values. The 

RPP and RPE learning sets of 122 chemicals each were created from publications of 

Soto and colleagues [35–37], and each set contained the same chemicals. The RPP 

learning set consisted of 50 active (that is, estrogenic) and 72 inactive (that is, non-

estrogenic) chemicals. The RPE learning set consisted of 73 active and 49 inactive 

chemicals. The estrogenic potency values obviously differed between the RPP and 

RPE models. The overall designation of compounds as estrogenic or nonestrogenic 

also differed between the two. Twenty-three chemicals designated as inactive in the 

RPP set were listed as active in the RPE model (that is, see compounds 2,2 ,3,3 ,5,
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5 -hexachlorobiphenyl through 6-bromonaphthol-2, Table 7.2). These compounds all 

had very low RPE values. We note that although the original authors of the studies 

chose to call these compounds nonestrogens, we regarded them specifically as active 

in the RPE assay because activity (although minimal) was observed.

7.2.2 THE CATEGORICAL-SAR (CAT-SAR) EXPERT SYSTEM

7.2.2.1 Learning Set Development

The cat-SAR models are built through a comparison of structural features found 

among two designated categories of compounds in the model’s learning set. As men-

tioned, for these analyses, the categories were estrogenic and nonestrogenic. The cat-

SAR learning set consists of the chemical name, its structure as a .MOL2 file, and its 

categorical designation (for example, one or zero for active and inactive). Typically, 

organic salts are included as the freebase; simple mixtures and technical grade prep-

arations may be included as the major or active component; metals, metallorganic 

compounds, polymers, and mixtures of unknown composition are not included.

7.2.2.2 In Silico Chemical Fragmentation and the 
Compound-Fragment Data Matrix

Using the Tripos Sybyl HQSAR module [40], each chemical was fragmented in silico 
into all possible fragments meeting user-specified criteria. HQSAR allows the user 

to select attributes for fragment determination including atom counts (i.e., the size of 

the fragments), bond types, atomic connections (i.e., the arrangement of atoms in the 

fragment), explicit hydrogen atoms, chirality, and hydrogen bond donor and acceptor 

groups. Fragments can be linear, branched, or cyclic moieties. Models developed 

herein contained fragments between three and seven atoms in size and considered 

atoms, bond types, and atomic connections.

Upon completion of the fragmentation routine, a Sybyl HQSAR add-on procedure 

produces a compound-fragment data matrix as a text file. In the matrix, the rows are 

intact chemicals and columns are the molecular fragments. Thus, for each chemical 

a tabulation of all its fragments is recorded across the table rows, and for each frag-

ment all chemicals that contain it are tabulated down the columns.

The HQSAR module is not used for statistical analysis or model development. 

Rather, the compound-fragment matrix is analyzed with the cat-SAR programs 

we developed in order to identify structural features associated with categorized 

active and inactive compounds. The cat-SAR programs, E-SCREEN database, and 

the compound-fragments matrix are available through the corresponding author.

7.2.2.3 Identifying “Important” Fragments of Activity and Inactivity

A measure of each fragment’s association with biological activity is next deter-

mined. To ascertain an association between each fragment and biological activity 

(or inactivity), a set of rules is parameterized to choose “important” active and inac-

tive fragments. It should be noted that the cat-SAR program uses a weight-of-evi-

dence approach to select “important” fragments, rather than statistical analysis to 

select “significant” ones.
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The first selection rule is the number of times a fragment is identified in the learn-

ing set. For this exercise, it was set at three compounds in the learning set (that is, 

~2.5% of compounds). We surmise this is a reasonable choice considering that if a 

fragment is found in only one or two compounds in the learning set, no matter how 

large the set, it may be a chance occurrence. It should be noted, however, that these 

minimally occurring fragments may be outliers or important but underrepresented 

descriptors of activity. On the other hand, because the E-SCREEN learning sets 

are composed of 122 relatively structurally diverse compounds, if we required frag-

ments to be found in more than three compounds, we would expect to miss important 

features based on the diverse nature of the learning set.

The second rule considers the frequency of active or inactive compounds that con-

tribute to each fragment. We derived models based on three frequency set-point rules 

( freq  0.65, 0.75, and 0.85). We reasoned that even if a particular fragment is associ-

ated with activity, there may yet be other reasons for the compounds that it is derived 

from to be classified as inactive (for example, other fragments or chemicophysical 

properties), and thus, it would not be expected to be found in 100% of the active 

compounds. The likewise is true for inactive fragments. Thus, if we considered only 

those fragments found exclusively in active or inactive compounds, we would rarify 

the fragments pool to an unreasonable level and risk losing valuable information. 

On the other hand, we expected that fragments found to be present approximately 

equally in the active and inactive fragment sets would not be associated with biologi-

cal activity. Such fragments may serve as structural scaffolds holding the biologi-

cally active features and are not directly related to activity or inactivity.

As mentioned, the frequency of active or inactive compounds was set to initial set-

points of freq 0.65, 0.75, and 0.85 for both active and inactive fragments. However, 

because the RPP and RPE learning sets did not have an equal number of active 

and inactive compounds contained in them, the initial freq set-points were adjusted 

to standardize the frequency of active and inactive fragments required to identify 

important ones. Basically, this adjustment compensated for the unbalanced nature of 

the learning set. The RPP model contained 50 estrogens out of 122 compounds (i.e., 

41% active and 59% inactive), and the RPE model had 73 estrogens out of 122 com-

pounds (i.e., 59% active and 41% inactive). Therefore, for fragments to be selected 

as important for the RPP model, the frequency for active fragments was increased 

by 0.09, and for the inactive ones, it was decreased by the same amount. Thus, the 

freq 0.65 model was adjusted to freqACT  0.74 and freqIN  0.56, the freq 0.75 

model was adjusted to freqACT 0.84 and freqIN  0.66, and the freq 0.85 model was 

adjusted to freqACT 0.94 and freqIN 0.76 (see Table 7.1).

7.2.2.4 Predicting Activity

The resulting list of important fragments can then be used for mechanistic analysis, 

or to predict the activity of an unknown compound. In the latter circumstance, the 

model determines which, if any, fragments from the model’s learning set the test 

compound contains. If none are present, no prediction of activity is made for the 

compound (that is, no default prediction). If one or more fragments are present, the 

number of active and inactive compounds containing each fragment is determined. 
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TABLE 7.1
Validation Summary for the Relative Proliferative Potency (RPP) and Relative Proliferative Effect (RPE) cat-SAR Models

Fragments Self-Fit Leave-One-Out Multiple Leave-Many-Out

Model Modelc Actived Inactivee Sensitivityf Specificityg Concordanceh Sensitivityf Specificityg Concordanceh Sensitivityf Specificityg Concordanceh

RPE

Freq 65 ssa 1,465 1,051 414 0.96(70/73) 0.83(40/48) 0.91(110/121) 0.84(61/73) 0.80(37/46) 0.82(98/119) 0.84(5.62/6.67) 0.81(3.55/4.4) 0.82(9.17/11.2)

Freq 65 concb 0.85(62/73) 0.78(36/46) 0.82(98/119)

Freq 75 ssa 1,276     902 374 0.99(72/73) 0.91(40/44) 0.96(112/117) 0.84(61/73) 0.84(37/44) 0.84(98/117) 0.83(5.52/6.62) 0.87(3.45/3.98) 0.85(8.96/10.6)

Freq 75 concb 0.96(70/73) 0.77(34/44) 0.89(104/117)

Freq 85 ssa 1,060     760 300 0.98(63/64) 0.97(33/34) 0.98(96/98) 0.90(56/62) 0.88(28/32) 0.89(84/94) 0.85(5/5.88) 0.89(2.78/3.13) 0.87(7.83/9)

Freq 85 concb 0.98(61/62) 0.75(24/32) 0.90(85/94)

RPP

Freq 65 ssa 1,028     679 349 0.80(40/50) 0.85(52/61) 0.83(92/111) 0.60(30/50) 0.66(40/61) 0.63(70/111) 0.65(2.99/4.57) 0.74(4.41/5.92) 0.71(7.40/10.49)

Freq 65 concb 0.60(30/50) 0.66(40/61) 0.63(70/111)

Freq 75 ssa       816     530 286 0.95(40/42) 0.90(46/51) 0.92(86/93) 0.83(35/42) 0.81(44/54) 0.82(79/96) 0.67(2.77/4.12) 0.74(3.78/5.08) 0.71(6.55/9.20)

Freq 75 concb 0.83(35/42) 0.81(44/54) 0.82(79/96)

Freq 85 ssa      588     304 284 1.00(40/40) 0.91(39/43) 0.95(79/83) 0.86(36/42) 0.85(40/47) 0.85(76/89) 0.80(3.17/3.94) 0.77(3.3/4.28) 0.79(6.47/8.22)

Freq 85 concb 0.86(36/42) 0.85(40/47) 0.85(76/89)

a Validation results based on model with closest sensitivity and specificity.
b Validation results based on model with highest overall concordance.
c Number of fragments meeting specified rules of the model.
d Number of fragments meeting specified rules to be considered as active.
e Number of fragments meeting specified rules to be considered as inactive.
f Number of correct positive predictions/total number of positives.
g Number of correct negative predictions/total number of negatives.
h Observed correct predictions: number of correct predictions/total number of predictions.

© 2009 by Taylor & Francis Group, LLC
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The probability of activity or inactivity is then calculated based on the total number 

of active and inactive compounds containing the fragments.

The probability of activity of a test chemical is calculated from the average prob-

ability of the active and inactive fragments contained in it and naturally weighted to 

the number of active and inactive compounds that go into deriving each fragment. 

For example, if a compound contains two fragments, one being found in 9/10 active 

compounds in the learning set (i.e., 90% active) and the other being found in 3/3 inac-

tive compounds (i.e., 100% inactive), the test compound will be predicted to have a 

69% chance of activity (i.e., 9/10 actives  0/3 actives  9/13 actives or 69% active).

As described, a cat-SAR prediction of activity or inactivity is based on two separate 

fragment sets (the active fragments and the inactive ones), and the predicted activity of 

a chemical is based on the average probability of all the active and inactive compounds 

contributing to its structure. Therefore, to classify compounds back to an active or 

inactive category (rather than a probability of activity), the program identifies an opti-

mal cut-off point that best separates the prediction of active and inactive compounds 

based on the probabilistic values of activity derived from a model validation analysis 

(described below and see Table 7.2) [41]. Depending on the application of the model, 

the cut-off point that separates active from inactive categorization, for example, can 

be adjusted, wherein a model with the best overall concordance can be selected (i.e., 

a most predictive model), one with equal sensitivity and specificity (i.e., a balanced 

model that does not overly predict active compounds at the cost of wrongly predicting 

inactive ones and vice versa), or one with high sensitivity (i.e., a risk averse model).

7.2.3 MODEL VALIDATION

A self-fit (that is, leave-none-out [LNO]) and two validation routines (that is, leave-

one-out [LOO] and multiple leave-many-out [LMO]) were conducted for each model 

(see Table 7.1). For the LNO self-fit, a model was developed from the complete learn-

ing set of 122 compounds, and that model was used to predict the activity of each 

compound in the learning set. For the LOO validation, each chemical, one at a time, 

was removed from the model’s total fragment set, and the n – 1 model was derived. 

The activity of the removed chemical was then predicted using the n – 1 model. 

Predicted versus experimental values for each chemical were then compared, and the 

model’s overall concordance, sensitivity, and specificity were determined, where

Concordance
Correct predictions

Total predictioons

and

Sensitivity
Correct positive predictions

Total ppositive predictions

and

Specificity
Correct negative predictions

Total nnegative predictions
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TABLE 7.2
Experimental Results and cat-SAR Predictions for Relative Proliferative 
Potency (RPP) and Relative Proliferative Effect (RPE)

RPP cat-SAR Predictionsa RPP cat-SAR Predictionsa

Chemical
RPP
Exp

Freq 
0.65

Freq 
0.75

Freq 
0.85

RPE
Exp

Freq 
0.65

Freq 
0.75

Freq 
0.85

1,2-Dichloropropane — 0.56(–) NP NP — NP NP NP
1-Naphthol — 0.61(–) NP NP — NP NP NP

2,3,7,8-TCDD — 0.62(–) 0.62(–) 0.00(–) — 0.75(–) 0.00(–) 0.00(–)

2,4-DB acid — 0.60(–) 0.64(–) 0.00(–) — 0.71(–) 0.45(–) NP

2,4-Dichloro-

phenoxyacetic acid

— 0.60(–) 0.64(–) 0.00(–) — 0.73(–) 0.33(–) NP

2-Naphthol — 0.61(–) NP NP — NP NP NP

4-Butooxyphenol — 0.64(–) 0.67(–) NP — 0.67(–) 0.28(–) NP

4-Hexyloxyphenol — 0.64( ) 0.67(–) 0.77(–) — 0.68(–) 0.38(–) NP

5,6,7,8-Tetrahy-

dronaphthol-2

— 0.73( ) 0.75( ) 0.88( ) — 0.82( ) 0.98( ) 1.00( )

Alachlor — 0.63(–) 0.63(–) 0.00(–) — 0.66(–) 0.10(–) 0.00(–)

Atrazine — 0.01(–) 0.01(–) 0.00(–) — 0.01(–) 0.01(–) 0.01(–)

Bendiocarb — 0.62(–) 0.62(–) 0.00(–) — 0.63(–) 0.15(–) 0.00(–)

Butylate — 0.26(–) 0.27(–) 0.00(–) — 0.32(–) 0.32(–) 0.04(–)

Butylated

hydroxytoluene

— 0.68( ) 0.71(–) 0.89( ) — 0.77( ) 0.75(–) 1.00( )

Carbaryl — 0.54(–) 0.00(–) 0.00(–) — 0.17(–) 0.00(–) 0.00(–)

Carbofuran — 0.67( ) 0.69(–) 0.72(–) — 0.70(–) 0.40(–) 0.44(–)

Chlordimeform — 0.65( ) 0.66(–) 0.00(–) — 0.74(–) 0.05(–) 0.05(–)

Chlorothalonil — 0.00(–) 0.00(–) 0.00(–) — 0.69(–) 0.00(–) 0.00(–)

Chlorpyrifos — 0.48(–) 0.00(–) 0.00(–) — 0.68(–) 0.02(–) 0.00(–)

Cyanazine — 0.11(–) 0.11(–) 0.00(–) — 0.14(–) 0.07(–) 0.07(–)

Dacthal — 0.00(–) 0.00(–) 0.00(–) — 0.60(–) 0.29(–) 0.00(–)

Diamyl phthalate — 0.61(–) 0.70(–) NP — 0.41(–) 0.33(–) NP

Diazinon — 0.57(–) 0.54(–) 0.33(–) — 0.47(–) 0.24(–) 0.00(–)

Dibutyl phthalate — 0.60(–) 0.68(–) NP — 0.38(–) 0.33(–) NP

Dimethyl isophthalate — NP NP NP — 0.38(–) 0.32(–) NP

Dimethyl terephthalate — NP NP NP — 0.38(–) 0.32(–) NP

Dinonyl phthalate — 0.63(–) 0.73( ) 0.77(–) — 0.45(–) 0.42(–) NP

Dinoseb — 0.67( ) 0.70(–) 0.75(–) — 0.74(–) 0.61(–) 0.52(–)

Hexachlorobenzene — NP NP NP — 0.77( ) NP NP

Hexazinone — 0.45(–) 0.18(–) 0.00(–) — 0.48(–) 0.04(–) 0.04(–)

Kelthane — 0.77( ) 0.77( ) 1.00( ) — 0.83( ) 0.99( ) 1.00( )

Lindane — 0.64(–) 0.70(–) NP — 0.87( ) 0.89( ) NP

Malathion — 0.35(–) 0.37(–) 0.00(–) — 0.43(–) 0.10(–) 0.10(–)

Maneb or zineb — 0.04(–) 0.04(–) 0.00(–) — 0.04(–) 0.04(–) 0.04(–)

Metolachlor — 0.61(–) 0.62(–) 0.00(–) — 0.63(–) 0.09(–) 0.01(–)

Methoprene — 0.69( ) 0.72( ) 0.81(–) — 0.86( ) 0.95( ) 0.99(–)

Mirex — 0.69( ) 0.76( ) 0.82(–) — 0.94( ) 0.95( ) 1.00( )
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TABLE 7.2 (CONTINUED)
Experimental Results and cat-SAR Predictions for Relative Proliferative 
Potency (RPP) and Relative Proliferative Effect (RPE)

RPP cat-SAR Predictionsa RPP cat-SAR Predictionsa

Chemical
RPP
Exp

Freq 
0.65

Freq 
0.75

Freq 
0.85

RPE
Exp

Freq 
0.65

Freq 
0.75

Freq 
0.85

Octachlorostyrene — 0.69( ) 0.69(–) 0.69(–) — 0.70(–) 0.72(–) 0.00(–)

Parathion — 0.62(–) 0.63(–) 0.00(–) — 0.72(–) 0.00(–) 0.00(–)

Phenol — 0.65( ) 0.67(–) NP — 0.77( ) NP NP

Picloram — 0.00(–) 0.00(–) 0.00(–) — 0.58(–) 0.19(–) 0.00(–)

Propazine — 0.01(–) 0.01(–) 0.00(–) — 0.01(–) 0.01(–) 0.01(–)

Rotenone — 0.69( ) 0.72(–) 0.81(–) — 0.69(–) 0.63(–) 0.87(–)

Simazine — 0.01(–) 0.01(–) 0.00(–) — 0.01(–) 0.01(–) 0.01(–)

Styrene — 0.86( ) 0.86( ) 0.86( ) — 0.54(–) 0.86( ) NP

Tetrachloroethylene — NP NP NP — 0.86( ) 0.86( ) NP

Thiram — 0.04(–) 0.00(–) 0.00(–) — 0.04(–) 0.04(–) 0.04(–)

Trifluralin — 0.59(–) 0.60(–) 0.00(–) — 0.47(–) 0.03(–) 0.03(–)

Ziram — 0.04(–) 0.00(–) 0.00(–) — 0.04(–) 0.04(–) 0.04(–)

2,2 ,3,3 ,5,5 -

Hexachlorobiphenyl

— 0.75( ) 0.75( ) NP 1 0.97( ) 1.00( ) 1.00( )

2,3,3 ,4,5-Pentachloro-

biphenyl

— 0.59(–) NP NP 1 0.97( ) 1.00( ) 1.00( )

3,5-Dichloro-

4-hydroxybiphenyl

— 0.64(–) 0.69(–) 1.00( ) 1.5 0.90( ) 1.00( ) 1.00( )

4-Monochlorobiphenyl — 0.58(–) NP NP 2.1 0.96( ) 1.00( ) 1.00( )

2,3 ,5-Trichloro-

biphenyl

— NP NP NP 2.2 0.98( ) 1.00( ) 1.00( )

3,5-Dichlorobiphenyl — NP NP NP 2.7 0.96( ) 1.00( ) 1.00( )

2,3,5,6-Tetrachloro-

biphenyl

— NP NP NP 3.1 0.97( ) 1.00( ) 1.00( )

2,6-Dichlorobiphenyl — NP NP NP 3.4 0.96( ) 1.00( ) 1.00( )

Decachlorobiphenyl — 0.62(–) 0.75( ) NP 3.5 0.97( ) 1.00( ) 1.00( )

2,5-Dichlorobiphenyl — NP NP NP 3.7 0.97( ) 1.00( ) 1.00( )

Chlordene — 0.65( ) 0.70(–) 0.76(–) 4 0.95( ) 0.97( ) 1.00( )

Gibberellic acid — 0.79( ) 0.83( ) 0.93( ) 4 0.90( ) 0.93( ) 1.00( )

2,3,4,5,6-Pentachloro-

biphenyl

— 0.59(–) NP NP 4.4 0.97( ) 1.00( ) 1.00( )

2-Monochlorobiphenyl — NP NP NP 4.4 0.97( ) 1.00( ) 1.00( )

2,3,4,4 -Tetrachloro-

biphenyl

— 0.59(–) NP NP 4.7 0.97( ) 1.00( ) 1.00( )

2 ,3 ,4 ,5,

5-Pentachloro-

2-hydroxybiphenyl

— 0.64(–) 0.65(–) 0.00(–) 4.8 0.93( ) 0.99( ) 1.00( )

4-Ethylphenol — 0.68( ) 0.69(–) 0.81(–) 5 0.76( ) 0.86( ) NP

(continued)
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TABLE 7.2 (CONTINUED)
Experimental Results and cat-SAR Predictions for Relative Proliferative 
Potency (RPP) and Relative Proliferative Effect (RPE)

RPP cat-SAR Predictionsa RPP cat-SAR Predictionsa

Chemical
RPP
Exp

Freq 
0.65

Freq 
0.75

Freq 
0.85

RPE
Exp

Freq 
0.65

Freq 
0.75

Freq 
0.85

Chlordane — 0.66( ) 0.71(–) 0.81(–) 5 0.94( ) 0.97( ) 1.00( )

3,5-Dichloro-

2-hydroxybiphenyl

— 0.61(–) 0.64(–) 0.00(–) 5.4 0.90( ) 0.99( ) 0.99(–)

2,3,6-

Trichlorobiphenyl

— NP NP NP 5.8 0.97( ) 1.00( ) 1.00( )

Heptachlor — 0.65( ) 0.70(–) 0.76(–) 8 0.95( ) 0.97( ) 1.00( )

4-Propylphenol — 0.69( ) 0.70(–) 0.79(–) 17 0.76( ) 0.86( ) NP

6-Bromonaphthol-2 — 0.72( ) 0.79( ) 1.00( ) 38 0.81( ) 1.00( ) 1.00( )

t-Butylhydroxyanisol 0.00006 0.64( ) 0.66(–) 0.52(–) 30 0.67(–) 0.40(–) 0.00(–)

2 ,5 -Dichloro-

2-hydroxybiphenyl

0.0001 0.63(–) NP NP 13 0.94( ) 1.00( ) 1.00( )

2 ,3 ,4 ,5 -Tetrachloro- 

3-hydroxybiphenyl

0.0001 0.55(–) NP NP 35.3 0.93( ) 1.00( ) 1.00( )

2,3,4,5-Tetrachloro-

biphenyl

0.0001 0.25(–) NP NP 39.2 0.97( ) 1.00( ) 1.00( )

1-Hydroxychlordene 0.0001 0.60(–) 0.64(–) 0.53(–) 40 0.95( ) 0.97( ) 1.00( )

Toxaphene 0.0001 0.64(–) 0.75( ) 0.82( ) 51.9 0.92( ) 0.96( ) 1.00( )

Dieldrin 0.0001 0.65( ) 0.75( ) 0.83( ) 54.89 0.94( ) 0.97( ) 1.00( )

Methoxychlor 0.0001 0.68( ) 0.73( ) 0.83( ) 57 0.74(–) 0.60(–) NP

2,2 ,3,3 ,6,6 -

Hexachlorobiphenyl

0.0001 0.25(–) NP NP 61.6 0.97( ) 1.00( ) 1.00( )

2,2 ,4,

5-Tetrachlorobiphenyl

0.0001 0.25(–) NP NP 61.6 0.97( ) 1.00( ) 1.00( )

2 ,5 -Dichloro-

3-hydroxybiphenyl

0.0001 0.63(–) NP NP 69.9 0.93( ) 1.00( ) 1.00( )

p,p -DDT 0.0001 0.70( ) 0.73( ) 0.83( ) 71 0.78( ) 0.85(–) NP

2,4,4 ,6-

Tetrachlorobiphenyl

0.0001 0.26(–) NP NP 75.7 0.97( ) 1.00( ) 1.00( )

2,3,4-

Trichlorobiphenyl

0.0001 0.26(–) NP NP 77 0.97( ) 1.00( ) 1.00( )

Endosulfan 0.0001 0.64(–) 0.74( ) 0.84( ) 81.25 0.95( ) 0.97( ) 1.00( )

Kepone 0.0001 0.65( ) 0.76( ) 0.84( ) 84 0.91( ) 0.95( ) 1.00( )

o,p -DDD 0.0001 0.70( ) 0.73( ) 0.83( ) 84 0.78( ) 0.85(–) NP

o,p -DDT 0.0001 0.70( ) 0.73( ) 0.83( ) 86.14 0.78( ) 0.85(–) NP

4-tert-Butylphenol 0.0003 0.67( ) 0.73( ) 0.85( ) 71 0.77( ) 0.87( ) NP

4-sec-Butylphenol 0.0003 0.68( ) 0.74( ) 0.87( ) 76 0.78( ) 0.88( ) NP

Bisphenol A 0.0003 0.69( ) 0.75( ) 0.84( ) 82 0.78( ) 0.87( ) NP

4,4 -Dihydroxyiphenyl 0.0003 0.64( ) 0.86( ) 0.86( ) 84 0.92( ) 1.00( ) 1.00( )

4-Hydroxybiphenyl 0.0003 0.64( ) 0.86( ) 0.86( ) 87 0.92( ) 1.00( ) 1.00( )
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TABLE 7.2 (CONTINUED)
Experimental Results and cat-SAR Predictions for Relative Proliferative 
Potency (RPP) and Relative Proliferative Effect (RPE)

RPP cat-SAR Predictionsa RPP cat-SAR Predictionsa

Chemical
RPP
Exp

Freq 
0.65

Freq 
0.75

Freq 
0.85

RPE
Exp

Freq 
0.65

Freq 
0.75

Freq 
0.85

Butylbenzylphthalate 0.0003 0.47(–) 0.46(–) 0.00(–) 90 0.31(–) 0.23(–) 0.17(–)

4-iso-Pentylphenol 0.0003 0.59(–) 0.33(–) 0.32(–) 93 0.63(–) 0.34(–) 0.22(–)

4-tert-Pentylphenol 0.0003 0.68( ) 0.74( ) 0.87( ) 105 0.78( ) 0.88( ) NP

Tamoxifen 0.001 0.65( ) 0.69(–) 0.84( ) 11 0.62(–) 0.54(–) 0.62(–)

2,2 ,5-Trichloro- 

4-hydroxybiphenyl

0.001 0.60(–) 0.33(–) 0.33(–) 37.8 0.93( ) 1.00( ) 1.00( )

2 ,5 -Dichloro-

4-hydroxybiphenyl

0.001 0.64( ) 0.86( ) 0.86( ) 71.2 0.93( ) 1.00( ) 1.00( )

2 ,3 ,4 ,5 -Tetrachloro-

4-hydroxybiphenyl

0.001 0.56(–) 0.86( ) 0.86( ) 92 0.93( ) 1.00( ) 1.00( )

Coumestrol 0.001 0.62(–) 0.72( ) 0.86( ) 93 0.84( ) 0.89( ) 1.00( )

Bisphenol A 

dimethacrylate

0.003 0.67( ) 0.75( ) 0.84( ) 84 0.75(–) 0.70(–) NP

4-Nonylphenol 0.003 0.67( ) 0.73( ) 0.91( ) 100 0.78( ) 0.90( ) 1.00( )

2 ,4 ,6 -Trichloro 

4-hydroxybiphenyl

0.01 0.60(–) 0.86( ) 0.86( ) 99.8 0.92( ) 1.00( ) 1.00( )

4-Octylphenol 0.03 0.67( ) 0.73( ) 0.91( ) 100 0.78( ) 0.90( ) 1.00( )

5-Octylphenol 0.03 0.69( ) 0.76( ) 0.90( ) 100 0.79( ) 0.92( ) 1.00( )

16-Hydroxyestrone 0.1 0.73( ) 0.80( ) 0.91( ) 0 0.86( ) 0.94( ) 1.00( )

Pseudo

diethylstilbestrol

0.1 0.68( ) 0.83( ) 0.97( ) 100 0.70(–) 0.97( ) 1.00( )

Equilenin 1 0.75( ) 0.81( ) 0.92( ) 82 0.88( ) 0.95( ) 1.00( )

Zearalenone 1 0.58(–) 0.81( ) 0.89( ) 88 0.57(–) 0.54(–) 0.65(–)

Zearalenol 1 0.57(–) 0.78( ) 0.88( ) 93 0.57(–) 0.51(–) 0.53(–)

Estrone 1 0.73( ) 0.80( ) 0.91( ) 95 0.86( ) 0.94( ) 1.00( )

Allenolic acid 1 0.62(–) 0.65(–) 0.00(–) 105 0.74(–) 0.75(–) 1.00( )

Estriol 10 0.74( ) 0.81( ) 0.90( ) 95 0.85( ) 0.93( ) 1.00( )

Indenestrol 10 0.68( ) 0.74( ) 0.97( ) 100 0.71(–) 0.97( ) 1.00( )

Ethynylestradiol 100 0.73( ) 0.80( ) 0.90( ) 92 0.86( ) 0.94( ) 1.00( )

17 -Estradiol 100 0.74( ) 0.81( ) 0.90( ) 100 0.85( ) 0.93( ) 1.00( )

11 -Chloromethyl-

estradiol

1000 0.74( ) 0.81( ) 0.90( ) 110 0.85( ) 0.93( ) 1.00( )

Moxestrole 1000 0.74( ) 0.81( ) 0.90( ) 110 0.84( ) 0.93( ) 1.00( )

Diethylstilbestrol 1000 0.68( ) 0.83( ) 0.97( ) 112 0.70(–) 0.97( ) 1.00( )

Note: NP: No prediction by cat-SAR.

a Values reported as probability of activity and final determination ( ) for active and (–) for inactive.
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For the LMO validation, randomly selected sets of 10% of the chemicals were 

removed from the model’s total fragment set, and the n – 10% model was derived. 

The activity of each of the removed chemicals was then predicted using the n – 10% 

model. Predicted versus experimental values for the chemicals in the left-out sets 

were then compared, and the n – 10% model’s concordance, sensitivity, and specific-

ity were determined. This was repeated 100 times to compute the model’s average 

concordance, sensitivity, and specificity.

7.2.4 MODEL COMPARISON: THE CHEMICAL DIVERSITY APPROACH

To compare the MCASE and cat-SAR modeling approaches and to analyze the 

potential of chemicals demonstrating estrogenic activity in the E-SCREEN assay 

to induce other toxicological phenomena, including cancer and developmental tox-

icity, we used the “Chemical Diversity Approach.” This is a method based upon 

comparisons of the SAR-predicted toxicological profiles of a group of 10,000 

chemicals chosen to represent a random assortment of all chemicals and chemical 

features [42]. These chemicals were derived from chemical structure libraries and 

from a random sample of chemical structures from the National Cancer Institute 

Repository of potential cancer chemotherapeutic agents. The various toxicological 

properties of these chemicals are predicted using validated SAR models, includ-

ing the models for RPE and RPP. The prevalence of chemicals predicted to pos-

sess two toxicological properties simultaneously is then quantified and compared 

to the expected prevalence. If the two effects are assumed to be independent of 

one another (that is, null hypothesis), the observed and expected values should be 

nearly equal. A significantly greater observed than expected prevalence suggests 

a similarity in mechanism among the toxicological effects that are being studied. 

Likewise, a significantly lower observed than expected prevalence suggests a pos-

sible antagonism between the phenomena under investigation. The applicability of 

the methodology to the study of diverse toxicological phenomena has been demon-

strated by successfully estimating the number of potential Salmonella mutagens in 

the environment [43], and the inhibition of gap junctional intercellular communica-

tion is related to rodent carcinogenesis through cellular and systemic toxicity but 

not genotoxicity [42].

7.3 RESULTS AND DISCUSSION

7.3.1 PREDICTIVE PERFORMANCE AND MODEL SELECTION

Together, six cat-SAR models were derived from the E-SCREEN dataset, three 

each for RPE and RPP data. Each of the models was based on fragments that 

considered atoms, bonds, and connections and were identified in three or more 

compounds in the learning sets. The models differed in the set-points for the fre-

quency of active and inactive compounds each fragment was derived from. The 

three frequency set-points used were freq 0.65, 0.75, and 0.85. The model val-

idation results are shown in Table 7.1 and include summaries for models with 
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near-equal sensitivity and specificity (labeled “ss” in Table 7.1) and with highest 

overall concordance between predicted and experimental values (labeled “conc” 

in Table 7.1).

Generally, considering both models with highest concordance or with balanced 

sensitivity and specificity, comparable RPE models outperformed the RPP ones 

(Table 7.1). For example, the Freq 85 RPE model with highest concordance was 90% 

and that of the RPP one was 85% (Table 7.1) This is consistent with our previous 

models developed with MCASE where the RPE model outperformed the RPP with 

concordance values of 88% and 72%, respectively [33]. Moreover, the cat-SAR RPE 

models also consistently were able to make predictions on more compounds than 

comparable RPP ones (Table 7.1).

The LNO self-fit analysis for the RPE balanced sensitivity and specificity model 

yielded concordance values between 91% and 98%, sensitivity between 96% and 

99%, and specificity between 83% and 97% (Table 7.1). The RPP balanced model 

yielded concordance values between 83% and 95%, sensitivity between 80% and 

100%, and specificity between 85% and 91% (Table 7.1).

The LOO validation for the RPE balanced sensitivity and specificity model 

yielded concordance values between 82% and 89%, sensitivity between 84% and 

90%, and specificity between 80% and 88% (Table 7.1). The RPP balanced model 

yielded concordance values between 63% and 85%, sensitivity between 60% and 

86%, and specificity between 66% and 85% (Table 7.1). Moreover, the best model, 

based on the highest achieved concordance was the RPE freq 0.85 model that 

achieved a concordance of 90%, a sensitivity of 98%, and a specificity of 75%.

The LMO validation for the RPE balanced sensitivity and specificity model 

yielded concordance values between 82% and 87%, sensitivity between 83% and 

85%, and specificity between 81% and 89% (Table 7.1). The RPP balanced model 

yielded concordance values between 71% and 79%, sensitivity between 65% and 

80%, and specificity between 74% and 77% (Table 7.1).

Overall, the RPE model clearly outperformed the RPP one and as expected, the 

higher frequency set-point models ( freq 0.85) were able to make substantially 

more accurate predictions versus the lower one ( freq 0.65) but at the cost of mak-

ing less predictions. We selected the RPE freq 0.75 with balanced sensitivity and 

specificity model for further analyses. This model was balanced with regard to sen-

sitivity and specificity (that is, it did not make predictions of activity and inactivity at 

the cost of the other), had a relatively high rate of accurate predictions (that is, LOO 

concordance, sensitivity, and specificity of all of 84%), and was able to make LOO 

prediction for 96% (117 out of the 122) (Table 7.1) of the compounds in the learning 

set (Table 7.1).

7.3.2 DIFFERENCE BETWEEN RPP AND RPE MODELS

As mentioned, 23 compounds (compounds 2,2 ,3,3 ,5,5 -hexachlorobiphenyl through 

6-bromonaphthol-2, Table 7.2) had disparate activity between the RPP and RPE 

learning sets. These were weakly active RPE compounds and inactive RPP ones. 

In our previous MCASE model, 22 of the 23 compounds (96%) were accurately 
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predicted as active in the RPE model, but the RPP model was able to predict only 

11 of the 23 as inactive (48%). This same trend was apparent in the freq 0.75 

cat-SAR models, wherein for the RPE model all 23 compounds (100%) were accu-

rately predicted as active, but the RPP model made predictions on only 11, 7 of 

which (64%) were classified correctly as inactive compounds (Table 7.2).

The predictivity of a model has been used as an acceptable measure for assess-

ing the “meaningfulness” of a model [44], and we observed that good predictivity 

is related to mechanistically sound models [41,45]. Therefore, again we consider the 

RPE model, which includes the very weak estrogens as a more informative model 

than that based on the RPP dataset. This finding is significant with respect to apply-

ing the model to environmental estrogens and phytoestrogens, many of which are 

exceedingly weak compared to 17 -estradiol.

7.3.3 EXAMPLES OF CAT-SAR PREDICTIONS

The structural components that make up cat-SAR predictions of estrogenic activity 

are consistent with previous analyses describing the interactions of the closely related 

estrogen receptors (  and ) and their ligands. Briefly, effects of 17 -estradiol and 

its mimics are mediated by intracellular estrogen receptors [46], and binding of 17 -

estradiol to the receptor involves all four rings and both terminal hydroxyl groups. 

The phenolic OH (located on the A ring) contributes approximately 1.9 kcal/mol of 

binding energy as a hydrogen bond donor, the 17 -hydroxyl group contributes about 

0.6 kcal/mol as a hydrogen bond acceptor, and the aromatic ring contributes approxi-

mately 1.5 kcal/mol through polar interactions. Binding to the estrogen receptor is 

generally inhibited by the addition of polar substituents and by larger hydrophobic 

substitutions in a number of positions [46].

We used the LOO cross-validation results for the RPE model based on atoms, 

bonds, and connection. Fragments had to be derived from at least three compounds, 

and the frequency set-point was freq 0.75, which equated to active fragments hav-

ing to be found in at least 84% of compounds that contained the fragment ( freqACT 

0.84) and inactive ones having to be found in at least 66% of compounds that 

contained it ( freqIN 0.66). To visualize fragments and compounds, the aromaticity 

of both were normalized by Sybyl Unity [47] (see Figure 7.1 through Figure 7.3). 

Moreover, because the structures of the fragments are independent from the intact 

chemicals (from which they are derived or for which they are used to predict), the 

conformation of the rendered fragments in Figure 7.1 through Figure 7.4 may appear 

different from the structures of the whole molecules they overlap (see Figure 7.1 

through Figure 7.4).

The cat-SAR prediction for 17 -estradiol is shown in Figure 7.1. The fragments 

contributing to the prediction of activity for 17 -estradiol were derived predomi-

nately from active compounds (that is, freqACT 0.84), and there were no fragments 

associated with inactivity. The fragments can be divided into four general sets that 

covered 17 -estradiol rings A through D. Estradiol Fragment Sets A and D specifi-

cally covered the aromatic portion of 17 -estradiol, and Fragment Set A was specific 

for the phenolic A ring (Figure 7.1). Fragment Set C covered the interior lipophilic 
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Estradiol Set A

Estradiol Set B

Estradiol Set C

Estradiol Set D

FIGURE 7.1 Categorical structure-activity relationship (cat-SAR) fragment analyses and 

predictions of the estrogenic compound 17 -estradiol.
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FIGURE 7.2 Categorical structure-activity relationship (cat-SAR) fragment analyses and 

predictions of the estrogenic compounds diethylstilbestrol and its metabolite indenestrol.
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and aliphatic B, C, and D rings, and Estradiol Fragment Set C specifically covered 

the 17  hydroxy moiety of the D ring (Figure 7.1).

The cat-SAR prediction for the synthetic estrogen diethylstilbestrol and its metab-

olite indenestrol are shown in Figure 7.2. Like the fragments used for the prediction 

of activity for 17 -estradiol, none of the fragments used to predict the activity of 

diethylstilbestrol and indenestrol were predominately associated with inactivity. The 

hydroxylated rings of diethylstilbestrol and indenestrol are roughly equivalent to the 

A to D rings of 17 -estradiol. As seen in Figure 7.2, Diethylstilbestrol Fragment Set 

A covered the para-hydroxylated phenyl ring of both compounds, Fragment Set B 

mostly covered part of the aromatic ring and the alkene bond linking the two pheno-

lic moieties of the molecule, and Fragment Set C was specific for the alkene section 

of the molecule (Figure 7.2).

The cat-SAR prediction of the phytoestrogen coumestrol is shown in Figure 7.3. 

Similar to the previously described predictions, Coumestrol Fragment Sets A and B 

covered the two phenolic moieties on the molecule, and Fragment Set C covered the 

alkyl interior part of the molecule. Again, the chemicals that contributed to these frag-

ments were predominately active compounds ( freqACT 0.84). However, Coumestrol 

Fragment Set D covered the three oxygen atoms in the interior of coumestrol, and the 

chemicals that contributed to these fragments were predominately inactive ( freqIN 0.66). 
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FIGURE 7.3 Categorical structure-activity relationship (cat-SAR) fragment analyses and 

predictions of the estrogenic compound coumestrol.
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These results are similar to an observation we made earlier that the oxygen-rich areas 

of phytoestrogens impart a level of water solubility to the interior of the molecule 

resulting in compounds of this type having different a biological activity [48,49].

We speculated that these differences in chemical features of estrogenic com-

pounds could induce different biological responses [48–50]. Because then, the estro-

gen receptor alpha (ER ) ligand binding domain was crystallized, and its atomic 

coordinates resolved with those of bound estradiol and raloxifene [51], genistein [52], 

and 4-hydroxytamoxifen and diethylstilbestrol [53]. It was noted that the lipophilic 

cavity is nearly twice the size of estradiol, which may explain in part the receptor’s 

promiscuity [54]. Most importantly, it was observed by these authors that estrogen 

antagonists induce a different conformational change in the AF-2 region compared 

to that for the natural ligand. Together, these analyses demonstrated the utility of 

SAR analyses to not only generate predictive models that are explainable by current 

knowledge but also their ability to generate and investigate hypotheses regarding the 

mechanistic action of toxicants.

Finally, malathion, an organophosphorous ester widely used as an insecticide, 

was evaluated to provide an example of a negative cat-SAR prediction, and is shown 

in Figure 7.4. Malathion Fragment Set A consisted of one fragment that made up part 

of malathion’s ester moiety and linked it to the dimethoxyphosphinothioylthio moi-

ety. Chemicals that contributed to this fragment were all active compounds ( freqACT

0.84). Malathion Fragment Set B covered the dimethoxyphosphinothioylthio 
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FIGURE 7.4 Categorical structure-activity relationship (cat-SAR) fragment analyses and 

predictions of the nonestrogenic compound malathion.
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portion of the molecule and resulted in the overall prediction of inactivity for 

malathion because the chemicals that contributed to these fragments were all inac-

tive compounds ( freqIN 0.66).

Regarding the importance of the phenolic A ring in 17 -estradiol and other estro-

genic compounds, our previous study with MCASE did not specifically identify it, 

only rather a biophore that indicated a para-substitute feature on an aromatic ring 

[33]. Interestingly, MCASE yields five biophores [33] versus ~1,000 important model 

fragments cat-SAR produced (Table 7.1). Moreover, as seen in the above examples, 

several different cat-SAR fragments for the phenolic A ring were identified. Together, 

this suggests that cat-SAR produced a more complex model for estrogenic activity, 

and it is also producing a more mechanistically interpretable model. As mentioned, 

the cat-SAR prediction for coumestrol consisted of important fragments that covered 

both the phenolic part of the molecule and its more water-soluble interior, but the 

MCASE RPE model misclassified coumestrol as inactive [33].

7.3.4 COMPARISON OF E-SCREEN MODELS TO OTHER SAR MODELS

Comparisons between the E-SCREEN cat-SAR models and other SAR models 

were conducted to assess the likelihood that these models might be related and have 

common underlying biological mechanisms of action using the CDA method. For 

these analyses, we considered cat-SAR models for the RPE and RPE E-SCREEN 

assay, rat carcinogenesis based on data from the Carcinogenic Potency Database 

(CPDB) [55], a model of mammary carcinogens versus nonmammary carcinogens, 

also based on data from the CPDB, Salmonella mutagens based on data from the 

National Toxicology Program [56], and human developmental toxicity based on data 

from Ghanooni et al. [57]. Additionally, the cat-SAR RPE and RPP models were 

compared to the previously published MCASE RPE and RPP models [33] to assess 

whether the two modeling programs were consistent.

To assess the overall applicability of the cat-SAR program to analyze environ-

mental estrogens, several basic CDA analyses were performed. First, there was a 

significant overlap (112.3%, p  0.0001) observed between the Salmonella mutagen-

esis and the rat carcinogenesis model (Analysis 1, Table 7.3). This result is consistent 

with the electrophilic theory of carcinogenesis [58] as well as with our previous CDA 

analyses of mutagens and carcinogens with the MCASE program [43].

Next, the CDA analysis between the cat-SAR RPE model and the MCASE RPE 

model (69.2%, p  0.0001) (Analysis 2, Table 7.3) and between the cat-SAR RPP model 

and the MCASE RPP model showed a high degree of similarity (58.0%, p  0.0001) 

(Analysis 3, Table 7.3). As such, the comparisons between the cat-SAR and MCASE 

models shows that the two modeling programs produce generally consistent results.

Next, comparison between the cat-SAR RPE and cat-SAR RPP models also 

showed a high degree of similarity (147.4.0%, p  0.0001) (Analysis 4, Table 7.3). 

This suggests that while the RPE and RPP methods measure different estrogenic 

endpoints (that is, proliferative potency and proliferative effect relative), these end-

points are highly related.

Considering just cat-SAR analyses, comparison of the RPE model to one for 

Salmonella mutagenesis showed a significantly less than expected overlap (–43.6%, 
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p  0.0001) (Analysis 5, Table 7.3). Similarly, when comparing the RPE and rat 

carcinogenesis models, a significantly less than expected overlap was also observed 

(–27.6%, P 0.0001) (Analysis 6, Table 7.3). It should be noted that in our previous 

CDA analysis of Salmonella mutagenesis, rat carcinogenesis, and estrogenicity, no 

relationships were observed [33]. Although the reason for this difference between 

no relationships observed with MCASE and negative ones observed with cat-SAR is 

not clear at this time, both sets of analyses are consistent to the point that no positive 

relationship was suggested between estrogenicity as measured by the E-SCREEN 

RPE assay, mutagenicity, and rat carcinogenesis. Finally, as also seen with MCASE, 

there was a significant overlap between estrogenicity and developmental toxicity in 

humans (20.5%, p  0.0002).

7.4 CONCLUSIONS

Overall, the cat-SAR validation results (Table 7.1), examples of cat-SAR predictions 

(Table 7.2 and Figure 7.1 through Figure 7.4), and the CDA analyses (Table 7.3) all 

provide evidence that the cat-SAR method is an applicable method for SAR anal-

ysis of environmental estrogens. The present analysis using the cat-SAR program 

again demonstrated the effectiveness of fragment-based SAR approaches to develop 

TABLE 7.3
Mechanistic Relationship Analyses between cat-SAR E-SCREEN Models, 
MCASE E-SCREEN Models, Mutagens, Carcinogens, and Breast Carcinogens

Analysis Observeda Expectedb Δc 100Δ/Expectedd p-Valuee

Salmonella vs.

1. Rat CPDB 1,524 718 806 112.3 0.0001

RPE (cat-SAR) vs.

2. RPE (MCASE) 494 292 202 69.2 0.0001

RPP (cat-SAR) vs.

3. RPP (MCASE) 678 429 249 58.0 0.0001

RPE vs.

4. RPP 1,331 538 793 147.4 0.0001

RPE vs.

5. Salmonella 395 700 305 43.6 0.0001

6. Rat CPDB 389 629 240 27.6 0.0001

7. Developmental toxicity 817 678 139 20.5 0.0002

a Number of compounds simultaneously identified.
b Number of compounds expected by chance.
c Difference of observed from expected.
d Percent difference from expected.
e Difference of two means test.
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mechanistically sound and predictive models for categorizing compounds as either 

having estrogenic activity or not. As seen in Table 7.1, because the cat-SAR program is 

controllable regarding model sensitivity and specificity versus number of compounds 

it is capable of making predictions for, it has the potential to be especially useful for 

screening and prioritizing suspected environmental estrogens for subsequent testing. 

This is especially important for screening methods, wherein the rate of false negative 

predictions should be kept low so as not to miss toxicologically active compounds. 

Moreover, as we mentioned previously, because no computational screening mecha-

nism is perfect, it seems prudent that both cat-SAR and MCASE could contribute as 

part of a battery of computational tools aimed at prioritizing suspected environmental 

estrogens for further testing.
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ABSTRACT

A methodology is presented for modeling and classifying endocrine disrup-

tors based on Kohonen and counterpropagation neural networks. Three dif-

ferent datasets were considered. The first dataset consists of 106 substances 

extracted from the list of 553 chemicals that were inspected by the European 

Union Commission for the scientific evidence of their endocrine disruption 

activity. For this dataset, we present the classification model designed for 

a preliminary assessment of potential endocrine disruptors, which would 

help the assessors to make the priority list for a large amount of chemicals 

that have to be tested with more expensive in vitro and in vivo methods. The 

second dataset consists of 132 compounds of known chemical structures, 

which were tested for their binding affinities to the mice estrogen recep-

tor. We compared the counterpropagation neural network models for the 

prediction of relative binding affinity with two other multivariate model-

ing methods (partial least square regression, and error-back-propagation 

neural network. The results were assessed with the aim to get insight into 

the mechanisms involved in the binding of estrogenic compounds to the 

receptor. The third dataset encompasses 60 diverse chemicals tested for the 

binding affinity to human estrogen receptors  and  (ER-  and ER- ). To 

obtain the structure-activity relationship, the three-dimensional (3D) struc-

tures of ligands and receptors were taken into consideration. Structural fea-

tures of ligands having the strongest influence to the binding affinities were 

investigated.

KEYWORDS

Binding affinity

Counterpropagation neural network

Endocrine disruptors

Estrogen receptor

List of chemicals of the European Commission

8.1 INTRODUCTION

Over decades, the epidemiological and scientific evidence has raised awareness that 

some chemicals present in our environment have adverse impacts on the reproduc-

tive systems of human and wildlife species. For example, epidemiological studies 

showed the increase of cancer in human reproductive organs (men and women), there 

is evidence of a decrease of sperm count in men, or of reduced fertility. In wild-

life species, several abnormalities have been observed, such as an increase in birth 
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abnormalities, abnormalities in mating behavior, or feminization/masculinization. 

Although all of these changes can be caused by different factors, one suspects the 

common origin — the disruption of the endocrine system. The most sensitive tar-

gets for endocrine disruptors is human and animal reproductive systems. The OECD 

(Organization for Economic Cooperation and Development) adopted the definition 

of reproductive endocrine disruptors as follows [1]:

A sex hormone–disruptor is an exogenous substance that causes adverse health effects 

related to the reproductive function of an intact organism or its progeny, consequent to 

changes in endocrine function.

A potential sex hormone-disruptor is a substance that possesses properties that 

might be expected to lead to endocrine disruption of the reproductive processes in an 

intact organism.

The mechanisms of hormone disruptor–related biological activity are complicated 

and manifold. Basically, these chemicals may act as agonists, when they bind to par-

ticular physiological receptors in the cells of sex organs, or as antagonists, when they 

block or reduce the binding of natural hormones. In both cases, a potential hormone-

disruptor expresses any kind of structural similarity to natural hormones. Further 

modes of action are modification of postreceptor pathways within the cells causing 

alteration of the functioning of the organism as a whole. Such examples include 

interference in the hypothalamic–pituitary–gonadal axis, or in the neurotransmitters 

in the central nervous system. Alternatively, a chemical may be directly involved in 

activation or inhibition of enzymes, causing changes in the production of hormones 

or changes of the carrier proteins in the blood, thus disrupting the delivery of hor-

mones or feedback control.

The regulators, which control the chemical market and consumption of chemi-

cals, are faced with a very difficult problem. Some chemicals represent a potential 

danger due to their endocrine disruption activity. But, it is not possible to design a 

single test that could definitively clarify if a chemical acts as an endocrine disrup-

tor or not. None of the tests reported in the OECD Test Guidelines was specifically 

designed to directly detect endocrine disruption. However, various modifications 

of the tests used to detect different adverse effects can be applied to detect effects 

related to endocrine disruption. For example, in the mammalian acute toxicity test, 

a single dose can induce effects in reproductive organs. These effects are mostly 

related to estrogen agonistic or antagonistic activity of chemicals [2–4]. A second 

example represents the mammalian subchronic toxicity tests [5–8] that could be 

modified in order to consider the endpoints of relevance to endocrine disruption 

activity, similar to the mammalian long-term toxicity test [9–11] or the mammalian 

teratogenicity test [12]. Due to the nature of these tests, they can be performed for 

only a limited number of compounds. Regulators express an urgent need for new 

in vitro or in silico approaches to assess a large number of chemicals. OECD pro-

poses using SAR (Structure-Activity Relationship) analysis at the screening level (for 

example, in the elucidation of mechanisms of activity and to set testing priorities). 

Furthermore, the QSAR (Quantitative Structure-Activity Relationship) methods are 

applied when specific targets are considered (for example, the binding of compounds 

on a specific sex hormone receptor). Many authors have developed QSAR models 
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to predict the endocrine activity of chemicals. The estrogen receptors are the main 

targets of these studies. Kovalishyn et al. [13] applied the volume learning algorithm 

artificial neural network and partial least squares (PLS) to model relative potency to 

estrogen receptor. Liu et al. [14] applied different classification methods on a set of 

232 chemicals treating the estrogen binding activity. Vedani et al. [15] studied six 

proteins as possible targets for 693 chemicals. Devillers et al. [16] reported the SAR 

study performed on a set of 11,416 chemicals for which 13 different endocrine activi-

ties were considered. Harju et al. [17] studied a set of 26 brominated flame retardants 

for their endocrine disruption activity. The in vitro assays included interactions with 

androgen, progesterone, estrogen, and dioxin (aryl hydrocarbon) receptors, the com-

petition with thyroxin, and inhibition of estradiol sulfation. Metabolic rates were 

also considered. Ghafourian and Cronin [18] studied estrogenic receptor binding 

affinity using a three-dimensional approach (CoMFA, comparative molecular field 

analysis). They compared various linear methods like stepwise regression, PLS, and 

recursive partitioning to nonlinear methods such as counterpropagation neural net-

work and support vector machine. Tamura et al. [19] studied the androgen receptor 

activity of a list of chemicals, SPEED 98 issued from the Ministry of Environment, 

Japan. They used CoMFA and studied agonist and antagonist activity. Saliner et al. 

used a two-descriptor decision tree to classify the compounds as active or inactive 

endocrine disruptors [20]. Two descriptors that measured the activation of estrogenic 

genes were used. The model has been extensively commented on in terms of OECD 

principles for validation of QSAR models [21]. Marchand-Geneste and coworkers 

performed a QSAR study on rainbow trout estrogen receptor as a homolog to human 

receptor [22]. Asikainen et al. applied decision trees, learning vector quantization, 

and k-nearest neighbor methods to classify active and nonactive estrogen compounds. 

A set of 311 compounds was used to build the model based on DRAGON descriptors 

[23]. Akahori et al. used a two-step method (discriminant analysis and multilinear 

regression) to study the binding of chemicals to the estrogen receptor [24]. Zhao 

et al. [25] compared three modeling techniques — multiple linear regression, radial 

basis function neural network, and support vector machine — to study a set of 146 

natural, synthetic, and environmental chemicals and their relative binding affinity to 

androgen receptor. Tong et al. [26] proposed an ensemble of decision trees to classify 

the chemicals according to their ability to bind to the estrogen receptor.

In this chapter, we present three concepts of QSAR modeling related to endo-

crine disruption activity elaborated in several case studies during the last few years 

[27–30]. As mentioned above, endocrine disruption is a complex biological process 

that involves many different mechanisms, and to get a mechanistic insight into the 

entire process, a series of different tests must be performed for each chemical. This 

is a costly and time-consuming process that, in addition, requires a lot of testing on 

animals, raising ethical concerns. But, the number of chemicals put on the market 

is increasing rapidly and some of them may act as endocrine disruptors. Because all 

chemicals cannot be experimentally tested, there is a need for alternative, computa-

tional, or in silico methods for the prediction of their biological activity [31,32].

Our first proposal was to construct a robust model that gave information about 

the possibility of a compound to be an endocrine disruptor. The European Union 

Commission reported about the candidate list of 553 man-made substances that are 
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potential endocrine disruptors and 9 synthetic/natural hormones [33]. We applied a 

counterpropagation neural network with an architecture that is suitable for classifica-

tion. More details about the dataset and modeling technique are given in Section 8.2.

Our second proposal was to study the endocrine disruption on a model system, 

in our case, mice. On a set of 132 compounds, we studied the binding activity to a 

mice estrogen receptor. We compared the counterpropagation neural network mod-

els for the prediction of relative binding affinity with two other multivariate model-

ing methods — PLS and error-back-propagation neural network.

Our third proposal represented the study of binding affinity to human ER-  and 

ER- . The dataset consisted of 60 compounds. To obtain the SAR, the 3D structures 

of ligands and receptors were taken into consideration. We compared two approaches 

in 3D structure determination — host independent conformations obtained by min-

imal energy optimization, and host dependent conformation originating from the 

ligands docked in the host protein. Structural features of ligands having the strongest 

influence to the binding affinities were investigated.

8.2 SELF-ORGANIZING MAPS AND COUNTERPROPAGATION 
NEURAL NETWORK

A self-organizing map (SOM) or Kohonen artificial neural network is a basic type of 

neural network. Its architecture represents a network of neurons organized in a rect-

angular or hexagonal two-dimensional (2D) lattice. The training, which runs itera-

tively, is a mapping from multidimensional descriptor space into a 2D lattice in a way 

that similar objects are located close to each other. The result of training is a network 

where objects populate neurons in a way that a neuron can be empty or populated 

with one or more objects. It is to emphasize that SOM are unsupervised models, 

which means that only input variables (descriptors) are involved in the training. It 

is obvious that such a network shows similarity relationships among objects (that is, 

one can indicate clusters or outliers within the dataset). Further application of SOM 

is the division of data into a training and a test set. The test set must be within the 

applicability domain of the model or, in other words, both sets must equivocally cover 

the entire information space. To get an even partition of data, one usually divides the 

entire network into subparcels, and from each subparcel some objects are assigned to 

the training set and others to the test set. Another application of SOM is the selection 

of descriptors. In this procedure, a SOM is trained with the transposed matrix (that is, 

with the data matrix where indices indicating objects or descriptors are exchanged). 

A result of such training is a network where neurons are occupied with descriptors 

and for further modeling only one or two descriptors from each neuron are selected. 

An additional criterion, from which descriptors are selected, is the Euclidian distance 

between descriptors and the neuron. The Euclidian distance is expressed in Equation 

8.1 where XT
j,s and Wj,i indicate descriptors and neuron weights, respectively. Usually, 

the descriptors with the shortest and the largest distances are selected.

d X Ws i j s
T

j i

j

Nmol

, , ,( )2

1

(8.1)
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A counterpropagation artificial neural network (CP ANN) is a generalization of 

the SOM. The architecture of CP ANN is shown in Figure 8.1. It consists of two 

layers: the input layer is the same as in SOM, and the output layer is associated with 

output values (properties). The training runs in two steps. In the first, unsupervised 

step, the input layer is constructed as described above — objects are organized con-

sidering the descriptors and similarity relationships among them. In the second, the 

supervised step, the positions of objects are projected to output layers where the 

weights are adjusted to their property values. In the prediction phase (when a new 

object is presented to the model, it is first situated into the input layer on the best-

fitting neuron), the position of the neuron is projected to the output layer, which gives 

the predicted property value. The distance between the selected neuron and the new 

object can now be calculated. It is a measure of how well a new object fits in the 

applicability domain of the model. If the outputs (properties) are expressed as real 

numbers (for example, biological activity), the dimension of the output layer is one. 

If the outputs are classes, the output layer is multidimensional or, more precisely, the 

dimension of the output layer is equal to the number of classes (p). A correspond-

ing target is a p-dimensional vector with the elements zero or one. The value one 

on jth place indicates that the object belongs to the jth class. During the training, 
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FIGURE 8.1 Counterpropagation artificial neural network architecture. The circles represent 

the weights of individual neurons in the Kohonen and output layers, as well as the compo-

nents of the molecular structure representation vector and target vector shown vertically on 

the left side of the plot. Step 1, mapping of the molecule Xs into the Kohonen layer; Step 2, 

correction of the weights in both Kohonen and output layers; Step 3, prediction of the four-

dimensional target Ts. The position of the molecule after Step 1 (nx  4, ny  1) is visualized 

by a tiny dashed vertical line and gray circles within the Kohonen layer and in the top-map. 

(From A. Roncagnioli et al., J. Chem. Inf. Comput. Sci., 44, 304, 2004. With permission.)
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all p layers are constructed independently; after the training, each weight has value 

between zero and one. For the final prediction of classes, the response surface val-

ues must again be transformed into discrete values, zeros and ones. The threshold 

value between 0.01 and 0.99 must be determined for each of the p classes. Below 

the threshold, all predictions are negative and denoted by a zero; the predictions 

above the threshold are positive and denoted by one. The threshold is determined 

according to the number of correct/wrong class predictions or by taking into account 

additional criteria. Different cases can occur, first, one value is above the threshold 

and other values are very small. In this case, the object is unambiguously classified 

to the class with highest value. Second, two vector components are similar. In this 

case, the object is classified between two classes. It is our decision to accept or reject 

such a classification. Third, three or all vector components are about the same. Here 

a model cannot make any decision. We know a priori that the model cannot classify 

the object, and this is valuable information.

8.3 CASE STUDY 1

8.3.1 DATA

The initial pool of substances, which was taken from the report of the EU 

Commission, was a set of 553 man-made chemicals suspected to act as endocrine 

disruptors [33]. The substances were classified by the EU Commission according 

to the data from the literature on several effects related to the endocrine disrup-

tion potency.

For further study, a subset of 146 compounds was selected (see table 2 in [27]) in 

which two additional criteria were investigated: high production volume compounds 

(that is, the compounds that production or import exceeds 1,000 tonnes per year on 

the EU market, and high persistent compounds). Compounds were classified into 

three categories. From the subset of 146 compounds, 39 were additionally excluded 

because their structures were not uniquely defined. For compounds like polymers, 

salts, mixtures of isomers, or mixtures, we cannot obtain the structural descriptors 

necessary for the modeling. The remaining 107 structures were designed and then 

optimized with the MOPAC program (MOPAC 93 for Windows IBM-PC compati-

ble), using AM1 or PM3 semiempirical method. A small group of tin (Sn) compounds 

were optimized within PM3 approximation, which has a proper parameterization for 

the Sn atom.

The endocrine disruptor (ED) categories associated with the 106 compounds 

from the dataset were defined as follows:

Category 1: Endocrine disruptor — At least one study was found provid-

ing evidence of endocrine disruption in an intact organism. Not a formal 

weight of evidence approach.

Category 2: Potential endocrine disruptor — In vitro data indicating 

the potential for endocrine disruption in intact organisms. Also includes 

effects in vivo that may, or may not, be ED mediated. May include struc-

tural analyses and metabolic considerations.
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Category 3: Nonendocrine disruptor — No scientific basis for inclusion 

in list of endocrine disruptors.

3A: No certain evidence for non-ED: No data available on wildlife-

relevant or mammal-relevant endocrine effects.

3B: Some evidence for non-ED: Some data are available, but the evi-

dence is insufficient for identification.

3C: Certain evidence for non-ED: Data available indicate no scientific 

basis for inclusion into the list of active ED chemicals.

For the purposes of our study, categories 3A and 3B were merged into one class, 

and 3C was taken as the fourth class (p  4). We decided to split the third category 

into two classes because the uncertain evidence of 3A and 3B is not strong enough 

for such an important decision. On the other hand, it is essential for the modeling that 

the training dataset contains compounds that are nonactive.

8.3.2 MODELING STRATEGY

To obtain the descriptors, the following working scheme was adopted:

3D structure optimization (AM1 and PM3 semiempirical methods for 

minimization of total molecular energy) to obtain atom coordinates.

From CODESSA (COmprehensive DEscriptors for Structural and Statistical 

Analysis), five classes of structural descriptors were obtained: constitu-

tional, geometrical, topological, electrostatic, and quantum-chemical [34].

In addition to the descriptors calculated by CODESSA from molecular 

3D coordinates, the octanol/water partition coefficient log P was added to 

the descriptor pool [35]. The experimental values for a great part of the 

chemicals were taken from the literature [36,37], a few additional values 

were added from Hansch’s book [38], and others were estimated with the 

KowWin program [39].

All descriptors were autoscaled (that is, normalized with mean  0 and 

standard deviation  1).

The CP ANN with architecture suitable for classification was applied as the mod-

eling method (see Section 8.2).

8.3.3 RESULTS AND DISCUSSION

8.3.3.1 Training-Test Set Division

For splitting the data into training set and test set, we applied SOM as described in 

Section 8.2 [42,43]. The dimension of SOM was 5  5, which enables the mapping 

of objects onto 25 positions. A part of a representative object from each position in 

the Kohonen map was chosen for the training set, taking into account the original 

proportion among different classes and the predefined 2:1 ratio between training 
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and test objects. Seventy-one compounds were assigned to the training set, and 35 

compounds were assigned to the test set.

8.3.3.2 Descriptor Selection

For selecting the descriptors, we applied Kohonen mapping using “the transposed 

matrix method.” We used a SOM with 5  5  25 neurons producing a map with 25 

positions. All 266 descriptors were placed onto these 25 positions (neurons), mean-

ing that each neuron was occupied on average by 11 descriptors. Only two descrip-

tors from each neuron were chosen for final representation of molecular structure, 

one with the smallest and one with the largest distance from the excited neuron. 

The distribution of objects (descriptors) in the 5  5 top-map and the distances of 

all objects on one neuron were examined. The network trained for 300 epochs was 

chosen for the final descriptor selection procedure because of the most even dis-

tribution of objects and small differences between the maximal and minimal dis-

tances calculated at each neuron. The reduced set contained 50 descriptors, two from 

each neuron: the most similar one and most different one regarding the distance 

from the particular neuron (Equation 8.1). These descriptors are further referred 

to as Reduced Descriptors 1 (RD1). Analysis showed that there were eight neurons 

at which the clusters of descriptors were homogenously distributed with calculated 

differences between the maximal and minimal distances below 2.4 (1.0 dmax – 
dmin  2.4). To get a larger reduction of the descriptor set, only one descriptor from 

each of these neurons was taken. From the remaining 17 neurons, two descriptors 

were selected, yielding 8  34  42 descriptors. These are further referred to as 

Reduced Descriptors 2 (RD2). Three different sets of descriptors were prepared: the 

nonreduced set of 266 descriptors, the reduced set of 50 descriptors (RD1), and the 

reduced set of 42 descriptors, chosen on the basis of the above-described selection 

procedure. The reduced sets of descriptors were distributed among the four types of 

descriptors as follows: constitutional 34 (all), 4 (RD1), 4 (RD2); topological 36 (all), 

4 (RD1), 4 (RD2), geometrical 12 (all), 2 (RD1), 1 (RD2), electrostatic 57 (all), 10 

(RD1), 8 (RD2), and quantum-chemical 127 (all), 30 (RD1), 25 (RD2). In addition, 

the octanol/water partition coefficient log P was added to each set of descriptors. 

According to the three different descriptor selections described above, the structures 

of all 106 molecules were encoded, and three datasets were obtained:

Dataset 1 (DS1)  106 molecular structures represented by 267 descriptors

Dataset 2 (DS2)  106 molecular structures represented by 51 descriptors

Dataset 3 (DS3)  106 molecular structures represented by 43 descriptors

8.3.3.3 Construction and Validation of Models

Datasets DS1, DS2, and DS3 were divided into a training set (71 molecules) and a 

test set (35 molecules). As described, the responses in the output layer, which con-

sists of four levels, are real numbers between zero and one (Out  (out1, out2, out3,
out4), 0.00 Outj  1.00). The crucial point is to determine the threshold value (T )

above which the prediction for a jth class is positive (confirmative). T  enables the 
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transformation of the model output values to discrete class predictions — one for 

a confirmative and zero for a rejecting answer. There are four classes, so we need 

four threshold values for each of the constructed models (Tj , j  1, 4). Below the 

threshold, all predictions are rejected and denoted by a zero, which means that the 

compound does not belong to the jth class, but the predictions above the threshold 

are positive and denoted by one (the compound belongs to the jth class). Figure 8.2 

shows examples of the determination of Tj  for one of models.

One considers two extreme situations. If the Tj  is close to zero, the predictions of 

the jth class for most of the molecules from the training set will be confirmed (Outj

 0). So the molecules that are really in the jth class will be correctly predicted, but 

the predictions for those that are not will be wrong, or false positive. On the other 

hand, if the Tj  is close to one, the majority of predictions will be rejecting for class 

j. Now the predictions of molecules that are actually in the jth class will be wrong, 

or false negative. One way to define the threshold is to select the point where the 

cumulative error of training set (sum of false positive and false negative predictions) 

is the lowest. The resulting models were validated by checking the class predictions 

for 35 test molecules. The misclassification tables obtained by comparison of actual 

and predicted classes of test compounds are shown in Figure 8.3.

The resulting predictions from all models were inspected to choose the opti-

mal model. The prediction performance of 12 models demonstrated in Figure 8.3 

includes the examples with the largest number of correct predictions (sum of the 

diagonal elements). However, to choose the optimal model, we have to consider 

additional criteria, such as the lowest number of false negative predictions. From 

a regulatory point of view, false negatives represent more severe errors than false 

positives, because in this case a harmful compound is classified as a nontoxic one. 

An important indicator about the quality of a model is the sum of predictions that 

are wrong for more than one category. For example, the element at position (1,4) 

in model (a) of Figure 8.3 is equal to 1. It stands for a prediction of one molecule 

as being the class E, but in fact it is N (nonactive), which is three categories lower. 

Taking into account all listed possible criteria, it was found that the lowest total 

number of false predictions was 11 (Figure 8.3, model (a) DS1; 9  9; 100 epochs), 

the lowest number of false negative predictions was 2 (Figure 8.3, models (c) DS1; 

12  12; 100 epochs, and (i) DS3; 9  9; 100 epochs), and the model with zero 

predictions erroneous for more than one class was model (k) DS3; 12  12; 100 

epochs. It is not a straightforward decision which model to propose to be the best 

among the four listed above. At first glance, 69% of correct prediction in model 

(a) is the best result. It suggests that the descriptors’ space covered by the training 

compounds contains significant information to obtain the model, which makes 

the relationship between structure and toxicity class general enough to reasonably 

predict classes of test compounds. However, if the QSAR model is used to make 

the priority list of compounds that have to be tested by more assured in vivo meth-

ods, model (k) is better, because it makes the range-list of tested chemicals from 

most to least harmful less erroneous (a mistake is never larger than for one class). 

It is to emphasize that the predictions of all of the above-described models refer 

to the test set compounds, which did not participate in the training procedure. 

Considering model (a) from Figure 8.3, the information about the SAR contained 
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FIGURE 8.2 The thresholds Tj  determined for the class predictions in the model from the 

counterpropagation neural network of 9  9 neurons, trained for 100 epochs. The diamonds 

and squares stand for positive (confirmative) and negative (rejecting) predictions, respectively. 

(From A. Roncagnioli et al., J. Chem. Inf. Comput. Sci., 44, 307, 2004. With permission.)
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in 71 compounds from the training set was enough to generalize this relationship 

to a degree, which enabled correct predictions for more than two-thirds of the test 

compounds.

In structure-property modeling, two questions are crucial: first, how do we dis-

criminate structurally similar compounds belonging to different classes, and sec-

ond, how do we handle very dissimilar compounds belonging to the same class? For 

example, the five polychlorinated biphenyl (PCB) derivatives represented with 51 

descriptors (DS2) are structurally so similar that they occupy the same neuron. Two 

compounds from the test set are typed in bold; the other three are from the test set, 

yet they occupy the same neuron. The model was not able to discriminate between 

these compounds, which were at the end of the training located on the same neuron 

in the network. They belong to three different classes, which causes a conflicting 
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FIGURE 8.3 Classification tables with the number of correct (diagonal elements), false 

positive (upper triangle), and false negative predictions (lower triangle). The predictions are 

acquired from 12 models [from (a) to (l)], constructed on the basis of three different spectral 

representations (DS1, DS2, and DS3), using two different neural network architectures (9  9 

and 12  12 neurons), while the training time was 100 or 300 epochs. (From A. Roncagnioli 

et al., J. Chem. Inf. Comput. Sci., 44, 308, 2004. With permission.)
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situation in the network. An additional criterion for selection of the final model is the 

low number of conflicts.

Unfortunately, the number of compounds declared as nontoxic (class N) in this 

study was low. It is not unusual that the experimental data of very toxic com-

pounds is available in a larger extent than for less harmful compounds. This is a 

consequence of circumstances that, for many reasons, from economical to eco-

logical ones, make it more urgent to obtain the toxicity tests of the compounds 

that are likely to be harmful (pesticides, herbicides, phytoestrogens, drugs). With 

a dataset of more even distribution of compounds between categories, the predic-

tion results obtained by the QSAR models proposed in this paper would certainly 

be improved.

8.4 CASE STUDY 2

8.4.1 DATA

A dataset of 132 compounds with their relative binding affinities (RBAs) to rat uterus 

estrogen receptor known was collected from the literature and from the Web page 

of the U.S. Environmental Protection Agency (EPA) [44,45]. The available sets were 

pruned for modeling purposes according to the previously defined criteria. The CAS 

numbers, log RBAs, and ID numbers of the molecules were published elsewhere [28].

8.4.2 MODELING STRATEGY

8.4.2.1 Descriptor Generation

The descriptors were calculated from 3D molecular structures. Structures were opti-

mized within AM1 approximation using MOPAC program package [46]. For calcu-

lation of descriptors, the program CODESSA was applied [34]. Calculated were 280 

descriptors classified as constitutional, topological, geometrical, electrostatic, and 

quantum-chemical. Additionally, the octanol/water partition coefficient (log P) was 

added, with values obtained from the experimental database or estimated with the 

KowWin program [36–39]. All descriptors were autoscaled (that is, normalized with 

mean  0 and standard deviation  1).

8.4.2.2 Modeling Methods

Results of three methods — PLS regression, CP ANN, and Error Back Propagation 

ANN (BP ANN) — were compared. Initially, the ANN models were built using 

all the computed descriptors and validated with the leave-one-out procedure. 

Successively, genetic algorithms (GAs) were used to select the relevant descriptors.

PLS projection to latent structures is one of the most used regression techniques 

in QSAR. Mathematically, it is a linear projection of independent variables (descrip-

tors) and dependent variables (property) onto a single space of latent variables. Then 

a linear inner relationship is modeled between the projections of the dependent and 

independent variables. PLS-R appears as a widely applied and accurate predic-

tive modeling method [47], although due to its linear character, it may appear as an 
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oversimplification of the actual relationship between independent and dependent 

variables.

CP ANN [40–42] was described in Section 8.2, where it was used to build a clas-

sification model. In this second example, the aim is to build a model for prediction 

of one property — the relative binding affinity RBA. The supervised part of the CP 

ANN has the same structure as described above; in contrary to the previous case, the 

output layer consists only in one response surface.

The multilayer feedforward organization of the units is the most used neural net-

work architecture [48] for the applications in chemistry. It consists of computational 

units organized into three kinds of layers: input, hidden, and output layers. The units 

(neurons) in each layer all receive the same information — an output vector (X) from 

the previous layer in turn sends its output vector as input to the neurons in the succes-

sive layer. The output of an individual neuron is calculated as a sigmoid function of 

the input signals. In the jth layer, the output (sf) is calculated as follows:

sf
w x

j
i
m

ji i

1

1 exp( )1

(8.2)

The units of the input layer receive their input in the form of a data file, and the 

units of the output layer produce the output signal, which is the overall result of the 

network. This multilayer architecture is often used in conjunction with the back-

propagation weight update rule, according to which a supervised form of learning is 

implemented. The error back-propagation algorithm (BP) is essentially an iterative 

weight update on the basis of a steep descent criterion, so as to minimize the root-

mean square error (RMS) between the desired and the actual target of the network.

8.4.2.3 Genetic Algorithms (GAs)

For the reduction of descriptor number and the selection of relevant descriptors, a GA 

was applied. It is an advanced optimization technique that mimics the selection pro-

cesses occurring in nature, Darwinian evolution: crossover, mutation, and selection 

[49–51]. The main idea is the survival of individuals having the highest fitness score; 

under specified conditions they are the most likely to prevail in the next generation. 

Moreover, crossover and random mutations introduce genetic variety to the offspring, so 

that an increasingly wide solution space is spanned during the computing. In this study, 

GAs were used in combination with ANN techniques, to select relevant descriptors.

In particular, computational GA consists of four steps: In a first step, an initial 

population of chromosomes has to be generated. The chromosomes are represented 

as binary strings of bits (zeros and ones) and indicate whether or not a descriptor 

is taken in a modeling experiment. In this work, 50 chromosomes were randomly 

generated as the initial pool of each population used. The code “1” in the ith position 

of the chromosome indicates the inclusion of the ith variable to the modeling pro-

cedure. In a second step, the performance of each chromosome must be evaluated. 

With the indicated variables, a model is generated and the fitness score is computed 

as the predictive ability over the test set expressed in terms of the rtest, the correlation 

coefficient between the actual and the predicted target property. The chromosomes 
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are ranked according to a decreasing value of the fitness score. In a third step, the 

best chromosome is “protected” and copied without further modification to the next 

generation, and the remaining chromosomes of the child offspring are created by 

crossover (that is, mutually exchanging a selected part in pairs of randomly selected 

chromosomes). In the last step, a random mutation is introduced to modify a single 

position of a chromosome by changing the value of one of its bits.

All four steps are repeated until a stopping criterion is satisfied; in this work the 

criterion was a maximal number of generations.

8.4.3 RESULTS AND DISCUSSION

First we applied the PLS-regression technique to model the relationship between 

the log RBA and 281 molecular descriptors. The predictive ability of the model 

was assessed by the leave-one-out cross-validation (LOO-CV). Using all 281 input 

variables as descriptors, initially only one significant component was extracted from 

the dataset on the basis of the Q2 value resulting in a model with an RX
2 and RY

2  of 

0.28 and 0.36, respectively, and with Q2  0.31. Here, Q2 is the fraction of the total 

variation of the dependent variable that can be predicted by a component accord-

ing to the LOO-CV, and and RY
2 are fractions of the sums of squares (SS) of all 

the independent and dependent variables explained by the chosen component [52]. 

Despite the insignificant second component, the use of a three-component model 

increased the Q2 to 0.41, with RX
2  and RY

2  rising correspondingly to 0.59 and 0.55, 

respectively. In the PLS-R method, the importance of individual variable was evalu-

ated with the “variable importance in projection” (VIP) index. It accounts for the 

contribution of each individual descriptor for explaining the variable, summed over 

the model dimension, and has been computed according to the formula reported in 

the SIMCA-P User’s Guide © Umertics AB [52]. The descriptors with a VIP value 

larger than 1 are the most relevant to model the variation in the dependent variable, 

so at first all the variables whose contribution was less than 1 were ruled out. The 

following variables were on the top of the list: HOMO-1 energy, information content

(order 1), principal moment of inertia A, bonding information content (order 2), total 

molecular 2-center exchange energy, information content (order 2), PPSA-1 partial 

positive surface area [Semi-MO PC], moment of inertia C, complementary infor-

mation content (order 0), complementary information content (order 1), WPSA-1 

weighted PPSA (PPSA1*TMSA/1000) [Zefirov’s PC], maximum total interaction for 

a C-C bond, count of H-donor sites [Semi-MO PC], count of H-donor sites [Zefirov’s 

PC], and log P. Successively, the other variables were iteratively excluded until an 

optimal model (in terms of Q2) was obtained. At last, 68 descriptors (reported in 

[29] together with their individual VIP score) were retained to build the optimal 

PLS model. The resulting three-component model showed an improved modeling 

(RX
2  0.74 and RY

2  0.64) and predictive (Q2  0.62) ability. Three factors seem to 

significantly influence the value of the relative binding affinity for the investigated 

set of compounds. The high positive coefficient for log P and the corresponding 

negative contribution from the absolute number of oxygen atoms suggests that the pola- 

rity of the sample is involved in modulating the binding of the endocrine disruptor to 

the receptor site: specifically, less polar molecules, characterized by a high octanol/water 
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partition coefficient and by a small number of oxygen atoms, are supposed to be 

more favored with respect to highly polar ligands. Furthermore, the highly negative 

coefficients corresponding to the moments of inertia along an orthogonal axis C 

and the first principal axis A indicate that small and flexible molecules are privi-

leged over bulky ones. Last, a significant positive correlation is observed between 

the dependent variable and the final heat of formation of the molecule, the energy of 

the HOMO-1, and the maximum total interaction for a C-C bond. This issue suggests 

that probably the binding of the ligand to the receptor site involves a certain degree 

of electron transfer. High HOMO-1 energy (the second highest energy of valence 

electron) indicates that less-bound valence electrons enhance the ligand–protein 

complex formation. On the other hand, the van der Waals interactions, which are 

present and important for the binding mechanism, are accounted for by the polarity 

terms described before. Several CP ANN were tested with LOO CV and some of 

the models performed better than the PLS models, some are even better in cross-

validated prediction. The best CP ANN performed with a RY
2 value of 0.88 and Q2

 0.62. To look for a chemical interpretation of the result obtained by the use of CP 

ANN, both the top-map and the weight maps were examined. The top-map is a 2D 

representation of the samples projected onto the neurons organized in a quadratic 

neighborhood called Kohonen layer and can account for the “quality” of the projec-

tion into the Kohonen layer. Through inspection of the weight maps (that is, the dis-

tribution of the values of each input and of the output along the Kohonen layer) and 

the output layer, one can find correlation between each descriptor and the dependent 

variable. Careful inspection of all the weights confirmed the considerations reported 

above on the PLS section. Most of the correlations observed in the interpretation 

of the PLS-R coefficients are also indicated in the CP ANN model. In particular, 

the high positive correlation between the log P value and the relative binding affin-

ity was found, as shown in Figure 8.4 (the contours around high values on both 

plots coincide). Contrary, a negative correlation was found between the dependent 

variable (output layer) and the layer associated with the number of oxygen atoms, 
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FIGURE 8.4 Weight maps of CP ANN model corresponding to a variable log P (a) and the 

output layer — that is, the response surface of log RBA (b). The colors indicate the distribu-

tion of log P and log RBA values from low (blue) to high (red). (Adapted from F. Marini et al., J. 
Chem. Inf. Model., 45, 1514, 2005. With permission.) (See color insert following page 244.)
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which seems to confirm the hypothesis for the mechanism of action obtained from 

the PLS-R model. Also, the correlation between HOMO energy terms and relative 

binding affinity is large, which indicates that ligands with high RBA values have 

high HOMO energy.

GAs were employed to reduce the number of variables to be included in the CP 

ANN model. Three independent GAs run from different random origins were per-

formed, considering a population of 50 chromosomes evolved for 300 generations 

and looking for the combination of variables that led to better predictive ability, as 

evaluated by the test set defined in the training/test splitting procedure [43]. The 

samples to be included in each set were chosen according to a Kohonen-based intelli-

gent selection, by mapping the 132 samples onto a 12  12 SOM and selecting at least 

one sample from each of the occupied units, having care that the whole experimental 

range was spanned. Additionally, samples with a high LOO-CV prediction error 

were added to the training set in order to include the information of their unique 

structure–property relationship into the model, so that they could be modeled as 

well as possible. The root mean squared errors of test compounds (RMS test) were 

0.494, 0.525, and 0.529 in the three independent GA runs, resulting in 50, 44, and 31 

selected variables, respectively. Close inspection of the variables involved in the best 

models shows that most of the relevant PLS variables are also present in the 

GA-selected set of descriptors. This could result in additional confirmation of the 

proposed interpretation of our results. Furthermore, an additional variable-selection 

experiment was conducted based on the SOM technique for descriptor selection. The 

projection of 132-dimensional sample space to a 5  5 2D Kohonen network enabled 

the selection of 50 descriptors (the nearest and the farthest variables from the cen-

troid of each unit were included in the set). The modeling and predicting ability of 

the resulting counterpropagation network appeared to be slightly lower (R2  0.85

and Q2  0.55) than that of the corresponding 281-descriptor model or reduced rep-

resentation models obtained with GA variable selection.

The third modeling technique was BP ANN. As for the other multivariate meth-

ods, in a first stage, a model containing all the descriptors was built, having care to 

choose the dimensionality of the problem (particularly the number of hidden neurons) 

in a way as to not risk overfitting. In this respect, the final number of adjustable 

parameters (the connection weights) was kept significantly lower than the number of 

independent data available. Different network architectures were tested. The optimal 

BP ANN model constructed with the complete descriptor set resulted in a 281-18-1 

architecture (5,095 connection weights including bias nodes) trained for 225 epochs 

with learning rate  0.10 and momentum  0.15. A GA was used to reduce the 

number of descriptors. Ten independent GA runs were performed, considering a 

50-chromosome population, which was evolving for 300 generations, using the pre-

dictive ability over the test set as the fitness criterion. The test set was chosen on the 

basis of SOM as described in Section 8.2. The best 15 chromosomes of each indepen-

dent GA run were then considered, and their predictive ability was finally evaluated 

using LOO-CV. The percentages of occurrences of each descriptor in the best 150 

models (15 best chromosomes of each of the 10 independent runs), weighted by the 

fitness value scored by each of the models were calculated and are available for all 281 

descriptors (available from the authors). The most frequently chosen descriptors were 
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log P, number of C atoms, relative number of C atoms, number of H atoms, relative 

number of single bonds, relative number of double bonds, Randic index (orders 0 to 3), 

and Kier & Hall index (order 0), to list only those with more than 50% of occurrence 

on average. The best overall regression model was found to be a 50-10-1 network (521 

weighted connections including bias nodes) trained for 2,500 epochs with learning 

rate  0.15 and momentum  0.15. This optimal BP ANN model performed better 

than the PLS-R or CP-ANN models, with R2  0.92 and Q2  0.71.

Inspection of the 49 selected descriptors used in the optimal BP-ANN model 

shows some overlapping features, if confronted with the best models resulting from 

the use of the other modeling techniques considered in this work. In particular, we 

can observe the selection of the log P as a relevant variable present in all the reduced 

sets of descriptors used for modeling the binding affinity of the examined samples. 

Moreover, the selection of the XY and YZ shadows and of the moment of inertia 

A confirms a possible influence of the shape and flexibility of the molecule on the 

binding affinity, and the inclusion of the maximum and minimum atomic charge and 

of other terms accounting for the electronic distribution of the inspected molecules 

is indicative of a correlation between the polarity of the molecules and the value of 

the dependent variable. Log P is the most frequently selected descriptor, being pres-

ent on average in more than 80% of the best models. Moreover, terms accounting 

for each of the contributions to the relative binding affinities suggested by previous 

models (PLS-R and CP ANN) are present among these ten variables: charge, polar-

ity and van der Waals effects, shape, and orbital electronic population.

8.4.4 DISCUSSION OF CASE 2

Different modeling methods (PLS-R, CP ANN, BP ANN) were successfully 

employed to model RBA with different degrees of prediction ability. For a reliable 

comparison, the model validation procedure must be strict and comparable for all 

investigated modeling methods. The most objective and independent on the chosen 

modeling method of relatively small datasets is the complete LOO CV method [53]; 

Hua Gao et al. [54] showed that it may also be applied for larger datasets, however, 

not in the procedure of variable selection, but for final comparison of different mod-

els. This was also our modeling strategy. The LOO CV was applied to assess the 

predictive ability of all models obtained by the three investigated modeling methods. 

For the variable selection process, a GA was used, considering the prediction of the 

test as the fitness function.

It is obvious that for different modeling methods, different variable selection/

reduction procedures are appropriate. In the case of QSAR models based on a large 

number of descriptors used as molecular structure representation vectors, it is not fea-

sible to expect a unique optimal set of selected descriptors for all modeling methods. 

This is especially true when the descriptors are grouped into several clusters, each 

being descriptive for certain structural features or particularities. Having obtained the 

optimal sets of descriptors for each of the three applied modeling methods, we are able 

to compare them and find clusters of descriptors overlapping in the three optimal sets.

The best modeling results were obtained with the BP ANN model; however, it was 

not the only aim of the presented research to obtain the best model. A comparison 
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of chosen descriptors for the best models in all three different modeling methods 

accounts for the essence of information about the structure–property relationship. 

We mapped the three sets of variables, selected as individual optimal descriptors 

for the three confronted methods, onto the maps from Kohonen neural network 

(Kohonen top-map) and compared them with the map of the original, nonreduced set 

of 218 descriptors. The resulting 2D distributions of descriptors show a reasonable 

overlap. As an example, if we examine the selection of log P as one of the descriptors 

for the reduced set in different modeling methods, it was present in the reduced sets 

obtained with PLS-R and BP ANN modeling methods but not with the CP ANN 

method. Inspection of Kohonen top-maps of a nonreduced set of descriptors shows 

log P at the same position (at identical neuron) as the variable “complementary infor-

mation content — order,” which was selected in the CP ANN reduced set of vari-

ables. If two descriptors occupy the same neuron (position in the Kohonen top-map), 

they must be similar enough to be indistinguishable in the mapping procedure.

8.5 CASE STUDY 3

In this study, the modeling methodologies of the receptor-dependent and the recep-

tor-independent approach were compared. In both cases, the 3D structures of the 

estrogen binders were determined once optimized in vacuo and once optimized 

together with the receptor.

8.5.1 DATA

The studied dataset (“Kuiper dataset”) consists of 60 molecules tested for human 

ER-  and ER-  binding affinity reported in the literature [66]. The affinity was 

expressed as log RBA, where RBA is a logarithm of relative binding affinity toward 

natural ligand 17ß-estradiol (E2), for human ER-  and for ER- . The library con-

tains both environmental estrogenic chemicals (PCB, DDT, and derivatives, meth-

oxychlor, etc.) and phytoestrogens (genistein, coumestrol, zearalenone, among others 

[29,66]. The second dataset (“Harris dataset”) contains almost the same compounds 

[67]. It follows from the original publications that the experimental log RBA values 

of common compounds are not identical. However, a correlation between the log 

RBA of common compounds in the two datasets exists. It is defined with two equa-

tions, for log RBA-  and log RBA- , Equation 8.3 and Equation 8.4, respectively:

log RBA (Harris-new)  1.0141  log RBA (Harris-original)  0.3731 (8.3)

log RBA (Harris-new)  0.9448  log RBA (Harris-original)  0.1244 (8.4)

The compounds from “Harris dataset” [67], which were not present in the “Kuiper 

dataset” [66], were used as an external validation set (see Table 8.1).

8.5.2 STRUCTURES AND DESCRIPTORS

The geometrical structures were obtained with a two-step optimization. First, the con-

formational space of structures was analyzed with the Merck Molecular Force Field 
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TABLE 8.1
Predictions for Log RBA-  and Log RBA-  and Distances (d) to the Neuron from Which the Individual Prediction Was 
Obtained, for the External Test Compounds

Name

Experimental
Log RBA-
Harris New 

Eq. 8.3

PM A (All Variables) PM C (Reduced Var.) Experimental
Log RBA-
Harris New 

Eq. 8.4

PM A (All Variables) PM C (Reduced Var.)

Log RBA- d
RIa

Log RBA- d
RIa

Log RBA- d
RIa

Log RBA- d
RIa

RIa RDb RIa RDb RIa RDb RIa RDb

16 -Iodo-estadiol 1.13 2.00 –0.81 2.79 0.16 0.38 0.41 0.22 2.00 –0.41 2.79 0.58 0.98 0.64

Ent-estadiol –0.25 2.0 1.80 2.75 –0.14 1.93 0.29 0.79 2.00 1.33 2.75 0.58 0.98 0.65
Estriol 0.24 2.00 0.88 2.79 –0.06 0.38 0.55 0.96 2.00 0.55 2.79 0.63 0.98 1.08

17 -Ethinylestadiol 1.58 2.19 0.50 3.08 0.42 –9.93 1.21 1.19 2.17 1.33 3.08 0.63 0.74 0.83

17 -Iodovinyl-11 -

methoxyestradiol(E)

0.80 2.19 –2.10 2.97 0.72 –9.96 0.62 1.19 2.17 –2.19 2.97 –0.63c 0.74 0.83

17 -Iodovinyl-11 -

methoxyestradiol(Z)

1.37  –3.21c 0.02 3.05 0.72 –2.90 1.27 1.49 –3.34c –2.19 3.05 0.58 0.74 0.83

EM-800 –1.56  1.84c 0.75 3.70 4.43c –2.69 3.13 –0.45 1.20c –2.86 3.70 –0.81 0.77 1.19

GW-5638 0.27 –4.19c –2.54 2.91 –1.12 –0.04 0.93 0.88 –4.21c –2.86 2.91 –0.56 –4.97 0.50

ICI-182780 1.14 1.84 0.75 4.41 2.01 –2.69 2.19 1.40 1.20 –2.86 4.41 –1.43c 0.77 2.47

Lasofoxifene 0.65 0.60 –2.60 3.59 2.63c 1.19 1.79 1.08 0.48 –2.86 3.59 –0.81c 0.77 1.86

Levormeloxifene –0.18 0.60 –2.60 2.87 2.63c 1.19 1.07 0.13 0.48 –2.86 2.87 –0.81 0.77 0.90

Source: E. Boriani et al., Mol. Divers., 11, 168, 2007. (With permission.)

Note: Predictive models Pm A, PM C, Pm A, and PM C were tested.

a RI, receptor-independent approach.
b RD, receptor-dependent approach.
c Outliers.

© 2009 by Taylor & Francis Group, LLC
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(MMFF) method, which implements Monte Carlo Multiple Minimum (MCMM) 

search. The method is a part of the Chem3D package. The second step of optimiza-

tion of the geometries toward the lowest energies was performed for the gas phase 

using AM1 parameterization using the MOPAC program package [46]. Based on the 

results from MOPAC, CODESSA software was used to calculate quantum chemical, 

constitutional, topological, geometrical, and electrochemical descriptors [34]. Log P, 

which was obtained from an experimental value database [36] or estimated with the 

KowWin [39] program, was added to the pool of CODESSA descriptors. If different 

values of log P were found, the medium value between the experimental and calcu-

lated values was accepted in case the difference was not bigger than 1 logarithmic 

unit. The final number of descriptors was 279.

For the receptor-dependent approach, 3D geometry parameters of molecules were 

obtained in a docking procedure, facilitated by the availability of crystal structure 

for estrogen receptors  and . Virtual docking was used to determine active con-

formation for ligands. Docking methodologies use knowledge of the 3D structure of 

a receptor in an attempt to optimize the bound ligand or a series of molecules into 

the active site.

The docking procedure was performed using LigandFit (Accelrys Software Inc. 

[68]), a shape-based method for docking ligands into protein-active sites. It employs 

a Monte Carlo conformational search for generating ligand poses consistent with the 

active site shape. Accuracy was assessed by analyzing the resulting poses of native 

ligands and examining the correlation between scoring functions and activity values 

on the entire dataset. Several steps are needed to perform virtual docking. First, the 

structures of ER-  and ER-  were downloaded from the Research Collaboratory for 

Structural Bioinformatics (RCSB) Web site [69]; hydrogens were added and mini-

mized using Dreiding 2.21 (smart minimizer, high convergence, max 5,000 iterations 

for protein and 2,500 for native ligands). During the docking procedure, conserved 

water molecules were not included. Second, the binding site has to be defined. We 

used a Site Search tool for the docked ligand, a shape-based procedure that maps the 

binding site using a grid around the native ligand. Third, the Monte Carlo method 

was employed to position the conformations into the site according to the Principal 

Moment of Inertia (conformational search and alignment). In the last step, five empiri-

cal scoring functions (LigScore1, LigScore2, PLP1, PLP2, Jain) and one knowledge-

based potential mean force (PMF) scoring function were used for ligand scoring. 

JAIN for Estrogen Receptor  and LIGSCORE1 for Estrogen Receptor  showed the 

highest correlation with experimental binding affinity values and were used to rank 

and choose among the output conformations for each single compound.

8.5.3 RESULTS AND DISCUSSION

The Kohonen mapping technique was applied to divide the 60-compound dataset 

into the test and training datasets. Technical parameters of the model were selected 

as follows: dimension network was 6  6; number of training epochs was 60, and 

learning rate 0.5. In the selection procedure, we considered as an additional criterion 
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a distance between an object and neuron. The Euclidean distance between the object 

represented by a set of descriptors and the neuron is defined in Equation 8.1. With 

this procedure [28,43], the dataset was divided into a 48-compound training set and 

a 12-compound test set.

GA, basically the same as described in the previous section, was used in order 

to select relevant descriptors for the CP ANN models. The whole procedure of vari-

able selection depends on the choice of the evaluation score, which in the present 

study may be any measure of the predictive ability of the obtained CP ANN model. 

As the fitness score was computed as the predictive ability over the test compounds 

expressed in terms of the RMStest, the root mean square error between the actual 

and the predicted property (target) for test set compounds, which were previously 

eliminated from the dataset. The architecture and adjustable parameters of the CP 

ANN used for the evaluation score in the GA procedure were chosen on the basis of 

performance of the LOO-CV procedure applied on nonreduced sets of descriptors.

Several CP ANN trainings were performed to define the network architecture, 

varying: number of neurons, number of epochs, and maximal correction factor 

(learning rate parameter). These parameters were adjusted during the optimiza-

tion procedure. The root mean square error and correlation of the experimental log 

RBA values with the predictions of the training compounds (data from the training 

set), with the LOO-CV predictions, and with the predictions of the test compounds 

(RMSmodel, RMSloo, RMStest, and Rmodel, Rloo, Rtest, respectively, see Table 8.2) were 

the estimates considered during the model optimization.

TABLE 8.2
Performance Values Summary for Receptor Dependent and Receptor 
Independent Approach

Performances Training — Test Sets External Set

Approach Model
Error 

Rate (%) R RMS
Error 

Rate (%) R RMS

Receptor

independent

approach

All variables alpha 7 0.62 0.61 0 –0.11 2.43

Reduced variables alpha 0 0.95 0.17 0 –0.49 2.20

All variables beta 7 0.66 0.41 0 –0.21 2.34

Reduced variables beta 0 0.98 0.24 0 0.13 1.33

Receptor

dependent

approach

All variables alpha 5 0.50 1.61 0 –0.09 2.12

Reduced variables alpha 0 0.96 0.36 18 –0.39 5.14

All variables beta 12 0.44 1.79 0 0.12 2.83

Reduced variables beta 2 0.73 0.85 0 –0.05 1.86

Source: M. Spreafico et al., Mol. Divers., 11, 179, 2007. (With permission.)

Notes: Error rate, % of misclassified compounds (classification models); R, correlation coefficient (pre-

dictive models); RMS, root mean squared error of prediction (predictive models).
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In the initial step, the best neural network architecture was chosen on the basis 

of RMSloo and was used for further selecting the descriptors with the GA. The cho-

sen ANN used in the GA procedure was 10  10 neurons; 1,000 epochs; and 0.1 

maximal correction factor. Once the number of generations in the GA optimiza-

tion process with the minimal RMStest value were obtained with a chosen random 

seed number, the GA was repeated five times, each time with a different random 

seed number. Two different analyses of the GA results were tested to explore the 

reduced sets of selected variables and corresponding models, first, to choose the 

most frequent variables obtained by a statistical analysis of a variety of five dif-

ferent GA runs and, second, to choose the variables from the best chromosome 

(that is, the run with the lowest RMStest). For the first analysis, we took the best ten 

chromosomes from the last population of each random seed. Thus, obtaining 50 

chromosomes, we analyzed the descriptors with the highest occurrence. The most 

frequently present descriptors (present in at least 20 models) were kept and used 

to build a reduced set for new CP ANN. In the second analysis, the best chromo-

some was used to select descriptors. It turned out that this method outperforms 

the first.

In both cases, the developed model was first used for classification, to rule out the 

inactive compounds. These models were labeled by CM C, CM D, CM C, and 

CM D, see Figure 8.5. For every classification model, a cutoff value was defined to 

discriminate active–inactive compounds as described above for the nonreduced sets 

External Test Performed External Test Performed 

External Test 

Performed

External Test 

Performed

Models with Reduced Sets of Variables 

Using Genetic Algorithm Selection 

Models with All 279 Variables

FIGURE 8.5 The processing of the research analysis to perform the final model. (From E. 

Boriani et al., Mol. Divers., 11, 153, 2007. With permission.)
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of variables. The cutoff value –5.0 was obtained for the models with reduced sets of 

variables as a satisfactory threshold to classify all the compounds correctly. The pre-

dictive models with reduced variables for  and  receptors were PM C and PM C

for the “best chromosome” selection, and PM D and PM D for the “most frequent 

variables” selection.

Different CP ANN models were developed in order to find a way to predict ER 

binding affinity for a large variety of molecules that can act as endocrine disruptors 

or mimic endocrine behavior. The developed methodology was encompassed in the 

following steps: (1) training of CP ANN models with the complete set of variables 

(279 descriptors), (2) classification of active/inactive compounds, (3) testing the CP 

ANN models for the predictive ability of active compounds only, (4) optimization of 

models with variable selection using GA, and (5) validation of the best models with 

the external set of compounds. All steps and consecutive models are described in the 

scheme shown in Figure 8.5.

8.5.3.1 Models with All Variables

The initial modeling step was the classification of active versus inactive inhibitors of 

 and  receptors with CP ANN–based models (CM A and CM A, respectively) 

trained with all the variables calculated by CODESSA. The CP ANN architecture of 

10  10 neurons; 1,000 epochs; and 0.1 maximal correction factor was used. The cutoff 

value to discriminate between active and inactive compounds was determined on the 

basis of the minimal number of misclassified compounds obtained for the LOO-CV 

on the training set. It appears to be at –5.0 in both models, CM A and Cm A, in the 

receptor-independent approach, and –6.0 in the receptor-dependent approach.

The same CP ANNs (trained with all molecules) were also used for predicting the 

binding affinities of active compounds only. This means that the core network coeffi-

cients (weights) were obtained by training with all the molecules, including the inac-

tive ones. Because the inactive compounds were classified according to the threshold 

value obtained for the CM A and CM A models described above, the predictions 

of binding affinities were now obtained for active compounds only. The second-level 

application of the same CP ANN for the prediction of binding affinities of active 

compounds is called the predictive CP ANN model. The predictive models (PM A

and PM A) were tested for the predictive ability of training and test compounds. The 

performance of the models using all the descriptors is shown in Table 8.2.

The classification results of the receptor-independent approach show that after 

setting the cutoff to –5.0, in the case of ER-  dataset, 15 out of 17 inactive com-

pounds were correctly classified. Two inactive compounds were misclassified as 

false positive, and two active compounds were classified as inactive (false negative). 

The two false positive compounds were biochanin A and formononetin. False nega-

tives were 5-androstenedion and o,p -DDT. The classification model for the ER-

dataset shows the same four errors as for ER-  — two false positives and two false 

negatives. The predictive models of active compounds with all variables for ER-

and ER-  (PM A and PM A) are reported in Table 8.2. A large RMS error in the 

prediction of test compounds for ER-  and ER-  (1.20 and 1.22, respectively) was 
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ascribed to the detected outliers, which are three in both models (4-OH-tamoxifen 

and apigenin from the test set and genistein from the training set).

The outlier 4-OH-tamoxifen has experimental log RBA 2.41 and 2.37 for  and 

 receptors, respectively. This molecule occupied the neuron with the coordinates 

(1,2), and the analog compound tamoxifen from the training set (experimental log 

RBA 0.6 and 0.48 for  and  receptors, respectively) was located at the neighboring 

neuron with the coordinates (2,1). Unfortunately, the molecule from the training set 

(inactive methoxychlor) located at position (3,1) had such an influence on the neuron 

(1,2) that the predicted log RBA value of the test molecule (4-OH-tamoxifen) for 

both  and  receptors was much too low.

Apigenin from the test set and genistein from the training set are both outliers; 

their structures differ only in the position of the single ring, for genistein in ortho 

position and for apigenin in meta position. This influences the ligand binding affinity 

more than assumed by our model, which does not recognize significant differences 

in descriptors representing the two structures. They are both positioned at the neuron 

(3,10). Additional error was introduced by positioning an inactive compound from 

the training set (biochanin A) to the same neuron (3,10), which was already reported 

as a false positive error during the classification.

The classification in the receptor-dependent approach, a threshold RBA value 

of –6.0, was chosen to obtain minimal classification errors in the training set to 

discriminate active from inactive compounds. Three molecules (two from the 

training set and one from the test set) are not correctly classified. In particular, 

one slightly active compound is considered inactive and two inactive compounds 

are predicted slightly active. As inactive, we classified the o,p -DDT, although its 

experimental value showed weak activity. Actually, it has the lowest possible value 

for active compounds. This compound is similar to other inactive DDT deriva-

tives. For this reason it is placed in the cluster of inactive DDTs in the CP ANN 

model, and its weak activity is not recognized. Methoxychlor and formononetin, 

inactive compounds, are classified as active with a low RBA value (below –4), so 

this error could be corrected with raising the threshold from –6.0 to –4.0, but then 

two the active compounds from the test set would be classified as inactive. All the 

molecules from the external set are correctly classified as active, but quantitative 

predictions are not satisfactory for all the compounds. Compound EM-800 is not 

correctly predicted, and that can be explained by the size and characteristics of 

this molecule (it is much bigger compared to the other molecules in the training 

set). Also, ent-estradiol is not properly predicted, but its nature is more similar 

to natural ligands. Deleting these two outliers from the library, the classification 

results improved significantly. See Table 8.2 for detailed prediction results with 

all variables.

In addition to these large errors discussed, the predictions of the other compounds 

in the training and in the test sets are not satisfactory. The external validation set is 

reported in Section 8.5.3.5. We assumed on the basis of the results obtained from the 

models with all of the variables that a selection of influential variables, which would 

stress the structural difference of compounds mentioned above, would improve the 

models’ predictive ability. Consequently, a variable reduction procedure was applied 
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to select influential descriptors out of the complete set of 279 descriptors. The results 

are reported in the following sections.

8.5.3.2 Analysis of the GA Model ER-

In the receptor-independent approach, the chromosome with lowest RMS was cho-

sen from the five GA runs with different random seed numbers; a reduced set of 38 

selected variables was built. The resulting classification model was 100% correct. 

With the cutoff of –5 for active/nonactive compounds division, no classification error 

appeared. The results of the model predictive ability tested for 43 active compounds 

(34 of the training set and 9 of the test set) are shown in Table 8.2. There were no 

outliers detected, and the RMS error in the best model PM C fell to 0.44 (0.17) for 

test (training and test) compounds. The largest error in prediction was observed for 

the compound 4-OH-tamoxifen. In the Predictive Model (PM C), this compound is 

positioned at the neuron (1,9), the same as the analog training compound tamoxifen, 

which is considerably less active. The structural descriptors of the two compounds 

were still too similar to be differentiated within the PM C model. For this reason, 

the prediction for log RBA  of OH-tamoxifen was too low (0.55 instead of 2.41).

In case of receptor-dependent modeling, 48 variables selected after GA reduc-

tion of variables were used to build the model for ERr- . The results are shown 

in Table 8.2. The selected variables for ER-  are representative of almost all the 

descriptor classes and are numerous (48 variables). Some are scoring functions from 

docking; others are counters of particular atoms (H, C, N, Cl). Topological, electro-

static, and quantum chemical descriptors are also present. By choosing a threshold 

at the value of –6.0, the same as with nonreduced descriptors sets, no classification 

errors are made on training and test sets, and predictions of active compounds of 

these two sets are very good, with the RMS error below 0.5 on average for all the 

compounds. For the external set, two errors in classifications are detected: two active 

compounds are classified as inactive. These compounds are 17 -ethinyl estradiol 

and 17 -iodiovinyl-11 -methoxyestradiol (E). Predictions are not always satisfac-

tory for the external set, while for training and test sets they are very good. The 

compounds with less accurate predictions are 17 -ethinyl estradiol, 17 -iodovinyl-

11 -methoxyestradiol (E), 17 -iodovinyl-11 -methoxyestradiol (Z), ICI-182780. For 

the rest of the compounds, very good predictions are obtained (RMS  1.13).

8.5.3.3 Analysis of the GA Model ER-

In the case of ER-  in the receptor-independent approach, the five different GA runs 

with different seed numbers resulted in the best chromosome containing 29 descrip-

tors. Again, the procedure for classification was repeated with the same threshold 

(–5.0), and all the compounds were correctly classified. The predictions for active 

compounds (34 in the training and 9 in the test set) are reported in Table 8.2. The 

error in the prediction for 4-OH-tamoxifen in PM C model is smaller than the 

error in the PM C model. A detailed analysis of the CP ANN model shows that 

OH-tamoxifen is positioned at neuron (9,2), which is not occupied by any of the 

training compounds. The analog training compound tamoxifen is positioned in a 
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close neighborhood — position (10,2). For this reason, the prediction of the 4-OH-

tamoxifen is more precise because it is not obtained from the neuron influenced only 

by the tamoxifen activity, but also by the compounds from the neighboring neurons. 

Experimental and predicted log RBA-  of OH-tamoxifen is 2.37 and 1.33, respec-

tively. The tamoxifen and OH-tamoxifen show a large difference in ER binding affin-

ity, despite a small difference in chemical structure. This causes problems because 

there is a sharp change in the structure–property relationships that our models try to 

encompass. The mechanism of binding of tamoxifen and OH-tamoxifen is described 

in several papers, and the common hypothesis and crystal structure evidence is that 

in the positioning of the OH-tamoxifen in the binding pocket, the possibility to make 

an additional H bond increases the ligand binding affinity of OH-tamoxifen com-

pared to tamoxifen [70–72]. A similar GA reduction of variables was performed 

in the receptor-dependent modeling approach. Eighteen variables were selected to 

build the model for ERr-  (see Table 8.2).

Choosing a threshold at the value of –6.0, one classification error was detected 

on training set data, but the compounds from the test and external sets were all clas-

sified correctly. The misclassified compound is, as before, compound 42, o,p -DDT, 

which is classified as inactive while it is slightly active. This compound is similar 

from a chemical point of view to other DDT derivatives that are all active, and this 

may lead to the error in classification and prediction, as already discussed for the 

ER-  model.

The results in classification are therefore very good in training, test, and external 

sets. Predictions are not as satisfactory as results in classification, especially for the 

external set, where differences among compounds are not adequately recognized. 

The selected variables are less numerous than for ER-  (18 selected variables for 

versus 48 for ). No docking scoring function was selected, while groups of descrip-

tors like constitutional, electrostatic, and quantum chemical descriptors, together 

with log P value, were chosen.

8.5.3.4 Variables Analysis

The initial set of variables (278 CODESSA descriptors and log P) was reduced as 

described above, using GA to optimize the performance of the CP ANN trained with 

selected variables. To investigate further the reasons why the chosen variables influ-

ence the quality of the model, we compared the resulting sets of selected variables 

for ER-  and ER-  models. Common variables for  and  receptor models in the 

first approach with the receptor-independent ligand conformations are as follows: 

relative number of N atoms, Kier Shape index-2, minimum and average electrophilic 

reactivity index for C atom, descriptors related to H-donors and H-bonding surface 

area, HDCA H-donors charged surface area, HBCA H-bonding charged surface 

area, and principal moment of inertia.

There is also a series of variables chosen specifically for  and  models, but 

they appear close to each other in the Kohonen map, which means that they are 

similar and they are not receptor-subtype specific. The variables specific for the 

ER-  model are the following: descriptors for the polar interaction between mol-

ecules and functional group portions (in agreement with the reports [70–72]), such as 
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CPSA variables, PPSA-1, partial positive surface area (sum of surface area on posi-

tive parts of molecule) and PPSA-2, and total charge weighted CPSA. Additionally, 

the LUMO 1 energy, the second-lowest unoccupied molecular level, is specific for 

the  receptor.

It is interesting that among them there are the following variables: number of S 

atoms and relative number of S atoms, and HOMO energy. In the map describing 

the distribution of variables, the variables “No. of S atoms” and “relative No. of S 

atoms,” are located in the area where there is no similar descriptor selected for alpha 

receptor; those two descriptors seem to influence the beta model only. The descrip-

tors characterizing polar interactions may be useful to discriminate between struc-

turally different chemical compounds that bind to the ER-  and ER-  with specific 

interaction not only dependent on the binding pocket residues and bonds but also on 

the interactions around the pocket that are able to modify the size of the cavity and 

the affinity of the ligand for the receptor [70,71].

Several studies referred to the shape, dimension, and polar interaction as param-

eters to define the selectiveness of receptors for the alpha or beta subtype. From 

our study, we can conclude that one cannot obtain a common, well-selective model 

for ER-  and ER-  binding affinities. It is better to have two separate models and 

apply them sequentially for the determination of ER-  and ER-  binding affinities of 

unknown compounds. Obviously, not just a few common influential descriptors, but 

different descriptors are important for describing structure–property relationships of 

different receptor types.

In the second approach with the descriptor-dependent ligand conformations, 

a similar analysis of selected variables was performed. A comparison of selected 

variables for ER-  and ER-  with the receptor-dependent and receptor-independent 

approaches sheds light on the nature of ligand–protein interactions. Certain vari-

ables were selected in both cases, and for these variables their importance in deter-

mining RBA for ER can be argued. For instance, the number of nitrogen atoms may 

play an important role in the binding affinity toward both proteins, ER-  and ER- ,

while the presence of sulfur atoms exhibits selective importance only in the ER-

binding mechanism. This conclusion arises from the analysis of selected variables, 

but one has to be aware of the fact that the selection procedure is related to the 

structural domain defined by the training/test compounds. Thus, the generalization 

of such rules has to be conditioned by the structure applicability domain of con-

structed models. In addition, a stimulating contribution of nitrogen or sulfur atoms 

to the binding may also be restricted to certain positions in the molecules, which are 

inherent in the dataset and must be identified by additional exploration of structures 

involved in the study.

The descriptor “min electroph. react. index for a C atom” was selected in both 

approaches for both receptors, indicating that this information is relevant but inde-

pendent of the receptor isoform. The size and mass of the molecule accounted by the 

moment of inertia were found to be influential in the case of ER- , and the atomic 

charge seems to be important for ER- .

Evaluating the two approaches described here, we observe that the performance in 

general is better for the receptor independent approach, indicating that information 

from the docking procedure in this case does not significantly improve the quality 
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of models. Analyzing more in detail the performances of models built with reduced 

sets of variables, we find that predictions for ER-  are more accurate with the recep-

tor-based approach, but in the case of ER- , the receptor-based approach is not able 

to adequately describe RBA for the studied compounds. Results on the external test 

set are not always satisfactory because of the diversity of compounds belonging to 

this set compared with the training-test sets; among nonapplicable compounds, one 

could find the compound containing iodine or very big synthetic compounds like 

EM-800 thus not adequately predicted.

 A more accurate modeling of the structure and the dynamics of the receptor bound 

to the ligands may improve the quality of results for the receptor-dependent approach. 

Molecular dynamics and thermodynamic calculations have been proven to accurately 

predict binding affinities for various ligands binding to ER [73]. These methods are 

usually computationally expensive and therefore not applicable to large systems or to 

large and diverse sets of compounds. However, the single-step perturbation approach

[74] was recently demonstrated to be accurate in prediction and significantly reduces 

computational time when compared to traditional free energy perturbation studies 

and, therefore, it represents a promising methodology in the study of receptors with 

different subtypes, or to diverse sets of ligands, like the object of the present study.

8.5.3.5 External Test Set

In order to validate the obtained models the external set [67] was first presented to the 

classification models CM A and CM A. All molecules from the external test set were 

correctly predicted as active compounds. The same is true for CM C and CM C clas-

sification models with reduced sets of variables. Then the external set was used to vali-

date the best predictive models obtained with all the variables and those with selected 

variables for  and  receptors, respectively: PM A and PM A and PM C and PM C

(see Figure 8.5 for model definitions). More than half of the 11 compounds tested were 

well predicted by all the models. Outliers are compounds outside the structural domain 

of the training set, such as IC-182780, levormeloxifene, lasofoxifene, and EM-800, 

which are very big molecules. They are not comparable with the training compounds 

because of larger dimension or because of the presence of new atoms, as for example 

the iodine atom in 16 -Iodo-estradiol, 7  iodovinyl-11- -methoxyestradiol (E) and its 

isomer (Z) (Table 8.1). In case of the models with all the variables (PM Aand PM A), 

three outliers were detected: 17  iodovinyl-11- -methoxyestradiol (E), EM-800, and 

GW-5638. Analysis of the positioning of test compounds in the CP ANN model gives 

us some explanation about the outliers. 17  iodovinyl-11- -methoxyestradiol (E) is 

positioned at neuron (2,2) in the CP ANN network of dimension 10  10 neurons. 

No training compounds are in this neuron; the nearest compounds from the training 

set are in position (2,1) tamoxifen and (1,1) raloxifene. It has been discussed already 

in Section 8.5.3.1 that the source of the low prediction at position (2,2) is the inactive 

compound methoxychlor from the training set, positioned at (3,1), which influenced the 

neighboring positions. The second outlier, EM-800 is positioned at (1,1), the same posi-

tion as raloxifene in the training test. Although EM-800 appears to be structurally the 

most similar to raloxifene among all training compounds, the difference is still large, 

which is reflected in a substantially different binding affinity (the differences are 3.40 
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and 1.65 for ER-  and ER- , respectively). This is an indication that we do not have 

the compounds similar to 17  iodovinyl-11- - methoxyestradiol (E) in our training set. 

The third outlier, GW-5638, is positioned at (3,2), and the nearest compounds from the 

training set are in position (2,1) tamoxifen, in position (3,1) methoxychlor, and in posi-

tion (4,1) ipriflavone. All are inactive and, consequently, the influence of these inactive 

compounds to the nearest neighboring neurons is high, and the error in prediction of 

GW-5638 is big. Although the inactive compounds have been removed according to 

the threshold defined in the classification model, information about their structure and 

binding affinities is retained in the neural network model (within the neurons in the 

Kohonen and output layer). When validating the models for prediction of log RBA-

with reduced sets of variables after GA selection (PM C), we obtained three outliers: 

EM-800, lasofoxifene, and levormeloxifene.

ID 24 is positioned at (1,10) in the CP ANN model, like in the case for the model 

done with all the variables, on the same neuron as raloxifene. Again, the consider-

able structural difference is the source of large prediction error. Fortunately, an 

inherent CP ANN feature can be associated with the difference in chemical struc-

ture between the training and predicted compounds. This feature is the distance 

between the selected (most similar) neuron (W) and the compound, which is rep-

resented as a vector of descriptors (X), see Equation 8.1. If the distance is large, 

the prediction for the particular compound is considered less reliable than if the 

distance is small. For EM-800, the distance found was 3.13, which is considerably 

larger than for the raloxifene from the training set (0.06). A specific parameter, the 

reliability factor [43] can be calculated to describe the consistency of predictions of 

the external test study.

The compounds lasofoxifene and levormeloxifene are positioned at (1,9), at the 

same position as tamoxifen. Again the distances (1.79 and 1.07) confirm that these 

two predictions are not reliable; the distance of the training compound tamoxifen is 

0.05. The external set was also used for validation of the models with reduced struc-

ture representations for prediction of log RBA-  (CM C and PM C). There were no 

misclassified compounds, but there are three outliers in the predictive model: 17- -

iodovinyl-11 methoxyestradiol (E), ICI-182780, and lasofoxifene. The first is posi-

tioned on the neuron (6,10), where we can find the compound OH-PCB6 from the 

training set. The distance of 17- -iodovinyl-11 -methoxyestradiol (E) to the neuron 

(6,10) is 0.83, while that of the training compound OH-PCB6 to the same neuron is 

0.03. The compound ICI-182780 is on the neuron (10,10) with the distance 2.47, where 

we can find the training compound endosulfan with the distance 0.01. Lasofoxifene 

and levormeloxifene are on the neuron (10,2), with the distances 1.86 and 0.90, respec-

tively, while the training compound tamoxifen occupied this neuron with the distance 

0.06. Levormeloxifene with a smaller distance is better predicted (see Table 8.1).

All the predictions for the external test compounds obtained by the models 

Pm A, PM C, Pm A, and PM C, together with the distances to the neuron from 

which the individual prediction was obtained, are collected in Table 8.1. As can be 

seen from Table 8.1, the large distances do not always coincide with large prediction 

errors. One could anticipate that in this case (large distance, small prediction error, 

see PM C for ICI-182780 in Table 8.1, row 9), the difference in chemical structure, 
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although large if compared with the training compounds positioned on the same or 

neighboring neurons, is not essential for the ER binding mechanism.

8.6 CONCLUSIONS

In this chapter, we present CP ANN as a powerful technique for structure-property 

modeling. The questions important in modeling, such as how to build predictive and 

classification models, how to select the relevant descriptors, and how to select the 

training and test set, have been addressed. In comparison to other neural network 

methods, the CP ANN has a relatively simple architecture and learning algorithm. 

This enables users to better interpret results. This is especially important when the 

models are used for regulatory purposes. Extended comments of CP ANN model-

ing procedure in terms of OECD Principles for validation of QSAR models [22] are 

reported in Vračko et al. [75]. The combination of an unsupervised and a supervised 

learning algorithm makes the CP ANN a suitable tool for modeling even in cases 

where the relationship between descriptors and property is weak. We looked at the 

problem of endocrine disruption from three different aspects. First, we constructed a 

robust classification model. Compounds and their classes, which are defined accord-

ing to evidence on endocrine disruption potency, were taken from documents pub-

lished by the European Commission. Models were tested with a test set, which was 

selected from data using the SOM technique. The class predictive power of con-

structed models shows that the method is promising, despite the weakly defined 

endpoint. The second case was “a standard QSAR modeling problem,” where we 

modeled the RBAs to rat uterus estrogen receptor for a set of 132 compounds.

We report the comparison between three different modeling methods — linear 

model based on partial least square regression (PLS-R model), CP ANN model, and 

multilayer feedforward artificial neural networks trained by the back-propagation 

of errors algorithm (BP ANN model), where the last has shown the best predictive 

ability. The results were compared with similar studies from the literature [55–65]. 

Although the direct comparison between different reports was not possible because 

of different technical details of modeling, our modeling results were comparable with 

the most successful models reported (BP ANN with reduced set of selected descrip-

tors, R2  0.92 and Q2  0.71). The interpretation of selected descriptors can be used 

to obtain a mechanistic explanation of the model, and this question is addressed by 

principle 5 of the OECD Principles. In our case study, we applied three methods 

for descriptor selection. Interestingly, the logarithm of the partition coefficient log P 

resulted as a relevant variable present in all the reduced sets of descriptors in the two 

modeling methods, PLS-R and BP ANN, while in the CP ANN modeling method, log P 

was not selected. However, another descriptor (“complementary information content 

— order 2”) was present, which, as far as the studied compounds are concerned, has 

been shown to provide the same kind of information because it was located at the 

same position as log P in the Kohonen map of descriptors. The influence of shape and 

flexibility of the molecule on the binding affinity was hypothesized on the basis of 

descriptors like XY and YZ shadows or the moment of inertia chosen in the variable 

reduction procedure. The selection of the descriptors accounting for the electronic 
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distribution of the inspected molecules (such as max and min atomic charge) indicates 

a correlation between the polarity of the molecules and the modeled property.

Third, we extended our consideration of endocrine disruption in such a way that 

we introduced information about receptors in the model. The CP ANN models were 

built for the prediction of relative binding affinity to ER-  and ER-  and for clas-

sification (active/nonactive). Information about receptors was included via molecular 

geometries. Once the molecular structures were optimized in vacuum, they were  

then optimized in their environment within a receptor. In the following steps, the 

descriptors were calculated and selected with GA. The variables selection underlines 

the importance of some constitutional descriptors such as the number of N atoms 

common for both types of receptors, while the number of S atoms and relative num-

ber of S atoms are specific for the  receptor. The CP ANN method in combination 

with GA descriptor search could explore in depth the differences between the two 

subtypes of receptors and underline the meaning of some descriptors chosen specifi-

cally for the ER-  or ER-  model. Analyzing the source of large prediction errors, 

we observed several times that the inactive compounds had a negative influence on 

the predictive power, because the same trained networks were used in two consecu-

tive steps for both classification and prediction models. Good results were observed 

for the training and the test set compounds, but for the external set, the obtained 

predictions were not satisfactory. This lack of performance on the external set is 

probably due to the inadequate applicability domain, which means that the com-

pounds from the training set do not sufficiently match the chemical structure of the 

compounds from the external set. To introduce information about receptors, the con-

formations of the ligands were obtained, applying virtual docking methodologies to 

determine active poses of native ligands inside the receptor. Docking methodologies 

utilize knowledge of the 3D structure of a receptor (crystal structures for estrogen 

receptor  and  are available) in an attempt to optimize the ligand or a series of mol-

ecules bound into the active site. The aim of the comparative study was to improve 

the structure–activity correlation obtained in the receptor-independent approach in 

which the conformations of ligands were obtained by minimal energy optimization. 

We anticipated that new information obtained from the receptor–ligand complex 

derived from the docking study would contribute to a better model. Opposite our 

expectations, the results of the comparative study were not in favor of this hypoth-

esis. Obviously, the refinement of molecular conformation in this modeling approach 

does not contribute significantly to the quality of the models; the error introduced by 

inaccurate conformation seems to be compensated for by the optimization of model 

parameters and variable selection procedure.
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9 Quantitative 
Spectrometric Data-
Activity Relationships 
(QSDAR) Models of 
Endocrine Disruptor 
Binding Activities

Richard D. Beger, Dan A. Buzatu, and Jon G. Wilkes

ABSTRACT

This chapter covers a strategy for model building known as Spectrometric Data-

Activity Relationships (SDARs). SDAR models are based on the correlation 

between the spectral and activity leg of the triangular structure-spectra-activity 

relationship, whereas traditional three-dimensional Quantitative Structure-Activity 
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Relationship (3D-QSAR) models are based on the structure-activity relationship. 

This chapter covers one-dimensional (1D) comparative spectral analysis (CoSA) 

and two-dimensional (2D) comparative structural connectivity spectral analysis 

(CoSCoSA) modeling methods for endocrine disruptors. A qualitative 1D CoSA 

model segregated 108 compounds into 20 strong, 15 medium, and 73 weak rela-

tive binding affinity (RBA) classifications to the estrogen receptor, based on 13C

NMR (nuclear magnetic resonance) data alone and gave a leave-one-out (LOO) 

cross-validation of 75.0%. A CoSA model, based on a composite of 13C NMR and 

electron ionization mass spectra (EI MS) data, gave a LOO cross-validation of 

82.4%. Most of the compounds classified by the SDAR models incorrectly were 

between those exhibiting weak and medium RBAs. A quantitative 2D CoSCoSA 

model of 130 diverse compounds binding to the estrogen receptor employed

16 bins selected from the 13C-13C COSY spectral data and had an r2 of 0.827 and 

a leave-13-out cross-validation average (q13
2) of 0.78. Another CoSCoSA model of 

estrogen receptor binding that used 15 bins plus one additional distance-related 

3D constraint had an r2 of 0.833 and an average q13
2 of 0.78. CoSCoSA modeling 

is based on chemical shifts and electrostostatic properties like that used in QSAR 

models along with added structural atom-to-atom distance information in order 

to produce a more powerful modeling method. Our results show that CoSA and 

CoSCoSA models can be used to build computationally rugged, objective, and 

predictive models of endocrine disruptor activity.

KEYWORDS

Comparative spectral analysis (CoSA)

Comparative structural connectivity spectral analysis (CoSCoSA)

Estrogen receptor

9.1 INTRODUCTION

The Endocrine Disruptor Screening Program (EDSP) was developed by the U.S. 

Environmental Protection Agency (EPA) in response to a Congressional mandate 

in the Federal Food, Drug, and Cosmetic Act (FFDCA). The aim of the EDSP is to 

determine whether certain substances may have an effect in humans that is similar 

to an effect produced by naturally occurring estrogen. An endocrine disruptor has 

been defined as an “exogenous agent that interferes with the production, release, 

transport, metabolism, binding, action or elimination of natural hormones in the 

body responsible for the maintenance of homeostasis and the regulation of develop-

mental processes” [1]. The National Center for Toxicological Research (NCTR) of 

the U.S. Food and Drug Administration (FDA) developed the Endocrine Disruptor 

Knowledge Base (EDKB) to house information on estrogen and androgen binding 

activities [2–4], and QSAR models of binding to the estrogen and androgen receptors 

[5,6]. The EDKB was intended to be a public resource by aiding regulatory scientists 

and fostering computational models that would reduce the need for animal testing.

It was recently reported that male and female pearl dace fish exposed to 

17 -ethynylestradiol (EE2) experienced sweeping biochemical changes including 
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edema of the ovaries, inhibited development of testicular tissue, and kidney dam-

age [7]. In a 7-year study, when minnows were exposed to low concentrations of 

EE2, males exhibited feminization and altered gonadal development, and females 

had altered oncogenesis that ultimately led to near extinction [8]. These data on EE2, 

along with the mounting evidence that fish living in waters from municipal waste-

water treatment plants (MWTPs) exposed to chemicals have altered reproductive 

functions, has revived interest in studying endocrine disruptors by in silico methods 

[9]. In addition, each year, 36 million cattle in the United States are fed estrogens in 

order to make them grow bigger, faster. These cattle excrete large quantities of the 

estrogens in urine [10], which constitutes another environmental source of synthetic 

compounds with a strong estrogenic capacity.

Currently, Quantitative Structure-Activity Relationship (QSAR) and Structure-

Activity Relationship (SAR) models are used for drug discovery and to form 

ADME (absorption, distribution, metabolism, and excretion) models [11–14]. Three-

dimensional Quantitative Structure-Activity Relationship (3D-QSAR) models 

are typically based on physical fields obtained by superimposing each compound 

as a whole on a 3D-grid; SAR modeling simplifies the process by breaking large 

compounds into secondary structural motifs but does not attempt to provide a 

comprehensive physical basis for modeling the biological activity [11,15–20]. The 

calculations used in building QSAR models depend on physical constants that vary 

in significance between structures of different types and may also exhibit nonlinear 

relationships for models based on a single structural type. Further, the selection of 

the most appropriate 3D structure for each molecule requires a number of assump-

tions. By trial and error, one can build a model for a finite number of molecules, 

adjusting conformational alignments to determine which orientations give the model 

the best relationship to known biological activities from a training set. However, the 

same process is much more prone to error when applied to structures for which the 

biological activity is unknown. The necessary conformational and other assump-

tions can give results of uncertain validity when applied for predictive purposes to 

structures of unknown activity.

This chapter covers an alternative strategy for modeling known as Spectrometric 

Data-Activity Relationships (SDARs). SDAR models are based on correlations along 

alternate sides of the triangular structure-spectra-activity relationship: whereas the 

aforementioned 3D-QSAR models use the structure-activity relationship directly, 

SDAR models use a combination of the structure-spectrum and spectrum-activity 

legs. 3D-QSAR models are based partly on electrostatics and partly on molecular 

geometry [15–19]. 3D-QSAR results show that receptor binding of a compound can 

be modeled successfully, but only when the model is carefully constructed using 

somewhat subjective measures of the 3D conformation.

In contrast, molecular spectra result from fundamental physical phenomena that 

are unbiased and yet provide the kind of information used by QSAR. Mass spectra 

are generated by fragmentation patterns that reflect the composition and geometry 

of the original molecules. Ultraviolet (UV), infrared (IR), and nuclear magnetic 

resonance (NMR) spectra are characteristic of the electronic and geometric con-

figurations of molecules and are explained quite well by the principles of quantum 

mechanics. For model building purposes, like those described here, an advantage 
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of NMR is that spectral features (chemical shifts) can be assigned to specific atoms 

within the molecules that produce them, whereas this is not generally possible for 

UV, IR, or mass spectra (MS).

The 13C NMR spectrum of a compound contains a pattern of frequencies that 

correspond directly to the quantum mechanical properties of an carbon nuclear mag-

netic dipole in a magnetic field [21]. The diamagnetic term of an NMR chemical 

shift tensor is directly related to the electrostatic potential at its nucleus, and the 

paramagnetic term in the NMR chemical shift tensor is dependent upon the orbital 

configuration [21]. For 13C NMR spectra, the differences in magnitude between the 

diamagnetic and paramagnetic terms are very large, so the spectral regions for dif-

ferent carbon orbital configurations are generally well separated from each other. 

Typically, sp3 hybridized carbon atoms have 13C NMR chemical shifts in the 0 to 100 

ppm range, with the more upfield shifts having a positive electrostatic potential (e.g., 

methyl groups) and the downfield shifts having a more negative electrostatic poten-

tial (e.g., ester bonds). Likewise, sp2 hybridized carbon atoms usually have 13C NMR 

chemical shifts in the 100 to 220 ppm range, with the more upfield shifts having a 

positive electrostatic potential (e.g., benzyl groups) and the downfield shifts having a 

more negative electrostatic potential (e.g., carbonyl groups). Superimposed on these 

basic bonding relationships are effects arising from the electrostatics of substituents. 

The effect of substituents on the 13C NMR chemical shifts can be felt from as far as 

five bonds away or at even greater bond numbers directly through space, depend-

ing on how the molecule has folded back upon itself. Thus, the final disposition 

of a molecule’s NMR spectral features depends on structural, atomic connectivity, 

and conformational and electrostatic components that, according to SAR theory, 

also determine the biological activity of the molecule. It follows that patterns can 

be discovered by a model that correlates a finite training set of NMR spectra with 

the known biological, chemical, or physical characteristics of the compounds in the 

set. Once the patterns are validated, they can then be used for predicting the same 

biological, chemical, or physical activity for other compounds not used in the model 

building process. This is the conceptual foundation for SDAR and QSDAR.

We used several biological endpoints to identify the relationship between a mol-

ecule’s biological activity and its experimental 1D 13C NMR spectral data [22–27]. 

This modeling technique has been referred to as comparative spectral analysis 

(CoSA) [24–28]. QSDAR CoSA modeling is based on the general triangular rela-

tionship between a molecule, its spectra, and its biological or chemical activity. First, 

in QSDAR modeling, the structures of a set of compounds are generated and their 
13C NMR spectra are predicted using in silico methods or are found in a database. 

The 13C NMR spectra are saved as a set of ordered pairs: chemical shift frequencies 

in ppm and the area under the chemical shift peak. The area under a chemical shift 

peak is first normalized to an integer. For historical reasons, we assigned an area of 

100 to represent a single atom; a doubly degenerate frequency (two 13C NMR chemi-

cal shifts at the same frequency) has an area of 200, and so forth, as the number of 

essentially equivalent atoms increases. Normalization is done so that (1) all the spec-

tra have a similar signal-to-noise ratio and (2) line width variations due to differences 

in NMR instrumental field strengths, shimming, coupling to protons, temperature, 

pH, or solvent are eliminated. Bin intensities define the number of chemical shift 
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peaks within a ppm range that are considered equivalent. The bin width used to input 

the 13C NMR spectra can be optimized by variations from between 0.5 and 10.0 ppm 

and by determining which bin width produces the best cross-validated and predictive 

models for a particular training set and pattern definition type.

9.2 SDAR CoSA MODELS OF RELATIVE ESTROGEN RECEPTOR 
MODELS BINDING USING 1D 13C NMR DATA

We developed two SDAR classification models based on composites of 13C NMR and 

electron ionization mass spectra (EI MS) data for 108 compounds whose relative bind-

ing affinities (RBAs) to the estrogen receptor are published [2,22,29,30]. The RBA to 

the estrogen receptor is defined as 100 times the ratio of the molar concentrations of 

17 -estradiol and the competing compound required to decrease the receptor-bound 

compound by 50%. Thus, 17 -estradiol had an RBA of 100 and log RBA of 2.0.

The 13C NMR and EI MS data were used as spectrometric digital fingerprints 

to reflect the electronic and structural characteristics of the compounds. Most of 

the 13C NMR spectrometric and EI MS data were obtained through public spectral 

databases [31–34] or predicted using ACD/Labs CNMR prediction software Version 

6 (ACD/Labs, Toronto, Canada). In cases where the NMR or MS spectrum was not 

available from existing databases, the compound was obtained and the spectrum was 

generated in the laboratory. Both SDAR models segregated the 108 compounds into 

20 strong, 15 medium, and 73 weak RBA categories. Strong binders to the estrogen 

receptor were classified as those with a log RBA over –0.30, weak binders were clas-

sified as those with a log RBA less than or equal to –2.70, and medium binders were 

those with RBAs between –2.70 and –0.30. The classification boundaries were set 

by trial and error and principal component cluster analysis. The 13C NMR data were 

binned into 1 ppm wide bins, autoscaled, and Fisher-weighted before discriminate 

function (DF) analyses were applied to form classification models for a compound’s 

estrogen RBA.

Figure 9.1a shows the SDAR discriminant function (DF) model based on 13C

NMR data alone that gave a leave-one-out (LOO) cross-validation of 75.0%. The 

SDAR model is based on 22 PCs that accounted for 89.8% of the total variance in 

the NMR data. Figure 9.1b shows the SDAR model based on a composite of 13C

NMR and EI MS data that gave a LOO cross-validation of 82.4%. This SDAR model 

used 21 PCs that accounted for 82.4% of the total variance in the data. Most of the 

misidentifications in each SDAR model arose from confusing medium and weak 

classifications, because there were fewer specific spectrometric characteristics to 

support the distinction of the two classes. This is precisely the behavior expected 

from a valid modeling process. That is, valid models do not make distinctions based 

on weak or insignificant differences.

SDAR models were built using real or in silico-predicted 13C 1D NMR chemical 

shifts with or without the addition of composite MS spectra, four models in all, and 

were used on an external set of five compounds to test the resulting effects on predic-

tive quality. Predictions were made for 2-ethylphenol, 3-deoxyestradiol, dimethyl-

stilbesterol, 3-methylestriol, and 4,4 -dihydroxystilbene. SDAR model predictions as 

strong binders for 3-deoxyestradiol and dimethylstilbesterol were correct in all four 
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models. The predictions for 2-ethylphenol were correct as a low relative binder in all 

four SDAR models. The predictions for three of four models incorrectly predicted 

3-methylestriol as a strong binder. The model using only predicted 13C NMR data 

was the only SDAR that correctly predicted 3-methylestriol as a medium binder. The 

RBAs for the medium binding 4,4 -dihydroxystilbene were wrong all four times with 

one strong and three weak predictions. The prediction of compounds in the medium 

binding classification is less reliable because it can arise from nonspecific binding 

to the estrogen receptor — that is, binding not related to the underlying structure-

activity relationship and not modeled by either SAR or SDAR modeling

9.3 COMBINING STRUCTURAL INFORMATION 
WITH SPECTRAL INFORMATION

One limitation with 1D CoSA models is that they lack direct 3D structural informa-

tion. The most obvious way to combine structural and spectral information is to 

establish one particular molecule as a best or normal representative of those causing 
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FIGURE 9.1 (a) The discriminant function using 13C NMR data in the SDAR model. (b) The 

discriminant function using 13C nuclear magnetic resonance (NMR) and electron ionization 

(EI) mass spectral data in the Spectrometric Data-Activity Relationship (SDAR) model. The 

X-axis is the first principal component and the Y-axis is the second principal component. 

Compounds shown with an S have a strong classification, compounds shown with an M have 

a medium classification, and compounds shown with a W have a weak classification. (From 

R.D. Beger, J. Freeman, J. Lay Jr., J. Wilkes, and D.W. Miller, Toxicol. Appl. Pharmacol., 169, 

17, 2000. Reproduced with permission.)
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a particular biological effect. Each carbon atom in this compound’s backbone is 

numbered, and all other compounds to be modeled must use the same backbone 

numbering system. Then, each compound’s pattern is defined by the ordered pair 

(carbon number, chemical shift) rather than by the previously described system 

(chemical shift bin number, occupancy number). This means that the chemical shifts 

have been assigned to the carbon atoms that produced them. The pattern as defined 

is correlated with the biological activity of each molecule. The resulting model com-

bines structural information with the assigned simulated 13C NMR chemical shifts. 

We named this type of 1D SDAR method “comparative structurally assigned spectra 

analysis” (CoSASA) to distinguish it from the substantially different, unassigned 

methods previously described as CoSA [24,25]. One supposes that the ability to 

include spatial relationships in SDAR modeling should improve the quality of the 

results. In fact, when used on the same spectral training set, we observed inferior 

results by CoSASA compared to CoSA [24,25]. This unexpected result challenged 

our understanding of the factors affecting model quality. In addition to inferior 

results, a limitation of CoSASA is that it can only be used to predict compounds 

with the same carbon backbone as the representative training molecule.

Another way to combine structural and spectral information is to express geo-

metrical information in spectral space. In the same way that 2D, 3D, and 4D NMR 

experiments use additional spectral dimensions to reduce spectral overlap [35–40], we 

conceptualized an analogous way of combining spectral and structural information 

into a single multidimensional spectral-connectivity matrix that could be generated 

without the need to run NMR experiments. We hypothesized that the spectra- 

connectivity relationship defined in such a matrix would produce improved QSDAR 

models. We also realized that the matrix definition would not limit compounds to 

those sharing the same backbone template. Compounds in the same model could 

have quite dissimilar structures; they could differ in the number and connectivity of 

carbon atoms, as well as the number and identity of constituents or atoms. Below we 

describe how to define a multidimensional QSDAR data structure matrix.

A molecule’s 3D-spectral-connectivity data matrix can be built by displaying all 

the possible carbon-to-carbon spatial relationships with their assigned carbon NMR 

chemical shifts on two dimensions and the distance between the two atoms in a third, 

orthogonal dimension. Even for atoms not directly connected in a molecule, this discus-

sion uses the term “connectivity” to indicate their spatial relationship. Figure 9.2a and 

Figure 9.2b show all the atom-to-atom connectivities and the 3D-spectral-connectivity 

data matrix for 3 -estradiol, respectively. The X-axis represents the chemical shift of 

carbon i, the Y-axis represents the chemical shift of carbon j. The Z-axis represents the 

through-space distance between carbon i and carbon j (rij). By representing molecules 

with this spectral-connectivity matrix, the subjective superposition of molecules on 

a template is avoided. Other parameterization (for example, selecting dielectric con-

stants or energy minimization to develop typical 3D-QSAR models) is either avoided 

or minimized. For flexible molecules, some atom-to-atom distances can vary, so repre-

sentations of multiple conformations in the 3D-spectral-connectivity data matrix for-

mat can be accommodated. A method to accomplish this will be explained later.

The 3D-spectral-connectivity data matrix shown in Figure 9.2b is symmetrical 

about the X-Y diagonal. That is, for every connection between atom i and atom j, the 
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identical relationship is represented across the diagonal at the connection between 

atom j and atom i. Along the X-Y diagonal at rij  0 is the 1D 13C NMR spectrum of 

3 -estradiol. At rij  1.4 Å are the nearest neighbor atom-to-atom connections, and at 

rij  1.4 Å are all the other distance-related atom-to-atom connections.

The information in a 3D-spectral-connectivity data matrix overdetermines a com-

pound’s structure, so the information in the matrix that is actually used for a model 

can be reduced to simplify and accelerate computations. One way to simplify the 3D 

matrix is to cut it, somewhat arbitrarily, into a set of four 2D spectral planes. The 

first 2D plane is the nearest neighbor through-bond connectivity plane. Summing 

or projecting a range of actual through-space atom-to-atom distances with specific 

distance intervals included in a particular 2D plane set by the modeler constructs 

the three other 2D planes. This effectively compresses and greatly simplifies atom-

to-atom distance information along the Z-axis. In addition to the nearest neighbor 

spectral-connectivity plane, there is a plane for short atom-to-atom spectral-connec-

tions (2.0 Å rij  3.6 Å, perhaps two bond lengths but also through space), another 

for medium-range atom-to-atom connections (3.6 Å rij  6.0 Å), and a fourth for 

long distance atom-to-atom connections (rij  6.0 Å). Figure 9.2c through Figure 9.2f 

show the four 2D planes and all the atom-to-atom connections in each 2D plane for 
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FIGURE 9.2 (a) 3 -estradiol atom-to atom connectivities. (b) The three-dimensional (3D) 

spectral connectivity matrix of 3 -estradiol. (c) Two-dimensional (2D) nearest neighbor spec-

tral connectivities. (d) 2D Short-distance spectral connectivities. (e) 2D Medium-distance 

spectral-connectivities. (f) 2D Long-distance spectral connectivities. (See color insert
following page 244.)
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the specific 2D-spectral-connectivity plane of the 3D-spectral-connectivity matrix 

of 3 -estradiol. Similarities between the pattern of 2D spectral data associated with 

the biological activity of the training set compounds and the spectral data for the test 

compound are detected and used to determine whether the compound is predicted 

to exhibit the biological activity. We call this procedure comparative structural con-

nectivity spectra analysis (CoSCoSA), to distinguish it from CoSA and CoSASA 

[41–43].

In 3D-QSDAR, 2D 13C-13C distance spectra associated with short, medium, and 

long atom-to-atom spectral-connectivity patterns would be difficult to obtain from 

experimental NMR spectra but easily determined using predicted spectra and the 

compounds’ structures. Because the spectrum is predicted based on a compound’s 

structure, the atom producing each chemical shift is known. It is then possible to 

calculate atom-to-atom distances (rij) for each pair of atoms and to associate the 

rij values with the corresponding spectral features. The shorter distance relation-

ships in 3D-QSDAR are analogous to 2D 1H-1H nuclear Overhauser effect spec-

troscopy (NOESY) NMR experiments where correlations through space are found 

for neighboring protons that are generally less than 5 Å apart. As with correlation 

spectroscopy (COSY), NOESY spectra are expressed as a matrix with off-diago-

nal cross-peaks [36]. The volumes of the cross-peaks in a NOESY experiment are 

dependent on the inverse of the distance between the protons, the mixing time of the 

experiment, and the number of different NOE spin diffusion pathways available for 

dipolar magnetization transfer. The NOESY peak intensity falls off quickly because 

it is divided by rij
(–1/6). Thus, NOESY experiments could be conceived but cannot be 

practically executed for medium- and long-distance interatomic distances. In con-

trast, because it can be based on simulated spectra, the corresponding 3D-QSDAR 

matrix is definable and its utility for in silico modeling is practical.

9.4 2D QSDAR MODELING OF 130 COMPOUNDS 
BINDING AFFINITY TO THE ESTROGEN RECEPTOR

Simulated 13C NMR spectra were determined using the ACD/Labs CNMR predic-

tor software (ACD, Toronto, Canada). With this prediction program, NMR spectra 

are predicted by a substructure similarity technique called hierarchically ordered 

spherical description of environment (HOSE) [44], which correlates similar sub-

structures with similar NMR chemical shifts. Occasionally, a compound is in the 

spectral database that is used for the HOSE calculation, which results in their pre-

dicted spectra being equivalent to experimental NMR spectra. Because many of our 

QSDAR models were based only on simulated 13C NMR spectra, QSDAR modeling 

was driven completely in silico.
Table 9.1 shows the log of RBA for 130 structurally diverse compounds used to 

train 2D CoSCoSA models [27]. Binding data were produced at the National Center 

for Toxicological Research (NCTR) using a competitive estrogen receptor (ER) assay 

with radiolabeled estradiol ([3H]E2) in rat uterine cytosol obtained from ovariecto-

mized uteri of Sprague-Dawley rats [2,3,5]. This dataset spanned seven orders in 

magnitude ranging from a log (RBA) value of –4 for a compound with weak binding 
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TABLE 9.1
Compounds and Training Set Predictions of Estrogen Receptor Binding

Compound Name Number
Exp.

Log (RBA)

16 Bin
CoSCoSA
Log (RBA)

15 Bin L 7.5Å

CoSCoSA
Log (RBA)

Diethylstibestrol 1  2.60  1.44 1.43
meso-Hexestrol 2  2.48  2.86 2.70

Ethinyl estradiol 3  2.28  1.44 1.43

4-Hydroxyestradiol 4  2.24  2.45 2.39

4-Hydroxytamoxifen 5  2.24  0.58 0.58

17 -Estradiol 6  2.00  2.36 1.85

-Zearalenol 7  1.63  0.51 0.51

ICI182780 8  1.57  1.08 1.12

Dienestrol 9  1.57  1.44 1.43

-Zearalanol 10  1.48  0.51 0.51

2-Hydroxyestradiol 11  1.47  1.26 1.32

Diethylstilbestrol monomethyl ether 12  1.31  1.44 1.43

3,3 -Dihydroxyhestrol 13  1.19  0.75 0.60

Droloxifene 14  1.18  1.63 1.63

Dimethylstibestrol 15  1.16  0.04 0.15

ICI164384 16  1.16  1.08 1.12

Moxestrol 17  1.14  1.44 1.43

17-Deoxyestradiol 18  1.14  0.62 0.79

2,6-Dimethylhexestrol 19  1.11  0.64 0.62

Estriol 20  0.99  0.62 0.79

Monomethyl ether hexestrol 21  0.97  0.51 0.93

Estrone 22  0.86  0.62 0.79

p-meso-Phenol 23  0.60  1.35 1.26

17 -Estradiol 24  0.49  1.17 0.79

Dihydroxymethoxychlorolefin 25  0.42 –0.10 –0.10

Mestranol 26  0.35  1.44  1.43

Zearalanone 27  0.32  0.51  0.51

Tamoxifen citrate 28  0.21  0.58  0.58

Toremifene citrate 29  0.14  0.58  0.58

, -Dimethylbethyl allenolic acid 30 –0.02 –0.04 –0.02

Coumestrol 31 –0.05  0.43  0.05

4-Ethyl-7-OH-(p-methoxyphenol)-

dihydro-1-benzopyran-2-one

32 –0.05  0.11  0.15

Nafoxidine 33 –0.14  0.58  0.58

Comiphene citrate 34 –0.14 –0.47 –0.47

1,3,5-Estratrien-3,6 -17 -triol 35 –0.15 –0.60 –0.61

-Zearalanol 36 –0.19  0.51  0.51

3-Hydroxy-estra-1,3,5-trien-16-one 37 –0.29 –0.08   0.25

3-Deoxyestradiol 38 –0.30 –1.47 –1.55

3,6,4 -Trihydroxyflavone 39 –0.35 –0.33 –0.35

Genistein 40 –0.36 –2.66 –2.61
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Figure 5.1 The structural and functional organization of nuclear receptors.

Figure 6.2 Endocrine Disruptor Knowledge Base (EDKB) database interface. 
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Figure 8.4 Weight maps of CP ANN  model corresponding to a variable log P (a) and the 
output layer — that is, the response surface of log RBA (b). The colors indicate the distribu-
tion of log P and log RBA values from low (blue) to high (red). (Adapted from F. Marini et al., 
J. Chem. Inf. Model., 45, 1514, 2005. With permission.) 

Figure 9.2 (a) 3b-estradiol atom-to atom connectivities. (b) The three-dimensional (3D) 
spectral connectivity matrix of 3b-estradiol. (c) Two-dimensional (2D) nearest neighbor spec-
tral connectivities. (d) 2D Short-distance spectral connectivities. (e) 2D Medium-distance 
spectral-connectivities. (f) 2D Long-distance spectral connectivities. 
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Figure 11.4 Comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) contour maps. 2,2′,3,4,4′-
bromodiphenylether is shown only as reference structure. (a) CoMFA steric contour map. Green contours (G on black and white figure) indicate 
regions where a relatively bulky substitution would increase the binding affinity, whereas yellow contours (Y) indicate areas where a bulkier sub-
stituent would decrease the binding affinity. (b) CoMFA electrostatic contour map. Red contours (R) indicate regions where a negative-charged 
substitution will increase affinity, whereas blue contours (B) show areas where a negative-charged substitution would decrease affinity. (c) CoMSIA 
steric contour map and (d) CoMSIA electrostatic contour map: same graphic convention as for CoMFA. Greater values of the binding affinity are 
correlated with more bulk near green or less bulk near yellow, and similarly, more positive charge near blue and more negative charge near red. (e) 
CoMSIA hydrophobic contour map. Yellow (Y) contours indicate region where hydrophobic group will increase affinity, whereas white contours 
(W) show areas where a hydrophilic group favors affinity. (Reproduced with permission, from Y. Wang, H. Liu, C. Zhao, H. Liu, Z. Cai, and 
J. Jiang, Environ. Sci. Technol., 35, 4961, 2005.)
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Figure 11.5 Comparative molecular field analysis (CoMFA) contour plots for human ERa 
and ERb. E2 is shown only as reference structure. Color code is the same as in Figure 11.4. 
(Reproduced with permission from T. Zhu, G.Z. Han, J.Y. Shim, Y. Wen, and X.R. Jiang, 
Endocrinology, 147, 4132, 2006. Copyright 2006, The Endocrine Society.)
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Figure 13.14 Stereoviews of the comparative molecular field analysis (CoMFA) steric field generated by Equation 13.9 with tebufenozide as the tem-
plate. Contours are shown to surround the regions where increased steric bulk increases (green) or decreases (yellow) the biological activity. (Reproduced 
from C.E. Wheelock, Y. Nakagawa, T. Harada, N. Oikawa, M. Akamatsu, G. Smagghe, D. Stefanou, K. Iatrou, and L. Swevers, Bioorg. Med. Chem. 14, 
1143, 2006. With the permission of Elsevier Science Ltd.) 
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Figure 13.15 Stereoviews of the comparative molecular field analysis (CoMFA) electrostatic field generated by Equation 13.9 with tebufenozide as 
the template. Contours are shown to surround the regions where a positive (blue) or negative (red) electrostatic potential increases the biological activity. 
(Reproduced from C.E. Wheelock, Y. Nakagawa, T. Harada, N. Oikawa, M. Akamatsu, G. Smagghe, D. Stefanou, K. Iatrou, and L. Swevers, Bioorg. 
Med. Chem. 14, 1143, 2006.,With the permission of Elsevier Science Ltd.)
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Figure 13.16 (a) Surface of the EcR ligand binding cavity of Bombyx mori for N,N′-dibenzoyl-N-t-butylhydrazine-type ecdysone agonists. (b) 
Superimposition of comparative molecular field analysis (CoMFA) steric boundary over the B. mori EcR cavity, with tebufenozide as the template; a 
part of the cavity surface was cut down to see the inside. (Reproduced from C.E. Wheelock, Y. Nakagawa, T. Harada, N. Oikawa, M. Akamatsu, G. 
Smagghe, D. Stefanou, K. Iatrou, and L. Swevers, Bioorg. Med. Chem. 14, 1143, 2006. With the permission of Elsevier Science Ltd.) 
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TABLE 9.1 (CONTINUED)
Compounds and Training Set Predictions of Estrogen Receptor Binding

Compound Name Number
Exp.

Log (RBA)

16 Bin
CoSCoSA
Log (RBA)

15 Bin L 7.5Å

CoSCoSA
Log (RBA)

4,4 -Dihroxystilbene 41 –0.55 –0.56 –0.51

Dihydroxymethoxychlor (HPTE) 42 –0.60 –1.47 –2.21

Monohydroxymethoxychlorolefin 43 –0.63 –0.10 –0.10

2,3,4,5-TetraCl-4 -biphenylol 44 –0.64 –1.61 –1.56

Norethynodrel 45 –0.67 –2.66 –2.61

2,2 ,4,4 -Tetrahydroxybenzil 46 –0.68 –0.80 –0.81

-Zearalenol 47 –0.69  0.51  0.51

4,6-Dihydroxyflavone 48 –0.82 –2.07 –1.95

Equol 49 –0.82 –0.66 0.05

Monohydroxymethoxychlor 50 –0.89 –2.07 –1.95

3 -Androstanediol 51 –0.92 –2.66 –2.61

Bisphenol B 52 –1.07 –2.66 –2.61

Phloretin 53 –1.16 –0.80 –0.81

Diethylstilbestrol dimethyl ether 54 –1.25 –0.66 –0.68

2 ,4,4 -Trihydroxychalcone 55 –1.26 –1.73 –1.71

2,5-Dichloro-4 -biphenylol 56 –1.44 –1.61 –1.56

4,4 -[1,2-Ethanediyl)bisphenol 57 –1.44 –2.66 –2.61

17 -Estradiol-16 -OH-16-methyl-

3-ether

58 –1.48 –1.34 –1.34

Aurin 59 –1.50 –0.56 –0.51

Nordihydroguariareticacid 60 –1.51 –2.66 –2.61

4-Nonylphenol 61 –1.53 –1.61 –1.56

Apigenin 62 –1.55 –2.07 –1.95

Kaempferol 63 –1.61 –2.66 –2.61

Daidzein 64 –1.65 –1.61 –1.56

3-Methylestriol 65 –1.65 –1.34 –1.34

4-Dodecylphenol 66 –1.73 –2.66 –2.61

2-Ethylhexyl-4-hydroxybenzoate 67 –1.74 –2.66 –2.61

4-tert-Octylphenol 68 –1.82 –2.66 –2.61

Phenolphthalein 69 –1.87 –1.47 –1.30

Kepone 70 –1.89 –2.66 –2.61

Heptyl-4-hydroxybenzoate 71 –2.09 –2.66 –2.61

Bisphenol A 72 –2.11 –2.66 –2.61

Naringenin 73 –2.13 –2.66 –2.61

4-Chloro-4 -biphenylol 74 –2.18 –2.66 –2.61

3-Deoxyestrone 75 –2.20 –1.47 –1.55

4-Octylphenol 76 –2.31 –2.66 –2.61

Fisetin 77 –2.35 –2.14 –2.09

3 ,4 ,7-Trihydroxyisoflavone 78 –2.35 –2.66 –2.61

Biochanin A 79 –2.37 –2.66 –2.61

(continued)
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TABLE 9.1 (CONTINUED)
Compounds and Training Set Predictions of Estrogen Receptor Binding

Compound Name Number
Exp.

Log (RBA)

16 Bin
CoSCoSA
Log (RBA)

15 Bin L 7.5Å

CoSCoSA
Log (RBA)

4-Hydroxychalcone 80 –2.43 –2.66 –2.61

4 -Hydroxychalcone 81 –2.43 –2.66 –2.61

2,2 -Methylenebis[4-chlorophenol) 82 –2.45 –2.07 –1.95

4,4 -Dihydroxybenzophenone 83 –2.46 –2.66 –2.61

Benzyl-4-hydroxybenzoate 84 –2.54 –2.66 –2.61

2,4-Dihyroxybenzophenone 85 –2.61 –2.66 –2.61

4 -Hydroxyflavanone 86 –2.65 –3.15 –2.96

3 -Androstanediol 87 –2.67 –2.66 –2.61

4-Phenethylphenol 88 –2.69 –2.66 –2.61

Prunetin 89 –2.74 –2.66 –2.61

Doisynoestrol 90 –2.74 –2.66 –2.61

Myricetin 91 –2.75 –2.66 –2.61

2-Chloro-4-biphenylol 92 –2.77 –3.21 –2.61

Triphenylethylene 93 –2.78 –2.66 –2.61

3 -Hydroxyflavanone 94 –2.78 –3.43 –3.31

Chalcone 95 –2.82 –2.66 –2.61

o,p ,-DDT 96 –2.85 –2.66 –2.61

4-Heptyloxyphenol 97 –2.88 –2.66 –2.61

Dihydrotestosterone 98 –2.89 –2.66 –2.61

Formononetin 99 –2.98 –2.66 –2.61

bis-[4-Hydroxyphenyl)methane 100 –3.02 –2.66 –2.61

p-Phenylphenol 101 –3.04 –2.66 –2.61

6-Hydroxyflavanone 102 –3.05 –2.14 –2.09

4,4 -Sulfonyldiphenol 103 –3.07 –1.47 –1.30

Butyl-4-hydroxybenzoate 104 –3.07 –2.66 –2.61

Diphenolic acid 105 –3.13 –2.66 –2.61

1,3-Diphenyltetramethyldisiloxane 106 –3.16 –2.66 –2.61

Propyl-4-hydroxybenzoate 107 –3.22 –2.66 –2.61

Ethyl-4-hydrobenzoate 108 –3.22 –2.66 –2.61

Phenol red 109 –3.25 –2.66 –2.61

3,3 ,5,5 -TetraCl-4,4 -biphenyldiol 110 –3.25 –2.66 –2.61

4-tert-Amylphenol 111 –3.26 –2.66 –3.53

Baicalein 112 –3.35 –2.66 –2.61

Morin 113 –3.35 –2.66 –2.61

4-sec-Butylphenol 114 –3.37 –2.07 –1.95

4-Chloro-3-methylphenol 115 –3.38 –2.66 –3.53

6-Hydroxyflavone 116 –3.41 –2.66 –2.61

4-Benzyloxyphenol 117 –3.44 –2.66 –2.61

3-Phenylphenol 118 –3.44 –2.14 –2.09

Methyl-4-hydrobenzoate 119 –3.44 –2.66 –3.53

2-sec-Butylphenol 120 –3.54 –3.20 –3.04
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TABLE 9.1 (CONTINUED)
Compounds and Training Set Predictions of Estrogen Receptor Binding

Compound Name Number
Exp.

Log (RBA)

16 Bin
CoSCoSA
Log (RBA)

15 Bin L 7.5Å

CoSCoSA
Log (RBA)

2,4 -Dichlorobiphenyl 121 –3.61 –2.66 –2.61

4-tert-Butylphenol 122 –3.61 –3.75 –3.53

2-Chloro-4-methylphenol 123 –3.66 –2.66 –3.53

Phenolphthalin 124 –3.67 –2.66 –2.61

4-Chloro-2-methylphenol 125 –3.67 –2.66 –3.53

7-Hydroxyflavanone 126 –3.73 –2.66 –2.61

3-Ethylphenol 127 –3.87 –2.90 –3.70

Rutin 128 –4.09 –2.66 –2.61

4-Ethylphenol 129 –4.17 –3.75 –3.53

4-Methylphenol 130 –4.50 –3.75 –3.53

Source: R.D. Beger, K. Holm, K.D. Buzatu, and J.G. Wilkes, Int. Elec. J. Mol. Des., 2, 435, 2003. 

(Reproduced with permission.)

affinity to the estrogen receptor to a log (RBA) greater than 2. For a particular mol-

ecule, the RBA to the estrogen receptor is defined as one hundred times the ratio of 

the molar concentrations of 17 -estradiol and the concentration of the competing 

compound required to decrease the amount of receptor-bound 17 -estradiol by 50%. 

Thus, 17 -estradiol by definition had an RBA of 100 and a log10(RBA) of 2.0.

For each of the 130 compounds, the 2D 13C-13C COSY NMR spectrum was 

simulated using the ACD/Labs CNMR predictor version 6.0 software (ACD/Labs, 

Toronto, Canada). The 13C NMR chemical shifts with the identity of their associ-

ated nuclei are required to produce the simulated 2D 13C-13C COSY NMR spectral 

data that were used to develop a model for 130 diverse compounds whose RBAs to 

the estrogen receptor had been determined. Using the NMR spectral assignments 

obtained from predicted carbon chemical shifts to identify the nearest neighboring 

carbon atoms and establish carbon-to-carbon through-bond connectivity, spectral 

patterns of each compound formed the simulated 2D 13C-13C COSY NMR spectra. 

The 2D 13C-13C COSY spectra for all 130 compounds were binned into 2.0 ppm by 

2.0 ppm square bins.

Forward multiple linear regression (MLR) analysis was used on a selected subset of 

spectral bins to build quantitative 2D QSDAR models of relative binding affinity to the 

estrogen receptor. After binning all 130 compounds, only 605 bins from the 7,381 bins 

had nonzero elements (called “hits”) in them. Of the 605 populated bins, only 337 bins 

had more than one “hit.” From the remaining 337 multiply populated bins, a number of 

bins were selected and used to train MLR models until a model was obtained that had 

an r2 greater than 0.8 and an F-value greater than 30. This process identified 16 bins 
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that produced a QSDAR model that had an r2 of 0.82. Bins that had fewer than 2 “hits” 

were not used in the model building process. The reason for this is that a bin with one 

“hit” can inappropriately add to the r2 of a model but cannot improve the LOO cross-

validation (q1
2). The use of a large number of very small, singly populated bins is the 

reason that Bursi [28] had a high r2 and very low q1
2. To more rigorously test the valid-

ity of the 2D QSDAR models, two leave-10%-out (L13O, with 13 representing 10% of 

the 130 test set compounds) cross-validations were performed on each of the models. 

In these “leave-multiple samples-out” experiments, the compounds omitted were var-

ied, and the results of the two corresponding experiments for omitted compounds were 

averaged.

Figure 9.3a shows results of a 2D QSDAR MLR model that was based on 16 

selected 2D bins from the 2D 13C-13C COSY spectral data. The 16 bin COSY model 

for the 130 estrogenic compounds had an explained variance r2 of 0.827, a LOO q1
2

of 0.78, and an average L13O cross-validated variance (q13
2) of 0.78  0.01. The 2D 

QSDAR model was based on COSY bins 28-12 (bin 1), 72-20 (bin 2), 54-28 (bin 3), 

50-38 (bin 4), 64-56 (bin 5), 164-104 (bin 6), 152-108 (bin 7), 156-110 (bin 8), 126-112 

(bin 9), 140-112 (bin 10), 142-112 (bin 11), 154-112 (bin 12), 154-114 (bin 13), 156-114 

(bin 14), 128-116 (bin 15), and 126-120 (bin 16). All 2.0 ppm bins were written using 

the format a-b, where a and b are the ppm values corresponding to the two “nearest 

neighbor connected” atoms. The MLR equation for the 16 bin CoSCoSA model is

Predicted log10(RBA)  0.00999 * bin 1  0.03173 * bin 2  0.0071 * bin 3

0.01196 * bin 4  0.02191 * bin 5  0.0093 * bin 6 

 0.2329 * bin 7  0.01324 * bin 8  0.00737 * bin 9 

 0.02558 * bin 10  0.0392 * bin 11  0.03094 * bin 12 

 0.00545 * bin 13  0.00526 * bin 14  0.00298 * bin 15 

 0.00768 * bin 16
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FIGURE 9.3 (a) Plot of the predicted log (RBA) and experimental log (RBA) based on 16 

correlation spectroscopy (COSY) bins. (b) Plot of the predicted log (RBA) and experimen-

tal log (RBA) based on 15 COSY bins  L 7.5Å variable. (From R.D. Beger, K. Holm, K.D. 

Buzatu, and J.G. Wilkes, Int. Elec. J. Mol. Des., 2, 435, 2003. Reproduced with permission.)
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All bins had more than three “hits” except for bins 152-108 and 140-112, each 

of which had only two “hits.” The correlation matrix for the 16 bins was calculated 

and only two sets of bins had a correlation between them greater than 0.5. The aver-

age correlation between a bin and any of the other 17 bins was 0.04, and many of 

the average correlations were much lower than that. The lack of a large correlation 

among bins suggests that the resulting patterns were based on essentially orthogo-

nal data. The bin 28-12 was most often associated with the CH3 carbon connected 

to the CH2 in the ethyl groups in diethylstilbestrol and hexestrol-like compounds. 

Twelve of the fourteen compounds with a hit in 28-12 had a log10 (RBA) greater than 

–0.05. Compounds that populated bin 154-112 were most often associated with the 3 

carbon position connected to the 2 carbon position in the A-ring of 17 -estradiol-like 

compounds. Nine of the ten compounds with a hit in bin 154-112 had a log10 (RBA) 

greater than –0.05. Fourteen compounds had a “hit” in the bin at 128-116. The 

128-116 bin was most often associated with the 2 to 3 and 5 to 6 carbon positions 

in a phenol ring. Twelve of the fourteen compounds with a hit in bin 128-116 had a 

log10 (RBA) less than 0.60. The 24 compounds that had a hit or multiple hits in the 

bin 156-114 came from a hydroxylated carbon of a phenol ring (156) connected to its 

two nearest neighboring unsubstituted carbons (114). Only 5 of the 24 compounds 

with a hit in bin 156-114 had log10 (RBA) less than –1.65. Six compounds had a hit in 

bin 64-56 derived from the two carbons between the oxygen ester and the nitrodim-

ethyl of tamoxifen-like compounds. Similar spectral-structural associations could be 

made for the other bins effectively used in the 2D QSDAR models.

Figure 9.3b shows results for the 2D QSDAR model based on the MLR analysis 

of 15 selected 2D 13C-13C COSY bins plus a distance variable. The distance variable, 

L 7.5Å was assigned a value of 1 when the maximum distance between nonhydrogen 

atoms in a compound was less than 7.5 Å (compact) and a value of zero for all other 

compounds. The L 7.5Å variable replaced the COSY bin at 154-114 (bin 13) in the 

previous 16 bin CoSCoSA model. The MLR equation for the 15 bin-with-L 7.5Å 2D 

QSDAR model is

Predicted log (RBA)  0.00969 * bin 1  0.03122 * bin 2  0.00637 * bin 3

 0.01066 * bin 4  0.02142 * bin 5  0.00902 * bin 6 

 0.2263 * bin 7  0.01275 * bin 8  0.00732 * bin 9 

 0.02507 * bin 10  0.03934 * bin 11  0.02666 * bin 12

 0.00526 * bin 14  0.00329 * bin 15  0.00701 * bin 16

0.91773 * L 7.5Å

This 15 bin-with-L 7.5Å model had an r2 of 0.83, a q1
2 of 0.79, and an average q13

2

of 0.78  0.01. In this model, the L 7.5Å variable selected nine compounds, all of 

which had a log (RBA) lower than –3.26. Smaller, compact molecules tended to bind 

weakly. This bin’s significant association with lack of binding is reflected in its large 

negative  coefficient, –0.91773, in the MLR equation.

In Figure 9.3a, the line of compounds predicted to have a log10(RBA) of –2.60 is 

a set of compounds that did not have a hit in any of the 16 bins used to formulate 



© 2009 by Taylor & Francis Group, LLC

250 Endocrine Disruption Modeling

the two 2D QSDAR models. There were 56 compounds in the 16 bin 2D QSDAR 

model that did not have a hit in one of the 16 bins. The 15 bin-with-L 7.5Å model had 

52 compounds that did not have a hit in any of the 15 bins or L 7.5Å. Removal of com-

pounds with no hits from the 2D QSDAR models did not change the r2 or q2 of the 

model by more than 2%. Three of the compounds in the 16 bin 2D QSDAR model 

had residuals greater than two standard deviations (3 -androstanediol, genistein, 

and norethynodrel). In the 16 bin model, only one other compound had a predicted 

residual greater than two standard deviations and it was 4-hydroxy-tamoxifen. 

The 15 bin-with-L 7.5Å model had four compounds with no hits that had residuals 

greater than two standard deviations. They are the same three compounds (plus 4,4 -

sulfonyldiphenol) poorly modeled by the 16 bin model. There were two compounds 

in the 15 bin-with-L 7.5Å model with predicted residuals greater than two standard 

deviations, 4-hydroxy-tamoxifen and dihydroxymethoxychlor (HPTE). Almost all of 

the compounds with no hits in the 16 bins had experimental log10 (RBA) lower than 

–1.0. The 2D QSDAR models did not find a spectral relationship for these weakly 

binding compounds. Most of the other bins in both 2D QSDAR models were used to 

establish a relationship between a spectral bin and binding to the estrogen receptor 

with a log10 (RBA) greater than –2.60.

To further test the ruggedness, the trained 2D QSDAR models of estrogen recep-

tor binding were used to predict the log10(RBAs) of compounds from two published 

external datasets [29,30]. The log10(RBAs) from those external datasets possessed a 

greater variability in binding activity. So, by a previously published method, a set of 

compounds that had their binding activity determined in each of three labs [29,30] 

was used to normalize the external datasets to the NCTR data [5,45]. The MLR 

equations shown above were used to predict the log10(RBA) of the compounds in 

the test set. The published normalized log10(RBA) for 27 compounds from Waller 

and Kuiper data was used in our external testing of the 2D QSDAR MLR models 

[5]. However, many of the occupied bins for the new compounds from the external 

dataset did not fall into the original 605 occupied bins. (The original set of bins com-

prised only 8.2% of the 2D COSY spectral plane.) We hypothesized that, in the dif-

ferent molecular context of the external datasets, NMR chemical shift information 

was expressed in adjacent but nonincluded bins. NMR chemical shifts exist along 

a continuum, and the process of binning them for this type of pattern recognition 

inherently compromises the pattern when it barely misses a selected bin. To account 

for this source of confusion with the external data, we tried adding various fractions 

of “near-miss” signals into each compound’s spectrum. With this in mind, we used 

the CoSCoSA model’s MLR equation to predict the normalized log (RBA) of the 

compounds in the external test set. Compounds from the external test set with bins 

that were one bin away (one of eight bins surrounding a 2D bin) from the original 

605 populated bins were modeled using none, one-quarter, and one-half of that bin’s 

intensity in the nearest neighboring bin used in the original 2D QSDAR model. 

Table 9.2 shows the predictions for 27 compounds using the 2D QSDAR models. The 

first 21 compounds show the predictions for Waller’s dataset [29] using both the 16 

bin and 15 bin-plus-L 7.5Å model of estrogen binding. Only 7 of the 27 compounds 
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TABLE 9.2
External Test Set Predictions of Estrogen Receptor Binding

Name
Normalized log 

(RBA) 16-CoSASA
15 L 7.5Å

-CoSCoSA CoMFA

2-tert-Butylphenol –4.55 –2.66 –3.53 –3.83

3-tert-Butylphenol –4.82 –1.50  0.64 –2.34  0.66 –3.33

2,4,6,-TriCl-4 -biphenylol –0.16 –1.61 –1.56 –1.60

2-Chloro-4,4 -biphenyldiol –0.61 –1.61 –1.56 –1.49

2,6-Dichloro-4 -biphenylol –1.11 –1.61 –1.56 –2.41

2,3,5,6,TetraCl-4, 

4 -biphenyldiol

–2.18 –1.61 –1.56 –0.82

2,2 ,3,3 ,6,6 -HexaCl- 

4-biphenylol

–2.74 –2.14 –2.08 –3.06

2,2 ,3,4 ,6,6 -HexaCl- 

4-biphenylol

–2.60 –1.61 –1.56 –2.48

2,2 ,3,6,6 -PentaCl-

4-biphenylol

–1.97 –1.61 –1.56 –3.07

2,2 5,5 -TetraCl-biphenyl –2.67 –2.66 –2.61 –2.74

2,2 ,4,4 ,5,5 -HexaCl-

biphenyl

–2.83 –2.66 –2.61 –1.52

2,2 ,4,4 ,6,6 -HexaCl-

biphenyl

–1.87 –2.66 –2.61 –1.83

2,2 ,3,3 ,5,5 -HexaCl- 

6 -biphenylol

–2.69 –2.36 –2.29 –3.01

4 -Deoxyindenestrol –1.37 2.89  0.63 2.96  0.67 –0.53

4 -Deoxyindenestrol –0.23 2.89  0.63  2.96  0.67  0.11

5 -Deoxyindenestrol –0.59 –0.61 –0.59 –1.00

5 -Deoxyindenestrol  0.35 –0.61 –0.59 –0.59

Indenestrol A (R)  1.08 3.95  0.64 4.01  0.67 0.29

Indenestrol A (S)  2.39 3.95  0.64 4.01  0.67 0.62

R 5020 –1.81 –2.45  0.18 –2.48  0.17 –0.70

Zearalenone  0.91  0.51  0.51 –0.12

5-Androstenediol –0.49 –2.66 –2.61 –0.66

16a-Bromoestradiol  1.41 –0.11  0.05  0.33

16-Ketoestradiol –0.38 –0.11  0.05  0.58

17-epi-Estriol  0.98 –0.11  0.05 –0.16

2-Hydroxyestrone –0.19 1.26  1.32  0.36

Raloxifene  1.34 0.17  0.63 0.20  0.66 –0.24

Note: Plus and minus signs reveal the variation seen when using none and one-half of a bin’s intensity in 

neighboring bins used to formulate the comparative structural connectivity spectral analysis (CoSCoSA) 

model. CoMFA, comparative molecular field analysis.

Source: R.D. Beger, K. Holm, K.D. Buzatu, and J.G. Wilkes, Int. Elec. J. Mol. Des., 2, 435, 2003. (Reproduced 

with permission.)
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from Waller and Kuiper external datasets had binned COSY chemical shifts that 

were within one bin of those 16 bins used to formulate a 2D QSDAR model. Table 9.2 

shows that for seven compounds, we report the predicted the log10(RBA) using one-

quarter intensity in a neighboring bin along with the deviation seen when predicting 

the log10(RBA) using none and one-half intensity in the neighboring bin used for 

a 2D QSDAR model. For Waller’s test set and one-quarter of a bin’s intensity in 

neighboring bins, we achieved a qpred
2 of 0.50 for the 16 bin 2D QSDAR model and 

a qpred
2 0.57 for the 15 bin-plus-L 7.5Å 2D QSDAR model. When using one-half of a 

bin’s intensity in a neighboring bin, we got a qpred
2 of 0.45 for the 16 bin 2D QSDAR 

model and a qpred
2 0.52 for the 15 bin-plus-L 7.5Å 2D QSDAR model. Using none of a 

bin’s intensity in a neighboring bin, we got a qpred
2 of 0.55 for the 16 bin 2D QSDAR 

model and a qpred
2 of 0.62 for the 15 bin-plus-L 7.5Å 2D QSDAR model. A CoMFA 

model had a qpred
2 of 0.70 for Waller’s normalized test set [29]. When Indenstrol 

A (R), Indenestrol A (S), 4 -deoxyindenestrol (R), and 4 -deoxyindenestrol (S) are 

removed from Waller’s test set and none of a bin’s intensity from neighboring bins a 

qpred
2 of 0.59 for the 16 bin model and a qpred

2 0.74 for the 15 bin-plus-L 7.5Å model are 

achieved. Further inspection of the predictions for Indenstrol A (R), Indenestrol A 

(S), 4 -deoxyindenestrol (R), and 4 -deoxyindenestrol (S) revealed one chemical shift 

prediction that was highly suspect (142 ppm). On closer examination of the spectral 

prediction process, we found that the database structures used as the basis for pre-

diction all had corresponding chemical shifts from 134 to 139 ppm, not 142 ppm. 

It appears that an error in the spectral prediction process may have contributed to 

poorer modeling results for these outliers. Undoubtedly, this type of error will be less 

frequently observed with models based on newer versions of the predictor software 

which access many more reference compounds.

9.5 FUTURE RESEARCH

9.5.1 PRODUCING A 13C AND 15N HETERONUCLEAR

SPECTRAL-CONNECTIVITY DATA MATRIX

Chemicals with potentially useful pharmaceutical value or those that exhibit toxic-

ity, and compound types to be modeled will contain atoms besides carbon, oxygen, 

and hydrogen. In these cases, other NMR-active atoms besides 13C can be used. 
15N is the most prominent atom that is both biologically important and for which 

accurate NMR prediction software is available. Additional NMR nuclei that could 

be used for SDAR or QSDAR modeling include 17O, 19F, and 31P. The biological 

endpoint to model and the availability of an endpoint-characterized training set will 

determine which nuclei are useful in development of the matrix. A typical 2D spec-

tral connectivity data matrix layout for a 13C-15N heteronuclear CoSCoSA model is 

characterized by combining four spectral connectivity data matrices [46]. There is 

one matrix for 13C-13C data, one matrix for 15N-15N data, one matrix for 13C-15N data, 

and one matrix for 15N-13C data. As before for 13C-13C 3D spectral-connectivity data 

matrices, symmetry-based data duplicates mean that only half of the four spectral-

connectivity data matrices are required to develop a model.
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9.5.2 USING MOLECULAR DYNAMICS OF COMPOUNDS

TO PRODUCE A 4D SPECTRAL-CONNECTIVITY DATA MATRIX

A 4D-spectral connectivity data matrix can be defined as the sum of an arbitrary 

number, say 100, 3D-connectivity matrices. In the simplified version of this 4D- 

connectivity matrix concept, chemical shifts of atom i and atom j are assumed not 

to change as the molecule bends or twists with time, but the distance between atom 

i and atom j would differ as a function of the molecular conformation. For any two 

atoms, molecular dynamics programs can estimate interatomic distance, a value that 

may change over some range and for which the percentage of time that the distance 

is within a certain bin will vary, depending on molecular connections, degrees of 

freedom, and so forth. This concept applied to CoSCoSA modeling would treat the 

distance between atoms as a potential variable rather than as a constant. A score of 

100 in a 4D spectral-connectivity data matrix will represent unvarying distances 

between two atoms as seen in bonds and also between more distant atoms if the mol-

ecules are very rigid. For two atoms in flexible molecules, there will be a distribution 

of distance hits along the z-axis varying from some minimum to a maximum, and 

where the summation over time of these distances will add to 100 for each atom-to-

atom pair. The distance distributions can then be used to assign occupation prob-

abilities from zero to some maximum (most probable conformation) among the four 

distance bins. For all the possible atom pairs, distance distributions will be Gaussian, 

or skewed-Gaussian functions when there is a single local maximum distance. When 

there is more than one maximum, more complex distributions will be seen. In the 

simplified regime of CoSCoSA distance modeling, the occupancy pattern for a par-

ticular molecule and a particular through-space distance bin would be 100 if the full 

range of possible distances are within that 2D bin. If 30% of the time the molecular 

shape were such that the atomic distances fall outside of that distance range, the 

atom-to-atom bin occupancy for that distance range would be represented with 70, 

and the remaining 2D bin(s) would share the other 30 points. The fourth dimension 

is effectively time, during which the molecule twists through its available conforma-

tions, and interatomic distances vary as described above. We will now discuss why 

this way of representing molecular conformational characteristics confers a signifi-

cant advantage when building a CoSCoSA model, particularly for cases in which the 

training set includes very diverse compound types.

Binding of a ligand to a receptor occurs because of a lowering of Gibbs free 

energy for the combined ligand-receptor system. As in physical and chemical sys-

tems, lowered Gibbs free energy of biological systems depends on two factors: favor-

able changes in enthalpy and entropy changes. Traditional 3D-QSAR approaches 

are biased to reflect enthalpy changes and ignore entropy contributions. Classical 

3D-QSAR models are based on electrostatic and stereospecific patterns in space as 

they correlate with biological activity. These correlations work because they reflect 

electrostatic differences and the corresponding changes in enthalpy that occur during 

binding. But these QSAR models neglect entropy changes. Entropy calculations are 

routinely neglected because they are often misunderstood, and because it is not easy 

to conceive a way in which such phenomena can be reflected in models that are built 
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directly using molecular 3D-structural conformations. Modelers typically use only 

the minimum energy conformer for each compound during model development, and 

this ignores the changes in molecular conformation that are statistically possible and 

that certainly occur during the compound’s interaction with its enzymatic substrate 

when binding occurs.

A 4D spectral-connectivity data matrix allows for multiple conformations of a 

molecule to be considered in modeling and activity prediction. Multiple conforma-

tions can be calculated using molecular dynamics principles and used in an “entro-

py-like” equation to estimate the effect of configurational entropy [47–49]:

S N p In pij ij

i j

1/

where pij, a probability that must lie between zero and one, is calculated as the per-

centage of time the distance between atoms i and j lie within the rij spatial distance 

bin, with this percentage then divided by 100 to express the occupancy within the 

probability range required by the equation.

9.5.3 FUTURE APPLICATIONS OF SDAR MODELING

The ability of SDAR models to accurately predict the biological, chemical, or physi-

cal activity of molecules has tremendous application in the pharmaceutical, chemi-

cal, and materials science industries. LITMUS Molecular Design, LLC, licensed the 

commercialization rights to SDAR modeling and has been applying SDAR to the 

creation of new molecular entities that would be predicted to have certain character-

istics. The initial task was to develop an antipsychotic drug that was like clozapine 

in its antipsychotic efficacy, yet without the serious adverse affect of agranulocyto-

sis, a potentially fatal blood disorder. SDAR models of Dopamine D2 and 5-HT2A 

receptor binding were created as SDAR models for side effects like hERG inhibition 

and agranulocytosis risk were also created. The latter model was based on epide-

miological data, extending SDAR’s capabilities into the realm of nonexperimental 

data, which can be used to predict clinical characteristics for which there are no in 
vitro or in vivo models. These SDAR models were used to develop leads that had 

the desired receptor binding affinities to D2 and 5-HT2A. The application of SDAR 

to rational drug design has the potential to cut years of time and millions of dol-

lars from the lead candidate creation and selection phases. The antipsychotic pro-

gram described was accomplished in roughly 3 months. This would normally take 

7 years and $250 million to accomplish using traditional methods. Other areas of 

exploration involve using the model data to identify mechanisms of toxicity through 

analysis of structural components that were implicated as predictive by the model. 

Thus, in addition to broad applicability, SDAR has great potential as an investiga-

tive tool.

An important step beyond modeling is externally validating the model’s predic-

tions with biological assays. We developed QSDAR models for the toxic equivalency 

factors (TEFs) of the 29 polychlorinated dioxin-like compounds (PCDDs, PCDFs, 
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or PCBs) for which nonzero TEFs have been defined [50]. A separate QSDAR model 

predicted TEFs of 0.037 and 0.004, respectively, for 1,3,7,8-tetrachlorodibenzo- 

p-dioxin (TCDD) and 1,2,3,4,7-pentachlorodibenzo-p-dioxin (PeCDD), both of 

which are among the 390 polychlorinated dioxin-like congeners for which zero value 

TEFs are assumed [51]. A QSDAR model of relative potency (REP) values esti-

mated the corresponding values as 0.115 and 0.020 for these two dioxins [51]. Results 

from both models indicated that these two congeners are likely to exhibit significant 

dioxin-like toxicity. Biological validation of the QSDAR models predictions was 

required. We decided to use the luciferase gene expression assay based on mouse 

liver cells to experimentally determine the REPs for 1,3,7,8-TCDD and 1,2,3,4,7-

PeCDD binding to the aryl hydrocarbon receptor. The luciferase assay determined 

that the REP for 1,3,7,8-TCDD was 0.027 and the REP for 01,2,3,4,7-PeCDD was 

0.013. The corresponding gene-expression assayed values were in agreement with 

the QSDAR model predictions for 1,3,7,8-TCDD and 1,2,3,4,7-PeCDD [51].

9.6 CONCLUSIONS

Two accurate SDAR CoSA models of relative binding affinity to the estrogen recep-

tor have been made using 1D 13C NMR spectra and 13C NMR combined with MS 

data. The LOO accuracy of the SDAR models was 75% and 82%, respectively. These 

SDAR models were able to predict correctly the classification for 3-deoxyestradiol 

and dimethylstilbesterol as strong relative binders and 2-ethylphenol as a low rela-

tive binder. The predictions for 3-methylestriol and 4,4 -dihydroxystilbene tended 

to be incorrect, which may be due to the fact that they are medium relative binders. 

Accurate prediction of compounds in the medium binding classification is difficult 

because of nonspecific binding to the estrogen receptor. To help address this issue, 

we combined spectral information with nearest neighbor structural information in 

the development of 2D QSDAR models. 2D QSDAR models of relative binding affin-

ity for 130 compounds were trained with r2 of 0.83 and cross-validated with leave- 

10%-out of 0.78. The 2D QSDAR models were tested with external datasets. The 

external datasets had the spectra predicted and binned, and many of the bins were 

not in the training set. To account for this, we used some of a nonselected bin’s inten-

sity if it was near one of the bins used in the training set. The predictions ranged 

from qpred
2 of 0.45 for the 16 bin 2D QSDAR model and a qpred

2 0.62 for the 15 bin-

plus-L 7.5Å model depending on whether the neighboring bin’s intensity was used 

in the prediction. With the development of 2D spectral binning capabilities of the 

3D-spectral-connectivity matrix, we can now build models that will include 3D 

through-bond and through-space structural information, and we believe this infor-

mation will add to the QSDAR model accuracy and predictive capability.
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10 Mechanism-Based 
Modeling of Estrogen 
Receptor Binding Affinity
A Common Reactivity Pattern 
(COREPA) Implementation

Ovanes Mekenyan and Rossitsa Serafimova

ABSTRACT

The capabilities of the probabilistic classification scheme for identification of 

the common reactivity pattern (COREPA) of biologically similar chemicals 

to model binding affinity to human estrogen receptor (hER) will be reviewed. 

The COREPA reactivity patterns based on the distance between nucleophilic 

sites allow the identification of distinct ER binding interaction mechanisms. 

Three-dimensional (3D) structural and parametric boundaries of different 

binding mechanisms are defined and used for building a categorical quantita-

tive structure-activity relationship (QSAR) model. In addition to the traditional 
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molecular orbital (MO) reactivity descriptors, local hydrophobicity parameters 

are used to assess the interaction of ligands with the hydrophobic pockets of ER. 

The interaction mechanisms are less pronounced at the lowest activity range 

where the categories are defined by chemical classes (phenols, phthalates, and 

so forth). Once the chemicals are grouped by mechanism, then COREPA models 

are developed to determine the potency of chemicals belonging to each relative 

binding affinity (RBA) range. Eventually, each category is associated with a spe-

cific binding mechanism and activity bin. In the integrated model, the categories 

are organized in a hierarchical battery of local models associated with various 

interaction mechanisms and activity bins. To assess the effect of the metabolic 

activation of a chemical, the categorical scheme is combined with a metabolism 

model simulating rat liver S-9 mix activation. The details of the 3D categorical 

model for ER binding affinity will be presented along with illustration for the 

model performance with and without metabolic activation of chemicals.

KEYWORDS

Common reactivity pattern (COREPA)

Estrogen receptor (ER) binding affinity

Interaction mechanism

Molecular flexibility

10.1 INTRODUCTION

One of the Organization for Economic Cooperation and Development (OECD) prin-

ciples for valid Quantitative Structure-Activity Relationship (QSAR) is to model 

well-defined toxic pathways [1]. The diversity of toxic pathways that could disrupt 

the endocrine system makes the risk assessing of potential endocrine disrupting 

chemicals (EDCs) a challenging task. The focus of the present chapter is the direct 

interactions of chemicals with ER — that is, ER binding mediated endocrine dis-

ruption. This interaction is considered as a primary event that triggers the ultimate 

biological responses [2]. In this respect, the structural tolerance of ER allowing a 

large number of exogenous chemicals to mimic the action of natural hormones is of 

high concern. The latest legislative and governmental efforts have focused on find-

ing out simple screening tools for identifying those chemicals most likely to bind 

ER without experimental testing of all chemicals of regulatory concern. The QSAR 

approach is a powerful in silico technique that should be considered for prioritizing 

chemicals for subsequent empirical assessments. This is supported by the five-level 

conceptual framework of the OECD [3], according to which the use of in vitro and 

QSARs is foreseen before use of in vivo tests.

The high specificity of the interaction between ligands and ER inevitably requires 

analyzing the structure-activity relationship at three-dimensional (3D QSARs) and 

four-dimensional (4D QSAR) levels. A number of 3D approaches have been used to 

develop QSARs for ER binding affinity, such as automated docking models (ADAM) 

[4], comparative molecular field analysis (CoMFA) [5–7], and a common reactivity 

pattern (COREPA) approach [8].
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The involvement of the 3D molecular structure in the modeling inevitably requires 

us to take into account the molecular flexibility, or “fourth dimension,” of molecular 

structure [9]. It was shown that the variation in stereoelectronic parameter values for 

the conformers of same chemical could be as large as the variation in stereoelectronic 

parameter values for conformers of distinct chemicals [10]. Therefore, the ignorance 

of the effect of conformational flexibility of ligands on their potential activity could 

lead to large errors. To address the issue, it is assumed that in complex environments, 

such as with biological tissues and fluids, chemicals could exist in conformations 

other than the lowest gas phase energy state. In fact, the lowest-energy conforma-

tions might be the least likely to interact with macromolecules [11], and solvation 

and binding interactions could more than compensate for energy differences among 

the conformers of a chemical [12–18]. Based on theoretical considerations [19], it 

was determined that multiple conformational states differ in energy within several 

kcal/mole of the lowest-energy conformer that makes the transition between them 

feasible both thermodynamically and kinetically. On the other hand, conformers of 

an individual chemical that have free energy within approximately 20 kcal/mol from 

the lowest-energy structure (usually accepted energy range) often exhibited signifi-

cant variation in electronic descriptor values. For example, conformers of phloretin 

had a range of 0.51 eV for ELUMO, 0.55eV for EHOMO, 0.65 eV for EHOMO-LUMO, and 5.09 

D for dipole moment. Moreover, it was found that the lowest-energy conformer of 

phloretin was not the active one with respect to binding to ER (Scheme 10.1).

The fact that small energy differences between conformers can result in significant 

variations in electronic structure demonstrated the necessity of including all energeti-

cally reasonable conformers when defining reactivity pattern, which is common for 

biologically similar chemicals [20,21]. This imposed the necessity of developing effec-

tive algorithms for investigating conformational space of the molecules. Alternatively, 

one could produce the wrong screening results if the conformational space of the 

chemicals is not well represented. To resolve combinatorial difficulties with systematic 

algorithms for conformer generation, much more effective nondeterministic methods 

were developed [22]. They, in turn, demonstrated insufficiencies due to irreproduc-

ibility of the generated conformers. To overcome this problem, the nondeterministic 

algorithms have been improved by further saturating conformational space [23].

Another “dimension” of the molecular structure that should be taken into account 

in QSAR studies is its metabolic transformations that are important in the evalua-

tion of its toxic potential. For example, the determination of metabolic stability can 

HO OH

OH O

OH

SCHEME 10.1 Phloretin, CAS # 60-82-2.
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provide information on the potential for bioaccumulation and whether a chemical is 

likely to be converted to a more active form (metabolic activation) or a less active 

form (metabolic detoxification). With regard to endocrine disruptors, one should take 

into account that metabolism of the xenobiotic may alter its own potency by creat-

ing metabolites that are either more or less active than the parent compound. Thus, 

methoxychlor (bis[p-methoxydichlorophenyl]trichloroethane-MC) has estrogenic 

activity in vivo while it is inactive or virtually inactive in vitro [24]. Substances 

like the di-hydroxylated metabolite of methoxychlor, 2,2-bis(p-hydroxyphenyl)-1,

1,1-trichloroethane (HPTE), are estrogenic and antiandrogenic in vitro, and their 

formation in vivo can explain the estrogenicity of methoxychlor.

The COREPA technique [20,21] we used for predicting ER binding affinity is 

a probabilistic scheme for estimating the COREPA of biologically similar chemi-

cals, accounting for their molecular flexibility. The common reactivity patterns are 

identified as areas of stereoelectronic structural space populated by the conformers 

of active chemicals. In our earlier exercise for deriving of reactivity patterns for 

ER relative binding affinity (RBA), the common reactivity patterns were derived 

in the structural space defined by the global nucleophilicity, interatomic distances 

between nucleophilic sites, and local electron donor capability of the nucleophilic 

sites [20,21].

It is known that a reliable QSAR model should be developed within the same 

interaction mechanism. Another challenging issue in predicting the estrogenicity of 

chemicals is the “opposite” task — namely, the possibility of inferring the interaction 

mechanisms by QSAR methods. The latter became realistic after recent successful 

attempts to elucidate the nature of the ligand-binding pocket of estrogen receptors 

and  [25,26]. Thus, it was found that a significant increase in binding affinity was 

reached by placing lipophilic substituents on steroidal estrogens, notable at positions 

7  and 11 . It was assumed that the intimate contact between the protein and the 

ligand in the ligand-binding pocket at these predefined positions is favorable for bind-

ing. Alternatively, even small substituents at other ligand sites caused dramatic losses 

of binding affinity. Apparently, the differences in the characteristics of the pocket 

regions should be closely associated with a diversity of interaction mechanisms.

In our recent exercise for modeling the hER binding affinity, we focused on 

the categorical approach for modeling where each category is associated with 

an anticipated interaction mechanism. A training set of 645 chemicals, includ-

ing 497 steroid and environmental chemicals and 148 chemicals synthesized for 

medicinal purposes, were used to explore hER-structure interactions. Analysis of 

reactivity patterns based on the distance between nucleophilic sites resulted in 

identification of distinct interaction mechanisms. The reactivity patterns provided 

descriptor profiles for each interaction mechanism binned into potency ranges. 

Based on derived COREPA models, an exploratory expert system was subse-

quently developed to predict RBA and classify chemicals with respect to the hER 

binding mechanism.

One of the main reasons for failure of screening exercise using in silico models 

is the ignorance of the model applicability domain. This is of crucial importance 

for reliability of model performance when large chemical inventories are screened 

for potential EDCs. The model domain is also important for expending initial 
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exploratory 3D QSAR models beyond current training sets to increase applicability 

to more diverse structures in large chemical inventories.

The aim of this study was to review the recent achievements of the Laboratory 

of Mathematical Chemistry to model hER binding affinity of chemicals and mecha-

nisms of binding interaction by making use of the COREPA modeling technique. 

The focus of the review will be the model published in Serafimova et al. [27]. In 

the current review, we will also present the latest exercises of application of this 

model combined with a simulator for rat liver metabolism. In Section 10.2, the 

upgraded modeling tools are presented, including the multiparameter formulation of 

the COREPA method, the procedure for investigating conformational flexibility of 

chemicals, the new molecular descriptor for assessing local hydrophobicity in order 

to estimate the receptor binding pocket, and the principles of used model applicabil-

ity domain. The ultimate screening system is constituted as a hierarchical tree of ER 

binding models for each of the identified interaction mechanisms and potency bins 

and was combined with a liver metabolic simulator. The capabilities of the mod-

els and decision tree were illustrated by the screening exercise with 387 chemicals 

tested for hER binding affinity by the Ministry of Economy, Trade and Industry of 

Japan (METI) [28]. The performance of the model combined with simulator of rat 

liver metabolism is illustrated for 25 chemicals with documented metabolism and 

available data for ER binding affinity of parents and metabolites.

10.2 METHODS

10.2.1 TRAINING SET CHEMICALS

The training database used for deriving the hER binding affinity model (645 chemi-

cals) was published recently [27] and could be found as supplementary information 

on the Laboratory of Mathematical Chemistry Web site (www.oasis-lmc.org/). It 

combines two datasets: a collection of 148 chemicals provided by Katzenellenbogen 

and Anstead, from the University of Illinois, Urbana, and the University of Kentucky, 

Albert B. Chandler, respectively (reported in about 300 papers; see [25,26], as rep-

resentative of this collection), and part of the METI database (497 chemicals) [27]. 

The potency values are expressed as RBA, with estradiol having an affinity of 

100%.

10.2.2 LIGAND-BINDING POCKET AND INTERACTION MECHANISMS

The ligand-binding pocket is described in detail in Anstead et al. [26], and it was 

summarized in our preceding publication [27]. Several receptor-binding sites are 

identified. That not occupied by the receptor and thus available to the ligands and 

their analogs is called receptor-excluded volume (RExV) of about 700 Å3, which is 

significantly larger than the volume of the ligands (for example, 245 Å3 for E2) [29]. 

This suggests that the receptor-binding site can be distorted considerably without 

loss of RBA. The extensive synthetic work in the area allowed further elucidation of 

the electronic and hydrophobic interaction sites in the receptor pocket, which is sum-

marized as follows: (1) the hydroxyl group at position 3 donates a hydrogen bond to 

http://www.oasis-lmc.org
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weakly charged histidine residue (it was also hypothesized that this OH group could 

also act as H-bond acceptor); (2) the A-ring with small excess negative charge on 

the faces of π-electron could be engaged in a weak polar interaction with a slightly 

positively charged receptor residue, situated on the -face of the steroid; similarly, 

the H-atoms at its periphery with small excess positive charge could get in such 

interactions with the negatively charged atoms (oxygen, sulfur) of the receptor; (3) 

the hydrophobic pocket at the 7 -position has a minimum volume of 17 Å3; (4) the 

hydrophobic pocket at the 11 -position has a minimum volume of at least 45 Å3; (5) 

14 , 16 , and 17  are small flexible subsites; some of them like 16  could tolerate 

large nonpolar groups; and (6) the 17 -hydroxyl group probably acts as an H-bond 

acceptor from a receptor residue.

Based on the above model for the ligand-binding pocket, it was concluded that the 

binding affinity is conditioned by electronic and hydrophobic interactions. In addi-

tion to the traditional two sites interacting with the nucleophiles on A and D rings, a 

third receptor site situated at one of the binding pockets (11 ) could interact with the 

ligand. These three sites are denoted as A, B, and C; moreover, the A site provides the 

strongest interaction energy, whereas the B and C sites have approximately the same 

strength [30]. Four electronic interaction mechanisms could be anticipated based on 

these three sites: A–B, A–C, A–B–C (AD), and A only, as shown in Figure 10.1.
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FIGURE 10.1 Estrogen receptor (ER) electronic binding mechanisms.
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10.2.3 MOLECULAR MODELING APPROCHES

10.2.3.1 Conformational Analysis by Genetic Algorithm

To avoid the combinatorial complexity of the systematic approaches [31–33] a nonde-

terministic algorithm for coverage of the conformational space by a limited number 

of conformers was developed [22]. It is based on a genetic algorithm (GA) aiming 

to minimize 3D similarity among the generated conformers. The 3D similarity of 

a pair of conformers is assumed reciprocal to the root-mean-square (RMS) distance 

between identical atomic sites in an alignment providing its minimum. In contrast to 

traditional GA, the fitness of a conformer is not quantified individually but as part of 

the population to which it belongs. The RMS-based function for assessing conformer 

diversity is applied in combination with another fitness function based on Shannon 

entropy formulae [34]. The joint application of both functions provides better cover-

age of conformational space by generated structures. To better reflect the flexibility of 

saturated polycyclic structures, a new conformer variable (flip of Csp3 pyramids) is 

introduced in addition to rotation around single bonds and flip of free corners (in satu-

rated cyclic structures). During the conformer generation process, the stereochem-

istry of the active enantiomer is maintained. Each of the generated conformations 

is submitted to a geometry optimization procedure by quantum-chemical methods. 

Usually, MOPAC 93 [35,36] is employed by making use of the AM1 Hamiltonian. 

Next, the conformers are screened to eliminate those whose heat of formation, ΔH0
f , 

is greater from the ΔH0
f associated with the conformer with absolute energy minimum 

by user-defined threshold. Usually, the 20 kcal mol–1 (or 15 kcal mol–1) threshold is 

employed. Subsequently, conformational degeneracy, due to molecular symmetry and 

geometry convergence, is detected within a user-defined torsion angle resolution.

To minimize the effects of nondeterministic character of GA and smoothing 

parameter h of the continuous (probabilistic) conformer distribution [19] on the 

reproducibility and diversity of generated conformers, a new procedure for satu-

ration of conformation space was developed [23]. The goal of the saturation is to 

determine the optimal number of conformers providing stable conformational dis-

tributions across selected molecular descriptors that are no longer perturbed by the 

addition of new conformers. Such conformer distributions are expected to eventually 

provide reliable COREPA patterns of biologically similar chemicals. The approach 

for conformer saturation is based on the independent application of the GA for con-

former generation. This algorithm is applied consecutively a number of times until 

conformational space is saturated within a user-defined population density. Details 

on the saturation algorithm and more illustrations were reported elsewhere [23].

10.2.3.2 Molecular Descriptors — Local Hydrophobicity Index

A variety of mechanistically sound molecular descriptors assessing specific steric and 

electronic interactions are used in the OASIS software to model the receptor binding 

interactions [20,21]. Among them, one should mention the energies of frontier orbit-

als (ELUMO, EHOMO [eV]) assessing the global electrophilicity and nucleophilicity of 
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molecules, respectively; the difference between these energies (Egap [eV]) as a mea-

sure of molecular reactivity; electronegativity EN [eV]; dipole moment ([D]); volume 

polarizability (VolP [a.u./eV]) as an averaged ability of a chemical to change electron 

density at its atoms during chemical interactions; degree of stretching or compactness 

(quantified as sum of interatomic steric distances, GW); greatest interatomic distance 

(Lmax); planarity (normalized sum of torsion angles in a molecule); van der Waals surface; 

and solvent accessible surface calculated by making use of the Connoly algorithm [37]. 

The local specificity of molecular structure should also be used, such as the distances 

between fragments and atomic sites, dij [Å ], atomic charges (qi [a.u.]), frontier atomic 

charges (f i
HOMO and f i

LUMO, [a.u.]), donor and acceptor superdelocalizabilities (Si
E and Si

N

[a.u./eV]), charged partial surface areas (CPSAs) as introduced by Stanton and Jurs [38]. 

Among the CPSAs one could distinguish partial positive surface area (PPSA) and partial 

negative surface area (PNSA). Less specific molecular descriptors have also been used 

in describing receptor mediated effects, such as water solubility and log Kow, which are 

important for the nonreactive component of the effect (penetration, diffusion).

The analysis of the ligand-receptor interactions, however, clearly showed that 

parameters associated with the local hydrophobic interactions should also be 

included in the list of molecular parameters used for modeling ER binding affinity 

of molecules. Recently, a set of new parameters was introduced to describe the mag-

nitude and directional character of hydrophobic interactions in addition to previously 

described electronic components. The new parameters are derived by analyzing the 

distribution of the hydrophobic ‘‘bumps’’ (in terms of van der Waals volume, sur-

face, and charged surfaces), across the line between nucleophilic sites previously 

shown to be associated with high-affinity ER binding [20,21].

The following parameters are inferred to assess the dimensionality of a hydrophobic 

bump (Figure 10.2): the distance from the projection of the outermost bump atom to the 

most remote nucleophilic site across the line between nucleophilic sites (R_bump [Å]); 

a similar distance applied to the center of a cylinder encompassing the bump 

Diam_cyl

Bump_H

Bump_H1

Bump_H2

Bump

R_bump

R_bump_cyl

VW Surface

VW Volume

CPSAs
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RX RY

FIGURE 10.2 Local hydrophobic descriptors, named “bump” parameters, and the respective 

abbreviations.
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(R_bump_cyl [Å]); diameter of this cylinder (Diam_cyl [Å]); and height of the cyl-

inder, that is, the bump (Bump_H [Å]). The volumetric parameters of the bumps 

are formed by atoms above the plane situated at a user-defined distance (d  5Å) 

from the line between nucleophilic sites. Thus, the van der Waals volumes of the 

bump Bump_VW_Volume [Å3]) are calculated by summing their atomic van der 

Waals volumes; similarly, the surface (Bump_VW_Surface [Å2]) and charged sur-

face (Bump_CPSAs [Å2] [38]) of the bump are calculated by summing the respective 

atomic contributions. The above set of local hydrophobicity parameters are referred 

to as functional because they are inherently dependent (for example, the volume of 

the bump is estimated for all distance between two sites the bump is originating 

from. Another functional parameter is the distance between two atoms combined 

with their charges; this is already a 3D parameter in terms of the distance between 

atoms and both charges. Within the COREPA formalism, the probability distribu-

tions of functional parameters are calculated as multidimensional distributions. For 

example, a functional parameter is used in the model for AB interaction type and 

RBA  10%. (Figure 10.5); it was named Q_DISTANCE, combining the distance 

between two atomic sites (nucleophilic atoms in this specific case) and charge of one 

of these sites.

10.2.3.3 Basic Principles of the COREPA Method

The COREPA is a probabilistic classification scheme identifying parametric criteria 

that will classify an unknown object into predefined classes of biological similarity 

using a training set of objects from multiple classes. The COREPA formalism uses a 

Bayesian probabilistic method to identify common structural characteristics among 

chemicals that elicit similar biological activities. Instead of comparing and aligning 

3D structures of the conformers of biologically similar chemicals, their probabilis-

tic conformational distributions in the molecular descriptor space are analyzed and 

compared, thus accounting for molecular flexibility of the chemicals. The COREPA 

is developed through seeking overlap between conformer distributions of biologi-

cally similar chemicals in the specific structural space (Figure 10.3).

Thus, the problem of structure alignment traditionally used for similarity assess-

ments is circumvented in COREPA by overlapping and comparing conformational 

distributions of chemicals across the descriptor axis. For a mathematical formalism 

of the current algorithm, the reader is encouraged to consult the literature [9,27,39].

10.2.3.4 OASIS Model Applicability Domain

The reliability of the predictions made by OASIS models was evaluated by the 

recently developed stepwise approach of determining the model applicability domain 

[40]. Four stages were applied to account for the diversity and complexity of QSAR 

models, reflecting both their mechanistic rationale (including metabolic activation 

of chemicals) and transparency. General parametric requirements were imposed in 

the first stage, specifying the domain for only those chemicals that fall in the range 

of variation of selected physicochemical parameters of chemicals in the training set. 

The second stage defined the structural similarity between target chemicals and those 

correctly predicted by the model. Different molecular features (usually atom-centered 
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fragments) are used to determine this similarity. The training set chemicals for 

which the QSAR model provides correct predictions (within user-defined accuracy 

thresholds) were used for extracting atom-centered fragments (“good fragments”) 

that form the model structural domain. If the atom-centered fragments for each 

atom constituting an external chemical were determined to be elements of this list, 

then that chemical belongs to the structural domain of the model. The third stage in 

defining the domain is based on a mechanistic understanding of the modeled pheno- 

menon — that is, the domain of the mechanistic hypothesis. It is defined by spe-

cific reactive (alerting) groups, hypothesized to cause the effect and the boundaries 

of explanatory variables, which determined the parametric requirements for func-

tional groups to elicit their reactivity. Finally, the reliability of simulated metabolism 

(metabolites, pathways, and maps) was taken into account in assessing the reliability 

of predictions, if metabolic activation of chemicals was part of the (Q)SAR model. 

Some of the stages of the proposed approach for defining the model domain could be 

disabled depending on the type of QSAR model (for example, accounting or not the 

metabolic activation of chemicals) as well as availability and quality of the experi-

mental data used to derive the model.

10.2.3.5 Simulation of Metabolism

A probabilistic approach for simulating metabolism is developed in the OASIS soft-

ware. It consists of a list of hierarchically ordered transformations and a substructure-

matching engine for their implementation. According to the probabilistic nature of 

the approach, the hierarchy of transformations is defined by the probabilities of 

transformations determined in a way to reproduce a database of documented met-

abolic transformations or the rate of chemical disappearance. The transformation 

probabilities are not rate constants; however, they are related to them by assessing 
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FIGURE 10.3 The conformer distributions of two chemicals: benzene, 1,1 ,1 ,1 -(1,2-

ethenediylidene) tetrakis- (CAS 632-51-9) and 1,1,2-Triphenylvinyl bromide (CAS 1607-57-4), 

across EHOMO. The overlap between conformer distributions is used in the COREPA method 

to evaluate the similarity between chemicals with respect to EHOMO.
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the feasibility of occurrence of reactions within the duration of the metabolism tests. 

It is assumed that the transformations are independent and performed sequentially. 

Each molecular transformation consists of parent submolecular fragments, transfor-

mation products, and inhibiting masks serving as reaction inhibitors. If the fragment 

assigned as a mask is attached to the target subfragment, the execution of the trans-

formation on the parent chemical is prevented. The presence of groups that can pro-

mote or inhibit metabolic reactions significantly increases the number of principal 

transformations in metabolism simulators. Currently, 343 principal transformations 

are used to model metabolism in the liver (mammalian). The transformations are 

separated into two major classes: nonrate-determining and rate-determining reac-

tions. The first class includes 41 abiotic and enzyme-controlled reactions that occur 

at a very high rate as compared to the duration of the tests. Transformations of highly 

reactive groups and intermediates are included here. Various chemical equilibrium 

processes like tautomerism are also included in this class of transformations. The 

second type of reaction includes 302 metabolic (Phase I and II) transformations such 

as oxidative, redox, reductive, hydrolytic, and synthetic reactions.

In the multipathway formulation of the algorithm, the parent chemical is submitted to 

the list of transformations, and all transformations meeting the associated substructures 

are implemented on the parent producing the list of the first level metabolites. Each 

of the generated metabolites is then submitted to the same list of transformations to 

produce the second level of metabolites, and so forth. The procedure is repeated for the 

newly formed chemicals until the product of probabilities of consecutively performed 

transformations reaches a user-defined threshold. The mathematical formalism is based 

on the assumption that transformations occur sequentially — that is, the most probable 

transformation is applied first to the parent chemical and, then, the remainder of nonme-

tabolized parent molecules undergo the second transformation with lower probability, 

and so on [41,42]. The reaction probabilities of the metabolic simulator were adjusted to 

reproduce a database with 332 documented maps for rat (mammalian) liver metabolism 

[41,43]. The performance of the simulator is assessed by the degree of reproducibility of 

the training set with documented maps. Similarly, assessments evaluating the reliability 

of generated metabolites and metabolic maps were introduced [41,42].

10.3 RESULTS AND DISCUSSION

The hypothesis for interaction mechanisms between ligands and ER , developed 

by Katzenellenbogen [30], was used as a starting point for the hER binding model 

we developed. These mechanisms were investigated by making use of the COREPA 

analysis. Based on the assumption that distances between electrophilic sites in the 

receptor determine the requirements for the most favorable binding mechanism, the 

probabilistic conformer distribution of most active chemicals (RBA  10%) across 

distances between nucleophilic sites in the molecules was analyzed. The assumption 

was that the mechanisms will be best elicited at the highest activity bin due to lack of 

structural or parametric factors hampering these interactions (Figure 10.4).

Three interaction mechanisms were identified on the basis of the observed peaks 

in the probabilistic distribution depicted in Figure 10.4: from 7.7 to 9.7 Å, from 10.2 

to 11.0 Å, and from 11.3 to 14.0 Å. The comparative analysis with the mechanisms 
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suggested by Katzenellenbogen showed that this A-B mechanism could be associated 

with the pick from 10.2 to 11.0 Å and the A-C mechanism with the pick from 7.7 to

9.7 Å. A third category of chemicals was found to have distances exceeding 11 Å 

(a pick from 11.3 to 14 Å). The last group of chemicals are classified into a new 

mechanism — A–D, which is assumed to correspond to an A–B–C mechanism of 

Katzenellenbogen. These distance ranges and anticipated interaction mechanisms are 

also assigned to chemicals from the lower activity bin — 0.1  RBA  10%. COREPA 

models are derived for chemicals belonging to each of the mechanisms and activity 

bins. The model for AB mechanism, for most active RBA ranges, is listed in Figure 10.5. 

As seen, the model is composed by a filtering block imposing parametric constraints for 

different mechanisms and a COREPA probabilistic model (see Figure 10.6) discriminat-

ing active from nonactive chemicals within same binding mechanism.

The approach for deriving the models for the AB binding mechanism and RBA 

10% and 0.1  RBA  10% are explained next. After the global prescreen for eliminat-

ing acyclic chemicals (under the assumption that cyclicity is an obligatory structural 

requirement for estrogenicity), 642 chemicals are submitted to prefiltering require-

ment for AB-mechanism: distance between hydroxyl-O (from C{aromatic}-OH) and O 

bound to C-cyclic to be in the range of 10.2–11.0 Å (see Figure 10.4). 72 chemicals meet 

this requirement, among them 17 active (RBA  10%) and 55 inactive (RBA  10%). 

Subsequently, the COREPA model discriminated successfully (concordance 89%) 16 

active chemicals (sensitivity 94%) at the cost of seven false positives (specificity 87%) by 

making use of the functional parameter Q_Distance and log Kow. To build a model for 

a lower-activity bin, all chemicals from the higher-activity bins were eliminated from 

the training set. Thus, to derive the model for 0.1  RBA  10%, within the same AB 

mechanism, 66 chemicals with observed RBA  10% were eliminated from the initial 

training set with 642 cyclic chemicals (see Figure 10.5). The remaining chemicals are 

submitted to investigate the distance range between nucleophilic sites. As can be seen, 
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FIGURE 10.4 The probabilistic conformer distribution of most active binders (RBA  10%) 

across the distances between nucleophilic sites. The distance ranges corresponding to differ-

ent binding mechanisms are indicated. The entire range of 7.7–14.0 Å between two O atoms 

appeared to be a necessary requirement for eliciting the ER binding effect.
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the prefiltering conditions for AB mechanism are practically the same (O_O distance 

from 10.2 to 11.0 Å) as for the RBA  10% range. The molecular descriptors selected by 

the COREPA system to distinguish chemicals from each of the specified mechanisms 

and two most active bins are listed in Table 10.1A and Table 10.1B, respectively. The 

analysis of parameters in the COREPA model for the highest activity range (RBA 

10%) shows that the AB mechanism is probably associated with a contribution of stere-

oelectronic and global hydrophobic interactions; the functional parameter Q_Distance, 

and log Kow, are used as COREPA discriminating parameters.

Similarly, models were developed for the two most active bins (RBA  10% and 

0.1  RBA  10%) for AC and AD mechanisms. The analysis of the models for AC 

mechanisms showed that the same type of parameters (electronic and hydrophobic) hold 

for each of the specified mechanisms, which is an indication that the same interaction 

mechanisms act across the potency bins. Thus, bump parameters are always statisti-

cally selected to discriminate active chemicals for the AC mechanism. An interesting 

‘‘bump’’ parameter with respect to the mechanistic interpretation of the results is the 

distance R_bump at which the hydrophobic ‘‘Bump’’ is situated from the most remote 

nucleophilic site A (see Figure 10.2). Three parameter ranges were defined for this 

parameter. The first is around 5.4 to 8.4 Å; the second, from 5.6 to 7.5 Å; and the third 

between 10.1 and 12 Å. The first two ranges correspond to the 7  and 11  position of 

the estradiol pharmacophore described in the literature [26]. Thus, the distance between 

the OH group in the third position and C7 in estradiol is 6.1 Å, whereas the distance 

between OH and C11 is 6.5 Å. The estimated volumes of the bump parameters were 

compared with those documented in the literature [26]. The estimated van der Waals 

volumes of the bumps listed in the third column of Table 10.2 show that they are compa-

rable in magnitudes with those documented given the flexibility of the receptor site.

RBA > 10%

Global Prescreen

642 str (Active 62, Inactive 580) 

0.1 < RBA < 10%
AB Mechanism

Chemicals with RBA > 10%

C(aromatic)OH_HOC(cyclic)

or

C(aromatic)OH_O=C(cyclic)

(10.2 < Distance < 11)

C(cyclic)O(acyclic)_O(acyclic)C(cyclic)

or

C(cyclic)O(acyclic)_O=C(cyclic)

(10.2 < Distance < 11)

72 str (Active 17, Inactive 55) 

580 str (Active 132, Inactive 448) 

62 Chemicals

79 str (Active 37, Inactive 42) 
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Concordance 89% 

Sensitivity 97%, Specificity 50% 

Concordance 72% 

COREPA M 

Q_DISTANCE and log Kow 

Actice 16; FP 7 

COREPA M 

Egap and Volume Polarizability

Actice 36; FP 21 

FIGURE 10.5 The common reactivity pattern (COREPA) models for RBA  10% and 0.1 

RBA  10% associated with the AB mechanism.



© 2009 by Taylor & Francis Group, LLC

272 Endocrine Disruption Modeling

FIGURE 10.6 The common reactivity pattern (COREPA) probabilistic distributions discrim-

inating active (0.1  RBA  10%) from inactive (0  RBA  0.1%) chemicals belonging to the 

AC mechanism (meeting the respective filtering condition). Energy gap (Egap) and volume 

polarizability (VolP) appeared to be discriminating parameters in the COREPA models.

The specific ER binding mechanisms — AB, AC, and AD (requiring two nucleo-

philic atoms as reactive sites) — were not identified at the lowest activity range. 

However, an important finding was that the range of 7.7 to 14.0 Å between two 

nucleophilic sites (O-atoms, bound to cyclic C and at least one of them to be hydroxyl 

oxygen), encompassing the distance screened associated with all three binding mech-

anisms (as illustrated in Figure 10.4) appeared to be a necessary requirement for 

eliciting the ER binding effect. This distance range discriminated successfully 67 

active chemicals (43%) from the lowest-activity bin at the cost of 17 false positives 

(6%). The potency of this effect across activity bins and interaction mechanisms is 

modulated by specific steric, electronic, and hydrophobic factors combined with the 

distance screens. The fourth mechanism — A-only type, including mostly phenolic 

chemicals — has been specified for 0.1  RBA  10% and 0  RBA  0.1% bins [27] 

(Figure 10.7).

The rest of the chemicals eliciting activity in the lowest binding range were 

grouped into classes: halogen-containing chemicals, phthalates, and flavones; esters; 
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and ketones. The modeling was performed for each of these groups. Four classes of 

chemicals analyzed for activity at the lowest-activity bin are listed in Figure 10.8.

More data are needed to better distinguish structural reasoning for the effects at 

the lowest-activity bin. Given that the majority of industrial chemicals elicit effects 

at the lowest-activity bin, it appears to be very important to refine the tests to identify 

extremely weak effects. Thus, according to the Chemicals Evaluation and Research 

TABLE 10.1
Parameters of the Common Reactivity Pattern (COREPA) Models 
Discriminating Chemicals from Each Mechanism and Two Activity Bins: (A) 
RBA  10%; and (B) 0.1 RBA  10% (Number of Chemicals Belonging to 
Each Mechanism Is Listed along with the Sensitivity, Specificity, and 
Concordance of Each Model)

Mechanisms
Distance

Requirements
Number of 
Chemicals

Parameters in 
the COREPA

Models
Sensitivity 

(%)
Specificity

(%)
Concordance 

(%)

AB 10.2–11.0 Å 72 Q_DISTANCE

logKow

Local

94 87 89

AC 7.7–9.7 Å 159 Hydrophobicity

(Bump), logKow

83 86 86

AD 11.3–14.0 Å

and not having 

distances

10 Å

92 Diameff, EHOMO,

logKow

100 86 88

AB 10.2–11.0 Å 79 Egap, volume 

polarizability

Local

97 50 72

AC 7.6–9.7 and not 

distances 11 Å

100 Hydrophobicity

(Bump),

ELUMO

78 68 72

AD 11.6–14.0 Å 101 ELUMO,

PPSA3

77 77 77

TABLE 10.2
Parametric Ranges for the “Bump” Parameter — BABumProp 
Associated with the AC Interaction Mechanism of Most Active ER
Ligands (RBA  10% as Defined by the COREPA Models)

Bump_H [Å] R_Bump [Å] Bump_vdW_Volume [Å 3]  Log Kow [a.u.]

7.53–10.1 5.35–8.4 53.7–95.1 4.86–6.73

8.96–9.73 10.1–12.0 29.3–48.1 4.74–6.38

11.7–13.9 5.6–7.5 96.9–129.0 4.98–7.19
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Institute (CERI, Japan) protocol, chemicals are tested at a concentration up to 10–4,

which is set by medicinal chemists in their attempt to identify potent ER ligands. 

This threshold is justified by lack of interest in weak ER binders as potential drugs. 

However, for regulatory purposes, this concentration threshold could be considered as 

insufficient given that most industrial chemicals elicit effects that, although extremely 

low, are significant for risk assessment given their production volume and other fate 
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FIGURE 10.7 The models for the A-only-type interaction mechanism: (a) 0.1  RBA  10%, 

and (b) 0  RBA  0.1%. Sensitivity, specificity, and concordance of the model are listed.
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FIGURE 10.8 The four classes of chemicals analyzed for activity in the range of 0 RBA 0.1.
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properties of industrial chemicals. Thus, testing performed at MED-Duluth on trout 

ER [44] showed that the number of negatives from the METI list elicits weak effects if 

chemicals are studied up to their solubility threshold. Hence, the present model could 

be considered as limited at the lowest-activity bin in terms of possibly underestimating 

the ER binding affinity of some low active chemicals.

The models for different mechanisms and activity ranges were combined in a 

screening battery, as shown in Figure 10.9.

The total performance of the model for training set chemicals is 0.86 in terms of 

Pearson’s contingency coefficient and concordance 73%; the highest concordance 

was found for nonactive chemicals (81%) and most active chemicals (86%), whereas 

for the 0.1  RBA  10% and 0  RBA  0.1% ranges, the concordance is relatively 

low — 0.61 and 0.63, respectively.

The battery of ER binding models was used for screening 387 chemicals tested 

for hER binding affinity [28]. The results are listed in Table 10.3.

The screening results showed a concordance of 0.69 between the predicted and 

experimentally observed hER data, accounting for the distribution of chemicals 
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FIGURE 10.9 Screening battery for ER binding activity consisting of models for different 

mechanisms and activity bins.
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TABLE 10.3
Screening Results for ER Binding Affinity of 387 hER Inventory

CAS Chemical Name Observed Predicted Domain

50-02-2 Dexamethasone Not binder 0   RBA   0.1% Out of domain

50-03-3 Hydrocortisone acetate Not binder 0   RBA   0.1% Out of domain

50-04-4 Cortisone acetate Not binder 0  RBA   0.1% Out of domain

50-06-6 Phenobarbital Not binder Not binder Out of domain

50-23-7 Hydrocortisone Not binder 0   RBA    0.1% Out of domain

50-55-5 Reserpine Not binder 0.1  RBA  10% Out of domain

51-24-1 Tiratricol 0  RBA  0.1% 0  RBA  0.1% Out of domain

51-26-3 3,3 ,5-Triiodothyropropionic acid 0  RBA  0.1% 0  RBA  0.1% Out of domain

51-49-0 Dextrothyroxine Not binder 0  RBA  0.1% Out of domain

51-55-8 Atropine Not binder Not binder Out of domain

52-01-7 Spironolactone Not binder Not binder Out of domain

52-86-8 Haloperidol Not binder Not binder Out of domain

53-06-5 Cortisone Not binder 0  RBA  0.1% Out of domain

54-11-5 Nicotine Not binder Not binder Out of domain

55-38-9 Fenthion Not binder Not binder Out of domain

56-47-3 Desoxycorticosterone acetate Not binder Not binder In domain

57-47-6 Physostigmine Not binder Not binder Out of domain

57-85-2 Testosterone propionate Not binder Not binder In domain

58-08-2 Caffeine Not binder Not binder Out of domain

58-39-9 1-Piperazineethanol, 4-(3-(2-chloro- 

10 H-phenothiazin-10-yl)propyl)-

Not binder Not binder Out of domain

61-82-5 Amitrole Not binder Not binder Out of domain

62-99-7 6- -Hydroxytestosterone Not binder 0  RBA  0.1% Out of domain

64-85-7 Desoxycorticosterone Not binder Not binder In domain

64-86-8 Colchicine Not binder 0.1  RBA  10% Out of domain

66-76-2 Dicumarol Not binder Not binder Out of domain

68-12-2 Dimethylformamide Not binder Not binder Out of domain

68-96-2 Hydroxyprogesterone Not binder 0  RBA  0.1% Out of domain

71-58-9 Medroxyprogesterone acetate Not binder Not binder Out of domain

76-83-5 Trityl chloride N/A Not binder In domain

77-47-4 1,2,3,4,5,5-Hexachloro-1, 

3-cyclopentadiene

0  RBA  0.1% Not binder Out of domain

77-73-6 Dicyclopentadiene Not binder Not binder In domain

79-44-7 Carbamic chloride, dimethyl- Not binder Not binder Out of domain

80-75-1 11- -Hydroxypregn-4-ene-3,20-dione Not binder Not binder In domain

81-23-2 3,7,12-Triketo-5 -cholanoic acid Not binder Not binder In domain

81-81-2 Warfarin Not binder Not binder Out of domain

85-29-0 Methanone, (2-chlorophenyl)

(4-chlorophenyl)-

Not binder Not binder In domain

86-50-0 Azinphos-methyl N/A Not binder Out of domain

87-66-1 Pyrogallol 0  RBA  0.1% Not binder Out of domain

87-82-1 Hexabromobenzene Not binder Not binder Out of domain

88-85-7 Dinoseb Not binder Not binder Out of domain

90-33-5 Hymecromone Not binder Not binder In domain

90-90-4 4-Bromobenzophenone Not binder Not binder In domain
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TABLE 10.3 (CONTINUED)
Screening Results for ER Binding Affinity of 387 hER Inventory

CAS Chemical Name Observed Predicted Domain

92-66-0 1,1-Biphenyl, 4-bromo- Not binder 0  RBA  0.1% In domain

92-91-1 Ethanone, 1-(1,1 -biphenyl)-4-yl- Not binder Not binder In domain

93-65-2 Mecoprop Not binder Not binder Out of domain

93-72-1 Silvex Not binder Not binder Out of domain

93-76-5 2,4,5-T Not binder Not binder Out of domain

94-12-2 Risocaine; p-Aminobenzoic acid, 

propyl ester

Not binder Not binder In domain

94-25-7 Butyl 4-aminobenzoate 0  RBA  0.1% Not binder In domain

94-59-7 5-(2-propenyl)-1,3-benzodioxole Not binder Not binder Out of domain

94-74-6 Acetic acid, (4-chloro-2-methylphenoxy)- Not binder Not binder Out of domain

94-75-7 2,4-D Not binder Not binder Out of domain

94-82-6 2,4-DB Not binder Not binder Out of domain

94-96-2 Ethohexadiol Not binder Not binder In domain

95-33-0 2-Benzothiazolesulfenamide, 

N-cyclohexyl-

0  RBA  0.1% Not binder Out of domain

95-53-4 2-Toluidine Not binder Not binder Out of domain

95-55-6 2-Aminophenol Not binder Not binder Out of domain

95-76-1 3,4-Dichloroaniline Not binder Not binder Out of domain

95-80-7 2,4-Diaminotoluene Not binder Not binder Out of domain

96-12-8 1,2-Dibromo-3-chloropropane Not binder Not binder Out of domain

96-29-7 2-Butanone, oxime Not binder Not binder Out of domain

96-45-7 Ethylenethiourea Not binder Not binder Out of domain

97-02-9 2,4-Dinitroaniline Not binder Not binder Out of domain

97-23-4 Dichlorophen N/A 0  RBA  0.1% Out of domain

97-74-5 Bis(dimethylthiocarbamyl)sulfide 0  RBA  0.1% Not binder Out of domain

97-77-8 Bis(diethylthiocarbamoyl)disulfide 0  RBA  0.1% Not binder Out of domain

99-77-4 Benzoic acid, 4-nitro-, ethyl ester Not binder Not binder Out of domain

100-00-5 4-Chloronitrobenzene Not binder Not binder Out of domain

100-44-7 Benzyl chloride Not binder Not binder In domain

100-63-0 Phenylhydrazine Not binder Not binder Out of domain

101-61-1 4,4 -Methylenebis[N,N-dimethyl]aniline Not binder Not binder Out of domain

101-77-9 4,4 -Diaminodiphenylmethane Not binder Not binder In domain

101-80-4 4,4 -Oxydianiline Not binder Not binder Out of domain

103-23-1 Hexanedioic acid, bis(2-ethylhexyl)ester Not binder Not binder In domain

105-60-2 Hexahydro-2h-azepin-2-one Not binder Not binder Out of domain

107-21-1 Ethylene glycol Not binder Not binder Out of domain

108-39-4 3-Methylphenol N/A Not binder In domain

108-45-2 3-Phenylenediamine Not binder Not binder Out of domain

108-93-0 Cyclohexanol Not binder Not binder In domain

114-26-1 Phenol, 2-(1-methylethoxy)-, 

methylcarbamate

Not binder Not binder Out of domain

115-29-7 Endosulfan 0  RBA  0.1% Not binder Out of domain

115-86-6 Phosphoric acid, triphenyl ester N/A Not binder In domain

115-96-8 Tris( -chloroethylphosphate) Not binder Not binder In domain

(continued)
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TABLE 10.3 (CONTINUED)
Screening Results for ER Binding Affinity of 387 hER Inventory

CAS Chemical Name Observed Predicted Domain

116-06-3 2-Methyl-2-(methylthio)

propionaldehyde, o-(methylcarbamoyl)

oxime

Not binder Not binder Out of domain

117-82-8 1,2-Benzenedicarboxylic acid, bis 

(2-methoxyethyl) ester

Not binder Not binder In domain

118-48-9 2H-3,1-Benzoxazine-2,4(1H)-dione Not binder Not binder Out of domain

118-55-8 Phenyl salicylate Not binder 0  RBA  0.1% Out of domain

118-60-5 Benzoic acid, 2-hydroxy-, 2-ethylhexyl 

ester

Not binder 0  RBA  0.1% Out of domain

119-36-8 2-Hydroxybenzoic acid, methyl ester Not binder Not binder Out of domain

120-36-5 Dichlorprop Not binder Not binder Out of domain

120-48-9 Butyl 4-nitrobenzoate Not binder Not binder Out of domain

120-78-5 Altax 0  RBA  0.1% Not binder Out of domain

120-80-9 Pyrocatechol Not binder Not binder Out of domain

121-75-5 Butanedioic acid, 

[(dimethoxyphosphinothioyl)thio]-, 

diethylester

Not binder Not binder Out of domain

122-14-5 Fenitrothion Not binder Not binder Out of domain

123-30-8 4-Aminophenol 0  RBA  0.1% Not binder Out of domain

126-73-8 Tributyl phosphate Not binder Not binder In domain

127-18-4 Tetrachloroethene Not binder Not binder In domain

127-31-1 Hydrocortisone-9 -fluoro Not binder 0  RBA  0.1% Out of domain

131-53-3 Methanone, (2-hydroxy- 

4-methoxyphenyl)(2-hydroxyphenyl)-

Not binder 0  RBA  0.1% Out of domain

131-54-4 Methanone, bis(2-hydroxy- 

4-methoxyphenyl)-

N/A 0  RBA  0.1% Out of domain

133-06-2 1H-Isoindole-1,3(2H)-dione, 3a,4,7,7

a-tetrahydro-2-[(trichloromethyl)thio]-

0  RBA  0.1% Not binder Out of domain

133-07-3 1H-Isoindole-1,3(2H)-dione,

2-[(trichloromethyl)thio]-

0  RBA  0.1% Not binder Out of domain

134-62-3 N,N-diethyl-3-methylbenzamide Not binder Not binder Out of domain

134-83-8 Benzene, 1-chloro-4-

(chlorophenylmethyl)-

N/A Not binder In domain

134-85-0 4-Chlorobenzophenone Not binder Not binder In domain

137-26-8 Tetramethylthioperoxydicarbonicdiamide 0  RBA  0.1% Not binder Out of domain

140-56-7 Diazoben Not binder Not binder Out of domain

145-14-2 Dihydroprogesterone Not binder Not binder In domain

149-30-4 Captax 0  RBA  0.1% Not binder Out of domain

150-68-5 Urea, N -(4-chlorophenyl)- N,

N-dimethyl-

Not binder Not binder Out of domain

152-58-9 Cortodoxone Not binder 0  RBA  0.1% Out of domain

218-01-9 Chrysene Not binder Not binder Out of domain

238-84-6 Benzo[a]fluorene Not binder Not binder Out of domain

298-02-2 Phorate Not binder Not binder Out of domain

299-84-3 Fenchlorphos 0  RBA  0.1% Not binder Out of domain
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299-86-5 Crufomate Not binder Not binder Out of domain

302-23-8 Hydroxyprogesterone acetate Not binder Not binder Out of domain

302-79-4 Tretinoin N/A Not binder Out of domain

303-26-4 n-(4-Chlorobenzhydryl)piperazine Not binder Not binder Out of domain

303-45-7 Gossypol Not binder 0  RBA  0.1% Out of domain

319-85-7 -Hexachlorocyclohexane N/A Not binder In domain

324-74-3 4-Fluorobiphenyl Not binder 0  RBA  0.1% Out of domain

330-54-1 n -(3,4-Dichlorophenyl)-n,n-dimethylurea Not binder Not binder Out of domain

330-55-2 Linuron Not binder Not binder Out of domain

333-41-5 Diazinon N/A Not binder Out of domain

342-25-6 2,4 -Difluorobenzophenone Not binder 0  RBA  0.1% Out of domain

345-83-5 Methanone, (4-fluorophenyl)phenyl- Not binder Not binder In domain

349-58-6 Phenol, 3,5-bis(trifluoromethyl)- Not binder Not binder Out of domain

370-14-9 Pholedrine Not binder 0  RBA  0.1% Out of domain

382-44-5 Androst-4-ene-3,17-dione, 11 -

hydroxy-(8CI)

Not binder Not binder In domain

382-45-6 Androst-4-ene-3,11,17-trione Not binder Not binder In domain

427-51-0 Cyproterone acetate N/A 0  RBA  0.1% Out of domain

434-03-7 Ethisterone N/A 0  RBA  0.1% In domain

434-07-1 Oxymetholone 0  RBA  0.1% 0  RBA  0.1% Out of domain

434-22-0 Nandrolone 0  RBA  0.1% 0  RBA  0.1% In domain

434-90-2 Decafluorobiphenyl Not binder 0  RBA  0.1% Out of domain

437-64-9 4 ,5 -Dihydroxy-7-methoxyflavone 0  RBA  0.1% 0  RBA  0.1% Out of domain

451-46-7 Ethyl 4-fluorobenzoate Not binder Not binder In domain

455-19-6 Benzaldehyde, 4-(trifluoromethyl)- Not binder Not binder Out of domain

455-24-3 Benzoic acid, 4-(trifluoromethyl)- Not binder Not binder Out of domain

457-68-1 Benzene, 1,1 -methylenebis[4-fluoro- Not binder Not binder In domain

466-37-5 Ethanone, tetraphenyl- 0  RBA  0.1% Not binder Out of domain

467-62-9 4,4 ,4 -Triaminotrityl alcohol 0  RBA  0.1% Not binder In domain

470-90-6 Clofenvinfos N/A Not binder In domain

475-25-2 Hematein 0  RBA  0.1% 0  RBA  0.1% Out of domain

480-40-0 4H-1-Benzopyran-4-one, 5,7-

dihydroxy-2-phenyl-

Not binder 0  RBA  0.1% In domain

480-44-4 4H-1-Benzopyran-4-one, 5,7-

dihydroxy-2-(4-methoxyphenyl)-

Not binder 0  RBA  0.1% In domain

481-30-1 Epitestosterone Not binder 0  RBA  0.1% In domain

485-72-3 Formononetin 0  RBA  0.1% 0  RBA  0.1% In domain

487-26-3 2,3-Dihydroflavone Not binder Not binder Out of domain

491-54-3 4 -Methoxy-3,5,7-trihydroxyflavone Not binder 0  RBA  0.1% In domain

491-67-8 Baicalein 0  RBA  0.1% 0  RBA  0.1% Out of domain

491-78-1 5-Hydroxyflavone Not binder 0  RBA  0.1% Out of domain

510-64-5 19-Hydroxy-4-androstene-3,17-dione Not binder Not binder In domain

514-36-3 Fludrocortisone 21-acetate Not binder 0  RBA  0.1% Out of domain

(continued)
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516-15-4 11-Ketoprogesterone Not binder Not binder In domain

517-28-2 Benz[b]indeno[1,2-d]pyran-

3,4,6a,9,10(6H)-pentol, 7,11 

b-dihydro-, cis-( )-

0    RBA    0.1% 0.1  RBA  10% Out of domain

519-73-3 Triphenylmethane 0 RBA 0.1% Not binder In domain

520-85-4 Medroxyprogesterone Not binder 0 RBA 0.1% Out of Domain

525-82-6 4H-1-Benzopyran-4-one, 2-phenyl- Not binder Not binder Out of Domain

527-54-8 Phenol, 3,4,5-trimethyl- Not binder Not binder Out of domain

528-29-0 o-Dinitrobenzene Not binder Not binder Out of domain

528-48-3 3,3 ,4 ,7-Tetrahydroxyflavone; Fisetin; 

Flavone, 3,3 ,4 ,7-tetrahydroxy-

0  RBA  0.1% 0  RBA  0.1% Out of domain

529-44-2 3,3 ,4,4 ,5 ,7-Hexahydro-2-phenyl-4h-

chromen-4-one

0  RBA  0.1% 0  RBA  0.1% Out of domain

530-44-9 4-(Dimethylamino)Benzophenone Not binder Not binder In domain

537-98-4 Trans-Ferulic acid Not binder Not binder Out of domain

548-83-4 3,5,7-Trihydroxy-2-phenyl- 

4-benzopyrone

N/A 0  RBA  0.1% In domain

564-35-2 Testosterone, 11-keto N/A 0  RBA  0.1% In domain

566-48-3 Androst-4-ene-3,17-dione, 4-hydroxy- Not binder 0  RBA  0.1% Out of domain

566-65-4 3,20-Allopregnanedione Not binder Not binder In domain

571-22-2 Androstan-3-one, 17-hydroxy-, 

(5- ,17- )- (9CI)

Not binder 0  RBA  0.1% In domain

575-03-1 7-Hydroxy-4-trifluoromethylcoumarin 0  RBA  0.1% Not binder Out of domain

577-85-5 4H-1-Benzopyran-4-one, 3-hydroxy- 

2-phenyl-

Not binder Not binder Out of domain

579-39-5 4,4 -Difluorobenzil Not binder 0  RBA  0.1% Out of domain

584-79-2 Bioallethrin N/A Not binder Out of domain

591-27-5 3-Aminophenol Not binder Not binder Out of domain

595-91-5 Triphenylacetic acid Not binder Not binder Out of domain

596-01-0 3,3-Bis(4-hydroxy-1-naphthyl)

phthalide

0  RBA  0.1% RBA  10% Out of domain

596-27-0 Phenolphthalein, 3 ,3 -dimethyl- 0  RBA  0.1% 0  RBA  0.1% Out of domain

596-43-0 2-Bromo-1,1,1-triphenylethane N/A Not binder Out of domain

601-57-0 Cholest-4-en-3-one Not binder Not binder In domain

603-48-5 Leucogentian violet N/A Not binder Out of domain

604-59-1 2-Phenylbenzo[h]chromen-4-one Not binder Not binder Out of domain

608-71-9 Pentabromophenol Not binder Not binder Out of domain

611-79-0 3,3 -Diaminobenzophenone N/A Not binder Out of domain

611-94-9 4-Methoxybenzophenone Not binder Not binder In domain

611-95-0 4-Benzoylbenzoic acid Not binder Not binder In domain

611-98-3 Methanone, bis(4-aminophenyl)-(9CI) Not binder Not binder In domain

612-96-4 2-Phenylquinoline Not binder Not binder Out of domain

630-56-8 Hydroxyprogesterone caproate Not binder Not binder Out of domain

631-64-1 Dibromoacetic acid Not binder Not binder Out of domain
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632-51-9 Benzene, 1,1 ,1 ,1- 

(1,2-ethenediylidene)tetrakis-

0.1  RBA  10% Not binder In domain

640-87-9 17- ,21-Dihydroxypregn-4-ene-3, 

20-dione 21-acetate

Not binder 0  RBA  0.1% Out of domain

641-38-3 6H-Dibenzo[b,d]pyran-6-one, 

3,7,9-trihydroxy-1-methyl-

0  RBA  0.1% 0  RBA  0.1% Out of domain

641-77-0 21-Deoxycortisol Not binder 0  RBA  0.1% Out of domain

700-13-0 1,4-Benzenediol, 2,3,5-trimethyl- N/A Not binder Out of domain

728-87-0 p,p’-Dimethoxybenzhydryl alcohol Not binder 0.1  RBA  10% In domain

732-11-6 Phosmet N/A Not binder Out of domain

779-51-1 1,2-Diphenylpropene Not binder Not binder Out of domain

787-70-2 [1,1 -Biphenyl]-4,4 -dicarboxylic acid Not binder Not binder Out of domain

797-64-8 (-)-Norogestrel 0  RBA  0.1% 0  RBA  0.1% In domain

828-27-3 Phenol, 4-(trifluoromethoxy)- 0  RBA  0.1% Not binder Out of domain

833-81-8 Stilbene, -methyl-, (E)- Not binder Not binder Out of domain

834-12-8 Ametryne Not binder Not binder Out of domain

846-46-8 5- -Androstane-3,17-dione Not binder Not binder In domain

855-96-9 3 ,5-Dihydroxy-4 ,6,

7-trimethoxyflavone

Not binder 0.1  RBA  10% Out of domain

855-97-0 3 ,4 ,5,7-Tetramethoxyflavone Not binder 0.1  RBA  10% Out of domain

900-91-4 3,3,3-Triphenylpropionic acid Not binder Not binder In domain

919-86-8 Demeton-S-methyl Not binder Not binder Out of domain

927-67-3 Propyl-2-thiourea Not binder Not binder Out of domain

1014-70-6 Simetryn Not binder Not binder Out of domain

1016-78-0 3-Chlorobenzophenone Not binder Not binder Out of domain

1022-46-4 4H-3,1-Benzoxazin-4-one, 2-phenyl- Not binder Not binder Out of domain

1031-07-8 Endosulfan sulfate N/A Not binder Out of domain

1034-10-2 O-(4-Hydroxyphenyl)-DL-tyrosine Not binder Not binder In domain

1045-69-8 (17 )-Hydroxyandrost-4-en-3-one acetate Not binder Not binder In domain

1095-77-8 4,4 -(Hexafluoroisopropylidene)

ditoluene

0  RBA  0.1% Not binder Out of domain

1095-78-9 4,4 -(Hexafluoroisopropylidene)

dianiline

0  RBA  0.1% Not binder Out of domain

1097-51-4 16 ,17-Epoxypregn-4-ene-3,20-dione Not binder Not binder Out of domain

1113-02-6 Omethoate Not binder Not binder Out of domain

1120-71-4 1,2-Oxathiolane, 2,2-dioxide Not binder Not binder Out of domain

1137-41-3 4-Aminobenzophenone N/A Not binder In domain

1144-74-7 4-Nitrobenzophenone Not binder Not binder Out of domain

1171-47-7 4,4 -(Hexafluoroisopropylidene)

bis(benzoic acid)

0  RBA  0.1% Not binder Out of domain

1180-25-2 Testosterone glucuronate Not binder 0  RBA  0.1% Out of domain

1214-39-7 N-(Phenylmethyl)-1H-purin-6-amine Not binder Not binder Out of domain

1424-00-6 Mesterolone 0  RBA  0.1% 0  RBA  0.1% In domain

(continued)
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1450-63-1 1,1,4,4-Tetraphenylbuta-1,3-diene 0  RBA  0.1% Not binder Out of domain

1482-70-8 Androsstane-3,11,17-trione, (5 )- Not binder Not binder In domain

1524-88-5 Fludroxycortide Not binder Not binder Out of domain

1553-56-6 5 -Cholanic acid-3-one Not binder Not binder In domain

1563-66-2 2,3-Dihydro-2,2-dimethyl- 

7-benzofuranol, methylcarbamate

Not binder Not binder Out of domain

1582-09-8 Trifluralin N/A Not binder Out of domain

1596-67-4 O-(4-Hydroxyphenyl)-L-tyrosine Not binder Not binder In domain

1607-57-4 Bromotriphenylethylene 0.1  RBA  10% Not binder Out of domain

1662-06-2 4-Pregnene-17 ,20 -diol-3-one Not binder 0  RBA  0.1% In domain

1675-54-3 2,2-Bis(4-glycidyloxyphenyl)propane Not binder Not binder Out of domain

1689-83-4 Loxynil Not binder Not binder Out of domain

1689-84-5 Bromoxynil Not binder Not binder Out of domain

1702-17-6 3,6-Dichloropicolinic acid Not binder Not binder Out of domain

1746-81-2 Monolinuron Not binder Not binder Out of domain

1801-42-9 2,3-Diphenyl-1H-inden-1-one 0  RBA  0.1% Not binder Out of domain

1816-85-9 11-Hydroxytestosterone Not binder 0  RBA  0.1% In domain

1844-00-4 4-[1-(4-Hydroxyphenyl)- 

2-methylpropyl]Phenol

0.1  RBA  10% 0.1  RBA  10% In domain

1889-71-0 Benzyl 4-chlorophenyl ketone Not binder 0  RBA  0.1% In domain

1929-82-4 N-serve Not binder Not binder Out of domain

2005-08-5 4-Chlorophenyl benzoate Not binder 0  RBA  0.1% In domain

2033-89-8 3,4-Dimethoxyphenol Not binder Not binder Out of domain

2051-90-3 Dichloro(diphenyl)methane Not binder Not binder In domain

2104-96-3 Bromophos 0  RBA  0.1% Not binder Out of domain

2203-97-6 Hydrocortisone 21-(hydrogen succinate) Not binder 0  RBA  0.1% Out of domain

2212-67-1 Molinate Not binder Not binder In domain

2268-98-6 Pregn-4-ene-3,20-dione, 11 -hydroxy-, 

acetate (8CI)

N/A Not binder In domain

2425-06-1 Captafol 0  RBA  0.1% Not binder Out of domain

2439-99-8 Glycine, N,N-bis(phosphonomethyl)- Not binder Not binder Out of domain

2540-82-1 Formothion Not binder Not binder Out of domain

2668-66-8 Medrysone Not binder 0  RBA  0.1% Out of domain

2772-45-4 Phenol, 2,4-bis(1-methyl-1-phenylethyl)- 0  RBA  0.1% Not binder In domain

2835-78-1 3-Aminobenzophenone N/A Not binder Out of domain

2921-88-2 Phosphorothioic acid, O,O-diethyl 

O-(3,5,6-trichloro-2-pyridinyl) ester

0  RBA  0.1% Not binder Out of domain

3016-97-5 1,4-Dibenzoylbenzene Not binder Not binder In domain

3093-35-4 Halcinonide Not binder 0  RBA  0.1% Out of domain

3218-36-8 [1,1 -Biphenyl]-4-carboxaldehyde Not binder Not binder In domain

3457-48-5 Di-p-tolylethanedione Not binder Not binder Out of domain

3604-87-3 (2 ,3 ,5 ,22r)-2,3,14,22,25-

Pentahydroxycholest-7-en-6-one

Not binder 0.1  RBA  10% Out of domain

3739-38-6 3-Phenoxybenzoic acid Not binder Not binder Out of domain

4143-64-0 3 ,4 -Dihydroxyflavone 0  RBA  0.1% 0  RBA  0.1% Out of domain
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4319-56-6 Desoxycortone 21-d-glucoside Not binder 0  RBA  0.1% Out of domain

4471-22-1 N-(Triphenylmethyl)aniline N/A Not binder Out of domain

4759-48-2 Isotretinoin N/A Not binder Out of domain

5300-03-8 Retinoic acid, 9-cis Not binder Not binder Out of domain

5392-40-5 Citral Not binder Not binder Out of domain

5447-02-9 3,4-Bis(benzyloxy)benzaldehyde 0  RBA  0.1% Not binder Out of domain

5817-39-0 3 ,3 ,5 -Triiodo-L-thyronine Not binder 0  RBA  0.1% Out of domain

6051-87-2 3-Phenyl-1h-naphtho[2,1-b]

pyran-1-one

Not binder Not binder Out of domain

6164-98-3 Chlordimeform Not binder Not binder Out of domain

6174-86-3 3-Chloro-7-hydroxy-4-methyl-2-

benzopyrone

N/A Not binder Out of domain

6297-11-6 9H-Fluoren-9-one, 2,7-dichloro- Not binder Not binder Out of domain

6554-98-9 p-Styrylphenol 0  RBA  0.1% 0  RBA  0.1% In domain

6665-83-4 6-Hydroxy-2-phenyl-4-benzopyrone 0  RBA  0.1% 0  RBA  0.1% Out of domain

6678-14-4 11 ,17,21-Trihydroxypregn-4-ene-

3,20-dione 21-octanoate

Not binder 0  RBA  0.1% Out of domain

6893-02-3 Liothyronine Not binder 0  RBA  0.1% Out of domain

6898-97-1 Phenol, 4,4 -(1,2-diethyl-1,

2-ethenediyl)bis-

RBA  10% RBA  10% In domain

6948-88-5 4-Hydroxy- -(4-hydroxynaphthyl)- 

-phenylnaphthalene-1-methanol

0.1  RBA  10% RBA  10% Out of domain

7287-19-6 Prometryn Not binder Not binder Out of domain

7786-34-7 Mevinphos Not binder Not binder Out of domain

8001-35-2 Toxaphene 0  RBA  0.1% Not binder In domain

10192-62-8 4,4 -Isopropylidenediphenyl diacetate N/A 0.1  RBA  10% Out of domain

10215-74-4 21-Hydroxypregn-4-ene-3,20-dione 

21-(hydrogen succinate)

Not binder Not binder In domain

10311-84-9 Dialifos 0  RBA  0.1% Not binder Out of domain

10453-86-8 Resmethrin N/A Not binder Out of domain

10605-21-7 1H-Benzimidazol-2-yl carbamic acid, 

methyl ester

Not binder Not binder Out of domain

13036-02-7 Dimethyl 5-hydroxyisophthalate Not binder 0  RBA  0.1% Out of domain

13311-84-7 Flutamide Not binder Not binder Out of domain

13593-03-8 Quinalphos N/A Not binder Out of domain

13608-87-2 2 ,3 ,4 -Trichloroacetophenone Not binder Not binder Out of domain

13609-67-1 11 ,17,21-Trihydroxypregn-4-ene-

3,20-dione 17-butyrate

Not binder 0  RBA  0.1% Out of domain

13680-35-8 Benzenamine, 4,4 -methylenebis 

2,6-diethyl-

N/A Not binder Out of domain

14548-48-2 4-(4 -Chlorobenzoyl)pyridine Not binder Not binder Out of domain

14816-18-3 3,5-Dioxa-6-aza-4-phosphaoct-6-ene-8-

nitrile, 4-ethoxy-7-phenyl-, 4-sulfide

N/A Not binder Out of domain

(continued)
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15262-86-9 17 -Hydroxyandrost-4-ene-3-one

4-methylvalerate

Not binder Not binder In domain

15972-60-8 Alachlor Not binder Not binder Out of domain

16069-36-6 Icosahydrodibenzo[b,k][1,4,7,10,13,16]

hexaoxacyclooctadecin

Not binder Not binder In domain

16245-79-7 4-Octylaniline Not binder Not binder In domain

16355-28-5 4-Pregnen-6-beta,17,21-triol-3,11,20-trione Not binder 0.1  RBA  10% Out of domain

16752-77-5 Methomyl Not binder Not binder Out of domain

17078-27-2 1,2-Bis(p-Dimethylaminophenyl)-1, 

2-ethanedione

Not binder Not binder Out of domain

17138-28-2 Ethyl 4-hydroxyphenylacetate Not binder Not binder In domain

17230-88-5 Danazol 0  RBA  0.1% Not binder Out of domain

17804-35-2 Benomyl Not binder Not binder Out of domain

18144-43-9 Benzoic acid, 4-amino-, 1-methylethyl 

ester

Not binder Not binder In domain

19044-88-3 3,5-Dinitro-n(sup4), n(sup4)-dipropyl-

sulfanilamide

N/A Not binder Out of domain

19315-93-6 2, 6-Quinolinediol Not binder Not binder Out of domain

19471-12-6 3,3 -Methylenedianiline Not binder Not binder Out of domain

19811-05-3 2,4-Dichlorobenzophenone N/A Not binder In domain

21087-64-9 Metribuzin Not binder Not binder Out of domain

21725-46-2 Cyanazine Not binder Not binder Out of domain

22395-24-0 4H-1-Benzopyran-4-one, 2- 

(3,4-dimethoxyphenyl)-7-methoxy-

Not binder 0.1  RBA  10% Out of domain

22494-42-4 [1,1-Biphenyl]-3-carboxylic acid, 

2,4-difluoro-4-hydroxy-

Not binder 0  RBA  0.1% Out of domain

23564-05-8 Carbamic acid, [1,2-phenylenebis-

(iminocarbonothioyl)]bis-, dimethyl 

ester

Not binder Not binder Out of domain

23950-58-5 3,5-Dichloro-n-(1,1-dimethylprop- 

2-ynyl)benzamide

Not binder Not binder Out of domain

24602-86-6 Morpholine, 2,6-dimethyl-4-tridecyl Not binder Not binder In domain

24758-49-4 4-Morpholinobenzophenone Not binder Not binder Out of domain

25057-89-0 1H-2,1,3-Benzothiadiazin-4(3H)-one,

3-(1-methylethyl)-, 2,2-dioxide

Not binder Not binder Out of domain

26087-47-8 Iprobenfos Not binder Not binder Out of domain

26644-46-2 N,N -[(2-Methyl-1,4-piperazinediyl)

bis(2,2,2-trichloroethylidene]

bisformamide

Not binder Not binder Out of domain

26964-24-9 6-Methoxyflavone Not binder Not binder Out of domain

27241-31-2 2-Pyrazolin-5-one, 3-amino-1-(2,4,6-

trichlorophenyl)-

0  RBA  0.1% 0  RBA  0.1% Out of domain

29082-74-4 Octachlorostyrene Not binder Not binder Out of domain

29550-13-8 5,6-Dihydroxy-7-methoxyflavone 0  RBA  0.1% 0  RBA  0.1% Out of domain

29752-43-0 Altenuene N/A 0  RBA  0.1% Out of domain

30560-19-1 Acephate Not binder Not binder Out of domain
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TABLE 10.3 (CONTINUED)
Screening Results for ER Binding Affinity of 387 hER Inventory

CAS Chemical Name Observed Predicted Domain

34256-82-1 2-Chloro-n-(ethoxymethyl)-n-(2-ethyl-

6-methylphenyl)acetamide

Not binder Not binder Out of domain

34334-69-5 6,7-Dimethoxy-3 ,4 ,5-trihydroxyflavone 0  RBA  0.1% 0.1  RBA  10% Out of domain

35323-91-2 ( )-Epicatechin N/A 0.1  RBA  10% Out of domain

35367-38-5 Benzamide, N-(4-chlorophenyl)amino 

carbonyl-2,6-difluoro-

Not binder 0  RBA  0.1% Out of domain

35554-44-0 Enilconazole Not binder 0  RBA  0.1% Out of domain

38183-03-8 7,8-Dihydroxy-2-phenyl-4-benzopyrone 0  RBA  0.1% 0  RBA  0.1% Out of domain

39300-45-3 Dinocap N/A Not binder Out of domain

39634-42-9 p-[4-(Trifluoromethyl)phenoxy]phenol 0  RBA  0.1% Not binder Out of domain

40487-42-1 Pendimethalin N/A Not binder Out of domain

40596-69-8 Methoprene Not binder Not binder Out of domain

40615-36-9 Benzene, 1,1 -(chlorophenylmethylene)

bis[4-methoxy-

Not binder Not binder Out of domain

42187-33-7 3,4-Dimethyl-3 -nitrobenzophenone Not binder Not binder Out of domain

43121-43-3 1-(4-Chlorophenoxy)-3,3-dimethyl- 

1-(1,2,4-triazol-1-yl)butanone

Not binder Not binder Out of domain

49562-28-9 Fenofibrate Not binder 0  RBA  0.1% Out of domain

49757-42-8 4,4 ,4 -Trimethoxytrityl chloride 0  RBA  0.1% Not binder Out of domain

51235-04-2 1,3,5-Triazine-2,4(1H,3H)-dione,

3-cyclohexyl-6-(dimethylamino)-  

1-methyl-

Not binder Not binder Out of domain

52918-63-5 Deltamethrin N/A Not binder Out of domain

55219-65-3 Triadimenol N/A Not binder Out of domain

56424-77-2 Ethyl 2-(ethoxycarbonylmethoxy)

benzoate

Not binder Not binder Out of domain

57524-89-7 11 ,17,21-Trihydroxypregn-4-ene-

3,20-dione 17-valerate

Not binder 0  RBA  0.1% Out of domain

60168-88-9 2,4 -Dichloro- (pyrimidin-5-yl)

benzhydryl alcohol

0  RBA  0.1% Not binder Out of domain

60207-90-1 1-[[2-(2,4-Dichlorophenyl)-4-propyl-1,3-

dioxolan-2-yl]methyl]-1h-1,2,4-triazole

Not binder Not binder In domain

61630-32-8 4-Androsten-4-ol-3,17-dione acetate Not binder Not binder Out of domain

64529-56-2 Ethiozin Not binder Not binder Out of domain

64887-40-7 3-(2-Benzoxazolyl)umbelliferone N/A Not binder Out of domain

65405-77-8 3-Hexenyl salicylate Not binder 0  RBA  0.1% Out of domain

66246-88-6 Penconazole Not binder Not binder In domain

67845-93-6 Benzoic acid, 3,5-bis 

(1,1-dimethylethyl)-4-hydroxy-, 

hexadecyl ester

Not binder Not binder Out of domain

69806-50-4 Fluazifop-butyl Not binder Not binder Out of domain

70458-96-7 3-Quinolinecarboxylic acid, 

1,4-dihydro-1-ethyl-6-fluoro-4-oxo- 

7-(1-piperazinyl)

Not binder Not binder Out of domain

(continued)
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TABLE 10.3 (CONTINUED)
Screening Results for ER Binding Affinity of 387 hER Inventory

CAS Chemical Name Observed Predicted Domain

73250-68-7 Acetamide, 2-(2-benzothiazolyloxy)-

N-methyl-N-phenyl-

Not binder Not binder Out of domain

74115-24-5 3,6-Bis(2-chlorophenyl)-1,2,4,5-

tetrazine

Not binder Not binder Out of domain

76578-14-8 Propanoic acid, 2-(4-((6-chloro-2-

quinoxalinyl)oxy)phenoxy)-, ethyl es

Not binder Not binder Out of domain

76674-21-0 Flutriafol (PP450) N/A Not binder Out of domain

78473-71-9 Enterolactone 0  RBA  0.1% 0.1  RBA  10% Out of domain

79983-71-4 Hexaconazole N/A Not binder In domain

82560-54-1 Benfuracarb N/A Not binder Out of domain

82657-04-3 (2-Methyl{1,1 -biphenyl}-3-yl)methyl 

3-(2-chloro-3,3,3-trifluoro-1-pro

N/A Not binder Out of domain

83055-99-6 Bensulfuron-methyl Not binder Not binder Out of domain

84087-01-4 8-Quinolinecarboxylic acid, 

3,7-dichloro-

Not binder 0  RBA  0.1% Out of domain

84371-65-3 Mifepristone 0  RBA  0.1% 0  RBA  0.1% Out of domain

85118-07-6 3,4-Difluorobenzophenone Not binder 0  RBA  0.1% Out of domain

88671-89-0 -Butyl- -(4-chlorophenyl)-1H-1,2,4-

triazole-1-propanenitrile

Not binder Not binder In domain

94361-06-5 Cyproconazole Not binder Not binder In domain

95333-64-5 1-(4-Hydroxybenzyl)imidazole-2-thiol Not binder 0  RBA  0.1% Out of domain

106246-33-7 Benzenamine, 4,4 -methylenebis[3-

chloro-2,6-diethyl-

0  RBA  0.1% 0  RBA  0.1% Out of domain

107534-96-3 1H-1,2,4-Triazole-1-ethanol, 

-(2-(4-chlorophenyl)ethyl)-

Not binder Not binder In domain

114369-43-6 2-Cyano-2-phenyl-2- 

( -p-chlorophenethyl)ethyl-1H-1,2,4-

triazole

Not binder Not binder In domain

122931-48-0 N-((4,6-Dimethoxypyrimidin-2-yl)

aminocarbonyl)-3-(ethylsulfonyl)-2-pyr

Not binder Not binder Out of domain

125-04-2 Hydrocortisone 21-(sodium succinate) Not binder 0  RBA  0.1% Out of domain

131-52-2 Phenol, pentachloro-, sodium salt Not binder Not binder Out of domain

137-42-8 Sodium N-methyldithiocarbamate N/A Not binder Out of domain

145-41-5 Sodium dehydrocholate Not binder Not binder Out of domain

4418-26-2 2H-Pyran-2,4(3H)-dione, 3-acetyl- 

6-methyl-, ion(1-), sodium

Not binder Not binder Out of domain

across the potency bins. The concordance between predicted and observed hER was 

found to be 0.80 if one counts only chemicals falling in the model for the chemi-

cals that are in the model applicability domain. As can be seen, a large portion of 

screened chemicals (75%) are out of model applicability domain.

The hER binding model was combined with a metabolism simulator to predict the 

metabolic activation of chemicals. The recently developed metabolic simulators for 

mammalian liver were used. To adjust the transformation probabilities and increase 
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the reliability of transformations (aromatic ring hydroxylation and O-oxidative deal-

kylation) predominantly involved in the activation of chemicals for eliciting ER 

binding affinity, 62 new documented maps were added to the training set with 332 

mammalian liver metabolism maps. The expanded training set was used for rederiv-

ing the metabolism simulator. The resulting simulator has been combined with the 

hER binding battery and applied to 25 of these 62 chemicals for which data for ER 

binding activity were identified for parent structure and metabolites. The screening 

results are listed in Table 10.4, where the predicted ER binding affinities were com-

pared with the observed RBA of these chemicals and their active metabolites.

As seen, 33 of all 41 active parent structures and metabolites (~80%) were 

correctly identified as active. In six cases, some of the documented active metabo-

lites were not generated. The chemical with CAS# 109640-20-2, which is docu-

mented as active as parent structure, was predicted to be active after metabolic 

activation.

10.4 SUMMARY AND CONCLUSIONS

The current review of our modeling activity of ER binding affinity is an illustration 

of the category approach in QSAR. Here, defining the mechanistic domain of the 

model is a first step in its development. Once, in this mechanistic domain (category), 

the next step is to quantify the model for predicting the potency of the effect. In the 

current modeling, first, the COREPA analysis was used for defining the interac-

tion mechanisms, and subsequently, 3D models were developed for each identified 

interaction type. Analysis of common reactivity patterns of most active ER binders, 

based on the distance between nucleophilic sites, resulted in identification of distinct 

interaction types, summarized as steroid-like A-B type, modulated by steric and 

electronic interactions; an A-C type, where the local hydrophobic interactions were 

found to be significant; and a mixed A-B-C (AD) type, modulated again by stereo-

electronic parameters.

The combination of the distance ranges associated with each of the three interac-

tion types was found to form a general requirement for eliciting a weak ER binding 

effect due to the presence of two nucleophilic sites. When combined with specific 

stereoelectronic and hydrophobic screens, this necessary requirement could yield 

much higher potency. The A-only type of binding was clearly identified for the 

phenolic type of chemicals only. The remaining three classes of chemicals are diffi-

cult to associate with any of the documented interaction mechanisms. The ultimate 

modeling platform for hER binding affinity was organized as a battery of such 

models. The performance of the models was illustrated by screening 387 chemi-

cals tested for hER. A variety of molecular modeling approaches are presented 

and applied in the present chapter. They include the multivariate development of 

COREPA reactivity patterns, optimal analysis (saturation) of conformational space, 

and introduction of functional (multidimensional) parameters, such as local hydro-

phobicity parameters. The model was combined with a simulator of mammalian 

liver metabolism. The performance of the model accounting for metabolism activa-

tion of parent chemicals was evaluated.
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TABLE 10.4
Observed and Predicted Data for 25 Chemicals and Some of Their Metabolites

CAS Name Smiles RBA ER

Observed Predicted

80-05-7 2,2-Bis(4-hydroxyphenyl)propane c1(C(C)(C)c2ccc(O)cc2)ccc(O)cc1 Active Active

72-43-5 1,1,1-Trichloro-2,2 -bis(4-methoxyphenyl)ethane C(Cl)(Cl)(Cl)C(c1ccc(OC)cc1)c1ccc(OC)cc1 Active Unclassified

metabolite 1 C(Cl)(Cl)(Cl)C(c1ccc(OC)cc1)c1ccc(O)cc1 Active Active

metabolite 2 C(Cl)(Cl)(Cl)C(c1ccc(O)cc1)c1ccc(O)cc1 Active Active

613-37-6 4-Methoxybiphenyl c1(-c2ccc(OC)cc2)ccccc1

metabolite 1 c1(-c2ccc(O)cc2)ccccc1 Active Active

3,5,7-Trihydroxyflavone C1(O)C( O)c2c(O)cc(O)cc2OC 1c1ccccc1

metabolite 1 C1(O)C( O)c2c(O)cc(O)cc2OC 1c1ccc(O)cc1 Active Active

metabolite 2 C1(O)C( O)c2c(O)cc(O)cc2OC 1c1cc(O)c(O)cc1 Active Active

548-83-4 5,7-Dihydroxyflavone C1( O)c2c(O)cc(O)cc2OC(c2ccccc2) C1 Active Active

metabolite 1 C1( O)c2c(O)cc(O)cc2OC(c2ccc(O)cc2) C1 Active Active

metabolite 2 C1(O)C( O)c2c(O)cc(O)cc2OC 1c1ccc(O)cc1 Active Active

491-54-3 4 -Methoxy-3,5,7-trihydroxyflavone C1(O)C( O)c2c(O)cc(O)cc2OC 1c1ccc(OC)cc1

metabolite 1 C1(O)C( O)c2c(O)cc(O)cc2OC 1c1ccc(O)cc1 Active Active

53-16-7 Estrone C1( O)C2(C)C(C3C(c4c(cc(O)cc4)CC3)CC2)CC1 Active Active

metabolite 1 C1( O)C2(C)C(C3C(c4c(cc(O)c(O)c4)CC3)CC2)CC1 Active Active

50-28-2 Estradiol c12c(C3C(C4C(C)(C(O)CC4)CC3)CC1)ccc(O)c2 Active Active

metabolite 1 c12c(C3C(C4C(C)(C(O)C( O)C4)CC3)CC1)ccc(O)c2 Active Not generated

© 2009 by Taylor & Francis Group, LLC
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109640-20-2 [1-(4-(2-Dimethylaminoethoxy)phenyl]-1,2-

diphenyl-1-butene

c1(C(c2ccc(OCCN(C)C)cc2) C(c2ccccc2)CC)ccccc1 Active Not active

metabolite 1 c1(C(c2ccc(OCCN(C)C)cc2) C(c2ccccc2)CC)ccc(O)cc1 Active Active

metabolite 2 c1(C(c2cc(O)ccc2) C(c2ccccc2)CC)ccc(OCCN(C)C)cc1 Active Not generated

1157-39-7 4 ,7-Dimethoxyisoflavone c1(C2C( O)c3c(cc(OC)cc3)OC 2)ccc(OC)cc1

metabolite 1 c1(C2C( O)c3c(cc(O)cc3)OC 2)ccc(O)cc1 Active Active

491-80-5 5,7-Dihydroxy-4 -methoxyisoflavone c1(C2C( O)c3c(O)cc(O)cc3OC 2)ccc(OC)cc1 Active Active

metabolite 1 c1(C2C( O)c3c(O)cc(O)cc3OC 2)ccc(O)cc1 Active Active

2196-14-7 7,4 -Dihydroxyflavanone C1( O)c2c(cc(O)cc2)OC(c2ccc(O)cc2)C1

metabolite 1 C1( O)c2c(O)cc(O)cc2OC(c2ccc(O)cc2)C1 Active Active

56-53-1 Diethylstilbestrol c1(C( C(c2ccc(O)cc2)CC)CC)ccc(O)cc1 Active Active

metabolite 1 c1(C(C(c2ccc(O)cc2) CC) CC)ccc(O)cc1 Active Active

94-41-7 Chalcone c1(C( O)C Cc2ccccc2)ccccc1

metabolite 1 c1(C( O)C Cc2ccc(O)cc2)ccccc1 Active Active

metabolite 2 c1(C( O)C Cc2ccccc2)ccc(O)cc1 Active Active

metabolite 3 c1(C( O)C Cc2ccccc2O)ccccc1 Active Not generated

122-57-6 Benzylideneacetone C(C)( O)C Cc1ccccc1

metabolite 1 C(C)( O)C Cc1ccc(O)cc1 Active Active

480-41-1 Naringenin C1( O)c2c(O)cc(O)cc2OC(c2ccc(O)cc2)C1

metabolite 1 C1( O)c2c(O)cc(O)cc2OC(c2ccc(O)cc2) C1 Active Not generated

485-72-3 Formononetin c1(C2C( O)c3c(cc(O)cc3)OC 2)ccc(OC)cc1

metabolite 1 c1(C2C( O)c3c(cc(O)cc3)OC 2)ccc(O)cc1 Active Active

metabolite 2 c1(C2Cc3c(cc(O)cc3)OC2)ccc(O)cc1 Active Not generated

(continued)
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TABLE 10.4 (CONTINUED)
Observed and Predicted Data for 25 Chemicals and Some of Their Metabolites 

CAS Name Smiles RBA ER

Observed Predicted

131-57-7 Oxybenzone c1(C( O)c2c(O)cc(OC)cc2)ccccc1

metabolite 1 c1(C( O)c2c(O)cc(O)cc2)ccccc1 Active Active

103-30-0 trans-1,2-Diphenylethylene c1(C {t}Cc2ccccc2)ccccc1

metabolite 1 c1(C {t}Cc2ccc(O)cc2)ccc(O)cc1 Active Active

92-52-4 Diphenyl c1(-c2ccccc2)ccccc1

metabolite 1 c1(-c2ccc(O)cc2)ccccc1 Active Active

metabolite 2 c1(-c2ccc(O)cc2)ccc(O)cc1 Active Active

metabolite 3 c1(-c2ccccc2)cc(O)ccc1 Active Not generated

100-41-4 Ethylbenzene c1(CC)ccccc1

metabolite 1 c1(O)ccc(CC)cc1 Active Active

446-72-0 Genistein c1(C2C( O)c3c(O)cc(O)cc3OC 2)ccc(O)cc1 Active Active

520-18-3 Kempferol C1(O)C( O)c2c(O)cc(O)cc2OC 1c1ccc(O)cc1 Active Active

50-27-1 Estriol c12c(C3C(C4C(C)(C(O)C(O)C4)CC3)CC1)ccc(O)c2 Active Active

117-39-5 Quercetin C1(O)C( O)c2c(O)cc(O)cc2OC 1c1cc(O)c(O)cc1 Active Active

© 2009 by Taylor & Francis Group, LLC
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11 Molecular Field Analysis 
Methods for Modeling 
Endocrine Disruptors

Jean-Pierre Doucet and Annick Panaye

ABSTRACT

The wide dispersal into the environment of a huge number of chemicals poten-

tially able to perturb the normal hormonal processes in human or wildlife 

focused interest on methods for in silico prediction of potential toxicity, to help 

in priority setting before costly and time-consuming in vitro and in vivo assays. 

In this field, CoMFA (comparative molecular field analysis) and CoMSIA 
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(comparative molecular similarity analysis) methods proved to be efficient and 

highly reliable. We review some of their applications to quantitative evaluation 

of binding affinity of various classes of chemicals to some nuclear receptors 

(estrogen, androgen, progesterone, and aryl hydrocarbon receptors).

Compared with related approaches (receptor-based field analysis methods, 

similarity matrices analysis, classical two-dimensional [2D] or three-dimen-

sional [3D] Quantitative Structure-Activity Relationship [QSAR], and spec-

troscopic QSAR) CoMFA and CoMSIA generally reach comparable or better 

performance. Furthermore, the display of steric and electrostatic contour plots 

gives some insight into the ligand–receptor interactions and may suggest what 

structural modifications to introduce on the molecular scaffold to modify 

binding affinity.

KEYWORDS

Androgens

Comparative molecular field analysis (CoMFA)

Comparative molecular similarity analysis (CoMSIA)

Endocrine disruptors

Estrogens

Nuclear receptors

Polyhalogenated aromatics

Progestagens
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11.1 INTRODUCTION

The large structural diversity of chemicals likely to act as potential endocrine dis-

ruptors (EDs) and, for many of them, their worldwide dispersal in the environment 

became for decades an international concern, leading several governments (U.S., 

Japan, etc.) to define protocols for hazard identification and risk assessment [1,2]. 

In this field, (Quantitative) Structure-Activity Relationships (SAR and QSAR) play 

a key role inasmuch as they largely avoid costly and time-consuming experimen-

tal measurements on a large scale and limit animal testing [1,3]. Among the vari-

ous available modeling approaches, comparative molecular field analysis (CoMFA) 

developed by Cramer et al. [4] has been largely accepted as a good model to quan-

tify ligand binding affinity. CoMFA has demonstrated its ability to provide accurate 

predictions and is now currently accepted as useful for hazard identification [5,6]. 

So, CoMFA (although computationally and person power intensive) has been inte-

grated in a sequential “Four Phase” scheme of priority setting of endocrine disrup-

tors [1]. On the other hand, CoMFA was also proposed as a rationale for synthesis 

of ligands of high and selective affinity, like selective androgen receptor modulators 

(SARMs) [7].
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This review summarizes the use of CoMFA and other neighboring methods of 

molecular field analysis in ED screening. Attention will be focused on estrogen (ER), 

androgen (AR), and progesterone (PR) receptors. For other nuclear receptors (cor-

ticosteroid, retinoic, thyroid) less extensively studied, information may be found on 

recent reviews and articles [6,8–10].

Whatever the QSAR model may be, it is important to keep in mind some basic 

remarks:

Any model cannot be better than the data employed to build it.

Statistical methods may differ in their ability to establish the relationship.

Some descriptors are better than others on a given chemical family.

Furthermore, for hazard assessment or risk management, in view of use in regula-

tory processes, careful examination of the prediction confidence and validation of

the applicability area of the model (including domain extrapolation) are mandatory 

to assess the robustness of the model. In other words, caution is warranted in inter-

preting QSAR results for chemical classes that are not well represented in the train-

ing set [1,11]. The training set should cover the structural space, with a minimum of 

patterns, equally shared. However, it was indicated that some redundancy must exist 

to cope with possible single point errors [12]. As to validation of the results, leave-

one-out (LOO) cross-validation has been frequently used, but it was noted that such 

a process corresponds to some kind of interpolation within the training set and has 

only limited ability to validate prediction for chemicals structurally different from 

those of the training set [1,13]. Using an external test set, ignored when building the 

model, is a more secure way to validate the approach.

Another important problem is the translation of in vitro results to in vivo con-

ditions, due, for example, to problems of metabolization. So, Vinclozolin, which 

induces antiandrogenic effects in vivo, does not bind AR in vitro, its action being 

due to its metabolites M1 and M2 [14]. Conversely, in the search for SARMs, newly 

synthesized molecules, mimicking the steroid nucleus and looking promising for their 

binding affinity in vitro are ineffective in vivo, due to a too rapid metabolization [15]. 

Desolvation energy differences and H-bond properties may also complicate the com-

parison [16].

We will first briefly present the principle of the more largely widespread molecu-

lar field analysis methods CoMFA and CoMSIA. For more details, the reader may 

refer to specialized textbooks [12]. We will then present some of their applications 

for diverse nuclear receptors, and compare their results with other approaches (that 

will be briefly presented when encountered in the text). As a general remark, it was 

established that, for endocrine disruptors, in vitro affinity for receptor binding is a 

good predictor of in vivo activity. Binding affinity is generally defined, in competi-

tive assays, as the negative log of the concentration (molar equivalent) necessary to 

displace from the receptor 50% of a bound reference compound, and it is expressed 

in relative values log RBA: [3H] labeled estradiol, for example, was frequently used 

to characterize ER binders. Some molecules frequently cited in this review are rep-

resented in Figure 11.1.
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FIGURE 11.1 Some endocrine disruptors frequently cited in this review.
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11.2 COMPARATIVE MOLECULAR FIELD ANALYSIS 
METHODS: CoMFA, CoMSIA

11.2.1 COMFA: BASIC STEPS AND CAVEATS

The basic premise, common to QSAR models, is that the biological response (in 

most cases) reflects the interactions between a receptor and the ligand that will bind 

to it. It is assumed that all molecules interact with the receptor at the same binding 

site in the same (or similar) manner. Variations in these interactions are related to the 

observed variations in the ligand affinity. CoMFA assumes that noncovalent forces 

dominate these interactions and can be modeled by the fields (electronic and steric) 

created by the ligand in its vicinity. So, differences in activity may be correlated 

with differences in these noncovalent fields. This contrasts with “classical” three- 

dimensional (3D) QSAR, where structural descriptors, encoding relevant features of 

the molecules under scrutiny, generally correspond to characteristics (local or global) 

directly attached to the molecular framework (such as heat of formation, molecular 

surface area or volume, atomic charges). CoMFA analyses, here reviewed, were car-

ried out with the turnkey package included in SYBYL, and provided by TRIPOS®

(St. Louis, Missouri). The successive steps in a CoMFA analysis are as follows:

Alignment: Molecules are superimposed on a common template in a 3D 

lattice surrounding the molecules.

Field calculation: Interaction energies (steric and electrostatic) are calcu-

lated locating a “probe atom” on the nodes of this 3D lattice.

Correlation with activity: Interaction energies are correlated with values 

of the studied property, using partial least squares (PLS) method [17].

Contour plots: From PLS coefficients, areas may be delineated, in the 

space surrounding all molecules, where an increase of steric bulk, 

respectively, an increase of positive potential, contributes to increase (or 

decrease) binding affinity.

However, to get significant results some precautions must be taken at each step. 

No doubt, alignment, sometimes time-consuming and requiring some chemical 

and biological knowledge, is the most crucial part of the treatment and often a real

bottleneck [18]. It is generally carried out using as a template the most active molecule in 

the set, and choosing a rigid part of it, common to all molecules (if possible), as a “seed.” 

For nonrigid molecules, the selection of the active conformation (that which binds the 

receptor) is, of course, a major problem. A systematic conformational search is therefore 

performed beforehand to define the minimum-energy conformation that will be used. 

The quality of the fit is determined by the root mean square error (RMSE) on atom loca-

tions (after superimposition). Of course, knowing the geometry of a template bounded 

to its receptor (from X-ray crystallography) is clearly a definite advantage.

But, using the crystal structure of the complex ligand binding domain (LBD) 

is not always without problems: close packing of residue side chains (as seen in 

the X-ray structure) may preclude binding in the receptor pocket or forbid H-bond 

formation [19]. Using energy-minimized conformations is not a panacea. Sometimes, 

the best aligned conformation is not that of minimal energy, as for bicalutamide.
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Binding modes may not be the same for the different chemical families: in bisphe-

nol A, the intuitive choice, adjusting the two hydroxyl group on those on the 3- and 

17- group of E2 or DHT, must be discarded, a conformation with a hydrogen-bond 

missing but with stronger hydrophobic interactions is preferred [20].

When the dataset encompasses different chemical families (for example, steroids 

and more flexible molecules), it may be useful to choose some “secondary refer-

ences”: in each family, a lead is first aligned with the template and constitutes itself 

a template for its own family.

In fact, CoMFA is based on the field values on the nodes of the lattice surrounding 

the superimposed molecules. Rather than optimizing the location of atoms, the align-

ment may be refined in a “field-fit” minimization. In the energy minimization process 

(usually by molecular mechanics), additional penalty terms are added to the force field 

to reflect the degree of similarity of the steric and electrostatic fields (between tem-

plate and fitted molecule). Internal coordinates of the fitted molecule are adjusted to 

ensure optimal field and geometric overlap with the template. This causes an increase 

of its potential energy and possibly some structural distortions. The fitted molecule is 

therefore re–energy-minimized, without the “field fit” penalties, to relax to the near-

est local minimum-energy structure. It was quoted that such a field-fit alignment may 

avoid multiple possible solutions due to symmetry or presence of multiple rings [14].

For field calculation, the probe atom mimics an sp3 hybridized carbon (radius 1.53 

Å, charge 1.0). 6–12 Lennard Jones, and Coulombic potentials are respectively used. 

Charges are generally derived from the Gasteiger-Marsili model (relying on partial elec-

tronegativity equalization), or calculated by semiempirical quantum mechanics programs 

(such as AM1), with (often) a distance-dependent dielectric constant (  r). The lattice, 

with a mesh of (usually) 2 Å, extends at least 4 Å in all directions beyond the common vol-

ume of the superimposed molecules (nodes internal to the common volume are ignored). 

At short distances, these potentials may take very large values, and a truncation threshold

(generally 30 kcal/mol) is fixed. Electrostatic interactions at “sterically forbidden” points 

(high steric energy) are ignored, and a mean value for these nodes is retained.

For the correlation of field values with activity, interaction energies are gathered 

in a spreadsheet where rows correspond to individual molecules and columns to indi-

vidual nodes. Because there are many more values of potentials (for example, 300 

nodes  2 fields) that constitute the independent variables (x) for a dataset of (say) 

50 activity values (dependent variable y), analysis is carried out using PLS method. 

Basically, PLS extracts from the independent variables a reduced set of principal 

components (linear combination of the original descriptor variables) to correlate the 

observed activities. In fact, these latent variables are slightly skewed from the PC 

for maximum intercorrelation [17]. In such analyses, columns (nodes) with small 

variations of interaction energies may be discarded to reduce the computational task 

(“column filtering” makes the calculation faster by about 10 times) [14]. The number 

of principal components to retain is determined from the cross-validated (usually in 

LOO) determination coefficient q2:

    q2  1 PRESS/SD

PRESS ( )y yobs cal
2
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where SD is standard deviation, and PRESS is the sum of squared deviations between 

predicted and observed property values.

The model is then applied to the whole set to get the conventional determination 

coefficient r2. Schematically, r2 measures the model’s goodness of fit and its internal 

consistency, whereas q2 evaluates its robustness and its ability to interpolate within 

the training set. r2  0.9 and q2  0.5 are usually considered as significant [21]. A 

negative q2 would mean that a “no model” (taking the mean of the observations) 

works better than the proposed model.

Results generally mention:

SPRESS  (PRESS/n c 1)0.5

where n is the number of compounds, and c is the number of components in the model.

SPRESS takes into account the complexity of the model. Otherwise, the (cross-

validated) standard error of prediction and the (non-cross-validated) standard error 

of estimate are given:

SDEP(test)  (PRESS/n)0.5

SEE(training)  (PRESS/n)0.5

In fact, they more rely on RMSE than on standard error(s), and the terminology is 

not always unambiguous.

For prediction,

Pr r2  1 PRESS/SD

is calculated on the sum of squared differences between calculated values on objects 

in the test and the mean of the training set objects. Bootstrapping or y scrambling 

may be used as other criteria of model validity. At last, a variant of PLS, SAMPLS 

[12] accelerates the cross-validation process.

In addition to the usual prediction of activity, one of the interesting points of 

CoMFA is provided by the contour plots. They delineate areas in the space sur-

rounding aligned molecules where an increase of steric bulk (brought about by 

larger training set molecules), respectively an increase of positive potential, con-

tributes to increase (or decrease) activity. Schematically, the (very numerous) coef-

ficients of the CoMFA treatment (giving the contribution of each lattice node to 

the PLS model) are used to define contour plots, corresponding to fixed values of 

the product “Standard Deviation x Coefficients.” For example, for the steric field, 

a positive value on a node indicates that an increase of the field felt on this node 

would correspond to increased activity. An example of contour plots is given in 

Figure 11.2a and Figure 11.2b.

Contour plots may suggest what structural modifications introduce in these regions 

to modify activity (more bulky, more positively charged group and so on). Contour 

plots may be viewed as representing very roughly a complementary image of the bind-

ing domain of the receptor. However, the limited amount of information they bring 

involves extreme caution in such an interpretation. They may even be considered as 

a “self-fulfilling prophecy since totally dependent on alignment and composition of 

training set” [5]. Contour plots are directly related to the changes in structures that 
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lead to changes in activity. Absence of a region in a contour does not mean this region 

is unimportant; it only indicates it is constant in the dataset [8]. Nevertheless, contour 

plots may give some indices as to the mechanisms intervening in binding and may 

also be used to inspect the necessary complementarity of bulk and charge for possible 

ligands, for example, to identify potentially active metabolites [14].

11.2.2 IMPROVEMENTS OF COMFA

To improve alignment, SEAL (Steric and Electrostatic ALignment) [22] proposes an 

automated method for a rigid body alignment. For each tested molecule, numerous 

randomly generated starting orientations are tried, with definition of a similarity 

index with the template, in order to maximize electrostatic and steric overlap.

Docking ligands to the receptor (derived from experiment or built by homology) 

gives an insight into their bound conformations. Then, these selected conformations 

Y

G

G

Y

Y

FIGURE 11.2  (a) Estradiol scaffold and comparative molecular field analysis (CoMFA) 

contour plots for estrogen receptor (ER) binding affinity. Light gray area represents regions 

(near the D-ring) where steric bulk should be increased for better affinity. In dark gray 

area (above and below the A-ring), bulk is detrimental. (b) Electrostatic contours: light gray 

indicates regions where more negative charge favors binding, whereas in dark gray regions

(off A- and D-rings) positive charge is desired. Letters Y, G, B, R correspond to the conven-

tional colors in CoMFA maps, which are yellow, green, blue, and red, respectively. (Adapted 
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56, 8, 2000. With permission.)
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are aligned with better confidence [7,23,24], Monte Carlo methods or molecular 

dynamics may also be used [19,25].

FLUFF (Flexible Ligand Unified Force Field) [26,27] is a semiautomatic, tem-

plate-based, superimposition algorithm that aims to maximize the similarity of 

van der Waals and electrostatic fields. A superimposition force field evaluates the 

overlap between the template and the molecule under scrutiny. Negative super-

imposition (“no, like that…”) may be considered. One original characteristic is 

the definition of “logical” molecules (one or several molecules, parts of real mol-

ecules, arbitrary set of atoms). Groups (such as C18-methyl, H) may be omitted to 

avoid barrier effects hindering superimposition. Flexibility can be introduced on 

the ligand or on both ligand and template. Weights on atoms may be added when 

alignment is not trivial (several possible solutions). In Korhonen et al. [26], FLUFF 

gave better superimpositions than SEAL, “presumably thanks to a priori informa-

tion on weights of the template figures.”

Due to problems posed by the alignment step in CoMFA, great interest focused on 

alternative “GRid-INDependent” approaches such as GRIND. GOLPE (Generating 

Optimal Linear PLS Estimations) avoids considering too many nonimportant grid 

points by carrying out comparative PLS analyses on subsets of the variables and 

selecting the most significant variables [28,29].

Region focusing solutions (CoMFA/q2GRS) are also considered. It was shown 

[13] that the quality of the model may heavily depend on the overall orientation of 

the superimposed molecules in the lattice and can vary by as much as 0.5 units on 

q2. To get rid of this problem, Cho and Tropsha [13] proposed a “q2 Guided Region 

Selection (q2GRS)”. The basic idea was to eliminate regions where fields did not 

correlate well with changes in the activity. After a conventional CoMFA, the lat-

tice embedding the aligned molecules was divided into 125 small regions where 

CoMFA was carried out with a smaller mesh (for example, 1 Å versus 2 Å for the 

usual treatment). Only regions where q2 (from these analyses) was greater than a 

defined threshold were selected to create a master region file used to perform the 

final CoMFA treatment. See also Shi et al. [18] and Sadler et al. [30].

Another solution is the “All orientation search and all placement search” of Wang 

et al. [31]. With this, the molecular aggregate was rotated or translated systematically 

within the grid. A CoMFA was performed for each orientation or placement, and the 

best (highest q2) was retained.

Introducing additional columns of descriptors (HOMO, LUMO, log P, dipole 

moment) to the usual field values may, in some cases, improve the results. In Shi 

et al. [18], adding log P was inefficient, whereas a “phenol indicator” increased q2 up 

to 0.71 in place of 0.66 with traditional CoMFA. See Gantchev et al. [32].

Various changes in the parameterization of CoMFA have also been attempted, 

including extending the grid, imposing ring carbon constraints in field-fit, and 

changing charges [32].

For a better analysis of H-bonding properties, changing probe to O and H atoms 

has been proposed |32]. Alternatively, beyond steric and electrostatic fields, other 

contributions may be considered. For example, Bohl et al. [7] added indicator and 

H-bonded fields representing H-bonding acceptor and donor components. See also 

Kroemer and Hecht [33] and Bohacek and McMartin [34]. Hydrophobic interactions 
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may be taken into account with HINT [35] in which hydropathic interactions are 

evaluated via an empirical potential:

A a S Rj i i ij

where ai, Si are hydrophobic atom constant and solvent-accessible surface area for 

atom i; Rij is the Gaussian attenuation factor, function of the distance between atom 

i and the probe j.
Polarizability effects could also be introduced with a P/r3 field (P atomic polariz-

ability) as in the SOMFA method (Self-Organizing Molecular Field Analysis) [36].

11.2.3 COMPARATIVE MOLECULAR SIMILARITY ANALYSIS: COMSIA

The interest for introducing different fields in order to have a more precise analysis 

of the different influences intervening is one of the raisons d’être of the Comparative 

Molecular Similarity Analysis, CoMSIA [37,38]. For example, entropic contribu-

tions (important in the immobilization at the binding site) may be insufficiently 

covered by van der Waals and Coulomb potentials. On another hand, the CoMFA 

potentials are very steep near the van der Waals surface. As a consequence, contour 

maps often present singularities, making them less clear. Furthermore, simultane-

ously using steric and electrostatic fields requires introducing an arbitrary scaling 

and different threshold values for these two components, leading to some informa-

tion loss. To overcome these problems, Klebe et al. [37] proposed a new approach: 

the Comparative Molecular Similarity Analysis (CoMSIA).

After alignment and embedding of the molecules in the 3D lattice (as in CoMFA), 

the similarities between the atoms of the studied molecule and a probe are evaluated 

for five properties related to steric, electrosatic, hydrophobic, and H-bond donor or 

acceptor fields. For property k, the similarity index at grid point q for molecule j is 

calculated according to

A j W W rF k
q

k ik iq, ,( ) ( ) exp( )probe
2 (11.1)

(summation over all atoms i of molecule j). riq is the distance between the probe 

and atom i of the tested molecule, and Wik is the actual value of property k at atom i 
(volume for the steric part, AM1 charges, experiment-derived rules for H-bonds, and 

atom-based parameters for hydrophobicity). For the probe, radius r is 1 Å, and other 

properties are set to arbitrary value 1 (charge, hydrophobicity, H-bond-donating, 

H-bond-accepting). A Gaussian-type attenuation factor generally set at  0.3 gives 

smoother variations, avoiding singularities on the contour plots and allowing for calcu-

lation inside the molecular surface. Data analysis is then carried out with SAMPLS.

According to the authors [37], using more fields than CoMFA does not neces-

sarily increase prediction accuracy (fields may be intercorrelated). But it allows for 

a sharper analysis displaying space regions where the contributions of the differ-

ent fields are important for the biological activity and indicating particular charac-

teristics that may be useful for the design of new, improved ligands. Particularly, 

similarity indices may be calculated on nodes within the molecular volume 
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(which is not possible with CoMFA). In CoMFA, contour plots indicate regions of 

space where molecules would favorably (or not) interact with a possible environment. 

In contrast, CoMSIA field contributions indicate nodes where a particular property 

may be given a higher weight to enhance an activity, making contour maps easier to 

interpret. Difference maps may indicate discriminating regions monitoring selectiv-

ity. It was also shown, on examples, that CoMSIA was less sensitive than CoMFA 

to changes in the orientation of the superimposed molecules, variations of q2 on 

translations and rotations of the superimposed molecules remaining inferior to 0.10 

in log RBA.

11.3 BINDING THE ESTROGEN RECEPTORS

Among the diverse models proposed for endocrine disruption processes, binding 

affinity to the estrogen receptors (ERs) is the most documented. Particularly, the 

CoMFA approach was compared to various other 2D or 3D methods. In addition to 

the statistical quality of the results and the cost of the calculation, great attention was 

devoted to two facets: the need (or not) for a (geometry-optimized) 3D structure, and 

the need (or not) for alignment of the molecules constituting the dataset.

Among the first CoMFA models proposed in the field, Gantchev et al. [32] con-

sidered 44 halogenated derivatives of estradiol (E2), used for receptor imaging in 

cases of endocrine cancers. The relative binding affinity (RBA) was measured in a 

competitive binding assay with [3H] estradiol. Alignment was carried out on the ste-

roid A, B, and C rings. Ten chemicals were chosen as test, but among them, binding 

affinity was only available for five. Various CoMFA parameters were systematically 

modified in order to obtain the highest q2 (in a cross-validation over 25 groups). In 

the best CoMFA model (11 components), q2 and r2 were respectively equal to 0.895 

and 0.988 (SEP 0.48; SEE 0.16 log units).

Affinities of polychlorinated hydroxybiphenyls (formerly used as commercial 

insulators and recognized as persistent environmental contaminants) were examined 

in [16], based on a competitive mouse uterine cytosol assay. Alignment was achieved 

on the A ring of estradiol and the parasubstituted ring, the field-fit option allow-

ing to choose between several solutions (if that was the case). After elimination of 

three chemicals (ionized in the conditions of experiment), 11 molecules constituted 

the training set. Inclusion in the CoMFA model of the hydropathic HINT field was 

considered, but the best model was obtained with the steric field only, leading to 

q2  0.544; r2  0.974 with two components (SEP 1.12; SEE 0.27).

To overcome the lack of structural diversity, in some previous studies, Waller 

et al. [5] examined a population of 55 molecules corresponding to 8 structurally 

diverse subsets (phenols, DDTs, DESs, PCBs, phthalates, phytoestrogens, steroids, 

pesticides), on 6.5 log units of binding affinity (measured on mouse uterine cytosol 

assays). Rigid body alignment to the template estradiol by SEAL avoids subjective 

hypotheses. Adding to the usual steric and electrostatic fields, a hydrophobic con-

tribution (HINT) led to a better model, for both internal prediction and robustness, 

than usual CoMFA or HINT alone (q2  0.590; r2  0.881). It may be noted that 

phenolic rings were generally superimposed on ring A of estradiol. But for the 2,4,6 

trichloro-4 -biphenylol, the phenol ring was oriented over the estradiol D ring and its 
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17-OH group. This position provided better hydrophobic interactions in the central 

part of the molecules (over B and C rings). Interestingly, external predictive ability 

was examined excluding a whole structural family and training the model on the 

other ones. Errors on these “unbiased” predictions were typically on the order of 

1.0 to 2.0 log units depending on the structural extrapolation from the training set 

(whereas in the fitted mode, error was about 1 log unit ). LOO predictions were not 

significantly better. This may indicate that the training set already encompassed a 

sufficient structural diversity to be able to treat new families.

The binding of nonsteroidal ligands to ER was also studied by Sadler et al. [30] on 

30 chemicals (DES metabolites, Indenestrol analogs), with binding affinity measured 

on mouse cytosol uterus. Various alignments were tested based on the oxygen atoms in 

3- and 17- positions of estradiol and either the centroids of rings A and D or carbons of 

ring A (the best model), with field-fit or not. With region focusing, the best model led to 

q2  0.796 with three principal components, compared to 0.720 (2 PC) with traditional 

CoMFA. As in other studies, electrostatic contribution predominated (55%) in agree-

ment with an area of favored negative charges near the 3- and 17-OH groups of E2.

From these studies [5,30], convergent indications could be gained from the con-

tour plots that schematically indicated that affinity is favored by two electronegative 

centers separated by a rigid hydrophobic scaffold.

Steric bulk is tolerated near positions 2 or 3 of ring A and mainly near the 17-

substituent on ring D, but is detrimental out of plane of ring A or near atoms 15 and 

16 on D ring, as indicated in Figure 11.2a. Preference for a positive potential near posi-

tions 3 and 17 reflects the orientation of the hydroxyl groups (frequently present in the 

dataset). But preferences for negative charge also exist near atoms 3 and 17, as shown in 

Figure 11.2b. Hydrophobic bulk is beneficial in the vicinity of the A ring but not near 

the surface close to 1-, 4-, and 16- positions. A hydrophobic pocket is suggested in the 

11-  region of estradiol. The proposed mode of binding was validated by comparison 

of relatively rigid DESs or Indenestrol analogs: pairs of S (more active)/R enantiomers 

or EE (more active)/ZZ isomers, highlighting the importance of beneficial hydrophobic 

interactions in the 11-  region of the template and steric bulk intolerance below the D ring, 

as already noted in [5]. Some of these compounds are represented in Figure 11.3.

11.3.1 COMPARISON WITH “CLASSICAL QSAR”

Tong et al. [39] compared CoMFA to CODESSA (COmprehensive DEscriptors for 

Structural and Statistical Analysis) models [40,41] on a set of structurally diverse 

chemicals (53 compounds) using data from von Angerer et al. [42] on 2-phenylindoles, 

plus 3 steroids, 2 triphenylethylenes, and Hexestrol. Relative binding affinities were 

calculated from a calf uterine ER competitive binding assay. The test set was consti-

tuted of 16 steroidal estrogenic compounds [43]. Their RBA values were obtained on 

human ER, but for four compounds they were also measured on calf ER. The quite 

comparable RBA values obtained in the two assays suggested that accurate predic-

tions may also be achieved “across species.”

CODESSA is a “classical QSAR” package, calculating hundreds of descriptors 

(constitutional, topological, geometrical, electrostatic, and quanto-chemical) from the 

(optimized) 3D molecular geometry. A stepwise process then selects the relevant 
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descriptors to be included in a PLS or MLR model. In this study, CoMFA (q2  0.61, 

r2  0.97) outperformed CODESSA (q2  0.54, r2  0.68) that seemed unable to cap-

ture some structural factors (for example, the position of the OH group on the indole 

phenyl ring). However, for prediction, results were more comparable. The authors 

also stressed that CODESSA (although requiring a 3D structure) was less prone to 

arbitrariness (alignment choice) and was easier to implement.

CoMFA contour plots indicated that increasing the negative charge near the 3

position of 2-phenylindoles would favor a decrease in RBA, in agreement with the 

trend observed for an OH substitution on this position. Binding appeared to be sensi-

tive to the length of substituents at the indole N1-position: a short alkyl chain (ethyl 

group) increased affinity (as for the B- ring of steroids), but a longer chain (butyl 

group) was detrimental.

In another publication [44], the CoMFA method was compared to CODESSA 

and Hologram QSAR (HQSAR) TRIPOS® (St Louis, Missouri) on three datasets, 

from competitive binding assays with labeled endogenous E2. The first two sets 

encompassed 31 compounds (among them 19 steroids) binding human ER-  and rat 

ER- , respectively. The third encompassed 47 compounds (mainly congeners of 2- 

phenylindole from [42]) studied with calf ER.

HQSAR systematically generates all possible fragments of varied lengths (here 

four to seven atoms). These fragments are counted in bins of a fixed length array 

(hashing process) to form a molecular hologram and selected on the basis of their per-

formance. The process is analogous to the generation of molecular fingerprints. Bin 

occupancies are the structural descriptors encoding 2D molecular information. Here 

only element- and bond-type information was considered (additional 3D information 

OH
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FIGURE 11.3 Variations of a binding affinity to an estrogen receptor (ER) ligand-binding 

domain (LBD) for pairs of isomers. Log RBA (relative binding affinity) values are indicated 

in parentheses (reference Estradiol, log RBA  2). (Adapted from B.R. Sadler, S.J. Cho, K.S. 

Ishaq, K. Chae, and K.S. Korach, J. Med. Chem., 41, 2261, 1998. With permission.)
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on hybridization, chirality, might be added but, here, gave no improvement). The 

three methods used PLS analyses, so this study focused on the performance of the 

structural descriptions. In this study, CoMFA, encoding (in 3D) for shape and charge 

distribution, gave, as expected, better results. But HQSAR, with only 2D descriptors, 

was nearly comparable. CODESSA exhibited the lowest performance, and (accord-

ing to the authors) this might be due to the fact that it condensed topological infor-

mation into single values of indices. As an example, for binding human ER- , for q2

(respectively r2), CoMFA led to 0.70 (0.95), HQSAR to 0.67 (0.88) and CODESSA 

to 0.46 (0.79). Among the three methods, CoMFA was more intensive and tricky; 

HQSAR, working only on 2D structural formulae, was by far easier.

Shi et al. [18] revisited the comparison of CoMFA versus HQSAR on a more extended 

dataset [44] of 130 chemicals (on 7.1 log RBA units) including steroids, phytoestro-

gens, DESs, DDTs, PCBs, alkylphenols, and parabens. Experimental data [45,46], cor-

responded to rat uterine cytosol ER competitive assays (a good standard for in vitro
assays, well correlated with yeast-based reporter gene assay or MCF-7 cell proliferation 

assay and also with results on hER- ). Two test sets (25 compounds each) came from 

the data of Kuiper et al. [47] and Waller et al. [5]. Alignments were based on the crys-

tal structure of four ligands, representative of the chemical family. Standard CoMFA 

gave q2  0.665, r2  0.908, whereas with HQSAR q2 was only 0.585 (and r2 0.756). 

Electrostatic field played the major role (57%) consistent with results on smaller sets 

[39,44]. Neither “region focusing” [13] nor the “all orientation, all placement search” of 

Wang et al. [31], or the introduction of log P, gave significant improvement. On the other 

hand, adding a “phenol indicator” raised q2 and r2 to 0.707 and 0.903 (with no signifi-

cant change on SEE), an improvement consistent with the well-known importance of 

H-bonding from C-3. Robustness of the model was established on extensive runs (100) 

of leave-N-out cross-validation. With the two external test sets, q2pred. reached 0.71 and 

0.62 (with phenolic indicator) in place of 0.15 and 0.22 for HQSAR.

However, a parallel study [48] to identify significant descriptors associated with 

ER binding affinity was carried out on 131 compounds (same origin as the com-

pounds studied by Shi et al. [18]). Starting from 151 descriptors (quantum mechani-

cal, graph theoretical indicators, log P, and so forth), a rigorous selection by stepwise 

regression had a predictive power q2  0.627 comparable to the CoMFA result 0.623 

(in a leave-25%-out cross-validation) [18].

Comparison of CoMFA with CoMSIA and HQSAR was also investigated by 

Coleman et al. [20] on 25 derivatives of bisphenol A, a weak ER agonist interven-

ing at a large scale in polycarbonate and epoxy resin production. E2 and DES were 

added to the dataset, as reference compounds, leading to an affinity scale of 4 log 

units. Four structures were chosen as the test set. For CoMFA, alignment was carried 

out in two steps: first the most active bisphenol was fitted to DES bound to hER; then 

all structures were fitted to it. The HINT field [35] was introduced. Three bioassays 

were used: competitive ER binding, gene induction, and cell proliferation. Consistent 

results were obtained, suggesting that ER binding data alone constituted a good indi-

cator. For this population, the three methods gave nearly similar results, with a slight 

advantage to HQSAR (q2  0.542) versus CoMFA (0.514) or CoMSIA (0.513) at the 

price of a more complex model (6 PC versus 2). Unlike the preceding examples, 

electrostatic contribution was not the most important (36% in CoMFA).
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A graphical display of CoMFA contours was consistent with the fact that ER 

could accommodate ligands with phenolic rings (preferably unencumbered) bound 

to a hydrophobic core in the central portion of the binding pocket. Interestingly, it 

was shown that alignment based on E2 as template produced bad models, placing 

bisphenol in an extended position, in an effort to match the OH groups with those 

of E2. DES, utilizing more features of the ER, was a better template, suggesting one 

phenol ring as in DES, the other and the central substituents lying in the same region 

as the ethyl groups of DES to take advantage of hydrophobic interactions.

Another comparison [49] concerned the performance in ER binding affinity 

prediction of CoMFA, HQSAR, and FRED/SKEYS. The FRED/SKEYS approach 

MDL® (Information Systems, San Leandro, California) uses 166 substructural keys 

to encode the presence of singular atoms, rings, or more complex patterns, and then 

select by FRED (Fast Random Elimination of Descriptors) an evolutionary algorithm. 

The dataset (58 compounds), nearly identical to that of Waller et al. [5], but three com-

pounds, encompassed eight chemical families. The CoMFA model included hydro-

pathic interactions (HINT) and used SEAL for alignment on estradiol. For test, as 

in [5], each chemical family was in turn excluded. Performances varied somewhat 

according to the chemical family tested. But, as a whole, according to the authors, 

CoMFA and HQSAR displayed similar cross-validated results (q2about 0.580), FRED/

SKEYS being better (q2  0.700). The better result of CoMFA in a non-cross-validated 

treatment (r2  0.893 versus 0.805 and 0.783) was attributed to the larger number of 

variables the model contained. An interesting point was that HQSAR might identify 

beneficial or detrimental substructures. However, working on dissimilar structures 

(with substructures not represented in the training set) might be difficult.

The k nearest neighbor QSAR method (kNN-QSAR), initially proposed by Zheng 

and Trophsa [50], applied on the same 58 estrogen receptor ligands, gave q2  0.77 

for a ten descriptor model. In this method, the activity of a compound is evaluated 

as a weighted average of the activity of its k most similar neighbors. Similarity is 

calculated by the Euclidian distance between the descriptor vectors. In the paper 

of Asikainen et al. [51], the kNN approach was coupled with a consensus process. 

First, the huge number of descriptors generated by Dragon (about 1,200) [52] was 

reduced by simulated annealing (random subsets of descriptors were progressively 

selected according to a Metropolis Monte Carlo scheme). From 50 models of 250 

descriptors each (this number being not really decisive), a consensus result was pro-

posed. The method was applied to five datasets (some of them previously studied): 

binding to calf [39], rat [18], mouse [49], and human  and . As to internal predic-

tions, this method (presented as simple and robust) gave results better than the other 

approaches, and results were confirmed by leave-some-out cross-validation. It was 

noted that the discriminating power of the descriptors was more important than their 

modeling power, so that a rather large pool of variables was recommended.

11.3.2 COMPARISON WITH “SPECTROSCOPIC QSAR”

Other approaches in field analysis rely on the “Spectroscopic QSAR methods” such 

as EVA (EigenVAlue) [53], EEVA (Electronic EigenVAlue) [54], and so on. The basic 

idea is that spectroscopic quantities reflecting intrinsic physicochemical properties 
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of molecules (implicitly related to their 3D structure) may be considered as molecu-

lar descriptors. These descriptors are “physical observables” and not some artificial 

calculated descriptions of the molecular structure, and no alignment is necessary 

when using them in QSAR [55]. These are constituted of the eigenvalues of the cor-

responding Hamiltonian (normal modes frequencies, in the infrared [IR], orbital 

energies in ultraviolet [UV]-visible spectra). The approach was then extended to 

nuclear magnetic resonance (NMR) shifts in CoSA (Comparative Spectra Analysis) 

[55]. The common process consists in determining the (usually calculated) spectro-

scopic quantities (MO energies, vibrational frequencies, NMR shifts), converting 

them to a bounded scale, introducing a Gaussian shape factor over each “peak,” and 

adding the “intensity” at regular intervals to build up the “spectrum.” A semiempiri-

cal quantum method (after geometry optimization) was claimed to be sufficient for 

evaluating MO energies and vibrational frequencies, and evaluation of NMR shifts 

requires high-level ab initio calculations.

A comparative study was carried out by Asikainen et al. [56] on 36 estrogens 

previously examined [30,57,58] and the quality of the models carefully checked 

by external validation on a large number of randomized test sets. According to the 

authors, CoSA (13C) had good predictive ability (q2  0.69), whereas EEVA (q2

0.42) was a borderline case, and EVA or CoSA (1H) only gave semiquantitative infor-

mation. But CoSA remained inferior to standard CoMFA (q2  0.80) [30].

The SOMFA method of Robinson et al. [59] was also used on the same dataset 

[56]. SOMFA is a grid-based, alignment-dependent method. Molecules (aligned on 

E2) are embedded in a lattice of nodes (as in CoMFA). To each grid node are given 

values of a shape indicator (1 inside the van der Waals volume, 0 otherwise) and of 

electrostatic potential. But the important point is that, at every node, these values, 

for a given molecule, are multiplied by the mean centered activity for that molecule 

(so as to give less interest to molecules close to the mean activity). A QSAR relating 

a property (shape, polarizability) to activity is derived by MLR.

For the 36 compounds of Asikainen et al. [56], the best SOMFA model, obtained 

using only the molecular shape led to q2  0.76 (SPRESS  0.63). The (somewhat mod-

est) results of SOMFA in this study, as in others, have been attributed to the built-in 

regression tool, SOR, that was shown to be equivalent to SIMPLS and NIPALS with 

one principal component (whereas more than one component is obviously necessary 

for mapping complex datasets) [60]. Replacing SOR by external tools as MCSOR 

(MultiComponent Self-Organizing Regression) or SIMPLS improved the performance 

that came comparable to that of CoMFA [36]. For the Sadler dataset, SOMFA (q2

0.698) became better than receptor interaction energies (q2  0.570) and comparable 

to basic CoMFA (q2  0.720), but still lower than “sophisticated” CoMFA with region 

focusing (q2  0.796) or GRID with receptor alignment and region focusing (q2  0.921) 

[57,58]. But the authors stressed that some of these studies lacked extended validation.

In the CoSCoSA (Comparative Structural Connectivity Spectra Analysis) 

approach [61], structural descriptors are constituted by the 13C-13C COSY spots that 

may be considered as one-bond C-C fragments augmented by the chemical shift 

values (indirect information on their connectivity, hybridization, and environment). 

The model, applied to 130 compounds [18], led to q2  0.78, r2  0.827, comparable 

to CoMFA (q2  0.707, r2  0.903). Good results were also obtained with two external 
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test sets. However, for about 50 compounds of the training set (weak binders), with 

no hit in any of the selected bins in the COSY map, activity was predicted constant, 

whereas experimental values spanned a range of about 4 log units.

Although appealing, these spectroscopic QSAR present some limitations: chiral-

ity (not considered) or symmetry (reducing the number of signals) may cause prob-

lems. From a practical point of view, recording experimental spectra suffers from 

several constraints and requires availability of the product. In view of general appli-

cation, these methods are therefore largely dependent on reliable spectra simulation 

systems, covering a wide structural range. This is particularly true for CoSCoSA, 

due to the low natural abundance of the 13C nucleus and its intrinsic low sensitivity, 

although 13C-13C COSY spectra can be partially reconstructed from more sensitive 
1H-1H COSY and HETCOR 13C-1H sequences [62].

In Asikainen et al. [63], for 30 estradiol derivatives (from Napolitano et al. [64]), 

the performances of EVA and EEVA were compared to a classical Hansch-type rela-

tionship using molecular refraction (MR), hydrophobic parameter π, and an indicator 

(for the presence of a 16-  OH group) yielding r2  0.821, but without any cross-

validation [65], and to the MEDV-4 (molecular electronegativity distance vector) 

approach of Sun et al. [66]. The principle of MEDV-4 is to split nonhydrogen atoms 

into four categories according to their connectivity. Ten descriptors are calculated 

corresponding to the different pairs i, j (with 0 i, j 4):

M q q dij i j ij( ) 2

where qi, qj are the relative electronegativities, and dij is the (topological) inter-

atomic distance.

Then an MLR is performed. For the quoted example, an optimized model (with only 

six terms) gave q2  0.747 (r2  0.852), but no external validation was performed.

11.3.3 RELATED LIGAND-BASED MODELS AND RECEPTOR-BASED MODELS

In connection with the superposition tool FLUFF, Korhonen et al. [27] proposed a new 

QSAR approach, BALL (boundless adaptive localized ligand), based on a local coordi-

nate system. One advantage is that the ligands and the template can choose the best com-

mon conformation. To establish a QSAR model, BALL computes the similarity between 

the template (given as a logical molecule) and the molecules on both van der Waals and 

electrostatic volumes. A sparse localized grid tied to the template is created (with verti-

ces placed at the atoms of the template, which allows for adaptation to conformational 

changes). Ligands are described as soft functions, Gaussian primitives, and electrostatic 

potentials (so that a “molecule does not end brutally but slowly fades away”). This coarse 

grid has been compared [27] to a sort of region focusing as in Cho and Tropsha [13]. 

Then usual statistical methods may be used. The scarcity of the grid points (and the 

“fuzziness” of molecules) does not allow for drawing contour plots. However, as the grid 

is tied to the template, the importance of each site of the template can be estimated.

In addition to a test on the “classical” steroid benchmark [27], the FLUFF-BALL 

software was tested on 245 xenoestrogen molecules from EDKB (Endocrine Disruptor 
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Knowledge Base: http://edkb.fda.gov) with five different ER (calf, human- , human- ,

mouse, rat) [26]. This dataset, amounting a total of 374 RBA values [51], recovered six 

diverse chemical subfamilies (biphenyls, phenols, other phenyl compounds, steroids, 

indolines, others). 17-  Estradiol was chosen as the template molecule (possibly with 

a preferential weight on its A-ring). The performance of different pairs associating a 

superimposition tool (FLUFF or SEAL) and a QSAR model (CoMFA or BALL) was 

investigated on the five datasets. In all cases but one, FLUFF-BALL worked the best, 

the last one being SEAL-CoMFA. “y-Scrambling” and numerous partitions (training/

external validation) sets confirmed the robustness of the approach. As a typical exam-

ple, with calf ER (53 compounds), the best q2 obtained was 0.824 (FLUFF-BALL) 

compared to SEAL-CoMFA (0.117). FLUFF-CoMFA and SEAL-BALL gave inter-

mediate values (0.530 and 0.223, respectively). However, these results contrast with 

the conclusions of Tong et al. [39] that gave for CoMFA, q2  0.60. Similar remarks 

may be made for the other populations investigated.

CoMFA was also compared to the GRIND approach [28] on Raloxifene ana-

logs (from [67]). With the GRID program [68], interaction fields are calculated 

with diverse probes (water, amide-nitrogen, carbonyl-oxygen) and positions where 

(for a certain ligand) interactions with a potential receptor are favorable (“virtual 

receptor site”) are identified. The trick is that, rather than raw interaction values, 

correlograms, calculated from them, may be used as structural GRid INdependent 

Descriptors (GRIND) [28]. They implicitly convey 3D information, and alignment 

is no longer necessary. As an example, for 11 compounds (on an activity range of 2.7 

log units), GRIND (q2  0.920) outperformed CoMFA (0.584) and CoMSIA (0.835). 

Comparable results were obtained on an enlarged set (39 chemicals) [69].

Parallel to CoMFA or COMSIA methods, directly built from the ligands, in the 

receptor-based approach, docking programs allow for accurate calculation of the 

position and orientation of a ligand in a receptor binding domain. But it is still difficult 

to evaluate the free energy of binding with crude potential functions. The approach 

proposed by Sippl [57,58] takes advantage of a docking process with the receptor 

(either experimentally resolved or obtained by homology) to guide alignment before 

performing a 3D QSAR (here with GRID/GOLPE [29]). The study concerned 30 

ER agonists from Sadler et al. [30]. The crystal structure ER-  (bound to E2 or 

DES) [70] was chosen as a model of the receptor LBD. Docking was performed with 

atom potentials calculated on a grid (as in [22]) originating from the receptor’s sup-

posed fix, but the ligand might change its conformation. Then ligands (in their so- 

determined geometry and orientation) were aligned and a QSAR was built, calculat-

ing ligand interaction energies with a water probe. The model led to q2  0.921 and 

r2  0.992 with 4 PC. Validation with a leave-20%-out process and three external 

test sets gave a similar performance. Another model of classical ligand-based align-

ment with flexible superposition on a template (E2), with no reference to a receptor 

structure, was slightly inferior: q2  0.851, r2  0.971.

However, using directly the interaction energies obtained with a crude potential 

function to correlate binding affinities led to bad results (q2  0.570, r2  0.617). 

This was not unexpected, presumably because of the neglect of solvation energy or 

entropic terms: their correct evaluation required heavy calculations (such as molecu-

lar dynamics, free energy perturbation, or thermodynamic integration) [25,71].

http://edkb.fda.gov
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In the approach by Akahori et al. [72], the binding affinity was predicted from 

the energy changes upon binding. Interaction energies were calculated on a grid 

allowing flexibility for the ligand and reorientation of the neighboring side chains 

of the receptor. The originality of the model is that desolvation effects and loss of 

degrees of freedom of the ligand are explicitly taken into account. A two-step model 

was built, first to distinguish binders from nonbinders and then to predict binding 

affinity. For a dataset gathering alkylphenols, phthalates, diphenylethanes, and ben-

zophenones, 87% good prediction (in LOO) was achieved to distinguish binders and 

nonbinders by LDA; and, in an MLR correlation, q2 reached 0.75 (on a range of 5.7 

log units). However, no good model was obtained for phthalates and benzophenones 

(presumably because of their low RBA values and their small range of variations).

The QUASAR approach of Vedani et al. was also applied to the 116 chemicals 

of Blair et al. [46] in 4D and 5D levels (see below). A receptor-mediated align-

ment protocol was used, based on the crystal structure of bound DES. r2 reached 

0.908 in training (93 compounds) and 0.907 in test (23 chemicals) [73]. For the 106 

compounds of the ToxDataBase [10,74], q2 reached 0.895 and r2 0.892 at the 5D 

level. Other models were proposed separately for  and  receptors.

11.4 BINDING THE ANDROGEN RECEPTOR

Binding the androgen receptor deserved less numerous papers than ER binding.

In a pioneering paper, Loughney and Schwender [75] examined by CoMFA the 

binding affinity for both the androgen receptor (AR) and the progesterone receptor 

(PR) of 41 steroids. For AR, on a range of 2.5 log units (data from Delettré et al. [76]), 

r2 reached 0.919, with nine principal components. But q2 was only 0.545 (using RBA 

values), not very far from the limit admitted for a significant model. Electrostatic 

contribution was clearly predominant (74%).

A few years later, Waller et al. [14] considered 28 natural and synthetic AR bind-

ers studied in competitive assays with [3H] R1881. In order to examine the potential 

utility of CoMFA for structurally diverse chemical families, the set was composed 

of 9 steroids, 2 synthetic steroids, and 10 diverse compounds, including DES, DDT, 

and kepone. The A-ring of DHT was chosen as the template for field-fit alignment. A 

two field model (electrostatic plus steric), although slightly less internally consistent 

than a model with the electrostatic field only, was preferred for its superior external 

predictive ability. On 21 chemicals in training, q2 amounted 0.792 (SEP  1.01) and 

r2  0.989 (s  0.24) with 4 PC. For the external test set (7 compounds), the average 

absolute error was 0.58 log unit (max error of 1.7 log units).

Binding the androgen receptor has been revisited by Hong et al. [77] on an 

extended set of 146 chemicals (from the data of Fang et al. [78] covering a range of 6 

log RBA units, and determined in competitive assays with [3H] R1881 on a recombi-

nant rat AR ligand binding domain protein). Alignment was performed using as tem-

plate R1881 (one of the highest affinity ligands, with a rigid structure, and a bound 

conformation with AR LBD known from X-ray crystallography [79]). The CoMFA 

model had r2  0.902 (q2  0.571) with a standard error of estimate (SEE) of 0.39. The 

contribution of the electrostatic field (48%) is similar to that noted for binding to the 

estrogen receptor [18,39,44]. On a test set of eight chemicals (from Waller et al. [14]), 
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CoMFA predictions (after conversion to the scale of Waller, via a linear relationship) 

led to an average absolute error of 0.63 log RBA unit.

CoMFA contour plots indicated that binding was favored by negative charges 

around the 3-keto and the 17 -OH groups, suggesting H bonding with AR or electro-

static interaction between negative charges of the ligand and positive charges of resi-

dues in the receptor. Consistent with these observations, the crystal structure of the 

complex R1881-hAR LBD [79] suggested two H-bonds of the 17 -OH with Asn705 

and Thr 877 and, at the other end, an H-bond of the 3-keto group with Arg752 and 

Gln 711.

Regions where more bulky groups were predicted as favoring binding extend near C1, 

above C17, and on a smaller area under C3. They corresponded to empty regions of the 

LBD, where an increase in van der Waals interactions would increase binding affinity.

Nearly the same dataset (excluding 28 compounds retained for the test set) was 

considered by Zhao et al. [80] in various QSAR treatments. With five descriptors, 

among the hundreds generated by CODESSA, the best result was obtained with a 

support vector machine (SVM) yielding q2  0.76.

CoMFA was proposed as a rationale for the synthesis of high-affinity AR ligands, 

in the search for SARMs [7]. Nonsteroidal SARMs may offer many advantages over 

conventional steroid therapies and their drawbacks (lack of selectivity due to cross-

reactivity with other steroid receptors, poor oral bioavailability, and side effects). 

Considered were 122 ligands, mainly nonsteroidal compounds, such as bicalutamide 

and hydroxyflutamide analogs, on a range of 5.4 log RBA units. For alignment, a 

model of hAR LBD was built by homology with the human progesterone receptor 

[19]. Six representative templates (one per each chemical family investigated) were 

first docked into the receptor, and their AR bound-conformation constituted second-

ary references to fit their analogs, using common atoms as alignment points. This 

docking methodology, comparable to that of Marhefka et al. [19], is more specific to 

the binding of nonsteroidal ligands but significantly differs from Waller’s approach, 

based on the A-ring of DHT. It was quoted that crystal structure may give inaccurate 

models due to crystal packing effects [7]. Furthermore, two-ring ligands, such as 

bicalutamide, adopted a conformation very different from the MOPAC optimization. 

The CoMFA treatment, including indicator- and H-bonded fields, representing the 

acceptor and donor components [33,34] gave q2  0.593, r2  0.974 (with RMSE of 

0.74 and 0.26, respectively) excluding corticosterone. The electrostatic component 

was slightly predominant (61%). For the test set (10 compounds), the determination 

coefficient r2 was 0.953 (RMSE  0.34).

CoMFA contours were consistent with contact sites for important residues identified 

in mutational analysis and crystal structure. A common region of favorable negative 

charge corresponds to the para position of the A-ring of bicalutamide and hydroxy-

flutamide and the 3-keto group of DHT (although according to Waller, the A-ring 

of steroids lies in a different region). This observation was supported by the loca-

tion of residues Arg752 and Gln711 that act as H-donors (in crystal) to the 3-keto 

group of R1881 [79] and to the 4-NO2 of hydroxyflutamide in the homology model 

of Marhefka [19], and was confirmed by the loss of activity resulting from a muta-

tion of Arg752 [79]. On the other hand, hydrophobic interactions (possibly with 

Val746 and Met742) favor binding by overlap with the 3-CF3 group of bicalutamide, 
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the A-ring of steroids (carbons 5, 6, 7) or the methyl group of tricyclic quinolinones. 

The chiral OH group of bicalutamide analogs interacts with Asn705 in a region that 

also overlaps the 17-OH of steroids. This interaction is essential because enantiomers 

devoid of such interaction exhibit a weaker affinity.

A region disfavoring bulky substituents appears near the linkage group of 

bicalutamide derivatives, similar to that near C-17 of steroids. This is an important 

region discriminating AR binders from estrogens or progestagens bearing bulky 

C17-substituents. An additional subpocket of the LBD bordering the B-ring is also 

highlighted thanks to the use of bicalutamide. A difference was noted between the 

homology model and the crystal structure, where Met780 would forbid docking, due 

to a closer packing in that place than that indicated in the homology model [19,79].

In a similar concern for SARMs, Söderholm et al. [23] carried out a CoMSIA treat-

ment on 70 widely diverse AR binding compounds with only three steroids: deriva-

tives of flutamide, nilutamide, and bicalutamide, corresponding to diverse scaffolds.

Docking the ligands in the crystal structure of a mutated AR LB protein com-

plexed with a steroidal agonist (9 -fluorocortisol) [81] led, for nonsteroidal com-

pounds, to an unrealistic “sandwich” structure. To maintain an essential H-bonding 

pattern (with Arg752, at the 3-keto group and Asn705 and Thr877 at the steroidal 

OH [82]), the authors resorted to a mutated LBP structure giving room enough for 

bulky nonsteroidal ligands, biased docking using DHT as a guide, and manually 

adjusted some compounds. Their CoMSIA model (excluding six compounds, due to 

problems in modeling or the presence of singular substituents) gave, with only hydro-

phobic (51%) and H-bond acceptor fields, q2  0.656, r2  0.911 with SDEP  0.58 

and SEE  0.29 for 55 chemicals. For an external set of 9 compounds, the predictive 

r2 was 0.800 with SEE  0.37. Robustness of the model was also checked on several 

leave-some-out cross-validations and examination of newly synthesized compounds 

with similar performance.

11.4.1 LIGAND-INDUCED FIT

In the docking techniques of Bohl et al. [7] or Söderholm et al. [23], the recep-

tor was kept rigid. However, experimental evidence [83] showed that AR (like PR) 

could accommodate larger compounds than endogenous ligands, suggesting some 

ligand-induced fit avoiding steric clashes. In usual 3D QSAR models, in the absence 

of a “true biological” receptor, the receptor is featured by means of a grid or a van 

der Waals surface built from all the aligned ligands, with properties mapped on it. 

This surface may be viewed as a mirror of the binding site, but it only constitutes 

something like an “averaged surrogate” of the true receptor [73,83,84]. In fact, this 

mean envelope adjusts its geometry to each ligand (ligand-induced receptor fit). This 

results in changes in the fields it generates. For residues bearing a conformationally 

flexible H-bond donor- or acceptor-group a flip-flop change may even occur.

After RAPTOR [73], the QUASAR [84] approach provides a multiple represen-

tation of the ligand topology, conformation, and orientation. (Adding additional 

information on the 3D shape is known as “4D QSAR.”) The model also allows for 

characterization of the ligand-induced receptor fit: a problem relying on the “fifth 

dimension” in QSAR.
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Flexible docking (with Monte Carlo search and energy minimization) is first used 

for selecting the favored binding modes, and a molecular dynamics simulation is car-

ried out to generate an ensemble of configurations for each binding mode retained 

(at least for a representative of each chemical family). Then each ligand–receptor 

complex is refined. Alignment is carried out and local induced-fit is simulated 

by mapping the “mean” envelope on a transiently generated envelope that closely 

accommodates the individual ligand. Points on the receptor surface are populated 

with atomic properties. The RMS deviation between the envelopes gives an esti-

mate of the energy cost. Different processes may be considered where adaptation for 

each ligand is governed on the basis, for example, of steric, electrostatic, H-bonding 

fields. Estimation of the relative free energy of binding includes terms correspond-

ing to ligand–receptor interactions, changes (upon binding) in internal energy of 

the ligand, ligand desolvation, variation of ligand entropy, plus the adaptation of the 

receptor envelope. Various simulation protocols may be used to generate an ensemble 

of models (up to several hundreds) that represent the various configurational states 

of the true receptor. Individual models are then averaged with Boltzmann criterion 

to give the binding affinity.

This strategy reduces the bias associated with the choice of the bioactive con-

formation, of ligand alignment and induced fit. However, it supposes some guess-

work about the mechanism of adaptation. The 5D QSARs introduce the possibility 

to consider, at a time, different adaptation protocols [10,74]. This new development 

of QUASAR allows for simultaneous consideration of a family of models, corre-

sponding to different protocols with possible dynamic interchange between them. A 

genetic algorithm controls the evolution of the system until convergence to a single 

induced-fit model. QUASAR was applied to evaluate affinity to diverse endocrine 

disruptors LBD [10,85]. For each receptor, details are given in the corresponding 

paragraphs of this review.

As to AR binding, a dataset of 119 chemicals (measured in a competitive bind-

ing assay with recombinant rat protein [78] and covering a range of 5.5 in log RBA) 

was split into a training (88) and a test (31) set [83]. After alignment, guided by the 

DHT-AR LBD complex [84], ten receptor models were built, giving an averaged r2

of 0.858 in training and a predictive r2 of 0.792 (26 test compounds). Similar results 

were obtained in the 5D approach of Vedani et al. [10] (ToxDataBase).

11.4.2 AR BINDING SITE

Although not directly involved in the derivation of CoMFA models, additional infor-

mation about the human AR binding site was gained with the homology model of 

TES bound to hAR [19], built on the basis of crystal structure of human PR LBD 

and compared to the crystal structure hAR-R1881 [79]. Refinement by a molecu-

lar dynamics simulation (with explicit solvent) also afforded some insights into the 

dynamic behavior of the protein–ligand complex.

Key features are a stable H-bond of the 17-OH with Asn705, Thr877, and a 

more dynamic one (presumably direct rather than water mediated) between the 

3-keto group of TES and Arg752 and mainly Gln711, although this is later not 

seen in the crystal structure of hAR-R1881. Binding to Asn705 is important in 
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binding hydroxyflutamide derivatives (by H bonding with their -hydroxy group). 

Enantioselectivity of chiral derivatives is also interpreted by the lack of H-bonds 

with Thr877 and steric interactions. Several mutation studies are in agreement with 

the model. It was also suggested that for nonsteroidal ligands, it is necessary to have 

an aromatic ring, not necessarily electron deficient, but bearing an H- bond acceptor 

group in position 4 (to mimic the 3- keto group of TES), the presence of a hydropho-

bic group in position 3 being also favorable to binding.

11.4.3 AGONISTS VERSUS ANTAGONISTS

Tamura et al. [2] have stressed that several recent publications on AR binding were 

based on rat AR competitive binding assays. Although it is useful to predict whether a 

chemical binds or not to the AR, these assays could not distinguish between agonists 

and antagonists, an ambiguity that made these models difficult to adapt for rational drug 

design. From in vitro reporter gene assays, the authors carried out CoMFA analyses on 

49 agonists/antagonists. The optimized conformation of testosterone in AR LBD [19] 

was chosen for alignment, with flutamide and bisphenol A as secondary references. For 

the whole set, q2  0.446, r2  0.944 with SEP  0.644 and SEE  0.21 (5 PC).

Contour plots revealed characters consistent with some common patterns of 

steric and electronic features involved in AR binding affinity [7,23,77,83]: ligands 

have strong H-bonding or electrostatic interaction ability in a position comparable 

to that of the 3-keto group of DHT, hydrophobic substituents (CF3, CH3) in position 

3 increasing activity. Agonists must have an H-bond acceptor or donor in a position 

corresponding to C-17 of DHT, which implies a distance of about 10 Å to insure these 

two interactions (in agreement with a previous conclusion of the authors [86]). More 

interesting, sterically unfavorable regions appear near Asn705, Arg752, Thr877 in 

AR LBD for pure antagonists. Ligands with a bulky group interact with these resi-

dues, resulting in a transcriptionally inactive form of the AR–ligand complex.

It may be noted that residues involved in hydrophobic interactions differ between 

this model and that of Bohl et al. [7]. The difference comes from the fact that Bohl 

et al. used for docking a hAR-LBD based on homology to the human progesterone 

receptor, whereas for Tamura et al. it was the natural crystal structure hAR-LBD.

Some ER agonists (DES, bisphenol A) act as pure AR antagonists. This may be 

a consequence of a smaller size of the AR LBD compared to ER LBD. For example, 

DES is well accommodated in the ER-LBD, whereas its two ethyl groups, protrud-

ing out the AR LBD in a sterically forbidden region (suggested also in CoMFA) near 

Asn705 and Thr877, cause AR antagonist activity.

11.5 BINDING THE PROGESTERONE RECEPTOR

QSAR on progestagens (compounds mimicking progesterone) are less numerous, 

despite the interest these chemicals arouse for the development of contraceptives 

or drugs against certain cancers or gynecological disorders. In a pioneering work, 

Loughney and Schwender [75] investigated the binding affinity of 48 steroids to AR 

and PR from CoMFA (see above). As to progesterone receptor, the best model gave a 

q2  0.725, with 7 components for the relative binding affinity, but, with only 3 PC,
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q2 was still 0.601, a fairly good result. Introduction of supplementary descriptors 

(dipole moment, log P or molecular refractivity) did not improve the model. However, 

using log RBA (on 2.7 log units), q2 was only 0.48. A comparison between the andro-

gen and progesterone receptors was also carried out from the CoMFA contour plots 

(see Section 11.6).

Bursi et al. [55] compared CoMFA to the CoSA approach on a set of 45 steroidal 

progestagens, on a range of 2.8 log units in RBA (data from [87]). Experimental 

or simulated spectra were considered (depending on the technique). According to 

the authors, spectral descriptors led to better performance than CoMFA, either with 

rigid alignment or field-fit option, both for training and test sets. In training, the best 

CoMFA led to q2  0.550, r2  0.871, whereas EVA (simulated IR spectra) yielded q2

 0.638, r2  0.986, and similar results were obtained from the mass spectra. However 

predictions were mediocre for 13C (simulated) or IR (experimental). Interestingly, 

combining spectral descriptors with others (spectral or molecular fields) generally 

provided better models than using individual descriptors: (CoMFA 1Hexp), (IRsim. 
1Hexp), or (1Hexp 13Csim) gave nearly similar results (q2 about 0.62 or better), s

about 0.46, r2, SEE better than 0.980, 0.10 and for the test, RMSE about 0.49.

Another population of 33 steroids (on a range of 2.8 log units for RBA values) was 

investigated by Chen et al. [24], taking advantage of the known crystal structure of a 

complex PR-ligand (PDB code 1A28).

The CoMFA and CoMSIA models were built using the “docking-guided con-

formation selection” (see Section 11.1). Another model, using the “all-orientation 

all-placement searching” [31] slightly improved the results for CoMFA yielding to 

q2  0.773 (r2  0.997). An oxygen probe was also used with similar conclusions (and 

a slightly enhanced electrostatic contribution). For the test set (7 compounds), r2

0.995 (CoMFA) and 0.951 (CoMSIA) with SEE  0.06 and 0.16. It can also be noted 

that in the CoMSIA model, the H-bond fields intervene about 40%.

Docking scheme and CoMFA or CoMSIA contour plots are consistent with the 

results of Tanenbaum et al. [88] on the structure of progesterone complex of hPR 

LBD. Contour plots indicate favored electrostatic interactions near the 3-keto group, 

in agreement with the strong H bonds of this group with Gln725 and Arg766. Near 

position-11, a deep cavity of the receptor (near Glu723) can accommodate medium-

chain substituents via hydrophobic interactions. Around position 17, a wide, shallow 

cavity may accept small substituents, whereas more bulky groups are detrimental.

A set of 56 steroids known to bind PR in vitro on a 2.8 log units in RBA was the 

subject of a comparative study involving varied approaches [89–91]. The 52 struc-

tural descriptors encoded 43 characteristics of substituents (or individual atoms): 

charge, volume, surface, plus nine whole-molecule properties: dipole moment, 

HOMO or LUMO energy, heat of formation, and so forth (from AM1 calculations). 

In a preliminary study, CoMFA outperformed a 10-10-1 back-propagation neural 

network (BNN) (that was clearly overfitted) [89]. In subsequent publications, diverse 

methods for descriptor selection were compared, from the same dataset. The best 

results were obtained with a genetic function approximation (GFA) regression and 

an artificial neural network (ANN) used for descriptor selection and model build-

ing, respectively. The r2 values for the training (n = 43) and testing (n = 11) sets were 

equal to 0.64 and 0.49, respectively. Using the ten most frequently used descriptors 
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in a 10/5/1 ANN led to slightly improved results (respectively, 0.880 and 0.570) [90]. 

Comparison was pursued [91] on the same dataset, but with only eight descriptors 

to maintain a 6/1 ratio between the number of patterns and descriptors. We exam-

ined subjective selection from known models, forward stepping regression, GFA 

regression, where a genetic algorithm selected the descriptors’ input in a nonlinear 

regression (with, inter alia, splines) and two models where data were mapped from a 

neural network, and descriptors selected either by simulating annealing, in general-

ized simulated annealing (GSA) or by a genetic algorithm (GA), in genetic neural 

network (GNN). It was then established [91] that an 8-2-1 BNN combined to GSA or 

GA gave the best results, respectively, q2  0.626 and 0.635 and r2  0.722, 0.760. The 

more limited performance of GFA may result from its difficulty to treat nonlinearity. 

However, GFA (q2  0.626, r2  0.722) or stepwise regression (q2  0.535, r2  0.721) 

may be useful in preliminary studies because it is easier to implement. On the other 

hand, GAs often give several models of comparable quality, making the interpreta-

tion more difficult. It may be noticed that, here, 5 descriptors were common in the 

selection by GSA and GFA, and that half of the descriptors retained concerned the 

“key” positions 11, 13, 17 of the steroid scaffold. Niculescu and Kaiser [92] com-

pared these results to the performance of a probabilistic neural network (PNN) with 

the same descriptors. On learning, PNN (r2  0.863) was comparable to GSA (r2

0.860) and slightly lower than GNN (r2  0.880) but a little better in test (0.769 versus

0.488 and 0.610 on 10 compounds).

11.6 BINDING THE ARYL HYDROCARBON RECEPTOR

Halogenated aromatic hydrocarbons represent an important group of largely wide-

spread and persistent contaminants (particularly owing to their liphophilic charac-

ter). Modeling their toxic effects generally concerns their affinity to an intracellular 

cytosolic protein (the aryl hydrocarbon receptor [AhR]) [93]. It is generally expressed 

as pIC50 (the negative logarithm of the molecular concentration necessary to displace 

50% of radiolabeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) from the Ah recep-

tor. Data are also available on induction of aryl hydrocarbon hydroxylase (AHH) 

and 7-ethoxyresorufin-O-deethylase (EROD), but they seem more difficult to ratio-

nalize because they are related to the much more complicated biological response 

of enzyme induction [93,94]. Another important remark is that the structure of the 

receptor is still unknown and homology models are difficult to build (poor sequence 

identity), at the level of difference of the cases just discussed.

Ambiguity due to symmetry is reduced thanks to International Union of Pure 

and Applied Chemistry (IUPAC) nomenclature convention. But the possibility of 

multiple binding modes must also be considered (see below).

A largely investigated dataset [94] concerns the binding affinity to cytosolic AhR 

for 78 halogenated aromatic hydrocarbons (25 polyhalogenated dibenzo-p-dioxins 

PCDDs, 39 dibenzofurans PCDFs, and 14 chlorobiphenyls PCBs) on a range of 

6.3 log units. After alignment on TCDD, CoMFA treatments, carried out for every 

family and for the whole set, yielded similar performance: for the whole set, q2

0.724, with 6 PC and r2  0.878, SEE  0.53 [94]. It was also noted that fitting fields 

would force biphenyls to an unrealistic planar geometry. In a subsequent study [95], 
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biphenyls were removed from the training set and used as a test set to evaluate the 

predictive ability of the model.

The same dataset was revisited [96], using as descriptors autocorrelation vectors 

of the hydrophobicity potential for points randomly distributed (with a preset den-

sity) on the van der Waals surface. With 12 autocorrelation coefficients, q2 reached 

0.83 (r2  0.89). The method needs no alignment, but the drawback is that the origi-

nal information cannot be retrieved from the autocorrelation vectors.

On the same set, a PLS treatment was carried out with WHIM (weighted holistic 

invariant molecular) descriptors [97] that encode size, shape, and electrostatic dis-

tribution. Basically, six molecular properties were calculated on points scattered on 

the molecular surface: unitary (referring to atomic positions), molecular electrostatic 

potential (positive or negative), and with binary values, H-bond-acceptor, respec-

tively, -donor capacity, and hydrophobicity. For each property, three principal com-

ponent axes were defined. Molecular descriptors were the values (on these axes) of the 

variance, variance proportion, skewness, and kurtosis, that respectively correspond 

to size, shape, symmetry, and distribution. This amounted to 6  3  4  72 descrip-

tors per molecule. WHIM descriptors (invariant in geometrical transformations) do 

not require alignment. Unfortunately, no contour plots are available. Interpretation is 

difficult because information is global and not local as in field analysis approaches. 

The best selected model retained 4 properties (48 descriptors), including H-bonding 

capacity and electrostatic potential, and led to q2  0.732, RMSE  0.76; r2  0.794; 

RMSE  0.66, with two components. Here, q2 was calculated not on LOO but on a 

less optimistic process: the mean of 100 leave-20%-out.

Affinity to AhR receptor was also approached by So and Karplus [98] with simi-

larity matrices, on the same set, after elimination of redundancies and incorrect val-

ues (73 polyhalogenated aromatics). After alignment (as in [94]), every molecule was 

characterized by its similarity to the others in the set, both at size and electrostatic 

level. For two molecules A, B the electrostatic similarity index was calculated by the 

Hodgkin formula:

Hab 2 2 2p p p pA B A B

where p is the electrostatic potential calculated at regular grid points. Similarly, the 

shape index was:

SAB  UAB / (TA TB)
0.5

counting grid points inside the volume of A and B (TA,TB)and in the union (A U B), UAB.

A genetic neural network (GNN) fed with these descriptors gave q2  0.72 with 

the electrostatic index, and 0.85 with the shape index (r2  0.89 with 6 descrip-

tors), consistent with the limited importance of electrostatic effects in that series. 

Considering both indices at a time gave no improvement. These results favorably 

compete with those of Waller et al. [94] q2  0.72 and Wagener et al. [96] 0.83. The 

authors suggested that evaluating similarity eliminates the (very critical) phase of 

alignment. Because contour plots (as in CoMFA) are not available, considering sub-

grids as in [13] might indicate the most important regions.

The spectroscopic QSAR technique EEVA, a modification of the EVA approach 

[53], using MO energies in place of vibrational frequencies, was applied to the same 
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initial set (but 5 benzofurans) with q2  0.818 (8 PC), SPress  0.69, r2  0.912,

SEE  0.48 [99]. The model was then used to predict all possibly existent PCDDs and 

PCDFs (210 compounds in all). The authors suggested that alignment-free EEVA is 

well adapted to reflect electronic substituent effects, but there is a loss in efficiency 

for nonplanar structures where these effects are partially hindered (as in PCBs).

This basic set was extended to naphthalenes and indol [3, 2-bicarbazoles] amount-

ing to 95 chemicals (6.3 log units) [93]. As previously [94], alignment was carried out 

on the lateral positions of TCDD (and atoms 3, 4, 3 , 4  for PCBs). For all compounds, 

q2  0.574 (s  0.98); r2  0.831 (s  0.62); with 41% contribution for electrostatic 

field. Discarding 9 outliers raised q2 to 0.631 and r2 to 0.90. CoMSIA (with all fields) 

gave q2  0.711, r2  0.873, and s  0.58, but similar results were obtained with only 

a hydrophobic field combined with either steric or electrostatic fields or both.

In the study of Lo Piparo et al. [100], the affinity of 93 aromatics (from the 95 

of Waller and McKinney [95]) to the AhR receptor was approached using CoMFA, 

Volsurf [101], and HQSAR. Volsurf calculates energetically favorable interaction 

sites to produce a 3D grid map, thereafter compressed in a few 2D descriptors. With 

5 probes (water, hydrophobic, carbonyl oxygen, carboxy oxygen, amphipathic), 118 

descriptors were generated characterizing molecular weight, volume, surface, size of 

the hydrophilic and hydrophobic regions, H-bond properties, local interaction energy 

minima, and integy moment vectors (vectors pointing from the center of mass to the 

centers of hydrophilic and hydrophobic regions). log P was added as a crude measure 

of desolvation energy and bioavailability (in HQSAR). A binary indicator for torsion-

ally constrained compounds (intervening about 5%) was introduced in the CoMFA 

and HQSAR treatments. CoMFa and HQSAR gave similar results (q2  0.62), whereas 

Volsurf was slightly inferior. But a hybrid model, combining Volsurf and HQSAR, 

gave the best q2 (0.70), although r2 was not improved. The test set encompassed 9 

compounds (on the upper half of the affinity range). The r2 (CoMFA) value was only 

0.42 in place of 0.69 to 0.72 for the other methods. In this example, the authors stressed 

the good results obtained with Volsurf, which is alignment free, and HQSAR, which 

works on 2D descriptors only, two methods less intensive than CoMFA.

CoMFA contour plots published in the literature [93,94,100], although seemingly 

slightly different, present some convergent observations: Steric bulk is beneficial on 

lateral positions, 2, 3, (7), 8, but detrimental on medial positions (on C9 and between 

carbons 4 and 6), or (in CoMSIA maps) on medial positions of the second ring.

As to electrostatic field, a negative charge is favored near positions 2, 3 of TCDD 

and 3, 4 in biphenyls (increased activity with halogen atoms on these positions). 

Positive charge is favorable near C4 and the neighboring oxygen (naphthalene and 

biphenyl, without O atom in medial, show some activity) [93].

Activity is favored by lateral hydrophobic substitution on the first ring (that has greater 

impact), whereas hydrophilic groups may be accommodated in the medial region and above 

the second ring. H-bonding interactions from this ring would also increase activity.

However, it was suggested that the favorable presence of lateral halogens might 

reflect polarizability effects rather than steric influences [94]. Consistent with 

CoMFA, Volsurf indicated increased activity with the presence of high hydrophilic 

regions, and with the delocalization of the hydrophobicity in few areas of the molec-

ular surface [100].
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More limited because different series were investigated. A reduced set of 29 

compounds (7 PCDDs, 10 PCDFs, 12 PCBs) was examined by Koyano et al. [102]. 

Several original points in his CoMFA model may be noted: Geometry optimization 

was carried out at a high level (HF/6-31*), and CHelpG atomic charges were fitted to 

the (exact) electrostatic potential. Furthermore, alignment used as template 1,2,3,7,8-

PeCDD rather than the symmetrical 2,3,7,8-TCDD, and largely twisted PCBs were 

extended from one side of PCDD to the other. With three components, q2 equaled 

0.955 on a training set of 18 chemicals. This high value was attributed to the align-

ment rule and sophisticated quantum calculations. However, the dataset was relatively 

limited. Prediction (for new compounds) was fairly good for low affinity chemicals, 

whereas the very reactive ones were largely underestimated.

Wang et al. [103] examined, by CoMFA and CoMSIA, the binding affinity of 18 

polybrominated diphenyl ethers (PBDEs) from Chen et al. [104]. Such compounds are 

widely distributed as they are used as flame retardants. Molecules were aligned (with 

flexible fitting) on the template 2,2 ,3,4,4 -bromo-diphenyl ether (the most active com-

pound). On an affinity range of 2.9 log units, CoMFA led to q2  0.580 (r2  0.995) with 

6 PCs, and electrostatic field contributing to 69%. With CoMSIA (steric  electrostatic 

hydrophobic fields), q2 0.680 (r2  0.982). These models were used to predict the RBA 

values of other 46 PBDEs, on account of their possible role in environmental pollution, 

but, for lack of experimental values, external predictivity could not be checked. For 

this population, contour plots are presented in Figure 11.4 and the color insert.

Although fairly similar, maps are easier to interpret for CoMSIA than CoMFA. 

Bulky substituents are beneficial near positions 2,5,5 ,6, but they are detrimental near 

positions 3, 5, 4 . As to the electrostatic field, activity would increase with negatively 

charged groups above ring B, whereas positively charged groups are beneficial in 

3,5,2 ,3 ,4 . Similarly, hydrophilic substituents at 3,4,5,4  increase activity, as do hydro-

phobic groups in 2 or near ring B. See also Henry et al. [105] for 11 flavones binding 

AhR.

The quantum topological molecular similarity method (QTMS) [106] was also 

used. QTMS relies on the theory of atoms in molecules (AIM) in which an atom 

system is partitioned into atomic constituents on the basis of electron density ( ). 

In this approach, a bond is described by five components, evaluated at bond critical 

points (  0): electron density, density Laplacian 2 , ellipticity (null for a cylin-

drically symmetrical bond), kinetic energy density, plus the equilibrium bond length. 

These descriptors were used in a PLS treatment for correlating the pIC50 values of 13 

PCDDs. At the sophisticated HF/3-21G(d)//HF/3-21G(d) level, bond critical points 

descriptors led to q2  0.57 (r2  0.74). But surprisingly, using only bond lengths 

(calculated at AM1 level), q2 reached 0.89 (r2  0.84).

Localizing “active centers” also evidenced the importance of halogen substitution 

on lateral positions.

At the 4D and 5D levels (see above), the QUASAR approach was applied to 121 

chemicals [10,74,85,107]. Due to (partial) symmetry, for each compound, 4 orienta-

tions were considered that cannot be trivially deduced from 2D or 3D formulae; 

this multiple representation reduces the bias. In training (91 compounds), q2  0.857 

(4D) or 0.838 (5D), whereas for the test set (31 compounds), r2  0.795 versus 0.832 

in 5D. More recent results in the ToxDataBase indicated that for 140 compounds 
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q2  0.824 (in training on 105 molecules and a four-group cross-validation for which 

r2  0.769) [10].

Lukacova and Balaz [108] considered the possibility of multimode binding of 

PCDFs in the receptor site. Such a situation may occur when ligands can bind in 

single but different modes or when a ligand binds in an unknown unique mode among 

several that are a priori plausible. The approach is similar to that of competitive com-

plexation reactions from a single substrate, where the global association constant is 

the sum of the individual constants. This competition makes the relationship between 

the binding energy and the probe interaction energies nonlinear. But a linearized form 

(from a Taylor expansion) may be iteratively solved until self consistency is achieved.

For 34 polychlorodibenzofurans (PCDFs), various binding modes (2, 4, or 16) 

were investigated, corresponding from an alignment of medial atoms of PCDF (atoms 

2,4,6,9) and TCDD to flip- (left/right or up/down) and shift-motions toward Cl7, Cl8 and 

H1, H9 (for better overlap on the edges). Then GOLPE selected the variables before PLS 
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FIGURE 11.4 Comparative molecular field analysis (CoMFA) and comparative molecu-

lar similarity analysis (CoMSIA) contour maps. 2,2 ,3,4,4 -bromodiphenylether is shown 

only as reference structure. (a) CoMFA steric contour map. Green contours (G on black 

and white figure) indicate regions where a relatively bulky substitution would increase 

the binding affinity, whereas yellow contours (Y) indicate areas where a bulkier sub-

stituent would decrease the binding affinity. (b) CoMFA electrostatic contour map. Red 

contours (R) indicate regions where a negative-charged substitution will increase affin-

ity, whereas blue contours (B) show areas where a negative-charged substitution would 

decrease affinity. (c) CoMSIA steric contour map and (d) CoMSIA electrostatic contour 

map: same graphic convention, as for CoMFA. Greater values of the binding affinity 

are correlated with more bulk near green or less bulk near yellow, and similarly, more 

positive charge near blue and more negative charge near red. (e) CoMSIA hydrophobic 

contour map. Yellow (Y) contours indicate region where hydrophobic group will increase 

affinity, whereas white contours (W) show areas where a hydrophilic group favors affin-

ity. (Reproduced with permission, from Y. Wang, H. Liu, C. Zhao, H. Liu, Z. Cai, and

J. Jiang, Environ. Sci. Technol., 35, 4961, 2005.) (See color insert following page 244.)



© 2009 by Taylor & Francis Group, LLC

324 Endocrine Disruption Modeling

optimization. Assuming a unique binding mode for the 22 compounds of the training 

test, r2 equaled 0.963 (q2  0.786); whereas for 16 modes, q2  0.961, r2  0.999 with, sur-

prisingly, a significantly limited number of variables as compared to “usual” CoMFA. 

The prevalence of the binding modes was specified for each compound. Most exhibited 

one or two modes, but 1,2,3,7-PCDF would have 4 significant binding modes. Of the 16 

potential modes, three represented about 60% of the whole. And surprisingly, they cor-

responded to edge-shifted positions (in the hypothesis of a “rectangular-box” receptor).

11.7 COMPARISON BETWEEN RECEPTORS

11.7.1 DIFFERENTIATION OF SUBTYPES ER- AND ER-

About 10 years after the cloning of ER- , another subtype (receptor ER- ) was 

discovered [109], raising the question of structural requirements for possible pref-

erential binding to ER-  or . So, E2, the more potent endogenous estrogen, shows 

almost equal affinity for ER-  or ER- , whereas Raloxifene has a strong preference 

for ER-  and Genistein (an isoflavone abundant in soy products) for ER- . Affinity 

to both human ER-  and rat ER-  subtypes was investigated by Tong et al. [110] for 

31 chemicals (19 steroids, synthetic estrogens, phytoestrogens, and two environmen-

tal estrogens) with the alignment rules of Tong et al. [39]. The two series displayed 

similar results, with q2  0.70 (human ER- ) and 0.60 (rat ER- ). Contour plots 

showed a very close similarity as to (for example) the influence of position 3 and 

17-  of steroids. However, a minute difference appeared near the 17 -position.

The bulk-favored region was more extended for ER- , indicating (in agreement 

with experiment) that steric bulk enhanced affinity more for ER-  than for ER- .

Recently, Zhu et al. [111] examined the binding affinity in a competitive assay with 

[3H] E2 on recombinant human ER-  and ER-  proteins. The dataset encompassed 

74 natural or synthetic estrogens with more than 50 analogs of E2 and estrone E, and 

including mainly metabolites endogenously formed from the diverse rings. The tem-

plate was E2 bound to ER-  [70]. CoMFA treatments on two series of 47 compounds 

(46 being common for the two sets) led to similar results (with q2  0.531 and 0.634).

Contour maps for ER-  and ER-  (Figure 11.5 and the color insert) show com-

mon features: bulky groups near C16, C17 tend to enhance affinity, as do a negative 

charge near C2 region of the A-ring. But sizable differences appear: introduction of 

a polar group (OH for example) near C17 and C16 modifies the binding preferences, 

possibly related to the change of residue Met421 (in ER- ) to hydrophobic Ile373 (in 

ER- ). Also, increase of steric bulk near C2 favors binding to ER- . It is interesting 

to note that E2, although the more potent endogenous estrogen (with almost equal 

affinity for ER-  or ER- ), is not the major constituent in the organism due to its easy 

conversion to E1 (Estrone) favoring ER-  activation or to E3 (16 -hydroxyestradiol 

or Estriol), predominant during pregnancy, favoring ER-  activation. Similar studies 

may guide the design of selective ER-  ligands [112].

11.7.2 COMPARISON PR VERSUS AR AND PR VERSUS ER-

Comparison between AR and PR was initially approached by Ojasoo et al. [76] from 

homology building. In the two structures, empty space was found around 3-keto, 
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7- , 11- , and, for PR, C21. In the study of Loughney and Schwender [75], the better 

results obtained with PR compared to AR suggested possible differences in receptor 

selectivity, which can be approached from the CoMFA contour plots. For both recep-

tors, steric contours indicate a volume detrimental to activity near the A-ring. Its 

larger extension for PR may indicate a greater sensitivity to steric bulk. Differences 

are more evident in the region of C17- , favorable for progestagens but detrimental 

for androgens, in agreement with the fact that AR ligands bear only small groups on 

C17 (OH in , H or Me in ). Both receptors have electrostatic contours correspond-

ing to a favorable interaction with a negative charge on the D-ring region. But an 

additional contour for AR suggests a charge located closer to the C17 position for 

greater activity.

The structure of hPR and hER-  was examined by Tanenbaum et al. [88]. 

Generally speaking, the extremities of the ligands are involved in H-bonds and, for 

their central part, in hydrophobic contacts (Figure 11.6).
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X.R. Jiang, Endocrinology, 147, 4132, 2006. Copyright 2006, The Endocrine Society.) 

(See color insert.)



© 2009 by Taylor & Francis Group, LLC

326 Endocrine Disruption Modeling

For the A-ring, the estrogen receptor has a glutamate (Glu353) that accepts an 

H-bond from the 3-OH group, whereas in hPR LBD a glutamine (Gln725) in the 

corresponding position gives an H-bond to the 3-keto group of progesterone. An 

arginine (Arg394 in hER- , Arg766 in hPR) maintains this organization via water-

mediated H-bonds. A supplementary cohesion is brought by a phenylalanine (Phe404 

in hER- , Phe778 in hPR) H-bonded to these residues and involved in hydrophobic 

contact with the ligand A-ring. At the opposite extremity, the 17-OH binds to His524 

in ER, but things are less clear for PR [88]. In the central part, residues implicated in 

hydrophobic interactions with the ligand are highly conserved.

11.8 CONCLUDING REMARKS

Twenty years after the introduction of CoMFA in QSAR, molecular field analy-

sis methods proved to be reliable and efficient tools for ED modeling. Continuous 

developments have largely improved performance. Introducing new fields gives 

better insight into the mechanisms intervening in receptor binding. Comparison 

with crystal structures of ligand-ligand LBD complexes now available, or with 

homology-built receptors, and docking processes (where ligand flexibility may be 

considered), allow for more secure alignments, the most critical step of the CoMFA 

treatment. In the neighboring GRIND method, alignment is even avoided by using 

auto- or cross-correlation to generate “grid-independent” descriptors. Receptor-

based methods constitute an alternative complementary approach. With the more 

sophisticated QUASAR package, the adaptation of the receptor to individual ligands 

is taken into account.

Fragmental methods (HQSAR, FRED/SKEYS, for example) working from the 

2D structural formulae give a first level of analysis with less intensive calculations.
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FIGURE 11.6 Hydrogen bonding network for human ER-  LBD (estrogen receptor  ligand-

binding domain) and human PR LBD (progesterone receptor ligand-binding domain). The 

gray areas symbolize the hydrophobic contacts. For these, only Phe residue is shown, on 

account of its anchoring role. (Adapted from D.M. Tanenbaum, Y. Wang, S.P. Williams, and 

P.B. Sigler, Proc. Natl. Acad. Sci. USA, 95, 5998, 1998. With permission.)
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Finally, as stated by Tong et al. [1], QSAR models may be considered as “living 

models” relying on the concept of “active learning”: a recursive process where the 

current model suggests new molecules to be tested. The results, incorporated into the 

dataset, help to refine the model. The updated model in turn suggests new experi-

ments, and the cycle goes on.

The end-user has now at his or her disposal a full range of methods of increasing 

complexity to delineate the potential action of chemicals on environment and human 

health. In connection with experimental effort, these models would allow, with lim-

ited resources, increased performance in the definition of hazard identification and 

risk assessment.
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Modeling of a Diverse 
Set of Androgen 
Receptor Ligands
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ABSTRACT

Numerous chemicals released into the environment can interfere with nor-

mal, hormonally regulated biological processes to adversely affect develop-

ment and reproductive functions. SARs and QSARs are powerful screening 

tools to detect potential endocrine disruptors and to prioritize them for more 

intensive and costly evaluations based on in vitro and in vivo assays.

In this context, androgen-receptor binding data (active/inactive) for a large 

set of about 200 structurally diverse chemicals, described by CODESSA 

descriptors encoding topological and physicochemical properties, were used 

for deriving structure-activity models. Classification and Regression Tree 

(CART) analysis, different types of artificial neural networks (linear artificial 
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neural network, three-layer perceptron, radial basis function neural network, 

probabilistic neural network, learning vector quantization) and a support 

vector machine with a Gaussian kernel function were tested as statistical tools. 

The comparison exercise was performed on the basis of the same learning and 

testing sets as well as from the same set of selected descriptors. The simulation 

performances of the models designed from the probabilistic neural network 

or support vector machine were better than those computed from the other 

statistical tools.

KEYWORDS

Androgen receptor

Binding assays

Endocrine disruptors

Linear and nonlinear methods

Quantitative Structure-Activity Relationship (QSAR)

12.1 INTRODUCTION

In recent years, various agricultural, industrial, and household chemicals have been 

shown to directly or indirectly interfere with the endocrine system of wildlife spe-

cies and humans [1]. Because these chemicals, called endocrine disruptors, repre-

sent a potential threat to the male and female reproductive functions, there has been 

a rising scientific and regulatory interest in their identification [2]. In the past, most 

attention has been paid to the estrogenic potential of chemicals [3–8]. Conversely, 

androgenic and antiandrogenic activities of xenobiotics have only recently been 

a focus of interest. These chemicals interact with the androgen receptor (AR) 

belonging to the nuclear receptor family and may lead to important disorders in the 

reproductive system of males [1]. Androgenic and antiandrogenic activities have 

been described in rivers contaminated by pulp and paper mill effluents and other 

human activities [9–13], in diesel exhaust particles [14,15], and in components of 

sunscreens [16]. More specifically, various structurally diverse chemicals such as 

chlordecone, o,p -DDT, p,p -DDT, p,p -DDD, p,p -DDE, linuron, fenthion, meth-

oxychlor, metabolites of vinclozolin, prochloraz, HPTE (p-hydroxyphenyl-trichlo-

roethylene), nonylphenol, octylphenol, and zearalenone are known to interact with 

the AR [17–21].

To address the concerns about the ability of xenobiotics to disrupt endocrine 

functions and to recommend potential screening strategies, regulatory agencies and 

international organizations have proposed testing strategies to screen for large num-

bers of chemicals. Thus, different assays have been developed for evaluating the 

affinity of chemicals to the AR (see, for example, [22–24]). Unfortunately, due to 

time and cost constraints, they cannot be used for estimating the endocrine disrup-

tion potential of the huge number of chemicals that can potentially contaminate eco-

systems. In silico estimations based on Quantitative Structure-Activity Relationship 

(QSAR) modeling allow us to rise above this problem. However, if the number of 

models designed for estimating the estrogenic activity of chemicals is rather high, 
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the number of structure-activity models in relation with the AR is limited [25]. Thus, 

for example, a comparative molecular field analysis (CoMFA) was used by Waller 

et al. [26] to examine AR-binding affinities of a series of 28 structurally diverse 

natural and synthetic compounds. The model was derived from a learning set of 

21 molecules, and the remaining compounds were used as the testing set. These 

authors showed that the combined (steric and electrostatic) two-field model was less 

internally consistent than the electrostatic-field-only model (q2  0.792, 4 PCs, SEP 

1.012 versus q2  0.828, 5 PCs, SEP  0.952). However, the two-field model yielded 

the greatest external predictive ability and, hence, was selected. The relative binding 

affinity of 48 steroids to AR and progesterone receptor (PR) was also investigated 

by Loughney and Schwender [27] from CoMFA. The androgen model was of poor 

quality, only reaching a cv-r2 of 0.545 after nine components [27]. Another CoMFA 

model was derived by Hong et al. [28] but from a larger learning set of 146 chemi-

cals tested according to the same conditions with an AR competitive binding assay 

[29]. Eight PCs were selected (r2  0.902, SE  0.389). The relative contributions of 

the steric and electrostatic fields were 0.522 and 0.478, respectively. The predictive 

power of the model was estimated from an external testing set of eight chemicals.

Recently, Zhao et al. [30] compared the performances of regression analysis, 

radial basis function network (RBFN) [31], and support vector machine (SVM) [32] 

for modeling the database of 146 molecules used by Hong et al. [28] for CoMFA. The 

database was split into a learning set and an external testing set of 118 and 28 chemi-

cals, respectively. Chemicals were described from the CODESSA software [33]. The 

best simulation results were obtained with the nonlinear statistical tools, especially 

the SVM. However, it is noteworthy that their RBFN model was overfitted because it 

yielded poor performances with the external testing set. Even though, in addition to 

this kind of methodological problem, Hong et al. [28] and Zhao et al. [30] used only a 

part of the valuable results produced by Fang et al. [29] in their modeling process, an 

attempt was made to derive a new AR-binding structure-activity model presenting a 

larger domain of application. To reach this goal, seven different statistical methods 

commonly used in (Q)SAR were experienced.

12.2 MATERIALS AND METHODS

12.2.1 AR BINDING ASSAY DATA

The AR binding affinity of 202 natural and man-made chemicals was determined 

by Fang et al. [29] from a rapid and inexpensive recombinant AR competitive bind-

ing test. Briefly, the binding activity of a chemical was determined by competing 

with [3H]-R1881 (methyltrienolone) for AR and was expressed as relative binding 

affinity (RBA), which was calculated by dividing the IC50 of R1881 by the IC50 of 

the studied chemical and by multiplying by 100 (RBA  100 for R1881). Forty-eight 

chemicals that failed to compete [3H]-R1881 in binding were classified as nonbinders 

(NBs), and eight compounds that showed binding but without reaching 50% inhibi-

tion at a maximum concentration were designated as slight binders (SBs). Because 

the goal of Hong et al. [28] and Zhao et al. [30] was to derive models in the form

log RBA  f(descriptors), the NBs and SBs were excluded from their modeling process. 
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This methodological choice led to voluntary reduction of the domain of application 

of the models by excluding chemicals presenting interesting structures and func-

tional groups. Consequently, structure-activity models were derived from the whole 

dataset. In fact, 4-aminosalicyclic acid sodium salt (NB), 1,3-diphenyltetramethyl-

disiloxane (log RBA  –3.13), 1,3-dibenzyltetramethyldisiloxane (NB), and ama-

ranth (NB) were excluded from the modeling exercise because the software used for 

calculating molecular descriptors was not able to run with them. A log RBA value of 

–2.30 was selected as cutoff value. This yielded the constitution of a dataset of 100 

active (1) and 98 inactive (0) compounds (Table 12.1). The dataset was further split 

into different training and testing sets (178/20) accounting for the different chemical 

families tested by Fang et al. [29] as well as the range of activities.

12.2.2 MOLECULAR DESCRIPTORS

The 198 chemical structures were geometry-optimized with the AM1 semiempirical 

method in HyperChem (Hypercube, Gainesville, Florida) and exported to MOPAC. 

The optimized structures were then introduced into CODESSA software [33] to 

compute 132 topological and physicochemical descriptors. In addition, the 1-octanol/

water partition coefficients (log P) calculated by Fang et al. [29] were collected and 

used as hydrophobic parameters.

A standardized PCA (zero mean and unit variance) was used for feature selec-

tion. This allowed us to select the 15 following descriptors: log P, Kier shape index 

of second order (T12), Kier flexibility index (T13), average information content of 

zero order (T14), Balaban index (T19), YZ shadow (T28), molecular volume (T32), 

minimum partial charge for a hydrogen atom (U04), maximum partial charge (Qmax)

(U07), polarity parameter/square distance (U10), relative positive charge (RPCG) 

(U28), HOMO energy (V02), LUMO energy (V03), HOMO–LUMO energy gap 

(V05), and minimum nucleophilic reactivity index for an oxygen atom (V39).

It is noteworthy that when stereochemistry was not specified, the lowest energy 

stereoisomer was chosen (for example, double bond in trans position).

12.2.3 STATISTICAL TOOLS

12.2.3.1 Classification and Regression Tree (CART) Analysis

CART analysis is also known as binary recursive partitioning. The term “binary” 

implies that each parent node can only be split into exactly two child nodes in the deci-

sion tree. The term “recursive” refers to the fact that the process is repeated by treating 

each child as a parent when further splitting is possible. Last, the term “partitioning” 

indicates that the whole dataset under study is partitioned into clusters of different 

sizes. In practice, the tree consists of a root node containing all objects to classify. This 

root node is split into two child nodes on the basis of a threshold value of the most dis-

criminating variable. At least one of the child nodes becomes a parent node that is split 

by a threshold value of another variable selected by a stepwise procedure. Splitting 

criteria are determined by statistical analysis of each value of each variable. A node for 
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TABLE 12.1
Observed and Calculated Androgenic Binding Activity of Chemicals

Number Chemical Name log RBA ACa C1 C2 C3 C4 C5 C6 C7 C8 C9

1 5 -Androstan –3.32 0 0 1 0 0 0 0 0 1 0

2 Androsterone* –2.12 1 1 1 1 1 1 1 1 1 1

3 5,6-Didehydroisoandrosterone –1.98 1 1 1 1 1 1 1 1 1 1

4 5 -Androstane-3,11, 17-trione –1.64 1 1 0 1 0 1 1 1 1 1

5 Epitestosterone –1.00 1 1 0 1 1 1 1 1 1 1

6 3 -Androstanediol –0.81 1 1 1 1 1 1 1 1 1 1

7 T propionate –0.79 1 1 1 1 1 1 1 1 1 1

8 5 -Androstan-3 -ol –0.74 1 1 1 1 1 1 1 1 1 1

9 Androstenediol –0.66 1 1 1 1 1 1 1 1 1 1

10 4-Androstenedione –0.62 1 1 1 1 1 1 1 1 1 1

11 4-Androstenediol –0.31 1 1 1 1 1 1 1 1 1 1

12 Etiocholan-17 -ol-3-one* –0.10 1 1 1 1 1 1 1 1 1 1

13 DHT benzoate   0.07 1 1 1 1 1 1 1 1 1 1

14 3 -Androstanediol   0.36 1 1 1 1 1 1 1 1 1 1

15 11-Keto-testosterone   0.54 1 1 1 1 1 1 1 1 1 1

16 Methyltestosterone   1.28 1 1 1 1 1 1 1 1 1 1

17 Testosterone (T) 1.28 1 1 1 1 1 1 1 1 1 1

18 5 -Androstan-17 -ol 1.45 1 1 1 1 1 1 1 1 1 1

19 Methyltrienolone (R1881) 2.00 1 1 1 1 1 1 1 1 1 1

20 Trenbolone 2.05 1 1 0 0 1 0 1 1 1 1

21 DHT 2.14 1 1 1 1 1 1 1 1 1 1

22 Mibolerone* 2.27 1 1 1 1 1 1 1 1 1 1

23 Estriol (E 3) –3.15 0 0 1 0 0 1 1 1 1 1

24 17 -Estradiol –2.40 0 1 1 1 1 1 1 1 1 1

25 3-Methylestriol –2.25 1 1 1 1 1 1 1 1 1 1

26 17-Deoxyestradiol –2.13 1 1 1 1 1 1 1 1 1 1

27 16 -OH-16 -Me-3-Me-

estradiol

–2.08 1 1 1 1 1 1 1 1 1 1

28 2-OH-estradiol –1.44 1 1 1 0 1 1 1 1 1 1

29 Ethynylestradiol (EE) –1.42 1 1 1 1 1 1 1 1 1 1

30 4-OH-estradiol –0.91 1 1 1 0 1 1 1 1 1 1

31 Estradiol (E2) –0.12 1 1 1 1 1 1 1 1 1 1

32 3-Deoxyestradiol*   0.54 1 1 1 1 1 1 1 1 1 1

33 ICI 182,780 NBb 0 0 1 0 1 0 0 0 0 0

34 Moxestrol SB 0 0 1 1 1 1 1 1 1 1

35 Estrone (E1) SB 0 0 1 1 1 1 1 1 1 1

36 ICI 164,384 SB 0 0 1 0 1 0 0 0 0 0

37 Cortisol –2.77 0 0 0 0 0 0 0 0 1 0

38 Dexamethasone –2.42 0 0 0 0 0 0 0 0 1 0

39 Corticosterone –1.87 1 1 0 1 0 1 0 0 1 0

40 Norethynodrel –0.70 1 1 1 1 1 1 1 1 1 1

41 Progesterone –0.70 1 1 1 1 1 1 1 1 1 1

42 Promegestone* –0.64 1 0 0 1 1 1 1 1 1 1

(continued)
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TABLE 12.1 (CONTINUED)
Observed and Calculated Androgenic Binding Activity of Chemicals

Number Chemical Name log RBA ACa C1 C2 C3 C4 C5 C6 C7 C8 C9

43 6 -Me-17 -OH-progesterone –0.41 1 1 0 1 1 1 1 1 1 1

44 Spironolactone –0.35 1 1 1 1 1 1 1 1 1 1

45 Cyproterone acetate –0.32 1 1 1 1 1 1 1 1 1 1

46 Norethindrone   0.41 1 1 1 1 1 1 1 1 1 1

47 6 -Me-17 -OH-progesterone

acetate

  0.94 1 1 1 1 1 1 1 1 1 1

48 Norgestrel   1.22 1 1 1 1 1 1 1 1 1 1

49 Aldosterone NB 0 0 0 0 0 0 0 0 1 0

50 Prednisolone NB 0 0 0 0 0 0 0 0 1 0

51 Pregnenolone NB 0 1 1 1 1 1 1 1 1 1

52 Cholesterol* NB 0 1 1 0 1 0 0 0 1 0

53 Sitosterol NB 0 1 1 0 1 0 0 0 1 0

54 Triamcinolone acetonide SB 0 0 1 0 1 0 0 0 1 0

55 4,4 -Dihydroxystilbene –2.44 0 0 0 0 0 0 0 0 0 0

56 trans-4-Hydroxystilbene –2.13 1 0 1 1 0 0 1 1 0 1

57 3,3 -Dihydroxyhexestrol –2.08 1 1 0 1 1 1 1 1 1 1

58 3,4-Diphenyltetrahydrofuran –1.98 1 1 1 1 1 1 1 1 1 1

59 Dimethylstilbestrol –1.66 1 1 0 1 1 1 1 1 0 1

60 DES –1.66 1 1 1 1 1 1 1 1 1 1

61 Hexestrol monomethyl ether –1.63 1 1 1 1 1 1 1 1 1 1

62 Clomiphene* –1.64 1 1 1 1 1 1 1 1 1 1

63 Nafoxidine –1.63 1 1 1 1 1 1 1 1 1 1

64 Tamoxifen –1.59 1 1 1 1 1 1 1 1 1 1

65 4-Hydroxy-tamoxifen –1.49 1 1 1 1 0 1 1 1 0 1

66 6-Hydroxyflavone –2.77 0 0 0 1 0 0 0 0 1 0

67 4 -Hydroxyflavanone –2.48 0 0 0 0 0 0 0 1 0 0

68 Genistein –2.44 0 0 0 0 0 0 0 1 0 0

69 Flavone –2.40 0 0 0 0 1 0 0 0 0 0

70 Equol –2.39 0 0 1 0 0 0 1 1 0 1

71 Chalcone –2.32 0 0 0 0 0 0 0 0 0 0

72 4 -Hydroxychalcone* –2.27 1 0 0 1 0 1 0 1 1 0

73 Flavanone –2.25 1 0 1 0 1 0 1 1 0 0

74 4-Hydroxychalcone –2.19 1 0 1 1 0 0 0 1 1 1

75 Zearalanone –2.14 1 1 0 1 1 1 1 1 1 1

76 -Zearalenol –2.09 1 1 0 1 1 1 1 1 1 1

77 6-Hydroxyflavanone –1.78 1 0 0 0 0 0 0 1 0 0

78 -Zearalanol –1.72 1 1 1 1 1 1 1 1 1 1

79 Zearalenol –1.64 1 1 0 1 1 1 1 1 1 1

80 Coumestrol NB 0 0 0 0 0 0 0 0 0 0

81 7-Hydroxyflavone NB 0 0 0 0 0 0 0 1 1 0

82 Naringin* SB 0 0 0 0 0 0 0 0 0 0

83 3-Chlorophenol –3.17 0 0 0 0 0 0 0 0 0 0

84 Propylparaben –3.00 0 0 0 0 0 0 0 0 0 0

85 4-Benzyloxyphenol –2.89 0 0 0 0 0 0 0 0 0 0

86 Isoeugenol –2.81 0 0 0 0 0 0 0 0 0 0
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TABLE 12.1 (CONTINUED)
Observed and Calculated Androgenic Binding Activity of Chemicals

Number Chemical Name log RBA ACa C1 C2 C3 C4 C5 C6 C7 C8 C9

87 4-tert-Butylphenol –2.67 0 0 0 0 0 0 0 0 0 0

88 4-Chloro-2-methyl phenol –2.59 0 0 0 0 0 0 0 0 0 0

89 2-sec-Butylphenol –2.52 0 0 0 0 0 0 0 0 0 0

90 4-sec-Butylphenol –2.44 0 0 1 0 0 0 0 0 0 0

91 4-tert-Amylphenol –2.39 0 0 0 0 0 0 0 0 0 0

92 4-Dodecylphenol* –1.81 1 0 1 1 1 1 1 1 1 1

93 4-n-Octylphenol –1.80 1 1 1 1 1 1 1 1 1 1

94 Igepal CO-210 –1.78 1 0 0 1 0 1 1 1 1 1

95 4-Heptyloxyphenol –1.69 1 1 0 1 0 0 1 1 0 1

96 Nonylphenol –1.57 1 1 1 1 1 1 1 1 1 1

97 Vanillin NB 0 0 0 0 0 0 0 0 0 0

98 Phenol NB 0 0 0 0 0 0 0 0 0 0

99 Methyl paraben NB 0 0 0 0 0 0 0 0 0 0

100 2-Chlorophenol NB 0 0 0 0 0 0 0 0 0 0

101 4-Ethylphenol SB 0 0 0 0 0 0 0 0 0 0

102 4 -Chloroacetoacetanilide* –3.46 0 0 0 0 0 0 0 0 0 0

103 Procymidone –2.61 0 0 1 1 0 0 0 0 0 0

104 Metolachlor –2.61 0 1 0 0 0 0 0 0 1 0

105 Vinclozolin –2.50 0 0 1 1 1 1 0 0 0 0

106 Flutamide –2.42 0 0 0 0 0 0 0 0 0 0

107 Linuron –2.25 1 0 0 1 0 0 1 0 0 1

108 Propanil (DCPA) –2.22 1 0 0 0 0 0 1 1 0 1

109 Fenpiclonil –1.61 1 0 0 0 0 0 1 1 0 1

110 p-Lactophenetide NB 0 0 0 0 0 0 0 0 0 0

111 4-Hydroxybenzophenone –2.78 0 0 0 0 0 0 0 0 0 0

112 4,4 -Dihydroxybenzophenone* –2.67 0 0 0 0 0 0 0 0 0 0

113 Benzophenone –2.63 0 0 0 0 0 0 0 0 0 0

114 2,4-Dihydroxybenzophenone –2.53 0 0 0 0 0 0 0 1 0 0

115 Bisphenol A –2.39 0 0 0 0 1 1 1 1 0 1

116 p-Cumyl phenol –2.11 1 1 1 1 1 1 1 1 1 1

117 Bisphenol B –2.09 1 1 0 1 1 1 1 1 0 1

118 o,p -DDE –1.81 1 1 0 1 1 1 1 1 1 1

119 p,p -DDT –1.76 1 1 1 1 1 1 1 1 1 1

120 p,p -DDD –1.70 1 1 1 1 1 1 1 1 1 1

121 p,p -DDE –1.70 1 1 1 1 1 1 1 1 0 1

122 o,p -DDT* –1.69 1 1 1 1 1 1 1 1 1 1

123 o,p -DDD –1.52 1 1 1 1 1 1 1 1 1 1

124 p,p -Methoxychlor olefin –2.20 1 1 1 1 1 1 1 1 1 1

125 p,p -Methoxychlor –1.94 1 1 1 1 1 1 1 1 1 1

126 Monohydroxymethoxychlor 

olefin

–1.84 1 1 0 1 1 1 1 1 1 1

127 HPTE –1.47 1 1 1 1 1 1 1 1 1 1

128 Dihydroxymethoxychlor olefin –1.31 1 1 0 1 1 1 1 1 0 1

(continued)
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TABLE 12.1 (CONTINUED)
Observed and Calculated Androgenic Binding Activity of Chemicals

Number Chemical Name log RBA ACa C1 C2 C3 C4 C5 C6 C7 C8 C9

129 3,3 ,5,5 -Tetrachloro-4, 

4 -biphenyldiol

–2.10 1 1 1 1 1 1 1 1 0 1

130 2,2 ,4,4 -Tetraclorobiphenyl –1.74 1 1 0 1 1 1 1 1 0 1

131 2,3,4,5-Tetrachloro-4 -biphenylol –1.73 1 1 1 1 1 1 1 1 0 1

132 2,4 -Dichlorobiphenyl* –1.72 1 0 1 0 0 0 0 0 0 0

133 4-Hydroxybiphenyl –1.43 1 0 0 1 0 0 1 1 0 1

134 4,4 -Dichlorobiphenyl NB 0 0 0 0 0 0 0 0 0 0

135 2,4,5-T –3.18 0 0 1 1 0 0 0 0 0 0

136 Lindane ( -HCH) –2.12 1 1 1 1 1 1 1 1 0 1

137 Aldrin –2.02 1 1 1 1 1 1 1 1 1 1

138 Endosulfan –1.87 1 1 1 1 1 1 1 1 1 1

139 Heptachlor –1.64 1 1 1 1 1 1 1 1 0 1

140 Kepone –1.58 1 1 1 1 1 1 1 1 1 1

141 Chlordane –1.51 1 1 1 1 1 1 1 1 1 1

142 2,4-D (2,4-dichlorophenoxy-

acetic acid)*

NB 0 0 0 0 0 0 0 0 0 0

143 Hexachlorobenzene NB 0 0 0 0 0 0 0 0 0 0

144 Mirex NB 0 1 1 0 0 0 0 0 1 0

145 Diisononylphthalate –3.56 0 0 1 0 0 0 0 0 0 0

146 Diethylphthalate –3.44 0 0 0 0 0 0 0 0 0 0

147 Bis(n-octyl)phthalate –3.28 0 0 1 0 0 0 0 0 0 0

148 di-i-Butylphthalate (DIBP) –2.22 1 1 0 1 1 1 1 1 1 1

149 Butylbenzylphthalate –2.07 1 1 1 1 1 1 1 1 1 1

150 di-n-Butylphthalate (DBuP) –1.95 1 1 0 1 1 1 1 1 1 1

151 Bis(2-ethylhexyl)phthalate SB 0 0 0 0 0 0 0 0 0 0

152 Triphenylethylene* –1.98 1 0 1 0 0 0 0 0 1 0

153 sec-Butylbenzene NB 0 0 0 0 0 0 0 0 0 0

154 n-Butylbenzene NB 0 0 0 0 0 0 0 0 0 0

155 1,6-Dimehtylnaphthalene NB 0 0 0 0 0 0 0 0 0 0

156 1,3-Butadiene,trans,trans-1,

4-diphenyl

NB 0 0 0 0 0 0 0 0 0 0

157 Chrysene NB 0 0 0 0 0 0 0 0 0 0

158 1,1,2-Triphenylpropane NB 0 0 1 0 1 1 0 0 1 0

159 Diisobutyl adipate –2.84 0 0 0 0 0 0 0 0 0 0

160 Dibutyl adipate –2.73 0 0 0 0 0 0 0 0 0 0

161 Spermidine NB 0 0 0 0 0 0 0 0 0 0

162 Suberic acid* NB 0 0 0 0 0 0 0 0 0 0

163 2-Ethyl-1,3-hexanediol NB 0 0 0 0 0 0 0 0 0 0

164 1,2-Octanediol NB 0 0 0 0 0 0 0 0 0 0

165 1,8-Octanediol NB 0 0 0 0 0 0 0 0 0 0

166 1-Octen-3-ol NB 0 0 0 0 0 0 0 0 0 0

167 Palmitic acid NB 0 0 0 0 0 0 0 0 0 0

168 Di-2-Ethylhexyl adipate NB 0 0 0 0 0 0 0 0 0 0

169 4-Amino butylbenzoate –2.85 0 0 0 0 0 0 0 0 0 0
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TABLE 12.1 (CONTINUED)
Observed and Calculated Androgenic Binding Activity of Chemicals

Number Chemical Name log RBA ACa C1 C2 C3 C4 C5 C6 C7 C8 C9

170 4-Heptyloxybenzoic acid –2.74 0 1 0 0 0 0 0 0 0 0

171 Salicylamide NB 0 0 0 0 0 0 0 0 0 0

172 Cinnamic acid* NB 0 0 0 0 0 0 0 0 0 0

173 Methyl salicylate NB 0 0 0 0 0 0 0 0 0 0

174 1-Methoxy-4-[1-propenyl]

benzene

–3.19 0 0 0 0 0 0 0 0 0 0

175 Carbaryl –3.12 0 0 0 0 0 0 0 0 0 0

176 Nordihydroguaiaretic acid –2.28 1 1 0 1 1 1 1 1 1 1

177 4-(3,5-Diphenylcyclohexyl)

phenol

–2.27 1 1 1 1 1 1 1 1 1 1

178 2,6-Dihydroxyanthraquinone NB 0 0 0 0 0 0 0 0 0 0

179 2-Naphthol NB 0 0 0 0 0 0 0 0 0 0

180 2-Benzyl-isoindole-1,3-dione –3.12 0 0 1 0 1 0 0 1 0 0

181 2-(4-OH-benzyl)isoindole-

1,3-dione

–2.76 0 0 1 1 1 0 0 1 1 0

182 2-(4-Nitro-benzyl)isoindole-

1,3-dione*

–2.46 0 1 1 1 1 0 0 0 0 0

183 Methylparathion –2.26 1 0 1 1 1 1 1 1 0 1

184 Ethylparathion –2.05 1 1 1 1 1 1 1 1 1 1

185 Triphenyl phosphate –1.69 1 1 1 1 1 1 1 1 1 1

186 Triphenylsilanol –2.05 1 1 1 1 1 1 1 1 1 1

187 Simazine NB 0 0 0 0 0 0 0 0 0 0

188 Atrazine NB 0 0 0 0 0 0 0 0 0 0

189 Prometon SB 0 0 0 0 0 0 0 0 0 0

190 Aurin –1.7 1 0 0 1 1 1 1 1 1 1

191 Phenol red NB 0 0 1 0 0 0 0 1 1 0

192 Phenolphthalin* NB 0 1 1 1 0 1 1 1 1 1

193 Folic acid NB 0 0 0 0 0 0 0 0 1 0

194 Caffeine NB 0 0 0 0 0 0 0 0 0 0

195 Melatonin NB 0 0 0 0 0 0 0 0 0 0

196 4,4 -Methylenebis(N,

N-dimethylaniline)

NB 0 0 1 0 1 1 0 0 0 0

197 Doisynoestrol NB 0 1 1 1 1 1 1 1 1 1

198 4,4 -Sulfonyldiphenol –3.09 0 0 0 0 0 0 0 0 0 0

Note: * Denotes chemicals belonging to the testing set.

a Actual classification (AC), calculated classification with Classification and Regression Tree (CART) (C1), 

linear neural network (LNN) model (C2), three-layer perceptron (TLP) models (C3 and C4), radial basis func-

tion network (RBFN) model (C5), probabilistic neural network (PNN) models (C6 and C7), learning vector 

quantization (LVQ1) model (C8), and support vector machine (SVM) model (C9).
b NB, nonbinder; SB, slight binder.
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which no further split is necessary becomes a terminal node [34,35]. CART analysis 

was performed from SCAN (Minitab, State College, Pennsylvania).

12.2.3.2 Artificial Neural Networks (ANNs)

ANNs are now commonly used in Structure-Activity Relationship (SAR) and 

Quantitative Structure-Activity Relationship (QSAR) to find complex nonlinear relation-

ships between sets of descriptors and biological data. Among all the available paradigms 

[36,37], five different types of ANNs, were selected mainly because they present vari-

ous levels of complexity. Their characteristics are briefly described in the subparagraphs 

below. All the neural network models were derived from Statistica (StatSoft, Paris) after 

a pretreatment of the data consisting in a classical min/max transformation.

12.2.3.2.1 Linear Neural Network (LNN)

According to the Ockham’s Razor principle, also called the law of parsimony, a 

simple model should always be chosen in preference to a complex model if the 

performances of the latter do not significantly outperform those of the former. The 

simplest ANN is a linear neural network (LNN) without a hidden layer and an out-

put with dot product synaptic function and identity activation function. It is equiva-

lent to a classical discriminant analysis. The LNN was trained from the standard 

pseudo-inverse (SVD) linear optimization algorithm [38]. Briefly, this algorithm 

uses the singular value decomposition technique to calculate the pseudo-inverse of 

the matrix needed to set the weights in the linear output layer, so as to find the least 

mean squared solution. In this study, the LNN was mainly used as a benchmark 

against which to compare the performances of other more complex ANNs.

12.2.3.2.2 Three-Layer Perceptron (TLP)

The TLP is perhaps the most popular ANN in use not only in QSAR (for example, 

[36,39–46]) but also in a huge number of other disciplines [47]. This ANN, like a 

LNN, presents one input layer with a number of neurons corresponding to the num-

ber of selected molecular descriptors and one output layer of one neuron in numer-

ous problems including the case of a binary classification (active versus inactive). 

In addition, it includes a hidden layer with an adjustable number of neurons which 

is determined from a trial and error procedure but which is basically linked to the 

number of neurons on the input layer as well as the training set size. Too many con-

nections often yield overfitting; hence, to avoid problems, it is necessary to limit the 

number of connections within the network. The neurons of each layer are connected 

in the forward direction (that is, input to output) and are activated by means of activa-

tion functions. Each connection is associated to a weight. The weights are adjusted 

during the learning process aiming at minimizing an error computed from the 

target and calculated outputs. Numerous learning algorithms are available, and among 

them, the back-propagation alone or in combination with the conjugated gradient 

descent or Levenberg-Marquardt algorithms [45] were tested. The two parameters 

necessary to accurately tune the TLP are the learning rate ( ) and the momentum ( ). 

A large  value corresponds to a rapid learning but might also result in oscillations. 
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If  is set too low, the convergence is difficult and the risk of falling into and remain-

ing in local minima is high. The goal of  is to prevent oscillations [45].

12.2.3.2.3 Radial Basis Function Network (RBFN)

RBFNs are three-layer feedforward ANNs also trained using a supervised training 

algorithm. They have shown their interest in QSAR (for example, [48–50]). RBFNs 

are typically configured with a single hidden layer of neurons whose activation func-

tion is selected from a class of functions called radial basis functions, usually a 

Gaussian or some other kernel function. Each hidden unit acts as a locally tuned 

processor that computes a score for the match between the input vector and its con-

nection weights or centers. The weights connecting the basis units to the outputs 

are used to take linear combinations of the hidden units to produce the final clas-

sification or output. More precisely, in an RBFN, the weights into the hidden layer 

basis units are usually set before the second layer of weights is adjusted. As the 

input moves away from the connection weights, the activation value falls off. This 

is why the term “center” is allocated to the first-layer weights [31]. These center 

weights can be computed by different statistical techniques. In the present study, the 

K-means algorithm was used. They are then used to set the areas of sensitivity for the 

RBF hidden units, which then remain fixed. Once the hidden layer weights are set, a 

second phase of training allows the adjustment of the output weights [31]. An RBFN 

trains much faster than a classical back-propagation three-layer perceptron and does 

not suffer from local minima.

12.2.3.2.4 Probabilistic Neural Network (PNN)

A PNN is a supervised ANN that features a feedforward architecture. In environ-

mental QSAR, the PNNs have been widely popularized by Kaiser [51–55]. Typically, 

a PNN is particularly suited for classification problems. It includes an input, a radial, 

and an output layer. The radial units are copied directly from the training data, one 

per case. Each models a Gaussian function centered at the training case. There is one 

output unit per class. Each is connected to all the radial units belonging to its class, 

with zero connections from all other radial units. Consequently, the output units 

simply add up the responses of the units belonging to their own class. The outputs 

are each proportional to the kernel-based estimates of the probability density func-

tions of the various classes. By normalizing these to sum to 1.0, estimates of class 

probability are produced. The technique is extremely fast, because training a PNN 

actually consists mostly of copying training cases into the network. Another great 

advantage of a PNN is the fact that the output is probabilistic, yielding its interpreta-

tion easily [56]. With enough training data, a PNN is guaranteed to converge to a 

Bayesian classifier. Last, a PNN algorithm allows data to be added or deleted from 

the training set without lengthy retraining, while this is not the case with classical 

ANNs such as a back-propagation TLP [57].

12.2.3.2.5 Learning Vector Quantization (LVQ)

LVQ, which is only marginally used in QSAR [58,59], can be seen as a supervised 

version of the Kohonen self-organizing map (KSOM) [60]. Briefly, KSOM performs 
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a mapping from an n-dimensional input vector onto a two-dimensional (2D) array 

of nodes displayed in a rectangular or hexagonal lattice. This mapping preserves 

the topology of the input data. This means that input vectors that are similar to each 

other are mapped to neighboring regions of the 2D output lattice. Each node in the 

output lattice is associated to an n-dimensional reference vector of weights. KSOM 

works by comparing the relationship, in terms of Euclidean distance, between each 

input vector and each reference vector in an iterative process during which the refer-

ence vectors are adjusted. The closest reference vector to a given input vector (i.e., 

the winning reference vector) is updated to match at best the input vector. LVQ uses 

the same internal architecture as KSOM but the learning algorithm is supervised. 

During the learning phase, the input data are tagged with their correct class and 

each output neuron represents a known category. There are several LVQ algorithms 

characterized by different learning rules. In this study, LVQ1, rather similar to the 

KSOM training algorithm, was used [60].

12.2.3.3 Support Vector Machine (SVM)

SVMs are learning methods originally designed to perform classifications, but they 

are now increasingly used for real function approximation (regression estimation) 

tasks [32,61,62]. SVMs are commonly selected as a statistical tool for designing 

(Q)SAR models because they compete favorably with a lot of linear and nonlinear 

methods [48–50,63–69]. SVM classification is rooted in the kernel trick, introduced 

by Aizeman and coworkers [70] which is a method allowing the linear separation of 

objects after their mapping into a higher-dimensional space. In the case of a SVM, a 

maximum margin hyperplane is constructed that separates the two clouds of points 

and that is at equal distance from the two. A cost parameter (C), which is necessary 

to tune the system, allows some flexibility in separating the categories by creating a 

soft margin that permits some data points to push their way through the margin of 

the separating hyperplane without affecting the final result [71].

In this work, a Gaussian kernel function, commonly used for classification prob-

lems, was employed. The spread of the Gaussian kernel was monitored by means of 

the   parameter.

SVM models were derived from in-house MATLAB software (The MathWorks, 

Natick, Massachusetts) and from the e1071 R-package [72] after standardization of 

the data (zero mean and unit variance).

12.3 RESULTS AND DISCUSSION

A CART analysis performed from the 15 selected molecular descriptors yielded a 

rather simple tree constructed with only seven of them (Figure 12.1). Among these 

descriptors, three are topological indices: the molecular volume (T32), which is at the 

origin of the tree; the Kier flexibility index (T13); and the average information con-

tent of zero order (T14). It is also interesting to note that the 1-octanol/water partition 

coefficient (log P) appears twice within the tree. The tree displayed in Figure 12.1 

represents the best compromise between the number of descriptors and the modeling 

performances obtained with the learning and testing sets. Thus, with this tree, 18 
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chemicals belonging to the learning set of 178 chemicals are badly predicted (C1 in 

Table 12.1). This represents 89.9% of good classifications. The results are worse for 

the testing set of 20 chemicals because eight of them are incorrectly predicted by the 

decision tree (Table 12.1) yielding only 60% of good predictions.

The best linear neural network (LNN) model included the whole set of descrip-

tors as inputs. The percentages of correct predictions are 71.9 and 75 for the learning 

set and testing set, respectively. They correspond to 50 and 5 chemicals incorrectly 

predicted for the learning and testing sets, respectively (C2 in Table 12.1). It is note-

worthy that the five chemicals of the testing set that are badly predicted by the LNN 

model are also incorrectly classified by the decision tree (Table 12.1). Although the 

predictions obtained on the external testing set are acceptable and significantly bet-

ter than those produced by the decision tree, it is the converse regarding the learn-

ing set. The results obtained with the LNN clearly reveal that the linear methods 

are not suited to model the complex relationships existing between the AR-binding 

activity of the chemicals and the set of selected topological and physicochemical 

descriptors.

Consequently, a TLP was first used as a statistical engine to find a nonlinear rela-

tionship between the classes of activity of the chemicals and the molecular descrip-

tors. A 15/10/1 (input/hidden/output layer) TLP model provided interesting results 

after only 135 cycles (100 cycles with the back-propagation algorithm and 35 with 

the conjugate gradient descent algorithm). The learning rate ( ) and momentum ( )

were equal to 0.01 and 0.3, respectively. The synaptic functions for the three layers 

were all linear, and the activation functions were linear, hyperbolic, and logistic 

from the input layer to the output layer.

Inspection of Table 12.1 shows that 17 chemicals belonging to the learning set 

are badly predicted by this TLP model. This represents 90.4% of good classifica-

tions. Regarding the testing set, four chemicals are incorrectly predicted yielding 

80% of good predictions (C3 in Table 12.1). With a so limited number of epochs, 

undoubtedly the model is not overtrained. Conversely, because the network includes 

T32 229.82

log P 4.03

T14 1.38

T13 8.78

U28 0.091

V39 0.0001

log P 3.45

U07 0.0858

0 0 1 0 0 011 1

FIGURE 12.1 Classification tree obtained with the Classification and Regression Tree 

(CART) model (C1).
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160 connections and the number of sample examples in the learning set is 178, some 

problems of overfitting cannot be excluded. Consequently, a huge number of runs 

were performed to find a model with fewer connections but, in the meantime, that 

showed acceptable performances. It is noteworthy that a pruning algorithm was used 

to find the best compromise between the number of connections within the ANN and 

the simulation performances of the model, especially with the external testing set. 

Thus, the best model was a 8/10/1 TLP obtained after 501 cycles (100 cycles with the 

back-propagation algorithm and 401 with the conjugate gradient descent algorithm). 

The input neurons were the following molecular descriptors: log P, T13 (Kier flex-

ibility index), T14 (average information content of zero order), T19 (Balaban index), 

T28 (YZ shadow), U04 (minimum partial charge for a hydrogen atom), U10 (polarity 

parameter/square distance), and V39 (minimum nucleophilic reactivity index for an 

oxygen atom). The  and  parameters were equal to 0.01 and 0.3, respectively. The 

synaptic functions for the three layers were also all linear and the activation func-

tions were linear, hyperbolic, and logistic from the input layer to the output layer. 

Inspection of Table 12.1 (C4) shows that with this new TLP model, 28 chemicals 

belonging to the learning set are badly predicted. This represents 84.3% of correct 

classifications. Regarding the testing set, five chemicals are incorrectly predicted 

(Table 12.1) yielding 75% of good predictions.

It is worth noting that the two above TLP models were selected as the most 

predictive among about 6,500 models designed by changing the architecture and 

parameters of the ANNs. Obviously, each change was tested on a batch of ten runs. 

Consequently, even if the results provided by the TLP are better than those obtained 

with CART and the LNN, we claim that they remain a little bit disappointing due to 

the time and effort spent to obtain them.

Conversely, the simulation results obtained with an RBFN are more interesting 

(Table 12.1). The best model selected by using a pruning algorithm was a 5/16/1 

ANN. The five input neurons were log P, T13 (Kier flexibility index), T14 (aver-

age information content of zero order), T19 (Balaban index), and T28 (YZ shadow). 

These descriptors were also chosen as inputs in the previous 8/10/1 TLP model. The 

synaptic functions for the three layers were also all linear and the activation func-

tions were linear, negative of the exponential, and linear from the input layer to the 

output layer. With this model, 20 learning set chemicals are badly predicted (C5 in 

Table 12.1) representing 88.8% of good classifications. The results are not as good for 

the external testing set because three chemicals over a total of 20 are badly predicted 

by the RBFN model yielding 85% of good predictions. In addition to the good results 

obtained with the RBFN, it is worth mentioning that this ANN is easier to tune than 

a TLP. This advantage is even more true for a PNN.

A first PNN model was obtained from the whole set of descriptors. The synaptic 

functions for the three layers were all linear and the activation functions were linear, 

negative of the exponential, and unitsum from the input layer to the output layer. The 

unitsum function normalizes the outputs to sum to 1.0. It is used in a PNN to allow 

the outputs to be interpreted as probabilities. With this model, 93.8% and 80% of 

good classifications are recorded for the learning and testing sets, respectively. This 

only represents 11 chemicals badly classified in the learning set and four in the test-

ing set (C6 in Table 12.1). Although this PNN model outperforms the RBFN model 
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regarding the learning set, it is not the case for the testing set. Consequently, attempts 

were made to increase the simulation performances of the model for this set. A PNN 

model including seven descriptors as input neurons allowed us to reach this goal. 

The seven descriptors were the following: log P, T14 (average information content of 

zero order), T19 (Balaban index), T28 (YZ shadow), U10 (polarity parameter/square 

distance), V02 (HOMO energy), and V39 (minimum nucleophilic reactivity index for 

an oxygen atom). The synaptic and activation functions were the same as in the pre-

vious PNN model. With this new configuration, three chemicals are badly predicted 

with the testing set. This corresponds to 85% of good predictions (C7 in Table 12.1). 

Conversely, among the learning set of 178 chemicals, 17 are badly classified yielding 

90.4% of good predictions (Table 12.1).

Among the different ANNs tested in this study, the learning vector quantization 

(LVQ1) network was undoubtedly the most difficult to parameterize. A lot of LVQ1 

models with different architectures and characteristics were tested. The most pre-

dictive model included the seven following descriptors as inputs: T12 (Kier shape 

index of second order), T13 (Kier flexibility index), T19 (Balaban index), T28 (YZ 

shadow), T32 (molecular volume), U10 (polarity parameter/square distance), and 

V05 (HOMO–LUMO energy gap). It was obtained after 500 epochs with a learn-

ing rate equal to 0.001. The synaptic functions were linear and radial and the acti-

vation functions were linear and square root. It is noteworthy that the square root is 

used to transform the square distance activation in the LVQ network to the actual 

distance as an output. Although the model fails only in the prediction of three 

testing set chemicals (85% of correct predictions), 40 chemicals belonging to the 

learning set are badly predicted yielding only 77.5% of good predictions (C8 in 

Table 12.1).

The last statistical tool submitted to the comparison exercise was an SVM. Again, 

a huge number of configurations were tested to obtain a model presenting optimized 

performances on both sets. This was achieved with a model including the whole set 

of descriptors as inputs and a Gaussian kernel (C  3 and  0.128). Thus, inspection 

of Table 12.1 (C9) reveals that with this SVM model, 93.8% and 80% of good predic-

tions are obtained for the learning and testing sets, respectively. These percentages 

correspond to 11 and 4 chemicals incorrectly predicted for the learning and testing 

sets of 178 and 20 chemicals, respectively.

A summary of the percentages of correct classifications obtained with the dif-

ferent models for the learning and testing sets is displayed in Table 12.2. The per-

centages of false positives (FPs) and false negatives (FNs) are also given. An FP 

suggests that the chemical is active, but this is actually not the case. For an FN, it is 

the converse. Even if in the design process of models the numbers of FNs and FPs 

both have to be minimized as far as possible, in the frame of the hazard and risk 

assessment of chemicals, the FNs are more dangerous than the FPs. Consequently, 

models favoring FN predictions have to be eliminated in priority. Thus, inspection of 

Table 12.2 shows that the PNN (C7) model presents the highest percentage of good 

predictions for the external testing set and the lowest percentage of FNs. Conversely, 

the percentage of FPs is rather high. Consequently, this protective model can be 

selected for the detection of chemicals acting on the AR especially in environmen-

tal decision-making processes rooted in the precautionary principle. The other PNN
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model (C6) and the SVM (C9) model, which provide a good compromise between the 

percentages of correct predictions on both sets and low percentages of FNs and FPs 

(Table 12.2), can also be selected. At the opposite, the LNN (C2) and the LVQ1 (C8) 

models have to be eliminated due to their poor performances. This is particularly 

true for the former.

Even if Table 12.2 reveals important variations in the performances of the 

models, about 58% of the chemicals (that is, 114/198) are correctly predicted by all 

the selected models (Table 12.1). At the opposite, only 17 -estradiol (chemical num-

ber 24), pregnenolone (chemical number 51), and doisynoestrol (chemical number 

197) are always badly predicted by the models (Table 12.1).

It is important to note that different learning and testing sets of 178/20 chemicals 

were modeled with the seven selected statistical methods, and the results presented 

here correspond to those providing the worst results on the external testing set. This 

was the unique way to perform a fair comparison of the linear and nonlinear meth-

ods and to discuss the androgenic binding activity of the chemicals.

Last, it is worth mentioning that the 1-octanol/water partition coefficient (log P), 

the Kier flexibility index (T13), the average information content of zero order (T14), 

and the Balaban index (T19) are very often found as molecular descriptors in the 

models. The importance of log P to AR binding was stressed by Fang et al. [28], 

especially for phytoestrogens and phenols. Its presence as input in all the models 

except in the LVQ1 model confirms this finding. Regarding the topological indices, 

we claim that their selection in the models has to be related to their ability to dis-

criminate chemicals having very different structures. Indeed, topological indices are 

particularly suited to encode size and branching information within the molecules 

[73]. Among them, the Balaban index (T19) was undoubtedly the most interesting 

descriptor to discriminate the active and nonactive compounds.

TABLE 12.2
Simulation Performances of the Selected Models

Modela LS(%)b TS(%) FP(%) FN(%)

CART (C1) 89.9 60 5.1 8.1

LNN (C2) 71.9 75 13.6 14.1

TLP (C3) 90.4 80 6.1 4.5

TLP (C4) 84.3 75 9.1 7.6

RBFN (C5) 88.8 85 5.6 6.1

PNN (C6) 93.8 80 4.5 3.0

PNN (C7) 90.4 85 8.1 2.0

LVQ1 (C8) 77.5 85 11.6 10.1

SVM (C9) 93.8 80 4.5 3.0

a See text for the significance of the acronyms characterizing the different models.
b Percentages of good predictions for the learning set (LS) and the testing set (TS). FP, 

false positive; FN, false negative.
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12.4 CONCLUSIONS

The models selected in this study show a domain of application superior to those of 

the 3D and 2D QSAR models designed by Hong et al. [28] and Zhao et al. [30] which 

totally or partially excluded important chemical families such as aromatic acids, 

triazines, or triphenylmethanes.

On the basis of the learning and testing sets presented in Table 12.1 but also from the 

results obtained by selecting other sets of 178/20 chemicals, the modeling performances 

of the seven studied statistical methods are as follows: PNN ~ SVM  RBFN  TLP 

CART  LVQ1  LNN. In the models, the 1-octanol/water partition coefficient (log P) 

and topological indices are very often selected as molecular descriptors. These descrip-

tors are easily interpretable and can be computed for any kind of organic molecules.

More generally, the results obtained in this study are rather good, the models 

generally presenting high percentages of good predictions. However, the modeling 

target was not too complex. Indeed, the design of a model allowing the discrimina-

tion of chemicals between two categories is not too difficult especially when non-

linear learning techniques are used and when the learning set is large and correctly 

designed. Consequently, the next step will be to envision the design of models allow-

ing us to classify the chemicals into three and more categories determined from their 

AR binding activity.
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13 SAR and QSAR 
Analyses of Substituted 
Dibenzoylhydrazines for 
Their Mode of Action 
as Ecdysone Agonists

Toshio Fujita and Yoshiaki Nakagawa

ABSTRACT

A series of our Structure-Activity Relationship (SAR) and Quantitative Structure-

Activity Relationship (QSAR) studies of synthetic molting hormone agonists, 

N,N -dibenzoyl-N-t-butylhydrazines (DBHs) exhibiting insecticidal/larvicidal 
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activity are reviewed in this chapter. We prepared a number of analogs where 

various substituents are introduced into the two benzene rings of DBH and mea-

sured their activity using various biological systems. Larvicidal activity was 

against larvae of the rice stem borer Chilo suppressalis and the molting hormone 

activity was in terms of the stimulation of N-acetylglucosamine incorporation in 

a cultured integument system of the same insect species. Binding affinity to the 

ecdysone receptor was assayed with intact Sf-9 cell lines in which the absorp-

tion, distribution, metabolism, and excretion (ADME) processes are negligible 

as well as using receptor proteins obtained by in vitro translation of the respon-

sible cDNA cloned from cell-free preparation of integumentary tissue of C. 
suppressalis. Variations in the biological activity indices were either correlated 

between two types of activity or correlated using physicochemical molecular 

and substituent parameters in terms of the classical QSAR. Three-dimensional 

QSAR (comparative molecular field analysis [CoMFA]) for the activity of the 

receptor response using cultured cells of Bombyx mori has also been explored. 

Comparisons among correlations and with recently revealed X-ray cocrystal-

lographic findings clearly indicate the physicochemical meaning of parameters 

significant in the correlation equations to help understand the molecular mecha-

nism of the molting hormonal action especially for lepidopteran insect larvae.

KEYWORDS

Ecdysone agonists

Ecdysone receptor

Insecticides

Larvicides

N,N -dibenzoyl-N-t-butylhydrazines

Quantitative Structure-Activity Relationship (QSAR)

Receptor binding

13.1 INTRODUCTION

Among N,N -dibenzoyl-N-t-butylhydrazines (DBHs) are molting hormone agonists 

exhibiting insecticidal (or larvicidal) activity associated with premature abnormal 

molting that is ultimately lethal [1]. The first member of this series of agonists is 

RH-5849, which was discovered by scientists at Rohm and Haas in the late 1980s 

[2–4]. DBHs share the molecular target, the molting hormone receptor (EcR), with 

endogenous/endocrine-active ecdysteroids working in arthropods and nonarthropod 

invertebrates. The EcR is a member of superfamily of nuclear receptors, and one of 

ligand-dependent transcription factors. Because of simplicity of the structure and 

uniqueness of the action of DBHs, a number of analogs mostly with various combi-

nations of substituents on two benzene rings have been explored for practical use. 

Four compounds, tebufenozide, methoxyfenozide, chromafenozide, and halofenoz-

ide (Figure 13.1), are currently used for pest insect control depending upon their 

selective activity spectra [5].
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We have been studying this series of compounds since 1991 [5]. A number of 

substituted DBHs and related compounds have been synthesized and their biological 

activities have been measured at such biological levels as whole body (larvicidal), 

tissue, cell, and receptor protein mostly prepared from rice stem borers, Chilo sup-
pressalis. We have analyzed potency variations observed in these activities using 

physicochemical molecular and substituent parameters quantitatively in terms of 

the classical QSAR, and relationships between sets of activity indices at various 

levels (activity-activity relationships [AARs]). We also analyzed classical and three-

dimensional (3D) Quantitative Structure-Activity Relationships (QSARs) of these 

compounds for their EcR activation effect measured using cloned cells from silk-

worm, Bombyx mori. We virtually constructed the 3D structure of B. mori EcR 

protein using a homology modeling procedure. With outcomes of these studies, 

the mechanism of action of DBH series of compounds has been elucidated with 

a considerable depth of understanding at the molecular level. The purpose of this 

chapter is to review our studies proposing intimate relationships between larvicidal 

activity and receptor binding for rice stem borers and physicochemical consistency 

of QSARs with homology-modeled receptor structure for silkworms. The original 

articles should be consulted for detailed experimental procedures.

13.2 BIOLOGICAL ACTIVITIES OF DBHS TO RICE 
STEM BORERS, CHILO SUPPRESSALIS

13.2.1 CLASSICAL QSAR ANALYSIS OF INSECTICIDAL ACTIVITY

The insecticidal activity to rice stem borer larvae was measured by topical applica-

tion to the dorsal part in terms of LD50 (in mmol/insect) using 20 heads in a set for 

a number of substituted DBHs. Equation 13.1 was derived for the pLD50 value, the 
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Figure 13.1 Structure of dibenzoylhydrazine larvicides.
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reciprocal logarithm of LD50, of 27 analogs monosubstituted on the A-ring [6]. The 

A-ring is defined here as that closer to the t-Bu group as shown in Figure 13.2.

pLD50 = 0.98 (  0.31) log P + 1.28 (  0.74) I
ortho – 0.48 (  0.27) ΔVmeta

  – 0.89 (  0.29) ΔVpara + 3.61 (  0.28)

n = 27, s = 0.300, r = 0.899 (13.1)

In this and the following equations, n is the number of compounds, s is the stan-

dard deviation, r is the correlation coefficient, and the figures in parentheses are the 

95% confidence intervals of the regression coefficient and intercept. Log P is the 

hydrophobicity parameter of compounds in terms of 1-octanol/water partition co-

efficient P. I
ortho is for the inductive/field electronic effect of ortho substituents, and 

V represents the van der Waals’ volume estimated after Bondi. The ΔV value used 

here is the difference from the reference V value of hydrogen and scaled by 0.1 to 

make the scale comparable to that of other parameters. Superscripts associated with 

ΔV parameters indicate the substituent positions.

Equation 13.1 was selected as that of the best quality considering both the physi-

cochemical meaning and the statistical significance. Preliminary examinations for 

substituent effects at each position separately indicated a common participation of 

the hydrophobic effect of a comparable magnitude. The log P term in Equation 13.1 

is compatible with those observed empirically in a number of QSAR examples. The 

coefficient close to unity means that the (sub)molecular moiety with structural varia-

tions undergoes hydrophobic interactions so as to be engulfed almost completely in 

hydrophobic milieu. Electronic effect specific to ortho substituents is well under-

stood by considering to work in a proximity to the “side-chain” carbonyl group 

inductively (through space but not through bonds). The negative ΔV terms indicate 

unfavorable steric effects of meta and para substituents in terms of their volume. It 

should be recognized, however, that certain colinearities exist among various sets of 

steric parameters, such as ΔV, STERIMOL, and extended Es values.

A number of analogs multisubstituted at the A-ring were also tested. The effect of 

multiple substitutions was analyzed by examining the difference between observed 

value and that calculated by Equation 13.1 assuming the additivity of substituent effects. 

In 2,4-, 3,4-, and 3,5-disubstituted compounds, the additivity model was approximately 

approved, and in 2,3-, 2,5-, and 2,6-di-, and 2,3,5- and 2,3,6-trisubstituted derivatives, 

effects specific to substitution patterns to lower the activity were shown to be operative, 

FIGURE 13.2 Compounds used for deriving Equation 13.1. In this and the following figures 

for the structure of compounds are used in activity measurements except for Figure 13.8, 

substituents not necessarily occupy every conceivable position.
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but their physicochemical meaning was not exactly understood. In Equation 13.1, some 

ortho substituted compounds are not included because of their very low (inaccurate) 

activity. This was attributable to the size of substituents bulkier than a threshold.

In the next set of compounds, the A-ring substituent is fixed as the 2-Cl, because 

the 2-chloro compound is one of the most active compounds included in Equation 

13.1. For compounds shown in Figure 13.3 in which the B-ring substituent is vari-

ously changed singularly, Equation 13.2 was formulated [7].

pLD50 = 0.72 (  0.21) log P – 0.88 (  0.22) ΔLortho – 0.98 (  0.24) ΔVmeta

  – 0.59 (  0.19) ΔLpara + 4.92 (  0.26)

n = 30, s = 0.254, r = 0.912 (13.2)

In Equation 13.2, L is the STERIMOL length parameter, which represents the 

length of substituents (in Å) along the axis connecting the  atom of substituents with 

the rest of the molecule, and ΔL is the difference from that of the hydrogen atom. The 

hydrophobic effect (the log P term) nonspecific to positions and unfavorable steric 

effects of position dependence are similar to those for the A-ring substituents. The 

effect of multiple substitutions was also examined. Effects of such substitution pat-

terns as 2,5-, 2,6-, 3,4-, and 3,5-disubstitutions were shown to be nearly additive. For 

2,3- and 2,4- disubstituted compounds, the activity was suggested to be independent 

of the steric effect of 3- and 4-substituents.

13.2.2 CLASSICAL QSAR ANALYSIS OF THE N-ACETYLGLUCOSAMINE

INCORPORATION INTO THE INTEGUMENT

Excised fragments of a certain size were prepared from the integument tissue of 

diapause larvae of the rice stem borer. Under certain culture conditions, the stimula-

tive effect of DBHs on the incorporation of 14C-labeled N-acetyl-glucosamine into 

fragments was estimated as a tissue-level activity and represented as the pEC50 value. 

EC50 (in M) is the concentration of DBHs required to exhibit 50% the maximum 

incorporation. DBHs of the types included in both Equation 13.1 and Equation 13.2 

were used together here (Figure 13.4) to give Equation 13.3 [8].

pEC50 = 1.02 (  0.30) log P + 1.40 (  0.99) I
ortho (X) – 0.52 (  0.35) ΔVmeta (X)

– 1.08 (  0.36) ΔVpara (X) – 0.90 (  0.33) ΔVortho (Y)

   – 1.17 (  0.35) ΔVmeta (Y) – 0.77 (  0.33) ΔVpara (Y) + 4.06 (  0.85)

  n = 37, s = 0.339, r = 0.900 (13.3)

FIGURE 13.3 Compounds used for deriving Equation 13.2.
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In Equation 13.3, X and Y indicate the substituent locations, A- and B-ring, 

respectively. Each component of this equation corresponds very well to the cor-

responding terms in Equation 13.1 and Equation 13.2. The log P term of Equation 

13.3 looks similar to that of Equation 13.1 for the effect of X substituents better 

than that of Equation 13.2, but they overlap within the 95% confidence intervals. 

In Equation 13.2 for the larvicidal effect of B-ring (Y) substituents, the steric 

effect of ortho and para substituents is represented by ΔL, the substituent length 

parameter, whereas in Equation 13.3, they are expressed by ΔV, the volume para-

meter. As mentioned above, there is some colinearity between two sets of steric 

parameters. Depending upon the substituents selected in each correlation, the best 

parameter set could be switched over from one to another. The relative importance 

of the unfavorable steric effect as the sequence of meta > ortho > para is common 

between two equations (after the scale adjustment). The larvicidal activity induced 

by premature molting and the stimulation of N-acetylglucosamine incorporation 

into a new cuticular system are closely linked. Substituents of two benzene rings 

seem to function so that the hydrophobic effect is almost nonspecific to positions, 

the unfavorable effect of steric “bulkiness” is position dependent, and the elec-

tronic effect is specific to ortho substituents of the A-ring.

13.2.3 THE AAR AND CLASSICAL QSAR OF THE CELLULAR-LEVEL ACTIVITY

We examined the cellular-level activity of molting hormone agonists using the Sf9 

cells. The cell line was originally isolated in 1970s from pupal ovarian tissue of the 

fall armyworm, Spodoptera frugiperda, belonging to the same order, Lepidoptera,

as the rice stem borer. The cells have often been utilized with baculovirus expression 

vectors for producing foreign recombinant proteins of large size [9].

We measured the IC50 concentration (in M) to show the 50% inhibition of the 

binding (and incorporation) of 3H-labeled ponasterone A (in)to intact Sf9 cells as 

suspension under certain culture conditions. Ponasterone A is a potent steroidal ago-

nist of plant origin. The pIC50 (intact) value is used as an index of the binding affinity. 

In Figure 13.5, the pEC50 values for the tissue-level effect on N-acetyl-glucosamine 

incorporation are plotted against the more fundamental cellular pIC50 for 34 com-

pounds (Figure 13.6). They include natural steroidal agonists (n = 7), DBHs (n = 

19), and benzoylalkanoylhydrazines (n = 8) [10]. Compounds in the last group are 

also larvicidal as found originally in Rohm and Haas [1,4]. They have alkyl groups 
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FIGURE 13.4 Compounds used for N-acetylglucosamine incorporation. 
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in place of the B-ring of DBHs. Some scatters are observed in Figure 13.5 as repre-

sented by Equation 13.4 with a somewhat large s value.

pEC50 = 1.20 (  0.19) pIC50 (intact) – 1.34 (  1.31)

n = 34, s = 0.38, r = 0.92 (13.4)

For 19 DBHs, the correlation was improved to give Equation 13.5:

pEC50 = 1.00 (  0.20) pIC50 (intact) + 0.17 (  1.45)

n = 19, s = 0.29, r = 0.93 (13.5)
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Y : H, 2-Me, 3-OMe, 4-Halogen, CF3,
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FIGURE 13.6 Structure of agonists used for drawing Figure 13.5.

FIGURE 13.5 Relationship between N-acetylglucosamine incorporation and cellular binding 

affinity (closed circle: N,N -dibenzoyl-N-t-butylhydrazines; open circle: benzoylalkanoylhy-

drazines; open triangle: steroidal agonists).
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The slope is almost equal to unity and the intercept is close to zero in these equa-

tions. The pEC50 value is for the physiological activity of agonists, which is supposed 

to include the uptake kinetics into integumentary tissue, followed by migration to 

target cells and receptor sites where the hormonal action is triggered, as well as the 

receptor affinity and the intensity of triggering itself. The pIC50 value is an index 

reflecting processes for the binding to and incorporation into target cells. “One-to-one 

correspondence” between these two types of activity, especially for homogeneous set 

of DBHs in Equation 13.5, indicates that, among various “unit” processes included 

in variations of pEC50, intratissue and intercellular migration behaviors of agonists 

before binding to target cells are not significant. Moreover, it has been shown experi-

mentally that the penetration process through the cell membrane is not significant. 

Figure 13.7 clearly shows that a highly significant correspondence in the binding to 

or consumption by cellular materials exists between intact Sf9 cells and their homo-

genate [11].

The QSAR analysis of the pIC50 (intact) value was carried out for 17 DBHs with 

various substituents at the para position of the B-ring (Figure 13.8) to give Equation 

13.6 [12]:

pIC50 (intact) = 0.61 (  0.24) log P – 0.82 (  0.53) 

  – 0.37 (  0.44) ΔB1 + 5.50 (  0.72)

n = 17, s = 0.24, r = 0.96 (13.6)

The B1 is one of the STERIMOL parameters for the minimum width of sub-

stituents from the axis connecting the  atom with the rest of the molecule. ΔB1

means the difference from that of the reference hydrogen atom. In Equation 13.2 and 

Equation 13.3 for the rice stem borer activities, such steric parameters as ΔL and ΔV
are required to give the best correlations instead of ΔB1 for para substituents of the 

B-ring. Although the ΔB1 term is justified only at the 91% level of significance, the 

FIGURE 13.7 Relationship in binding affinity between intact and homogenized Sf9 cells 

(closed circle: N,N -dibenzoyl-N-t-butylhydrazines, open: steroidal agonists). (Reproduced 

from C. Minakuchi, Y. Nakagawa, and H. Miyagawa, J. Pestic. Sci. 28, 55, 2003. With the 

permission of the Pesticide Science Society of Japan.)
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steric inhibitory nature of substituents does not vary among Equation 13.2, Equation 

13.3, and Equation 13.6.

The log P term in Equation 13.6 corresponds with that in Equation 13.2 and 

Equation 13.3, but the  term does not. The most likely reason is the participa-

tion of oxidative metabolism under whole body and tissue-level test conditions. We 

previously demonstrated, in QSAR studies of a series of chitin-synthesis-inhibiting 

benzoylphenylureas [13], that the coefficient of the electronic parameter signifi-

cantly shifts toward the negative direction when the metabolic inhibitors are applied 

together with test compounds for the larvicidal as well as integumental assay using 

the rice stem borer larvae. We consider that the electron-donating property is ulti-

mately favorable even in the whole body and tissue-level activities of DBHs. But, this 

effect is hidden in Equation 13.2 and Equation 13.3, because the electron-donating 

property also works to enhance the oxidative metabolism of the ring system, reduc-

ing the activity canceling the  term. Moreover, in Equation 13.6, the contribution 

of  product values of the size of –0.6 to +0.3 to variations of pIC50 of a range of 

2.8 is rather narrow. This range of variations could be able to distinguish itself with 

significance in compact sets of accurate data. In larger sets of compounds, such as 

Equation 13.2 and Equation 13.3, it may easily sink into noise of the data giving no 

significant  term.

Because the tissue-level activity is also related to the binding affinity to the EcR as 

shown below, the situation can be regarded as what is happening at the receptor site. 

The physicochemical factors illustrated in Equation 13.6 are depicted in Figure 13.9.

FIGURE 13.9 Interaction of N,N -dibenzoyl-N-t-butylhydrazines (DBHs) with the “receptor” 

cavity surface as expected from Equation 13.6. (Reproduced from T. Ogura, Y. Nakagawa, C. 

Minakuchi, and H. Miyagawa, J. Pestic. Sci. 30, 1, 2005. With the permission of the Pesticide 

Science Society of Japan.)

FIGURE 13.8 Compounds used for formulating Equation 13.6.
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13.2.4 RECEPTOR BINDING AND ITS RELATIONSHIP WITH TISSUE-LEVEL ACTIVITY

Using a cell-free preparation of integument homogenates from rice stem borer larvae 

in the wandering stage, our group recently cloned cDNAs for the EcR and the ultra-

spiracle (USP), and expressed corresponding proteins using an in vitro transcription/

translation system. USP is the invertebrate homolog of the mammalian retinoid X 

receptor, and EcR forms with USP a heterodimer that triggers the molting hormonal 

activity upon binding agonists [14].

The hormone-specific binding affinity to the heterodimer was estimated in terms 

of the pIC50 value, the IC50 being the 50% inhibitory concentration (in M) of agonists 

against the binding of 3H-labeled ponasterone A [14]. In Figure 13.10, the pIC50 values 

of seven DBHs and five steroidal agonists among those shown in Figure 13.6 are com-

pared with their pEC50 values for the tissue-level activity promoting the incorporation 

of N-acetylglucosamine. Between these two types of biological activity, there is a very 

good linear relationship with the one-to-one correspondence. Both types of activity 

are biological preparations from rice stem borer larvae. The significance of this rela-

tionship outweighs that of the relationship shown in Figure 13.5 where indices are for 

the activity to biological preparations of different origin. Variations in intercellular 

distribution behaviors within integumentary tissue as well as intracellular migration 

processes in the target cellular phase are not critical in defining variations in tissue-

level activity. Variations in tissue-level activity are governed almost exclusively by 

variations in the binding affinity to the EcR protein. Because the tissue-level activity 

is closely related to the larvicidal activity as shown by Equations 13.1, 13.2, and 13.3, 

it is reasonable to consider that structure-activity relationship of DBHs as larvicides is 

governed almost conclusively by the structure-activity patterns of the binding to EcR 

at least as far as the rice stem borer is concerned.

FIGURE   13.10  Relationship between N-acetylglucosamine incorporation and receptor 

affinity (closed circle: N,N -dibenzoyl-N-t-butylhydrazines, open triangle: steroidal agonists). 

(Reproduced from C. Minakuchi, Y. Nakagawa, M. Kamimura, and H. Miyagawa, Eur. J. 
Biochem. 270, 4095, 2003. With the permission of Blackwell Publishing Ltd.)
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It should be noted that steroidal agonists are not larvicidal under our experimen-

tal conditions. This is probably due to the fact that a mechanism such as an active 

transport associated with appropriate membrane transporters or, at least, facilitated 

diffusion of the steroidal hormone does not work in the route through the integumen-

tal tissue from the topically applied dorsal surface. The existence of such transport 

mechanisms of steroids to the nuclear receptor sites has been postulated recently 

[15]. In addition, if they are incorporated into cells and tissues, they are metabolized 

oxidatively and by other mechanisms without exerting lethal action under our test 

conditions, the duration of which is 7 days. On the target cellular level, the response 

to steroidal hormones has been recognized to occur very rapidly [15].

13.2.5 VALIDATION OF THE (Q)SAR SIGNIFICANCE WITH

X-RAY CRYSTALLOGRAPHY OF THE LIGAND-ECR
COMPLEXES OF THE TOBACCO BUDWORM

Recently, Billas and coworkers [16] achieved X-ray crystallographic analyses of the 

ligand-binding domain (LBD) of heterodimeric EcR prepared from a lepidopteran 

insect species, the tobacco budworm Heliothis virescens. They disclosed the crys-

tallographic structures of LBD complexed with ponasterone A and BYI 06830, a 

member of DBHs (Figure 13.11). Although their studies are with the budworm EcR, 

the information could well be extrapolated to LBD in complex with ligands of the 

rice stem borer belonging to the same order, Lepidoptera.

According to them [17], the LBD of the budworm complexed with the DBH has 

a V-shaped cavity with certain flexibility. Ligand molecules fit into the cavity with 

steric constraints to various extents depending upon the orientation of submolecular 

moieties (substituent positions in DBHs). There are potential rooms and barriers for 

increasing in the steric bulk of substituents. The unfavorable situation is reflected by 

negative steric parameter terms depending upon the substituent positions in Equations 

13.1, 13.2, 13.3, and 13.6. The ligand molecule forms an extensive network of hydro-

phobic interaction with surrounding LBD. The A-ring moiety is sandwiched between 

two adjacent methionine residues (Met 380, 381) and also neighbored by Val 384 and 

Ile 339. The B-ring is surrounded by such hydrophobic amino acid residues as Met 

413, 507, Val 416, Leu 420, 500, 511, and Trp 526. The situation is consistent with the 

size of coefficient of the log P term in Equations 13.1, 13.2, 13.3, and 13.6.

The crystallographic structure showed that there are functional polar residues within 

LBD capable of H-bonding to CO and NH groups of the ligand other than nonpolar resi-

dues. The position of Thr 343 is such that its OH group forms an H-bond with the carbo-

nyl group next to the A-ring. The carbonyl next to the B-ring is likely to interact with the 

FIGURE 13.11 Structure of BYI 06830.
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amide NH2 hydrogen of Asn 504 and the NH hydrogen with phenolic OH oxygen of Tyr 

408. In Equations 13.1 and 13.3, I
ortho effect is supposed to increase the electron density 

of the “A-ring” carbonyl oxygen through space inductively to stabilize the H-bond from 

Thr 343. Perhaps because of the bulky t-Bu group, the A-ring would rotate so that the 

ortho substituent takes a conformation toward “parallel” to the carbonyl group. In this 

situation, the A-ring carbonyl group would be affected easily by a through-space induc-

tive effect of the ortho substituent simulated by the I
ortho term in Equation 13.1 and 

Equation 13.3. In Equation 13.6, the size of the coefficient of  is close to –1.0. Probably, 

an electron-donating interaction of the “B-ring” carbonyl oxygen with the amide hydro-

gen occurring at the third “bond position” from the benzene ring is the driving force in 

the “concerted” H-bonding interactions as shown in Figure 13.9.

The most important aspect among findings of Billas et al. is that the EcR-LBD 

complexed with steroidal and nonsteroidal agonists exhibits different and only par-

tially overlapping ligand-binding cavities. Whereas the cavity has a rather bulky 

V-shape for DBHs, it possesses a lengthy and thin L-shaped form for ponasterone A. 

As a matter of fact, the heterodimer of the wild-type EcR and USP was crystallized 

with ponasterone A, but that of a mutant EcR and USP with an increased solubility 

was crystallized with the nonsteroidal BYI 06830. The X-ray crystallographic data 

of these EcR complexes have been registered in the Protein Data Bank under the 

entry code of 1R1K and 1R20, respectively. Mutated residues (four amino acids) 

are located at the surface of the LBD, and the mutation does not affect the overall 

structure of EcR so as to modify its function [16]. The superimposition of BYI 06830 

(Figure 13.11) and ponasterone A as found in cavities suggests that, whereas the 

t-butyl group together with the A-ring moiety of nonsteroidal agonists overlap the 

hydroxylated side chain at the C17 position of steroidal agonists, the B-ring part does 

not overlie any of the steroidal substructures. This superimposition denies previous 

predictions made by modeling studies considering a single binding niche.

13.3 QSAR EXAMINATIONS FOR THE ACTIVATION 
OF SILKWORM ECR AND HOMOLOGY 
MODELING OF ITS 3D ARCHITECTURE

We published a couple of papers for 3D-QSAR studies about tissue- and cellular-

level activities of molting hormone agonists, including both DBHs and steroidal 

compounds using the CoMFA (comparative molecular field analysis) procedure. In 

these studies, we assumed a single common cavity in which two types of agonists 

are oriented so as to overlap as far as possible [18,19]. Although these studies would 

be of no value at the moment, our recent CoMFA study [20] dealing with only DBHs 

and closely related analogs with an assumption of a common “binding cavity” could 

be of significance in view of the above-mentioned modes of interaction of DBH-type 

agonists for the lepidopteran insect species.

13.3.1 CLASSICAL QSAR ANALYSIS OF THE ECR ACTIVATION

We have been synthesizing not only monosubstituted but also a number of mul-

tisubstituted DBHs and aliphatic acyl analogs (see Sections 13.2.1 and 13.2.3) as 
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well as compounds in which the N-t-butyl group and the double-amide bridging 

moiety are modified variously. Swevers and coworkers measured the EcR activation 

effect of our total set of compounds [20]. They used cloned cells, Bm5, originally 

isolated from the ovary tissue of silkworms, Bombyx mori [21], into the genome of 

which an ecdysone-inducible green-fluorescent-protein (GFP) reporter-cassette had 

been incorporated [22]. The Bm5 cells, like Sf9 cells, have been used as baculovi-

rus expression vectors for production of foreign proteins [23]. With the Bm5 assay 

system, the activation of EcR by agonists is amplified resulting in 500- to 2,000-

fold expression of the GFP reporter gene. The EC50 concentration (in M) of ago-

nists required to exhibit 50% the maximum GFP-fluorescent emission was measured 

using a high-throughput procedure. The pEC50 (Bm5) value represents a cellular 

level activity. We expected, however, that the cell membrane penetration process 

is insignificant in governing the variations in the EcR activation potency in a way 

similar to the case of Sf9 cells (also from ovarian tissue of lepidopteran species, see 

Section 13.2.3) as indicated in Equation 13.4 and Equation 13.5. The pEC50 (Bm5) 

value could be used here as being a parameter at the receptor level to activate the 

silkworm EcR.

We examined the classical QSAR for variations in the pEC50 (Bm5) value with 

physicochemical substituent parameters preliminarily. To make the situation sim-

pler, we selected sets of DBH analogs monosubstituted on either of the aromatic 

moieties. After correcting parameter sets used in the previous publication [20], we 

reanalyzed to recognize that variations in the pEC50 (Bm5) value of A-ring analogs 

could possibly be governed not only by position-specific steric, hydrophobic, and 

electronic effects but also by position-specific H-bonding formation of substitu-

ents. Because of too many parameter terms for the number of compounds, it is not 

advisable to analyze directly the entire set of compounds together using every pos-

sible parameter. We tried to set aside compounds with such substituents capable of 

H-bonding as OMe and NO2 at each position to give Equation 13.7. The effect of 

H-bond formation of OCH3 and NO2 substituents of the A-ring seems to enhance 

the activity at the ortho position but to reduce it at meta and para positions (the 

correlation not formulated). Similar to Equation 13.1 for the stem borer larvicidal 

activity, the Bm5 activity of ortho substituted compounds with Ph, OCH2Ph, and 

Os-Bu is so low that they are also not included in the analysis.

pEC50 (Bm5) = 1.18 (  1.02) I
ortho – 0.42 (  0.26) ΔVortho

   + 3.11 (  1.34) o,m,p – 2.91 (  1.01) 2
o,m,p + 6.26 (  0.36)

n = 21, s = 0.325, r = 0.886 (13.7)

Equation 13.8 is for the B-ring analogs with the 2-Cl fixed on the A-ring. Some 

OCH3 and NO2 compounds are also not included because of their outlying behavior 

perhaps due to specific H-bond formation.

pEC50 (Bm5) = 0.72 (  0.24) m,p – 0.43 (  0.23) ΔVortho

  – 0.87 (  0.25) ΔVmeta + 6.94 (  0.23)

n = 30, s = 0.370, r = 0.889 (13.8)
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The positive I term in Equation 13.7 for the inductive effect of ortho substituents 

is matched well with those in Equation 13.1 and Equation 13.3. The  constant is a 

hydrophobicity parameter for substituents defined as the difference of log P between 

substituted and nonsubstituted analogs. Although Equation 13.7 indicates an opti-

mum hydrophobicity for A-ring substituents ( opt = 0.6), Equation 13.8 shows that 

the higher hydrophobicity of meta and para substituents in B-ring contributes to the 

activity enhancement. No common hydrophobic effect is operative between A- and 

B-ring substituents. The steric effect is position specific so that the bulk of ortho 

substituents on the A-ring and ortho and meta substituents on the B-ring are unfa-

vorable to the activity. Equation 13.7 and Equation 13.8 are to some extent similar to 

but different in detail from Equation 13.1 and Equation 13.2, respectively, because of 

the species difference. The structures of compounds included in Equation 13.7 and 

Equation 13.8 are shown in Figure 13.12.

13.3.2 3D-QSAR (COMFA) ANALYSIS OF THE RECEPTOR ACTIVATION

Despite a reasonable quality, Equation 13.7 and Equation 13.8 are not satisfactory 

with a good number of analogs not included. Using 3D QSAR analysis, the entire 

sets of diacylhydrazines and analogs can be analyzed together, although empirical and 

tangible physicochemical information about substituent effects in classical QSARs is 

mostly lost. We used the Sybyl software for the analysis [24]. The structure of all com-

pounds was generated by modifying the X-ray crystallographic structure of RH-5849 

(Figure 13.1). After the geometry of compounds was fully optimized, the C-C-N-N-

C-C bridge in the common skeleton, RA-CO-NRC-NH-(CO)-RB, was superposed (RA,

RB : A- and B-ring and their respective surrogates, RC : t-Bu and its alternatives) to 

make the RMSs (root mean squares) of distances of six atomic positions from corre-

sponding atomic positions of RH-5849 as small as possible. The electrostatic and steric 

potential energy fields in the space surrounding molecules at defined lattice points were 

calculated according to Coulomb and Lennard-Jones potential functions under default 

conditions. For 158 compounds (Figure 13.13), Equation 13.9 was obtained by partial 

least squares (PLS) regression procedure. The “m” is the optimum number of “prin-

cipal components” in the PLS regression analysis, press is the leave-one-out “cross-

validated” standard deviation, and q is the “cross-validated” correlation coefficient:

pEC50 (Bm5) = [CoMFA field descriptor terms] + 4.041

n = 158, s = 0.554, r = 0.859, [m = 4, press = 0.78, q2 = 0.447] (13.9)

C N
H
N C

O OX

A B

X : H, 2-, 3-, 4-F, Cl, I, CF3,

NO2, CN, Me, OMe

C N
H
N C

O O

A B

Y :  2-, 3-, 4-F, Cl, Br, I, CF3,

NO2, CN, Me, Et, OMe

Cl

Y

FIGURE   13.12 N,N -Dibenzoyl-N-t-butylhydrazine compounds used for formulating Equa-

tion 13.7 and Equation 13.8.



© 2009 by Taylor & Francis Group, LLC

SAR and QSAR Analyses of Substituted Dibenzoylhydrazines 371

Describing approximately 74% (r2) in variations of the biological activity rang-

ing over about ten thousand times, Equation 13.9 is acceptable for the effect of dia-

cylhydrazines and analogs. In the CoMFA analysis, “correlation equations” such 

as Equation 13.9 give practically no physicochemical information about structure-

activity relationship. Instead, the contour “surfaces” for steric and electrostatic fields 

are visualized according to (latent) regression coefficients and standard deviations 

of molecular field parameter terms at lattice points. Each surface is connecting and 

covering contour points for the value of defaulted lattice indices surrounding submo-

lecular moieties [25]. In other words, the surfaces are drawn where the “slope” for 

variations is “steep” enough so that significant differences in the value of lattice field 

indices for steric and electrostatic properties are recognizable.

Figure 13.14 represents contour surfaces for the steric energy parameter with 

tebufenozide placed inside as the reference. The green surfaces denote contours that 

enclose volumes within which increases in bulk favor higher receptor activation. 

Yellow surfaces cover regions within which increases in the bulk disfavor the recep-

tor activation conversely. A sterically favorable (green) region is widely covering 

the 4-position of the B-ring, whereas a sterically unfavorable (yellow) surface is 

surrounding broadly the 4-position of the A-ring. In addition, sterically unfavorable 

fields are observed around the 3- and 5-positions of the B-ring.

The electrostatic contour diagrams are shown in Figure 13.15. The blue contours 

represent surfaces of volumes within which increases in positive charge are favorable 

to the receptor activation. The red surfaces indicate that increases in negative charge 

are favorable so that they prefer to cover electronegative substructural moieties. 

Figure 13.15 shows positive (blue) fields around the 2- and 3-positions of the A-ring, 

C N
H
N C

O O

A B

X : H, 2-, 3-, 4-Halogen, Me, CF3, OMe,

 NO2, CN, 2,3-Cl2, 2,3-Me2, 2-Me-3-Cl,

 2,4-Cl2, 2,5-Me2, 2-OMe-5-Cl, 3,4-Me2,

 3,4-OMe2, 3,5-Me2, 3,5-Cl2, 3,5-Br2, etc.

Y : H, 2-, 3-, 4-Halogen, Me, CF3, OMe,

 NO2, CN, 4-Et, Pr, Bu, Pent, 2,3-Cl2,

 2,3-Me2, 2-Me-3-OMe, 2,4-Cl2, 2,4-Me2,

 2,5-Cl2, 2,5-Me2, 3,4-Cl2, 3,4-Me2, etc.

Y

X

C N
H
N C

O O

A R

H3C

H3C
R: Bu, Pent, i-Pent,

  Hex, i-Hex, Hept, Non 

R C N
H
N C

O O

B

Y

R: C3–C6 alkyl, cyc-alkyl 

Y: 4-Et, 3,5-Me 2, etc. 

C N N C

O O

R1 H
R1: i-Pr, Bu, i-Bu, s-Bu, Ph, 

    2-Me-Bu, t-Amyl, cyc-Hex, etc. 

FIGURE 13.13 N,N -Dibenzoyl-N-t-butylhydrazines and related analogs used for three- 

dimensional Quantitative Structure-Activity Relationship (3D QSAR) for the silkworm cel-

lular EcR activation.
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covering the 2-, 3-, and 4-positions of the B-ring, and over the NH hydrogen of the 

bridge. The negative (red) fields are over the C=O oxygen atoms of the bridge and 

around the 2-, 5-, and 6-positions of the B-ring.

These CoMFA findings do not contradict those from the classical QSAR Equation 

13.7 and Equation 13.8, although the number and variety of compounds included 

in the CoMFA analysis are much higher, and the classical QSAR information may 

mostly be buried into that according to contour diagrams. The blue contours covering 

FIGURE 13.14 Stereoviews of the comparative molecular field analysis (CoMFA) steric 

field generated by Equation 13.9 with tebufenozide as the template. Contours are shown to 

surround the regions where increased steric bulk increases (green) or decreases (yellow) the 

biological activity. (Reproduced from C.E. Wheelock, Y. Nakagawa, T. Harada, N. Oikawa,

M. Akamatsu, G. Smagghe, D. Stefanou, K. Iatrou, and L. Swevers, Bioorg. Med. Chem. 14,

1143, 2006. With the permission of Elsevier Science Ltd.) (See color insert following page 244.)

FIGURE 13.15 Stereoviews of the comparative molecular field analysis (CoMFA) elec-

trostatic field generated by Equation 13.9 with tebufenozide as the template. Contours are 

shown to surround the regions where a positive (blue) or negative (red) electrostatic potential 

increases the biological activity. (Reproduced from C.E. Wheelock, Y. Nakagawa, T. Harada, 

N. Oikawa, M. Akamatsu, G. Smagghe, D. Stefanou, K. Iatrou, and L. Swevers, Bioorg. Med. 
Chem. 14, 1143, 2006. With the permission of Elsevier Science Ltd.) (See color insert.)
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A- and B-rings in Figure 13.15 perhaps signify that the fringe of the aromatic substit-

uents is electropositive. This would reflect an ultimate advantage of electron donating 

substituents for the activity, being reminiscent of the discussion in Section 13.2.3. The 

inductive effect of the ortho substituent of the A-ring could be represented by a small 

red region found close to the corresponding position. The absence of negative ΔV para

term in Equation 13.8 is supposed to be in accord with the bulk-permissible green 

surface covering the para position of the B-ring in Figure 13.14.

No field is visualized around the position corresponding to the t-butyl group of 

tebufenozide in Figure 13.14 and Figure 13.15. The variations in physicochemi-

cal properties in this region are not significant. That is, structural varieties of the 

N-substituent are limited (n = 10) and no significant activity was observed for most 

of the compounds except for tebufenozide and the N-t-amyl analog. Because the 

hydrophobic effect is not considered explicitly in the CoMFA procedure, and also 

because some component of hydrophobicity is thought to overlap inherently with 

the bulk of substituents, the substituent hydrophobic effect could considerably be 

included inside the bulk effects viewed in Figure 13.14. The quadratic  terms in 

Equation 13.7 suggesting the existence of optimum hydrophobicity could, in part, be 

reproduced by the sterically limiting yellow barriers around substituent positions of 

A-ring in Figure 13.14.

13.3.3 HOMOLOGY MODELING OF THE SILKWORM ECR

We performed homology modeling studies for the LBD of B. mori EcR to understand 

further physicochemical outcomes of CoMFA analysis [20]. We first searched in data-

bases for template proteins, of which amino acid sequence in EcR-LBD is known and 

crystal structure is established, using an alignment procedure with the amino acid 

sequence of EcR-LBD of B. mori [26,27]. We identified two proteins, both being the 

EcR-LBD protein of H. virescens as expected. Their crystal structures have been regis-

tered under the entry code, 1R1K and 1R20, as described in Section 13.2.5. The protein 

more homologous to that from B. mori (in terms of amino acid sequence) was 1R1K. 

The sequence similarity between the two types of H. virescens EcR is 98%. Their 

EcR-LBD crystallographic structures are, however, only partially overlapped because 

the structure of ligands with which the crystalline complex is to be built is different. 

Thus, 1R20 was considered to be better for the modeling of the B. mori EcR-LBD, with 

which the sequence similarity is 89% and DBHs are supposed to be complexed.

Second, the 3D structure of the B. mori EcR was constructed on the basis of the 

structure of 1R20 and optimized using the simulated annealing method. Coordinates 

of C -atoms and conformation of main and side chains were refined automatically 

with use of a full automatic homology modeling system, PDFAMS [28], developed by 

Umeyama and his group [29]. The original ligand of 1R20, BYI 06830, was accom-

modated to optimize the protein structure. The coordinates of BYI 06830 were fixed 

during optimization. The cavity surface at the LBD site of the homology-modeled B. 
mori EcR was represented by the MOLCAD module of the SYBYL software [24] as 

shown in Figure 13.16a.

Finally, the cavity surface of the B. mori EcR-LBD was superimposed over the 

CoMFA steric boundary (Figure 13.16b). The reference ligand, tebufenozide, is shown 
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to fit just inside the LBD. There is potentially room for substituents with increased steric 

bulk for promoting the activity around the position corresponding with the 4-position 

of the B-ring (upper left-hand side of Figure 13.16b). The ligand orientation in this 

cavity as shown in Figure 13.16b enables us to examine hydrophobic and H-bonding 

interactions between ligand and component amino acids in LBD. The region of the 

t-butyl group in tebufenozide is surrounded by a number of hydrophobic amino acids 

including M409, M503, L507, and L514. The side-chain H-bonding groups (NH2 and 

OH) of amino acids T339, Y404, and N500 are located in positions to form H-bonds 

with the counterparts on the double amide bridge within a distance of 2.0 to 2.5 Å. 

These results are consistent with precedent examples observed by X-ray crystallogra-

phy for other lepidopteran ligand-EcR binding investigations [17,30].

It is important to notice that the limits on steric bulk indicated by yellow CoMFA 

contours coincide well with the boundaries of the modeled LBD. The CoMFA bound-

ary was derived from 3D QSAR examinations of the Bm5 activity, whereas the cavity 

surface was from a computational procedure with the EcR-LBD amino acid sequence 

of B. mori and the geometry of the template EcR-LBD of Heliothis virescens.
The information derived from different origins and procedures correspond very well 

here about EcR-LBD. The above issues could also be in accord with the assumption 

for the Bm5 cell-level activity to be simulated as the activity at the receptor level.

13.4 CONCLUSIONS

We conducted structure-activity and molecular modeling studies to show impor-

tant achievements. With preparations from rice stem borers, Chilo suppressalis,
we showed that, for combined sets of steroidal agonists and DBHs, variations in 

(a) (b)

FIGURE 13.16 (a) Surface of the EcR ligand binding cavity of Bombyx mori for N,N -

dibenzoyl-N-t-butylhydrazine-type ecdysone agonists. (b) Superimposition of compara-

tive molecular field analysis (CoMFA) steric boundary over the B. mori EcR cavity, with 

tebufenozide as the template; a part of the cavity surface was cut down to see the inside. 

(Reproduced from C.E. Wheelock, Y. Nakagawa, T. Harada, N. Oikawa, M. Akamatsu, G. 

Smagghe, D. Stefanou, K. Iatrou, and L. Swevers, Bioorg. Med. Chem. 14, 1143, 2006. With 

the permission of Elsevier Science Ltd.) (See color Insert.)



© 2009 by Taylor & Francis Group, LLC

SAR and QSAR Analyses of Substituted Dibenzoylhydrazines 375

tissue-level activity are governed almost solely by variations in the binding affinity 

to the EcR. For DBHs, variations in larvicidal activity are governed almost solely by 

variations in the binding affinity to the EcR. It should be recognized that the differ-

ence in the orientation at the LBD between two types of agonists could be combined 

with the difference in their behaviors before triggering the hormonal action. Despite 

the difference in the mode of orientation on the EcR activation site, the hormonal 

response should almost exclusively be dependent on the binding affinity as far as the 

rice stem borers are concerned. The situation is likely to be not much changed in 

other lepidopteran insect species, such as S. frugiperda, H. virescens, and B. mori.
Our group has shown quite recently, however, that, in the Colorado potato beetle, 

Leptinotarsa decemlineata, the story is not so simple, as no close relationship is 

observed between larvicidal activity and binding affinity with the EcR protein of 

the beetles [31]. The analysis of differences in AAR and QSAR between two insect 

orders including EcR functions is believed to be another important research target 

for the molecular mechanism of ecdysone agonists.

It was gratifying to see that the “size and shape” of B. mori EcR-LBD that derived 

by homology modeling corresponded very well with that deduced from biological 

QSAR. With use of the computational procedure as well as bioinformatics meth-

odology, present studies are believed to support, albeit indirectly and virtually, the 

proposition of Billas and coworkers [17] that nuclear receptors and their ligands can 

mutually adapt in their 3D architectures and fit to each other.
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ABSTRACT

There is increasing evidence that numerous chemicals released into the envi-

ronment by human activities have the potential to alter the normal functions 

of the endocrine system in wildlife. These xenobiotics are called endocrine 

disrupting chemicals (EDCs). The aim of this chapter was to catalog the differ-

ent EDC database resources (biological data, chemical descriptor data, and so 

forth) available on the Internet for deriving structure-activity models. In vitro
and in vivo experimental data from nuclear receptor binding assays, in vitro
test methods for detecting EDCs, and comparison between biological assays 

have been critically analyzed.
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14.1 INTRODUCTION

There is growing concern about the potential of structurally diverse chemicals to 

produce changes in the functioning of the endocrine systems of humans and animals. 

Endocrine disruption attracts a lot of public interest and is subject to worldwide 

discussions between experts, governmental organizations, academics, and industry. 

Known natural hormones as well as relatively unknown environmental pollutants 

seem to have the ability to potentially disrupt the endocrine systems of species living 

in ecosystems in such a way that harmful effects on their development and reproduc-

tion can occur. The issue of identifying chemicals that may elicit endocrine disruption 

has grown immeasurably in importance in the last decade. It was estimated that more 

than 87,000 chemicals might need to be screened for endocrine disruption potential 

[1]. Batteries of laboratory bioassays exist to test chemicals for their potential effects 

on the endocrine system [2]. However, due to time and cost limitations, they cannot 

be used to test all the chemicals that can be found in the environment. Structure-

Activity Relationship (SAR) and Quantitative Structure-Activity Relationship (QSAR) 

models are now increasingly used to overcome these problems. This has made the 

need to screen the databases of existing chemicals a priority. The resources avail-

able in these databases provide a wealth of information on endocrine disruption and 

allow us to reduce dependency upon time-consuming and expensive animal experi-

ments. There is a real effort to improve public access to chemical toxicity informa-

tion resources by means of these databases.

The aim of this chapter is to focus on the different EDC databases available on the 

Internet that could be used for deriving structure-activity models. The goal is first 

to provide addresses allowing us to obtain qualitative information about potential 

EDC mode of action (that is, agonist effect or antagonist effect). Second, interesting 

addresses to retrieve quantitative biological data (for example, binding data) that 

could be used to elaborate QSAR models have also been compiled.

14.2 e-EDC DATABASES

14.2.1 SAR INFORMATION

Scorecard is a free Internet database maintained by a U.S. nonprofit organization 

Environmental Defense that collects resources for information about pollution prob-

lems and toxic chemicals [3]. It provides detailed information on more than 11,200 

chemicals, including all the chemicals used in large amounts in the United States 

and all the chemicals regulated under major environmental laws. Scorecard makes 
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hazard identification information accessible by means of an extensive review of sci-

entific literature and toxicological databases. A chemical profile is accessible by typ-

ing the corresponding chemical name or its Chemical Abstracts Services registry 

number (CAS RN) in the home page. The results of the search yield a list gathering 

the following information: human health hazards, hazard ranking, chemical use pro-

file, rank chemicals by reported environmental releases in the United States, regula-

tory coverage, basic testing to identify chemical hazards and information needed 

for safety assessment (Figure 14.1). The Scorecard “health effects” section provides 

links to the definitions of each of these health effects, a list of chemicals recog-

nized or suspected of causing these health effects, and the references used to compile 

these lists. Chemicals are identified as recognized toxicants based on the hazard 

identification efforts of authoritative scientific and regulatory agencies. Among the 

twelve health effect categories defined by Scorecard, the suspected endocrine toxic-

ity is accessible for a selected compound or for a list of compounds belonging to the 

Scorecard database. This list can be downloaded as a CSV file, and all the references 

used to compile this list of suspected endocrine toxicants are available. Useful links 

to U.S. Environmental Protection Agency (EPA) Web sites are consultable.

The Relational Database of Information on Potential Endocrine Disrupters 

(REDIPED) is an endocrine disrupter–related resource developed by the Institute for 

Environment and Health (IEH), University of Leicester (U.K.) [4]. The REDIPED 

CD-ROM is not free, but a free demonstration version is downloadable on the 

IEH Web site. This free version contains examples of the information available in 

REDIPED for two chemicals: bisphenol A and diadzein (Figure 14.2). The commer-

cial version contains information on 79 potential EDCs including naturally occurring 

compounds, industrial chemicals, agrochemicals, and pharmaceuticals. The user is 

able to use a drop-down menu to select chemicals or to enter the name or CAS RN. 

Based on Microsoft Access, REDIPED has been designed to contain a wide range 

FIGURE 14.1 Chemical profile obtained with Scorecard.
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of information on suspected endocrine disruptors, including data on physicochemi-

cal properties, production volumes and uses, environmental exposure, accumulation 

and fate, and relevant in vivo and in vitro biological effects (Figure 14.2). Standard 

or complex queries to extract specific information can be used. REDIPED collects 

over 2,000 searchable references. The main weakness of this resource is that only 

qualitative in vivo and in vitro biological effects (for example, agonist or antagonist) 

are available. Another downside of the resource is that like most databases, it is no 

longer updated.

A book entitled Environmental Endocrine Disruptors: A Handbook of Property 
Data by L.H. Keith provides information on chemical, physical, and toxicological 

properties of known and suspected environmental endocrine disruptors [5]. This 

resource is commercially available in print and electronic forms. This resource 

offers Boolean searching facilities and links to access analytical method data from 

EPA’s pesticide methods and references. A review on this resource was published by 

Magos [6].

As many pesticides are suspected to be EDCs, the Pesticides Action Network 

(PAN) has proposed the PAN Pesticides Database that collects diverse informa-

tion on about 6,400 pesticide active ingredients and their transformation products 

from many different sources of information [7]. The database provides human 

toxicity (chronic and acute), ecotoxicity, reproductive and developmental toxicity, 

endocrine disruption, and regulatory information. Most of the toxicity information 

comes directly from official sources, such as the EPA, World Health Organization 

(WHO), National Toxicology Program (NTP), National Institutes of Health (NIH), 

International Agency for Research on Cancer (IARC), the European Union (EU), and 

the State of California. The PAN suspected endocrine disruptor designation is based 

on the Illinois EPA list, the Danish EPA list, the EU prioritizing list, the Colborn 

list, the Keith list, and the Benbrook list [5,8–12]. The PAN Pesticides database ranks 

FIGURE 14.2 REDIPED program screenshot for bisphenol A.
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a chemical as a suspected endocrine disruptor if this chemical is listed as being 

potentially endocrine disrupting by any of the previous sources (Figure 14.3). The 

accuracy of the data reported into the database has been ensured by a peer review 

process.

The Nuclear Receptor database (NuReBase) is a bioinformatic database of nuclear 

receptors developed by J. Duarte and hosted on the Pôle Bioinformatique Lyonnais 

(PBIL) server (France) [13]. The database contains protein and DNA sequences, as 

well as protein alignments, phylogenies, and taxonomy for all nuclear receptors. 

NuReBase provides search options for retrieving gene sequences or gene families, 

and for each group of homologous genes, a phylogenetic tree and a protein alignment 

are provided. NuReBase also contains EMBL sequences and comments for proteins 

and DNA, enriched with nuclear hormone receptor specific information. NuReBase 

is a valuable tool for researchers investigating the process of signaling.

NucleaRDB database stores sequences, mutations, and ligand-binding data for 

nuclear receptors [14]. Since April 2005, NucleaRDB contains 2,013 NR sequences, 

of which 123 have structural (3D) information of the ligand-binding domain. Such 

sequences are imported from the SWISS-PROT and TrEMBL databases [15]. The 

data are organized by means of a hierarchical list of known families based on a phar-

macological classification of receptors. The database provides useful links to display 

structural information such as PDBreport database [16]. Multiple sequence align-

ments are performed with WHAT IF [17] and can be generated in several formats 

for families, subfamilies, groups, and so on. It is noteworthy that phylogenic trees are 

available to visualize the relationships between sequences in a family. This database 

offers quick access to high-quality data (sequences, mutations, and structures) about 

nuclear receptors. NucleaRDB is similar to NuReBase, including all nuclear recep-

tors, with alignments and trees per family and subfamily. Unlike NuReBase, data 

FIGURE 14.3 PAN results showing chemicals obtained from the “Suspected Endocrine 

Disruptors” category.
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in NucleaRDB are not reviewed, but rather are automatically generated by a system 

originally developed for G protein-coupled receptors. Moreover, NucleaRDB does 

not allow complex queries or manipulations of alignments.

The Nuclear Receptor Resource (NRR) gathers different individual resources for 

estrogen, androgen, thyroid hormone, glucocorticoid, vitamin D, and peroxisome-

proliferator activated receptors [18]. The NRR is offering comprehensive information 

on nuclear receptor structures and functions. It is a collection of individual databases 

on NR superfamily located on different servers and managed individually. However, 

NRR appears less exhaustive than NuReBase. Moreover, it does not provide evolu-

tionary information, such as taxonomy or phylogenies. The NRR does not allow com-

plex queries. However, it provides links to other databases, gives a list of scientists 

who work on nuclear receptors, and provides available/wanted jobs in the domain.

14.2.2 QSAR INFORMATION

The Endocrine Disruptor Knowledge Base (EDKB) Web site developed at the U.S. 

Food and Drug Administration (FDA) National Center for Toxicological Research 

(NCTR) by W. Tong and coworkers consists of a biological activity database, with 

relevant literature citations and QSAR models to predict binding affinity of com-

pounds to the estrogen and androgen nuclear receptors [19]. Data for more than 

3,200 chemicals and some 2,000 relevant citations are available. Experimental data 

measuring estrogenic endpoints include in vitro assays for estrogen receptor compet-

itive binding affinity, cell proliferation, reporter gene assays, and in vivo assays for 

uterotrophic activity. The database provides chemical structure search with Boolean 

operators, graphical and table displays, and data export functions. A major element 

of the EDKB program was the development of computer-based predictive models to 

predict affinity for the binding of compounds to the estrogen and androgen recep-

tors. The estrogen receptor (ER) binding dataset containing 131 ER binders and 101 

non-ER binders is available to download on the EDKB Web site, as is the androgen 

receptor (AR) binding dataset based on 146 AR binders and 56 non-AR binders. This 

database is one of the largest existing free databases providing quantitative endo-

crine endpoint values, similarity or substructure search through graphical interfaces, 

and useful links to toxicological databases.

The Distributed Structure-Searchable Toxicity (DSSTox) Database Network is a 

project of EPA’s Computational Toxicology Program that aims to build a public data-

base for improved structure-activity and predictive toxicology capabilities [20]. The 

DSSTox Web site provides a public forum for publishing downloadable, standard-

ized chemical structure files associated with toxicity data. It is an expanded version 

of the NCTR ER database, which is contained within EDKB, where the chemical 

class fields and SAR information abstracted from Fang et al. [21] were added. The 

original NCTR ER database included the experimental ER binding results for devel-

oping QSAR models to predict ER binding affinities. In vitro rat uterine cytosol ER 

competitive binding assay results were collected for 232 structurally diverse chemi-

cals covering most of the known chemical classes and spanning a wide range of 

biological activities [22,23]. It is noteworthy that a structure and similarity searching 

tool called “EPA DSSTox Structure-Browser” was recently developed from available 
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structure viewing freeware and open source programming tools. It allows the user to 

screen through the chemical inventory of published DSSTox data files (Figure 14.4). 

In the DSSTox database, standard chemical and toxicity fields are used to summarize 

the general chemical information content of DSSTox Structure Data File (DSSTox 

SDF) for each compound. An alphabetically central listing of all fields contained in 

the most recent version of all DSSTox SDF files is consultable [24]. Among the inter-

esting fields for EDCs, there are the measured ER relative binding affinity, activity 

category (active strong, active medium, active weak, slight binder, and inactive), and 

the possibility to visualize the two-dimensional (2D) and three-dimensional (3D) 

structures of the compounds (Figure 14.5). This database is open to any person or 

organization interested in publishing a database on the DSSTox Web site. Hence, to 

assist the draft documentation and data file design, the EPA Web site provides useful 

tools and templates.

The Endocrine Disruptor Priority-Setting Database (EDPSD v.2 Beta) was devel-

oped by the EPA on the recommendations of the Endocrine Disruptor Screening and 

Testing Advisory Committee (EDSTAC) [25]. It provides input to the priority-setting 

FIGURE 14.4 DSSTox search engine including a Java applet for drawing molecules and 

substructure searching. The search can also be done from the SMILES strings. The field 

“Chemical Text Search” offers various types of text searching (chemical name, CAS RN, 

InChI code, and formula).
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step of the Endocrine Disruptor Screening Program using currently available data 

(for example, existing exposure and effects related information). This program relies 

on a tiered approach for predicting whether a substance may have an effect in humans 

that is analogous to an effect produced by naturally occurring estrogen, androgen, 

or thyroid hormones. EDPSD contains a variety of data sources related to chemical 

exposure potential, such as ambient and human biological monitoring data. It also 

provides data on chemicals that may be used in consumer, commercial, and food 

product chemicals and contains toxicological effect data related to the endocrine 

system or to endocrine mechanisms associated with specific chemicals. EDPSD 

includes information for over 140,000 chemicals. The database allows us to view the 

summarized information available for each data source, compartment, and category. 

Although the EDPSD database is well documented and tutorials are provided on the 

Web site, the program is not easy to use. Moreover, the drawback of this database is 

that the last update of the Web site was in 2002. More information on the EDPSD 

program can be found on the EPA Web site [26].

FIGURE 14.5 DSSTox results for bisphenol A. A table lists the number of matches (exact 

or partial) for the diverse databases available at the U.S. Environmental Protection Agency 

(EPA). Details on the NCTRER_v4a (National Center of Toxicology Research — Estrogen 

Receptor) database results are presented with a link to DSSTox Standard Chemical Structure 

Fields for each match.
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The ED-North database developed by the Research Group Environmental Toxi-

cology, Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University 

(Belgium), deals with the data gathered during the SPSD I research project that aimed 

at establishing a synopsis of the increasing volume of available scientific literature on 

endocrine disruption [27,28]. Based on the available scientific literature, an electronic 

database of chemicals with (potential) endocrine disruptive activity was developed. 

This free database contains information on the hormone disrupting potential, including 

effects and physicochemical properties of these chemicals. The ED-North database is 

an MS Access relational database that contains 765 chemical compounds, 2,355 test 

results, and a large number of references. A search interface provides the possibility to 

investigate a chemical and/or a described effect. The entire list of compounds can be 

obtained by leaving the search fields blank. The results are collected into a table contain-

ing the CAS RN of the substance, the chemical formula, the number of tests described, 

and physicochemical properties (for example, boiling point, vapor pressure, solubility, 

log Kow, and so forth). The endocrine effect studies including the tested organism, the 

observed effect (agonist or antagonist), the relative binding affinity to 17 -estradiol, and 

all experimental details of the related study are also presented (Figure 14.6).

The U.S. National Cancer Institute (NCI) Developmental Therapeutics Program 

(DTP) collected and tested more than half a million natural and synthetic organic 

compounds since 1955 [29,30]. These data are entirely in the public domain and 

are commonly called the “Open NCI Database” or the “NCI Database” (NCI DB) 

[31]. The Enhanced NCI Database Browser is a Web-based graphical user inter-

face developed to conduct rapid searches by numerous criteria among the 250,000 

FIGURE 14.6 ENDIS-RISKS results obtained for bisphenol A.
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structures of the Open NCI Database [32]. This service is based on the general and 

flexible chemical information toolkit CACTVS (Figure 14.7) [33]. The powerful 

search engine based on multiple research criteria using Boolean operators leads to 

mostly computed data, such as log Kow values, hydrogen bond donors and acceptors, 

synonyms, and biological activity when available (Figure 14.8). Moreover, the user 

has the possibility to perform a flexible substructure search combined with diverse 

query types, as well as a 3D pharmacophore query for each compound. The database 

provides 2D and 3D visualization options and the possibility to export results in 

various formats. The PASS (Prediction of Activity Spectrum of Substances) com-

puter system was implemented into the database to generate predictions for up to 

565 biological activities, including endocrine activities such as estrogen (ant)agonist, 

androgen (ant)agonist, estrogen receptor modulator, glucocorticoid (ant)agonist, 

mineralocorticoid, progestin agonist, progesterone antagonist, thyroid hormone (ant)

agonist, and aldosterone antagonist [34]. The predictions calculated by PASS con-

sist in the probabilities of a compound to be active (Pa) and to be inactive (Pi). Pa 

and Pi are separately searchable by probability value ranges. The Enhanced NCI 

Database Browser Web site offers 64,188,212 predicted values. Because the training 

set that underlies PASS is large but still limited (about 35,000 compounds), the PASS 

program cannot reliably predict each activity for every compound in the database. 

Therefore, the database allows the user to assess the quality of each predicted activ-

ity by having a look at the leave-one-out cross-validation results. Recently, the PASS 

FIGURE 14.7 Enhanced NCI Database Browser home page.
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endocrine disruption profile of a large dataset of 11,416 molecules retrieved from 

the Enhanced NCI Database was analyzed from different multivariate methods and 

graphical tools, yielding the identification of specific and nonspecific structural fea-

tures and allowing us to explain the endocrine activities of the chemicals [35].

The free database “e-experimental endocrine disruptor binding assays” (e3dba) 

was designed to improve and to centralize the flow of information on experimental 

endocrine disruptor in vitro binding assays on nuclear receptors [36]. All in vitro
binding assay data were extracted from an NIEHS report [37]. The main objective of 

this report was to provide comprehensive summaries of the published and publicly 

available unpublished data on the scientific basis and performance of in vitro assays 

used to test substances for their ability to bind to the estrogen receptor (ER). ER 

binding data were collected for 638 substances tested in competitive binding studies. 

These substances have been classified into chemical classes, such as polychlorinated 

biphenyls, triphenylethylenes, organochlorines, PAHs, phenols, and bisphenols. They 

have been assigned to a product class, such as pharmaceuticals, pesticides, chemical 

intermediates, natural products, and plasticizers. The “Search” tool offers differ-

ent kinds of queries, such as assay type, experiment name, compound name, CAS 

RN, chemical class, product class, and experimental measures. The option “Select 

All” in all fields allows us to obtain the four experimental binding values (IC50, Ki, 

RBA, and log RBA) for all the compounds recorded in the e3dba database. It is also 

FIGURE 14.8 Enhanced NCI Database Browser result screenshot showing the diversity of 

the information provided by this database.
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possible to refine the query using constraint(s) on the value ( , , ) or to select a 

value range among the different fields. The results of the request are displayed as a 

table with seven columns representing the designation of the assay, the designation of 

the experiment, the chemical name of the endocrine disruptor, and, when available, 

the four experimental binding assay data (Figure 14.9).

On the Japanese Ministry of Economy, Trade and Industry (METI) Web site, 

a downloadable report allows the user to collect binding affinity data of 948 sub-

stances to the human ER  and data of human ER  agonistic activity of 177 chemi-

cals [38]. For each compound, the chemical name, CAS registry number, relative 

binding affinity (RBA), and test year are given.

Competitive radiometric binding data for 645 chemicals can be obtained from 

the Web site of Pr. Mekenyan’s group [39]. The downloadable file gathers the CAS 

registry number, the chemical name, the observed RBA value to the estrogen recep-

tor (ER), and database affiliation of training set chemicals for their ER binding 

affinity model.

Hazardous Substances Data Bank (HSDB) is a free U.S. toxicological data file on 

the National Library of Medicine’s (NLM) Toxicology Data Network (TOXNET®)

focusing on the toxicology of potentially hazardous chemicals [40]. The search 

engine uses the chemical name, chemical name fragment, CAS RN, and/or subject 

terms. HSDB results consist of a list of information on human health effects, animal 

toxicity studies, industrial hygiene, emergency handling procedures, environmental 

fate/exposure, and physicochemical properties. HSDB is organized into individual 

chemical records and contains peer-reviewed toxicological data from books, govern-

ment and technical reports, and scientific literature for over 5,000 chemicals. Search 

results can easily be viewed, printed, or downloaded.

FIGURE 14.9 Organization of the e3dba database from the search information interface to 

the display of the results and information on their origin and conditions in which they were 

obtained.
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DrugBank is a free Canadian bioinformatics and cheminformatics resource, which 

was designed by Dr. Wishar and his colleagues at the University of Alberta (Canada) 

[41]. This resource pulls together a comprehensive amount of information on drugs 

(chemicals) and drug targets (proteins). It contains data on over 1,000 marketed and 

over 3,000 additional experimental chemical substances and over 14,000 protein 

sequences. The DrugBank home page displays links to multiple search options and 

the possibility of downloading the data, such as the structure files, substance infor-

mation, protein sequence, and DNA sequence data. Information can be accessed in 

a number of ways ranging from simple text queries to more sophisticated structure 

queries using a ChemSketch applet or SMILES string input, and structure similarity 

search tool (Figure 14.10). The “Data Extractor” search engine allows the user to 

construct complex or constrained queries. The results are collected in a “DrugCard” 

entry containing 80 data fields with substance-related information, such as thera-

peutic category and mechanism of action. Information on the drug target including 

function and protein sequence information are also recorded. Many data fields are 

hyperlinked to other databases (KEGG, PubChem, ChEBI, PDB, Swiss-Prot and 

GenBank) and a variety of structure viewing applets makes the display of the 2D 

and 3D structures of compounds and proteins easier. DrugBank is a comprehensive 

Web database including quantitative physicochemical, pharmaceutical, and biologi-

cal data for thousands of well-studied compounds and proteins.

KiBank is a free database of inhibition constant (Ki) values with 3D structures 

of target proteins and chemicals and many useful links [42]. The KiBank database 

contains 16,000 Ki values, 9,279 chemicals, and 101 target proteins covering 310 sub-

types. It is updated on a daily basis [43]. It is noteworthy that 5,984 compounds and 

FIGURE 14.10 DrugBank structure query tool and substance query results with a link to a 

“DrugCard” that includes structural and biological information.
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54 protein 3D structures with hydrogen atoms were energy minimized and stored in 

MDL (MOL) and Protein Data Bank (PDB) format, respectively. Moreover, these 3D 

structures can be downloaded directly from the KiBank Web site. The search engine 

is very user friendly and complete. The search can be performed by selecting the 

receptor functions (for example, metabotropic, ionotropic membrane, nuclear) and 

protein target name, and/or by typing the compound name. The table gathering the 

results collects all the experimental details of the test (for example, Ki value, species, 

age or weight, gender, tissue, method, tracer, pH). Moreover, numerous links allow 

the user to display the 3D structure of the selected compound and/or protein and the 

chemical data of the selected substance and protein (Figure 14.11). These results can 

be downloaded as a CSV file. The weakness of this database is that it does not supply 

the three-dimensional structural information for the ligand-protein complexes.

The PDBbind database was developed from a collaboration between the groups 

of S. Wang at the University of Michigan and R. Wang at the Shanghai Institute of 

Organic Chemistry (China) [44,45]. It contains a collection of experimentally mea-

sured binding affinity data (Kd, Ki, and IC50) exclusively for the ligand-protein com-

plexes available in the PDB [46]. The 2007 release provides binding data for 3,214 

ligand-protein complexes. The PDBbind Web site also supports interactive substruc-

ture/similarity search (Figure 14.12). For each ligand-protein complex, the database 

provides a “fact sheet” summarizing its four-letter PDB code, its binding affinity (Kd,
Ki, or IC50), the resolution of the structure, and the protein name (Figure 14.13). This 

FIGURE 14.11 KiBank results and graphical interfaces allowing the manipulation of mole-

cules.
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sheet provides a link to the corresponding page of this complex on the RCSB PDB 

Web site from which one can conveniently get information regarding the complex. 

The primary reference of this complex in which the experimentally measured bind-

ing affinity was cited is linked on this sheet to the corresponding Web page in the 

NCBI PubMed online literature database. A graphical interface allows the user to 

see the 3D display of the ligand-protein complex. However, theoretical models are 

not considered by PDBbind. A total of 1,300 ligand-protein complexes with high-

quality binding data and structures are selected to form a refined set and to serve as a

FIGURE 14.12 PDBbind interactive substructure/similarity search screenshot.

FIGURE 14.13 Screenshot of a result on PDBbind.
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high-quality standard dataset for theoretical studies on ligand-protein binding. For 

each complex in this refined set, a sheet also provides 2D and 3D sketches of the 

chemical structure of the ligand molecule. This database emphasizes the link between 

the binding affinities and the structures of the ligand-protein complexes in PDB and 

provides convenient Web-based tools for data retrieval and analysis. The PDBbind 

database, including its downloadable contents, is free of charge, under a license 

agreement, for researchers working for academic, governmental, or other nonprofit 

institutions.

The PDSP Ki database is a public domain resource providing information on the 

ability of substances to interact with an expanding number of molecular targets [47]. 

The database includes 4,600 Ki values for a large number of substances interact-

ing with numerous ion channels, nuclear receptors (for example, estrogen, andro-

gen, thyroid, mineralocorticoid, glucocorticoid, and progesterone receptors) and 

enzymes. In some cases, a link to PubChem, which is a freely accessible database 

created by NIH in 2004, allows the user to get chemical information on the tested 

compound [48]. The database is regularly updated and data can be sent directly by 

the user to the database. However, the weakness of this database is the lack of 3D 

graphical interface displaying the compounds and/or the protein and the impossibil-

ity of exporting the data.

14.3 e-ECDYSTEROID DATABASE

Ecdybase is the third edition of The Ecdysone Handbook electronic version, origi-

nally created by R. Lafont and I.D. Wilson [49]. The aim of Ecdybase is to provide 

general data on all natural ecdysteroids through a search engine, based on the use of 

the compound name or partial name, the molecular weight, the formula, the species 

name where the compound can be found, and a browser. It allows the user to access 

a data file gathering biological, chemical, structural, spectroscopic (ultraviolet [UV], 

infrared [IR], mass spectra [MS], nuclear magnetic resonance [NMR]), chromato-

graphic, and bioactivity data whenever available, as well as the relevant references. 

The number of compounds belonging to the ecdysteroid family is still growing (170 

compounds in 1992, 312 compounds in 2000, and 407 compounds in August 2007). 

The Ecdybase is still considered by the authors as a developing source that can be 

continuously improved and extended. Forms are available for the electronic sub-

mission of additional data for new ecdysteroids or to provide more information on 

already known ones. This database is the only one devoted to insect EDCs. All the 

data collected in it could be useful to elaborate structure-activity models.

14.4 e-PHYTOCHEMICAL DATABASES

Phytoestrogens are plant-derived compounds that structurally or functionally mimic 

mammalian estrogens and hence may induce adverse effects. Conversely, they are 

also considered to play an important role in the prevention of some cancers, heart 

disease, menopausal symptoms, and osteoporosis [50]. Ethnobotany Database is a 

free database of phytochemicals and their actions, medicinal uses, and ethnobotany, 

compiled by Dr. J. Duke of the Green Pharmacy Garden and the U.S. Department of 
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Agriculture (USDA) [51,52]. J. Duke has chemically analyzed natural products and, 

based on their chemical constituents, listed the known effects of the ingredients, 

such as androgenic, estrogenic, mineralocorticoid, and progestational effects. The 

search engine allows us to list phytochemicals having one or multiple endocrine 

activities, the plants used for estrogenic activity, or the number of chemicals in plants 

having an endocrine activity. The database has several key strengths: a large number 

of plants (80,000 records of plant uses worldwide), complete data on most database 

entries, and chemical information on a variety of plants. It also has several critical 

weaknesses, most notably the lack of public input, and limited support for a variety 

of ethnobotanic data. Finally, the Ethnobotany Database is a closed system, which 

means our data cannot be added to a shared repository.

A similar free phytochemical database designed by USDA allows us to search 

for biological activities of phytochemicals, which are classified into several disease 

conditions so that their medicinal uses are quickly searched [53]. In this database, 

representative chemical groups and phytochemical classes are chosen and indexed 

for searching phytochemicals easily based on their chemical structures. This clas-

sification is continually updated for a better search.

14.5 e-PHARMACEUTICAL DATABASE

BIAM is a French pharmaceutical database that provides a large amount of informa-

tion on drugs as well as the ingredients used in the formulation of pharmaceutical 

products [54]. The search engine allows the user to list the pharmaceuticals having 

an endocrine activity, such as androgen (ant)agonist, estrogen (ant)agonist, thyroid 

hormone (ant)agonist, aldosterone antagonist, mineralocorticoid agonist, progestin 

agonist, progesterone antagonist, glucocorticoid agonist, and growth hormone simu-

lation. However, since 2001, the BIAM has not been updated.

14.6 CONCLUSIONS

The Internet search for “endocrine disruptor” on Google yields about 65,000 hits. 

From such a high number of responses, it could be expected that there exist enough 

resources to find data for QSAR modeling. Unfortunately, this is not the case, and 

a cross searching with additional keywords such as “binding data” or “database” 

induces a drastic drop in the number of available Internet resources on EDs. This 

is not surprising because a large number of Web sites have been mainly designed 

as information tools dedicated to the general public, the health professionals, the 

scientists, and so on.

The aim of this work was first to catalog the existing free databases available on 

the Internet and then to critically analyze them. In a last step, an attempt was made 

to see whether these resources could be useful for deriving (Q)SAR models.

Thus, our study clearly shows that most of the free databases come from universi-

ties and government organizations. Undoubtedly, until now, the United States pro-

duced the greatest effort for designing ED databases. When data are provided, they 
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principally deal with binding data, especially for the estrogen and androgen receptors. 

Consequently, there is a need for more experimental data on other endocrine targets.

Most of the resources allow the user to access to the bibliographical references at 

the origin of the information displayed.

One of the major differences between the databases deals with 3D structural 

information and visualization availability. When different stereoisomers exist for 

one compound, it is of great importance to know the isomer responsible for the activ-

ity. A 3D representation of the molecules can avoid such structural ambiguity.

Last, the main drawback encountered in the databases is the update procedure, 

which is very often not specified.
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