Modeling and Simulation of Logistics Flows 2

Series Editor Jean-Paul Bourrières

Modeling and Simulation of Logistics Flows 2

Dashboards, Traffic Planning and Management

Jean-Michel Réveillac

First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd 27-37 St George's Road London SW19 4EU UK

www.iste.co.uk

John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA

www.wiley.com

© ISTE Ltd 2017

The rights of Jean-Michel Réveillac to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2016959837

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-107-9

Contents

About This Book.	ix
Introduction	xv
Chapter 1. Operational Research Using a Spreadsheet.	1
1.1. Foreword	1
1.2. Dynamic programming	1
1.3. Scheduling	6
1.3.1. Critical path calculation matrix.	7
1.3.2. Classic Gantt chart	11
1.3.3. Gantt chart with a calendar	17
1.4. Maximal flows	23
1.5. Transport model	29
1.5.1. Customer delivery	30
1.5.2. Minimum-cost transport.	33
1.6. Linear programming	36
1.6.1. Creating a calculation table	36
1.6.2. Entering data	37
1.6.3. Using the solver	38
Chapter 2. Dashboards, Spreadsheets and Pivot Tables	41
2.1. Spreadsheets: a versatile tool	41
2.2. Example database	42
2.2.1. Calculated field and formatting.	43
2.2.2. Calendar sections, rankings and averages.	47
2.2.3. Conditional calculated fields	50

 2.2.4. Slicers, filtering and calculated fields. 2.2.5. Calculated items 2.3. Multiple databases. 2.3.1. New tables for the database. 2.3.2. Creating data tables. 2.3.3. Relationships between tables 2.3.4. Using multiple tables to create a pivot table 2.4. Limits and constraints with calculated fields 	53 58 61 62 64 65 67 69
2.5. Conclusion	72
Chapter 3. Scheduling and Planning Using a Project Manager	73
3.1. Reminders and information	73
building a machine-tool	74
3.2.1. Scenario	74
3.2.2. Creating and configuring the project	77
3.2.3. Entering tasks and durations	80
3.2.4. Entering predecessors	81
3.2.5. MPM network visualization.	82
3.2.6. Calculating slacks.	83
3.2.7. Entering resources	84
3.2.8. Allocating resources	86
3.2.9. Resolving over-allocations	88
3.2.10. Viewing the project timeline	92
3.2.11. Using WBS coding	92
3.2.12. Generating dashboards and reports.	94
3.3. Project monitoring	97
3.4. Conclusion	99
Chapter 4. Road Traffic Simulation	101
4.1. Before we start	101
4.2. Ring road	102
4.2.1. A simulation example	103
4.3. RoadTrafficSimulator.	104
4.3.1. Constructing a model.	106
4.3.2. Activating the simulation from the model	108
4.4. Intersection simulator	109
4.5. Green Light District (GLD)	115
4.5.1. GLD compilation	116
4.5.2. Launching the GLD	117
4.5.3. The editor toolbar.	119

Contents vii

4.5.4. An example using GLD	121 144
4.6.1. Downloading AnyLogic	144 144 145
4.6.3. A last word on AnyLogic	145 165 165
Conclusion	167
Appendices	171
Appendix 1	173
Appendix 2	181
Glossary	187
Bibliography	193
Index	201

About This Book

There are already several works about logistics, operational research, decision support, the theory of graphs, dynamic programming, etc., but few of them gather all of these domains together by proposing an overall vision that focuses less on pure and hard mathematical aspects, without totally ignoring them, while offering numerous practical exercises.

This book is one of three volumes. This first volume tackles theoretical aspects with corrected exercises for each chapter, finishing with a presentation of the principal software systems dedicated to operational research (OR) and logistical simulation. The second and third volumes are dedicated to practice and specialized applications of software programs.

Most of the studies proposed here are able to be completed using a simple calculator, a sheet of paper and a pen or even with the help of a spreadsheet on Microsoft Excel, Apache OpenCalc, Apple Numbers, etc.

The presented techniques and their uses are multiple, yet I am sure that a student, a software programmer, a developer, a technician, an engineer, an IT specialist, a decision-maker and you, the reader, will find practical applications that were unexpected in your professional or even personal life.

Intended public

This work is designed for all those who encounter logistical problems linked to flux management, decision support, optimization of journeys or rounds, research for an aim when confronted with multiple constraints, creation of dashboards, relevant simulations, etc.

x Modeling and Simulation of Logistics Flows 2

The works presented require a minimum level of mathematical knowledge, and a post A level student in science or economics will not encounter major difficulties. I tried to maintain simplicity and go straight toward the objective in the theoretical approach without going into great demonstrations, which to me do not seem necessary.

In terms of the practical exercises, on a laptop, tackled in Volumes 2 and 3, a good knowledge of the exploitation system (track, records and lists, files, names, extensions, sheet, movement, etc.) will prove essential.

Since a few works use a spreadsheet, it is thus necessary to master the basic functionalities of this type of software program. It will also be convenient to know the primary use of pivot table data manipulation tools.

If we know about *visual basic application* (VBA) language or its equivalent, we can easily understand, improve, enrich and create new solutions to certain problems.

Lastly, if we understand the basic systems for managing data and relational algebra, then we will be at ease in every domain explored.

Organization and contents of the book

This work is composed of three volumes:

- Volume 1: Theory and fundamentals;
- Volume 2: Dashboards, traffic planning and management;
- Volume 3: Discrete and continuous flows in 2D/3D.

Volume 1 presents an introduction followed by 10 chapters and a conclusion:

- approach for logistics;
- an overall view of operational research;
- basics of the theory of graphs;
- calculation of optimal routes;
- dynamic programming;

- planning and scheduling with PERT and MPM;

- calculation of waves in a network;

hiding trees and tours;

- linear programming;

- modelization of route traffic;

- diverse software programs for RO and simulation of logistical flux.

Here, we will find the fundamental concepts needed in order to understand the second volume. Numerous examples accompany the theory and each chapter ends with a series of exercises with their solutions.

The conclusion, as indicated by the name, tries to establish a picture of the current state of theoretical logistics and its future development.

Appendices 1 and 2 bring a few other elements. We will find them in the following order:

- table of the law of the normal reduced center;

- a presentation and a mini-manual dedicated to the calculation software program GeoGebra.

Volume 2 starts with an introduction completed with four chapters that put into practice the software tools in cases of practical application in order to finish with a conclusion:

- the different tools used in this volume;

- operational research with a spreadsheet;

- dashboards with a spreadsheet;

- scheduling and planning with a project manager;

- simulation of route traffic.

The conclusion presents new functionalities that should appear on spreadsheets and project management systems as well as the evolutions and points of similarity between traffic simulators and new infrastructures that emerge in traffic networks.

Appendix 1 is dedicated to the installation of a solving tool in Microsoft Excel. Appendix 2 is consecrated to the installation of Java development kit. Volume 3 starts with an introduction followed by four chapters dedicated to the modelization and simulation of flux in a 2D or 3D environment. Each case is different and taken from situations encountered in reality. A conclusion concludes this Volume 3:

- different software programs used in this third volume;
- -simulation of discreet computerized flows;
- -simulation of mixed flows;
- -3D flows and evacuation simulation;
- -3D flows for transporting and storing.

The conclusion conveys the future evolutions of software programs and their integration into society. At the end of each volume, we will find a bibliography and a list of Internet links. A glossary is also available that will elaborate on certain acronyms and some very specific terminology surrounding logistics and operational research.

Conventions

This book uses the following typographic conventions:

– italics: used exclusively for important terms used for the first time in the text, one can generally be found in the glossary at the end of the work mathematical terms, comments, equations, expressions or variables present in the theoretical and practical chapters among examples and exercises;

- (*italics*): these are the terms in English or in foreign languages;

- UPPER CASE: these are reserved for names of windows, icons, buttons, files or lists, menus or submenus. This can also be elements, options or commands present in the window of a program;

- courier: this font is used for VBA code lines. These lines can end with the symbol 4, which implies a return to the obligatory line when inputting.

Any comments are signaled by the presence of a keyword: COMMENT. They will complete the explications already provided. Theorems are signaled by the keyword: THEOREM. The figures and tables have captions to further their understanding.

Vocabulary and definition

Like for all techniques, logistical optimization tools have their own vocabulary. Words, acronyms, abbreviations and specific names that are not always familiar; this is the role of the Glossary found at the end of the book.

Acknowledgments

It is my particular duty to thank the team at ISTE, and my editor Chantal Ménascé who had confidence in me, Jacqueline Gélinier from the company 1point2, distributor of ExtendSim and PathFinder software programs, Clair Augsburger of FlexSim France, not forgetting my dear friend, Pascal Mauny, director of IUT of Chalon-en-Saône and lecturer at the University of Bourgogne, for the time and attention granted to me for writing the preface.

Finally, I would like to thank my wife, Vanna, who has supported me throughout writing this book.

Jean-Michel RÉVEILLAC November 2016

Introduction

I.1. Logistics, information systems and software

The last chapter of Volume 1 of this series ended by looking at the software used for solving the different logistical problems that industrial, commercial and administrative structures face on a daily basis [REV 17a].

Since its inception, logistics has been omnipresent and has undergone significant development. Globalization, the explosion of the internet and the constant push to look to do everything better, quicker, more effectively and for less money, have greatly contributed to its expansion.

Although we are still only in the early stages, can we say that logistics has reached full maturity? Nothing could be less certain. The Internet of Things, still in its infancy, should profoundly change the normal rules relating to product management in the years to come.

The steps being taken by our cities towards becoming intelligent cities or "*smart cities*" will soon cause upheaval in our daily lives and our work habits, in public transport, in business and even in our own homes.

The centralization of many different kinds of data and the increase in central file storage has only just begun. We are currently living in a world of information systems and databases and that will continue to be the case in the future. However, aside from the impact this has on ourselves as individuals, our environment and the objects we use will be implicated in this massive warehouse of data that is currently being put together.

In 1997, the concept of "big data" first appeared. For many researchers this is one of the challenges that the information industry will have to deal with between

2020 and 2030: how to properly manage and analyze this enormous accumulation of content.

The optimization and the simulation of logistical flows plays an important role in this phenomenon. Data is collected and is then used to build models and structures in order to optimize constraints present in the field.

A variety of different types of software are used and can be divided into two categories: the specifics that deal with particular areas, such as *flow simulations* (extendSim, FlexSim, Arena, Witness), management and project *planning* (Microsoft project, Sciforma PS, GanttProject, MicroPlanner), calculating and *optimizing routes* (Gazoleen, Portatour, Mapotempo, Geoconcept, TourSolver), the management of *warehousing*¹ (Speed, Reflex WMS, Mecalux Easy WMS) and general applications, such as spreadsheets (Microsoft Excel, Apple Numbers, OpenOffice Calc) or calculation managers (Mathematica, Mapple, Xcas, GeoGebra).

In Volumes 2 and 3 of this series, I wanted to introduce you to the optimization and the simulation of logistical flows across some of these types of software. The ones that I chose and focused on are those that I use in my everyday work, not just in my role as an IT engineering consultant but also when teaching students.

The majority of the cases dealt with here come from practical cases that have been bowdlerized several times in order to avoid overloading how they are presented and to thus facilitate access for a novice who can then look into it further should they wish.

In this second volume, we will work successively with Microsoft Excel, the project manager Microsoft Project and the road traffic simulators, Ring road, RoadTrafficSimulator, Intersection simulator, Green Light District (GLD) and AnyLogic².

The studies carried out using spreadsheets will employ a number of the operational research techniques described in Volume 1 [REV 17a].

In turn, we will look at:

- Dynamic programming using the so-called Knapsack Problem (KP) problem solving method. This exercise will use a solution employing Visual Basic

¹ Software for the management of warehousing is often referred to using the acronym Warehouse Management System (WMS).

² Although Anylogic is a general flow simulation program, the example that I will present in this volume will focus on the modeling of road traffic.

Application (VBA) with which you will develop two detailed and commentated procedures.

Figure I.1. Knapsack with Microsoft Excel

- *Scheduling*: where you will design a critical path resolution matrix based on simple calculation formulae, the majority of which will integrate conditional instructions.

Figure I.2. A critical path calculation matrix

- The planning of tasks will enable you to discover how a histogram can be used in order to generate a *Gantt chart*, either connected or unconnected to a calendar.

Figure I.3. Gantt chart with Microsoft Excel

- The management of *maximal flows* will lead you to implement, in the same way as dynamic programming, two detailed and annotated procedures in Visual Basic, connected to a spreadsheet.

- The *transport models* will be based on a tool found in Microsoft Excel, known as Solver. You will learn how to use it by inputting the different elements required for its use: objective, variables and constraints across the two examples.

	А	В	С	D	Е	F	G	Н	
1	From	То	Flow	Capacity		Nodes	Net Flow	Supply/Demand	
2	S	P1	6000	10000		S	14000		
3	S	P2	8000	8000		P2	0	0	
4	S	P3	0	6000		P3	0	0	
5	P1	P2	0	4000		R1	0	0	
6	P1	R1	6000	6000		R2	0	0	
7	P2	R1	4000	4000		R3	0	0	
8	P2	R2	2000	2000		R4	0	0	
9	P2	R3	2000	2000		R5	0	0	
10	P3	P2	0	4000		P1	0	0	
1 1	P3	R3	0	6000		Т	-14000		
12	R1	R2	4000	4000					
13	R1	R4	6000	6000					
14	R2	R4	4000	4000					
15	R2	R5	2000	3000					
16	R3	R2	0	6000					
17	R3	R 5	2000	2000					
18	R4	Т	10000	12000					
19	R5	Т	4000	4000					
20									
21									
22						No. Nodes	10		
23									
24					_				
25									
26									
27	No. Edge	es	18			Create tabl	es	Solve	
28	Maximu	m flow	14000						
29									

Figure I.4. An example of a spreadsheet for maximal flows

	А	В	С	D	E	F	G	н
1				Tra	nsport costs			
2		C1	C2	C3	C4	C5	Factory stock (kg)	
3	U1	\$ 300.00	\$2,400.00	\$ 300.00	\$1,500.00	\$1,200.00	7200	
4	U2	\$1,500.00	\$1,500.00	\$ 900.00	\$1,800.00	\$2,100.00	4800	
5	U3	\$ 600.00	\$ 900.00	\$1,500.00	\$2,700.00	\$2,400.00	7800	
6	Order (Kg)			4050	0750	4000		
7	2	olver Paramet	ers					×
8								
9	U1	Se <u>t</u> Objecti	ve:	SBS14				
10	U2							
11	U3	To: (<u>M</u> ax	Min	<u>Value Of:</u>	0		
12	Quantity to be received (kg	Ry Changin	a Variable Colley					
13		by changin	y variable Cells.					
14	Objective	SB39:5F51	1					
15		Subject to	the Constraints:					
16		SBS12:SFS	12 = \$B\$6:\$F\$6	5			A	
17		\$G\$9:\$G\$1	1 = \$G\$3:\$G\$5	5			Add	

Figure I.5. Calculating transport costs using the Microsoft Excel solver

- *Linear programming* also requires the use of the solver in order to process the *simplex*. In this exercise you will learn how to create a spreadsheet that will formalize the inequations of the constraints of a PL problem as well as the economic function, followed by configurating the solver in order to find the optimal solution.

Figure I.6. An example of linear programming, spreadsheet and solver

Secondly, the spreadsheet will also make it possible to create *dashboards* implementing complex *pivot tables* that will work with one or a number of databases.

М	N		0	Р	Q	R	S	т
Client category	(AII)	-						
Net margins	Designati	ion 💌						
VENDOR 🛛	Product A	A P	roduct B	Product C	Product D	Product E	Product F	Grand Total
Degeorges R.	\$	- 5	\$1,126.40	\$ 512.00	\$ 307.20	\$ 307.20	\$ 460.80	\$ 2,713.60
Dupont V.	\$ 2	04.80	\$ 61 <mark>4.4</mark> 0	\$ 460.80	\$ 716.80	\$ 256.00	\$ 307.20	\$ 2,560.00
Durant V.	\$ 7	68.00	\$ 204.80	\$1,433.60	\$ 51.20	\$ 102.40	\$ 512.00	\$ 3,072.00
Fabre D.	\$ 3	58.40	\$ 256.00	\$-	\$ 204.80	\$1,075.20	\$ 358.40	\$ 2,252.80
Felin G.	\$ 5	12.00	\$ 460.80	\$-	\$ 256.00	\$ 768.00	\$-	\$ 1,996.80
Marchand M.	\$ 7.	16.80	\$-	\$ 204.80	\$1,126.40	\$ 409.60	\$ 716.80	\$ 3,174.40
Martin C.	\$ 6	14.40	\$1,024.00	\$1,280.00	\$1,075.20	\$ 870.40	\$ 460.80	\$ 5,324.80
Pizarelli B.	\$ 1,0	24.00	\$ 102.40	\$ 256.00	\$1,433.60	\$1,280.00	\$ 716.80	\$ 4,812.80
Richard T.	\$ 1	53.60	\$ 204.80	\$ 409.60	\$ 614.40	\$ 512.00	\$1,024.00	\$ 2,918.40
Grand Total	\$ 4,3	52.00	\$ 3,993.60	\$4,556.80	\$5,785.60	\$5,580.80	\$4,556.80	\$28,825.60

Figure I.7. A pivot table mixing numbered and graphic data

Within project management, we will set up a design and manufacturing plan for a machine-tool by integrating the different tasks, the resources, the costs, the creation of dashboards, reports and monitoring. We will see in detail the Gantt chart type displays and the Méthode des potentiels Métra (MPM) network, plus the Work Breakdown Structure (WBS) codification, margin calculation and the management of the over-use of resources. All of these different studies will employ the principles developed in Chapter 5 of the first volume of this series, which dealt specifically with scheduling.

		Management		15 T	Ju	n 8, '15	Jul 13, '	15 c	Aug 17, '15	Sep 21, '15	Oct 26, '15	Nov 30, '15	Jan 4, '16	Feb 8, "16	Mar 14, '16	Apr
margenore	0 days	Marge totale •	116	Ŀ,	6/1											
	Outlys	Oudys			1	_										
	0 days	0 days				1	Allphill,CAM,F	141,32,0	· ·							
	U uays	Utays				- 1			-							
	OWKS	Owks							PIN,CAA,D	DO ME EE HE C	E SELO DA					
-	UWKS	OWKS								DO, ME, CE, ME, C	C,SC,LO,PM					
	OWKS	Owks								AM,ME						
1	5,19WKS	15,19wks								Anine						
	Owks	12,61wks								CAA,EE,CE						
	0 days	0 days								•			1			
	0 wks	Owks										PM,DO	ME,F2,T1,T2,L	D		
	0 days	0 days										HE,F	1,F2,TL1			
1	,13 days	1,13 days										-EE,F5,	T3,T4,TL2,F4			
	0 days	0 days										EE,	CE,F4,F5,T1,T2			
1	2,61wks	12,61wks									EE,D1					
1	1,04 wks	13,19wks								i and a second	CE,D2					
10	,73 days	10,73 days										CE	F1,F3,T3,T4			
	0 days	0 days										1	PM,ME,E	E,HE,CE,F1,F2,F3,T	I,T2,LO,QC,TL1,	TL2
	0 days	0 days							1	r						
	0 days	0 days											PM,ME,	CE,T1,T2		
	Owks	Owks											P	M,EE,HE,CE,D1,D2,	1,T1,T3,QC,ME	
2	0,33 wks	20,33wks								T2,T4,5E						
	0 days	0 days												7		
4	,93 days	5,2 days											T-	T4,SE		
	Owks	Owks											1	MK,CS,QC		
	0 days	0 days												PM, ME, EE, HE, CI	,CS,QC	
	0 days	0 days												\$ 21/01		

Figure I.8. A design and manufacturing plan for a machine-tool within Microsoft Project

Chapter 4 will focus on a particular field that is highly complex, *road traffic management*. We will examine several problems linked to the circulation of vehicles in a range of situations and contexts, at different levels, while using various programs.

Several examples will be given for each of the five applications being studied:

a traffic jam simulator;

 $- \mbox{ an editor-simulator of traffic flow in a model incorporating junctions and traffic lights;}$

- an optimization simulator for an intersection managed by traffic lights;

- an editor-simulator for multi-lane road networks, integrating several kinds of vehicles, with the management of traffic lights;

- a multi-method general simulator featuring a library dedicated to road traffic management.

Figure I.9. A simple road network with its intersection and traffic lights

For each of these, we will develop *scenarios* with various different constraints in order to get an overview of the functionalities and potentials available for processing and analyzing traffic flows in circulation conditions depending on the structure of the network, the topography of the terrain, the *concentration* of vehicles, the type of vehicle, the signals, the number of traffic routes, the behavior of drivers and so on.

1

Operational Research Using a Spreadsheet

1.1. Foreword

In this chapter, I will present various possible ways of using Microsoft Excel for solving classical problems linked to operational research.

The version that I use is part of the Microsoft Office 2013 Suite. Most of the exercises shown can easily be adapted for other spreadsheets provided they have similar functions.

1.2. Dynamic programming

Here, we will examine a problem we first encountered in section 4.2.3 of the first volume of this series, the famous knapsack problem (KP).

I will present a solution here based on a spreadsheet linked to two procedures written in Visual Basic Application (VBA).

To begin with, we must first create the table in Figure 1.1 in a spreadsheet.

Once the input has been carried out, place the following formulae in the indicated cells:

- E1: =COUNTA (B4:K4), calculates the number of objects available;
- B24: =TOTAL (B23:T23), calculates the total value of the objects;

- now save your table;

- switch to VBE, create a module for your project (DEVELOPER tab, VISUAL BASIC icon, right click on the project file, INSERT then MODULE);

- open the module that has just been created, normally MODULE 1 and input the following lines of code:

Figure 1.1. The table to be created in the spreadsheet

```
Sub Clear()4
    'Clears the contents of the initial table4
    rep = MsgBox("Do you wish to clear the tables'
contents to begin a new calculation", vbYesNo,
"Clear")4
    If rep = vbYes Then4
        Range("B1").ClearContents4
        Range("B3:K5").ClearContents4
        Range("A8:U17").ClearContents4
        Range("B20:K23").ClearContents4
        End If4
End Sub4
4
Sub Knapsack()4
```

```
rep = MsgBox("Have you entered the capacity and
values in the table above to begin a new calculation
?", vbYesNo, "Calcul")↔
    If rep = vbNo Then Exit Sub4
    'Declaration of variables and tables4
    Dim i, j, m1, m2 As Integer↔
    'Table of weights↔
    Dim p() As Integer4
    'Table of values↓
    Dim v() As Integer↔
    Dim c As Integer↓
    'Allocation of the capacity to the variable c4
    C = Cells(1, 2) \leftrightarrow
    Dim n As Integer↓
    'Allocation of the number of objects to the
variable n4
    n = Cells(1, 5) \leftrightarrow
    ReDim p(n)↔
    ReDim v(n)↔
    'Objects matrix4
    Dim table() As Integer4
    ReDim table(n, c)↔
4
    'Reading object weight
    For i = 1 To n∉
        p(i) = Cells(4, i + 1) \leftrightarrow
    Next≁
ъ
    'Reading object weight
    For j = 1 To n + J
       v(j) = Cells(5, j + 1) 4
    Next≁
ъ
    Initializing the table, setting its content to 04
    For j = 0 To c \leftarrow
         table(0, j) = 04
    Next4
4
  'Constructing and filling the matrix4
    For i = 1 To n↔
        For j = 0 To c +
             If j >= p(i) Then∉
                 m1 = table(i - 1, j) \leftrightarrow
```

```
m2 = table(i - 1, j - p(i)) + v(i) 
                                                              If m1 > m2 Then table(i, j) = m1 Else
table(i, j) = m24
                                               Else≁
                                                              table(i, j) = table(i - 1, j) 4
                                               End If≁
                                               Cells(7 + i, j + 1) = table(i, j) \leftrightarrow
                              Next4
               Next≁
4
       'Reading objects€
              Dim ob(8) As String4
               For u = 1 To n^4
                           ob(u) = Cells(3, u + 1) e^{i}
               Next≁
ų
       'Further reallocation of variables4
               i = n≁
               j = c≁
ъ
               'Determining maximal weight
               Dim k, m As Integer4
               m = 2↔
               For k = c To 0 Step -14
                               If table(i, j) = table(i, j - 1) Then j = j -
14
               Next
               Cells(20, 2) = j e^{i e^{i \pi i 2}}
4
                'Obtaining the list of objects in the table of
results≁
               While i > 0 And j > 04
                               If table(i, j) <> table(i - 1, j) Then4
                                               i = i - p(i) 4
                                               Cells(22, m) = ob(i) +
                                               Cells(23, m) = v(i) \leftrightarrow
                                               Cells(21, m) = i4
                                               i = i - 1↔
                                              m = m + 1 \epsilon^{J}
                               Else≁
                                               i = i - 14
                               End If≁
               Wend⊬
End Sub≁
```


Figure 1.2. The VBA code window in VBE attached to Module 1 of the project

To launch these two procedures, Clear() and Knapsack(), create two buttons by inserting two forms to which you will assign each of the two macros (right click on form then ASSIGN MACRO...). Your spreadsheet should look like the one in Figure 1.3.

Figure 1.3. An accounting spreadsheet containing two (Delete and Calculate) procedure buttons (macros)

In order to use the KP calculation, all you need to do is click on the CLEAR button to erase any calculation that has already been carried out and to delete the calculated contents.

Secondly, you should input the data in the upper table (B1 and B3 to K5).

For the final stage, click on the CALCULATE button to launch the calculation and to show the results.

COMMENT 1.1.– In the spreadsheet that we have just created, you can manage up to 10 objects. Nothing will stop you from increasing this number by making the necessary modifications to the tables and the relevant VBA procedures.

	А	В	С	D	Е	F	G	н	I	J	К	L	М	Ν	0	Р	Q	R	S	т	U	V
1	Capacity	14		n	6													-				
2																	(lea	ar			
3	Object	Α	В	С	D	Е	F	G	Н	I I	J				_	-	_	-	-		_	
4	Weight	2	1	5	2	4	3										Cale	I.a	tio			
5	Value	7	8	14	5	10	15											.ulc	iuo			
6															-	-					-	
7	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
8	0	0	7	7	7	7	7	7	7	7	7	7	7	7	7							
9	0	8	8	15	15	15	15	15	15	15	15	15	15	15	15							
10	0	8	8	15	15	15	22	22	29	29	29	29	29	29	29				_			
11	0	8	8	15	15	20	22	22	29	29	34	34	34	34	34				_			
12	0	8	8	15	15	20	22	25	29	30	34	34	39	39	44							
13	0	8	8	15	23	23	30	30	35	37	40	44	45	49	49				_			
14																			_			
15																			_			
16																			_			
1/																			_			
18																						
20	Max woight	12																				
20	No. Col. Obi	15	4	2	2	4																
21	Objects	с С	4 D	3 C	2																	
22	Value	15	5	14	8	7																
23	Tot. Value	49	5	14	3	-																
25	ion rande																					

Figure 1.4. The example of paragraph 4.2.3.3 calculated. The results can be seen in the bottom table

1.3. Scheduling

In this section, I will describe two possible ways of using the Excel spreadsheet:

- as a method for calculating the critical path and the duration of the project based on a calculation using a matrix (double entry table);

- for creating a simple Gantt chart using a precedence table.

1.3.1. Critical path calculation matrix

Using a Microsoft Excel spreadsheet containing a matrix constructed around several calculation formulae, we will be able to determine the critical path and the duration of a project (see section 5.8 of Volume 1 [REV 17a]).

The table shown is limited to a PERT chart with at most 10 points. It can easily be adapted to a larger number of lines and columns by applying the same logic in order to create the missing calculation formulae.

In order to present and explain how this spreadsheet functions, we will re-use Exercise 2 from section 5.14.2 of Volume 1 [REV 17a], whose matrix is shown in Table 1.1.

	1	2	3	4	5	6	7	8	i
1		2							0
2			10	6	8				2
3					0				12
4					4	10	18		8
5							5		12
6							4		18
7								4	26
8									30
j	0	2	21	8	21	22	26	30	

 Table 1.1. The double entry matrix from Exercise 2

Let's now create an accounting spreadsheet like the one in Figure 1.5.

We can see that the matrix created is designed for 10 points. The grayed-out areas will contain calculation formulae as well as the columns from the beginning for the earliest start and latest end dates *i* and *j*.

Figure 1.5. The table to be created in the spreadsheet

Let's begin with the section on the right, in Figure 1.6. Here, you can see the formulae to be inputted (only cells L3 and P6 are shown – the others follow the same pattern).

J	Κ	L	м	N	0	Р
9	10	i				
		0				
		=IF(COUNTA(D2:D3)=0,L2,M3)	=I2+C2			
		=IF(MAX(M4:S4)=0,L3,MAX(M4:S4))	=IF(D3<>"",L3+D3,"")	=IF(D2<>"",L2+D2,"")		
		=IF(MAX(M5:S5)=0,L4,MAX(M5:S5))	=IF(E4<>"",L4+E4,"")	=IF(E3<>"",L3+E3,"")	=IF(E2<>"",L2+E2,"")	
		=IF(MAX(M6:S6)=0,L5,MAX(M6:S6))	=IF(F5<>"",L5+F5,"")	=IF(F4<>"",L4+F4,"")	=IF(F3<>"",L3+F3,"")	=IF(F2<>"",L2+F2,"")

Figure 1.6. The section on the right with the calculation formulae to be inputted

We will comment on these formulae that fit with the calculation technique described in section 5.8.3 of Volume 1. All they do is automate the approach:

-M3: =L2+C2, adds the earliest start date for the first task to the first value encountered;

-L3: =IF (COUNTA (D2:D3) = 0, L2, M3), checks for the absence of a value in D2 and D3, if the value is absent, it displays the previous earliest start date, which is L2, otherwise nothing is displayed;

-M4: =IF (D3<>"", L3+D3, ""), checks for the presence of a value in D3 and in this case effects the sum L3+D3, otherwise nothing is displayed;

-N4: =IF (D2<>"", L2+D2, ""), identical to the previous test for cell D2. The other group of grey cells, from M5 to U11, behaves in the same way, by taking account of each of the values present or absent in the column in question;

-L4: =IF(MAX(M4:S4)=0, L3, MAX(M4, S4)), checks the maximal value calculated in the column (the result of the calculations placed in cells M4 to S4). If it is equal to 0, no values will have been calculated, we can therefore assume that all the points have been reached, in which case the last value calculated from the beginning to the end should be copied, which is L3, otherwise the maximum is displayed. The same goes for the other formulae placed from L5 to L11 with the corresponding cells.

Let's now look at the lower part, cells K12 to B21. As was the case with the previous example, only a few formulae are shown. The others follow the same pattern:

- K12: =L11, returns to the last value in the column of earliest start dates;

-C13: = IF(D3 <> "", D12-D3, ""), checks if the cell located below the diagonal is empty and if it is not, calculates the difference with the corresponding cell, which is D12-D3, otherwise nothing is displayed. This calculation is identical for all the other cells in the grey zone if the cell references are changed to obtain the appropriate result (see Figure 1.7);

-C12: = IF (MIN (C13:C21) = 0, D12, MIN (C13:C21)), checks the minimal value calculated in the column (the result of the calculations in cells C13 to C20). If it is equal to 0, no values will have been calculated, we can therefore assume that the vertex has not been reached, in which case the last value calculated for the latest end date is copied, which is cell D12, otherwise the minimum is displayed. The same goes for the other formulae located in D12 to J12 with the corresponding cells;

-B12: =MIN(B13:B21), calculates the minimal value from zone B13 to B21, to display the latest end date of the first vertex in the graph.

1		A	В	C		D		
LO	9							
11	10							
12		j	=MIN(B13:B21)	=IF(MIN(C13:C21)=0,D12,M	1IN(C13:C21))	=IF(MIN(D13:D21)=0,E12,	,MIN(D13:D21))	
13			=IF(C2<>"",C12-C2,"")	=IF(D3<>"",D12-D3,"")		=IF(E4<>"",E12-E4,"")		
14			=IF(D2<>"",D12-D2,"")	=IF(E3<>"",E12-E3,"")		=IF(F4<>"",F12-F4,"")		
15			=IF(E2<>"",E12-E2,"")	=IF(F3<>"",F12-F3,"")		=IF(G4<>"",G12-G4,"")		
16			=IF(F2<>"",F12-F2,"")	=IF(G3<>"",G12-G3,"")		=IF(H4<>"",H12-H4,"")		
						I	J	K
					=IF(MIN(I13	3:114)=0,J12,MIN(113:114))	=IF(MIN(J13)=0,K12,J13)	=L11
					=IF(J9<>"",J	12-J9,"")	=IF(K10<>"",K12-K10,"")	
					=IF(K9<>"",I	K12-K9,"")		

Figure 1.7. The cells located below the CPM matrix with their formulae

We will now concern ourselves with find the critical path through the graph node numbers. The length of the project is associated with the last value for the earliest beginning, L11:

-F23: =IF (B12=L2,B1, ""), tests if cell B12 is equal to cell B2 and displays the node number located in B1. This formula is not compulsory, it can simply be replaced by =L2, since the first node is always in the critical path, except in specific cases;

-G23: = IF(MAX(M3) <>0, IF(C12=L3, C1, ""), we find two interlinked tests. The first verifies that M3 is different to 0, if this was not the case, this would mean that the current node does not belong to the critical path and nothing would be displayed. If M3 is different to 0 then we check that C12 is equal to its corresponding cell, L3, on the diagonal in the matrix and the node number C1 is displayed, otherwise nothing is displayed;

-H23: = IF(MAX(M4:N4) <>0, IF(D12=L4;D1, ""), ""), identical to the above, but with a zone of M4 to N4 to test the maximum;

- the same principle is then applied for the cells from I23 to O23 with the corresponding cell references.

	А	В	С	D	Е	F	G	Н
16		=IF(F2<>"",F12-F2,"")	=IF	(=IF	=16	=IF(J6<>"",J12-J6,"")	=IF(K7<>"","",K12-K7)	
17		=IF(G2<>"",G12-G2,"")	=IFI	(=IF	=16	=IF(K6<>"",K12-K6,"		
18		=IF(H2<>"",H12-H2,"")	=IF	(=IF	=18			
19		=IF(H2<>"",H12-H2,"")	=IF	(=IF				
20		=IF(J2<>"",J12-J2,"")	=IFI	(
21		=IF(K2<>"",K12-K2,"")						
22								
23		Critical path :				=IF(B12=L2,B1,"")	=IF(MAX(M3)<>0,IF(C12=L3,C1,""),"")	=IF(MAX(M4:N4)<>0,IF(D12=L4,D1,""),"")
24		Project duration :				=L11		
25								

Figure 1.8. Calculating the critical field and display showing the duration

See Figure 1.9 for the results obtained after inputting the figures from the table referred to earlier.

Figure 1.9. Spreadsheet with all cells filled in the matrix. Note the values of I (earliest start) and j (latest end) as well as the length of the project and the critical path that passes through nodes: 1, 2, 4, 7 and 8

1.3.2. Classic Gantt chart

In order to create this chart, we will use the public address system exercise dealt with in section 5.5 of Volume 1. In the precedence table (Table 1.2) only the columns for task and duration (in minutes) have been retained with the addition of two new columns, start and end.

Task	Start	Duration	End
А	0	120	120
В	120	20	145
С	120	15	140
D	120	20	140
Е	140	10	155
F	140	15	155
G	155	25	180
Н	140	20	180
Ι	180	15	195

Table 1.2. Tasks, starts, durations and ends for the sonorization exercise

This table is inserted into a Microsoft Excel spreadsheet and we then add a variance column that will calculate the difference between "End" and "Start" (in the cell E2: =D2-B2) in order to obtain the matrix in Figure 1.10.

	А	В	С	D	E	F	
1	Task	Start	Duration	End	Variation		
2	А	0	120	120	120		
3	В	120	20	145	25		
4	С	120	15	140	20		
5	D	120	20	140	20		
6	E	140	10	155	15		
7	F	140	15	155	15		
8	G	155	25	180	25		
9	Н	140	20	180	40		
10	1	180	15	195	15		
11							
12							
10							

Figure 1.10. The matrix corresponding to the task table with each of its columns

Next, select the table, then carry out the following group of operations:

- INSERT tab, CHARTS toolbar, select INSERT A BAR CHART, select STACKED BARS in 2D BAR (Figure 1.11);

DATA	REVIEW	VIEW	DEVELOF	ΡER						
re	! ?	• • • • • • • • • • • • • • • • • • •	📕 • 🖄 •					il.		
Apps ▼ pps	Charts	ded 🌖 🗸 Cha				5	Line	Sparklines	Loss	Sh
			3-D Bar		Stacke	d Bar				
G	H	1		E Bar C	Use this • Comp categor • Show change	s chart bare par rics. how pa over ti	type to: rts of a w arts of a ime	vhole acro: whole	55	M
					Use it w • The ca	/hen: ategory	/ text is lo	ong.		

Figure 1.11. Microsoft Excel: insert a 2D STACKED BAR CHART

- finally, move the graph and resize it (Figure 1.12);

Figure 1.12. The resized graph, positioned under the matrix

- click on the y-axis;

- right-click, select FORMAT AXIS (Figure 1.13);

Figure 1.13. The contextual menu (right click) to format the axis

- in the FORMAT AXIS window, select CATEGORIES IN REVERSE ORDER (Figure 1.14);

Format Axis	- ×
AXIS OPTIONS V TEXT OPTIONS	
A AXIS OPTIONS	
Axis Type	
 Automatically select based on data <u>T</u>ext axis Date axis Horizontal axis crosses Automatic At category number At maximum category Axis position 	
○ On tic <u>k</u> marks	
 Between tick marks Categories in reverse order 	
▷ TICK MARKS	
▷ LABELS	
▷ NUMBER	

Figure 1.14. The window for configuring the axis in Microsoft Excel 2013, including the checkbox: values in reverse order (in axis options)

- click on the x axis to select it;

- in the FORMAT AXIS window, open drop-down LABELS and select HIGH in LABEL POSITION;

- enter 10 and 5 respectively in AXIS OPTIONS as MAJOR and MINOR UNITS (Figure 1.15);

AXIS OPTIONS		
Bounds		
Minimum	0.0	Auto
Maximum	430.0	Auto
Units		
Major	10.0	Reset
Minor	5.0	Reset
Vertical axis crosses		
Automatic		
○ Axis valu <u>e</u>		0.0
 <u>M</u>aximum axis value 		
Display <u>u</u> nits	Non	e v
Show display units label on chart		
<u>L</u> ogarithmic scale	Base	10
Values in reverse order		
TICK MARKS		
Major type	None	
M <u>i</u> nor type	None	
ABELS		
Label Position	High	*

Figure 1.15. Configuring axes (10 and 5) and labels (high)

- right click on the middle of the graph and click on SELECT DATA;

-a window for selecting a data source will open. Tick "Duration" and "End Date" (you can also remove these using the DELETE button) then validate by clicking the OK button (Figure 1.16);

Figure 1.16. The fields "length" and "end" selected in the window displaying the data source

- click on the legend and delete it (press DEL or backspace on Mac);

- right click on the "Start" bar on the graph, specify NO OUTLINE and NO FILL by clicking on the corresponding icons (OUTLINE and FILL) in the pop-up tool bar (Figure 1.17);

Figure 1.17. The menu and the pop-up tool bar, obtained by right-clicking on the "Start" bar. Note the tools OUTLINE and FILL above the menu

- double-click on the title to change it and type "Outdoor public address system";

- to finish, save your work (Figure 1.18).

Figure 1.18. The finished Gantt chart and its associated table in a Microsoft Excel 2013 spreadsheet

1.3.3. Gantt chart with a calendar

In cases where dates have to be managed according to a calendar that can show workdays and holidays, we must consider excluding the latter from the project timeline.

Table 1.3 gives an example involving these conditions.

Installing an air conditioning system (simplified agenda) (see Table 1.3).
Task	Appointment	Duration (days)	Previous
А	Needs analysis (electrical equipment, piping, fittings, coolant gas and various other components)	1	-
С	Order and delivery of electrical equipment	5	Α
D	Order and delivery of the group exchanger and diffusers	8	А
Е	Order and delivery of coolant gas	4	Α
F	Assembly, installation and laying of the group exchanger	2	D
G	Installation and laying of diffusers	4	D
Н	Laying and connecting pipes	2	B, F, G
Ι	Electrical connection	1	C, F, G
J	Filling the installation, pressurization and clean-up	1	E, H
K	Switching on, testing installation and tuning	1	H, I, J
L	Tidying up the work site	1	K

Table 1.3. The precedence table for the installation of an air-conditioning system

For this second exercise, we will consider the project start date as being Monday March 2nd 2015.

We will begin by entering a table in Microsoft Excel similar to the one shown in Figure 1.19. The dates for the start and the end have been calculated in a standard way using a PERT or MPM type method (the MPM chart is shown in Figure 1.20).

	А	В	С	D	E	F
1	Project start	date :	03/02/15			
2						
3	Task	Start	Duration	End	Variation	
4	Α	03/02/15	1	03/03/15	1	
5	В	03/03/15	10	03/17/15	14	
6	С	03/03/15	5	03/10/15	7	
7	D	03/03/15	8	03/13/15	10	
8	E	03/03/15	4	03/09/15	6	
9	F	03/11/15	2	03/13/15	2	
10	G	03/11/15	4	03/17/15	6	
11	н	03/15/15	2	03/17/15	2	
12	1	03/15/15	1	03/16/15	1	
13	J	03/17/15	1	03/18/15	1	
14	к	03/18/15	1	03/19/15	1	
15	L	03/19/15	1	03/20/15	1	

Figure 1.19. The table to be created in Microsoft Excel (here the critical tasks are in gray and in bold)

Figure 1.20. The MPM chart corresponding to the project: installation of an air conditioning system

In the cell D4 (End), we have the formula =B4+C4, that we will fill downward as far as D15.

In the cell E4 (Variance), we have the formula =D4-B4, that we will fill downward as far as E15.

It should be noted that the end dates do not take into account a week where only the days from Monday to Friday will be workdays. To compensate for this we can replace the formula, located in D4, by =SERIES.WORK.DAY(B4;C4). This gives the table shown in Figure 1.21.

	А	В	С	D	E	F
1	Project start	date :	03/02/15			
2						
3	Task	Start	Duration	End	Variation	
4	Α	03/02/15	1	03/03/15	1	
5	В	03/03/15	10	03/17/15	14	
6	С	03/03/15	5	03/10/15	7	
7	D	03/03/15	8	03/13/15	10	
8	E	03/03/15	4	03/09/15	6	
9	F	03/11/15	2	03/13/15	2	
10	G	03/11/15	4	03/17/15	6	
11	Н	03/15/15	2	03/17/15	2	
12	1	03/15/15	1	03/16/15	1	
13	J	03/17/15	1	03/18/15	1	
14	К	03/18/15	1	03/19/15	1	
15	L	03/19/15	1	03/20/15	1	

Figure 1.21. The table recalculated for workdays

In order to properly display the graph, it will be necessary to change the format of the dates in the columns "Start" and "End" by replacing the date format with the standard format:

- select cells B4 to B15, then, while holding down CTRL, cells D4 to D15;

- right click, FORMAT CELLS..., NUMBER tab, GENERAL category.

This gives the number of days since 1st January 1900 in each of the cells.

1Project start date :03/02/152Image: Constraint of the start star		A	В	С	D	E	F
2	1	Project start	date :	03/02/15			
3TaskStartDurationEndVariation4A4206514206615B420651042080146C4206654207377D42066842070108E4206644207269F420742442070210G42074442080611H42078242080212I42078142079113J42080142081114K420811420821	2						
4 A 42065 1 42066 1 5 B 42066 10 42080 14 6 C 42066 5 42073 7 7 D 42066 8 42076 10 8 E 42066 4 42072 6 9 F 42074 2 42076 2 10 G 42074 4 42080 6 11 H 42078 2 42080 2 12 1 42078 1 42079 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	3	Task	Start	Duration	End	Variation	
5 B 42066 10 42080 14 6 C 42066 5 42073 7 7 D 42066 8 42076 10 8 E 42066 4 42072 6 9 F 42074 2 42076 2 10 G 42074 4 42080 6 11 H 42078 2 42080 2 12 I 42078 1 42079 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	4	Α	42065	1	42066	1	
6 C 42066 5 42073 7 7 D 42066 8 42076 10 8 E 42066 4 42072 6 9 F 42074 2 42076 2 10 G 42074 4 42080 6 11 H 42078 2 42080 2 12 I 42078 1 42079 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	5	В	42066	10	42080	14	
7 D 42066 8 42076 10 8 E 42066 4 42072 6 9 F 42074 2 42076 2 10 G 42074 4 42080 6 11 H 42078 2 42080 2 12 I 42078 1 42080 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	6	С	42066	5	42073	7	
8 E 42066 4 42072 6 9 F 42074 2 42076 2 10 G 42074 4 42080 6 11 H 42078 2 42080 2 12 I 42078 1 42079 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	7	D	42066	8	42076	10	
9 F 42074 2 42076 2 10 G 42074 4 42080 6 11 H 42078 2 42080 2 12 I 42078 1 42079 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	8	E	42066	4	42072	6	
10 G 42074 4 42080 6 11 H 42078 2 42080 2 12 I 42078 1 42079 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	9	F	42074	2	42076	2	
11 H 42078 2 42080 2 12 I 42078 1 42079 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	10	G	42074	4	42080	6	
12 I 42078 1 42079 1 13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	11	н	42078	2	42080	2	
13 J 42080 1 42081 1 14 K 42081 1 42082 1 15 L 42082 1 42083 1	12	1	42078	1	42079	1	
14 K 42081 1 42082 1 15 L 42082 1 42083 1	13	J	42080	1	42081	1	
15 L 42082 1 42083 1	14	К	42081	1	42082	1	
	15	L	42082	1	42083	1	

Figure 1.22. The "Start" and "End" columns in STANDARD format

Next, select the table, then carry out the following operations:

- INSERT tab, CHARTS toolbar, scroll down to BAR, select STACKED BAR in 2D BAR;

- move the chart and resize it;
- click on the y-axis;
- right click, select Excel US syntax;
- in the FORMAT AXIS window, tick CATEGORIES IN REVERSE ORDER;
- click on the x-axis to select it;
- in the FORMAT AXIS window, click on the icon in the shape of a bar chart;

- enter 42065 (the value of the cell B4, for 03/02/2015, the start date for the project) in AXIS OPTIONS as MINIMUM;

- next, enter 7 and 1 respectively as MAJOR and MINOR UNITS;
- pull down LABELS and select HIGH in LABEL POSITION;
- pull down NUMBER, select DATE in CATEGORY then *3/14/2001 in TYPE;

Format Axis		-
▲ AXIS OPTIONS		
Bounds	12055.0	
Minimum	42065.0	Reset
Maximum	42086.0	Auto
Units		
Major	7.0	Reset
Minor	1.0	Reset
Vertical axis crosses		
Automatic		
○ Axis valu <u>e</u>		42065.0
O <u>M</u> aximum axis value		
Display <u>u</u> nits	Non	e 🔻
Show display units label on chart		
Logarithmic scale	<u>B</u> ase	10
Values in reverse order		
TICK MARKS		
▲ LABELS		
Label Position	High	Ŧ
Date		v (i)
Type		
*3/14/2001		•
Locale (Location)		
English (United States)		-
Forma <u>t</u> Code 🕕		

Figure 1.23. AXIS OPTIONS, LABELS and NUMBER

- in the FORMAT AXIS window, click on cross-shaped icon (to the left of the bar chart);

- pull down ALIGNMENT and enter -45° in the field CUSTOM ANGLE in order to pivot the dates on the x-axis;

ALIGNMENT		
Vertical alignment	Middle Ce	Ŧ
Text direction	Horizontal	Ŧ
C <u>u</u> stom angle	-45°	÷
Resize shape to <u>f</u> it text		
Allow text to overflow shape		
Left margin	0.1	
<u>R</u> ight margin	0.1"	
<u>T</u> op margin	0.05	
<u>B</u> ottom margin	0.05"	+
Wran text in chane		

Figure 1.24. AXIS OPTIONS, ALIGNMENT -45°

- right click on the bottom of the chart and click on SELECT DATA;

- a 'Data Sources' window will open. Tick "Duration" and "End" (you can also remove these using the DELETE button) then validate by clicking the OK button;

- click on the legend and delete it (hold down DEL or back space on a Mac);

right click on the "Start" bar on the chart, specify NO OUTLINE and NO FILL
 by clicking on the corresponding icons (OUTLINE AND FILL) in the pop-up tool
 bar;

- right click on a date on the x axis, ADD A MINOR GRIDLINE;

- double click on the title to change it and type "Installing an air conditioning system";

- next, repeat a date format for the "Start" and "End" columns;

- to finish, save your work;

- you can change the colors of the chart by putting, for example, critical tasks in a different color.

Figure 1.25. The finished table and chart corresponding to the Gantt chart for the project

The exercises for creating a Gantt chart that have previously been examined can be adapted for larger projects. The table will be larger but the principles and the practical tasks remain the same.

1.4. Maximal flows

In order to calculate the maximal flow available in a network between the source and the sink, we will use the Excel solver alongside two VBA procedures and a spreadsheet. In the solution shown here, the number of edges is limited to 25 and the number of vertices is limited to 20.

	А	в	С	D	Е	F	G	н	I.
1	From	То	Flow	Capacity		Nodes	Net Flow	Supply/Demand	
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21						No. Nodes	0		
22						NO. NODES	0		
23									
24									
20									
20	No Eda	20	0						
21	Maximu	m flow	0						
20	maxiniu	in now							
20									

Begin by creating the spreadsheet in Figure 1.26.

Figure 1.26. The spreadsheet to be created in Microsoft Excel

Next, enter the following calculations:

- G2: =IF (F2="","",SUMIF (From,F2,Flow) - SUMIF (To,F2, Flow)), if the cell in the column "Nodes" is empty then nothing is displayed; if not the difference is calculated: the total of the flows equal to F2 in the column "From" – the total of the flows equal to F2 in the column "To". This will determine the net flow;

- "From" and "To" are cell ranges that will be named later using a VBA procedure;

- Copy G2 downward as far as cell G21;
- C27: =COUNTA (A2:A26), counts the number of edges;
- G22: =COUNTA (F2:F21), counts the number of vertices;
- C28: =G2, displays the maximal flow;
- then save your table;

- switch to VBE, create a module for your project (DEVELOPER tab, VISUAL BASIC icon, right click on the project file, INSERT then MODULE);

- open the module that has just been created, ordinarily MODULE 1 and input the following lines of code:

```
Sub Create tables()↔
Dim CountArc, CountNodes As String4
  'Clear tables≁
         click on No then clear otherwise quit4
    'Tf
    If MsgBox("Do you wish to clear the table content?",
vbYesNo, "Clear") = vbYes Then↔
    'Clears the cell content4
        Range("A2:D26,F2:F21,H3:H21").Select↔
        Selection.ClearContents4
        'Deletes the cell background color4
        Range("A2:D26,F2:G21,H3:H21").Select4
        Selection.Interior.ColorIndex = 04
        Range("C28").Select↔
        'Relaunch automatic sheet recalculation4
        Application.Calculation =
xlCalculationAutomatic4
    Elsee
        Exit Sub4
    End If≁
  'Name and color allocation4
    CountArc = InputBox("How many edges does your graph
have?", "Number of edges")↓
    'If click on Cancel then guit4
    If CountArc = "" Then Exit Sub↓
    Range(Cells(2, 1), Cells(1 + CountArc, 1)).Name =
"From"
    Range(Cells(2, 1), Cells(1 + CountArc,
3)).Interior.ColorIndex = 40€
    Range(Cells(2, 2), Cells(1 + CountArc, 2)).Name =
"То"⊬
    Range(Cells(2, 2), Cells(1 + CountArc,
3)).Interior.ColorIndex = 444
    Range(Cells(2, 3), Cells(1 + CountArc, 3)).Name =
"Flow"+
    Range(Cells(2, 3), Cells(1 + CountArc,
3)).Interior.ColorIndex = 36€
    Range(Cells(2, 4), Cells(1 + CountArc, 4)).Name =
"Capacity"4
    Range(Cells(2, 4), Cells(1 + CountArc)
4)).Interior.ColorIndex = 27€
```

```
CountNode = InputBox("How many vertices does your
graph have?", "Number of nodes") ↔
    'If click on Cancel then quite
   If CountNode = "" Then Exit Sub4
   Range(Cells(2, 6), Cells(1 + CountNode, 6)).Name =
"Node"≁
   Range(Cells(2, 6), Cells(1 + CountNode,
6)).Interior.ColorIndex = 174
   Range(Cells(3, 7), Cells(CountNode, 7)).Name =
"NetFlow"4
   Range(Cells(2, 7), Cells(1 + CountNode,
7)).Interior.ColorIndex = 37€
   Range(Cells(3, 8), Cells(CountNode, 8)).Name =
"SupplyDemand"
   Range(Cells(3, 8), Cells(CountNode,
8)).Interior.ColorIndex = 84
   MsgBox ("You can now enter your" & CountArc & " arcs
with their capacity in the FROM and TO column. Then
enter the list of your " & CountNode & "nodes in NODES
column.")↔
   Range(Cells(3, 8), Cells(CountNode, 8)) = 04
End Sub≁
4
'Launch the solver to find the solution4
Sub Resolve()↔
   'Reset solver to zero
   SolverReset↔
    'Defining solver parameters
   SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
Engine:=2, EngineDesc:="Simplex LP"↔
   SolverDelete CellRef:="$C$2:$C$19", Relation:=1,
FormulaText:="Capacity"+
   SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
ByChange:="$C$2:$C$19", _↔
       Engine:=2, EngineDesc:="Simplex LP"↔
   SolverAdd CellRef:="$C$2:$C$19", Relation:=1,
FormulaText:="Capacity"+
   SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
Engine:=2, EngineDesc:="Simplex LP"4
   SolverDelete CellRef:="$G$3:$G$10", Relation:=2,
FormulaText:="SupplyDemand"↔
   SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
Engine:=2, EngineDesc:="Simplex LP"↔
```

```
SolverAdd CellRef:="$G$3:$G$10", Relation:=2,
FormulaText:="SupplyDemand"4
SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
ByChange:="$C$2:$C$19", _4
Engine:=2, EngineDesc:="Simplex LP"4
SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
ByChange:="$C$2:$C$19", _4
Engine:=2, EngineDesc:="Simplex LP"4
`Launch automatic calculation of results by the
solver4
SolverSolve (True)4
End Sub4
```

In order to launch these two procedures, Create_tables() and Resolve(), create two buttons by inserting two forms to which you will assign each of the two macros (right click on form then ASSIGN a MACRO). Your spreadsheet should look like the one in Figure 1.27.

Figure 1.27. The spreadsheet with its two buttons ("Create tables" and "Solve")

In order to use the calculation of maximal flows, all you need to do is click on the CREATE TABLES button to destroy any calculation that has already been carried out and delete the calculated contents. Two dialogue boxes will be displayed one after the other asking you how many edges you want followed by the number of vertices in your graph.

Enter the data in the table on the left by mentioning, for each arc, the peak of departure in the column "From" and its vertice (node) of arrival in the column "To" followed by its capacity in the column "Capacity".

Now add the flows. I would advise entering the minimal value of the capacity for all of the flows.

Next, input all the vertices in the table on the right, in the "Vertices" column, beginning with the source (ordinarily S) and ending with the sink (ordinarily T). The order for the other vertices is irrelevant.

It should be noted that the entry fields have been colored in order to make it easier to input data.

Lastly, click on the SOLVE button to begin the calculation of the solution by the solver and to display the results.

In Figure 1.28, I re-use the data from Exercise 1 in Chapter 6 (Volume 1, section 6.5.1), and you can see all edges and their capacities (18), all the vertices (10) and the starting flow, which is 2000.

Figure 1.28. The data from Exercise 1 in Chapter 6 entered into the spreadsheet

	Α	В	С	D	Е	F	G	Н
1	From	То	Flow	Capacity		Nodes	Net Flow	Supply/Demand
2	S	P1	6000	10000		S	14000	
3	S	P2	8000	8000		P2	0	0
4	S	P3	0	6000		P3	0	0
5	P1	P2	0	4000		R1	0	0
6	P1	R1	6000	6000		R2	0	0
7	P2	R1	4000	4000		R3	0	0
8	P2	R2	2000	2000		R4	0	0
9	P2	R3	2000	2000		R5	0	0
10	P3	P2	0	4000		P1	0	0
11	P3	R3	0	6000		Т	-14000	
12	R1	R2	4000	4000				
13	R1	R4	6000	6000				
14	R2	R4	4000	4000				
15	R2	R5	2000	3000				
16	R3	R2	0	6000				
17	R3	R5	2000	2000				
18	R4	Т	10000	12000				
19	R5	Т	4000	4000				
20								
21								
22						No. Nodes	10	
23								
24								
25								
26			10					
27	No. Edge	es	18			Create table	es	Solve
28	Maximu	m flow	14000					
29								

Figure 1.29 shows the result of the calculation launched by clicking on the SOLVE button.

Figure 1.29. The solution from exercise 1 with the set of results displayed

1.5. Transport model

There are a variety of logistical problems in transport: often, you need to standardize distances, the costs and the constraints for supplying customers.

Below, you will find two classic examples that will be solved using the Microsoft Excel solver.

Using this as a basis, it will be easy to use each of these solutions to adapt them to your own problems.

1.5.1. Customer delivery

A railway company has to transport two batches of palletized products from two departure stations (GD1 and GD2) to three destination stations (GA1, GA2 and GA3) spread out across France. The goods will pass through intermediary marshalling yards (GT1, GT2, GT3, GT4 and GT5).

The number of pallets available in the outgoing stations and the storage capacities of the end stations are known, as are the transport capacities of the interstation railway lines.

			Р	allet fl	DW					
\rightarrow	DS1	DS2	MY1	MY2	MY3	MY4	MY5	ES1	ES2	ES3
Pallets available	105	75								
DS1		-	60	45	36	_	_	-	-	-
DS2	_		_	18	66	-	-	-	-	-
MY1	_	-	_	30	-	45	_	-	-	-
MY2	_	_	_	_	I	I	_	30	45	45
MY3	_	-	_	_	-		66	-	-	-
MY4	_	-	_	_	_	_	_	21	30	_
MY5	_	-	_	_	-		_	_	30	30
Storag	e cap	acities	of the	arriva	l statio	ns		45	45	60

Table 1.4 groups together the shared information for each station.

 Table 1.4. Summary of palletized product batch flow

If we examine the problem in greater detail, we notice that there is a problem involving maximal flow with constraints being exceeded.

We will tackle this problem by using a simple double-entry table as well as the solver.

D F F G н T J М DS : Departure station MY : Marshalling yard ES : End station Flow: DS1 DS2 MY1 MY2 MY3 MY4 MY5 ES1 ES2 ES3 Т s DS1 DS2 MY1 MY2 MY3 MY4 MY5 ES1 ES2 ES3 т

First, create and fill a spreadsheet, the table shown in Figure 1.30.

All of the data from the statement is shown here. For this purpose, the table has an S column and a T column, which represent the source and the sink, thus formalizing the number of pallets available at the departure station (DS1: 105 and DS: 75) and the storage capacity of the end stations (ES1: 45, ES2: 45 and ES3: 60).

Below the first table, add a second like the one shown in Figure 1.31.

18															
19															
20		S	DS1	DS2	MY1	MY2	MY3	MY4	MY5	ES1	ES2	ES3	Т	Total	
21	S	0	0	0	0	0	0	0	0	0	0	0	0		
22	DS1	0	0	0	0	0	0	0	0	0	0	0	0	0	
23	DS2	0	0	0	0	0	0	0	0	0	0	0	0	0	
24	MY1	0	0	0	0	0	0	0	0	0	0	0	0	0	
25	MY2	0	0	0	0	0	0	0	0	0	0	0	0	0	
26	MY3	0	0	0	0	0	0	0	0	0	0	0	0	0	
27	MY4	0	0	0	0	0	0	0	0	0	0	0	0	0	
28	MY5	0	0	0	0	0	0	0	0	0	0	0	0	0	
29	ES1	0	0	0	0	0	0	0	0	0	0	0	0	0	
30	ES2	0	0	0	0	0	0	0	0	0	0	0	0	0	
31	ES3	0	0	0	0	0	0	0	0	0	0	0	0	0	
32	т	0	0	0	0	0	0	0	0	0	0	0	0		
33	Total		0	0	0	0	0	0	0	0	0	0			
34															

Figure 1.31. The second table positioned below the first

It will be filled as indicated below:

- line 33 will contain the total of each of the columns;
- in cell C33, enter : =TOTAL (C21:C32);
- next, copy this formula down to cell L33;
- column N will contain the total of each of the lines;
- in Cell N22, enter : =TOTAL (B22:M22);
- next, reproduce this below until N31;
- in cell N3, enter the total of the wells to maximize : =TOTAL (B31:M31);

- launch the solver, DATA tab, SOLVER tool in the tool ribbon. If it is not visible, consult Appendix 1 of this volume to begin its installation;

- configure the solver as shown in Figure 1.32;
- SET OBJECTIVE : \$N\$3;
- BY CHANGING VARIABLE CELLS : \$B\$21:\$M\$32;
- SUBJECT TO THE CONSTRAINTS : \$B\$21:\$M\$32<=\$B\$6:\$M\$17;
- SUBJECT TO THE CONSTRAINTS : \$C\$33:\$L\$33=\$N\$22:\$N\$31;
- Tick the box MAKE UNCONSTRAINTED VARIABLES NON-NEGATIVE
- SELECT A SOLVING METHOD : Simplex PL;

Set Objective:	\$N\$3			8
To: O Max	() Mi <u>n</u>	◎ <u>V</u> alue Of:	0	
By Changing Variable Co	ells:			
\$B\$21:\$M\$32				1
Sybject to the Constrain	nts:			
\$B\$21:\$M\$32 <= \$B\$6 \$C\$33:\$L\$33 = \$N\$22:	:SMS17 SNS31		^ [Add
			(Change
			(Delete
			(Beset All
			-	Load/Save
Make Unconstrained	Variables Non	Negative		
Sglect a Solving Method	: 9	implex LP	•	Options
Solving Method				
Select the GRG Nonline engine for linear Solve non-smooth.	ear engine for S r Problems, and	Solver Problems that and d select the Evolutiona	re smooth nonlinear. ry engine for Solver p	Select the LP Simplex problems that are

Figure 1.32. Configuring the solver

- Next, click on the bottom SOLVE. In a few moments, the solver will display the result window;

- You will then be able to SAVE SOLVER SOLUTION or RESET INITIAL VALUES (to start again) by ticking the appropriate box and clicking on the OK button.

This will give you the values from Figure 1.33 in the second table that will specify the number of pallets to be transported between each of the points, taking all restrictions into account.

19															
20		S	DS1	DS2	MY1	MY2	MY3	MY4	MY5	ES1	ES2	ES3	т	Total	
21	S	0	105	45	0	0	0	0	0	0	0	0	0		
22	DS1	0	0	0	57	45	3	0	0	0	0	0	0	105	
23	DS2	0	0	0	0	18	27	0	0	0	0	0	0	45	
24	MY1	0	0	0	0	30	0	27	0	0	0	0	0	57	
25	MY2	0	0	0	0	0	0	0	0	30	33	30	0	93	
26	MY3	0	0	0	0	0	0	0	30	0	0	0	0	30	
27	MY4	0	0	0	0	0	0	0	0	15	12	0	0	27	
28	MY5	0	0	0	0	0	0	0	0	0	0	30	0	30	
29	ES1	0	0	0	0	0	0	0	0	0	0	0	45	45	
30	ES2	0	0	0	0	0	0	0	0	0	0	0	45	45	
31	ES3	0	0	0	0	0	0	0	0	0	0	0	60	60	
32	т	0	0	0	0	0	0	0	0	0	0	0	0		
33	Total		105	45	57	93	30	27	30	45	45	60			
34															
35															

Figure 1.33. The results calculated by the solver

You can see that the total number of pallets arriving at the destination does not exceed 150 (45+45+60), ensuring that the storage capacity of the arrival stations is not exceeded.

1.5.2. Minimum-cost transport

In this type of problem, the aim is to transport goods at a minimal cost while taking into account restrictions such as customer demand and warehouse storage capacity.

Let's consider three factories (U1, U2 and U3) located in France who wish to deliver to their clients (C1 to C5) spread out across Europe. The transport costs (per ton: 1,000 kg) are specified in Table 1.5.

Factory stock	C1	C2	C3	C4	C5
U1	\$300.00	\$2,400.00	\$300.00	\$1,500.00	\$1,200.00
U2	\$1,500.00	\$1,500.00	\$900.00	\$1,800.00	\$2,100.00
U3	\$600.00	\$900.00	\$1,500.00	\$2,700.00	\$2,400.00

Table 1.5.	Transport	costs between	factories and	customers
------------	-----------	---------------	---------------	-----------

In terms of stock, each factory has a volume of available product estimated at being 7,200 kg for U1, 4,800 kg for U2 and 7,800 kg for U3.

The five clients want the following quantities: C1, 3,600 kg; C2, 3,900 kg; C3, 4,350 kg; C4, 3,750 kg and C5, 4,200 kg.

It is now necessary to define what mass of product each of the three factories must send to each of the five customers in order to meet demand, taking into account the stock available and minimizing transport costs.

First, create the two tables in Figure 1.34 in a Microsoft Excel spreadsheet.

	А	В	С	D	E	F	G	н
1				Tra	nsport costs			
2		C1	C2	C3	C4	C5	Factory stock (kg)	
3	U1	\$ 300.00	\$2,400.00	\$ 300.00	\$1,500.00	\$1,200.00	7200	
4	U2	\$1,500.00	\$1,500.00	\$ 900.00	\$1,800.00	\$2,100.00	4800	
5	U3	\$ 600.00	\$ 900.00	\$1,500.00	\$2,700.00	\$2,400.00	7800	
6	Order (Kg)	3600	3900	4350	3750	4200		
7								
8		C1	C2	C3	C4	C5	Quantity to be send	
9	U1						0	
10	U2						0	
11	U3						0	
12	Quantity to be received (kg)	0	0	0	0	0		
13								
14	Objective	0						
15								
16								
17								

Figure 1.34. The two tables for calculating costs

Next, apply the following operations:

- in cell B12, enter the calculation : =TOTAL (B9:B11);

- copy this formula to the right as far as F12;

- in G9, enter : =TOTAL (B9:F9);

- next, copy this total downwards as far as G11;

- in cell B14, we will define the calculation objective for the solver. This is the total that we must minimize;

- enter : =SUMPRODUCT (B3:F5;B9:F11);

- open the solver, DATA tab, SOLVER tool in the ribbon. If it is not visible, consult Appendix 1 for the installation procedure;

- enter the parameters as shown in Figure 1.35;

SET OBJECTIVE: \$B\$14;

BY CHANGING VARIABLE CELLS: \$B\$9:\$F\$11;

- SUBJECT TO THE CONSTRAINTS: \$B\$12:\$F\$12=\$B\$6:\$F\$6;

– SUBJECT TO THE CONSTRAINTS: \$G\$9:\$G\$11=\$G\$3:\$G\$5;

- Tick MAKE UNCONSTRAINED VARIABLES NON-NEGATIVE;

SELECT A SOLVING METHOD: Simplex PL;

To: Max Min Value Of: By Changing Variable Cells: SS9:SFS11 Subject to the Constraints: SS512:SF512 = SS56:SF56 SG59:SG511 = SG53:SG55	Ē
By Changing Variable Cells: \$859:\$F\$11 Subject to the Constraints: \$8512:\$F\$12 = \$856:\$F\$6 \$G\$9:\$G\$11 = \$G\$3:\$G\$5	Ē
\$859:\$F511 Subject to the Constraints: \$8512:\$F512 = \$856:\$F56 \$G59:\$G511 = \$G53:\$G55	1
Subject to the Constraints: 58512:5F512 = 5856:5F56 5G59:5G511 = 5G53:5G55	
SB512:SF512 = SB56:SF56 SG59:SG511 = SG53:SG55	
	<u>A</u> dd
	<u>C</u> hange
	<u>D</u> elete
	Reset All
*	Load/Save
Make Unconstrained Variables Non-Negative	
Select a Solving Method: Simplex LP	Options
Solving Method	
Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Sel	ect the LP Simplex blems that are

Figure 1.35. Configuration of the solver

- next, click on the SOLVE button and wait a few seconds;

- a window will open. You will then have the option to SAVE THE SOLVER SOLUTION or RESET TO ORIGINAL VALUES (to start again) by ticking the appropriate box and clicking on the OK button.

The lower table displays the quantities to be dispatched to each of the factories of each of the customers. We can see that the restrictions relating to customer orders and to factory stocks have been taken into account.

	A	В	С	D	E	F	G	н
1				Tra	nsport costs			
2		C1	C2	C3	C4	C5	Factory stock (kg)	
3	U1	\$ 300.00	\$2,400.00	\$ 300.00	\$1,500.00	\$1,200.00	7200	
4	U2	\$1,500.00	\$1,500.00	\$ 900.00	\$1,800.00	\$2,100.00	4800	
5	U3	\$ 600.00	\$ 900.00	\$1,500.00	\$2,700.00	\$2,400.00	7800	
6	Order (Kg)	3600	3900	4350	3750	4200		
7								
8		C1	C2	C3	C4	C5	Quantity to be send	
9	U1	0	0	3300	0	3900	7200	
10	U2	0	0	1050	3750	0	4800	
11	U3	3600	3900	0	0	300	7800	
12	Quantity to be received (kg)	3600	3900	4350	3750	4200		
13								
14	Objective	19755000						
15								

Figure 1.36. The results obtained from using the solver

1.6. Linear programming

I will now show you how to use the Microsoft Excel solver to solve classical linear programming problems that would be solved on paper using a simplex.

We will create a spreadsheet capable of holding six constraints relating to six variables, by responding to maximization and minimization requests.

It will be very easy to increase the amount of data to manage by applying the same calculation formulae on a larger table.

1.6.1. Creating a calculation table

Build and fill the table in Figure 1.37 in a spreadsheet, then carry out the following:

	Α	В	С	D	E	F	G	н	I	J	К
1	Variables	×1	x2	x3	x4	x5	x6				
2	bi										
3											
4	Constraints										
5	n1							0	<=		
6	n2							0	<=		
7	n3							0	<=		
8	n4							0	<=		
9	n5							0	<=		
10	n6							0	<=		
11											
12	z	20	30								
13											
14	Max z	0									
15											

Figure 1.37. The table that will host our future linear programs

- In cell H5, enter the formula: =TOTALPRODUCT (B5:G5;\$B\$2:\$G\$2). This formula carries out the total of the products between the cells in line 5 (constraint n°1) and line 2 (b_i);

- Next, copy this formula downward as far as H10;

- In cell B14, enter the formula : =TOTALPRODUCT (B12:G12;B2:G2). This formula calculates the total of the products between the cells in line 12 (z) and line 2 (b_i);

- Save your spreadsheet.

1.6.2. Entering data

To fill in our table, we will re-use the example from Chapter 8 (Volume 1, section 8.3.2), which has three constraints and the following profit, z:

$$\begin{cases} 3x_1 + 1,5x_2 + 2x_3 \le 6000\\ 6x_1 + 4x_2 + 4x_3 \le 10000\\ x_1 + x_2 + x_3 \le 3500 \end{cases}$$
$$z = 8x_1 + 3,5x_2 + 6x_3$$

Enter this data in your spreadsheet in order to obtain the table in Figure 1.38.

	Α	В	С	D	E	F	G	н	Ι	J	K
1	Variables	x1	x2	x3	x4	x5	x6				
2	bi										
3											
4	Constraints										
5	n1	3	1,5	2				0	<=	6000	
6	n2	6	4	4				0	<=	10000	
7	n3	1	1	1				0	<=	3500	
8	n4							0	<=		
9	n5							0	<=		
10	n6							0	<=		
11											
12	z	8	3,5	6							
13											
14	Max z	0									
15											

Figure 1.38. The data from the example, entered into our table

COMMENT 1.2.– The indicators of inequality (<=) located in column I in our table are only given as an illustrative example – they are not relevant in the calculation.

1.6.3. Using the solver

Open the solver, DATA tab, SOLVER tool in the ribbon. If it is not visible, consult Appendix 1 for the installation procedure.

Complete the different fields for the solver:

- SET OBJECTIVE : \$B\$14;

- Click on the option MAX (for this example we are dealing with an example of maximization);

BY CHANGING VARIABLE CELLS : \$B\$2:\$G\$2;

- SUBJECT TO THE CONSTRAINTS : \$B\$2:\$G\$2>=0; \$H\$10<=\$I\$10; \$H\$5<=\$J\$5; \$H\$6<=\$J\$6; \$H\$7<=\$J\$7; \$H\$8<=\$J\$8; \$H\$9<=\$J\$9;</pre>

COMMENT 1.3.– The constraints are not all necessary in our example, but the solver has been configured by default in order to solve a problem involving six inequalities.

- Tick the box : MAKE UNCONSTRAINED VARIABLES NON-NEGATIVE;

- SELECT A SOLVING METHOD: Simplex PL;

Set Objective:	58514		
To: 🖲 Max 🤅	Min O Value Of:	0	
By Changing Variable Cells:			
\$8\$2:\$G\$2			
Subject to the Constraints:			
SBS2:SGS2 >= 0 SHS10 <= SJS10		^ [Add
SHS5 <= 5155 SHS6 <= 5156 SHS7 <= 5157			Change
SH26 <= 5156 SH29 <= 5159			Delete
			Reset All
		- [Load/Save
Make Unconstrained Varia	bles Non-Negative		
Select a Solving Method:	Simplex LP	•	Ogtions
Solving Method			
Select the GRG Nonlinear en engine for linear Solver Prob	gine for Solver Problems that lems, and select the Evolution	are smooth nonlinear. nary engine for Solver p	Select the LP Simpler problems that are

Figure 1.39. The different parameters entered in the solver dialogue window

- click on the SOLVE button;

- after a few moments the results will be displayed in the table and the SOLVER RESULTS window will be displayed.

Figure 1.40. Calculated results and the SOLVER RESULTS window

The results found in Chapter 8 (Volume 1, section 8.3.7) are confirmed: z = 15000; x1=0; x2=0 and x3 = 2500.

Dashboards, Spreadsheets and Pivot Tables

2.1. Spreadsheets: a versatile tool

Since their creation, in the early 1970s, spreadsheets have become an essential tool in business and even outside of the professional sphere. Today, how many people manage their bank accounts using one?

In this chapter, I will introduce you to the possibilities available with any proper spreadsheet using pivot tables that can provide quality decision aid dashboards.

The following examples do not hinge on basic functionalities but on advanced usage, with functions that are often not particularly well known, but which are highly effective in terms of processing data and saving precious time for decisionmakers. I will therefore make the assumption that the reader has the requisite experience for creating simple pivot tables.

In the previous chapter of this volume, I made extensive use of spreadsheets (Microsoft Excel) but here I would like to focus more specifically on the handling of data from a Database Management System (DBMS) or a spreadsheet that itself constitutes a database for creating sophisticated dashboards or contingency tables¹.

In order to carry out these studies, I made the decision to use the spreadsheet Microsoft Excel 2013, but the examples given can easily be adapted to other

¹ A concept introduced by the British mathematician and statistician Karl Pearson in 1904 that involves crossing two characters from a population and presenting their combined result.

versions or other spreadsheets featuring the pivot table concept such as, among others, the OpenOffice "DataPilot" or the FreeOffice "Pivot Tables".

2.2. Example database

Before beginning our practical examples, we will need to create or import a sufficiently representative database in order for our various experiments to be consistent.

I would suggest creating a database with several columns grouped in a single table, created using a DBMS then imported into Microsoft Excel or entered directly into a spreadsheet.

The headings for our database will be:

- Date: the date of the sale including day, month, year format: dd/mm/yy;
- Designation: product labeling, "Product A" to "Product F" format: text;
- Net UP: Unit price before product tax format: _(\$* #,##0.00_);
- Qty: quantity in terms of number of units format: whole number, 0;

Vendor: vendor name – format: text;

- Agency: location of the sales agency - format: text;

- Cat client: client category, INDV (individual), PRO (professional) - format: text;

- Client type: N (new), EX (existing) - format: text;

- Client area of residence: C (city), Di (District), D (Departement), C (County), S (State), OS (Outside state) – format: text;

– Net total: quantity x unit price BT – format: (\$* #,##0.00_).

Figure 2.1 shows an outline of the spreadsheet containing the database.

In order to obtain enough combinations to allow us to draw meaningful conclusions, I would advise creating a table or a chart containing at least a hundred rows (tuples or records).

1	K Cut	Calibri	- 11	- A A = =	*	87 -	📴 Wrap Te	at	General	-	ļ,		Normal	Be
Past	te Copy -	B T U	- 89 - 2	» · A · =		= 4=	Merce 8	Center v	5 - 96 + 50	.00 Cond	itional	Format as	Check Cell	Εx
*	؇ Format P	Painter					E meige e	conto	÷ 10 ·	Form	tting	r Table ∗	-	
	Clipboard	G.	Font	G		Aligr	nment	5	Number	G				
H4	8 -	: X 🗸	f _x EX											
	A	B	0	D Mandaa 1	E		F.	G	H	Climater.		J	ĸ	
1	Date v	Designation *	Agency *	Vendor -	Qty	2 6	Net UP	Cat. Cile	n • Client typ •	Client zoi	Y I	220.00		
2	12/2/2013	Product B	Marseille	Degeorges R.		2 3	160.00	IND	EX	C	2 0	1 220.00		
3	6/15/2014	Product B	Marseille	Degeorges R.		8 2 2 ¢	160.00		EX	Ci	\$	1,280.00		
4 E	0/13/2013	Product B	Marseille	Degeorges R.		2 0	160.00		EX	CI	ç	400.00		
6	6/8/2015	Product B	Marseille	Degeorges R.		2 0	160.00	IND	EX	Ci Ci	¢	220.00		
7	12/22/2014	Product B	Marseille	Degeorges R.		2 0	160.00	IND	EX	C	¢	320.00		
8	7/6/2014	Product B	Marseille	Degeorges R.		1 0	160.00	IND	FX	0	¢	160.00		
0	7/6/2015	Product B	Marseille	Degeorges R.		1 5	160.00	IND	FX	CI	, c	100.00		
10	7/6/2015	Product B	Marseille	Degeorges R.		1 \$	160.00	IND	EX					
11	1/5/2015	Product C	Marseille	Degeorges R.		4 \$	160.00	PRO						
	-, -,													
12	2/16/2015	Product C	Marseille	Degeorges R.		5 \$	160_0							
12 13	2/16/2015	Product C Product C	Marseille Marseille	Degeorges R. Degeorges R.		5\$	160.00							
12 13 14	2/16/2015 10/27/2014 2/23/2015	Product C Product C Product C	Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C.		5\$	160.00							
12 13 14 15	2/16/2015 10/27/2014 2/23/2015 7/13/2015	Product C Product C Product C Product C	Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C.		5\$	160.00							
12 13 14 15 16	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C.		5\$	160.00							
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C		5 \$	160.00							
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C		5 \$	160.04							
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C.		5 \$	160.00					800.00		
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C		5 \$	160.00				s	\$00.00 160.00		
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C	Marseille Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C		5 \$	160.04		Tiw	c c	s	\$00.00 160.00 160.00		
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/20	Product C Product C Product C Product C Product C	Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C		5 \$	160.04		NW	CI CI	\$ \$ \$	800.00 160.00 160.00 160.00		
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C		5 \$	160.00	IND	NW EX EX	Ci C Ci Ci	\$ \$ \$ \$	800.00 160.00 160.00 160.00 800.00		
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C		2 \$	160.00 160.00 160.00	IND IND	NW EX EX NW	Ci C Ci Ci	\$\$\$\$	500.00 160.00 160.00 160.00 800.00 320.00		• • • • • •
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C.		5 \$ 2 \$ 5 \$	160.00 160.00 160.00 160.00		NW EX EX NW EX	C C C C C C C C C C C C C C C C C C C	\$ \$ \$ \$ \$ \$ \$ \$ \$	\$00.00 160.00 160.00 \$00.00 \$20.00 \$20.00 \$20.00		
12 13 14 15 16 17	2/16/2015 2/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille	Degeorges R. Degeorges R. Martin C.		5 \$ 2 \$ 5 \$ 5 \$	160.00 160.00 160.00 160.00	NU IND IND IND	NW EX EX NW EX EX	Ci Ci Ci Ci Ci Ci Ci Ci	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$00.00 160.00 160.00 800.00 320.00 800.00 800.00		
12 13 14 15 16 17	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2019	Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille Marseille Luite	Degeorges R. Degeorges R. Martin C. Martin C. Richard T. Richard T.		5 \$ 2 \$ 5 \$ 5 \$ 5 \$	160.04 160.00 160.00 160.00 160.00	IND IND IND IND IND PRO	NW EX EX EX EX EX		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	500.00 160.00 160.00 800.00 320.00 800.00 800.00 800.00		
12 13 14 15 16 17 10	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/2015	Product C Product C Product C Product C Product C Product C	Marseille Marseille Marseille Marseille Ulle Uile	Degeorges R. Degeorges R. Martin C. Martin C. Richard T. Richard T. Richard T.		5 \$ 2 \$ 5 \$ 5 \$ 5 \$ 5 \$ 2 \$	160.04 160.00 160.00 160.00 160.00 160.00	ND IND IND IND IND PRO	NW EX EX EX EX EX EX EX		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	500.00 160.00 160.00 320.00 800.00 800.00 800.00 320.00		• • • • • • • • • • • • • • • • • • •
12 13 14 15 16 17 17 19	2/16/2015 10/27/2014 2/23/2015 7/13/2015 7/13/2015 1/19/201 	Product C Product C Product C Product C Product C Product F Product F	Marseille Marseille Marseille Marseille Marseille Ule Ulle Ulle Ulle	Notaria Martin C Martin C Richard T. Richard T. Richard T. Richard T.		5 \$ 2 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$	160.04 160.00 160.00 160.00 160.00 160.00	IND IND IND IND PRO PRO	NW EX EX EX EX EX EX EX EX	C C C C C C C C C C C C C C C C C C C	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	300.00 160.00 160.00 320.00 320.00 800.00 800.00 800.00 800.00 800.00		
12 13 14 15 16 17 17 19 19 6 196	2/16/2015 10/27/2014 2/23/2015 7/13/2015 1/19/2015 1/19/2015 1/19/2015	Product C Product C Product C Product C Product C Product C Product C Product F Product F Product F	Marseille Marseille Marseille Marseille Ulle Uile Uile Uile Uile	Notaria Degeorges R. Martin C. Martin C. Richard T. Richard T. Richard T. Richard T. Richard T.		5 \$ 2 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 2 \$ 5 \$ 2 \$ 2 \$	160.04 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00	ND IND IND IND IND PRO PRO IND	NW EX EX EX EX EX EX EX EX EX	Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci S	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	300.00 160.00 160.00 300.00 300.00 800.00 800.00 300.00 800.00 320.00		
12 13 14 15 16 17 17 19 19 19 196 197 198	2/16/2015 10/27/2014 2/23/2015 7/13/2015 1/13/2015 1/19/2015 1/19/2015 1/19/2015 1/19/2015 1/19/2015 1/19/2015	Product C Product C Product C Product C Product C Product F Product F Product F Product F	Marseille Marseille Marseille Marseille Marseille Ulle Uile Uile Uile Uile Uile	Degeorges R. Degeorges R. Martin C. Richard T. Richard T. Richard T. Richard T. Richard T.		5 \$ 2 \$ 5	160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00	IND IND IND IND IND PRO PRO IND IND	NW EX EX EX EX EX EX EX EX EX	C C C C C C C C C C C C C C C C C C C	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- 500.00 160.00 160.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00		
12 13 14 15 16 17 17 19 19 19 19 19 19 19 19 19 9	2/16/2015 10/27/2014 2/23/2015 7/13/2015 1/13/2015 1/19/2015 1/19/2015 11/3/2014 5/11/2015 1/12/2015	Product C Product C Product C Product C Product C Product C Product F Product F Product F Product F	Marseille Marseille Marseille Marseille Marseille Marseille Marseille Marseille Uile Uile Uile Uile Uile Uile	Degeorges R. Degeorges R. Martin C. Martin C. Richard T. Richard T. Richard T. Richard T. Richard T. Richard T.		5 \$ 2 \$ 5	160.00 160.00	ND IND IND	NW EX EX EX EX EX EX EX EX EX EX	C C C C C C C C C C C C C C C C C C C	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- 800.00 160.00 160.00 800.00 800.00 800.00 800.00 800.00 800.00 320.00 800.00 320.00		
12 13 14 15 16 17 19 196 197 198 199 200	2/16/2015 10/27/2014 2/23/2015 7/13/2015 1/13/2015 1/19/2015 1/19/2015 11/3/2014 5/11/2015 5/11/2015 5/11/2015	Product C Product C Product C Product C Product C Product F Product F Product F Product F Product F	Marseille Marseille Marseille Marseille Une Uile Uile Uile Uile Uile Uile Uile Uil	begeorges R. Degeorges R. Martin C. Martin C. Richard T. Richard T. Richard T. Richard T. Richard T. Richard T. Richard T. Richard T.		5 \$ 2 \$ 5	160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00	ND IND IND	NW EX EX EX EX EX EX EX EX EX EX	C C C C C C C C C C C C C C C C C C C		300.00 160.00 160.00 320.00 800.00 800.00 800.00 800.00 320.00 800.00 320.00 800.00 320.00 800.00 320.00		

Figure 2.1. Example database

2.2.1. Calculated field and formatting

To begin with, we want to create a table that will synthesize the net margin that each vendor has provided for each product depending on the client category. This margin is estimated as being 32% of the net price of the sale regardless of the product.

Furthermore, it would be preferable, for ease of interpretation, to be able to quickly visualize the size of the margin in chart form.

М	N	0	Р	Q	R	S	Т
Client category	(All) 🔽						
Net margins	Designation 💌						
VENDOR 🛛 💌	Product A	Product B	Product C	Product D	Product E	Product F	Grand Total
Degeorges R.	\$-	\$1,126.40	\$ 512.00	\$ 307.20	\$ 307.20	\$ 460.80	\$ 2,713.60
Dupont V.	\$ 204.80	\$ 614.40	\$ 460.80	\$ 716.80	\$ 256.00	\$ 307.20	\$ 2,560.00
Durant V.	\$ 768.00	\$ 204.80	\$1,433.60	\$ 51.20	\$ 102.40	\$ 512.00	\$ 3,072.00
Fabre D.	\$ 358.40	\$ 256.00	\$-	\$ 204.80	\$1,075.20	\$ 358.40	\$ 2,252.80
Felin G.	\$ 512.00	\$ 460.80	\$-	\$ 256.00	\$ 768.00	\$-	\$ 1,996.80
Marchand M.	\$ 716.80	\$-	\$ 204.80	\$1,126.40	\$ 409.60	\$ 716.80	\$ 3,174.40
Martin C.	\$ 614.40	\$1,024.00	\$1,280.00	\$1,075.20	\$ 870.40	\$ 460.80	\$ 5,324.80
Pizarelli B.	\$ 1,024.00	\$ 102.40	\$ 256.00	\$1,433.60	\$1,280.00	\$ 716.80	\$ 4,812.80
Richard T.	\$ 153.60	\$ 204.80	\$ 409.60	\$ 614.40	\$ 512.00	\$1,024.00	\$ 2,918.40
Grand Total	\$ 4,352.00	\$3,993.60	\$4,556.80	\$5,785.60	\$5,580.80	\$4,556.80	\$28,825.60

Figure 2.2. shows the result to be obtained.

Figure 2.2. The dashboard to create

We will create a simple table that can then be customized:

- create a pivot table including "Vendor" for the rows and "Designation" for the columns;

- in options, de-select Autofit column widths on update;

- re-name the headers in order to obtain a consistent table;

- re-size the columns so that the products are of equal width;

- put all cells in currency format (Category: Accounting, Symbol: \$, Decimal places: 2).

Designation	-						
VENDOR Product A	Product B	Product C	Product D	Product E	Product F	Grand Total	
Degeorges R.							
Dupont V.							
Durant V.							
Fabre D.							
Felin G.							
Marchand M.							
Martin C.							
Pizarelli B.							
Richard T.							
Grand Total							

Figure 2.3. The departure chart

In order to display the necessary margins, we will need to insert a calculated field in our pivot table:

- select a pivot table cell, at the intersection of a vendor and a product;

- open the ANALYZE window, then choose the icon FIELDS ELEMENTS AND SETS in the ribbon;

– select CALCULATED FIELD to open the INSERT A CALCULATED FIELD dialog box;

- in the NAME field, enter "Net margin";

- in the FORMULA field, delete the value 0 and keep the = symbol;

- in the list of fields, double click on the field "Net total", and it should appear alongside the = symbol;

- enter "*0.32" (in order to calculate the 32% margin) (Figure 2.4).

Insert Calcu	ulated Field	8 ×
<u>N</u> ame:	Net margin	▼ Modify
For <u>m</u> ula:	='Net total'*0.32	Delete
Fields:		
Agency Vendor Qty Net UP Client cat Client typ Client zor Net total	egory e ne Insert Fi <u>e</u> ld	
		OK Close

Figure 2.4. Inserting a calculated field: Net total x 0.32

– click on the ADD button, then OK;

- change the name "Net margin totals" (upper left of the table) to "Net margins";

your table should be filled with this new calculation.

			_					~						
Net margins	Desi	gnation 💌												
VENDOR	Proc	luct A	Pro	oduct B	Pro	oduct C	Pro	oduct D	Pro	oduct E	Pro	oduct F	Gr	and Total
Degeorges R.	\$	-	\$1	L,126.40	\$	512.00	\$	307.20	\$	307.20	\$	460.80	\$	2,713.60
Dupont V.	\$	204.80	\$	614.40	\$	460.80	\$	716.80	\$	256.00	\$	307.20	\$	2,560.00
Durant V.	\$	768.00	\$	204.80	\$1	1,433.60	\$	51.20	\$	102.40	\$	512.00	\$	3,072.00
Fabre D.	\$	358.40	\$	256.00	\$	-	\$	204.80	\$1	L,075.20	\$	358.40	\$	2,252.80
Felin G.	\$	512.00	\$	460.80	\$	-	\$	256.00	\$	768.00	\$	-	\$	1,996.80
Marchand M.	\$	716.80	\$	-	\$	204.80	\$:	1,126.40	\$	409.60	\$	716.80	\$	3,174.40
Martin C.	\$	614.40	\$1	L,024.00	\$1	1,280.00	\$:	1,075.20	\$	870.40	\$	460.80	\$	5,324.80
Pizarelli B.	\$	1,024.00	\$	102.40	\$	256.00	\$:	1,433.60	\$1	L,280.00	\$	716.80	\$	4,812.80
Richard T.	\$	153.60	\$	204.80	\$	409.60	\$	614.40	\$	512.00	\$1	L,024.00	\$	2,918.40
Grand Total	\$	4,352.00	\$3	3,993.60	\$4	4,556.80	\$!	5,785.60	\$5	5,580.80	\$4	1,556.80	\$	28,825.60

Figure 2.5. The pivot table with the margin calculation

All that is left to do is integrate a histogram representing the value of each of the margins and that of their totals:

- select the margins contained in the "Product A" column;

- open the HOME tab;

- select the CONDITIONAL FORMATTING icon, then the DATA BARS option;

- select a font and a color. The column will be filled with bars of a length proportional to the respective values;

- repeat this step for each of the other products and the "Grand Total";

- open the HOME tab;

neral +		Norma	il 👘	Bad	Good	ł.	Neutral	Cal
• % • • .0 .00	Conditional Form	nat as Check	Cell	Explanato	ry Inpu	t	Linked Cell	Not
Number 5	Highlight	Cells Rules →			Styles			
М	Top/Bott	om Rules →	р	Q	R	S	Т	U
Client category	<u>D</u> ata Bar	5 ÷	Gradien	t Fill				
Net margins	Color <u>S</u> ca	les →			Product E	Product F	Grand Total	
Degeorges R. Dupont V. Durant V.	Icon Sets	; ▶	Solid Fil		\$ 307.20 \$ 256.00 \$ 102.40	\$ 460.80 \$ 307.20 \$ 512.00	\$ 2,713.60 \$ 2,560.00 \$ 3.072.00	
Fabre D. Felin G.	New Rule	Þ			\$1,075.20 \$768.00	\$ 358.40 \$ -	\$ 2,252.80 \$ 1,996.80	
Marchand M. Martin C.	Manage Rul	es			\$ 409.60 \$ 870.40	\$ 716.80 \$ 460.80	\$ 3,174.40 \$ 5,324.80	
Pizarelli B. Richard T	\$ 1,024.00	\$ 102.40 \$	<u>M</u> o	e Rules	\$1,280.00	\$ 716.80	\$ 4,812.80	
Nicilaru I.	\$ 133.00 K		405.00	\$ 014.40	¢ E E 90 90	\$1,024.00	\$ 29,918.40	

Figure 2.6. The conditional formatting tool including its options

- select the FORMAT AS TABLE icon;
- choose formatting.

COMMENT 2.1.– During operations with pivot tables, the column width automatically adapts to the content and this can be a nuisance. To disable this option, simply select the ANALYZE tab, click on the OPTIONS icon in the PIVOTTABLE OPTIONS section of the ribbon, then de-select AUTOFIT...UPDATE in the LAYOUT AND FORMAT tab.

PivotTable Options					? ×
PivotTable <u>N</u> ame: P	ivotTable2				
Layout & Format	Totals & Filters	Display	Printing	Data	Alt Text
Layout					
Merge and c	enter cells with la	bels			
When in <u>c</u> ompa	ct form indent rov	v labels: 1	🚍 char	acter(s)	
Display fields in	report filter area:	Down, The	n Over 💌		
Report filter <u>f</u> iel	ds per column:)			
Format					
For error value	ues show:				
For empty ce	lls <u>s</u> how:				
Autofit colur	nn widths on upd	ate			
Preserve cell	formatting on up	date			
				OK	Cancel

Figure 2.7. Size configuration in the pivot table options

2.2.2. Calendar sections, rankings and averages

In this second example, we would like to use a table grouping together agencies and products to show the net averages for quarterly sales for each establishment depending on the client category and the area of residence. A graph should highlight the best results: the agencies will be listed in alphabetical order while the quarters will be divided by year in ascending order.

Figure 2.8 shows the expected results.

Figure 2.8. The pivot table to be obtained

As before, we will start by creating the base table, which will include the following elements:

- FILTERS: "Cat. client" and "Client zone";
- COLUMNS: "Designation";
- ROWS: "Agency" and "Date";
- $-\Sigma$ VALUES: "Net total amount".

				-	_		-	-		 DivotTable	Fielde	* X
Cat. Client	(AII)	-								FIVOLIADIE	Fields	
Client zone	(AII)	*								Choose fields to	- (j) - v	Drag fields between areas
										add to report:		Delow.
Sum of Net to	otal Colum	in Labels 💌								✓ Date		
Row Labels	Produ	ct A	Product B	Product C	Pro	duct D	Product E	Product F	Grand Total	Designation		
Bordeaux	\$	2,400.00		\$ 85.00	\$	5,175.00	\$ 2,480.00	\$ 1,280.00	\$11,420.00	Agency		Cat. Client 🔹
19-Jan	\$	120.00							\$ 120.00	Vendor		Client zone 🔻
26-Jan								\$ 320.00	\$ 320.00	Qty		
9-Feb					\$	450.00			\$ 450.00	Net UP		
16-Feb							\$ 2,480.00		\$ 2,480.00	Cat. Client		
23-Mar				\$ 85.00					\$ 85.00	Client type		
11-May					\$:	1,575.00			\$ 1,575.00	Client zone		III COLUMNS
18-May					\$	225.00			\$ 225.00	Net total		Designation 🔫
1-Jun								\$ 320.00	\$ 320.00	Marge HT		
15-Jun	\$	840.00					_		\$ 840.00	Champ1		
17-Aug					\$	675.00	1	\$ 640.00	\$ 1,315.00	MORE TABLES		
20-Oct					\$	900.00	-		\$ 900.00			
24-Nov	\$	1,200.00							\$ 1,200.00			
8-Dec	\$	240.00			\$	225.00			\$ 465.00			≡ ROWS
15-Dec					\$:	1,125.00			\$ 1,125.00			Agency -
Caen	\$	840.00	\$ 725.00		\$	900.00	\$ 6,510.00	\$ 1,120.00	\$10,095.00			Date •
5-Jan			\$ 290.00				\$ 620.00		\$ 910.00			Dute
12-Jan			\$ 145.00		\$	225.00	\$ 620.00		\$ 990.00			
23-Feb			\$ 290.00						\$ 290.00			
23-Mar	Ś	240.00							\$ 240.00			
4-May							\$ 3,720.00		\$ 3,720.00			Z VALUES
18-May								\$ 800.00	\$ 800.00			Z VALUES
22-Jun					\$	225.00			\$ 225.00			Sum of Net total
29-Jun							\$ 1,550.00		\$ 1,550.00			
20-Jul	\$	480.00							\$ 480.00			
27-Iul	ŝ	120.00							\$ 120.00			

Figure 2.9. The initial table for the second example

We will now make the necessary modifications in order to carry out the task:

- move the cursor over one of the totals, then right-click to select VALUE FIELD SETTINGS;

-a dialog box will open. In the CUSTOM NAME field enter "Average net sales";

- in the drop-down list, select AVERAGE;

- click on the NUMBER FORMAT button. A dialog box will open – select ACCOUNTING in the CATEGORY list, then click on the OK button;

 – click again on the OK button to confirm your selections and to close the window. All values in the table should be re-calculated;

- at the top left of the table, replace "Average of Net total" with "AVERAGE NET SALES";

- select one of the "day" dates, right-click and select GROUP. In the drop-down list, select QUARTERS and YEARS, then click on the OK button;

- select all of the cells under "Grand total" except the one on the last line;

- open HOME tab, click on the CONDITIONAL FORMATTING icon in the STYLE section, select DATA BARS and choose a model;

– for greater clarity, you can also adjust formatting by clicking on the FORMAT AS TABLE icon in the STYLE section of the ribbon and choose a model here.

2.2.3. Conditional calculated fields

The aim is to calculate the total bonus for each of our vendors depending on the quarter and the month for a given year. The total bonus is a percentage based on the monthly net total of sales made in a month. It follows this rule:

- net total greater than or equal to 1,600.00: Bonus = 1.6%;

- net total greater than or equal to 2,500.00: Bonus = 2.2%

The final table should look like the one in Figure 2.10.

Figure 2.10. The pivot table showing the total monthly bonus

To begin with, we will create a table containing all of the necessary elements available:

- create a pivot table with "Vendor" and "Date" in ROWS;

- enter "Net total" in Σ VALUES;

- right-click on one of the dates in the table and select GROUP;

- select "Month" and "Years" from the drop-down list and click on OK. For each vendor, the column should contain a list of months for each year;

- re-name the column "Net total amount" to "Total net sales", then change this to currency format;

Vendor	 Total 	net sales	
Degeorges	R. \$	8,480.00	
□ 2014			
Oct	\$	480.00	
Dec	\$	1,600.00	
■ 2015			
Jan	\$	1,440.00	
Feb	\$	1,120.00	
May	\$	960.00	
Jun	\$	1,120.00	
Jul	\$	1,440.00	
Aug	\$	320.00	
Dupont V.	\$	8,000.00	
■ 2014			
Oct	\$	960.00	
Nov	\$	320.00	
Dec	\$	160.00	
■ 2015			
Jan	\$	1,440.00	
Mar	\$	640.00	
May	\$	2,880.00	
1			

Figure 2.11. The pivot table to be used as a base

- create a calculated field (starting with a pivot table cell, ANALYZE tab, icon FIELDS, ITEMS AND SETS) called "Bonus" and apply the following conditional formula:

=IF('Net Total'>=2500,2.2%*'Net Total',IF('Net Total'>=1600,1.6%*'Net Total',0))

Insert Calcu	lated Field	? ×
<u>N</u> ame:	Premium	Modify
For <u>m</u> ula:	= IF('Net total' > = 2500,2.2%*'Net total',IF('Net total'	Delete
<u>F</u> ields:		
Agency Vendor	^	
Qty Net UP	E	
Cat. Clien Client typ	e	
Client zor Net total		
	Insert Fi <u>e</u> ld	
	ОК	Close

Figure 2.12. Creating a conditional calculated field

- switch to the field "Bonus" under Σ VALUES;

- rename the column "Net bonus";

– note that the sub-totals for each vendor are incorrect – the pivot table tool is not capable of making the calculation, and we will therefore delete them;

- switch to one of the cells of the pivot table, open the DESIGN tab, click on the SUB-TOTALS icon in the ribbon and tick DO NOT SHOW SUB-TOTALS;

- follow the same instructions for the grand totals at the bottom of the table. In the ANALYZE tab, click on the OPTIONS icon under PIVOT TABLE OPTIONS in the ribbon. A dialog box will open - in the TOTALS AND FILTERS tab, untick SHOW GRAND TOTALS FOR COLUMNS;

- click on the OK button to confirm.

2.2.4. Slicers, filtering and calculated fields

We have just seen a few examples of the use of calculated fields. We will now link this to the filter, the calculated field and the slicer.

In the database that I use, each of the vendors made a turnover of between \$4,725.00 and \$11,520.00 for products A to F.

I want my pivot table to show me the target figure that the six least effective vendors should meet for 2016, knowing that it should be 12% higher than 2015.

Net total	Years	-					
Vendor	~ 2014		201	15	Grand Total		
Degeorges R.	\$	1,855.00	\$	6,835.00	\$	8,690.00	
Dupont V.	\$	1,065.00	\$	7,580.00	\$	8,645.00	
Durant V.	\$	1,905.00	\$	5,300.00	\$	7,205.00	
Fabre D.	\$	770.00	\$	9,325.00	\$	10,095.00	
Felin G.	\$	3,555.00	\$	4,725.00	\$	8,280.00	
Marchand M.	\$	6,140.00	\$	11,520.00	\$	17,660.00	
Martin C.	\$	2,840.00	\$	9,110.00	\$	11,950.00	
Pernot C.			\$	8,095.00	\$	8,095.00	
Picard D.	\$	2,205.00	\$	5,780.00	\$	7,985.00	
Pizarelli B.	\$	3,690.00	\$	7,730.00	\$	11,420.00	
Richard T.	\$	2,470.00	\$	8,150.00	\$	10,620.00	
Grand Total	\$	26,495.00	\$	84,150.00	\$	110,645.00	

To begin with, we will use the very simple pivot table from Figure 2.13.

Figure 2.13. The initial pivot table, before modification

The following operations will delete the column from 2014, display the six least effective vendors from 2015 and add a column that will calculate their targets for 2016:

- select one of the cells in the pivot table;

- in the ANALYZE tab, click on the INSERT SLICER icon in the ribbon;

-a dialog box will open - tick "Date", then click on the OK button (Figure 2.14);

Net total	Years	-				
Vendor	~ 2014		201	15	Gra	and Total
Degeorges R.	\$	1,855.00	\$	6,835.00	\$	8,690.00
Dupont V.	\$	1,065.00	\$	7,580.00	\$	8,645.00
Durant V.	\$	1,905.00	\$	5,300.00	\$	7,205.00
Fabre D.	\$	770.00	\$	9,325.00	\$	10,095.00
Felin G.	\$	3,555.00	\$	4,725.00	\$	8,280.00
Marchand M.	\$	6,140.00	\$	11,520.00	\$	17,660.00
Martin C.	\$	2,840.00	\$	9,110.00	\$	11,950.00
Pernot C.			\$	8,095.00	\$	8,095.00
Picard D.	\$	2,205.00	\$	5,780.00	\$	7,985.00
Pizarelli B.	\$	3,690.00	\$	7,730.00	\$	11,420.00
Richard T.	\$	2,470.00	\$	8,150.00	\$	10,620.00
Grand Total	\$	26,495.00	\$	84,150.00	\$	110,645.00

Figure 2.14. Selecting the field for the slicer

- a filter interface will open - double-click on 2015 (Figure 2.15).

Net total	Years 🔹			_			
Vendor 🛛 💌	2014	2015	Grand Total		Date	5	
Degeorges R.	\$ 1,855.00	\$ 6,835.00	\$ 8,690.00		2014		
Dupont V.	\$ 1,065.00	\$ 7,580.00	\$ 8,645.00		2014		
Durant V.	\$ 1,905.00	\$ 5,300.00	\$ 7,205.00		2015		
Fabre D.	\$ 770.00	\$ 9,325.00	\$ 10,095.00		<10/6/2014		
Felin G.	\$ 3,555.00	\$ 4,725.00	\$ 8,280.00				
Marchand M.	\$ 6,140.00	\$11,520.00	\$ 17,660.00		>9/1/2015		
Martin C.	\$ 2,840.00	\$ 9,110.00	\$ 11,950.00				
Pernot C.		\$ 8,095.00	\$ 8,095.00				
Picard D.	\$ 2,205.00	\$ 5,780.00	\$ 7,985.00				
Pizarelli B.	\$ 3,690.00	\$ 7,730.00	\$ 11,420.00				
Richard T.	\$ 2,470.00	\$ 8,150.00	\$ 10,620.00				
Grand Total	\$26,495.00	\$84,150.00	\$110,645.00				

Figure 2.15. The pivot table and the filter interface for selecting a slicer

COMMENT 2.2.– The filter interface for slicing is still available and you can modify your options at any time by clicking on one of the relevant filtering buttons.

If you do not want to use the filter, which you should keep, it is possible to delete 2014 from the pivot table by using the slicer management option.
This involves taking the following steps (replacing the steps from before):

- select the 2014 cell in the pivot table;

- right-click and select FILTER, then DATE FILTERS (Figure 2.16);

		C	alit	ori - 11 - A A		· % , 🖻
M		_	в	I = 👌 - 🗛 - 🛛	Β	* 號 🐝 💞 🔰 🛛 R 🛛 S
Net total	Yea	art	_	_	-	
Vendor 🛛 💌	201	4	_	laner o		1 Total
Degeorges R.	\$	1, 5	1	Copy		,690.00
Dupont V.	\$	1, 🛙	-	Format Cells		,645.00
Durant V.	\$	1, [è	<u>R</u> efresh		,205.00
Fabre D.	\$			Sort	Þ	,095.00
Felin G.	\$	3,		2011		200.00
Marchand M.	\$	6,		Filter	*	🧏 <u>C</u> lear Filter From "Date"
Martin C.	\$	2,	/	Subtotal "Date"		Keep Only Selected Items
Pernot C.				Expand/Collapse	Þ	Hide Selected Items
Picard D.	\$	2, _é	E	Group		Top 10
Pizarelli B.	Ş	3,	E	Ungroup		Date Filters
Richard T.	Ş	2, ~		2		2
Grand Total	Ş2	26,		Move	۲	value Filters
		>	ĸ	Remo <u>v</u> e "Date"		
		- 6	6	Field Settings		
		-	-	PivotTable Ontions		
		1.		Processe Options		
			1	Hide Fiel <u>d</u> List		

Figure 2.16. Selecting the date filters

- a dialog box will open - select IS AFTER in the drop-down menu, then enter 01/01/2015 in the adjacent field;

- click on the OK button. Your pivot table will now only contain data from 2015 (Figure 2.17).

М	N	0	
Net total	Years 🗐 🗐		
Vendor 🔄	2015	Grand Total	
Degeorges R.	\$ 6,835.00	\$ 6,835.00	
Dupont V.	\$ 7,580.00	\$ 7,580.00	
Durant V.	\$ 5,300.00	\$ 5,300.00	
Fabre D.	\$ 9,325.00	\$ 9,325.00	
Felin G.	\$ 4,725.00	\$ 4,725.00	
Marchand M.	\$11,520.00	\$11,520.00	
Martin C.	\$ 9,110.00	\$ 9,110.00	
Pernot C.	\$ 8,095.00	\$ 8,095.00	
Picard D.	\$ 5,780.00	\$ 5,780.00	
Pizarelli B.	\$ 7,730.00	\$ 7,730.00	
Richard T.	\$ 8,150.00	\$ 8,150.00	
Grand Total	\$84,150.00	\$84,150.00	

Figure 2.17. The pivot table showing only 2015 data

We will now remove all but the six least effective vendors and create our calculated item, the target figure for 2016:

select one of the vendors;

- right-click and select FILTER, then TOP 10;

- a dialog box will open - configure, using the different drop-down menus: BOTTOM; 6; ITEMS; BY "Net Total" (Figure 2.18);

М	N	0	Р	Q	R	S
Net total	Years 🗐 🖓					
Vendor 🔄	2015	Grand Total				
Degeorges R.	\$ 6,835.00	\$ 6,835.00				
Dupont V.	\$ 7,580.00	\$ 7,580.00				
Durant V.	\$ 5,300.00	\$ 5,300.00				
Fabre D.	\$ 9,325.00	\$ 9,325.00				
Felin G.	\$ 4,725.00	\$ 4,725.00				
Marchand M.	\$11,520.00	\$11,520.00				
Martin C.	\$ 9,110.00	\$ 9,110.00				
Pernot C.	\$ 8,095.00	\$ 8,095.00				
Picard D.	\$ 5,780.00	\$ 5,780.00				
Pizarelli B.	\$ 7,730.00	\$ 7,730.00				
Richard T.	\$ 8,150.00	\$ 8,150.00				
Grand Total	\$84,150.00	\$84,150.00				
Top 1	.0 Filter (Vendo	r)			? ×	
Show	N					
Br	attom 💌	E I	A Items	w by Ne	t total	
		9	• nems	· by we		1
				ОК	Cancel	
					_	

Figure 2.18. The filter for selecting the six least effective vendors

- your pivot table should now only contain the six least effective vendors (Figure 2.19);

М	N	0	
Net total	Years ,T		
Vendor 🖉 🖵	2015	Grand Total	
Degeorges R.	\$ 6,835.00	\$ 6,835.00	
Dupont V.	\$ 7,580.00	\$ 7,580.00	
Durant V.	\$ 5,300.00	\$ 5,300.00	
Felin G.	\$ 4,725.00	\$ 4,725.00	
Picard D.	\$ 5,780.00	\$ 5,780.00	
Pizarelli B.	\$ 7,730.00	\$ 7,730.00	
Grand Total	\$37,950.00	\$37,950.00	

Figure 2.19. The pivot table showing the six least effective vendors

- in the ANALYZE tab, click on the FIELDS, ITEMS AND SETS icon in the ribbon and select CALCULATED FIELD;

- in the NAME field, enter "2016 Target";

- in the FORMULA field, delete the value 0, then double-click on "Net Total" in the drop-down menu and enter "*1.12" to calculate the 12% increase required in order to meet the target (Figure 2.20);

Insert Calcu	ulated Field	? ×
<u>N</u> ame:	2016 target	▲dd
For <u>m</u> ula:	= 'Net total'*1.12	Delete
Fields: Agency Vendor Qty Net UP Cat. Clien Client typ Client zor Net total	t E e ne Insert Fi <u>e</u> ld	OK Close

Figure 2.20. Configuring the calculated field for the 2016 target

- two new columns will appear in your pivot table, "Sum of 2016 target" and "Total Sum of 2016 Target" (Figure 2.21);

	Μ	N O		Р		Q			
Ī		Years ,T							
		2015			Tota	al Net total	Total Sum	of 2016 target	
1	Vendor 🛛 🖵	Net total	Sum of	2016 target					
Į	Degeorges R.	\$ 6,835.00	\$	7,655.20	\$	6,835.00	\$	7,655.20	
ļ	Dupont V.	\$ 7,580.00	\$	8,489.60	\$	7,580.00	\$	8,489.60	
	Durant V.	\$ 5,300.00	\$	5,936.00	\$	5,300.00	\$	5,936.00	
	Felin G.	\$ 4,725.00	\$	5,292.00	\$	4,725.00	\$	5,292.00	
	Picard D.	\$ 5,780.00	\$	6,473.60	\$	5,780.00	\$	6,473.60	
	Pizarelli B.	\$ 7,730.00	\$	8,657.60	\$	7,730.00	\$	8,657.60	
	Grand Total	\$37,950.00	\$	42,504.00	\$	37,950.00	\$	42,504.00	

Figure 2.21. The two columns created by adding the "2016 Target" field

- rename the first "Target for 2016";

- select the ANALYZE tab, click on the OPTIONS icon under PIVOT TABLE OPTIONS in the ribbon, then in the dialog box, under TOTALS AND FILTERS, untick SHOW GRAND TOTALS FOR ROWS;

- click on the OK button to confirm.

The table that you should obtain should be similar to the one in Figure 2.22.

		Yea	ars 🖵]	
		201	.5		
Vendor	. T	Net	t total	Tar	get for 2016
Degeorges	R.	\$	6,835.00	\$	7,655.20
Dupont V.		\$	7,580.00	\$	8,489.60
Durant V.		\$	5,300.00	\$	5,936.00
Felin G.		\$	4,725.00	\$	5,292.00
Picard D.		\$	5,780.00	\$	6,473.60
Pizarelli B.		\$	7,730.00	\$	8,657.60
Grand Total	I.	\$	37,950.00	\$	42,504.00

Figure 2.22. The pivot table with the column "Net Total" for 2015 and the targets for vendors for 2016

2.2.5. Calculated items

We have previously seen a number of examples of the use of calculated fields, but there is another possibility that limits the range of the target, and this involves calculated items. In this instance, the calculation only applies to some of the items available in one of the ribbons on the database, not all of them.

Looking at a recap pivot table for 2015 that compares products with agencies, we notice that "Nice", "Bordeaux" and "Caen" made fewer sales than the other agencies, all products combined (Figure 2.23).

Qty 2015	Agency 🔻									
Designation 💌	Bordeaux	Caen	Dijon	Lille	Lyon	Marseille	Nancy	Nice	Paris	Grand Total
Product A	8	7	14	2	4		15	2	6	58
Product B		5		4	7	12	4	8	14	54
Product C	1		2	8	7	21	15		13	67
Product D	13	2	22	12	14	6	1	1	21	92
Product E	8	21	8	5	10	11	12	10	9	94
Product F	8	5	14	15	12	7	5		7	73
Grand Total	38	40	60	46	54	57	52	21	70	438

Figure 2.23. The quantities sold by each of the agencies in 2015

In order to rectify this imbalance, we predict an increase in the number of sales:

-50% more for the agency in Nice;

-40% more for the agencies in Bordeaux and Caen.

In order for the vendors in each of these agencies to have a clearer idea of what quantities they will need to sell in 2016, we will create the pivot table in Figure 2.24, using the previous recap pivot table (Figure 2.23).

Qty 2015 4	Agency 👔	r				
Designation 💌	Bordeaux	Bordeaux 2016	Caen	Caen 2016	Nice	Nice 2016
Product A	8	12	7	10	2	3
Product B		0	5	7	8	12
Product C	1	2		0		0
Product D	13	19	2	3	1	2
Product E	8	12	21	30	10	15
Product F	8	12	5	7		0
Grand Total	38	57	40	57	21	32

Figure 2.24. The pivot table to be obtained, including columns for 2016 for Bordeaux, Caen and Nice

- In the pivot table, open the pop-up menu in the cell containing "Agency" by clicking on the filter icon and keep only the agencies in Nice, Caen and Bordeaux checked;

- click on one of the agency names to select it;

- in the ANALYZE tab, click on the FIELDS, ITEMS AND SETS icon in the ribbon and select CALCULATED ITEM;

in the NAME field, enter "Nice 2016";

– switch to the FORMULA field, delete the 0 value, enter "CEILING" (behind the equal sign, click on "Agency" in the drop-down menu, then double-click on "Nice" in the drop-down list of items, then add "*1.5,1" to calculate the 50% increase.

COMMENT 2.3.– CEILING is present in order to round the product up to the nearest whole number. The figure 1 behind the comma gives the rounded-up value.

Qty 2015	Agency 🖵					
Designation	Bordeaux	Caen	Nice	Nice 2016	Grand Total	
Product A	8	7	2	3	20	
Product B		5	8	12	25	
Product C	1			0	1	
Product D	13	2	1	2	18	
Product E	8	21	10	15	54	
Product F	8	5		0	13	
Grand Total	38	40	21	32	131	
Insert Calculat	ted Item in "Ag	ency"				? ×
<u>N</u> ame: N	ice 2016					<u>i</u> oany
For <u>m</u> ula: =	CEILING(Nice *1	.5,1)				elete
<u>F</u> ields:				Items:		
Date				Bordeaux		
Designation				Caen		
Vendort			Ξ	Lille		E
Qty Net LIP				Lyon		
Cat. Client				Nancy		
Client type			*	Nice		T
		Insert F	i <u>e</u> ld			Insert Item
					01	Class
					OK	Close
<u> </u>		_	_		_	

Figure 2.25. Creating the column that will contain the calculated item "Nice 2016". Note the formula for calculating the 50% increase and the "CEILING" function

- click on the OK button to confirm the creation of your new column;

- repeat the two previous operations with the agencies for Bordeaux and Caen, entering a coefficient of 1.4 corresponding to 40%;

- select the ANALYZE tab, click on the OPTIONS icon under PIVOT TABLE OPTIONS in the ribbon. A dialog box will open – under TOTALS AND FILTERS, untick SHOW GRAND TOTALS FOR ROWS;

- click on the OK button to confirm;

- open the pop-up menu for the cell containing "Agency" by clicking on the filter icon, then click on the option SORT A TO Z. The aim here will be to place the columns in order for each of the cities.

Figure 2.26. The pop-up menu for agencies, showing options for sorting, among others

2.3. Multiple databases

A recurring question in the use of pivot tables concerns the possibility of extracting data from several tables simultaneously.

In a Microsoft Excel spreadsheet, by definition there can only be one single database defined on a range of cells containing a header line that describes each of the fields (ribbons) in the database.

This is the type of database that we have used in the previous examples in this chapter.

There is, however, a very useful solution, which is little known despite the fact that a very powerful version has been developed in Microsoft Excel 2013. This is the table manager (for tables or data tables).

A range of cells can be transformed into a data table. I will not go into detail here on all of the possibilities that this method offers, but should you wish to know more, please consult the bibliography at the end of the volume and the Internet links. COMMENT 2.4. -

- Some of the following examples are only possible in the 2013 version of Microsoft Excel. To use them in the 2010 version, you will need to download an add-in called "PowerPivot", available to download on the Microsoft website.

- For other versions of Excel or other spreadsheets, you should be aware that not all of the features mentioned will be available.

To give you an example of the use of pivot tables linked to tables, we will need to modify our initial database (see section 1.2).

It should be clarified that table management is in fact an extrapolation of the technique used in *Relationship Database Management Systems (RDBMS)* where tables² are linked to each other by *relationships* (links) with specific characteristics (*cardinalities*), as found in Microsoft Access, Oracle, IBM DB2, Sybase etc. (see the Bibliography at the end of the volume).

2.3.1. New tables for the database

Our database will have two tables, "Sales" and "Products". The first will be a modification of the table we have been using up to this point.

"Sales" table:

- Date: date of sale including the day, month and year format: dd/mm/yy;
- Reference: FF NNN (family, n°) format: whole number, 00 000;
- Agency: location of the sales agency format: text;
- Vendor: vendor name format: text;
- Qty: unit quantity format: whole number, 0;
- Client category: IND (individual), PRO (professional) format: text;
- Client type: N (new), EX (existing) format: text;

- Client residence zone: Ci (City), Di (District), C (County), S (State), OS (Outside State) - format: text;

² The vocabulary "tables", "relationships", "requests" and "cardinalities" is specific to the operation and use of databases connected to what we refer to as relational algebra. In the Bibliography at the end of this volume there are studies and Internet links relating to this subject.

	Α	В	С	D	E	F	G	н
1	Date	Reference	Agency	Vendor	Qty	Client cat.	Client type	Client zone
2	06/22/15	01 001	Marseille	Degeorges R.	2	PRO	EX	С
3	12/08/14	01 002	Marseille	Degeorges R.	8	IND	EX	Ci
4	06/15/15	02 010	Marseille	Degeorges R.	3	IND	NW	Ci
5	08/24/15	02 011	Marseille	Degeorges R.	2		EX	Ci
6	06/08/15	02 015	Marseille	Degeorges R.	2	IND	EX	Ci
7	12/22/14	03 020	Marseille	Degeorges R.	2	IND	EX	С
8	07/06/15	01 001	Marseille	Degeorges R.	1	IND	EX	
9	07/06/15	01 002	Marseille	Degeorges R.		INF.		
10	07/06/15	02 010	Marseille	Deco				
11	01/05/15							

	10	
--	----	--

							EX	Ci
					5	IND	EX	Ci
			anie	Richard T.	1	IND	EX	Ci
		01 001	Lille	Richard T.	1	IND	NW	С
189	05/18/15	01 001	Lille	Richard T.	1	IND	EX	Ci
190	06/29/15	01 002	Lille	Richard T.	5	IND	EX	Ci
191	06/08/15	02 010	Lille	Richard T.	2	IND	NW	Ci
192	06/08/15	02 011	Lille	Richard T.	5	IND	EX	Ci
193	06/29/15	02 015	Lille	Richard T.	5	IND	EX	Ci
194	11/10/14	01 001	Lille	Richard T.	5	PRO	EX	Ci
195	03/02/15	01 002	Lille	Richard T.	2	PRO	EX	Ci
196	11/03/14	02 010	Lille	Richard T.	5	PRO	EX	Ci
197	05/11/15	02 011	Lille	Richard T.	2	IND	EX	S
198	01/12/15	02 015	Lille	Richard T.	5	IND	EX	С
199	01/19/15	01 001	Lille	Richard T.	2	IND	EX	Ci
200	05/11/15	01 002	Lille	Richard T.	2	IND	EX	Ci
201	05/11/15	02 010	Lille	Richard T.	2	IND	EX	Ci
202								
203								
204								

Figure 2.27. An example of the range of cells for the "Sales" table

"Products" table:

- Reference: FF NNN (family, n°) format: whole number, 00 000;
- Designation: product label, "Product A" to "Product F" format: text;
- Net UP: unit price before tax format: _(\$* #,##0.00_);

- Packaging: number of products per unit of sales - format: whole number, 0;

- Availability: number of days prior to delivery (IM: immediate, nD: x days, nW: x weeks) - format: text;

J	К	L	м	N
Reference	Designation	Net UP	Packaging	Availability
01 001	Product A	\$ 120.00	1	7D
01 002	Product B	\$ 145.00	1	IM
02 010	Product C	\$ 85.00	4	10D
02 011	Product D	\$ 225.00	2	IM
02 015	Product E	\$ 310.00	4	3D
03 020	Product F	\$ 160.00	1	2W

Figure 2.28. An example of the range of cells for the "Products" table

2.3.2. Creating data tables

We will now transform our two cell ranges into data tables:

- switch to one of the cells of the "Sales" cell range;
- select the INSERT tab;
- under TABLES on the ribbon, click on the TABLE icon;

- a dialog box, CREATE TABLE, will open. Confirm that the range indicated covers the entire cell range and click on the OK button (Figure 2.29);

Create	Table	? <mark>×</mark>						
Where	is the data for y	your table?						
	= \$A\$1:\$H\$201							
	✓ My table has headers							
	OK	Cancel						

Figure 2.29. Creating a table

- repeat the same actions for the second cell range ("Products");

- select the DESIGN tab;

- under PROPERTIES, enter the table name: "Products" instead of the name created by default;

- after having selected a cell from the "Sales" table, repeat the same actions and re-name it.

FILE	HOME	INSERT PAG	SE LAYOUT	FORMULAS	DATA RE	VEW VEW	DEVELOPER	DESIGN							
Table Nr	me 🕼	Summarize with Pi	votTable		Propert	ies 🛛 🗹	Header Row	First Column	Filter Button			(et et et et			
Product	s -!	Remove Duplicater	2		C Doen in	Browser	Total Row	Last Column							
th Resi	re Table	Convert to Ranne	Inse	ert Export Refr	esh că Unink		Banded Boars	Randed Column							
Eres.	antine and	Taala	2010	er · ·	anned Table Cab			able Tinde Column				Tabl	a Thiday		
Prop	ennes	1005			cernal rapie pac			aute signe options				Taur	ie schies		
J1	* :	X 🗸 🚽	& Refere	ince											
	A	в	с	D	Е	F	G	н	1	J	ĸ		ι Ι	м	N
1	Date 👻	Reference *	Agency *	Vendor 👻	Qtv v	Client cat 🗸	Client typ ~	Client zon 🔻		Reference V	Designation -	N	Vet UP 🔻	Packaging V	Availability Y
2	06/22/15	01 001	Marseille	Degeorges R.	2	PRO	EX	с		01 001	Product A	\$	120.00	1	70
3	12/08/14	01 002	Marseille	Degeorges R.	8	IND	EX	CI		01 002	Product B	s	145.00	1	IM
4	06/15/15	02 010	Marseille	Degeorges R.	3	IND	NW	Ci		02 010	Product C	\$	85.00	4	10D
5	08/24/15	02 011	Marseille	Degeorges R.	2		EX	CI		02 011	Product D	\$	225.00	2	IM
6	06/08/15	02 015	Marseille	Degeorges R.	2	IND	EX	Ci		02 015	Product E	\$	310.00	4	3D
7	12/22/14	03 020	Marseille	Degeorges R.	2	IND	EX	c		03 020	Product F	\$	160.00	1	2W
8	07/06/15	01 001	Marseille	Degeorges R.	1	IND	EX	Ci							
9	07/06/15	01 002	Marseille	Degeorges R.	1	IND	EX	CI							
10	07/05/15	02 010	Marseille	Degeorges R.	1	IND	EX	Ci							
11	01/05/15	02 011	Marseille	Degeorges R.	4	PRO	EX	с							
12	02/16/15	02 015	Marseille	Degeorges R.	5	IND	NW	Ci							
13	10/27/14	03 020	Marseille	Degeorges R.	1	PRO	EX	Ci							
14	02/23/15	01 001	Marseille	Pernot C.	2	IND	EX	CI							
15	07/13/15	01 002	Marseille	Pernot C.	5	PRO	EX	Ci							
16	07/13/15	02 010	Marseille	Pernot C.	5	PRO	EX	CI							
17	01/19/15	02 011	Marseille	Degeorges R.	5	IND	EX	с							
18	05/04/15	02 015	Marseille	Degeorges R.	1	PRO	EX	OS							
19	03/09/15	03 020	Marseille	Pernot C.	5	IND	NW	OS							
20	07/13/15	01 001	Marseille	Degeorges R.	2	PRO	EX	CI							
21	07/06/15	01 002	Marseille	Degeorges R.	2	IND	EX	Ci							
22	07/05/15	02 010	Marseille	Degeorges R.	2	IND	EX	CI							
23	02/09/15	02 011	Marseille	Degeorges R.	2	PRO	EX	Ci							
24	10/20/14	02 015	Marseille	Degeorges R.	2	PRO	EX	CI							
25	05/04/15	03 020	Marseille	Degeorges R.	5	IND	EX	ci							
20	03/09/15	01 001	Lyon	Dupont V.	2	IND	EX	U .							

Figure 2.30. The two tables: "Sales" (on the left) and "Products" (on the right)

2.3.3. Relationships between tables

Now that the tables have been created, we must now link them (using relationship or link) through a shared column, referred to here as "Reference".

Effectively, in the "Sales" table, entering a product reference makes it possible to find out information relating to that product, whether this is its unit price before tax, its packaging or its availability:

- move the cursor to one of the tables;
- select the DATA tab;
- under DATA TOOLS, click on the RELATIONSHIPS icon;
- a dialog box will open click on the NEW button;
- a new dialog box, CREATE RELATIONSHIP, will appear;
- in the drop-down menu, TABLE, select "Sales";
- in the drop-down menu, RELATED TABLE, select "Products";
- in the drop-down menu COLUMN (FOREIGN), select "Reference";

- in the drop-down menu RELATED COLUMN (PRIMARY), select "Reference";

COMMENT 2.5.– The two tables can have columns (fields) with different names, but they can still be linked provided that they are the same type. The same principle applies to relational databases.

Create Relationship	? ×
Pick the tables and columns you want to use for this relationship	
<u>T</u> able:	Col <u>u</u> mn (Foreign):
Sales 💌	Reference
<u>R</u> elated Table:	Related Co <u>l</u> umn (Primary):
Products 🔹	Reference 🔹
Creating relationships between tables is necessary to show relate	d data from different tables on the same report.

Figure 2.31. The dialog box for creating a relationship

- click on the OK button;

- the dialog box will close and your new relationship will appear in the MANAGE RELATIONSHIPS) box (Figure 2.32);

Manage Re	lationships		? ×
Status Active	Table ▼ Sales (Reference)	Related Lookup Table Products (Reference)	New Edit ≜ctivate Deacjivate Delete
			Close

Figure 2.32. The new relationship

- click on the CLOSE button.

2.3.4. Using multiple tables to create a pivot table

Now that we have these two linked tables, we would like to show the pivot table from Figure 2.33.

						1.1	1.			
Qty sold	Agency 💌]				1				
	Bordeaux	Caen	🗆 Dijon	∃Lille	Lyon		/	Nice	Paris	Grand Total
Designation 💌	Pizarelli B.	Fabre D.	Marchand M	Richard T.	Dupont V.		Picard D.	Felin G.	Martin C.	
Product A	16	10	20	12		• 11		2	25	111
Product B	5	4	13	10	1	. 3	1	11	19	93
Product C	6	; (11	9	/* · · · ·	/ 6	3	5	8	74
Product D	23	10	7	1		10	10	6	13	112
Product E	7	7	9			19		13	13	110
Product F	3	. 7	2		. 5	11		2	9	63
Grand Total	60	44	62		. 17	60	14	39	87	563
				1						

Figure 2.33. The pivot table to be created

We can see that the quantities, the vendors and the agencies come from the "Sales" table, while the designation of products comes from the "Products" table.

The previously created relationship establishes a link between the two tables using the "Reference" column.

In order to produce a dashboard summarizing sales, carry out the following instructions:

- move your cursor to the "Sales" table;

- select the INSERT tab;

- under TABLES, click on the PIVOT TABLE icon;

– a dialog box will open – confirm that you have "Sales" in the TABLE/RANGE field;

- under LOCATION, enter the cell defining the location destination for your pivot table;

- tick ADD THIS DATA TO THE DATA MODEL in order to take into account the two tables as well as their relationship (Figure 2.34);

Create PivotTable	8 ×							
Choose the data that you want to analyze								
Select a table or range								
<u>T</u> able/Range:	Sales							
🔘 Use an external data source								
Choose Connection								
Connection na	ame:							
Choose where you wan	it the PivotTable report to be placed							
New Worksheet								
Existing Workshee	et							
Location: Fe	uil1!\$P\$2							
Choose whether you want to analyze multiple tables								
Add this data to the	ne Data <u>M</u> odel							
	OK Cancel							

Figure 2.34. Creating the pivot table using multiple tables

- click on the OK button to confirm.

The fields area of the pivot table should look like the one in Figure 2.35. In the ACTIVE tab, you should be able to see your two tables;

PivotTable Fields	- × ×
ACTIVE ALL	Drag fields between areas below:
Choose fields to add to report:	Y FILTERS
Products	
▷ 🌐 Sales	

Figure 2.35. The fields area of the pivot table showing the two active tables: "Products" and "Sales"

- put the "Agency" and "Vendor" fields in the COLUMNS area;
- put the "Designation" field in the ROWS area;
- put the "Qty" field in the Σ VALUES area;

- rename the different items: table, row, header column and format the pivot table (Figure 2.36);

Qty sold	Agency 💌		
	Bordeaux	Bordeaux Total	⊟ Ca
Designation 💌	Pizarelli B.		Fabr
Product A	16	16	
Product B	5	5	
Product C	6	6	
Product D	23	23	
Product E	7	7	
Product F	3	3	
Grand Total	60	60	

Figure 2.36. The renamed headers: "Qty sold", "Designation" and "Agency"

- move your cursor over the pivot table, select the DESIGN tab;

– under LAYOUT, click on the SUBTOTALS icon and select DO NOT SHOW
 SUB TOTALS in order to make them disappear for each of the agencies.

2.4. Limits and constraints with calculated fields

We will re-use our first database, only now we will imagine that we want to delete the Net Total column, regarding it as unnecessary since it can be replaced by a calculated field in a pivot table.

The Net Total column is the result of a row by row calculation multiplying the product Quantity x Unit price before tax.

Designation 💌	Total qty	N	Net unit price Net tota		
Product A	85	\$	120.00	\$	10,200.00
Product B	78	\$	145.00	\$	11,310.00
Product C	89	\$	85.00	\$	7,565.00
Product D	113	\$	225.00	\$	25,425.00
Product E	109	\$	310.00	\$	33,790.00
Product F	89	\$	160.00	\$	14,240.00
Grand Total	563	\$	177.05	\$	102,530.00

The final table should look like the one in Figure 2.37.

Figure 2.37. The table to be obtained

In the following section, I will show you a solution for tackling this issue while avoiding the pitfalls involved with a pivot table calculator.

At first glance, the solution to the problem seems rather straightforward.

Take the following steps:

- move the "Designation" of products into the ROWS section;

– move the "Quantity" and the "Unit price before tax" into the Σ VALUES section;

 – create a calculated field called "Net Total", corresponding to the "Quantity" multiplied by the "Unit price before tax";

– move the latter into the Σ VALUES section;

- in the table, replace the headers for the columns with "Designation", "Total qty", "Net unit price" and "Net Total";

- select all of the numerical values from the table, switch to the HOME tab, then select CURRENCY from the drop-down menu in the NUMBER section of the ribbon.

Although the steps taken appear logical, the results displayed are incorrect.

Designation 💌	Total qty	Ne	et unit price	Net total
Product A	85	\$	3,720.00	\$ 316,200.00
Product B	78	\$	5,365.00	\$ 418,470.00
Product C	89	\$	2,465.00	\$ 219,385.00
Product D	113	\$	9,450.00	\$ 1,067,850.00
Product E	109	\$	9,610.00	\$ 1,047,490.00
Product F	89	\$	4,800.00	\$ 427,200.00
Grand Total	563	\$	35,410.00	\$ 19,935,830.00

Figure 2.38. The resulting table from our operations. The values obtained are inconsistent

In reality, there has been no mistake on the part of the pivot table calculator.

In the "Net unit price" column, it simply adds the "Net unit price" of the product as many times as there are lines containing this information.

In the "Net Total" column, it multiplies the "Net unit price" by the quantity. For instance, for the first row: $85 \times \$3,720.00 = \$316,200.00$.

It then follows that the column totals are also inconsistent.

In order to resolve this issue, the total for the "Net unit price" should not be kept in the Σ VALUES section but instead it should be changed to an average. The average of a set of equal values (here this is the unit price of a product) is identical to one of these values.

In terms of the calculated field, the formula must be modified so that it can calculate using the average of the unit price before tax.

Insert Calcu	ılated Field	? x
<u>N</u> ame:	Net total	<u>A</u> dd
For <u>m</u> ula:	=AVERAGE('Net UP')* Qty	Delete
Fields		
Date Designati Agency Vendor Qty	on E	
Net UP Client cat Client typ	e v	
		K Close

Figure 2.39. The modified formula for calculating the "Net Total"

This simple example shows the limits of pivot tables in certain specific cases. In principle, it is generally more useful, less risky and easier to integrate a calculation by adding a column to the corresponding table in the database. The values contained in this column can be easily used within a pivot table.

COMMENT 2.6.– The solution that I propose for this example would not work if the net unit price of a product changed over time, given that it would no longer be represented by the average for the entirety of the given period.

2.5. Conclusion

In this chapter, I have shown some of the possible ways of using this excellent tool, the pivot table calculator, in Microsoft Excel.

In doing so I have left out a number of other possibilities and functions, whether linked to pivot tables or not, most notably the potential for importing databases, analyzing scenarios, validating and consolidating data, etc.

I would invite you to investigate further by consulting the Bibliography and the Internet links provided at the end of this book.

3

Scheduling and Planning Using a Project Manager

3.1. Reminders and information

In this chapter, I will show you how to build a project using the Microsoft Project 2013 project manager. The aim will be to allow you to discover the potential of this type of program and possible interactions with other tools.

It is not my intention to teach you how to use all of the features of this manager, given that a volume like this one has not been designed for such a purpose.

The way in which this information will be presented to you will be based on the concepts explored in detail in Chapter 5, Volume 1. To this we will add resource implementation and management, awareness of the over-allocation of resources and opportunities for reducing and leveling in order to meet imposed constraints, as well as the monitoring of the project.

These studies will be based on real-life examples, taken from the industry. Through these means, I hope to be able to show you the full range of this program's capabilities for managing and monitoring one or several projects within a company. With a touch of nostalgia, I still remember how hard it was and how long it took to do the same thing some decades ago.

Everything contained in this chapter can easily be partly or fully adapted for use with other project managers, such as those mentioned in section 10.3.2 of Volume 1 of this work.

3.2. Example: designing and building a machine-tool

3.2.1. Scenario

The company, MecaTools, specialists in custom-made machine tools, have been asked by one of their clients to design a hydraulic press for stamping aluminum plates. In order to carry out this order, they have been given a design brief specifying the necessary technical characteristics for the machine.

The design and the construction, as well as tests and client approval will be carried out exclusively in their workshops. For this purpose, the board has appointed a project manager who will be responsible for scheduling and planning the work to be carried out.

After having analyzed the list of specifications provided by the client, the project manager worked with a support team to draw up a precedence table showing the main tasks to be carried out.

Task	Designation	Duration	Predecessor
Α	Defining the design specification	4wks	_
	Design		
В	Functional design	3wks	А
С	Detailed design	4wks	В
D	Mechanical design	2wks	С
Е	Hydraulic design	2wks	С
F	Automatic computer design	1wks	С
	Prototype construction		
G	Mechanical construction	7wks	D
Н	Assembling the hydraulic system	4d	E, G
Ι	Assembling the sensors and PLC	3d	F, G
J	Wiring (electronic, sensors, field network, etc.)	4d	H, I
Κ	Developing and coding PLC application	4wks	F
L	Developing and coding computer application	5wks	F
Μ	Linking network to information systems	1d	J, L
Ν	Integrating mechanics, hydraulics, automation, etc.	6d	I, J, K
	Tests and checks		
0	Network test	2d	M, N
Р	Testing and checking the prototype	1wks	0, Q
Q	Technical documentation	2wks	С
	Marketing		
R	Finalizing technical documentation	2d	P, Q
S	Marketing material	1wks	P, Q
Т	Client presentation and approval	1d	R, S

Table 3.1.	Tasks and	predecessors
------------	-----------	--------------

The team attached to this project is as follows (the equipment and the raw materials used are not taken into account during the planning stage, with this managed separately by the MecaTools CAPM).

The hourly costs given are the average hourly costs, including tax, for an employee or a service.

Name	Service	No.	Hourly rate (\$/h)	Calendar
Project manager	Management	1	\$ 52.00	Schedule 1
Mechanical project assistant	Production	1	\$ 38.00	Schedule 1
Hydraulic project assistant	Production	1	\$ 38.00	Schedule 1
Computer automation project assistant	Production	1	\$ 41.00	Schedule 1
Design office (5 people)	Production	1	\$ 215.00	Schedule 2
Mechanical engineer	Production	1	\$ 42.00	Schedule 3
Electrotechnical engineer	Production	1	\$ 44.00	Schedule 3
Hydraulic engineer	Production	1	\$ 42.00	Schedule 3
Software engineer	Production	1	\$ 44.00	Schedule 3
Programmer	IT	2	\$ 35.50	Schedule 2
Fitter	Production	5	\$ 18.00	Schedule 3
Technician	Production	4	\$ 24.50	Schedule 3
Secretary-editor	Administration	1	\$ 20.00	Schedule 4
Marketing (3 people)	Administration	1	\$ 160.00	Schedule 4
Commercial services (3 people)	Administration	1	\$ 190.00	Schedule 4
Logistics (2 people)	Administration	1	\$ 158.00	Schedule 4
Quality department (3 people)	Production	1	\$ 144.00	Schedule 3
Team leader	Production	2	\$ 30.00	Schedule 3

Table 3.2. Resources

The working hours for the business and personnel (these are independent of the different services) are as follows:

– MecaTools factory hours: Monday to Friday – 7:00 am to 8:00 pm (annual holidays: 25th July 2015 to 9th August 2015 inclusive);

- Schedule 1: Monday to Friday - 8 am to 12:30 pm and 1:30 pm to 6 pm;

- Schedule 2: Monday to Friday - 8 am to 12 pm and 1:30 pm to 5:30 pm;

- Schedule 3: Monday to Friday - 8 am to 12 pm and 1:30 pm to 5:30 pm;

- Schedule 4: Monday to Friday - 8 am to 12 pm and 2 pm to 5:30 pm.

The allocation of resources, determined by the project manager, is given in Table 3.3.

Name	Allocation
Project manager	A, B, C, G, N, O, P, T
Mechanical project assistant	A, B, D
Hydraulic project assistant	A, B, E
Computer automation project assistant	A, B, F
Design office (5 people)	B, C, G
Mechanical engineer	B, C, D, G, N, P, T
Electrotechnical engineer	B, C, F, I, J, K, N, P, T
Hydraulic engineer	B, C, E, H, N, P, T
Software engineer	B, C, F, J, L, M, N, O, P, T
Programmer 1	K, P
Programmer 2	L, P
Fitter 1	H, M, N, P
Fitter 2	G, H, N
Fitter 3	N, M
Fitter 4	J, M
Fitter 5	I, J
Technician 1	G, J, N, O, P
Technician 2	G, J, N, O, Q
Technician 3	I, M, P
Technician 4	I, M, Q, R
Secretary-editor	A, B, C, Q, R
Marketing (3 people)	S
Commercial services (3 people)	A, S, T
Logistics (2 people)	C, G, N
Quality control (3 people)	N, P, Q, S, T
Team leader 1	H, N
Team leader 2	I, N

Table 3.3. Allocation

The start date for the project is fixed as being 1st June 2015 at 8:00 am.

3.2.2. Creating and configuring the project

We will start by creating the project calendar, that is the factory hours – Monday to Friday, 7:00 am to 8:00 pm.

Change	Working Time								10.00.00.00.0		×
For <u>c</u> ale	endar: Factory timetable						•			Create <u>N</u>	ew Calendar
Calenda	ar 'Factory timetable' is a b	ase ca	lenda	ar.							
Legend	:	Click	on a	day t	o see	e its <u>v</u>	<u>v</u> orkir	ng tim	nes: Working t	imes for	June 3, 2015:
				Jur	ne 2	015			*		
۱ I I I I I I I I I I I I I I I I I I I	Working	М	Т	W	Th	F	S	S	• 7:00 /	AM to 8:0	00 PM
	Nonworking	1	2	3	4	5	6	7			
91		8	9	10	11	12	13	14	Based on: Defaul	t work w	eek on calendar
51	Edited working hours	15	16	17	18	19	20	21	'Factor	y timetal	ble'.
On thi	is calendar:	22	23	24	25	26	27	28			
31	Exception day	29	30								
31	Nondefault work week	F						-	-		
				1		1					
Excep	tions Work Weeks										
	Name					Start			Finish	*	D <u>e</u> tails
1	[Default]					NA			NA		Delete
2											Delete
3										=	
4											
5											
7											
8											
					Î				1	T	
<u>H</u> e	lp							0 <u>p</u> t	tions	ок	Cancel
L											

Figure 3.1. Creating the "Factory schedule" calendar

We will include the period where the factory is closed for annual holidays in the calendar exceptions, as well as public holidays (07/4/15, 9/7/15, 10/12/15, 11/11/15, 26/11/15, 12/25/15 and 01/01/16).

Change	Working Time											×
For <u>c</u> ale	endar: Factory timetable	(Proje	ct Cal	enda	ır)		•			Cre	ate <u>N</u>	ew Calendar
Calend	ar 'Factory timetable' is a b	ase ca	lenda	ar.								
1		Click								Inc	10 :	
Legend		CIICK	on a	day t Ianu	io see arv	201	<u>/</u> orkii 6	ig tin	ies:	January 1, 20	10 15 1	nonworking.
	Working	м	Т	W	Th	F	S	S				
	Nonworking					1	2	3		Based on:		
		4	5	6	7	8	9	10		Exception	'New	year's day' on
<u>31</u>	Edited working hours	11	12	13	14	15	16	17		calendar	Facto	ry timetable .
On th	is calendar:	10	10	20	21	20	20	24				
31	Exception day	18	19	20	21	22	23	24				
	Exception day	25	26	27	28	29	30	31				
<u>31</u>	Nondefault work week								Ŧ			
Excep	tions Work Weeks											
	Name					Start			Fi	nish	*	D <u>e</u> tails
1	Independence day					7/4/20	015		7/4	/2015		Delete
2	Annual holiday					7/25/	2015		8/9	/2015	=	Delete
3	Labor day					9/7/2	015		9/7	/2015		
4	Colombus day					10/12	/2015		10,	/12/2015		
5	Veterans day				1	1/11	/2015		11,	/11/2015	.	
6	Thanksgiving day					1/26	/2015	;	11/	/26/2015	.	
7	Christmas day				1	12/25	/2015	;	12/	/25/2015	.	
8	New year's day					L/1/2	016		1/1	/2016		
					_						-	
									•			
He	lp							Op	tions	ОК		Cancel
									_		_	

Figure 3.2. The exceptions in the factory calendar

We will also change the options:

- the week begins on a: Monday;
- default start time: 8:00 am;
- default finish time: 6:00 pm;
- hours per day: 7.5;
- hours per week: 37.5;
- days per month: 20.

oject Options	3 - x
General Display	Change options related to scheduling, calendars, and calculations.
Schedule	Calendar options for this project: 🕼 MecaTools1.mpp 💌
Proofing	Week starts on: Monday
Save	Fiscal year starts in: January
Language	✓ Use starting year for FY numbering
Advanced	Default start time: 8:00 AM
Customize Ribbon	Default end time: 6:00 PM
Quick Access Toolbar	Hours per day: 7.5 ribbon.
Trust Center	Hours per week: 37.5
	Days per <u>m</u> onth: 20
	Schedule
	Show scheduling messages ()
	Show assignment units as a: Percentage
	Scheduling options for this project:
	New tasks created: Manually Scheduled
	Auto scheduled tasks scheduled on: Project Start Date 💌
	Duration is entered in: Days
	Work is entered in:
	Default task type: Fixed Units
	New tasks are effort driven () Tasks will always honor their constraint dates () Autolic insected as more database. Channel tasks will always honor their constraint dates () Channel tasks are effort driven as the second tasks () Channel tasks are effort driven as the second tasks ()
	<u>Autominik inserieu or moved tasks</u> <u>Inserieu or moved tasks</u>

Figure 3.3. The project calendar options

We will now modify the project information, that is the start date and the calendar.

Project Informati	on for 'MecaTools'				×
Start <u>d</u> ate:	6/1/15 8:00 AM	•	C <u>u</u> rrent date:	2/9/15 8:00 AM	•
<u>F</u> inish date:	6/29/15 10:30 AM	-	<u>S</u> tatus date:	2/9/15 9:00 AM	-
Schedu <u>l</u> e from:	Project Start Date	•	C <u>a</u> lendar:	Factory timetable	•
All ta	sks begin as soon as possible.		<u>P</u> riority:	500	

Figure 3.4. Project information

Once these parameters have been entered, we will save the project under "MecaTools.mpp".

3.2.3. Entering tasks and durations

In addition to the tasks specified in the precedence table, we will add a "Project launch" task, with a duration of 0 days that will act as a start task as well as an "End of the project" task, also with a duration of 0 days, which will complete it.

Four main recap tasks are defined: "Design", "Prototype construction", "Tests and checks" and "Marketing", each containing several standard tasks. In order to carry out this work, the INDENT and OUTDENT TASKS functions in the ribbon will be used, found under the TASK tab in the SCHEDULE section.

The planning mode for tasks is set to "automatic mode" (TASK tab, TASKS section, AUTO SCHEDULE icon in the ribbon).

You can see the result obtained in Figure 3.5.

F	ILE	TAS	K RI	ESOURCE REPORT PROJECT VIEW	FOR	MAT												
	-	-	🔏 Cut	Calibri v 11 v		🔹 🤿 Mark on Tr	ick 🔹 🌙					+	*	+	12	5	-1	
			Cop	Calibri + 11 + 0x 25	× 50× 75× 100×	😵 Respect Lin	ks 🗡	\rightarrow	?				. ' '			P.		1
Ga	ntt urt -	Paste	💖 Forn	nat Painter B I U 🙆 🗸 👗 🏅	= 👾 🚥	💭 🕀 Inactivate	Manually Schedule	Auto	Inspect	Move	Mode	Task	Summa	ry Milesto	ne Delive	rable	Inform	ation .
VI	w		Clipboa	rd Font G	5	chedule	Pericular	- serverence	Tasks					Insert				PI
2	< ~	Proj	ject laun	ch														
		_	Task					Ju	n 1, '15		Jun 8, '15		Jun 1	15, 15	Ju	n 22, '15	i	Jur
		0	Mode +	Name 👻	Duration +	Start 👻	Finish	→ S M	TWTF	SS	MTW	TFS	SMT	WTF	SSM	TWT	FS	S M
	1		-	Project launch	0 days	6/1/15 8:00 AM	6/1/15 8:00 AN	1 + 6	/1									
	2		4	Defining specifications	4 wks	6/1/15 8:00 AM	6/16/15 3:00 PI	M										
	3		4	▲ Design	20 days	6/1/15 8:00 AM	6/16/15 3:00 P	мг				-						
	4		- +	Basic design	4 wks	6/1/15 8:00 AM	6/16/15 3:00 PI	M		_		_						
	5		-	Detailed design	3 wks	6/1/15 8:00 AM	6/11/15 4:30 PI	M		-								
	6		-4	Mechanical design	2 wks	6/1/15 8:00 AM	6/8/15 6:00 PM	1		-								
	7		-4	Hydraulic design	2 wks	6/1/15 8:00 AM	6/8/15 6:00 PM	1										
	8		÷	Automatic computer design	1 wk	6/1/15 8:00 AM	6/3/15 7:30 PN	1										
	9		4	Constructing prototype	35 days	6/1/15 8:00 AM	6/29/15 10:30	An I									_	
	10		-4	Mechanical construction	7 wks	6/1/15 8:00 AM	6/29/15 10:30	AA III				-						
	11		-4	Assembling a hydraulic system	4 days	6/1/15 8:00 AM	6/3/15 12:00 PI	M										
	12		-4	Assembling sensors and PLC	3 days	6/1/15 8:00 AM	6/2/15 5:30 PN	1										
	13		+	Wiring (electrical wiring, sensors, field network)	4 days	6/1/15 8:00 AM	6/3/15 12:00 PI	м										
	14		*	Developing and coding PLC application	4 wks	6/1/15 8:00 AM	6/16/15 3:00 PI	M										
	15		+	Developing and coding computer application	5 wks	6/1/15 8:00 AM	6/19/15 1:30 PI	M										
	16		4	Linking network to information system	1 day	6/1/15 8:00 AM	6/1/15 3:30 PM	•										
	17		*	Integration mechanics, hydraulics, automation	6 days	6/1/15 8:00 AM	6/4/15 2:00 PN											
	18		-	Tests and checks	10 days	6/1/15 8:00 AM	6/8/15 6:00 PM			-								
Ľ,	19		-	Network test	2 days	6/1/15 8:00 AM	6/2/15 10:00 A	M										
HAI	20		4	Testing and checking prototype	1 wk	6/1/15 8:00 AM	6/3/15 7:30 PM	1										
Ĕ	21		4	Technical documentation	2 wks	6/1/15 8:00 AM	6/8/15 6:00 PN	1										
Ā	22		+	✓ Marketing	5 days	6/1/15 8:00 AM	6/3/15 7:30 PN											
G	23		4	Finalizing technical documentation	2 days	6/1/15 8:00 AM	6/2/15 10:00 A	M										
	24		4	Commercial documentation	1 wk	6/1/15 8:00 AM	6/3/15 7:30 PM	1										
	25		-4	Presenting to client and approval	1 day	6/1/15 8:00 AM	6/1/15 3:30 PM	1										
	26		4	End of the project	0 days	6/1/15 8:00 AM	6/1/15 8:00 AN	1 + 6	/1									

Figure 3.5. The main recap tasks and traditional tasks entered into Microsoft Project

It might seem strange that the length for a task such as "Design" is automatically calculated at 20 days (recap task) despite the fact that it starts on 06/01/15 at 8:00 am and finishes on 06/16/15 at 3:00 pm, slightly fewer than 16 calendar days.

The same applies for other tasks where the duration has been manually entered. For example, the "Assembling sensors and PLC" task has a duration of three days but starts on 06/01/15 at 8:00 am and ends on 06/02/15, just less than two calendar days.

In reality, this is no error. Our project calendar "Factory schedule" features a working day (see Figure 3.2) that starts at 7:00 am and finishes at 8:00 pm, which is 13 hours long. If we look again at our two tasks, we can calculate by looking at the default options in Figure 3.3, which gives 7.5 h per day:

- "Design": 20 days, therefore $(20 \times 7.5)/13 \approx 11.538d = 11d +) 0.538d = 11d + 0.538 \times 13 \approx 11d + 7h$ to which we will add four unworked days (two Saturdays + two Sundays), or 11d + 4d + 7h = 15d + 7h. We can verify (with working days starting at 8am): 06/01/15 8:00 am + 15d 7h = 06/16/15 3:00 pm;

- "Assembling sensors and PLC": three days, therefore $(3 \times 7.5)/13 \approx 1.73d = 1d + 0.73d = 1d + 0.73 \times 13 \approx 1d + 9.5 h$. We can verify (with working days starting at 8 am): 06/01/15 8:00 am + 1d 9.5h = 06/02/15 5:30 pm.

3.2.4. Entering predecessors

We will continue building our project by adding the antecedents for each of the tasks.

A Task column (Text1) can be added to allow us to note the letters corresponding to the different tasks and to make it easier to input predecessors.

Once completed, this will give us the table and the Gantt chart shown in Figure 3.6.

Figure 3.6. The table featuring the filled "Task" and "Antecedents" columns

3.2.5. MPM network visualization

It is possible to visualize this whole project using an MPM network via the NETWORK DIAGRAM icon in the ribbon, under VIEW.

In this display mode, it is also possible to make modifications to the network, particularly relating to adding or deleting eventual links.

Using the zoom functions makes it possible to see certain sections of the network in greater detail. The visible data may vary, by default, but it will include the name of the task, the start date, the end date, its number, its duration and its resources, if they have been allocated.

Figure 3.7. A detailed look at some tasks from the "MecaTools" project

Figure 3.8. The MPM network (or task network) corresponding to the "MecaTools" project

The dotted lines mark the page edges (depending on the default printer settings) and indicate how it will be divided during printing. In our example, the network will be spread across 15 A4 pages.

3.2.6. Calculating slacks

With Microsoft Project, calculating slack is straightforward – all that is required is to complete the table to the left of the Gantt chart with columns for "Free slack" and "Total slack".

These are expressed by default in units similar to those used for duration.

	0	Task Mode –	Tark -	Name	Duration -	Shart	Einich	Predecerr	Free Stack	Total Slack	y 25, '15	Jun 15, '15 T W	Jul 6, 15	
1	-		10.00	Project Jaunch	0 days	6/1/15 8:00 004	6/1/15 8:00 004	Treaccess 4	0 days	0 days	0.6/1			
2			٨	Defining specifications	4 wkc	6/1/15 8:00 AM	6/16/15 2:00 PM	1	Owke	Owks	+ **			
3			^	4 Design	45 days	6/16/15 3:00 PM	7/22/15 2:30 PM		o web 0	0 days				
4			R	Basic design	4 wks	6/16/15 3:00 PM	7/2/15 9:00 AM	2	0 wks	0 wks		-		
5		-	c	Detailed design	3 wks	7/2/15 9:00 AM	7/14/15 5:30 PM	4	0 wks	0 wks			-	
6		-	D	Mechanical design	2 wks	7/14/15 5:30 PM	7/22/15 2:30 PM	5	0 wks	0 wks				Ь
7		-	F	Hydraulic design	2 wks	7/14/15 5:30 PM	7/22/15 2:30 PM	5	7 wks	7 wks				1
8		-	F	Automatic computer design	1 wk	7/14/15 5:30 PM	7/17/15 4:00 PM	5	0 wks	5.6 wks			_	=
9		-		 Constructing prototype 	54 days	7/17/15 4:00 PM	9/15/15 6:00 PM		0 days	0 days			-	+
10		-,	G	Mechanical construction	7 wks	7/22/15 2:30 PM	9/2/15 5:00 PM	6	0 wks	0 wks				*
11		-	н	Assembling a hydraulic system	4 days	9/2/15 5:00 PM	9/8/15 8:00 AM	7,10	0 days	0 days				
12		-	1	Assembling sensors and PLC	3 days	9/2/15 5:00 PM	9/4/15 1:30 PM	8,10	1 day	1 day				
13			J	Wiring (electrical wiring, sensors, field network)	4 days	9/8/15 8:00 AM	9/10/15 12:00 PM	11,12	0 days	0 days				
14		-	к	Developing and coding PLC application	4 wks	7/17/15 4:00 PM	8/18/15 10:00 AM	8	5.6 wks	5.6 wks				
15		-	L	Developing and coding computer application	5 wks	7/17/15 4:00 PM	8/21/15 8:30 AM	8	4.6 wks	5.6 wks			Ĭ.	
16			м	Linking network to information system	1 day	9/10/15 12:00 PM	9/10/15 7:30 PM	13,15	5 days	5 days				
17		-	N	Integration mechanics, hydraulics, automation	6 days	9/10/15 12:00 PM	9/15/15 6:00 PM	12,13,14	0 days	0 days				
18		-		Tests and checks	66 days	7/14/15 5:30 PM	9/21/15 6:30 PM		0 days	0 days			-	-
19			0	Network test	2 days	9/15/15 6:00 PM	9/16/15 8:00 PM	16,17	0 days	0 days				
20		-	P	Testing and checking prototype	1 wk	9/17/15 7:00 AM	9/21/15 6:30 PM	19,21	0 wks	0 wks				
21			Q	Technical documentation	2 wks	7/14/15 5:30 PM	7/22/15 2:30 PM	5	10.2 wks	10.2 wks			i i i	-
22		->		▲ Marketing	6 days	9/21/15 6:30 PM	9/25/15 11:30 AM		0 days	0 days				
23		-	R	Finalizing technical documentation	2 days	9/21/15 6:30 PM	9/23/15 7:30 AM	20,21	3 days	3 days				
24			s	Commercial documentation	1 wk	9/21/15 6:30 PM	9/24/15 5:00 PM	20,21	0 wks	0 wks				
25		-	т	Presenting to client and approval	1 day	9/24/15 5:00 PM	9/25/15 11:30 AM	23,24	0 days	0 days				
26				End of the project	0 days	9/25/15 11:30 AM	9/25/15 11:30 AM	25	0 days	0 days				

Figure 3.9. The table, to the left of the Gantt chart, to which the two columns: "Free slack" and "Total slack" have been added

It is also possible to show slack on a Gantt chart by configuring style bars.

We will now move on to entering resources in the Microsoft Project resources table.

Figure 3.10. The Gantt chart showing free and total slack. Below is shown the window for configuring style bars

3.2.7. Entering resources

Before entering resources, we will need to create the necessary calendars, "Timetable 1" to "Timetable 4" (see section 3.2.1).

To make it easier to create, we can copy elements of the calendar from the "Factory timetable" calendar, which will allow us to keep public holidays and the annual holiday period.

hange Workir	ng Time									X
⁻ or <u>c</u> alendar:	Factory	y timetab	le (Proje	ct Ca	lenda	r)		•		Create <u>N</u> ew Calendar
Calendar 'Fact	ory time	table' is a	a base ca	lend	ar.					
egend:			Click	on a	day t	o see	its <u>v</u>	<u>v</u> orkii	ng tin	nes: June 14, 2015 is nonworking.
Workin	a		.	-	Jur	1e 2	015			· *
	2		M		W	Ih	F	S	S	
Nonwo	rking		1	2	3	4	5	6	7	Based on:
			8	9	10	11	12	13	14	Default work week on calenda 'Eactory timetable'
31 Edited	working	hours	15	16	17	18	19	20	21	
On this calen	dar:	C					-	100		
31 Exception	on day	Creater	vew Bas	e Cai	enda	r	-	<i>.</i>	<u>_</u>	
	1	Name:	Timeta	ble 1						
31 Nondef	ault wo	0	Create n	ew b	ase ca	alend	ar			
Exceptions	Work V	0	Make a d	ору (of	Facto	ory tir	netak	le -	• <u>c</u> alendar
	TTOIL I						_			
Name								Ok		Cancel <u>Details</u>
1 Indep	endenc		_	_	-	-				Delete
2 Annua	al holida	у					7/25/.	2015		8/9/2015 E
3 Labor	day					9	9/7/20	015		9/7/2015

Figure 3.11. Creating resource calendars using a copy of the "Factory schedule" calendar

When several resources have the same function, we will differentiate them and each of them will be represented on a single row.

By default, if no capacity is given, each of the resources is considered as working at 100% on the project.

The value of the capacity is often linked to the fact that a resource can be shared between several projects and can therefore have a capacity of somewhere between 0 and 100% for any given project.

The design brief did not specify any hourly rate for overtime and so one hasn't been entered.

As with the majority of cases, when we are dealing with a labor resource, the allocation of cost is proportionate (to the time spent on the project).

Figure 3.12 shows the resources table.

FILE	TAS	K RESOURC	E REPOR	T PROJECT	VIEW	FORM	ΑT								
10050			٠				-	E Leveling	Options						
	-		6 7+	e -			→	Thear Le	veling						
Team	Assi	Assign Resource Add Information No			tes Details	Level L	evel Level	리맘 Next Ov	erallocation						
Planner*	Kesol	Jrces Pool*	Kesources *	Descent	Selection Resource All Intercoveraliocation										
VIEW		ssignments	insen	Propert	Material Capacit Ix					Ix.	Ix. hrs.				
	0	Resource name			Туре 👻	Label •	 Initials 	Group 👻	max. 👻	standard 👻	sup, 👻	Coût/Uti 🗸	Accrue At	 Base Calendar 	r +
1		Project man	lager		Work		PM		100%	\$52.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 1	
2		Assistant m	echanic for	project	Work		AM		100%	\$38.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 1	
3		Assistant hy	draulic for p	project	Work		AH		100%	\$38.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 1	
4		Computer a project	utomation a	assistant for	Work		CAA		100%	\$41.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 1	
5		Design offic	e		Work		DO		100%	\$215.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 2	
6		Mechanical	engineer		Work		ME		100%	\$42.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
7		Electrical en	ngineer		Work		EE		100%	\$44.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
8		Hydraulic er	ngineer		Work		HE		100%	\$42.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
9		Computer e	ngineer		Work		CE		100%	\$44.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
10		Developer 1			Work		D1		100%	\$35.50/hr	\$0.00/hr	\$0.00	Prorated	Timetable 2	
11		Developer 2	2		Work		D2		100%	\$35.50/hr	\$0.00/hr	\$0.00	Prorated	Timetable 2	
12		Fitter 1			Work		F1		100%	\$18.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
13		Fitter 2			Work		F2		100%	\$18.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
14		Fitter 3			Work		F3		100%	\$18.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
15		Fitter 4			Work		F4		100%	\$18.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
16		Fitter 5			Work		F5		100%	\$18.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
17		Technician 1	L		Work		T1		100%	\$24.50/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
18		Technician 2	2		Work		T2		100%	\$24.50/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
19		Technician 3	3		Work		Т3		100%	\$24.50/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
20		Technician 4	1		Work		T4		100%	\$24.50/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
21		Secretary-e	ditor		Work		SE		100%	\$20.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 4	
22		Marketing			Work		МК		100%	\$160.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 4	
23		Commercial	sector		Work		CS		100%	\$190.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 4	
H 24		Logistics			Work		LO		100%	\$158.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 4	
25		Quality cont	trol		Work		QC		100%	\$144.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
26		Team leade	r 1		Work		TL1		100%	\$30.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	
0 27		Team leade	r 2		Work		TL2		100%	\$30.00/hr	\$0.00/hr	\$0.00	Prorated	Timetable 3	

Figure 3.12. The resources table

It should be noted that this table gives initials that will be useful a bit later on when displaying resources on the Gantt chart.

3.2.8. Allocating resources

We will now specify what resources will be allocated to each of the tasks.

The program will automatically recalculate the data depending on the constraints imposed (schedule, cost, slack, charges, potential over-use, etc.).

To make the allocations, we will use the RESOURCE NAMES column in the Gantt chart view.

The RESOURCE INITIALS column has been added and it will be displayed behind each bar in the chart.

	Ð	Task Mode v	Task 👻	Name 👻	Duration +	Start v	Finish 👻	Predecess +	Free Slack 🐱	Total Slack 👻	Resource Names v	Resource Initials 👻
1		-		Project launch	0 days	6/1/15 8:00 AM	6/1/15 8:00 AM		0 days	0 days		
2		-	A	Defining specifications	5.33 wks	6/1/15 8:00 AM	7/2/15 10:30 AM	1	0 wks	0 wks	Assistant hydraulic for p	AH, AM, CAA, PM, SE
3		-		Design	99.73 days	7/2/15 10:30 AM	10/6/15 5:30 PM		0 days	0 days		
4		-	в	Basic design	7.79 wks	7/2/15 10:30 AM	8/28/15 11:00 AM	2	0 wks	0 wks	Project manager, Compu	PM,CAA,DO,ME,EE,
5		-	с	Detailed design	4.41 wks	8/28/15 11:00 AM	9/24/15 9:30 AM	4	0 wks	0 wks	Design office, Mechanica	DO, ME, EE, HE, CE, SE
6		-	D	Mechanical design	2.23 wks	9/24/15 9:30 AM	10/6/15 5:30 PM	5	0 wks	0 wks	Assistant mechanic for p	AM, ME
7		-	E	Hydraulic design	2.23 wks	9/24/15 9:30 AM	10/6/15 5:30 PM	5	18.89 wks	18.89 wks	Assistant hydraulic for p	AH,HE
8		-	F	Automatic computer design	1.21 wks	9/24/15 9:30 AM	10/1/15 8:30 AM	5	0 wks	16.17 wks	Computer automation a	CAA,EE,CE
9		-		 Constructing prototype 	137.13 day	10/1/15 8:30 AM	1/27/16 10:00 AM		0 days	0 days		
10 🛉		-	G	Mechanical construction	12.91 wks	10/6/15 5:30 PM	12/28/15 2:30 PM	6	0 wks	0 wks	Project manager, Design	PM, D0, ME, F2, T1, T2
11		-	н	Assembling a hydraulic system	4 days	12/28/15 2:30 PM	1/4/16 9:30 AM	7,10	0 days	0 days	Hydraulic engineer, Fitter 1,Fitter 2,Team	HE, F1, F2, TL1
12		-	1	Assembling sensors and PLC	3 days	12/28/15 2:30 PM	12/31/15 10:30 AM	8,10	1.6 days	1.6 days	Electrical engineer, Fitter 5, Technician 3, Tec	EE, F5, T3, T4, TL2, F4
13 🛉		-	J	Wiring (electrical wiring, sensors, field network)	4 days	1/4/16 9:30 AM	1/7/16 3:00 PM	11,12	0 days	0 days	Electrical engineer, Computer engineer, Fitt	EE,CE,F4,F5,T1,T2
14		-	к	Developing and coding PLC application	4.24 wks	10/1/15 8:30 AM	10/28/15 4:00 PM	8	16.17 wks	16.17 wks	Electrical engineer, Developer 1	EE,D1
1.5		-	L	Developing and coding computer application	5.29 wks	10/1/15 8:30 AM	11/4/15 12:00 PM	8	14.64 wks	18.95 wks	Computer engineer, Developer 2	CE,D2
16 🛉		-	м	Linking network to information system	1 day	1/7/16 3:00 PM	1/8/16 2:00 PM	13,15	22 days	22 days	Computer engineer, Fitter 1, Fitter 3, Technici	CE,F1,F3,T3,T4
17 🛉		-	N	Integration mechanics, hydraulics, automation	16 days	1/7/16 3:00 PM	1/27/16 10:00 AM	12,13,14	0 days	0 days	Project manager, Mechanical engineer,Ele	PM, ME, EE, HE, CE, FI
18		-		 Tests and checks 	166.47 day	9/24/15 9:30 AM	2/12/16 10:00 AM		0 days	0 days		
19		-	0	Network test	2.87 days	1/27/16 10:00 AM	1/29/16 2:00 PM	16,17	0 days	0 days	Project manager, Mecha	PM, ME, CE, T1, T2
20		-	P	Testing and checking prototype	2.29 wks	1/29/16 2:00 PM	2/12/16 10:00 AM	19,21	0 wks	0 wks	Project manager, Electrical engineer,Hydr	PM, EE, HE, CE, D1, D2
21 🕴		-	Q	Technical documentation	2.24 wks	9/24/15 9:30 AM	10/8/15 9:30 AM	5	26.47 wks	26.47 wks	Technician 2. Technician	T2, T4, SE
22		-		 Marketing 	11.2 days	2/12/16 10:00 AM	2/22/16 4:00 PM		0 days	0 days		
23		-	R	Finalizing technical documentation	2.27 days	2/12/16 10:00 AM	2/16/16 10:00 AM	20,21	5.2 days	5.2 days	Technician 4, Secretary-editor	T4,SE
24		-	s	Commercial documentation	1.13 wks	2/12/16 10:00 AM	2/19/16 10:00 AM	20,21	0 wks	0 wks	Marketing,Commercial	MK,CS,QC
25		-	т	Presenting to client and approval	1.93 days	2/19/16 10:00 AM	2/22/16 4:00 PM	23,24	0 days	0 days	Project manager, Mechanical engineer,Ele	PM, ME, EE, HE, CE, C
26		-		End of the project	0 days	2/22/16 4:00 PM	2/22/16 4:00 PM	25	0 days	0 days		

Figure 3.13. The table with the "Resource names" and "Resource initials" columns

In Figure 3.13, note that task durations have been calculated as well as dates. The same applies for the free and total slack.

In the indicators Column i on the left, we notice small logos in the shape of red characters marking several rows (tasks G, J, M, N and Q). Their role is to indicate over-allocation of resources. These problems will need to be resolved in order to maintain a consistent project while trying to keep within the restrictions.

		Management		15	Jun	8, 15	Jul 1	8, 15	Aug 17, '15	Sep 21, '15	Oct 26, '15	Nov 3	10, '15 T	Jan 4	, '16 T	Feb 8,	'16 ¢	Mar 1	4, '16 T	Apr
Marge libre	*	Marge totale	+ n	-	VV		r 3	3	IVI I	VV 1	F 3 3	IVI		V¥		r 3	3	IVI		**
	0 days	0 da	iys	1	1 6/1			-												
-	Owks	Ow	rks			14	н,ам,сал	,PM,SE,	LS											
	0 days	0 da	iys			1				1										
	0wks	Ow	rks						PM,CAA,D	O,ME,EE,HE,CE,SI	E,AH,AM									
	0wks	Ow	rks							DO, ME, EE, HE, C	E,SE,LO,PM									
	0wks	Ow	rks							AM,ME										
1	5,19 wks	15,19w	rks							AH,HE										
	0wks	12,61w	rks							CAA,EE,CE		_								
	0 days	0 da	iys																	
	0 wks	0w	rks									-	PM,D0,	ME,F2,T	1,72,10					
	0 days	0 da	iys									1	HE,F	1,F2,TL1						
1	,13 days	1,13 da	iys									1	E,F5,	13,T4,TL	2,54					
	0 days	0 da	ays										TEE,	CE,F4,F5	T1,T2					
1	2,61 wks	12,61w	rks								EE,D1									
1	1,04 wks	13,19 w	rks							a second	CE,D2		1							
10	,73 days	10,73 da	iys										CE	F1,F3,T3	3,T4					
	0 days	0 da	iys										1	PN	I,ME,EE	HE,CE,F1,F	2,F3,T1	,T2,LO,Q	C,TL1,T	12
	0 days	0 da	iys							1										
	0 days	0 da	iys											Тр	M,ME,C	E,T1,T2				
	0 wks	0w	rks											- J-	PN	EE,HE,CE,	01,D2,F	1, T1, T3,0	QC,ME	
2	0,33 wks	20,33 w	rks							T2,T4,5E										
	0 days	0 da	iys												-	1				
4	93 days	5,2 da	iys												Ter	4,SE				
	0 wks	Ow	rks													MK,CS,QC				
	0 days	0 da	ys												1	PM,ME,E	E,HE,CE	,CS,QC		
	0 days	0 da	iys													21/01				

Figure 3.14. The new slack calculated and the Gantt chart showing resource initials

It is rare to have a complex project without detecting evidence of over-allocation. Microsoft Project has a number of tools to resolve these issues.

3.2.9. Resolving over-allocations

In order to solve the problem posed by over-allocations, there are a range of solutions available:

- rescheduling the task for the next date the resource is available;

- replacing this resource with another available resource that can perform the same work;

- taking on another resource to carry out the work (add a resource);

- rescheduling the task by adjusting the slack.

Using the Team Planner or the resource use table, we can examine the periods of over allocation for each resource in detail. These are outlined in red, across from each of the relevant resources. The time axis located in the upper part allows us to determine the dates and the periods for which the normal workload has been exceeded (linked to the schedule that the resource has to follow).

In our example, in Figure 3.15, we can see an over-allocation for the "Computer engineer", "Fitter 1", "Fitter 3" and "Technician 2" resources.

Figure 3.15. The team planner. We can see the periods of over-allocation for the "Computer engineer", "Fitter 1" and "Fitter 3" resources

For the first three, the time intervals where there is an over-allocation are as follows:

- Monday 12/28 from 10:00 am to 11:00 am and 1:00 pm to 5:00 pm;

- Tuesday 12/29 from 8:00 am to 9:00 am.

On the resource use table, we can see these same over-allocations in more detail, along with the actual number of work hours to be carried out.

		Presenting to client and approval	9 hrs	Work						
9	٠	 Computer engineer 	734.5 hrs	Work	7h	8.5h	8.5h	11h	13.5h	
		Basic design	216 hrs	Work						
		Detailed design	119.5 hrs	Work						
		Automatic computer design	41.5 hrs	Work						
		Wiring (electrical wiring, sensors, field network)	30 hrs	Work	7h	8.5h	8.5h	6h		
		Developing and coding computer application	187.5 hrs	Work						
		Linking network to information system	7.5 hrs	Work				2.5h	5h	
		Integration mechanics, hydraulics, automation	60 hrs	Work				2.5h	8.5h	
		Network test	17 hrs	Work						
		Testing and checking prototype	46 hrs	Work						
		Presenting to client and approval	9.5 hrs	Work						
10		Developer 1	200.5 hrs	Work						
		Developing and coding PLC application	150 hrs	Work						
		Testing and checking prototype	50.5 hrs	Work						
11		A Developer 2	245.5 hrs	Work						
		Developing and coding computer application	187.5 hrs	Work						
		Testing and checking prototype	58 hrs	Work						
12	٠	Fitter 1	167.5 hrs	Work	1.5h			5h	13.5h	
		Assembling a hydraulic system	30 hrs	Work	1.5h					
		Linking network to information system	7.5 hrs	Work				2.5h	5h	
		Integration mechanics, hydraulics, automation	65 hrs	Work				2.5h	8.5h	
		Testing and checking prototype	65 hrs	Work						
13		4 Fitter 2	421 hrs	Work	1.5h			2.5h	8.5h	
		Mechanical construction	321 hrs	Work						
		Assembling a hydraulic system	30 hrs	Work	1.5h					
		Integration mechanics, hydraulics, automation	70 hrs	Work				2.5h	8.5h	
14	۰	Fitter 3	82.5 hrs	Work				5h	13.5h	
		Linking network to information system	7.5 hrs	Work				2.5h	5h	
		Integration mechanics, hydraulics, automation	75 hrs	Work				2.5h	8.5h	
15		Fitter 4	52.5 hrs	Work	7h	8.5h	8.5h	6h		
		Assembling sensors and PLC	22.5 hrs	Work						
		Wiring (electrical wiring, sensors, field network)	30 hrs	Work	7h	8.5h	8.5h	6h		

Figure 3.16. The resource use table featuring the number of hours for each resource

By configuring the display, we can obtain other information. This is shown in Figure 3.17, where, for each resource and each task, the following elements will appear: "Work", "Over-allocation", "Cost", and "Remaining availability".

We will remove our "software engineer", from task no. 13, "Wiring (electrical, sensors, field network, etc.)" because, following a discussion with their colleagues, it turns out that the same work can be carried out without them.

Once this has been removed, the over-allocation for task no. 13 will disappear.

In task no. 21, "Technical documentation", we will replace "Technician 2" with "Technician 3" who can carry out the same work and who is available on that date.

Figure 3.17. A more detailed display showing the resource use table

As a result, the over-allocation for task no. 10, "Mechanical construction" will disappear. Indeed, "Technician 2" was also used during this same period and can now focus exclusively on this task.

		0	Task Mod∈ ↓	Task 👻	Name	•	D
	1		-		Project launch	()
	2			Α	Defining specifications	5	5.
	3		->		⊿ Design	9	9
	4			в	Basic design	7	1.
	5			С	Detailed design	4	4.
	6			D	Mechanical design	2	٤.
	7			E	Hydraulic design	2	2.
	8		->	F	Automatic computer design	1	ι.
	9				Constructing prototype	1	L
	10			G	Mechanical construction	1	c
	11			н	Assembling a hydraulic system	4	4
	12			1	Assembling sensors and PLC	3	3
	13			J	Wiring (electrical wiring, sensors, field network)	4	ŧ
	14			к	Developing and coding PLC application	4	4.
	15			L	Developing and coding computer application	5	<i>5</i> .
	16	٠		м	Linking network to information system	1	í,
	17	•		N	Integration mechanics, hydraulics, automation	1	16
	18				Tests and checks	1	10
	19			0	Network test	1	2.
	20			P	Testing and checking prototype	2	2.
	21			Q	Technical documentation	2	٤.
	22				Marketing	1	11
	23			R	Finalizing technical documentation	2	2.
	24			s	Commercial documentation	1	i.
RT	25		-	т	Presenting to client and approval	1	i.
HA	26				End of the project	()
0							

Figure 3.18. The over-allocations in tasks no. 10, 13 and 21 have disappeared
There are now only two tasks left showing over-allocation: no. 16, "Network computer system" and no. 17, "Mechanical, hydraulic, computer integration".

"Computer engineer", "Fitter 1" and "Fitter 3" are the over-allocated resources. In order to solve this problem, we will ask the program to reschedule task no. 16 for the next available date (Figure 3.19).

Figure 3.19. Rescheduling task no. 16 for the next available date

Once this operation has been carried out, everything is as it should be, and there is no longer any over-allocation.

1			Project launch	0	4 6/1
2		А	Defining specifications	5	AH,AM,CAA,PM,SE,CS
3	-4		✓ Design	9	
4		в	Basic design	7	PM,CAA,DO,ME,EE,HE,CE,SE,AH,AM
5		С	Detailed design	4	D0,ME,EE,HE,CE,SE,LO,PN
6		D	Mechanical design	2	AM,ME
7		E	Hydraulic design	2	Ан,не
8		F	Automatic computer design	1	CAA,EE,CE
9			Constructing prototype	1	
10		G	Mechanical construction	1	
11	-4	н	Assembling a hydraulic system	4	
12		1	Assembling sensors and PLC	3	
13		J	Wiring (electrical wiring, sensors, field network)	4	
14		K	Developing and coding PLC application	4	EE,D1-
15		L	Developing and coding computer application	5	-CE,D2-
16	-4	м	Linking network to information system	3	
17		N	Integration mechanics, hydraulics, automation	1	
18			Tests and checks	1	I
19		0	Network test	2	
20		Ρ	Testing and checking prototype	2	
21	-4	Q	Technical documentation	2	T2,T4,SE
22			 Marketing 	1	
23		R	Finalizing technical documentation	2	
24		S	Commercial documentation	1	
25		т	Presenting to client and approval	1	
26			End of the project	0	

Figure 3.20. There are no remaining over-allocated tasks

We can now consider this project to have been properly scheduled.

3.2.10. Viewing the project timeline

In order to obtain a more general view of the "MecaTools" project, it is possible to attach a simple or more detailed timeline to the project.

For our example, we have chosen to put the recap tasks in legend form (above the time axis) and to display the other tasks in detail.

The critical tasks have been differentiated using different background colors.

3.2.11. Using WBS coding

The Work Breakdown Structure (WBS) is a means by which we can divide a project hierarchically with the tasks broken down into different levels. Today, this is often referred to as a project management flowchart.

It was the US Department of Defense who developed this concept in the 1950s before it was later adopted by various companies.

Its aim is to make project organization easier.

With Microsoft Project, we can use a form of coding based on the WBS principle, which can also be personalized. Its structure is based on an initial main code that represents the project itself by default.

For our "MecaTools" project, we will create a code whose main prefix will be "1", followed by a series of ordered numbers.

Using the WBS tool from the ribbon, under the PROJECT tab, we will create the code structure (Figure 3.22).

WBS Co	de Definition	in 'MecaTools'	172		x				
Code p Project	oreview: Code <u>P</u> refix:	1.1.1 1.							
Code n	<u>n</u> ask (excludin	g prefix):							
Level	Se	quence	Length	Separator					
1	Numbers (or	dered)	Any						
	Numbers (or	dered) 🗶	Any	Any .					
					-				
<mark>√</mark> <u>G</u> er	erate WBS co	de for new task							
Veri	ify uniquenes	s of new WBS cod	es						
<u>H</u>	elp		OK	Canc	el				

Figure 3.22. The window for creating the WBS code structure

Next, we will add a WBS column in the table linked to the Gantt chart.

		0	Task Mod∈ ↓	WBS 🗸	Task 👻	Name 👻	Duration +	Start 👻	Finish 👻	Predecess -
	1			1.1		Project launch	0 days	6/1/15 8:00	6/1/15 8:00	
	2		-,	1.2	Α	Defining specifications	5.88 wks	6/1/15 8:00	7/7/15 8:30	1
	3			1.3		▲ Design	95.28 days	7/7/15 8:30	10/7/15 8:(
	4			1.3.1	в	Basic design	6.05 wks	7/7/15 8:30	8/21/15 5::	2
	5			1.3.2	С	Detailed design	5.28 wks	8/21/15 5:2	9/24/15 9::	4
	6		-,	1.3.3	D	Mechanical design	2.23 wks	9/24/15 9:2	10/7/15 8:0	5
	7			1.3.4	E	Hydraulic design	2.23 wks	9/24/15 9:2	10/7/15 8:0	5
	8			1.3.5	F	Automatic computer design	1.12 wks	9/24/15 9:2	9/30/15 2::	5
	9			1.4		Constructing prototype	108.74 day	9/30/15 2:2	1/4/16 10:	
	10		-,	1.4.1	G	Mechanical construction	10.7 wks	10/7/15 8:(12/10/15 3	6
	11			1.4.2	н	Assembling a hydraulic system	4 days	12/10/15 3	12/16/15 1	7,10
	12		-	1.4.3	1	Assembling sensors and PLC	3 days	12/10/15 3	12/15/15 1	8,10
	13			1.4.4	J	Wiring (electrical wiring, sensors, field network)	4 days	12/16/15 1	12/21/15 4	11,12
	14		-,	1.4.5	к	Developing and coding PLC application	4.25 wks	9/30/15 2:2	10/28/15 1	8
	15			1.4.6	L	Developing and coding computer application	5.29 wks	9/30/15 2:2	11/4/15 8:2	8
	16		-,	1.4.7	м	Linking network to information system	1.47 days	12/21/15 4	1/4/16 10:5	13,15
	17			1.4.8	N	Integration mechanics, hydraulics, automation	8.8 days	12/21/15 4	1/4/16 8:2:	12,13,14
	18		-	1.5		▲ Tests and checks	128.34 day	9/24/15 9:2	1/13/16 9:	
	19			1.5.1	0	Network test	2.25 days	1/4/16 10:5	1/6/16 8:54	16,17
	20		-,	1.5.2	Р	Testing and checking prototype	1.27 wks	1/6/16 8:54	1/13/16 9:5	19,21
	21			1.5.3	Q	Technical documentation	2.27 wks	9/24/15 9:2	10/8/15 9::	5
	22		-,	1.6		Marketing	10.4 days	1/13/16 9:	1/21/16 9:	
ł.	23			1.6.1	R	Finalizing technical documentation	2.39 days	1/13/16 9:	1/15/16 10	20,21
1	24		-	1.6.2	s	Commercial documentation	1.13 wks	1/13/16 9:	1/20/16 9:5	20,21
ŝ	25			1.6.3	т	Presenting to client and approval	1.27 days	1/20/16 9:5	1/21/16 9:5	23,24
1	26		-,	1.7		End of the project	0 days	1/21/16 9:5	1/21/16 9:5	25
1										

Figure 3.23. The task table and its WBS number column

In Figure 3.23, we can see the hierarchical coding that we have defined. This is automatically applied in ascending order by level depending on the importance of the task (recap or not).

3.2.12. Generating dashboards and reports

There is still the possibility of editing different dashboards in order to ensure that the project is monitored and presented.

To add to this, we can also generate reports to provide an overview of the use of resources, the cost of tasks, etc.

Below, you will find some examples of possible dashboards and reports.

Microsoft Project has a number of possibilities for creating different types of dashboards and graphs using raw data from the project or a pivot table of data that can be exported to a spreadsheet such as Microsoft Excel for further use.

3.2.12.1. Tasks/work time dashboard

This table is based on displaying task use. It is possible to open a task to view the time details depending on the resources, as Figure 3.24 shows with the task "Mechanical construction".

Tank hom Work Defails T S W S T Project Jaund Ohrs 0 days U/JS 80. Work L <td< th=""><th></th><th></th><th></th><th></th><th></th><th>1, 15</th><th>Sep 21</th><th>, 15</th><th>Oct 2</th><th>5, 15</th><th></th></td<>						1, 15	Sep 21	, 15	Oct 2	5, 15	
Project launch Ohrs 0 days // 15 8/K Work Image 1 Image 1 <thimage 1<="" th=""> Image 1 Image 1</thimage>	Task Name 👻	Work 👻	Duration 👻	Start	Details	T	S	W	S	Т	
Defining specifications 945.5 hrs 5.88 with // 15 8.02 work Page in the specifications Page in the specification	Project launch	0 hrs	0 days	l/15 8:00	Work						
Design .2005. hm 95.22 days /15.83. Work /20.23 bit 179.139 /20.48 D Basic design .30.5 hm 50.24 wis /15.83. Work //15.23. Work //15.24. Work </td <td>Defining specifications</td> <td>945.5 hrs</td> <td>5.88 wks</td> <td>L/15 8:00</td> <td>Work</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Defining specifications	945.5 hrs	5.88 wks	L/15 8:00	Work						
Desciencial 8.80.5 hrs 6.05 with 7/15 8.34 Work P Image Low	4 Design	,240.5 hrs	95.28 days	1/15 8:30	Work	719.25h	332.13h	179.13h			
□ Detailed design .045.6 hm 5.28 wide /15 5.21 Work 97.28.1 Metailed design .050.28 hm 2.28 wide /15 5.21 Work 67.25.1 83.8	Basic design	,810.5 hrs	6.05 wks	7/15 8:30	Work						
□ Machanical design 150.25 hrs 2.23 wit V15 9.21 Work 67.25.h 838 Machanical design 150.25 hr 2.23 wit V15 9.21 Work 67.25.h 838.h Machanical design 150.25 hr 2.23 wit V15 9.21 Work 99.88.h 131.33 Machanical design 131.31 hr 1.12 wit V15 9.21 Work 97.25.h 97.33.h 95.45 hr 92.34 hr 91.05 wit 99.88.h 131.33 hr 91.22 wit V15 9.21 Work 97.85 hr 92.31 hr 91.23 wit 99.88.h 98.43 hr 91.05 wit 643.54 hr 94.35 hr 92.31 hr 91.23 wit 99.88.h 99.88.h 99.84 hr 91.05 wit 99.88 hr 92.5 hr 92.31 hr 91.23 wit 99.88 hr 92.5 hr 92.31 hr 91.23 wit 99.88 hr 92.5 hr 92.31 hr 91.23 wit 99.84 hr 92.5 hr 92.31 hr 91.23 wit 99.84 hr 92.5 h	Detailed design	,016.5 hrs	5.28 wks	1/15 5:2:	Work	719.25h	97.75h				
Pirtydnalic disgn LGD, Shr 2.23 witz Work Ø7.25 witz BBB Feature Mathematic Mathmatic Mathmatim Mathematic Mathmatic Mathematim Mathematic Mathma	Mechanical design	L50.25 hrs	2.23 wks	1/15 9:25	Work		67.25h	83h			
Automatic computer design 131 bit 1:12 wit /// 15 :22 Work 99.88b 131.38 image of the second	Hydraulic design	L50.25 hrs	2.23 wks	1/15 9:25	Work		67.25h	83h			
c 0.mstuning prototype .002. Am 108.74 days 1/91.52.25 Work 744.138 935.54 674.53 974.135 972.65 674.53 974.136 972.65 674.53 974.135 972.65 674.55 6	Automatic computer design	113 hrs	1.12 wks	1/15 9:23	Work		99.88h	13.13h			
	Constructing prototype	,092.4 hrs	108.74 days)/15 2:2:	Work			784.13h	935.5h	703h	3
Project manager 202.5 hrs //15.804 Work 62.888 99h 100.3h Design office 232.5 hrs //15.804 Work 55.886 80h 100.3h Mechancel engineer 232.5 hrs //15.804 Work 55.886 80h 102h Ifter 2 322.5 hrs //15.804 Work 59.386 93.5h 102h Technician 1 330.5 hr //15.804 Work 59.386 93.5h 102h Logistics 328.25 hr //15.804 Work 59.386 93.5h 102h Passembling anydraulic system 220 hrs 4 days /153.53 Work 60	 Mechanical construction 	2,188.5 hrs	10.7 wks	10/7/15	Work			408.63h	643.5h	694.63h	100
Design office 202.3 hrs //15.8.0t Work S5.888 88.h 99.h Mechanical engineer 291.5 hrs //15.8.0t Work S5.888 89.3.5h 102h Ifter 2 321.5 hrs //15.8.0t Work S5.888 89.3.5h 102h Technician 1 30.5 hrs //15.8.0t Work S5.888 89.3.5h 102h Technician 2 372.2.5 hrs //15.8.0t Work S5.2.88 83.5h 102h Assembling a hydraulic system 120 hrs 4 days /15.3.5t Work S5.2.88 83.5h 90h P Assembling sensors and PLC 135 hrs 3 days 3/15.35t Work S6.7.75h 13.1.3h D Developing and coding computer age 737 hrs 5.29 wids 1/15.24t Work S6.7.75h 178.88h 8.8.8h D Integration mechanics, hydraulic s, and the days 1/15.24t Work S6.8h S6.8h 8.8.8h S6.8h S6.8h S6.8h S6.8h S6.8h S6.8h S6.8h S6.8h S6.8h S6.8h <td>Project manager</td> <td>262.5 hrs</td> <td></td> <td>1/15 8:08</td> <td>Work</td> <td></td> <td></td> <td>62.88h</td> <td>99h</td> <td>100.63h</td> <td></td>	Project manager	262.5 hrs		1/15 8:08	Work			62.88h	99h	100.63h	
Mechanizal regime 221. Aris //15.8.04 Work 9.3.88 93.3.8 1020 Fitter 2 321. bri //15.8.04 Work 9.9.388 93.3.8 1020 Technicion 1 350.5. bri //15.8.04 Work 9.9.388 93.3.8 1020 Technicion 2 772.2.8.01 //15.8.04 Work 9.3.88 93.3.8 1020 Logistics 282.53. bri //15.8.04 Work 9.2.8.8 93.3.8 1020 Assembling anytraulic system 120 bris 4 days /153.53 Work 0 0.2.8.8 0.5.3.8 93.3.8 1020 P Wring [electrical wiring sensors, rif 130 bris 4 days /153.53 Work 0 187.758 178.888 8.3.8.8 P Beveloping and coding computer age 375 bris 5.29 wiss 3/15 2.22 Work 0 187.758 178.888 8.3.8.8 P Integration mechanics, hydrauling sensors, rif 205 bris 1.04 days 1/15 4.21 Work 0 0.0.1 0.0.1 P Integration mechanics, hydrauling sensors and	Design office	262.5 hrs		1/15 8:08	Work			55.88h	88h	96h	
Preter 2 322 Aris V/35.80k Work 9.9.38k 93.35k 102h Technickino 1 390.3 km V/35.80k Work 9.9.38k 93.35k 102h Technickino 2 772.25 km V/35.80k Work 9.9.38k 93.35k 102h Logistics 326.25 km V/35.80k Work 9.5.38k 93.35k 102h Assembling a hydraulic system 120 km 5 days V/35.35k Work 0 </td <td>Mechanical engineer</td> <td>291.5 hrs</td> <td></td> <td>7/15 8:08</td> <td>Work</td> <td></td> <td></td> <td>59.38h</td> <td>93.5h</td> <td>102h</td> <td></td>	Mechanical engineer	291.5 hrs		7/15 8:08	Work			59.38h	93.5h	102h	
Perchnickin 1 390.3 hrs //15.8 dt Work 9.9.38 03.3 h 102h Technickin 2 772.25 hrs //15.8 dt Work 9.9.38 03.3 h 102h Logistis 282.55 hrs //15.8 dt Work 9.9.38 03.3 h 102h Assembling a hydraulic system 120 hrs.4 days //15.3 dt Work 0 52.3 h 82.5 h 50h B Assembling and coding computer as 735 hrs.1 52 wts //15.3 dt Work 0 127.7 h 133.1 dt 0 0 0 0 0 133.1 dt 0 0 0 0 137.7 sh 133.8 dt 135.2 dt Work 0 0 0 0 137.7 sh 138.8 dt 135.2 dt Work 0 0 0 0 0 0 137.7 sh 138.8 dt 135.2 dt Work 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fitter 2	321 hrs		7/15 8:08	Work			59.38h	93.5h	102h	
Pachnickino 2 722.28 /hrs 7/15.804 Work 9.38.8 93.3.4 102h Logpitte 128.25 /hrs 7/15.804 Work 5.2.38h 92.5.4h 97.838 93.3.4h 102h P Assembling structure and processing 120 /hrs 4/05 /153.35 Work 4 5.2.38h 92.5.4h 6 4 6	Technician 1	350.5 hrs		7/15 8:08	Work			59.38h	93.5h	102h	
Logottics 122.2 hrs 1/13.6 xl 1/13.7 xl <t< td=""><td>Technician 2</td><td>372.25 hrs</td><td></td><td>7/15 8:08</td><td>Work</td><td></td><td></td><td>59.38h</td><td>93.5h</td><td>102h</td><td></td></t<>	Technician 2	372.25 hrs		7/15 8:08	Work			59.38h	93.5h	102h	
Descending a hydraulic system 120 hrs 4 days 173 33.3 Work Nork Nork <th< td=""><td>Logistics</td><td>328.25 hrs</td><td></td><td>7/15 8:08</td><td>Work</td><td></td><td></td><td>52.38h</td><td>82.5h</td><td>90h</td><td></td></th<>	Logistics	328.25 hrs		7/15 8:08	Work			52.38h	82.5h	90h	
Descending sensors and PLC 33 hrs 3 days 2013 33: Work Control (1) Co	Assembling a hydraulic system	120 hrs	4 days	0/15 3:5:	Work						
Winnig electrical winnig sensors, M. Johns 4 days /15 10.3; Work Image: Sensors, M. Johns 4 days /15 10.3; Work Image: Sensors, M. Johns 4 days /15 202; Work Image: Sensors, M. Johns 4 days J/15 202; Work Image: Sensors, M. Johns 4 days J/15 202; Work Image: Sensors, M. Johns 4 days J/15 202; Work Image: Sensors, M. Johns 4 days J/15 422; Work Image: Sensors, M. Johns 4 days J/15 42; Work Image: Sensors, M. Johns 4 days J/15 42; Work Image: Sensors, M. Johns 4 days J/15 42; Work Image: Sensors, M. Johns 4 days Jis 51; Image: Sensors, M. Johns 4 days Jis 52; Work Image: Sensors, M. Johns 4 days Jis 52; Work Image: Sensors, M. Johns 4 days Jis 52; Work Image: Sensors, M. Johns 4 days Jis 52; Jis 51; Johns 4 days Jis 52; Work Image: Sensors, M. Jis 51; Johns 4 days Jis 52; Work Image: Sensors, M. Jis 51; Jis 51; Jis 51;	Assembling sensors and PLC	135 hrs	3 days	0/15 3:5:	Work						
Developing and coding (PC applicati W0.8k Ins 4.25 wis //15 2.21 Work 187.75h 113.13h Developing and coding computer ag' 375 hrs 5.29 wis //15 2.21 Work 187.75h 178.88h 8.38h Developing and coding computer ag' 375 hrs 5.29 wis //15 4.21 Work 187.75h 178.88h 8.38h Developing and coding computer ag' 75 hrs 5.29 wis //15 4.21 Work 16 6	Wiring (electrical wiring, sensors, fi	150 hrs	4 days	15 10:55	Work						
Developing and coding computer ag 37.75 hrs 5.29 wick 37.25 hrs 5.29 wick 37.75 hrs 5	Developing and coding PLC applicat	300.88 hrs	4.25 wks	0/15 2:2:	Work			187.75h	113.13h		
Dubling network to information syst 20.63 hrs 1.47 days 1/15 4.21 Work Image and the system of the system o	Developing and coding computer ap	375 hrs	5.29 wks	0/15 2:2:	Work			187.75h	178.88h	8.38h	
Integration mechanics, hydraulics, a 797 hts & 8 days /15 4:22 Work <	Linking network to information syst	26.03 hrs	1.47 days	1/15 4:2:	Work						
J Tests and checks 780.88 hrs 128.14 days V15 92.1 Work 93.88 h 131.5 h D Network tests 73 hrs 2.23 days 145.92 k Work 9 151.5 h D Testing and checking prototype 403.5 hrs 1.27 w/s V16.82 k Work 9 16 151.5 h D Testing and checking prototype 403.5 hrs 1.27 w/s V15.82 k Work 9 16 151.5 h 151.5 h 16	Integration mechanics, hydraulics, a	797 hrs	8.8 days	1/15 4:2:	Work						
Determine 75 hrs 2.25 days 718 10.54 Work Adv © Testing and checking prototype 460.5 hrs 1.27 wks 1/16 85.4 Work Image: Comparison of the com	4 Tests and checks	/80.88 hrs	128.34 days	1/15 9:23	Work		93.88h	151.5h			
D Testing and checking prostrype 440.5 hrs 1.27 wis //18.8.3 without set in the	Network test	75 hrs	2.25 days	16 10:54	Work						
D Description 243.84 hrs 2.27 w/s V15.922 Work 93.88 h 151.5h 4 Marketing 199.5 hrs 10.4 days V16.954 Work	Testing and checking prototype	460.5 hrs	1.27 wks	5/16 8:54	Work						
Abarketing 199.5 hs 10.4 days V/16.954 Work Image: Comparison of the comparison of	Technical documentation	245.38 hrs	2.27 wks	1/15 9:23	Work		93.88h	151.5h			
b Finalizing technical documentation 30.93 hrs 2.39 days 3/15 9.54 Work b Commercial documentation 112.5 hrs 1.13 w/s 3/16 9.54 Work b Persenting to client and approval 56.08 hrs 1.27 days 3/15 9.54 Work end of the project 0 hrs 0 days 1/15 9.54 Work	 Marketing 	199.5 hrs	10.4 days	1/16 9:54	Work						
D Commercial documentation 112.5 hrs 1.13 w/s V1/19.93/ Work P Presenting to client and approval 5608 hrs 1.27 days V1/59.54 Work End of the project O hrs 0 days V1/69.54 Work	Finalizing technical documentation	30.93 hrs	2.39 days	3/16 9:54	Work						
> Presenting to client and approval 56.08 hrs 1.27 days 1/16 9:54 Work End of the project 0 hrs 0 days 1/16 9:54 Work	Commercial documentation	112.5 hrs	1.13 wks	3/16 9:54	Work						
End of the project 0 hrs 0 days L/16 9:5€ Work	Presenting to client and approval	56.08 hrs	1.27 days)/16 9:54	Work						
	End of the project	0 hrs	0 days	L/16 9:56	Work						

Figure 3.24. Table displaying work time for each of the tasks

3.2.12.2. Resources/work time dashboard

This follows the same principle as the previous table, but is guided by resources, with the possibility of seeing details for each of the tasks. See the resource "Mechanical engineer" from Figure 3.25.

			A	ug 17, '15		Sep 21, '15		Oct 26, '15	i
Resource Name	👻 Work 👻	Details	M	W	F	S	Т	т	S
Unassigned	0 hrs	Work							
Project manager	815 hrs	Work	24.5h	81.63h	65.88h		89.88h	108h	64
Assistant mechanic for project	439.88 hrs	Work	63h	26.38h		70.63h	4.38h		
Assistant hydraulic for project	439.88 hrs	Work	63h	26.38h		70.63h	4.38h		
Computer automation assistant for project	337.5 hrs	Work	24.5h			37.5h			
Design office	525 hrs	Work	38.5h	72.13h	40.38h		79.88h	96h	
 Mechanical engineer 	756.75 hrs	Work	48h	76.63h	35.88h	66.63h	93.5h	102h	7
Basic design	166.5 hrs	Work	48h						
Detailed design	112.5 hrs	Work		76.63h	35.88h				
Mechanical design	75.25 hrs	Work				66.63h	8.63h		
Mechanical construction	291.5 hrs	Work					84.88h	102h	7
Integration mechanics, hydraulics, automation	45 hrs	Work							
Network test	15 hrs	Work							
Testing and checking prototype	43.5 hrs	Work							
Presenting to client and approval	7.5 hrs	Work							
Electrical engineer	637.5 hrs	Work	59.5h	81.63h	42.38h	66.13h	93.5h	27.88h	
Hydraulic engineer	531.28 hrs	Work	59.5h	98.13h	42.88h	66.63h	8.63h		
Computer engineer	680.93 hrs	Work	59.5h	101.5h	42.88h	66.63h	93.5h	65.38h	
Developer 1	191.38 hrs	Work				27.13h	88h	35.75h	
Developer 2	228 hrs	Work				27.13h	88h	72.38h	
Fitter 1	137 hrs	Work							
Fitter 2	412 hrs	Work					84.88h	102h	7
Fitter 3	63.5 hrs	Work							
Fitter 4	52.5 hrs	Work							
Fitter 5	52.5 hrs	Work							
> Technician 1	500 hrs	Work					84.88h	102h	7
Technician 2	563.38 hrs	Work				66.63h	93.5h	102h	7
> Technician 3	73.5 hrs	Work							
> Technician 4	130.13 hrs	Work				66.63h	18.5h		
Secretary-editor	539.43 hrs	Work	52.5h	89.5h	51.88h	58.63h	16.5h		
Marketing	37.5 hrs	Work							
Commercial sector	240.5 hrs	Work							
Logistics	548.75 hrs	Work		67.63h	75h	23.88h	74.88h	90h	6
Quality control	150.53 hrs	Work							
> Team leader 1	91 hrs	Work							
Team leader 2	83.5 hrs	Work							
		Mar ala							

Figure 3.25. Table showing the work time for each of the resources

3.2.12.3. Visual and chart reports

Using the report generator allows us to create the chart in Figure 3.26, comparing the work time for each of the resources to their availability.

To get this result, we had to extract the data in order to create a histogram, made by crossing multiple data (pivot table).

When the chart is formatted, it is possible to save it in Microsoft Excel as an HTML page (in order to use it on a website) or even as an Open Document Spreadsheet (ODS), a document format for spreadsheets).

Figure 3.27 shows the Microsoft Excel spreadsheet that allowed us to create the previous chart.

1	FILE HOME	INSERT	PAGE L	AVOUT	FORMULAS	DATA	REVIEW VIEW	DEVELOPER AN	ALYZE DESIGN			
	3				🐶 🚡	0+	🛍 Store 🔛 🕨	Ta 🚺	11 - E 10 - 10 -	* I		
'iv	otTable Recommen	nded Table	Pictures	Online	Shapes SmartArt !	creenshol	My Apps - Bing	People Recomme	nded	PivotCh	art Po	we
	PivotTab	iles		Pictures			Maps	s Graph Chart	s 🔷 🖂		V	iew
	Tables				Illustrations		Apps		Charts		G Rej	por
A	4 *	X	$f_{\rm N}$	Туре								
1	А			в		С	D	E	F	G	н	
1												
2												
3						Data						
1	Type	-T Resou	rces			 Work 	Work Availability					
1	Work	Unass	igned			(0					
1		Projec	t manage	Hr .		780	615					
		Assist	ant mech	anic for	project	375	1020					
		Assist	ant hydra	ulic for	project	375	1020					
		Comp	uter autor	nation a	ssistant for project	t 354	1041					
5		Desig	omce	1		667,5	5/2,5					
1		Fleets	inical eng	ineer		690	627,5					
2		Electri	cal engin	eer		467.6	110					
Å		Comp	no engin	Cel		407,0	717.6					
5		Develo	ner 1	leel		187 6	1052.5					
6		Develo	ner 2			225	1015					
7		Fitter	1			120	1197.5					
B		Fitter	2			337.5	980					
9		Fitter	3			52 5	1265					
0		Fitter	1			52.6	1265					
1		Fitter	5			52.5	1265					
2		Techn	cian 1			390	927.5					
3		Techn	cian 2			352.5	965					
4		Techn	cian 3			152,5	1165					
5		Techn	cian 4			122	1195,5					
6		Secret	ary-edito	r		644,5	518					
7		Marke	ting			37,5	1125					
8		Comm	ercial se	ctor		211,5	951					
9		Logist	CS			466,5	696					
0		Qualit	/ control			148,5	1169					
1		Team	leader 1			91	1226,5					
2		Team	leader 2			67,5	1250					
3	Work Total					8612	26418					
4	Grand Total					8612	26418					

Figure 3.27. The Microsoft Excel spreadsheet, created in Microsoft Project, that allowed us to generate the chart in Figure 3.26

3.3. Project monitoring

Once the project is underway, the project manager will be responsible for monitoring it. Each change made, whether this is to tasks or to resources, is automatically registered and the scheduling is entirely recalculated (if the automatic scheduling method is activated for the relevant task(s)).

As time passes and the project progresses through the calendar, a task can be selected and given a completion percentage using the burndown tools available in the ribbon under the TASK tab in the SCHEDULE group.

Figure 3.28. The burndown and scheduling tools available in the ribbon under the TASK tab

The project can also be managed with an appropriate burndown, by specifying a status date (PROJECT tab, STATUS DATE tool in the ribbon) then by updating the project using the UPDATE PROJECT tool in the STATUS group. In this instance, Microsoft Project considers all the tasks as having been completed up to this point (by default).

Figure 3.29. The tools for managing the status date under the PROJECT tab

The burndown in the task completion is visible on the Gantt chart. The task bars have a bold line down the middle indicating burndown.

Figure 3.30. Here we can see the burndown (bold horizontal line in the middle of the task bars)

To conclude, it can be observed that the bars in the Gantt chart, which correspond to each of the tasks, are interactive, and can be adjusted to move the task along the timeline (cursor in the shape of a crossed arrow), stretched to extend the duration of the task (cursor in the shape of an arrow pointing right will appear at the end of the bar), or given a burndown (cursor in the shape of a % sign and a triangle will appear at the start of the bar). Naturally, each modification is carried out instantaneously and the project is recalculated as a result, if the automatic scheduling mode has been activated for the relevant task (Figure 3.31).

Figure 3.31. The functions of the different shapes of cursor that appear when hovering over a bar representing a task in a Gantt chart

3.4. Conclusion

There are various other observations we could make on the functionalities available with Microsoft Project. However, I think that the elements presented here show the main possibilities available with the program.

I have intentionally left out the question of multi-project management, a form of management using sub-projects and resource sharing. To develop this further, to learn about these possibilities and to discover more, I would advise you to consult the Bibliography and the list of internet links included at the end of this book.

Road Traffic Simulation

4.1. Before we start

Unlike the previous chapters, here I will introduce several pieces of free simulation software before finishing with an example developed using AnyLogic.

Why was this choice made?

It was made in accordance with the wealth of options available to the editors. There is a vast range of software available, covering one or several types of models, and these are often quite complex and difficult to master. They require an excellent knowledge of the theory of road networks, infrastructures, signaling, land topography and various other concepts in order to create a model that will satisfy the design brief while staying in keeping with the right approach.

In the space of just one chapter, it would be difficult to explain all of these elements to the reader and to apply them within a chosen application.

I would advise you to consult section 4.3 from Chapter 10 of Volume 1 of this work to obtain an overview of the possibilities available with the main applications available on the market and to download and use the trial versions to allow you to form your own opinions.

We will deal with several examples and in these I will focus on certain functions that will then enable the reader to discover key aspects of road traffic management.

For each example, I will provide a brief overview of the application. I will also provide links to websites where you will be able to download these programs in the internet links section of the bibliography at the end of this work.

4.2. Ring road

This program is available online at¹: www.traffic-simulation.de. The software is the creation of Martin Treiber, a specialist in traffic modeling and the author of several works that can be found in the bibliography.

This application provides an excellent approach to congestion problems and their consequences: slowing down, blockages, the build-up of vehicles.

Slight changes to any of the parameters will have a significant impact on traffic flow, in the short or the long term.

Figure 4.1. The website of Martin Treiber's simulator "Ring road"

¹ This link was active at the time of writing. Should any problems arise, use your preferred search engine.

The role of each of the sliders positioned above the simulation ring is given below:

- *Timewarp*: multiplier timescale (from 0.1 to 20 times);
- Density: density, number of vehicles per kilometer and per road;
- Scale: scale of the window of the simulator (from 0.6 to 5 pixels/meter);
- Truck fraction: percentage of trucks relative to other vehicles (from 0 to 50%);
- Desired speed v0: vehicle speed (from 18 to 144 km/h);
- *Time gap T*: time gap between vehicles (from 0.6 to 3 seconds);
- *Minimum gap s0*: space between vehicles (from 0.5 to 5 meters);
- Max acceleration: maximal acceleration of vehicles (from 0.3 to 3 m/s^2);

- *Comf deceleration*: comfortable deceleration of vehicles, i.e. without emergency braking, in normal conditions (from 0.5 to 5 m/s^2).

While running the application, the user can refer to or consult the links available at the right of the display window for more information.

Three traffic models are also presented:

- the *acceleration model* based on the Intelligent Driver Model (IDM) developed by Treiber, Hennecke and Helbing in 2000;

- the *lane-changing model* based on the Minimizing Overall Braking Induced by Lane (MOBIL) changes model by Kesting, Treiber and Helbing;

– Boundary conditions, which is based on the conditions at the limits of the traffic area chosen for the study for periodic cases (circular or ring circuit) or road sections that are not required to be periodic.

At the time of writing, some features of the application are not yet active, including road closure and speed limits.

4.2.1. A simulation example

Let's start with a simulation using the parameters in Figure 4.2.

Figure 4.2. The parameters for simulation no. 1

With these sliders we can observe that the traffic remains fluid although reductions in speed can occur.

If we are to increase the vehicle density from 25 to 50, a congestion appears, which could be considered a blockage.

By reducing speed to 60 km/h and the density to 35 veh/km/lane with a gap between vehicles of 1.0 m, traffic will become fluid again and will remain within the blockage limits.

We can see the priority influence of density on traffic flow. Other variables, such as the speed or the distance between vehicles are less significant, although they still contribute to the phenomenon.

4.3. RoadTrafficSimulator

This program was developed by Artem Vokhin in 2014 and is available to download at²: *github.com/volkhin/RoadTrafficSimulator*. It is based on the traffic models IDM and MOBIL mentioned in the previous section. To use it you will require a web browser such as Mozilla Firefox, Microsoft Internet Explorer, Safari, Google Chrome, etc. It was developed in CoffeeScript³ and HTML5⁴.

² This line was active at the time of writing. Should any problems arise, use your preferred search engine.

³ CoffeeScript is a programming language created in 2009 by J. Ashkenas that compiles into Javascript.

⁴ HTML 5.0 is the most recent major version of HyperText Markup Language (HTML), a language for formatting data, that was devised for creating websites. It dates back to 1991 and is based on Standard Generalized Markup Language (SGML).

You can design your own network or even manage it automatically and view traffic flow within a model incorporating crossings with traffic lights.

Figure 4.3. The application RoadTrafficSimulator in use with its control interface at the top right

Several parameters can be adjusted using the control interface:

- *World*: opens the drop-down menu containing the options *save*, *load*, *clear and generateMap*;

- *Save*: save the current model;
- Load: load a saved model;
- *Clear*: delete the model;
- generateMap: automatically generates a random model;
- *carsNumber*: specifies the number of vehicles (from 0 to 200);

- *instantSpeed*: snapshot of average speed for all vehicles in the model;

- visualizer: opens the drop-down menu containing the *running* and *debug* options;

- running: launches (ticked) or stops (unticked) the simulation;
- *debug*: displays the trajectories of vehicles at intersections;
- *scale*: modifies the scale of the model (from 0.1 to 2);
- *timeFactor*: accelerates or slows down the simulation (from 0.1 to 20);
- *lightsFlipInterval*: modifies the rhythm of traffic lights (from 0 to 400);
- Close Controls: Minimizes and closes the control interface window;
- Open Controls: Opens the control interface window.

Using the scroll wheel on the mouse allows you to zoom in or out on the model (double-use with the **SCALE** adjustment of the interface). Right-clicking followed by a drag and drop will move the model in the window.

A grid made up of points will formalize a square grid that will still be found at the bottom of the window of the model.

4.3.1. Constructing a model

Once you have downloaded and decompressed RoadTrafficSimulator, open the RoadTrafficSimulator folder and double-click on the index.html folder.

A model should appear, generated by default. Before you begin you can adjust the sliders in order to familiarize yourself with the interface and to see the influence this has on the existing road network.

The vehicles are represented by small colored rectangles and each street will feature four lanes.

The traffic lights at each intersection are represented by small green triangles indicating the direction and the priority of traffic.

Figure 4.4. Two intersections with the indicators (green triangles) representing the traffic lights. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

Strictly speaking, there are two stages to building a model:

- start by deleting the existing model. Click on **CLEAR** in the configuration interface (make sure that **RUNNING** is ticked, otherwise the deletion will not be taken into account);

- hold down the SHIFT key on your keyboard and click seven times on different areas in the window to create intersections for your future model (see Figure 4.5);

Figure 4.5. The 7 intersections created for our model

- click on the intersections that you have created, hold down the SHIFT key on your keyboard and, while maintaining a left-click, drag to connect to another intersection. A road with two lanes should appear;

- repeat the same steps in order to create each of the sections of the network from Figure 4.6;

Figure 4.6. Our network once the different intersections have been connected

- click on **SAVE** in the interface in order to save your model. No dialog box will appear but the model will have been saved. The next time you launch the application, this is the model that will appear. Clicking **LOAD** will also bring up this model, which will become the default model.

4.3.2. Activating the simulation from the model

In the interface, specify a number of vehicles using the CARSNUMBER cursor.

Your simulator should start automatically if the **RUNNING** option is ticked.

By varying the number of vehicles and the rhythm of the traffic lights, LIGHTSFLIPINTERVAL, you will be able to see the queues of vehicles and the overall snapshot speed, INSTANTSPEED, for all vehicles present in your network.

The aim is to reach a high overall snapshot speed while avoiding congestion and blockages at intersections.

Figure 4.7. Blockage and congestion of traffic lanes around an intersection (traffic jam)

4.4. Intersection simulator

This application was developed in Java by Kresimir Kovacic and simulates junctions with the management of traffic lights. It is possible to modify various parameters and a graph will give a real-time display of the average waiting time in traffic routes.

This software is distributed under the Creative Commons license and is available to download at⁵: *sourceforge.net/projects/traffic-simulator/*.

A right-click on the "intersection_simulator.jar" folder will launch the program.

⁵ This link was active at the time of writing. Should any problems arise, use your preferred search engine.

COMMENT 4.1.- In order for this application to function properly on your machine, Java must be installed. If you don't have Java on your system, it is available to download for free at *www.java.com/en/*. If this address doesn't work, use a search engine and search for "Java".

Figure 4.8. The Intersection simulator program window

The display window is divided into five main sections:

- the graphic simulation zone, on the left, that shows the junction at which we can view the circulation of vehicles and the different indicators;

- the parameter table, on the right, where we can specify the values of the different variables;

- the time management cursor, at the bottom left, that allows us to speed up, slow down or stop the simulation;

- the graph area, beneath the parameter table, that displays the lane management histogram;

- the set of interface commands beneath the histogram, which contains the number of cycles carried out by the simulation and the five buttons available to the user.

	Down	Right	Up	Left				
Traffic light:	5	0	0	0				
Left sign:	0	0	0	0				
Additional arrow:	0	0	0	0				
Direction probability:	1		1	1		1		
Density (per min):	12 - 18		0 - 0	0 - 0	0 - 0			
Output tracks:	2 tracks	•	2 tracks	•	2 tracks	•	2 tracks	•
Track type:	Left & up/right	4	Left & up/right	•	Left & up/right	•	Left & up/right	•
Input tracks:	2 tracks 💌		2 tracks		2 tracks		2 tracks	

Let's now look in more detail at the different parameters in the table:

Figure 4.9. The parameter table

- each of the four columns represents one of the directions at the intersection: **DOWN** (bottom), **RIGHT** (right), **UP** (top), **LEFT** (left);

- the first row, **TRAFFIC LIGHT**, is for the main light of the chosen direction. The value represents the rhythm at which the lights change;

Figure 4.10. The TRAFFIC LIGHT system for the bottom lane (Down)

- the second row, **LEFT SIGN**, is for the additional light for the extra lane. Its value represents the rhythm at which the lights change;

Figure 4.11. The TRAFFIC LIGHT system and LEFT SIGN for the bottom lane (Down)

 the ADDITIONAL ARROW row adds an arrow indicating direction when it is possible to turn. Its value represents how long it will remain activated;

Figure 4.12. The ADDITIONAL ARROW, shown to the right of the TRAFFIC LIGHT system

- the **DIRECTION PROBABILITY** row governs the probability of how vehicles will be distributed across the different lanes;

- the **DENSITY (PER MIN)** row specifies the number of vehicles arriving per minute. An interval can be determined using a minimal value (on the left) and a maximal value (on the right);

- the **OUTPUT TRACKS** row specifies the number of exit lanes, 1 or 2, for each direction;

- the **TRACK TYPE** row specifies the three possible directions that vehicles can take. **LEFT & UP/RIGHT** to go left, or straight on and right together. **LEFT/UP & RIGHT** to go left and straight on together, or to go right. **LEFT/UP & UP/RIGHT** to go left and straight on together, or to go straight on and right together.

- the **INPUT TRACKS** row specifies the number of entry lanes, 1 or 2, for each direction.

COMMENT 4.2.– Please note that the **OUTPUT TRACKS** and **INPUT TRACKS** parameters have matching functions. As a result, certain combinations are logically impossible.

Beneath the table there is a histogram featuring a continuous display of the average waiting time in seconds for each direction.

Figure 4.13. The histogram showing average waiting times

The number of vehicles waiting at each direction is shown on the right within the graphic simulation zone.

Figure 4.14. Here we can see the number of vehicles waiting on the right-hand side for each direction. In this example, 3 at the bottom, 99 on the right, 41 at the top and 8 on the left

We will now look at the function of each of the five buttons beneath the histogram:

- **RESET**: Resets the simulation and takes on the new parameters once they have been entered.

- **EXPORT PARAMETERS**: Saves the parameters entered into the table in TXT format, under your chosen name. A dialog box will open to confirm that your parameters have been saved.

- **IMPORT PARAMETERS**: Import the parameters from an exported file. A dialog box will open to confirm that the chosen folder has been imported.

- **EXPORT GRAPH**: Saves the graph from the simulation as a ZIP file containing a PNG image, "*Graph.png*", representing the histogram and a file, "*Simulation_results.txt*", in TXT format, that will contain the results of the simulation.

Figure 4.15. An example of a TXT file extracted from an exported ZIP file, containing the results of the simulation

- EXIT: exit the simulator.

Finally, moving the cursor over the graph simulation zone will allow you to vary the speed, from a complete stop **STOP** to up to 16 times real speed (once).

Once you have understood the use for these parameters and the different features of the application, it becomes very easy to simulate an intersection, including its different lanes and traffic lights.

4.5. Green Light District (GLD)

This program is a traffic simulator that allows you to create your own road network by incorporating different types of road with multiple traffic lanes and intersections controlled by traffic lights.

It was developed in Java at the Institute of Information and Computing Sciences at the University of Utrecht in the Netherlands. It is under license of the GNU General Public License version 2.0.

The concept behind the creation of GLD was to create a simulator based on the "intelligent" management of traffic lights.

Imagine that each car stopped at an intersection communicates its position in the queue and its final destination to a global system for triggering signals. The latter would then be able to select the optimal solution for reducing the waiting time for vehicles in the short and long term and would apply this for their entire journey, which would include one or several intersections controlled by traffic lights.

The overall control of the management of traffic lights is based on a distributed multi-agent system where mutual communication and cooperation ensures the best possible coordination.

GLD features several types of traffic light controllers, standard or training, in order to test and compare a range of solutions relating to the flow of vehicles in a network. Furthermore, it is possible to find out the type of vehicle – car, bus or bike – and use this information in accordance with statements defined by the experimenter.

Furthermore, the system is able to "learn", allowing it to become increasingly efficient over time.

It is available to download at⁶: *sourceforge.net/projects/stoplicht/*.

Although it does not present all of the features of the most recent version of the application, the documentation is available to download as a compressed file, "gld_rel07_docs.zip" at: sourceforge.net/projects/stoplicht/files/OldFiles/gld_rel07_docs.zip/download.

⁶ This link was active at the time of writing. Should any problems arise, use your preferred search engine.

The specifications of the software, version 0.9.2, are available to download at: *sourceforge.net/projects/stoplicht/files/OldFiles/gld specs 0.9.2.zip/download*.

The version provided is not compiled, and you will need to install a Java compiler if you haven't already. You will then be able to compile sources.

Information on how to install the Java compiler can be found in Appendix 2 of this work.

4.5.1. GLD compilation

After downloading GLD, you should have a 570.6 Ko ZIP file named "gld_rel131_source.zip". Version 1.3.1 is the most recent.

Decompress the file, open the folder "gld_rel131_source", and you should have a text file, "very_quick_howto_build_and_run.txt" and a folder "gld".

This version of GLD was developed using an older version of Java (pre 1.5), and it is necessary to specify this aspect during compilation, otherwise you will have errors caused by a variable known as "*enum*", unless you are using an older version of Java.

Open the folder "gld rel131 source", then enter the command:

javac -source 1.4 gld/*.java and confirm by pressing ENTER.

Figure 4.16. The command for launching the compilation in Apple OSX (at the top) and in Microsoft Windows (at the bottom)

You should obtain a result similar to the one in Figure 4.17.

```
\Theta \Theta \Theta
                         gld_rel131_source — bash — 80×24
                                                                                         10<sup>20</sup>
nd may not be used as an identifier
(use -source 5 or higher to use 'enum' as a keyword)
                           CountEntry current_entry = (CountEntry) enum.nextElement
();
./gld/algo/tlc/SL6TLC.java:315: warning: as of release 5, 'enum' is a keyword, a
nd may not be used as an identifier
(use -source 5 or higher to use 'enum' as a keyword)
         Enumeration enum = count.elements();
./gld/algo/tlc/SL6TLC.java:316: warning: as of release 5, 'enum' is a keyword, a
nd may not be used as an identifier
(use -source 5 or higher to use 'enum' as a keyword)
         while(enum.hasMoreElements()) {
./gld/algo/tlc/SL6TLC.java:317: warning: as of release 5, 'enum' is a keyword, a
nd may not be used as an identifier
(use -source 5 or higher to use 'enum' as a keyword)
             CountEntry current_entry = (CountEntry) enum.nextElement();
Note: Some input files use or override a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
45 warnings
iMac-27:gld_rel131_source jeanmichelreveillac$
                                                                             C:\Windows\system32\cmd.exe
warning: [options] bootstrap class path not set in conjunction with -source 1.4
warning: [options] source value 1.4 is obsolete and will be removed in a future
release
 warning: [options] target value 1.4 is obsolete and will be removed in a future
 elease
 warning: [options] To suppress warnings about obsolete options, use -Xlint:-opti
ons.
Note: Some input files use or override a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
 C:\Users\JeanMi\Desktop\gld_rel131_source>
```

Figure 4.17. Result after compilation in Apple OSX (at the top) and in Microsoft Windows (at the bottom)

4.5.2. Launching the GLD

GLD is made up of two main applications: the editor "GLDEdit" and the simulator "GLDSim".

Using the editor, it is possible to build your network by determining the lanes and intersections and then confirming your model.

Figure 4.18. The Green Light District editor

This can be launched using the command "java gld.GLDEdit" on your command prompt.

Figure 4.19. The editor launch file, in Microsoft Windows using the command prompt (at the top) and in Apple OSX using Terminal (at the bottom)

The simulator will, among other actions, open the model developed with the editor, position the vehicles in your network, assist you with the animation of the simulation, determine statistics and provide you with different options for managing traffic lights.

Figure 4.20. The "GLDSim" simulator in Green Light District

This can be launched using the command: "java gld.GLDsim" on your command prompt.

Figure 4.21. The command for launching the simulator, in Microsoft Word using the command prompt (at the top) and in Apple OSX using Terminal (at the bottom)

4.5.3. The editor toolbar

The GLD editor features a main toolbar with the following functions (Figure 4.22):

Figure 4.22. The GLD editor toolbar

- A: Create a new model, WIDTH and HEIGHT;
- B: Open an existing model. GLD files are ".infra" type;
- C: Save a model. The extension should be ".infra" type;
- D: Model scale from 25 to 250 %;
- E: Centre the model in the window;
- F: Move the model in the window;
- G: Zoom in on the model;
- H: Select an item;

- I: Create an intersection. In this instance a drop-down menu will appear at the right of the toolbar, enabling you to select the type of intersection (*Edge node; Traffic lights; No signs; Net-tunnel*;

- J: Create a road linking two nodes;

- K: Add a lane to an existing link;
- L: Open the dialog box for the properties of the selected item;
- M: Help.

COMMENT 4.3.-

- In order for help to function, you will need to move the "docs" folder, which contains the ".html" files for the previously downloaded documentation into the "gld" folder (see section 4.5).

- To access the specifications from help, you will need to create a file "specs" in the "docs" folder and move the content from the "gld_specs_0.9.2" inside it (see section 4.5).

As with the editor, the simulator also has its own toolbar.

Figure 4.23. The GLD simulator toolbar

- A: Open an existing model. GLD files are ".infra" type;
- B: Save a simulation. The extension should be ".sim" type;
- C: Model scale from 25 to 250%;
- D: Centre the model in the window;
- E: Move the model in the window;
- F: Zoom in on the model;
- G: Select an item;

-H: Open the drop-down menu for selecting vehicle type: CAR, BUS or BICYCLE;

- I: **STEP** Move the simulation one step forward;
- J: RUN Launch the simulation;
- K: **PAUSE** Pause the simulation;
- L: **STOP** Stop the simulation;
- M: Choose the simulation speed : LOW, MEDIUM, HIGH, MAXIMUM;
- N: Open the dialog box for the properties of the selected item;
- O: Help.

4.5.4. An example using GLD

We will now create a simple model using GLD. Open "GLDEdit".

The network that we will set up is the one shown in Figure 4.24.

Figure 4.24. The road network for our example, featuring 4 intersections, F1 to F4. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

It includes four intersections, F1, F2, F3 and F4, which are all controlled by traffic lights. Every road has five lanes and there are five entries and exits for vehicles. By default, the lanes will feature every type of vehicle.

4.5.4.1. Creating a model

COMMENT 4.4.– The capital letters between brackets in the text describing how to create a model refer to Figure 4.22.

This will occur as follows:

- in the GLD editor, in order to display the grid and to correctly position the different items of the network, open the **OPTIONS** menu and select **TOGGLE GRID**;

- click on the icon for creating intersections (I), select the type *"Traffic lights"* and position the four nodes (squares with black lines) F1, F2, F3 and F4;

- if there is an error it is possible to delete an element by right-clicking on the latter and selecting **DELETE**;

- the nodes will be numbered automatically, starting from 0, during creation;

- continue by placing five "*Edge node*" type intersections (squares with blue lines). These nodes border the model that generate and receive the flow of vehicles;

Figure 4.25. The four "Traffic lights" type intersections in GLDEdit

Figure 4.26. The five "Edge node" type intersections" added to four "Traffic lights" blocks

- next, select the type "No signs" and position a change of direction that will link F2 to F4;

Figure 4.27. Each intersection block

- in the toolbar, select the tool for creating a route between two nodes (J) and create the different junctions;

Figure 4.28. The model showing road junctions (in pink). The junctions show the traffic lights set up by default

- in the **OPTIONS** menu, select **VALIDATE** and confirm that the model is correct. The **GENERAL CONFIGURATION** window will be displayed.

Figure 4.29. The GENERAL CONFIGURATION window displayed when confirming your model

If this is not the case, an **ERROR** dialog box will open to inform you of the errors and to allow you to correct them.

Figure 4.30. An example of a potential error during confirmation

- to save your model, open FILE, then select SAVE AS...

- select a destination folder and enter a name using the extension ".*infra*", then click on the **SAVE** button.

🛓 Save as		x
Enregistrer <u>d</u> ans	: 🔜 Bureau 👻 🌀 🎲 📂 🖽 🔻	
Emplacements	Bibliothèques Dossier système	•
recents	Groupe résidentiel Dossier système	
Bureau	JeanMi Dossier système	
Bibliothèques	Ordinateur Dossier système	
	Réseau Dossier système	
Ordinateur	FlexSim 7.5	-
	Nom du fichier : MonModèle.infra	r
	Type : Tous les fichiers (*.*) ▼ Annuler	

Figure 4.31. Saving a model (in Microsoft Windows), here "MyModel.infra" in the Office folder

Now that we have created our model, we are now able to use it.

4.5.4.2. Traffic simulation

Open "*GLDSim*" and open the model that you have previously created by selecting **FILE** followed by **OPEN**. This should appear within the main window of the simulator. If this is not the case, click on the center the model in the window icon (D) on the toolbar.

COMMENT 4.5.- The capital letters, in brackets, refer to Figure 4.23.

Lastly, zoom in for a more detailed view of the network.

Figure 4.32. The model centered in the "GLDSim" window and enlarged by 150%

To start a simulation using the default settings, click on the icon for launching a simulation (J) in the toolbar.

It is possible to adjust the speed of the simulation by changing it via the dropdown menu (M) from LOW to MAXIMUM.

The simulation can be stopped by clicking on the **PAUSE** icon (K) and restarted by clicking on the **RUN** icon (J). To completely stop the simulation, use the **STOP** icon (L), which will remove all vehicles.

You can advance step by step using the STEP icon (I).

The number of cycles for the simulation will be displayed at the bottom left of the window.

The small red squares represent bicycles and the large green rectangles represent buses. The other grey, black, blue, white and green rectangles represent other vehicles.

The small green and red circles represent traffic lights.

Figure 4.33. The different types of vehicle in the model during the simulation

You can choose **PROPERTIES** by right-clicking on one of the lanes of the junction between intersections. This will display its properties (Figure 4.34).

🛓 Drivelane 24		x
	Drivelane 24	
Part of: Roa Leads to: June Comes from: June 1 waiting for trafficlight Drivelane allows Autor	ad 6 0: Free block ction 7 1: Free block ction 9 2: Generic Car 4 4: - 4: - 4: Free block 5: Free block 5: Free block 6: Free block 6: Free block 8: Free block 7: Free block 8: Free block • • • • • • • • • • • • • • •	
	ОК	

Figure 4.34. Display showing the properties of a junction lane, in this case "Drivelane 24"

This shows:

- DRIVELANE n: lane number;

- PART OF: road the lane junction is part of;

- **LEADS TO**: intersection the vehicles are coming from (gives the direction of traffic);

- **COMES FROM**: intersection the vehicles are heading towards (gives the direction of the traffic);

- WAITING FOR TRAFFICLIGHT: number of vehicles waiting in the lane;

- DRIVELANE ALLOWS AUTOMOBILES: type of vehicles the lane is designed for;

- Type of vehicles in the lane: located in the left pane. If **SHOW FREE SPACES** is ticked, it is possible to view the free spaces (empty inter-vehicle blocks).

Right-clicking on one of the nodes of the intersections will allow you to select **PROPERTIES**. This will display its properties (Figure 4.35) or give a two graph display: **TRACK ROADUSERS THAT CROSSED** displays the number of vehicles crossing the intersection as a function of the time elapsed (number of cycles) and **TRACK JUNCTION WAITING TIME** allows you to view the average waiting time for vehicles at the intersection as a function of the time elapsed (number of cycles).

A node at an intersection has the following properties:

- JUNCTION n: intersection number;

- **ROAD NORTH**: name and number of the road heading north from this intersection;

- ROAD EAST: name and number of the road heading east from this intersection;

- ROAD SOUTH: name and number of the road heading south from this intersection;

- ROAD WEST: name and number of the road heading west from this intersection;

-JUNCTION HAS n TRAFFICLIGHTS: number of traffic lights at this intersection;

- JUNCTION IS n UNITS WIDE: number of lanes, in width, available at this intersection;

- TRACK ROADUSERS THAT CROSSED: Displays the graph showing the number of vehicles;

- TRACK JUNCTION WAITING TIME: Displays the graph showing the average waiting time;

- AVERAGE WAITING TIME: displays the average waiting time;

- SHOW OF LAST 1,000 ROADUSERS: if ticked, this will display the average waiting time for the last 1,000 vehicles.

🛓 Junction 8		
	J	unction 8
Road north:	Road 0	Junction has 8 trafficlights
Road east:	Road 8	Junction is 4 units wide
Road south:	Road 7	
Road west:	Road 2	
Track average v Track roaduser Average waiting	vaiting time s crossed g time for A 1000 roaduse	is 0.0 rs
		ок

Figure 4.35. Display showing the properties of a node at an intersection, in this case "Junction 8"

COMMENT 4.6.– Certain items in these properties windows are written in blue and underlined. These are interactive links that display additional information, in relation to the chosen element.

Figure 4.36. Two graphs : average waiting time for vehicles at the intersection as a function of the time elapsed (on the left) and the number of vehicles having crossed the intersection as a function of the time elapsed (on the right)

The "Edge nodes" have different properties:

CONNECTS: road the node is connected to;

- WITH: intersection the road is connected to;

- WAITING IN QUEUE: number of vehicles waiting in the line as a function of the type of vehicle (ALL, CAR, BUS, BICYCLE);

- **SPAWNFREQUENCY FOR**: frequency of vehicles generated as a function of the type of vehicle (between 0 and 1 – from 0 to 100%);

- SET: button for confirming the frequency input;

🖺 Edgenode 0		
	Edg	jenode 0
Connects: With: <u>Track waiting quee</u> Irack top waiting to Track rosdusers a Spawnfrequency f	Road 0 Junction 8 Ie langth Ime Irrvad Dr	Watting in cueue: 1 - All 0 - Car 1 - Bus 0 - Bicycle
		ок

Figure 4.37. Display showing the properties of an "Edge node", in this case "Edgenode 0"

- TRACK WAITING QUEUE LENGTH: length of the queue as a function of time elapsed (number of cycles);

- TRACK TRIP WAITING TIME: average waiting time for a journey as a function of time elapsed (number of cycles);

- TRACK ROADUSERS ARRIVED: number of vehicles arriving as a function of the time elapsed (number of cycles).

Figure 4.38. The graphs available from the "Edge node"

The three graphs in Figure 4.38 can also be accessed by right-clicking on the node.

During a simulation with a model, it is possible to adjust several parameters.

We will start by adjusting **SPAWNFREQUENCY FOR**, available in the properties panel for *"Edgenodes"*. As a function of the type, you can enter a value corresponding to the frequency that you wish to see generated by the node.

Figure 4.39. The properties panel for the node "Edgenode 0" in our model after modification at the end of roughly 15,000 cycles

In our model, for example, for the node EDGENODE 0, if you adjust the default values and enter 0.65 for BUS, 0.35 for CAR and 0.0 for BICYCLE (don't forget to confirm by clicking on the SET button), you will obtain the results shown in Figure 4.40, after roughly 10,000 cycles.

Figure 4.40. The three statistical graphs for the node EDGENODE 0 in our model after roughly 15,000 simulation cycles

The most important parameter corresponds to controlling traffic lights at each of the intersections. For this, we have a number of options within the GLD, contained in the **OPTIONS** menu, accessible by selecting **TRAFFIC LIGHT CONTROLLER**.

Figure 4.41. The categories of options available for managing traffic lights from the OPTIONS menu

I would invite you to consult section 5b, TRAFFIC LIGHT CONTROLLERS, in the GLD documentation for details relating to the options available for managing signals.

1 Editor	Traffic Light Controllers
 Simulator Evaluation Tools An Example Session Algorithms Driving policies Traffic light 	There are simple rules for traffic lights on one node, and complex ways of regulating a whole infrastructure of them. To achieve an optimum traffic flow for a specific map, it is necessary to adjust general algorithms to that map - in the case of traffic light controllers, returning an evaluation of the situation at a jurction, that becomes more overall effective as more road users pass. This is achieved using reinforcement learning (see <u>celinitoric</u>), both for traffic lights and road users. In this section we will use the following functions and variables:
1) Random 2) Longest Dueue 3) Relative LQ 4) Best first 5) Most Cars 6) TC1 7) TC2 9) TC3	 Q - the total expected waiting time before all traffic lights for each road user, discounted for the time a light is green. v - the average waiting time until destination, disregarding traffic light decision w - the gain of a decision of a traffic light, which sets two specific lights to green P - probability that a certain other junction is reached if the current critical light is green or red R - reward for actions K - number of cars waiting before a certain traffic light
9) TC1++ 10) ACGJ-1 11) ACGJ-2	Algorithms will compute these differently, amounting to a different advice as to what decisions should be taken. A field of values for all nodes is filled with reward appreciations by the selecter algorithm at every cycle, and used by traffic lights to choose a legal setting.
12) ACGJ-3 13) ACGJ-3++	Communication
14) Local Hill 15) RLD	Knowledge about the number of road users in line at the next possible traffic lights can be shared between junctions, and used to better estimate the traffic load in the next time slots.
Specifications Definitions	Such global information would benefit the minimizing of V, and sometimes 0. TC2, TC3 communicate the sort of information. The other algorithms work with local knowledge. Analysis of the effectiveness of different controllers on a map is done using the Evaluation Tools.

Figure 4.42. Section 5b of the GLD documentation relating to traffic light options

We will now try to modify the management of lights by selecting a management method based on the largest number of cars, **MOST CARS**, in **SIMPLEX MATHS** and we will compare this to **RANDOM**, again in **SIMPLEX MATHS**.

Figure 4.43 shows the results at the end of 2,000 cycles for the average waiting time at the intersections in our model (STATISTICS menu, TRACK option, then **AVERAGE JUNCTION WAITING TIME**).

Figure 4.43. The average waiting times at intersections in our model with a random management method (RANDOM – on the left) and using a method with the most cars (MOST CARS – on the right)

We are able to note striking differences depending on the management method.

COMMENT 4.7.— It is possible to configure certain options for managing traffic lights. In this case, a dialog box with the appropriate input fields will appear when the user has made one of these choices.

Another parameter is the driving policy, which can be accessed by going to the **OPTIONS** menu and selecting **DRIVING POLICY**. Four options are available:

- NORMAL SHORTEST PATH: The vehicle selects the shortest path to go from their departure point to their destination, irrespective of the intersections and the traffic lights that they will have to pass through;

- LEAST BUSY SHORTEST PATH: The vehicle will take the shortest path by taking into account the waiting time for each of the lanes, which could be blocked;

- AGGRESSIVE: The vehicle will try to limit the journey time between their departure point and their destination;

- **COLEARNING**: The vehicle selects their traffic lane in order to reduce the likely waiting time at the next junction as much as possible. Their choice is based on intelligent, distributed, multi-agent algorithms that enable traffic lights to communicate with each other, for which road users are continuously made aware of the waiting times. This option is only available with certain methods of traffic management (learning).

4.5.4.3. Advanced use of the editor

We will now return to our editor and take a closer look at its editing features.

You can access your editor from "*GLDSim*" by selecting **OPEN EDITOR** (**CTRL E**) from the **OPTIONS** menu.

You can also close "GLDSim" and re-open your model using "GLDEdit".

We will start by deleting the lanes between the different intersections in our model in order to obtain the network from Figure 4.44.

Two traffic lanes were deleted between nodes 7 and 9 as well as 5 and 9.

Figure 4.44. *My* example model showing the lanes deleted between nodes 7, 9 and 5

In order to delete these nodes, once you have opened the model in the editor:

- right click on the section where you want to delete the lanes and then select **PROPERTIES**;

- in the list LANES TO, select the lane that you want to delete, then click on the **DELETE DRIVELINE n.**

Figure 4.45. The dialog box for the properties of the junction and its DELETE DRIVELANE button. Here, the lane "Drivelane 25" in the junction "Road 6" has been selected. We can see the corresponding interactive link, underlined and in blue. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

If you are unsure of the lane, you can verify it by clicking on the corresponding link, underlined and in blue, and it will be highlighted in green in your model. In this instance, it can be deleted by selecting **DELETE THIS DEVICE**.

Figure 4.46. The dialog box for lane properties, here "Drivelane 25", and its DELETE THIS DRIVELANE button

Repeat the same steps to delete the other three lanes.

The GLD editor allows you to restrict lanes to a certain type of vehicle.

Let's now modify our model to link green lanes to buses (see Figure 4.47).

Figure 4.47. The plan for our model showing the bus lanes (in green). For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

Right-click on the relevant junction, then select **PROPERTIES**. Select the lane in **LANES TO**, then assign it **BUS** using the drop-down list **ALLOWS**.

Repeat the same steps twice for the other sections. You should obtain a model similar to the one in Figure 4.48.

The lanes restricted to buses will have changed color and should now be orange instead of pink.

Figure 4.48. The model featuring orange lanes restricted to buses. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

Save (menu FILE, then SAVE or SAVE AS) your model using a new name in order to save your modifications.

There is a highly significant configuration that I have not yet introduced, and this relates to the direction cars must travel in at each intersection and for each lane.

In the model, these direction indicators (the equivalent of white arrows, painted on the ground, in reality) are in the form of small acronyms within the lanes at the entry to an intersection.

In Figure 4.49, we can see these before nodes 5 and 6. They are self-explanatory.

They are generated by default when constructing a model but do not necessarily correspond to the way you want it to be.

Figure 4.49. A section of the model with nodes 5 and 6 surrounded by their direction indicators

These can be easily modified using the GLD editor. For example, I am going to change the direction to take when a bus arrives from the south, moving towards intersection 5.

Instead of turning left, I want it to continue right towards node 6.

Right-clicking on the junction will display its properties. I will then select the lane, in LANES TO, for which I will specify only TURN RIGHT (tickbox).

Figure 4.50. The properties box with the modified direction indicators, TURN RIGHT, ticked, TURN LEFT, unticked, for the lane "Drivelane 12" of junction "Road 9"

This offers the following possibilities, which can all be combined:

- TURN LEFT;
- GO STRAIGHT AHEAD;
- TURN RIGHT.

This allows us to obtain the direction indicator logos in Figure 4.51.

GL	DEdit	Real	Function
			Go straight
$\left(\right)$	or		Turn right
	or	1	Turn left
\downarrow	or		Go straight or turn left
K	or	*	Go straight or turn right
\curlyvee	or	$\mathbf{\mathbf{Y}}$	Turn right or turn left
\forall	or	()	Go straight, turn right or turn left

Figure 4.51. The direction indicators in "GLDEdit"

Save (menu FILE, then SAVE or SAVE AS) your model in order to save your changes.

4.5.4.4. Simulating the modified model

Open your modified model using the simulator and launch the simulation.

You should now see the bus traveling on the sections of the route that you have modified. These should also respect the direction indicators that you have specified.

Figure 4.52. Here we can note the green buses on the orange lanes, starting at node 4 and turning right at node 5. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

It might be interesting to have general statistical data for a model – you can access this feature by selecting **SHOW STATISTICS** from the **STATISTICS** menu.

Once it has been activated, a window will open featuring the FILE and OPTIONS menus.

In FILE, the EXPORT option will allow you to export the statistics file in *".dat"* format, or to close the window.

COMMENT 4.8.- A ".dat." file is a data file (".dat" for data). In general, this type of file can be easily opened using a text editor such as Notepad in Microsoft Windows or TextEdit in Apple OSX. It is easy to use this data in Microsoft Excel using copy and paste, although in general these files are designed for use with specific programs.

The OPTIONS menu has three main functions:

- **REFRESH** (CTRL **R**): refreshes the results in relation to the current simulation;

- VIEW: displays a summary of the statistics (SUMMARY) or a table showing the statistics (TABLE);

- SHOW AVERAGE OF: display the average for all vehicles since the start of the simulation using ALL ROADUSERS or for the last 1,000 using LAST 1000 ROADUSERS.

💰 Statistics (at cycle 8563)	🍰 St	tatistics (at cycle	8563)			• X
File Options	File	Options				
Statistics for simulation "untitled" (at cycle 8563)	S	tatistics for s	imulation "unt	itled" (at cycle	8563)	~
Infrastructure: "untitled" by	In	frastructure: "unt	titled" by			
	L L	odo	nitino	# roaducare	our wraiting time	
Nodes: 5 special nodes, 5 junctions	H	Tode	ru type	# roadusers	avg waiting time	
	L L	Special node 0	Cox	3493	6.324300	
Total number of roadusers that has arrived at its destination: 16341	L L	Special node 0	Car	2100	5.7798053	
Total number of junction crossings: 44004		Special node 0	Dus	0	14.170035	
	l la	Special node 0	All	3470	6.624029	
Average trip waiting time (based on all roadusers arrived): 6.005441	L L	Special node 1	Cor	24/3	7.016422	
Average trip waiting time (based on last 5000 roadusers arrived): 5.8306	l la	Special node 1	Ruc	1200	2.0160262	
Average junction waiting time (based on all junction crossings): 1.6118759		Special node 1	Dus	0	2.9109292	
Average junction waiting time (based on last 5000 junction crossings): 1.0964	l la	Special node 1	All	2200	4.474557	
	l Ha	Special node 2	Car	2115	5.9295554	
	l Ha	Special node 2	Due	1265	2.0419976	
		Special node 2	Picycle	0	2.0410975	
	l Ha	Special node 2	All	2454	7.440061	
		Special node 3	Car	2176	4 0240002	
×	l Ha	Special node 3	Bue	1279	11 017040	
۰ III ا	l Ha	Special node 3	Dus	1270	0.0	
	l Ha	Special node 5	All	2525	2.5002726	
	l Ha	Special node 4	Car	2105	2.5002730	
	l la	Special node 4	Due	420	2.5050752	
	l le	Special node 4	Biovele	430	2.53721	
	L H	Junction 5	All	9517	1 2172276	
	E E	Junction 5	Car	8555	1 2392054	
	E E	Junction 5	Bue	2962	1 4902089	
	L B	Junction 5	Biovole	0	0.0	
	L B	Junction 6	All	10779	0.78986865	
	E E	Junction 6	Car	7596	0.79054826	
	Ē	Junction 6	Bue	3183	0.78825045	
	L E	Junction 6	Biovole	0	0.0	1
	L B	Junction 7	All	8594	1.0396811	
	l H	Junction 7	Car	4325	1.2723684	
	Ē	lunction 7	Bus	4269	0.80393535	
	E H	Junction 7	Bicycle	0	0.0	
	l B	Junction 8	All	12699	3.188122	
	E E	Junction 8	Car	9204	3.1378732	
	6	lunction 8	Bus	3495	3 3204582	
	I H	Junction 8	Bicycle	0	0.0	
	15	Junction 9	All	2415	0.18923388	
	l li	Junction 9	Car	550	0.030909088	
	l fi	Junction 9	Bus	1865	0.23592506	
	l fi	Junction 9	Bicycle	0	0.0	
				-		
						,

Figure 4.53. The statistics window in SUMMARY mode (on the left) and TABLE mode (on the right)

Figure 4.54 gives an example showing part of the data copied and pasted into Microsoft Excel from a ".*dat*" folder, exported by the simulator.

These are the main features of GLD. Developers are currently seeking ways to make improvements or to increase its capabilities. Consult the links at the end of this work for further information.

Stat MonModele3dat - Bloc-note	es	Surger State	A Constant			- C -X
Fichier Edition Format Affichage	ge?					
# Data exported by Green	Light District					*
<pre># Infrastructure: "untitl # Simulation: "untitled" # Data at cycles 2552</pre>	led" by					
# #nodes = 10, #specialno #	odes = 5, #junct	ions = 5				
<pre># Total number of roaduse # Total number of junctic # Average trip waiting ti # Average trip waiting ti # Average junction waitir # Average junction waitir # Average junction waitir</pre>	ers that has arr on crossings: 44 ime (based on al ime (based on la ng time (based on ng time (based on	ived at its dest 004 l roadusers arr st 5000 roaduser n all junction (n last 5000 jung	tination: 16341 ived): 6.005441 's arrived): 5.8306 crossings): 1.6118759 ttion crossings): 1.0	964		
# EdgeNodes # Data format: <id r<="" td=""><td>ruType roaduser:</td><td>sArrived</td><td>avgTripWaitingTimeAl</td><td>lTime</td><td>avgTripWaitingTimeLas</td><td>t1000></td></id>	ruType roaduser:	sArrived	avgTripWaitingTimeAl	l Time	avgTripWaitingTimeLas	t1000>
$ \begin{smallmatrix} \bullet & \bullet & \bullet & \bullet \\ 0 & 0 & 3493 & \bullet & \bullet \\ 0 & 1 & 2188 & 5 \\ 0 & 2 & 1308 & 5 \\ 1 & 0 & 0 & 3479 & 95 \\ 1 & 1 & 2491 & 7 \\ 1 & 2 & 1288 & 2 \\ 2 & 1 & 2118 & 5 \\ 2 & 1 & 2118 & 5 \\ 2 & 1 & 2118 & 5 \\ 2 & 1 & 2118 & 5 \\ 2 & 2 & 1 & 2118 & 5 \\ 2 & 2 & 1 & 2118 & 5 \\ 2 & 1 & 2118 & 5 \\ 2 & 1 & 2118 & 5 \\ 2 & 1 & 2118 & 5 \\ 2 & 1 & 2118 & 5 \\ 3 & 0 & 3454 & 7 \\ 3 & 1 & 2176 & 4 \\ 3 & 2 & 1278 & 4 \\ 3 & 2 & 1278 & 4 \\ 3 & 2 & 1278 & 4 \\ 3 & 2 & 1278 & 4 \\ 4 & 0 & 2335 & 2 \\ 4 & 4 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 &$	8.924966 7.779853 4.17880.0 5.624028 7.215423 2.9169252 0.0 0.0 4.274577 5.0259575 1.018997.0 1.8249083 1.8249083 1.917049 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	8.06 5.954 16.298 6.612 7.819 3.121 5.168 6.636 6.636 6.638 5.317 5.377 5.377 3.175 3.175 3.015 3.015				E
# Junctions # Junctions 5 0 9517 1 5 1 6555 1 5 2 2962 1 5 4 0 0	L. 3173276 L. 2392054 L. 4902089 J. 0 0. 0	1.239 1.053 1.91				
6 1 7596 0 6 2 3183 0	0.79054826 0.78825045	0.72 0.844				-

	A	B	C	D	E
1	Data format: <id< td=""><td>ruType</td><td>roadusersArrived</td><td>avgTripWaitingTimeAllTime</td><td>avgTripWaitingTimeLast1000></td></id<>	ruType	roadusersArrived	avgTripWaitingTimeAllTime	avgTripWaitingTimeLast1000>
2	#				
3	0	0	3493	8.924966	8.06
4	0	1	2185	5.7798653	5.954
5	0	2	1308	14.178899	16.298
6	0	4	0	0.0	0.0
7	1	0	3479	5.624028	6.612
8	1	1	2191	7.215423	7.819
9	1	2	1288	2.9169252	3.121
10	1	4	0	0.0	0.0
11	2	0	3380	4.474557	5.168
12	2	1	2115	5.9295554	6.636
13	2	2	1265	2.0418975	2.136
14	2	4	0	0.0	0.0
15	3	0	3454	7.449051	6.138
16	3	1	2176	4.8249083	5.317
17	3	2	1278	11.917049	13.775
18	3	4	0	0.0	0.0
19	4	0	2535	2.5802736	3.175
20	4	1	2105	2.5890732	3.015
21	4	2	430	2.53721	2.5372093
22	4	4	0	0.0	0.0
23					

Figure 4.54. A ".dat" file (top) and the data in Microsoft Excel (bottom)

4.6. AnyLogic

This program is universal – it can be adapted to practically all domains or, alternatively, a simulation model can be created (see Volume 1, section 10.4.3.4). In this chapter, we will concern ourselves with how it might be used for traffic management.

In its 7.3 version, AnyLogic features a "*Road Traffic Library*" designed specifically for road network models and simulations.

In order to do this, the application follows a construction process made up of several stages:

- importing a background map or an image of a plan;

- tracing and configuration of traffic lanes as well as their eventual intersections;

 design and configuration of the organigram for generating and controlling the flow of vehicles;

- adding traffic lights, pedestrian walkways, car parks, public transport vehicles, and configuration;

- 2D simulation;
- 3D simulation;
- results analysis.

We will create a short example showing some of these stages in order to give you a chance to assess the program's features, ergonomics and flexibility.

4.6.1. Downloading AnyLogic

Before we begin, download the free version of AnyLogic at⁷: www.anylogic.com/downloads.

Select your operating system, Microsoft Windows (x32 or x64), Mac OSX or Linux and select "FREE PLE" (Personal Learning Edition).

⁷ At the time of writing, this link is active and the PLE version is free to download. Given the volatility of these links and the fact that the terms and conditions are subject to change, should you encounter any problems, search for "AnyLogic" using your preferred search engine.

Figure 4.55. The AnyLogic downloads page

Information on how to active the program is available via a link on the page.

4.6.2. Our example

For our background image, we will take an aerial view of a city taken from Google Maps showing several streets, with at least one intersection. This will be used for tracing our road network.

Figure 4.56. Aerial image from our example (Source: Google Maps)

4.6.2.1. Capturing the background image

The easiest way to obtain your image is to use a screenshot.

On Mac: Press CMD SHIFT 4 and the cursor will take the shape of a cross (target). Select the area by dragging and dropping, let go of the click, and a ".png" image will appear on your desktop with the name "Screen Shot YEAR-MONTH-DAY at HOUR.MINUTE.SECOND AM/PM".

On PC⁸: Click on the START MENU then enter Snipping Tool in the search bar and confirm by pressing ENTER.

Click on the triangle of the drop-down menu NEW in the SNIPPING TOOL dialog box which appears. Select RECTANGULAR SNIP, then, using the mouse to drag-and-drop, specify the area you wish to capture.

Figure 4.57. The SNIPPING TOOL dialog box in Microsoft Windows 7

In the **FILE** menu in the window which opens, select **SAVE AS** then, after having given a name, a file type (**PNG** or **JPG**). Once you have specified the storage location, save your image by clicking on the **SAVE** button.

4.6.2.2. Network modeling

After installation, launch the program, then select **CREATE A MODEL** on the welcome screen.

⁸ Using Microsoft Windows VISTA or Windows 7 and above. Otherwise, download a free screenshot program such as: Gadwin PrintScreen, ScreenHunter, ScreenHotPlus, etc.

Figure 4.58. The AnyLogic welcome screen

A dialog box will open. Give your model a name and specify a storage location, then click on **FINISH**.

Click on the **PALETTE** tab, located beneath the main toolbar, then select the **PRESENTATION** icon in the vertical toolbar (Figure 4.59).

00	0		
<u>4</u> ° • ĭ	2 🔛 🕼 💛 😒 🚽 🗈	🗅 🗙 🗈	0 · 🔳 🛛 🚿
🀮 Pr	ojects 🙀 Palette 🖾	- 0	👸 Main
	Presentation	## X3	
Ð	/ Line	2	
*	, 」✓ Polyline		
=	Curve	2	
	Rectangle		
-	Rounded Rectangle		
0			
3	Pixel		
θ	Aa Text		
-	Image		
Y	Diroup		
K	🐚 View Area		
In	▼ 3D		
OK	3D Window		
3	B 3D Object		
41	🛶 Camera		
0,	Professional		
-	CAD Drawing		
-			

Figure 4.59. The PALETTE tab and its PRESENTATION tools In the tools for the **PRESENTATION** palette, select **IMAGE** and drag it into the **MAIN** window inside the rectangular area defined by a marker (Figure 4.60).

A dialog box will ask you to select a file. Select your screenshot and click on the **OPEN** button.

Figure 4.60. Selecting the captured image to be used as your background. Note the area defined by the marker xy

Position the image so that its top-left corner is where the marker is (Figure 4.61). Finally, resize the image by pulling at one of the corners.

Figure 4.61. The image positioned where the marker is in the MAIN window. We can see the scale indicator at the top

Above the image, a scale indicator will appear. Once this has been selected, you can expand it or reduce it in order to adapt the scale to your image, if the size correspondence is poor.

COMMENT 4.9.– In the main horizontal toolbar, located beneath the menu, there is an option to vary the display scale of your model (from 25 to 4000%) in the drop-down menu next to the magnifying tool (ZOOM IN).

In the vertical toolbar in the **PALETTE** tab, select **ROAD TRAFFIC LIBRARY** (black icon in the shape of a small car).

Double-click on the **ROAD** tool then click in your image to trace a first street, from point to point (click to click).

Double-click to complete your route.

COMMENT 4.10.– This route tool works in the same way as the pen tool in certain graphics programs such as Adobe Illustrator. This allows us to create curves (splines, Bézier curves) for routes containing non-rectilinear sections.

A dialog box will open, recommending that you change the scale (4 pixels per meter). Confirm by clicking **YES**.

Clicking on the route that you have traced will bring up the parameters for the network (**ROAD NETWORK**) in the **PROPERTIES** window.

It might require several clicks, but you should be able to move, in a loop, from the properties of the road (**ROAD**), to those of the image and then the network.

🔲 Properties 🔀	2 - 1
Nenue_Boucicaut - Re	oad
Name:	Q Avenue_Boucicaut
📄 Ignore 🗹 Visible on up	oper level 📄 Lock
Visible:	yes
One way	
Number of forward lanes:	1
Number of backward lanes:	1
Median strip width:	0.0 meter V
Median strip color:	green 🔽

Figure 4.62. The properties of the road (ROAD) including its name (in this case, "Avenue Boucicaut") and the number of lanes (in this case, 1 and 1)

In **ROAD NETWORK**, modify the width of the lanes (**LANE WIDTH**). 3.5 m is the standard width.

In **ROAD**, name your street using the entry field **NAME** (spaces are not allowed) and specify the number of forward (**NUMBER OF FORWARD LANES**) and backward (**NUMBER OF BACKWARD LANES**) lanes.

You can determine where the lane is forward or backward using the route arrows.

Figure 4.63. The route (one lane to the right and one to the left) in our model and its direction (in this instance, from left to right)

We will now design another road, cutting across the first, similar to the previous road but whose last point (end point of the route) will be positioned on the central line of the road already present (Figure 4.64). This point will define where the two roads cross. Finish by naming the second road and specifying the number of lanes.

Figure 4.64. The two roads and the point where the routes cross (green dot). For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

COMMENT 4.11.– In the properties window for a road, you can tick the box ONE WAY to make your road one-way, should you so wish.

When creating an intersection, connected roads are divided into several sections. In our example, the first road is split into two parts (Figure 4.65).

Figure 4.65. The first road, divided into two sections, on both sides of the intersection

It will be necessary to bring up the properties for each of the sections of the road, by selecting them, in order to rename them. Generally, for ease of use, we use the cardinal points connected to street names. In my model, for example:

- Section 1 Road 1: "avenue_boucicaut_SOUTH";
- Section 2 Road 1: "avenue-Boucicaut_NORTH";
- Road 2: "rue Rhin_Danube".

NORD - Road
Name: Avenue_Boucicaut_NORTH
🗌 Ignore 🗹 Visible on upper level 📄 Lock
Visible: 💿 yes
One way
Number of forward lanes:
Number of backward lanes: 1
🍋 Avenue_Boucicaut_SUD - Road
Name: Avenue_Boucicaut_SOUTH
📄 Ignore 🗹 Visible on upper level 📄 Lock
Visible: 💿 yes
One way
Number of forward lanes:
Number of backward lanes: 1
🍓 rue_Rhin_Danube - Road
Name: rue_Rhin_Danube
🗌 Ignore 📄 Visible on upper level 📄 Lock
Visible: 💿 yes
One way
Number of forward lanes:
Number of backward lanes: 1

Figure 4.66. The three properties windows for my three road segments : "Avenue_Boucicaut_NORTH", "Avenue_Boucicaut_ SOUTH" and "Rue Rhin_Danube"

4.6.2.3. Generating and implementing road traffic

In order to introduce vehicles into our model, we will build several organigrams grouping together the visual features linked to their creation and management.

Each of the entryways will have a source of cars traveling in a direction that we will be able to configure. The traffic plan to create is the one in Figure 4.67.

Figure 4.67. The traffic plan for our example. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

You will be able to see that the vehicles arriving from the east can travel north or south, vehicles arriving from the south can travel east or north and vehicles arriving from the north can travel south or east.

To specify these constraints, move your cursor either above or below your plan in the **MAIN** window.

From the **ROAD TRAFFIC LIBRARY** in the **PALETTE** tab, drag and drop a **CAR SOURCE** block, then a **CAR MOVE TO** block and lastly a **CAR DISPOSE** block.

When you have moved them to **MAIN**, it will be possible to create links between those close to each other.

COMMENT 4.12.– In order to delete a link, left-click to select it (the surrounding points will become blue) then right-click followed by DELETE. In order to create a link, double-click on the first connecting point (green point) then drag towards the second connecting point (green point) and confirm by left-clicking.

This should enable you to obtain the organigram from Figure 4.38 with the three connected blocks.

Figure 4.68. The 3 blocks taken from the ROAD TRAFFIC LIBRARY, moved to the MAIN window and connected

We will now configure each one:

- click on the **CARSOURCE** block, then in the **PROPERTIES** window, select **RATE** in the **ARRIVALS DEFINED** BY field;

- enter 750 PER HOUR in ARRIVAL RATE;

- select the north section of your n°1 road for the **ROAD** field;

- in NAME, enter "Veh_NORTH".

You have just specified that a car will arrive from the north from this vehicle source every 15 seconds.

) Veh_NORD - CarSource	
Name:	[♀] Weh_NORTH Show name ☐ Ignore
Arrivals defined by:	ate V
Arrival rate:	=_ 750 per hour
Set agent parameters from DB:	=, 🗆
Limited number of arrivals:	=, 🖸
Appears:	=_ 💿 on road
) in parking lot
Road:	= Nenue_Boucicaut_NORTH 💽 🏹 🜐
Enters:	🗐 💿 forward lane
	backward lane
Random lane:	=, 🗹

Figure 4.69. The properties of the CAR SOURCE block, now named "Veh_NORTH"

- click on CARMOVETO to display its properties;

- in the NAME field, change the name to "carMoveTo_SOUTH" and in the **ROAD** field, select the section of road located towards the south.

Properties 🔀	
A carMoveTo	_SUD - CarMoveTo
Name:	[©] carMoveTo_SOUTH
Moves to:	= 💿 road
	parking lot
	◯ stop line
	🔘 bus stop
Road:	= , 🍡 Avenue_Boucicaut_SOUTH 🛛 🟹 🜐
Destination:	= end of forward lane
	 end of backward lane
Figu	re 4.70. The properties of the CARMOVETO

By configuring in this way, you indicate that the vehicles arriving from the north will automatically travel towards the south section of your road.

Consider saving your model by selecting **SAVE AS** from the **FILE** menu. Enter a name in **MODEL NAME**, select a storage location in **LOCATION** or by using the **BROWSE** button, then click on the **FINISH** button to confirm.

4.6.2.4. Test no.1 of the model simulation

It is time now to test the first studies carried out using our model in order to ensure that it is working properly.

Select **RUN** from the **MODEL** menu or click on the **RUN** icon (white triangle on a green circle) from the horizontal toolbar.

Wait a few seconds. The simulator window, containing a **RUN** button below the name of your model, should appear in the foreground.

Figure 4.71. The simulator window featuring its RUN button below the name of the model, in this case "Chalon Boucicaut"

Click on **RUN** to launch your simulation. You will be able to expand the window in order to see the whole of your model.

The main functions of the simulator toolbar are explained in Figure 4.72.

Figure 4.72. The main functions of the simulator toolbar

- Play/Pause: launch the simulation or restart it after pausing - pause the simulation;

- Playback choice - "until" or "for": drop-down menu enabling you to select normal playback (**RUN**), playback until a certain time or date (**RUN UNTIL**) or playback for a precise length of time (**RUN FOR**), for a chosen unit (years, months, weeks, days, hours, minutes, seconds, milliseconds);

- Step by step: Advance the simulation by one step for each click;

- Stop: stop the simulation and return to the window with the RUN button;

- Return to real time: play the simulation in real time;

- Slow down: slow the simulation by a factor equal to a fraction of real time (1/2, 1/5, 1/10, 1/25, 1/50, 1/100, 1/250, 1/500);

- Multiplier acceleration/deceleration: displays the value of the deceleration or acceleration factor;

- Accelerate: accelerates the simulation by a factor equal to a multiple of realtime (2, 5, 10, 25, 50, 100, 250, 500);

- Rapid/standard advance: increase the speed to maximum or return to the previous speed.

Vehicles are represented by small colored rectangles. They should travel from north to south.

Run: 8 O Paused Time: 185.40 Simulation: Stop time not set Date: Jun 6, 2016 12:03:05 AM

Figure 4.73. Window showing the model during simulation. In this instance, we can see six vehicles (blue, green, cyan, green, green and red) traveling from north to south on road no.1 section 1 and 2. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

COMMENT 4.13.– When you launch the simulator from the editor, if AnyLogic detects any errors, a dialog box will open with a message informing you of the nature of the problem or problems encountered. These errors often relate to direction, choice of roads or logic within the organigrams.

4.6.2.5. Adding traffic

We will now concern ourselves with redirecting our vehicles when they reach the intersection. For the purposes of this example, 60% of the traffic will be traveling south and 40% will be traveling east, that is towards road no. 2.

In order to apply this restriction, we will use a conditional function for redirecting (*aiguillage*) vehicles.

In the **PALETTE** tab, select the **PROCESSING MODELLING LIBRARY** (icon in the shape of a watch).

Drag a block **SELECT OUTPUT** next to your organigram.

Now open the **ROAD TRAFFIC LIBRARY** and add a **CAR MOVE TO** block and a **CAR ORDER**.

Delete and create the connections in order to obtain the organigram in Figure 4.74.

Figure 4.74. The organigram featuring three new blocks

Click on the new block **CAR MOVE TO** that you have just added in order to display its properties.

Rename it "carMoveTO_EAST" and in ROAD select road no. 2.

Select the SELECT OUTPUT block and in properties, enter 0.6 for the **PROBABILITY** field and tick **END OF BACKWARD LANE** for **DESTINATION**.

The steps that you have just taken will direct 60% of the vehicles towards the south and 40% towards the east.

Save your model (menu FILE – SAVE).

NOTE. – It is not necessary for you to change the name of different blocks. However, doing so will make it easier to understand and re-read previously defined operations.

4.6.2.6. Test no. 2 of the model simulation

In the **MODEL** menu, select **RUN** or click on the **RUN** icon in the horizontal toolbar.

Click on the **RUN** button to launch the simulation. You should now see vehicles traveling south and east from the north.

Figure 4.75. The model in simulation mode featuring four vehicles (green, blue, cyan, green) traveling south, three (green, blue, magenta) traveling east and one (red) arriving from the north. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

When configuring the blocks, pay attention to the direction of traffic from its source.

In the previous example, vehicles were traveling in a southbound direction from the north (source), meaning that the direction was forward (END OF FORWARD LANE) in the route chosen for road no. 1 and no. 2. However, when vehicles turned left at the intersection, they traveled along road no. 2, which was designed to travel in a westbound direction, and they were therefore traveling in the opposite direction from the route, meaning that the direction was backwards (END OF BACKWARD LANE).

4.6.2.7. Finalizing your model

To finish this short example, we will add two vehicle sources, one from the east and one from the south. We will also create organigrams for traffic management following Figure 4.67 and relaunch the simulation before switching to a 3D simulation and an analysis of the results.

Start by creating two more organigrams with the same properties as those shown in Table 4.1.

Block/ Properties	Organigram 1	Organigram 2
CAR SOURCE		
NAME	"Veh_SOUTH"	"Veh_EAST"
ARRIVALS DEFINED BY	RATE	RATE
ARRIVAL RATE	900 per hour	600 per hour
ROAD	Street no.1 SOUTH	Street no. 2
ENTERS	BACKWARD LANE	FORWARD LANE
SELECT OUTPUT		
PROBABILITY	0.5	0.333
CAR MOVE TO		
NAME	"carMoveTo_NORTH"	"carMoveTo_SOUTH_2"*
ROAD	Street no.1 NORTH	Street no.1 SOUTH
DESTINATION	END OF BACKWARD LANE	END OF FORWARD LANE
CAR MOVE TO		
NAME	"carMoveTo_EAST_2"*	"carMoveTo_NORTH_2"

ROAD	Street no. 2	Street no. 1 NORTH		
DESTINATION	END OF BACKWARD LANE	END OF BACKWARD LANE		
CAR DISPOSE				
NAME	"carDispose2"	"carDispose4"		
CAR DISPOSE				
NAME	"carDispose3"	"carDispose5"		
*The same block name cannot be used more than once				

 Table 4.1. Properties of the blocks for the two new organigrams

When finished, you should have three organigrams similar to those in Figure 4.76.

Figure 4.76. The three-vehicle management organigrams within our model

4.6.2.8. Test no. 3 of the model simulation

When you launch the model simulation, you should see vehicles traveling from the north, the south and the east. When they reach the intersection they will travel in one of the possible directions, depending on the probabilities entered.

Figure 4.77. Arriving from different sources, the vehicles will travel in random directions depending on the probabilities entered when the properties were configured. For a color version of this figure, see www.iste.co.uk/reveillac/modeling2.zip

4.6.2.9. Switching to a 3D simulation

With Anylogic, it is possible to generate a 3D simulation of your model.

In the **PALETTE** window, select the **PRESENTATION** library in the vertical toolbar and drag a **3D WINDOW** block under your model.

Select the **ROAD TRAFFIC LIBRARY**, drag and drop a **CAR TYPE** block to the left of your **3D WINDOW** block.

Figure 4.78. The CAR TYPE block and the NEW AGENT dialog box with CAR selected

A dialog box – **NEW AGENT** – will open. Click on the **NEXT** button, verify the vehicle model (**CAR**), click on **NEXT** and then **FINISH**.

A window (CAR) and its tab will open next to MAIN, showing the vehicle that you have selected.

In this window you will be able to modify the size of the vehicle using the scale indicator (see section 4.5.2.2).

Figure 4.79. The new tab CAR next to the MAIN tab, containing the vehicle and its scale indicator

Return to the **MAIN** tab, select each of the vehicle source blocks in turn, "Veh_NORD", "Veh_SUD" and "Veh_EAST" for your three organigrams. For each of them, enter the value **CAR** in the **NEW CAR** field, within the **PROPERTIES** window, in the zone **CAR**.

Figure 4.80. The NEW CAR field (on the bottom) containing the value CAR, in the properties for the "Veh_NORD" source

4.6.2.10. Final test of the model simulation

Launch the simulator and click on the **RUN** button. In the simulation window, click on the **NAVIGATE TO VIEW AREA** icon and select [WINDOWS3D].

🔲 🔻 🕨 📕 📕 🔮 🗙 🗶	💽 😘 🕴 🊱 🚱 root:Main	▼ 10 10 10 10 10 10 10 10 10 10 10 10 10
	Adres 1	[Origin] [window3d]

Figure 4.81. The simulator toolbar and the NAVIGATE TO VIEW AREA icon, as well as the [WINDOWS3D] option (on the right)

A 3D model should appear and your simulation should start.

In this window, there are several options available for navigation and movement:

- Mouse scroll: zoom in and out;
- ALT + click drag-and-drop: rotate the background map right or left;
- Click + drag-and-drop: up-down-right-left translation.

4.6.3. A last word on AnyLogic

As I pointed out earlier, Anylogic is a powerful, highly sophisticated simulator, which has been shown to be adaptable to the majority of situations, whether for road traffic management or in other sectors.

I could have expanded our example by including traffic lights, public transport vehicles, parking, the management of pedestrians, a detailed analysis of the density and flow of traffic in the form of tables, graphs, etc.

However, I will not go any further at this point. The help provided with the program is extensive, so feel free to consult the tutorials, videos and the various examples that are available, as well as the editor's website (HELP menu, then WELCOME or HELP, then EXAMPLE MODELS).

4.7. Conclusion

We will end our short overview of traffic simulators at this point.

I would suggest that you take some time to search for other tools online using your preferred search engine.

Here are a few links⁹ to get you started:

– sourceforge.net/projects/atsimu/: Traffic Simulation, a microscopic traffic simulator developed by Microsoft Visual C++;

- www.ctr.kth.se/mezzo.php: Mezzo: A mesoscopic traffic simulator;

- sourceforge.net/projects/tsignals/: Traffic Signals, a smart simulator for fourlane intersections;

 – sourceforge.net/projects/sumotrafficc/: SUMO Traffic Creator, a road network simulator featuring road maps, among other features.

⁹ This link was active at the time of writing. Should any problems arise, use your preferred search engine.

Glossary

Affine function: a function in the form of y = ax + b. The variable *a* is called the leading coefficient and the variable *b*, *y*-intercept. A linear function is a straight line. When it goes through the origin, in this particular case (*y*-intercept null), we then get a linear function (y = ax).

Analytical resolution: in this type of problem solving, the approach to the solution is based on a mathematical procedure that provides precise and rapid result(s). In parallel with analytical resolution, we can choose a graphic solution. In linear programming, the simplex method is a type of analytical resolution.

Branch and bound: a method that consists of finding the optimum solution to a problem of combinatorial optimization. It is built around the concept of separation (branch) that carves the group of solutions into subsets of a smaller size and optimistic assessment in increasing (bound) these same subsets.

BRIC (Brazil, Russia, India and China): acronym designating the four principal developing countries.

Canonical form (or standard form): form of a problem in linear programming in which the constraints are expressed by inequations.

CAPM (computer-aided production management): software dedicated to managing all of the activities related to production in a business. Here, we can find, in the form of modules, the management of orders, the management of articles, the management of resources, the management of bills or materials and ranges of products, management of planning de fabrication, the management of purchases, etc.

Cardinality: a pair of values attached to a relation in the entity-relationship model (relational model). For a relationship (or association) between two entities, two pairs must be specified. The cardinalities express the number of times that the occurrence of an entity can be taken into account in the relationship, at minimum or maximum. There are four typical cardinality pairs: (0, 1), (1, 1), (0, n) and (1, n), n being the equivalent of several.

Concentration: also known as density. For a traffic model, this is the number of vehicles present on a given length of a route at a defined time.

Constraint: factor or condition that an optimization problem must satisfy.

CONTRAM: mesoscopic model of road traffic.

CPM (critical path method): method for calculating a critical path on a graph for planning tasks.

Decision-making aid: a group of techniques based on probability theory, graph theory or even operational research. They offer the opportunity for a human actor to opt for the best possible solution when faced with problems that are mainly industrial, financial or other.

Density: for road traffic, density is defined as the number of vehicles per unit length of the roadway.

Deterministic algorithm: an algorithm that carries out a predefined process in order to resolve a problem.

Dual: in linear programming, the initial problem, called "primal", is associated with another linear problem known as a "dual" problem. In some ways, the "dual" is the symmetrical to the "primal".

DynaMIT: mesoscopic model of road traffic.

Economic function (or cost function): function to be optimized in the context of linear programming.

Fastlane: mesoscopic model of road traffic.

Flow: for road traffic, flow is the number of vehicles passing a reference point per unit of time, vehicles per hour.

GRH (Gazis, Herman and Rothery): microscopic model of road traffic.

Heuristic: refers to a method that proceeds by successive approaches progressively eliminating the alternatives to keep only a limited group of solutions leaning toward optimality.

Hybrid: refers to a method of traffic simulation model combining microscopic and macroscopic modes with the possibility, among others, to go from one to the other via a simple change in scale.

ITS (Intelligent Transportation Systems): application of NICT designed for transportation.

Kirchhoff's Law: also known as the "nodal rule". This is a law that shows the conservation of energy in an electrical circuit. The sum of the intensity of the currents that enter into a node is equal to the sum of the intensities of the currents that come out of it. By extension, this law can be found in operational research, among other things, with the management of floats.

Linear function: see affine function.

LWR (Lighthill, Witham, Richards): macroscopic traffic model known as an equilibrium model.

Macroscopic: simulation mode within a traffic model. In this case, the flow approach of the network is global and involves large areas.

Maximization: refers to a problem of optimization when its objective must lead toward a maximum.

Mesoscopic: intermediate traffic simulation mode between microscopic and macroscopic.

Microscopic: simulation mode within a traffic model considering each of the vehicles and their interactions. This mode works on zones with small dimensions (crossings, crossroads, small groups of streets).

Minimization: refers to an optimization problem when its goal must must lead toward a minimum.

MPM (métra potential method): a method invented by Bernard Roy in 1958. It allows for the representation and optimization of a project in the form of a network-type diagram showing, among other things, the intertask dependencies while reducing delays and by constructing a critical path. With MPM, the tasks are symbolized by nodes (vertices) unlike the PERT method.

MST (minimum spanning tree): see MWST.

MWST (minimum weight spanning tree): a tree that connects all of the vertices of a graph and where sum of the weight of each one of its edges is minimal.

Normal distribution: also known as "Gaussian law" or "Gauss Laplace distribution". This is the law of probability that is most often used in statistics. Its curve is known as a "bell curve" due to its shape. It has two parameters: expectancy and a real number that makes it possible to calculate the probabilities of a group of random continuous variables.

Objective: this is a shortcut for talking about objective function. This function is the principal criterion for determining the solution of a mathematical optimization problem.

ODM (origin/destination model): macroscopic model of road traffic.

ODS (open document spreadsheet): file extension and open document format dedicated to spreadsheets based on the ODF (Open Document Format for Office Applications) standard. This format is used, in particular, by "Calc", the spreadsheet from the OpenOffice Suite.

OOP (object-oriented programming): computerized programming mode created in the 1960s by O.J. Dahl and K. Nygaard, then continued by A. Kay. It is built around objects that are software modules interacting with each other and representing an idea, a concept or an existing entity in the physical world. Numerous languages such as Java, C++, PHP and Ada using this programming mode. The concept of an object is also present within SE (Software Environments – Microsoft Visual Studio, Netbeans, etc.) in certain modeling tools (UML, DBDesigner, etc.) and in distributed buses (Corba, Pyro, RMI, etc.).

PEP (program evaluation procedure): planning method used by the United States Air Force.

PERT (program evaluation and review technology or **program evaluation research task):** project planning method developed by Booz, Allen and Hamilton, near the end of the 1950s, at the request of the Special Projects Office of the United States Navy. It makes it possible to create a connected, directed and weighted graph, where each of the tasks is represented by an arc that joins two vertices. It optimizes the project while taking into account the dependency constraints in order to determine the critical path and tasks.

Pivot: also known as the "Gauss Pivot". The pivot is attached to the method of the same name (also called the "Gauss–Jordan elimination"). This is an algorithm that determines the solutions of a system of linear equations.

Primal: refers to the initial problem in linear programming.

RBDMS (relational database management system): database management system that manages the relationships forming the constraints that guarantee the referential integrity of the data.

Relation: equivalent to an association between two entities in a relational model. Link established between two tables within an RBDMS.

Relational algebra: this is the logical and mathematical support on which the relational model is based. It offers a group of elementary operations for creating new relations.

Retroactive planning: also known as "feedback scheduling". This is an inverted planning method that conceives of a project starting with the end date and then go back toward the beginning. This method may be used when the end date of the project is determined in advance and mandatory.

SEP (Separation and Evaluation Procedure): see Branch and bound.

VBA (Visual Basic Application): implementation of the Microsoft Visual Basic language within Microsoft Office applications. Some applications such as WordPerfect, SolidWorks or AutoCAD also integrate a part of this language.

VBE (Visual Basic Editor): editing and development tool in the VBA language. This can also be an acronym for Visual Basic for Excel.

WBS (work breakdown structure): system of hierarchical breakdown of the tasks of a project.

Conclusion

In this second volume, you have been introduced to various possible ways of using spreadsheets as well as the standard operations and features of a project manager and the different processes available for managing vehicle flow within road networks.

Since the arrival of Visicalc¹ and Multiplan², the pioneers of electronic spreadsheets, spreadsheets have undergone a number of evolutions, bringing with them new features, but the fundamental principles remain the same. If you are wondering why this might be, the appearance on the market of the spreadsheet Improv³ might provide us with some answers.

Improv wanted to introduce a new way of structuring data alongside functional evolution (multi-level cells for example), but it was a total commercial failure. Only specialists were impressed and aware of its real potential.

For the majority of users, spreadsheets are complex tools in terms of understanding and functional logic, and it therefore seems difficult to change their design. Microsoft were fully aware of this, and decided to import Multiplan into a new product, Excel⁴, which has since gone on to be the most popular spreadsheet on the market.

Other editors didn't lose any time and created equivalent products.

2 Microsoft spreadsheet from 1982.

¹ The first genuine spreadsheet was created by Bricklin D., Frankston B. and Fylstra D. in May 1979.

³ Spreadsheet developed by Lotus in 1991 for the platform NeXTSTEP, then for Microsoft Windows in 1993.

⁴ Spreadsheet from 1984. One of the references for spreadsheets today, it is part of the Microsoft Office Suite.

[©] ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

Although the versions are constantly changing and users are increasingly wellinformed, it should be pointed out that the majority of spreadsheets continue to make errors in their calculations (around 3% of cells⁵). Even if this rate seems to be decreasing as editors pay close attention to fundamental bugs, introduce corrective measures and work on the design of their products, new features appear and these lead to new issues.

Often, these errors are due to the users themselves. In some ways this is similar to statistics in general: depending on how they are interpreted, you can make them say whatever you like.

By now you will have understood that there is nothing revolutionary on the horizon for the future of spreadsheets. The existence of new rules, new alerts and better developed utilization logic, together with a deeper understanding of the features on the part of users will lead the way for the spreadsheets of tomorrow.

In terms of project managers, these are increasingly associated with human resources management tools, thus opening the door to an integration of tools concerning pay and financial applications such as the management of repayments. These are often linked to company management production which itself can form part of an internal Enterprise Resource Planning (ERP⁶) model.

The management of project funding is one of the features currently in vogue, along with the ability to intervene in planning using an internet browser.

The major evolutions with this type of software largely relate to the ever-present relationships with the information system by adding tools such as a messaging platform, the possibility of using the Lightweight Directory Access Protocol (LDAP⁷), connections with Electronic Document Management (EDM⁸), unique Single Sign-On (SSO⁹) authentication and links with datamarts¹⁰.

⁵ See the publications by CLEMONT M., *A scalable approach to spreadsheet evolution*, University of Klagenfurt, March 2003 and by PANKO R., *Spreadsheet research*.

⁶ Also designed in French under the acronym Progiciel de Gestion Intégré (PGI).

⁷ Protocol for questioning, modification and online directories based on TCP/IP. This has become the standard and includes a data model, a naming model, a security model and a replication model, designed for the directories. Its structure is based on an attributes-values node tree.

⁸ Electronic Document Management is also known as the Document Management System and forms part of the *workflow* which describes and formalizes the different stages of the journey for the management of data flow.

⁹ The aim of SSO is to centralise authentication in order to allow the user to access all available resources from their workstation and across the whole network.

¹⁰ Subset of a data warehouse.

This second volume only deals with certain subjects relating to the modelling and simulation of flows. I would invite the reader to consult and read Volume 3 of this work to learn more about the management of flows relating to transportation, warehousing, transport, security, checking, the evacuation of personnel, etc. You can also explore software such as ExtendSim, FlexSim or Thunderhead PathFinder.

Other titles from

in

Systems and Industrial Engineering - Robotics

2016

ANDRÉ Michel, SAMARAS Zissis Energy and Environment (Research for Innovative Transports Set - Volume 1)

AUBRY Jean-François, BRINZEI Nicolae, MAZOUNI Mohammed-Habib Systems Dependability Assessment: Benefits of Petri Net Models (Systems Dependability Assessment Set - Volume 1)

BLANQUART Corinne, CLAUSEN Uwe, JACOB Bernard Towards Innovative Freight and Logistics (Research for Innovative Transports Set - Volume 2)

COHEN Simon, YANNIS George Traffic Management (Research for Innovative Transports Set - Volume 3)

MARÉ Jean-Charles Aerospace Actuators 1: Needs, Reliability and Hydraulic Power Solutions

REZG Nidhal, HAJEJ Zied, BOSCHIAN-CAMPANER Valerio Production and Maintenance Optimization Problems: Logistic Constraints and Leasing Warranty Services TORRENTI Jean-Michel, LA TORRE Francesca Materials and Infrastructures 1 (Research for Innovative Transports Set -Volume 5A) Materials and Infrastructures 2 (Research for Innovative Transports Set -Volume 5B)

WEBER Philippe, SIMON Christophe Benefits of Bayesian Network Models (Systems Dependability Assessment Set – Volume 2)

YANNIS George, COHEN Simon Traffic Safety (Research for Innovative Transports Set - Volume 4)

2015

AUBRY Jean-François, BRINZEI Nicolae Systems Dependability Assessment: Modeling with Graphs and Finite State Automata

BOULANGER Jean-Louis CENELEC 50128 and IEC 62279 Standards

BRIFFAUT Jean-Pierre E-Enabled Operations Management

MISSIKOFF Michele, CANDUCCI Massimo, MAIDEN Neil *Enterprise Innovation*

2014

CHETTO Maryline Real-time Systems Scheduling Volume 1 – Fundamentals Volume 2 – Focuses

DAVIM J. Paulo Machinability of Advanced Materials

ESTAMPE Dominique Supply Chain Performance and Evaluation Models FAVRE Bernard Introduction to Sustainable Transports

GAUTHIER Michaël, ANDREFF Nicolas, DOMBRE Etienne Intracorporeal Robotics: From Milliscale to Nanoscale

MICOUIN Patrice Model Based Systems Engineering: Fundamentals and Methods

MILLOT Patrick Designing Human–Machine Cooperation Systems

NI Zhenjiang, PACORET Céline, BENOSMAN Ryad, REGNIER Stéphane Haptic Feedback Teleoperation of Optical Tweezers

OUSTALOUP Alain Diversity and Non-integer Differentiation for System Dynamics

REZG Nidhal, DELLAGI Sofien, KHATAD Abdelhakim Joint Optimization of Maintenance and Production Policies

STEFANOIU Dan, BORNE Pierre, POPESCU Dumitru, FILIP Florin Gh., EL KAMEL Abdelkader Optimization in Engineering Sciences: Metaheuristics, Stochastic Methods andDecision Support

2013

ALAZARD Daniel Reverse Engineering in Control Design

ARIOUI Hichem, NEHAOUA Lamri Driving Simulation

CHADLI Mohammed, COPPIER Hervé Command-control for Real-time Systems

DAAFOUZ Jamal, TARBOURIECH Sophie, SIGALOTTI Mario Hybrid Systems with Constraints

FEYEL Philippe Loop-shaping Robust Control FLAUS Jean-Marie Risk Analysis: Socio-technical and Industrial Systems

FRIBOURG Laurent, SOULAT Romain Control of Switching Systems by Invariance Analysis: Application to Power Electronics

GROSSARD Mathieu, REGNIER Stéphane, CHAILLET Nicolas Flexible Robotics: Applications to Multiscale Manipulations

GRUNN Emmanuel, PHAM Anh Tuan Modeling of Complex Systems: Application to Aeronautical Dynamics

HABIB Maki K., DAVIM J. Paulo Interdisciplinary Mechatronics: Engineering Science and Research Development

HAMMADI Slim, KSOURI Mekki Multimodal Transport Systems

JARBOUI Bassem, SIARRY Patrick, TEGHEM Jacques Metaheuristics for Production Scheduling

KIRILLOV Oleg N., PELINOVSKY Dmitry E. *Nonlinear Physical Systems*

LE Vu Tuan Hieu, STOICA Cristina, ALAMO Teodoro, CAMACHO Eduardo F., DUMUR Didier Zonotopes: From Guaranteed State-estimation to Control

MACHADO Carolina, DAVIM J. Paulo Management and Engineering Innovation

MORANA Joëlle Sustainable Supply Chain Management

SANDOU Guillaume Metaheuristic Optimization for the Design of Automatic Control Laws

STOICAN Florin, OLARU Sorin Set-theoretic Fault Detection in Multisensor Systems

2012

AÏT-KADI Daoud, CHOUINARD Marc, MARCOTTE Suzanne, RIOPEL Diane Sustainable Reverse Logistics Network: Engineering and Management

BORNE Pierre, POPESCU Dumitru, FILIP Florin G., STEFANOIU Dan *Optimization in Engineering Sciences: Exact Methods*

CHADLI Mohammed, BORNE Pierre Multiple Models Approach in Automation: Takagi-Sugeno Fuzzy Systems

DAVIM J.Paulo Lasers in Manufacturing

DECLERCK Philippe Discrete Event Systems in Dioid Algebra and Conventional Algebra

DOUMIATI Moustapha, CHARARA Ali, VICTORINO Alessandro, LECHNER Daniel Vehicle Dynamics Estimation using Kalman Filtering: Experimental Validation

GUERRERO José A, LOZANO Rogelio Flight Formation Control

HAMMADI Slim, KSOURI Mekki Advanced Mobility and Transport Engineering

MAILLARD Pierre Competitive Quality Strategies

MATTA Nada, VANDENBOOMGAERDE Yves, ARLAT Jean Supervision and Safety of Complex Systems

POLER Raul et al. Intelligent Non-hierarchical Manufacturing Networks

TROCCAZ Jocelyne Medical Robotics

YALAOUI Alice, CHEHADE Hicham, YALAOUI Farouk, AMODEO Lionel *Optimization of Logistics* ZELM Martin *et al.* Enterprise Interoperability –I-EASA12 Proceedings

2011

CANTOT Pascal, LUZEAUX Dominique Simulation and Modeling of Systems of Systems

DAVIM J. Paulo Mechatronics

DAVIM J. Paulo Wood Machining

GROUS Ammar Applied Metrology for Manufacturing Engineering

KOLSKI Christophe Human–Computer Interactions in Transport

LUZEAUX Dominique, RUAULT Jean-René, WIPPLER Jean-Luc Complex Systems and Systems of Systems Engineering

ZELM Martin, et al. Enterprise Interoperability: IWEI2011 Proceedings

2010

BOTTA-GENOULAZ Valérie, CAMPAGNE Jean-Pierre, LLERENA Daniel, PELLEGRIN Claude Supply Chain Performance / Collaboration, Alignement and Coordination

BOURLÈS Henri, GODFREY K.C. Kwan *Linear Systems*

BOURRIERES Jean-Paul Proceedings of CEISIE'09

CHAILLET Nicolas, REGNIER Stéphane *Microrobotics for Micromanipulation* DAVIM J. Paulo Sustainable Manufacturing

GIORDANO Max, MATHIEU Luc, VILLENEUVE François Product Life-Cycle Management / Geometric Variations

LOZANO Rogelio Unmanned Aerial Vehicles / Embedded Control

LUZEAUX Dominique, RUAULT Jean-René Systems of Systems

VILLENEUVE François, MATHIEU Luc Geometric Tolerancing of Products

2009

DIAZ Michel Petri Nets / Fundamental Models, Verification and Applications

OZEL Tugrul, DAVIM J. Paulo Intelligent Machining

PITRAT Jacques Artificial Beings

2008

ARTIGUES Christian, DEMASSEY Sophie, NERON Emmanuel *Resources–Constrained Project Scheduling*

BILLAUT Jean-Charles, MOUKRIM Aziz, SANLAVILLE Eric *Flexibility and Robustness in Scheduling*

DOCHAIN Denis Bioprocess Control

LOPEZ Pierre, ROUBELLAT François *Production Scheduling*

THIERRY Caroline, THOMAS André, BEL Gérard Supply Chain Simulation and Management

2007

DE LARMINAT Philippe Analysis and Control of Linear Systems

DOMBRE Etienne, KHALIL Wisama Robot Manipulators

LAMNABHI Françoise *et al. Taming Heterogeneity and Complexity of Embedded Control*

LIMNIOS Nikolaos *Fault Trees*

2006

FRENCH COLLEGE OF METROLOGY Metrology in Industry

NAJIM Kaddour Control of Continuous Linear Systems

Bibliography

- [AHM 96] AHMED K.I., BEN-AKIVA M.E., KOUTSOPOULOS H.N. et al., "Models of freeway lane changing and gap acceptance behavior", Proceedings of the 13th International Symposium on the Theory of Traffic Flow and Transportation, Lyon, France, 1996.
- [BAN 95] BANDO M., "Dynamical model of traffic congestion and numerical simulation", *Physical Review E*, vol. 51, pp. 1035, 1995.
- [BAR 10] BARCELO J., Fundamentals of Traffic Simulation, Springer, New York, 2010.
- [BEN 14] BEN-AKIVA M., BIERLAIRE M., BURTON D. et al., "Network state estimation and prediction for real-time transportation management applications", *Networks and Spatial Economics*, vol. 1, nos. 3–4, pp. 267–292, 2014.
- [BEN 01] BEN-AKIVA M., KOUTSOPOULOS H.N., WALKER J., "DynaMIT-P. Dynamic assignment model system for transportation planning", *Proceedings of the 2001 World Conference in Transportation Research*, Seoul, Korea, 2001.
- [BEN 98] BEN-AKVIA M., BIERLAIRE M., KOUTSOPOULOS H. et al., DynaMIT: a simulationbased system for traffic prediction, DACCORD Short Term Forecasting Workshop, 1998.
- [BIA 13] BIAFORE B., Microsoft Project 2013: The Missing Manual, 1st ed., O'Reilly Media, Sebastopol, CA, 2013.
- [BIH 92] BIHAM O., MIDDLETON A.A., LEVINE D., "Self-organization and a dynamical transition in traffic-flow models", *Physical Review A*, vol. 46, no. 10, pp. R6124–R6127, 1992.
- [BOL 02] BOLLOBAS B., Modern Graph Theory, Springer, New York, 2002.
- [BRO 97] BRONSON R., Schaum's Outline of Operations Research, 2nd ed., McGraw-Hill, New York, 1997.

- [CAS 95] CASSIDY M., MADANAT S.M., WANG M., "Unsignalized intersection capacity and level of service: revisiting critical gap", Transportation Research Record, 1995.
- [CHA 58] CHANDLER R.E., HERMAN R., MONTROLL E.W., "Traffic dynamics: studies in carfollowing", Operations Research, vol. 6, pp. 165–184, 1958.
- [CHO 06] CHOUDHURY C.F., BEN-AKIVA M.E., TOLEDO T., Cooperative lane changing and forced merging model, FHWA Draft Report, 2006.
- [CLO 08] CLOUSE M., Algèbre relationnelle: Guide pratique de conception d'une base de données relationnelle normalisée, Editions ENI, Saint Herblain, 2008.
- [COS 13] COSTESEQUE G., *Epistemologies and Practices of Modeling and Simulation*, Editions Matériologiques, France, 2013.
- [CRE 86] CREMER M., LUDWIG J., "A fast simulation model for traffic flow on the basis of Boolean operations", *Mathematics and Computers in Simulation*, vol. 28, pp. 297–303, 1986.
- [CRO 68] CROLAIS M., *Gestion intégrée de la production et ordonnancement*, Dunod, Paris, 1968.
- [DAG 94] DAGANZO C., "The cell transmission model, part II: network traffic", Transportation Research Part B: Methodological 28, pp. 269–287, 1994.
- [DAG 81] DAGANZO C., Estimation of gap acceptance parameters within ans across the population from roadside observation, Pergamon Press, 1981.
- [DAG 95] DAGANZO, C., "Requiem for second-order fluid approximations of traffic flow", *Transportation Research Part B: Methodological 29*, pp. 79–93, 1995.
- [DOR 91] DORNIER P.P., *Plein flux sur l'entreprise : La nouvelle logistique, de la gestion des stocks à la gestion des flux*, Nathan Entreprise, Paris, 1991.
- [DRO 08] DROGOUL A., TREUIL J.P., ZUCKER J.D., Modélisation et simulation à base d'agents : Exemples commentés, outils informatiques et questions théoriques, Dunod, Paris, 2008.
- [DUR 14] DURET A., CHIABAUT N., Modélisation dynamique des congestions routières Modèle de trafic LWR, Techniques de l'ingénieur, 2014.
- [FAU 96] FAURE R., Précis de recherche opérationnelle, 3rd ed., Dunod, Paris, 1996.
- [GAR 05] GARDARIN G., Base de données, 6th ed., Eyrolles, Paris, 2005.
- [GAW 98] GAWRON C., Simulation-based traffic assignment: computing user equilibria in large street networks, PhD Thesis, University of Cologne, Cologne, 1998.
- [GAZ 61] GAZIS D.C., HERMAN R., ROTHERY R.W., "Nonlinear follow-the-leader models of traffic flow", *Operations Research*, vol. 9, no. 4, pp. 545–567, 1961.
- [GIA 96] GIARD V., Gestion de la production, 2nd ed., Economica, Paris, 1996.

- [GIP 81] GIPPS P.G., "A behavioural car-following model for computer simulation", *Transportation Research Part B*, vol. 15, pp. 105–111, 1981.
- [GON 09] GONDRAN M., MINOUX M., Graphes et algorithmes, 4th ed., Lavoisier, Paris, 2009.
- [GOR 15] GORDON R., Intelligent Transportation Systems: Functional Design for Effective Traffic Management, 2nd ed., Birkhauser Verlag AG, Switzerland, pp. 282, 2015.
- [GRO 05] GROSS J.L., YELLEN J., Graph Theory and Its Applications, Chapman & Hall, Boca Raton, 2005.
- [GOT 04] GOTHA G., Modèles et algorithmes d'ordonnancement, Ellipses, Paris, 2004.
- [HID 02] HIDAS P., "Modeling lane changing and merging in microscopic traffic simulation", *Transportation Research Part C*, vol. 10, no. 5, pp. 351–371, 2002.
- [JIN 03] JIN W.-L., ZHANG H. M., "On the distribution schemes for computing fluxes through a highway merge", *Transportation Research Part B*, vol. 37, no. 6, pp. 521–540, 2003.
- [KAL 16] KALA R., On-Road Intelligent Vehicles: Motion Planning for Intelligent Transportation, Butterworth-Heinemann, 2016.
- [KIT 93] KITA H., "Effects of merging lane length on the merging behavior at expressway onramps", Proceedings of the 12th International Symposium on the Theory of Traffic Flow and Transportation, 1993.
- [KOM 59] KOMETANI E., SASAKI T., "A safety index for traffic with linear spacing", Operations Research, vol. 7, no. 6, pp. 704–720, 1959.
- [KON 09] KONDYLI A., Breakdown probability model at freeway-ramp merges based on driver behavior, PhD Thesis, University of Florida, 2009.
- [KOR 10] KORTE B., VYGEN J., Optimisation combinatoire : Théorie et algorithmes, Springer, Berlin, 2010.
- [LAU 10] LAUGIÉ H., VBA Excel 2010 Créez des applications professionnelles: Exercices et corrigés, Editions ENI, Saint Herblain, 2010.
- [LE 15] LE GUEN F., Macros et langage VBA Apprendre à programmer sous Excel, Editions ENI, Saint Herblain, 2015.
- [LEC 02] LECLERC L., Modélisation dynamique du trafic et application à l'estimation du bruit routier, INSA, Lyon, 2002.
- [LEB 05] LEBACQUE J.P., "Intersection modeling, application to macroscopic network traffic flow models and traffic management", *Traffic and Granular Flow* Part 3, pp. 261–278, Springer – France, 2005.
- [LEO 89] LEONARD D.R., POWER P., TAYLOR N.B., CONTRAM: structure of the model, Transportation Research Laboratory, Crowthorn TRL Report RR 178, 1989.
- [MAM 07] MAMMAR S., Systèmes de transport intelligents: Modélisation, information et contrôle, Hermes Science-Lavoisier, 2007.

[MAR 13] MARIAPPAN P., Operations Research: An Introduction, Pearson, London, 2013.

- [MIC 89] MICHAELS R.M., FAZIO J., "Driver behavior model of merging", *Transportation Research Record*, vol. 1213, pp. 4–10, 1989.
- [MIL 10] MILLER F.P., Systèmes de transport intelligent : Technologies des l'information et de la communication, sécurité routière, réseau de télécommunication, urbanisation, infrastructure de transport, Alphascript Publishing, France, 2010.
- [NEW 02] NEWELL G.F., A Simplified Car-Following Theory: A Lower Order Model, Institute of Transportation Studies, University of California, Berkeley, 2002.
- [NEW 61] NEWELL G.F., "Nonlinear effects in the dynamics of car-following", *Operations Research*, vol. 9, pp. 209–229, 1961.
- [PIN 14] PINEDO M.L., Scheduling: Theory, algorithms, and systems, 4th ed., Springer, Heidelberg, 2014.
- [PIP 53] PIPES L.A., "An operational analysis of traffic dynamics", Journal of Applied Physics, vol. 24, pp. 274–281, 1953.
- [PRI 71] PRIGOGINE I., HERMAN R., Kinetic Theory of Vehicular Traffic, American Elsevier New-York, 1971.
- [PRI 11] PRINS C., SEVAUX M., Programmation linéaire avec Excel, Eyrolles, Paris, 2011.
- [REV 17a] RÉVEILLAC J.-M., *Modeling and Simulation of Logistics Flows 1*, ISTE, London and John Wiley & Sons, New York, 2017.
- [REV 17b] RÉVEILLAC J.-M., *Modeling and Simulation of Logistics Flows 3*, ISTE, London and John Wiley & Sons, New York, 2017.
- [ROB 11] ROBERT J., BERRY W., WHYBARK C. et al., Manufacturing Planning and Control for Supply Chain Management, McGraw-Hill, Boston, 2011.
- [SAW 13] SAWANT N., Intelligent Transportation Systems: Longitudinal Vehicle Speed Controller for Autonomous Driving in Urban Stop-and-Go Traffic Situations, Lambert Academic Publishing, USA, pp. 92, 2013.
- [SNI 10] SNIEDOVICH M., Dynamic Programming: Foundations and Principles, 2nd ed., CRC Press, Boca Raton, 2010.
- [STO 00] STOCK J., Strategic Logistics Management, 4th ed., McGraw-Hill, Boston, 2000.
- [TOL 14] TOLBA C., Les réseaux de Petri et leur utilisation pour la modélisation et la régulation du trafic routier, Omniscriptum, Saarbrücken, 2014.
- [TOL 03] TOLEDO T., Integrated driving behavior modeling, PhD Thesis, Massachusetts Institute of Technology, 2003.
- [TRI 12] TRIEBER M., KESTING A., *Traffic Flow Dynamics: Data Models and Simulation*, Springer, Heidelberg, 2012.

- [TRE 00] TREIBER M., HENNECKE A., HELBING D., "Congested traffic states in empirical observations and microscopic simulations", *Physical Review E*, vol. 62, no. 2, pp. 1805– 1824, 2000.
- [TRO 92] TROUTBECK R.J., Estimating the critical acceptance gap from traffic movements, Report, Physical Infrastructure Center, 1992.
- [VAJ 13] VAJDA S., Linear Programming: Algorithms and Applications, Springer, Berlin, 2013.
- [VAL 08] VALLIN P., Problématique de la logistique, Economica, Paris, 2008.
- [VED 85] VÉDRINE J.P., *T.Q.G.*, Vuibert, Paris, 1985.
- [VID 95] VIDAL C., La recherche opérationnelle, Presses Universitaires de France, Paris, 1995.
- [WAL 13] WALKENBACH J., Excel Power Programming with VBA, Wiley, New York, 2013.
- [WAN 05] WANG J., LIU R., MONTGOMERY F., "A simulation model for motorway merging behavior", Proceedings of the 16th International Symposium on Transportation and Traffic Theory: Flow, Dynamics and Human Interaction, University of Leeds, UK, 2005.
- [WEN 11] WENG J., MENG Q., "Modeling speed-flow relationship and merging behavior in work zone merging area", *Transportation Research Part C19*, pp. 985–996, 2011.
- [WIN 97] WINSTON W.L., Operations Research Applications and Algorithms, 3rd ed., Duxbury Press, 1997.

Internet links

Internet links are by their very nature subject to change. Over time, they might be moved to other addresses or may disappear. All the website provided here were valid at the time of this work going to print, but should any of them fail to work, a quick Google search should enable us to find them.

Graph theory and operational research

ELSEVIER: European journal of operational research *(in French)*, www.journals. elsevier.com/european-journal-of-operational-research/

INSA ROUEN: Graph theory and operational research *(in French)*, https://moodle. insa-rouen.fr/course/view.php?id=124

ROADEF: French society of operational research and decision aids (*in French*), www.roadef.org/content/road/road.htm

University of Texas: Operations research models www.me.utexas.edu/~jensen/ models/index.html

University of Nancy: Maximal flow in a graph (*in French*), J.F. SCHEID www.iecn. u-nancy.fr/~scheid/Enseignement/flotmax.pdf

IEOR Berkeley: Network flows and graphs www.ieor.berkeley.edu/~ieor266/ Lecture14.pdf

University of Metz: Modelling maximal flow problems *(in French)*, http://ensrotice.sciences.univ-metz.fr/module_avance_thg_voo6/co/modelflotmax.html

ENSTA: Introduction to discreet optimization (*in French*), Adam OUOROU http://wwwdfr.ensta.fr/Cours/docs/MAE41/maxflow_hd.pdf

Tutorials on graphs, paths, trees, flows (*in French*) http://idmme06. inpg.fr/~rapinec/Graphe/Graphe/default.html

E-book: Applied Mathematical Programming, Bradley, Hax, and Magnanti (Addison-Wesley, 1977) http://web.mit.edu/15.053/www/

Article: On the history of the transportation and maximum flow problems, Alexander Schrijver http://homepages.cwi.nl/~lex/files/histtrpclean.pdf

Introduction to graph theory (in French), Didier Müller www.apprendre-enligne.net/graphes/

CNRS: Graph theory and optimization in graphs (in French), Christine Solnon http://liris.cnrs.fr/csolnon/polyGraphes.pdf

INPL: Elements of graph theory and linear programming (*in French*), Didier Maquin http://cours.ensem.inpl-nancy.fr/cours-dm/graphes/Graphesnew.pdf

LABRI (LAboratoire Bordelais de Recherche en Informatique), Introduction to graph theory *(in French)*, Bruno Courcelle www.labri.fr/perso/courcell/ Conferences/GraphesX.pdf

Graph theory (in French), http://theoriedesgraphes.com/

Optimization and complexity: An extensive set of tutorials *(in French)*, Huet http://doc.ium.bz/S6/Optimisation %20et %20complexit %C3 %A9/cour/

GeoGebra: The calculating software for functions, geometry, algebra etc. Site for resources and downloads http://www.geogebra.org

GeoGebra: A tutorial written in English by Marc Renault http://webspace.ship. edu/msrenault/tutorial/

GeoGebra: New figures to see and make with GeoGebra (in French), http://rdassonval.free.fr/geogebra/

Databases and relational algebra

University of Paris 8: Database, relational algebra (*in French*), Rim Chaabane www.ai.univ-paris8.fr/~lysop/bd/seance5-ModeleRel-suite.pdf

ENST: The relational model and algebra (*in French*), www.enst.dz/ Cours/ LeModele_relationneletAlgebre_relationnelle.pdf

Introduction to SQL language (*in French*), Alexandre Mesle http://alexandremesle.com/enseignement/sql/index.html

What is an SGBDR? (in French), Fabien Celaia http://fadace.developpez. com/sql/coddsgbdr/

Tables, Pivot Tables and VBA with Microsoft Excel

Excel practice, free VBA tutorial (in French) www.excel-pratique.com/fr/vba.php

Documentation for VBA developers, Microsoft (*in French*), https://msdn.microsoft. com/fr-fr/office/ff688774.aspx

Excel exercise – Relations between tables (*in French*), www.excel-exercice.com/ excel2013/relation-entre-les-tables/

How to create a spreadsheet using Excel (in French), WikiHow http:// fr.wikihow.com/créer-un-tableau-avec-Excel

Paris-Dauphine University: VBA initiation for Excel (*in French*), Philippe Bernard www.master272.com/finance/GP_L3/docs/VBA.pdf

Towson University: Excel 2013: PivotTables and Macros, Pamela J. Taylor https://www.towson.edu/adminfinance/ots/trainingdoc/customguide/Excel2013/Exce 1%202013 PivotTables %20and %20Macros_studentFINAL.pdf

College of Business Administration, Kansas State University: Conducting Data Analysis Using a Pivot Table, Brian Kovar http://info.cba.ksu.edu/bkovar/ PivotTableTutorial.pdf

Spreadsheets in Excel 2007 (in French) http://silkyroad.developpez.com/ excel/tableau/

AgroParisTech: Using lists of data with Excel 2007 (*in French*), Michel Cartereau www.agroparistech.fr/mmip/mc/bazar/envoi.php?nom_fichier=cours-listes-excel 2007.pdf

Flow simulation

ExtendSim, flow simulation software, editor's website www.extendsim.com

A download of the demo version of ExtendSim https://www.extendsim.com/ prods_demo.html

FlexSim, flow simulation software, editor's website https://www.flexsim.com

Arena, flow simulation software, editor's website https://www.arenasimulation. com

Witness, flow simulation software, editor's website www.lanner.com

SimWalk, simulation software for pedestrian flow, editor's website www. simwalk.com

PTV Group, PTV Vissim, traffic simulation software, editor's website www.ptvgroup.com

TSS, Aimsun, traffic simulation software, editor's website www.aimsun.com

Caliper, TransModeler, traffic simulation software, editor's website www.caliper. com/transmodeler/

AnyLogic, traffic simulation software, editor's website www.anylogic.com

Simio, flow simulation software, editor's website www.simio.com

Simul8, flow simulation software, editor's website www.simul8.com

SFPE, Society of Fire Protection http://www.sfpe-chapitre-francais.fr/ (French website) http://www.sfpe.org/ (American website)

Project management

Sciforma, project management software, editor's website www.sciforma.com

Visual Planning, project management software, editor's website http://www.visualplanning.com

Microsoft Project, project management software, editor's website https://products. office.com/fr-fr/project/project-and-portfolio-management-software

GanttProject, project management software, editor's website www.ganttproject.biz

The Wikipedia page devoted to project management software, including an enormous list of applications *(in French)*, http://fr.wikipedia.org/wiki/Logiciel_de_gestion_de_projets

Appendices

Appendix 1

Installing the Solver

A1.1. Introduction

Chapter 1 makes several references to the "Solver" tool in Microsoft Excel. By default, this feature is not always installed and will therefore not appear in the menus, the toolbar icons or the icons featured within the different groups in the ribbon.

Below you will find the steps required for proper installation depending on the different version of Microsoft Excel for Microsoft Windows or for Apple Mac OSX.

A.1.2. Microsoft Excel 1997, 2002 and 2003 for Windows

Bie Edit View Insert Format Iools Data Window Help Adobe PDF 🗅 🗃 🖬 🛍 🎒 🗟 🖤 🕺 🏹 Spelling... ZA • B 🐠 Error Checking... E13 fx. Speech Share Workbook... 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Track Changes . Protection ÷ Online Collaboration Goal Seek... Scenarios... Formula Auditing Tools on the Web... Macro . Add-Ins... 3 AutoCorrect Options... Customize... Options...

In the TOOLS menu, select ADD-INS.

Figure A1.1. The ADD-INS option in the TOOLS menu

Modeling and Simulation of Logistics Flows 2: Dashboards, Traffic Planning and Management, First Edition. Jean-Michel Réveillac. © ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. A dialog box will open. Tick "Add-ins..." and click on the OK button.

Figure A1.2. The list of add-ins with the "Solver Add-In" to be ticked

In order to locate the solver click on the TOOLS menu and select SOLVER.

Figure A1.3. The option for opening the SOLVER from the TOOLS menu

A1.3. Microsoft Excel 2007–2010 for Windows

10 - (21 -H) = x Home Insert Page Layout Ж Calibri - 11 · A A Paste B I U -🕭 - <u>A</u> Clipboard 5 Font

For Microsoft Excel 2007, click on the Office button (top left).

Figure A1.4. Top left – the Office button in Excel 2007

In the window that opens click on the EXCEL OPTIONS button (bottom right, next to the QUIT EXCEL button).

For Microsoft Excel 2010, open the FILE menu and select OPTIONS. A dialog box will open. Select "Adds-Ins" in the list on the left.

Customize	AutoSafe & recovery utility	C:\crosoft Off
Add Inc	PTS Error Bar Litility	C:\ Peltier\De
Add-Ins	Sendmoduletoword	C:\er\Desktor
Trust Center	Solver Add-in	C:\fice\Office
	VBA Code Cleaner 5.0	C:\ppsPro\Co
Resources	VBE Tools v2.0 - Rename ActiveX Control	C:\Office Aut
	Inactive Application Add-ins	
	Analysis ToolPak - VBA	C:\\Office12\l
	Conditional Sum Wizard	C:\rosoft Offi
	Custom XML Data	C:\iles\Micros
	Date (Smart tag lists)	C:\iles\Micros
	Euro Currency Tools	C:\ft Office\O
	Financial Symbol (Smart tag lists)	C:\iles\Micros
	Headers and Footers	C:\iles\Micros
	Hidden Rows and Columns	C:\iles\Micros
	Hidden Worksheets	C:\iles\Micros
	Internet Assistant VBA	C:\icrosoft Of
	Add-in: Analysis ToolPak	
	Publisher: Microsoft Corporation	
	Location: C:\Program Files\Microsoft O	ffice\Office12\Libraŋ
	Description: Provides data analysis tools f	or statistical and eng
	Manage: Excel Add-ins 🗸 🧕	0

Figure A1.5. The Excel add-ins featuring the drop-down list MANAGE (bottom right) and the GO button Across from the "Manage" field (at the bottom), select "Excel Add-Ins" in the drop-down menu, then click on the GO button.

A dialog box for add-ins will open. Select "Solver Add-In" and click on the OK button.

Figure A1.6. The dialog box displaying the available add-ins

The solver is the last tool available (on the right) in the ribbon beneath the DATA tab in the ANALYSIS group.

A1.4. Microsoft Excel 2013 for Windows

In the FILE menu, select OPTIONS in the vertical ribbon located on the left.

A dialog box will open. In the list on the left, select ADD-INS.

In the section on the right, you should see all of the available add-ins for Microsoft Office, including the one called "Solver Add-In".

In the lower section, across from the field "Manage" (at the bottom), select "Excel Add-Ins" from the drop-down menu, then click on the GO button.

General	View and manage Microsoft Office Add-ins.		
ormulas			
Proofing	Add-ins		
Save	Name -	Location	Туре
anguage	Active Application Add-ins		
	Hive for Excel	C:\iveExcel.vstolvstolocal	COM Add-in
Advanced	Microsoft Office PowerPivot for Excel 2013	C:\otExcelClientAddIn.dll	COM Add-in
	Power View	C\eportingExcelClient.dll	COM Add-in
ustomize Ribbon	Sharing Add-in for Microsoft Lync 2010	C:\Lvnc\collabaddin64.dll	COM Add-in
Duick Access Toolbar	Team Foundation Add-in	"Ci\TESOfficeAdd-in.dll"	COM Add-in
and the	Visual Studio Tools for Office Design-Time Adaptor for Excel	C:\VSTOExcelAdaptor.dll	COM Add-in
Addrins	Inactive Application Addains		
Frust Center	Inactive Application Add-ins	City and analyzis' analysis?	Event Add in
	Analysis Toolinak Analysis Toolinak	Citary tanaiysis tanaiysis2.xii	Elicel Add in
	Analysis ToolPak - YbA	C:\naiysis\atpvbaen.xiam	Excel Add-In
	Date (VMI)	Cl Smart Tag MOEL DU	Action
	Date (AML)	C:\\Smart Tag\WOPE.DEL	Action Excel Add to
	Financial Symbol (XML)	Civ Smart Tan MOEL DU	Action
	Headers and Ecoters	Citational raginoreacte	Document locoactor
	Hidden Rowr and Columns	Ci_oct\office15\office15\	Document Inspector
	Hidden Workshoets	C) act office15 officed dil	Document Inspector
	Though worksheets	C. (oot(onicers/onnicers	Documentarispector
	Add-in: Solver Add-in		
	Publisher: <none></none>		
	Compatibility: No compatibility information available		
	Location: C:\Program Files\Microsoft Office\Office1	5\Library\SOLVER\solver.xlam	
	Description: Tool for optimization and equation solvin	g	
	Manage: Excel Add-ins		

Figure A1.7. The dialog box showing the list of available add-ins for Microsoft Excel 2013. At the bottom, we can see the "Manage" field along with its drop-down menu and GO button

A new dialog box, "Add-Ins" should open, showing a list of the available add-ins.

Figure A1.8. The "Add-Ins" dialog box

Select "Solver Add-In" and click on the OK button.

COMMENT A1.1.– If "Solver Add-In" does not appear on the list, click on the BROWSE button. In the file explorer window that opens, go to "Programs\Microsoft Office\Office15\Library\SOLVER", select the file "SOLVER.XLAM" then click on the OK button.

To locate the solver, click on the DATA menu in the ribbon on the right in the ANALYSIS group and you should see the solver icon.

Figure A1.9. The ribbon in the DATA menu including the solver icon on the right

A1.5. Microsoft Excel for Mac 2008-2011

In the TOOLS menu, select ADD-INS.

In the "Add-ins" dialog box that appears, select "Solver.Xlam" and click on the OK button.

Select
ncel OK

Figure A1.10. The dialog box for installing the solver add-in

COMMENT A1.2. – If "Solver.Xlam" does not appear in the list "Available add-ins", click on the SELECT button, open "Applications", and search in the folder "Microsoft Office 2008" or "Microsoft Office 2011" then the sub-folder "Office" then "Add-ins" and select "Solver.xlam". Click on the OPEN button and it should appear in the list of the "Add-ins" dialog box.

To open the solver from a spreadsheet, go to the TOOLS menu and select SOLVER...

Figure A1.11. The TOOLS menu and the option SOLVER... (last option on the list)

Appendix 2

Installing the Java Development Kit

A2.1. Why Java?

Presented in May 1995 and developed by J. Gosling and P. Naughton of Sun Microsystems, *Java* is an object-oriented programming language. It is now owned by Oracle which bought Sun in 2009.

Java's slogan is WORA "Write once, run anywhere".

By now, you will have understood that one of the main advantages of Java is its *portability*. You take your source code and you compile it once and it can then be used on any platform (Microsoft Windows, Linux, OSX, etc.)

Another important advantage is the fact that it is free.

When you download Java, you are able to access the Java Runtime Environment (JRE). It is made up of Java Virtual Machine (JVM), standard classes and Java libraries.

JVM interprets the Java bytecode, controls how it interacts with the operating system and manages memory.

The JVE relates to the running of the Java software and makes it possible to run a Java application.

Java Development Kit (JDK) is the development kit for the Java language. It incorporates, among others, the compilation tools and the debugger.

JDK contains JRE in order to be able to test the applications developed.

A2.2. Downloading

Download the Java Standard Edition (SE) development kit (JDK) at: www.oracle.com/technetwork/java/javase/downloads/index.html. Be sure to select the appropriate version for your operating system.

COMMENT A2.1.– Please note that this address is subject to change. Should this happen, use a search engine to search for JDK.

A2.3. Testing the presence of the JDK compiler

Install JDK. Once it has been installed, open your system's command menu.

With the OSX platform, use the application Terminal, located in the "Applications/Utilities" folder.

Figure A2.1. The sub-folder "Utilities", located in the "Applications" folder in OSX. Note the application "Terminal"

Below Microsoft Windows 7, enter "cmd" in "Search programs and files" from the **START** menu (circle featuring the Microsoft Windows logo), at the bottom left, then confirm by pressing ENTER.

Figure A2.2. The field "Search programs and files" (on the left) and inputting "cmd" in the same field (on the right)

In Microsoft Windows XP, from the **START** menu, at the bottom left, go to "Run", type "cmd" in the **OPEN** field in the **RUN** dialog box that will open, then click on the **OK** button.

Figure A2.3. The "Run" option from "All programs" and the RUN dialog box featuring the field OPEN containing "cmd"

You can also access the "Command Prompt" from "All programs" in the "Accessories" folder.

Figure A2.4. The "command prompt" option in the "Accessories" folder in Microsoft Windows XP

COMMENT A2.2.– In Microsoft Windows 8, you can access the RUN command by holding down the Windows button and pressing "R".

Once your command menu window is displayed, enter "javac" followed by ENTER (open the java compiler). A list of commands for use should appear.

Figure A2.5. The command list for use with "javac" from the Microsoft Windows command menu (on the left) and from the OSX Terminal (on the right)

With OSX, you should not encounter any problems.

With Microsoft Windows, if this list doesn't appear and a message saying something along the lines of "*javac has not been recognized as an internal command*...", is displayed, this will be because you have forgotten the environment variable "*path*".

A2.4. Creating the environment variable

Here is the procedure to follow for resolving this issue:

- go to the Java installation folder, for example: "C:\ProgramFiles\Java";

- open the folder of your JDK, for example "jdk1.8.0 91";

- then open the folder "bin";

- copy the access path for this folder, for example: "C:\ ProgramFiles\Java\jdk1.8.0 91\bin";

right click on your work post, then select **PROPERTIES**;

COMMENT A2.3.– It is also possible to access the system properties via the configuration by selecting **SYSTEM AND SECURITY**, then **SYSTEM** (Microsoft Windows 7) or **SYSTEM**, then the **ADVANCE** tab (Microsoft Windows XP).

- select ADVANCED SYSTEM PARAMETERS then click on the ENVIRONMENT VARIABLE button;

- select the variable "*Path*" in the list of variable users if it is there, and click on the **MODIFY** button. Otherwise, click on the **NEW** button and give it the name "*Path*";

- in the **VARIABLE VALUE** field, if a set of values is already present, add an ";" (semi-colon) at the end, then past the path that you have previously copied. Otherwise simply paste the copied path;

 – click on the **OK** button to close each of the windows then finish by closing the properties window;

- your "javac" compiler should now be operational.

Figure A2.6. From the properties of the work post we can see all of the windows for accessing the environment variable "Path" (Microsoft Windows 7)

COMMENT A2.4.- In order to take into account the modifications relating to the environment variable, you will need to close and relaunch the command menu window.

Index

Σ VALUES, 48, 51, 68, 70 3D mode, 162 3D model, 164

A, **B**

acceleration, 103 acceleration model, 103 accumulation, 102 add-in, 62 ALIGNMENT, 22 allocation of resources, 76 ANALYZE, 52, 60 analyzing scenarios,, 72 AnyLogic, 101, 144, 165 AUTO SCHEDULE, 80 average, 47 boundary conditions, 103

C, **D**

calculated fields, 43, 53, 58 calendar, 17, 77 sections, 47 capacity, 85 CAPM, 75 cardinalities, 62 CEILING, 59 CHARTS, 20 CoffeeScript, 104 compilation, 116 CONDITIONAL FORMATTING, 46 congestion, 102 consolidating, 72 CONSTRAINTS, 32, 35 constraints, 38, 69 Creative Commons, 109 critical path, 7 dashboards, 41, 94 DATA BARS, 46 data tables, 64 Database Management System (DBMS), 41 DataPilot, 42 DATE FILTERS, 55 date format, 92 deceleration, 103 density, 103 dynamic programming, 1

E, F

editor, 117 FIELDS, ITEMS AND SETS, 45, 59 FILTER, 48 filtering, 53

Modeling and Simulation of Logistics Flows 2: Dashboards, Traffic Planning and Management, First Edition. Jean-Michel Réveillac. © ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. fluidity, 102 FORMAT AXIS, 14, 20 FORMAT CELLS, 20

G, H, I

Gantt diagram, 11, 83 gap, 103 between vehicles, 104 GLDEdit, 117 GLDSim, 117 GNU General Public, 115 Google Maps, 145 histogram, 95 crossing multiple data, 95 HTML5, 104 IDM, 104 importation, 72 INDENT, 80 INSERT SLICER, 53 intersection simulator, 109

J, L, M

Java, 109, 115 Java compiler, 116 LABELS, 14 labor resource, 85 lane-changing model, 103 limits, 69 linear programming, 36 MANAGE RELATIONSHIPS, 66 matrix, 7 maximal flows, 23 MecaTools, 74 mesoscopic, 165 Microsoft Project 2013, 73 **MOBIL**, 104 MODULE, 2, 25, 28 monitoring, 97 MPM, 18 MPM network, 82 multiple databases, 61 multiple tables, 67

N, O, P

NETWORK DIAGRAM, 82 OpenOffice, 42 operational research, 1 organigrams, 153 OUTDENT, 80 over-allocation, 90 PERT, 7, 18 Pivot table, 41 PIVOT TABLE OPTIONS, 58 planning, 73 PowerPivot, 62 predecessors, 81 project configuring, 77

R, S

relationship, 65 relationships, 62 **RELATIONSHIPS**, 65 reports, 94 visual reports, 95 reschedule, 91 **RESOURCE INITIALS, 86** resources, 84 Ring road, 102 Road Traffic Library, 144 RoadTrafficSimulator, 104 SCHEDULE, 80, 97 scheduling, 6, 73 segment, 53 shedules, 75 simulator, 117 slack, 83 free slack, 83 total slack, 83 slowing down, 102 SOLVER, 32, 35, 36, 38, 39 spreadsheets, 41 SUB TOTALS, 52, 69 SUMO, 165

T, **U W**

Team Planner, 88 TOTALPRODUCT, 37 TOTALS AND FILTERS, 52 traffic, 101 Signals, 165 simulators, 165 transport, 33 model, 29 tuples, 42 UNITS, 14, 15 WBS coding, 92 Work Breakdown Structure (WBS), 92