
	

Databases on
Modern Hardware
How to Stop Underutilization
and Love Multicores

Anastasia Ailamaki
Erietta Liarou
Pinar Tözün
Danica Porobic
Iraklis Psaroudakis

Series ISSN: 2153-5418

store.morganclaypool.com

Series Editor:	 Z. Meral Özsoyoğlu, Case Western Reserve University

Databases on Modern Hardware
How to Stop Underutilization and Love Multicores

Anastasia Ailamaki, École Polytechnique Fédérale de Lausanne EPFL
Erietta Liarou, École Polytechnique Fédérale de Lausanne EPFL
Pinar Tözün, IBM Almaden Research Center
Danica Porobic, Oracle
Iraklis Psaroudakis, Oracle

Data management systems enable various influential applications from high-performance online services (e.g., social
networks like Twitter and Facebook or financial markets) to big data analytics (e.g., scientific exploration, sensor networks,
business intelligence). As a result, data management systems have been one of the main drivers for innovations in the database
and computer architecture communities for several decades. Recent hardware trends require software to take advantage of
the abundant parallelism existing in modern and future hardware. The traditional design of the data management systems,
however, faces inherent scalability problems due to its tightly coupled components. In addition, it cannot exploit the full
capability of the aggressive micro-architectural features of modern processors. As a result, today’s most commonly used
server types remain largely underutilized leading to a huge waste of hardware resources and energy.
	 In this book, we shed light on the challenges present while running DBMS on modern multicore hardware. We
divide the material into two dimensions of scalability: implicit/vertical and explicit/horizontal.
	 The first part of the book focuses on the vertical dimension: it describes the instruction- and data-level parallelism
opportunities in a core coming from the hardware and software side. In addition, it examines the sources of under-utilization
in a modern processor and presents insights and hardware/software techniques to better exploit the microarchitectural
resources of a processor by improving cache locality at the right level of the memory hierarchy.
	 The second part focuses on the horizontal dimension, i.e., scalability bottlenecks of database applications at the
level of multicore and multisocket multicore architectures. It first presents a systematic way of eliminating such bottlenecks
in online transaction processing workloads, which is based on minimizing unbounded communication, and shows several
techniques that minimize bottlenecks in major components of database management systems. Then, it demonstrates the
data and work sharing opportunities for analytical workloads, and reviews advanced scheduling mechanisms that are aware
of nonuniform memory accesses and alleviate bandwidth saturation.

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis Digital Library of
Engineering and Computer Science. Synthesis books provide concise, original presentations of
important research and development topics, published quickly, in digital and print formats.

A
ILA

M
A

K
I • E

T
 A

L			

D

ATA
B

A
SES O

N
 M

O
D

ER
N

 H
A

R
D

W
A

R
E

. 		
 M

O
R

G
A

N
 &

 C
LA

Y
P

O
O

L

Databases onModernHardware
How to Stop Underutilization
and LoveMulticores

Synthesis Lectures onData
Management

Editor
H.V. Jagadish,University of Michigan

Founding Editor
M.TamerÖzsu,University of Waterloo

Synthesis Lectures on Data Management is edited by H.V. Jagadish of the University of Michigan.
The series publishes 80- to 150-page publications on topics pertaining to data management. Topics
include query languages, database system architectures, transaction management, data
warehousing, XML and databases, data stream systems, wide scale data distribution, multimedia
data management, data mining, and related subjects.

Databases on Modern Hardware: How to Stop Underutilization and Love Multicores
Anastasia Ailamaki, Erietta Liarou, Pınar Tözün, Danica Porobic, and Iraklis Psaroudakis
2017

Instant Recovery with Write-Ahead Logging: Page Repair, System Restart, Media
Restore, and System Failover, Second Edition
Goetz Graefe, Wey Guy, and Caetano Sauer
2016

Generating Plans from Proofs: The Interpolation-based Approach to Query
Reformulation
Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia Tsamoura
2016

Veracity of Data: From Truth Discovery Computation Algorithms to Models of
Misinformation Dynamics
Laure Berti-Équille and Javier Borge-Holthoefer
2015

Datalog and Logic Databases
Sergio Greco and Cristina Molinaro
2015

iv
Big Data Integration
Xin Luna Dong and Divesh Srivastava
2015

Instant Recovery with Write-Ahead Logging: Page Repair, System Restart, and Media
Restore
Goetz Graefe, Wey Guy, and Caetano Sauer
2014

Similarity Joins in Relational Database Systems
Nikolaus Augsten and Michael H. Böhlen
2013

Information and Influence Propagation in Social Networks
Wei Chen, Laks V.S. Lakshmanan, and Carlos Castillo
2013

Data Cleaning: A Practical Perspective
Venkatesh Ganti and Anish Das Sarma
2013

Data Processing on FPGAs
Jens Teubner and Louis Woods
2013

Perspectives on Business Intelligence
Raymond T. Ng, Patricia C. Arocena, Denilson Barbosa, Giuseppe Carenini, Luiz Gomes, Jr.,
Stephan Jou, Rock Anthony Leung, Evangelos Milios, Renée J. Miller, John Mylopoulos, Rachel
A. Pottinger, Frank Tompa, and Eric Yu
2013

Semantics Empowered Web 3.0: Managing Enterprise, Social, Sensor, and Cloud-based
Data and Services for Advanced Applications
Amit Sheth and Krishnaprasad Thirunarayan
2012

Data Management in the Cloud: Challenges and Opportunities
Divyakant Agrawal, Sudipto Das, and Amr El Abbadi
2012

Query Processing over Uncertain Databases
Lei Chen and Xiang Lian
2012

Foundations of Data Quality Management
Wenfei Fan and Floris Geerts
2012

v
Incomplete Data and Data Dependencies in Relational Databases
Sergio Greco, Cristian Molinaro, and Francesca Spezzano
2012

Business Processes: A Database Perspective
Daniel Deutch and Tova Milo
2012

Data Protection from Insider Threats
Elisa Bertino
2012

Deep Web Query Interface Understanding and Integration
Eduard C. Dragut, Weiyi Meng, and Clement T. Yu
2012

P2P Techniques for Decentralized Applications
Esther Pacitti, Reza Akbarinia, and Manal El-Dick
2012

Query Answer Authentication
HweeHwa Pang and Kian-Lee Tan
2012

Declarative Networking
Boon Thau Loo and Wenchao Zhou
2012

Full-Text (Substring) Indexes in External Memory
Marina Barsky, Ulrike Stege, and Alex Thomo
2011

Spatial Data Management
Nikos Mamoulis
2011

Database Repairing and Consistent Query Answering
Leopoldo Bertossi
2011

Managing Event Information: Modeling, Retrieval, and Applications
Amarnath Gupta and Ramesh Jain
2011

Fundamentals of Physical Design and Query Compilation
David Toman and Grant Weddell
2011

vi
Methods for Mining and Summarizing Text Conversations
Giuseppe Carenini, Gabriel Murray, and Raymond Ng
2011

Probabilistic Databases
Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch
2011

Peer-to-Peer Data Management
Karl Aberer
2011

Probabilistic Ranking Techniques in Relational Databases
Ihab F. Ilyas and Mohamed A. Soliman
2011

Uncertain Schema Matching
Avigdor Gal
2011

Fundamentals of Object Databases: Object-Oriented and Object-Relational Design
Suzanne W. Dietrich and Susan D. Urban
2010

Advanced Metasearch Engine Technology
Weiyi Meng and Clement T. Yu
2010

Web Page Recommendation Models: Theory and Algorithms
Sule Gündüz-Ögüdücü
2010

Multidimensional Databases and Data Warehousing
Christian S. Jensen, Torben Bach Pedersen, and Christian Thomsen
2010

Database Replication
Bettina Kemme, Ricardo Jimenez-Peris, and Marta Patino-Martinez
2010

Relational and XML Data Exchange
Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak
2010

User-Centered Data Management
Tiziana Catarci, Alan Dix, Stephen Kimani, and Giuseppe Santucci
2010

vii
Data Stream Management
Lukasz Golab and M. Tamer Özsu
2010

Access Control in Data Management Systems
Elena Ferrari
2010

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel
2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeffrey Xu Yu, Lu Qin, and Lijun Chang
2009

Copyright © 2017 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Databases on Modern Hardware: How to Stop Underutilization and Love Multicores

Anastasia Ailamaki, Erietta Liarou, Pınar Tözün, Danica Porobic, and Iraklis Psaroudakis

www.morganclaypool.com

ISBN: 9781681731537 paperback
ISBN: 9781681731544 ebook

DOI 10.2200/S00774ED1V01Y201704DTM045

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATAMANAGEMENT

Lecture #45
Series Editor: H.V. Jagadish, University of Michigan
Founding Editor: M. Tamer Özsu, University of Waterloo
Series ISSN
Print 2153-5418 Electronic 2153-5426

www.morganclaypool.com

Databases onModernHardware
How to Stop Underutilization
and LoveMulticores

Anastasia Ailamaki
École Polytechnique Fédérale de Lausanne EPFL

Erietta Liarou
École Polytechnique Fédérale de Lausanne EPFL

Pınar Tözün
IBM Almaden Research Center

Danica Porobic
Oracle

Iraklis Psaroudakis
Oracle

SYNTHESIS LECTURES ON DATAMANAGEMENT #45

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
Data management systems enable various influential applications from high-performance on-
line services (e.g., social networks like Twitter and Facebook or financial markets) to big data
analytics (e.g., scientific exploration, sensor networks, business intelligence). As a result, data
management systems have been one of the main drivers for innovations in the database and
computer architecture communities for several decades. Recent hardware trends require soft-
ware to take advantage of the abundant parallelism existing in modern and future hardware. The
traditional design of the data management systems, however, faces inherent scalability problems
due to its tightly coupled components. In addition, it cannot exploit the full capability of the ag-
gressive micro-architectural features of modern processors. As a result, today’s most commonly
used server types remain largely underutilized leading to a huge waste of hardware resources and
energy.

In this book, we shed light on the challenges present while running DBMS on modern
multicore hardware. We divide the material into two dimensions of scalability: implicit/vertical
and explicit/horizontal.

The first part of the book focuses on the vertical dimension: it describes the instruction-
and data-level parallelism opportunities in a core coming from the hardware and software side.
In addition, it examines the sources of under-utilization in a modern processor and presents
insights and hardware/software techniques to better exploit the microarchitectural resources of
a processor by improving cache locality at the right level of the memory hierarchy.

The second part focuses on the horizontal dimension, i.e., scalability bottlenecks of
database applications at the level of multicore and multisocket multicore architectures. It first
presents a systematic way of eliminating such bottlenecks in online transaction processing work-
loads, which is based on minimizing unbounded communication, and shows several techniques
that minimize bottlenecks in major components of database management systems. Then, it
demonstrates the data and work sharing opportunities for analytical workloads, and reviews
advanced scheduling mechanisms that are aware of nonuniform memory accesses and alleviate
bandwidth saturation.

KEYWORDS
multicores, NUMA, scalability, multithreading, NUMA, cache locality, memory
hierarchy

xi

Contents
1 Introduction . 1

1.1 Implicit/Vertical Dimension . 1
1.2 Explicit/Horizontal Dimension . 3
1.3 Structure of the Book . 4

PART I Implicit/Vertical Scalability 7

2 Exploiting Resources of a Processor Core . 9

2.1 Instruction and Data Parallelism . 9
2.2 Multithreading . 14
2.3 Horizontal Parallelism . 17

2.3.1 Horizontal parallelism in advanced database scenarios 19
2.3.2 Conclusions . 25

3 MinimizingMemory Stalls . 27

3.1 Workload Characterization for Typical Data Management Workloads 27
3.2 Roadmap for this Chapter . 30
3.3 Prefetching . 31

3.3.1 Techniques that are Common in Modern Hardware 31
3.3.2 Temporal Streaming . 32
3.3.3 Software-guided Prefetching . 33

3.4 Being Cache-conscious while Writing Software . 34
3.4.1 Code Optimizations . 35
3.4.2 Data Layouts . 36
3.4.3 Changing Execution Models . 37

3.5 Exploiting Common Instructions . 39
3.6 Conclusions . 40

xii

PART II Explicit/Horizontal Scalability 43
4 Scaling-upOLTP . 45

4.1 Focus on Unscalable Components . 48
4.1.1 Locking . 48
4.1.2 Latching . 51
4.1.3 Logging . 52
4.1.4 Synchronization . 54

4.2 Non-uniform Communication . 55
4.3 Conclusions . 56

5 Scaling-upOLAPWorkloads . 57
5.1 Sharing Across Concurrent Queries . 58

5.1.1 Reactive Sharing . 59
5.1.2 Proactive Sharing . 60
5.1.3 Systems with Sharing Techniques . 62

5.2 NUMA-awareness . 63
5.2.1 Analytical Operators . 65
5.2.2 Task Scheduling . 68
5.2.3 Coordinated Data Placement and Task Scheduling 71

5.3 Conclusions . 73

PART III Conclusions . 75
6 Outlook . 77

6.1 Dark Silicon and Hardware Specialization . 77
6.2 Non-volatile RAM and Durability . 78
6.3 Hardware Transactional Memory . 79
6.4 Task Scheduling for Mixed Workloads and Energy Efficiency 80

7 Summary . 83

Bibliography . 85

Authors’ Biographies . 99

1

C H A P T E R 1

Introduction
Ever-increasing data volumes and the complexity of queries posed over the data are requiring
increased processing power from the database management systems (DBMS). While modern
hardware keeps offering increased parallelism and capabilities, harnessing them has been a per-
petual challenge for decades. In particular, hardware trends oblige software to overcome three
major challenges against systems scalability:

1. exploiting the abundant thread-level parallelism provided by multicores;

2. achieving predictably efficient execution despite the non-uniformity in multisocket mul-
ticore systems; and

3. taking advantage of the aggressive microarchitectural features.

In this book, we shed light on these three challenges and survey recent proposals to al-
leviate them. We divide the material into two dimensions of scalability in a single multisocket
multicore hardware: implicit/vertical and explicit/horizontal.

1.1 IMPLICIT/VERTICALDIMENSION
Figure 1.1 illustrates the implicit/vertical dimension of multicore hardware. The scalability of
this dimension refers to utilizing the resources of a single core more effectively.

In step with Moore’s law [99], processor technology has gone through major advance-
ments over the years. Prior to 2005, hardware vendors mainly innovated on implicit parallelism
within a core boosting the performance of a single thread (Figure 1.1 left-hand side). They either
kept clocking the processors at higher frequencies or designing aggressive microarchitectural
features (e.g., long execution pipelines, super-scalar execution, out-of-order execution, branch
prediction, vector processing, etc. [59]) that increase the complexity of a processor. However,
taking advantage of such features is never straightforward for the complex data management ap-
plications [8, 54], mainly due to the low instruction level parallelism (ILP) they exhibit. These
applications usually require fundamental algorithmic changes in order to really exploit both data-
and instruction-level parallelism opportunities that exist on modern processors [78, 130, 134].

The algorithmic changes that take into account the microarchitectural features of a core
are only one part of the solution. One also needs to account for the memory hierarchy on the ma-
chines being used (Figure 1.1 right-hand side). Recent studies analyzing the microarchitectural
behavior of typical data management workloads on modern hardware emphasize that more than

2 1. INTRODUCTION

Figure 1.1: The implicit/vertical scalability dimension refers to optimizing the performance of
DBMS by increasing the utilization of cores and caches.

Figure 1.2: The explicit/horizontal scalability dimension refers to optimizing the performance of
DBMS by better utilizing the increasing number of cores and sockets.

half of the execution time goes to memory stalls when running data-intensive workloads [42].
As a result, on processors that have the ability to execute four instructions per cycle (IPC),
which is common for modern commodity hardware, data intensive workloads, especially trans-
action processing, achieve around one instruction per cycle [141, 152]. Such underutilization of
microarchitectural features is a great waste of hardware resources.

Several proposals have been made to reduce memory stalls through improving instruc-
tion and data locality to increase cache hit rates. For data, these range from cache-conscious
data structures and algorithms [30] to sophisticated data partitioning and thread schedul-
ing [115]. For instructions, they range from compilation optimizations [131], and advanced
prefetching [43], to computation spreading [13, 26, 150] and transaction batching for instruc-

1.2. EXPLICIT/HORIZONTALDIMENSION 3
tions [14, 55]. In addition, several recent proposals opt for hardware specialization for some of
the database operations [65, 85, 166].

1.2 EXPLICIT/HORIZONTALDIMENSION

Figure 1.2 illustrates the explicit/horizontal dimension of multicore hardware. The scalability of
this dimension refers to utilizing the increasing number of cores and sockets in a single multi-
socket multicore server hardware.

Since the beginning of this decade, power draw and heat dissipation prevent processor
vendors from relying on rising clock frequencies or more aggressive microarchitectural tech-
niques for higher performance. Instead, they add more processing cores or hardware contexts
on a single processor to enable exponentially increasing opportunities for parallelism [107]. Ex-
ploiting this parallelism is crucial for utilizing the available architectural resources and enabling
faster software. However, designing scalable systems that can take advantage of the underly-
ing parallelism remains a challenge. In traditional high-performance transaction processing, the
inherent communication leads to scalability bottlenecks on today’s multicore and multisocket
hardware. Even systems that scale very well on one generation of multicores might fail to scale-
up on the next generation. On the other hand, in traditional online analytical processing, the
database operators that were designed for unicore processors fail to exploit the abundant paral-
lelism offered by modern hardware.

Servers with multiple processors and non-uniform memory access (NUMA) design
present additional challenges for data management systems, many of which were designed with
implicit assumptions that core-to-core communication latencies and core-to-memory access la-
tencies are constant regardless of location. However, today for the first time we have Islands,
i.e., groups of cores that communicate fast among themselves and slower with other groups.
Currently, an Island is represented by a processor socket but soon, with dozens of cores on the
same socket, we expect that Islands will form within a chip. Additionally, memory is accessed
through memory controllers of individual processors. In this setting, memory access times vary
greatly depending on several factors including latency to access remote memory and contention
for the memory hierarchy such as the shared last level caches, the memory controllers, and the
interconnect bandwidth.

Abundant parallelism and non-uniformity in communication present different challenges
to transaction and analytical workloads. The main challenge for transaction processing is com-
munication. In this part of the book, we initially teach a methodology for scaling up transaction
processing systems on multicore hardware. More specifically, we identify three types of com-
munication in a typical transaction processing system: unbounded, fixed, and cooperative [67]. We
demonstrate that the key to achieving scalability on modern hardware, especially for transaction
processing systems, but also for any system that has similar communication patterns, depends
on avoiding the unbounded communication points or downgrading them into fixed or coopera-

4 1. INTRODUCTION
tive ones. We show how effective this methodology is in practice by surveying related proposals
from recent work (e.g., [36, 76, 109, 146, 149, 158]).

Non-uniform communication latencies make it appealing to regard multisocket as a dis-
tributed system and deploy multiple nodes in a shared-nothing configuration [76, 146]. While
this approach works great for perfectly partitionable workloads, it is very sensitive to distributed
transactions and the workload skew. At the same time, hardware-oblivious shared-everything
systems suffer from non-uniform latencies that amplify bottlenecks in the critical path [116]. In
order to achieve scalability on multisockets one needs to make the system aware of the hardware
topology and dynamically adapt to workload and hardware [115].

On the other hand, traditional online analytical processing workloads are formed of scan-
heavy, complex, ad-hoc queries that do not suffer from the unbounded communication as in
transaction processing. Analytical workloads are still concerned with the variability of latency,
but also with avoiding saturating resources such asmemory bandwidth. Inmany analytical work-
loads that exhibit similarity across the query mix, sharing techniques can be employed to avoid
redundant work and re-use data in order to better utilize resources and decrease contention. We
survey recent techniques that aim at exploiting work and data sharing opportunities among the
concurrent queries (e.g., [22, 48, 56, 119]).

Furthermore, another important aspect of analytical workloads, in comparison to trans-
action processing, is the opportunity for intra-query parallelism. Typical database operators,
such as joins, scans, etc., are mainly optimized for single-threaded execution. Therefore, they
fail to exploit intra-query parallelism and cannot utilize several cores naïvely. We survey recent
parallelized analytical algorithms on modern non-uniform, multisocket multicore architectures
[9, 15, 94, 127].

Finally, in order to optimize performance on non-uniform platforms, the execution engine
needs to tackle two main challenges for a mix of multiple queries: (a) employing a scheduling
strategy for assigning multiple concurrent threads to cores in order to minimize remote mem-
ory accesses while avoiding contention on the memory hierarchy; and (b) dynamically deciding
on the data placement in order to minimize the total memory access time of the workload.
The two problems are not orthogonal, as data placement can affect scheduling decisions, while
scheduling strategies need to take into account data placement. We review the requirements and
recent techniques for highly concurrent NUMA-aware scheduling for analytics, which take into
consideration data locality, parallelism, and resource allocation (e.g., [34, 35, 91, 122]).

1.3 STRUCTUREOFTHEBOOK
In this book, we aim to examine the following questions.

• How can one adapt traditional execution models to fully exploit modern hardware?

• How can one maximize data and instruction locality at the right level of the memory
hierarchy?

1.3. STRUCTUREOFTHEBOOK 5
• How can one continue scaling-up despite many cores and non-uniform topologies?

We divide the material into two parts based on the two dimensions of scalabilty defined
above.

Part I focuses on implicit/vertical dimension of scalability. It describes the resources of-
fered by the modern processor cores and deep memory hierarchies, explains the reasons behind
their underutilization, and offers ways to improve their utilization while also improving the over-
all performance of the systems running on top. In this first part, Chapter 2 first gives an overview
of the instruction and data parallelism opportunities in a core, and presents key insights behind
techniques that take advantage of such opportunities. Then, Chapter 3 discusses the properties
of the typical memory hierarchy of a server processor today, and illustrates the strengths and
weaknesses of the techniques that aim to better utilize microarchitectural resources of a core.

Part II focuses on explicit/horizontal dimension of scalability. It separately explores scal-
ability challenges for transactional and analytical applications, and surveys recent proposals to
overcome them. In this second part, Chapter 4 delves into the scalability challenges of transac-
tion processing applications on multicores and surveys a plethora of proposals to address them.
Then, Chapter 5 investigates the impact of bandwidth limitations inmodern servers and presents
a variety of approaches to avoid them.

Finally, Chapter 6 discusses some related hardware and software trends and provides an
outlook of future directions. Chapter 7 concludes this book.

PART I

Implicit/Vertical Scalability

9

C H A P T E R 2

Exploiting Resources of a
Processor Core

In this chapter, we discuss parallelism opportunities in modern CPUs. We cover all the topics
shown in Figure 2.1. First, we show that parallelization already exists inside a single-threaded
CPU core. We give a brief overview of instruction pipelining, and we explain superscalar and
SIMD processors. Then, we move a step further to CPUs with more than one hardware thread
inside a single core, the implications of simultaneousmultithreading/hyperthreading, and how to
utilize this architecture. Finally, we describe howwe can efficiently achieve horizontal parallelism
in multicores.

Figure 2.1: The different parallelism opportunities of modern CPUs.

2.1 INSTRUCTIONANDDATAPARALLELISM
In the early times of processors, a CPU executed only one machine instruction at a time. Only
when a CPU was completely finished with an instruction it would continue to the next instruc-
tion. This type of CPU, usually referred to as “subscalar,” executes one instruction on one or two

10 2. EXPLOITINGRESOURCESOFAPROCESSORCORE
pieces of data at a time. In the example of Figure 2.2, the CPU needs ten cycles to complete two
instructions.

2 3 4 5 6 7 8 9 10 11 121
clock

cycle

CPU

fetch execute mem writedecode

fetch decode

instr1

instr2

instr3

. . .

fetch execute mem writedecode

Figure 2.2: Subscalar CPUs execute one instruction at a time.

Theexecution of an instruction is not amonolithic action. It is decomposed into a sequence
of discrete steps/stages. For example, the classic RISC pipeline consists of the following distinct
phases:

• FETCH: fetch the instruction from the cache.

• DECODE: determine the meaning of the instruction and register fetch.

• EXECUTE: perform the real work of the instruction.

• MEMORY: access an operand in data memory.

• WRITE BACK: write the result into a register.

There are designs that include pipelines with more stages, e.g., 20 stages on Pentium 4. Each
pipeline stage works on one instruction at a time. We can think of the stages as different workers
that each one is doing something different in each functional unit of the CPU. For example, in
subscalar CPUs, when the CPU is on the decode stage, only the relevant functional unit is busy
and the other functional units of the other stages are idle. For this reason, most of the parts of
a subscalar CPU are idle most of the time.

One of the simplest methods used to accomplish increased parallelism is with instruction
pipelining (IPL). In this method, we shift the instructions forward, such that they can partially
overlap. In this way, as shown in Figure 2.3, we can start the first step of an instruction before
the previous instruction finishes executing. For example, in the fourth cycle of Figure 2.3 there
are four instructions in the pipeline, each of which is on a different stage. With instruction
pipelining, only six cycles are needed to execute two instructions, while the subscalar CPU needs

2.1. INSTRUCTIONANDDATAPARALLELISM 11
10 cycles for the same amount of work, as we show in Figure 2.2. Note, with IPL the instruction
latency is not reduced; we still need to go through all the steps and spend the same number of
cycles to complete an instruction. The major advantage of IPL is that the instruction throughput
is increased, i.e., in the same time more instructions are completed. A CPU is called “fully
pipelined” if it can fetch an instruction on every cycle.

CPU

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

fetch execute mem writedecode

decode

mem

execute

fetch

instr1

instr2

instr3

instr4

2 3 4 5 6 7 8 9 10 11 121
clock

cycle

Figure 2.3: With instruction pipelining, multiple instructions can be partially overlapped.

Today, we have “superscalar” CPUs that can execute more than one instruction during a
clock cycle by simultaneously issuing multiple instructions. Each instruction processes one data
item, but there are multiple redundant functional units within each CPU, thus multiple instruc-
tions can process separate data items concurrently. Each functional unit is not a separate CPU
core but an execution resource within a single CPU. Figure 2.4 shows an example of a super-
scalar CPU that can issue four instructions at the same time. In this way, instruction parallelism
can be further increased.

Figure 2.4: A superscalar CPU can issue more than one instruction at a time.

12 2. EXPLOITINGRESOURCESOFAPROCESSORCORE
So far, we discussed how to increase CPU utilization by widening the instruction par-

allelism. Each instruction is operating on a single data item. Such traditional instructions are
called single instruction single data (SISD). Parallelization, however, can be further increased
on the data level. There are CPUs that can issue a single instruction over multiple data items,
which are called single instruction multiple data (SIMD). In Figure 2.5 we show the input and
output of both SISD and SIMD designs.

Figure 2.5: A single SIMD instruction can be issued over multiple data items.

SIMD instructions reduce compute-intensive loops by consuming more data per instruc-
tion. If we let K denote the degree of available parallelism, i.e., the number of words that fit in
a SIMD register, we can achieve a performance speed-up of K. The advantage here is that there
are fewer instructions, which means less overall fetching and decoding phases. SIMD is efficient
in processing large arrays of numeric values, e.g., adding/subtracting the same value to a large
number of data points. This is applicable to many multimedia applications, e.g., changing the
brightness of an image, where we need to modify each pixel of the image in the same way.

In order to better understand the difference between SISD and SIMD instructions, as-
sume that we need to feed the result of an operation “op” with an input from two vectors A and
B, into a result vector R, as shown in Figure 2.6. With SISD, we first need to take the first value
from A and B (i.e., A1 and B1, respectively) to produce the first result (R1). Then we proceed
with the next pair of values, i.e., A2 and B2, and so on. With SIMD, we can process the data in
blocks (a chunk of values is loaded at once). Instead of retrieving one value with SISD, a SIMD
processor can retrieve multiple values with a single instruction. Two examples of operations are
shown in Figure 2.7. The left part of the figure shows the sum operation; assuming SIMD reg-
isters of 128 bits, it means that we can accommodate four 32-bit numbers. The right part of
the figure shows the min operation, which produces zero when the first input is larger than the
second, or 32 bits of 1 otherwise.

Theway to use SIMD technology is to tell the compiler to use intrinsics to generate SIMD
code. An intrinsic is a function known by the compiler that directly maps to a sequence of one or
more assembly language instructions. For example, consider the transformation of the following
loop that sums an array:

2.1. INSTRUCTIONANDDATAPARALLELISM 13

A1 B1

R1

op

A1 A2 A3 A4

op

B1 B2 B3 B4

op op op

R1 R2 R3 R4

Figure 2.6: SISD vs. SIMD instructions for an operation that operates on the values of two vectors.1 5 10 32 21 1 23 26 11 5input 1: 128bitsinput 2: 128bitsresult: 128bits 0, 4294967295, 0, 42949672953 5 10 32 21 1 211...1}32-bit
Figure 2.7: 128-bit SIMD instructions for adding pairs of values from two vectors, and for finding
the minimum of pairs of values from two vectors.

for(i=0;i<N;i++) for (i=0;i<N;i+=4)
res+=a[i] �! res[i,i+1,i+2,i+3]=

SIMD_add(res[i,i+1,i+2,i+3], a[i,i+1,i+2,i+3])

The transformed loop (on the right) executes four times less instructions. A difference
between the two loops, however, is that the transformed loop does not calculate a single result
sum, but four partial ones, i.e., instead of calculating the single value res, we have the array
res[N-4, N-3, N-2, N-1]. Theway to continue with SIMD registers from this point is to use
SIMD shuffle instructions [172], as shown in Figure 2.8. The 32-bit shuffle version interchanges
the first group of 32 bits to the second group of 32 bits, and the third group of 32 bits to the

14 2. EXPLOITINGRESOURCESOFAPROCESSORCORE
fourth group of 32 bits. The 64-bit shuffle version interchanges the first group of 64 bits to the
second group of 64 bits. With the shown instructions, the final 32-bit sum appears four times
in the result vector.

Figure 2.8: Calculating the final sum result by shuffling partial results.

SIMD instructions are an excellent match for applications with a large amount of data
parallelism, e.g., column stores.Many common operations are amenable SIMD style parallelism,
including partitioning [114], sorting [137], filtering [113, 142], and joins [78]. More modern
instructions sets, such as AVX2 and AVX-512, support gather and scatter instructions that fetch
data from, and, respectively, save data to multiple non-contiguous memory locations. This kind
of instruction makes it easier for row stores to exploit SIMD too, where the data we need to
process may not be in a contiguous memory area [113].

2.2 MULTITHREADING
After discussing single-core, single-threaded parallelism opportunities, let us move a step for-
ward and discuss how one can exploit CPUs with more than one hardware thread in the same
core (middle level of Figure 2.1). In simultaneous multithreading (SMT), there are multiple
hardware threads inside the same core, as shown in Figure 2.9. Each thread has its own registers
(indicated by the green and blue dots in Figure 2.9, for the green and the blue colored thread,
respectively) but they still share many of the execution resources, including the memory bus and
the caches. In this way, it is like having two logical processors. Each thread is reading and exe-
cuting instructions of its own instruction stream. SMT is a technique proposed to improve the
overall efficiency of CPUs. If one thread stalls, another can continue. In this way, CPU resources
can continue to be utilized. But this is not always an easy goal to achieve, we need to schedule
properly multiple hardware threads. Next, we explore three different approaches of how we can
take advantage of the SMT architecture [171].

One approach is to treat logical processors as physical, namely as having multiple real
physical cores in theCPU, and treat the SMT system as amultiprocessor system. In Figure 2.10a,
we show two tasks, A and B, that are assigned to the green and the blue thread, respectively.
Think of tasks A and B as any data-intensive database operation, such as aggregations and joins,
that can run independently, e.g., the same operator is being run in each thread, but each operator
has its own input and output data. The advantage of this approach is that it requires minimal
code changes; in case our application is already multithreaded this approach is coming almost

2.2. MULTITHREADING 15

Figure 2.9: Multiple hardware threads inside the same CPU core.

for free. We can assign a software thread to a hardware thread. The disadvantage, however, is
that in this way resource sharing, such as caches, is ignored. In Figure 2.10a, we show that
both threads are competing for L1 and L2 caches. This fact can eventually lead to over-use and
contention of shared resources; when threads compete with each other for a shared resource,
overall performance may be decreased.

Another approach is to assign different parts of the same task to all hardware threads,
implementing operations in a multithreaded fashion. In this case, as shown in Figure 2.10b, we
split the work of task A in half, such as the green thread handles the first half of the task and
the blue thread handles the other half. For example, task A could be an aggregation operation
where the green thread processes the odd tuples and the blue thread processes the even tuples
of the input. The advantage of this approach is that running one operation at a time on an
SMT processor might be beneficial in terms of data and instruction cache performance. The
disadvantage, however, is that we need to rewrite our operators in a multithreaded fashion. One
tricky point of this approach is how the two threads will collaborate for completing the same goal
(i.e., task A). Namely, how we can handle the partitioning and merging of the partial work. As
mentioned before, one way to avoid conflicts on input is to divide the input and use a separate
thread to process each part; for example, one thread handles the even tuples, and the other
thread handles the odd tuples. Sharing the output is more challenging, as thread coordination
is required. If the two threads were to write to a single output stream, they would frequently
experience write-write contention on common cache lines. This contention is expensive and
negates any potential benefit of multithreading. Instead, we can implement the two threads
with separate output buffers, so that they can write to disjoint locations in memory. When both
threads finish, the next operator needs to merge the partial results. In this way, we may lose the
order of the input tuples, which can be significant for the performance of some operations, e.g.,
binary search.

16 2. EXPLOITINGRESOURCESOFAPROCESSORCORE

Figure 2.10: Two alternative ways of using SMT.

The third alternative approach of exploiting the SMT architecture employs two hardware
threads that are collaborating to finish the work faster and with less cache misses. The collabo-
ration happens not by dividing the work as seen before, but by assigning different roles to each
thread. According to the approach, proposed in [171], the first thread, called the main worker
thread is responsible to do the actual work, the main CPU computation. The second thread is
called the helper thread and performs aggressive data preloading, namely it brings the data el-
ements that the worker thread is going to need soon, as shown in Figure 2.11. In this way, the
helper thread suffers more from the memory latency while the main thread is free of that and it
is able to work on the real computation. To achieve this, we need a common point of reference
for both threads, this is the “work-ahead” data structure, where the worker (green) thread adds
what is the next memory address it is going to need. Once it submits the request, it continues
with other work instead of waiting for that memory address right away. The helper thread goes
through the “work-ahead set” and brings the addresses back.

2.3. HORIZONTALPARALLELISM 17main worker helper data structure
Figure 2.11: Third alternative way of using SMT.

To sum up, the performance of a SMT system is intrinsically higher than when we have a
single core with a single thread. Of course, one needs to carefully schedule and assign the proper
task to each thread. Nevertheless, since two logical threads share resources, they can never be
better than having two physical threads as in the case of multicore CPUs that we see next.

2.3 HORIZONTALPARALLELISM

In this section, we move one more step forward (last level of Figure 2.1) to discuss parallelism
opportunities in multicore CPUs. In a multicore CPU, there are multiple physical cores, as
shown in Figure 2.12. Each core has its own registers and private caches, and they all share the
LLC. The fundamental question that needs to be answered here is how to keep the multicore
CPU at 100% utilization. The improvement in performance gained by the use of a multicore
processor depends heavily on the software algorithms used and their implementation. In the
best case scenario, e.g., for “embarrassingly parallel” problems, we can have a speed-up factor
that approaches the number of cores. In the remaining of the chapter, we discuss a few key cases
of how multicore CPUs can be employed.

Assume the scenario that multiple similar queries start scanning a table at the same time.
One approach to execute the queries, is by assigning each query to a core [127], i.e., core 0 is
responsible for query Q1, core 1 is responsible for query Q2, etc., as shown in Figure 2.13. In
this approach, Q1 may incur a cache miss to read each tuple from main memory, while Q2-
Q4 take advantage of the data Q1 has read into the processor’s shared LLC. Slower queries
can catch up. Faster queries wait for the memory controller to respond. In this way, each core
has to go through all the data blocks for executing just one query. So the cores go through the

18 2. EXPLOITINGRESOURCESOFAPROCESSORCORE

Figure 2.12: Multicore CPU have multiple cores that can work in parallel.

Figure 2.13: Employing a core for each query achieves limited I/O sharing due to the convoy phe-
nomenon.

data multiple times. With this approach, only limited I/O sharing is achieved due to the convoy
phenomenon.

An alternative approach is to have each processing core executing a separate table
scan [127], as shown in Figure 2.14. In this case, a core is responsible for all queries but pro-
cesses only a portion of the data; a given core feeds each block of tuples through every query
before moving to the next block of tuples. In this case, the traditional division of work within
the database is inverted. Instead of processing all the data blocks for an entire query at a time,
each core processes a block of data at a time across all queries. So, the data is exploited as much
as possible by keeping the tuples as long as possible in the caches.

2.3. HORIZONTALPARALLELISM 19

Figure 2.14: Employing a core for each table scan loads data into caches once and shares it, this way
we reduce cache misses.

2.3.1 HORIZONTALPARALLELISM INADVANCEDDATABASE
SCENARIOS

In this section, we show how two advanced database scenarios can benefit from horizontal paral-
lelism. First, we study sorting, one of the most fundamental problems in database applications,
in the context of multithreaded SIMD architecture. Then, we study how we can implement
database cracking, an adaptive indexing method, in parallel mode. With both examples we ex-
pose that CPU-efficient algorithm implementation is not a simple task; on the contrary it re-
quires proper study and design.

Horizontal parallelism in sorting
Here, we discuss in detail the example of sorting a list of numbers, combining and exploiting
parallelization opportunities coming from two technologies discussed earlier, the SIMD and
multicore capability of modern processors. Sorting is useful not only for ordering data, but also
for other data operations, e.g., the creation of database indices, or binary search. In this section,
we focus on how MergeSort can be optimized with the help of sorting networks and the bitonic
merge kernel [32].

A sorting network, shown in Figure 2.15, is an abstract mathematical model that consists
of a network of wires (parallel lines) and comparator modules (vertical lines). Each wire carries
a value. The comparator connects two parallel wires and compares their values. It then sorts the
values by outputting the smaller value to the wire at the top, and the larger value to the other
wire at the bottom. In the first example, (on the left part of Figure 2.15), the top wire carries the
value 2 and the bottom wire carries the value 5, so they will continue carrying the same values

20 2. EXPLOITINGRESOURCESOFAPROCESSORCORE
after the (vertical) comparator. In the second example (on the right part of Figure 2.15), the
values on the wires need to be swapped in order to follow the aforementioned rule.

Figure 2.15: A rudimentary example of a sorting network.

In a bitonic merge kernel two sorted small sequences need to be merged in such a way
that in the end there is a a blended large sorted sequence. An example is shown in Figure 2.16.
Assume that sequence A is ordered in ascending order (A0 is the lower value of the sequence
and A3 is the higher value of the sequence), and that sequence B is ordered in descending order.
At the end, there is a sequence of N elements from Low to High (where N D sizeof .A/ C

sizeof .B/), where the lower value of the output sequence will be either A0 or B0 and the higher
value will be either A3 or B3. To produce the ordered (blended) sequence one needs to make
the shown comparisons represented as the vertical lines.

B3

B2

B1

B0 level 1 level 2 level 3 low

high

1

5

8

10

12

9

3

0

1

0

3

5

8

9

10

12

1

12

5

3

0

9

8

10

0

5

8

12

9

10

A3

A2

A1

A0low

high

low

high

Figure 2.16: An example of a bitonic merge kernel.

Let us now see how the algorithm for the bitonic merge kernel works. In the example
of Figure 2.16, with eight wires, there are three distinct levels. In the first level, the sorting
network is split in half (denoted by the dashed line in the middle of level 1). Each input in
the top half is compared to the corresponding input in the bottom half, i.e., the first wire in

2.3. HORIZONTALPARALLELISM 21
the first half is compared to the first wire in the second half, the second wire in the first half is
compared to the second wire in the second half, etc., as shown in Figure 2.16. The dashed line
in the first level produces two pieces wrapped in the two gray boxes in level 2, both the dashed
lines and the gray boxes are used for illustration reasons only. In the second level, the same
algorithm is applied in the two gray boxes and each piece from the previous level is split again
in half. Each input in the top half of a piece is compared again to the corresponding input in the
bottom half of the piece. In the third level, there are four pieces. In total, we need three levels to
finally have a sorted sequence of numbers for the example of Figure 2.16. Bitonic mergesort is
appropriate for SIMD implementation since the sequences of comparisons is known in advance,
regardless of the outcome of previous comparisons. In this way, the independent comparisons
can be implemented in a parallel fashion. The SIMD instructions required to produce the correct
order at the end of each level are:

L1=SIMD_min(A,B);
H1=SIMD_max(A,B);
L1p=SIMD_shuffle(L1);
H1p=SIMD_shuffle(H1);

st
ep

 2

core

N

M ...

...

SIMD ...SIMD SIMDSIMD SIMD

...

...

...

core core core core

M

M

core

2 cores work simultaneously
to merge the pair of lists

core corecore

P

k

k

st
ep

 1

Figure 2.17: Sorting with multicore CPUs and SIMD instructions.

Now, let us see how the MergeSort algorithm is implemented [32]. Assume we have an
array of N elements that we need to sort, as shown on top of Figure 2.17. The algorithm consists
of two concrete phases. In phase 1, the array is evenly divided into chunks of size M, where M
is such that the block can reside in the cache. Then, we need to sort each block (of size M)
individually according to the following process. Each block is further divided into P pieces of
size k, where k is the SIMD width, among the available hardware threads or CPU cores. Each

22 2. EXPLOITINGRESOURCESOFAPROCESSORCORE
thread sorts the data assigned to it by using an SIMD implementation of MergeSort. Merging
networks are used to accomplish it. Merging networks expose the data-level parallelism that
can be mapped onto the SIMD architecture. In Figure 2.17, we show the unsorted small pieces
of input in light blue color and the corresponding sorted output as the gradient colored (from
white to dark blue) small pieces. There is an explicit barrier at the end of the first step (i.e., sort),
before the next step (i.e., merge) starts. At the end of the first step there are P sorted lists (as
the number of CPU cores) of size k. In the second step of the first phase, we need to merge
these sorted small lists to produce a single sorted list of size M. This requires multiple threads
to work simultaneously to merge two lists. For example, for merging every two consecutive lists,
we partition the work between two threads to efficiently utilize the available cores. Similarly,
in the next iteration, four threads share the work of merging two sorted sequences. Finally, in
the last iteration all available threads work together to merge the two lists and obtain the sorted
sequence. At the end of the first phase, we have N/M sorted blocks, each of size M. In each
iteration, we merge pairs of lists to obtain sorted sequences of twice the length than the previous
iteration. Figure 2.17 depicts the phase 1 of the algorithm, as described above. In phase 2, we
need to merge pairs of sorted lists of size M and finally produce the sorted list of the original
whole input, list of size N. Again, all P processors work in parallel to merge the pairs of list in
similar fashion as in phase 1.

Now let us see how we merge two small sorted arrays, focusing on the highlighted part
on the right of Figure 2.17. One idea would be to assign the task of merging in a single thread.
This solution, however, underutilizes the CPU, since the other core does nothing. Ideally, the
two threads should collaborate (and work simultaneously) on the merging phase. To generate
independent work for the threads, the median of the merged list is first computed [173]. This
computation assigns the starting location for the second thread in the two lists. The first thread
starts with the beginning of the two lists and generates k elements, while the second thread
starts with the locations calculated above, and also generates k elements. Since the second thread
started with the median element, the two generated lists are mutually exclusive, and together
produce a sorted sequence of length 2k. Note that this scheme seamlessly handles all boundary
cases, with any particular element being assigned to only one of the threads. By computing the
median, we divide the work equally among the threads. Only when the first iteration finishes can
the next one start. Now, in the next iteration, 4 threads cooperate to sort two lists, by computing
the starting points in the two lists that correspond to the the 1/4th, 2/4th, and the 3/4th quantile,
respectively.

In the above example, we show that the multithreaded SIMD implementation of the
MergeSort algorithm requires careful tuning of the algorithm and the code, in order to properly
exploit all the hardware features. In the following section, we will see in detail how another
database scenario can be efficiently parallelized.

2.3. HORIZONTALPARALLELISM 23
Horizontal parallelism in adaptive indexing
In this section, we discuss another advanced database scenario that takes advantage of horizon-
tal parallelism. We show how adaptive indexing can be parallelized on multicore CPUs [111].
Database cracking [174] is the initial implementation of the adaptive indexing concept; there,
the predicates of every range-selection query are used as pivots to physically partition the data in-
place. Future queries on the same attribute further refine the index by partitioning the data. The
resulting partitions contain only the qualifying data, so we see significant performance benefits
on query processing over time (as queries arrive). Thus, the reorganization of the index is part
of the query processing (i.e., of the select operator) using continuous physical reorganization.(a) uncracked piece(b) cracked piecea<v a>vx y
Figure 2.18: Database cracking

A visual example of the database cracking effect on the data is shown in Figure 2.18.
Assume we pose the query SELECT max(a) FROM R WHERE a>v, In Figure 2.18(a), we show
the original data (uncracked piece); pink indicates values that are lower than the pivot (value v)
and blue indicates values that are greater than the pivot. The main idea is that two cursors, x and
y, point at the first and at the last position of the piece, respectively. The cursors move toward
each other, scanning the column, skipping values that are in the correct position while swapping
wrongly located values. At the end of the query processing, values that are less or greater than
the pivot finally lie in a contiguous space. Figure 2.19 shows the simplest partition & merge
parallel implementation of database cracking. There, each thread works separately on a piece to
produce a partially cracked piece. In our example, we show four threads that work separately
and produce four partially cracked pieces. In each piece i we have two cursors xi and yi , at the
first and the last position of the piece, that crack the piece as described in the single-threaded
version of the algorithm above. Then, one thread needs to do the merging, and brings all the
pink values to the front and all the blue values to the end of the array. During the merge phase
the relocation of data causes many cache misses.

In [111], the authors propose a refined parallel partition & merge cracking algorithm that
aims to minimize the cache misses of the merge phase. The new algorithm divides the uncracked

24 2. EXPLOITINGRESOURCESOFAPROCESSORCORE

Figure 2.19: In parallel adaptive indexing, relocation during merge causes many cache misses.

Figure 2.20: The refined version of parallel adaptive indexing moves less data during the merge
phase.

piece into T partitions, as shown in Figure 2.20. The center partition is consecutive with size
S D #elements=#threads, while the remaining T-1 partitions consist of two disjoint pieces that
are arranged concentrically around the center partition. The authors make the assumption that
the selectivity is known; it is expressed as a fraction of 1, the size of the left piece equals to
S � selectivity, while the size of the right piece equals to S � .1 � selectivity/. In the example
of Figure 2.20, the size of the disjoint pieces is equal, since the selectivity is 0.5 (50%). As in
the simple partition & merge cracking, T threads crack the T partitions concurrently applying

2.3. HORIZONTALPARALLELISM 25
the original cracking algorithm. The thread that cracks the center (consecutive) partition swaps
values within this partition. Although the refined algorithm (Figure 2.20) swaps values that are
in longer distance compared to the simple algorithm (Figure 2.19), it moves less data during
the merge phase because more data is already in the correct position. Both parallel algorithms
make O.n/ comparisons/exchanges during the partitioning phase. However, the merging cost
is significantly lower for the refined partition & merge cracking algorithm [111].

2.3.2 CONCLUSIONS
In summary, in this chapter we focused on improving the utilization of CPU resources. Going
through the evolution of processor architecture, we discussed various parallelization opportu-
nities within the CPU. Starting from the single-threaded architecture, we covered instruction-
and data-level parallelism, and then we discussed SIMD, hyperthreading, and multithreaded
implementations. Overall, CPU-tailored algorithm implementations require in-depth analysis
and proper design in order to fully utilize the hardware. Naive implementations underutilize the
hardware and show poor performance results. The next chapter focuses on the memory hierarchy
and how software can be optimized to avoid memory stalls.

27

C H A P T E R 3

MinimizingMemory Stalls
As Chapter 2 detailed, hardware vendors heavily innovated on implicit parallelism until 2005
through aggressive microarchitectural techniques (e.g., pipelining, superscalar execution, out-
of-order execution, SIMD, etc.). Despite the differences across these techniques, all these inno-
vations aim at one thing: minimizing the stall cycles where a core cannot retire an instruction.
An instruction that completes all the five pipeline stages (described in Section 2.1) is retired.
When an instruction gets stuck at one of the five pipeline stages, its execution is stalled. All the
implicit parallelism techniques in modern hardware, become ineffective when an application ex-
hibits excessive memory stalls. In other words, processor cannot retire instructions as efficiently
as possible due to waiting for the instructions or data to be fetched from the memory hierarchy
to be able to complete the five pipeline stages for those instructions.

The data management applications suffer from memory stalls in two ways: (1) memory
access dependencies and (2) high data and instruction footprint. For example, during an index
probe operation the next index node to be accessed depends on the index node that is currently
accessed and the key value that is searched. In addition, the instruction and data footprints for
data management applications usually exceed the size of the typical L1 caches.

To better understand this problem, Figure 3.1 shows the memory hierarchy of a typical
server processor today. There are usually three levels of caches. The first-level caches are split
between instructions and data, whereas the lower levels of the memory hierarchy are shared by
instructions and data. The L1 instruction and data caches (32KB or 64KB) as well as the L2
caches (256KB) are private per core and the cores of a processor share the L3 or last-level cache
(LLC) (10MB-40MB). While going down in this hierarchy, the access latencies drastically in-
crease at each level. However, in practice, a superscalar core easily hides the latency of accessing
the L1 caches. On the other hand, if a core cannot find a memory address in the L1 caches, then
the lower levels of the memory should be searched. This might lead to stalls till the core gets
the instructions or data needed to continue the execution. Such memory stalls are the dominant
factor in the underutilization of a core’s resources and have to be minimized.

3.1 WORKLOADCHARACTERIZATIONFORTYPICAL
DATAMANAGEMENTWORKLOADS

To understand the significance of the memory stalls for data management applications, there
has been a large body of work characterizing the behavior of these applications on modern server
hardware.

28 3. MINIMIZINGMEMORY STALLS

~
4

 cy
cle

s

~
1

2
 cy

cle
s

~
3

0
 cy

cle
s

~
2

0
0

 cy
cle

s

CoreCore

L1-I L1-D

MAIN MEMORY

L2 L2

L3 / LLC

L1-I L1-D

access niycnetal prac ce

no

penalty

possible

stalls

Figure 3.1: Memory hierarchy of commodity servers.

Barrosso et al. [16] investigate the memory system behavior of OLTP and DSS style
workloads using TPC-B and TPC-D [155], respectively, both on a real machine and with a
full-system simulation. They find that these two types of workloads need different architectural
designs in terms of the memory system. Ranganathan et al. [132] use the same workloads as in
[16]. However, they only focus on the effectiveness of out-of-order execution on SMPs while
running these workloads in a simulation environment. Keeton et al. [75] experiment with TPC-
C on a 4-way PentiumPro SMPmachine and perform a similar analysis to Barroso et al. [16] and
Ranganathan et al. [132]. Stets et al. [145] perform a microarchitectural comparison between
TPC-B [153] and TPC-C [154]. Ailamaki et al. [8] examine where the time goes on four
different commercial DBMSs with amicrobenchmark to have a finer-grain understanding of the
memory system behavior of multiprocessors. All these studies conclude one main thing, data-
intensive workloads cannot exploit aggressive microarchitectural features of modern processors
very well, wasting most of their time in memory stalls and exhibiting low IPC.

More recent workload characterization studies [42, 141, 151, 152] highlight that this
conclusion has not changed much today despite all the advancements in data management and
hardware communities.

Figure 3.2 shows results from a workload characterization study for the applications that
deal with big data management in the cloud, and, therefore, specifically designed to scale-out
on modern servers [42]. The workload names from the corresponding benchmark suite, Cloud-
Suite [33], are given on the x-axis. The first set of (gray) bars show the instructions retired per
cycle (IPC) as these applications are run on an Intel server (Xeon X5670). Even though this
server can actually retire up to four instructions in a cycle, it barely retires one when running
these cloud applications. The red bars on the same graph highlight the main reason behind this
underutilization in terms of IPC value. They show the % of the execution time that goes to

3.1. WORKLOADCHARACTERIZATIONFORTYPICALDATAMANAGEMENTWORKLOADS 29
memory stalls, and we clearly see that cores waste more than half of their execution cycles due
to memory stalls for these workloads.

4

3

2

1

0

100%

75%

50%

25%

0%

Applica�on IPC Memory Cycles

A
p

p
li

ca
�

o
n

 I
P

C

To
ta

l
E

xe
cu

�
o

n
 C

yc
le

s

Dat
a

Se
rv

in
g

M
ap

Reduce

M
edia

 S
tr

eam
in

g

SA
T S

olv
er

W
eb F

ro
nte

nd

W
eb S

ear
ch

Figure 3.2: IPC and memory stalls in cloud workloads based on CloudSuite [33].

0%

20%

40%

60%

80%

100%

TPC-C TPC-E

S
ta

ll
 C

y
cl

e
s

B
re

a
k

d
o

w
n

p
e

r
1

0
0

0
 I

n
st

ru
c

o
n

s

L3D

L3I

L2D

L2I

L1D

L1I

0%

20%

40%

60%

80%

100%

TPC-C TPC-E

E
xe

cu

o
n

 C
y
cl

e
s

B
re

a
k

d
o

w
n

Stalled Busy

Figure 3.3: Execution and stall cycles breakdown for TPC-C and TPC-E benchmarks.

If we also look at the more traditional server workloads, Figure 3.3 has the breakdown
of the execution and stall cycles when running the standardized OLTP benchmarks TPC-C
[154] and TPC-E [156] in Shore-MT [68] on Intel server hardware (Xeon E5-2660) from
the workload characterization studies of Tozun et al. [152]. While the graph on the left-hand

30 3. MINIMIZINGMEMORY STALLS
side highlights the high stall time, the graph on the right-hand side demonstrates that this stall
time is mainly due to the L1 instruction misses followed by the long-latency data misses from
the last-level cache for traditional OLTP applications. In the case of instructions, the instruc-
tion footprint of transactions is simply too big to fit into a typical L1-I cache causing capacity
misses, whereas for the data, the misses are compulsory as the data footprint of data intensive
applications cannot possibly fit into any of the caches of the commodity server hardware [151].

3.2 ROADMAPFORTHISCHAPTER

To sum up our problem: We have seen that today’s fundamental data management applications
heavily underutilize the microarchitectural resources of a core. More than half of the execution
time goes to stalls, and the main sources of these stalls are the L1 instruction misses and the
long-latency data misses from the last level cache.

It is unreasonable to expect the maximum possible IPC from data-intensive complex ap-
plications like data management systems since they tend to be memory bound. Fetching the
necessary data and instructions from the lower levels of the memory hierarchy and exhibiting
stalls and a low IPC value during this process is still useful work. However, there is room to im-
prove the data and instruction access characteristics of various data management systems to re-
duce/minimize such stalls and achieve higher hardware utilization, system performance (higher
throughput or lower latency), and energy-efficiency.

Even though the whole instruction footprint is much smaller than the data footprint for
these applications, it is not small enough to fit in the L1 caches. We cannot increase the cache
sizes, since it also increases the time to look for an item in the cache. Therefore, we need to find
ways to reduce overall instruction footprint, minimize the jumps within the instruction stream,
or give the illusion of a larger instruction cache. On the other hand, since the data misses are
compulsory, one should instead find ways to only bring the necessary data cache lines1 to the
L1 data cache and get the best of them (i.e., reuse them as much as possible) before they are
evicted. In the rest of this chapter, we are going to see several insights and techniques to achieve
these two goals.

More specifically, first, Section 3.3 focuses on different data and instruction prefetching
techniques that aim to bring the cache lines to the cache just prior to the time they are actually
needed. This is mainly a hardware-side solution to our problem even though there are software-
guided techniques for prefetching as well. Then, Section 3.4 surveys software-side attempts to
make the applicationsmore cache conscious. Finally, Section 3.5 advocates for more fine-grained
task scheduling to maximize instruction cache locality.

1Cache line or cache block is the fixed-sized unit for content transfer betweenmemory and the caches. Onmodern commodity
hardware cache lines/blocks are typically 64bytes. In this book, we use cache lines and blocks interchangeably.

3.3. PREFETCHING 31

3.3 PREFETCHING

One of the well-studied techniques for improving instruction and data locality at various levels
of the memory hierarchy is hardware prefetching. In this section, first, we go over the simpler
prefetching techniques; which are the techniques we tend to see on modern processors because
of their low algorithmic and space costs (Section 3.3.1). Then, we look at the temporal streaming
which aims to exploit the recurring control flow in programs (Section 3.3.2). Finally, we conclude
with software-guided prefetching techniques (Section 3.3.3).

3.3.1 TECHNIQUESTHATARECOMMON INMODERNHARDWARE
The most straightforward hardware prefetchers are the stream prefetchers [59]. Whenever there
is a cache miss for an address, A, the prefetcher also fetches the next cache block of that address,
A+1, A+2, …The next-line prefetcher is a version of stream prefetcher, where only the next cache
block, A+1, is fetched. How long these prefetchers wait before fetching the next addresses or
how many next cache blocks they fetch changes from hardware to hardware or from instruction
prefetchers to data prefetchers. However, in order to not to saturate the bandwidth or over-fill
the cache with somewhat not useful content, stream prefetchers do not fetch more than three
or four cache blocks.

The stream prefetchers basically favor sequential accesses. For instructions, this is in fact
the case most of the time. Programs are naturally written that way. One doesn’t have to pay too
much extra attention to be able to exploit stream prefetching for instructions. However, there
are branch statements or function calls in the code that might disrupt such sequentiality and
leave stream prefetchers ineffective.

Compared to the instructions, the data accesses in an application might end up being all
over the place unless the programmers pay close attention to the way they allocate and access the
data. For example, many data management systems are written in a way to maximize sequential
data access.This is traditionally done to exploit the sequential disk bandwidth through sequential
scans. However, sequential scans are not just great for optimizing the accesses to disks, but also
for memory accesses since they can exploit stream prefetchers that exists on modern hardware.

On the other hand, database operations like index lookups create pointer chasing prob-
lems. They are highly inefficient in terms of the data accesses as the data to be accessed next
depends on what is accessed previously. Stream prefetchers fail to prevent cache misses due to
these types of memory accesses.

Modern processors also offer other types of prefetchers—which are still not very complex
even though they are more sophisticated than stream prefetchers—to cover the cases stream
pretchers are not effective for. For instructions, the branch predictors predict the end result of
branch conditions and possible function calls, and fetch the corresponding instructions just be-
fore they are needed. For the data, stride prefetching tries to handle cases where data is still
accessed in an obvious order, but the order is not in such short distances as in stream prefetch-

32 3. MINIMIZINGMEMORY STALLS
ing. For example, after observing the misses of A and A+20, the stride prefetcher would fetch
A+40 and A+60.

Even though these simpler prefetching techniques that exist on modern hardware help in
reducing some of the instruction and data misses, they are not enough to minimize the mem-
ory stalls for memory-intensive applications like data management applications, as Section 3.1
summarized. It is not easy to tailor these simple prefetching techniques based on the needs of
an application since the common wisdom is to take what is given from the hardware as is, and
optimize software accordingly. The prefetching ideas presented in the next two subsections, on
the other hand, target applications that have predictable data access behavior if one has a more
detailed application-specific knowledge.

3.3.2 TEMPORAL STREAMING
Temporal streaming is a hardware prefetching technique based on the observation that most
applications execute the same subset of actions over and over. As a result, in terms of their data
and instruction accesses, they repeat similar or predictable trends in these actions. In the case of
data management applications, these actions are database operations or sub-routines in database
operations, as Section 3.5 will detail.

Figure 3.4 illustrates how temporal streaming works with an example using the index
lookup operation in databases. As also mentioned in Section 3.3.1, an instance of the index
lookup operation exhibits very irregular patterns in the way it accesses data and instructions.
However, across different instantiations of this operation, the path or control flow that is fol-
lowed does not change much. To start the search with a specific key, first, the lookup function
would be called from the database API. Let’s assume that this call brings two cache lines to
the instruction cache, A and C. Then, lookup would call the traverse function to initiate an index
tree traversal from root to leaves to find the key, which brings the cache lines X, Y, and Z to the
cache. After traverse finishes, the program would go back to the lookup function, and execute
the remaining logic of this function, bringing the cache lines C and D to the cache.

In this scenario, A, C, X, Y, Z, C, and D are called a temporal stream.Temporal stream prefetchers
exploit this type of recurring control flow in various programs [43, 44, 74, 143]. If we keep
a history of this routine, during the future instantiations of the index lookup operation, after
observing the cache misses for A and C, we can fetch the cache lines X, Y, Z, and D.

Even though the example above focuses on instructions, similar temporal streams exist
for data as well. For example, given an index identifier, the program has to access at least the
metadata information for that index, the index root, and so on.

Prefetchers based on temporal streams can be much more accurate in terms of what they
prefetch. The most state-of-the-art temporal streaming technique that we know of can give you
up to 99% accuracy for instructions based on the hardware simulation results of Ferdman et
al. [43] and Kaynak et al. [74]. However, these prefetchers need to do a lot of bookkeeping to
keep a history of the temporal streams and identify them. The space overhead for very accurate

3.3. PREFETCHING 33

Figure 3.4: An example of temporal streaming [74].

prefetchers can be up to 40 KB per core [43], which is almost the L1 cache size on a modern
processor, so it is hard to adopt temporal streaming on real hardware. There are recent proposals
to reduce this space cost without losing the accuracy of the prefetching [74] by exploiting the
code commonality across concurrent tasks (see also Section 3.5) in data management applica-
tions. Therefore, temporal streaming is still a promising technique. However, we are not aware
of any modern architectures that adopt it yet.

3.3.3 SOFTWARE-GUIDEDPREFETCHING
Section 3.3.2 describes a hardware-only technique that aims to exploit recurring control flows in
programs, and highlights its overheads for the hardware. Can we instead exploit such recurring
control flows without dumping all the cost to the hardware-side?

Software-guided prefetching can allow that at the cost of losing programmer-transparency.
Rather than doing the bookkeeping at the hardware side to determine the recurring control flow,
the programmers, who are actually aware of this control flow, can inject prefetching instructions
where they think is necessary.

We can go over an example using the index lookup operation in databases once again,
illustrated in Figure 3.5. When we start the search for a given key, we can first directly fetch
the corresponding index root page as soon as the index lookup is called with a specific index
identifier. Then while traversing the tree, we can prefetch the index nodes from the next level
while processing the current level until we reach the index leaves [29, 98]. Similarly for the

34 3. MINIMIZINGMEMORY STALLS
instructions, whenever we access the lookup function we can actually prefetch the instruction
that corresponds to the function head for the traverse function, and leave the prefetching of the
other instructions inside each function to the next-line prefetcher and branch predictor [10].

Figure 3.5: An example for software prefetching.

We need to be careful about how we utilize a software-guided prefetcher in practice, since
we are giving the orders at the software side. We do not want to excessively prefetch everything
in order to not to thrash the caches and saturate the bandwidth. There are hardware vendors that
provide instructions for software-guided prefetching for data accesses only [1]. Even though this
is not widely adopted in practice due to the difficulty of making optimal prefetching decisions,
the software-guided data prefetching techniques mentioned in the above paragraph utilize these
prefetch instructions provided by hardware at the software side.

3.4 BEINGCACHE-CONSCIOUSWHILEWRITING
SOFTWARE

While hardware offers some techniques to improve cache locality and utilization, one can also
reduce cache misses and stalls by writing code in a more cache-conscious way. For example,
reducing unnecessary complexity in systems, minimizing branch conditions in the code, or ex-
ploiting compilation optimizations might lead to fewer overall instructions and a smoother in-
struction stream (Section 3.4.1). In addition, designing data layouts that exhibit spatial locality
would both utilize cache lines better be more friendly to hardware prefetchers (Section 3.4.2).
Finally, changing execution models to enable instruction and data reuse could help significantly
in reducing cache misses (Section 3.4.3).

3.4. BEINGCACHE-CONSCIOUSWHILEWRITING SOFTWARE 35

3.4.1 CODEOPTIMIZATIONS
Writing Simpler Code
A way to optimize code is to write simpler code with fewer instructions. For example, the in-
memory-optimized data management systems ([36, 146]) tend to have codebases that are writ-
ten from scratch rather than adopting code from traditional systems. Furthermore, they do not
have a buffer pool, which eliminates the code to executed for the buffer pool. Most of them de-
part from traditional row-level locking and adopt simpler locking mechanisms (as Section 4.1.1
details).Therefore, many other operations have a lot less code to execute as well. As a result, these
systems exhibit smaller instruction footprints for the storage manager code, which increases the
chances of having better cache locality.

ExploitingModern Compilers
In addition to simplifying code and reducing the overall instruction footprint, better code com-
pilation also aids in generating a more optimal instruction stream. For example, minimizing the
jumps in the code would exploit the next-line prefetcher better. One can do this by either in-
lining the small frequently used functions or making sure that not so frequently taken branch
conditions lay toward the end of the memory space allocated for the instructions of a function.
This can be done either by a programmer writing code in a way that leads to a better instruc-
tion stream after compilation, or leaving it to the compilers to generate such code optimizations
automatically. In practice, however, it is better to combine the the capabilities of the modern
compilers with some minimal programmer effort. This way one does not reduce the programmer
productivity much and can exploit more compilation optimizations.

One way to utilize compilation optimizations is to use profile-guided optimizations [2].
If you are a data management system vendor and can access a sample version of a customer’s
workload, then you can profile your code by running this workload on your system. Based on
this profiling the compiler would generate a more optimized code for the workload at hand.
This, of course, is a static approach; meaning that if you want to change your workload, you
would probably want to re-do the profiling and generate new optimized code.

It is also possible to perform compilation optimizations dynamically at runtime so that if
your workload changes you can adapt at run time. Changing code layout at runtime has its own
overheads, and might cause unpredictability in terms of overall performance. The improvements
introduced by modern JVMs (e.g., HotSpot VM [6]) in doing just-in-time (JIT) compilation,
however, has been increasing the adoption and success of this approach in recent years.

CustomCodeGeneration
Finally, both academia [7, 86, 102] and industry [4, 46, 160] have been paying attention to de-
veloping custom code generation/compilation mechanisms to allow just-in-time compilation of
queries at runtime to achieve more optimal code and data processing paths for specific queries.
For example, HyPer [102] does this to minimize the overheads associated with traditional in-

36 3. MINIMIZINGMEMORY STALLS
terpreted languages, and optimize data cache access. As a side-effect, it highly improves the
instruction cache accesses as well. Microsoft’s Hekaton [46] compile the stored procedures into
machine code to get rid of the overhead of SQL compilation and generate more optimized in-
structions for those stored procedures. The wide-adoption and success of this approach today
shows that it is a powerful mechanism to optimize memory accesses of a data management
system. cache lines (64bytes) rowstoreerietta blue pinar blackname colorerietta bluepinar reddanica greeniraklis orange columnstoreerietta pinar danica iraklis
Figure 3.6: Row-wise vs columnar data layouts.

3.4.2 DATALAYOUTS
After seeing how to achieve more cache-friendly code layouts, this section highlights the key
insights for optimizing data layouts. Deciding on the most optimal data layout depends highly
on the data access patterns of a program.

Data Pages
Figure 3.6 shows a table with two columns on the left-hand side: the first column is the name
of the people in this database and the second column is a color associated with the person. Let’s
assume that each column is 16 bytes in this example. Therefore, any 4 of these columns can
fit in one cache line considering that most processors have 64 bytes cache lines. Modern data
management systems have two major ways of storing these columns inside the database pages.
The first one is the row-wise approach where the rows are stored one after the other in database
pages. When this table is accessed, the data brought into the cache line would probably look like
the example at the top in the right-hand side of Figure 3.6. The second one is the column-wise
approach where the values that belong to a column are stored together in a database page. The
bottom example in the right-hand side of Figure 3.6 illustrate how the cache lines would be
when this table is accessed in the case of columnar layout.

These different data layouts for databases mainly stem from optimizing for the disk ac-
cesses, but their key insights are also applicable to accesses to main-memory. For a particular
application, one should pick the data layout that would maximize the usage of the data brought
into the cache and exploit the simple next-line prefetching. For example, the OLTP workloads
tend to read several columns from the table when they access a record. Therefore, it’s better to

3.4. BEINGCACHE-CONSCIOUSWHILEWRITING SOFTWARE 37
use a row store so that one can utilize more of the cache line brought into the cache. If you want
to read the whole record for texttterietta, under columnar format, one would bring an additional
cache-line into the cache (in addition to the one shown in Figure 3.6). On the other hand, the
OLAP workloads perform longer scan operations over a few columns. Therefore, having the
values from a column stored close to each other helps—in terms of both cache line utilization
and exploiting the next-line prefetcher. in memoryindex tree lookup-heavy workloadscan-heavy workload+ align nodes to cache lines
Figure 3.7: Cache-conscious index layouts.

Index Pages
One can do similar trade-offs for index pages. Figure 3.7 shows an high-level representation of
an index at the left-hand side. In order to determine the best way to arrange the layout for the
individual index nodes, we again need to know the characteristics of accesses to this index. There
is not one layout that works perfectly for all types of workloads. For example, the workload is
more lookup-heavy or a pattern mining workload, the layout shown at the top on the right-
hand side of Figure 3.7 where the pages for the index nodes are allocated one after the other
in a depth-first order would perform better in terms of data locality. On the other hand, for
a workload that performs frequent index scans, arranging index nodes in a breadth-first order
(Figure 3.7 bottom right-hand side) would achieve better data locality. In addition, for mostly
in-memory accesses arranging the size of the index nodes to match the cache line size or some
multiple of the cache-line size gives benefits.

3.4.3 CHANGINGEXECUTIONMODELS
In addition to improving the code and data layouts, we can also change some of our core execu-
tion mechanisms and algorithms.

Traditionally, databases adopt the volcano iterator model where each database operator
has the interface shown in Figure 3.8(a). Each operator has a next function call to get the next
tuple to process. For example, when the scan operator starts to scan a column of a table from
the beginning to end, it is going to retrieve the first value (erietta) for the scanned column.
Then, the select operator is going to ask for the next column value to process from the scan

38 3. MINIMIZINGMEMORY STALLS

SCAN

SELECT

next()

next()
erietta

erietta

erietta

SCAN

SELECT

next()

next() erietta
pinar

danica
iraklis

erietta
pinar

danica
iraklis

erietta
iraklis

(a) volcano (b) vectorized

Figure 3.8: Volcano vs. vectorized execution models.

operator, which moves the current column value to the next operator. If the current column
value satisfies the query condition, it is going to be in the output. Therefore, with this execution
model processes elements tuple-at-a-time from the first operator to the last. This leads to poor
locality in terms of both data and instruction accesses. In the case of data, even though there is
locality for the one tuple/column being processed, the locality for the state information kept at
each operator is lost. Similarly for instructions, one needs to load the instructions for each stage
one after the other for each tuple/column being processed, thus, exhibiting poor code reuse and
locality.

Vectorized execution (Figure 3.8(b)) proposes the following to overcome the sub-optimal
characteristics of the volcano-style execution model. Rather than processing tuples/columns one
at a time, operators would process a vector of tuples or columns at a time. When every next
operator asks for more tuples/columns, a vector of values that satisfy the conditions of the current
operator is sent to the next one. This execution model improves data locality since it enables re-
use for the state information data kept at each operator. It also improves instruction locality
since the instructions for each operator would be re-used for the vector of columns. In addition
to improving cache locality, vectorized execution also helps in terms of exploiting techniques
like SIMD since one can feed this vector to your SIMD instructions.

To sum up: for being cache conscious one can do two orthogonal things: (1) improving
the layout and footprint of your code and data, and (2) developing alternative execution models
that are more aware of the underlying memory hierarchy. Following from alternative execution
models, the next section illustrates alternative ways of scheduling big tasks that are formed of
several smaller actions from a pre-defined set. The goal of this would be to exploit the common
instructions across these tasks to maximize instruction locality. In the context of databases, these
tasks would be transactions and queries while the small actions would be database operations.

3.5. EXPLOITINGCOMMON INSTRUCTIONS 39

3.5 EXPLOITINGCOMMON INSTRUCTIONS
Transactions are composed of actions that in turn may execute several basic functions. Basic
function examples include probing and scanning an index, inserting a tuple to a table, updating
a tuple, etc. No matter how different the output or high-level functionality of one transaction
are from another, all database transactions contain such common basic functions [150].

This section describes three ways of scheduling similar transactions: the conventional way
and the two techniques (academic proposals) that exploit instruction commonality across trans-
actions.

Conventional/Traditional transaction scheduling
Figure 3.9a and Figure 3.9c show how three transactions executing exactly the same code parts
would execute under a conventional OLTP system on one core and on multiple cores, respec-
tively. The example transactions execute the code segments A, B, and C in order. Each segment
fits in L1-I, but any two segments exceed its capacity. When these transactions execute in a
conventional system, they take turns thrashing the cache since each executes segments A–C
in order independent of the other transactions. Thus, each segment incurs an overhead due to
instruction cache misses.

Transaction 1

A B C A B C A B C

Transaction 2 Transaction 3

Miss Overhead

(a) Conventional on one core

A B CA B CA B C

(b) Time-multiplexing on one core

T1 T2 T3 T1 T2 T3 T1 T2 T3

A B C

(c) Conventional
on a multicore

A B C

A B C

Core 1: T1

Core 2: T2

Core 3: T3

A A A

(d) Spreading
computation
on a multicore

B B B

C C C

T1

T1

T1 T2 T3

T2

T2 T3

T3

Time

Figure 3.9: Ways of scheduling transactions.

Transactions time-multiplexing on a single core
Figure 3.9b shows a way of improving L1-I utilization when transactions are running on a single
core. The first, lead, transaction executes segment A incurring an overhead as in the case of
conventional scheduling. However, instead of proceeding to execute segment B, transaction 1
context switches allowing, in turn, transactions 2 and 3 to execute instead. Transactions 2 and
3 find segment A in L1-I and thus incur no overhead due to misses. Once all three transactions
execute the first segment, execution proceeds to segment B, and so on.

40 3. MINIMIZINGMEMORY STALLS
This way transactions time-multiplex on a core in a way that would maximize their in-

struction cache locality. The more frequent context switching for transactions comes at a cost.
This cost of context switching, however, can be minimized by either adopting a hardware-side
approach (e.g., STREX [14]) or implementing a more specialized context switching method
at the software-side (STEPS [55]). The more frequent context switching can also potentially
hinder data locality for transactions and increase the transaction latency. However, the overall
throughput benefits from this way of scheduling because of the increased instruction cache lo-
cality. In certain cases, this way of scheduling even benefits data cache locality, especially at the
levels of the cache hierarchy that are above L1-D, if transactions access common read-only data.

Spreading computation of a transaction
As long as there are enough cores so that the aggregate L1-I capacity can hold all code segments,
a transaction can migrate to the core whose L1-I cache holds the code segment the transaction
is about to execute. For example, as Figure 3.9d shows, the lead transaction can execute seg-
ment A first on core 1, then migrate to core 2 where it would execute segment B, then migrate
to core 3 where it would execute segment C. Transactions 2 and 3 can follow in a pipelined
fashion, finding segments A, B, and C, in cores 1, 2, and 3, respectively. While transaction 1
incurs an overhead when fetching the segments for the first time (as in the case of the previous
mechanism), the other transactions do not.

This way one can spread the execution of a transaction over multiple cores to exploit the
aggregate cache capacity that exists onmulticore hardware and the code commonality across con-
current transactions. Migrating transactions from one core to another of course has some draw-
backs: the more frequent context switching and the reduced data locality. Enabling hardware-
level migrations can minimize the former, and the benefits that come from increased L1-I cache
locality overweigh the effect of the latter [13, 26, 150].

3.6 CONCLUSIONS
Data management applications severely underutilize a core’s resources since they exhibit high
memory stall times. We have seen that the main reasons for these memory stalls are the L1-level
instruction cache misses and the long latency data misses from the last level cache. Keep in mind
that the overall instruction footprint for main data management applications are much smaller
than the data footprint. However, they still don’t fit in the first-level caches and this is a problem
and we cannot just increase L1 cache sizes since it also increases the time to look for an item
in the cache. Current prefetching techniques help but are not enough; we need to find ways
to both reduce instruction footprint and also somewhat give the illusion of a larger L1 cache
capacity without actually increasing the L1 cache sizes. On the other hand, the data footprint
for the data-intensive applications are too big to maintain a perfect cache locality. Data misses
are inevitable and data re-use is also quite low as we have seen in one of the previous graphs. The
important thing here is to make the best use of the cache-lines brought into the cache, avoiding

3.6. CONCLUSIONS 41
cases where only a small portion of the whole cache line is used. Picking the right layout for the
application at hand is a crucial step in achieving better cache line reuse and exploiting existing
hardware prefetchers.

PART II

Explicit/Horizontal Scalability

45

C H A P T E R 4

Scaling-upOLTP
Different types of workloads are subjecting the database management systems to different kinds
of scalability challenges. For transaction processing systems where many threads access small
portions of the data and enter numerous critical sections to ensure ACID properties, the main
challenge that limits scalability is the access latency to the shared data items in other cores’
caches.

We illustrate the scalability challenges by reviewing the life of a transaction in a tradi-
tional centralized transaction processing system that uses pessimistic 2-phase locking (2PL)
and write-ahead logging. When such a system is deployed on a multicore system, it typically
has a thread pool comprised of a number of threads that run on different cores in a system.
When a transaction arrives in the system, it is assigned to the available thread that completes
all operations requested by a transaction or queued to the input queue if all threads are busy.
Each thread accesses all data items requested by a transaction. Before doing so, it has to obtain
locks from the centralized lock manager. Once it is granted a lock on a particular data item, it
needs to also obtain latches that protect physical data before accessing it. If it has performed any
changes, it needs to log them which requires obtaining space in the log buffer and writing the
log to the stable storage. Finally, it has to update the metadata—the data structures that store
the systems state to ensure correctness of transaction execution. Thus, it is not surprising that a
typical transaction accesses many shared data structures in the critical path which requires a lot
of synchronization and poses significant scalability challenges [67].

To illustrate the necessity of synchronization, in Figure 4.1 we plot the data access patterns
by tracing accesses of individual threads to different records of the DISTRICT table over one
second while running TPC-C workload. Each thread is assigned a different color and each
dot represents a single access. We observe from this graph that there is no predictability in
data accesses between threads and records. Hence, in order to ensure transactional (ACID)
properties, the system needs to enter numerous critical sections.

We break down the critical sections entered by Shore-MT when executing a single trans-
action that updates one row in Figure 4.2.The locking component alone accounts for over 20 crit-
ical sections with a similar number of critical sections related to latching and metadata accesses.
Logging is another bottleneck in the system partly because of the number of critical sections
and partly because of the length of critical sections involved in long latency I/O operations that
increase contention.

46 4. SCALING-UPOLTP

Figure 4.1: Data access patterns on the District table when running TPC-C benchmark.

Figure 4.2: Breakdown of critical section by component on Shore-MT running the transaction that
updates one record.

47

Figure 4.3: Scalability behavior of different types of critical sections as the number of threads in a
system increases.

In general, critical sections can be classified into three groups: unbounded, fixed, and co-
operative [67] whose scalability behavior we depict in Figure 4.3. Unbounded critical sections
are the ones where all threads have to access a centralized synchronization point. These critical
sections are the main scalability bottleneck with an increasing number of threads in the system,
as even the shortest critical section can become a major bottleneck. Many unbounded critical
sections can be found in traditional locking and latching components of the system. Fixed criti-
cal sections are the ones where there is a fixed number of threads entering them regardless of the
number of threads in the system. These are good critical sections as they will not become a bot-
tleneck with more threads. Typical examples are producer consumer pairs that can be found in
the transaction manager. Cooperative critical sections are the ones where different threads can
combine their requests while waiting to enter a critical section. These are also good as they do not
create additional contention. They are utilized in logging approaches such as Aether [69] where
multiple threads can batch their log buffer insert requests. In general, to achieve scalability in the
face of increasing number of threads, one needs to either eliminate unbounded communication
or turn them into fixed or cooperative ones which do not cause scalability bottlenecks.

In the rest of this section, we specifically examine scalability challenges related to locking,
latching, and logging components of the system. For each one of them we survey the repre-
sentative approaches to overcoming the challenges. Next, we provide a brief overview of the
synchronization mechanisms that are essential to achieving scalability on multicores. Finally,
we outline the challenges posed by the non-uniformity of communication latencies on OLTP
systems and survey the approaches to overcome them before concluding.

48 4. SCALING-UPOLTP

4.1 FOCUSONUNSCALABLECOMPONENTS
4.1.1 LOCKING
To better understand the sources of unscalable behavior of a traditional lockmanager when using
2PL protocol, we examine the typical interaction pattern between the lockmanager and a worker
thread executing a transaction. At the beginning of a transaction, the thread first requests all the
locks it needs, before proceeding to perform the operation on the locked data. After completing
the execution and deciding to commit, or, in case of errors, abort the transaction, it releases all
locks and finishes the transaction. This process repeats for the next transaction and the third
transaction and so on. It is the same for both hot and cold locks, as illustrated in Figure 4.4.
The hot locks are the ones that are acquired and released repeatedly and they comprise metadata
locks on the schema of the data and its top-level elements—tables and root nodes of B-trees.
However, as most accesses are directed to individual rows, most of these locks are shared or
intention shared locks that are granted in almost all cases.

Figure 4.4: Locking patterns in a typical OLTP system.

One way of reducing physical contention on the lock manager is to decrease the number
of interactions per transaction. The main idea of speculative lock inheritance is to allow the next
transaction to inherit hot locks instead of repeatedly releasing and acquiring the same set of
locks [66]. It works as follows: at commit time, a transaction doesn’t release all locks. Instead,
it releases cold locks and saves hot locks. When the next transaction comes in, it inherits the
saved locks and releases the ones it does not need. By reducing the number of lock requests,
this technique significantly reduces contention in the lock manager, especially for the read-only
workloads.

Another approach that achieves the same effect are the lightweight intent locks (LIL)
[82]. LIL technique is based on the observation that intent locks are the hottest locks in the
system. Additionally, their number is fairly small which causes high contention. To relieve this

4.1. FOCUSONUNSCALABLECOMPONENTS 49

Figure 4.5: Speculative lock inheritance.

contention, LIL implements intent locks as counters directly in the data pages, so threads acquire
and release them without the need to access the lock manager. These operations are performed
using atomic compare-and-swap instructions.

While these two techniques help alleviate the contention on the lock manager, they do not
eliminate it completely. One way to increase scalability of the lock manager, without changing
the concurrency control protocol used, is to partition the data and distribute the lock manager.

Data-oriented transaction execution (DORA)model divides the database into logical par-
titions [108]. Each transaction is broken into smaller requests—actions, and each action is exe-
cuted by a thread that has exclusive access to the partition where the data accessed by the action
resides. With this mechanism, the lock manager is distributed and lock manager interaction is
localized within a single core. Figure 4.6 illustrates the access pattern of DORA for the same
workload as in Figure 4.1. The predictable access pattern eliminates most of the locking-related
synchronization and improves scalability.

While logical partitioning alleviates locking bottleneck, it does not tackle other bottle-
necks. Hence, using a different system architecture is an appealing way to eliminate multiple
scalability bottlenecks at once and avoid challenges posed by multicores. Recently, there has
been a wave of fine-grained shared nothing systems that take partitioning to the extreme. They
typically partition the data completely and execute transaction on the partitions in the single-
threaded fashion. In this way, they do not need any locking or latching. Also, they are optimized
for today’s large main memories and typically do not have a buffer pool. However, they do sup-
port persistence on disk, typically through asynchronous checkpointing. Finally, as traditional
ARIES-style physiological logging poses too many overheads, these systems provide durability
either through replication or using lightweight form of logical logging [97]. In general, they are

50 4. SCALING-UPOLTP

Figure 4.6: Data-oriented execution makes access patterns predictable and improves locality.

optimized for predefined set of transaction types that are compiled ahead of time [146, 147].
Shared-nothing systems are ideal for perfectly partitionable workloads where a single transac-
tion accessed only data from its local partition. However, in many workloads this is not the
case because they are not easy to partition without causing many multisite transactions or heavy
skew. Multisite transactions, especially ones that access large portion of data, present a signifi-
cant challenge.

We briefly survey representative systems and outline their main characteristics and differ-
ent approaches they take to address the challenge. H-Store and its commercial version VoltDB
take the extreme approach with single-threaded processes and durability achieved by replica-
tion [146]. This design allows them to scale well for perfectly partitionable In the initial design,
multisite transactions were executed with two phase commit protocol with up to two network
roundtrips which caused low concurrency even with few multisite transactions. Speculative op-
timistic concurrency control allows local transactions to proceed speculatively while the node
is waiting for the network reply. However, they need to verify their results before committing
[70].

HyPer is a system that support both OLTP and OLAP [76]. It also uses single-threaded
execution model and relies on compilation of transaction plans that generate long pipelines op-
timized for data locality [102]. This approach minimizes branching in code to achieve very
good cache efficiency and high single-thread throughput. They support OLAP queries through
copy-on-write mechanisms that utilize virtual memory. Initially, multisite transactions required
all threads in the system to execute a single multisite transaction at a time. Recently, there were
proposals to (1) increase concurrency of general transactions using optimistic concurrency con-

4.1. FOCUSONUNSCALABLECOMPONENTS 51
trol (OCC) with strict timestamp ordering, (2) optimize execution of long-running transactions
by splitting them into read-only and update sub-transactions with tentative execution, (3) mul-
tiplex transaction with MVCC on a single thread, and (4) use hardware transaction memory to
implicitly lock data items [92, 101, 103, 165].

Finally, Calvin is a recent system that proposes using deterministic execution model to
achieve high throughput even when a system is running across different datacenters [148, 149].
The main idea is to first perform centralized dependency detection to eliminate any need for
coordination at commit time. Transactions are assigned to a partition where they first acquire
all necessary locks and then proceed to execute the whole transaction possibly involving remote
reads. Initially, locks were acquired through traditional lock manager, but an improved proposal
argues for the use of very lightweight locking (VLL) scheme that collocates locks with data
records and performs selective contention analysis to determine which of the waiting threads
will be granted the lock upon release [133].

While partitioning-based approaches can achieve scalability for workloads that are
amenable to partitioning, improving scalability of all concurrency control schemes on multi-
cores is beneficial for workloads that cannot be easily partitioned. Serializable snapshot isolation
(SSI) is another way to ensure isolation between concurrent transactions. It typically includes a
validation phase during transaction commit [41]. Main techniques that can be used to achieve
scalability of SSI on multicores include memory-friendly validation phase without read after
write conflicts and the use of bulk memory operations whenever possible [71].

A standard 2PL scheme poses significant overhead for systems optimized for main mem-
ory. These systems typically use optimistic concurrency control techniques that are imple-
mented lock-free. One example is the scheme used in Microsoft’s Hekaton main-memory sys-
tem [36, 89]. Transactions track their begin and end timestamps and validate read and scan sets
during the commit processing step. To support non-blocking nature of transaction processing
in Hekaton, transactions that read data written by transaction in the commit phase and take
a commit dependency on it. The idea of lock-free OCC for main-memory databases is taken
a step further in Silo which decentralized the timestamp allocator to remove any centralized
data structure in Hekaton’s scheme [158]. While many subsequent proposals enhance OCC or
2PL schemes for multicores [38, 79, 81, 169, 170], a recent study has shown that none of the
proposals effectively scale to 1,000 cores [168].

4.1.2 LATCHING
While the lock manager arbitrates data access at the logical level, latching the individual pages,
that contain the accessed data, does so at the physical level. Physical contention is especially
acute when the tables are accessed through the primary key index implemented as a B-tree. In
that case, all thread accessing data in a particular table have to acquire latches on the same set
of pages on the upper levels of the tree, leading to high contention. Even if the data is logically
partitioned, i.e., as in the data-oriented execution model.

52 4. SCALING-UPOLTP
As the next step after logical partitioning utilized by the DORA system is the partitioning

at the physical layer, achieved by replacing the single rooted B-tree structure with a multirooted
one and ensure that the ranges of each subtree would match the partition ranges of the logical
partitioning [109]. In this multirooted B-tree structure, the new tree root becomes a routing
table which keeps the information on which range corresponds to which subtree so that it can
route the worker threads to the correct subtree. And as a result of this partitioning, index pages
can be accessed latch-free. By forcing a heap page to be pointed by only one leaf page, one also
achieves single-threaded access to each heap page and eliminate latching from heap pages as
well. Also, with this design each thread can effectively cache their metadata information since
they keep accessing the same tables so contention on catalog manager can also be eliminated.

A way to remove latching bottleneck without data partitioning is to redesign the B-tree
itself to support latch-free operations. PALM is one proposal for designing latch-free concurrent
B-tree [139]. It requires the threads that access the B-tree to proceed in lockstep up and down
the tree and to synchronize between phases. Each thread is executing a batch of operations on
a range of keys with reads proceeding before modifications. This allows them to avoid global
barriers and requires threads to synchronize only with a couple of neighboring threads. At each
step only one thread is allowed to modify any particular node. To achieve good efficiency without
sacrificing latency, PALM uses software prefetching for nodes on the next level and SIMD to
accelerate operations on each level.

BW-tree is another latch-free B-tree which is optimized for both main memory and flash
[93]. It is log structuredwhichmaximizes the number of sequential writes. Data is organized into
elastic-sized pages and accessed through the PIDs stored in the mapping table. Mapping tables
map page IDs (PIDs) to both locations in the main memory and on the stable storage. BW-
tree pages are not updated in place. Instead, delta updates are prepended to the page and their
pointers are updated atomically in the mapping table which improves cache behavior. Updates
are periodically installed into consolidated pages. In general, structure modifying operations
(SMOs) are done in a series of atomic steps by different threads in an opportunistic fashion—if
a thread wants to access the page in the middle of a SMO, it first completes the SMO.

4.1.3 LOGGING
Traditional write-ahead logging (WAL) scheme is vulnerable to multiple sources of contention
that we illustrate in Figure 4.7 through discussion of thread’s interaction with the log manager.
During the execution, whenever a transaction wants to perform a data modification (insert,
update, or delete), it first acquires required locks, performs the modification, and then logs the
changes by writing the log record to the log buffer. After all the changes are completed and the
transaction is ready to commit, it flushes all the changes performed by a transaction to the stable
storage for durability. After the changes are durable, transaction releases all locks and completes
the commit.

Figure 4.7 illustrates three major contention serialization points:

4.1. FOCUSONUNSCALABLECOMPONENTS 53

Figure 4.7: Sources of contention in log manager.

• when a thread wants to insert a new log record, it needs to acquire space in the centralized
log buffer and write the generated record;

• at commit time, making log records durable incurs long I/O delays due to both the latency
of writing to the stable storage (typically HDD or SSD) and the overhead of system calls;
and

• since locks are held until log records become durable, they potentially significantly increase
contention on the locks for frequently updated data items.

Aether tackles these problems in a holistic fashion by combining three techniques, illus-
trated in Figure 4.8 [69]. First, early lock release allows transactions to release shared locks at the
beginning of the commit phase before the log buffer is persisted. Controlled lock violation takes
this a step further by allowing an exclusive lock to also be released by tracking dependencies until
the transaction commit finishes [51]. Flush pipelining reduces context switches and I/O delay
by delegating log flushing to a dedicated thread in a fashion similar to group commit. Contrary
to group commit, it does not violate the durability requirement because the results are returned
to the user only after the transaction becomes durable. Consolidation array is a technique that
exemplifies conversion of a fixed to composable critical section. Instead of all threads contending
to inserting data into the log buffer, waiting threads combine their requests for log buffer space
and can insert their log records in parallel once they get that space.

54 4. SCALING-UPOLTP

Figure 4.8: Aether applies different techniques to alleviate contention.

4.1.4 SYNCHRONIZATION
While the three components we examined in more detail in the previous subsections require
a substantial number of critical sections, other components also have many synchronization
points. Accesses to all of these critical sections are spread out during the execution of a transac-
tion and they have different durations and access patterns. As there are many ways to implement
a critical section, the important question is which synchronization primitive is best for each case.
Next, we give a brief overview of typical lock-based and lock-free approaches.

OSmutex is the simplest way to implement a critical section and is available from standard
compiler libraries. However, it requires system calls which pose non-negligible overhead and do
not scale with contention. Test and set spinlocks are efficient due to their simplicity, but they do
not scale with contention. Queue-based spinlocks, such as MCS spinlocks, are scalable, however
they require more complex memory management. Finally, reader-writer locks permit concurrent
readers, however they pose higher overhead than write-only locks.

On the lock-free side, atomic operations are very efficient as they are implemented with
hardware instructions, however they are limited to updates to a single value. Lock-free algo-
rithms can be scalable, but each case requires a special purpose algorithm. OCC is another
appealing approach that has low overhead for reads, but contending writes can cause livelock.

4.2. NON-UNIFORMCOMMUNICATION 55

4.2 NON-UNIFORMCOMMUNICATION
Multisocket multicore systems are the predominant configuration for database servers today and
are expected to remain popular in the future. The non-uniformity of such systems impacts com-
munication between cores as well as between cores and memory. Here we focus on inter-core
communication as it has bigger impact on OLTP, while the non-uniformity in memory accesses
is discussed in more details in Section 5.2. Figure 4.9 shows a simplified diagram of a typical
machine that has two sockets with quad-core CPUs. Communication between the numerous
cores happens through different mechanisms. For example, two threads running on the same
core can communicate very fast through the core’s L1 cache. When they’re running on different
cores on the same socket, they communicate through the socket’s last-level (L3) cache. Finally,
two threads running on different sockets need to use inter-socket links. Therefore, depending on
the thread placement, communication latencies can vary by an order of magnitude. In this envi-
ronment we identify Islands as groups of cores that communicate much faster among themselves
than with cores from other groups.

Figure 4.9: A schematic view of a multisocket multicore server. We identify a hardware Island : a
group of cores that communicate faster with each other than with the cores from another island.

It might be appealing to consider a server with multiple islands as a distributed system and
deploy shared-nothing systems on it. A recent study compares a range of different distributed
deployment configurations from shared-everything to fine-grained shared-nothing including
Island shared-nothing that deploys one database instance on each Island [116]. This study con-
cludes that at one extreme shared-nothing offers stable performance in the presence of multisite
transactions, but it is rarely optimal. On the other hand, shared-nothing offers fast performance
for perfectly partitionable workloads but it’s sensitive to skew and distributed transactions. Island

56 4. SCALING-UPOLTP
shared-nothing offers robust middle ground. The main takeaways is that optimal configuration
depends on the combination of hardware and workload characteristics. When any one of these
characteristics change, a system needs to adapt to the new best configuration which is expensive
due to the need to move data between different processes.

ATraPos solves this problem by making a shared-everything system scalable on Islands
and adaptive to any changes in the workload characteristics or hardware topology [115]. It relies
on precise data partitioning and placement to maximize locality of data accesses and on adap-
tive repartitioning to maintain data locality even when the workload changes. ATraPos ensures
stable performance by choosing the appropriate partitioning scheme, which maximizes resource
utilization and balances the load. The choice is based on a cost model that takes into account
(a) the static data dependencies, (b) the dynamic workload information, and (c) the underlying
hardware topology. Finally, ATraPos uses a lightweight monitoring mechanism to continuously
track the transaction behavior. When it detects that the workload has changed, it adjusts the
data partitioning and partition placement to guarantee high and predictable performance.

As the number of cores on a chip increases, multiple Islands are forming within a single
processor in the contemporary processors such as Oracle SPARC M7, AMD EPYC, and In-
tel Xeon Scalable. In addition, the access latencies to the local memory and to the memory of
another server over fast interconnect in a rack-scale system are converging, thus creating a hier-
archy of Islands within a group of servers. A recent study analyzes the trade-offs involved in the
deployment of different OLTP system configurations on commodity clusters [117]. It concludes
that different configurations are optimal for different combinations of workload characteristics,
multisocket topologies, and network communication properties. This finding emphasizes that
scaling out requires both Island and inter-Island awareness to efficiently utilize emerging rack-
scale hardware platforms, even with faster interconnects and widespread use of RDMA blurring
the lines between different machines.

4.3 CONCLUSIONS
Increasing numbers of processor cores found in modern multicores and non-uniformity in mul-
tisocket system pose significant challenges to scalability of transaction processing systems. In
order to overcome scalability challenges, system designers can take one of the two principal
approaches:

• take the existing system, identify scalability bottlenecks and remove them in a holistic
fashion without creating any new bottlenecks; or

• start from scratch and design scalable systems for multicores. The most important lesson
in this case is to not repeat old mistakes.

One of the concerns which will only become more significant is the non-uniformity in commu-
nication, so systems need to optimize for locality of communication. Also, they need to make
systematic decisions about the optimal synchronization mechanism for each critical section.

57

C H A P T E R 5

Scaling-upOLAPWorkloads
In the previous chapter, we showed that scaling-up OLTP workloads on modern hardware is
sensitive mostly to the latency of memory accesses. In this chapter, we show that scaling-up
OLAP workloads involves further challenges that pertain to the efficient utilization and satu-
ration of the limited number of hardware resources, e.g., the number of hardware contexts and
the memory bandwidth.

Figure 5.1 shows the two major challenges we focus on in this chapter. The first chal-
lenge involves redundant computations. As more and more hardware contexts are supported on
modern hardware, an increasing number of concurrent queries can be evaluated. As concurrency
increases, there may be sharing opportunities among the queries. Conventional execution en-
gines in DBMS do not exploit these sharing opportunities. By sharing across queries, DBMS
can decrease contention for resources significantly by avoiding redundant operations. In Fig-
ure 5.1a, we see an example of an analytical workload, where queries have similar parts. After
the number of concurrent queries surpasses the number of available hardware contexts, and the

Th
ro

ug
hp

ut

Number of threads1 4 16 64 256Re
sp

on
se

 T
im

e

of Concurrent Queries

no sharingscan sharingfull sharing# H/W contexts (b) Parallelizing a single aggregation(a) Sharing across queries # H/W contexts
Figure 5.1: (a) Scaling-up concurrent OLAP workloads presents an opportunity of exploiting shar-
ing across concurrent queries. (b) Scaling-up a NUMA-agnostic aggregation hits a bottleneck before
completely saturating CPU resources.

58 5. SCALING-UPOLAPWORKLOADS
queries cannot be serviced in parallel and independently, the effect of sharing across queries
becomes apparent in the total response time. Sharing scans can decrease the response time con-
siderably by sharing the scans of common relations of all queries at the I/O layer. Further sharing
of higher operators in the query plans can further decrease response time [119, 120].

The second challenge is the non-uniformmemory access (NUMA) architecture ofmodern
multisocket multicore servers [87]. In the previous chapter, we show that the non-uniformity of
the latency of memory accesses plays a significant role in scaling-up OLTP workloads. OLAP
workloads are equally concerned with an additional non-uniform resource: the memory band-
width. Figure 5.1b visualizes this challenge. It shows the throughput of an experiment that
involves a single client issuing an aggregation query. In a typical execution engine, increasing
the number of threads with which the aggregation is parallelized, up to the number of avail-
able hardware contexts of the machine, results in an analogous increase of the throughput that
plateaus shortly before the number of available hardware contexts. On modern multisocket mul-
ticore machines, however, that may not be the case. For a typical NUMA-agnostic execution
engine that relies on the operating system for its data placement and thread scheduling across
the machine’s sockets, it is probable that the throughput will hit a plateau much earlier than the
number of available hardware contexts. The reason in this example is that the data to be aggre-
gated happens to be allocated on a single socket, and the throughput is limited by the maximum
bandwidth supported by that socket [121]. A NUMA-aware execution engine that explicitly
handles its data placement and thread scheduling across the machine’s sockets can fully utilize
the memory bandwidth of both sockets and significantly increase the achieved throughput in
this example [121].

In this chapter, we explore the two aforementioned challenges and explain how to exploit
sharing opportunities that arise in highly concurrent analytical workloads, and also how to avoid
NUMA-related problems. In Section 5.1, we survey the sharing methodologies available in
related work, and focus on two state-of-the-art techniques. In Section 5.2, we detail several
NUMA-aware solutions in related work. We begin with black-box approaches, then present
DBMS-specific data placement and task scheduling solutions.

5.1 SHARINGACROSSCONCURRENTQUERIES

A typical relational data warehouse accepts a few analytical queries and consumes I/O, RAM,
and CPU resources to evaluate each query separately, following a query-centric model [47]. The
era of big data introduces new challenges to analytical processing [62, 63]. Among them, the
data warehouse is called upon to handle an ever-increasing number of bigger, more complex,
longer-running queries. Naturally, the traditional query-centric model that evaluates each query
independently results in contention for resources. For performance this means delays in process-
ing the queries, or an admission control policy that may delay new queries until resources are
freed.

5.1. SHARINGACROSSCONCURRENTQUERIES 59
Sharing is one technique that can alleviate the contention for resources. In the case that

queries share similar parts, we can reuse parts of data and the execution to save resources. By
sharing data, we refer to coordinating I/O requests, sharing data among queries, and avoiding
unnecessary data copying and referencing, while by sharing work, we refer to saving CPU re-
sources, by avoiding redundant computations [118]. By saving resources, we reduce contention
for resources. With more free resources, we can evaluate more concurrent queries and this trans-
lates to better performance such as increased throughput.

Even in typical query-centric databases, where queries are optimized and executed
independently without sharing among concurrent queries, there are sharing techniques:
caching [140], materialized views [135], multi-query optimization with the exploitation of com-
mon subexpressions [45, 138], and buffer pool management techniques [136]. More contempo-
rary, state-of-the-art sharing techniques, however, share across concurrent queries at run-time,
after query optimization. Reactive sharing shares common intermediate results of common sub-
plans among queries [47, 120]. Proactive sharing takes a different approach to developing shared
operators that can evaluate a high number of similar queries, composing a global query plan with
shared operators for all the query mix [12, 22, 48, 120]. Both reactive and proactive sharing use
shared scans, such as the one of Section 2.3. Next, we give more details on reactive and proactive
sharing.

5.1.1 REACTIVE SHARING
Let us assume two queries that share a common sub-plan below an operator, e.g., a join op-
erator, but have two different operators on top of them, e.g., aggregation operators, as shown
in Figure 5.2a [118]. The query-centric model, with pipelining, evaluates them separately using
intermediate FIFO buffers to exchange pages of tuples.

⋈

…

�

⋈

…

�

(a) Query-centric

Q1 Q2

FIFO
buffer

⋈

� �

forward
results

common sub-plans

⋈

� �

(b) Reactive sharing
(push)

(c) Reactive sharing
(pull)

Figure 5.2: (a) Evaluating two common sub-plans with a query-centric execution engine. (b) Re-
active sharing through pushing common intermediate results. (c) Reactive sharing through pulling
common intermediate results.

60 5. SCALING-UPOLAPWORKLOADS
Reactive sharing was introduced in the QPipe execution engine [56]. It detects the com-

mon sub-plans, evaluates only one of them, and copies common results to the FIFO buffers of
the two different aggregation operators. The amount of common intermediate results that can
be shared depends on the inter-arrival delay of the common sub-plans and the top operator of
the sub-plans [56]. Reactive sharing is shown in Figure 5.2b. The original proposal for reactive
sharing uses a “push-based” model, because the single producer is responsible for forwarding the
common tuples.

Push-based reactive sharing, however, has a significant drawback: it creates a serialization
point. Subsequent operators, e.g., the aggregations of the example, are delayed until incom-
ing tuples are received. In certain cases of low concurrency, the serialization point makes the
query-centric model better than reactive sharing since the queries move independently, exploit-
ing available resources. Moreover, a prediction model has been proposed that can dynamically
decide whether to use the query-centric model or reactive sharing [64].

Another approach to reactive sharing is pulling common intermediate results [119]. It
shares common intermediate results without forwarding them. This eliminates the serialization
point. The single producer independently emits pages of tuples at the head of a linked list, as
shown in Figure 5.2c. Each consumer also walks the list independently from the tail up to the
head, reading the common intermediate results. The serialization point is eliminated since the
producer now independently emits tuples, at the speed of the query-centric model, without a
need to forward tuples to multiple consumers. More importantly, there is no need for a predic-
tion model to decide whether to use the query-centric model or reactive sharing. Thus, reactive
sharing can be implemented with a low overhead for sharing common intermediate results at
run-time.

5.1.2 PROACTIVE SHARING
The main drawback of reactive sharing is that it only shares common sub-plans, with common
predicates for the involved operators. Reactive sharing cannot, for example, share the join oper-
ator of two queries if they have different selection predicates for the joined relations, as shown
in Figure 5.3a. Proactive sharing, however, can share across these concurrent queries. Proactive
sharing was introduced in the CJOIN operator [22]. Proactive sharing uses shared operators that
can evaluate many similar queries concurrently, in a global query plan. The basic technique used
to achieve this is attaching a bitmap to tuples, thereby showing the relevant queries from the
query mix for which the tuples qualify. A shared operator indirectly exploits common instruc-
tions (see Section 3.5), as it evaluates the same instructions for multiple similar queries.

Lets go through the example of Figure 5.3a to see how a global query plan can be built
with shared scans, selections, and hash-joins to evaluate these two queries [118]. Let us assume
that the right-hand side (RHS) of the hash-join is the smaller relation for which we build the
hash table. Tuples from the RHS relation flow into the shared selection operator, which outputs
tuples with an attached bitmap that signify whether each tuple is relevant to one of the queries.

5.1. SHARINGACROSSCONCURRENTQUERIES 61

⋈

A cols 11

Q1: SELECT * FROM
, WHERE .c1 =
.c1 AND (A)

AND (B)

Q2: SELECT * FROM
, WHERE .c1 =
.c1 AND ’(A)

AND ’(B)

� �

01B cols

A cols B cols 01

+AND

(a) Proactive sharing (b) Proactive with reactive sharing

⋈

A cols 1

Q1: SELECT * FROM
, WHERE .c1 =
.c1 AND (A)

AND (B)

Q2: SELECT * FROM
, WHERE .c1 =
.c1 AND (A)

AND (B)

� �

0B cols

A cols B cols 0

+AND

reuse results

A B A B

Figure 5.3: (a) Proactive sharing with two queries sharing a similar plan but different selection pred-
icates for the joined relations. (b) Reactive sharing on top of proactive sharing.

After the hash table has been built, tuples from the left-hand side (LHS) relation flow in the
same fashion to the join operator. The hash-join proceeds as usual and output joined tuples are
produced. What it does in addition, however, is a bitwise AND operation between the bitmaps
of the joined tuples in order to preserve the relevance of the output tuple to the queries. In this
example, because the RHS tuple was not selected by Q1, the output tuple is also not selected
by Q1. Additional similar queries joining the same relations, with the same join predicate, but
different selection predicates can be added dynamically and evaluated by this single shared hash-
join, simply by extending the bitmaps.

In contrast to the query-centric model, proactive sharing has an overhead, which is most
apparent for a low number of concurrent queries. Proactive sharing needs an additional admis-
sion phase for a new incoming query to adjust the global query plan to accommodate the new
query [12, 22, 119]. Also, there is additional bookkeeping overhead as shown, e.g., by the addi-

62 5. SCALING-UPOLAPWORKLOADS
tional bitmaps and bitmap computations [119]. Nevertheless, the benefits of proactive sharing
for a high number of concurrent queries dwarf the overhead [48, 119].

Proactive sharing and reactive sharing are orthogonal. For example, if the two exemplary
queries are identical, they still pass through the global query plan; even if they produce the
same intermediate results, their bitmaps are the same and we do redundant work. In such a
case, we can combine both sharing techniques and apply reactive sharing on top of proactive
sharing [119], as shown in Figure 5.3b. Reactive sharing reuses the results of Q1 and avoids
redundant computations and bitwise operations for Q2.

5.1.3 SYSTEMSWITHSHARINGTECHNIQUES
In Table 5.1, we show the systems and research prototypes that introduced and advanced reac-
tive and proactive sharing techniques across concurrent queries [119]. QPipe [56] introduced
reactive sharing by sharing common intermediate results across common sub-plans at run-time.
CJOIN introduced the notion of proactive sharing with a global query plan of shared hash-joins
for evaluating star queries at run-time [22, 23]. Both QPipe and CJOIN employ circular scans
in their I/O layer. CJOIN uses an online approach for re-ordering the shared hash-joins ac-
cording to the selectivities of the queries [22]. DataPath advanced the notion of global query
plans for more general schemas and more shared operators [12]. It also supports an optimizer
for adapting the global query plan due to a newly incoming query. At its I/O layer, DataPath
employs a linear scan of a disk array to sustain a very large throughput. SharedDB [48] special-
ized the notion of global query plans for mixed OLTP and OLAP workload by using batched
in-memory execution, a precomputed global query plan, and circular scans that process read and
update requests. Batched execution has also been shown to avoid unnecessary overhead in hash-
joins by sharing the build phase and efficiently updating hash tables for new queries [95]. A
heuristic algorithm has been proposed in the context of SharedDB to generate the global query
plan by considering the whole query mix [49].

Table 5.1: Systems that employ sharing techniques across concurrent queries.

System QPipe [56] CJOIN [22, 23] DataPath [12] SharedDB [48, 49]
Sharing technique Reactive Proactive (Global Query Plan)
Execution Dynamic Dynamic Dynamic Batched

Schema General Star General General
(precomputed)

I/O Circular
scans

Circular
scans

Linear scan of
a disk array

Main-memory
circular scans

Most systems using sharing focus on OLAP workloads, as analytical read-mostly work-
loads are amenable to sharing [118]. Sharing, however, can be useful for OLTP workloads as
well. Reactive and proactive sharing techniques can be used across the same version of data under

5.2. NUMA-AWARENESS 63
a multi-version concurrency control [22, 23]. SharedDB effectively supports proactive sharing
in mixed OLTP and OLAP workloads by operating on versioned data through the combination
of batched execution and the usage of circular scans that process read and update requests [48].

In conclusion, a big data analytical system should employ sharing across concurrent
queries to share data and work. For cases of low concurrency, the system can use query-centric
operators, along with reactive sharing at run-time. For highly concurrent workloads, the system
can employ proactive sharing to build a global query plan to evaluate the whole query mix, and
can additionally employ reactive sharing whenever there is a sharing opportunity for common
sub-plans [119].

5.2 NUMA-AWARENESS
The significance of NUMA-aware data placement and scheduling in order to optimize for faster
local memory accesses has been prominent since a long time ago in the systems community.
When NUMA architectures emerged, related work studied the advantages and disadvantages
of cache-coherent (ccNUMA) and cache-only memory architectures (COMA) designs which
can dynamically cache remote memory pages [39, 144]. Currently, ccNUMA designs prevail for
modern multisocket multicore servers [28].

Figure 5.4 shows a modern ccNUMA server, with four sockets, each having a 15-core
Intel Xeon E7-4880 v2 2.50 GHz (Ivybridge-EX) processor [123]. The depicted configuration
has four 16 GB DIMM per memory controller (MC). The sockets are interconnected to enable
accessing remote memory of another socket. Each socket has 3 Intel QPI (QuickPath Inter-
connect) links. Each QPI has a 16 GB/s bandwidth that supports data requests and the cache
coherence protocol.

NUMA allows hardware vendors to support multiple sockets with a large number
of hardware contexts on a machine. Compared to traditional machine architectures with
uniform memory accesses, however, they introduce new considerations for software perfor-
mance [17, 118, 123]. These are enumerated in Figure 5.4 and outlined here:

1. The memory bandwidth of a single socket can be separately saturated.

2. The memory bandwidth of an interconnect can be separately saturated.

3. Accesses to remote memory are slower than accesses to local memory.

Especially for the second point, it is important to note that interconnects can easily be-
come a performance bottleneck due to their limited memory bandwidth [28, 118]. Although
the bandwidth of interconnects may be improved with every new processor generation, it is typ-
ically lower than the memory bandwidth of a single socket. Additionally, an interconnect can
become a bottleneck in large NUMA topologies when it needs to route remote traffic to multiple
sockets.

64 5. SCALING-UPOLAPWORKLOADS

Figure 5.4: A server with four sockets of 15-core Intel Xeon E7-4880 v2 2.50 GHz (Ivybridge-EX)
processors. NUMA introduces additional performance bottlenecks points (enumerated in the figure)
that the software needs to consider.

The software needs to tackle the aforementioned issues by becoming NUMA-aware.
NUMA-awareness is achieved by optimizing for local memory accesses instead of remote ac-
cesses, and avoiding unnecessary centralized bandwidth bottlenecks of either sockets or inter-
connects [118]. Black-box NUMA-aware approaches have been proposed that track and predict
the memory accesses of the applications, either by instrumenting applications or by using hard-
ware counters, in order to migrate and/or replicate memory pages [21, 88, 105]. For example,
the DINO scheduler monitors the cache behavior of applications’ threads and tries to move
them and their data to balance cache load and improve cache efficiency [18]. As another exam-
ple, Carrefour re-organizes data with replication, interleaving, or co-location in order to avoid
memory bottlenecks [34]. Nevertheless, the main disadvantage of black box approaches is that
they do not use application knowledge and may not always be optimal for DBMS [18, 164],
because DBMS can be unpredictable as they handle various workloads and can change behavior
at run-time.

For this reason, we need to use application knowledge inside the execution engine to effi-
ciently support NUMA-awareness. NUMA-awareness can improve the performance of by sev-
eral factors [77, 123]. A prominent example of a static black-box approach tailored for DBMS

5.2. NUMA-AWARENESS 65
is presented by Giceva et al. [50] to characterize and group the shared operators of a prede-
fined global query plan, and place them on a NUMA server with the main aim of improving
overall energy efficiency. Figure 5.5 shows the main deployment algorithm of this black-box
approach. The algorithm collapses operators together by examining the global query plan, and
then special Resource Activity Vectors (RAV) are calculated for the operators by calibrating
them and measuring their core performance characteristics before the actual deployment of the
global query plan onto the cores of the NUMA server. The RAV contain information about
the performance characteristics and requirements of the shared operator, such as IPC, average
memory bandwidth, etc. Finally, the actual deployment scheme is decided using information
about the topology and the characteristics of the NUMA server. The experiments of the author
show that the same performance can be achieved as a NUMA-agnostic deployment of the global
query plan, but with 14% of utilized CPU resources.

5.2.1 ANALYTICALOPERATORS
In this section, we present NUMA-aware analytical algorithms and operations specific to
DBMS or NUMA-aware implementations of analytical operators.

We start with a general approach to data exchange: data shuffling. In data shuffling, there
are N producers and N consumers across the sockets of a NUMA server. Each producer parti-

Deployment Algorithm

Deployment Decision

Operator Graph Collapsing

Deployment Mapping

Minimizing

Computa�onal Requirements

Minimizing

Bandwidth Requirements

Operator Data-

Dependency Graph

Interconnect

Topology

NUMA-Node

Internal Proper�es

Resource Ac�vity

Vectors (RAVs)

M
u

l�
co

re
 M

a
ch

in
e

M
o

d
e

l

1

2

3

4

Figure 5.5: A DBMS-specific black-box approach for deploying a global query plan on a NUMA
server. (Based on Figure 4 of Giceva et al. [50].)

66 5. SCALING-UPOLAPWORKLOADS
tions its data into N pieces and wants to transmit its piece of data to all consumers. The naïve
way of data shuffling is shown in Figure 5.6a. In the first step, all producers transmit their data
to the first consumer, then to the second consumer, and so on. This naïve way actually cre-
ates a centralized memory bandwidth bottleneck since the consumer is on one socket while the
producers are on multiple sockets, which results in bad performance [94].Step 1ProducersConsumersStep 2s1.p1 s1.p1s1.c1s1.p2 s2.p1 s2.p1 s2.c1s2.p2 s2.p2 s2.c2s1.c1 s1.c2 s2.c1 s2.c2s1.p1 s1.p2 s1.p2s1.c2s2.p1 s2.p2s1.c1 s1.c2 s2.c1 s2.c2(a) Naïve Data Shu�ing (b) NUMA-Aware Data Shu�ingInner Ring FixedOuter Ring Rotates
Figure 5.6: (a) Naïve vs. (b) NUMA-aware data shuffling. (Based on Figure 5 of Li et al. [94].)

A more clever way of doing data shuffling is with coordinated shuffling [94], shown in
Figure 5.6b. The producers are put in the outer ring, as depicted, and the consumers are put
in the inner ring, so that each producer transmits its piece of data to one consumer. In order
to complete the algorithm, the outer ring is moved in a clock-wise fashion for one full circle so
that the producers transmit their data to all consumers. Coordinated shuffling avoids centralized
bottlenecks by balancing memory bandwidth and interconnect traffic across the sockets of a
NUMA server.

We continue with joins which are one of the most demanding analytical operations. A
very popular algorithm for hash-joins is the radix hash-join [78], depicted in Figure 5.7. In
comparison to the typical hash-join with the build and probe phase [129], the radix hash-join
first partitions each relation to partitions that fit into caches with a radix partitioning scheme,
and then joins the partitions. After bringing the partitions from the memory to the caches, the
join occurs only by accessing the caches, and this cache-efficiency makes the radix hash-join
have a very good performance. More advantages include less collisions on the hash tables, and
less TLB misses [78]. The problem for modern multisocket multicore servers, however, is that

5.2. NUMA-AWARENESS 67
the radix hash-join is not NUMA-aware. It does not take into account where the relations are
physically allocated, and the algorithm may access them remotely.

Albutiu et al. [9] developed aNUMA-aware join operator based on sort-merge join, called
Massively Parallel Sort-Merge (MPSM) join. The MPSM is based on three rules for NUMA-
awareness [9] and outlined here.

1. Remote random writes should be avoided.

2. Sequential random reads are allowed.

3. Synchronization should be avoided.

Figure 5.8 shows how MPSM works with two relations on a NUMA server with three
sockets (visualized with different colors). The relations R and S are partitioned to partitions that
are sorted locally on the sockets. Each partition of the outer relation is then merged with every
partition of the inner relation. Because the inner partitions are scanned, the prefetcher can hide
the increased latency cost of remote accesses. It has been shown that MPSM is faster than the
radix hash-join on NUMA servers for star schemas [9], where the outer relation is a large fact
table and the inner relation a significantly smaller dimension table [80].

A later study, however, shows that radix hash join is still the superior join algorithm [15].
MPSM suffers from bandwidth saturation for general schemas, as large remote partitions dur-
ing the merge phase need to be scanned, which saturates interconnects and remote memory
controllers. The authors of the study advance MPSM by making their own optimized version
of sort-merge join using SIMD and multiway merging to avoid bandwidth saturation. By using

•
•
•

•
•
•

•
•
•

•
•
•

Join

Par ons (by key) are small enough to fit into cache

R1

R2

R3

R2B

S1

S2

S3

S2B

Rela on R Par ons of R Par ons of S Rela on S

Figure 5.7: The radix hash-join. (Based on Figure 1 of Kim et al. [78].)

68 5. SCALING-UPOLAPWORKLOADS

R S
sort
run

sort
run⋈

sort
run

sort
run⋈

sort
run

sort
run⋈

sequential read

NUMA partitions

Figure 5.8: The massively parallel sort-merge join (MPSM) algorithm. (Based on Figure 2 of Al-
butiu et al. [9].)

task scheduling (see Section 5.2.2), they can balance CPU and memory bandwidth utilization
to avoid centralized bottlenecks. Still, their radix hash-join implementation proves to be better.
Figure 5.9 shows the results of the authors comparing the three different join algorithms for
the same dataset, joining 2 tables with 16 billion tuples, using 64 threads, on the same NUMA
server which is a 4-socket server with Intel Sandy Bridge processors.

The long-standing battle between different join algorithms in the recent literature shows
that NUMA is just one factor for achieving efficient performance. There are many more factors
that need to be considered, e.g., data sizes, degree of parallelism, SIMD instructions, etc., in
order to optimize performance when implementing analytical operators.

5.2.2 TASK SCHEDULING
In the remainder of this chapter, we focus on the design of the execution engine for NUMA-
aware data placement and CPU scheduling. Before we delve into the architectural details, we
focus on a recurring scheduling technique that is used in NUMA-aware execution engines: task
scheduling, a technique allows to take explicit control of CPU scheduling. For this reason, we
dedicate this section to exploring task scheduling, its benefits and challenges. In Section 5.2.3,
we continue to explain how an execution engine can be designed to achieve NUMA-aware
coordinated task scheduling and data placement.

Taking control of scheduling is an important aspect in improving the performance of an
application by exploiting application knowledge that is not readily available to the OS scheduler.
Let us consider the case where we leave scheduling to theOS. In themost typical case, one thread
is created per query. If the incoming queries are more than the hardware threads of the server,
then the hardware threads are “oversubscribed.” In order to accommodate the software threads,

5.2. NUMA-AWARENESS 69

0

0.25

0.5

0.75

1

Massively Parallel
Sort Merge Join

(MPSM)

Multiway Sort
Merge Join

Radix Hash Join

Ti
m

e
(n

or
m

al
ize

d)

Figure 5.9: A comparison of NUMA-aware join algorithms. (Based on Figure 18 of Balkesen et
al. [15].)

the OS arranges timeslots for the utilization of the hardware threads. Figure 5.10 shows an
example of oversubscription and a schedule of timeslots arranged by the OS for accommodating
three software threads with one hardware thread.

3

1
2

1

3
2

Time

Context switch Cache thrashingOversubscription

H/W
context

2

1

Figure 5.10: Timeslots arranged by the OS scheduler in the case of oversubscription of hardware
threads. Context switches and possible cache thrashing are two negative side effects.

There are two main performance problems of oversubscription [122]. First, there are con-
text switches between the timeslots, as the software thread that currently runs on the hardware
thread is pre-empted in order to run another software thread. Second, there can be potential
cache thrashing if an upcoming thread invalidates useful data brought to the cache by the previ-
ous thread. Furthermore, in heterogeneous co-processor environments, it has been shown that

70 5. SCALING-UPOLAPWORKLOADS
oversubscription can lead to performance degradation when multiple operators run in parallel
on a co-processor and their accumulated memory footprint exceeds the main memory capacity
of the co-processor [19].

To partly avoid these performance problems, DBMS typically use a query admission con-
trol mechanism to limit the number concurrent queries [58]. A query admission control, how-
ever, takes action on a per-query level and does not necessarily avoid an excessive number of
concurrent threads during the whole workload execution, especially if intra-query parallelism is
used [122].

A better or complementary solution is to use task scheduling, which has been widely
adopted in DBMS and research prototypes [3, 19, 20, 83, 91, 122, 124]. This is shown in Fig-
ure 5.11. DBMS encapsulate all of their workload into units of work called “tasks” which are
enqueued into task queues. On a NUMA server, there can be, for example, one task queue per
socket [83, 91, 124]. DBMS then employ one worker thread per hardware thread. Each worker
thread continuously queries the task queues for tasks to execute. Since there are nomore software
threads presented to the OS, oversubscription performance problems are avoided.

Socket 1

Task queues H/W
context

H/W
context

Socket 2

H/W
context

H/W
context

Figure 5.11: Task scheduling uses one software worker thread per hardware thread, which contin-
uously process tasks from a set of task queues.

Task scheduling provides numerous opportunities, but also presents several challenges [35,
122, 159, 167]. Among the opportunities are the following. First, task scheduling allows to de-
couple the application’s scheduling from the OS scheduler. The advantage is that the application
can take full control and predictability of its scheduling. Second, it can control task granularity
and scheduling to balance between CPU-intensive and memory-demanding tasks [15]. Third,
task prioritization can support workload management techniques [125].

Some of the main challenges of task scheduling are the following. First, task queues may
have an unbalanced number and duration of tasks. One solution is to use a form of task stealing
in order to load balance worker threads: when a task queue is empty, the worker thread can
search other task queues to steal tasks from. An alternative solution for scheduling parallel loops

5.2. NUMA-AWARENESS 71
is to distribute batches of loop iterations via shared counters, a method which dispenses with
work queues [57]. Second, tasks may block or sleep in due to synchronization. The OS may
leave a hardware thread unused if it does not have knowledge of other worker threads that it
can schedule while a task blocks. The solution is to detect when a worker thread may become
inactive and schedule another active worker thread in order to avoid underutilization [122].
Third, task granularity can become a challenge for task scheduling. Task granularity can be
correlated with the level of saturation of the machine in order to avoid too fine-grained tasks
that can present significant scheduling overhead, but also avoid too coarse-grained tasks that
can decrease parallelism [122].

5.2.3 COORDINATEDDATAPLACEMENTANDTASK SCHEDULING
In this section, we continue with describing the design of NUMA-aware execution engines.
NUMA-awareness spans two dimensions that need to be coordinated: (a) scheduling tasks onto
sockets and (b) placing data across sockets. The design of the task scheduler should allow for a
task to have an affinity for a socket. The task scheduler, for example, can employ a pool of worker
threads and a task queue per socket. Inter-socket task stealing may be employed. With respect
to data placement, DBMS need to know where its data structures are placed and take their
location into account when scheduling tasks onto sockets. By coordinating scheduling and data
placement, DBMS can prefer local memory accesses, avoid unnecessary bandwidth bottlenecks,
and become NUMA-aware [118].

With respect to data placement, NUMA-aware DBMS fall into two broad categories:
(a) static solutions and (b) adaptive solutions. Static solutions do not attempt to modify data
placement in order to optimize the performance of the running workload. They are suitable for
workloads that are known in advance, but cannot necessarily handle efficiently ad-hoc work-
loads. Adaptive solutions are best suited for ad-hoc workloads that the system needs to execute
in a NUMA-aware fashion, but may incur an overhead in analyzing the workload at hand and
may need fine-tuning to adapt to fast-changing workloads [118].

A lot of DBMS that do not mention advanced NUMA optimizations, and indirectly rely
on the first-touch policy for data placement, fall in this category [118]. A further example is
HyPer [91], which chunks and distributes “morsels” of data across the sockets. The basic archi-
tecture of HyPer is shown in Figure 5.12, with an example of a server with two sockets (red and
blue) and a query that joins tables R, S, and T with hash-joins. For the query execution, HyPer
first creates the hash tables for tables S and T. Then each worker thread takes a morsel from
the bigger relation R from its respective socket and passes it through the hash tables to evaluate
the join and outputs the joined tuples to a NUMA-aware local result buffer. The “Dispatcher”
component is actually HyPer’s task scheduler, with task stealing enabled.

In the realm of adaptive solutions for data placement, ERIS [83] is a NUMA-aware stor-
age manager that efficiently supports shared scans and shared index lookups. The design of
ERIS is shown in Figure 5.13. ERIS uses task scheduling so that each worker thread, called

72 5. SCALING-UPOLAPWORKLOADS
Autonomous Execution Unit (AEU), is assigned a specific partition of a data object to service.
The real power of ERIS comes from its dynamic load balancing. It dynamically detects changes
to the workload, and rebalances the partitions across worker threads in order to improve the
performance of the overall workload on the NUMA server.

In contrast to HyPer and ERIS, which both heavily partition data across sockets, a re-
search prototype on top of SAP HANA [124] proposes to avoid unnecessary partitioning due to
overhead in query processing. An adaptive data placement strategy is proposed that first prefers
to move data across sockets, and partitions data only when necessary in order to balance ac-
tive data and local accesses across sockets. An example is shown in Figure 5.14. The authors
further propose that inter-socket task stealing should also be adaptive: tasks with a high mem-
ory throughput should not be stolen across sockets, or else there is overhead due to saturated
interconnects and sockets.

Dispatcher

Z

a

…

…

A

16

…

…

B

8

…

…

C

v

…

…

B

8

33

10

5

23

C

v

x

y

z

u

Z

b

…

…

A

27

…

…

B

10

…

…

C

y

…

…

A

16

18

27

5

7

B

8

33

10

5

23

A

16

7

10

27

18

5

7

5

…

…

…

…

…

Z

a

c

i

b

e

j

d

f

…

…

…

…

…

Result

store

HT(T)
HT(S)

R
store

probe (8)

morsel

morsel

probe (16)

probe (27)

�
�

probe (10)

Figure 5.12: HyPer distributes morsels of data across sockets, and uses NUMA-aware task schedul-
ing. (Based on Figure 1 of Leis et al. [91].)

5.3. CONCLUSIONS 73

…
… …

NUMA-Op�mized High-Throughput Data Command Rou�ng

Monitoring

Local Memory Manager
Local Memory

Mul�processor 1

Par��on
Transfer Local Memory Manager

Local Memory
Mul�processor M

AEU
Core 1 Core N Core 1 Core N

AEU AEU AEU

Load

Balancer

Figure 5.13: The design of ERIS. (Based on Figure 3 of Kissinger et al. [83].)

5.3 CONCLUSIONS

To summarize this chapter, there are two basic dimensions that DBMS need to consider when
scaling-up OLAP workloads on modern multicore servers. First, DBMS need to exploit shar-
ing opportunities across concurrent queries, by employing reactive and proactive sharing tech-
niques, in order to avoid redundant work, reduce contention for resources, and improve overall
performance. Second, DBMS need to be NUMA-aware and consider the non-uniformity of
the underlying multisocket multicore server. DBMS need coordinated data placement and task

Ini�ally Finally

�
�

Socket 1

TBL1

TBL2

Socket 2

TBL3

Socket 3 Socket 4

Socket 1

TBL1

Socket 2

TBL3

(part 1)

Socket 3

TBL2

Socket 4

TBL3

(part 2)TBL4
(part 1)

TBL4
(part 2) TBL4

Time

Time

Time

Time

Time

Time

Time

Time

C
P

U
 L

o
a

d
C

P
U

 L
o

a
d

C
P

U
 L

o
a

d
C

P
U

 L
o

a
d

C
P

U
 L

o
a

d
C

P
U

 L
o

a
d

C
P

U
 L

o
a

d
C

P
U

 L
o

a
d

Figure 5.14: Adaptive data placement by first moving data and then partitioning data [124].

74 5. SCALING-UPOLAPWORKLOADS
scheduling in order to favor local memory accesses over remote memory accesses and avoid
unnecessary memory bandwidth bottlenecks.

PART III

Conclusions

77

C H A P T E R 6

Outlook
In this chapter, we outline a few of the most prominent future directions of databases on mod-
ern and novel hardware. These future directions may require a substantial redesign of database
systems in order to fully exploit the potential of novel hardware and answer the challenges posed
by emerging workloads.

One of the major opportunities for improving efficiency of data management systems
is utilizing specialized hardware inspired by the rise of dark silicon (see Section 6.1). Namely,
increasing power requirements of modern multicores make keeping all cores powered on difficult
and many researchers propose different types of accelerators that can be used instead of general
purpose cores.

Another trend includes changes in traditional memory and storage hierarchy and im-
proved processor capabilities that have potential to radically simplify the design of data manage-
ment systems. Non-volatile RAM, whose potential we discuss in Section 6.2, offers persistence
almost at the latency ofmainmemory thus eliminatingmajor source of latency in the critical path
of OLTP applications that require durability and alleviating the need to find other processing
to overlap the latency of making data durable. Similarly, hardware transactional memory (sur-
veyed briefly in Section 6.3) reduces the complexity of thread synchronization, especially for
short critical sections.

Finally, increasingly complex applications built on top of data management platforms re-
quire both efficient processing of mixed OLTP and OLAP workloads and improving the energy
efficiency of the database system (see Section 6.4).

6.1 DARK SILICONANDHARDWARE SPECIALIZATION

Looking ahead, a significant challenge is the rise of dark silicon [52, 53]. Even if twice the
transistors fit in a unit of area according to Moore’s law, the voltage required to power them
does not decrease proportionally. This trend is depicted in Figure 6.1. In the near future, parts of
the silicon will not be able to be powered. The unusable area of the chip is called “dark silicon,”
depicted with a black color in Figure 6.1.

The main idea of how dark silicon can be exploited is hardware specialization. Figure 6.1
depicts an example of specialized cores on the chip, visualized with different colors. The spe-
cialized cores can be dynamically cherry-picked based on the task at hand while the rest of the
silicon remains dark and not powered.

78 6. OUTLOOK

Year

S
ca

li
n

g
 F

a
ct

o
r

Transistor Scaling (Moore’s Law)

Supply Voltage (ITRS)

Figure 6.1: Trends of transistor scaling and supply voltage, based on Hardavellas et al. [52, 53] (left).
How to exploit dark silicon with hardware specialization (right).

This direction has already been explored in a variety of different ways. Kocberber et al. [85]
propose specialized cores for accelerated hash-joins, focusing on the hash index lookups. Wu
et al. [166] design a collection of heterogeneous ASICs, with an instruction set, focusing on
analytical operations. Their experimental results, however, show decreasing benefits with higher
data sizes. Mueller et al. [100] propose the use of FPGAs for data analytics and streaming.
Johnson et al. [65] set a vision of putting some database operations on FPGAs for transactions.
Finally, Putnam et al. [126] propose reconfigurable data centers using FPGAs, and showcase
how Bing’s search can be accelerated.

One of the more unexplored questions around hardware specialization is how to easily and
efficiently utilize the novel hardware? The whole software stack, including the OS and the appli-
cations, needs to be adapted in order to exploit hardware specialization. Compilers can be helpful
in generating specialized code dynamically for heterogeneous hardware environments [73, 84].

6.2 NON-VOLATILERAMANDDURABILITY
I/O is one of the main factors that limits throughput of OLTP systems regardless of their multi-
core scalability. In well-tuned systems with sufficiently large main memory, the only I/O in the
critical path occurs when writing logs. The emergence of non-volatile RAM (NVRAM) [110]

6.3. HARDWARETRANSACTIONALMEMORY 79
has inspired many researchers to reconsider the techniques for achieving durability, mainly
throughwork in two directions: (a) by optimizing the algorithms for write-ahead logging (WAL)
and (b) by doing away with WAL and instead designing durable data structures.

One approach for taking advantage of NVRAM is by re-architecting group commit pro-
tocol to use NVRAM as a staging buffer for a batch of transactions [110]. This technique offers
attractive improvements even with small amounts of NVRAM. A more elaborate passive group
commit approach takes this idea further by making log buffers durable, using global sequence
numbers and a distributed log design [162]. Finally, non-volatile logging techniques aim to
minimize the overhead of logging for each individual transaction [61].

On the side of durable data structures, proposals include a write atomic cache-aware B-
tree design [27] and a family of in-memory recoverable data structures [31]. While these data
structures show good promise, using their full potential requires rethinking other components
of the system. One such approach is suggested in conjunction with the write behind logging
protocol proposal [11].

6.3 HARDWARETRANSACTIONALMEMORY
Transactional memory was introduced byHerlihy andMoss over 20 years ago [60]. In their sem-
inal paper, they argue that lock-free data structures avoid common problems locking techniques
exhibit, such as priority inversion, convoying, and deadlocks, and that transactional memory
makes lock-free synchronization as efficient as the lock-based one. They define a transaction as
a sequence of instructions that is atomic and serializable, and argue that it can be implemented
as a straightforward extension of the cache coherence protocol. Interestingly, two early com-
mercial implementations use completely different implementations of hardware transactional
memory compared to the original proposal. Sun’s prototype Rock processor relies on specula-
tive execution to implement best-effort HTM [37], while IBM’s BlueGene/Q processor uses
multiversioned last-level cache with unmodified cores and L1 caches for the same purpose [161].

Intel Transactional Synchronization Extension (TSX) is the new instruction set that ap-
pears in Intel’s Haswell line of processors and enables transactional memory support in hardware.
It is closer in spirit to the original HTM proposal than the previous commercial implementa-
tions. TSX instructions are implemented as an extension of the cache-coherency protocol, so
they keep track of what memory addresses are accessed at a cache-line granularity. Current im-
plementation is limited to the L1 data caches that are used to store both read and write sets of
a transaction. The associativity of the cache (8 in current processors) as well as the size of the
cache limits the size of these sets. An eviction of a write address from the cache always causes an
abort. At the same time, a read address may be evicted from the cache before a transaction ends
without causing an abort, due to limited support in cache coherence protocols for the private
L2 caches.

TSX instructions can be used in two ways, through Hardware Lock Elision (HLE) and
Restricted Transactional Memory (RTM) modes. Hardware Lock Elision is a legacy compatible

80 6. OUTLOOK
API inspired by speculative lock elision (SLE) technique that improves performance of lock-
based programs when critical sections could have been executed without locks [128]. Restricted
transactional memory provides Haswell specific instructions XBEGIN, XEND, and XABORT
that allows explicit control over hardware transactions.

Hardware transactional memory (HTM) is a very promising approach to efficient syn-
chronization that has inspired a lot of recent research following Intel’s implementation in the
Haswell line of processors. Nevertheless, it is not a silver bullet, especially for scalability chal-
lenges in mature software systems.

For example, recent research has shown that HTM is attractive for low contention sce-
narios and can be combined with spinlocks to implement an efficient lock manager in a database
system [157]. It can also improve performance of operations on common tree index structures
[72], however using it for acceleration of many types of critical sections in a mature system
exposes severe limitations with respect to duration and size of critical sections and can even
decrease the performance of the system [25]. Hence, efficiently utilizing HTM requires a fun-
damental redesign of the OLTP system components.

The HyPer team has proposed a very low overhead concurrency control mechanism that
combines timestamp ordering with short hardware transactions [92]. Finally, a recent proposal
demonstrates that a design tuned for Intel’s HTM implementation can offer performance com-
parable to a state-of-the-art mainmemory transaction processing systemwith fine-grained locks
while having lower code complexity [163].

6.4 TASK SCHEDULINGFORMIXEDWORKLOADSAND
ENERGYEFFICIENCY

From the software side, two novel requirements that database designers are called to satisfy
are the efficient processing of mixed OLTP and OLAP workloads, and improving the overall
energy efficiency of the database. For both of these requirements, related work shows that task
scheduling (see Chapter 5) can be a useful and helpful technique in satisfying them.

With respect to mixed workloads, DBMS were, until recently, categorized into OLTP-
oriented solutions, which process transactions on fresh operational data, and OLAP-oriented
solutions which work on a replicated outdated version of the operational data to process heavy-
weight analytical workloads. Nowadays, this separation is not suited for realtime reporting. Or-
ganizations increasingly need analytics on fresh operational data to gain a competitive advantage
or obtain insight about fast-breaking situations [5, 106, 125]. Examples [125] can include on-
line games that make special offers based on non-trivial analysis [24], liquidity and risk analysis,
which benefit from fresh data while also requiring complex analytical queries [112], and fraud
detection analyzing continuously arriving transactional data [104]. For this reason, real-time
reporting has resulted in the development of DBMS that efficiently support mixed OLTP and
OLAP workloads on a common schema [112]. Examples include main-memory DBMS such
as SAP HANA [40] and HyPer [76]. It has been shown that there are three major factors affect-

6.4. TASK SCHEDULINGFORMIXEDWORKLOADSANDENERGYEFFICIENCY 81
ing the performance of mixed workloads while the number of concurrent clients is scaled [125]:
(a) data freshness; (b) transactional and analytical query flexibility; and (c) scheduling. Schedul-
ing has been shown to be of major significance for the performance of mixed workloads. Typi-
cally, DBMS handling mixed workloads, such as SAP HANA [40] and HyPer [76], suffer from
the “house effect”, whereby an increasing number of heavyweight analytical queries overshadows
the performance of concurrent lightweight transactions [125]. Task scheduling combined with
workload management features, such as task prioritization, has been proposed as a potential so-
lution to toggle the performance of mixed workload toward OLTP or OLAP as needed [125].
Another solution that has been recently proposed to support a high isolation of OLTP and
OLAP performance is the logical separation of analytical queries and transactional updates us-
ing a single snapshot replica along with batch scheduling of queries and updates [96].

With respect to energy efficiency, dynamic task scheduling has been proposed to improve
the overall energy efficiency of the workload, which encapsulates both performance and energy
consumption, by dynamically toggling hardware features [121]. Such features include the dy-
namic voltage and frequency scaling (DVFS) features for each processor, which can regulate
the operation frequency and thus energy consumption of processors, Turbo Boost, which can
be applied on a few cores to overclock them when possible, and the different C-states or sleep
modes, that provide different energy savings and speeds of sleeping and waking up [121]. A cal-
ibration phase is proposed to measure the performance and energy characteristics of operators
under different parameters, such as number of threads, scheduling strategies and data place-
ments. By using the resulting calibration curves, and measuring hardware counters at run-time,
DBMS can make decisions on the task scheduling and data placement for the query mix and
their respective operations in order to improve the general energy efficiency of the workload.

83

C H A P T E R 7

Summary
Ever-increasing amounts of data captured with rapid rise in a variety of applications analyzing
that data fuel the steady development of data management systems. Modern hardware offers in-
creasing core counts, faster memories, and network interfaces, however, the changes in hardware
architectures prevent software systems from automatically benefiting from hardware innovation.
In this book, we set out to survey the challenges posed by modern multicore processors to data
management software that prevent it from fully exploiting available processing power, both in
the vertical dimension (core features and cache hierarchy) and the horizontal dimension (hard-
ware parallelism and memory bandwidth).

In this book, we review several pieces of the literature that relate to the aforementioned
dimensions. The most essential concepts are summarized in Figure 7.1. The figure contains the
concepts of the hardware on the upper level, and the correlated software concepts on the bottom
level that bridge the gap between hardware and software.

Our key takeaway is that in order to bridge the gap between software and hardware,
DBMS needs to consider efficiency along the following three axes: exploiting hardware, work
scheduling, and achieving scalability.

Exploiting hardware. Extracting the best performance from the modern hardware requires
considering multiple facets of hardware in a holistic fashion. First, one should use all microar-
chitectural features, such as instruction level parallelism, SIMD, and multithreading, of each
core that is powered on. Ideally, all of these cores should be used in order to amortize the idle
power. Finally, one should efficiently access cache and memory hierarchy both on single socket
and multisocket systems. It is important to keep in mind that most of the underutilization of
cores comes from the fact that they stall because they are not provided as efficiently as possible
the necessary instructions and data.

Workscheduling. Scheduling is a significant factor affecting the performance of database work-
loads. DBMS need to look at operations at the right task granularity while scheduling them in
order to be able to make optimal decisions about memory management and resource utilization.
Moreover, instructions and data require locality at different levels in the memory hierarchy;
instructions need L1-I whereas data needs local RAM or LLC. Finally, it is important to en-
sure that memory bandwidth between processor and RAM as well as between processors is not
saturated unnecessarily.

84 7. SUMMARY

Figure 7.1: Summary of the hardware and software concepts we reviewed.

Achieving scalability. If DBMS are scaling-up efficiently on the current generation of hard-
ware, this does not necessarily guarantee that they will scale-up efficiently on the next generation
of hardware. Current performance characteristics do not forecast future performance behavior
as data sizes and processing capabilities scale. Data management systems need to ensure that all
their critical sections and communication points in the code avoid unbounded communication
and maximize locality whenever possible.

Recently, there has been a flurry of interesting research results aimed at designing data
management systems that fully exploit capabilities of modern hardware. Modern multicores
processors have opened many research directions, a selection of which we highlight in this book.
However, recent advances in storage and memory systems, as well as heterogeneous computing
architectures, partly inspired by dark silicon, in addition to increasingly varied data management
operations offer many more research opportunities.

85

Bibliography
[1] Intel Utilizing Software Prefetching.

https://software.intel.com/en-us/node/540518

[2] Intel Profile-Guided Optimizations Overview.
https://software.intel.com/en-us/node/522721

[3] Intel Thread Building Blocks—Documentation—User Guide—The Task Scheduler—
Task-based Programming, June 2016.
http://threadingbuildingblocks.org/documentation

[4] MemSQL Documentation v5.8 – Code Generation.
https://docs.memsql.com/v5.8/docs/code-generation

[5] SAP HANA Live for SAP Business Suite, April 2016. http://help.sap.com/hba

[6] The Java HotSpot Performance Engine Architecture.
http://www.oracle.com/technetwork/java/whitepaper-135217.html

[7] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic DBToaster: Higher-order Delta Pro-
cessing for Dynamic, Frequently Fresh Views. PVLDB, 5(10):968–979, 2012. DOI:
10.14778/2336664.2336670.

[8] A.Ailamaki, D. J. DeWitt,M.D.Hill, andD.A.Wood. DBMSs on amodern processor:
Where does time go? In VLDB, pages 266–277, 1999.

[9] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge joins in
main memory multi-core database systems. PVLDB, 5(10):1064–1075, 2012. DOI:
10.14778/2336664.2336678.

[10] M. Annavaram, J. M. Patel, and E. S. Davidson. Call graph prefetching for database
applications. ACM TOCS, 21(4):412–444, 2003. DOI: 10.1145/945506.945509.

[11] J. Arulraj, M. Perron, and A. Pavlo. Write-behind logging. PVLDB, 10(4):337–348,
2016. DOI: 10.14778/3025111.3025116.

[12] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez. The DataPath
system: A data-centric analytic processing engine for large data warehouses. In SIGMOD,
pages 519–530, 2010. DOI: 10.1145/1807167.1807224.

https://software.intel.com/en-us/node/540518
https://software.intel.com/en-us/node/522721
http://threadingbuildingblocks.org/documentation
https://docs.memsql.com/v5.8/docs/code-generation
http://help.sap.com/hba
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://dx.doi.org/10.14778/2336664.2336670
http://dx.doi.org/10.14778/2336664.2336670
http://dx.doi.org/10.14778/2336664.2336678
http://dx.doi.org/10.14778/2336664.2336678
http://dx.doi.org/10.1145/945506.945509
http://dx.doi.org/10.14778/3025111.3025116
http://dx.doi.org/10.1145/1807167.1807224

86 BIBLIOGRAPHY
[13] I. Atta, P. Tözün, A. Ailamaki, and A. Moshovos. SLICC: Self-assembly of instruc-

tion cache collectives for OLTP workloads. In MICRO, pages 188–198, 2012. DOI:
10.1109/micro.2012.26.

[14] I. Atta, P. Tözün, X. Tong, A. Ailamaki, and A. Moshovos. STREX: Boosting instruc-
tion cache reuse in OLTP workloads through stratified transaction execution. In ISCA,
pages 273–284, 2013. DOI: 10.1145/2508148.2485946.

[15] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu. Multi-core, main-
memory joins: Sort vs. hash revisited. PVLDB, 7(1), pages 85–96, 2014. DOI:
10.14778/2732219.2732227.

[16] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system characterization of
commercial workloads. In ISCA, pages 3–14, 1998. DOI: 10.1109/isca.1998.694758.

[17] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A case for NUMA-aware
contention management on multicore systems. In USENIX ATC, page 1, 2011. DOI:
10.1145/1854273.1854350.

[18] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali. A case for NUMA-aware
contention management on multicore systems. In PACT, pages 557–558, 2010. DOI:
10.1145/1854273.1854350.

[19] S. Breß, H. Funke, A. Fedorova, and J. Teubner. Robust Query Processing in
Co-Processor-accelerated Databases. In SIGMOD, pages 1891–1906, 2016. DOI:
10.1145/2882903.2882936.

[20] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. In PPoPP, pages 207–216,
1995. DOI: 10.1145/209936.209958.

[21] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox. NUMA
policies and their relation to memory architecture. In ASPLOS, pages 212–221, 1991.
DOI: 10.1145/106972.106994.

[22] G. Candea, N. Polyzotis, and R. Vingralek. A scalable, predictable join oper-
ator for highly concurrent data warehouses. PVLDB, 2(1):277–288, 2009. DOI:
10.14778/1687627.1687659.

[23] G. Candea, N. Polyzotis, and R. Vingralek. Predictable performance and high query
concurrency for data analytics. The VLDB Journal, 20(2):227–248, April 2011. DOI:
10.1007/s00778-011-0221-2.

http://dx.doi.org/10.1109/micro.2012.26
http://dx.doi.org/10.1109/micro.2012.26
http://dx.doi.org/10.1145/2508148.2485946
http://dx.doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.1109/isca.1998.694758
http://dx.doi.org/10.1145/1854273.1854350
http://dx.doi.org/10.1145/1854273.1854350
http://dx.doi.org/10.1145/1854273.1854350
http://dx.doi.org/10.1145/1854273.1854350
http://dx.doi.org/10.1145/2882903.2882936
http://dx.doi.org/10.1145/2882903.2882936
http://dx.doi.org/10.1145/209936.209958
http://dx.doi.org/10.1145/106972.106994
http://dx.doi.org/10.14778/1687627.1687659
http://dx.doi.org/10.14778/1687627.1687659
http://dx.doi.org/10.1007/s00778-011-0221-2
http://dx.doi.org/10.1007/s00778-011-0221-2

BIBLIOGRAPHY 87
[24] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke, and W. White. Fast

checkpoint recovery algorithms for frequently consistent applications. In SIGMOD,
pages 265–276, 2011. DOI: 10.1145/1989323.1989352.

[25] D. Cervini, D. Porobic, P. Tözün, and A. Ailamaki. Applying HTM to an OLTP system:
No free lunch. In DaMon, page 7, 2015. DOI: 10.1145/2771937.2771946.

[26] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation spreading: Employing hard-
ware migration to specialize CMP cores on-the-fly. In ASPLOS, pages 283–292, 2006.
DOI: 10.1145/1168857.1168893.

[27] A. Chatzistergiou, M. Cintra, and S. D. Viglas. Rewind: Recovery write-ahead sys-
tem for in-memory non-volatile data-structures. PVLDB, 8(5):497–508, 2015. DOI:
10.14778/2735479.2735483.

[28] G. Chatzopoulos, R. Guerraoui, T. Harris, and V. Trigonakis. Abstracting multi-core
topologies with MCTOP. In EuroSys, 2017. DOI: 10.1145/3064176.3064194.

[29] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving Index Performance through
Prefetching. In SIGMOD, pages 235–246, 2001. DOI: 10.1145/376284.375688.

[30] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal prefetching b+-trees:
Optimizing both cache and disk performance. In SIGMOD, pages 157–168, 2002. DOI:
10.1145/564691.564710.

[31] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory. PVLDB, 8(7):786–
797, 2015. DOI: 10.14778/2752939.2752947.

[32] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi,
S. Kumar, and P. Dubey. Efficient implementation of sorting on multi-core simd cpu
architecture. PVLDB, 1(2):1313–1324, 2008. DOI: 10.14778/1454159.1454171.

[33] ClouidSuite: A Benchmark Suite for Cloud Services. http://cloudsuite.ch/

[34] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quéma, and
M. Roth. Traffic management: A holistic approach to memory placement on NUMA
systems. In ASPLOS, pages 381–394, 2013. DOI: 10.1145/2499368.2451157.

[35] J. Dees and P. Sanders. Efficient many-core query execution in main memory column-
stores. In ICDE, pages 350–361, 2013. DOI: 10.1109/icde.2013.6544838.

[36] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma,
and M. Zwilling. Hekaton: SQL server’s memory-optimized OLTP engine. In SIG-
MOD, pages 1243–1254, 2013. DOI: 10.1145/2463676.2463710.

http://dx.doi.org/10.1145/1989323.1989352
http://dx.doi.org/10.1145/2771937.2771946
http://dx.doi.org/10.1145/1168857.1168893
http://dx.doi.org/10.14778/2735479.2735483
http://dx.doi.org/10.14778/2735479.2735483
http://dx.doi.org/10.1145/3064176.3064194
http://dx.doi.org/10.1145/376284.375688
http://dx.doi.org/10.1145/564691.564710
http://dx.doi.org/10.1145/564691.564710
http://dx.doi.org/10.14778/2752939.2752947
http://dx.doi.org/10.14778/1454159.1454171
http://cloudsuite.ch/
http://dx.doi.org/10.1145/2499368.2451157
http://dx.doi.org/10.1109/icde.2013.6544838
http://dx.doi.org/10.1145/2463676.2463710

88 BIBLIOGRAPHY
[37] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a Commercial

Hardware Transactional Memory Implementation. In ASPLOS, pages 157–168, 2009.
DOI: 10.1145/1508244.1508263

[38] J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion concurrency control.
PVLDB, 8(11):1190–1201, 2015. DOI: 10.14778/2809974.2809981.

[39] B. Falsafi and D. A. Wood. Reactive NUMA: A design for unifying s-COMA and
CC-NUMA. In ISCA, pages 229–240, 1997. DOI: 10.1145/384286.264205.

[40] F. Färber, N. May, W. Lehner, P. Gro?e, I. Muller, H. Rauhe, and J. Dees. The SAP
HANA database—an architecture overview. IEEE DEBull, 35(1):28–33, 2012.

[41] A. Fekete, D. Liarokapis, E.O’Neil, P.O’Neil, andD. Shasha. Making snapshot isolation
serializable. ACMTransactions on Database Systems (TODS), 30(2):492–528, 2005. DOI:
10.1145/1071610.1071615.

[42] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the clouds: A study of emerg-
ing scale-out workloads on modern hardware. In ASPLOS, pages 37–48, 2012. DOI:
10.1145/2150976.2150982.

[43] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive instruction fetch. In MICRO,
pages 152–162, 2011. DOI: 10.1145/2155620.2155638.

[44] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Tempo-
ral instruction fetch streaming. In MICRO, pages 1–10, 2008. DOI: 10.1109/mi-
cro.2008.4771774.

[45] S. Finkelstein. Common Expression Analysis in Database Applications. In SIGMOD,
pages 235–245, 1982. DOI: 10.1145/582353.582400.

[46] C. Freedman, E. Ismert, and P. Larson. Compilation in the Microsoft SQL Server
Hekaton Engine. IEEE DEBull, 37(1):22–30, 2014.

[47] K. Gao, S. Harizopoulos, I. Pandis, V. Shkapenyuk, and A. Ailamaki. Simultaneous
pipelining in qpipe: Exploiting work sharing opportunities across queries. In ICDE,
2006. DOI: 10.1109/icde.2006.138.

[48] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: Killing one thousand queries
with one stone. PVLDB, 5(6):526–537, 2012. DOI: 10.14778/2168651.2168654.

[49] G. Giannikis, D. Makreshanski, G. Alonso, and D. Kossmann. Shared workload opti-
mization. PVLDB, 7(6):429–440, 2014. DOI: 10.14778/2732279.2732280.

https://doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.14778/2809974.2809981
http://dx.doi.org/10.1145/384286.264205
http://dx.doi.org/10.1145/1071610.1071615
http://dx.doi.org/10.1145/1071610.1071615
http://dx.doi.org/10.1145/2150976.2150982
http://dx.doi.org/10.1145/2150976.2150982
http://dx.doi.org/10.1145/2155620.2155638
http://dx.doi.org/10.1109/micro.2008.4771774
http://dx.doi.org/10.1109/micro.2008.4771774
http://dx.doi.org/10.1145/582353.582400
http://dx.doi.org/10.1109/icde.2006.138
http://dx.doi.org/10.14778/2168651.2168654
http://dx.doi.org/10.14778/2732279.2732280

BIBLIOGRAPHY 89
[50] J. Giceva, G. Alonso, T. Roscoe, and T. Harris. Deployment of query plans on multicores.

PVLDB, 8(3):233–244, November 2014. DOI: 10.14778/2735508.2735513.

[51] G. Graefe, M. Lillibridge, H. Kuno, J. Tucek, and A. Veitch. Controlled lock violation.
In SIGMOD, pages 85–96, 2013. DOI: 10.1145/2463676.2465325.

[52] N. Hardavellas. The rise and fall of dark silicon. USENIX, 2012.

[53] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in servers.
IEEEMicro, 31(4):6–15, 2011. DOI: 10.1109/mm.2011.77.

[54] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and B. Falsafi.
Database servers on chip multiprocessors: Limitations and opportunities. In CIDR,
pages 79–87, 2007.

[55] S.Harizopoulos andA. Ailamaki. STEPS towards cache-resident transaction processing.
In VLDB, pages 660–671, 2004. DOI: 10.1016/b978-012088469-8.50059-0.

[56] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A simultaneously
pipelined relational query engine. In SIGMOD, pages 383–394, 2005. DOI:
10.1145/1066157.1066201.

[57] T. Harris and S. Kaestle. Callisto-rts: Fine-grain parallel loops. In USENIX ATC,
pages 45–56, 2015.

[58] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a database system.
Foundations and Trends (R) in Databases, 1(2), 2007. DOI: 10.1561/1900000002.

[59] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, 2002.

[60] M. Herlihy and J. Moss. Transactional Memory: Architectural Support for Lock-free
Data Structures. In ISCA, pages 289–300, 1993. 10.1145/173682.165164

[61] J. Huang, K. Schwan, and M. K. Qureshi. Nvram-aware logging in transaction systems.
PVLDB, 8(4):389–400, 2014. DOI: 10.14778/2735496.2735502.

[62] J. Hurwitz, A. Nugent, F. Halper, and M. Kaufman. Big Data For Dummies, 1st ed. For
Dummies, 2013.

[63] IBM, P. Zikopoulos, and C. Eaton. Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data, 1st ed. McGraw-Hill Osborne Media, 2011.

[64] R. Johnson, N. Hardavellas, I. Pandis, N. Mancheril, S. Harizopoulos, K. Sabirli, A. Ail-
amaki, and B. Falsafi. To share or not to share? In VLDB, pages 351–362, 2007.

http://dx.doi.org/10.14778/2735508.2735513
http://dx.doi.org/10.1145/2463676.2465325
http://dx.doi.org/10.1109/mm.2011.77
http://dx.doi.org/10.1016/b978-012088469-8.50059-0
http://dx.doi.org/10.1145/1066157.1066201
http://dx.doi.org/10.1145/1066157.1066201
http://dx.doi.org/10.1561/1900000002
https://doi.org/10.1145/173682.165164
http://dx.doi.org/10.14778/2735496.2735502

90 BIBLIOGRAPHY
[65] R. Johnson and I. Pandis. The bionic DBMS is coming, but what will it look like? In

CIDR, 2013.

[66] R. Johnson, I. Pandis, and A. Ailamaki. Improving OLTP scalability using speculative
lock inheritance. PVLDB, 2(1):479–489, 2009. DOI: 10.14778/1687627.1687682.

[67] R. Johnson, I. Pandis, and A. Ailamaki. Eliminating unscalable communication in trans-
action processing. VLDBJ, 23(1):1–23, 2014. DOI: 10.1007/s00778-013-0312-3.

[68] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-MT: A
scalable storage manager for the multicore era. In EDBT, pages 24–35, 2009. DOI:
10.1145/1516360.1516365.

[69] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki. Aether: A scalable
approach to logging. PVLDB, 3:681–692, 2010. DOI: 10.14778/1920841.1920928.

[70] E. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency control for
partitioned main memory databases. In SIGMOD, pages 603–614, 2010. DOI:
10.1145/1807167.1807233.

[71] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom. A scalable lock manager for
multicores. In SIGMOD, pages 73–84, 2013. DOI: 10.1145/2463676.2465271.

[72] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel, and W. Lehner.
Improving in-memory database index performance with intel transactional synchroniza-
tion extensions. In HPCA, pages 476–487, 2014. DOI: 10.1109/hpca.2014.6835957.

[73] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive query process-
ing on raw data. PVLDB, 7(12):1119–1130, 2014. DOI: 10.14778/2732977.2732986.

[74] C. Kaynak, B. Grot, and B. Falsafi. SHIFT: Shared history instruction fetch for lean-core
server processors. In MICRO, pages 272–283, 2013. DOI: 10.1145/2540708.2540732.

[75] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker. Performance
characterization of a quad pentium pro SMP using OLTP workloads. In ISCA, pages 15–
26, 1998. DOI: 10.1109/isca.1998.694759.

[76] A. Kemper andT.Neumann. HyPer: A hybridOLTP andOLAPmainmemory database
system based on virtual memory snapshots. In ICDE, pages 195–206, 2011. DOI:
10.1109/icde.2011.5767867.

[77] T. Kiefer, B. Schlegel, and W. Lehner. Experimental evaluation of NUMA effects on
database management systems. In BTW, pages 185-204, 2013.

http://dx.doi.org/10.14778/1687627.1687682
http://dx.doi.org/10.1007/s00778-013-0312-3
http://dx.doi.org/10.1145/1516360.1516365
http://dx.doi.org/10.1145/1516360.1516365
http://dx.doi.org/10.14778/1920841.1920928
http://dx.doi.org/10.1145/1807167.1807233
http://dx.doi.org/10.1145/1807167.1807233
http://dx.doi.org/10.1145/2463676.2465271
http://dx.doi.org/10.1109/hpca.2014.6835957
http://dx.doi.org/10.14778/2732977.2732986
http://dx.doi.org/10.1145/2540708.2540732
http://dx.doi.org/10.1109/isca.1998.694759
http://dx.doi.org/10.1109/icde.2011.5767867
http://dx.doi.org/10.1109/icde.2011.5767867

BIBLIOGRAPHY 91
[78] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,

A. Di Blas, and P. Dubey. Sort vs. hash revisited: Fast join implementation on modern
multi-core CPUs. VLDBJ, 2(2):1378–1389, 2009. DOI: 10.14778/1687553.1687564.

[79] K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia: Fast memory-optimized database
system for heterogeneous workloads. In SIGMOD, pages 1675–1687, 2016. DOI:
10.1145/2882903.2882905.

[80] R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling, 2nd ed. John Wiley & Sons, Inc., 2002.

[81] H. Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In SIGMOD,
pages 691–706, 2015. DOI: 10.1145/2723372.2746480.

[82] H. Kimura, G. Graefe, and H. Kuno. Efficient locking techniques for databases on
modern hardware. ADMS, 2012.

[83] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich, D. Molka, and W. Lehner. ERIS: A
NUMA-aware in-memory storage engine for analytical workload. In International Work-
shop on Accelerating Data Management Systems Using Modern Processor and Storage Archi-
tectures (ADMS), pages 74–85, 2014.

[84] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query engines in a
high-level language. PVLDB, 7(10):853–864, 2014. DOI: 10.14778/2732951.2732959.

[85] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan. Meet the
walkers: Accelerating index traversals for in-memory databases. In MICRO, pages 468–
479, 2013. DOI: 10.1145/2540708.2540748.

[86] K. Krikellas, S. D. Viglas, and M. Cintra. Generating code for holistic query evaluation.
In ICDE, pages 613–624, 2010. DOI: 10.1109/ICDE.2010.5447892.

[87] C. Lameter. NUMA (Non-Uniform Memory Access): An Overview. ACM Queue,
11(7):40, 2013. 2013. DOI: 10.1145/2508834.2513149.

[88] R. P. LaRowe, Jr., M. A. Holliday, and C. S. Ellis. An analysis of dynamic page
placement on a NUMA multiprocessor. In SIGMETRICS, pages 23–34, 1992. DOI:
10.1145/133057.133082.

[89] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling. High-
performance concurrency control mechanisms for main-memory databases. PVLDB,
5(4), pages 298–309, 2011. DOI: 10.14778/2095686.2095689.

http://dx.doi.org/10.14778/1687553.1687564
http://dx.doi.org/10.1145/2882903.2882905
http://dx.doi.org/10.1145/2882903.2882905
http://dx.doi.org/10.1145/2723372.2746480
http://dx.doi.org/10.14778/2732951.2732959
http://dx.doi.org/10.1145/2540708.2540748
http://dx.doi.org/10.1109/ICDE.2010.5447892
http://dx.doi.org/10.1145/2508834.2513149
http://dx.doi.org/10.1145/133057.133082
http://dx.doi.org/10.1145/133057.133082
http://dx.doi.org/10.14778/2095686.2095689

92 BIBLIOGRAPHY
[90] J. Lee, Y. S. Kwon, F. Färber, M. Muehle, C. Lee, C. Bensberg, J. Y. Lee, A. H.

Lee, and W. Lehner. Sap HANA distributed in-memory database system: Transac-
tion, session, and metadata management. In ICDE, pages 1165–1173, 2013. DOI:
10.1109/icde.2013.6544906.

[91] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism: A NUMA-
aware query evaluation framework for the many-core age. In SIGMOD, pages 743–754,
2014. DOI: 10.1145/2588555.2610507.

[92] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware transactional
memory in main-memory databases. In ICDE, pages 580–591, 2014. DOI:
10.1109/icde.2014.6816683.

[93] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-tree: A b-tree for new hardware
platforms. In ICDE, pages 302–313, 2013. DOI: 10.1109/icde.2013.6544834.

[94] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman. NUMA-aware algorithms: The
case of data shuffling. In CIDR, 2013.

[95] D. Makreshanski, G. Giannikis, G. Alonso, and D. Kossmann. Mqjoin: Efficient
shared execution of main-memory joins. PVLDB, 9(6):480–491, January 2016. DOI:
10.14778/2904121.2904124.

[96] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso. BatchDB: Efficient Isolated
Execution of Hybrid OLTP+OLAP Workloads for Interactive Applications. In SIG-
MOD, pages 37–50, 2017. DOI: 10.1145/3035918.3035959.

[97] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main memory
OLTP recovery. In ICDE, pages 604–615, 2014. DOI: 10.1109/icde.2014.6816685.

[98] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value stor-
age. In EuroSys, pages 183–196, 2012. DOI: 10.1145/2168836.2168855.

[99] G. Moore. Cramming more components onto integrated circuits. Electronics, 38(6),
1965. DOI: 10.1109/jproc.1998.658762.

[100] R. Mueller, J. Teubner, and G. Alonso. Data processing on FPGAs. PVLDB, 2(1):910–
921, 2009. DOI: 10.14778/1687627.1687730.

[101] H. Mühe, A. Kemper, and T. Neumann. Executing long-running transactions in
synchronization-free main memory database systems. In CIDR, 2013.

[102] T. Neumann and V. Leis. Compiling database queries into machine code. IEEEDEBull,
37(1):3–11, 2014.

http://dx.doi.org/10.1109/icde.2013.6544906
http://dx.doi.org/10.1109/icde.2013.6544906
http://dx.doi.org/10.1145/2588555.2610507
http://dx.doi.org/10.1109/icde.2014.6816683
http://dx.doi.org/10.1109/icde.2014.6816683
http://dx.doi.org/10.1109/icde.2013.6544834
http://dx.doi.org/10.14778/2904121.2904124
http://dx.doi.org/10.14778/2904121.2904124
http://dx.doi.org/10.1145/3035918.3035959
http://dx.doi.org/10.1109/icde.2014.6816685
http://dx.doi.org/10.1145/2168836.2168855
http://dx.doi.org/10.1109/jproc.1998.658762
http://dx.doi.org/10.14778/1687627.1687730

BIBLIOGRAPHY 93
[103] T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable multi-version concurrency

control for main-memory database systems. In SIGMOD, pages 677–689, 2015. DOI:
10.1145/2723372.2749436.

[104] T. M. Nguyen, J. Schiefer, and A. M. Tjoa. Sense and response service architec-
ture (SARESA): An approach towards a real-time business intelligence solution and
its use for a fraud detection application. In DOLAP, pages 77–86, 2005. DOI:
10.1145/1097002.1097015.

[105] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and J. F. Prins. OpenMP
task scheduling strategies for multicore NUMA systems. IJHPCA, 26(2):110–124, May
2012. DOI: 10.1177/1094342011434065.

[106] C. Olofson and H. Morris. Blending transactions and analytics in a single in-memory
platform: Key to the real-time enterprise. Technical report, International Data Corpo-
ration (IDC), February 2013. IDC 239327.

[107] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
case for a single-chip multiprocessor. In ASPLOS, pages 2–11, 1996. DOI:
10.1145/237090.237140.

[108] , I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-Oriented Transaction
Execution, PVLDB, 3(1):928–939, 2010. DOI: 10.14778/1920841.1920959.

[109] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. PLP: Page latch-free shared-
everything OLTP. PVLDB, 4(10):610–621, 2011. DOI: 10.14778/2021017.2021019.

[110] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage management in the nvram
era. PVLDB, 7(2):121-132, 2013. DOI: 10.14778/2732228.2732231.

[111] H. Pirk, E. Petraki, S. Idreos, S. Manegold, and M. Kersten. Database crack-
ing: Fancy scan, not poor man’s sort! DaMoN, pages 4:1–4:8, 2014. DOI:
10.1145/2619228.2619232.

[112] H. Plattner. A common database approach for OLTP and OLAP using an in-memory
column database. In SIGMOD, pages 1–2, 2009. DOI: 10.1145/1559845.1559846.

[113] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD vector-
ization for in-memory databases. In SIGMOD, pages 1493–1508, 2015. DOI:
10.1145/2723372.2747645.

[114] O. Polychroniou and K. A. Ross. A comprehensive study of main-memory partitioning
and its application to large-scale comparison- and radix-sort. In SIGMOD, pages 755–
766, 2014. DOI: 10.1145/2588555.2610522.

http://dx.doi.org/10.1145/2723372.2749436
http://dx.doi.org/10.1145/2723372.2749436
http://dx.doi.org/10.1145/1097002.1097015
http://dx.doi.org/10.1145/1097002.1097015
http://dx.doi.org/10.1177/1094342011434065
http://dx.doi.org/10.1145/237090.237140
http://dx.doi.org/10.1145/237090.237140
http://dx.doi.org/10.14778/1920841.1920959
http://dx.doi.org/10.14778/2021017.2021019
http://dx.doi.org/10.14778/2732228.2732231
http://dx.doi.org/10.1145/2619228.2619232
http://dx.doi.org/10.1145/2619228.2619232
http://dx.doi.org/10.1145/1559845.1559846
http://dx.doi.org/10.1145/2723372.2747645
http://dx.doi.org/10.1145/2723372.2747645
http://dx.doi.org/10.1145/2588555.2610522

94 BIBLIOGRAPHY
[115] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki. ATraPos: Adaptive trans-

action processing on hardware islands. In ICDE, pages 688–699, 2014. DOI:
10.1109/icde.2014.6816692.

[116] D. Porobic, I. Pandis,M. Branco, P. Tözün, andA. Ailamaki. OLTP on hardware islands.
PVLDB, 5(11):1447–1458, 2012. DOI: 10.14778/2350229.2350260.

[117] D. Porobic, P. Tözün, R. Appuswamy, and A. Ailamaki. More than a network: Dis-
tributed OLTP on clusters of hardware islands. In DaMon, page 6, 2016. DOI:
10.1145/2933349.2933355.

[118] I. Psaroudakis. Scaling up concurrent analytical workloads on multi-core servers. Ph.D.
thesis, EPFL IC, 2016.

[119] I. Psaroudakis,M. Athanassoulis, andA. Ailamaki. Sharing data and work across concur-
rent analytical queries. PVLDB, 6(9):637–648, 2013. DOI: 10.14778/2536360.2536364.

[120] I. Psaroudakis, M. Athanassoulis, M. Olma, and A. Ailamaki. Reactive and proactive
sharing across concurrent analytical queries. In SIGMOD, pages 889–892, 2014. DOI:
10.1145/2588555.2594514.

[121] I. Psaroudakis, T. Kissinger, D. Porobic, T. Ilsche, E. Liarou, P. Tözün, A. Ailamaki, and
W. Lehner. Dynamic fine-grained scheduling for energy-efficient main-memory queries.
In DaMoN, pages 1–7, 2014. DOI: 10.1145/2619228.2619229.

[122] I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki. Task scheduling for highly con-
current analytical and transactional main-memory workloads. In ADMS, pages 36–45,
2013.

[123] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and A. Ailamaki. Scaling up concur-
rent main-memory column-store scans: Towards adaptive NUMA-aware data and task
placement. PVLDB, 8(12):1442–1453, 2015. DOI: 10.14778/2824032.2824043.

[124] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and A. Ailamaki. Adaptive NUMA-
aware data placement and task scheduling for analytical workloads in main-memory
column-stores. PVLDB, 10(2):37–48, 2016. DOI: 10.14778/3015274.3015275.

[125] I. Psaroudakis, F. Wolf, N. May, T. Neumann, A. Böhm, A. Ailamaki, and K.-U. Sattler.
Scaling up mixed workloads: A battle of data freshness, flexibility, and scheduling. In
TPCTC, pages 97–112. DOI: 10.1007/978-3-319-15350-6.

[126] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

http://dx.doi.org/10.1109/icde.2014.6816692
http://dx.doi.org/10.1109/icde.2014.6816692
http://dx.doi.org/10.14778/2350229.2350260
http://dx.doi.org/10.1145/2933349.2933355
http://dx.doi.org/10.1145/2933349.2933355
http://dx.doi.org/10.14778/2536360.2536364
http://dx.doi.org/10.1145/2588555.2594514
http://dx.doi.org/10.1145/2588555.2594514
http://dx.doi.org/10.1145/2619228.2619229
http://dx.doi.org/10.14778/2824032.2824043
http://dx.doi.org/10.14778/3015274.3015275
http://dx.doi.org/10.1007/978-3-319-15350-6

BIBLIOGRAPHY 95
P. Y. Xiao, and D. Burger. A reconfigurable fabric for accelerating large-scale datacenter
services. In ISCA, pages 13–24, 2014. DOI: 10.1109/isca.2014.6853195.

[127] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman. Main-memory scan sharing
for multi-core CPUs. PVLDB, 1(1):610-621, 2008. DOI: 10.14778/1453856.1453924.

[128] R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling Highly Concurrent
Multithreaded Execution. MICRO, pages 294–305, 2001.

[129] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, Inc.,
New York, NY, 2003.

[130] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann, I. Narang, and
R. Sidle. Constant-time query processing. In ICDE, pages 60–69, 2008. DOI:
10.1109/icde.2008.4497414.

[131] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. Larriba-Pey, P. G. Lowney, and
M. Valero. Code layout optimizations for transaction processing workloads. In ISCA,
pages 155–164, 2001. DOI: 10.1145/379240.379260.

[132] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Performance of
database workloads on shared-memory systems with out-of-order processors. In AS-
PLOS, pages 307–318, 1998. DOI: 10.1145/384265.291067.

[133] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the advantages and dis-
advantages of deterministic database systems. PVLDB, 7(10):821-832, 2014. DOI:
10.14778/2732951.2732955.

[134] K. A. Ross. Selection conditions in main memory. ACM TODS, 29(1):132–161, 2004.
DOI: 10.1145/974750.974755.

[135] N. Roussopoulos. View indexing in relational databases. ACM TODS, 7(2):258–290,
1982. DOI: 10.1145/319702.319729.

[136] G. M. Sacco and M. Schkolnick. Buffer management in relational database systems.
ACM TODS, 11(4):473–498, 1986. DOI: 10.1145/7239.7336.

[137] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey. Fast
sort on CPUs and GPUs: A case for bandwidth oblivious SIMD sort. In SIGMOD,
pages 351–362, 2010. DOI: 10.1145/1807167.1807207.

[138] T. K. Sellis. Multiple-query optimization. ACM TODS, 13(1):23–52, 1988. DOI:
10.1145/42201.42203.

http://dx.doi.org/10.1109/isca.2014.6853195
http://dx.doi.org/10.14778/1453856.1453924
http://dx.doi.org/10.1109/icde.2008.4497414
http://dx.doi.org/10.1109/icde.2008.4497414
http://dx.doi.org/10.1145/379240.379260
http://dx.doi.org/10.1145/384265.291067
http://dx.doi.org/10.14778/2732951.2732955
http://dx.doi.org/10.14778/2732951.2732955
http://dx.doi.org/10.1145/974750.974755
http://dx.doi.org/10.1145/319702.319729
http://dx.doi.org/10.1145/7239.7336
http://dx.doi.org/10.1145/1807167.1807207
http://dx.doi.org/10.1145/42201.42203
http://dx.doi.org/10.1145/42201.42203

96 BIBLIOGRAPHY
[139] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey. PALM: Parallel architecture-

friendly latch-free modifications to b+trees on many-core processors. PVLDB,
4(11):795–806, 2011.

[140] J. Shim, P. Scheuermann, and R. Vingralek. Dynamic caching of query results for deci-
sion support systems. In SSDBM, 1999. DOI: 10.1109/ssdm.1999.787641.

[141] U. Sirin, P. Tözün, D. Porobic, and A. Ailamaki. Micro-architectural analysis of in-
memory OLTP. In SIGMOD, pages 387–402, 2016. DOI: 10.1145/2882903.2882916.

[142] E. Sitaridi, O. Polychroniou, andK. A. Ross. Simd-accelerated regular expressionmatch-
ing. In DaMoN, 2016. DOI: 10.1145/2933349.2933357.

[143] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-temporal memory
streaming. In ISCA, pages 69–80, 2009. DOI: 10.1145/1555754.1555766.

[144] P. Stenström, T. Joe, and A. Gupta. Comparative performance evaluation of cache-
coherent NUMA and COMA architectures. In ISCA, pages 80–91, 1992. DOI:
10.1109/isca.1992.753306.

[145] R. Stets, K. Gharachorloo, and L. A. Barroso. A detailed comparison of two transaction
processing workloads. In WWC, pages 37–48, 2002. DOI: 10.1109/wwc.2002.1226492.

[146] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland.
The end of an architectural era: (It’s time for a complete rewrite). In VLDB, pages 1150–
1160, 2007.

[147] M. Stonebraker and A. Weisberg. The VoltDB main memory DBMS. IEEE DEBull,
36(2):21–27, 2013.

[148] A. Thomson and D. J. Abadi. The case for determinism in database systems. PVLDB,
3(1-2):70-80 , 2010. DOI: 10.14778/1920841.1920855.

[149] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: Fast
distributed transactions for partitioned database systems. In SIGMOD, pages 1–12, 2012.
DOI: 10.1145/2213836.2213838.

[150] P. Tözün, I. Atta, A. Ailamaki, and A. Moshovos. ADDICT: Advanced
instruction chasing for transactions. PVLDB, 7(14):1893–1904, 2014. DOI:
10.14778/2733085.2733095.

[151] P. Tözün, B. Gold, and A. Ailamaki. OLTP in wonderland—Where do cache misses
come from in major OLTP components? In DaMoN, pages 8:1–8:6, 2013. DOI:
10.1145/2485278.2485286.

http://dx.doi.org/10.1109/ssdm.1999.787641
http://dx.doi.org/10.1145/2882903.2882916
http://dx.doi.org/10.1145/2933349.2933357
http://dx.doi.org/10.1145/1555754.1555766
http://dx.doi.org/10.1109/isca.1992.753306
http://dx.doi.org/10.1109/isca.1992.753306
http://dx.doi.org/10.1109/wwc.2002.1226492
http://dx.doi.org/10.14778/1920841.1920855
http://dx.doi.org/10.1145/2213836.2213838
http://dx.doi.org/10.14778/2733085.2733095
http://dx.doi.org/10.14778/2733085.2733095
http://dx.doi.org/10.1145/2485278.2485286
http://dx.doi.org/10.1145/2485278.2485286

BIBLIOGRAPHY 97
[152] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki. From A to E: Analyzing

TPC’s OLTP benchmarks—the obsolete, the ubiquitous, the unexplored. In EDBT,
pages 17–28, 2013. DOI: 10.1145/2452376.2452380.

[153] TPC Benchmark B Standard Specification, 1994. http://www.tpc.org/tpcb

[154] TPC Benchmark C Standard Specification, 2010. http://www.tpc.org/tpcc

[155] TPC Benchmark D Standard Specification, 1998. http://www.tpc.org/tpcd

[156] TPC Benchmark E Standard Specification, 2014. http://www.tpc.org/tpce

[157] K. Q. Tran, S. Blanas, and J. F. Naughton. On transactional memory, spinlocks, and
database transactions. In ADMS, pages 43–50, 2010.

[158] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in multicore
in-memory databases. In SOSP, pages 18–32, 2013. DOI: 10.1145/2517349.2522713.

[159] B. Vikranth, R. Wankar, and C. R. Rao. Topology aware task stealing for
on-Chip NUMA multi-core processors. In ICCS, pages 379–388, 2013. DOI:
10.1016/j.procs.2013.05.201.

[160] S. Wanderman-Milne and N. Li. Runtime Code Generation in Cloudera Impala. IEEE
DEBull, 37(1):31–37, 2014.

[161] A. Wang, M. Gaudet, P. Wu, J. Amaral, M. Ohmacht, C. Barton, R. Silvera, and
M. Michael. Evaluation of Blue Gene/Q Hardware Support for Transactional Mem-
ories. In PACT, pages 127–136, 2012.

[162] T. Wang and R. Johnson. Scalable logging through emerging non-volatile memory.
PVLDB, 7(10):865–876, 2014. DOI: 10.14778/2732951.2732960.

[163] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted transactional memory
to build a scalable in-memory database. In Eurosys, pages 26:1–26:15, 2014. DOI:
10.1145/2592798.2592815.

[164] K. M. Wilson and B. B. Aglietti. Dynamic page placement to improve local-
ity in CC-NUMA multiprocessors for TPC-C. In SC, pages 33–33, 2001. DOI:
10.1145/582034.582067.

[165] S. Wolf, H. Mühe, A. Kemper, and T. Neumann. An evaluation of strict timestamp
ordering concurrency control for main-memory database systems. In IMDM, pages 82–
93. 2013. DOI: 10.1007/978-3-319-13960-9_7.

http://dx.doi.org/10.1145/2452376.2452380
http://www.tpc.org/tpcb
http://www.tpc.org/tpcc
http://www.tpc.org/tpcd
http://www.tpc.org/tpce
http://dx.doi.org/10.1145/2517349.2522713
http://dx.doi.org/10.1016/j.procs.2013.05.201
http://dx.doi.org/10.1016/j.procs.2013.05.201
http://dx.doi.org/10.14778/2732951.2732960
http://dx.doi.org/10.1145/2592798.2592815
http://dx.doi.org/10.1145/2592798.2592815
http://dx.doi.org/10.1145/582034.582067
http://dx.doi.org/10.1145/582034.582067
http://dx.doi.org/10.1007/978-3-319-13960-9_7

98 BIBLIOGRAPHY
[166] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100: The architec-

ture and design of a database processing unit. In ASPLOS, pages 255–268, 2014. DOI:
10.1145/2541940.2541961.

[167] J. Wust, M. Grund, K. Hoewelmeyer, D. Schwalb, and H. Plattner. Concurrent Exe-
cution of Mixed Enterprise Workloads on In-memory Databases, pages 126–140. Springer
International Publishing, 2014. DOI: 10.1007/978-3-319-05810-8_9.

[168] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring into the abyss:
An evaluation of concurrency control with one thousand cores. PVLDB, 8(3):209–220,
2014. DOI: 10.14778/2735508.2735511.

[169] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tictoc: Time traveling optimistic concur-
rency control. In SIGMOD, pages 1629–1642, 2016. DOI: 10.1145/2882903.2882935.

[170] Y. Yuan, K. Wang, R. Lee, X. Ding, J. Xing, S. Blanas, and X. Zhang. BCC: Reducing
false aborts in optimistic concurrency control with low cost for in-memory databases.
PVLDB, 9(6):504–515, 2016. DOI: 10.14778/2904121.2904126.

[171] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah. Improving database performance on
simultaneous multithreading processors. In VLDB, pages 49–60, 2005.

[172] J. Zhou and K. A. Ross. Implementing database operations using SIMD instructions.
In SIGMOD, pages 145–156, 2002. DOI: 10.1145/564691.564709.

[173] R. Francis and I. Mathieson. A Benchmark Parallel Sort for Shared Memory Multipro-
cessors. IEEE Trans. Computers, 37(12):1619–1626, 1988. DOI: 10.1109/12.9738.

[174] S. Idreos, M. L. Kersten and S. Manegold Database Cracking. CIDR, pages 68–78,
2007.

http://dx.doi.org/10.1145/2541940.2541961
http://dx.doi.org/10.1145/2541940.2541961
http://dx.doi.org/10.1007/978-3-319-05810-8_9
http://dx.doi.org/10.14778/2735508.2735511
http://dx.doi.org/10.1145/2882903.2882935
http://dx.doi.org/10.14778/2904121.2904126
http://dx.doi.org/10.1145/564691.564709
https://doi.org/10.1109/12.9738

99

Authors’ Biographies

ANASTASIAAILAMAKI
Anastasia Ailamaki is a Professor of Computer and Com-
munication Sciences at the École Polytechnique Fédérale de
Lausanne (EPFL) in Switzerland. Her research interests are
in data-intensive systems and applications, and in particular (a)
in strengthening the interaction between the database software
and emerging hardware and I/O devices, and (b) in automat-
ing data anagement to support computationally-demanding,
data-intensive scientific applications. She has received an ERC
Consolidator Award (2013), a Finmeccanica endowed chair
from the Computer Science Department at Carnegie Mellon
(2007), a European Young Investigator Award from the Eu-

ropean Science Foundation (2007), an Alfred P. Sloan Research Fellowship (2005), eight best-
paper awards in database, storage, and computer architecture conferences (2001-2012), and an
NSF CAREER award (2002). She holds a Ph.D. in Computer Science from the University of
Wisconsin-Madison in 2000. She is an ACM fellow and the vice chair of the ACM SIGMOD
community, as well as a senior member of the IEEE. She has served as a CRA-W mentor and
is a member of the Expert Network of the World Economic Forum.

100 AUTHORS’ BIOGRAPHIES

ERIETTALIAROU
Erietta Liarou

Erietta Liarou is currently a co-founder in a data analyt-
ics startup. She received her Ph.D. in Computer Science
from University of Amsterdam in 2013. In her thesis she
worked on the first column-store stream processing system,
MonetDB/DataCell, that leverages analytical systems tech-
nology for scalable stream processing. Her research interests
include database architectures, transaction processing on mod-
ern hardware, data-stream processing and distributed query
processing. In the past she has been with the Data-Intensive
Applications and Systems Laboratory (DIAS) in EPFL, the
Dutch National Research Center for Mathematics and Com-
puter Science (CWI) in Amsterdam, The Netherlands, the In-

telligence Systems Laboratory in Technical University of Crete, Greece, and with the System
S group in IBM T.J.Watson Research Center, Hawthorne, NY, USA. In 2011, she received
the Best Paper Award in Challenges and Visions at the Very Large Database Conference.

PINARTÖZÜN
Pınar Tözün is a research staff member at IBM Almaden Re-
search Center. Before joining IBM, she received her Ph.D.
from EPFL. Her research focuses on HTAP engines, perfor-
mance characterization of database workloads, and scalability
and efficiency of data management systems on modern hard-
ware. She received a Jim Gray Doctoral Dissertation Award
Honorable Mention in 2016. During her Ph.D., she also spent
a summer in Oracle Labs (Redwood Shores, CA) as an in-
tern. Before starting her Ph.D., she received her BSc degree in
Computer Engineering department of Koç University in 2009.

AUTHORS’ BIOGRAPHIES 101

DANICAPOROBIC
Danica Porobic is a Principal Member of Technical Staff at
Oracle working on the database in-memory technologies. She
received her Ph.D. from EPFL where she focused on design-
ing scalable transaction processing systems for non-uniform
hardware. She has graduated top of her class with MSc and
BSc in Informatics from University of Novi Sad and has
worked at Oracle Labs and Microsoft SQL Server.

IRAKLIS PSAROUDAKIS
Iraklis Psaroudakis is a Senior Member of Technical Staff
at Oracle Labs. His research interests include improving the
performance of analytical workloads, parallel programming,
and OS/runtime-system interaction. Prior to Oracle, he com-
pleted his Ph.D. at the Data-Intensive Application and Sys-
tems (DIAS) Laboratory of the École Polytechnique Fédérale
de Lausanne (EPFL), focusing on scaling up highly concur-
rent analytical database workloads on multi-socket multi-core
servers through (a) sharing data and work across concurrent
queries, and (b) adaptive NUMA-aware data placement and

task scheduling. During his Ph.D., he cooperated with the SAP HANA database team. Be-
fore starting his Ph.D., he completed his studies in Electrical & Computer Engineering at the
National Technical University of Athens (NTUA).

	Introduction
	Implicit/Vertical Dimension
	Explicit/Horizontal Dimension
	Structure of the Book

	Implicit/Vertical Scalability
	Exploiting Resources of a Processor Core
	Instruction and Data Parallelism
	Multithreading
	Horizontal Parallelism
	Horizontal parallelism in advanced database scenarios
	Conclusions

	Minimizing Memory Stalls
	Workload Characterization for Typical Data Management Workloads
	Roadmap for this Chapter
	Prefetching
	Techniques that are Common in Modern Hardware
	Temporal Streaming
	Software-guided Prefetching

	Being Cache-conscious while Writing Software
	Code Optimizations
	Data Layouts
	Changing Execution Models

	Exploiting Common Instructions
	Conclusions

	Explicit/Horizontal Scalability
	Scaling-up OLTP
	Focus on Unscalable Components
	Locking
	Latching
	Logging
	Synchronization

	Non-uniform Communication
	Conclusions

	Scaling-up OLAP Workloads
	Sharing Across Concurrent Queries
	Reactive Sharing
	Proactive Sharing
	Systems with Sharing Techniques

	NUMA-awareness
	Analytical Operators
	Task Scheduling
	Coordinated Data Placement and Task Scheduling

	Conclusions

	Conclusions
	Outlook
	Dark Silicon and Hardware Specialization
	Non-volatile RAM and Durability
	Hardware Transactional Memory
	Task Scheduling for Mixed Workloads and Energy Efficiency

	Summary
	Bibliography
	Authors' Biographies

	Blank Page

