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1

Asset Pricing Models

1.1 Future Value

Consider investing a current value of V0VV for T periods at the
compound periodic rate of r. The future value of the initial investment
is given simply by the following:

VTVV = V0VV (1 + r)T. (1.1)

Note the compounding effect that follows from being able to
earn interest in future periods on the interest earned in previous
periods. The longer the length of the compounding period T, the moreTT
pronounced this effect will be given a fixed starting value V0VV for a
fixed r. For a fixed future time period T and initial investment V0VV ,
the compounding effect becomes much more pronounced for larger
values of r.

1.2 Present Value

Consider now turning the previous question on its head and ask the
following: what is the present value today at t = 0 equal to a given
future value of VTVV given a periodic opportunity cost of capital equal
to r? The answer to this question can be obtained through a simple
rearrangement of the future value equation in the previous section as
follows:

V0VV = VTVV
(1 + r)T

. (1.2)

Note that the further out into the future the cash flow is to be
obtained the lower the present value, given a fixed opportunity cost.
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Similarly, for a fixed future time period T, higher values for theTT
opportunity cost r lead to lower present values today at t = 0.

1.3 Perpetuities

Consider an infinite sequence of cash flows of the same amount C
which commences payment at t = 1 and never cease. This is an
example of a level payment to be received in perpetuity or, more
simply, a perpetuity.

The present value of all of these payments is represented by the
following infinite sum:

V0VV = C
1 + r

+ C
(1 + r)2

+ C
(1 + r)3

+ ·· · .

This infinite sum is an example of a geometric series and, provided
that r > 0, converges to a finite value

V0VV = C
1 + r

⎛
⎜
⎛⎛
⎜⎜⎜⎝⎜⎜ 1

1 −
(

1
1 + r

)
⎞
⎟
⎞⎞
⎟⎟⎟⎠⎟⎟,

which, after some simplifications of terms in the denominator, is
reduced to the following:

V0VV = C
r

. (1.3)

Another useful sequence of cash flows is a growing perpetuity. This
is very similar to the example just considered where the first cash flow
C takes place again at t = 1 and is paid forever, but this time every
subsequent payment increases at the rate of g. The present value of
this growing perpetuity is given by the infinite sequence:

V0VV = C
(1 + r)

+ C(1 + g)
(1 + r)2

+ C(1 + g)2

(1 + r)3
+ ·· · .

This is yet another example of an infinite sum of a geometric series
which converges to a finite value, provided that g < r, as follows:

V0VV = C
(1 + r)

⎛
⎜
⎛⎛
⎜⎜⎜⎝⎜⎜ 1

1 −
(

1 + g
1 + r

)
⎞
⎟
⎞⎞
⎟⎟⎟⎠⎟⎟,
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which, after some simplifications, leads to the following:

V0VV = C
r− g

. (1.4)

Note that if g ≥ r, then the present value of the growing perpetuity
is infinite. The above formula is only valid for the case where the
growth rate is less than r. Applying the formula to a case where g ≥ r
is a mistake as witnessed by the resulting negative present value.

1.4 Annuities

Let us now consider a finite stream of cash flows which starts at t = 1
and lasts until t = T > 1 where the same periodic payment C is being
paid in every period. The present value of this level annuity is given by

V0VV = C
(1 + r)

+ C
(1 + r)2

+ ·· · + C
(1 + r)T

.

We can evaluate this finite geometric series directly or, alternatively,
we realize that the level annuity can be represented as the difference
between two perpetuities. The first perpetuity pays off C in every
period starting with t = 1, while the second perpetuity pays off C
in every period starting with t = T + 1. The difference between the
payoffs of these two perpetuities comprises the payoffs of the level
annuity. Hence, the present values of the level annuity is the difference
between the present values of the two perpetuities:

V0VV = C
r

− C
r

(
1

(1 + r)T

)
,

which, after collecting terms, reduces to

V0VV = C
r

[
1 − 1

(1 + r)T

]
. (1.5)

Next, let us consider a more general annuity where the period
payment increases in every period at the rate of g where the initial
payment C takes place again at t = 1 and the last payment is at
t = T > 1. The present value of this growing annuity is equal to

V0VV = C
(1 + r)

+ C(1 + g)
(1 + r)2

+ ·· · + C(1 + g)T−1

(1 + r)T
.

We can evaluate this finite sum using the geometric series formula
or, alternatively, we can realize that the payoffs of the growing
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annuity can be represented as the difference between the payoffs of
two growing perpetuities. The first growing perpetuity starts at t = 1
with an initial payment of C while the second growing perpetuity
starts at t = T+1 with an initial payment of C(1+g)T. Both perpetual
payments grow at the rate of g per period. The difference between
their present values at t = 0 is given by

V0VV = C
r− g

− C(1 + g)T

r− g

(
1

(1 + r)T

)
,

which, after collecting terms, yields

V0VV = C
r− g

[
1 − (1 + g)T

(1 + r)T

]
. (1.6)

Note that in this case there are a finite number of terms, so we can
have g > r and arrive at the appropriate positive present value of the
growing annuity.

1.5 Capital Asset Pricing Model

1.5.1 The Case of Two Risky Securities

Suppose that the excess return of asset A is given by μA = E(rAr ) − rfr
and the excess return of asset B is μB = E(rB) − rfr . Let the standard
deviation of A’s excess return be σAσ and the standard deviation of
B’s excess return be σBσ . Finally, let the correlation between A’s
and B’s excess returns be given by ρAB. Consider the problem of
finding the tangent portfolio which is fully invested in a combination
of both assets and has the highest ratio of excess return per
unit standard deviation (the Sharpe ratio). The solution to this
problem is

wtg,A = μAσ 2
Bσ −μBρABσAσ σBσ

μAσ 2
Bσ +μBσ

2
Aσ − (μA +μB)ρABσAσ σBσ

, (1.7)

wtg,B = μBσ
2
Aσ −μAρABσAσ σBσ

μAσ 2
Bσ +μBσ

2
Aσ − (μA +μB)ρABσAσ σBσ

. (1.8)

Two special cases are worth investigating a bit further. Suppose, at
first, that ρAB = −1. Then the resulting portfolio is riskless and, hence,
it has to have a zero-expected excess return in order to prevent an
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arbitrage opportunity which leads to the following restriction:

μAσBσ +μBσAσ = 0, (1.9)

sA = −sB, (1.10)

where sA = μA/σAσ is the Sharpe ratio of security A and sB = μB/σBσ is
the Sharpe ratio of security B. What this means is that two securities
with perfectly negatively correlated returns have to lie on two rays
from the origin in excess return–standard deviation space that are
symmetrical around the horizontal axis. Any other possibility will lead
to an arbitrage opportunity.

The other extreme case that results in a riskless portfolio is the case
of ρAB = +1. In this case, we also require that this portfolio has a zero
excess return which leads to the following condition:

μAσBσ −μBσAσ = 0, (1.11)

sA = sB. (1.12)

In this case, two securities with perfectly positively correlated excess
returns have to have the same Sharpe ratio or lie on the same ray
from the origin in excess return–standard deviation space. Any other
possibility will lead to an arbitrage opportunity.

Similar to the tangent portfolio, we can define the global minimum
variance portfolio as the one that is fully invested in a combination
of both securities such that the variance of the portfolio return is as
low as possible. The optimal minimum variance portfolio weights are
given as follows:

wmv,A = σ 2
Bσ −ρABσAσ σBσ

σ 2
Aσ +σ 2

Bσ − 2ρABσAσ σBσ
, (1.13)

wmv,B = σ 2
Aσ −ρABσAσ σBσ

σ 2
Aσ +σ 2

Bσ − 2ρABσAσ σBσ
. (1.14)

Again, two special cases and their consequences are worth noting.
First, consider the case of ρAB = −1. The minimum variance portfolio
weights simplify to

wmv,A = σBσ

σAσ +σBσ
, (1.15)

wmv,B = σAσ

σAσ +σBσ
. (1.16)
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It is straightforward to verify that the variance of return of the
minimum variance portfolio in this case is zero. In order to avoid
an arbitrage opportunity, the excess return of the minimum variance
portfolio in this special case better be equal to zero which leads to the
following constraint:

μAσBσ +μBσAσ = 0, (1.17)

sA = −sB. (1.18)

In other words, two assets with perfectly negatively correlated
excess returns have to lie on two rays from the origin in excess
return–standard deviation space symmetric around the horizontal
axis. Any other possibility will lead to an arbitrage possibility.

Consider next the case of ρAB = +1. In this case, the minimum
variance portfolio weights simplify to the following:

wmv,A = σBσ

σBσ −σAσ
, (1.19)

wmv,B = −σAσ

σBσ −σAσ
. (1.20)

This portfolio also has a zero return variance and is, in effect, riskless.
Hence, in order to avoid an arbitrage opportunity it has to have an
excess return of zero which leads to the following:

μAσBσ −μBσAσ = 0, (1.21)

sA = sB, (1.22)

or the Sharpe ratios of both securities have to be equal to each
other. Hence, two securities with perfectly positively correlated
returns have to lie on the same ray from the origin in excess
return-standard deviation space. If the two securities with perfectly
positively correlated returns had different Sharpe ratios, then it would
lead to an arbitrage opportunity.

1.5.2 The Case of Multiple Risky Securities

In the general case of N risky securities, let us define a mean vector
of the expected excess returns, μ, as well as a variance–covariance
matrix of excess returns, �. In this case, the tangent portfolio weights
are given by

wtg = �−1μ

1′
N�−1μ

, (1.23)
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where 1N is a column vector of ones. The expected excess return of
the tangent portfolio is equal to

μtg = μ′�−1μ

1′
N�−1μ

. (1.24)

The variance of the excess return of the tangent portfolio is equal to

σ 2
tgσ = μ′�−1μ

(1′
N�−1μ)2

, (1.25)

while the Sharpe ratio of the tangent portfolio is

stg =
√

μ′�−1μ. (1.26)

Next, let us define the risky securities beta vector, β, as the ratio
of the covariance between the excess returns of the risky securities
and the excess return of the tangent portfolio and the excess return
variance of the tangent portfolio. Straightforward linear algebraic
arguments lead to the following value for the β vector:

β = μ
1′

N�−1μ

μ′�−1μ
. (1.27)

Note that we can use our knowledge about the excess return of the
tangent portfolio to rewrite the previous equation as follows:

β = μ

μtg
. (1.28)

Rearranging the terms, above equation leads to the of Sharpe
(1964):

μ = βμtg, (1.29)

E(ri) − rfr = βi

[
E(rtg) − rfr

]
f . (1.30)

Similarly, we can obtain the global minimum variance portfolio
weights as follows:

wmv = �−11N

1′
N�−11N

. (1.31)

The expected excess return of the minimum variance portfolio is
equal to

μmv = μ′�−11N

1′
N�−11N

, (1.32)
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the excess return variance of the minimum variance portfolio is
given by

σ 2
mvσ = 1

1′
N�−11N

, (1.33)

and the Sharpe ratio of the minimum variance portfolio is

smv = μ′�−11N√
1′

N�−11N

. (1.34)

A few relations between the moments of the minimum variance and
the tangent portfolio are of independent interest. First, it is possible to
show that the excess return per unit return variance is the same for
both the minimum variance portfolio and the tangent portfolio or

μtg

σ 2
tgσ

= μmv

σ 2
mvσ

. (1.35)

Secondly, the correlation between the excess return of security i and
the excess return of the tangent portfolio is equal to the ratio of the
i-th security’s Sharpe ratio and the tangent portfolio’s Sharpe ratio:

ρi,tg = si

stg
. (1.36)

Thirdly, the idiosyncratic return variance of security i is given by

σ 2
ε

σ
i
= σ 2

iσ

(
1 − s2

i

s2
tg

)
. (1.37)

Fourth, the beta of the minimum variance portfolio with the
tangent portfolio is positive but strictly less than one and is given by

βmv,tg = σ 2
mvσ

σ 2
tgσ

. (1.38)

Finally, the correlation between the excess return of the minimum
variance portfolio and the excess return of the tangent portfolio is also
positive and less than 1 and is equal to

ρmv,tg = σmvσσ

σtgσσ
. (1.39)
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1.6 Fama–French Three-Factor Model

The following model was proposed by Fama and French (1992):

E(Ri) = Rf +βi(E(Rm) − Rf) + siSMB+ hiHML, (1.40)

where the additional variable si is the standardized covariance between
asset i and portfolio small minus big (SMB) and hi is the standardized
covariance between asset i and portfolio high minus low (HML).
Portfolio SMB consists of long positions in small-cap stocks and
short positions in large-cap stocks while portfolio HML consists of
long positions in value stocks (high book-to-market ratios) and short
positions in growth stocks (low book-to-market ratios).

The excess value–weighted return on all CRSP firms incorporated in
the United States and listed on NYSE, AMEX, or NASDAQ is denoted
by MKT. The description of the construction of the size, value, and
momentum factors are as follows. The six portfolios used to construct
the size and value factors are based on a double sort of all NYSE,
AMEX, and NASDAQ stocks with available market capitalization
and book value of equity based on size and the book-to-market
ratio. The 50th percentile is used to separate small-cap from large-cap
stocks while the top 70th percentile of the book-to-market ratio is
used to separate value from value-neutral stocks and the bottom 30th
percentile of the book-to-market ratio is the cutoff between growth
and value-neutral stocks.

Small value (SV) Big value (BV)
Small neutral (SN) Big neutral (BN)
Small growth (SG) Big growth (BG)

The value-weighted return of the small-cap factor SMB is calculated
as the difference between the equal-weighted small-cap portfolio
returns across the value spectrum and the equal-weighted large-cap
portfolio returns for value, growth, and value-neutral stocks as
follows:

SMB = 1
3 (SV + SN+ SG)− 1

3 (BV + BN+ BG). (1.41)

The value-weighted return of the value factor HML is given
by the difference between the value-weighted returns of the high
book-to-market stocks across market caps and the value-weighted
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returns of the low book-to-market small-cap and large-cap stocks as
follows:

HML = 1
2 (SV + BV)− 1

2 (SG+ BG). (1.42)

1.7 Carhart Four-Factor Model

In his work on mutual fund performance, Carhart (1997) proposed
the following extension to the Fama–French three-factor model:

E(Ri) = Rf +βi(E(Rm) − Rf) + siSMB + hiHML + piWML, (1.43)

where the additional variable pi is the standardized covariance bet-
ween asset i and portfolio winners minus losers (WML). Portfolio
WML consists of long positions in stocks that have increased
significantly in value over the course of the past year (winners) and
short positions in stocks that have decreased significantly in value
during the past year (losers).

The six portfolios used to construct the momentum factor are
based on the following double sort of all NYSE, AMEX, and
NASDAQ stocks with available prior monthly returns based on
market capitalization using the 50th percentile as the cutoff point
between small cap and large cap as well as prior 12-month return
using the top 70th percentile to separate past winners from medium
performing stocks and the bottom 30th percentile to distinguish losing
stocks from medium past performers.

Small up (SU) Big up (BU)
Small medium (SM) Big medium (BM)
Small down (SD) Big down (BD)

Value-weighted momentum portfolio returns UMD are calculated
based on the spread between the value-weighted return of past winners
and the value-weighted return of past losers as follows:

UMD = 1
2 (SU+ BU)− 1

2 (SD+ BD). (1.44)

1.8 Arbitrage Pricing Theory

The previous two multifactor models are primarily driven by empirical
regularities discovered in the data rather than rigorous theoretical
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work. One of the first theoretically motivated asset pricing models
was proposed in Ross (1976). The model is agnostic about the nature
and identity of the pervasive sources of systematic risk but does
assume that there are K separate risk factors that drive asset returns
as follows:

R̃i = E(Ri) +βi,1F̃1 +βi,2F̃2 + ·· ·+βi,KF̃K + ε̃i, (1.45)

where βi,1, βi,2, . . . ,βi,K are the standardized covariances between asset
i and each of the K factors, F̃1, F̃2, . . . , F̃K are the factor returns, and ε̃i

are the idiosyncratic security innovations.
Through the construction of asymptotically well-diversified

portfolios, one can eliminate all idiosyncratic risk and can show that
the expected asset returns are proportional to asset exposures to risk
factors (betas) and factor risk premia:

E(Ri) = Rf +βi,1E(F1) +βi,2E(F2) + ·· ·+βi,KE(FK), (1.46)

where E(F1), E(F2), . . . ,E(FK) are the risk premia on factors 1,2, . . . ,K.
The factors 1,2, . . . ,K are estimated statistically based on how asset
prices covary with each other using factor analysis or principal
components decomposition of the entire variance–covariance matrix
of asset returns.

A sketch of the proof is based on a cross-sectional projection
argument. Suppose we know the true vector of securities’ expected
returns E(R) and the factor loading matrix B as well as the
variance–covariance matrix of idiosyncratic returns �. Projecting the
vector of expected returns on B obliquely along � is equivalent
to a generalized least squares regression with an intercept equal to
the zero-beta return and slopes equal to the respective factor risk
premia, E(Fk). Take the fitted residuals, ê, from this cross-sectional
regression and construct an arbitrage portfolio as w = ê/(ê′ê). By
construction, we have that the portfolio weights sum up to zero
and they have zero loadings on any of the risk factors. Similarly,
by bounding the largest eigenvalue of � we can show that the
variance of the arbitrage portfolio is proportional to 1/(ê′ê) for a
fixed number of securities. Letting the number of securities increase
without bound leads to a vanishing portfolio risk in the limit. Hence,
in order to avoid such a limiting arbitrage opportunity, the vector of
securities’ expected returns has to be proportional to their respective
factor loadings as in the arbitrage pricing theory (APT) equation
above.1
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1.9 Macroeconomic Multifactor Models

Chen, Roll, and Ross (1986) present a multifactor model that is in
part motivated by trying to identify the pervasive sources of risk that
drive asset returns using macroeconomic state variables:

E(Ri) = Rf +βi,1E(F1) +βi,2E(F2) + ·· ·+βi,KE(FK), (1.47)

where the difference between APT and macro multifactor models is
that in the APT the factors are estimated statistically while in this
model the factors are prespecified. The most commonly used state
variables include real gross domestic product (GDP) growth, an index
of industrial production, the unexpected inflation rate, and the term
structure spread (long-term minus short-term interest rates).

Problems

1. Consider a sequence of cash flows with a starting value of 1,000
next year, growing annually at the rate of 5% per year for the next 40
years. Suppose the opportunity cost of capital is 4%. Find the present
value today of this growing annuity. What is the future value of this
growing annuity at the end of 40 years from today? What assumption
is necessary to answer the previous question?
2. Find the arbitrage in each of the following combinations
for securities’ excess expected returns, return variances, and
correlations:

(a) μA = 0.1, μB = 0.2, ρAB = −1, σAσ = 0.2, σBσ = 0.4.
(b) μA = 0.1, μB = 0.16, ρAB = 1, σAσ = 0.2, σBσ = 0.3.
(c) μA = 0.1, μB = −0.1, ρAB = −1, σAσ = 0.2, σBσ = 0.3.

3. Consider a world with only two risky securities. Security A has an
expected excess return of μA = 0.05 and return standard deviation
of σAσ = 0.5. Security B has an expected excess return of μB = 0.10
and return standard deviation of σBσ = 0.5. The correlation between
the two securities’ returns is ρAB = 0.2. What are the compositions
of the minimum variance and tangent portfolios? What are the betas
of each of the two securities with the market portfolio and what
are their idiosyncratic return standard deviations equal to? Verify
that the expected excess returns of each security are proportional
to their respective betas and the excess return on the market
portfolio.
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4. Consider a world with three securities. The returns on all three
securities is driven by one latent factor with unit factor return
variance and zero mean. The vector of expected returns is given by
E(R) = [0.10,0.12,0.14]′ and the vector of securities’ loadings on the
latent factor is given by b = [1,1.2,1.5]′. Find the zero-beta return
and the latent factor risk premium. Construct a portfolio that has no
exposure to the latent factor and 100% expected return. Is this an
arbitrage? What would be the consequences of trading this portfolio
on the securities’ expected returns?



2

Discounted Cash Flow Valuation

2.1 Dividend Growth Models

2.1.1 Single-Stage Models

The simplest version of the dividend discount model is most applicable
to mature companies with stable earnings and dividends growing at
relatively low rates in line with the growth in aggregate economic
output. In this case, we can apply the growing perpetuity formula
to the dividend per share, DPS0, forecast to grow at the rate of g in
perpetuity with re as the required rate of return on equity. This leads
to the following intrinsic value per share:

VEVV0VV = DPS0(1 + g)
re − g

(2.1)

Figure 2.1 depicts the forecasted growth rate of dividend per share as
a function of time in a single-stage dividend discount model.

A version of this model sometimes starts with next periods expected
DPS1, in which case the above expression simplifies even further to

VEVV0VV = DPS1

re − g
. (2.2)

2.1.2 Two-Stage Models

It is usually difficult to apply a one-stage discounted cash flow (DCF)
model in the case of firms that are expected to have dividends grow
at higher than normal growth rates at least for some time. To this
purpose, it is natural to extend the assumption behind the growth rate
forecasts to include two stages. The first stage that only lasts for a
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Figure 2.1 Future forecasts of the expected growth rate in a single-stage DCF model.

number of periods, n, will typically have a higher growth rate, g1,
while the second stage will have a lower growth rate of g2, perhaps
no higher than the nominal growth rate of aggregate economic output
that lasts forever. Both stages can potentially have different required
rates of return on equity re,1 and re,2, respectively. Combining the
growing annuity formula with the growing perpetuity formula from
the previous chapter, we obtain the following expression for the
present intrinsic value at t = 0:

VEVV0VV =
DPS0(1 + g1)

(
1 −

(
1 + g1

1 + re,1

)n)
re,1 − g1

+ VEVVnV
(1 + re,1)n

, (2.3)

where VEVVnV is the terminal value at date n given by

VEVVnV = DPSn+1

re,2 − g2
= DPS0(1 + g1)n(1 + g2)

re,2 − g2
. (2.4)
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Figure 2.2 Future forecasts of the expected growth rate in a two-stage DCF model.

Combining the previous two equations leads to a more compact
albeit less intuitive expression for the present value of all future
dividends in the simple two-stage model as follows:

VEVV0VV =
DPS0(1 + g1)

(
1 −

(
1 + g1

1 + re,1

)n)
re,1 − g1

+ DPS0(1 + g1)n(1 + g2)
(re,2 − g2)(1 + re,1)n

. (2.5)

Figure 2.2 portrays the forecasted growth rate of dividend per share
as a function of time in a two-stage dividend discount model.

Note that the above two-stage DCF model involves a discontinuity
in the growth rate of dividends, i.e., there is an abrupt change at t = n
from g1 to g2. One way to correct for this is to assume that the growth
rate of dividends will change linearly, i.e., gradually, over a certain
period of time between the two growth rates. Such a model exists and
is referred to as the H model after the original notation in the article
that derived and proposed this idea. Assuming that the initial growth
rate in dividends per share is g1 and that it will change linearly over
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Figure 2.3 Future forecasts of the expected growth rate in the H model.

the next n periods to g2 and stay at g2 forever, the present intrinsic
value per share is as follows:

VEVV0VV = DPS0(1 + g2 + (n/2)(g1 − g2))
re − g2

(2.6)

Figure 2.3 presents the forecasted growth rate of dividends per share
over time in the H model.

Note that in the H model the required rate of return on equity
is the same in both stages, which can sometimes be a disadvantage
if the forecasts call for different levels of systematic risk in each
stage.

2.1.3 Three-Stage Models

Consider next the following set of forecasts for future dividends per
share. Initially, they grow for n1 periods at the rate of g1 which attracts
a required rate of return on equity of re,1. Next, the growth rate in
dividends per share is forecast to change linearly from g1 to g2 over
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the course of n2 periods. Finally, this is followed by a perpetual stage
of stable growth at the rate of g2. The transition stage and the stable
stage both attract a required rate of return on equity of re,2. This model
is sometimes referred to as the E model. This gives a terminal value at
date n1 given by

VEVVnV
1
= DPS0(1 + g1)n1 (1 + g2 + (n2/2)(g1 − g2))

(re,2 − g2)
. (2.7)

Combining this terminal value from H model with the first stage of
high growth leads to the following expression for the value per share
in the three-stage model:

VEVV0VV =
DPS0(1 + g1)

(
1 −

(
1 + g1

1 + re,1

)n1
)

re,1 − g1

+ DPS0(1 + g1)n1 (1 + g2 + (n2/2)(g1 − g2))
(re,2 − g2)(1 + re,1)n1

. (2.8)

Figure 2.4 plots the forecasted growth rate of dividends per share over
time in a three-stage dividend discount model where the second and
the third stage use the H model.

Occasionally, one might want to have three stages with distinctly
different but constant dividend growth rates for the duration of
each stage. Consider a model where initially dividends per share are
expected to grow at the rate of g1 for n1 periods, then at the rate of g2

for n2 periods, and finally at the rate of g3 forever. It is straightforward
to show that the present intrinsic value per share in such a three-stage
DCF model is

VEVV0VV =
DPS0(1 + g1)

(
1 −

(
1 + g1

1 + re,1

)n1
)

re,1 − g1

+ VEVVnV
1

(1 + re,1)n1
+ VEVVnV

1+n2

(1 + re,1)n1(1 + re,2)n2
, (2.9)

Figure 2.5 plots the forecasted growth rate of dividend per share over
time in a three-stage dividend discount model where each stage has its
own distinct growth rate.
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Figure 2.4 Future forecasts of the expected growth rate in the E model.
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Discounted Cash Flow Valuation 21

where

VEVVnV
1
=

DPS0(1 + g1)n1 (1 + g2)
(

1 −
(

1 + g2

1 + re,2

)n2
)

re,2 − g2
,

VEVVnV
1+n2

= DPS0(1 + g1)n1 (1 + g2)n2(1 + g3)
re,3 − g3

are the present value at t = 0 of the third-stage dividends per share
and the present value at t = 0 of the second-stage dividends per share,
respectively.

2.2 Equity Free-Cash Flow

The free cash flow to equity is defined as the cash flow left for
disbursement to shareholders after all the company’s reinvestment
needs into additional long- and short-term assets have been met.
The concept also makes adjustments for some noncash expenses that
are recognized as legitimate expenses for the purposes of assessing
corporate income tax, like depreciation for example. The technical
definition of the equity-free cash flow is

FCFE = NI+ Depreciation− CapEx−�WC +�Debt, (2.10)

= NI− (CapEx− Depreciation) −�WC+�Debt, (2.11)

where NI is the net after-tax income, CapEx is the total capital
expenditure, WC is the net working capital, and �X stands for the
change in variable X. Sometimes, it is more frugal to refer to CapEx−
Depreciation as the net capital expenditure. The formula clearly takes
into account the fact that depreciation is not a cash expense and that
only the net capital expenditure, over and above any depreciation
charges is what matters for the purposes of determining any remaining
equity-free cash flows. Similarly, the change in the indebtedness of the
firm is a potential source of cash flow to shareholders as new net debt
issues are available to shareholders as both a source of investment
and/or a source of cash to pay dividends to or buy back shares from
shareholders.

2.2.1 Single-Stage FCFE Model

The value of the equity in a firm in the DCF framework with a single
stage of perpetual growth is given by the present value of all future
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firm cash flows discounted at the required rate of return on equity:

VEVV0VV = FCFE0(1 + g)
re − g

, (2.12)

where VEVV0VV is the intrinsic value of equity at t = 0, FCFE0 is current
free cash flow to equity at t = 0, re is the cost of equity, and g is the
perpetual FCFE growth rate.

2.2.2 Two-Stage FCFE Model

When more flexible forecasts are needed in equity-free cash flow
valuation, it makes sense to use two stages with separate growth
rates, required rates of return on equity, and reinvestment rates. A
straightforward application of all the DCF models in the previous
section apply here as well. Suppose that we are forecasting free cash
flow to the firm to grow initially at the rate of g1 = b1 × ROE1 for n
periods. Thereafter, the free cash flow to equity is expected to grow at
the rate of g2 = b2 ×ROE2 in perpetuity. If the initial free cash flow to
equity per share is FCFE0 and the respective required rates of return
on equity in the two stages are re,1 and re,2, then the intrinsic equity
value per share is given by

VEVV0VV =
FCFE0(1 + g1)

[
1 −

(
1 + g1

1 + re,1

)n]
re,1 − g1

+ FCFE0(1 + g1)n(1 + g2)
(re,2 − g2)(1 + re,1)n

. (2.13)

Note that the first stage is just a growing annuity and, hence, we
can have an arbitrarily large g1 relative to re,1. The second stage is a
growing perpetuity, so we have to be careful to avoid infinite intrinsic
values by making sure that our forecast for g2 is strictly less than re,2.1

A simpler two-stage FCFE model arises if we are willing to forego
the generality of having two separate required rates of return on equity
and insist on a continuous change in the FCFE growth rate. Adapting
the H model to the case of FCFE leads to following straightforward
expression:

VEVV0VV = FCFE0(1 + g2 + (n/2)(g1 − g2))
re − g2

. (2.14)
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2.2.3 Three-Stage FCFE Model

Consider next the following set of forecasts for future dividends per
share. Initially, they grow for n1 periods at the rate of g1 which attracts
a required rate of return on equity of re,1. Next, the growth rate in
dividends per share is forecast to change linearly from g1 to g2 over
the course of n2 periods. Finally, this is followed by a perpetual stage
of stable growth at the rate of g2. The transition stage and the stable
stage both attract a required rate of return on equity of re,2. This gives
a terminal value at date n1 given by

VEVVnV
1
= FCFE0(1 + g1)n1 (1 + g2 + (n2/2)(g1 − g2))

(re,2 − g2)
. (2.15)

Combining this terminal value from H model with the first stage of
high growth leads to the following expression for the value per share
in the three-stage model:

VEVV0VV =
FCFE0(1 + g1)

(
1 −

(
1 + g1

1 + re,1

)n1
)

re,1 − g1

+ FCFE0(1 + g1)n1 (1 + g2 + (n2/2)(g1 − g2))
(re,2 − g2)(1 + re,1)n1

. (2.16)

Occasionally, one might want to have three stages with distinctly
different but constant dividend growth rates for the duration of
each stage. Consider a model where initially dividends per share are
expected to grow at the rate of g1 for n1 periods, then at the rate of g2

for n2 periods, and finally at the rate of g3 forever. It is straightforward
to show that the present intrinsic value per share in such a three-stage
FCFE model is

VEVV0VV =
FCFE0(1 + g1)

(
1 −

(
1 + g1

1 + re,1

)n1
)

re,1 − g1

+ VEVVnV
1

(1 + re,1)n1
+ VEVVnV

1+n2

(1 + re,1)n1(1 + re,2)n2
, (2.17)

where

VEVVnV
1
=

FCFE0(1 + g1)n1 (1 + g2)
(

1 −
(

1 + g2

1 + re,2

)n2
)

re,2 − g2
,



24 Absence of Arbitrage Valuation

VEVVnV
1+n2

= FCFE0(1 + g1)n1 (1 + g2)n2 (1 + g3)
re,3 − g3

are the present value at t = 0 of the third-stage FCFE and the present
value at t = 0 of the second-stage FCFE, respectively.

2.3 Firm Free Cash Flow

The free cash flow to the firm is defined as the cash flow left for
disbursement to both shareholders and bondholders after all the
company’s reinvestment needs into additional long- and short-term
assets have been met. Similar to the equity-free cash flow, we need
to make adjustments for some noncash expenses that are recognized
as legitimate expenses for the purposes of assessing corporate income
tax, like depreciation. The technical definition of the firm free cash
flow is

FCFF = EBIT× (1 − TcTT ) + Depreciation− CapEx−�WC, (2.18)

= EBIT× (1 − TcTT ) − (CapEx− Depreciation) −�WC, (2.19)

where EBIT is the net after-tax income, CapEx is the total capital
expenditure, WC is the net working capital, and �X stands for the
change in variable X. Occasionally, we refer to CapEx−Depreciation
as the net capital expenditure. The formula clearly takes into account
the fact that depreciation is not a cash expense and that only the net
capital expenditure, over and above any depreciation charges, is what
matters for the purposes of determining any remaining equity-free
cash flows. Note that since we are defining the firm free cash as
available to both shareholders and bondholders, we can no longer
count any additional borrowing as a source of additional cash flow to
the firm because they would come from existing or new bondholders.
The other notable difference between FCFF and FCFE is the difference
between net income, NI, and after-tax earnings before interest,
EBIT(1 − TcTT ). The link between these two is driven by the after-tax
interest expense, IntExp(1 − TcTT ), as follows:

EBIT(1 − TcTT ) = NI + IntExp(1 − TcTT ). (2.20)

2.3.1 Single-Stage FCFF Model

The value of the firm in the DCF framework with a single stage of
perpetual growth is just the present value of all future firm cash flows
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discounted at the firm weighted average cost of capital:

V0VV = FCFF0(1 + g)
WACC − g

, (2.21)

where FCFF0 is the expected free cash flow to the firm next year, g is
the expected perpetual FCFF growth rate, and WACC is the weighted
average cost of capital given by

WACC =
(

D
E+ D

)
rd(1 − TcTT ) +

(
E

E+ D

)
re. (2.22)

2.3.2 Two-Stage FCFF Model

Once again, if we need to have more flexible forecasts for the firm
free cash flow future evolution, we can use two stages with separate
growth rates, required rates of return on capital (WACC), and capital
reinvestment rates. A straightforward application of all the DCF
models in the previous section apply here as well. Suppose that we
are forecasting free cash flow to the firm to grow initially at the rate of
g1 = b1 × ROC1 for n periods. Thereafter, the free cash flow to equity
is expected to grow at the rate of g2 = b2 × ROC2 in perpetuity. If the
initial free cash flow to equity per share is FCFF0 and the respective
weighted average costs of capital in the two stages are WACC1 and
WACC2, then the intrinsic equity value per share is given by

VFVV0VV =
FCFF0(1 + g1)

[
1 −

(
1 + g1

1 + WACC1

)n]
WACC1 − g1

+ FCFF0(1 + g1)n(1 + g2)
(WACC2 − g2)(1 + WACC1)n

. (2.23)

Note that the first stage is just a growing annuity and, hence, we can
have an arbitrarily large g1 relative to WACC1. The second stage is a
growing perpetuity, so we have to be careful to avoid infinite intrinsic
values by making sure that our forecast for g2 is strictly less than
WACC2.2

Once again, a simpler two-stage FCFF model arises if we are willing
to assume or forecast a single WACC for both stages and require that
the FCFF growth rate undergoes a continuous change between the two
stages. Adapting the H model to the case of FCFF leads to

VFVV0VV = FCFF0(1 + g2 + (n/2)(g1 − g2))
WACC1 − g2

. (2.24)



26 Absence of Arbitrage Valuation

2.3.3 Three-Stage FCFF Model

Consider next the following set of forecasts for future free cash flow
to the firm. Initially, they grow for n1 periods at the rate of g1 which
attracts a required rate of return on capital of WACC1. Next, the
growth rate in FCFF is forecast to change linearly from g1 to g2 over
the course of n2 periods. Finally, this is followed by a perpetual stage
of stable growth at the rate of g2. The transition stage and the stable
stage both attract a required rate of return on capital of WACC2. This
gives a terminal value at date n1 given by

VFVVnV
1
= FCFF0(1 + g1)n1 (1 + g2 + (n2/2)(g1 − g2))

(WACC2 − g2)
. (2.25)

Combining this terminal value from H model with the first stage of
high growth leads to the following expression for the present intrinsic
firm value in this particular three-stage FCFF model:

VFVV0VV =
FCFF0(1 + g1)

(
1 −

(
1 + g1

1 + WACC1

)n1
)

WACC1 − g1

+ FCFF0(1 + g1)n1(1 + g2 + (n2/2)(g1 − g2))
(WACC2 − g2)(1 + WACC1)n1

(2.26)

Occasionally, one might want to have three stages with distinctly
different but constant FCFF growth rates for the duration of each
stage. Consider a model where initially FCFF are expected to grow
at the rate of g1 for n1 periods, then at the rate of g2 for n2 periods,
and finally at the rate of g3 forever. It is straightforward to show that
the present intrinsic firm value in such a three-stage FCFF model is

VFVV0VV =
FCFF0(1 + g1)

(
1 −

(
1 + g1

1 + WACC1

)n1
)

WACC1 − g1

+ VFVVnV
1

(1 + WACC1)n1
+ VFVVnV

1+n2

(1 + WACC1)n1(1 + WACC2)n2
, (2.27)

where

VFVVnV
1
=

FCFF0(1 + g1)n1 (1 + g2)
(

1 −
(

1 + g2

1 + WACC2

)n2
)

WACC2 − g2
,

VFVVnV
1+n2

= FCFF0(1 + g1)n1 (1 + g2)n2 (1 + g3)
WACC3 − g3
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are the present value at t = 0 of the third-stage FCFF and the present
value at t = 0 of the second-stage FCFF, respectively.

Problems

1. Is it always the case that a two-stage model provides a higher
value than the one provided by the H model? Assume that the two
growth rate forecasts are the same in both models. Try to construct an
example and a counterexample.
2. What would it take for FCFE > FCFF in every future period? Is that
a sustainable financial strategy?
3. Consider valuing the equity in a firm using a discounted equity-free
cash flow model and valuing the equity in the same firm in a slightly
roundabout way using a discounted firm cash flow model to value the
firm and subtracting the value of the firm’s debt from the value of the
firm. Under what conditions would the two valuations be identical?
Do these conditions make sense?
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Relative Valuation with Equity and
Value Multiples

3.1 Equity Multiples

3.1.1 Price–Dividend Ratio

In theory, the current equity value-to-dividend ratio is obtained by
taking the single-stage dividend growth model value of equity per
share today, VEVV0VV , and dividing it by the current dividend per share, D0:

VEVV0VV
D0

= (1 + g)
re − g

, (3.1)

which we can compare to the market price-to-dividend ratio to
determine whether the market currently undervalues or overvalues
the equity. Note that we can invert this ratio to obtain the current
theoretically implied dividend yield as follows:

D0

VEVV0VV
= re − g

(1 + g)
, (3.2)

which we can similarly compare to the market-based dividend yield.
Similarly, the forward equity value-to-dividend ratio is obtained in the
framework of the single-stage dividend growth model equity value and
by dividing it by next period’s expected dividend per share, D1:

VEVV0VV
D1

= 1
re − g

, (3.3)

giving us the theoretically implied forward dividend yield which we
can compare to the analysts’ expected consensus forward dividend
yield to determine whether the equity is mispriced in the market.
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An alternative way of expressing these dividend multiples in terms
of yields is also possible. We can also express the future expected
dividend yield very intuitively as the difference between the required
equity return and the expected dividend growth rate, or the expected
capital gain rate, as follows:

D1

VEVV0VV
= re − g. (3.4)

Note that this equation says nothing more than what we would
normally expect, i.e., the required equity return is simply equal to
the expected dividend yield plus the expected growth in the dividend
yield:

re = D1

VEVV0VV
+ g. (3.5)

3.1.2 Price–Earnings Ratio

If we define the dividend payout ratio (DPY), as the ratio of dividends
per share to earnings per share, we can use the single-stage dividend
growth model to arrive at the current theoretically implied equity
value-to-earnings ratio as a function of the economic fundamentals
of the firm:

VEVV0VV
E0

= DPY0(1 + g)
re − g

. (3.6)

Note that this quantity is always increasing in g as long as g < re and
the growth rate is feasible, i.e., g = (1 − DPY)ROE. Similarly, we can
express the forward price–earnings ratio as

VEVV0VV
E1

= DPY1

re − g
. (3.7)

Note that at the sustainable growth rate g = b × ROE, the above
expression for the forward PE ratio becomes

VEVV0VV
E1

= 1
ROE

ROE − g
re − g

= VEVV0VV /BVE
0

ROE
. (3.8)

It is worth noting that the PE multiples will always increase when
the expected earnings reinvestment rate increases even when the return
on investment on this incremental investment or ROE is below the
required rate of return on equity, re. One crude albeit effective way to
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scale PE multiples for expected future growth rate is to divide them by
the expected growth rate leading to the PEG ratio:

PEG = PE
g

. (3.9)

In practice, expressing g in decimal format leads to very large values.
To deal with this issue, analysts express g in percent which leads to
lower numerical values. Note that the lower the PEG ratio is the more
undervalued a stock is perceived to be which runs the opposite way of
the standard multiples.

An alternative and more general way of expressing these multiples
is in the form of earnings yields or the inverse of the price multiples.
The current earnings yield of a stock is given by

E0

VEVV0VV
= re − g

DPY0(1 + g)
, (3.10)

while the forward earnings yield is:

E1

VEVV0VV
= re − g

DPY1
. (3.11)

Note that both the current and the forward earnings yields can
be negative when the earnings per share are currently negative or
are expected to be negative in the next period. However, in practice
price–earnings multiples are only computed and reported for stocks
that have, or are expected to have, positive earnings per share. Note
that this introduces a bias in favor of stocks with positive earnings
per share in reported PE multiples. Ideally, we would aggregate the
market value of all stocks and divide by the aggregate earnings in order
to get a more realistic PE multiple for the entire stock market. This
disadvantage does not arise for earnings yields which can be either
positive or negative without losing meaning. A negative market price
per dollar of earnings, however, makes no economic sense whatsoever.

3.1.3 Price-to-Book Ratio

The value of the current equity value-to-book ratio can be motivated
as follows:

VEVV0VV
BVEVV0VV

= ROE × DPY0(1 + g)
re − g

. (3.12)
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The forward equity value-to-book ratio results in a more intuitive
formula:

VEVV1VV
BVEVV0VV

= ROE× DPY1

re − g
, (3.13)

= ROE− g
re − g

, (3.14)

where the last step takes into account that g = (1 − DPY) × ROE.
Note that the forward price-to-book ratio is increasing in the expected
growth rate g, if and only if ROE > re. Alternatively, we can
express the last condition as a requirement for the company to earn
positive economic profits, i.e., rates of economic profits that exceed
the opportunity cost of the next best alternative, the shareholders’
required rate of return on equity. Note also the pernicious of pursuing
growth for its own sake when the company is failing to earn its
required rate of return on equity, ROE < re, in which case increasing
g will lead to a lower value of the forward price-to-book multiple.

3.1.4 Price–Sales Ratio

The ratio of stock price per share to revenue or sales per share gives
us the price-to-revenue ratio or, as it is usually referred to by analysts,
the price-to-sales or PS ratio, in short. In theory, there should be a
value of equity per share which we can scale by the actual sales per
share as follows:

VEVV0VV
Sales0

= NPM × DPY0(1 + g)
re − g

, (3.15)

which we can once again compare to the market PS ratio to
determine whether the equity is overvalued or undervalued. Note
that the theoretically implied equity value-to-sales multiple is directly
proportional to the net profit margin (NPM). It is also proportional
to the dividend payout ratio, increasing in the feasible growth rate
forecast and decreasing in the require rate of return on equity.

3.2 Value Multiples

Starting with the basic free cash flow to firm valuation, we have that
the value of the firm in a single-stage perpetual FCFF growth model is
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given by

VFVV0VV = FCFF1

WACC − g
. (3.16)

3.2.1 Value-to-Income Ratio
Using a simplified version of FCFF linking it to the after-tax operating
profit and the capital reinvestment rate, we have

FCFF1 = (1 − TcTT )EBIT1 × (
1 − b

)
. (3.17)

Dividing both sides of (3.16) by EBIT(1 − TcTT ), we get the value–EBIT
ratio as follows:

VFVV0VV
EBIT1

= (1 − TcTT )(1 − b)
(WACC − g)

. (3.18)

Occasionally, it is useful to calculate this ratio on an after-tax EBIT
basis, which effectively get rid of the TcTT in the numerator of the
right-hand side.1 Dividing both sides by (1 − TcTT ) leads to

VFVV0VV
EBIT1(1 − TcTT )

= (1 − b)
(WACC − g)

.

In both case we need to compare these theoretically implied
value to their market-based counterparts, the EV0/EBIT1 and the
EV0/EBIT0(1 − TcTT ), respectively, in order to determine whether the
firm is trading at a premium or discount to what can be reasonable to
expect based on its economic fundamentals.

3.2.2 Value-to-Book Ratio

The next important value multiple to consider is the firm-level
generalization of the price-to-book equity multiple. Starting again
with the firm value driven by a single-stage FCFF model:

VFVV0VV = EBIT1(1 − TcTT )(1 − b)
WACC − g

, (3.19)

and taking into account the link between the feasible growth
rate of firm free cash flows, return on capital, and the capital
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reinvestment rate

ROC = EBIT1(1 − TcTT )
BV0

b = g
ROC

the theoretically implied firm value-to-book-value multiple can be
expressed as

VFVV0VV

BVF
0

= ROC − g
WACC − g

,

which we need to compare to its market counterpart, the EV/BV ratio.

3.2.3 Value-to-Sales Ratio

The final value multiple to consider is the firm-level generalization of
the price-to-sales multiple. Note that in contrast to the PS multiple the
value-to-sales ratio is uniform and consistent in the sense that both the
denominator and the numerator refer to firm-level variables which is
not the case for the PS ratio.

In order to derive the value-to-revenue ratio, we start once again
with firm value driven by a single-stage FCFF model:

VFVV0VV = EBIT1(1 − TcTT )(1 − b)
WACC − g

, (3.20)

and divide both sides by total sales to obtain

VFVV0VV
Sales0

=
EBIT1(1 − TcTT )

Sales0
(1 − b)

WACC − g
(3.21)

= After-tax operating margin(1 − b)
WACC − g

.

Note that the theoretically implied firm value-to-sales ratio is
directly proportional to the firm’s after-tax operating margin. It is
also increasing in the expected FCFF growth rate g. It is decreasing in
the capital reinvestment rate and the weighted-average cost of capital.
Furthermore, the VS multiple will, typically, exceed the PS ratio
provided the firm’s net debt is positive. However, for firms whose
cash balance exceeds their long-term obligations the VS ratio will
be smaller than the PS ratio. Once again, to determine whether the
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firm’s assets are overvalued or undervalued in the marketplace we need
to compare the theoretically implied multiple with the market-based
EV/sales multiple.

Problems

1. Verify that, all else being equal, the PE ratio increases as the
reinvestment rate increases.
2. Verify that, all else being equal, the PB ratio increases as the
reinvestment rate increases, provided that ROE > re.
3. Verify that, all else being equal, the EV/BV ratio increases as the
capital reinvestment rate increases, provided that ROC > WACC.
4. Consider a company with an ROC of 20%, debt–equity ratio of
1:3, after-tax cost of debt of 6%, cost of equity of 18%, a reinvestment
rate of 50%, and an after-tax operating margin of 10%. The marginal
corporate income tax rate is 50%. Based on a single-stage FCFF
valuation model of this firm, determine what the following value
multiples for this company will be equal to

(a) EV/Book value of capital
(b) EV/Sales
(c) EV/EBIT(1−t)
(d) EV/EBIT



4

Financial Options

4.1 Equity Calls and Puts

A call option on a stock entitles the owner to buy the stock at
a prespecified price at or before the maturity of the option. This
prespecified price at which we can acquire the underlying stock is
usually called the exercise price or the strike price. Conversely, a put
option on a stock entitles the owner to sell the stock at the strike price
at or before maturity of the option. Options that can only be exercised
at their maturity dates are referred to as European while options that
can be exercised at any time before or at their maturity dates are called
American.1

A stock option is a legal contract that is essentially a side bet
between the buyer and the seller. It has several key quantities that
drive the value of the option, namely, the exercise price or the strike
price, the time until maturity, and the exercise style. In addition, the
prevailing risk-free rate of return as well as the current price and the
volatility of the underlying stock price complete the list of variables
that determine the value of the option.

After an option has been created, the underlying stock price will
typically move around relative to its initial value at inception. The
relative position of the current price level of the underlying stock to the
strike price determines the moneyness of the option. In particular, call
options for which the current stock price, St, exceeds the strike price,
X, are referred to as being in the money. Similarly, put options for
which the current stock price is exceeded by the strike price are also
referred to as being in the money. The opposite of an in-the-money
option is an option that is out of the money. Finally, if the current
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price of the underlying stock is exactly equal to the strike price
then both the call and put options with that strike price will be at
the money.

The monetary payoff to a call option, CT, and a put option, PT,
that the holder is entitled to receive whenever they are exercised at the
maturity date T is as follows:

CT = max(ST − X,0),

PT = max(X − ST,0).

Figure 4.1 plots the payoff to a European call and put option from
the perspective of both the buyer and the seller. A buyer of an option is
referred to as being long the option while the option seller is referred to
as being short the option. To a buyer, an option delivers a nonnegative
payoff that is strictly positive over an extended range of values of the
underlying stock price. It is clear that such an asset will command a
positive price at inception. Conversely, an option seller is faced with
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Figure 4.1 Payoff diagrams of call/put options long/short positions.
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a nonpositive payoff at the maturity of the option and, thus, the seller
will have to be compensated at the inception of the option. Hence,
it is clear that options command a positive value at inception. One
peculiar difference between call and put options from the point of
view of a seller is that a short call option can have, in theory, an
unbounded liability to the seller while a short put option has a limited
downside as the underlying stock price can be only as far down as
zero (assuming the stock is a limited liability asset). Note also that a
long option position is a right but not an obligation, i.e., exercising a
call that is out of the money is tantamount to throwing away money
and is strictly dominated by letting the option to expire worthless.
A seller on the other hand may have a contingent liability when the
option is in the money at maturity and is forced to deliver or purchase
the underlying stock at the prespecified strike price precisely at the
point in time when that would lead to a negative payoff to the option
seller. The compensation for this to the option seller is the option price
received at the inception of the option.

The below table summarizes the rights and contingent obligations
to the two counterparties of an option contract:

Buyer Seller

Call option Right to buy asset Obligation to sell asset
Put option Right to sell asset Obligation to buy asset

The maturity payoffs of the options depicted above are referred
to as the intrinsic value of the options.2 By now it should be clear
that inception options have a positive value and, hence, command a
positive price in the option market. The difference between the option
market price and the option’s intrinsic value is known as the time
value of options.3 A more intuitive way to think about the time value
of options is that it represents the extra value received because of the
risk that the underlying stock price will move by the time we exercise
the option at or before maturity of the option.

Table 4.1 presents some data on listed call options4 on shares of
Microsoft as of December 13, 2005 when the prevailing price per
share of Microsoft was $27.45. It is left as an exercise for the reader
to determine which options are in the money and what their payoffs
would be upon exercise. It is clear that the higher the exercise price
is the lower the value of the call option is going to be. Having a
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Table 4.1 Call options on Microsoft (Dec. 13, 2005, expire on Friday,
Dec. 16, 2005, maturity = 3 days)

Symbol Strike Price Last Volume Open Interest

MQFLA.X 5.00 22.90 43 43
MQFLU.X 7.50 20.40 43 400
MQFLB.X 10.00 17.60 936 417
MQFLV.X 12.50 15.50 400 400
MQFLC.X 15.00 13.00 99 99
MQFLW.X 17.50 10.30 65 65
MQFLD.X 20.00 7.50 6 261
MSQLX.X 22.50 5.30 1 1,200
MSQLJ.X 25.00 2.45 752 28,264
MSQLY.X 27.50 0.15 6,471 73,943
MSQLK.X 30.00 0.05 70 33,763
MSQLZ.X 32.50 0.05 1 22

Source: http://finance.yahoo.com/q/op?s=MSFT

Table 4.2 Put options on Microsoft (Dec. 13, 2005, expire on
Friday, Dec. 16, 2005, maturity = 3 days)

Symbol Strike Price Last Volume Open Interest

MQFXA.X 5.00 0.00 0 0
MQFXU.X 7.50 0.00 0 0
MQFXB.X 10.00 0.00 0 0
MQFXV.X 12.50 0.00 0 0
MQFXC.X 15.00 0.00 0 0
MQFXW.X 17.50 0.00 0 0
MQFXD.X 20.00 0.00 0 0
MSQXX.X 22.50 0.05 20 13,041
MSQXJ.X 25.00 0.05 1 10,327
MSQXY.X 27.50 0.20 1849 22,589
MSQXK.X 30.00 2.60 326 3,080
MSQXZ.X 32.50 4.70 20 0

Source: http://finance.yahoo.com/q/op?s=MSFT

Note: MSFT’s stock price before the NYSE open on Dec. 13, 2005 was $27.45.

right to buy the same asset at a higher prespecified price will be
worthless. Conversely, having the right to purchase the underlying
security cheaper will be worth more.

Table 4.2 presents the last prices of put options on Microsoft shares
at various strike prices. As can be readily seen put options with higher
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strike prices tend to be worth more compared to put options with
lower strike prices.

It is also instructive to take a look at the available put options on
shares of Microsoft and their prices prevailing on December 13, 2005.

4.2 Examples of Option Strategies

4.2.1 A Protective Put Strategy

Consider the goal of protecting the value of a risky asset, that is,
in–out possession. In particular, suppose we are long a stock and we
are concerned with a fall in value below a certain number, say $55
per share. One way to achieve such a minimum value is to essentially
purchase insurance, in the form of a put option, with a strike price
of $55. Therefore, the protective put option strategy will consist of
buying one share of stock and one put option on that stock with
strike price of $55. The below table depicts the value of the combined
position at the maturity of the put option:

Stock Price < $55 Stock Price ≥ $55

Value of stock Stock price Stock price
Value of put option $55− Stock price 0

Total value $55 Stock price

Note that we have effectively managed to remove the downside
risk at, potentially, a considerable cost depending on the current value
of the put option. The payoff of the protective put strategy at the
maturity of the put option is depicted in Figure 4.2.

4.2.2 A Straddle Example

The protective put option strategy we have just considered gives rise to
an even better and more expensive strategy. We know from previous
sections that the payoff of a call option is increasing the underlying
stock price at the maturity of the call option. Consider taking the
protective put option example we have just considered and adding a
call option on the same stock and with the same maturity date and a
strike price of $55. This type of strategy will have a strictly positive
payoff at the maturity of both options as long as the underlying stock
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Figure 4.2 Payoffs of protective put.

price finishes away from $55 on the maturity date. This type of an
option strategy is referred to as a straddle. It is clearly a profitable
strategy as long as the underlying stock price is volatile. It represents
an almost certain way of profiting from volatility.

Building on the protective put example from the previous
subsection, consider buying one call option with a strike price of $55
and one put option with a strike price of $55 as well as one share of
stock. Figure 4.3 depicts the payoffs of the two options as well as the
profit of the straddle strategy at the maturity of the options.

Note that the payoff of the straddle strategy is always nonnegative
but the profit can turn negative if the underlying stock price does not
move sufficiently away from the common strike price of the call and
the put. In particular, the stock price has to move further away from
the strike by an amount equal to the combined purchase cost of the
call and the put option in order for the profit to turn positive.

This strategy will have a higher likelihood of turning in a positive
profit during particularly volatile times or especially for volatile
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Figure 4.3 Payoffs of straddle option strategy.

stocks. Conversely, in a sideways market when volatility is low one
may consider taking the opposite side and selling the straddle. Note,
however, that this is especially risky in case the underlying stock price
has a sudden large move and either of the two options will trigger a
contingent obligation to deliver the underlying stock at a loss to the
straddle seller.

4.2.3 A Butterfly Example

Consider now a combination of three options with three different
strikes. For the purposes of this example, we will take three options
with equally spaced strike prices. Consider call options first. If we
purchase the call with the smallest strike and the one with the largest
strike while selling two calls with the intermediate strike price, we can
deliver a nonnegative payoff at maturity which is strictly positive in
the range of values of the underlying strike price in between the two
outermost strikes. In order to avoid an arbitrage opportunity, such an
option combination has to attract a positive cost of out pocket at the
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Figure 4.4 Payoffs of butterfly option strategy (calls).

time we put the butterfly strategy in place. The same ideas work if we
replace the call options with put options.

Figure 4.4 plots the payoff and profit of a butterfly strategy using
call options with strike prices of 50, 55, and 60. In order to obtain
the butterfly payoff, we need to purchase 50 and 60 calls and sell 2
of the 55 calls. This produces a nonnegative payoff at the maturity of
the call options which is strictly positive when the underlying stock
price finishes up anywhere between 50 and 60 at the maturity of the
options.

Figure 4.5 depicts the payoff and profit of the butterfly strategy
implemented with put options with strike prices of 50, 55, and 60.
The logic of the butterfly strategy with puts is the same as the butterfly
strategy with calls. Note that the net payoff is identical to the one that
obtains with call options.

The intuition behind the absence of arbitrage condition on the three
call options and the three put options that are part of the butterfly
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strategy is a simple statement about the convexity of the option value
as the underlying stock price changes at the maturity of the options.
Convexity requires that the average price of the 50 and 60 call (put)
must exceed the actual price of the 55 call (put). If the opposite holds,
then the option value is no longer convex but is instead concave which
makes no sense given the convex piecewise linear payoffs of call and
put options.

4.3 Option Valuation

There are two primary methods for option valuation. One involves
continuous time mathematics and stochastic processes while the other
one involves binomial trees. The latter is more intuitive and allows us
to value some options that are impossible to value in the continuous
time framework, so we will focus primarily on the binomial option
pricing method in this section. The limit of the binomial option pricing
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method as the length of the time interval decreases to zero does lead
to the continuous time limit, so there is no loss of generality.

4.3.1 Bounds on Option Values

Before we proceed to formally derive option values, it is worthwhile
to consider some rough bounds on the values of options. Let us first
consider the case of call options. It is clear from the terminal payoff
that when the stock price is worthless at the maturity of the option,
the option will be worth nothing as well. At the opposite extreme,
when the stock price becomes extremely expensive the option is worth
approximately the stock price minus the present value of the strike
price. The option value prior to maturity always exceeds the terminal
payoff though sometimes the time value can be quite small when the
option is out of the money. Furthermore, it makes sense that the longer
we have this valuable right for, the more valuable the right will be.
Similarly, if the underlying stock price is very volatile it gives us a
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bigger chance of maturing deep in the money and, hence, delivering a
large terminal payoff. Therefore, it stands to reason that options on
more volatile stocks will be worth more.

Figure 4.6 illustrates some of these limiting values by plotting the
value of a call option at inception versus its intrinsic value at maturity
as a function of the terminal stock price.

Furthermore, it should be clear from the call option payoff that
if the strike price increases then the call option is worth less. This
makes perfect sense if we recall that this situation involves having a
right to acquire the underlying stock at a higher prespecified price
so such a right will be worth less to use today than an otherwise
comparable right allowing us to acquire the asset for less. What is less
obvious is that when interest rates increase this renders call options
more valuable.

The sensitivity of put option values to time to maturity and stock
price volatility is identical to the same sensitivities for call options.
All the other sensitivities of put option values are the opposite of the
sensitivities of call option values. We will soon be able to formally
prove all of these claims.

Before we continue to the option valuation stage, it is worthwhile
to consider the wide array of financial assets with various degrees of
explicit or implicit optionality built into them. Plain vanilla call and
put options are side bets and do not involve changing the number of
underlying shares of stock. However, warrants work just like calls and
put but involve instead a change in the number of shares issued and
outstanding. Furthermore, corporate bonds can be callable or puttable
(or both) as well as convertible into shares of common stock in the
same company. A mortgage that can be prepaid essentially contains a
put option on behalf of the mortgagee. Furthermore, a wide variety of
more general decisions involve options that are termed real options.
These include, but are not limited to, the option to expand, the option
to abandon, the option to vary capacity, etc. We shall encounter all
of these options later on and try to figure out a way to determine the
value of all of them.

4.4 Option Pricing

The basic idea underpinning binomial option pricing is quite simple
and intuitive. Essentially, we are going to price the derivative security
as a redundant security by constructing a replicating portfolio that is
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a perfect hedge for the value of the derivative. Then we are going to
argue that the value of the derivative today has to be equal to the value
of the replicating portfolio today. Any other derivative value will lead
to an arbitrage opportunity which will allow an arbitrageur to create
a risk-free profit opportunity. The replicating portfolio will consist of
buying and selling the underlying security and risk-free borrowing or
lending as the case might be.

Let us start with the simplest two-date two-state version of the
binomial option pricing model. Consider a risky stock that is currently
trading at $100 at t = 0 and will have a market value of either $200
in the up state or $50 in the down state at t = 1. Similarly, we observe
a one-period zero-coupon risk-free bond with a face value of $100
payable at t = 1 and currently trading at $90 at t = 0. We are trying to
construct a portfolio that has to replicate the payoffs of a call option
on the stock with a strike price of $100. The values and payoffs of all
three securities are as follows:

Stock Call Option Strike = $100

$200 $100
↗ ↗

$100 ?
↘ ↘

$50 $0

Bond

$100
↗

$90
↘

$100

In order to do this, we need some notation. Let NSN be the number
of shares of stock in the replicating portfolio and NBN be number of
bonds that we will use in replicating the option’s payoffs. A perfect
replicating portfolio is one that has the exact same values in both states
at t = 1 as the call option we are trying to price. This leads us to the
following system of linear equations we need to solve:

200 × NSN + 100 × NBN = 100,

50 × NSN + 100 × NBN = 0.

The solution is given by NSN = 2
3 and NBN = − 1

3 . In other words, in
order to replicate three options, we need to buy two shares of stock
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and sell one bond. Note that the replicating portfolio involves leverage
and consists of buying the risky underlying stock partially funding the
purchase with risk-free borrowing. This is the general result for all
plain vanilla call options.

The value of the call option today at t = 0 must equal the value of
the replicating portfolio at t = 0 or

Call option value0 = 100 ×
(

2
3

)
+ 90 ×

(
−1

3

)
= 36.67.

The value of the call option cannot be higher. Suppose for the sake
of argument that the call option was trading at $40. In this case, we
can sell the call option and invest $36.67 in the replicating portfolio
at t = 0. We liquidate the replicating portfolio at t = 1 and make the
required payoffs. This means we had a risk-free profit at t = 0 equal
to $3.33. We can argue in a similar fashion that the value of the call
option cannot be lower than $36.67. Suppose that the market value
of the call was $35. Then we can buy the call option and sell the
replicating portfolio. At t = 1, we collect the option payoffs and cover
perfectly any liabilities arising from selling the replicating portfolio.
Hence, we have made a risk-free arbitrage profit of $1.67. The only
value for the call option at which this arbitrage profit opportunity
disappears is the value of the replicating portfolio.

Consider next how we would value a put option with a strike
price of $100 written on the same stock as the call option we priced
previously. The payoffs of all three securities are stated as follows:

Stock Put Option Strike = $100

$200 $0
↗ ↗

$100 ?
↘ ↘

$50 $50

Bond

$100
↗

$90
↘

$100

Let us construct a system of two equations again using both the
stock and the risk-free bond that replicates the value of the put option
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exactly in both states of the world at t = 1:

200 × NSN + 100 × NBN = 0,

50 × NSN + 100 × NBN = 50.

The solution in this case is given by NSN = −(1/3) and NBN = +(2/3).
This means that in order to replicate 3 put options we need to sell
short 1 share of stock and buy 2 bonds. Replicating the payoff of the
put option involves selling short the underlying security and investing
the proceeds of the short sale at the risk-free rate. Note that the
replicating portfolio for put options is quite different from the one
for call options. The value of the put option today must be equal to
the value of the replicating portfolio:

Put option value0 = 100 ×
(

−1
3

)
+ 90 ×

(
+2

3

)
= 26.67.

Now we are in a position to evaluate the cost of the option
strategies mentioned in the previous section. For example, investing
in a protective put option strategy will cost us $26.67. Investing
in a straddle volatility bet (buying 1 call and 1 put) will cost us
$36.67 + $26.67 = $63.34.

Armed with the option replicating portfolio, it is easy to see how
useful it can be for risk-management and hedging purposes. If an
investor owns an option and needs to unload the entire risk of the
option, then all that she needs to do is to sell the underlying replicating
portfolio. The remaining position will be risk-free and will yield
risk-free rates of return.

In theory, we can also use the expected NPV rule to figure out
the price of an option. However, we would need to know the right
risk-adjusted discount rate. This gets even more complicated as the
discount rate changes over the life of the option as the replicating
portfolio becomes dynamic. The discount rate also changes as the
underlying asset value changes.

In order to gain more intuition into the pricing of options, we
introduce a bit more notation. Suppose that the value of the market
value at t = 0 of the risky underlying security is equal to S0, the
risk-free zero-coupon bond’s value is B0, and the option value is O0.
The risk-free interest rate per period is given by R. Over the next
period, the stock price can go up by U percent in the “up” state of
the world or it can go down by D percent in the “down” state of
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the world. The values and payoffs of all three securities are illustrated
below:

Stock Option

S0(1+ U) OU
↗ ↗

S0 O0 =?
↘ ↘

S0(1+ D) OD

Bond

B0(1+ R)
↗

B0
↘

B0(1+ R)

At this level of generality, a very important point needs to be made
that we are not entirely free in our choice of values, particularly, the
values of U, D, and R. We need to make sure that there is no arbitrage
built into the model of the stock price and the bond price before we
can even price the option. To see this, suppose that U > D > R. In this
case, the returns of the risky security always exceed the risk-free rate
in both states of the world. Hence, an arbitrage trade would involve
borrowing at the risk-free rate, i.e., selling short the zero-coupon
risk-free bond, and investing the proceeds in the risky stock. This trade
is guaranteed to make money and is self-financing in that we do not
risk any of our own money. Hence, this particular inequality for the
parameter value is not arbitrage-free. Next, suppose that R > U > D.
In this case, the return of the risk-free bond dominates the returns of
the risky security in both states of the world. An arbitrage strategy
here would involve selling short the risky underlying security and
investing the proceeds in the risk-free bond. We are guaranteed to
make a profit in both states of the world and, once again, we are
not risking anything. Therefore, this inequality is also untenable. The
only viable arbitrage-free condition for the parameters of the binomial
option pricing model is the following:

U > R > D.

Proceeding under the assumption that all our binomial option
pricing models will have to fulfill the above condition, we continue
with the setup of a replicating strategy in this more general case. Once
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again, we require that the replicating portfolio matches exactly the
payoffs of the option in the up state, OU, as well as the down state,
OD. This leads to the following system of linear equations for NSN
and NBN :

S0(1 + U) × NSN + B0(1 + R) × NBN = OU, (4.1)

S0(1 + D) × NSN + B0(1 + R) × NBN = OD. (4.2)

The solution is now given by

NSN = OU − OD

S0(U − D)
, (4.3)

NBN = OD(1 + U) − OU(1 + D)
B0(1 + R)(U − D)

. (4.4)

Using these values for NSN and NBN to evaluate the current value of the
replicating portfolio at t = 0, after certain simplifications, leads to the
following result:

O0 =
(

1
1 + R

)[(
R − D
U − D

)
× OU +

(
U − R
U − D

)
× OD

]
, (4.5)

which, after some additional notation, becomes more familiar:

O0 =
(

1
1 + R

)
(p	 × OU + (1 − p	) × OD), (4.6)

where p	 is the risk-neutral probability:

p	 = R − D
U − D

. (4.7)

As long as U > R > D (out initial requirement on the model), then
we have that

0 < p	 < 1,

and the risk-neutral probability is a proper probability.
Another concept that is sometimes useful in option pricing and,

more generally, in asset pricing, is the state price today at t = 0 of
$1 to be received at some state in the future. In the context of our
two-state single-period model, we can define PV$1U as the price today
at t = 0 of $1 receivable in the up state only at t = 1. Similarly, define
PV$1D as the price today at t = 0 of $1 receivable in the down state
only at t = 1. We can then reexpress the value of any option today as
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follows:

O0 = PV$1U × OU + PV$1D × OD, (4.8)

where

PV$1U =
(

1
1 + R

)
p	, (4.9)

PV$1D =
(

1
1 + R

)
(1 − p	). (4.10)

Next, we turn out attention to multiperiod binomial option pricing.
For ease of illustration, we shall focus on a three-date, three-state,
two-period model and mention how the idea generalizes to any
number of periods. Consider first a numerical example where the
risky security can increase by 50% (U = 0.5) or decrease by 25%
(D = −0.25) and the risk-free rate per period is 12.5% (R = 0.125).
The initial stock price is $100, the bond price at t = 0 is $80, and we
have to price a European put option on the stock with a strike price of
$120 (X = 120) and two periods to maturity. The values and payoffs
of all three securities are illustrated below:

Stock Option

$225 $0
↗ ↗

$150 ??
↗ ↘ ↗ ↘

$100 $112.5 ? $7.5
↘ ↗ ↘ ↗

$75 ???
↘ ↘

$56.25 $63.75

Bond

$101.25
↗

$90
↗ ↘

$80 $101.25
↘ ↗

$90
↘

$101.25
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It is easy to verify that for this model the risk-neutral probability
is equal to 50% in either state and that both state prices are equal
to 4/9:

p	 = 0.5 PV$1U = 4
9 ,

1 − p	 = 0.5 PV$1D = 4
9
.

The first step in this multiperiod binomial option valuation is to apply
the two-period result in reducing the t = 2 put option payoffs to values
at t = 1 as follows:

Stock Option

$225 $0
↗ ↗

$150 $3.33
↗ ↘ ↗ ↘

$100 $112.5 ? $7.5
↘ ↗ ↘ ↗

$75 $31.67
↘ ↘

$56.25 $63.75

The final step involves taking the t = 1 put option values and
applying the two-state valuation formula to arrive at the t = 0 value
for the European put option:

Stock Option

$225 $0
↗ ↗

$150 $3.33
↗ ↘ ↗ ↘

$100 $112.5 $15.55 $7.5
↘ ↗ ↘ ↗

$75 $31.67
↘ ↘

$56.25 $63.75

One possibility of obtaining better and better approximations is to
continue subdividing into more and more subperiods holding the time
to maturity fixed. In the limit, when we have continuous trading there
is a closed-form formula for the valuation of European calls, Ct and
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puts, Pt due to Black and Scholes (1973):

Ct = StN(d1) − Xe−r(T−t)N(d2),

Pt = Xe−r(T−t)N( − d2) − StN( − d1),

where St is the current underlying stock price, X is the exercise/strike
price, r is the risk-free rate, T is the point in time of maturity, T − t
is referred to as time to maturity, and N(·) is the cumulative standard
normal distribution. The definitions for the remaining terms are as
follows:

d1 =
ln
(

St

X

)
+
(

r+ 1
2

σ 2

)
(T− t)

σ
√√

(T− t)
,

d2 = d1 −σ
√

(T− t),

N( − d1) = 1 − N(d1),

N( − d2) = 1 − N(d2),

where σ is the standard deviation of the continuously compounded
stock return. Note that the expected stock return never appears in any
of these formulas. The reason for this is that the replicating portfolio
argument builds a perfect hedge leaving no residual risk.

The power of the binomial option pricing model is illustrated when
considering the pricing of American-type exercise options for which
no formula can be obtained in continuous time. Nevertheless, such
options are straightforward to price in the binomial framework. To
continue with our previous put option example, suppose that we can
now exercise the put early if it is beneficial to us. The payoffs and
values of the American put are illustrated below:

Stock Option

$225 $0
↗ ↗

$150 $3.33
↗ ↘ ↗ ↘

$100 $112.5 $21.48 $7.5
↘ ↗ ↘

$75 $45
↘

$56.25
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Note that the early exercise in the down state at t = 1 is the end
of life for the American put and there are no further payoffs. In
the up state in the middle date, however, it is worthwhile to keep
the American put alive. The difference between the values of the
otherwise identical American and European put is sometimes referred
to as the early exercise premium, which in this case is equal to
$21.48 − $15.55 = $5.93. The longer the time to maturity of the
American put, the greater the early exercise premium.

The primary reason we are able to construct a perfect replicating
portfolio and a beautiful formula like the Black and Scholes (1973)
result is that we are operating in a complete market. What this
means is that we have two securities and two states of the world.
The returns of the two securities are linearly independent. This
property of the market will let us match any possible payoff that
is a function of the terminal stock price or, in fact, the entire
path of the evolution of the stock price. There is a very important
theorem in finance called the fundamental theorem of asset pricing
which states that the following four claims are equivalent: (1) asset
markets are arbitrage-free, (2) asset markets are complete (in the sense
mentioned previously), (3) there exist unique risk-neutral probabilities
(p	

s ), and (4) there exist positive state prices (PV$1s). The proof of
this theorem is beyond the scope of this text but we can make ample
use of it in building binomial trees. All we need to do to insure
that there is no arbitrage built into the binomial model from the get
go is that the risk-neutral probabilities are proper probabilities, i.e.,
0 < p	 < 1, or that the state prices are strictly positive and sum up to at
most 1.

Problems

1. Consider the Microsoft call and put options in Tables 4.1 and 4.2,
respectively. Assume that they are European and that you can freely
trade at the last price listed. Try to find an arbitrage with triplets of
consecutive strike prices based on the notion that a butterfly option
strategy has to have a strictly positive price at inception.
2. In the context of the single-period binomial option pricing
valuation approach, a stock is currently trading at 6 and will be worth
either 9 or 4 next year. A quadratic derivative with 1 year to maturity
has a terminal payoff of O1 = (S1)2 next year. Find the replicating
portfolio of this quadratic derivative.
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3. Shares in stock A are currently trading at 50 and call option written
on A with a strike price of 21 is currently trading at 36. Stock A
is expected to be worth either 90 or 40 next year. Find the 1-year
risk-free interest rate.
4. Consider the following incomplete market example. A stock
currently worth 100 is going to be worth either 120 or 80 in the next
period. Based on a superreplicating and a subreplicating portfolio, find
the lowest and the highest feasible values of the risk-free rate.
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Real Options

5.1 Equity and Bond Pricing as Options on Assets

Suppose that the assets of the firms follow a two-state binomial model:

Assets

110
↗

100
↘

90

The one-period risk-free rate is 5%. It is straightforward to show that
p	

u = 0.75 and p	
d = 0.25. The company has a zero-coupon bond with

one period to maturity and face value of 100. Given the possible asset
values, the payoffs to the corporate bond are

Corporate bond

100
↗

92.86
↘

90

The value of the corporate bond today is(
1

1.05

)
(0.75 × 100 + 0.25 × 90) = 92.86 (5.1)
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and has a yield to maturity of 7.69% (a default premium of 2.69%).
The company also has equity outstanding, the payoffs for which are
given as follows:

Equity

10
↗

7.14
↘

0

The value of the equity today is(
1

1.05

)
(0.75 × 10 + 0.25 × 0) = 7.14. (5.2)

Note that the sum of the values of equity and the corporate bond
(92.86 + 7.14) is exactly equal to the value of assets today (100).

Increasing the risk-free interest rate from 5% to 6% leads to a
corporate bond value today that is reduced to 92.45, a yield to
maturity of 8.16%, and a default premium of 2.16%. Equity value
today increases to 7.55. Alternatively, increasing the asset variance
(value up is 120, value down is 80) leads to a reduced corporate bond
value today of 88.10 leading to a yield to maturity of 13.51% and a
default premium of 8.51%. The new equity value today increases to
11.90.

One could calculate and estimate alternative sensitivities, which
can be a little counterintuitive when compared to the DCF valuation
paradigm. For example, a small increase in the risk-free interest rate
will make the stock worth more today and the corporate bond worth
less. Similarly, extending the life of the assets to two periods will
increase the value of the stock since it is effectively a call option
and decrease the value of the corporate bond. The promised yield to
maturity of the corporate bond can go either way though depending
on the face value relative to the specific asset values in the future states
of the world.

5.2 Pricing Convertible Bonds

Suppose that the assets of the firm are driven by a two-state binomial
model and the risk-free rate of interest is equal to zero.
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Assets

120
↗

100
↘

80

In this case the asset return in the up state is equal to 0.2, or 20%,
while the asset return in the down state is equal to −0.2, or −20%. As
the risk-free rate is equal to 0, then it is straightforward to show that
p	

u = 0.5 and p	
d = 0.5. The company has a zero-coupon convertible

bond with one period to maturity and face value of 100. The bond
is convertible into 11 shares of common stock at the maturity of the
bond at the option of the bondholder. If we assume initially that there
is no conversion, then the payoffs of the corporate bond are 100 in the
up state and 80 in the down state. The value of the corporate bond
today is(

1
1 + 0

)
(0.5 × 100 + 0.5 × 80) = 90. (5.3)

The yield to maturity of the bond is equal to 11.11% resulting in a
default premium or a credit spread of 11.11%.

Next, we consider the case where bondholders convert their
corporate bonds whenever it is beneficial to them. Note that in the
down state the equity is worthless so bondholders will not convert.
However, in the up state it is optimal for them to exercise the
conversion option even in the face of a dilution of the value of equity.
In this case, the payoffs to the convertible corporate bond are 110
in the up state as bondholders convert and 80 in the down state as
bondholders do not convert as follows:

Corporate bond

100
↗

95
↘

80

The value of the convertible corporate bond today is(
1

1 + 0

)
(0.5 × 110 + 0.5 × 80) = 95, (5.4)
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resulting in a yield to maturity equal to 5.26% and a default premium
or a credit spread of 5.26%.

The company also has equity outstanding, the payoffs for which
are given as follows:

Equity

20
↗

10
↘

0

The value of the equity today, assuming no conversion, is(
1

1 + 0

)
(0.5 × 20 + 0.5 × 0) = 10. (5.5)

The value of the equity today with optimal conversion by the
bondholders is(

1
1 + 0

)
(0.5 × 10 + 0.5 × 0) = 5. (5.6)

Note that the sum of the values of equity and the convertible
corporate bond (95+5) is exactly equal to the value of assets
today (100).

5.3 Option to Wait

Suppose that installing a solar panel today at t = 0 on the roof of
your house costs 4000. Next year, the expected savings from this
investment can be either 300 or 100 with equal probability. For
simplicity, we assume that those savings will be realized in perpetuity.
The opportunity cost of your capital is 5% and, hence, the DCF value
of investing immediately is given by

0.5 × 300
0.05

+ 0.5 × 100
0.05

− 4000 = 0. (5.7)

Hence, we might be indifferent between investing or not investing
at time period 0.

Next, consider waiting until next year and deciding whether to
invest or not at t = 1 depending on the expected cost savings realized
at that point in time. The benefit of this is that you will know for
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sure whether the expected cost savings are equal to 300 or 100. For
simplicity, assume that the cost of the solar panel is the same next year
(this is not a critical assumption). We realize that it does not pay to
invest in the solar panel if the expected cost savings are equal to 100
as the DCF value then is equal to

100
0.05

− 4000 = −2000 < 0. (5.8)

However, it does pay to invest in the up state as the DCF value then
is equal to

300
0.05

− 4000 = 2000. (5.9)

The value of this optimal strategy as of time t = 0 is equal to

0.5 × 2000
1.05

= 952.38. (5.10)

This is the value today of the optimal real option to wait until you
invest. As an exercise, you should consider the more general optimal
investment timing problem where the expected savings at time period
t = 2 are either 400, 200, or 0 with 25%, 50%, and 25% probability,
respectively. You should be able to conclude that, from the point of
view of t = 0, it is optimal to wait only one period before you decide
whether to invest. Waiting 2 years is suboptimal as the increased in
expected savings are outweighed by having to wait for two periods
before investing. Note also that considering the value of the option to
wait gives us a considerably different value of this investment project
compared to the DCF net present value.

5.4 Option to Abandon

Consider an asset with an uncertain future value. An abandonment
option is effectively a put option allowing the holder to sell the
underlying asset for a prespecified strike price up until a certain future
date. Let us illustrate this with a specific example. Suppose that the
future evolution of the asset price follows the following two-period
binomial tree. For simplicity, let the physical or objective probability
of each branch in the tree be 50%.
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Asset

$400
↗

$200
↗ ↘

$100 $100
↘ ↗

$50
↘

$25

Imagine that the owner of the asset is in a position to sell the asset
at any point in time for $100. The owner has a cost of capital of
25%. When would she like to exercise her abandonment option and in
what states of the world? A cursory look at the binomial tree reveals
that the abandonment option is in the money in the middle period
and down state of the world when the asset value is $50 as well as
in the last period when the asset value is $25. However, it is not
immediately clear which of the two alternatives yields a higher present
value. Exercising as soon as it is profitable to do so leads to a higher
present value. At the same time, waiting longer before exercising can
generate a potentially higher payoff albeit at a later point in time. In
order to trade these two opposing forces off, we need to consider the
present values of both scenarios.

Suppose first that the asset owner exercises the abandonment
option when the asset value is $50. This leads to probability-weighted
present value of

1
2

× (100 − 50)
1.25

= 20. (5.11)

The second alternative would be to wait for two periods on the off
chance that the asset value drops to $25. The probability-weighted
present value of this alternative course of action is

1
4

× 100 − 25
(1.25)2

= 12. (5.12)

Clearly, when the cost of capital is as high as we assumed in
this example, the asset owner would be induced to act quickly and
exercise the abandonment option as soon as it is in the money. All
other things being equal, asset owners will lower opportunity costs
of capital will tend to wait longer. Note also how the intuition
we have developed about option values carries over to real option
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values as well. More volatile asset values will result in more valuable
abandonment options, etc.

Problems

1. Blacksnake Corp. currently has assets with a market value of 142.
Next year, the market value of Blacksnake’s assets is going to be equal
to 160, 100, or 40 depending on the state of the economy. At the same
time, the current value of a stock market index is 1460. Next year, the
stock market index will have a value of 1600, 1000, or 800, depending
on the state of the economy. The annual risk-free rate of interest is
0%. Blacksnake Corp. has one equity share issued and outstanding as
well as one zero-coupon corporate bond outstanding with a face value
of 90 which matures next year. Find the value today of Blacksnake’s
corporate bond and equity share.
2. Distress, Inc. currently has assets with a market value of 100. Next
year, the market value of the assets of Distress, Inc. is going to increase
by 25% or decrease by 25% depending on the state of the economy.
The annual risk-free rate of interest is 0%. Distress, Inc. has one equity
share issued and outstanding as well as one zero-coupon corporate
bond outstanding with a face value of 100 which matures next year
and is callable by the firm next year at a call price of 99.

(a) Find the value today of the corporate bond of Distress, Inc.
(b) Suppose the creditors of Distress, Inc. manage to convince

management to remove the callable feature of the corporate
bond and make the bond instead convertible into four shares of
common stock. Find the loss of value to the initial shareholders
of Distress, Inc.

3. You have just bought a brand-new 2013 model Fiat Cinquecento
for $10,000. The resale market value of the car is expected to either
increase by 20% or decrease by 20% in every subsequent year with
equal probability. The car dealer also offered you a free abandonment
option to sell the vehicle back to them for $8,000 at any point in time
during the next 2 years. Determine whether and/or when you will
optimally exercise this abandonment option.
4. You can insulate your house at a cost of $5,000. The expected
savings to your electricity bill are going to be either $2,000 per year
in perpetuity or $0 per year in perpetuity. From today’s point of view,
the probability of either event is 50%. However, by waiting 1 year,
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you will find out the expected value of the savings with certainty.
Your opportunity cost of capital is 25%. Find out the value today of
the option to wait before deciding whether to proceed with insulating
your house next year.
5. RealOption, Inc. has identified a project that will cost $100,000 to
invest in. The expected free cash flows to the firm are going to be either
$27,500 per year in perpetuity or $12,500 per year in perpetuity.
From today’s point of view, the probability of either event is 50%.
However, by waiting 1 year, the firm will find out the expected value
of the cash flows with certainty. The opportunity cost of capital for
RealOption, Inc. is 20%. Find the value today of the option to wait
before committing to a course of action next year.
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Fixed Income Securities

Fixed income securities have historically provided a finite or an
infinite stream of a constant periodic payment. They are essentially
an obligation on part of the issuer to continue making the periodic
payment in good faith. Typically, these were and are to this day
issued by sovereign entities and, more recently, by corporations. Over
time, these instruments have evolved and many of them no longer
provide a fixed periodic payment per se but a floating payment that
is tied to the prevailing level of interest rates. More exotic variants
exist which make the periodic payment vary inversely with the general
level of interest rates. In the case of fixed income securities issued by
a sovereign entity denominated in local currency, these securities are
considered “risk-free” in the sense that the sovereign entity can always
either increase its local currency money supply or raise more money
via additional taxes with which to cover its obligation. Nonsovereign
issuers do not have this luxury and have to generate extra earnings or
sell valuable assets in order to meet their obligations or default giving
risk to credit risk. Occasionally, a sovereign issuer will denominate its
bonds in a currency other than its own which also raises the issue of
credit risk via its potential inability to raise sufficient foreign exchange
with which to meet its foreign currency obligations.

6.1 Bond Characteristics

A bond generally has several key characteristics. These include a face
value, a periodic coupon, a prespecified maturity, and a number of
indentures. These latter effectively limit what the issuer is allowed
to do with the funds obtained from the bondholder. In addition, for
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Table 6.1 US Treasury STRIPS

Issue Price YTM (%)

US Treasury Stripped Int. Pmt. 15-Aug-2009 99.95 0.069
US Treasury Stripped Int. Pmt. 15-Nov-2009 99.73 0.280
US Treasury Stripped Int. Pmt. 15-Feb-2010 99.42 0.486
US Treasury Stripped Int. Pmt. 15-May-2010 99.30 0.486
US Treasury Stripped Int. Pmt. 15-Aug-2010 98.84 0.685
US Treasury Stripped Int. Pmt. 15-Nov-2010 98.67 0.686
US Treasury Stripped Prin. Pmt. 15-Feb-2011 98.65 0.615
US Treasury Stripped Int. Pmt. 15-Feb-2011 97.98 0.926
US Treasury Stripped Int. Pmt. 15-May-2011 98.00 0.826
US Treasury Stripped Prin. Pmt. 15-Aug-2011 98.59 0.525
US Treasury Stripped Int. Pmt. 15-Aug-2011 98.19 0.675
US Treasury Stripped Int. Pmt. 15-Nov-2011 97.34 0.915
US Treasury Stripped Prin. Pmt. 15-Feb-2012 97.39 0.825
US Treasury Stripped Int. Pmt. 15-Feb-2012 95.92 1.306
US Treasury Stripped Int. Pmt. 15-May-2012 95.24 1.416
...

...
...

US Treasury Stripped Int. Pmt. 15-Feb-2032 43.39 3.630
US Treasury Stripped Int. Pmt. 15-Feb-2033 43.59 3.460
US Treasury Stripped Int. Pmt. 15-Feb-2035 39.97 3.530
US Treasury Stripped Prin. Pmt. 15-Feb-2036 39.43 3.450
US Treasury Stripped Prin. Pmt. 15-Feb-2037 39.95 3.280
US Treasury Stripped Prin. Pmt. 15-May-2037 39.07 3.330
US Treasury Stripped Int. Pmt. 15-May-2037 38.53 3.380
US Treasury Stripped Prin. Pmt. 15-Feb-2038 39.23 3.230

Source: ValuBond.com via http://finance.yahoo.com on November 30, 2008.

corporate issuers, there may be some hurdle rates specified that the
issuer needs to maintain in order to keep the bond in good standing.

Before we discuss the issue of credit risk, let us first investigate
default-free securities. Table 6.1 reports information about a set of
US STRIPS or zero-coupon US government bonds as of November 30,
2008.

Table 6.2 presents data on US Treasury notes and bonds as of
November 30, 2008.

Table 6.3 presents details about a selected set of corporate bonds
issued by US corporations as of November 30, 2008.

Occasionally, corporate bonds will have a schedule of call dates and
call prices when the issuing corporation has the right to effectively
prepay the corporate bond. Typically, there will be an initial call
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Table 6.2 Prices of US Treasury notes and bonds

Issue Price Yield (%)

T-Note 3.875 15-Jan-2009 98.90 3.918
T-Note 4.750 28-Feb-2009 101.16 4.695
T-Note 2.625 15-Mar-2009 100.75 2.605
T-Note 4.500 31-Mar-2009 101.46 4.435
T-Note 3.125 15-Apr-2009 101.06 3.092
T-Note 4.500 30-Apr-2009 101.74 4.423
T-Note 5.500 15-May-2009 102.27 5.377
T-Note 3.875 15-May-2009 101.57 3.815
T-Note 4.875 15-May-2009 102.01 4.778
T-Note 4.875 31-May-2009 102.15 4.772
T-Note 4.000 15-Jun-2009 101.83 3.928
T-Note 4.875 30-Jun-2009 102.46 4.758
T-Note 3.625 15-Jul-2009 101.85 3.559
T-Note 4.625 31-Jul-2009 102.58 4.508
T-Note 6.000 15-Aug-2009 103.64 5.789
...

...
...

T-Bond 6.250 15-May-2030 137.94 4.531
T-Bond 5.375 15-Feb-2031 125.53 4.281
T-Bond 3.375 15-Apr-2032 108.88 3.099
T-Bond 4.500 15-Feb-2036 117.25 3.837
T-Bond 4.750 15-Feb-2037 122.81 3.867
T-Bond 5.000 15-May-2037 127.43 3.923
T-Bond 4.375 15-Feb-2038 117.19 3.733
T-Bond 4.500 15-May-2038 119.60 3.762

Source: ValuBond.com via http://finance.yahoo.com on November 30,
2008.

protection period of a few years where the bondholder can rest assured
that the bond will not be called. The starting call price is typically par
value plus one coupon payment and decreases as the time to maturity
is neared. At the maturity of the bond the last call price is essentially
the face value of the bond. This kind of feature is useful to corporate
bond issuers in case interest rates decline in the future and they will be
able to refinance the bond. The callable bond feature is effectively an
option to prepay the loan before its maturity. This is a valuable option
and as a result the callable bond will trade at a slightly lower price than
an otherwise equivalent noncallable bond. Note that the notion of a
yield to maturity is not very meaningful for callable bonds. Instead,
practitioners frequently calculate the yield to first call or the yield to
worst (YTW).



Table 6.3 Corporate bonds

Issue Price Coupon (%) Maturity Yield (%) Fitch rating Callable

Dow Chem Co 102.10 5.750 15-Dec-2008 5.632 A No

General Mtrs Accep Corp 101.00 4.500 15-Dec-2008 4.455 CC No

General Mtrs Accep Corp 101.00 4.500 15-Dec-2008 4.455 CC No

Household Fin Corp 102.00 4.125 15-Dec-2008 4.044 AA No

Wachovia Corp 102.02 5.625 15-Dec-2008 5.514 A No

Ford Motor Credit Co

LLC

94.75 5.800 12-Jan-2009 6.121 B No

GMAC LLC 87.00 5.850 14-Jan-2009 6.724 CC No

Federal Natl Mtg Assn 102.44 5.250 15-Jan-2009 5.125 AAA No

Goldman Sachs Group

Inc

102.00 3.875 15-Jan-2009 3.799 AA No

Istar Finl Inc 98.87 4.875 15-Jan-2009 4.931 BBB No

Morgan JP & Co Inc 102.25 6.250 15-Jan-2009 6.112 AA No

Morgan JP & Co Inc

MTN BE

102.12 6.000 15-Jan-2009 5.875 AA No

Westdeutsche

Landesbank NY BRH

101.85 6.050 15-Jan-2009 5.940 AA No

Xerox Corp 103.00 9.750 15-Jan-2009 9.466 BBB No

Usec Inc 100.75 6.750 20-Jan-2009 6.700 CCC No
...

...
...

...
...

...
...

Kraft Foods Inc 100.58 6.875 26-Jan-2039 6.835 BBB No

Verizon Communications

Inc

108.30 8.950 1-Mar-2039 8.264 A No

Georgia Pwr Co 91.27 6.000 1-Sep-2040 6.574 A Yes

Georgia Pwr Co 86.80 5.650 15-Dec-2040 6.509 A Yes

Tennessee Valley Auth 119.75 8.250 15-Apr-2042 6.889 AAA Yes

Texaco Capital Inc 114.00 7.500 1-Mar-2043 6.579 AA Yes

Ford Motor Co Del 23.00 7.750 15-Jun-2043 33.696 CCC No

Pacific Bell 88.25 7.375 15-Jul-2043 8.357 A Yes

US West

Communications Inc

63.00 7.125 15-Nov-2043 11.310 BBB Yes

Wells Fargo Capital XV 102.50 9.750 26-Sep-2044 9.512 AA Yes

Ford Motor Co Del 26.00 7.400 1-Nov-2046 28.462 CCC No

Ford Motor Co Del 34.00 9.980 15-Feb-2047 29.353 CCC No

General Mtrs Corp 29.00 7.375 23-May-2048 25.431 CCC Yes

JP Morgan Chase Cap

XXII

77.00 6.450 15-Jan-2087 8.377 AA Yes

Columbia/HCA

Healthcare Corp

64.00 7.500 15-Nov-2095 11.719 B No

Source: ValuBond.com via http://finance.yahoo.com on November 30, 2008.
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Sometimes, a bond will be puttable where the option will now
rest with the bondholder. Puttable bonds allow the bondholder to
demand an early payment by the issuer. This is very useful in times
when market interest rates increase sharply. When this happens and
bondholders demand an early payment of the puttable bond, they are
able to reinvest their money at higher interest rates.

One way to avoid the wild swings in coupon bond values is to
make coupon rate floating and tied to the prevailing level of interest
rates. This has the advantage of protecting the value of the bond.
However, it has the disadvantage that when interest rates are low
then the coupon payments will be low as well. Such type of bonds
are generally referred to as floating rate notes or FRNs. Their coupons
are tied to an index like LIBOR or EURIBOR and generally involve a
fixed spread over the interest rate index to reflect a fair compensation
for the perceived credit risk. An alternative to direct floating FRN
are the so-called reverse or inverse floaters. These securities have
coupons that vary inversely with market interest rates (e.g., LIBOR).
An example of such an inverse floating coupon will be a coupon equal
to max(10% − LIBOR,0). Note that in this particular case, if LIBOR
exceeds 10% the bondholder will receive nothing. Only when LIBOR
goes below 10% before the inverse floater matures the bondholder
will receive some positive cash flows.

All of the previous examples suffer from one downside of all
fixed income securities, namely, they do not offer any upside. One
alternative that offers an upside to bondholders is the convertible
bond. These are usually convertible at the option of the bondholder
into a fixed number of shares of common stock of the issuing
corporation. As a result of this, the issuer does not have to offer a
very attractive coupon and, typically, convertible bonds pay lower
coupons than otherwise equivalent nonconvertible bonds.

Turning to other hybrid securities that have both equity and
fixed income characteristics leads to a brief discussion of preferred
stock. These behave like fixed income securities for most intents
and purposes. They pay either a fixed or a floating dividend that
acts like a coupon. Preferred dividends are usually cumulative and
are paid before common stock dividends. If preferred dividends are
omitted over a certain period of time, preferred shareholders usually
get the right to replace several board of directors members. Ironically,
the biggest investors in preferred stock in the United States are
corporations since they enjoy a tax advantage as only 40% of the
preferred dividend is taxed. Some of the biggest issuers of preferred
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Table 6.4 Inflation-indexed bond example

Time Inflation (%) Par value Coupon Principal

0 $1000
1 2 $1020 $40.80
2 3 $1050.60 $42.02
3 1 $1061.11 $42.44 $1061.11

stock tend to be large financial institutions since the preferred stocks
counts along with common stock in the calculation of required capital.

Other issuer of fixed income securities include state and local
governments, as well as domestic corporations issuing bonds abroad
and foreign corporations placing bonds in the domestic market. More
recent innovations in the bond market include securitization using
pools of mortgages, student loans, credit card revolver loans, car
leases, etc. Some particular corporate issuers have made the coupon
and, sometimes, the face value of their bonds contingent on future
events. A prime example of this is the so-called catastrophe bond
that is very popular with insurance companies. Catastrophe bonds
typically have prespecified thresholds and number of natural disasters
which, if exceeded, will suffer lower coupons and, possibly, reduced
face values.

The high inflation period of the 1970s and 1980s led to the
introduction of government bonds whose coupons and principals were
tied to a cumulative inflation index. Such bonds are referred to as
inflation indexed bonds. To illustrate how such bonds work and
provide protection against inflation, we will use a simple example.
Suppose we consider an inflation-protected bond promising to pay a
4% rear annual coupon with a face value of $1000 and maturing in
3 years time. Table 6.4 illustrates how the principals are continuously
inflated at the realized inflation rate and the 4% coupon is applied to
the inflation face value. At the maturity date of the inflation-protected
bond, the bondholders receive the terminal inflation face value.

To verify that this bond indeed offers a 4% real coupon, let us
calculate the nominal and real return to a bondholder from holding
this bond between t = 0 and t = 1:

Nominal return = Interest+ Capital gain
Initial price

= 40.80 + 20
1000

= 0.0608 or 6.08%.
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Let us verify that the real rate of return is indeed equal to 4%:

Real return = 1 + Nominal return
1 + Inflation

− 1

= 1.0608
1.02

− 1 = 0.04 or 4%.

6.2 Bond Pricing

6.2.1 Basics
A fixed-coupon C finite-maturity T bond will have a present value
today at t = 0 of

V0VV = C
r

(
1 − 1

(1 + r)T

)
+ FV

(1 + r)T
.

Note that this formula uses the constant-level annuity and the present
value relations from Chapter 1.

Figure 6.1 plots the present value of a fixed-coupon bond with an
annual coupon of 5% and 30 years to maturity. Note that the value is
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Figure 6.1 Value of fixed-coupon bond against yield to maturity.
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inversely related to the yield to maturity. Bonds with higher coupons
or longer tenors will plot above the one depicted.

A zero-coupon bond with a finite maturity has C = 0 and present
value of

V0VV = FV
(1 + r)T

. (6.1)

Figure 6.2 plots the present value of a zero-coupon bond maturing
in 30 years. Note that the bond value is once again inversely related
to the yield to maturity.

A fixed-coupon perpetual bond value is given by

P0 = C
r

. (6.2)

Figure 6.3 plots the present value of a fixed-coupon bond with
an annual coupon of 50% paid in perpetuity. Note that the value
is inversely related to the yield to maturity. Perpetual bonds with
higher coupons will plot above the one depicted. Note also that in
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Figure 6.2 Value of zero-coupon bond against yield to maturity.
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Figure 6.3 Value of perpetual bond against yield to maturity.

this case the face value is never paid back. Instead, the entire present
value consists of the present value of the infinite stream of steady
coupons.

6.2.2 Bond Pricing Example

Let us consider how we can price a 30-year bond with a fixed 8%
coupon payed semiannually and a face value of $1000 when the
current yield to maturity is 8%:

P0 =
t=60∑
t=1

40
(1.04)t

+ 1000
(1.04)60

= 1000.

Suppose that the yield to maturity was to increase to 10% (5% for
6 months):

P0 =
t=60∑
t=1

40
(1.05)t

+ 1000
(1.05)60

= 810.71.
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Table 6.5 Bond values, time to maturity, and yield to maturity

YTM (%)

TTM (years) 4 6 8 10 12

1 1038.83 1029.13 1000.00 981.41 963.33
10 1327.03 1148.77 1000.00 875.35 770.60
20 1547.11 1231.15 1000.00 828.41 699.07
30 1695.22 1276.76 1000.00 810.71 676.77

6.2.3 Bond Prices at Different Times to Maturity and YTMs

Table 6.5 presents the value of a fixed 8%-coupon bond with various
times to maturity and yields to maturity:

From the bond valuation formula and the above example, a few
notable points emerge. First, when the yield to maturity is equal to the
bond coupon rate, the bond will be selling at par value or, which is the
same, the face value of the bond. Second, when the yield to maturity
exceeds the coupon rate, the bond will be trading at a discount from
its face value. Thirdly, if the yield to maturity is less than the bond
coupon rate, the bond will be selling at a premium to face value.
Finally, both the discount and the premium increase as the time to
maturity increases.

6.2.4 Bond Yields

In order to find out the promised yield to maturity of a bond, we need
to determine the internal rate of return (IRR) taking the cash flows
as certain. Here is an example with a 30-year fixed 8%-coupon bond
currently trading at 1276.76 in the marketplace:

1276.76 =
t=60∑
t=1

40
(1 + r)t

+ 1000
(1 + r)60

.

Solving for the IRR of these cash flows, we obtain r = 0.03 per
half-year or 6% on a bond-equivalent yield (BEY).

Figure 6.4 plots the yield curve of US STRIPS zero-coupon bonds
prevailing at the close of business on July 20, 2010. Note how the yield
to maturity steadily increases and then levels off as time to maturity
increases.
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Figure 6.4 Yield curve of US STRIPS.

Figure 6.5 plots the yield curve of US Treasury bonds prevailing at
the close of business on July 20, 2010. The picture is quite similar to
the one for zero-coupon STRIPS and illustrates that longer maturities
attract higher annualized yields.

6.2.5 Bond Yields on Callable Bonds
In order to illustrate the complications arising from yield calculations
for callable bonds, it is instructive to consider a simple example.
Consider a callable bond with 30 years to maturity, 8% fixed
coupon paid semiannually, a face value of $1000, callable in 10
years at a call price of $1100. This bond is currently selling in the
marketplace for $1150. Assuming at first that this bond is never called
by the issuer, we can calculate the promised yield to maturity as
follows:

1150 =
t=60∑
t=1

40
(1 + r)t

+ 1000
(1 + r)60

or 6.82% BEY.
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Figure 6.5 Yield curve of US Treasury notes and bonds.

Next, we calculate the yield to call (YTC) assuming that the bond
will be called in 10 years at the call price of $1100:

1150 =
t=20∑
t=1

40
(1 + r)t

+ 1100
(1 + r)20

or 6.64% BEY.

Typically, callable bonds will have a long schedule of future call dates
and call prices. One would then have to calculate the YTC for every
call date. Sometimes, the worst possible YTC is reported as the YTW
as the lowest value from among all the YTC values of the callable
bond.

6.2.6 Credit Risk

Corporate bonds typically involve credit risk in the sense that some
of the future coupons and, possibly, a portion of the face value at
maturity may not be paid back in full. Table 6.6 presents an example
with a risky 30-year corporate bond with a face value of $1000 and a
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Table 6.6 Risky corporate bond example

Expected YTM Promised YTM

Coupon payment $45 $45
Number of coupons 20 20
Final payment $700 $1000
Price $750 $750

9% fixed coupon paid semiannually. In order to illustrate the problem
of partial recovery, we have assume a recovery rate of 70% at the
maturity of the corporate bond, i.e., bondholders will receive only
70 cents on the dollar when the corporate bond matures.

We can also calculate the promised as well as the expected yield
to maturity. The promised yield to maturity is 13.7% while the
expected yield to maturity is only 11.6% on a BEY basis. Note that
this difference is effectively a default premium reflecting the credit
risk implicit in the 70% recovery rate at maturity. More complicated
examples involving coupons in arrears and workouts are possible.
Note that any deferment of bond cash flows into the future only serves
to lower the expected as well as the promised yield to maturity of the
bond. Forecasting even lower recovery rates will tend to lower the
expected yield to maturity even further but will generally leave
the promised yield to maturity unchanged.

6.3 Spot and Forward Interest Rates

6.3.1 The Yield Curve
In practice, the concept of an interest rate and yield to maturity needs
to be clarified even further. For example, the yield of a zero-coupon
bond with a certain time to maturity can be quite different from the
yield to maturity of a nonzero-coupon bond with the same time to
maturity. For our purposes we will need to define more formally the
zero-coupon spot interest rate and the related forward interest rate. To
distinguish these concept from the current value of the interest rate, we
will refer to the latter as the current short rate. The zero-coupon yield
curve will then be simply a plot of the zero-coupon spot rates against
the respective times to maturity.

Let us denote the zero-coupon spot interest rate as yt, where t is the
future maturity date. This is an effective reinvestment risk-free rate
for investing between today and time period t. Furthermore, let us
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define the forward interest rate as fsff ,t, where the understanding is that
s ≤ t. The forward interest rate is the implicit reinvestment rate that is
implied in the zero-coupon spot rates. It is the per period rate at which
you can reinvest money starting at a future point in time s and getting
your money back even further out at time period t where (t ≥ s).

The explicit relationship between the zero-coupon spot interest
rates and the forward interest rates can be illustrated by the following
thought experiment. Consider starting with $1 which can be invested
in the 1-year zero-coupon bond at y1 and then reinvested the forward
interest rate f1,2ff . Alternatively, we could invest our $1 in the 2-year
zero-coupon bond at y2. The forward interest rate f1,2ff is the forward
reinvestment rate that leads to the same amount at t = 2 following
either of these two investment strategies. More generally, we can
extend this though experiment over consecutive future time periods
leading to the following:

(1 + f0,1ff ) = (1 + y1),

(1 + y1)(1 + f1,2ff ) = (1 + y2)2,

(1 + y2)2(1 + f2,3ff ) = (1 + y3)3,

...
...

...

(1 + yt−1)t−1(1 + ftff −1,t) = (1 + yt)t.

The existence of nominal unit of account in the form of universally
acceptable currency leads to the following requirements on the
zero-coupon and forward risk-free interest rates in order to avoid
arbitrage:

yt ≥ 0 ∀t,

fsff ,t ≥ 0 ∀s ≤ t.

The proof of these is quite simple and it has to do with the fact that
the nominal rate of return on cash is 0. Hence, we would never invest
or reinvest at a negative zero-coupon or forward interest rate since we
would be better off selling them and keeping our money in cash.

6.4 Term Structure of Interest Rates

Economists have developed several theories about the term structure
of interest rates. The following discussion is only meant to cover the
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basic ideas and the intuition behind the main term structure theories
without getting bogged down into too much detail.

6.4.1 Expectations Hypothesis

The expectations hypothesis states that our best guess today at
tomorrow’s short rate is the forward interest rate we can observe
today built into the zero-coupon spot interest rates coming from
zero-coupon bonds. Mathematically, this means the following:

E(r2) = f1,2ff

(1 + y2)2 = (1 + r1)(1 + f1,2ff )

= (1 + r1)(1 + E(r2)).

If this hypothesis is true, it implies that we do not need liquidity
premia on long-term bonds in order to induce bondholders to roll
over their holdings at the then prevailing future short interest rate.

6.4.2 Liquidity Preference

The liquidity preference theory maintains that the expected future
short rates are not necessarily equal to the forward interest rates and
are typically less:

E(r2) 	=		 f1,2ff

E(r2) < f1,2ff typically

The logic behind this is that investors prefer to invest in more liquid
bonds with shorter maturities. In order for investors to be induced to
hold less liquid bonds with longer maturities, they will have to be
compensated with a liquidity premium built into the promised yield
to maturity. This will typically be reflected in a liquidity discount in
the bond price.

6.4.3 Market Segmentation

The market segmentation theory states that short-maturity and
long-maturity bonds trade in essentially separate markets with
different investors sticking to their preferred maturities. No amount
of price discounting or premia can induce a long-maturity investor
to cross over and invest in a short-maturity bond. Vice versa, a
short-maturity investor will never be induced to switch over and
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acquire a long-maturity bond. This theory is not very popular
nowadays. The reason for this is that there are finite amounts of yield
premia and discounts that will persuade a bondholder to acquire them
regardless of his or her preferred maturity.

6.4.4 Preferred Habitat Theories

The preferred habitat theory is a modified and less extreme version
of the segmented markets theory. It postulates that bond investors
compare short-maturity and long-maturity bonds while having a
certain preference for one or the other. However, bond investors may
be induced to cross over from their preferred maturity “habitat” into
another one for the right price.

6.4.5 Interpreting the Term Structure

One way these theories can be useful is to try and base forecasts about
expected future short rates on the forward risk-free interest rates.
Sometimes, we can assume that there are constant liquidity premia for
every maturity. More generally though, we may use maturity-specific
liquidity premia as follows:

fnff ,n+1 = E(rn) + Liquidity premium.

We can safely assume that the liquidity premia increase as the time
to maturity increases. However, whether that is true or not in practice
is an empirical question.

6.4.6 Measuring the Term Structure

It order to illustrate how we can use actual bond prices to measure
the risk-free zero-coupon discount rates across various maturities,
we will use the following simplified example. Consider a 1-year
8% fixed-coupon bond (paid semiannually) and currently trading at
986.10. Consider also another 1-year 10% fixed-coupon bond (also
paid semiannually) and selling at 1004.78. We can link the future
coupons and face values with the risk-free zero-coupon discount
factors d1, the present value of $1 receivable in 6 months, and d2,
the present value of $1 receivable in 12 months is as follows:

986.10 = d1 × 40 + d2 × 1040,

1004.78 = d1 × 50 + d2 × 1050,
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where the solution is given by d1 = 0.95694 and d2 = 0.91137, which
implies y1 = 0.045 and f1,2ff = 0.05.

6.4.7 More Bonds than Time Periods
In general, we can perform the same exercise with many bonds.
However, it becomes impossible to fit all bond prices at the same time
with the same rates. The reason for this is that there are typically
many more bonds than there are periods until the maturity of the
bonds with the longest time to maturity. Therefore, we can only fit all
bonds with a certain measure of pricing error. One possible way to do
this is to perform the following cross-sectional regression without any
intercept:

P1 = d̂1CF11 + d̂2CF12 + d̂3CF13 + ·· ·+ ê1,

P2 = d̂1CF21 + d̂2CF22 + d̂3CF23 + ·· ·+ ê2,

P3 = d̂1CF31 + d̂2CF32 + d̂3CF33 + ·· ·+ ê3,

...
...

...

Pn = d̂1CFn1 + d̂2CFn2 + d̂3CFn3 + ·· ·+ ên,

where Pi is the current market price of bond i, CFij is the cash flow
coming from bond i in time period j, êi is the pricing error of bond
i, and d̂t is the risk-free discount factor today of $1 payable in time
period t.

Note that we may have to impose the following no-arbitrage
restrictions while running the above regression:

1 ≥ d̂1 ≥ d̂2 ≥ d̂3 ≥ ·· · ≥ d̂T.

6.5 Fixed Income Arbitrage Strategies

Suppose we observe the following market spot interest rates: y1 = 0.10
and y2 = 0.04. If these were indeed market rates and you can freely
borrow and lend at them, how can you make infinite profits without
putting any of your own money at risk? Let us check the implied value
of the forward interest rate f1,2ff :

f1,2ff = (1 + y2)2

(1 + y1)
− 1
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= (1.04)2

(1.10)
− 1

= −0.0167 or −1.67%.

But holding our money in cash (at a zero nominal rate of return)
dominates rolling over our investment forward between time periods
1 and 2 (at a negative forward interest rate). Here are the arbitrage
trade steps. First, we borrow $1 for 2 years at y2 = 0.04 by selling
short a two-period zero-coupon bond, for example. We have to
pay back $1.0816 at t = 2. Second, we invest $1 for one period
at the one-period spot interest rate y1 = 0.10 by buying a 1-year
zero-coupon bond. At t = 1, we have $1.10 which we liquidate after
the one-period zero-coupon bond matures and hold the money in
cash until t = 2. Finally, at t = 2 we pay back our debt of $1.0816.
This leaves us with an arbitrage profit of $0.0184 per $1 borrowed
at t = 0.

Let us consider another fixed income arbitrage trade involving
two bonds maturing at the same time. Suppose we observe the
following risk-free market spot rates y1 = y2 = 0.20. We also observe
one risk-free government 20%-coupon bond with a face value of
$1000, 2 years to maturity, that is trading at par ($1000) on the
market (assume annual coupons payments). There is another two-year
risk-free government zero-coupon bond with a face value of $1000
and 2 years to maturity which is currently trading at $833.33.
Purchasing either one of these two bonds at t = 0 results in the
following cash flows:

Bond t = 0 t = 1 t = 2

20%-coupon −1000 +200 +1200
Zero-coupon −833.33 0 +1000

First, let us compute the implied spot 2-year interest rate yimplied
2 :

yimplied
2 =

√
1000

833.33
− 1 = 0.0954 or 9.54%.

This rate is much smaller than the market spot rate y2 = 0.20.
We should borrow at this implied rate while investing at the higher
market rate at the same time. Let us sell short 12 zeros and buy 10
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20%-coupon bonds with the proceeds from the short sale. This results
in the following cash flows:

Arbitrage strategy t = 0 t = 1 t = 2

Buy 10 20%, Sell 12 zeros 0 +2000 0

More generally, let us consider the case of two risk-free bonds, A
and B, with the same maturity T, with prices,TT pA and pB, and coupons,
cA and cB, expressed as percent of their respective face values. We
know that the following need to hold based on simple present value
relations:

pA = cA

(
t=T∑
t=1

dt

)
+ dT, (6.3)

pB = cB

(
t=T∑
t=1

dt

)
+ dT. (6.4)

It is straightforward to show that the risk-free present T-annuityTT
factor and the risk-free discount factor dT are given by

t=T∑
t=1

dt =
(

pA − pB

cA − cB

)
, (6.5)

dT =
(

cApB − cBpA

cA − cB

)
. (6.6)

Once again, the presence of a monetary unit of account puts a
constraint on the pattern of risk-free discount factors as the time to
maturity increases. The above two values have to satisfy the following
constraints:

0 <

t=T∑
t=1

dt ≤ T, (6.7)TT

0 < dT ≤ 1, (6.8)

T ≤
∑t=T

t=1 dt

dT
. (6.9)
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First, it it obvious that if the bonds have the same coupon rates,
i.e., cA = cB, then they have to have the same prices, pA = pB. Second,
to eliminate this uninteresting case let us assume without loss of
generality that cA > cB. Then it is easy to express the above constraints
in terms of the coupon rates and bond prices as follows:

pA > pB, ifcA > cB, (6.10)
pA − pB

cA − cB
≤ T, (6.11)TT

pA

pB
<

cA

cB
≤
(

pA − 1
pB − 1

)
, (6.12)

pA

pB
≥
(

1 + TcA

1 + TcB

)
. (6.13)

Next, let us consider a more involved fixed income arbitrage
example using three bonds maturing at the same time. Suppose we
observe the following market prices for three risk-free government
bond that pay annual coupons and have 3 years remaining to
maturity:

Bond Maturity Coupon Price Face Value

A 3 0% $751.30 $1000.00
E 3 14% $1120.12 $1000.00
F 3 7% $1001.62 $1000.00

This means that purchasing any of the above bonds will result in the
following cash flows:

Bond t = 0 t = 1 t = 2 t = 3

A −751.30 0 0 +1000
E −1120.12 +140 +140 +1140
F −1001.62 +70 +70 +1070

The magnitudes of the annual coupons already give us an idea of what
to try. Suppose we buy 1 unit of bond A and 1 unit of bond E. We
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shall try and finance our purchases by selling short 2 units of bond F.
Let us look at the resulting cash flows:

Strategy t = 0 t = 1 t = 2 t = 3

Buy 1 A −751.30 0 0 +1000
Buy 1 E −1120.12 +140 +140 +1140
Sell 2F +2003.24 −140 −140 −2140
Net Cash Flow +131.82 0 0 0

This is a classic example of an arbitrage trade. These types of
trades are the bread and butter of many fixed income hedge fund
traders. This trade would also obviously work with any positive
multiple, i.e., we could have bought 10 A, 10 E, and shorted 20
F bonds just as well and make 10 times more money. The trade
is set up, so that we take out the profit immediately but this is
not a requirement. An alternative would be to create a trade that
results in one final positive cash flow at the maturity date of the
bonds. Another alternative is to construct a trade resulting in a
stream of positive net cash flows at every future coupon payment
date.

Let us try and be a little more systematic in finding the arbitrage
trade. Denote by nA, nE, and nF the number of A, E, and F bonds we
plan to hold, respectively. We would like our strategy to generate zero
cash flows in all future periods which means there should be no net
payment of principal and coupons at all future dates:

1000 × nA + 1000 × nE + 1000 × nF = 0,

0 × nA + 140 × nE + 70 × nF = 0.

Note that the system is underidentified, i.e., we have more unknowns
than we have equations. But this is exactly what we would expect if
there is an arbitrage present as any positive multiple of an arbitrage
is also an arbitrage, i.e., generically this system will have infinitely
many solutions. This feature of arbitrage trades also makes it easier
to solve for them since finding one arbitrage means we have found all
of them.
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One way to solve this system is to express two of the unknowns in
terms of the third. In this case, let us try solving for nA and nF in terms
of nE:

nA = nE,

nF = −2 × nE.

All we need to do now is figure out the sign of nE so we try either
nE = +1 or nE = −1 as one of these makes money while the other one
loses money. If our initial try loses money, we can just switch all the
signs and find the arbitrage trade if it exists.

Let us try another example where all three bonds have
nonzero-coupon rates. Consider the following three bonds:

Bond Maturity Coupon Price Face Value

B 4 5% $842.30 $1000
C 4 12% $1065.28 $1000
D 4 10% $980.57 $1000

Purchasing either one of these bonds will result in the following cash
flows:

Bond t = 0 t = 1 t = 2 t = 3 t = 4

B −842.30 +50 +50 +50 +1050
C −1065.28 +120 +120 +120 +1120
D −980.57 +100 +100 +100 +1100

Let us set up two equations to find the arbitrage trade resulting in
profit at t = 0:

1000 × nB + 1000 × nC + 1000 × nD = 0,

50 × nB + 120 × nC + 100 × nD = 0.

Let us solve for nC and nD in terms of nB (purely arbitrary choice):

nC = 2.5 × nB,

nD = −3.5 × nB.
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Let us try nB = +1; this means we also have nC = 2.5 and nD = −3.5.
Conceptually, we are selling 1 unit of B and 2.5 units of C while
buying 3.5 units of D:

Strategy t = 0 t = 1 t = 2 t = 3 t = 4

Sell 1 B +842.30 −50 −50 −50 −1050
Sell 2.5 C +2663.20 −300 −300 −300 −2800
Buy 3.5 D −3431.995 +350 +350 +350 +3850
Net cash flows +73.305 0 0 0 0

Note that every bond that we are selling as part of the arbitrage
strategy must be overvalued while every bond that we are buying
as part of the arbitrage strategy must be undervalued. Gradually,
arbitrageurs’ activities will bring prices back to where they need to
be. In practice, we may have to use cash for margin (for anything
we sell short) which ties up capital—this tends to limit the scale of
the arbitrage trade. A good example of this is the liquidity price
differential between on-the-run and off-the-run bonds (with the same
remaining time to maturity).

In general, when all three bonds have the same face values and
mature at the same time, the requirement to avoid arbitrage is that the
arbitrage trade solves the following system of equations:

cAnA + cBnB + cCnC = 0,

F(nA + nB + nC) = 0,

PAnA + PBnB + PCnC = 0,

which simplifies to the following equation:

PA(cB − cC) + PB(cC − cA) + PC(cA − cB) = 0. (6.14)

As soon as the above evaluates to a nonzero number, this is a
sufficient condition for the existence of an arbitrage trade.

More generally, when the three bonds have different face values
but still mature at the same time we have to satisfy the following set
of equations:

cAnA + cBnB + cCnC = 0,

FAF nA + FBnB + FCnC = 0,

PAnA + PBnB + PCnC = 0,
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which simplifies to the following equation:

PA(cBFC − cCFB) + PB(cCFAF − cAFC)

+ PC(cAFB − cBFAF ) = 0. (6.15)

Once again, as soon as the above quantity results in a nonzero
number this is a sufficient condition for the existence of an arbitrage
trade.

6.6 Duration

Starting again with the general present value formula for the bond
today:

Pbond =
t=T∑
t=1

PV(Coupont) + PV(Face valueT).

We can define the Macaulay duration as the sensitivity of the bond
value today to a small change in the yield to maturity. This leads to
the following formula:

Macaulay duration =
t=T∑
t=1

PV(Ct)
Pbond

× t + PV(FVT)
Pbond

× T. (6.16)

Note that the Macaulay duration is effectively a weighted-average
time to maturity where the weights are proportional to the present
value today of the respective cash flows, whether they are coupons or
the final face value.

Sometimes it is useful to consider a modified version of the
Macaulay duration which is scaled by one plus the yield to maturity,
also referred to as modified duration or bond volatility:

Modified duration = Macaulay duration
1 + y

. (6.17)

where y is the yield to maturity.
Bond duration is useful as a first-order approximation to what

happens to the bond price for a small change in the yield to



Fixed Income Securities 91

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Time to maturity (years)

U
S

 S
T

R
IP

S
 m

od
ifi

ed
 d

ur
at

io
n 

(y
ea

rs
)

Figure 6.6 Modified duration of US STRIPS.

maturity:

�Pbond
Pbond

= −Modified duration ×�y. (6.18)

Figure 6.6 plots the modified duration of US STRIPS zero-coupon
bonds as of July 20, 2010.

Figure 6.7 plots the modified duration of US Treasury bonds as of
July 20, 2010.

Bond duration is a measure of interest rate risk for bonds. It also
varies for the same bond with the general level of interest rates.
Duration is high when the yield to maturity is low. Vice versa,
when the yield to maturity is high then duration is generally low,
all else being equal. Note also that duration is lower the higher the
coupon rate of the bond is. In the limit, when we are considering a
zero-coupon bond duration is at its highest possible level for bonds
with the same time to maturity. Finally, when we let the time to
maturity go to infinity, duration has the absolute highest possible
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Figure 6.7 Modified duration of US Treasury notes and bonds.

value. Hence, perpetual bonds have the highest possible level of
interest rate risk.

6.7 Convexity

Recall from the bond values depicted in previous sections of this
chapter that the present bond value is a nonlinear convex function
of the yield to maturity. Hence, a linear approximation using just
the modified duration measure would be accurate only for the
tiniest changes in the yield to maturity. A much more accurate
approximation obtains once we consider the second-order effect to
account for the curvature of the bond value with respect to the yield
to maturity. This is technically the second-order derivative of the bond
value with respect to the yield to maturity. This quantity is referred to
as the convexity measure and is given by the following:

Convexity = 1
(1 + y)2

[
t=T∑
t=1

PV(Ct)
Pbond

× t × (t + 1)
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+ PV(FVT)
Pbond

× T× (T+ 1)

]
. (6.19)

Note that, once again, we have a weighted average of t × (t + 1)
for t = 1, . . . ,T. The weights are proportional to the present value
of the respective cash flows, be it coupons or the face value. It is
quite obvious that zero-coupon bonds will have a very large convexity
measure especially those zero-coupon bonds that have a long time to
maturity. Vice versa, bonds with high coupon rates will have lower
convexity measures, all else being equal. The convexity measure itself
depends implicitly on the yield to maturity through the present value
calculations in the above formula. When the yield to maturity is low
for a bond with a nonzero coupon, the convexity measure will be
lower than otherwise.

Figure 6.8 plots the convexity measure of US STRIPS zero-coupon
bonds as of July 20, 2010.

Figure 6.9 plots the convexity measure of US Treasury bonds as of
July 20, 2010.
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Figure 6.8 Convexity measure of US STRIPS.
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Figure 6.9 Convexity measure of US Treasury notes and bonds.

Bond convexity is useful as a second-order, and more accurate,
approximation to what happens to bond prices when the yield to
maturity changes by a small amount:

�Pbond
Pbond

= −Modified duration

×�y + 1
2
Convexity× (�y)2. (6.20)

This is essentially a second-order approximation to the percentage
change in the bond value for small changes in the yield to maturity.
This approximation is quite accurate locally and there seems to be
not worthwhile investigating a third-order approximation. For this
reason, in practice, most investors would focus on just the slope and
curvature of the bond value with respect to small changes in interest
rates.
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6.8 Bond Portfolios

Bonds with higher duration measures contain more interest rate risk
by definition. The same change in the yield to maturity will have a
higher impact on the value of a bond with a higher duration measure.
At the same time, bonds with higher convexity measures are preferred
by bond investors. Between two bonds with equal duration measures,
the one with the higher convexity measure will preserve its value
better as a result of changes in interest rates than the bond with the
lower convexity measure. Therefore, it is natural to think of bond
duration as a measure of risk and of bond convexity as a measure
of upside potential or, at least, limited downside. Furthermore, the
bond portfolio problem is considerably simplified by the fact that
the duration and convexity measures for a bond portfolio are simply
a weighted-average linear function of the duration and convexity
measures of the individual bonds that enter the portfolio.

Consider the problem of maximizing a bond portfolio’s convexity
subject to a target level for the modified duration of the portfolio:

Maximize
i=N∑
i=1

wi × Convexityi

Subject to
i=N∑
i=1

wi × Modified durationi = Target MD

i=N∑
i=1

wi = 1

wi ≥ 0, ∀i = 1, . . . ,N.

The solution to this portfolio problem is, typically, what is referred
to as the bar-bell portfolio. This portfolio will consist of holdings
of the bonds with the smallest and the greatest duration measures.
If the investable bond universe under consideration contains only
zero-coupon bonds, then the bar-bell portfolio is always the solution
as can be seen by inspecting the modified duration and convexity
measure formulae for zero-coupon bonds explained later.

Figure 6.10 plots the modified duration against the convexity
measure for US STRIPS zero-coupon bonds as of July 20, 2010.
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Figure 6.10 Modified duration versus convexity measure of US STRIPS.

Figure 6.11 plots the modified duration against the convexity
measure for US Treasury bonds as of July 20, 2010.

The duration and convexity measures of a zero-coupon bond with
T years to maturity and a yield to maturity equal to y are as follows:

Macaulay duration = T,TT

Modified duration = T
1 + y

,

Convexity = T× (T+ 1)
(1 + y)2

.

A perpetual bond does not really have a yield to maturity but we
can instead calculate the current yield as the ratio of the level coupon
payment to the face value. A perpetual bond with a current yield of y
has the following duration and convexity measures:

Macaulay duration = 1 + y
y

,
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Figure 6.11 Modified duration versus convexity measure of US Treasury notes and
bonds.

Modified duration = 1
y

,

Convexity = 2
y2

.

Fixed nonzero-coupon bonds with finite maturities have duration
and convexity measures that are smaller than the corresponding
measures for an otherwise equivalent zero-coupon bond. A
fixed-coupon bond with a yield to maturity of y and a coupon rate
of c has the following duration measures:

Macaulay duration = 1 + y
y

− (1 + y) + T(c − y)
c[(1 + y)T − 1] + y

,

Modified duration = Macaulay duration
(1 + y)

.

Note that the modified duration of the fixed-coupon bond is always
less than the modified duration of the zero-coupon bond.
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Problems

1. Consider the following risk-free government bonds with fixed
coupons that are paid annually at the end of every year. All three
coupons mature at the same time and have the same face value of 100.
None of these bonds has any callable or puttable features. Assume that
the time 0 zero coupon has already been paid.

Bond Coupon (%) Price Face value Time to maturity (years)

A 2 98 100 2
B 1 97 100 2

Determine which of the two bonds is overvalued and which is
undervalued relative to each other.
2. Consider the following risk-free government bonds with fixed
coupons that are paid annually at the end of every year. All three
coupons mature at the same time and have the same face value of 100.
None of these bonds has any callable or puttable features. Assume that
the time 0 zero coupon has already been paid.

Bond Coupon (%) Price Face value Time to maturity (years)

A 0 45 100 10
B 3 90 100 10
C 5 120 100 10

Determine which of the bonds are undervalued and which are
overvalued relative to each other.
3. Consider the following risk-free government bonds with fixed
coupons that are paid annually at the end of every year. None
of these bonds has any callable or puttable features. Assume that
the time 0 zero coupon has already been paid. The table below
reports coupons, market prices, face values, and the maturity date for
each bond.
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Bond Coupon (%) Price Face value Time to maturity (years)

A 0 100 100 15
B 1 99 100 15
C 2 97 100 15

After extensive research, you conclude that both bonds A and B are
fairly valued. Determine whether bond C is undervalued, overvalued,
or fairly valued relative to bonds A and B.



7

Fixed Income Derivatives

7.1 Interest Rate Models

7.1.1 Traditional Term Structure Models
In the following presentation of various term structure models, we
shall adopt the following notation. Let P(t,s) denote the price at time
t of a zero-coupon bond with a face value of one that matures at time
s ≥ t. Let R(t,s) denote the yield to maturity at time t of a zero-coupon
bond with a face value of one maturing at time s ≥ t. Furthermore,
let f(ff t,s) be the forward interest rate at time t for time s ≥ t. Finally,
we shall denote the volatility of the zero-coupon yield R(t,s) as
σRσ (t,s).

Vasicek Model
Vasicek (1977) proposed a simple model of mean-reverting short rate
where the continuous time evolution of the short rate is given by

drt = κ(r̄− rt)dt +σdz, (7.1)

where κ is the speed of mean reversion, r̄ is long-run level of the
interest rate toward which the short rate is mean reverting to, σ

is the volatility of the short rate, and dz is a standard Brownian
motion. As can be seen immediately from this specification, these is
no guarantee that the short rate will stay strictly non-negative and
a similar problem arises for forward interest rates in the Vasicek
(1977) model. Nevertheless, this is perhaps the simplest interest rate
model out there so it is worthwhile to consider its implications for
zero-coupon bond prices, yields, and yield volatilities.
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Zero-coupon bond prices maturing at t = T have the following
prices at t < T and yields to maturity R(t,s) for s > t:

P(t,s) = A(t,s)e−rtB(t,s), (7.2)

R(t,s) = − lnA(t,s)
s− t

+ B(t,s)
s− t

rt, (7.3)

where

B(t,s) = 1
κ

(
1 − e−κ(s−t)

)
, (7.4)

lnA(t,s) = R∞
κ

(
1 − e−κ(s−t)

)− (s− t)R∞

− σ 2

4κ3

(
1 − e−κ(s−t)

)2
, (7.5)

R∞ = lim
τ−→∞

R(t,τ ) = r̄− 1
2

σ 2

κ2
. (7.6)

The spot rate volatility is determined by the two parameters
σ and κ :

σRσ (t,s) = σ

κ(s− t)

(
1 − e−κ(s−t)

)
, (7.7)

and has the very desirable quality of exponential decay as the time
to maturity increases, something that is often observed in the data on
zero-coupon yield volatilities.

Figure 7.1 plots the zero-coupon bond prices, zero-coupon spot,
and forward interest rates, as well as the spot rate volatility in a
Vasicek model with parameter values κ = 0.15, r̄ = 0.05, rt = 0.045,
and σ = 0.01.

The other appealing feature of the Vasicek (1977) interest rate
model is that it is relatively straightforward to price options on
zero-coupon bonds in the context of the model with relatively simple
closed-form formulae resembling the Black and Scholes (1973) equity
option pricing model. Jamshidian (1989) has shown that under the
process (7.1), European discount bond call and put option prices are
given by

c(t,T,TT s) = P(t,s)N(d1) − KP(t,T)N(d2), (7.8)

p(t,T,TT s) = KP(t,T)N( − d2) − P(t,s)N( − d1), (7.9)
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Figure 7.1 Zero-coupon bond prices, spot and forward interest rates, and spot rate
volatility in the Vasicek model.

where

d1 =
ln
(

P(t,s)
KP(t,T)

)
σpσσ

+ σpσσ

2
,

d2 = d1 −σpσσ ,

σpσσ = ν(t,T)
(
1 − e−κ(s−T)

)
κ

,

ν(t,T) =
√

σ 2(1 − e−2κ(T−t))

2κ
.

The Cox–Ingersoll–Ross (CIR) Model
In order to fix the somewhat embarrassing potential arbitrage
possibility in the Vasicek (1977) model, Cos, Ross, and Ingersoll
(1985) proposed their famous squareroot process for the short rate
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which has a lower bound on the short rate at zero. Unfortunately, the
mathematical treatment becomes quite a bit more complicated. The
starting point of the CIR model is the continuous time evolution of
the short rate:

drt = κ(r̄− rt)dt +σ
√√

r
√√

tdz, (7.10)

where all the variables are as previously defined for the Vasicek (1977)
model. The present value at time t of a zero-coupon bond maturing at
time s > t and its associated zero-coupon yield to maturity R(t,s) are
given by

P(t,s) = A(t,s)e−B(t,s)rt , (7.11)

R(t,s) = − lnA(t,s)
s− t

+ B(t,s)
s− t

rt, (7.12)

σRσ (t,s) = σ
√

r
√√

t

s− t
B(t,s), (7.13)

where

A(t,s) =
(

φ1eφ2(s−t)

φ2(eφ1(s−t) − 1) +φ1

)φ3

,

B(t,s) =
(

eφ1(s−t) − 1
φ2(eφ1(s−t) − 1) +φ1

)
,

φ1 ≡ √
κ

√√
2 + 2σ 2,

φ2 ≡ (κ +φ1)
2

,

φ3 ≡ 2κ r̄
σ 2

.

Figure 7.2 plots the zero-coupon bond prices, spot and forward
interest rates, and spot rate volatilities as a function of the time to
maturity in a typical example of the CIR model with parameter values
κ = 0.15, r̄ = 0.05, rt = 0.045, and σ = 0.01.

A European call option on a pure discount bond has the following
price:

c(t,T,TT s) = P(t,s)χ2

(
2r	r [φ +ψ + B(T,TT s)];

4κ r̄
σ 2

,
2φ2reθ (T−t)

φ +ψ + B(T,TT s)

)

−KP(t,T)χ2

(
2r	r [φ +ψ];

4κ r̄
σ 2

,
2φ2reθ (T−t)

φ +ψ

)
,
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Figure 7.2 Zero-coupon bond prices, spot and forward interest rates, and spot rate
volatility in the Cox–Ingersoll–Ross model.

where

θ ≡
√

(κ2 + 2σ 2),

φ ≡ 2θ

σ 2(e−θ (T−t) − 1)
,

ψ ≡ κ + θ

σ
,

r	r =
ln
(

A(T,TT s)
K

)
B(T,TT s)

,

and χ2(x;n,k) is the cumulative distribution function of a noncentral
chi-squared random variable with a critical value of x, n degrees of
freedom, and a noncentrality parameter of k.
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7.1.2 Term Structure Consistent Models
Equilibrium Term Structure Volatility
Ho and Lee (1986) propose a model of the short rate as a random
walk with a time-varying drift and constant volatility as follows:

dr = θ (t)dt +σdz, (7.14)

where θ (t) is the time-varying drift rate of the short rate. At first
glance, this appears to be a somewhat strange model for the short
rate in light of empirical evidence suggesting that it is mean reverting.
In other words, we do not expect the short interest rate to drift up
to very large values or drift down, possibly, below zero. However,
the objective of the Ho and Lee (1986) model was to give sufficient
flexibility to the model so that the entire existing term structure of
zero-coupon rates can be fit to the existing data.

In order to avoid any possible arbitrage opportunity, we need the
following technical condition on θ (t):

θ (t) = ∂f(0,ff t)
∂t

+σ 2t. (7.15)

Just as in the Vasicek (1977) model, the volatility of the
zero-coupon yield is constant at all times and maturities:

σRσ (t,s) = σ. (7.16)

The price at time s of a zero-coupon bond maturing at T > s is once
again exponentially affine:

P(T,TT s) = A(T,TT s)e−B(T,TT s)r(T), (7.17)

where

B(T,TT s) = (s− T),

lnA(T,TT s) = ln
P(t,s)
P(t,T)

− B(T,TT s)
∂ lnP(t,T)

∂T
− 1

2
σ 2(T− t)B(T,TT s)2,

and r(T) denotes the level of the short rate at time T.
One popular way of discretizing the continuous time process and

building a binomial tree for the short rate in the Ho and Lee (1986)
model is presented in the following diagram:
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Short rate

rt+2 + 2ν2
↗

rt+1 + ν1
↗ ↘

rt rt+2 + ν2
↘ ↗

rt+1
↘

rt+2

Hull and White (1990) one factor model
Hull and White (1990) propose an extension to the Vasicek (1977)
and Cox, Ross, and Ingersoll (1985) interest rate models to allow the
model to fit the current term structure of interest rates and either the
volatilities of the zero-coupon spot interest rates or the volatilities of
the forward interest rates. The model starts with the following process
for the short rate:

dr = [θ (t) −αr]dt +σdz, (7.18)

where θ (t) is a time-varying level toward which the short rate mean
reverts to and has to satisfy the following condition:

θ (t) = ∂f(0,ff t)
∂t

+αf(0,ff t) + σ 2

2α
(1 − e−2αt). (7.19)

Hull and White (1990) show that the volatility of the spot rates
varies with time to maturity in a very intuitive fashion dying out at
long maturities as follows:

σRσ (t,s) = σ

α(s− t)
(1 − e−α(s−t)). (7.20)

The price of a zero-coupon bond in this framework is exponentially
affine and is given by the following:

P(T,TT s) = A(T,TT s)e−B(T,TT s)r(T), (7.21)

where

B(T,TT s) = 1
α

(1 − e−α(s−T)),

A(T,TT s) = ln
P(t,s)
P(t,T)

− B(T,TT s)
∂ lnP(t,T)

∂T
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− 1
4α3

(e−α(s−t) − e−α(T−t))2(e2α(T−t) − 1).

The prices of European options on zero-coupon discount bonds
within the Hull and White (1990) model are given by

c(t,T,TT s) = P(t,s)N(d1) − KP(t,T)N(d2), (7.22)

p(t,T,TT s) = KP(t,T)N( − d2) − P(t,s)N( − d1), (7.23)

where

d1 = ln(P(t,s)/KP(t,T))
σPσ

+ σPσ

2
,

d2 = d1 −σPσ ,

σ 2
Pσ = σ 2

2α3
(1 − e−2α(T−t))(1 − e−α(s−T))2.

Black, Derman, and Toy (1990) propose an additive model for the
short rate best illustrated in the following diagram:

Short rate

rt+2 × ν2
2↗

rt+1 × ν1
↗ ↘

rt rt+2 × ν2
↘ ↗

rt+1
↘

rt+2

The continuous time version of the short rate is given by the following
equation:

d ln r(t) =
[
θ (t) + σ ′(t)

σ (t)
lnr(t)

]
dt +σ (t)dz, (7.24)

which allows for, possibly, time-varying volatility of the zero-coupon
yield volatility.

A popular version of this model with practitioners keeps the future
short-rate volatility constant in which case the stochastic process for
the short rate is simplified to the following:

d ln r = θ (t)dt +σdz, (7.25)

which is also known as the log-normal version of the Ho–Lee model.
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Black and Karasinski (1991) propose an even more flexible model
with the following stochastic process for the short rate:

d lnr = [θ (t) −α(t) lnr] +σ (t)dz, (7.26)

which has the advantage of always having a strictly positive short
rate. The discretized version of this model has the added flexibility of
time varying lengths of the time steps between successive nodes in the
binomial tree for the short rate. This allows us to better fit the existing
empirical data about the term structure of yields and their volatilities.
A simplified version of this model with a time invariant α(t) has the
following stochastic evolution of the short rate:

d lnr = [θ (t) −α lnr]dt +σdz. (7.27)

Fit Term Structure Volatility
Heath, Jarrow, and Morton (1990, 1992) propose one of the
most general model of the term structure of interest rates and their
volatilities by allowing the entire sequence of forward rates to move
stochastically over time. The best way to depict their model is by the
following simple diagram:

Forward rate

rt+2 = f(ff t+ 2,t+ 2)
↗

rt+1 = f(ff t+ 1,t+ 1)
f(ff t+ 1,t+ 2)

↗ ↘
rt = f(ff t,t)
f(ff t,t+ 1)
f(ff t,t+ 2) rt+2 = f(ff t+ 2,t+ 2)

↘ ↗
rt+1 = f(ff t+ 1,t+ 1)

f(ff t+ 1,t+ 2)
↘

rt+2 = f(ff t+ 2,t+ 2)

Note that this modeling approach allows us to model changes in the
level, slope, and curvature of the entire term structure of interest
rates. We can comfortably fit the term structure of zero-coupon
yields and their volatilities or the volatilities of the forward interest
rates. The binomial version will essentially be a one-factor model but
more factors are possible. For example, a trinomial tree will have
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two distinct factors driving the evolution of the term structure of
interest rates.

7.2 Binomial Term Structure Models

7.2.1 Pricing a Fixed-Coupon Risk-Free Bond

The following diagram illustrates the pricing of a fixed-coupon
risk-free bond. For simplicity, we have not built any mean reversion
in the short rate and have left the risk-neutral probabilities at 50% at
each node of the binomial tree.

Short rate Fixed coupon

14% $1100
↗ ↗

12% ? +$100
↗ ↘ ↗ ↘

10% 10% ??? $1100
↘ ↗ ↘ ↗

8% ?? +$100
↘ ↘

6% $1100

Suppose for the sake of simplicity that in our short rate model all
risk-neutral probabilities in all nodes of the tree are equal to 50% (so
that there is no mean reversion and the short rate follows a random
walk). Therefore, we can fill in the unknown quantities about the
intermediate values of the FRN as well as its ex-coupon value at time
t = 0:

Short rate Fixed coupon

14% $1100
↗ ↗

12% $1082.14
↗ ↘ ↗ ↘

10% 10% $1000.30 $1100
↘ ↗ ↘ ↗

8% $1118.52
↘ ↘

6% $1100
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where

$1082.14 = 0.5 × $1100 + 0.5 × $1100
1.2

+ $100,

$1118.52 = 0.5 × $1100 + 0.5 × $1100
1.08

+ $100,

$1000.30 = 0.5 × $1082.14 + 0.5 × $1118.52
1.1

.

7.2.2 Pricing a Risk-Free FRN

The next security to consider pricing is the plain vanilla FRN. The
following diagram illustrates the binomial tree for the short rate and
the pricing of the FRN at every node of the tree:

Short rate FRN

14% $1140
↗ ↗

12% ? +$120
↗ ↘ ↗ ↘

10% 10% ??? $1100
↘ ↗ ↘ ↗

8% ?? +$80
↘ ↘

6% $1060

Suppose for the sake of simplicity that in our short rate model all
risk-neutral probabilities in all nodes of the tree are equal to 50% (so
that there is no mean reversion and the short rate follows a random
walk). Therefore, we can fill in the unknown quantities about the
intermediate values of the FRN as well as its ex-coupon value at time
t = 0:

Short rate FRN

14% $1140
↗ ↗

12% $1120
↗ ↘ ↗ ↘

10% 10% $1000 $1100
↘ ↗ ↘ ↗

8% $1080
↘ ↘

6% $1060
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where

$1120 = 0.5 × $1140 + 0.5 × $1100
1.2

+ $120,

$1080 = 0.5 × $1100 + 0.5 × $1060
1.08

+ $80,

$1000 = 0.5 × $1120 + 0.5 × $1080
1.1

.

7.2.3 An Interest Rate Swap

Now we are ready to consider pricing the fixed leg of an interest rate
swap given a floating leg that pays the short rate. All we need to do
is find a fixed coupon for a fixed-coupon bond that will have the
same price as the FRN. In the example above, it turns out that the
fixed coupon should be 9.9827% and the fixed-coupon bond has a
present value of $1000 which is the same as the FRN. Therefore, we
will say that the swap rate is 9.9827% in exchange for receiving the
short rate.

7.2.4 Adjustable-Rate Mortgages

Conceptually, an adjustable-rate mortgages (ARM) is very similar to
an FRN. However, where things get interesting is when we consider
all the embedded options that are bundled with an ARM in practice.
These typically include “lifetime” limits on the interest rate (over the
life of the mortgage) and annual limits on the increase/decrease of the
interest rate.

7.2.5 Pricing an Interest Rate Cap/Caption

Next, let us consider an interest rate cap which is very similar to a
continuous call option on the short rate. It pays off the difference
between the short rate and the capped rate, if positive, and zero
otherwise on a notional value, in every period until the maturity of the
cap. The following diagram illustrates the pricing of a cap with two
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periods to maturity with a capped rate of 7% on a $1000 notional
value:

Short rate Cap at 7% on $1000 T = 2

10% $30

↗ ↗
8% $10+ $15

1.08

↗ ↘ ↗ ↘
5% 5% $11.38 $0

↘ ↗ ↘ ↗
2% $0

↘ ↘
1% $0

A related interest rate derivative to consider is the caption or a call
option on a cap. The reason captions exist is that caps tend to be
expensive especially those with long maturities. If we are not certain,
we want to enter a cap right away: we may instead purchase a caption
which gives us the option to acquire a cap for a fixed price. The
following diagram illustrates a caption with a strike price of $12 and
one period to maturity:

Short rate Caption with strike=$12 T = 1

10% $0

↗ ↗
8% $11.89

↗ ↘ ↗ ↘
5% 5% $5.66 $0

↘ ↗ ↘ ↗
2% $0

↘ ↘
1% $0

7.2.6 Pricing an Interest Rate Floor/Flotion

For the purposes of interest rate risk hedging, a bond investor might
consider acquiring an interest rate floor which is very similar to a put
option on the value of the short interest rate. In every period before the
floor’s maturity, it pays off the difference between the floor rate and
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the short rate, if positive, and zero otherwise. The following diagram
illustrates the valuation of a floor with a floor rate of 2% on a $1000
notional value:

Short rate Floor at 2% on $1000 T = 2

10% $0
↗ ↗

8% $0
↗ ↘ ↗ ↘

5% 5% $2.33 $0
↘ ↗ ↘ ↗

2% $4.90
↘ ↘

1% $10

Note that the floor is in the money only at the bottom states of the
world in the middle and the last time period. An option to enter a
floor for a fixed price at a future point in time is also available and
is referred to as a flotion. The next diagram prices a flotion to enter
the above floor for a strike price of $4 and mature in the middle time
period:

Short rate Flotion with strike=$4 T = 1

10% $0
↗ ↗

8% $0
↗ ↘ ↗ ↘

5% 5% $0.43 $0
↘ ↗ ↘ ↗

2% $0.90
↘ ↘

1% $0

Note, once again, that the flotion is much cheaper than the floor.
Various combinations of the cap and floor generate a wide variety

of payoff contingent on the future values of the short rate. For
example, a 2/7 collar consists of a long position in a 7% cap and
a short position in 2% floor. Note that the price of this collar is
$11.38 − $2.33 = $9.05. It is clearly cheaper to acquire than to buy
the cap. Unfortunately, it also puts a lower limit on the interest rate
that is to be paid, namely, 2%.
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7.2.7 Pricing a Reverse Floater

As out final example of exotic interest rate instruments, let us consider
how we would price an inverse floater with an annual coupon rate
of 30% − 2 × r, where r is the short rate. The following diagram
illustrates the pricing of this inverse floater:

Short rate Reverse floater Coupon = 30% − 2 × r

10% $1100

↗ ↗
8% $1064.81+$140

↗ ↘ ↗ ↘
5% 5% $1276.43+$200 $1200

↘ ↗ ↘ ↗
2% $1215.69+$260

↘ ↘
1% $1280

Note how this security loses value quickly as the short rate increases
and gains in value substantially as the short rate declines. This is
indeed the purpose for which the inverse floater was created.

Problems

1. Prove that in the simple version of the Ho–Lee model all
zero-coupon spot and forward interest rates are nonnegative as long
as the short rates at every node in the binomial tree are nonnegative
and all risk-neutral probabilities are proper probabilities.
2. Consider a binomial model for the short rate starting at 5% at t = 0
and going up or down by 1% in each period over the next two periods
with a 50% risk-neutral probability at each node. Find the present
value of an exotic security payoff the short rate at every node of the
tree. How would we replicate this exotic security using zero-coupon
bonds of various maturities? In other words, what is the dynamic
replicating portfolio for the short rate?
3. Consider the binomial models for the pricing of the interest rate cap
and the interest rate floor earlier in this chapter. Design an interest rate
collar consisting of a long position in the interest rate cap and a short
position in the interest rate floor such that the net cost of entering the
interest rate corridor at inception is zero, i.e., the cap and the floor
must have equal value.
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Foreign Exchange

8.1 Spot and Forward Commodity Prices

8.1.1 Purchasing Power Parity

Let ih be the periodic inflation rate in the home country, if be the
periodic inflation rate in the foreign country, e0 be the spot exchange
rate given by the current home currency value of 1 unit of foreign
currency, and et be the period t home currency value of 1 unit of
foreign currency.

The absolute version of the purchasing power parity (PPP) states
that in an idealized world with no taxes, tariffs, transaction or
transportation costs, identical goods should sell for the same price
everywhere, provided markets for goods are perfectly competitive and
capital markets are integrated:

et

e0
=
(

1 + ih
1 + if

)t

. (8.1)

A special case of this is obtained when we consider t = 1 and the
one-period change in the exchange rate:

e1

e0
= 1 + ih

1 + if
, (8.2)

or, more intuitively expressed as

e1 − e0

e0
= ih − if

1 + if
. (8.3)

Note that this means that in an ideal world the expected
percentage change in the exchange rate will be, approximately,
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driven by the inflation differential between the home and foreign
country.

Example: Suppose the current US price level is at 112 and the
Swiss price level is at 107 relative to a base price level of 100 for
both countries. If the initial value of the Swiss frank was $0.58, then
according to PPP, the dollar value of the Swiss frank should have risen
to $0.58 × (112/107) = $0.6071 or an appreciation of 4.67%.

Alternatively, if the current Swiss price level equals 119 instead,
then according to PPP, the current dollar value of the Swiss frank
should have fallen to $0.58 × (112/119) = $0.5459 or a depreciation
of 5.88%.

In practice, we can imagine many if not all of the assumptions
behind the derivation of PPP will fail to obtain. Consequently,
the empirical evidence on PPP is mixed, at least at short time
horizons. Once good markets and capital markets have had some
time to adjust, then PPP tends to hold roughly in relative terms in
the long run. Nevertheless, significant deviation is obtained in the
short run which are mostly due to taxes, tariffs, and various other
market imperfections. More importantly, the basket of goods used
to calculate inflation rates may differ from country to country due to
heterogeneous local tastes. Furthermore, many services are not easy
or even impossible to trade across borders.1

8.2 Spot and Forward Exchange Rates

Let us first consider the case of two currencies and a single spot
exchange rate. For simplicity, let us express the exchange rate as
units of home currency per unit of foreign currency. Expressing the
exchange rate in opposite terms leads to an interesting nonlinearity.
For example, consider a spot exchange rate of 100¥/$ which moves to
80¥/$. This change in the exchange rate represents a 20% depreciation
of the dollar versus the yen. At the same time, from the point of
view of the yen as home currency this change represents a move from
0.01$/¥ to 0.0125$/¥ which is a 25% appreciation of the yen versus
the dollar. This mathematical curiosity is sometimes referred to as
Seigel’s paradox. It disappears completely if we use percentage log
changes in exchange rates rather than simple percentage changes in
exchange rates.

Next, let us introduce a buy and a sell spot exchange rate or, more
formally, an ask and a bid exchange rate, respectively, eASK

h/f and
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eBID
h/f . The first interesting question to address is how do these two

rates link with the respective ask and bid rates when the exchange rate
is expressed in opposite terms. Insisting that there is no free lunch in
trading, these two currencies leads to the following:

eASK
h/f ≤ 1

eBID
f/ff h

, (8.4)

eBID
h/f ≤ 1

eASK
f/ff h

. (8.5)

The proof of the above is quite simple and is left as an exercise for
the reader. The intuition behind this result is quite straightforward.
It simply has to do with the fact that the act of purchasing foreign
currency with home currency is equivalent to selling home currency in
exchange of foreign currency.

8.2.1 Triangular Arbitrage with Bid-Ask Spread

First, start with 1 unit of currency X, exchange it for currency Y,YY
then exchange currency Y for currency Z. Finally, sell currency Z for
currency X. In order to avoid arbitrage, we should end up with at
most 1 unit of currency X at the end or less. This leads to the following
restriction on the ask exchange rates:

eASK
Y/Y X × eASK

Z/Y × eASK
X/Z ≥ 1. (8.6)

To derive a similar constraint on the bid exchange rates, let us
try trading in the opposite direction. Suppose we start with 1 unit
of currency Z, exchange it for currency X, which we then exchange
into currency Y. Finally, we revert to the original currency we started
with. These trades should leave with no more than 1 unit of currency
Z or less. We can express this more formally as:

eBID
X/Z × eBID

Y/Y X × eBID
Z/Y ≤ 1. (8.7)

8.2.2 Interest Rate Parity

Before we formally derive the interest rate parity relationships, let us
consider the following two strategies involving two currencies with
spot and forward exchange rates. For simplicity, we will first consider
an idealized world where we can buy and sell at the same price both
spot and forward.
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Starting with borrowing 1 unit of home currency at time t = 0
at the home currency interest rate rh, we exchange it at the spot
exchange rate for 1/e0 units of foreign currency. We lend the 1/e0

units of foreign currency at the foreign interest rate of rfr for one
period. This leaves us with (1+rfr )/e0 units of foreign currency at t = 1.
Simultaneously, at time t = 0 we enter a forward exchange contract
to sell (1 + rfr )/e0 units of foreign currency for home currency at the
forward exchange rate f1ff . This leaves us with (1 + rfr )f1ff /e0 units of
home currency at t = 1 with which we can repay our loan coming
due at t = 1 in the amount of (1 + rh). In order to avoid arbitrage, we
should be allowed to make a risk-free profit but we can at best break
even or suffer a loss.

A second alternative strategy involves borrowing 1 unit of foreign
currency at t = 0 at the foreign interest rate rfr which we exchange at
the spot exchange rate for home currency at the rate of e0 leaving us
with e0 units of home currency at t = 0. We lend these e0 units of
home currency at the home interest rate rh which brings us e0(1 + rh)
units of home currency at t = 1. At the same time, we enter a forward
exchange contract to sell e0(1 + rh) units of home currency for foreign
currency leaving us with e0(1+rh)/f1ff units of foreign currency at t = 1.
Our foreign currency loan is coming due at t = 1 as well and we need
to pay back (1 + rfr ) units of foreign currency. Once again, in order
to avoid arbitrage, we should have accumulated barely enough money
in order to be able to pay back our debt and should not be making a
risk-free profit.

Mathematically, the above two statements can conveniently be
expressed with the following inequalities:

f1ff (1 + rfr )
e0

− (1 + rh) ≤ 0, (8.8)

e0(1 + rh)
f1ff

− (1 + rfr ) ≤ 0. (8.9)

Simplifying the above two we obtain:

f1ff (1 + rfr )
e0(1 + rh)

≤ 1, (8.10)

e0(1 + rh)
f1ff (1 + rfr )

≤ 1. (8.11)
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Both of the above inequalities can be true if and only if interest rate
parity holds:

f1ff
e0

= 1 + rh

1 + rfr
. (8.12)

The above expression is usually referred to as interest rate parity. Note
that this is a hard constraint, i.e., even a small deviation from it can
lead to arbitrage profits assuming that we can freely buy and sell both
currencies spot at e0 and forward at f1ff as well as freely borrow and
lend currency units at home and abroad at rh and rfr , respectively. Let
us trace out the implications of this claim. If (1 + rh) < (1 + rfr ) f 1

e0
, then

it is cheaper to borrow at home, acquire foreign currency, and lend
abroad at no risk to one’s own funds. Moreover, if this inequality
persists for a while in the absence of any capital or banking controls
then eventually funds will flow from the home country into the foreign
country pushing down the forward exchange rate bringing it back
into equilibrium. Similarly, if (1 + rh) > (1 + rfr ) f 1

e0 then it is cheaper
to borrow abroad, exchange the foreign currency for home currency,
and lend it at home. Once again, if this situation persists for a while
then foreign funds will flow into the home country and increase the
forward exchange rate back to equality.

The above is also occasionally referred to as covered interest rate
parity where the cover refers to the use of a forward exchange
contract. The uncovered version of interest rate parity is risky and
is commonly referred to as the carry trade. To illustrate the uncovered
interest parity relation, we will have to repeat the two steps above but
instead of buying and selling currency at the forward exchange rate
we will trade at the future spot exchange rate. The latter is uncertain
from the points of view of t = 0 and we will denote it as ẽ1. Note
that the only way we can profit by trading only in the spot exchange
rate markets is if the following two inequalities hold true at the actual
value of the exchange rate next period, e1:

e1(1 + rfr )
e0(1 + rh)

≤ 1, (8.13)

e0(1 + rh)
e1(1 + rfr )

≤ 1. (8.14)

However, it is quite possible that either or both of these inequalities
are violated by the time we enter time period t = 1 in which case the
carry trade will suffer a loss.
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It is easy to generalize the covered interest rate parity relation
to the case where we have realistic bid and ask exchange rates as
well as differential interest rates for borrowing and lending. First,
let us consider the simplest complication of a bid–ask spread in the
spot foreign exchange market. Let us denote the spot bid exchange
rate (this is the rate at which we sell foreign currency for home
currency) by eBID

0 and the spot ask exchange rate (this is the rate
at which we buy foreign currency with home currency) by eASK

0 . Due
to the “wedge” driven by the bid–ask spread in the spot exchange
rate, there will be a corresponding “wedge” or bid–ask spread in
the forward rate. Let us denote the forward bid exchange rate (this
is the rate at which we sell foreign currency forward for home
currency) by f BID

1 and the forward ask exchange rate (this is the
rate at which we buy forward foreign currency with home currency)
by f ASK

1 .
Returning again to our two arbitrage strategies, we require that

they both yield nonpositive returns which can be mathematically
expressed as follows:

f BID
1

eASK
0 (1 + rfr )

− (1 + rh) ≤ 0, (8.15)

eBID
0 (1 + rh)

f ASK
1

− (1 + rfr ) ≤ 0. (8.16)

These two inequalities can be simplified to

f BID
1

eASK
0

≤ (1 + rh)
(1 + rfr )

, (8.17)

f ASK
1

eBID
0

≥ (1 + rh)
(1 + rfr )

. (8.18)

Finally, in addition to the bid–ask spread, we are going to introduce
another complication, namely, differential rates for borrowing and
lending. Let us denote the home country’s borrowing and lending
interest rates by rB

h and rL
h . Similarly, rB

fr and rL
fr will be the foreign

country’s borrowing and lending interest rates, respectively.
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Going back to our two arbitrage strategies, we again require that they
generate no positive profit which summarizes to the following:

f BID
1 (1 + rL

fr )

eASK
0

− (1 + rB
h ) ≤ 0, (8.19)

eBID
0 (1 + rL

h )

f ASK
1

− (1 + rB
fr ) ≤ 0. (8.20)

The latter can be rearranged as follows:

f BID
1

eASK
0

≤ (1 + rB
h )

(1 + rL
fr )

, (8.21)

f ASK
1

eBID
0

≥ (1 + rL
h )

(1 + rB
fr )

. (8.22)

8.3 Foreign Exchange Capital Budgeting

Before we delve into the general case of discounting foreign exchange
rate denominated cash flows, let us consider a somewhat simplified
example. A Turkish multinational corporation has the following cash
flows in home currency, YTL, and foreign currency, USD, over the
next 3 years:

Currency t = 1 t = 2 t = 3

YTL 10 15 20
USD 5 6 7

The following risk-free rates prevail on both countries:

Currency r1 r2 r3

YTL 15% 14% 12%
USD 4% 5% 6%

The company’s beta with respect to the world portfolio is 1.2. The
world portfolio has constant expected returns over the next 3 years of
16% in YTL terms. Finally, the spot exchange rate is 1.36 YTL/USD.
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We already established what the USD expected returns on the world
market portfolio are and what the USD discount rates are over the
next 3 years:

t = 1 t = 2 t = 3

r̄w,$ 4.91% 6.84% 9.78%
r̄w,YTL 16% 16% 16%
f YTL/$ 1.5038 1.6031 1.6043
dMNC,$ 5.09% 7.21% 10.54%
dMNC,YTL 16.2% 16.4% 16.8%

Let us first consider the case of a completely segmented world
model. Locally, CAPM holds in every country. Recall our
international investments formulae:

wh = r̄m,h − rh

γhγγ σ 2
hσ

, (8.23)

wf = r̄m,f − rfr
γfγγ σff

2
fσ

. (8.24)

In equilibrium, both investors have to hold their entire stock
markets which implies that their stock markets risk premia are

r̄m,h = rh + γhγγ σ 2
hσ , (8.25)

r̄fr ,ff h = rfr + γfγγ σff
2
fσ . (8.26)

Any specific home/foreign company will have the following
expected returns:

r̄i,h = rh +βi,hr̄m,h, (8.27)

r̄jr ,f = rfr +βjβ ,fr̄ff m,f. (8.28)

Both companies expected returns are in local currency terms. Next,
let us consider the case of a perfectly integrated world model. In
order to proceed we need to make some assumptions. First, we will
assume that capital markets are completely integrated; there are no
trade barriers and no transaction costs. Second, we will assume that
the international CAPM holds. This implies that all securities excess
expected returns are proportional to the excess return on the world
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portfolio as follows:

r̄i,h = rh +βi,hr̄w,h, (8.29)

r̄i,f = rfr +βi,fr̄ff w,f. (8.30)

Convert all foreign currency cash flows to home currency using
forward exchange rates. Finally, obtain the present value using home
currency discount rates. Next, we need an estimate of the world
market risk premium and compute multicurrency discount rates to
obtain the foreign currency present values. Finally, we convert all
foreign currency present values back to home currency using spot
exchange rates.

Let us present these ideas using a simplified example. A Turkish
multinational company has the following YTL and USD cash flows
over the next 3 years:

Currency t = 1 t = 2 t = 3

YTL 10 15 20
USD 5 6 7

The following zero-coupon risk-free rates prevail in both countries:

Currency r1 r2 r3

YTL 15% 14% 12%
USD 4% 5% 6%

The company’s beta with respect to the world portfolio is 1.2. The
world portfolio has constant expected returns over the next 3 years of
16% in YTL terms. Finally, the spot exchange rate is 1.36 YTL/USD.
What is the YTL/USD present value of the company’s cash flows?

It is easier to do the YTL cash flows first, so let us do that:

PVYTL,CF = 10
1 + 0.15 + 1.2 · (0.16 − 0.15)

+ 15
(1 + 0.14 + 1.2 · (0.16 − 0.14))2

+ 20
(1 + 0.12 + 1.2 · (0.16 − 0.12))3
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= 10
1.162

+ 15
(1.164)2

+ 20
(1.168)3

= 8.61 + 11.07 + 12.55

= 32.23.

Now let us move on to the USD cash flows. There are three
(equivalent) ways to obtain their present value. First, let us compute
the implied forward exchange rates and convert the USD cash flows
to YTL, then reuse the YTL discount rates:

f1ff = 1.36 × 1.15
1.04

= 1.5038YTL/USD,

f2ff = 1.36 × (1.14)2

(1.05)2
= 1.6031YTL/USD,

f3ff = 1.36 × (1.12)3

(1.06)3
= 1.6043YTL/USD,

PVUSD,CF = 5 × 1.5038
1.162

+ 6 × 1.6031
(1.164)2

+ 7 × 1.6043
(1.168)3

= 7.519
1.162

+ 9.6186
(1.164)2

+ 11.2301
(1.168)3

= 6.47 + 7.10 + 7.05

= 20.62.

The second approach we take is to compute the USD discount
rates and convert the USD cash flows to obtain the USD net present
value, then convert to YTL at the spot exchange rate. In order to
obtain the USD discount rates, we can adjust the YTL discount rates
for the respective annualized forward exchange discount/premium as
follows:

1 + dUSD,1 = (1 + dYTL,1) ×
(

e0

f1ff

)

= (1.162) ×
(

1.36
1.5038

)
= 1.05088

⇒ dUSD,1 ≈ 5.09%,

1 + dUSD,2 = (1 + dYTL,2) ×
(

e0

f2ff

)1/2
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= (1.164) ×
(

1.36
1.6031

)1/2

= 1.07212

⇒ dUSD,2 ≈ 7.21%,

1 + dUSD,3 = (1 + dYTL,3) ×
(

e0

f3ff

)1/3

= (1.168) ×
(

1.36
1.6043

)1/3

= 1.10542

⇒ dUSD,3 ≈ 10.54%,

PVUSD,CF = 1.36 ×
(

5
1.0509

+ 6
(1.0721)2

+ 7
(1.1054)3

)
= 1.36 × (4.76 + 5.22 + 5.18)

= 1.36 × 15.16

= 20.62.

The third way to solve this capital budgeting problem involves
finding out the USD expected return on the world portfolio,
converting all cash flows to USD and discounting at the dollar discount
rates we found in the second approach above. Using interest rate
parity, we can show that

r̄$
w,1 = 0.04908,

r̄$
w,2 = 0.06843,

r̄$
w,3 = 0.09785,

dUSD,1 = 0.04 + 1.2 × (0.04908 − 0.04) ≈ 5.09%,

dUSD,2 = 0.05 + 1.2 × (0.06843 − 0.05) ≈ 7.21%,

dUSD,3 = 0.06 + 1.2 × (0.09785 − 0.06) ≈ 10.54%.

8.4 Currency Option Valuation

Plain vanilla currency options exist allowing us to prespecify the
exchange rate at which we can purchase or sell foreign currency at a
future point in time. A more interesting example of a foreign currency
option from a valuation point of view is an option delivering a payoff
in foreign currency, i.e., a digital option paying either 1 unit of foreign
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currency when it appreciates and zero units of foreign currency when
it depreciates. Consider the following digital foreign currency option
paying off £1 or £0 contingent on the USD/£exchange rate:

Spot rate Currency option

$2/£ £1
↗ ↗

$1/£ ?
↘ ↘

$0.50/£ £0

The best way to approach the valuation of this digital foreign
currency option is to set up a replicating portfolio involving the foreign
and home currency risk-free bonds for which we will need to specify
a binomial tree as follows:

Home bond Foreign bond

$100 £100
↗ ↗

$80 £90
↘ ↘

$100 £100

In order to value the USD/£ digital option, we construct a
replicating portfolio of foreign currency bought at the spot market
and borrowing/lending in the home risk-free asset. Let us denote the
number of foreign currency units purchased spot with NsN and the
number of home currency risk-free bonds purchased with Nb. Also,
let the spot exchange rate be denoted as e0 with next period values eu

1

and ed
1, respectively, for the up and down movement in the binomial

tree. Next, let today’s home risk-free bond price be B0. And, finally,
let the currency option have payoffs more denoted generically as Cu

1

and Cd
1, respectively, in the up and down state of the world at date

t = 1.
We need to have the replicating portfolio fulfill the following

constraints:

Cu
1 × eu

1 = NsN × eu
1(1 + rfr ) + Nb × B0(1 + rh), (8.31)

Cd
1 × ed

1 = NsN × ed
1(1 + rfr ) + Nb × B0(1 + rh). (8.32)
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Solving the above system yields the following:

NsN = Cu
1e

u
1 − Cd

1e
d
1

(eu
1 − ed

1)(1 + rfr )
, (8.33)

Nb =
Cu

1

( −eu
1e

d
1

eu
1 − ed

1

)
+ Cd

1

(
ed

1e
u
1

eu
1 − ed

1

)
B0(1 + rh)

. (8.34)

Now we are ready to figure out the value of the currency option at
time t = 0, C0. It will simply be equal to the value of the replicating
portfolio of spot currency and home country risk-free bond today at
t = 0 or, specifically:

C0 = NsN × e0 + Nb × B0, (8.35)

=
(

1
1 + rh

){
Cu

1e
u
1

(
f1ff − ed

1

eu
1 − ed

1

)
+ Cd

1e
d
1

(
eu

1 − f1ff
eu

1 − ed
1

)}
, (8.36)

where we have used interest rate parity

f1ff = e0

(
1 + rh

1 + rfr

)
. (8.37)

Note that, after a suitable substitution, the above expression can be
interpreted as follows:

C0 =
(

1
1 + rh

){
p	 × Cu

1e
u
1 + (1 − p	) × Cd

1e
d
1

}
, (8.38)

where

p	 = f1ff − ed
1

eu
1 − ed

1

(8.39)

is the risk-neutral probability for pricing any option on the particular
foreign currency.

Conceptually, the claim that we can price a currency option in a
risk-neutral setting can be expressed as follows:

C0 =
(

1
1 + rh

)
E	

[
C̃1

]
. (8.40)

To continue with the numerical example above, we first determine
the forward exchange rate at maturity of the currency option as
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follows:

f1ff = 1 × 100/80
100/90

= 90
80

= $1.125/$.

Now we are ready to find the risk-neutral probability:

p	 = 1.125 − 0.5
2 − 0.5

= 0.625
1.5

= 0.4167.

Therefore, this currency option price today is equal to

C0 =
(

1
100/80

)
(0.4167 × 1 × 2 + 0.5833 × 0 × 0.5)

= $0.6667.

We can also find the replicating portfolio. To generate this currency
option’s payoffs, we need to buy $1.2 and borrow 0.0066 bonds
(worth $0.5333 at time t = 0) at the home risk-free rate. In the up
state at the maturity of the option, our $1.2 will have grown to
$1.3333. We deliver the $1 payoff of the option which leaves us
$0.3333 that is worth $0.6667. As it happens, this is exactly how
much we have to pay in order to repay what we borrowed at home.
Similarly, in the down state, we still have $1.3333 and have to make
a payoff of $0 which leaves us $1.3333 that are now worth only
$0.6667. Once again, this is exactly how much we need to pay back
our home loan. Therefore, the value of the currency option today
should be equal to the value of the replicating portfolio today, which is
$1.2×$1/$−$0.5333 = $0.6667. This checks our calculation above.

8.5 Currency Option Put–Call Parity

Here is a simple currency option arbitrage argument that establishes
currency option put–call parity. Suppose we denote the spot exchange
rate as e0, the next period spot exchange rate as e1, the forward
exchange rate as f1ff , and the home and foreign risk-free interest rates
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as rh and rfr , respectively. Let us investigate the payoffs of the following
strategies:

1. Lend 1/(1 + rfr ) units of foreign currency at the foreign risk-free rate.
2. Buy 1 currency put option on 1 unit of foreign currency with an exercise

f

price of X.
3. Borrow X/(1 + rh) units of home currency at the home risk-free rate.
4. Sell one currency call option on 1 unit of foreign currency.

The payoffs at time t1 depending on whether the currency options
are in the money or out of the money are:

Security e1 > X e1 < X

Lending foreign currency e1 e1
Long put payoff 0 X − e1
Repaying home loan −X −X
Short call payoff X − e1 0
Net payoff 0 0

More generally then, if we denote the currency call option value
today as Call0 and the currency put option value today as Put0,
we have

Call0 = e0

1 + rfr
− X

1 + rh
+ Put0. (8.41)

Recalling interest rate parity allows us to connect the currency
option values to the forward exchange rate as follows:

Call0 = f1ff − X
1 + rh

+ Put0. (8.42)

The intuition for this result is that a long position in a currency
call option is equivalent to a forward (or future) contract and
a short position in a currency put option. The f1ff − X term is
discounted because the call and put premia are paid upfront (i.e.,
at time t = 0), whereas the forward (or future) contract payoffs as
well as the options payoffs are received at maturity/expiration at
time t = 1.
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8.6 Pricing Currency Future Options

In this section, we will consider the pricing of foreign currency futures
options. These securities effectively represent a plain vanilla call or put
option on a foreign currency futures contract. Consider the following
binomial tree models for the foreign currency contract and the foreign
currency futures option:

Futures contract payoff Currency futures option

$1/£ £1

↗ ↗
$0/£ ?

↘ ↘
−$0.50/£ £0

For completeness and for the purposes of building a replicating
portfolio for the foreign currency futures option, we will need to
model explicitly the home currency and foreign currency risk-free
bonds:

Home bond Foreign bond

$100 £100
↗ ↗

$80 £90
↘ ↘

$100 £100

Let us construct a replicating portfolio using the futures contract
payoff and the home risk-free bond. Let NfutN denote the number of
futures contracts contained in the replicating portfolio and Nb denote
the number of risk-free bonds in the replicating portfolio. We would
like our replicating portfolio to have the same payoffs as the currency
futures option itself or

CFOu
1 = NfutN × CFPu

1 + Nb × B0(1 + rh), (8.43)

CFOd
1 = NfutN × CFPd

1 + Nb × B0(1 + rh), (8.44)

where CFOu
1 and CFOd

1 denote the currency futures option payoffs in
the up and down states of the world, respectively. Similarly, CFPu

1 and
CFPd

1 denote the currency futures contract payoffs on both states of
the world.
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For the sake of simplicity, let us model the currency futures contract
payoff as a fixed fraction, δ, of the current futures price at time t = 0.
In other words, at time t = 1, the futures contract payoff is either a
positive or a negative δ fraction of FP0 or, algebraically, ±δ × FP0.

Now the above system of constraints on the replicating portfolio
becomes

CFOu
1 = NfutN × (δFP0) + Nb × B0(1 + rh), (8.45)

CFOd
1 = NfutN × ( − δFP0) + Nb × B0(1 + rh). (8.46)

The solution to the above system is given by

NfutN = CFOu
1 − CFOd

1

2δFP0
, (8.47)

Nb = 1
B0

(
1

1 + rh

){
1
2

CFOu
1 + 1

2
CFOd

1

}
. (8.48)

Therefore, the value of the currency futures option at time t = 0 is
equal to the value of the replicating portfolio at time t = 0, or:

CFO0 =
(

1
1 + rh

){
1
2

× CFOu
1 + 1

2
× CFOd

1

}
. (8.49)

8.7 Currency Futures Option Put–Call Parity

A currency futures call option upon maturity delivers a cash payment
equal to the difference between the currency futures price at maturity
of the option, F̃P1, and a strike price, X, or zero if the option is out
of the money. A currency futures put option upon maturity delivers a
cash payment equal to the difference between the strike price, X, and
the currency futures price at the maturity of the option, F̃P1, or zero if
the former is negative.

Consider the payoffs of the following strategies:

1. Go long in 1 currency futures contract.
2. Buy 1 currency futures put option with strike price X.
3. Sell 1 currency futures call option with strike price X.
4. Borrow (X − FP0)/(1 + rh) units of home currency.
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The payoffs from this strategy, depending on the currency futures
price at the maturity of both options are as follows:

Security FP1 > X FP1 < X

Long currency futures contract FP1 − FP0 FP1 − FP0
Long currency futures put 0 X − FP1
Short currency futures call −(FP1 − X) 0
Repaying home currency loan −(X − FP0) −(X − FP0)
Net payoff 0 0

Therefore, a long currency futures put minus a short currency
futures call is equivalent to risk-free borrowing in home currency and
a long currency futures contract on the underlying foreign currency.
Mathematically, we can express currency futures put–call option
parity as follows:

CFCall0 − CFPut0 = FP0 − X
1 + rh

, (8.50)

where the difference between the currency futures price today and the
strike price is discounted for the same reason as for currency options
put–call parity, namely, because the premia are paid upfront whereas
the currency futures and currency futures option payoffs take place at
the maturity of the latter.

Problems

1. Why is the forward exchange rate, f1ff , replacing the risk-free rate in
the calculation of p	 in (8.39)?
2. In the currency future option pricing formula, we are discounting
the expected currency futures option payoff with the home country’s
risk-free rate. Explain why.
3. Why is the foreign country’s risk-free rate rfr missing in (8.49)?
4. You are asked to design a 180-day forward foreign exchange
dollar contract for a Turkish bank. You are provided with the
following information. The annualized borrowing rate on US dollars
for 180-day term is rB

fr =6% while the annualized lending rate on
US dollars for 180-day term is rL

fr = 4%. At the same time, the
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annualized borrowing rate on YTL for 180-day term is rB
h = 20% while

the annualized lending rate on YTL for 180-day term is rL
h = 16%.

The spot exchange rates are YTL 1.3410–1.3560/$. What is the
most competitive bid–ask quote for a 180-day forward exchange rate
between US dollars and YTL?



9

What Next?

9.1 Contingent Convertible Securities

Consider the so-called “death spiral” convertible. This is an example
of the contingent convertible (COCO) securities widely proposed as
a potential solution for automatic equity recapitalization of troubled
banks following the financial crisis of 2008.

Suppose that the assets of the firm are driven by a two-state
binomial model and the risk-free rate of interest is equal to zero.

Assets

120
↗

100
↘

80

In this case, the asset return in the up state is equal to 0.2, or 20%,
while the asset return in the down state is equal to −0.2, or −20%.
As the risk-free rate is equal to 0, then it is straightforward to show
that p	

u = 0.5 and p	
d = 0.5. The company has a zero-coupon COCO

bond with one period to maturity and face value of 75. The bond
is convertible into 11 shares of common stock at the maturity of the
bond at the option of the bondholder in the up state and 19 shares of
common stock in the down state. If we assume initially that there is
no conversion, then the payoffs of the corporate bond are 75 in the
up state and 75 in the down state. The value of the corporate bond
today is(

1
1 + 0

)
(0.5 × 75 + 0.5 × 75) = 75. (9.1)
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The value of the share of common stock is simply equal to 25. The
yield to maturity of the COCO bond is equal to 0% resulting in a
default premium or a credit spread of 0%. Since the asset value is
always more than the face value of this COCO bond, it is effectively
risk-free if not converted into shares of common stock. However,
optimal conversion may increase the value of the COCO bond to
bondholders tremendously at the expense of diluting the share value
of existing stockholders.

Consider next the case where bondholders convert their corporate
bonds whenever it is beneficial to them. Note that in this case
bondholders will always convert. In the up state, it is optimal for them
to exercise the conversion option even in the face of a dilution of the
value of equity. In this case, the payoffs to the convertible corporate
bond are 110 in the up state and 76 in the down state as follows:

Corporate bond

110
↗

93
↘

76

The value of the convertible corporate bond today is(
1

1 + 0

)
(0.5 × 110 + 0.5 × 76) = 93, (9.2)

resulting in a promised yield to maturity equal to −1.32% and a
default premium or a credit spread of −1.32%. This sounds like a very
bizarre situation but happens occasionally to the quoted promised
yield to maturity of convertible bonds when the stock price is too low
and the conversion option is deep in the money.

The company also has equity outstanding the payoffs for which are
given as follows:

Equity

45
↗

25
↘

5
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The value of the equity today, assuming no conversion, is(
1

1 + 0

)
(0.5 × 45 + 0.5 × 5) = 25. (9.3)

The value of the equity today with optimal conversion by the
bondholders is(

1
1 + 0

)
(0.5 × 10 + 0.5 × 4) = 7. (9.4)

Note that the sum of the values of equity and the convertible
corporate bond (93+7) is exactly equal to the value of assets today
(100). This incredible amount of dilution is not surprising given the
generous conversion rates assumed. Existing shareholders effectively
lose 72% as bondholders optimally choose to convert the COCO
bond. This is the reason for the term “death spiral” convertible. In
order to qualify for this ominous status, the convertible has to have a
conversion ratio that increases as the underlying stock prices decrease.

In practice, recapitalizing troubled banks is, frequently, at the
discretion of the bank regulator. For example, a few of the major
commercial banks in Australia have recently issued COCO debt where
the decision to trigger the conversion is solely at the discretion of the
Reserve Bank of Australia (RBA). This is still untested territory and
it is not quite clear what criteria will be used by the RBA if such an
event were to occur in the future.

9.2 Longevity Swaps

Longevity risk is the risk that the members of a defined benefit pension
fund will outlive the assets of the fund itself. This issue does not
arise for defined contribution pension plans. The primary reason for
longevity risk includes inappropriate assumptions about future rates
of return, insufficient member contributions, and the secular increase
in the life spans of a defined benefit plan members. The latter issue, in
particular, has been the driving force behind the creation of longevity
swaps which can be entered into by the pension fund in order to
compensate the assets of the fund for any future decreases in mortality
rates.

Lee and Carter (1992) propose a simple model of US mortality
rates based on a large time series study of historical mortality rates by
various cohorts. They also generate a sequence of long-term forecasts
for future mortality rates well into the twenty-first century. Their
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model is usually the one that is used to simulate future changes
in cohort and age mortality reference indexes for the purposes of
longevity swaps. At inception, the present value of the fixed leg and
the floating leg of the longevity swap is zero by construction. Over
time, the net present value may be either positive or negative to either
counterparty which gives rise to counterparty risk. The longevity swap
rate is the rate that makes the fixed leg and the floating leg have the
same present value.

9.3 Acts of God versus Acts of Man

In most of the stochastic modeling in finance, we take the state
of the world as a purely random and exogenous variable which is
independent of the individual or collective actions of the agents in
the model. However, in practice there are few such random “Acts of
God” type of events. In practice, in the vast majority of instances these
seemingly random events are just the tipping point of mass of agents
whose joint behavior leads to a break in a pattern of prices or trades.

The proper functioning of asset and securities markets depends
crucially on a large number of market participants with heterogeneous
beliefs, risk preferences, and various investment goals. Every time
there is a critical mass of market participants whose beliefs and goals
converge there is usually a large price swing. This can take the form
of a bubble or a crash. The only way to stabilize asset markets is to
wait patiently for the market participants heterogeneity to be restored
in which case a crash is followed by a recovery or an asset bubble will
lose steam and will be followed by lower more reasonable asset prices.
These are the Acts of Man that tend to drive asset markets.

In terms of a policy recommendation for the proper functioning
of asset markets in the sense of price discovery, the importance of
promoting heterogeneous beliefs among market participants cannot
be emphasized enough. Any feature or institution that leads to a
convergence of beliefs will hurt this most important function of asset
markets and lead to prices that can potentially deviate significantly
from asset fundamentals.

Problems

1. Consider valuing a modified version of the convertible bond
described in the chapter. Everything else is as given but now the
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convertible bond can be converted into 19 shares of common stock in
the up state of the world and 7 shares of common stock in the down
state of the world. Compare the value of this version to the one in the
chapter. Are you surprised by the difference? If yes, what is surprising
about it?



Notes

Chapter 1

1. Strictly speaking, this equality is only approximate. Further conditions beyond
the scope of this text are necessary to derive an exact APT relation. An
alternative derivation is possible using a finite number of securities and a
mean–variance spanning argument.

Chapter 2

1. Note again that the derivation of the formula for the present value of a growing
perpetuity assumes g2 < re,2. Applying the formula when g2 > re,2 will produce
a negative value which is meaningless. When the cash flows grow forever faster
than we can discount them their present value is infinite.

2. Note again that the derivation of the formula for the present value of a growing
perpetuity assumes g2 < WACC2. Applying the formula when g2 > WACC2

will produce a negative value which is meaningless. When the cash flows grow
forever faster than we can discount them, their present value is infinite.

Chapter 3

1. But not from the denominator of the right-hand side. Note that WACC
depends on the tax rate implicitly through the after-tax cost of debt.

Chapter 4

1. This unfortunate terminology has little to do with geography as there are
European-style options traded in the United States as well as American-style
options traded in Europe. To make matters worse, there is a third class
of options that can be exercised at a set of prespecified times before they
mature. Continuing with the illusory geographical metaphor, such options are,
appropriately or not, referred to as Bermudan.
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2. Another unfortunate term. Please do not confuse it with the concept of intrinsic
asset value discussed in the context of DCF valuation models and intrinsic
multiples presented in prior chapters.

3. Yet another unfortunate term. Please do not confuse it with the time value of
money presented in Chapter 1. The time value of options is solely driven by the
volatility of the underlying stock price and the time to maturity of the option.
Another more mathematically intuitive way of thinking about option intrinsic
value is to go back to the option maturity payoffs to the option buyer and
realize that the convexity of the maturity payoff will push the expected present
discounted value above piecewise linear payoff of the option.

4. Listed stock options on individual stocks have American-style execution but
these options have 3 days remaining to maturity so for all intents and purposes
they will behave as if they are European.

Chapter 8

1. Consider the difficulties of exporting a haircut.
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