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Foreword

We are presently observing a paradigm change in designing complex
SoC as it occurs roughly every twelve years due to the exponentially
increasing number of transistors on a chip. The present design disconti-
nuity, as all previous ones, is characterized by a move to a higher level
of abstraction. This is required to cope with the rapidly increasing de-
sign costs. While the present paradigm change shares the move to a
higher level of abstraction with all previous ones, there exists also a key
difference.

For the first time advances in semiconductor manufacturing do not
lead to a corresponding increase in performance. At 65 nm and be-
low it is predicted that only a small portion of performance increase
will be attributed to shrinking geometries while the lion share is due to
innovative processor architectures. To substantiate this assertion it is
instructive to look at major drivers of the semiconductor industry: wire-
less communications and multimedia. Both areas are characterized by
an exponentially increasing demand of computational power to process
the sophisticated algorithms necessary to optimally utilize the limited
resource bandwidth. The computational power cannot be provided in an
energy-efficient manner by traditional processor architectures, but only
by a massively parallel, heterogeneous architecture.

The promise of parallelism has fascinated researchers for a long time;
however, in the end the uniprocessor has prevailed. What is different this
time? In the past few years computing industry changed course when it
announced that its high performance processors would henceforth rely
on multiple cores. However, switching from sequential to modestly par-
allel computing will make programming much more difficult without
rewarding this effort with dramatic improvements.

A valid question is: Why should massive parallel computing work
when modestly parallel computing is not the solution? The answer is:

xi



xii Foreword

It will work only if one restricts the application of the multiprocessor to
a class of applications. In wireless communications the signal processing
task can be naturally partitioned and is (almost) periodic. The first
property allows to employ the powerful technique of task level parallel
processing on different computational elements. The second property
allows to temporally assign the task by an (almost) periodic scheduler,
thus avoiding the fundamental problems associated with multithreading.
The key building elements of the massively parallel SoC will be clusters
of application specific processors (ASIP) which make use of instruction-
level parallelism, data-level parallelism and instruction fusion.

This book describes the automatic ASIP implementation from the ar-
chitecture description language LISA employing the tool suite ”Proces-
sor Designer” of CoWare. The single most important feature of the
approach presented in this book is the efficient ASIP implementation
while preserving the full architectural design space at the same time.
This is achieved by introducing an intermediate representation between
the architectural description in LISA and the Register Transfer Level
commonly accepted as entry point for hardware implementation. The
LISA description allows to explicitly describing architectural properties
which can be exploited to perform powerful architectural optimizations.
The implementation efficiency has been demonstrated by numerous in-
dustrial designs.

We hope that this book will be useful to the engineer and engineer-
ing manager in industry who wants to learn about the implementation
efficiency of ASIPs by performing architectural optimizations. We also
hope that this book will be useful to academia actively engaged in this
fascinating research area.

Heinrich Meyr, September 2006



Preface

The work presented in this book reflects my PhD thesis accomplished
at the Institute for Integrated Signal Processing Systems (ISS) at RWTH
Aachen University. The core topic of RTL hardware model generation is
only one out of many complex aspects in the field of design automation
for Application Specific Instruction-Set Processor (ASIP) development.
While several approaches focus on single aspects only, a few methodolo-
gies target the whole design flow and have gained acceptance in industry.
One of these bases on the architecture description language LISA, which
was initially defined to enable the generation of fast instruction-set sim-
ulators. Although not foreseen in the beginning, LISA was nevertheless
the starting point for a research project that consequently aimed at the
needs posed by commercial ASIP design. The development began with
simulator generation, then moved on to software tools generation and
system integration and has now arrived at C-Compiler generation and
RTL model generation. As the RTL model generation was one of the
latest aspects targeted, it was a huge challenge to bridge the discrep-
ancy between already commercialized parts of the LISA tool suite and
the latest research results. Therefore, the distance between initial re-
search and the final product was extremely short, providing challenge
and motivation simultaneously.

I would like to thank Prof. Heinrich Meyr for his support and the
numerous inspiring discussions. It was really motivating working in an
open and interdisciplinary atmosphere. Also, I would like to express my
thanks to Prof. Tobias Noll for his great interest in my work and for his
commitment as secondary advisor.

The concepts of a synthesis environment as described in this book
can hardly be implemented by a single person. At show-time, shortly
before product release, 11+ full time PhD and undergraduate students
were working on the project with enthusiasm. Each one of them made it
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become a huge success. In particular, I must thank Anupam Chattopad-
hyay, David Kammler and Martin Witte for their outstanding contribu-
tion.

Further, I would like to thank my wife Frauke for her support and
understanding during the whole project and especially while writing this
book. Last but not least, I would like to give special thanks to my parents
Udo and Monika for making my academic profession possible.

This book provides a snapshot not only from a technical point of view,
but also a snapshot in time. There are many challenging questions in
the emerging field of ESL design. Academic readers might be inter-
ested in visiting the web pages of the ISS at RWTH Aachen University
(www.iss.rwth-aachen.de), while readers from industry might consider
visiting CoWare’s web pages (www.coware.com) for latest product in-
formation.

Oliver Schliebusch, September 2006



Chapter 1

INTRODUCTION

The increasing utilization and steadily enhancing functionality of dig-
ital devices is noticeable in everyday life. This development is enabled
by Systems-on-Chips (SoCs) that comprise various computational build-
ing blocks, memories and on-chip communication. However, a crisis in
SoC design is posed by the conflicting demands for performance, en-
ergy efficiency and flexibility. Thus, hardware designers and the Elec-
tronic Design Automation (EDA) industry face extreme pressure to find
advanced architectures and appropriate design approaches. The impor-
tance of shifting away from architectures with fixed functionality, namely
Application-Specific Integrated Circuits (ASICs), to more flexible solu-
tions is discussed in this chapter.

1.1 From ASIC to ASIP
There are four major reasons for today’s ASIC design challenges [1].

First, so-called deep-submicron effects are not considered on the ab-
straction level used for architectural specification. With regard to the
interconnect, for example, both an increased influence of the signal prop-
agation delay and a compromised signal integrity due to crosstalk are not
considered adequately by traditional design methodologies. An architec-
ture implementation below Register Transfer Level (RTL) is required to
take these effects into account and to achieve an accurate estimation
of the physical behavior of the architecture. This implies the necessity
for several costly design iterations. Second, larger chips can be imple-
mented due to the advances in semiconductor manufacturing. The ITRS
[2] expects a growth from 697 million transistors per chip today up to
7,022 million transistors per chip in 2015. As early as 2003, it was pre-
dicted that up to 250 million gates per chip will become feasible in 2005,
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2 Introduction

although it was expected that only 50 million will be used [3]. Third,
not only the amount of gates, but also the complexity of the designs
is increasing. Analog as well as digital parts are integrated on a sin-
gle chip and, moreover, different functionalities are combined. Last but
not least, the shrinking time-to-market as well as the shortened time-in-
market augment the challenges in ASIP design.

Due to the above-mentioned reasons, SoC building blocks need to be
designed for reuse and adaption. Contrary to this requirement, ASICs
provide only a fixed function and not the required flexibility. However,
ASICsASIC are required in SoC designs due to their high performance
as well as energy efficiency.

As shown in figure 1.1, an ASIC can be divided into two components -
data-path and control-path. The data-path covers computational units,
storage elements and multiplexers to route the data. The control-path
basically consists of a Finite State Machine (FSM) that controls the data-
path. Thus, the FSM represents the application dependent schedule of
operations. Due to its complexity and irregularity, design errors are more
likely to appear in the control-path than in the data-path of the architec-
ture [4]. Although the separation between data-path and control-path is
theoretically existent, unfortunately, traditional ASIC design combines
these components without a clear interface. This certainly affects the
initial specification, but even more the reuse and adaption of the ASIC.
Every variation of the ASIC has to be completely verified even if only
the control-path is changed, as shown on the left of figure 1.1. More-
over, the commonly used design entry point is a hardware description on
RTL, which already covers numerous hardware details unnecessary for
a functional verification. However, these hardware details cause a slow
simulation performance and render verification extremely costly.

Concluding from the previous paragraphs, a separation of concerns
must be achieved. Hot spots of the application must be accelerated by
an application-specific and optimized data-path while its control must be
flexible and easy to verify. Processors partially address this requirement
by being programmable and thus flexible with regard to the schedule of
operations. This also implies a separation between fixed data-path and
flexible control. Here, errors which ensue from the complex application
dependent control can be easily eliminated by software updates. Fur-
thermore, since application software can be executed by more abstract
and therefore faster simulators compared to RTL hardware simulators,
the time for functional verification is reduced. However, due to their gen-
erality, off-the-shelf General Purpose Processors (GPPs), Digital Signal
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Processors (DSPs) or Microcontrollers (µCs) can neither achieve the per-
formance nor the energy efficiency of ASICs.

The inevitable consequence is the use of Application-Specific
Instruction-Set Processors (ASIPs) which incorporate the flexibility of
processors and high performance and energy efficiency of ASICs [5][6][7].
The software, more precisely the sequence of instructions, represents the
state transitions of the finite state machine mentioned above. Further-
more, the software can be written and verified independently from the
ASIP implementation, which enables an efficient reuse of the ASIP. The
orthogonal structure of an ASIP is illustrated on the right of figure 1.1,
emphasizing the aspect of verification for the first instantiation and the
subsequent reuse (bottom right corner of figure 1.1).

Obviously, not only the hardware implementation of an ASIP but
also software development tools are required. As long as they have to
be developed manually, the gain with regard to the verification time is
neutralized. Therefore, a new ASIP design methodology is indispens-
able, to preserve the architectural advantages of ASIPs and to reduce
the overall design effort.

The complexity of ASIP design results from the fundamental different
design tasks and the optimization of the processor concerning a given
application. This topic is discussed in detail in section 1.3.
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Within the scope of this book the focus is set on application-specific
computational elements in SoCs. However, various other aspects of SoC
design are also crucially related to the design complexity, such as the
on-chip communication. Numerous publications describe the SoC design
crisis, e.g. [3], [4], [8], [9], [10] and [11].

This crisis in SoC design currently motivates new heterogeneous ar-
chitectures, which represent alternatives to ASIPs. A brief overview of
the different solutions is given in the following section.

1.2 Heterogeneous Architectures:
Computational Performance vs. Flexibility

Heterogeneous architectures combine existing architecture types to
satisfy the demands of SoC design. The available architecture types
differ regarding performance, energy efficiency and flexibility [12][13], as
depicted in figure 1.2.
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Figure 1.2. Computational building blocks in SoCs. Source: T. Noll, EECS [14]

Off-the-shelf processors provide the most flexibility at the expense of
performance and energy efficiency. The processors have fixed instruc-
tion-sets, data-paths and interfaces. Software development tools, such
as C-compiler, assembler, linker, simulator and debugger are used for ap-
plication software development. In contrast to this, ASICs provide the
best performance at the expense of flexibility. ASIC development, usu-
ally started on RTL, requires gate-level synthesis tools, hardware simu-
lators, place and route tools, etc. ASIPs as well as Field Programmable
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Gate Arrays (FPGAs) enable a trade-off between flexibility and per-
formance. FPGAs provide flexibility by being reconfigurable to new
hardware specifications. Due to the regular structure of FPGA building
blocks, logic blocks with an regular structure can be mapped more effi-
ciently to FPGAs than logic with an irregular structure. Therefore, the
efficiency of the implementation strongly depends on the architecture.

The architectures types mentioned above are combined to trade off
design characteristics in heterogenous SoC design. Architectures cur-
rently discussed in academia and industry are presented in the following
and summarized in figure 1.3.
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Figure 1.3. Heterogeneous architecture types as SoC building blocks

MultiProcessor (MP) solutions receive significant impetus from
the requirement for flexible solutions in embedded systems. They benefit
from the high availability of off-the-shelf processors, such as GPPs, µCs
and DSPs. The required design tools are software development tools,
such as C-compiler, assembler, linker and simulator. A challenging task



6 Introduction

is to consider the data and control dependencies while developing multi-
tasking/multi-threading applications1.

However, one of the drawbacks of this approach is that the system
performance does not scale linearly with the number of processors, as the
on-chip communication has a substantial impact on the overall system
performance [16]. Therefore, the design challenges are moved from the
computational building blocks to the on-chip communication. Moreover,
the potential for application-specific optimization of the computational
blocks is completely neglected, which leads to suboptimal solutions.

A Processor with a loosely/tightly coupled accelerator ad-
dresses the need to speed up certain computational tasks. The data
traffic between processor and accelerator is dependent on the given ap-
plication. A loosely coupled accelerator may be used by multiple units in
the SoC and accessed, for example, via a bus. This interface is suitable if
data transfer rates are low and the computational tasks are independent
of other computations executed in the meantime. The tightly coupled
accelerator is preferable if a computational task depends on the overall
control-flow of the application or a heavy data transfer between proces-
sor core and accelerator exists. These accelerators are embedded into
the processor structure and directly linked to the temporal behavior
of the processor. Often the accelerators are triggered by special pur-
pose instructions. The major drawbacks of utilizing accelerators are the
generality of the processor, the fixed interface between processor and ac-
celerator and the fixed function of the accelerator. The above-mentioned
drawbacks of ASIC design are valid for the accelerator design as well.

A Processor with loosely/tightly coupled FPGA partially elim-
inates the drawbacks of the processor-accelerator coupling. The fixed
ASIC accelerator is replaced by an FPGA. The reconfigurable device
may be either loosely or tightly coupled. Here, both components pro-
vide post-fabrication flexibility. However, the fixed interface between
processor and reconfigurable device clearly restricts the architectural de-
sign space and prohibits possible optimization of the architecture with
regard to a given application.

FPGAs with integrated processors are offered and promoted by
FPGA vendors. Here, a particular number of GPPs and peripherals
are integrated into the FPGA. Contemporary approaches also integrate

1Multi-Tasking/Multi-Threading describes the ability to simultaneously execute several
tasks/threads on MP-systems or pseudo-simultaneously by sharing the processing power of
a single processor. The different terms can be distinguished by the definition given in [15]:
A task is a semi-independent portion of the application that carries out a specific duty. A
process is a completely independent program that has its own address space, while a thread
is a semi-independent program segment that executes within a process.
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special hardware as, for example, DSP engines into the FPGA chip.
However, even though a high flexibility is provided, off-the-shelf solu-
tions are hardly application-specific and potentially lead to suboptimal
solutions.

The heterogeneous solutions mentioned above compete with ASIPs
with regard to flexibility, performance, power dissipation and design
efficiency. The particular characteristics of ASIPs are explained in the
following.

Application-Specific Instruction-Set Processors incorporate
the flexibility of programmable solutions and the high performance and
energy efficiency of ASICs. The separation between processor and accel-
erator is completely removed, thus eliminating the drawbacks introduced
by interfaces. However, eliminating the interface leads to a more com-
plex design process, since the previously separated application software
development and accelerator implementation are now merged into one
design process. Furthermore, ASIP-specific application software devel-
opment tools are required. Thus, the design of ASIPs requires a new
design methodology reducing the overall design complexity, as discussed
in the following section.

1.3 Challenges of ASIP Design
The development of a processor is a complex task, involving several

development phases, multiple design teams and different development
languages, as depicted in figure 1.4. The key phase in processor design is
the architecture specification since it servers as the basis for all remaining
design phases. Although Hardware Description Languages (HDLs) are
designed for architecture implementation, in a traditional design flow,
these languages are also often used for the initial specification of the
processor. In this design phase tasks, such as hardware/software par-
titioning, instruction-set and micro-architecture definition is performed
[17][18]. Based on the architecture specification, both the hardware im-
plementation and the development of software tools is triggered. Both
tasks are basically independent and therefore performed by different ex-
perts and design methodologies. Hardware designers use HDLs such as
VHDL or Verilog, while software designers mostly utilize the C/C++
programming language. In addition, the target processor needs to be
integrated into the SoC and the application software needs to be imple-
mented. Communication between the design teams is obviously difficult
because of the heterogenous methodologies and languages. Nevertheless,
as soon as the above-mentioned phases of processor design are completed,
the verification of the hardware, application software and software de-
velopment tools can be triggered.
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Figure 1.4. ASIP design phases

Considering the traditional processor design flow, the strong depen-
dencies between design phases imply a unidirectional design flow and
prevent even minor optimizations. For example, an optimization of the
instruction-set due to the application software development requires
changes to the software tools and the hardware implementation as well.
Due to the different development languages, changes to the architec-
ture are difficult to communicate and inconsistencies are very likely to
appear.

The complexity of processor design even increases in ASIP design,
since optimizations targeted to a particular application are mandatory.
Mapping an architecture to a given application means moving through
a design space spanned by axes such as flexibility, power consumption,
clock speed, area and more. Every design decision in one dimension
constrains other decisions, for example

architectural features vs. design time,
design time vs. physical characteristics,
physical characteristics vs. flexibility,
flexibility vs. verification effort,
verification effort vs. architectural features.

It is obviously not possible to move through this design space by ap-
plying the traditional processor design methodology. A unified design
methodology is required, which provides a common basis for all design
phases. It must be suitable for all design engineers involved and natu-
rally consider the dependencies of the design phases.
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Today’s dilemma in SoC design stems from the requirement of flexible
high performance computational building blocks under the constraint
of a low design complexity. Most approaches today utilize heteroge-
neous solutions, which combine already known architecture types and
well established design methodologies. Thus, the requirements can only
partially be addressed. Contrary to these approaches, this book pro-
poses a new ASIP implementation methodology, which is based on Ar-
chitecture Description Languages (ADLs) in general and the Language
for Instruction-Set Architectures (LISA) in particular. Along with the
work performed in the fields of design space exploration, software tools
development and system integration based on LISA (cf. chapter 3), this
leads to a novel ASIP design methodology. This book addresses the au-
tomatic ASIP implementation starting from a given LISA description,
which surpasses the traditional processor design flow regarding design
efficiency and architectural efficiency. Therefore, a paradigm shift in
ASIP implementation is advocated.

1.4 Organization of This Book
This book is organized as follows. In chapter 2 the related work in

the field of ASIP design methodologies, RTL hardware implementation
and heterogeneous architectures is discussed. In chapter 3, the LISA
design environment is described focusing on design space exploration
capabilities, software development tools generation and system integra-
tion. In chapter 4 impetus is provided regarding the new entry point
for ASIP design and implementation. After this, the architecture de-
scription language LISA is discussed with regard to automatic hardware
implementation (chapter 5). In chapter 6 the intermediate represen-
tation used for automatic ASIP implementation is presented. The in-
termediate representation forms the basis for high level optimizations,
described in chapter 7, and for the automatic integration of processor
features, described in chapter 8. Three case studies are presented in
detail in chapter 9 and 10 to demonstrate the feasibility of the pro-
posed synthesis methodology. The first case study deals with an ASIP
for turbo decoding. The second and third case studies discuss archi-
tectures derived from existing processors while maintaining application
software compatibility. The ISS-68HC11 was devised to achieve a higher
instruction throughput compared to the original Motorola architecture.
Infineon’s ASMD was devised to support new instructions while offering
backwards compatibility to existing applications. Finally, the proposed
automatic ASIP implementation is summarized in chapter 11.



Chapter 2

ASIP DESIGN METHODOLOGIES

The challenges in ASIP design, as described in the previous chapter,
are addressed differently by today’s design methodologies. Several
approaches are based on Architecture Description Languages (ADLs),
which can be grouped according to the following three categories:

Instruction-set centric languages focus on the instruction-set
and thus represent the programmer’s view of the architecture. They
are mainly used to describe the instruction encoding, assembly syntax
and behavior. The languages nML [19] and ISDL [20] are examples for
this category.

Architecture centric languages focus on the structural aspects
of the architecture. The architecture’s behavior is described by
functional building blocks and their interconnections, often in an
hierarchical description style. Therefore, these languages represent the
hardware designer’s view of the architecture. An example for this type
of ADLs is the MIMOLA [21] language.

Mixed instruction-set and architecture oriented languages
combine the description of the instruction-set and the structural
aspects in one ADL. Therefore, ASIP design approaches based on
mixed-level languages mostly are able to target all domains of ASIP
design: architecture exploration, architecture implementation, software
development tools generation and system integration. Representatives
of this category are e.g. EXPRESSION [22] and LISA [23].

11



12 ASIP Design Methodologies

Furthermore, ADLs can be distinguished whether or not a library of
predefined building blocks is used (also referred to as module library ap-
proach [24]). In general, such a set of predefined building blocks enables
a high quality of the generated software tools as well as an efficient im-
plementation of the final architecture. However, these advantages are
accompanied by a moderate flexibility and therefore possibly subopti-
mal solutions. This drawback can be eliminated by ADLs which are
not limited to a set of predefined components, but allow the semantic
and/or behavioral description of architectural building blocks. Due to
the enormous flexibility provided by the ADLs, software development
tools generation, automatic hardware implementation and system inte-
gration become challenging tasks.

In section 2.1 several ADL based approaches, which address all do-
mains of ASIP design, are discussed. Approaches which only target a
subset of the complete ASIP design tasks are omitted.

Beside ADL based ASIP design, various approaches are based on
(re)configurable architectures. These are presented in section 2.2.

The currently accepted entry point for hardware implementation is an
architecture description in an HDL on RTL. The synthesis down to gate-
level and logic optimizations are performed by already established tools.
Therefore, the RTL hardware model is the interface between the pro-
posed automatic ASIP implementation and the existing implementation
flow. HDLs and logic representations are briefly covered in section 2.3.

2.1 ADL based ASIP Design
In contrast to traditional processor design and ASIP design based on

(re)configurable architectures, the ADL based design addresses a huge
architectural design space while providing a high design efficiency. The
different approaches are presented in the following.

EXPRESSION. The EXPRESSION ADL [22][25], developed at
the U.C. Irvine, captures the structure and the instruction-set of a
processor as well as their mapping. The structural description com-
prises components and communication between them. Four different
types of components exist: units (e.g. ALUs), storage elements (e.g.
register files), ports and connections (e.g. buses). Each component is
configurable by a list of attributes. The instruction-set is specified by
operations that consist of opcode, operands, behavior and instruction
format definition. Mapping functions are used to map the structure
defined by the components to the operation’s behavior specification.
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This defines, for each component, the component’s set of supported
operations (and vice versa).

EXPRESSION originally targeted the software tools generation, such
as C-compiler, assembler, linker and simulator. The generation of an
RTL hardware model came into focus only in recent years.

The language EXPRESSION provides a set of predefined
(sub-)functions to describe the behavior and the instruction-set of the
processor. Base on a, so called, functional abstraction [26], the functions
represent coarse-grained operations (e.g. a program memory access) and
sub-functions fine-grained operations (e.g. an addition).

Multiple functions can be nested to describe a behavior which is not
represented by the set of functions initially. Considering the hardware
generation from an EXPRESSION model, the utilization of predefined
(sub-)functions enables a hardware generation based on predefined but
configurable RTL building blocks. The major drawback here is given by
the reduced flexibility with regard to the behavioral description.

EXPRESSION maps the given architecture description directly
to a hardware description [26][27], without applying optimizations.
Even if optimized RTL building blocks are instantiated, the hardware
generation results in an suboptimal architectural efficiency as a cross
template optimization is missing. Also, this framework does currently
not support commonly required processor features, such as a debug
mechanism or power save modes. Therefore, the generated RTL hard-
ware model only addresses an estimation of the physical characteristics
of the architecture during design space exploration.

FlexWare. FlexWare [28] from SGS Thomson/Bell Northern Research
consists of the code generator CodeSyn, an assembler generator, a
linker generator and the Insulin Simulator. The Simulator is based
on a parameterizable VHDL model. Additionally, FlexWare supports
the generation of an RTL hardware model, which is not possible in
the FlexWare2 environment developed by STMicroelectronics. The
FlexWare2 environment [29][30] is capable of generating assembler,
linker, simulator (FlexSim) and debugger (FlexGdb) from the, so called,
Instruction Description Language (IDL).

ISDL. The Massachusetts Institute of Technology (MIT) devel-
oped the language ISDL [20] to target VLIW architecture modeling,
simulator generation (GENSIM) and hardware model generation
(HGEN).

The published hardware generation approach [31][32] generates a Ver-
ilog description from a given ISDL model. The developed hardware
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generation only targets the design phase of architecture exploration
rather than a final architecture implementation, which therefore must
still be manually implemented.

Although resource sharing optimizations are identified as major chal-
lenge in automatic hardware implementation from ADLs, their imple-
mentation in HGEN only addresses a minimization of computational
resources by using a maximum clique search. This abstract view to the
resource sharing problem neglects an optimization of the interconnect
as well as the timing effects of resource sharing optimizations. Over-
all, the presented optimizations neither achieve a sufficient architectural
efficiency nor trade off different physical characteristics.

ISDL contains only very little structural information about the ar-
chitecture. The architecture is mainly described from the programmer’s
point of view, and therefore important information required for an im-
plementation of the architecture is missing or only implicitly available.
For example, the information about timing and schedule of instructions
is specified in ISDL by annotating the latency. Information about the
pipeline structure is not specified but must be derived from the infor-
mation about the instructions’ latencies. Considering the automatic
hardware implementation, incomplete or implicit information can only
be compensated by assumptions. These certainly lead to a suboptimal
architecture implementation if optimizations are not applied adequately.

LISA. The LISA language and the corresponding processor de-
sign environment has been developed at the Institute for Integrated
Signal Processing Systems (ISS) at the RWTH Aachen University
[33] and is commercially available form CoWare Inc. [34]. The LISA
design environment is described in chapter 3 regarding architecture
exploration, software tools generation and system integration. The
information about the underlying hardware which is inherent in the
LISA model is described in chapter 5. The optimizations performed
during hardware synthesis and the integration of processor features are
described in chapter 7 and chapter 8.

MetaCore. The MetaCore system from the Korea Advanced In-
stitute of Science and Technology (KAIST) [35][36] targets the ASIP
development for DSP applications. MetaCore divides ASIP design in
two phases, first a design exploration and second the design generation.
On the basis of a set of benchmark programs and a formal specification
of the processor, an estimation of the hardware costs and performance
estimation is provided. The formal specification is provided by the so
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called MetaCore Structural Language (MSL) and the MetaCore Behav-
ioral Language (MBL). Once the architecture specification is fixed the
processor is automatically implemented in an HDL and software tools
comprising C-compiler, assembler and instruction-set simulator are
generated. The MetaCore system selects and customizes macro-blocks
from a library to generate the target architecture. Therefore, the
architectural design space is limited to the available macro-blocks.

MIMOLA. The language MIMOLA [21], developed at the Uni-
versität Dortmund, describes processors by a hierarchical net-list close
to the RTL. Software tools such as C-compiler (MSSQ compiler [37] and
RECORD compiler [38]) and instruction-set simulator can be generated.
Moreover, MIMOLA supports code-generation, test-generation and the
automatic hardware implementation. However, the low abstraction
level goes along with numerous architectural details which hinder an
efficient design space exploration. The quality of the generated software
tools is therefore not sufficient for application software development.

nML. The language nML [19][39] originates from the Technische
Universität Berlin and targets the instruction-set description. Several
projects utilize nML for software tools generation as well as for hardware
generation. Research activities at the TU Berlin led to the generation of
the instruction-set simulator SIGH/SIM and the code generator CBC.

Based on nML, a retargetable C-compiler (Chess) and instruction-set
simulator generator (Checkers) were developed by IMEC [40] in Leuven,
Belgium, and commercialized by Target Compiler Technologies [41]. In
addition the commercial software development tool suite comprises a
retargetable assembler and disassembler (Darts), linker (Bridge) and a
retargetable test-program generator (Risk). The generation of an RTL
hardware model is supported by a tool called Go. According to [42], the
hardware model is only partially generated and the designer has to plug
in the implementation of functional units and memories himself. Due to
this semi-automatic approach inconsistencies between the nML model
and the RTL hardware model are very likely. In addition, it is hardly
possible to evaluate continuously the effects of high level architectural
decisions on the physical characteristics of the architecture.

The nML language was also adopted by Cadence in cooperation with
the Indian Institute of Technology. The project, called sim-nML [43],
targets the software tools generation, while SIM-HS [44] targets the gen-
eration of behavioral Verilog models and the generation of structural
synthesisable Verilog processor models.
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Sim-nML descriptions provide temporal information by the specifica-
tion of the latency instead of the temporal execution order. Therefore,
the synthesis process has to perform scheduling and resource allocation
commonly known from behavioral synthesis. The complexity of these
techniques is reduced by adopting templates. For example, a four
stage pipelined architecture is always assumed. All transformations,
which can be performed during synthesis, are either operating on a
very coarse-grained level (e.g. pipeline stages) or on a very fine-grained
(e.g. single arithmetic operations) level of abstraction. Overall, this
approach is lacking flexibility in ASIP implementation by utilizing fixed
structural and temporal templates.

PEAS. The PEAS (Practical Environment for ASIP Development)
project started in 1989 targeting the configuration of an parameterizable
core regarding the instruction-set and architectural parameters [45],
such as bit widths or register file size. In the second version of the
PEAS system the support for VLIW architectures was added. In
the third version of the PEAS environment [24][46], called PEAS-III,
also simple pipelined architectures are addressed. The development of
the PEAS environment was the basis for ASIP Meister [47], available
as beta version first in 2002. The PEAS environment is based on a
graphical user interface (GUI), capturing the architecture’s specifica-
tion. According to the architecture specification a hardware model for
simulation and synthesis is generated. Even if the gate-level synthesis
results are comparable to handwritten implementations, the PEAS
approach covers only a small area of the available ASIP design space.

Tipi (Mescal Architecture Development System). The Tipi
ASIP design framework has been developed within the scope of the
Mescal project at the U.C. Berkeley [48][49][50]. The Tipi framework
focuses on the specification of the data-path, which is described in
a structural manner close to RTL. The control-path is considered to
be overhead in the ASIP design process and thus strongly abstracted
or omitted. An assembler, a cycle and bit true simulator and a
synthesisable RTL Verilog model are generated from the architecture
description. For hardware implementation a one-to-one mapping from
the Tipi framework to the hardware model is proposed. High level
optimizations and the generation of commonly required processor
features are not included in the framework. Details about hardware
implementation and their gate-level synthesis results, especially about
the control-path, are not available.
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The current trends in ASIP design clearly indicate that the design
entry point is raised above the RTL. In contrast to this, the Tipi design
framework concentrates on an abstraction level close to RTL, which is
not suited to perform an efficient design space exploration. Moreover,
possible optimizations to the implementation of the complete architec-
ture are highly limited by focusing only on the data-path specification.

2.2 (Re)Configurable Architectures
Although the proposed LISA processor design methodology is

completely different from utilizing (re)configurable designer extensible
architectures both approaches strongly compete. Compared to ADL
based ASIP design, (re)configurable architectures cover a limited
architectural design space only but enable a high design efficiency.
Configurable architectures can be customized before fabrication, while
reconfigurable architecture provide the same architectural flexibility
even after fabrication. In the following, three examples are discussed.

ARC. ARC International [51] is an independent company since
1998 and provides configurable microprocessor cores. Also, peripherals,
software (such as Real Time Operating Systems and Codecs) and
development tools are included in the company’s portfolio.

ARC offers several architectures, currently the ARCtangent-A4,
ARCtangent-A5, ARC 600 and ARC 700. The RISC cores support the
ARCompact instruction-set, which provides 16 bit instructions for the
most frequently used operations and covers all other operations by 32 bit
instructions. These two types of instructions can be arbitrarily used
within one application. The architecture may be configured with regard
to DSP extensions, cache and memory structure, bus interfaces or pe-
ripherals. A designer can select from a range of processor configuration
options or add custom Intellectual Property (IP) to alter the architec-
ture. For this purpose, ARC provides a Java-based configuration tool,
namely ARChitect 2. It enables designers to vary configuration options
and to incorporate new instructions. The design environment gener-
ates the source code (Verilog or VHDL), synthesis scripts, test files,
HDL-simulator support files and HTML-formatted documentation for
the design.

Tensilica. Tensilica Inc. [52] provides configurable microprocessor
cores, in 2005 the Xtensa LX and Xtensa V. The latter one, for ex-
ample, is a 32 bit RISC microprocessor architecture made up of five
pipeline stages and supports a 16 bit or 24 bit instruction-set. The
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instruction-set is not switchable during runtime. The microprocessor is
made up of fixed, optional, configurable and designer defined building
blocks. The base architecture comprises processor control unit, instruc-
tion fetch unit, decode unit and data laod/store unit. The memory
management unit, all memory blocks and i/o blocks are optional and/or
configurable. Other processor features, such as Trace Port, JTAG Tap
Control, on-chip debug mechanisms, multiply-accumulate units, multi-
ply units, floating point unit and also a DSP engine are optional. Reg-
isters and, so called, hardware execution units can be defined by the
designer.

Designer defined building blocks are specified in the Tensilica Instruc-
tion Extension (TIE) language [53]. This Verilog-like specification lan-
guage enables the designer to cover the hardware aspect, such as com-
putational units and additional registers, and the software aspect, for
example instruction mnemonics and operand utilization. The TIE de-
scription and the selection/configuration of building blocks are the in-
put to the, so called, processor generator. This tool generates on the
one hand the synthesisable RTL VHDL or Verilog description and on
the other hand the software tools for application development. Further
information can be found in [9].

This approach enables a high performance hardware implementation
as well as high quality application software development tools. Ten-
silica’s latest development is the Xtensa Processor Extension Synthe-
sis (XPRES) Compiler. This tool identifies hot spots in a given C-
application and customizes the Xtensa architecture to accelerate the
application execution.

The limited architectural flexibility is the major drawback of this
approach. The fixed structure of the on-chip communication as well as
the given microprocessor core cause an upper bound to the performance
increase.

Stretch. Stretch Inc. [54] offers the reconfigurable processor core
family S5000. This architecture family consists of a programmable
RISC processor core with a tightly coupled reconfigurable device, so
called Instruction-Set Extension Fabric (ISEF). The ISEF is used to
implement custom instructions, which extend the original instruction-
set of the architecture. Up to three 128 bit operand registers and two
128 bit result registers can be utilized to establish the communication
between the fixed RISC architecture and the reconfigurable portion of
the architecture. The RISC core of the S5000 family is based on the
Tensilica Xtensa RISC processor core, described above.
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Available tools are C-compiler, assembler, linker, debugger and pro-
filer, which are combined in an integrated design environment. Moreover,
the C-source code of the application can be profiled automatically and
hot spots are identified with regard to the application execution time.
These portions of the application are mapped to the ISEF. With this
approach a simulated speed up of a factor of 191 is achieved for the
EEMBC Telemark Score [55], by comparing the S5610 RISC core with
and without customized instructions.

The S5000 architecture family provides post-fabrication flexibility
with regard to the control by software and with regard to the data-
path implementation by an reconfigurable building block. However,
application-specific optimizations are limited to this reconfigurable
building block. Thus, numerous optimizations in ASIP design are omit-
ted. For example, the pipeline organization cannot be changed in ac-
cordance to the targeted application. The memory as well as register
organization is fixed and the interface between processor core and the
reconfigurable building block is predefined.

2.3 Hardware Description Languages
and Logic Representation

A hardware description on RTL is the commonly accepted entry point
for architecture implementation. Within this book a new synthesis ap-
proach from an ADL to a hardware description language is proposed.
Currently, VHDL, Verilog and SystemC are supported. The synthe-
sis framework can easily be enhanced to support future languages, for
example SystemVerilog.

2.3.1 VHDL, Verilog, SystemVerilog and
SystemC

In the scope of this book the languages VHDL, Verilog, SystemVerilog
and SystemC are considered as hardware description languages on RTL,
although these languages can be used to describe the target architecture
on multiple abstraction levels. Common to all languages is the ability to
describe hardware on RTL by providing elements such as concurrency,
clocks and sensitivity.

The development of VHDL has been started in 1980 by IBM, Texas
Instruments, and Intermetrics and became the IEEE 1076 standard in
1987 [56][57]. The initial version (VHDL ’87) was continuously discussed
and adopted to new requirements (VHDL ’93 and VHDL ’00). VHDL
is mostly used in Europe.



20 ASIP Design Methodologies

In 1985 Verilog originated from Automated Integrated Design Sys-
tems, in the meanwhile acquired by Cadence Design Systems [58]. This
HDL is mostly used in the USA and Asia. It became IEEE Standard
1364 [56][59] in 1995. The latest revision is Verilog 2001.

SystemVerilog is the latest approach, initiated by Accelera, to estab-
lish a language combining aspects of a hardware description and hard-
ware verification [60]. Currently, this language is only supported by few
existing tools, thus real-world experience about the efficiency is missing.

SystemC has been invented to close the gap between algorithm specifi-
cation, often described using the C-programming language, and system
simulation [61]. Its current development is driven by the Open Sys-
temC Initiative (OSCI) which is steered by major EDA companies and
IP-providers. However, while the SystemC language became famous in
the area of system level design, the support for gate-level synthesis in
Synopsys’ Design Compiler was discontinued in 2003.

2.3.2 Logic Representation and Binary Decision
Diagrams (BDDs)

In order to perform gate-level synthesis, the RTL hardware descrip-
tion needs to be transformed into a low level representation made up
of building blocks of a technology library. Therefore, gate-level syn-
thesis consists of several steps: logic synthesis, logic optimizations and
technology mapping. These steps are based on boolean function rep-
resentations, such as truth tables or Karnaugh Maps. However, these
data structures are insufficient to handle the computational complexity
of real world problems. Two-level boolean representation or Multi-Level
boolean networks became favored to apply advanced optimization tech-
niques.

An alternative representation are Binary Decision Diagrams (BDDs),
which have been discussed since 1959 [62][63]. However, BDDs gained
importance in 1986 when Bryant [64] proposed restrictions on BDDs
enabling new algorithms.

In order to reduce the computational complexity, the synthesis frame-
work and the optimizations proposed in this book operate on an abstrac-
tion level above RTL. Therefore, the concepts commonly known from
logic optimizations are not reused.

2.4 Motivation of This Work
As described above, various approaches cover hardware generation

from ADLs. However, most approaches map the architectural informa-
tion of the ADL model directly to a hardware description on RTL. The
achieved physical characteristics, in terms of area, timing and power
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consumption, are not sufficient for a final architecture implementation.
Optimizations are basically not considered for the ADL to HDL syn-
thesis process. Moreover, essential processor features, such as debug
mechanism or power save modes, are not covered by these automatic
approaches. Therefore, in these approaches hardware generation is only
suited for a rough estimation of the physical characteristics during ar-
chitecture exploration.

Some approaches base on coarse granular building blocks provided in
a library or by predefined architecture templates. In these cases, an
efficient implementation can be derived from the architecture model.
However, the architecture model cannot be optimally tailored to the
application, as only a limited architectural flexibility is provided by these
approaches.

The contribution of this work is an automatic ASIP implementation
from LISA, which fulfills the demands of a final hardware implementa-
tion while preserving the desired architectural flexibility. Based on an
intermediate representation between the level of ADLs and HDLs and ex-
plicit architectural information given in the LISA model, optimizations
are performed and processor features are automatically integrated. The
achieved architecture implementations are comparable to implementa-
tions handwritten by experienced designers. Therefore, the entry point
for ASIP implementation is shifted from the currently accepted RTL to
a LISA based implementation.



Chapter 3

ASIP DESIGN BASED ON LISA

The LISA Processor Design Platform (LPDP) has been developed
at the Institute for Integrated Signal Processing Systems (ISS), RWTH
Aachen University [33]. The LISA design methodology [23][65] has be-
come one of the most comprehensive and powerful ADL based design
environments and is internationally recognized by academia and indus-
try. The design environment based on LISA, including the automatic
ASIP implementation proposed in this book, is commercially available
from CoWare Inc. [34].

In order to tailor the architecture to the special requirements of a given
application, ASIP design requires an efficient design space exploration
phase. The instruction-set, micro-architecture, register configuration,
memory configuration, etc. are subject to optimizations. The LISA
based design space exploration, software tools generation and system
integration are described in the following sections.

3.1 Design Space Exploration
In ASIP design the key is an efficient exploration of the architectural

design space. The LISA language allows to implement changes to the ar-
chitecture model quickly, as the level of abstraction is higher than RTL.
As shown in figure 3.1, the LISA model of the target architecture is used
to automatically generate software tools such as C-compiler, assembler,
linker, simulator and profiler. These software tools are used to identify

23
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hot spots and to jointly profile the architecture and the application.
Both are optimized according to the profiling results, e.g. throughput,
clock cycles or execution count of instructions. This exploration loop
can be repeated until the design goals are met. With LISA a highly
efficient design space exploration is ensured, as the ASIP model can be
modified easily and the software tools are re-generated within a negli-
gible amount of time. Moreover, the LPDP provides additional tools
that accelerate the design space exploration, such as, for example, an
instruction encoding generator [66].

The knowledge about the physical characteristics of the architecture
is important at an early design stage already. For example, the informa-
tion about clock speed substantially influences the number of pipeline
stages or even the pipeline organization in general. Ignoring physical
parameters in the design space exploration phase leads to suboptimal
solutions or long redesign cycles. The automatic ASIP implementation
from LISA, also shown in figure 3.1, provides important feedback about
the physical characteristics of the architecture. The hardware generation
from LISA is discussed in the following chapters.

OPERATION MAC
{

DECLARE {
GROUP index = {reg}

}
CODING { 0b1001 }
SYNTAX { “MAC” }
BEHAVIOR
{

mac+=R[index]*mac;
}

}

LISA 2.0 Description

C-Compiler

Assembler

Linker

RTL
Implementation

VHDL, Verilog,
RTL-SystemC

Simulator

LISATek
Processor
Designer

Design goals met ?

Generate

Design goals met ?

Information about:

Chip Size
Clock Speed

Power Consumption
etc.

Information about:

Throughput
Clock Cycles / Task
Hot Spots
etc.

Figure 3.1. Exploration and implementation based on LISA
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3.2 Software Tools Generation
The software tools generated from the LISA description are able to

cope with the requirements of complex application development. C-
compiler, assembler, linker, simulator and profiler are generated from a
LISA model.

3.2.1 C-Compiler Generation
The shift from assembly code to the C-programming language is ongo-

ing for software application development for embedded systems. This is
basically motivated by the increasing complexity of the embedded soft-
ware. Considering the number of different versions of an ASIP during
design space exploration and the complexity of C-compiler design Com-
plexity, C-Compiler design, the automatic generation of a C-compiler
is highly desired [67]. For this reason, the automatic generation of a
C-compiler in ASIP design strongly came into focus recently [68].

To retarget a C-compiler, in particular the architecture-specific back-
end of a C-compiler must be adjusted or rewritten, while the architecture
independent frontend and most of the optimizations are kept unchanged.
The C-compiler platform CoSy from ACE [69] is used to retarget the
C-Compiler based on the information extracted from the LISA model.
While some information is explicitly given in the LISA model (e.g. via re-
source declarations), other information (e.g. resource allocation) is only
implicitly given and needs to be extracted by special algorithms. Some
further, highly compiler-specific information is not present in the LISA
model at all, e.g. data-type bit widths. Thus, compiler information is
automatically extracted from LISA whenever possible, while GUI-based
user interaction is required for other compiler components. For details
about C-compiler generation from LISA the reader is referred to [70][71]
[72].

3.2.2 Assembler and Linker Generation
The generated assembler [73] processes the assembly application and

produces object code (LISA Object File, LOF) for the target architec-
ture. An automatically generated assembler is required, as the modelled
architecture has a specialized instruction-set. A comfortable macro as-
sembler exists to provide more flexibility to the designer.

The automatically generated linker combines several pieces of object
code to a single executable in ELF format [74]. The linker is architecture-
specific since the modelled memory organization needs to be taken into
account. Various configuration possibilities are provided to steer the
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linking process. Further information about assembler, macro-assembler
and linker can be found in [75].

3.2.3 Simulator Generation
Generation, SimulatorThe generated simulator is separated into back-

end and frontend. The frontend is shown in figure 3.2. It supports
application debugging, architecture profiling and application profiling
capabilities. The screenshot shows some features such as disassembly
view (1) including loop and execution profiling (2), LISA operation ex-
ecution profiling (3), resource profiling (4) and pipeline utilization pro-
filing (5). The content of memories (6), resources in general (7) and
registers in particular (8) can be viewed and modified. Thus, the de-
signer is able to debug both ASIP and application easily. Additionally,
the necessary profiling information for design space exploration is pro-
vided, such as pipeline and instruction utilization.

1
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Figure 3.2. The LISA simulator and debugger frontend
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The performance of the simulator strongly depends on both the
abstraction level of the underlying LISA model and the accuracy of
the memory model [76]. Furthermore, various simulation techniques,
e.g. compiled simulation [77], interpretive simulation and Just-In-Time
Cache Compiled Simulation (JIT-CCS) [78][79] are supported. These
techniques are briefly described below.

Interpretive simulation
The interpretive simulation techniquesimulation technique, interpre-

tive is based on a software implementation of the underlying decoder
of the architecture. For this reason, the interpretive simulation is con-
sidered to be a virtual machine performing the same operations as the
hardware does, namely fetching, decoding and executing instructions.
All simulation steps are performed at simulation runtime. In contrast
to a hardware decoder, the control portions of an instruction execution
requires a significant amount of time in software.

Compiled simulation
Compiled simulation [80][81] uses the locality of code in order to speed

up the execution time of the simulation compared to the interpretive
simulation technique. The task of fetching and decoding is performed
once for an instruction before simulation run. Thus, the simulation run-
time is reduced when instructions are executed multiple times. However,
compiled simulation requires the program memory content to be known
before simulation runtime and to be static during simulation. Various
scenarios are not supported by the compiled simulation technique, such
as system simulations with external and thus unknown memory content
or operating systems with changing program memory content. Addition-
ally, large applications require a large amount of memory on the target
host.

Just-in-time cache compiled simulation (JIT-CCS)
The objective of the JIT-CCS is to provide both a general applicabil-

ity and a high simulation speed. Techniques from interpretive simulation
and compiled simulation are combined in the JIT-CCS [79]. The basic
technique is to perform the decoding process just-in-time at simulation
runtime and to store the results in a cache for later use. In every sub-
sequent simulation step the cache is searched for already existing and
valid decoding results. Because of that, the full flexibility of interpretive
simulation is provided. Due to the locality of code in typical applica-
tions the simulation speed can be significantly improved using JIT-CCS.
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Numerous case studies show that with an increasing cache size JIT-CCS
performance converges to the performance of compiled simulation. Ac-
cording to the case studies a reasonable maximum of cache lines is 32768,
where a line corresponds to one decoded instruction. The maximum
amount of cache lines corresponds to a memory consumption of less
than 16 MB on the simulator host. Compared to the traditional com-
piled simulation technique, where the complete application is translated
before simulation, this memory consumption is negligible.

3.3 System Simulation and Integration
Today, typical SoCs combine a mixture of several computational ele-

ments, such as DSPs, µCs, ASIPs, ASICs, etc. Certainly, system level
simulation is necessary for both performance evaluation and verification
in the system context. The automatically generated LISA processor sim-
ulators can easily be integrated into various system simulation environ-
ments, such as CoWare ConvergenSC [34] or Synopsys’ System Studio
[82].

The communication between an ASIP and its system environment can
be modelled on different levels of abstraction. First, LISA pin resources
can be connected directly to the SoC environment for pin accurate co-
simulation. Second, the LISA bus interface allows to use commonly
accepted SoC communication primitives and to model the communica-
tion on a higher abstraction level, for example the level of TLM [83].
Third, a generic C-programming language interface provides adaptabil-
ity to arbitrary interfaces.

The system simulation debugger offers all observability and controlla-
bility features for multiprocessor simulation as known from standalone
processor simulation. Thus, a software centric view to an arbitrary num-
ber of ASIPs as well as the system context is provided to the designer
[84].



Chapter 4

A NEW ENTRY POINT
FOR ASIP IMPLEMENTATION

Due to the high efficiency of design space exploration, the automatic
generation of software development tools and the possibility of an early
system integration, ASIP design nowadays starts with an architecture
model in an ADL. The ASIP design phases and their corresponding soft-
ware tools are presented in the previous chapter. ADLs do not provide a
link to the ASIP implementation naturally, and thus essential informa-
tion about the physical characteristics of the architecture is unknown.

Currently, the design phase of hardware implementation is entered on
the RTL. Gate-level synthesis tools, such as Synopsys’ Design Compiler
[85] or Cadence’s First Encounter [86], are used to proceed from RTL to
gate-level regarding a particular technology library. On this abstraction
level, accurate estimates about the physical characteristics, including
clock speed, area or power consumption, can be obtained for the first
time1.

A manual implementation of the ASIP on RTL certainly provides
information about physical characteristics. However, modifications to
the ADL model of the ASIP are often necessary because of either vio-
lated physical constraints or possible optimizations. Obviously, in these
cases the design efficiency becomes unacceptably low, as two models for
software tools generation and implementation have to be written and
maintained throughout the entire design process. In particular, adapt-
ing an RTL hardware model is a tedious and error-prone task, which

1Research and development in the field of already established design methodologies below
RTL is still ongoing. In particular an accurate estimation of physical characteristics for
shrinking technology sizes is targeted.
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typically leads to significant inconsistencies between the two models of
the same ASIP.

Various approaches target the generation of an RTL hardware model
from an ADL model, as described in chapter 2. The generated RTL
hardware models are inferior to models that are handwritten by expe-
rienced designers [26][87][88][89]. They neither achieve equal physical
characteristics nor support well-known processor features, such as built-
in debug mechanisms or automatic power save control. Thus, these
RTL hardware models are only used during architecture exploration for
a rough estimation of the physical characteristics. Manual optimizations
are required if these models are used for the final architecture implemen-
tation. However, this potentially causes inconsistencies between the final
implementation and the automatically generated software development
tools.

Obviously, there is a pressing need for an advanced automatic ASIP
implementation which closes the currently existing gap between ADL
models and RTL hardware models. To gain the acceptance of ASIP
designers an automatic approach must fulfill particular criteria, which
are discussed in the following.

4.1 Acceptance Criteria for an
Automatic ASIP Implementation

Considering several academic and industrial case studies [26][87][88],
the following criteria must be fulfilled in order to establish an auto-
matic ADL based ASIP implementation. First of all, the architectural
efficiency and implementation flexibility must be close to the results
achieved by manual implementations on RTL. Second, the processor
features, which are supported by an automatic implementation, must
be comparable to the those of handwritten implementations. Third, the
goals must be met without compromising architectural flexibility and
design efficiency. These three criteria are elaborated in the following
sections.

4.1.1 Architectural Efficiency and
Implementation Flexibility

In VLSI design, architectural efficiency is used to quantitatively
compare different architectural alternatives. The physical characteris-
tics, such as timing, area and energy, are used to evaluate an archi-
tecture. The valid ranges of the physical characteristics are defined by
boundary constraints, whereas precise constraints must be accurately ful-
filled to avoid device failure.
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Derived from [90] and [91], physical characteristics2 Pi and corre-
sponding weights wi define the architectural efficiency ηarch by

ηarch =
n∏

i=1

1
Pwi

i

. (4.1)

In VLSI design the architectural efficiency is commonly defined by
ηarch = 1

AT (or ηarch = 1
ATE ), which uses equally weighted Area (A),

Timing (T) (and Energy (E)).
According to equation 4.1, the same architectural efficiency can be

achieved by various implementations each balancing the physical char-
acteristics differently. The ability to trade off the physical characteristics
during architecture implementation is called implementation flexibil-
ity in the following.

In order to optimally tailor the architecture to the application, the
architectural efficiency and the implementation flexibility are equally
important in ASIP design. In both fields, an automatic approach must
achieve results which are close to handwritten implementations by ex-
perienced designers.

4.1.2 Processor Features
The recent developments of GPPs, µC and DSPs have produced so-

phisticated auxiliary processor features, such as built-in debug mech-
anisms or automatic power save control. Although these features do
not influence the core functionality of the architecture, they are nev-
ertheless important for the usability of the ASIP and can considerably
influence the implementation. HDLs naturally support their description,
while ADLs do not in order to accelerate the design space exploration.
Certainly, this negatively affects the acceptance of ADL based ASIP de-
sign. Therefore, an automatic ASIP implementation has to cover these
processor features in an appropriate way.

4.1.3 Design Efficiency
The design efficiency is of major importance in SoC and ASIP

design to satisfy today’s time-to-market requirements. The architectural
efficiency ηarch and the overall design effort Tdesign (in man months and
weighted by wdesign) can be used to compare the efficiency of different
design methodologies [90][91], as given in equation 4.2.

2In [91] Pi is referred to as architectural parameter.
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ηdesign =
(

1
Tdesign

)wdesign

ηarch (4.2)

The main goal of an ADL-based ASIP design is a high design efficiency,
which has been demonstrated by various case studies, as presented in
[23], [87], [92], [93], [94] and [95].

4.2 From Architecture to Hardware Description
ADLs enable a high design efficiency by a declarative description style

[96] and a significant abstraction or even complete neglect of the inter-
connect. In LISA, for example, the binary encoding of the instructions
is specified explicitly by a directed acyclic graph. The graph structure
inherently provides architectural information, such as the information
about the exclusive execution of operations. Neither the logic nor the
interconnect of the corresponding decoder implementation are specified
explicitly in a LISA model, but implicitly predetermined by the LISA
simulator behavior.

In contrast to ADLs, HDLs are used to describe logic and intercon-
nect on the RTL. Thus, models in an HDL represent a particular hard-
ware implementation. In general, it is almost impossible to retrieve the
semantics and architectural properties from an HDL model. For exam-
ple, a decoder description in an HDL describes logic and interconnect
which sets control signals according to a particular instruction-set. Nei-
ther the instruction-set nor information about the exclusive execution
of operations can be retrieved from this description with an acceptable
computational effort.

According to the character of ADLs and HDLs mentioned above, ASIP
models in both language types can be considered to be complementary
descriptions. Architectural properties which can be described explicitly
by one of the language types can only be described implicitly by the
other one.

Targeting an automatic ASIP implementation, an intuitive approach
is to map the elements defined in a given ADL model to an equivalent
description in an HDL (cf. chapter 2). In this approach, abstract or
missing information must be compensated by worst-case assumptions,
to achieve a complete and equivalent model on RTL. Naturally, worst-
case assumptions lead to redundancy in the implementation and cause
insufficient physical characteristics. Therefore optimizations are required
to achieve an acceptable architectural efficiency.

For example, elements with a local scope, such as signals and ports, are
used in RTL hardware descriptions to access storage elements. In con-
trast to this, in ADL models the storage elements are mostly declared
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in a global scope and can be instantly accessed from anywhere in the
model. In addition, the instructions’ behaviors are described almost in-
dependently of each other. When mapping them to an RTL description,
each access to the storage elements, for example registers, results in an
individual connection, as shown in figure 4.1. Here, read accesses are
shown, realized on RTL by transmitting the address and retrieving the
data. In this case the redundancy is introduced by the instantiation of
large multiplexers between registers and logic.

other read accesses

Register
File

Register
File

read access
address

data

read access

other concurrent
read accesses

read access

read access

1 1

8 8

Figure 4.1. Register accesses with and without optimizations

In order to perform optimizations, in particular, information about
the exclusive execution of operations is required. In figure 4.1 exclu-
sive read accesses to the registers enable the substitution of one large
multiplexer by a smaller one, that only switches the transmitted address.

Several case studies [87][93][89] demonstrate that gate-level synthesis
tools are not able to remove the redundancy introduced by the mapping
approach mentioned above. Basically four reasons have been identified
for this:

On RTL the temporal and logical dependencies within the architec-
ture are represented by several independent signals or even bits. Due
to this fine-grained representation an analysis of the dependencies
becomes unacceptably expensive.
On RTL the functionality of the ASIP is described by processes. Sev-
eral of them commonly represent a cohesive functional block, which
is not reflected in the hardware description. Therefore, the relations
between processes need to be analyzed before optimizations can be
applied.

1.

2.



34 A New Entry Point for ASIP Implementation

Semantic information about logic, storage elements and interconnect
does not exist on RTL.

structural and temporal boundaries, which is not possible regarding
the fine-grained description of logic and interconnect.

Since the required optimizations can obviously not be performed dur-
ing gate-level synthesis, they must be applied during the generation of
the RTL hardware model. Requirements to an optimization framework
can be derived from the four reasons above, as discussed in the following.

4.2.1 Motivation for a Unified Description Layer
The first and second reason in section 4.2 result from the low abstrac-

tion level which is associated with gate-level synthesis tools. There-
fore, optimizations during an automatic ASIP implementation require a
higher abstraction level. For later use, this requirement is referred to as
raised abstraction level .

The third reason in section 4.2 results from the ability of HDLs to
describe arbitrary logic and to automate the architecture implementa-
tion. For architecture implementation, the semantics of the logic and
interconnect is not required and thus not contained in an RTL hardware
model. In order to perform optimizations, the semantics of the logic and
interconnect needs to be analyzed. Utilizing the semantics provided by
an ADL model enables optimizations by significantly reducing the analy-
sis effort. This requirement is referred to as preserved semantics of
hardware description .

The first, second and third reason define requirements which lead to
a new (intermediate) abstraction level intended for optimizations (and
transformations) of the ASIP, as shown in figure 4.2. This abstraction
level represents a hardware model for implementation, which retains
additional information derived from the ADL model. Therefore, this
intermediate representation is called Unified Description Layer (UDL).

The UDL is independent from existing ADLs and HDLs. According
to common software design techniques, the proposed synthesis tool is
subdivided into frontends, transformations and backends. The frontends
depend on particular ADLs, the backends are specific to the supported
HDLs, whereas the transformations are language independent. The UDL
is described in detail in chapter 6.

The definition of a suitable abstraction level to perform optimizations
is only one of two important aspects when defining a synthesis frame-
work for automatic ASIP implementation. The second aspect is that the
analysis of ADL models is of significantly less complexity compared to

3.

.4 In pipelined architectures  dependencies must be traced back across
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Gate-Level

Register-Transfer-Level

Unified Description Layer

LISA / A D L

Figure 4.2. ADL to RTL synthesis flow based on an UDL

RTL models. This is of major importance, in particular, when apply-
ing optimizations and will be discussed in more detail in the following
section.

4.2.2 Analysis of Architectural Information
The fourth reason in section 4.2 results from the high complexity to

retrieve and analyze architectural information on the RTL. In pipelined
architectures, the instructions’ behaviors are distributed over several
pipeline stages. This introduces structural and temporal dependencies,
which are only implicitly modelled in a hardware description on RTL.
ADLs separate the structural specification of the pipeline, the tempo-
ral relation of operations and the instructions’ behavioral descriptions.
Therefore the required information to perform optimizations is explicitly
available in an ADL model. Consequently, its extraction is effortless even
across register and module boundaries. The extraction of architectural
information from a LISA model is described in detail in chapter 5.

In general, the analysis effort is strongly dependent on whether the
required information is explicitly or implicitly available in the architec-
ture model. The different analysis efforts between LISA models (as one
representative of ADLs) and RTL hardware models is elaborated by the
respective worst case scenarios in the following. Even a simple scenario,
which neglects temporal and structural boundaries, shows the significant
advantage of the LISA model analysis.
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In this scenario nop operations are decoded. Information about the
exclusiveness of operations is defined by the binary encoding of the
instruction-set. An example of a binary encoding in LISA is given in
figure 4.3, including the explicit information about the exclusive execu-
tion of operations. On RTL, the information about exclusive execution
needs to be determined by computation.

x x xx x xx x xx x x

instruction pattern: instruction pattern: instruction pattern:

x xx x

instruction pattern:

1 0 00 1 01 0 10 1 11 10 0 x x xx x xx x xx x x

instruction pattern: instruction pattern: instruction pattern:

x xx x

instruction pattern:

0 0 00 1 01 0 00 0 11 00 0

x xx x

instruction pattern:

x xx x

instruction pattern:

x xx x

instruction pattern:

x xx x

instruction pattern:

OPA OPB

x xx x

instruction pattern:

x xx x

instruction pattern:

OPX

Exclusive by definition

x xx x1 01 0 x xx x0 10 1 x xx x0 01 1x xx x1 10 0 x xx x0 01 0 x xx x0 10 0 x xx x0 00 1x xx x1 00 0

OPA OPB
Exclusive by computation

LISA
Architecture Description:

VHDL / Verilog
Hardware Description:

Figure 4.3. Exclusiveness in architecture descriptions and hardware descriptions

LISA model analysis
In LISA, the instruction-set is defined by a directed acyclic graph.

Information about the exclusiveness of operations is provided inherently
by the graph structure. In figure 4.3, the exclusiveness of the operations
OPA and OPB is represented in their common ancestor OPX without
any computation. In the worst case scenario, the LISA instruction en-
coding specification might be degenerated to a binary tree, where all
left children are leaf nodes. The depth of the tree is �nop/2� operations.
The exclusiveness detection algorithm has to iterate over the complete
tree, giving a linear complexity O(nop) for a single exclusiveness decision
between two LISA operations.

The analysis of exclusiveness information for all pairs of LISA opera-
tions requires about n2

op/2 decisions, which leads to a total complexity
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of O(n3
op). However, this estimation completely ignores the structural

information provided by a directed acyclic graph. In section 5.5 an algo-
rithm, which obtains the exclusiveness information with a lower complex-
ity, is presented. The total LISA exclusiveness decision complexity
is O(n2

op).

RTL hardware model analysis
On RTL, the link given by the common ancestor OPX is lost. The

information whether OPA and OPB are exclusively executed can only
be retrieved by examining separate control signals, for example Adecoded

and Bdecoded. These signals depend on the decode logic and thus rep-
resent the result of boolean functions. The operations OPA and OPB

are exclusively executed if the conjunction of their boolean functions is
zero, as given in statement 4.3.

OPA exclusive to OPB ⇔ Adecoded ∧ Bdecoded ≡ 0 (4.3)

In general, the control signals Adecoded and Bdecoded might depend
on several instruction encodings (cf. figure 4.3). The boolean func-
tions representing the decoder signals depend on bA = �log2(nA)� and
bB = �log2(nB)� binary variables, where nA and nB denote the num-
ber of represented instruction encodings. In the worst case, the boolean
functions of both signals cannot be minimized. In this case, the boolean
functions comprise 2bA and 2bB different terms, each representing a par-
ticular bit pattern. If both functions are combined in a conjunction for
exclusiveness detection (statement 4.3), 2bA ·2bB bit pattern comparisons
are required by the distributive law. A single check for exclusiveness of
Adecoded and Bdecoded requires nA · nB operations. Therefore, the com-
plexity for a single exclusiveness decision on RTL is O(n2

op).
The total exclusiveness detection problem on RTL is most complex

for a binary decision tree, degenerated into two subtrees, in combination
with non-minimizable boolean functions for all control signals. Since no
hierarchical relation between the subtrees exist, the complexity of exclu-
siveness analysis cannot be reduced. Such a case is given in figure 4.4. In
each subtree the disjunctions can be associated with a particular level,
which can be determined by the number of represented instruction en-
codings nA by L = nA − 1. For each disjunction the control signal is a
non-minimizable boolean function with L+1 conjunctions. The number
of comparisons for all pairs of control signals from different subtrees is
given by the iteration over all levels i and j as shown in equation 4.4.
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boolean term comparisons:
L∑

i=1

L∑

j=1

(i + 1) · (j + 1)

=
L∑

i=1

(i + 1) ·
(L + 2) · (L + 1)

2

=
(L + 2)2 · (L + 1)2

4

(4.4)

0110 0011

OPA

instruction
register

1100

Level L

Level 2

Level 1

01001001 1000 00010010

OPB
decoded?

Figure 4.4. Example of decode logic for a degenerated encoding specification

The complexity of this comparison is O(L4) and O(n4
op) with the

relation L ∼ nop. To obtain the total complexity also the complexity
of comparisons within subtrees must be added. Due to the hierarchical
structure of the subtrees, the complexity is less than O(n4

op) and thus
negligible. The complexity of the exclusiveness computation on
RTL is O(n4

op).
This complexity rule for the analysis on RTL ignores all other sig-

nals that are present in the processor model. Synthesis tools cannot
distinguish the signals in an architecture naturally, but need to compute
the influence of all signals to the exclusiveness of operations. Also, the
logic, that implements the decoding decisions, is often distributed over
several pipeline stages. Thus, the analysis must cross both temporal
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and structural boundaries. In real-world architectures this is often not
possible with an acceptable computational effort.

Comparison between the complexities of the LISA and RTL
model analysis

With regard to the complexities given for the ADLs and RTL model
analysis, even this simplified scenario demonstrates the vital perfor-
mance advantage of a LISA model analysis:

Total RTL Exclusiveness Decision Complexity
Total LISA Exclusiveness Decision Complexity

= O(n2
op) . (4.5)

Because of this analysis, gate-level synthesis cannot be expected to per-
form the strongly required optimizations.

Both an efficient analysis of the architectural properties and the ap-
propriate abstraction level (and data structure) are required for opti-
mizations. The following chapter presents the extraction of architec-
tural properties from LISA, while chapter 6 introduces the UDL used
for optimizations.



Chapter 5

LISA FRONTEND

This chapter discusses the LISA language elements with regard to the
generation of an RTL hardware model. The information contained in a
LISA model is sufficient to generate a complete RTL hardware model as
well as to automatically perform optimizations. Thus all requirements
discussed in section 4.1 can be satisfied.

With LISA an ASIP can be described on different levels of abstrac-
tions. The model abstractions range from HLL algorithmic kernel models
downto cycle based models [23]. A smooth transition from one abstrac-
tion level to the next lower level ensures a highly efficient design flow.
Regarding the RTL hardware model generation from LISA, the most
accurate ASIP specification on the lowest abstraction level enables the
most efficient implementation. Therefore, the automatic hardware im-
plementation, proposed in this book, is only possible from cycle accurate
LISA models.

A LISA model basically consists of two parts, on the one hand the
specification of the resources of the target architecture and on the other
hand the description of the instruction-set, behavior and timing. The
first one is captured in the resource section, while the latter one is de-
scribed by the LISA operation graph1. Both are described in the follow-
ing sections.

The frontend of the synthesis tool extracts the architectural informa-
tion from the LISA model and maps this information to the elements of
the UDL. However, these elements are represented by an internal data-
structure and thus not suitable for an explanation of the LISA frontend.

1In publications sometimes referred to as LISA operation tree.

41
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The extraction of architectural information is explained on the basis of
pseudo hardware descriptions instead.

5.1 Resource Section
The resource section defines the resources of the ASIP such as stor-

age elements, functional units and pipelines. All storage elements are
declared with a global scope by specifying a data-type, identifier and
optionally a resource-type. In example 5.1 the declaration “REGISTER
int R[0..15];” instantiates 16 elements of type integer, which can be
accessed by the identifier R. The keyword REGISTER identifies the type
of this resource. A specialization of registers are PROGRAM COUNTER and
CONTROL REGISTER. The keyword PIN describes the interface resources of
the processor. Resources without resource-type specifier are considered
to be signals which change their value immediately after value assign-
ment.

The memory is specified accordingly, here, the keyword RAM is used.
The size is defined by the number of blocks the memory consists of (SIZE)
and the bit size of each block (BLOCKSIZE). The second parameter of the
blocksize specification defines the sub-blocksize, the smallest accessible
portion of the memory.

The pipeline definition comprises the pipeline name, an ordered list of
pipeline stage names and the pipeline register elements between pipeline
stages. As shown in example 5.1, the definition of pipeline registers is
not tailored to a particular transition from one pipeline stage to another.
In order to simplify ASIP modeling as well as to achieve speedups in
simulation time the specification of the pipeline registers is unified. The
specified pipeline register elements represent the union of all required
elements per pipeline. Additionally, functional units are declared by the
keyword UNIT followed by a unique name and a set of LISA operations.
The RTL hardware model structure can be derived explicitly from the

specification of the pipeline and implicitly from the global scope of the
defined resources. The LISA frontend maps the architecture to a hier-
archical model structure: The first level comprises three modules group-
ing all registers, grouping all memories and encapsulating the pipeline
structure. The pipeline module is further made up of modules each rep-
resenting a particular pipeline stage or pipeline register. Finally, the
pipeline stages cover an arbitrary number of modules, which represent
the functional units defined in the resource section.

Further information about the RTL hardware model generation from
the resource section is presented in [23], [97], [98] and [99].
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RESOURCE {

/* Memory definition: */

RAM int mem_prog {

SIZE(0x1000);

BLOCKSIZE(32,32);

FLAGS(R|X);

};

RAM int mem_data {

SIZE(0x1000);

BLOCKSIZE(32,32);

FLAGS(R|W);

};

/* Global Register Resources: */

PROGRAM_COUNTER unsigned short FPC;

REGISTER unsigned short BPC;

REGISTER bool BPC_valid;

REGISTER int R[0..15];

/* Input/Output pins of the core: */

PIN IN int input;

PIN OUT int output;

/* Global signals (unclocked) */

int op_1, op_2;

/* Pipeline and pipeline register definition: */

PIPELINE pipe = { FE; DE; ME; EX; WB };

PIPELINE_REGISTER IN pipe {

unsigned int pc;

int operand_1;

int operand_2;

int operand_1_reg_num;

int operand_2_reg_num;

int result;

int result_reg_num;

};

/* UNIT definition to form functional units: */

UNIT Fetch { fetch; };

UNIT Forward { forward_operand_1_mem; };

UNIT MemAccess { data_mem_read, cm_mem_read, mac_mem; };

UNIT Alu { ADDI, SUBI, MOVI, MOVM, CMPI; };

UNIT Branches { BNE, BGT, BUNC; };

UNIT AddrGeneration { mem_reg_mov, imm_disp_instr; };

UNIT WriteBack { MMR, writeback; };

}

Example 5.1. Example LISA resource section
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5.2 LISA Operations
The architecture, including the instruction-set, is defined by a directed

acyclic graph. The nodes of this graph are LISA operations op. Each
node may contain information about the assembly syntax, the binary
encoding of the instruction-set, the behavior and timing of the archi-
tecture. Generally, this information is specified independently of each
other, therefore, focusing one type of information only, it is useful to
refer to the coding graph, the behavior graph, the syntax graph, etc. This
is illustrated in figure 5.1. The architectural information represented by
a single LISA operations might be independent from other operations,
which is reflected by unconnected nodes in the graphs of figure 5.1.

LISA Operation Graph = Behavior Syntax Coding TimingU U U

Figure 5.1. Combining information: LISA operation graph

The different types of information covered by a LISA operation is cap-
tured in sections, as listed in table 5.1.

Table 5.1. List of LISA sections

Section Purpose
Declare SD Declarations
Coding SC Description of the binary representation of the

instruction-set
Syntax SY Description of the assembly syntax
Activation SA Timing description
Behavior SB State transition functions
Expression SE Extraction of resource values

The declare section SD is used to establish the LISA operation graph,
as defined in the following.
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LISA 5.1: Declare Section

The declare section covers the definition of instances, groups
and labels.
An instance refers to one particular LISA operation, whereas a
group refers to one LISA operation of a specified set. Labels
represent a certain part of the instruction coding, as defined in the
coding section (section 5.3.1).

The instances, groups and labels defined in this section are used within
other sections of the same LISA operation. In this way, sections of
different type, for example the behavior section and the coding section,
are connected to each other.

5.3 LISA Operation Graph
The instruction-set, behavior, timing, etc. of the architecture is cap-

tured by a graph structure, as defined in 5.2.

LISA 5.2: LISA Operation Graph

OP describes the set of LISA operations op. The LISA
operation graph is defined as a directed acyclic graph by
G = 〈OP, (Instances, Groups)〉 with nodes op and relation (edges)
of type instance or of type group. The LISA operation graph
describes the target architecture with regard to the instruction-set,
the behavior and the timing.

There are two special operations in the graph, each representing a root
node for a path through the graph. The root node of the instruction-
set description is called coding root operation opCR. The directed acyclic
graph for the instruction-set description is spanned by the coding section
SC and the syntax section SY . The root node for the behavioral (SB,
SE) and temporal (SA) description is called main operation m. Given a
particular path, to each operation in this path the level n, written opn,
can be annotated. The annotation of the level in a path is also used for
all following definitions and naming conventions. For example, it can be
written for the path opa, opb, opc, opd, ope, opf :
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The index representing the level of an operation or section in one
particular path is of course not a unique identifier, as the same LISA
operation might be part of different paths in the graph. In order to
distinguish between several paths, the term context is used to identify
the set of constraints defined by a particular path through the graph.

5.3.1 Coding Section
The coding section SC covers information about the binary representa-

tion of the instruction-set and consists of a sequence of coding elements.
The coding elements might be either a terminal or a non-terminal
coding elementCoding element,terminalCoding element,non-terminal:

LISA 5.3: Terminal Coding Element

A terminal coding element t is a sequence of bits “0”,”1” or
“x”. The value “x” represents a don’t care bit which may be either
“0” or “1”. The length of the coding element Len(t) is defined as
the number of bits in the sequence.

LISA 5.4: Non-Terminal Coding Element

A non-terminal coding element w is a wildcard for an opera-
tion referred to by an instance or a group declared in section SD

of the same operation. The referred operation must contain a
coding section SC that represents an unambiguous bit pattern in
the scope of coding element w. The length of the element on level n
is Len(wn) = Len(Sn+1

C ).

Therefore, all coding sections Sn+1
C grouped by a non-terminal coding

element Sn+1
C ε wn are of equal bit width. The coding section is defined

as follows:
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LISA 5.5: Coding Section

A coding section SC is defined as an ordered concatenation
(←) of coding elements c, denoting either non-terminal coding
elements w, defined in 5.4, or terminal coding elements t, defined
in 5.3. The concatenation is written

SC(ck, ck−1, ..., c1) = ck ← ck−1 ← ... ← c1, k εN.

The length of the coding section SC is defined by Len(SC) =∑k
i=1 Len(ci).

The properties of coding elements and coding sections, such as the
coding position, coding coverage and coding mask, are explained in the
following.

Position of a coding element or coding section
A coding element or coding section generally represents only a

portion of the whole instruction word. Its position within the complete
instruction word can be recursively calculated by:

Pos(S1
CR) = 0, (5.1)

Pos(cn
k) = Pos(Sn

C) +
k−1∑

i=1

Len(cn
i ) , n ≥ 1, n εN, (5.2)

Pos(Sn+1
C ) = Pos(cn) , n ≥ 1, n εN. (5.3)

The LISA operation that represents the starting point of an instruc-
tion encoding description is called coding root, its coding section is re-
ferred by SCR. The instruction bit width is equal to Len(SCR), the
coding position is Pos(SCR) = 0.

Coding coverage of a coding element or coding section
The number of bit-patterns, which are represented by a particular

coding element or coding section, is called coding coverage. The knowl-
edge about the coding coverage is required to determine the necessity
to decode particular bits. For example, a terminal coding element only
consisting of 0s and 1s covers exactly one particular bit pattern of the
specified portion in the instruction word, written Cov(t) = 1. A ter-
minal coding element that consists of two don’t care bits represents
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Cov(t) = 22 = 4 different bit patterns. The coverage of a coding ele-
ment or coding section can be recursively calculated from the leave nodes
to the root of the LISA operation graph.

The coverage of a terminal coding element is calculated by

Cov(t) = 2number of don’t cares (5.4)

The coverage of a non-terminal coding element on level n can be calcu-
lated by

Cov(wn) =
∑

∀Sn+1
C

Cov(Sn+1
C ) (5.5)

The coverage of a coding section can be calculated with 5.4 and 5.5 by

Cov(Sn
C) =

k∏

i=1

Cov(cn
i ) : i, k εN (5.6)

A so-called full coding coverage is given if

Cov(Sn
C) = 2Len(Sn

C) (5.7)

Coding mask of a coding element or coding section
The coding mask of a coding element or coding section represents the

possible values at particular bit positions within the instruction word.
The values “0” and “1” represent bits with a fixed value. They are
specified by either non-terminal coding elements or by the subgraph. In
other words, the coding mask is propagated from the leave nodes to the
root nodes of the LISA operation graph. The value “?” represents an
undeterminable bit on this level in the coding graph. The specification
of different bits within the coding section is uncorrelated, thus more
bit patterns may be covered by a particular coding mask, than actually
existent in the subgraph.

Coding graph example
A simple coding graph is given in figure 5.2. The coding mask of sec-

tion SC3 is “??” as both bit positions cannot be determined. This coding
mask represents four bit patterns (“00”, “01”, “10”,“11”), although only
two bit patterns are covered by the subgraph. The coding coverage is
Cov(SC3) = 2.

The coding mask for section SC1 is “??????1”. The bit at position
zero is specified by the non-terminal coding element. Furthermore, the
remaining bits of the coding mask are derived from coding masks on
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Figure 5.2. LISA coding graph

lower levels in the hierarchy. Thus, within section SC1 all other bits are
undeterminable (they may be “0” or “1”).

There are two paths to the coding section SC6 in the exemplary coding
graph. The coding section SC6 can be reached by the path SCR, SC1

leading to a coding position Pos(SC6) = 1 or SCR, SC11 leading to a
coding position Pos(SC6) = 3. In this example, two different contexts
exists for coding section SC6.

Decoder generation
The LISA coding graph is utilized to generate the corresponding de-

code logic. The bit pattern of a terminal coding element can be com-
pared directly with the instruction word. The bit patterns represented
by a non-terminal coding element are derived from the corresponding
subgraph. Only one of these bit patterns is valid regarding a given in-
struction word. Thus, the boolean OR operator is used to determine
whether a non-terminal coding element is decoded. The concatenation
of coding elements within a coding section is translated to the boolean
AND operator, since all elements must be decoded. If a full coding cover-
age of coding section SC is given (cf. equation 5.7), the decoding results
from the subgraph need not be taken into account.
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Decoder example
The pseudo-code in example 5.2 depicts the algorithm used to de-

code an instruction with regard to the instruction-set, which is given in
figure 5.2.

Each coding section is represented by a variable di to represent the
information whether the coding section has been decoded (di = 1) or
not decoded (di = 0). All variables are initialized in line 02 and line 04.
Coding sections which only cover don’t care bits are always decoded, as
any instruction matches this pattern. In this example this is the case for
coding sections SC7, SC9 and SC10. Coding sections which only cover
terminal coding elements can be decoded by comparing their coding
mask to the corresponding bits of the instruction word. For example,
coding section SC4 and SC5 are translated to lines 08 and 09 and coding
section SC2 is translated to line 12.

In line 32 several decoding results are combined to decide whether
coding section SC11 is decoded. Additionally, the coding mask needs
to be compared to the corresponding bits of the instruction word. Cer-
tainly, don’t care bits are not taken into account for this comparison,
thus, in line 32 only the bit at position zero of the instruction word is
compared to the value “0”.

The instruction-set defined by example 5.2 covers only a subset of
all possible coding bit patterns. The coverage can be recursively calcu-
lated, which leads to Cov(SCR) = 112 different instructions. The maxi-
mum number of different instructions is 27 = 128. Thus 16 instructions
are invalid regarding the given definition in figure 5.2 (e.g. instruction
“0011111”). An invalid instruction can be easily determined by evalu-
ating the variable dR, which equals “1” for every valid instruction and
“0” for every invalid instruction.

The decoding information represented by the variables di is utilized
by other portions of the generated hardware, which are derived, for
example, from the behavior section or activation section.

5.3.2 Syntax Section
The SY covers the assembly syntax of the instruction-set and is com-

parable to the coding section defined above. The non-terminal syntax
elements represent the mnemonics of the instruction-set. The syntax sec-
tion is not required for an RTL hardware model generation. Interested
readers may refer to [23] or [100].
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01 // variables to represent the decoding result: di corresponds to SCi

02 dR = d2 = d3 = d4 = d5 = d6 = d8 = d11 = d12 = d13 = 0;
03 // full coding coverage, therefore always decoded (equation 5.7):
04 d7 = d9 = d10 = 1;
05
06 // Instruction bits at position 5 and 6 are compared:
07 switch( instruction(6..5) ){
08 case “10”: d4 = 1;
09 case “01”: d5 = 1;
10 }
11
12 if( instruction(6..5) == “11” ){ d2 = 1; }
13
14 // First context of SC6

15 if( instruction(4) == “1” ){ d′
6 = d7; }

16
17 // First context of SC8

18 if( instruction(4) == “0” ){ d′
8 = d9 || d10; }

19
20 // Second context of SC6

21 if( instruction(6) == “1” ){ d′′
6 = d7; }

22
23 // Second context of SC8

24 if( instruction(6) == “1” ){ d′′
8 = d9 || d10; }

25
26 if( instruction(0) == “1” ){ d1 = (d2 || d3) && (d′

6 || d′
8); }

27
28 if( instruction(1) == “0” ){ d12 = 1; }
29
30 if( instruction(1) == “1” ){ d13 = 1; }
31
32 if( instruction(0) == “0” ){ d11 = (d′′

6 || d′′
8 ) && (d12 || d13); }

33
34 dSCR = dSC1 || dSC11 ;

Example 5.2. Decoder implementation for coding tree in figure 5.2

5.3.3 Behavior Section
The behavior section SB covers the state update functions of the ar-

chitecture. They are described using the

C-programming language,
the elements defined in the resource section and
the instances and groups defined in the declare section SD.



52 LISA Frontend

In this context, instances and groups refer to the behavior section of the
respective LISA operations.

The C-code given in the LISA behavior section can be represented by
Control Flow Graphs (CFGs). Figure 5.3 gives an example of behavior
sections and the relation between different operations established via the
behavior section [88].

// Elements defined in the
// resource section are:
// use_bypass, reg_bypass,
// pipe_reg, instr, operand

OPERATION load_operand {
DECLARE{

GROUP load = {ld_reg || ld_imm};
}
BEHAVIOR{

if(use_bypass==1)
operand = reg_bypass;

else
load();

pipe_reg = operand;
}

}

// Coding Section,
// Synatx Section, etc. are omitted.

OPERATION ld_reg {
BEHAVIOR {

operand = R[instr.Extract(18,10)];
}

}

Operation ld_imm {
BEHAVIOR {

operand = instr.Extract(18,10);
}

}

Figure 5.3. LISA behavior sections

The operation load operand describes the following behavior: An
operand is read and then written to a pipeline register (pipe reg). The
operand may be either a register value (R[]) or an immediate value,
which is extracted from the current instruction word (instr). Whether
the register value or the immediate value is loaded depends on the coding
specification (cf. section 5.3.1), not shown in the example. If the bypass
is enabled (use bypass), the operand value is read from the bypass
register (reg bypass).

The left CFG of figure 5.4 represents the behavior code given in op-
eration load operand. The group load within the behavior section
represents behavior descriptions which are referred to by this group
(either ld reg or ld imm). The syntax is derived from a C-function
call, and also the behavior is equal to the execution of a function in
the C-programming language. In general, behavior descriptions are se-
quentially executed, which also includes function calls and behavioral
descriptions represented by groups or instances.
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CFG load_operand (with ld_reg/ ld_imm):

true false

CFG load_operand (without ld_reg/ ld_imm):

ld_reg
decoded

ld_imm
decoded

operand = reg_bypass; load();

pipe_reg = operand;

use_bypass == 1

operand = R[...];

true false

operand = reg_bypass;

pipe_reg = operand;

use_bypass == 1

operand = ...;

Figure 5.4. CFG representation of LISA behavior sections

As a particular behavioral description might be utilized in several
operations, even within the same clock-cycle, the code is automatically
duplicated to represent the corresponding hardware. The behavioral de-
scription is inlined to ensure the correct timing2. Therefore, the CFGs
of the operation load operand, ld reg and ld imm are merged to one
CFG. As can also be seen on the right of figure 5.4, a control flow state-
ment is inserted into the load operand CFG to control the execution of
the ld reg CFG and ld imm CFG. The decision about which operation
to call can be carried out accordingly to the information covered in the
coding section (cf. section 5.3.1).

Data transfer between the operation load operand, ld reg and
ld imm is enabled by the resource named operand. The resource operand
is defined in the resource section as signal because the value has to be
transmitted within the current clock cycle.

5.3.4 Expression Section
The expression section SE is part of the behavioral description of the

architecture. Different from a behavior section, the expression section
returns a particular value, for example the content of a register. Arith-
metic or boolean calculations are not allowed within this section. Groups
and instances are used to refer to an expression section from a behavior
section. For example, the behavior sections of operations ld reg and
ld imm in figure 5.3 can be replaced by expression sections.

2The LISA simulator executes the same code multiple times within a single control step,
for example within one clock cycle, which is obviously not possible in the real hardware
implementation.
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5.3.5 Activation Section
The activation section SA describes the temporal relation between

LISA operations.

LISA 5.6: Activation Section

The LISA activation section SA is a set of activation elements
ai, each of them an instance or group declared in section SD of the
same operation. An activation schedules an operation for execution.
The activation may be conditional to compile-time and/or run-time
conditions.

The decoding results, as described in section 5.3.1, are used to acti-
vate one operation out of group. Thus, an activation always refers to
one operation only. The correct point in time for execution depends on
the pipeline organization and the current pipeline status. In general,
operations are assigned to certain pipeline stages, thus a temporal rela-
tion between operations is described, which is utilized for simulation as
well as hardware generation. Pipeline control functions are used to mod-
ify the regular execution of operations, such as pipeline flushes, which
prevent the execution, and pipeline stalls, which delay the execution.

Figure 5.5 gives an example of a LISA activation graph. The opera-
tion main, which is called once by the simulator for every control step,
activates the operation op1. As the operation main is only the entry
point for the LISA simulator, the behavior section SB of operation main
is not considered for hardware generation (the operation main is compa-
rable to a VHDL testbench, which is, in general, also not synthesisable).
In this example, op2 and op3 are members of the same group and there-
fore exclusively executed. The operations op5 and op6 are activated in
parallel. The activation of op4 is sensitive to run-time conditions. Beside
that graph, the assignment of operations to pipeline stages and the re-
sulting temporal relation is also illustrated. For example, the temporal
difference between the execution of op3 and op5 is ∆t = 2 cycles, if no
pipeline control, such as flush or stall, influences the execution.

The execution order defined explicitly by the activation section and
implicitly by the LISA simulator behavior must be translated to control
logic in hardware. For every operation contained in the LISA activation
graph, it must be checked whether the operation is activated. Depending
on its activation, the activation must be propagated to the control logic
that represents the subsequent activation sections. Pipeline registers
are inserted automatically to ensure a timing, which corresponds to the
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Figure 5.5. LISA activation graph and the spatial and temporal relation

LISA simulator behavior. Additionally, the activation may depend on
run-time conditions, for example, particular register values. In LISA
such conditions are be expressed using the C-programming language
within the activation section.

Figure 5.6 illustrates a possible implementation. The control signal a1

indicates that operation op1 has to be executed. The control signal a1 is
always set to 1, which corresponds to the activation from main to op1 in
every clock cycle. The decoding results (cf. section 5.3.1) are represented
by the variables d2 and d3 which are utilized to set either a2 or a3 to
1. External conditions are evaluated in the case of control signal a4.
As operations may be activated in several contexts, the or-gate in the
last stage combines all control signals from different contexts to a single
signal a5. Whenever possible, multiplexers are replaced by appropriate
signal assignments in the real implementation. For the reason of clarity
this optimization is omitted here. The signals a1 to a6 are used to
steer the execution of behavior sections of the corresponding operations.
As can be seen in figure 5.6, the correct temporal behavior is achieved
by preserving the pipeline structure and introducing registers between
consecutive pipeline stages.

5.4 Representing Exclusiveness in
Conflict and Compatibility Graphs

The information extracted so far is required to instantiate a first
hardware representation of the target architecture. To perform opti-
mizations, especially, but not only resource sharing, information about
exclusiveness is essential. It has been shown in chapter 4 that this infor-
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Figure 5.6. Pseudo hardware implementation of the LISA activation graph

mation is hardly extractable on the RTL but explicitly available in the
LISA model.

A data structure is required that preprocesses exclusiveness infor-
mation and allows queries with a low computational complexity. This
demand is fulfilled by an undirected graph G = 〈OP, E〉. OP is the
set of vertices, each vertex represents a LISA operation. E is the set of
edges, each edge represents a commutative relation between two LISA
operations.

This section focuses on the extraction of exclusiveness information
and the appropriate graph implementation to store this information. A
query to this information is performed in O(1) time [101].

5.4.1 Graph Definitions
Two sorts of relations are possible when handling exclusiveness in-

formation: “Operations A and B are executed exclusively” and “Opera-
tions A and B can be executed concurrently”. On the resource sharing
background, exclusiveness is called compatibility, the opposite relation
conflict (definition 5.8). Conflict and compatibility relations are com-
plementary to each other (equation 5.9).

opx � opy := Operation opx is compatible with Operation opy

opx � opy := Operation opx conflicts with Operation opy

(5.8)
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opx � opy ⇔ opx � opy

opx � opy ⇔ opx � opy

(5.9)

With this concept two classes of graphs are possible: Compatibil-
ity graphs Gcompat (equation 5.10) and conflict graphs Gconflict (equa-
tion 5.11).

Gcompat = 〈OP, Ecompat〉
Ecompat = {(opx, opy)|opx, opy ∈ OP, opx � opy}

(5.10)

Gconflict = 〈OP, Econflict〉
Econflict = {(opx, opy)|opx, opy ∈ OP, opx � opy}

(5.11)

Due to the complementary property of both relations, a conflict graph
is the complementary graph of the compatibility graph and vice versa
(equation 5.12). Figure 5.7 gives an example of conflict and compatibility
graphs.

Gconflict = 〈OP, {(opx, opy)|(opx, opy) /∈ Ecompat}〉 = Gcompat

Gcompat = 〈OP, {(opx, opy)|(opx, opy) /∈ Econflict}〉 = Gconflict

(5.12)

(a) compatibility graph (b) conflict graph

op2

op1

op4 op5

op3 op2

op1

op4 op5

op3

Figure 5.7. Compatibility graph and conflict graph

5.4.2 Creating Compatibility and Conflict Graphs
The information about exclusiveness is extracted by recursively

processing the directed acyclic LISA operation graph with a depth-first
strategy. Thus the construction of conflict or compatibility graphs from
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the LISA operation graph requires the merging of subgraphs, which rep-
resent relations between sub-sets of LISA operations, into a common
graph. Due to the complementary property of conflict and compatibil-
ity graphs it is sufficient to describe the merging operations for one class
only. Here, the conflict graphs Gconflict,1 and Gconflict,2 are selected to be
merged into one global graph Gconflict,global (equation 5.13).

Gconflict,1 = 〈OP1, E1〉
Gconflict,2 = 〈OP2, E2〉

Gconflict,global = 〈OPglobal, Eglobal〉
(5.13)

For the merging process it is necessary to distinguish whether compat-
ibility or conflict relations should be established for pairs of vertices of
different graphs. The merging of compatible conflict graphs is the very
basic merge operation as no new conflict edges have to be inserted. All
conflicts will persist by creating the union of both sets of operations OP1

and OP2 and the union of edges E1 and E2. For the merge of compatible
conflict graphs the operator ∪� is defined according to equation 5.14.
An example of a merge of two compatible conflict graphs is given in
figure 5.8. In this figure, the LISA operations op1 and op2 appear in
both source graphs, because they are referred to by multiple operations
in the coding graph.

Gconflict,� = Gconflict,1 ∪� Gconflict,2 := 〈OP1 ∪ OP2, E1 ∪ E2〉 (5.14)

op2

op1

op4 op5

op3

op1

op5

op3 =op2

op1

op4

op3 U

Figure 5.8. Example of merging compatible conflict graphs

The complexity of the merge of compatible conflict graphs depends
on the graph implementation. If adjacency lists are used, only graph
nodes and no edges must be considered during the merging. Therefore,
the complexity is given by O(|OP1| + |OP2|). If the result is stored in
Gconflict,1 the complexity is only O(|OP2|), because the vertex of Gconflict,2

can be inserted without considering any vertex in Gconflict,1.
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If conflicts should be established between the two graphs Gconflict,1 and
Gconflict,2, new conflict edges have to be inserted for each pair of nodes
from different subgraphs. All conflicts existing in the original graphs
will persist. The operator ∪� is defined for the merging of conflicting
conflict graphs according to equation (5.15). An example is given in
figure 5.9.

Gconflict,� =Gconflict,1 ∪� Gconflict,2

:=〈OP1 ∪ OP2,

E1 ∪ E2 ∪ {(opx, opy)|opx ∈ OP1 ∧ opy ∈ OP2}〉
(5.15)

op2

op1

op4 op5

op3

op1

op5

op3 =op2

op1

op4

op3 U

Figure 5.9. Example of merging conflicting conflict graphs

For an analysis of the complexity a graph representation based on ad-
jacency lists is assumed. Therefore, the complexity for merging conflict-
ing conflict graphs relies on the number of newly inserted edges, given by
the product of |OP1| and |OP2|. Thus the complexity is O(|OP1|·|OP2|).

5.5 Exclusiveness Information
on the Level of LISA Operations

The conflict and compatibility graphs defined in section 5.4 are used to
retain information about exclusiveness on the level of LISA operations.
This exclusiveness graph has to be built by using the structural infor-
mation given in the LISA operation graph. The LISA operation graph
is traversed step by step with the depth-first strategy. Local graphs,
which represent the exclusiveness information provided by LISA oper-
ation subgraphs, are merged into one graph until the root of the LISA
operation graph is reached. With this strategy, a large number of merge
operations on local graphs are necessary. Under the constraint that con-
flicts have to be preserved the merge of conflict graphs is less complex
than the merge of compatibility graphs. Therefore, conflict graphs are
chosen for building up the global LISA operation graph.
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5.5.1 Conflict Graph Creation
A recursive algorithm is implemented to create the LISA operation

conflict graph. Here, a single recursion step operates on a particular
LISA operation and has to merge all conflict graphs of subsequent LISA
operations, as defined by the directed acyclic LISA operation graph.
Therefore, the LISA operation sections have to be analyzed whether
they create conflicts or compatibilities.

Coding section SC

According to 5.3.1, non terminal coding elements w refer to a
group of LISA operations OPGroup. All pairs of LISA operations
{(opx, opy)|opx, opy ∈ OPGroup} define local mutually exclusiveness by
definition. Therefore, the conflict graphs CGop of all group elements
op ∈ OPGroup can be merged into the coding element conflict graph
CGOPGroup

without insertion of additional conflicts (equation 5.16).

CGOPGroup
=

⋃
�

∀op ∈ OPGroup

CGop (5.16)

Concatenated coding elements c (both instances and groups) each repre-
sent a portion of the same instruction and thus encode hardware which
is concurrently executed. Thus, conflicts instead of exclusiveness rela-
tions must be established on the level of a coding section SC for coding
elements. Therefore, the local conflict graphs CGc, c ∈ SC have to be
merged with conflicts (equation 5.17).

CGSc =
⋃

�
∀ c ∈ Sc

CGc (5.17)

Activation section SA

Activation elements a ∈ SA are executed concurrently. The conflict
graph for the activation section CGSA

has to be built up by merging the
local conflict graphs for all activation elements with conflicts:

CGSA
=

⋃
�

∀ a ∈ SA

CGa (5.18)

If an activation element a leads to a single LISA operation op, the acti-
vation element’s conflict graph contains only the conflict graph for LISA
operation op : CGa = CGop. For an activation a of a group OPGroup, the
same exclusiveness rules apply as described by (5.16). Therefore, the
conflict graph for this activation element is given by CGa = CGOPGroup

.
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Activations can be conditional by the utilization of if-else statements,
as explained in section 5.3.5. Therefore exclusiveness can be concluded
between operations activated by aif and operations activated by aelse,
with aif, aelse ∈ SA. For a single conditional activation aconditional =
〈aif, aelse〉 the conditional activation element’s conflict graph CGaconditional

is the compatible merge of both conflict graphs CGaif
and CGaelse

:

CGaconditional
= CGaif

∪� CGaelse
(5.19)

This rule has to be applied recursively for all nested conditional activa-
tion elements.

Behavior section SB

A link between LISA operations may be established via the behavior
section SB, as described in section 5.3.3. Here, the referred behavior
code is duplicated for each reference and inlined in the behavior section
of the referring operation. Therefore, exclusiveness aspects on the level
of LISA operations are not influenced by the behavior section SB.

Recursive conflict graph creation
The steps of a conflict graph creation, elaborated above, are now

combined in a single recursive algorithm. The resulting conflict graph
contains the entire information about exclusive execution with a granu-
larity of LISA operations. The recursive algorithm for the creation of a
conflict graph of a particular LISA operation op is given in figure 5.10.
In order to use the exclusiveness information given by conditional ac-
tivations, conflicts between exclusively activated coding elements must
be avoided. Therefore, the conflict graph CGSA

must be created before
CGSC

and coding elements used in the activation section must be omit-
ted for the creation of CGSC

. The recursive algorithm for the analysis of
activation sections is described in figure 5.11. The analysis of behavior
calls is the last step after all exclusiveness relations for coding elements
have already been analyzed. Thus, behavior calls of coding elements
must be ignored in the behavior call analysis step.

After discussing one recursion step, the creation of the global conflict
graph is discussed in the following. For its creation, the topology of
the pipeline needs to be taken into account. Until now, the LISA oper-
ation conflict graph may contain compatibility relations for operations
in different pipeline stages, as only the decoding of a single instruction
is analyzed. It must be considered that different instructions are exe-
cuted concurrently in different pipelines and pipeline stages. Therefore,
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CreateLISAOperationConflictGraph (op)
1 // conflict graph for operation op
2 CGop ← 〈{op}, {}〉
3

4 // Conflict Graphs for Activation Section
5 CGSA

← CreateActivationConflictGraph(SA)
6 CGop ← CGop ∪� CGSA

7

8 // Conflict Graphs for Coding Section
9 CGSC

← ∅
10 for {OPGroup | OPGroup ∈ SC ∧ OPGroup /∈ SA} do
11 // non terminal coding element conflict graph
12 OPGroup ← ∅
13 for {op | op ∈ OPGroup} do
14 CGop ← CreateLISAOperationConflictGraph(op)
15 CGop ← OPGroup ∪� CGop // (equation 5.16)
16 endfor
17 CGSC

← CGSC
∪� CGOPGroup // (equation 5.17)

18 endfor
19 CGop ← CGop ∪� CGSC

20

21 // Conflict Graphs for Behavior Section
22 CGSB

← ∅
23 for {opbc | opbc ∈ SB ∧ opbc /∈ SC} do
24 CGSB

← CGSB
∪� CGopbc

25 endfor
26 CGop ← CGop ∪� CGSB

27 return CGop

Figure 5.10. Conflict graph creation for LISA operations

conflicts for all pairs of operations in different pipelines or pipeline stages
must be added. The algorithm for the creation of the global conflict
graph is given in figure 5.12.

5.5.2 Algorithmic Complexity of Conflict
Analysis

The complexity for the global conflict graph creation can be deter-
mined with the help of an operation graph degenerated to a list. The
list length is nop, the level of a node is its distance to the root node plus
one. Thus the coding root has levelroot = 1, the leaf levelleaf = nop. The
recursion step on the first level has to work on nop − 1 child operations.
For this case the recursion complexity due to conflict graph creation is
given by equation (5.20).
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CreateActivationConflictGraph (SA)
1 // creates a conflict graph for an activation section
2 CGSA

← ∅
3 for {a | a ∈ SA} do
4 // Conflict Graph for the current Activation Element
5 CGa ← ∅
6 if a ≡ opGroup then
7 // Activation Element is a group
8 CGw ← ∅
9 for {op | op ∈ OPGroup} do
10 CGop ← CreateLISAOperationConflictGraph(op)
11 CGw ← CGw ∪� CGop

12 endfor
13 CGa ← CGw

14 else if a ≡ aconditional = 〈aif, aelse〉 then
15 // Activation Element is a Conditional Activation
16 CGaif ← CreateActivationConflictGraph(aif)
17 CGaelse ← CreateActivationConflictGraph(aelse)
18 CGa ← CGaif ∪� CGaelse

19 else
20 // Activation Element is a single LISA Operation
21 CGa ← CreateLISAOperationConflictGraph(op)
22 endif
23 CGSA

← CGSA
∪� CGa

24 endfor
25 return CGSA

Figure 5.11. Conflict graph creation for activation elements

Recursion Complexity:
nop−1∑

L=0

L =
(nop) · (nop − 1)

2
⇒ O(n2

op) (5.20)

In this equation, the possible insertion of conflicts during the graph
merging process is omitted. The complexity of all conflict insertions
is given by the total number of possible conflicts in the global LISA
operation conflict graph. This complexity already includes the insertion
of conflicts for operations in different pipeline stages. Therefore, the
total complexity of conflict insertion is given by O(n2

op).
The complexity of the combination of recursion and conflict insertion

results in a total complexity of O(n2
op) for the global LISA operation

conflict graph creation.
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CreateGlobalConflictGraph ()
1 CGglobal ← ∅
2

3 CGglobal ← CreateLISAOperationConflictGraph(main)
4

5 // Add Conflicts for Operations in different Pipeline Stages
6 for {op1 | op1 ∈ CGglobal} do
7 for {op2 | op2 ∈ CGglobal} do
8 if (PIPE(op1) 	= PIPE(op2)) ∨ (STAGE(op1) 	= STAGE(op2)) then
9 CGglobal ← CGglobal ∪ 〈{}, {(op1, op2)}〉
10 endif
11 endfor
12 endfor
13

14 return CGglobal

Figure 5.12. Global conflict graph creation

5.6 Exclusiveness Information on the Behavioral
Level

The exclusiveness information was only created for the level of LISA
operations. In addition, information about the exclusive execution of
operations also exists on the level of single assignments, arithmetic or
logic operations, etc., represented in CFGs. These CFGs contain explicit
information about exclusiveness by conditional statements, such as IF
and ELSE blocks or SWITCH statements handling multiple cases. An
example of the different relations between blocks is given in figure 5.13.
An edge between two vertices is either an explicit compatibility or ex-
plicit conflict. If no edge exists between two vertices, it is a weak conflict
that may become a compatibility by evaluating implicit exclusiveness in-
formation.

Implicit exclusiveness information is given by the data-dependency of
conditions in conditional statements. Conditions are usually given by
boolean functions of one or more variables. The main task for deter-
mining the exclusiveness between two conditional blocks is to compare
their conditions. In general, the comparison of boolean functions is NP
complete [102]. Sophisticated algorithms have been developed to raise
the number of manageable boolean inputs and complexity of boolean
functions that are comparable with reasonable effort [103].

In the scope of this book, however, the addresses conditions are top
level conditions which check the single bit control signals. Therefore, the
condition comparison based on iterations through a condition truth table
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A B

C

D

F

G

E
Explicit Compatibility

Explicit Conflict

if (x) {
// Block A
if (y) {

// Block C
} else {

// Block D
}
if (u) {

// Block E
}

} else {
// Block B
if (z) {

// Block F
} else {

// Block G
}

}

Figure 5.13. Example of explicit relations between conditional blocks

is sufficient as long as a maximum number ninp,max of boolean inputs is
defined in order to guarantee an upper limit for comparison runtime. The
truth table comparison is able to handle complex models with thousands
of conditional blocks with ninp,max = 16 boolean condition inputs within
few minutes.

Overall, the analysis of CFGs for an evaluation of explicit and implicit
exclusiveness is not specific to the LISA language. Therefore, this topic
is not further discussed here. Interested readers might refer to [104].



Chapter 6

INTERMEDIATE REPRESENTATION

The previous chapters explain the urgent need for an automatic
ASIP implementation from high level ADL models. As discussed in
section 4.2.1, an intermediate representation is required which can be
used to perform the optimizations, transformations and to generate the
hardware description on RTL, using HDLs [105]. Furthermore, two
main requirements to the intermediate representation are derived in sec-
tion 4.2.1:

The intermediate representation must describe hardware on an ab-
straction level above RTL.

The intermediate representation must contain the semantics of the
hardware description.

The Unified Description Layer (UDL) represents a hardware model
for implementation while additional semantic information, derived from
the ADL model, is retained.

6.1 Unified Description Layer
HDLs, such as VHDL, Verilog and RTL-SystemC1 basically use the

same elements to describe hardware. These are processes (Verilog:
always-blocks, RTL-SystemC: methods) and signals (Verilog: wire, reg).
They are used to explain the UDL in the following sections.

1A subset of SystemC is synthesisable by some Synopsys’ Design Compiler versions. Propos-
ing SystemC as hardware description language is often confusing, as SystemC is well estab-
lished in the domain of system-level design. Therefore, in the scope of this book, the term
RTL-SystemC is used to refer to the synthesisable subset of SystemC.
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6.1.1 Basic Elements of the UDL
In a hardware description on RTL, processes are used to model com-

binatorial or sequential logic in a procedural description style. Beyond
the similarity to programming languages processes also describe the con-
current and reactive nature of hardware. In general, multiple processes
are used to model one architectural building block.

Data, in its most general meaning, is transferred with a granular-
ity of bits summarized by signals between processes. Signals are read
and written within processes. Shown in figure 6.1, several processes
A1, A2 and A3 are connected by signals S1, ..., S11.

A1

A2

A3

S1

E1

S2

S3

S4

S5 S6

S7 S8

S9

S10

S11

S2

Processes and Signals (= RTL)

Figure 6.1. Hardware description on RTL, based on entities, processes and signals

In addition to processes and signals, entities are commonly used to
modularize an RTL hardware model, which enables maintainability as
well as reusability. These entities do not necessarily represent bound-
aries within the architecture, but only refer to the model organization.
However, entities indirectly influence the architectural efficiency since
optimizations performed by gate-level synthesis tools are usually lim-
ited by entity boundaries (cf. chapter 4). In figure 6.1, the hardware
description consisting of processes and signals is covered by entity E1.

In the following, the first demand for a raised abstraction level is ad-
dressed. Both key elements of a hardware description, namely signals
and processes, are considered. On the one hand, several signals between
two processes are grouped to a path, which corresponds to an abstraction
of the interconnect. On the other hand, several processes within one en-
tity are summarized to a unit, which represents a functional abstraction.
Semantic information, derived from the ADL model, is utilized to group
signals and processes respectively. The UDL also provides entities to
modularize the hardware model, similar to the RTL.

An example for the functional abstraction is a unit which represents
the complete decode logic. An example for the abstraction of the
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interconnect is the write access to a register file. In this case, the path
contains the address signal, the control signal and the data signal.

Figure 6.2 illustrates the abstraction of several signals and processes.
For example, path P1 groups the signals S1 and S2 and path P5 consists
of signals S5 and S6. Also, the processes A2 and A3 are represented by
unit U2 and unit U1 represents the process A1.

The abstract elements of the UDL, path and unit, are containers to
the underlying elements of an RTL hardware description. Thus, once
the complete implementation is instantiated, an abstract view to the
architecture is still possible. As depicted in figure 6.2, the same UDL
model can be viewed on the highest level of abstraction, made up of
entities, units and paths and also on the lowest level, the RTL, made up
of entities, processes and signals. Certainly, a mixed abstraction with
regard to both function and interconnect is also possible.

interconnect
abstraction

functional
abstraction

functional
abstraction

interconnect
abstraction

U2

P1

E1

P3

P5

P4

P7

P6U1

Units and Paths

A1

A2

A3

P1

E1

P3
P5

P4

P7

P6

P2

Processes and Paths

A1

A2

A3

S1

E1

S2

S3

S4

S5 S6

S7 S8

S9

S10

S11

S2

Processes and Signals (= RTL)Units and Signals

S1

E1

S2

S3

S4

S5 S6

S7 S8

S9

S10

S11

U2

U1

UDL
model

Figure 6.2. Different views to the same architecture model

The derivation above only explains how the UDL represents the ASIP
on an abstraction level higher than RTL. In the following it is described
how the UDL retains the semantic information derived from an ADL
model. Both signals and processes are grouped to paths and units with
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regard to their semantics. The UDL elements naturally correspond to
the semantics of the underlying hardware description and are associated
with explicit types, which represent a well defined semantic category.

The types of the UDL elements are listed in table 6.1. For example,
the pattern matcher unit recognizes particular instruction bit patterns
and sets the coding path accordingly. The information provided by
the coding path as well as run-time conditions are evaluated by the
decoder unit to set the control signals represented by the activation
path. These control signals are, for example, utilized by the data path
units. The types of the UDL are not fixed and can be extended in
future work as needed.

Table 6.1. Exhaustive list of entities, units and paths

List of UDL Elements
Entities Units Paths
testbench data path reset resource
architecture register pipe reg mem
registers memory pipe reg coding mem r
memories signal pipe reg activation mem r w
pipeline resource mem w
pipe stage pin clock
pipe register decoder reset
funct.-block pattern matcher activation

multiplexer coding
pipe controller ft pipe reg
pipe register pipe reg ctrl
ctrl stall flush pipe reg ctrl flush
clock pipe reg ctrl stall

The types of the UDL elements, as listed in table 6.1, do not repre-
sent predefined implementations but repositories of semantic informa-
tion. This information is retrieved by the frontend and assigned to the
UDL elements. Especially, the exclusiveness information, as described
in chapter 5.4, is directly linked to the elements units and paths.
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6.1.2 UDL Model Hierarchy
The elements path and unit are embedded in a hierarchical model.

An exemplary data structure is presented in figure 6.3.
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Unit
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Process =

UnitUnit

Unit
Unit

Unit

Unit

Unit

CFG to DFG conversion

CDFGDFG

DFG to CFG conversion

Entity hierarchy

Paths

Figure 6.3. Example UDL of an ASIP

The model hierarchy is represented by a directed tree T of entities. An
edge corresponds to a single hierarchical relation between two entities, as
indicated by dotted arrows in figure 6.3 (for example, entity E1 contains
the entities E2, E3 and E4). The functional model is represented by a
graph G, where the vertices are the units. The edges of this graph are
UDL paths, as indicated by the solid lines in figure 6.3. The relation
between T and G is well defined since a unit is uniquely assigned to
a particular entity. Paths are bound to the entity hierarchy, since they
represent the interconnect on RTL. Processes are represented by Control
Flow Graphs (CFGs) or Data Flow Graphs (DFGs) depending on the
transformation or optimization to perform.
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6.1.3 UDL Instantiation and Refinement
The UDL covers different abstraction levels of the target architecture.

As shown in figure 6.4 the highest level is made up of entities, units and
paths. The lowest abstraction level consists of entities, processes and
signals. The complete synthesis flow from the first instantiation to the
RTL hardware representation comprises the following ordered steps:

1. Structuring: Instantiation of entities
2. Functional Mapping: Instantiation of units
3. Mapping of the Interconnect: Instantiation of paths
4. Functional Refinement: Conversion of units to processes
5. Refinement of the Interconnect: Conversion of paths to signals
6. HDL Generation: Generation of an RTL hardware model

processes

unitsentities

LISA

RTL hardware model

signals

paths

structuring
functional
mapping

functional
refinement

interconnect
refinement

backends

interconnect
mapping

1. 2. 3.

4.

5.

6.6. 6.

Figure 6.4. Synthesis steps from LISA to RTL

For instantiation and refinement of the model, information about the
underlying hardware is extracted from the ADL model. Information di-
rectly available from the ADL model is called explicit information (cf.
chapter 4). However, missing information must be compensated by as-
sumptions about the ASIP implementation. These assumptions concern
both the functional model and the interconnect on arbitrary levels of
abstraction. The presented UDL can be perfectly used to include these
assumptions at any step in the synthesis process. Three examples about
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the usage of explicit information and assumptions about the implemen-
tation are given in the following.

The LISA frontend assumes an initial model of the hierarchy because
this structural information is not existent in a LISA model. The frontend
instantiates the entities registers, memories and pipe within the entity
architecture (see figure 6.3). Optimizations and transformations may
change this hierarchy in subsequent synthesis steps.

Every process needs to be represented by a CFG for architecture im-
plementation. If the information about the implementation is omitted
in the LISA model, a CFG template must be tailored to the provided
information. For example, LISA specifies the instruction-set including
the binary encoding but does not specify the corresponding decoder im-
plementation. Here, CFG templates must be tailored to the specified
instruction-set.

LISA provides the architecture’s behavior on the basis of the C-
programming language (the behavior is specified within so called behav-
ior sections SC , cf. chapter 5.3.3). These behavior sections are utilized
to implement processes and to derive the CFG representation without
assumptions.

6.1.4 UDL Visualization
The elements of the UDL can be used to provide a structural view on

the ASIP. A screenshot of the synthesis tool is given in figure 6.5. The
highest level of abstraction, which consists of entities, units and paths,
is used for visualization. This level provides the most suitable view for
design space exploration as unnecessary hardware details are omitted.
The architecture can be explored on different levels of the model hierar-
chy while displaying the selected entity as well as all embedded entities.
The type of paths might be used to visualize only a subset of all paths.
For example, the resource access, pipeline control, decoder control or
clock tree can be separately displayed. Paths can be selected and traced
through the whole architecture.

6.2 Optimization Framework
The transformations and optimizations can be performed on all rep-

resentations provided by the UDL. In general, the most suitable rep-
resentation depends on the optimization to perform. In all cases, the
optimizations benefit from the decreased model complexity, which is
achieved by both the higher abstraction level and the semantic infor-
mation. The available optimizations are discussed in chapter 7. Several
of the optimizations and in particular resource sharing require a DFG,
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entity
hierarchy

UDL unit

UDL paths
& path tracing

Figure 6.5. Visualizing the UDL in the synthesis GUI

which can be derived form a CFG. The corresponding conversions are
described in appendix B.

6.3 VHDL, Verilog and SystemC Backend
The currently existing backends generate a hardware description in

either VHDL, Verilog or RTL-SystemC [106]. Beyond syntactical dif-
ferences, the major difference between these languages is the different
handling of type conversions. In Verilog and RTL-SystemC logic descrip-
tion is loosely typed and the required type conversions are automatically
performed by design tools. For example, in RTL-SystemC the type con-
versions of the ANSI-C standard is applied [107], whereas, in VHDL
the data types are explicitly imposed on expressions. Although proper
type conversion is an essential part in backend development, its imple-
mentation is of minor interest in the scope of this book and therefore
omitted.
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The LISA to RTL synthesis tool and in particular the backends are
developed according to sophisticated software design techniques [108]
[109][110]. Design patterns [111] are used to implement the software
architecture. The UDL and backends are implemented according to the
visitor-pattern, which equips the UDL with a generic backend interface.
Arbitrary language backends can be hooked to this interface to iterate
over the data-structure, collect required information and write out the
hardware description.

The generated hardware description is usable for simulation as well as
synthesis. The hardware behavior is compliant with the LISA simulator
behavior. Thus, a bit accurate and cycle accurate co-simulation between
the LISA model and the generated RTL hardware model is possible. Also
the verification of the gate-level model, based on a co-simulation with
the LISA model, is enabled as well. In addition to the RTL hardware
description, the scripts for RTL simulation and gate-level synthesis are
generated automatically for VHDL, Verilog and RTL-SystemC.



Chapter 7

OPTIMIZATIONS BASED ON EXPLICIT
ARCHITECTURAL INFORMATION

In chapter 4 the urgent need for optimizations during the automatic
ASIP implementation based on ADLs is discussed. These optimizations
are motivated by the requirements for an architectural efficiency and im-
plementation flexibility close to those of handwritten implementations
(cf. section 4.1.1). To satisfy these two requirements two types of op-
timizations are required, the constraint-independent optimizations and
constraint-dependent optimizations.

Constraint-independent optimizations improve one or more phys-
ical characteristics without compromising any other characteristic.

Constraint-dependent optimizations improve one or more physical
characteristics at the cost of another characteristic.

Figure 7.1 gives two abstract optimization examples on the basis of
the variables Area (A), Timing (T) and Energy (E) as well as the as-
sumption ATE = const. The theoretically existing Pareto points are
represented by surfaces in figure 7.1. Constraint-independent optimiza-
tions improve the architectural efficiency, which corresponds to shifting
the surface of Pareto points. On the contrary, constraint-dependent op-
timizations trade off the physical characteristics and select a particular
design point at the surface. Therefore, these optimizations (only) affect
the implementation flexibility while the architectural efficiency remains
unchanged.

In general, the optimizations benefit from the explicit architectural
information specified in the LISA model. However, each optimization
requires an appropriate abstraction level and suitable data-structures
to retain the architectural information. As described in chapter 6, the

77



78 Optimizations Based on Explicit Architectural Information

Constraint Dependent
Optimizations

Constraint Independent
Optimizations

A A

T T

E E

Figure 7.1. Constraint-independent and constraint-dependent optimizations

UDL provides several abstraction levels to perform optimizations. The
optimizations presented in this chapter considerably gain from the UDL
paths and their semantics, which are hooked into DFGs and CFGs [112].

The LISA behavior description (cf. section 5.3.3) is originally repre-
sented by a CFG and the HDL backends require a CFG to generate
a hardware description, too. Since most optimizations are applied to
DFGs, the conversions between both representations are explained in
appendix B.

7.1 Basic DFG based Optimizations
Usually there is potential for removing redundancy after the initial

creation of the DFG. The redundancy (e.g. unnecessary multiplex-
ers, duplicate operators, constant inputs, etc.) is basically caused by
the declarative description style and an significant abstraction or even
complete neglect of the interconnect (cf. chapter 4). This redundancy
complicates resource sharing optimizations unnecessarily. Therefore,
constraint-independent optimizations have to be performed in order to
obtain a DFG which is as simplified as possible. For this simplifica-
tion the optimizations constant propagation, multiplexer simplification,
structural simplification and merging identical nodes are applied.

In table 7.1, the effect of these basic optimizations on the ICORE ar-
chitecture [91] (cf. appendix A) is given. The achieved gain is quite low,
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but nevertheless notable, if the optimizations are applied to the DFG
derived from a single LISA operation. Obviously, the basic optimiza-
tions become more effective if they are applied to DFGs representing
several LISA operations grouped by a functional unit. The effects of
the optimizations for several functional units are mentioned in table 7.1,
too. For these units, the basic optimizations achieved an important gain.
The negligible improvement for the unit Bitmanip results from the fact
that only few LISA operations are grouped by this unit.

The largest portion of the gain is achieved by the optimization merging
identical nodes, described in section 7.1.4. This is a strong indication of
redundancy caused by the LISA behavioral description and motivation
to perform resource sharing in a later step.

Table 7.1. Effect of basic optimizations on graph vertex count for the ICORE model

Number of vertices
w/o and with

LISA Operation basic optimizations
pc calc Program counter calculation 119 90 (75.6 %)
CMP Compare 33 27 (81.8 %)
Cordic01 Special cordic instruction 39 37 (94.9 %)
Abs Absolute value calculation 40 18 (45.0 %)
Functional Unit
ALU Arithmetic and logic unit 100 56 (56.0 %)
DAG Address generation unit 161 109 (67.7 %)
Shifter Shifter unit 92 67 (72.8 %)
ZOLP Zero overhead loop 161 64 (39.8 %)
Bitmanip Bit-manipulation unit 34 32 (94.1 %)

In figure 7.2 an example of the effects of the basic optimizations is
given that depicts the unoptimized (a) and the optimized (b) DFGs
for the WBITI instruction (write constant in bit field of register) of
the ICORE architecture. The basic optimizations are described in the
following sections.
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Figure 7.2. Unoptimized and optimized DFG for ICORE’s WBITI instruction [91]
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7.1.1 Constant Propagation and Constant Folding
Constants are often used in CFG expressions, e.g. for constant shifting

or comparisons. The constant propagation can be performed if all inputs
Cin,P for an operator P are constant. In this case the output Cout,P

can be replaced by the resulting constant. If only a single input is
constant, some binary operators can be replaced by one of its inputs or
even a constant. Especially boolean operators allow this simplification
called constant folding. Table 7.2 lists the implemented constant folding
optimizations.

Table 7.2. Simplifications by constant folding

Operator Constant Input Simplification
a AND b a = 1 b
a AND b a = 0 0
a OR b a = 1 1
a OR b a = 0 b
a XOR b a = 1 b
a XOR b a = 0 b
a SHL b b a CONCAT 0width=b

a SHR b b a[widtha − 1 downto b]

7.1.2 Multiplexer Simplification
The implementation of multiplexers has a significant influence on the

overall architectural efficiency. An important optimization is the simpli-
fication of the multiplexer implementation if the input data is at least
partially constant.

This optimization targets multiplexers with a single control signal
ccmux and two input signals of boolean type Cin,mux. Due to the constant
input the truth table of the multiplexer can be simplified, initially given
by the set CCv of associations (vcc, Cin,mux) between condition values vcc

and inputs Cin,mux. The most common simplification rules are given in
table 7.3. These simplifications can be applied, for example, if a constant
single bit is assigned to a control signal within several nested conditional
blocks.

7.1.3 Structural Simplifications
Structural simplifications are mainly intended to combine trees of bi-

nary commutative and associative operators into a single n-ary operator,
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Table 7.3. Simplification for multiplexers with boolean control and data inputs

Assignment Patterns Simplification
CCv = {(vcc = 0, 0), (vcc = 1, 1)} Cout,mux = ccmux

CCv = {(vcc = 1, 0), (vcc = 0, 1)} Cout,mux = ccmux

CCv = {(vcc = 0, 0), (vcc = 1, Cin,mux)} Cout,mux = ccmux ∧ Cin,mux

CCv = {(vcc = 0, 1), (vcc = 1, Cin,mux)} Cout,mux = ccmux ∨ Cin,mux

CCv = {(vcc = 0, Cin,mux), (vcc = 1, 0)} Cout,mux = ccmux ∧ Cin,mux

CCv = {(vcc = 0, Cin,mux), (vcc = 1, 1)} Cout,mux = ccmux ∨ Cin,mux

e.g. successive additions, multiplications or identical boolean operators.
No immediate advantage is provided by this simplification. Nevertheless,
this transformation simplifies the identification of common inputs if two
n-ary commutative and associative operators are candidates for resource
sharing. This finally leads to a reduced instantiation of multiplexers.

Chains of multiplexers can be merged if they have one common input.
This case occurs, for example, if the same value is assigned to a variable
in several nested IF statements. However, this optimization is only
possible if several conditions are met:

All multiplexers in the chain must have one common input.

Each multiplexer in the chain has only one output connection, namely
the one to the next multiplexer in the chain.

Each multiplexer has exactly two multiplexed inputs. If a default
input is already present, it must be the common input. This condition
is usually true for IF/ELSE statements.

An example of a hypothetical program counter calculation is given in
figure 7.3. After the initial DFG creation, a chain of two multiplexers
exists. Both multiplexers can be combined into a single multiplexer.
The control input for the merged multiplexer is the concatenation of all
control signals in the chain (here: cc1 and cc2). Therefore, the condition
value associated with the special input (branch) is the concatenation
of all condition values along the chain. The common input is used as
default multiplexer input.

7.1.4 Merging Identical Nodes and Path Sharing
In general, the instructions’ behaviors are independently described

in several LISA operations to enable an efficient design space explo-
ration. However, this concept introduces redundancy, in particular for
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(cc1){

npc := pc+1;

}else{

(cc2){

npc := branch;

}else{

npc := pc+1;

}
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Figure 7.3. Multiplexer chain simplification

basic operations commonly used. This is of special importance for LISA
resources accessed by multiple LISA operations. Here, it is possible to
reduce the interconnect, which is caused by the use of individual paths
for each single resource access (cf. example in section 4.2). This opti-
mization is referred to as path sharing.

The redundancy can be removed easily with the help of a DFG by
comparing all pairs of nodes for common operands and same function-
ality. For some classes of operations the sign of the operand may be
ignored. This sign tolerance is allowed for additions and bitwise boolean
operators, because no special sign handling is required. For comparators,
shifters and multipliers, however, the sign of the operands is relevant for
the correct computation. Therefore, operators of these classes with com-
mon but differently signed operands must not be merged. Only if the
operators are mutually exclusive, it is possible to insert a conditional
sign extension and to merge these nodes, too.

For behavioral descriptions it is common to use complementary op-
erators, e.g. comparisons for equality or disparity, additions and sub-
tractions, etc. In order to reduce the optimization complexity, the DFG
creation process instantiates only one class for each pair of complemen-
tary operators and inserts an additional complement operator where
necessary. Subtractions are converted into additions by using the bi-
nary complement of the subtrahend and using a carry-in of one. By this
unification of operators, the potential for merging identical nodes and
resource sharing is improved.
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7.2 Resource Sharing
Resource sharing is an optimization that primarily addresses a reduc-

tion of the silicon area. However, the required multiplexer insertion po-
tentially increases the minimum clock speed. Therefore, resource sharing
is a constraint-dependent optimization. The effects on the timing must
be considered by an appropriate cost model, as discussed in section 7.2.1.
Based on the cost model, optimization constraints can limit the range
of the resource sharing and thus restrict the effect on the timing.

Furthermore, the goals of a high architectural and implementation
flexibility raise two questions:

How can two resources be shared efficiently (cf. 7.2.2)?

Which resources should be shared (cf. 7.2.3)?

Both questions will be answered with the help of DFGs and compat-
ibility or conflict graphs containing exclusiveness information (cf. sec-
tion 5.4ff).

7.2.1 Cost Estimation
Resource sharing algorithms have to estimate costs in order to ensure

an improvement of the architectural efficiency. These costs result from
additional multiplexers which increase the timing delay and chip area
and thus lower the gain of sharing. The increase of the timing delay can
also be caused by changed data flows. Cost estimation is particularly
important for incremental sharing algorithms that have to select the
most promising pairs of sharing candidates. The DFG has the potential
of providing the necessary information of area and timing on a high
abstraction level.

The synthesis of an RTL hardware description from an ADL is com-
pletely different from gate-level synthesis. Gate-level synthesis selects
a particular implementation of complex arithmetic operations such as
additions or multiplications, applies bit level optimizations and maps
the logic and storage elements onto cells of a specific technology library.
These technology libraries provide a highly diversified set of cells with
manifold complex logic, different driver strengths and power consump-
tion. Each cell provides detailed information on its timing behavior,
the cell area, capacitance and power consumption. This information
is only available because each library cell represents a specific physical
implementation for a single chip production process.

When generating DFGs from the LISA behavior description, no in-
formation on the physical implementation is available at all, as both the
used technology library and the bit level representation are unknown.
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Not even the implementations of arithmetic operations are known and
optimizations on bit level are not predictable.

Therefore, abstract instead of physical models for timing and area are
required for the proposed optimizations. These abstract models can take
into account heuristics of logic implementations for arithmetic operations
and general aspects relevant for physical implementations.

Abstract timing approximation
In this work, a first and basic model for the delay estimation is used

to avoid unacceptable timing by improper sharing. The values for the
delay are normalized to a virtual gate with a delay of one unit. All
logical operations such as AND, OR, XOR and NOT are approximated
by a delay of one unit.

All other operations used in the DFG are modelled as multiples of
basic gates. For adders with the bit width W , the assumed model is
a carry ripple implementation with a carry chain of W − 1 basic gates
with a delay of 1 unit plus a full adder delay of 3 units. This model
is also applied to all comparison operations except for equality. The
comparison for equality can be implemented as a balanced binary tree
of AND gates that merges results of bit comparisons. This results in a
delay proportional to log2(W ).

For multiplications, booth multipliers are an efficient implementation
that is commonly used by gate-level synthesis. Booth multipliers do a
recoding of the multiplicands in order to reduce the number of partial
products from W to W/2. This step is approximated with 3 delay units.
After this recoding, the partial products are generated and fed into a
carry save tree adder with a height of log2(W/2) and a full adder delay
of 3 units on each tree level. This results in an additional delay of
3 · log2(W/2) for the tree adder and 2 + W for the final carry ripple
adder.

Multiplexers for the 1-of-n selection are approximated by a tree of
1-of-2 elementary multiplexers with the height equal to the number of
control bits Wcontrol. For each 1-of-2 multiplexer a delay of two units is
approximated.

An overview on the timing approximations currently used is given in
table 7.4. These approximations use a basic approach to introduce tim-
ing aspects into the high level resource sharing algorithms. However,
they are very coarse estimations and thus require more refinement and
deeper investigation. Yet the current estimation is already usable as the
comparisons for several units of the ICORE architecture demonstrate in
table 7.5. For the three functional units ALU, Shifter and Branch Detec-
tion the ratios of the approximated relative delays versus the synthesis
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Table 7.4. Models for a basic abstract timing approximation

Function Model Timing Approximation

AND, OR, XOR, NOT Single Gate 1
Addition, Subtraction Carry Ripple Adder W + 2
Comparison (Not)Equal Tree Comparator ld(W ) + 1
Comparisons Greater,... Carry Ripple Adder W − 1 + 3
Multiplication Booth Multiplier, 5 + 3 · �ld(W/2)� + W

Carry Save Tree Adder
Multiplexer Tree of 1-of-2 multiplexers 2 · Wcontrol

Table 7.5. Timing approximation vs. synthesis results for the ICORE architecture

Functional Unit Approximation Synthesis Results Ratio

ALU 78 1.97 ns 39.59 1/ns
Shifter 106 2.56 ns 41.40 1/ns
Branch Detection 87 2.21 ns 39.37 1/ns
MinMax 42 2.14 ns 19.62 1/ns
Mult 33 2.51 ns 13.14 1/ns

results are around 40 1
ns with a low variance, showing that the current

approximation already leads to acceptable results. The delay of the
functional units MinMax and Mult however is weighted too low in the
approximation, stressing the need for further research on the aspect of
timing approximation.

Abstract area approximation
When sharing two resources, multiplexer insertions are usually nec-

essary. These multiplexers occupy additional chip area Amux. If the
area saving Asav, is smaller than Amux the sharing will result in a neg-
ative gain. Thus, the sharing of these two operations will not give any
advantage.

In many cases, a priori assumptions can be made on the relations be-
tween the saved area by sharing two operators of a specific class and the
area of necessary multiplexers. This is particularly true for single bitwise
operators such as AND, OR and XOR. No multiplexer implementation
will be smaller than the area saved by removing a single bitwise opera-
tor. On the other hand, adder and multiplier implementations consume
more area than the multiplexers inserted for the sharing.

For these reasons, a priori assumptions are used to decide if an op-
erator class is worth sharing or not. Therefore, the area approximation
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is currently not considered. Further research in this field is necessary in
order to use area approximations for improved sharing algorithms.

7.2.2 Resource Sharing Methods
The implemented resource sharing optimizations targets arithmetic

and logical operators, while storage elements are explicitly defined in
LISA by the designer and therefore not considered.

All operators can be classified by the commutativity and associativity
of their inputs. For operators with commutative and associative inputs,
any permutation of the input order is possible without changing the
operator’s result. For non-commutative operators each input has its
own semantics which prohibits the permutation of the operator inputs.

In terms of sharing efficiency, commutative operators provide much
more flexibility in the search for common inputs which reduce the num-
ber of multiplexers added by the sharing. In order to exploit this flex-
ibility, different algorithms have to be used for commutative and non-
commutative operators. A differentiation between unary, binary and
n-ary operators is not necessary, because binary operators always fit in
one of the commutativity classes of n-ary operators. For unary operators
commutativity does not matter.

Non-commutative operators
Examples of non-commutative operators are subtraction, division, se-

lection, etc. Two exclusive executed operators Px and Py can be shared
if they implement the same function F and have the same number of
inputs. When Px and Py are merged, there is no other possibility than
sharing their inputs Cin paired in the order given by their parameter
position in function F : {(Cin,Px,i, Cin,Py ,i) | 1 ≤ i ≤ |Cin,Px |}.

The example given in figure 7.4 shows three subtractions that have
some common inputs. For efficient sharing it is important not to intro-
duce multiplexers for common inputs, such as input b.

In the second sharing step the importance of the knowledge about
existing multiplexers is stressed. An unfavorable possibility is the use of
chained multiplexers. Recognizing equal inputs to already established
multiplexers leads to a balanced solution, as shown in figure 7.4.

Commutative operators
Examples of operators that are both commutative and associative are

addition, multiplication and the basic logical operators AND, OR and
XOR. The sharing of two commutative operators Px and Py is possible
if both operators implement the same function F and have the same
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Exclusive Operators 1st Sharing Step Complete Sharing

Figure 7.4. Sharing of non-commutative operators

number of inputs. The numbers of inputs does not need to be identical,
because missing inputs can be completed by the identity element n with
F(n, x1, x2, ...) ≡ F(x1, x2, ...).

A common example of this completion with identity elements is shar-
ing of addition and subtraction. The subtraction is represented as addi-
tion with the binary complement plus a carry-in set to one (figure 7.5).
This operation is shareable with a binary addition by inserting the iden-
tity element nadd = 0 as carry-in input.

a ac c a

b 1

x xy y x,y

b bb b 1

b 0

+ +- + +

Exclusive Operators Addtion and Converted Subtraction Shared Addtion
and Subtraction

Figure 7.5. Sharing with insertion of identity elements

For two commutative operators, any pairing of their inputs is possible,
resulting in N ! different sharing possibilities for two operators with N
inputs each. An optimal pairing has to pair as many identical inputs
as possible. For this purpose an input Cin,Px,i of operator Px has to be
compared with any input Cin,Py ,j of operator Py. If an identical input
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Cin,Py ,j is found for Cin,Px,i, they are paired. If more than one input of
Py matches, it doesn’t matter which one is chosen. Thus the decision
can be made already for the first match. Therefore, only

∑N
i=1 N − i =∑0

k=N−1 k = N(N − 1)/2 comparisons are necessary. However, it is
important that in a first iteration no decision is made for an input of Px

without a counterpart in Py, because it could bind an input of Py that
has a counterpart in Px. The inputs of Px skipped in the first iteration
may be paired with any input of Py in a second iteration.

In figure 7.6 an example of sharing two adders with one common and
two different inputs is given. The common input a is found and the
multiplexer insertion is avoided.

When sharing two commutative operators with already existing shar-
ing multiplexers, it is important to include the inputs of these multi-
plexers in the decision for the grouping of the original unshared inputs
into the shared inputs. The sharing that results in the DFG given in fig-
ure 7.6 detected that input b is already present in the first multiplexer of
figure 7.6 and that input e is already present in the second multiplexer.
Thus only the input f is left and therefore shared with input a.

a ad

d dfe e

b b

x x,y x,y,zy z z

b

b bac c

e f fc a e e

+ + ++ + +

Exclusive Operators 1st Sharing Step Complete Sharing

Figure 7.6. Sharing of commutative operators

The sharing of more than two operators can run into problems, if

two or more inputs are used for at least two different operators

and two or more of these inputs are used concurrently for at least
one operator.

In figure 7.6 this is true for the inputs b and e. If the first sharing step
produces a different pairing, as depicted in figure 7.7, the greedy search
for common inputs in the set of existing sharing multiplexers will result
in a suboptimal multiplexer assignment. In the example given, the
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inputs b and e are already grouped by the same multiplexer M1, but for
the remaining operator P both inputs are used concurrently. Therefore,
b may be shared by M1, but e must be assigned to another multiplexer
M3 with three inputs now, instead of only two (figure 7.7).

e ef d

x,y,z

ba c

+

a d b

x y z

b e fc a e

+ + +

Exclusive Operators Suboptimal Complete Sharing
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e d
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f e
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1st Sharing Step

M1 M1M2 M3

P

Figure 7.7. Suboptimal sharing of commutative operators

This problem can be described by graph theory. A graph G has to
be created that describes which inputs are used for an operator P ∈ P
within the set P of all operators to be shared. The vertices of graph G
are the different inputs used for the operators, an edge (Ii, Ij) indicates
that the inputs Ii and Ij are used concurrently for at least one operator.
Thus graph G is the input conflict graph for the sharing of the set
P of operators. Figure 7.8 shows this graph for the example given in
figure 7.6.

G := 〈V, E〉
V := {I | I is input of any operator P ∈ P}
E := {(Ii, Ij) | Ii, Ij ∈ Cin,P , P ∈ P}

(7.1)

In order to achieve the optimal grouping for an n-ary operator, the
input conflict graph G has to be partitioned into n partitions. All inputs
covered by a partition will be shared by one multiplexer. If a partition
contains conflicts, one or more inputs involved in the conflicts of this
partition have to be duplicated and used in other multiplexers, too.
This was the case in figure 7.7, the partitioned conflict graph for this
situation is given in figure 7.8. Therefore, the number of conflicts within
the partitions has to be minimal for an optimal sharing. Figure 7.8 is
the partitioned conflict graph for the example from figure 7.6.

The optimal partitioning can be found by the solution of the maxi-
mum induced n-partite subgraph problem for the conflict graph G. This
problem is already NP-complete for the bipartite problem (N = 2) [113].
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Figure 7.8. Input conflict graphs

Pearson et al. propose a linear time heuristic for the bipartite problem
based on the breadth first search in the graph but without measuring
the heuristic’s quality [114]. Nevertheless, this heuristic is applied by
Brisk et al. in a study on data-path based resource sharing [115].

7.2.3 Resource Sharing Decision
In addition to the necessity to efficiently share two hardware resources,

it is also important to select those resources with the most promising
gain. For this purpose the knowledge about common inputs, as discussed
above, will be helpful and extended by further criteria.

There are two contrary approaches for resource sharing. The first ap-
proach is based on graph coloring. It focusses on the absolute minimiza-
tion of the number of resources without considering the data flow struc-
ture. The missing consideration of the data flow structure might cause
disadvantageous multiplexer insertions and elongated critical paths. The
second approach applies heuristics for DFG matching in order to con-
sider the data flow structure. It might not achieve the minimization of
utilized resources but much better results in terms of timing and multi-
plexer reduction.

Clique covering and conflict graph coloring
The problem of finding the minimum number of required hardware

resources can be solved with the help of compatibility graphs and conflict
graphs. For compatibility graphs all nodes of a fully connected subgraph
called clique can be mapped on a single resource, for conflict graphs all
nodes of a completely unconnected subgraph can be shared. For minimal
resource usage the minimal number of such subgraphs has to be found.
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In graph theory this problem is known as the clique covering problem
for compatibility graphs and as the graph coloring problem for conflict
graphs. The graph coloring problem stems from the goal of using the
minimum number of colors for coloring the different countries on a map
without using the same color for neighboring countries. Translated to
conflict graphs, the vertices represent the different countries while edges
connect pairs of neighboring countries.

A A A

D D D

B B B

E E E

C C C

F F F

Compatibility Graph

Optimal Coloring Suboptimal Coloring

Corresponding Conflict Graph

Figure 7.9. Clique covering and graph coloring

In figure 7.9 an example of an optimal and a suboptimal graph coloring
is depicted. The coloring scheme with two colors is the optimal solution
for the bipartite conflict graph. Also a suboptimal solution is shown
which is caused by the decision to color the three compatible vertices B,
E and F with the same color.

The problem of finding a minimum coloring of a graph is NP-hard.
The corresponding decision problem whether there is a coloring with
at maximum n colors is NP-complete [116]. Thus optimal algorithms
have a runtime which increases exponentially with the number of graph
vertices. Therefore, heuristics have to be applied for large graphs.

In this work two algorithms for graph coloring are implemented and
used depending on the number of graph vertices. For small graphs a
backtracking technique proposed by Brown is used to find the optimal
coloring [116][117]. With this algorithm the optimal coloring of graphs
up to about 40 vertices is feasible.

For more than 40 vertices, the exponential runtime increase of Brown’s
algorithm is unacceptable. In this case the heuristic called “Recursive
Largest First” proposed by Leighton [118] is selected, which is known to
be one of the most efficient. It has a runtime of O(|V | · |E|) for a graph
G = 〈V, E〉 [116].
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A common problem of the use of graph coloring for resource sharing is
the limited focus on single resources ignoring problems and advantages
given by data dependencies. The most critical problem is the creation
of false loops. There are several approaches for the prevention and elim-
ination of false loops [119][120][121]. In general additional edges have to
be inserted into the conflict graph. This insertion however might remove
good sharing possibilities [122].

For this reason, in this work resource sharing by graph coloring is
only utilized for operators that do not allow loop creation or require the
aggressive resource minimization provided by an optimal coloring.

Heuristics for data flow graph matching
The problem of graph coloring is that its focus is limited to single

resources ignoring data dependencies. Constructive heuristics avoid this
problem by sharing pairs of operators of the DFG iteratively. With
this approach it is possible to concentrate on the area reduction and
timing issue instead of minimizing only the number of resources without
considering the logic overhead caused by multiplexers.

The algorithm described by Raje and Bergamaschi proposes several
criteria that cover structural similarities in the DFG up to a vertex dis-
tance of two [122]. Brisk et al. try to increase the coverage by comparing
complete data-paths, however, their number may increase exponentially
in complex data flows [115], while Bhattacharya et al. introduce timing
constraints into their resource sharing algorithm [123].

In this work concepts from Raje, Bergamaschi and Bhattacharya are
considered to accomplish a resource sharing algorithm that covers both
structural similarities and timing issues. For this purpose several criteria
are introduced to compare pairs of shareable resources.

Input Similarity: As shown in section 7.2.2 multiplexers can be
avoided if two operators have common inputs. The number of common
inputs is defined as input similarity. Therefore the sharing of the pair
with the highest input similarity is desired. Furthermore configurable
constraints can be introduced in order to define a minimum input simi-
larity necessary for sharing.

Output Similarity: If the outputs of two operators serves as input
for the same multiplexer, the sharing of both operators will remove the
subsequent multiplexer and increase the gain of sharing (figure 7.10).
Therefore, the number of common subsequent operators is defined as
output similarity. If two pairs have different output similarities, the pair
with the higher output similarity is preferred.
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Figure 7.10. Sharing nodes with output similarity

Timing Difference: When sharing two operators, the critical path
might be elongated significantly (figure 7.11). Therefore, the timing ap-
proximation given by the DFG has to be used to decide whether the
increase of the timing delay is acceptable. A configurable constraint is
introduced defining the maximum relative timing difference allowed for
two operators to be shared. In the example given in figure 7.11 the opera-
tors OP5 and OPB are sharing candidates with a maximum relative tim-
ing difference of max{|5 − 2|/2, |2 − 5|/5} = max{150%, 60%} = 150%.
Recommended values for this constraint, with regard to the current im-
plementation of the optimizations, are 30% and below.
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Figure 7.11. Worse timing by sharing operators with widely differing timing
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The implemented resource sharing algorithm groups all operators P
with the same functionality F to sets PF , e.g. a set of adders, a set of
multipliers, etc. The resource sharing optimization proceeds with one of
the sets PF and selects a pair of shareable resources S = (Pi, Pj) with
Pi, Pj ∈ PF . A pair S = (Pi, Pj) is shareable if:

Both operators are mutually exclusive. This information is derived
from the exclusiveness information on the LISA operation level (cf.
section 5.5) and behavioral level (cf. section 5.6).

Both operators have no data dependency. If there exists a data flow
from the output of Pi to an input of Pj or vice versa, the pair S is
not shareable, because a false loop would be created otherwise.

The maximum relative timing difference for Pi and Pj is less than
the configured constraint.

F is one of the operators listed in table 7.6. Boolean operators, such
as AND, OR, etc., are not shared, since they always occupy less area
than any multiplexer inserted due to the resource sharing. Read
accesses to one- or multidimensional LISA resources with constant
addresses are not shared either, because no combinatorial logic is
instantiated for constant addresses.

Table 7.6. List of sharable operations and their implementation

operation implemented by

addition + +
subtraction − − and two’s complement

signed ∗ signed
unsigned ∗ unsigned

multiplications
signed ∗ unsigned

signed multiplication and sign extension

unsigned ∗ unsigned

> >
< > and switched operands
≤ not >

comparisons ≥ not > and switched operands
= =
	= not =

shl shl
shifts

shr shr

division div div
modulo mod mod
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If multiple pairs S1 = (Pi, Pj) and S2 = (Pk, Pl) can be shared, a
rating is required to perform the most promising resource sharing step.
The rating is applied by performing prioritized comparisons:

1 If the input similarity for S1 is higher than the input similarity for
S2, S1 is the better rated pair and vice versa. If the input similarities
are equal, proceed with further comparisons.

2 If the output similarity for S1 is higher than the output similarity for
S2, S1 is the better rated pair and vice versa. If the input similarities
are equal, proceed with further comparisons.

3 If the relative timing difference for S1 is lower than the relative timing
difference for S2, S1 is the better rated pair and vice versa.

This rating constitutes the heuristic applied in this work. It includes
the structural properties in an environment with a radius of one DFG
vertex into the sharing decision. A task of future work will be the ex-
tension by further criteria allowing the structural analysis for a larger
radius as well as the estimation of the sharing gain in terms of effective
area reduction.

7.3 Dependency Minimization
Often nested conditions, which are mutually exclusive, are derived

from the ADL model. In the default implementation the conditions
are mapped onto IF/ELSE statements. During the gate-level synthesis
the nested IF/ELSE statements have different effects on signals written
within the conditional statements.

For signals that are written in all cases an encoder can be used to
efficiently steer the multiplexer, as shown in the example given by fig-
ure 7.12.

result = 0;

if (decodedA)

result = x;

else if (decodedB)

result = y;

else if (decodedC)

result = z;

decodedA

result

decodedB
decodedC

0zyx

Figure 7.12. Default condition check implementation
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If a signal is written in only one or few cases, all preceding condi-
tions of the nested IF/ELSE statements are unnecessarily evaluated. In
general, gate-level synthesis tools are not able to recognize the mutually
exclusiveness of the control signals and thus do not resolve the nested
structure. In the example given in figure 7.13, the signal result only de-
pends on the control signal decodedC , but due to the nested conditions
all preceding conditions are checked as well.

result = 0;

if (decodedA)

//...

else if (decodedB)

//...

else if (decodedC)

result = x;

decodedA

result

decodedB
decodedC

0x

Figure 7.13. Unnecessary dependencies in default condition check implementation

The result of this suboptimal gate-level synthesis is an increased
fanout for the control signals decodedA and decodedB. The signal delay
for the multiplexer selection input is also increased due to unnecessary
comparisons.

For mutually exclusive conditions, these drawbacks can be removed by
using separated IF statements instead of nested conditions as depicted in
figure 7.14. With this modification, the priority encoder only checks the
conditions that are really necessary, for assignments of single constant
bits they can be omitted completely.

result = 0;

if (decodedA){

//...

}

if (decodedB){

//...

}

if (decodedC){

result = x;

}

result

decodedC

0x

Figure 7.14. Improved condition check implementation
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However, there are some cases in which this implementation causes
worse results. First, signals that are both read and written in different
conditional blocks create long chains of combinatorial logic that are not
generated when using nested conditions. Second, the RTL code within
separated conditional blocks is no longer explicitly specified to be mu-
tually exclusive. Therefore, optimizations applied by the gate-level syn-
thesis tool might be less successful.

Obviously, this is a constraint-dependent optimization, which must be
carefully applied with regard to the targeted architecture and conflicting
optimizations.

7.4 Decision Minimization
The most common and relevant paths used in the UDL are paths from

the functional units to the resource units. These resource accesses can
be either read or write accesses. Generally, these paths are mapped to
three signals on RTL:

address signal (for one- and multidimensional resources)

data signal

read/write enable signal

For write accesses, all three signals are driven by the functional unit.
For read accesses, the data signal is driven by the resource unit. The
implementation of the resource unit ensures, that operations only take
place if the enable signal is set true.

In general all signals of a path are written within the same block,
which might be a conditional block, as shown in figure 7.15. The reg-
ister R is accessed by writing to the signals Rwrite,addr, Rwrite,data and
Rwrite,enable within a conditional block. Thus, for all signals the cor-
responding condition is evaluated and the signals are only written if
necessary. However, the resource implementation checks the enable sig-
nal, and therefore implicitly the original condition again. Therefore the
preceding evaluation of the condition is redundant for the address signal
and the data signal. Considering the knowledge about the resource unit
implementation a more efficient implementation can be found.

The redundancy can be removed by separating the assignments of the
path signals. This idea is depicted on the right of figure 7.15. Only
the enable signal needs to be written within the conditional block, thus
all other assignments can be moved outside the conditional block. This
optimization results in a significantly lower fanout of the logic driving
the control signal as well as a significantly improved timing delay for the
written signals.
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if(condition){

R[idx] = value;

}

Rwrite,value = 0;

Rwrite,address = 0;

Rwrite,enable = 0;

= value;

Rwrite,address = idx;

Rwrite,enable = 1;

}

if(condition){

Rwrite,value

Rwrite,value = value;

Rwrite,address = address;

Rwrite,enable = 0;

Rwrite,enable = 1;

}

if(condition){

LISA HDL
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Figure 7.15. Decision minimization

Moving assignments out of the associated conditional block is only
possible if all input dependencies can be resolved. Since variables in-
troduce such dependencies, an efficient decision minimization algorithm
must also move variable assignments out of conditional statements. In
this case the variables are renamed to avoid the interference between the
data dependencies inside and outside the conditional block. If several
statements are moved out of a conditional block, their order has to be
preserved.

This optimization aims at a timing improvement and multiplexer re-
duction. By moving complete statements, which might include arith-
metic operations, out of conditional blocks explicit exclusiveness infor-
mation is lost. This prevents any further resource sharing optimizations.
Therefore, this optimization can only be applied as very last optimiza-
tion.

Decision minimization, which represents a constraint-independent op-
timization, results in significant improvement of timing and area as de-
scribed in chapter 9, section 10.2 and appendix A. The gain depends on
the timing constraints and further optimizations.



Chapter 8

CONFIGURABLE
PROCESSOR FEATURES

Various auxiliary processor features, such as debug mechanism, power
save modes or bus interfaces, are commonly incorporated in off-the-shelf
embedded processors, but completely omitted in ADL based ASIP de-
sign. However, for the development of competitive ASIPs it is of great
importance that ASIPs keep up with the features provided by off-the-
shelf processors.

ADLs enable an efficient design space exploration by describing the
core functionality of ASIPs in a declarative manner (cf. section 4). Since
most processor features are not part of the core functionality, they are
not covered by ADLs. Additionally, the declarative description style
precludes an implicit description of processor features. Also a manual
integration of processor features into an existing RTL hardware model
is hardly possible as this potentially introduces inconsistencies with the
generated software tools. Therefore, an automatic integration of these
processor features during the synthesis of an RTL hardware model is
proposed.

In order to satisfy the requirements of high design efficiency, architec-
tural efficiency, performance and flexibility, the processor features, that
are considered for an automatic integration, must be carefully selected.
This topic is discussed in detail in the following section. Afterwards, the
generation of debug mechanism and JTAG interface is presented.

8.1 Processor Features
Processor features differ from each other regarding their applicability

in an automatic synthesis process from an ADL. The following questions
must be answered when considering a processor feature for an automatic
integration.
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Does the processor feature influence the architectural effi-
ciency or performance?
A limited influence on the architectural efficiency and performance
is required to avoid a costly design space exploration concerning the
processor feature. Also, the influence of the processor feature must
be predictable accurately.

How much is the processor feature interweaved with the ar-
chitecture?
Configurable processor features are based on templates, which are
automatically integrated in the ASIP. Processor features that are
strongly interweaved with the architecture core conflict with an un-
restricted design space exploration. Therefore, only those processor
features which are moderately interweaved with the architecture core
are candidates for an automatic integration.

How large is the design space of the processor feature?
The multiple realization and implementation alternatives of a proces-
sor feature must be configurable in order to fit smoothly into the
overall ASIP design process.

According to these questions, a debug mechanism, for example, is
a perfect candidate for the automatic integration, as discussed in the
following.

Due to the increased complexity of SoCs in general, as well as its
computational building blocks, a debug mechanism is required. Design
errors often just become visible in a system context, which renders on
site debug capabilities indispensably. A debug mechanism enables the
designer, for example, to examine the current state of the processor,
to stepwise execute the application software and to force the processor
into a new state. The debug mechanism generation, including a JTAG
interface, is exemplarily used to explain the automatic processor feature
integration [124].

The basic functions of a debug mechanism require access to all storage
elements, already. Reading the current state of the processor, for exam-
ple, requires an interruption of the program execution, the suspension
of the processor status and the access to the storage elements. Thus,
the debug mechanism is interweaved with the processor core at least
regarding the storage elements.

A JTAG interface commonly serves as the interface to the debug mech-
anism. The processor core and the JTAG interface operate with different
clock speeds, which leads to separate clock domains in the architecture.
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Therefore, a suitable handover mechanism also needs to be applied, to
prevent the architecture from running into undefined states. The au-
tomatically generated JTAG interface, handover mechanism for clock
domain boundaries and debug mechanism are presented in the following
sections.

8.2 JTAG Interface and Debug Mechanism
Generation

The debug mechanism as well as the JTAG interface are configurable
within the boundaries given by the ASIP’s specification. The ADL model
is read by the frontend and mapped to the basic elements of the UDL,
entity, unit and path (cf. chapter 6). Based on this, the designer is able
to configure the desired debug mechanism and JTAG interface in a GUI,
as shown in figure 8.1.

Figure 8.1. Debug configuration dialog
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8.2.1 IEEE Standard Test Access Port (JTAG)
The IEEE standard 1149.1 “Standard Test Access Port and

Boundary-Scan Architecture” was originally introduced in February
1990 by the Joint Test Action Group (JTAG). It has been modified
several times up to its current version 1149.1-2001 [125]. The standard
defines a test access port and a boundary-scan architecture for digital
integrated circuits and for the digital portions of mixed analog/digital
integrated circuits. The acronym JTAG has became a synonym for this
standard over the years.

The boundary-scan
The boundary-scan architecture enables a test of the interconnections

between integrated circuits on a board without physical test probes.
Boundary-scan cells, which consist of multiplexers and latches, are added
to the pins of the chip. A detailed description of a boundary-scan cell
can be found in [125]. According to the IEEE standard, the integration
of a boundary-scan is mandatory for a JTAG implementation. However,
ASIPs are mostly integrated in SoCs and thus not directly connected to
the pins of the chip. Nevertheless, the JTAG interface has also become
famous for the communication with the debug mechanism. In this case,
the required component is the Test Access Port (TAP), as discussed in
the following section.

The test access port
The TAP is the key component of a JTAG interface and comprises a

physical pin interface and the TAP controller, as shown in figure 8.2.
The pins provided by the TAP are the following:

Test Data Input (TDI) and Test Data Output (TDO)
The test data pins are used for a serial transfer of data. The instruc-
tions to control the debug mechanism, for example, are set through
the TDI pin. The debug information, for example a register value, is
received through the TDO pin.

Test ClocK input (TCK)
The test clock input receives the clock for the test logic defined by
the JTAG standard. Therefore, the JTAG interface can be used
independently from the architecture’s specific clock. Usually, the
frequency of the test clock is much lower than the one of the system
clock. Hence, timing violations are usually not introduced by the test
logic.
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Test ReSeT input (TRST)
The test reset input is used for an asynchronous initialization of the
TAP controller.

Test Mode Select input (TMS)
The signal received at the test mode select input is decoded by the
TAP controller to control test operations.

The basic principle is the utilization of an arbitrary number of
test data registers to control, for example, a debug mechanism. The
boundary-scan register (boundary-scan chain) is also one of these test
data registers. The boundary-scan register and the bypass register, as
depicted in figure 8.2, are required by the JTAG standard. All test data
registers are shift registers connected in parallel between TDI and TDO.
One of the test data registers is selected by a command sequence written
to the instruction register. In addition to the TAP controller, further
control logic is required, which is omitted in figure 8.2.

architecture

top level

TAP controller

debug control reg.
(test data register)

bypass register
(test data register)

instruction register

boundary-
scan cell

boundary-
scan cell

boundary-
scan cell

boundary-
scan cell

TDI TDOTMS TCK TRST

clock & control signals

Figure 8.2. Structure of the TAP

The interface between JTAG interface and debug mechanism is ba-
sically given by a debug control register. This is of special importance
since ASIPs are mostly one of many building blocks in a SoC. In general,
this SoC only contains one single JTAG interface and TAP controller.
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In this case, separate debug control registers, which are all connected
to the same TAP controller, must be instantiated for each architecture
with debug mechanism. Therefore, the generation of a TAP controller
is optional and not required for the generation of the debug mechanism.

As mentioned above, the JTAG interface and the processor operate at
different clock speeds. The consequences for hardware implementation
are discussed in the following section.

8.2.2 Multiple Clock Domains
The JTAG interface and processor, including the debug mechanism,

run at different clock speeds. Data transfers across clock domain bound-
aries potentially cause metastable states of the architecture. This can be
prevented by instantiating appropriate circuites in the RTL hardware
model.

Metastability
The correct operation of a flip-flop can only be guaranteed if the setup

and hold time regarding the D input are not violated. As illustrated in
figure 8.3, the level of input D must not change during setup time tsu
and during hold time th.

comb.
logic

D Q

clk

D D

th
tsu

Q Q

clk clk

time

metastable

time

?

(a) stable (b) metastable

Figure 8.3. Setup and hold time for a D-flip-flop

A timing violation results in an undefined state of the flip-flop. As
also illustrated in figure 8.3, the output Q of the flip-flop adopts a level
between the low and high levels. This state is called metastable. After
an unpredictable duration, the flip-flop reverts to one of the two possible
states because of the noise of transistors and the interference penetrating
from the exterior.
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In [126] an equation is derived to calculate the Mean Time Between
Failures (MTBF) resulting from metastable states in non-synchronized
circuits with multiple clock domains. An example is given for a system
clock frequency of 10 MHz, a mean frequency of the asynchronous input
signal of 10 kHz and a setup time of the following circuit of 25 ns. In
this case the MTBF is only about 54 minutes. Obviously, the resulting
error rate is too high.

The MTBF can be drastically increased by latching the asynchro-
nous input value by two flip-flops, which are connected to the clock of
the targeted domain. The MTBF increases up to 2 million years [126],
which is acceptable in most cases. However, this concept is not suited
for transmitting a whole signal representing several bits over a clock
domain boundary, as not only metastability must be avoided but also
data consistency must be guaranteed. This means that all bits must be
simultaneously transmitted to the targeted clock domain. Therefore, a
more sophisticated synchronization circuit needs to be utilized.

Synchronization circuit
The synchronization circuit is derived from the Flancter Circuit by

Rob Weinstein [127]. It utilizes a handshake mechanism based on a one
bit flag to transfer data from one clock domain to the other. The flag is
set to logical high whenever a new value has been written to the source
register. A successful data transfer is acknowledged by setting the flag
back to logical low. The status of the flag clearly indicates whether new
data can be written or read. Figure 8.4 depicts the Flancter Circuit.

The Flancter Circuit is made up of two D-type flip-flops with clock
enable (FF1 and FF2), an inverter and an exclusive-or (xor) gate. The
flag is completely asynchronous to both clock domains. Therefore, the
additional flip-flops (FF3 to FF6) are used to reduce the probability of
metastable states. The asynchronous reset inputs to the flip-flops are
unconnected for clarity.

The operation sequence of the Flancter Circuit is as follows. The flag
is set to high from clock domain clk1 by the signal clk en set. The flag
is set to low (reset) from clock domain clk2 by the signal clk en reset.
The flag can be read from both domains.

Based on the synchronization circuit mentioned above, figure 8.5 de-
picts the data transmission across clock domain boundaries. The first
step is to write the information to the data register (1). In the next clock
cycle, the flag is set from the source clock domain (2). The flag can be
read two clock cycles later from the destination clock domain (3) at the
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Figure 8.5. Data transmission across clock domain boundaries

earliest. In the fourth step the data register is read from the target clock
domain (4) and the flag is reset from the destination clock domain (5).
As soon as the reset of the flag is observed from the source clock do-
main (6), new values can be transmitted by this handshake mechanism.
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8.2.3 Debug Mechanism
Today, almost every off-the-shelf processor contains a debug mecha-

nism to enable software debugging even within the final hardware envi-
ronment. A processor with debug interface is capable of switching to a
special operation mode for debugging purpose, a so called debug mode.
On the contrary, the usual operation mode is called user mode. The
features of the generated debug mechanism are the following:

Entering debug mode and returning to user mode: There are
several possibilities to switch to debug mode and back to user mode.
For example, it can be either requested by (re-)setting a particular pin
of the architecture, or the JTAG interface can be used to set a debug
request instruction. The debug mode is entered automatically whenever
a breakpoint is hit.

Single step execution in debug mode: A single step execution is
required to observe state-transitions in the smallest possible temporal
granularity. In this case, the processor automatically changes into debug
mode after executing one step.

Access to storage elements during debug mode: The current
values of the processor’s storage elements must be read to determine
the current state of the processor core. This comprises registers (in this
context called core registers), pipeline registers, memories, etc. A write
access to the storage elements is useful to force a particular processor
state.

Hardware breakpoints: Whenever a hardware breakpoint is hit, the
processor core switches to debug mode. Hardware breakpoints are dis-
tinguished between program breakpoints and data breakpoints. Program
breakpoints (sometimes also called instruction breakpoints) specify a
programm address and take effect before the corresponding instruction
is executed. Data breakpoints refer to core registers and take effect
when the corresponding core register is written. Additionally, these data
breakpoints may be sensitive to predefined values.

Further information about debug mechanisms, the Nexus standard
and debug mechanisms in industry can be found in appendix C.

8.2.4 Architecture Structure
The automatically generated debug interface uses a JTAG inter-

face and three additional ports to control the debug mechanism
[128]. As shown in figure 8.6, the three ports are debug re-
quest (DBG REQEST), debug mode (DBG MODE) and ready read
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(RDY READ). The DBG REQEST pin is used to switch between user
and debug mode. DBG MODE signals the processor’s current mode.
The RDY READ pin is set to high when a value (e.g. register value)
can be read from the debug control register.

top level

debug state machine

mode control

TAP controller

debug control register

TDI TDOTMS TCK TRST

RDY_READ

DBG_MODE

DBG_REQEST

JTAG

debug mechanism

architecture

pipeline

Registers Memories

clock domain of processor core

clock domain of JTAG interface

Figure 8.6. The synthesized RTL hardware model structure

The automatic generation of a debug mechanism demonstrates the us-
ability of the proposed synthesis framework to automatically integrate
processor features. The debug mechanism basically consists of two com-
ponents, called mode controller and debug state machine. These are ba-
sically connected to the storage elements of the ASIP core. The debug
mechanism can be controlled via the JTAG interface mentioned above.
The following section briefly describes the generated components of the
debug mechanism.

8.2.5 Debug State Machine and Mode Controller
Debug state machine

Debug instructions can be written into the debug control register via
the JTAG interface. The debug state machine decodes these instruc-
tions and controls their execution. Furthermore, the debug state ma-
chine stores the configuration of the debug mechanism, for example data
and program breakpoints. These breakpoints are configured by debug
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instructions written to the JTAG interface. The current state of the
debug mechanism is stored in so called Debug Configuration Registers
(DCRs). The debug state machine is hardly application-specific and
thus can be easily configured according to given design constraints.

Figure 8.7. State transition diagram of the debug state machine

The state transition diagram of the debug state machine is depicted
in figure 8.7. The default state of the debug state machine is the IDLE
state, in which new debug commands are accepted. These instructions
are decoded and executed according to the state transitions in figure 8.7.
For example, read accesses to the DCRs (transition 5), to the registers
(transition 7) or to the memories (transition 9) are initiated. In order
to process write accesses to these elements, several intermediate states
are passed to ensure proper synchronization with the JTAG interface
via the hand-over mechanism described in section 8.2.2. If an unknown
debug instruction is decoded, the state transition 1 is initiated to reset
the Flancter Circuit and to accept new debug instructions. A detailed
description of the debug state machine can be found in [128].
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Mode controller
Several events, such as breakpoint hits, external debug mode requests

and one step execution requests, might cause a switch between user and
debug mode. The mode controller monitors these events and selects
the appropriate processor mode. This functionality is not architecture-
specific, however, its implementation is highly optimized to minimize
the influence on the architecture’s timing characteristics. The interface
and the state transition diagram of the mode controller are depicted in
figure 8.8.

As shown on the left in figure 8.8, the most important output of
the mode controller is the register enable path, which is utilized to sus-
pend the execution of the application. This path is directly driven
by a breakpoint detection path and the external debug request path
(DBG REQUEST). Due to this bypass of the debug state machine, the prop-
agation delay is minimized and the timing characteristic of the architec-
ture are hardly influenced. Certainly, the implementation of the one
step execution control needs to be carefully considered in order to avoid
an increased critical path.
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Figure 8.8. Mode controller of the debug mechanism

The four states are encoded by three bits to restrict the influence on
the timing of the ASIP. On the right of figure 8.8, the state transition
diagram and the state encoding is depicted. The particular bits of the
state encoding can be directly used to drive the control-path, which
renders additional control logic unnecessarily. A detailed description of
the mode controller is given in [128].
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8.2.6 Changes to the Processor Core
The above-mentioned JTAG interface, the debug state machine and

the mode controller are supplemental components and instantiated out-
side to the processor core. This section describes the necessary changes
to the processor core, which mainly motivate the requirement of an auto-
matic integration of the processor feature. Several elements are changed
or added to support the JTAG interface and the debug mechanism gen-
eration as given in table 8.1, section 8.3. The extended implementation
of core registers and memories are discussed in detail in the following.

Register generation with debug support
The register implementation is shown in figure 8.9. This register di-

agram describes the fundamental principle of the register access in user
and debug mode. In the given example, n read and write paths access
a register file, which comprises m elements. The white boxes represent
the logic required for register access in user mode. The write paths
are routed to the elements of the register file through a cross-connect.
The synchronous register file implementation is connected with the read
paths through a cross-connect.

cross connect (write)
(asynchronous)

debug write
(asynchronous)

register implementation
(synchronous)

cross connect (read)
(asynchronous)

debug read
(asynchronous)

breakpoint detection
(asynchronous)

basic implementation

enhanced implementation
due to debug mechanism

n write paths

m write values with enable

m register values

n read paths

debug write paths

debug read paths breakpoint detection path

register enable path

breakpoint
control paths

Figure 8.9. Register implementation

The gray boxes are instantiated to realize functions of the debug mech-
anism. They contain combinatorial logic for writing a register, reading a
register and detecting breakpoints. When the critical path runs to a reg-
ister with debug write access, it is only elongated by a single multiplexer
(selecting 1-of-2) and thus hardly influenced by the debug mechanism.
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However, the size definitely increases as shown in the case studies pre-
sented in chapter 10.2 and appendix A.

As it can be seen here, a debug mechanism does have significant in-
fluence on the architecture implementation, which prevents an efficient
manual integration of the debug mechanism into the architecture once
the architecture is generated on RTL.

Memory generation with debug support
The debug support for memories is comparable to the concepts ap-

plied to the implementation of registers. However, the basic difference
is that the debug logic cannot be embedded in the memory implementa-
tion. Therefore, the debug functionality is constrained by the available
number of memory ports. As shown in figure 8.10, the default read and
write ports must be used for debug access. However, the functionality
provided is not affected.

access mapping

debug access

memory
implementation

n write paths

debug write path

register enable path

debug read path

m read paths

memory read portmemory write port basic implementation

enhanced implementation
due to debug mechanism

Figure 8.10. Memory implementation

The following section briefly describes the changes and enhancements
to the UDL, which are required to support debug mechanism and JTAG
interface generation.

8.3 Adaptability of Synthesis Framework
In general, the advantages of the UDL compared to the RTL are

a higher abstraction level and additional semantic information. These
properties of the UDL simplify the automatic integration of processor
features as the computational complexity is significantly reduced. For
example, the architecture structure needs to be transformed due to the
generation of a debug mechanism and JTAG interface. The transfor-
mation complexity depends on the overall model complexity and thus
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Table 8.1. UDL elements for debug mechanism and JTAG interface generation

enhanced UDL elements added UDL elements

Entities Units Entities Units

- register dbg state machine dbg testbench
memory dbg mode control dbg state machine
pipe register dbg mode control
pipe reg coding dbg dw tap
pipe reg activation dbg testdata reg

dbg mux reg read
dbg mux mem read
dbg tdo generation

benefits from the UDL. This topic has been elaborated in detail in chap-
ter 4 and chapter 6.

The synthesis framework must be extensible easily regarding to fur-
ther processor features. Fundamental changes or even substitutions of
existing elements are error-prone and must be avoided. Therefore, a
reasonable choice of the UDL elements and their interfaces is essential
to easily enhance the functionality.

About 20 UDL paths have been added, their development time is
negligible due to the applied software design techniques. Table 8.1 lists
the UDL units and entities, which have been enhanced or added due to
the debug mechanism and JTAG interface generation. The register unit,
for example, originally only covered a basic register implementation. It
has been extended to cover debug access and breakpoint functionality
as well. Obviously, none of the complex units, such as the decoder unit
or the data-path unit, has been changed due to the support for JTAG
interface and debug mechanism generation.



Chapter 9

CASE STUDY:
AN ASIP FOR TURBO DECODING

Over several years Turbo decoding implementations have been exclu-
sively realized using ASIC designs. However, even in this application
domain which is characterized by very high data throughput require-
ments, the benefits of programmable solutions are wanted. Today’s
3GPP standard limits the throughput to 2 MBit/s, while future systems
are predicted to require above 10MBit/s. Scalable and energy efficient
architectures are required to catch up with this challenge. GPPs or even
domain-specific architectures do not satisfy the requirements given by
the Turbo decoding principle (table 9.1), because their fixed structures
of memory and arithmetic units are not suited to exploit the algorithm’s
inherent potential for architectural optimizations. Therefore, insisting
on a programmable solution, ASIPs are becoming the architecture of first
choice. In this chapter, an ASIP design for Turbo decoding is outlined,
spotting several important design issues, as e.g. loop control, addressing
schemes and data-path.

Detailed information about the algorithm’s fundamentals can be
found in [129]. A further discussion of implementation issues can be
found in [130] and [131].

9.1 Turbo Decoding based on Programmable
Solutions

Various solutions that are based on programmable and sometimes also
reconfigurable architectures exist, each of them marking a particular
point in the design space. Table 9.1 presents an overview of existing
programmable solutions including special architectural features, the type
of instruction-set, clock frequency and throughput. Obviously, the major
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issue here is the achieved throughput, which is far below even today’s
telecommunication standards. For example, the 3GPP standard defines
a maximum throughput of 2 MBit/s.

The solutions 1 to 15 in table 9.1 are based on either general pur-
pose or domain-specific processors without an application-specific con-
figuration. Considering a normalized frequency, the throughput rates
are unacceptably low.

The solutions 16 to 20 in table 9.1 are based on (re)configurable archi-
tectures. Custom instructions are utilized to steer an optimized data-
path. The work presented in [139] and [140], mentioned in line 20,
elaborates the possibilities of data-path configuration. The configurable
portion of the architecture is used to implement an instruction-set exten-
sion for efficient add-compare-select execution. Therefore, the bottleneck
imposed by general purpose arithmetic units is overcome. The solution
of adding a custom instruction is realized utilizing design environments
from ARC [51] and Tensilica [52]. In both designs the embedded FPGA
limits the clock frequency to 100 MHz, which leads to equal gate-level
synthesis results and a throughput far below the 3GPP standard. In
order to meet these constraints, a multiprocessor solution is discussed in
[141]. Here, the design space exploration also needs to consider possible
communication structures, which satisfy the algorithm’s inherent data
dependencies. However, the search for such a communication structure
is often neglected [137].

Based on an Altera Excalibur EPXA1 platform, Blume, Gemmeke
and Noll [136] investigated acceleration possibilities for Turbo Decoding.
Here, different application hot spots are mapped on the FPGA, which is
loosely coupled to an ARM922T. The utilization of an ACS-hardware-
unit decreases the throughput compared to a pure software solution, as
the processor/FPGA interface does not meet the data transfer require-
ments (line 15 and 16). The data transfer rate between processor and
FPGA is reduced by mapping a recursion unit or a Max-LOGMAP unit
on the FPGA in solutions 17 and 18. Therefore, the Turbo decoding
throughput is increased up to 400 kbit/s.

However, utilizing configurable and thus optimized data-paths obvi-
ously increase the data throughput, while the implementations still fail
to meet today’s 3GPP standard. The difference in data-throughput
between a tightly coupled and loosely coupled accelerator indicates the
importance of data routing through the architecture. Common to all ap-
proaches is a general purpose memory interface. The memory bandwidth
required for turbo decoding is much higher compared to the bandwidth
available in processors. ASIC design provides the freedom to define a
specialized memory interface. The ASIP design methodology includes
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an exploration of the memory organization and therefore fulfills the de-
manded data throughput and programmability, as discussed in the fol-
lowing sections.

9.2 The Turbo Decoding Principle
The turbo decoding principle is depicted in figure 9.1. The Soft Input

Soft Output (SISO) decoders operate on Log-Likelihood Ratios (LLRs)
as defined in equation 9.1, where Ik denotes an information bit and yN−1

0
represents the complete sequence of received symbols.

Lk = log
P (Ik = 1|yN−1

0 )
P (Ik = 0|yN−1

0 )
(9.1)

The decoder input is the systematic information (y0,k), parity infor-
mation (y1,k) and a-priori information (zk). The a-priori information is
derived from the a-posteriori output of the previous constituent decoder.
The Turbo decoding principle is based on several (nearly) statistically in-
dependent sources of reliability information on the received data-symbols.
Interleaver (π) and deinterleaver (π−1) are used to remove the correla-
tion between neighboring information bits.

For SISO decoder implementation the Maximum-A-Posteriori (MAP)
decoding algorithm is the decoder of choice [142][143]. In order to reduce
the computational complexity, the MAP algorithm is transformed to the
logarithmic domain (LOGMAP). As shown in [129] and given in equa-
tion 9.2 the arithmetic complexity is further reduced by approximating
the max∗ operation (or “E” operation) by a maximum selection and an
additive correction function fc(|u− v|). A widely known approximation
for fc(|u − v|) is fc(|u − v|) ≈ 0 [129].

max∗(u, v) := log(exp(u) + exp(v))
= max(u, v) + fc(|u − v|) ≈ max(u, v) (9.2)

9.3 The Max-LOGMAP Algorithm
The SISO decoders are based on the Max-LOGMAP algorithm, which

is exhaustively described in [129]. The different steps of the Max-
LOGMAP algorithm are presented here in order to justify the archi-
tectural decisions.

The whole algorithm is based on a butterfly decomposition of the
trellis diagram, where m denotes a particular state and m‘ the succes-
sor state. The index k represents the time stamp. The corresponding
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Figure 9.1. Turbo decoder structure. Source: F. Munsche [129], modified

trellis butterfly structure is depicted in figure 9.2. Within the trellis
diagram the forward and backward path metrics represent the proba-
bility of a certain state, whereas the branch metrics represent the tran-
sition probabilities between states. The branch metrics are denoted by
tk(m‘, m), forward path metrics by ak, backward path metrics by bk, the
a-posteriori LLR by Lk, extrinsic LLR by Lext,k, the received Symbol by
yj,k, the transmitted symbol by xj,k and finally, the a-priori information
(LLR) by zk.

k

m

a’k+1a’k
t’k(m’,m)

t’’k(m’,m)

a’’k+1a’’k

k+1

m’

Figure 9.2. Trellis butterfly structure

Equation 9.3 represents the Branch Metric Calculation (BMR),
which benefits from the utilization of symmetric branch metrics.
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tk(m′, m) := x0,k(m′, m) · (y0,k + zk) +
n−1∑

j=1

(yj,k · xj,k(m′, m)) (9.3)

The Forward Recursion (FR) given in equation 9.4 and the Back-
ward Recursion (BR) in equation 9.5 calculate the path metrics in the
trellis diagram.

ak+1(m) = maxm′(ak(m′) + tk(m′, m)) (9.4)

bk(m′) = maxm(bk+1(m) + tk(m′, m)) (9.5)

The a-posteriori LLR Calculation, also called Metric Combining
(MC), is described by equation 9.6.

Lk :=maxm′,m|Ik=1(ak(m′) · tk(m′, m) · bk+1(m))

− maxm′,m|Ik=0(ak(m′) · tk(m′, m) · bk+1(m)) (9.6)

Finally, the extrinsic LLR Calculation (LLRC) is given in equa-
tion 9.7.

Lext,k =
Lk

2
− y0,k − zk (9.7)

As implied in the description of Max-LOGMAP algorithm, the for-
ward recursion and backward recursion cause a large amount of interme-
diate results. Therefore, a crucial aspect of Turbo decoder implementa-
tions is to reduce the memory requirement. This is achieved by dividing
the received data into sub-blocks (windows). The operations captured in
equations 9.3 to 9.7 are now executed per window. Due to the sub-block
based processing order, the initial data required for backward recursion
needs to be approximated by the so called backward acquisition (BA),
performed on the subsequent window. Therefore, the reduced memory
requirements goes at the cost of computational effort.

The schedule of operations depicted in figure 9.3 and described in [129]
is chosen for further discussion. This schedule provides two advantages
compared to alternative schedules. First, the lifetime of intermediate
results (and therefore memory requirement) is low. As indicated in fig-
ure 9.3 by the grey areas, the forward path metrics as well as the branch
metrics needs to be stored for a maximum of two windows. Second, the
latency counts only two times the windows size.
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Forward Path Metric
storage

Branch Metric
storage

Branch Metric Computation &
Backward Acquisition

Forward Recursion

Backward Recursion &
Metric Combining &
LLR Calculation

k

k k+M

k+M

k+2M

k+2M

k+3M

k+3M

k+4M

k+4M

Symbol Index

Time

k+5M k+6M

Figure 9.3. Schedule of operations, Source: F. Munsche [129], modified

9.4 Memory Organization and Address
Generation

The evaluation of given programmable solutions for Turbo decoding in
table 9.1 reveals that unsuited memory interfaces are the major reason
for the low throughput. This section discusses the high demands on
the memory organization, which are not fulfilled by general purpose
solutions. Similar to the possibilities of ASIC development, the ASIP
approach also allows to chose any desired memory organization.

Closely coupled to the question of memory organization is the address
calculation issue. ASIC implementations utilize state machines deter-
mining the next address for each memory access. However, considering
a programmable solution the address generation should be generalized
and decoupled from a pure Turbo decoding purpose to allow its efficient
usage in similar applications.

9.4.1 Memory Organization
The memory organization is derived from the given algorithm and the

schedule of operations. Table 9.2 lists the memories implemented, their
quantity and bit width.

The size of the three input memories, which store systematic and par-
ity bits, and the size of the extrinsic memory is defined by the maximum
blocksize of 5114 (5120 incl. tail bits) given by the 3GPP standard. The
utilized memories support 2n elements, thus the input memories have
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Table 9.2. Memory organization for Turbo decoding

Memory Usage Quantity Bit width Elements Size

Systematic and
Parity Bits

3 5 bit 8192 40960 bit

Extrinsic 1 6 bit 8192 49152 bit
Interleaver 1 13 bit 8192 114688 bit
Branch metrics 1 2 * 7 = 14 bit 64 896 bit
Path metrics 4 4 * 11 = 44 bit 64 2816 bit
Program 1 32 bit 4096

2�log2(5120)� = 213 = 8192 elements. The size of the branch metrics mem-
ory as well as the path metrics memory is determined by the duration
required to store intermediate values. A window size of 32 samples mul-
tiplied with a duration of two windows for this schedule results in 64
storage elements.

The memory organization as well as the algorithm steps lead to the
specific memory utilization (R=Read/W=Write) given in table 9.3. The
algorithm’s operations are ordered according their execution from left
to right. The input data, namely systematic, parity and extrinsic in-
formation is processed by the branch metric computation and stored in
the respective memory. Both forward recursion and backward recursion
utilize the calculated branch metrics and store their results in dedicated
memories. Also the backward acquisition utilizes the branch metrics and
stores the final acquisition result in the backward path metrics memory.
The metric combining step reads the path metrics and hands over the
results (via registers) to the extrinsic LLR calculation. The extrinsic
memory is used to store the results.

Table 9.3. Memory utilization by operations (R=Read/W=Write)

Operation
Memory BMC FR BA BR MC LLRC

Systematic and Parity Bits R/-

Extrinsic R/- -/W

Branchmetrics -/W R/- R/- R/-

Pathmetrics (forward) R/W R/-

Pathmetrics (backward) -/W R/W R/-

Adopting the schedule given in figure 9.3 the execution of branch
metric calculation, backward acquisition and forward recursion are not
conflicting with other steps of the algorithm, as they are each exclusively
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executed for different windows. Data dependencies are existent be-
tween backward recursion, metric combining and extrinsic LLR cal-
culation. These dependencies are considered while mapping the equa-
tions to processor instructions including operand load and result storage.
Data forwarding (and bypassing respectively) is a typical mechanism in
processor design to resolve data dependencies and is therefore not further
discussed here.

Additional to the memory organization, an efficient addressing mech-
anism is required, which is discussed in the following section.

9.4.2 Address Generation
Derived from the schedule of operations in figure 9.3, there are two

special addressing schemes given and depicted in figure 9.4. The circular
buffer schemes in forward and backward direction are derived from path
metric and branch metric calculation. Also, metric combining utilizes
this addressing scheme. The access to input memories and extrinsic
data memory requires a more complicated addressing scheme. Here,
the memory pointer is moved forward by an increment of two times the
window size after processing one window in backward direction.

start start start

0 1M 2M0 0 3MM 2M 2MM 4M

Addressing schemes for both
branch and path metrics:

Memories for intermediate values (2 x window size)

Addressing scheme
for input and extrinsic data:

window 0
window

size

window
size

window
size

window
size window 1 window 2 window 3

Figure 9.4. Addressing schemes derived form the turbo decoding algorithm

The required addressing schemes can be combined to one flexible ad-
dress calculation scheme within the architecture. The underlying idea
is to use a circular buffer and extend the address calculation by gener-
alized features. A circular buffer is fully defined by the start and end
address of the memory, which stores the data of the circular buffer. In
a generalized version of a circular buffer, a starting pointer needs to be
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initialized. Operations allowed on a circular buffer are address increment
and decrement.

The basic realization of a circular buffer is extended to support a slid-
ing memory range for the circular buffer. This is specified by an addi-
tional parameter, that represents the positive or negative shift of memory
bounds and start address. The shift is initiated if the address pointer has
completed one circulation on the current memory range. This general-
ized addressing scheme is a superset of the addressing schemes demanded
by the turbo decoding algorithm and thus may also be advantageous for
other applications.

The generalized concept is depicted in figure 9.5. Additionally, this
figure illustrates the handling of a corner case where the memory size
is not a multiple of the circular buffer size. To handle this corner case
an additional parameter representing the upper bound (termination ad-
dress) is required.

memory_pointer_start memory_pointer_start

memory_window_shift

memory_window_shift

memory_start memory_start memory_start memory_start

memory_termination

memory_end memory_end memory_end

Circular Buffer
with flexible starting point:

Circular Buffer
with flexible starting point and shifting memory range:

Figure 9.5. Supported addressing schemes by the address registers

The LISA operation which covers the address calculation is given in
example 9.1. The variables used are directly derived from the illus-
tration in figure 9.5. The address calculation is initiated by pre- or
post-modifying access to address registers, such as AR[0]++, AR[2]--
or --AR[1].

Therefore, address calculation is transparent to the software designer.
The addressing scheme is defined by an address register initialization.
The initialization is based on two instructions. The first one specifies
the upper and lower bound of the circular buffer. All other parameters
are initialized to reasonable values, thus the address register can already
be used to realize a circular buffer. The second initialization instruction
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OPERATION address_calculation {

// Address calculation supports pre-/post increment/decrement
// Address calculation is initiated by address register access
// Example: post-increment: AR[0]++
// reading, no modification: AR[2]
// pre-decrement: --AR[0]

BEHAVIOR {
unsigned int ai = g_address_register_index;
unsigned int address = memory_pointer[ai];

// Publish the current address for further usage

old_address = address;
if(g_do_post_modification)

new_address = memory_pointer[ai];

if(g_do_decrement)
{

// Check whether address points to the lower bound:

if(address == memory_start[ai])
address = memory_end[ai];

else
address--;

}
else if (g_do_increment)
{

// Check whether address points to the upper bound:

if(address == memory_end[ai])
address = memory_start[ai];

else
address++;

}
if((g_do_increment || g_do_decrement) && address == memory_pointer_start[ai])
{

// Move the window only if we are around => check increment / decrement

int shift = memory_window_shift[ai];
if(memory_end[ai] + shift] < memory_termination[ai])
{

memory_start[ai] = memory_start[ai] + shift;
memory_end[ai] = memory_end[ai] + shift;
memory_pointer_start[ai] = memory_pointer_start[ai] + shift;
address = memory_pointer_start[ai] + shift;

}
else
{

// Exception handling for termination ...
}

}
memory_pointer[ai] = address;
if(g_do_pre_modification)

new_address = address;
}

}

Example 9.1. LISA code realizing the address calculation
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specifies the parameters required to benefit from the extended capa-
bilities, such as start pointer, memory shift and termination address.
Different from the naming in figure 9.5, example 9.1 uses arrays for all
parameters to efficiently model multiple address registers. The variables
prefixed with “g ” specify the type of address calculation to be per-
formed. In Turbo decoding as well as other sequential data processing
algorithms, often two successive data samples are accessed. Therefore,
this implementation provides the unmodified address (old address) and
modified address (new address) to the special purpose Turbo decoding
instructions.

9.5 Instruction-Set and Data-Path
Implementation

The currently implemented instruction-set is strictly tailored to opti-
mally fit the Turbo decoding algorithm and the Max-LOGMAP realiza-
tion. Additionally, general purpose instructions can be used to alter the
Turbo decoding algorithm.

The data-path implementation implicitly results from the instruc-
tions’ behavior descriptions. LISA provides the possibility to group cer-
tain operations (instructions) to one particular unit. The optimizations
presented in chapter 7 enable an efficient hardware implementation, as
multiple arithmetic resources are shared. The definition of units within
this particular architecture is derived from commonly known concepts,
such as butterfly segmentation and Add-Compare-Select (ACS) units.
These concepts are also utilized in ASIC design [129] and the imple-
mentation of (re)configurable solutions [137][141][143] and therefore not
discussed here.

9.6 Instruction Schedule
The schedule of operations and thus instructions is already given for

the kernel execution in figure 9.3. However, a quite important fact is
the requirement for prologue and epilogue processing in Turbo decod-
ing. Figure 9.6 indicates the required prologue and epilogue processing
on the basis of windows. Furthermore, the overall schedule is a super-
position of multiple iterations, a window based processing scheme and
data processing based on a Trellis diagram [129]. This topic is closely
related to the loop implementation in general.
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Figure 9.6. Prologue and epilogue in Turbo decoding

9.6.1 Zero Overhead Loops
Zero Overhead LooPs (ZOLPs) are used to realize loops without ad-

ditional latency introduced by jump or branch instructions. A loop is
initialized by a start and end label, representing the boundaries of the
loop, and a number of jumps or execution counts. The execution of a
jump is controlled by dedicated logic, and thus conditional branch in-
structions within the loop body are eliminated. The concept of ZOLPs
outperforms conditional branch instructions especially for small loop
bodies as the ratio of data processing instructions to loop control in-
structions is improved. In this architecture ZOLPs are also utilized to
realize an efficient and flexible prologue and epilogue handling.

The realized architecture not only supports a single ZOLP implemen-
tation, but a stack of several ZOLPs. This means, several nested loops
can be successively initialized and executed. The top most loop of the
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stack is active and taken for the ongoing pc calculation. Once a loop is
completely processed, the loop is removed from the stack and the next
(or none) loop gets activated.

9.6.2 Prologue and Epilog Handling
Figure 9.6 depicts the boundaries of the instruction schedule for Turbo

decoding. The prologue and epilogue depicted here result from the win-
dow based processing scheme, which utilizes the independent execution
of branch metric calculation, backward acquisition and forward recur-
sion.

2MM0 N N+1 N+2 Time

M-1

M-1

M-1

M-4

3

1

1

M M N-4M-1 M-3 3 M

1 1

N-4M-1

_Label_1:

# of loop jumps:

_Label_2:

_Label_3:

_Label_4:

_End:

BMC

BA

FR

BR

MC

LLRC

Figure 9.7. Prologue and epilogue handling

A generalized view to the challenge of prologue and epilogue handling
is given in figure 9.7. The instruction sequences are indicated by the
abbreviations BMC, BA, FR, BR, MC, LLRC (cf. figure 9.6). The loops ex-
ecuted due to the window based processing scheme are also depicted.
Loops because of the execution of multiple iterations or interleaved and
non-interleaved access to memories are omitted for the reason of clarity.

The concept of a ZOLP stack is reused to realize an efficient prologue
and epilogue handling. To implement the schedule of instructions given
in figure 9.7 several loop initializations are required. For example, the
BMC needs to be performed M times, thus M-1 jumps are executed. Fur-
thermore, a single jump is required to proceed to the next window and
its calculation, here BMC, BA and FR. These jumps are combined to one
ZOLP initialization with the start address Label 1, the end address
Label 2 and a jump count of M. The initialization of all required loops
is given in example 9.2.
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; ===== Loop stack is build up: last loop first! ================

; ==== Epilogue =================================================

START_LOOP START=_Label_4 END=_End JUMP=M

START_LOOP START=_Label_1 END=_End JUMP=#3

START_LOOP START=_Label_3 END=_End JUMP=M-3

; ==== Kernel ===================================================

START_LOOP START=_Label_1 END=_End JUMP=N-4M-1

; ==== Prologue =================================================

START_LOOP START=_Label_1 END=_Label_4 JUMP=M

START_LOOP START=_Label_1 END=_Label_2 JUMP=M

Example 9.2. Loop initialization for prologue and epilogue handling

9.7 Pipeline Structure
Computations as well as data-routing (section 9.4) are well balanced

over a four-stage pipelined structure, comprising the stages fetch,
decode, execute and writeback. The distribution of dedicated units to
the pipeline stages is listed in the following and depicted in figure 9.8.

Fetch stage
This pipeline stage comprises the instruction fetch mechanism and

program counter calculation. Logic to control the zero overhead loop
stack is also located in this pipeline stage.

Decode stage
The primary task of this pipeline stage is to decode the instruction,

set the corresponding control signals to the subsequent stages and
to load the operands from the memories. Therefore, also logic for
the address calculation presented in section 9.4.2 is located in this
stage. The current realization can calculate two addresses in parallel.
Moreover, operands may be routed by a switchbox [129] according to
the butterfly processing scheme.

Execute stage
The execute stage contains four ButterFly units (BF units), each of

them made up of two Add-Compare-Select (ACS) units. Thus, up to
eight states within the trellis diagram can be processed simultaneously.
These units are utilized for every data processing task.
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Writeback stage
The writeback stage writes the results to the dedicated memories,

also considering the butterfly processing scheme in Turbo decoding. Ex-
ecution and writeback has been separated into two different stages to
shorten the critical path.
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Figure 9.8. Pipeline organization

9.8 Results
The iterative design of this ASIP for Turbo decoding is fully based on

the LISA processor design methodology. This comprises LISA model de-
velopment, its verification within Synopsys’ CoCentric System Studio,
automatic implementation and gate-level synthesis. The LISA model
counts 64 LISA operations and 5842 lines of code. The generated VHDL
code comprises 33651 lines of code. Within six months of development
time the architecture has been steadily optimized up to the results pre-
sented in the following.

The technology library and synchronous SRAMs from Virtual Silicon
Technology (VST) [144] is designed for a 0.13µm process of the foundry
United Microelectronics Corp. (UMC) [145]. Gate-level synthesis with
Synopsys’ Design Compiler [85], worst case conditions, achieved a clock
frequency of 164 MHz (6.1 ns critical path). The whole architecture
requires 352.5 kGates. The complete memory consumes 326 kGates, the
register file 10.5 kGates and the pipeline structure, including data-path
and control-path, consumes 16.0 kGates. The memory dominated area
distribution can be seen in table 9.4.
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Table 9.4. Architecture size of the Turbo decoding architecture

Module Module Area Average Power
(and hierarchically Consumption
included modules) (@ 125 MHz)

Pipeline Stage Fetch (FE) 0.59 kGates 0.17% 0.07 mW 0.89%
Pipeline Stage Decode (DC) 4.68 kGates 1.33% 0.89 mW 11.37%
Pipeline Stage Execute (EX) 3.13 kGates 0.89% 3.06 mW 38.92%
Pipeline Stage Writeback (WB) 1.68 kGates 0.48% 0.61 mW 7.82%
Pipeline Register FE/DC 0.35 kGates 0.10% 0.22 mW 2.77%
Pipeline Register DC/EX 3.98 kGates 1.13% 1.87 mW 23.76%
Pipeline Register EX/WB 1.60 kGates 0.45% 1.12 mW 14.29%
Register File 10.50 kGates 2.98% 2.49 mW 22.31%
Systematic and Parity Memory 101.00 kGates 28.65% n/a
Extrinsic Memory 38.00 kGates 10.78% n/a
Branchmetrics Memory 3.00 kGates 0.85% n/a
Pathmetrics Memory 28.00 kGates 7.94% n/a
Interleaver Memory 70.00 kGates 19.86% n/a
Program Memory 85.00 kGates 24.11% n/a
Memory Control Logic 1.00 kGates 0.28% 0.42 mW 3.74 %

ALL 352.50 kGates 100.00% 11.17 mW 100.00 %

The throughput achieved was 2.34 MBit/s at 5 iterations, thus fulfill-
ing the 3GPP standard.

The average power consumption is also depicted in table 9.4. The
results are measured with Synopsys’ Prime Power and based on a Turbo
decoding application with two iterations at 125MHz. An average power
consumption of 11.17 mW and the application runtime of 49072 ns lead
to 2.49 nJ per sample (Energy per sample).

9.9 Concluding Remarks
The ASIP presented here is a starting point for future research. Based

on a specialized realization the data throughput of 2.3 MBit/s at 5 itera-
tions outperforms the existing implementation on a processor. The high
data throughput is achieved by realizing a specialized memory organiza-
tion, a sophisticated address calculation, zero overhead loop control and
a customized data-path.

Still a challenging task is to further improve the flexibility of the ar-
chitecture. In general, both the flexibility and the high performance of
ASIPs are reflected in the ASIP’s instruction-set [91]. The flexibility is
enabled by general purpose instructions which steer simple data-path
operations. The high performance is achieved by specialized complex
instructions which simultaneously trigger multiple arbitrary data-path
operations. In the current implementation, the complex instructions
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are extensively used to achieve a high data-throughput. An altered im-
plementation of the Turbo decoding algorithm can only be achieved by
the additional utilization of general purpose instructions which signifi-
cantly degrades the performance. Therefore, future research will focus
on architectures which provide flexibility at a lower cost of performance.



Chapter 10

CASE STUDIES: LEGACY CODE REUSE

The increasing fraction of software based solutions implies a grow-
ing interest of efficient application software reuse. One possibility is to
simply move to the next processor generation of the same architecture
family. This provides the advantage of compatibility between the exist-
ing software and the new processor. However, this is often accompanied
by a moderate performance increase since supplemental features are not
utilized by the legacy code. Therefore, the initial processor must be
revised in order to achieve a higher performance increase.

With the LISA processor design platform, including an optimized
hardware implementation, the efficient reuse of software becomes possi-
ble. After introducing the various possibilities of legacy code reuse, two
case studies are presented, proving the benefits of software IP reuse.

10.1 Levels of Compatibility
Software may be written either in a high level programming language

(e.g. C) or in an architecture-specific assembly language. A high level
programming language provides the advantage of architecture indepen-
dence and higher design efficiency. Contrary to this, a realization on
assembly level offers the potential for a more efficient implementation
in terms of code size and code quality. In general, software tools, such
as C-compiler, assembler and linker, are utilized to convert the software
from one level to the next. Either way, the software must be converted
to a binary representation in order to be executed by the processor.
Figure 10.1 shows the different levels of software development.

The basic idea is to redesign the original processor respecting software
compatibility as well as increased performance. Due to advances in
processor design, such as novel pipelining techniques, increased memory

135
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Figure 10.1. Levels of compatibility

bandwidth or enhanced data-path functionality, higher performance
can be gained. The particular design goals strongly depend on the
application-specific requirements. The different levels of software com-
patibility, according to figure 10.1, are discussed bottom-up regarding
the level of abstraction in the following.

Binary-level compatibility refers to the final executables, which can
be run without any modification on the new architecture. Therefore,
the existing application software design flow remains unchanged. Only
the underlying architecture changes according to given requirements.

Assembly-level compatibility allows changes to the architecture as
well as to the binary encoding of the instruction-set. Moderate changes
to instruction encoding facilitate minor decoder and operand fetch
optimizations. The overall architecture performance and architectural
efficiency might be improved by a fundamental reorganization of the
instruction encoding, for example an instruction encoding with different
bit-lengths. Therefore, a new assembler, which certainly can be
generated from the LISA description, is required as existing assembly
code needs to be mapped according to the new coding specification.

C-code level compatibility exists as soon as a C-compiler is available
for the new architecture. Any code given in the C-programming lan-
guage can be reused as the C-compiler performs the architecture-specific
mapping to the assembly instruction-set. This is also possible for ar-
chitectures developed with LISA, as the C-compiler can be generated
automatically. However, as this approach is applicable generally, it is
not discussed further here.
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The optimization potential for binary-level compatibility is moder-
ate, as the given instruction’s encoding only enables minor architectural
changes. Therefore, the following two case studies are targeting the
assembly-level compatibility.

10.2 The Motorola 68HC11 Architecture
The targeted architecture is assembly-level compatible with the Mo-

torola 68HC11 family. The different versions of this processor family dif-
fer in memory support, external modules and i/o interfaces. The original
M68HC11 architecture supports instruction bit widths of 8 bit, 16 bit,
24 bit, 32 bit and 40 bit. Instructions are processed independently of
each other by a finite state machine. The operations of one instruction
are rarely executed concurrently. The memory interface provides a sin-
gle port for exclusive instruction or data access. This memory interface
causes the limited performance and instruction throughput. The num-
ber of cycles an instruction requires to complete depends on the instruc-
tion fetch cycles, the operands to fetch and the arithmetic computation.
Considering an optimization regarding the instruction throughput, these
three aspects must be taken into account. Two of them are related to
the limited memory interface in the original M86HC11 architecture.

10.2.1 Memory Interface Optimization
The elementary change to the M68HC11 architecture is the redefined

memory interface. While a single port, 8 bit memory interface is used
in the original version of the architecture, a dual port, 16 bit memory
interface is used in the enhanced version. The increased bit width di-
rectly improves the instruction throughput. The additional port is used
to separate the instruction and data access to the memory. Therefore,
these two types of accesses can be performed simultaneously, stalls due
to memory accesses are not required anymore.

10.2.2 Instruction-Set Encoding and Instruction
Fetch Mechanism

The new 16 bit memory interface for instruction fetch provides means
to reduce the number of instruction fetch cycles. Figure 10.2 shows the
number of instructions per instruction bit width for the old and new
architecture. The instruction bit width directly influences the required
clock cycles for instruction fetch. Besides this, the instruction fetch
cycles for the original M68HC11 (and the compatible LISA model) are
depicted in figure 10.2.
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The increased memory bit width of 16 bit enables an improved in-
struction throughput. However, the instruction-set [146] is carefully in-
vestigated to find an optimum solution, as described in the following.

Sequential instruction fetch
A first guess is to always fetch 16 bit and reorganize the instruction

word in the fetch pipeline stage of the architecture. This would mean
to cache not yet required portions of the instruction word. For example,
if the first 8 bit represent a complete instruction, the second 8 bit need
to be cached in order to concatenate the remaining instruction bits.
However, this requires control logic to determine the instruction length
and to reorganize the instruction word. This logic is certainly not allowed
to influence the physical characteristics.

Investigating the original M68HC11 instruction-set, the instruction’s
operation, the utilized addressing mode and the number and type of
operands are jointly encoded within a single opcode field. An example
instruction is given in table 10.1. Moreover, the current instruction-
set emerged from several versions of the architecture as, for example,
new addressing modes have been added. Thus, the instruction-set is
not optimally organized in today’s point of view. The required effort
to determine the instruction length becomes close to the effort decoding
the instruction completely. Certainly, this control logic is not applicable
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Table 10.1. Extract of the Motorola 68HC11 instruction-set manual [146]

Instruction Mnemonic Addressing Instruction Instruction
(Operation) Mode Opcode Operand Length

ADCB(opr) B IMM C9 ii 16 bit
(Add with carry to B) B DIR D9 dd 16 bit

B EXT F9 hh ll 24 bit
B IND,X E9 ff 16 bit
B IND,Y 18 E9 ff 24 bit

for implementation in the fetch stage. From this idea, it is desirable
to insert particular bits within the instruction word, which indicate the
length of the instruction.

The instruction encoding example in table 10.1 clearly indicates, that
additional bits to encode the instruction length are leading to an inef-
ficient solution. Thus, the current instruction-set is not suited to effi-
ciently determine the instruction bit width. The necessary reorganiza-
tion of instruction encoding is targeted in the following section.

Instruction cache mechanism based on optimized instruction
encoding

In the following, an instruction-set, which is perfectly suited for an
cached instruction fetch mechanism, will be derived.

The length of an instruction is basically influenced by the bit length
of the operands. In the M68HC11 architecture, there are instructions
with no, 8 bit, 16 bit and 24 bit operands. Therefore, a maximum bit
width of 32 bit is targeted. Instructions without and with 8 bit operands
are summarized in the new set of 16 bit instructions. Although increas-
ing the instruction bit width from 8 bit to 16 bit for the instructions
without operands, the time required for fetching these instructions does
not change as the bit width of the memory interface is increased (cf. sec-
tion 10.2.1). The original M68HC11 instructions with 16 bit and 24 bit
operands are grouped to the new 32 bit instructions.

The remaining task is to find a suitable opcode encoding for the new
class of 16 bit and 32 bit instructions. On the one hand, all operations
and addressing modes must be covered properly, on the other hand, the
bit width must be determinable efficiently.

For the set of 16 bit instructions with 8 bit operands, 8 bit remain to
encode the opcode. When using one bit of the opcode field to encode
the instruction’s bit width, 7 bit will remain to encode the instructions’
operations, thus, 27 = 128 different 16 bit instructions can be encoded.
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These 128 possibilities are far too less, as 173 instructions of this type
must be encoded.

However, even though this straight forward approach is not suited,
the underlying technique becomes clear. Three bit have been chosen to
indicate the bit width of the instruction encoding. The first three bit
of an instruction are indicating a 32 bit instruction, if all bits are set to
one. Therefore, 28 −25 = 224 instructions with a bit width of 16 bit can
be encoded.

The fetch mechanism must be able to determine the instruction bit
width and to cache a 16 bit instruction part whenever necessary. How-
ever, the required control logic is quite simple, as only 3 bit need to
be compared. Example 10.1 shows the behavior of the LISA opera-
tion fetch. First of all, a new 16 bit bundle is fetched and the flag
instr16 is stored indicates whether there is already another 16 bit
instruction word cached. If so, the two parts are concatenated and fed
into the pipeline for decoding. Otherwise, the flag instr16 is stored
is not set and the fetch mechanism decides whether this is a 16 bit in-
struction or the first part of a 32 bit instruction. Either the instruction
word is cached and a NOP instruction is fed into the pipeline or the
16 bit instruction is simply written to the pipeline instruction register.

Due to the reorganization of the instruction encoding, the number of
execution cycles per application is reduced by about 60%. Additionally,
the code size was reduced by about 4%.

10.2.3 Architecture Structure
The overall architecture is depicted in figure 10.3. The architecture

is based on a three stage pipeline, with the pipeline stages fetch, decode
and execute/writeback. The specialized fetch mechanism and the two
decoders for 16 bit and 32 bit instructions are depicted in the fetch stage
and the decode stage respectively. The data-path has been implemented
according to the freely available M68HC11 architecture specifications
[146]. The register organization remained unchanged, while the memory
interface was extended from 8 bit to 16 bit.

10.2.4 Gate-Level Synthesis Results
To produce gate-level synthesis results, Synopsys’ Design Compiler

(version 2003.06) [85] is used. The architecture is mapped using a com-
mercial 0.18 µm technology library and worst case conditions.

Figure 10.4 summarizes the gate-level synthesis results with regard to
different optimizations. The area is decreased to 74.78% and the timing
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OPERATION fetch IN pipe.fetch {

BEHAVIOR

{

instr = e_ram1[PC - E_RAM_LOW];

if(instr16_is_stored == true)

{

// There is already the first instruction part cached

// Concatenation of two instruction words required

unsigned int 32bits_instruction = (instr16_stored << 16);

32bits_instruction = (32bits_instruction | 0xFFFF) & instr;

// Feed the instruction into the pipeline

PIPELINE_REGISTER(pipe,FE/DC).instruction =

32bits_instruction;

instr16_is_stored = false;

}

else

{

if(((instr16 >> 13) & 7) == 7)

{

// This is the first part of a 32 bit instruction

// Cache this part!

instr16_is_stored = true;

instr16_stored = instr16;

// Move NOP into the pipeline

PIPELINE_REGISTER(pipe,FE/DC).instruction = 0;

}

else

{

// This is a 16 bit instruction, nothing special

PIPELINE_REGISTER(pipe,FE/DC).instruction = instr16 << 16;

instr16_is_stored = false;

}

}

}

}

Example 10.1. Fetch mechanism in LISA 6811 compatible architecture

to 71.85%. Moreover, the implementation flexibility is clearly indicated
by the AT-chart (Area vs. Timing chart). Multiple Pareto points are
achievable by the LISA to RTL synthesis. The ratio of the architectural
efficiencies (ηarch = 1

AT ) with the best timing and the best area result is
ηmin(timing)/ηmin(area) = 1.21, which indicates further optimization pos-
sibilities. In this case, the forwarding mechanism specified in the LISA
model crosses two pipeline stages. An altered description on the LISA
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level improves the timing of the architecture. However, the physical
characteristics are valuable information for the architecture specifica-
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tion. The information obtained on gate-level can easily be traced back
to the LISA description on a higher level of abstraction.

The ISS-68HC11 architecture is comparable to handwritten cores.
Although the ISS-68HC11 is improved with regard to the instruction
throughput, the physical characteristics are comparable to the origi-
nal architecture and its commercial implementations. For example, the
Synopsys Design Ware [147] 6811 core occupies between 15 kGates and
30 kGates depending on the speed, configuration and target technology.
The architecture is designed for applications running at clock frequencies
of up to 200 MHz (at 0.13µm) [148].

ISS 68HC11 Synthesis Results (Core + Debug Mechanism)
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Figure 10.5. Synthesis results of the ISS-68HC11 architecture

Figure 10.5 shows the gate-level synthesis results with different debug
configurations. Configuration one comprises two program breakpoints
and access to the registers depicted in figure 10.3. Configuration two
comprises four program breakpoints, data breakpoints for the registers
and debug access to all registers. The timing is not influenced by the
debug mechanism generation (9.06 ns, 9.08 ns, 9.03 ns), which is obvious
in consideration of the debug mechanism implementation (section 8.2).
The area is certainly increasing as additional logic is required to imple-
ment the debug mechanism and JTAG interface. An interesting aspect
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is that the area of the architecture core hardly increases comparing de-
bug configuration one and configuration two. This is due to the fact
that the additional data breakpoint detection only requires a few logic
elements within the architecture core. The main logic for breakpoint
detection is implemented in the debug state machine, which is reflected
by an increase of 1387 kGates.

10.3 The Infineon Technologies ASMD
The Application-Specific Multirate DSP (ASMD) is designed for the

execution of interpolation and decimation filters [92][149]. This archi-
tecture consists of a highly application-specific data-path. Moreover,
the instruction-set provides a static preemptive scheduling mechanism
enabling an efficient filter implementation.

10.3.1 Instruction-Set
The instruction-set of the ASMD is suited for the implementation

of static preemptive scheduling. This means that several filters can be
executed pseudo parallel. The processor switches between different filters
according to the designer’s definition. A single time frame is called slice.
The slice instruction is used to synchronize the filter execution with the
overall system. Figure 10.6 depicts an example application illustrating
the static preemptive scheduling. Here, two filters (asmd1 and asmd2)
are defined in the so called sub-program section. Sub-programs can be
executed either completely (asmd1) or partially (asmd2). In the latter
case, the partial execution is defined by labels. This schedule and the
corresponding execution of sub-programs is defined in the main-program
section.

The digital filters consist of simple shift and add operations, which can
be computed easily from the filter coefficients. These operations can be
intuitively transferred to the ASMD assembly instructions. Therefore, a
high level language compiler is not required.

The software is written in a proprietary assembly language. The appli-
cation is assembled by a PERL script, which writes out VHDL constants
representing the machine code instructions. These constants are synthe-
sized together with the handwritten architecture core. Thus, the ASMD
controller is implemented as FSM representing the filters implemented
in software.
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Figure 10.6. Assembly program and execution schedule. Source: [92], modified

10.3.2 The ASMD Data-Path
The data-path of the ASMD is shown in detail in figure 10.7. Arith-

metic components such as adder, shifter and saturation units are nor-
malized to a common data bit width.

The ASMD provides three types of operands. Regular storage ele-
ments are arithmetic registers and state registers. In addition, constants
can be utilized for arithmetic calculations. The data-path is parameter-
izable concerning, for example, the bit width of registers or the number
of registers available.

The data-path operates on two operands and produces up to three
results. These are written to the internal registers or to the output port
of the architecture.

10.3.3 LISA based Implementation of the ASMD
The original ASMD architecture and the utilized tool flow suffer

from the disadvantages caused by the traditional design flow, as already
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elaborated generally in chapter 1. Here, verification must be performed
for every new application using VHDL hardware simulators. These sim-
ulators are known to be slower by several orders of magnitude compared
to high level instruction-set simulators. Also, the handwritten PERL as-
sembler is far less convenient and thus inefficient to use, compared to the
one offered by the LISA processor design environment. One of the most
important points, however, is the consistency of the PERL assembler
and the architecture itself, which must be guaranteed by the designer.

Similar to the M68HC11 project, the LISA based ASMD should sup-
port assembly-level compatibility in order to reuse legacy code.

A straight forward mapping of the architecture to a pipelined version,
results in the disadvantage of an exclusive execution of control and arith-
metic instructions. In the original ASMD architecture the data-path
operations are performed simultaneously to the control-path operations,
determining the next data-path instruction to be executed.

A structural view of the architecture is depicted in figure 10.8. In
order to be compatible to the original ASMD architecture, concerning
timing and i/o behavior, two execution lanes need to be realized. Both
lanes are based on an instruction-set. The first lane is dedicated to the
arithmetic instructions, steering the data-path, which is essentially the
same as in the original architecture. The second lane processes a control
instruction determining the next two arithmetic and control instructions.
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Figure 10.8. A structural view of new ASMD architecture. Source: [149], modified

Both instruction types are referred to by a dedicated program counter.
The fetch unit loads both instructions from the program memory simul-
taneously. According to the original ASMD architecture the program
memory has been implemented by constants which are fed into the gate-
level synthesis here, too. Therefore, the original and LISA based ASMD
can easily be compared: The data-path is described similarly in both
versions, also the register file and program memory is implemented in
the same way. The FSM of the original ASMD architecture is replaced
by a pipelined sequence of fetch and decode/execute.

The LISA based approach provides the advantage of easy maintain-
ability and extensibility because of one common architecture description.
During the evaluation of the LISA processor design environment, gate-
level synthesis results turned out to be in the same range of the original
handwritten VHDL model. The utilization of the ASMD in a bluetooth
device suggested to introduce an additional control instruction. The
change of the LISA model, the regeneration of simulator and RTL hard-
ware model as well as their verification was performed within one day.
Due to this new application, the existing ASMD solution was replaced
by the generated architecture.
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10.3.4 Gate-level Synthesis Results
The gate-level synthesis was performed with the Synopsys’ Design

Compiler (version 2003.06) [85]. The architecture is mapped using a
commercial 0.18 µm technology library and worst case conditions.

The generation of a debug interface is not reasonable, as the program
is integrated into the ASMD’s combinatorial logic. Therefore, on site
debug capabilities are not required.
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Figure 10.9. Synthesis results of the ASMD architecture. Based on: [88]

Due to the size of this architecture and a very simple data-path, the
applied optimizations only have minor effect or sometimes even decrease
the architectural efficiency, as summarized in figure 10.9. For example,
the data-path does not provide the possibility to share resources. How-
ever, the achieved synthesis results are equal to the original handwritten
implementation.



Chapter 11

SUMMARY

Today’s SoCs increasingly require computational building blocks that
provide high performance, energy efficiency as well as flexibility. These
conflicting properties are balanced by ASIPs. However, ASIP design
is unfortunately accompanied by a considerable complexity. This com-
plexity stems from the diversity of ASIP design phases and the need for
optimizations regarding a given application.

The traditional processor design methodology precludes iterative opti-
mizations and thus efficient ASIP design due to a basically unidirectional
design flow (cf. chapter 1). The architecture description language LISA
provides a common basis for all design phases, including the design space
exploration [23]. The model complexity is significantly reduced since
the overall design entry is raised above RTL (cf. chapter 3). Due to the
higher abstraction level a gap is teared between the design entry and the
architecture implementation on RTL.

An automatic path to architecture implementation is strongly re-
quired because of two reasons. First, during design space exploration
the effect of high level design decisions on the physical characteristics
of the architecture needs to be considered. Second, the consistency be-
tween the reference model, software tools and the final architecture im-
plementation has to be ensured. In the field of ADL based ASIP design
the related work only targets a subset of the requirements raised by an
automatic ASIP implementation (cf. chapter 2). For example, the gen-
eration of the complete architecture without applying optimizations is
only suitable for a rough estimation of the physical characteristics dur-
ing architecture exploration. Contrary to this, a partial generation of an
RTL hardware model (such as structure, control-path and interconnect)
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and an optimized manual implementation of the data-path only satisfies
the requirements on the final architecture implementation.

An automatic ASIP implementation based on ADLs must be compa-
rable to the manual implementation by experienced designers (cf. chap-
ter 4). The demands on the architectural efficiency as well as the im-
plementation flexibility must be satisfied. Also processor features com-
monly known from off-the-shelf processors, such as JTAG interface, de-
bug mechanism or power save mechanisms, must be supported. There-
fore optimizations and transformations are required. Unfortunately,
these optimization and transformations cannot be performed on RTL
due to the enormous computational complexity.

The contribution of this book is a novel RTL hardware model syn-
thesis, which is based on the Unified Description Layer (UDL). The
UDL abstracts the typical elements, process and signal, of hardware de-
scriptions by the elements unit and path. For example, multiple signals
required to access a register are grouped to a path. Furthermore, the
UDL elements cover essential information about the semantics of the
underlying logic and interconnect (cf. chapter 6). Thus, the computa-
tional complexity is significantly reduced compared to gate-level synthe-
sis. Based on the UDL, the automatic ASIP implementation comprises
optimizations (cf. chapter 7) and transformations to integrate processor
features (cf. chapter 8).

Due to the higher abstraction level of ADLs a directly derived RTL
hardware model implies noticeable redundancy. For example, in LISA
the instructions’ behaviors are described nearly independently of each
other, although they may be associated with the same functional unit in
hardware. The elimination of this redundancy is the primary goal of the
proposed optimizations. The second target is to balance the physical
characteristics of the architecture with regard to a particular applica-
tion and design goal. The optimizations can be separately configured
and multiple implementation alternatives can be evaluated. Thus, the
optimizations ensure a sufficient architectural efficiency and implemen-
tation flexibility.

The UDL provides also the basis for transformations to automati-
cally insert configurable processor features into the architecture struc-
ture. This concept has been exemplarily proven for an automatic gen-
eration of JTAG interface and debug mechanism. Additional processor
features can be easily added to the framework in future research and
development.

The numerous capabilities of the proposed automatic ASIP im-
plementation are demonstrated in multiple industrial case studies.
The Motorola 68HC11, Infineon’s ASMD and ICORE are real world
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architectures, which have been successfully modelled with LISA and
implemented with the proposed synthesis tool. The comparisons to
handwritten implementations, if possible, clearly show that the physical
characteristics are equal and sometimes even superior at an significantly
increased design efficiency. Also, CoWare’s LT architecture family has
been used to demonstrate the capabilities of the automatic ASIP imple-
mentation.

The presented case studies demonstrate that all demands on an auto-
matic ASIP implementation are satisfied. Hence, the work presented in
this book closes the gap between the ASIP design entry and implemen-
tation.



Appendix A
Case Studies

Various architectures have been developed to demonstrate the ap-
plicability of the presented concepts [87][93][94]. Three architectures are
elaborated in detail in chapter 9 and chapter 10. This chapter presents
further case studies and gate-level synthesis results. The results are dis-
cussed with regard to the optimizations and processor features presented
in chapter 7 and 8.

The high design efficiency provided by LISA enables the designer to
optimally map the architecture to an application. This includes design
decisions about the instruction-set, data-path, processor structure, etc.
The automatic ASIP implementation from LISA provides an architec-
tural efficiency that is equal to handwritten implementations by expe-
rienced designers. Moreover, the implementation flexibility enables the
designer to trade off the physical characteristics and to find the most suit-
able implementation. The presented synthesis results demonstrate the
various degrees of freedom in ASIP implementation when using LISA. In
this chapter, the architectural efficiency and implementation flexibility
is given by AT-diagrams (Area over Timing diagrams).

To produce the gate-level synthesis results Synopsys’ Design Compiler
(version 2003.6) [85] was used. The architectures are mapped using a
commercial 0.18 µm technology library, worst case conditions and indi-
vidual timing constraints for each architecture. The gate-level synthesis
results were obtained by a series of two successive syntheses. The first
synthesis was performed with an unattainable timing constrained. The
second synthesis was restricted to the timing achieved by the first syn-
thesis run.
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A.1 ICORE
The ICORE architecture [91] was developed for the acquisition and

tracking in decoding Terrestrial Digital Video Broadcasting (DVB-T).
It is a typical load-store 32 bit Harvard processor architecture with sin-
gle instruction issue rate. About 60 DSP-like instructions are realized,
which, for example, comprise arithmetic instructions, bit manipulation
instructions, general control flow instructions and zero overhead loop
instructions. Furthermore, highly optimized instructions support a fast
CORDIC angle calculation.

Various realizations have been evaluated during design space explo-
ration, for example by varying the number of pipeline stages from three
stages up to five stages. The version which is discussed here comprises
four pipeline stages, which are instruction fetch, instruction decode and
operand load, instruction execution and result writeback. The ICORE
uses eight general purpose registers, four address register, a program
counter and registers to support zero overhead loop instructions.

Compared to other case studies in this book, the ICORE bears a
significant potential for optimizations, because of the large amount of
hardware resources (multiple registers with about 800 bit in total, about
10 functional units, etc.) along with a large number of exclusively exe-
cuted instructions.

As shown in figure A.1, the area can be reduced to 58%, while the
critical path can be reduced to 84% in the best case. Overall, the AT
product is reduced to 60% in the best case, which marks a significant
improvement. This architectural efficiency outperforms handwritten im-
plementations (42 kGates, 8 ns, slightly modified architecture). A closer
analysis of the results achieved with a handwritten implementation indi-
cates that the modular structure and the size of the architecture strongly
prevents gate-level synthesis tools from performing optimizations.

The synthesis results depicted in the AT-chart of figure A.1 result from
six different synthesis configurations. Other results might be achieved
with altered optimization constraints for the automatic ASIP implemen-
tation as well as the gate-level synthesis. Thus, a high implementation
flexibility is provided as well.

The gate-level synthesis results for the ICORE architecture with de-
bug mechanism and JTAG interface are shown in figure A.2. Here, three
different ICORE syntheses are presented: without debug mechanism,
with debug configuration one and with debug configuration two. Com-
mon to both debug configurations are the basic elements of the debug
mechanism (mode controller, debug state machine) and the TAP con-
troller of the JTAG interface. Configuration one comprises two program
breakpoints and debug read/write access to the general purpose regis-
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Figure A.1. Synthesis results of the ICORE
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Figure A.2. Synthesis results of the ICORE

ter file. Configuration two comprises four program breakpoints, data
breakpoints for the general purpose register file and debug read/write
access to all registers. Certainly, the LISA to RTL synthesis tool allows
a more fine-grained configuration of the debug mechanism on the level
of registers and memories.
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Figure A.3. Synthesis results of the LTRISC32ca architecture

The debug mechanism hardly influences the timing of the architecture
(6.28ns, 6.55ns and 6.56ns). The little increase results from additional
multiplexers in the path to the registers (section 8.2.6). The increase in
area of the architecture core is 10.77% for configuration one and 18,24%
for configuration two. The sizes of the mode controller and debug state
machine certainly increase with their advanced functionality. The size of
the TAP controller remains constant, as this component is independent
from a particular configuration.

A.2 LT Architecture Family
The LT architecture family is dedicated for LISA training sessions

and often used as starting point for new architectures. In general, the
simple architectures only bear a minor potential for optimizations. The
debug mechanism is included in two different configurations for each LT
architecture. Configuration one comprises two program breakpoints and
debug read/write access to the general purpose register file. Configura-
tion two comprises four program breakpoints, data breakpoints for the
general purpose register file and debug read/write access to all registers.

The LTRISC is a 32 bit RISC pipelined architecture, with 36 gen-
eral purpose arithmetic, logic and control flow instructions. The area
requirement is reduced by 27%, which still marks a significant improve-
ment. However, the efficiency of the area optimization is limited by the
low number of instructions. The timing nearly remains unchanged, as
the data-path of the architecture is very simple (complex instructions
which trigger a chain of arithmetic operations do not exist).

The debug mechanism has been automatically integrated in the
LTRISC architecture. The timing remains almost unchanged (6.12ns,
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Figure A.5. Synthesis results of the LTVLIW32s3ca architecture

6.14ns, 6.04ns), while the overall architecture size increases by 71%.
This area increase is caused by the breakpoint configuration for the large
general purpose register file of 16 elements, each 32 bit wide. This ex-
ample clearly indicates, that the number of architectural resources and
the functionality of the debug mechanism must be carefully considered.
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The LTVLIW32s3ca and LTVLIW32s4ca architectures are VLIW
processors with a three and four stage pipeline respectively. The gate-
level synthesis results are presented in figure A.5 and A.6.
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Figure A.6. Synthesis results of the LTVLIW32s4ca
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The additional pipeline stage in the LTVLIW32s4ca architecture
slightly reduces the length of the critical path, compared to the
LTVLIW32s3ca. The automatic optimizations during HDL synthesis
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LTVLIWs4ca Synthesis Results (Core + Debug Mechanism)
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reduce the area requirements to 68% and 82% respectively. The lower
reduction in the case of the LTVLIW32s4ca architecture, is caused by
the additional pipeline stage and therefore concurrent execution of op-
erations which prevents area optimizations.

The synthesis results of the LTVLIW32s3ca and LTVLIW32s4ca with
debug functionality is shown in figure A.7 and A.8. The apparently dra-
matic increase of area is (only) caused by the small size of the processor.
The absolute values for the size of the debug state machine are even
smaller compared to the LTRISC architecture. This is reasonable due
to the fact, that both processor types contain the same number of gen-
eral purpose registers, but differ with regard to their bit widths. The
registers of the VLIW processors are only 16 bit wide, instead of 32 bit
in the case of the LTRISC architecture.
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CFG and DFG Conversions

The realized optimizations are more often applied to Data Flow
Graphs (DFGs) than Control Flow Graphs (CFGs). However, CFGs
are required to capture the procedural portions of the ADL model and
to write out the hardware description on RTL. Therefore, conversions
between both representations are required.

B.1 CFG to DFG Conversion
There are three basic differences between CFGs and DFGs causing

the basic challenge for the translation algorithm:

Control statements in CFGs are block oriented, in DFGs multi-
plexers are instantiated for each signal and variable written in a CFG
block.

Variable dependencies given by the sequential statements in CFGs
have to be replaced by direct interconnections between operator out-
puts and inputs in DFGs.

Assignments to RTL signals may occur several times in CFGs, in
DFGs they have to be concentrated by the use of multiplexers into
one physical write access.

Due to these differences, the translation has to imitate the sequential
execution of a CFG in order to track the current assignments to variables
and signals.

B.1.1 Block Based Translation
The particular values for variable assignments are stored in transla-

tion contexts. Such a context is created each time a conditional block is
161
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entered, using the values assigned in the parent context for local initial-
ization. A context is identified by the corresponding condition of a con-
ditional statement. These conditions may be zero (false) and one (true)
for IF/ELSE statements, arbitrary values are allowed for SWITCH state-
ments. They are used when the contexts are recombined into the parent
context. At this time multiplexers are inserted for each variable modi-
fied within one or more blocks, using the condition as multiplexer input
selection criteria.

An example of the context usage is given in figure B.1. The parent
context is given by Xp using the result of the addition (Cout,add) and
multiplication (Cout,mul) in the first two lines of the example as current
values for the variables a and b respectively. The analysis of the switch
statement creates the contexts Xsw,i for each case statement, the cases 1
and 2 are combined into a single context. The default context is given by
the parent context implicitly. From the switch statement, two individual
multiplexers are generated for the variables a and b, providing new values
Cout,mux,a and Cout,mux,b for the updated parent context X

′
p.

var

switch
case
case
case
case

a := sigx + sigy,

b := sigx * sigy;

// up tho this line:

// parent context Xp

(cotrol) {

1:

2: a:=3; b:=2; break;

3: a:=4; b:=1; break;

4: a:=5; break;

}

// up to this line:

// parent context Xp’

Context

condition values: 1,2

Xsw,1:

a:= 3

b:= 2

Context

condition values: 3

Xsw,2:

a:= 4

b:= 1

Context

condition values: 4

Xsw,3:

a:= 5

Context Xp:

a:= Cout,add
b:= Cout,mul

Context Xp’:

a:= Cout,mux,a
b:= Cout,mux,b

Figure B.1. Example of block based translation

B.1.2 Multiplexer Creation
Muliplexers are created whenever the translation contexts of condi-

tional statements are combined into their parent context. For each vari-
able v, the set CCv of all pairs (cc, Ccc) of conditions cc and associated
assignments Ccc is created. This also includes the default assignment de-
rived from the parent context Xp. If there is no assignment in any parent
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context, zero is assumed as default input. This forced initialization is
necessary to avoid the insertion of latches in the gate-level synthesis. A
multiplexer can be generated from CCv for each variable v, its output
Cout,mux,v is inserted as current value of v into the translation context
Xp.

The result of the multiplexer generation from the example given in
figure B.1 is depicted in figure B.2. The assignments to a and b from
the parent context Xp are used as default inputs for both multiplexers.
Variable a is written in four contexts, variable b in three, resulting in
multiplexers handling these four and three cases respectively.

C1,aC1,a

Cout,addCout,add

Cout,mux,aCout,mux,a Cout,mux,bCout,mux,b

Cout,mulCout,mul

C1,bC1,bC2,aC2,a C2,bC2,bC3,aC3,a C3,bC3,bC4,aC4,a CD,aCD,a CD,bCD,b

control

1 1

3 24 15

x+

2 23 34 DD

sigxsigx sigysigy

Figure B.2. Multiplexer generation from translation contexts

B.1.3 Signal Assignments
Signals require special handling in order to capture the correct simu-

lator and hardware behavior. Assignments to signals are performed only
after a ∆-cycle in hardware simulation. In order to reflect this behavior,
variables are introduced in the CFG for the translation process. Every
write access to a signal is replaced by a write access to the corresponding
variable. At the end of the CFG the variable gets assigned to the signal.
Because of this principle, the top level context automatically contains
the correct signal value, including all necessary multiplexers within the
DFG.

In the example given in figure B.3, the signal sig is written several
times in the CFG. These multiple write accesses are tracked by the spe-
cial variable varsig. After the complete iteration through all statements,
the final value of varsig can be used to write signal sig (figure B.3).
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sig <= 0;

(cc1){

sig <= 1;

}

(cc2){

sig <= 2;

}

if

if

sig <= 0sig <= 0

false

false

true

true

0 0 0

1 1

2

varsigvarsig

varsigvarsig

varsigvarsig

sig <= 1sig <= 1

sig <= 2sig <= 2

cc1cc1

cc2cc2

Sourcecode CFG DFG Creation

Figure B.3. Translation from CFG to DFG

B.1.4 Expression Translation
Expressions within the CFG are used on the left and right sides of

assignments, within conditional expressions and for subscriptions. Ex-
pressions never span more than one CFG statement. A CFG expression
is represented as an operator tree that already represents a DFG. This
structure can be translated in a straightforward manner into the DFG
without the need for a special handling. The current context is used in
order to translate the variable assignments.

B.2 DFG to CFG Conversion
In the scope of this book, DFGs, which are directed acyclic graphs

with inherent concurrency, are used for optimizations and transforma-
tions. However, this representation is not suitable for the generation of
an RTL hardware model in, for example, VHDL or Verilog. Therefore,
it is necessary to translate each DFG back into a CFG. The required
sequential ordering is given by the data flow dependencies. The order
of concurrent and therefore independent data flows does not matter re-
garding CFG descriptions. Basically, for each vertex of the DFG a single
CFG statement is derived. This CFG statement is an assignment to a
variable which can be used as operand in dependent CFG statements.

Only directed acyclic graphs can be converted into CFGs - it is ba-
sically not possible to generate a CFG from combinatorial loops. In
the applied algorithm, the ordering of statements is derived from the
DFG by topological sorting. The order (ord) of an operator is given
by one plus the maximum order of its parent operators or zero if there
is no parent operator. This rule has to be applied during a depth first
search through the DFG, starting at the vertices without any output.
An example of topological sorting is given in figure B.4.
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var1:= b + c;

(cc2){

var2:=var1;

}else{

var2:=a;

}

var3:=var1 + d;

(cc1){

var4 <= var3;

}else{

var4 <= var2;

}

sig = var4;

if

if

b

ord=4

ord=3

ord=2

ord=0

ord=0ord=0

ord=1ord=0

ord=2

a

cc2cc2

cc1cc1

0

0

1

1

c

sig

d+

+

Figure B.4. Translation from DFG to CFG

After the ordering process, the translation into the CFG starts at the
vertex with the order zero and proceeds with all vertices of the next
higher order until all nodes are translated. Functional operators such as
bit operators, comparators and arithmetic operators can be translated
in a straightforward way. Multiplexers are translated into IF/ELSE
statements or SWITCH statements. IF/ELSE statements are used if
only one condition (and its boolean negation) is evaluated. SWITCH
statements are used in all other cases. Because of the topological sorting,
nested conditions are translated to sequential conditional statements and
corresponding variable dependencies. An example of the translation
from a DFG back to a CFG is given in figure B.4 as well.
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Debug Mechanism

In this appendix further information about possible debug mecha-
nism features, the Nexus standard and debug mechanisms in industry is
provided.

C.1 Advanced Features of Debug Mechanisms
The features presented in this section do not satisfy the requirements

of a configurable processor feature as discussed in chapter 8. They are
either strongly interweaved with the processor core or demand a high
i/o data transfer. In both cases these features significantly influence
the processor structure. Therefore, these features should be considered
during design space exploration and not automatically integrated into
the processor. To complete the picture, several advanced features of
debug mechanisms are presented in the following.

Watchpoints: Watchpoints are equal to hardware breakpoints but gen-
erate an event message instead of switching to debug mode.

Ownership trace: Ownership trace provides a macroscopic view to the
executed software, such as for example, to the task flow. It is used, for
example, to trace the execution of the operating system.

Program trace: Program trace allows the exact reconstruction of a
program execution. As this trace is bound to the program counter,
which usually changes every clock cycle, the amount of data to be trans-
mitted through the debug interface is probably very high. Thus, special
protocols [125] might be applied to reduce the amount of data.

Data trace: This feature enables the designer to trace accesses to a
set of registers or memories. Messages are sent whenever a register or
memory of the set is accessed.
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Access to storage elements during user mode: Processors ded-
icated for real-time processing are required to allow debug access to
storage elements while being in user mode. This debug functionality is
highly complex to implement, as debug accesses potentially conflict with
regular accesses. The required logic to control these conflicts influences
the timing of the processor.

Memory substitution: This feature provides the opportunity to redi-
rect memory accesses to the debug interface.

The different features of a debug mechanism are categorized by the
NEXUS standard, as described in the following.

C.1.1 The Nexus Standard
In 1999, the Nexus 5001 Forum released a standard for an embedded

processor debug interface, called Nexus [150]. Members of the forum are
e.g. Infineon Technologies [151], Motorola [152] and STMicroelectronics
[153]. Nexus compliant debug interfaces are divided into four classes.
The standard specifies supported features for each class, where class 1
compliant devices implement the least and class 4 compliant devices the
most features. The standard also specifies, for example, the download
and upload rate of the debug port and whether it is full-duplex or half-
duplex communication.

Table C.1 shows the required features for the four Nexus classes. Some
optional features are not listed here. These can be found in [150].

The different classes of the Nexus standard require different interfaces
to enable the appropriate data transfer with the processor core. The
class 1 interfaces use a JTAG port, thus the access is half-duplex only.
Interfaces of class 2, 3 and 4 use additional pins for input and output
(full-duplex). They implement a Nexus pin interface, called auxiliary
port (AUX). Due to a parallelization of data transmission and a higher
clock frequency, the scalable auxiliary interface is capable of higher data
rates than the JTAG port. The number of pins for data transmission
vary from one to sixteen, depending on the class of the interface and
the required throughput. Either a JTAG or an AUX port may be used
depending on the required input data rate for classes 2, 3 and 4.

The Nexus standard also comprises an Application Programming In-
terface (API), which has to be used to access the hardware debug in-
terface. It consists of two layers: The Target Abstraction Layer (TAL)
and the Hardware Abstraction Layer (HAL). The implementation of
these layers must be conform to the C/C++ header files provided by
the Nexus standard. The TAL provides an implementation of the Nexus
debug semantics and utilizes the HAL in order to communicate with the
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Table C.1. Required features for Nexus compliant debug mechanisms

Class Feature
reading and writing core registers in debug mode
reading and writing memories in debug mode
entering debug mode from reset
entering debug mode from user mode
exiting debug mode, return to user mode

1 executing single step instruction in debug mode
2 entering debug mode from instruction/data break-

point
3 setting breakpoints and watchpoints

4 device identification
sending an event message when a watchpoint matches
real-time monitoring: process ownership
real-time monitoring: program flow
real-time monitoring: data write
real-time memory access
memory substitution
program or data trace due to watchpoint occurrence

processors’s debug mechanism through the available interface. Further
information on this topic can be found in [150].

C.1.2 Debug Mechanisms and Interfaces in
Industry

Unfortunately, there is no commonly established debug mechanism
in industry. Most companies integrate a debug mechanism into their
processors according to their own proprietary specification. However,
commonly the JTAG interface is used to access the debug mechanism.
Often additional pins are added to extend the capabilities of the JTAG
interface.

For example, Texas Instruments [154], ARM [155] and Intel [156] use
a JTAG interface to access the debug interface. The debug mecha-
nism of the ARM7TDMI [157] can be accessed via a JTAG interface
as well. However, the debug mechanism of the ARM7TDMI architec-
ture is highly specialized and utilizes at least four additional pins. The
ARM7TDMI debug mechanism contains a special macrocell, which is
called EmbeddedICE Macrocell, to control two break- or watchpoints
and the state of the debug mechanism. It contains a test data register,
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which can be accessed via the JTAG interface. The data bus of the
processor is also accessible through the scan chain of the JTAG inter-
face. Further information on the ARM7TDMI debug mechanism can be
found in [157].

Intel’s Pentium processor family is equipped with a debug mode,
known as probe mode. The probe mode is accessible via the JTAG
interface as well as additional pins [158].

The C166 microcontroller from Infineon Technologies uses a Nexus
class 1 debug interface. Both, the Super10 core from STMicroelectronics
and the Motorola PowerPC MPC 56x series provide a Nexus class 3
debug interface. The MPC 56x series contains a Background Debug
Mode (BDM) interface. BDM is a proprietary standard developed by
Motorola and is used for almost the complete PowerPC family.
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