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Foreword 

Cryptography applied to elections holds the promise of being: 

• A critical step in a centuries-long and hard-fought struggle for voting rights. 
• An end to disputed elections justifying power grabs and the erosion of  

democracy. 
• A stop to a legacy of profit from bungled technology and outmoded analysis. 
• A potential reversal of declining voter confidence. 
• A breakthrough that for the first time lets voters verify that their own votes 

are counted. 
• A scalable system for secret ballot elections with transparent integrity. 
• A technology capable of taking democracy to new levels. 

If you are interested in this challenging problem—a problem that even school chil-
dren can understand but that is made harder than traditional computer security by 
requirements for public verifiability and ballot secrecy—then this volume is for you. 
Just as cryptography can keep messages secure for senders no matter the routing to the 
destination, in principle it can keep votes secure for voters, from vote casting all the 
way through to inclusion of votes in the final tally. The challenge addressed here is to 
find practical means suitable for actual elections. 

In 2001, Ron Rivest and myself invited all those we could find who had published 
more than one academic paper on voting security to a “Workshop On Trustworthy 
Elections.” Almost all of them attended. This first workshop on the subject took place 
in a room built nearly a century earlier to house, fittingly, technology for the first 
public global radio communication system. A remarkable consensus emerged during 
the discussion session on the last day, the conclusion that cryptography holds real 
promise to improve elections and a decision to explore it further. 

A series of WOTE workshops ensued, sometimes under names adapted to sponsor-
ing organizations, and ultimately resulting in an annual event sponsored by its own 
international association—the International Association for Voting Systems Sciences. 
In addition to this open series of conferences, there was also a week-long invitation-
only workshop in 2007. 

This volume represents, for each of these meetings, papers selected by a key mem-
ber of the respective Program Committee serving as an invited editor. The volume 
aims to be comprehensive as far as the flavor and scope of the field and to bring to-
gether important but previously unpublished works. It should prove a valuable re-
source for those curious about, entering, or seeking a deeper understanding of this 
extraordinarily important and open-ended new field. 

 
February 2010 David Chaum 
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Stéphanie Delaune, Steve Kremer, and Mark Ryan

Improving Remote Voting Security with CodeVoting . . . . . . . . . . . . . . . . . 310
Rui Joaquim, Carlos Ribeiro, and Paulo Ferreira

A Practical and Secure Coercion-Resistant Scheme for Internet
Voting (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
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The Witness-Voting System

Ed Gerck

Safevote, Inc.
P.O. Box 9765, San Diego CA 92169, USA

egerck@safevote.com

http://safevote.com

Abstract. We present a new, comprehensive framework to qualitatively
improve election outcome trustworthiness, where voting is modeled as an
information transfer process. Although voting is deterministic (all bal-
lots are counted), information is treated stochastically using Informa-
tion Theory. Error considerations, including faults, attacks, and threats
by adversaries, are explicitly included. The influence of errors may be
corrected to achieve an election outcome error as close to zero as de-
sired (error-free), with a provably optimal design that is applicable to
any type of voting, with or without ballots. Sixteen voting system re-
quirements, including functional, performance, environmental and non-
functional considerations, are derived and rated, meeting or exceeding
current public-election requirements. The voter and the vote are un-
linkable (secret ballot) although each is identifiable. The Witness-Voting
System (Gerck, 2001) is extended as a conforming implementation of
the provably optimal design that is error-free, transparent, simple, scal-
able, robust, receipt-free, universally-verifiable, 100% voter-verified, and
end-to-end audited.

Keywords: voting, trustworthiness, secret ballot, error-free.

1 Introduction

It is known that current voting systems when applied to public elections consis-
tently produce results that are untrustworthy [1–3]. Centuries of experience with
paper ballot voting, decades of experience with the computerization of election-
related functions and with electronic ballots have not significantly altered this
picture [4–8].

Many blame the secret ballot1 requirement as posing an impossible problem to
solve. Rather, such examples, together with the unsuccessful attempts to improve
election outcome trustworthiness, suggest that there is today no effective model
of how information should be collected and handled in a realistic voting system
environment that includes faults, attacks and threats by adversaries.
1 A secret ballot (voter privacy) is commonly used to prevent voter coercion and

vote buying. Voter privacy is legally protected in many jurisdictions. For example, a
provision of the US Washington State Constitution states: “secure[s] to every elector
absolute secrecy in preparing and depositing his ballot”.

D. Chaum et al. (Eds.): Towards Trustworthy Elections, LNCS 6000, pp. 1–36, 2010.
c© IAVOSS/Springer-Verlag Berlin Heidelberg 2010



2 E. Gerck

We raise this conjecture in order to show the need for a new, comprehensive
voting process model that can be used to explain the observed behavior with
any type of voting process (with or without ballots) in the presence of faults,
attacks and threats by adversaries. We want the model (hereafter, the Voting
Information Transfer Model or VITM) to predict potential areas of improvement
with an effective design that improves election outcome trustworthiness. We
further want the model to be promotive of voting system requirements (hereafter,
the Requirements) that include the secret ballot and allow a conforming voting
means (exemplified by the Witness-Voting System or WVS) to be developed.

Since the assertions of any such model have to do with the relationships
between information elements such as sender, recipient, encoder, decoder, mes-
sages, and interference representing, for example, a voter casting a ballot in the
presence of an adversary, the VITM is based on Shannon’s Information Theory
[9–13], where information is essentially stochastic in nature. We posit that insuf-
ficient consideration of this circumstance lies at the root of the difficulties with
voting systems at this time.

In other words, after centuries of experience with paper ballot voting and
decades of experience with computerized and electronic voting, we reached what
we could call a classical barrier.2 If we want to make progress, we cannot continue
to treat voting information classically, although the ballot cast by a voter is and
remains deterministic.

1.1 Outline

Section 2 is an informal presentation of our approach with a first, highly simpli-
fied, WVS implementation.

Sections 3 and 4 discuss current problems and previous work, for both paper
ballots and electronic voting, focusing on voter privacy and election outcome
trustworthiness.

Section 5 presents the intuition that, although voting is a deterministic pro-
cess, in order to qualitatively improve how to best cast and count ballots in
the presence of faults, attacks and threats by adversaries, we will have to look
further into the information flow using Information Theory.

The three components of our framework are the model, the requirements, and
the conforming voting means, as respectively defined:

Voting Information Transfer Model (Section 6)
Voting System Requirements (Section 7)

Witness-Voting System (Section 8)

Section 8 includes the detailed presentation of a second WVS implementation,
extended from our first results [14] in 2001. In the Conclusions, we discuss exten-
sions and applications. We note that this work is applicable not only to voting
per se but also to voter registration and other aspects of the voting process that
are relevant to voter privacy and election outcome trustworthiness.
2 Hereafter, the term classical indicates that information is treated deterministically.
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2 Informal Description - The HS/WVS

A highly-simplified Witness-Voting System example is presented in Table 1. An
Election Operator (EO) manages the HS/WVS, which includes special elements
called witnesses and readers. For example, witnesses capture the ballot as seen
and cast by the voter, which are later tallied by readers. Witnesses and readers
are placed at least with triple redundancy, so that differences can be resolved
and no single failure could compromise error detection. Witnesses’ recordings
are inaccessible until the election ends. The EO has previously run a voter reg-
istration service (where the WVS can also be applied), which generated a list of
eligible voter authorizations to allow access to a ballot.

Table 1. A Highly-Simplified WVS (HS/WVS)

Voting
System
Setup

The Election Operator (EO) sets up a precinct, where an empty
ballot box is placed, with video cameras watching 24/7 and record-
ing every step of the voting process, as EO witnesses.

Independent
Verification
Setup

Central to the WVS method, the EO invites each stakeholder
to add their own witnesses. More Witnesses = Better Evidence.
Stakeholders can also add their own readers, e.g. in providing a
transparent error-detection and consensus process for tallying.

Election
Run All the witnesses are able to see and record that the ballot box is

empty before it is sealed and the election starts. All as witnessed
at each step, anyone who comes to vote is verified for eligibility,
signs the voter list and receives a ballot, marks the ballot secretly,
and inserts the voted ballot into the ballot box. At the end of the
election, the ballot box is opened and the ballots, including all the
ballot images from the witnessed records, are used in a transparent
error-detection and consensus process to arrive at a high accuracy,
high reliability and trustworthy election tally.

The WVS design invites stakeholders to be part of the election setup. For ex-
ample, political parties may add their own witnesses and readers, that they can
trust and verify. This design consideration is critical to the trustworthiness of
the election’s outcome and assures transparency. Since transparency is in the
eyes of the beholder, we let all be satisfied with it by construction.

Stakeholders can make sure that each vote is counted as seen and cast, but the
secret ballot is not compromised. Various witness, provided by the EO and stake-
holders, anonymously record each ballot as seen and cast by voters (thereby
catching the expressed voter intent). Ballot information from each witness and
the ballot box is used by readers in an error-detection and consensus process to
transparently calculate the election tally where, to further protect voter privacy,
individual ballot choice patterns do not need to be disclosed.
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Witness and reader elements are verifiable to be free from errors, but there
is no requirement for all elements to be perfect or even perfectly independent.
Perfection of each human and each element of hardware and software is not
required. In fact, we know that all elements are somewhat imperfect. The security
paradigm that the weakest link defines the security of the system does not apply.
Rather, a central aspect of the WVS is that there should be enough3 multiple
correction channels (C) providing feedback in order to enable the WVS to offset
the influence of interference from error channels (E) caused by faults, attacks
and threats by adversaries, so that the election outcome error can be reduced to
a value as close to zero as desired, which we call error-free.

In other words, the WVS can achieve an error-free election outcome by op-
timally preempting, or at least resolving, any dispute regarding accuracy, relia-
bility, voter privacy, and election outcome trustworthiness.

2.1 Trust Is Good, Control Is Better

Trust can be viewed as that which can break a security design [15]. In other
words, when I trust A on matters of X, if that trust fails then I have to assume
that “matters of X” can take on any possible value. With possible exceptions, it
is better to control than to trust [15]. Thus, with the WVS, no one is asked to
trust a particular witness, reader, or even a particular procedure.

To comply with these goals, the WVS allows witnesses and readers to be inde-
pendently controlled by each stakeholder, so that they do not need to be trusted
by that party. Cryptography is not used in any role where it must be trusted
by a party —trust cannot be imposed [15]. Cryptography can, however, be used
where each party agrees to it, for example in using public-key cryptography to
protect the information collected by that party’s witnesses in such a way that
the resulting information confidentiality is acceptable by any party. Alterna-
tively, acceptable physical controls can be used.

2.2 Concept Appeal

Intuitively, as more witnesses are considered, it becomes less likely that all wit-
nesses can be compromised at the same time. More Witnesses = Better Evidence.
The idea that multiple correction channels can be used to offset errors caused
by fraud was already known some 500 years ago in the context of combating
corruption.4

Formally, the WVS and the error-free result are based on the well-known
Information Theory [9, 11], a mathematical representation of the conditions and
parameters affecting the transmission and processing of information, which has
been applied as a natural answer to questions in fields as diverse as cryptography
and linguistics [10], optics [12] and portfolio theory [13].
3 Qualified as C ≥ E, see Section 6.3, Error-Free Condition.
4 Hindu governments of the Mogul period, notwithstanding the additional efforts, used

at least three parallel reporting channels to survey their provinces with some degree
of reliability [16].
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2.3 Questions and Answers

Q1: What happens if a witness element malfunctions, is compromised, or records
are erased, or edited?
A1: The witnesses are placed at least with triple redundancy. Because each wit-
ness is at least somewhat independent, the chance that a fault or attack will affect
N > 1 witness at the same time is a decreasing function of N. More witnesses
can be added, as needed.

Q2: What happens if the number of voters who signed the voter list is not exactly
the same as the number of ballots in the ballot box?
A2: A correct tally result can be achieved when the various witness ballot record-
ings are played and used in the transparent error-detection and consensus process.
In addition, witnesses can also be used to verify the voter list.

We propose Q3 and Q4 to further explore the WVS design.5

Q3: How do I know that when I selected and cast a ballot for candidate A, that
something hidden in the ballot box did not change my vote to B?

Q4: If my vote is supposed to stay secret, how can I verify that it was counted
correctly?

3 The Problem

Election outcome trustworthiness has been a longstanding problem. To exemplify
the problem setting, consider a typical example where a known number (who
sign the voter list) of known voters (who are identified in voter registration)
receive pre-approved ballots, privately make choices on race options, and cast
their ballots into a one-way ballot box; after the election is over, the ballot box
is opened for the first time and all ballots are tallied, with totals made public.
No one knows how anyone else voted (the secret ballot condition).

The equation:

Number(V oters) = Number(Ballots)

represents the basic and intuitive requirement that the number of voters who
voted must be equal to the number of ballots in the ballot box. In the US, today,
this requirement is explicitly not used in public elections with any voting sys-
tem, paper or electronic. The official reason given for this omission is that it is
impossible (sic) to do so with secret ballots, as no one knows which ballots may
be extra or missing in case of a difference.6

The official procedure in such cases is to count all the ballots found in the
ballot box, even though the signed voter list may contain a different number of
voters. In support of this procedure one often hears the argument that if the
number of extra or missing ballots does not influence the election outcome, no
5 For comments, please use this paper’s full title in the Subject line of the email.
6 We note that the HS/WVS uses secret ballots and solves this problem; see Q2/A2.
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one should care —even though undesirable ballots may have been taken from
the ballot box or desirable ballots may have been inserted.

However, when a voting system allows even one ballot to be missing or to
be inserted undetectably, this is sufficient proof that no ballot can be trusted.
More strongly stated, although no count difference may be found between the
voter list and the total of ballots in an election, still any or all the legitimate
ballots may have been compromised —for example, substituted 1:1 with ballots
that were forged, tampered with, or falsely invalidated.

Yet if ballots were not changed at all, as proved by digital signatures or any
other mechanism, votes may still have been marked not in the way that they
were seen or were intended by the voter (e.g., a vote for a candidate is shown
to the voter on the screen and matches what is also shown on a voter-verified
printout, but the vote is not recorded for that candidate), votes may have been
tallied incorrectly, or votes may have been revealed before the tally.7

Even if vote tampering does seem to have occurred and influenced the election
outcome, the credibility afforded to pre- and post-election Logical and Accuracy
(L&A)8 tests and other contributing factors such as cost to rerun an election
and legal statutes protecting trade secrets, have such a force in the balance that
a candidate may not prevail in challenging the election outcome, albeit all the
contrary evidence that the candidate can collect [4].

However, satisfying an L & A test does not mean that the voting process is
trustworthy in the presence of an adversary that would interfere with the voting
process during the election (but hide its influence during L & A tests). Further,
a zero count difference when repeatedly reading votes from the same stack of
ballots does not mean that the ballots were the same that voters saw and cast.

To shed light into the problem of vote counting errors, it is important [17] to
distinguish accuracy from reliability, as shown in Table 2. See Fig. 6.5 in [12]
and Slide 3 in [18] for a visualization of these definitions. As Table 2 shows, an
L & A test fails to effectively measure either accuracy or reliability.

Table 2. Measurement Error Type Definitions

Accuracy The spread in measuring a single event. For example, whether a vote
that was seen and selected to be cast by a voter can be counted or
not from a ballot.

Reliability The degree to which measurements are expected to be replicable
in varying circumstances yielding the same results. For example,
whether the same votes cast before and during the election provide
the same tally result.

7 Vote leakage can guide get-out-the-vote and voter-suppression operations.
8 A Logic and Accuracy test is a deterministic test performed in a controlled environ-

ment. It consists of running sufficiently large predetermined patterns through the
voting system, capturing ballot images, and tabulating the ranked choice results.
The ballot images and the tabulated results can be compared to the predetermined
patterns.
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4 Previous Work

The effective use of computing technology has been promoted by Saltman [19, 20]
and others for more than 40 years.9 The application of cryptography dates from
the early 80’s (Chaum [21]).

A well-known approach to improve election outcome trustworthiness is to add
auditing mechanisms10 with the intent to preempt or at least resolve a dispute
regarding the proper casting and counting of votes. For example, to provide an
acceptably high confidence level that all ballots were counted as cast.

Auditing proposals usually differ in their methods as applied to electronic
voting and paper ballots. Particularly relevant to the use of computers [2, 8],
auditing should be understandable by voters.

A number of independent verification mechanisms and verification enhance-
ments, including voter-verified and universally-verifiable methods, have been
proposed for example by Cohen and Fischer [22], Benaloh [23], Mercuri [24],
Cramer and Franklin [25], Benaloh and Tuinstra [26], Gerck [14, 17, 18, 27],
Neff [28], Jakobsson, Juels, and Rivest [29], Kiayias and Yung [30], Mercuri and
Neumann [31], Chaum [32], Chaum, Ryan and Schneider [33], and Chaum et. al.
[34]. Other contributions include auditing systems for the software used in elec-
tions, for example from Garera and Rubin [35], as well as proposals calling for
using more-easily-auditable open-source software such as by Wyson [36], Kitcat
[37], and the Caltech/MIT Voting Technology Project [38].

Auditing should also allow recounting, to duplicate the result of an election.
The purpose of a recount is to correct or confirm the results. California, for ex-
ample, has mandated a 1% recount of all ballots automatically without payment
from a candidate. A recount, however, is critically flawed in terms of auditing if
only the same elements are counted again, since there is no independent source
to verify them (see footnote 10).

As reviewed in the next two sections, a common limitation in classical paper
ballot and electronic voting systems is in providing the needed audit capabilities
of voters and ballots while still satisfying voter privacy (election best practice
rules and US state laws require a secret ballot, see footnote 1).

In particular, voter-verified auditing should not cause a privacy violation prob-
lem. A voter who discovers an error ought not lose the privacy of voting in
the course of the demonstration of an inconsistency. The secret ballot require-
ment also fails for a voter-verified or universally-verified auditing method when
voter privacy is protected by trusting a quorum of verifiers or election operators,
with a threshold of collusion, as discussed in Section 7.1, under “Computational
Privacy”.

9 Computerized voting with punched cards was used in 1968 in Los Angeles County,
Calif., USA [19].

10 It is well-understood that a voting system should be auditable. An audit is an inde-
pendent verification; it must be carried out in ways that are significantly different
from the initially accomplished task, including the use of different machines and
people.
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4.1 Electronic Voting

The state-of-the-art, and recently a legal requirement in some jurisdictions, with
electronic voting is called voter-verified audit paper trail (VVAPT) [24, 31]. The
VVAPT is a printout of the final voting screen with all the votes confirmed by
the voter.

The purpose of the examination of the VVAPT by the voter is to verify
that the selections shown on the VVAPT are identical to the selections shown
to the voter on the final voting screen. However, unknown sampling by voters
(it is unknown whether enough voters verify) and violation of voter privacy to
report a problem (see end of Section 4) have been noted [19]. This method also
eventually discloses all the cast ballot choices, which is vulnerable to “voter
pattern fingerprinting” (see Section 7.1).

More critically, and in spite of its name, the VVAPT does not allow the voter
to verify that the vote was stored correctly. This denies reliance on the voter in
detecting a malfunction as a way to prevent fraud —a programmer can make the
printout and the screen seen by the voter coincide exactly, and yet a different
result is stored for tallying.

The VVAPT may be used in a hand recount, or as the actual ballot for hand
counting the votes (the machine count would just provide a knowingly-unreliable
indication of the vote count). However, if all that one has is a paper ballot, it
may make more sense in terms of cost, time, human errors and fraud prevention
factors to use optical-scan paper ballots in the first place.

4.2 Optical-Scan Paper Ballots

The state-of-the-art in paper ballots is the optical-scan paper ballot. Some partic-
ipants in this dialogue consider that there is no better way to vote. For example,
California Secretary of State Debra Bowen said in a Keynote address at USENIX
2008 that “Voting and counting paper ballots are things that all citizens can un-
derstand and in the case of random hand tallies, something that all citizens can
observe and understand”. [39]

There are two types of optical-scan ballots: voter-filled and machine-printed
[19]. In either case, a voter is able to visually verify the voted ballot before
casting the vote, which may be done for example by postal mail or by inserting
it in an optical-scan unit. A visually-impaired voter may not be able to read or
mark the ballot, but that type of voter may use an audio assist unit.

Optical-scan ballots may be recounted by hand or on an independently-
managed computer system, and thus are considered adequate [19] to provide
the basis for a recount, either partial or full, to check the initially reported
results.

We question this conclusion for a number of reasons.
First, the consideration that optical-scan ballots can be used as the au-

diting source for the ballots themselves, even if recounted by hand or on an
independently-managed computer system, is at odds with the basic principle in
auditing —independent verification. A record cannot be used to audit itself. A
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hand recount or a machine recount of the same optical-scan ballots should not
be considered an independent recount or a satisfactory auditing of the process.
If we play the same CD in different machines, we still hear the same songs.

An optical-scan system may count and recount exactly the same number of
false votes, since anyone can internally mark any choice in an undervoted11

race before the first count.12 Such change would not involve any ballot swap
and would be undetectable in a visual inspection or a machine recount. Further,
ballots may be swapped, remarked, reprinted or exchanged during scanning (scan
a different set). Although a voter may see that his voted ballot was scanned and
verified as valid, the ballot can later be fraudulently overvoted13 to invalidate it,
when the voter is no longer in sight. Again, a hand recount or a machine recount
of the same optical-scan ballots would not resolve these issues.

Optical-scan ballots are sensitive to stray marks and may count them as a
vote —for example, if a voter accidentally pauses with a pen over an oval and
then decides not to vote for any candidate, that mark may be counted as a
vote. Use of a non-standard pen by the voter, or by the voter indicating a choice
with a mark that is not readable by the scanner’s sensor, or by a degraded
sensor that is not reading correctly, or a ballot that has been contaminated with
smudges or bending, may also change the intended votes readable on the ballot.
Hand reading the optical-scan ballot may resolve the issues mentioned in this
paragraph.

On the topic of voter privacy, optical-scan ballots disclose all the cast ballot
choices, which is vulnerable to “voter pattern fingerprinting” (see Section 7.1).
Further, voters may use a pen with invisible ink to identify their paper ballots,
which marks can then be read by someone, even well after an election, in order
to reward or punish voter behavior (e.g., tagged voter did not vote as expected).
Forcing voters to publicly verify the correctness of their own ballots by scanning
them in public, or by having their ballots printed by a machine, is also a potential
violation of voter privacy. Voters should be able to express their disagreement
with the election choices, for example by overvoting, undervoting or by simply
nullifying their ballots (e.g., by writing on a paper ballot), without coercion.

Adding a voter-verified or universally-verifiable auditing enhancement to
optical-scan voting systems would be useful to introduce an auditing record
that is not the ballot itself.

However, a voter-verified enhancement for optical-scan voting systems implies
a privacy violation problem (see end of Section 4). The secret ballot requirement
also fails for auditing enhancements in optical-scan voting when voter privacy
is protected by trusting a quorum of verifiers or election operators (see end of
Section 4).

11 An undervote means to make less choices than possible in a race; if no choice is made
it is also called a blank vote. Voters may want to undervote.

12 Even if there is a specific oval for a “No Vote” or “Abstain” choice, voters may still
just mark the top races and not mark anything else down the ballot.

13 An overvote means to make more choices than what is allowed in a race; it nulls an
evaluation of that race (it becomes indeterminate). Voters may overvote as a protest.
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5 Intuition

What if perfect human clerks14 who are ideally honest and error-free ran an
election, would the result be trustworthy?

No, not necessarily. Trustworthiness of the election outcome would still depend
on whether a number of requirements are met, such as that no one can vote more
than once or vote on behalf of another. This example refutes the oft repeated
idea that the trustworthiness of an election is entirely dependent on the people
who count the votes. Even if the people who count the votes are ideally honest
and use flawless devices with flawless software, the trustworthiness of the election
still remains elusive.

Election outcome trustworthiness depends on voters, but not only on their
honest behavior. It also depends on voters understanding the instructions and
being able to let their intent be represented accurately and reliably in the votes
they cast, unlike with the notorious Florida “butterfly ballot”.

What if the election is not run by such ideally honest human clerks or comput-
ers? We expect that additional requirements would have to be imposed in terms
of election outcome trustworthiness. We may require that ballots must be han-
dled in the presence of at least two clerks. But, would two clerks allow “enough”
risk reduction to allay fraud concerns? What do we mean by “enough”?

Many will recognize that not only there is no good model to design these
important requirements to, and one must make up the rules by trial and error,
but there is no inner metric to comprehensively define “enough” in terms of risk
for each step and for the voting process as whole.

What we are missing is a better model. The deterministic model described by
“cast ballots, then count them” fails to provide us with guidance for improving
the trustworthiness of the election outcome.

Instead, we start with the fresh observation that a voting system is an in-
formation transfer system. The tally results contain information that was sent
from each voter, where, according to Information Theory [9, 11], information is
essentially uncertain in nature —although voting is deterministic.

Uncertainty which arises by virtue of freedom of choice on the part of the voter
is desirable uncertainty. Uncertainty which arises because of interference on that
freedom of choice (e.g., caused by faults, attacks and threats by adversaries) is
undesirable uncertainty, which we call errors. We are, thus, motivated to include
the possibility of errors by means of a probabilistic description of undesirable
uncertainty. Information Theory provides a good correspondence here as well,
where the undesirable uncertainty is called interference (or noise).

In such a model, voting system requirements are not arbitrary. Requirements
are created and dictated by the goal of minimizing interference. The intuition is
that an information-theoretical voting model should be able to optimally combat
interference and, thus, improve the trustworthiness of the election outcome.
14 Or perfect computers. Originally, and as late as the 1920s, computers were defined

as human clerks who performed computations. Computers were expected to perform
obediently with paper and pencil, for as long as it was necessary, but without insight
or ingenuity.
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6 The Voter Information Transfer Model (VITM)

The VITM comprises the voting process in its general aspects. We consider a set
of voters with access to voting means controlled by an election operator (EO).
The voting means is the totality of physical means used, such as electronic or
human-based, with ballots or not, to collect the voters’ expressed intent and
provide an election outcome with a tally of votes for each respective race in the
election. No one knows how anyone else voted (voter privacy), not even the EO.
Different times and places may be used for voting. Voters may see different op-
tions; e.g., voters may be presented with different races (e.g., using ballot styles),
with a different option order for each race (e.g., using ballot rotation), use dif-
ferent languages and media (e.g., touch screen, voice). We include the possibility
of faults (from various sources including hardware, software, and human error),
attacks (passive and active) and even just threats by adversaries, all of which
can interfere with the voting means and with the voting process, with varying
consequences including, most notably, to influence the outcome.

By direct correspondence with Information Theory concepts [9, 11], we for-
mally identify signals with the votes as seen and cast by each voter, which are
encoded and sent by a communication channel (e.g., a ballot), and are received
at a relay point (e.g., the ballot box), where they are combined with other in-
puts and eventually decoded (tallied) to produce the output signal (the election
outcome). The signals are selected by each voter within a number of options
that includes all possible signal combinations, as defined by the election’s rules
for that voter. The voting system must be designed to operate for each possible
selection (e.g., voted ballot), as voters must have freedom of choice. Faults (e.g.,
human, software), attacks and threats by adversaries represent interference that
may change the output signal (causing election outcome errors).

To prevent any confusion, it must be emphasized that the votes seen and cast
by a voter are not stochastic variables in our approach. The fact that Informa-
tion Theory uses probability distributions to describe signals as chance variables
does not mean that we are modeling the cast votes as randomly changing their
nature between states, or as a random superposition of states. Rather, given the
available evidence (e.g., ballot box and witness records), we use probabilities to
represent degrees of belief (belief is the probability that the evidence supports
the claim) about the mutually exclusive hypotheses as to what the cast votes
might be, of which only one set of selections (cast ballot) is actually true for each
voter. This represents the condition that only one ballot is valid per voter.15

In a communication system, the message is what is transfered from sender to
receiver. According to Information Theory, the message has information mea-
sured by the uncertainty as to what the message may be. The cast votes have in-
formation because while the votes are chosen among a number of known choices,
the selection is unknown except by the voter (which satisfies the secret ballot
condition). The observation that the voter knows the selection is not relevant;

15 Even if each voter is allowed diverse opportunities to vote (e.g., to prevent coercion
online [18]), there is only one set of selections that is true for each opportunity.
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the relevant observation is that, at the time the vote is cast, the corresponding
output signal (the contribution of the vote to the election result) is unknown at
the end point.

Thus, both conditions of assuring only one valid ballot per voter and a secret
ballot occur naturally in the VITM; yet we recall that they present difficulties
in classical voting systems.

These initial observations, further qualified by us elsewhere [14, 16–18, 40, 41],
make Information Theory a natural candidate for modeling the voting process.
Mathematics of an ever more elaborate variety is necessary, but to better focus
on our search for more refined concepts, we now claim a metamathematical
argument and directly use well-established results from Information Theory in
terms of the Voter Information Transfer Model.

6.1 Limitations

In our approach we apply Information Theory concepts and results to physical
signals in communication channels and elements that we identify. By extension,
we shall also apply Information Theory to some conceptual signals and commu-
nication elements, which are observable in their effects on the election outcome
of the physical device and yet are non-physical, as they originate from envi-
ronmental or non-functional influences. For example, in section 6.2 we consider
a conceptual coercion channel where an adversary may try to use threats or
rewards in order to perturb how a voter makes ballot choices.

We expect that the Information Theory results extended to those conceptual
signals will generally hold true in the restricted context we use them, not only
given the broad application of Information Theory in many fields [10–13] but
also given our argument (to follow) that any conceptual interference of concern
here must be physically observable in its effects.

However, the only formal claims of this work are made for physical signals,
such as with the voting means.16

6.2 Interference

To further investigate the requirements of voting system design in providing
election outcome trustworthiness, we now divide the actual election outcome in
two parts: the ideal part, without any interference; and the interference. We
shall call the ideal part the election outcome and consider the actual case to be
that where the election outcome is perturbed by the interference. Interference is
undesirable uncertainty. Interference causes errors.

Interference is anything that can change the election outcome compared with
what the election outcome would have been if the interference did not exist.17

16 The Witness-Voting Systems (WVS) of Sections 2 and 8 are examples of a voting
means. They are physical devices with physical signals (e.g., a voted ballot).

17 Note that we explicitly exclude from this definition of interference any perturbations
that have no influence on the election outcome. This is not necessary. Interference
could be defined as a vector quantity with other components.
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We further distinguish interference with functional and performance influence
(hereafter called physical interference) from interference with environmental and
non-functional influence (hereafter called conceptual interference).

Conceptual interference must be observable in its effects but does not need
to exist physically; it may just stay as a threat.18 Interference also presents
combined failure modes where an attack in one layer of the system can be used
to compromise another layer (e.g., a conceptual interference creating a physical
spurious change in the election outcome).

Our concept of interference captures any source that could perturb the election
outcome, including faults, attacks and threats by an adversary.19

For example, passive eavesdropping on the voted ballot (e.g. by covertly moni-
toring the stray electromagnetic emissions from the computer screen used by the
voter) can enable coercion that may interfere with the election outcome. Yet if
performed from afar, undetectably and never overtly used to coerce or influence
voters, a passive attack such as eavesdropping can still be used to perturb the
election outcome (see footnote 7). In either case, passive eavesdropping can be
modeled as an interference source in terms of its influence on the output signal
(the received message; the election result).

Information Theory also includes the concept of interference, or noise, de-
fined as that which perturbs the signal. The usual case of interest is when the
signal does not always undergo the same change in transmission, when noise
may be considered a chance variable just as the message is considered. In gen-
eral, noise may be represented by a suitable stochastic process. However, it mat-
ters not whether noise always produces different changes in the received signal,
or where that change originates. A constant and 100% predictable radio signal
from an unknown source is also noise. Anything that interferes with the message
is noise.

We observe that interference (noise) in Information Theory corresponds to the
same concept defined here. As previously considered by us [16], the condition to
model attacks and faults as interference (noise) in a communication system is the
same one that already exists in Information Theory, namely, noise is anything
that interferes with the message.

In describing interference sources and prevention, it is customary to define
boundaries or spheres of influence. A first boundary comprises the voting means.

18 This is well-known to chess players, where perceived threats can be more effective to
change a game than actually carrying out an attack. A voter who fears that an attack
can reveal her choices, with unpleasant consequences, may not vote as intended even
if there is no such attack.

19 Including, for example, the influence of ambiguous ballot design, incorrect touch
screen coordinates, transmission and reception errors, faults, malfunctions, virus,
bugs, buffer overflow, dormant or hidden code, alpha particle memory corruption,
covert microcode, covert channels, human error, collusion, coercion, blackmail, finan-
cial kickbacks, fraud and any passive or active interference attempt by adversaries.
This may also include man-in-the-middle, eavesdropping, replay, impersonation,
forgery, and any other attacks by an adversary. Attacks may also adapt to defenses,
either automatically or driven by an intelligent source [16].
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A second boundary (which contains the first) comprises the voting system with
the voting means, voters, election operators, and ancillary machines such as
those used for voter registration. A third boundary (which contains the second)
is open and includes anything else that lies outside the second boundary.

The VITM and the Requirement operate in the third boundary and define
how, inside the first boundary, a conforming voting means (e.g., the WVS)
operates.

Inside the first boundary (the WVS), interference prevention must be limited,
of course, by physical signals. This may seem at first sight to present a basic
security limitation for the VITM design, as interference sources from outside the
first boundary may still perturb the voting means operation.

For example, outside the first boundary but still inside the second bound-
ary, lie physical and conceptual interference sources that do not seem to be pre-
ventable by the voting means (e.g., collusion between election operators; physical
threats against voters who do not vote as ordered; malicious code inserted into
the voting means by an adversary).

Moreover, significant interference sources lie even outside the second bound-
ary. For example, gerrymandering20 and selective “voter roll purging”, or just
conveniently ignoring an existing imbalance of natural factors (e.g., illiteracy,
language differences, economical handicap, and physical handicap) that can
block undesired voters or favor participation of desired voters.

However, contrary to our concern at first sight, it is easy to show that con-
ceptual interference can be physically prevented by a conforming voting means
(the WVS). For example, an attempt by a voter to sell the vote cast (concep-
tual interference) can be physically prevented if the voting means conforms to a
requirement to be receipt-free (the voter cannot prove to others how she voted).
Conversely, a physical control vulnerability at the voting means may open the
possibility of conceptual interference. Even if a voter just fears that voter privacy
can be compromised by some characteristic of the voting means (e.g., perceived
lack of a physical control preventing “voter pattern fingerprinting”, see Section
7.1), the voter may not vote freely (conceptual interference).

More generally, we argue that a conceptual influence must eventually create
a physical influence in order to be an interference source.21 Thus, the respective
pairs of conceptual and physical influence are not independent and can, if de-
sirable, be controlled (denied or allowed) physically. Conversely, ignoring such
considerations in the voting system design could create conditions for unintended
conceptual and physical interference.

20 This term describes the deliberate rearrangement of geographical limits of congres-
sional districts to influence the outcome of elections. Its purpose is to concentrate
opposition votes into a few districts to gain more seats for the majority in sur-
rounding districts (packing), or to diffuse minority strength across many districts
(dilution).

21 In other words, it must be observable. If no physical influence is created (i.e., if
there is no change of election outcome), by definition the interference does not
exist.
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Thus, even though useful to define the physical scope of each element, bound-
ary definitions are not limiting in terms of either interference influence or
prevention.

Our framework [VITM, Requirements, WVS] predicates the need for a com-
prehensive, cross-boundary approach. In order to minimize interference, we con-
sider conceptual and physical error/correction channels in the VITM to define
Requirements (Section 7) that work together with a conforming voting means
(the WVS, Section 8).22

6.3 Optimal Design

Election outcome trustworthiness requires that a voting system produces results
with high accuracy and reliability (see the respective definitions in Section 3,
Table 2). This section shows how 100% accuracy and reliability can be achieved
and verified as closely as desired, which we call the optimal design.

From Information Theory we use the concept of channel, as that part of
a communication chain in which signals are transmitted from a sender to a
receiver. An important channel in a voting system is shown below, in sending
information from A to B:

(A: what the voter sees and casts) =⇒ (B: the tally results)

where, if the channel is vulnerable to interference, it may not be possible to reli-
ably send A to B. The fundamental problem of voting [18] is that of reproducing
at B the same information that was sent from A. Or, as often stated, how can
we prove that the vote received at a ballot box, and tallied, is the same vote
that was seen and cast by a voter?

This question is not easier to answer if the voter is close to the ballot box, or
far away. Distance plays no role, contrary to what one might think at first. The
essential problem is that the voter is not and cannot be inside the ballot box,
and cannot follow the ballot all the way to the tally results, hence the voter has
no way of knowing if what was sent through that communication channel (which
may be very short) was what was received (and tallied).

Specifically, what we desire is stability in the presence of interference meaning,
in a broad sense, “invulnerability to potentially corrupting influences”. This
corresponds to the concept of reliability in Information Theory, with the same
definition used here (Section 3, Table 2).

22 For example, gerrymandering is a conceptual attack that can be set up in spite of
any security assurances of the voting means. However, if a conforming voting means
allows voting from any location then it becomes possible to deny in the requirements,
as broadly as desired, any geographical restrictions that could be manipulated for
gerrymandering [42]. As another example, visual accuracy errors by the voter in
choosing the intended ballot options (i.e., a conceptual interference) can be prevented
physically by offering the voter a final screen with a summary of all the votes for
confirmation.
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To increase reliability in spite of interference, Information Theory introduces
the idea of using different channels of information as intentional redundancy.23

More channels, more redundancy, less interference.
It is clear from the foregoing, thus, that by sending information from A to B

in a properly redundant form, the probability of accuracy and reliability errors
can be reduced —which can be theoretically and experimentally verified. For
example, by sending to B two different messages created from the same final
ballot screen that the voter saw and confirmed: (1) a printout and (2) an elec-
tronic record. With more properly redundant channels (e.g., a copy of the screen
memory), the probability of errors could be made even smaller.

One could expect, however, that to make the probability of errors approach
zero, redundancy must increase indefinitely, and the rate of transmission there-
fore would approach zero. This is by no means true, as shown by the Tenth
Theorem (in current wording) [9, 11]: With the addition of a correction channel
equal to or exceeding in capacity the amount of noise in the original channel, it
is possible to so encode the correction data sent over this channel that all but
an arbitrarily small fraction of the errors contributing to the noise are corrected.
This is not possible if the capacity of the correction channel is less than the
noise.

By direct application of the Tenth Theorem, we state below the condition to
make the probability of errors approach zero.

Error-Free Condition: There exists an optimal design that can reduce election
outcome errors (interference) to a value as close to zero as desired, which we call
error-free. The existence condition is given by

C ≥ E

where C is the capacity of the correction channels and E is the capacity of the
error channels.

Referring to the Intuition discussion in Section 5, not only can we now quantify
what we mean by enough, as C ≥ E, but we can also specify in terms of inner
metrics the expected risk value for each error channel and for the voting process
as a whole.

The optimal design is used in our framework to reduce both physical inter-
ference (provably) and conceptual interference within all three boundaries (see
boundary definitions in Section 6). In physical terms within the first two bound-
aries, a conforming voting means implements the optimal design to provably
increase accuracy and reliability in a communication process that includes the
ballot as seen and cast by a voter (the starting point A), the ballot box as a

23 Redundancy is the variety in a channel that exceeds the amount of information actu-
ally transmitted. English writing is estimated to be 50% redundant, which accounts
for our ability to detect and compensate for typing errors; fr xmpl, ndrstndng txt
even without vowels. In the process of communication, redundancy is essential to
combat interference, to assure reliability and to keep a communication process in
operation in spite of interference [9, 11].
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relay point, and the tally results (the end point B). The capacity of the correc-
tion channels physically available to the voting means are set and adjusted24 to
achieve the condition C ≥ E, whereby the election outcome errors (interference)
can be as close to zero as desired. The Requirements composition and the im-
plementation development (including software) are similarly set and adjusted,
where correction channels are provided by the EO, the stakeholders, the voters,
and other elements within the third boundary.

The significant aspect is that the election outcome is error-free. It may seem
surprising that we should define an error-free result for a voting means in the
presence of interference, including the possibility of errors caused by faults and
attacks by adversaries, since we do assume in such circumstances that the cast
ballot may have been changed from what the voter saw and confirmed. However,
rather than strive for elusive perfect elements that could outright eliminate er-
rors as in a classical deterministic model, our approach is to explicitly include
the possibility of errors by means of a probabilistic description of undesirable
uncertainty (interference), where the Error-Free Condition is then applied.

6.4 Trust

We now impose what we call the transparency condition, in that to allay collusion
and security concerns we want the error-free condition to be publicly verifiable.

However, not all messages in a voting system are capable of providing accept-
able proof to any stakeholder as a verifier. For example, a proof that may be
acceptable by the EO may not be acceptable by voters. In order to rate sources,
destinations, and communication channels in terms of providing acceptable proof
to a verifier, the concept of qualified reliance on information is introduced in the
VITM based on our previous definition of trust in a communication process
(Gerck, 1997 [15]), which is compatible with Information Theory.

According to [15], trust has nothing to do with feelings or emotions. Trust is
communicable. However, trust cannot be communicated by self-assertions (e.g.,
saying “Trust me” does not make one more trustworthy). Formally stated, Trust
is that which is essential to a communication channel, but cannot be transferred
using that channel. From this abstract definition, applied definitions can be de-
rived such as Trust is expected fulfillment of previously observed behavior and
Trust is qualified reliance on information, based on factors independent of that
information. In short, trust is defined by at least two channels of communication
and the channels need to be at least partially independent. In plain English, the
greater the number of independent ways one can verify something, the greater
reliance one may have.

Section 6.3 showed that with more channels, more redundancy, we can reduce
interference. Now in terms of a trust requirement, the desirability of multiple
communication channels again enters our framework.

Multiple communication channels can use any media for information trans-
fer, such as electric signals, magnetic and optical disks, paper, and microfilm.

24 For example, by using operational feedback; see Table 4, Section 8.
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However, suppose that a terminal where the voter enters his choices would change
them to something else and then would send this corrupted information over N
channels using diverse media. Does it make any difference in terms of trust
whether N = 1, 2 or 500?

Not in terms of trust on the cast ballot. In such a case N would still be 1
for the ballot channel. The 2 or 500 channels are not independent for the ballot
channel because they all originate as copies from that single corrupted ballot.
So, it does not make a difference in terms of ballot reliance. It could, however,
make a difference in terms of improving communication reliance.25

In terms of trust, the above example motivates including not only multiple
communication channels but also channels of diverse types, with machine-
machine communication (e.g., transmission channels) and human-machine com-
munication (e.g., ballot channels). Human-human communication (e.g., audit
channels) should also be considered because we want machines to be verifiable
independently of the machines themselves. We further want the voter to be able
to act as a source and as verifier in more than one part of the system, in both
human-human and human-machine communication.

What is needed is thus to include redundant and diverse26 communication
channels at each node, which can be used to provide correction channels. For
example, at different layers and corresponding to different time, space, refer-
ence frame, source, recipient, verifier, context, and environment conditions, even
during the election and in real time.

In other words, there should be sufficient diversity in implementing the desired
redundancy in order to enable different verifiers to qualify reliance on information
(i.e., trust [15]) in ways that are not just self-referential (subjective).

As trust conditions, the VITM requires redundancy and diversity:

Table 3. Trust Conditions

Redundancy Use multiple channels and types of communication.

Diversity Channels must be at least partially independent.

For example, in enabling multiple and diverse verification channels but with-
out breaking the secret ballot condition, a voting system could allow a voter to
verify whether her ballot is present or not at the ballot box, whether her ballot at
the ballot box is valid, and (with an acceptable degree of confidence) whether the
ballot is what she saw and cast. It is important to note that random verification

25 According to Section 6.3, the ballot box would more probably receive the right
ballot (even though corrupted) for N = 500 than for N = 1. With more transmission
channels, there is less probability that a majority of channels can be perturbed at
the same time.

26 Diversity does not require absolute independence. If two channels are not 100%
mutually dependent, the probability that both may fail at the same time is smaller
than that of any single one to fail.
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by even a small fraction of the voters (e.g., 5%)27 can be effective in detecting
errors and create a credible deterrent to fraud. Thus, when properly done, voter
verification by even a small fraction of the voters can help improve election
outcome trustworthiness for all voters.

Another characteristic of a good voting system is freedom of choice. A voter
needs to be able to trust that she cannot be threatened, hurt, or even denied
something as a result of her vote choices. Election operators and the public in
general also need to be able to trust that voters cannot receive favors as a result
of their vote choices. To assure freedom of choice, the only person to whom
the vote should be proved is the voter himself. In other words, no one else and
certainly not the election operators should be able to prove how a voter voted.
Otherwise, the vote could be coerced or sold. Thus, no information channels
may exist allowing individual voters and ballots to be linkable. We call this the
unlinkability condition; even though voters and votes must each be identifiable,
they must not be linkable to each other.

In terms of electronic versus paper ballot voting systems, the primary concern
for increasing reliability is the capacity of the correction channels compared with
the capacity of the error channels —not the physical properties of the medium
(e.g., paper) used in a communication channel. If an electronic voting system is
able to provide N proofs (human and machine based), these N proofs for some
value of N larger than one will become more reliable than one so-called “physical
proof” even if this one proof is engraved in gold or printed on paper. The make-
up of each channel’s carrier (e.g., paper, photons, electrons) is by itself irrelevant.
See [40] for further discussion on this topic.

To assure end-to-end trust, in addition to protect casting the ballot, one must
also protect the former steps in presenting the ballot as well as the latter steps
in tallying and auditing the ballot. This will be given as a set of Requirements
(Section 7) that work together in an end-to-end design. The concept of trust in
[15] has the same meaning in all the components [VITM, Requirements, WVS]
of the design. Different verifiers can also use different trust models (e.g., hierar-
chical, web-of-trust), which are all integrated (though not unified) through the
same trust definition, subsuming the physical and conceptual cases.

With potential applications to other security problems, we note that the oft-
cited security paradigm “the weakest link defines the security of the system” does
not apply here. We also do not rely on “perfect” parts or one “strong” evidence.
The WVS error-free design condition (see Section 6.3, Error-Free Condition) is
based on several, mostly independent (and possibly imperfect) evidences that
can build a correction channel with enough capacity so as to correct all but an
arbitrarily small fraction of the errors. This is a new security paradigm provided
by this approach [16, 17, 40, 41], which we call the mesh paradigm —a mesh
does not break if a link breaks.

With the WVS, one or more witnesses are used to capture the primary infor-
mation: what the voter sees and confirms on the screen. A primary information
witness may be used by itself as the voted ballot, possibly with better reliability

27 A conservative estimate obtained by applying the Saltman auditing model [43].



20 E. Gerck

than the voted ballot kept solely under EO control. However, one “strong” evi-
dence can never be perfectly strong —it may, and will, fail. The objective of the
WVS is thus not to rely on one “strong” evidence, which can never be perfectly
strong, but to rely on several, mostly independent evidences.

Instead of saying “all parts are perfect” or “there really has to be security
on every single piece”, which is impossible to obtain as one piece will inevitably
be the weakest link, we say “there really has to be one or more alternate secure
paths in case any single piece fails, because fail it may”.

Instead of a “Fort Knox” approach (“make it stronger”) that relies on what
becomes a single point of failure (or congestion), this approach calls for a mesh of
links such that a number of links may fail at the same time without compromising
accuracy, reliability, and voter privacy.

The same solution applies to preventing faults and fraud, but we start with
a “Default Denial” policy that also originates from trust considerations —trust
is earned [15]. In other words, everything is denied until acceptable proof that
it should not be. And acceptable proof must come in more than one way, and
must be verified in more than one way, as qualified reliance on information [15]
(see Table 3, Trust Conditions).

6.5 Preferred Setup

The VITM is based on our Information Transfer Model (ITM) [16], which uses
the conceptual separation of a subject into witness-objects (observable entities,
as witnesses or references for chosen properties of the subject) and reader-objects
(observer entities, as adequate readers of the witnesses).

To implement the VITM in a preferred setup that can be directly imple-
mented as a Witness-Voting System (WVS, Section 8), we analyze the voting
process and define a first subject property to be the election outcome. During the
election, witness-objects will witness events and then become available as ob-
servable entities for reader-objects at specific time periods, including for tallying
and auditing.

Next, we define the witness-objects (hereafter, witnesses) and reader-objects
(hereafter, readers) that the verifiers need to establish. Further consideration
is provided in Section 8.3. Independently of any witnesses and readers set up
by a particular verifier called the Election Operator (EO), the VITM allows
witnesses and readers to be added at any step of the process by other verifiers.
The witnesses and readers shall be designed to be privacy-preserving, so that
there is less limitation who the verifiers may be or how they are supposed to act.

If verifiers wish to add more witnesses (readers) than what may be desirable
in terms of a practical design, a cut-and-choose strategy can be applied to allow
a smaller number of witnesses (readers) to be chosen without bias. To reduce
complexity, the end-to-end argument28 can be used to preferably place witnesses,
for example, at the start point A (what the voter sees and casts) and the end
point B (the tally results).
28 Instead of demanding complete and correct control at every intermediate step,

control the end points [44].
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7 Voting System Requirements

The Voting System Requirements (Requirements) are limitations to prevent con-
ceptual and physical interference. Mirroring the broad scope of interference as
defined in this work (section 6.2), the Requirements will include functional and
performance aspects as well as environmental and non-functional aspects. With
such a comprehensive approach we want the Requirements to be expressive
enough to comprise a variety of means that can be falsely used to influence
elections without voting, including interference that does not even exist physi-
cally and just stays as a perceived threat.

The Requirements are derived using the VITM considerations in Section 6
and work together with the VITM to setup a conforming voting means (the
WVS, Section 8). Some requirements were already naturally motivated in the
VITM, such as the secret ballot, one ballot per voter, and transparency. Further
consideration is provided in [40], extended in this work.

The VITM does not require open source software as a sine qua non condition
since, as Linux demonstrates, even a long development time and thousands of
eyes do not guarantee accuracy and reliability. Bugs, fraud, virus, Trojan horses
and faults may still influence the outcome, without possibility of detection [49]
even with open source software. The VITM solution to the software (and hard-
ware) reliability question is further discussed in Section 8.3.

As the final and simple step in calculating election outcome, tallying can use
open source to allay error concerns. Following the optimal design, detection and
correction of errors is provided when diverse tallying modules are used and the
outputs compared. To prevent fraud, tallying modules should consider informa-
tion on a strict “need to know” basis. Tallying should not receive any informa-
tion that it does not need, and it should not produce any information that is
not needed to define the election outcome. For example, the voter’s ethnicity or
choice of ballot language should not be a consideration in tallying. An important
requirement, thus, is that the cast ballot should be only choice-dependent, so
that it must be independent from all other types of data (e.g., the cast ballot
must be representation-independent and language-independent).

7.1 Privacy Considerations

Voter privacy is necessary to prevent coercion and vote buying. It is also, often,
a legal requirement (see footnote 1).

The voter privacy condition is at times confused with anonymity. However,
to assure election integrity voters must not be anonymous. Both the voter and
the vote must be and are well-known at different stages of the election process.
Yet, because no one should be able to link votes with voters (unlinkability), if
we know the voter (e.g., in voter registration) we cannot know the vote that was
cast by that voter; if we know a vote (e.g., in tallying) that was cast, we cannot
know the voter who cast it. All voters are identified and still the election results
are anonymous.
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Often in elections, the available choices need to be defined and controlled
per voter and per group of voters, which raises privacy concerns. For example,
when using different ballot styles with different choices due to jurisdiction, geo-
political or other differences; when ballot rotation is used to assure fairness of
option placement in a list of options (different voters see the same options but
with a different top to bottom sequence); when law requires (as in some US
states to assure non-discrimination compliance) that each voter’s ethnicity must
be registered; or when allowing more than one language or media (e.g., audio,
Braille printing, large fonts).

To prevent coercion and vote buying, the choice of voting method is also
significant. For example, while postal mail voting cannot prevent voter coer-
cion, precinct-based voting creates a protected environment where voter coercion
may be prevented. Online voting, even if not precinct-based, may also prevent
coercion [18].

However, even when voting is private and the voting method allows coercion to
be preventable, the voter privacy requirement may have further and subtle con-
sequences. For example, the ballots cast should not be disclosed to anyone (not
even during or after tallying); just the tallied results can be disclosed. The rea-
son is that choice patterns that are likely to be statistically unique in an election,
and yet include a desired outcome, can be defined and then used as a “voter pat-
tern fingerprinting” mechanism to identify a single voter, or all voters of a small
group (e.g., one family), which may influence an election by means of coercion
and vote buying.29 Although without identifying voters, disclosing the cast bal-
lots can also be passively used to influence next elections, as a detailed glimpse
into voter demographics that can later be used with gerrymandering (footnote
20) and yet finer methods such as social pressure. Conversely, if the cast ballots
are disclosable (e.g., to the election operators) then they should be made public
to all, so that all stakeholders could equally benefit from their analysis.

To clearly define the concept of voter privacy, we previously [40] discerned
not only different types of voter privacy but also different “strengths”. The list
below presents this classification, and additional comments, ranked from lowest
to highest privacy strength.

Policy privacy: Exemplified by election systems that depend on election offi-
cials and/or separated machines in order to protect voter privacy. Policy privacy
cannot prevent the operators or attackers from penetrating both systems and re-
joining the information. It also cannot prevent a court order that would mandate
rejoining the information in the servers.

Computational privacy: Exemplified by election systems that rely upon a
quorum of verifiers or election operators, in blind signatures, mix-servers or ho-
momorphic encryption, such that not less than N people working together (which
defines a threshold of collusion) can compromise voter privacy. Such systems rely
not only on absence of design flaws, but also on absence of a compromise to the
computational platform (e.g., a virus that would record all N keys for later use, a

29 This method has been used by organized crime (private communication).
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bug, or a non-intrusive electromagnetic eavesdropping device that would record
all N keys for latter reuse without ever physically penetrating the platform). To
work, this method also depends on non-physical assumptions, including that the
election officials shall use independent judgment, cannot be coerced or intimi-
dated, are not bound by a conflicting trust commitment such as of a military,
political or religious nature, do not constitute a cabal, and have a minimum
level of honesty to resist collusion. It also assumes that the control system that
enforces the threshold of collusion cannot be corrupted. The quorum method
depends on a number of assumptions that in general are not revealed to the
voters and are likely not suitable for public elections. This practice also fails to
protect voter privacy under court or administrative order (when all keys and
secrets must be revealed).

Information-theoretic privacy: Exemplified by election systems in which
there is no reliance on cryptography in order to protect privacy (e.g., no re-
liance on public-key encryption). It defines a privacy strength that cannot be
broken by computation, even with unbounded time and resources. Information-
theoretic privacy, however, fails in the following examples: (a) parties share keys
in advance and use one-time pads, which is impractical and subject to collu-
sion (when keys are revealed); (b) parties share physically protected channels,
which fails against collusion where the channel is compromised (also without de-
tection); (c) parties share information (via secret-sharing techniques) and they
are assumed not to pool it together, which fails against collusion. Information-
theoretic privacy also cannot protect voter privacy in the case of a court order
that mandates revealing all keys and secrets used in the system.

Fail-safe privacy: Defined in [40] for election systems where voter privacy
cannot be compromised even if everything fails including software and hardware,
everyone colludes and there is a court order that mandates revealing all keys and
secrets used in the system. Current paper ballot voting systems can provide fail-
safe voter privacy.30

7.2 Summary of Requirements

These Requirements are an extension of our previous work [40] and apply to
voting systems and rules of any type. In terms of systems architecture, our goal
is that the Requirements present a comprehensive consideration as to what is
to be done (functional), how well a voting system is to perform (performance)
and under what conditions it is to operate (environmental and non-functional).
Requirements are created and dictated by the goal of minimizing interference.

30 Fingerprints and DNA may be left on paper ballots by voters. If not prevented (e.g.,
by using a selection mask), this could be used to compromise privacy. However, the
cost and resources in mounting such an analysis has been a deterrent in practice.
Another way to compromise privacy is by matching paper fibers alongside a tear-off
boundary, for paper ballots that provide a “receipt” to voters; this would, however,
require the cooperation of the voter.
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1. Fail-safe voter privacy. The inability to link voters with votes is required.
Voter privacy MUST be assured even if everything fails to function properly, or
is forced to function improperly, everyone colludes and there is a court order to
reveal all election data, without time limitation.

2. Collusion-free vote secrecy. The inability to know individual votes is
required. Vote secrecy MUST be assured even if all election means (e.g., voted
ballots) and security keys are made known by an attack or a fault (i.e., vote
secrecy MUST NOT depend only on communication protocol and cryptographic
assumptions, or on a threshold of collusion for the key holders).

3. Verifiable election integrity. The inability of any number of parties
to influence the outcome of an election except by properly voting is required.
The system MUST provide verifiability that each vote tallied originated from an
eligible voter and that all votes are tallied as seen and cast by voters. For any
voter the system MUST also provide verifiability that there is one and only one
valid ballot cast by the voter in the ballot box.

4. Fail-safe privacy in verification. Voters MUST NOT have to disclose
their identity in order to verify their votes or report a perceived error. Fail-safe
voter privacy (Requirement #1) MUST be preserved even when voters partici-
pate in a verification process.

5. Physical recounting and auditing. MUST provide for reliability in
auditing and vote recounting, with an error rate as low as desired. The auditing
and vote proofs MUST be capable of being physically stored offline and verified
for integrity in real-time during the election, without compromising any other
Requirement and allowing effective human verification.

6. 100% accuracy. Each vote or absence of vote (blank vote) MUST be
correctly counted, with accuracy (spread of a single measurement) error as close
to zero as desired. Counting and recounting ballots MUST NOT reduce accuracy.

7. Manifold of links (mesh system). MUST use a manifold (mesh) of
redundant links and keys to securely define, authenticate and control ballots.
MUST avoid single points of failure or congestion —even if improbable.

8. Offline secure control structure. MUST provide an offline secure end-
to-end control structure for presenting and collecting information from voters
(e.g., ballots). MAY use digital certificates under a single issuing authority. The
control MUST be data-, representation-, and language-independent.

9. Authenticated choice representation. The representations of the
choices available to each voter, including ballot style and ballot rotation if ballots
are used, MUST be authenticated and MUST be provided with a control means
that also authenticates the voter.

10. Authenticated user-defined presentation. If voters MAY choose lan-
guage, font size, layout, display format, and other presentation properties, the
choices MUST be authenticated but SHOULD NOT be provided with a control
means that also authenticates the voter.

11. Allow voter to review and change choices before casting ballot.
MUST allow voters to review and change choices from “vote” to “blank vote” or
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to any other available choice, at will, for any race and for any number of times,
before casting their votes. This is equivalent to receiving a new blank ballot.

12. Allow undervote (abstain). SHOULD allow voters to abstain to vote
in any or all choices (undervote). An undervote MAY be represented by a spe-
cific choice, such as Abstain or No Vote. The voter MAY receive a warning of
undervoting. However, such a warning SHOULD NOT be public.

13. Overvote warning. To prevent mistakes and post-voting fraud: if over-
voting is detected, SHOULD warn the voter that a vote has to be cleared in order
to proceed. Any warning SHOULD be made known only to the voter, without
public disclosure. MAY prohibit overvoting.

14. Provide for null ballots. MAY allow voters to null races or even the
entire ballot as an option (e.g., to counter coercion; to protest against lack of
voting options). Overvoting MAY be used as a mechanism to provide for null
ballots.

15. Technology independent. SHOULD not depend on any specific tech-
nology to support any Requirement.

16. Open review, open code. SHOULD allow all source code to be publicly
known and verified (open source code, open peer review).

8 A Conforming Voting Means: The WVS

The Witness-Voting System (WVS) is a physical device that follows the optimal
design of section 6.3 and the Requirements, both physically and conceptually.

The significant aspect of the optimal design is the Error-Free Condition C ≥ E
(hereafter, EFC). As a non-limiting example, Table 4 shows an implementation
class of the WVS where the EFC is divided in two parts.31

Table 4. WVS Implementation Using a Four-Step Program

I EFC 1: Optimal casting and counting of votes, in order to
II assure voters that their ballot choices are private and
III assure election outcome trustworthiness.
IV EFC 2: If (II) and (III) are satisfied, SUCCESS; else improve (I).

A first EFC is used to optimize accuracy and reliability in the casting and
counting of votes, and operates primarily within the first and second boundaries
(see boundary definitions in Section 6). A second EFC is used to optimize voter
privacy and election outcome trustworthiness, where operational feedback at step
(IV) is used to provide physical (e.g., witness configuration) and conceptual (e.g.,
Requirements) correction channels by the election operators, the stakeholders,
the voters, and other elements within the third boundary.

The following features result by applying Table 4 to Sections 2 and 8.1.
31 The optimal design does not specify how the EFC should be implemented; for exam-

ple, one could use an open-loop, a closed-loop with feedback, or a mixed approach.
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The WVS design is transparent. As part of the election setup, the WVS design
invites stakeholders to add their own witnesses and readers, which is critical to
the trustworthiness of the election’s outcome, step (III).

The WVS design is simple, scalable, and auditable. The WVS design uses
multiple, diverse channels to transfer information from each voter to the tally
results, which is promotive of end-to-end auditing and is amenable to end-to-
end arguments (see section 6.5). Consequently, the number of process points
that need to be witnessed is relatively small and the design can be implemented
using parallel elements (e.g., witnesses, readers, tally processing) for simplicity,
scalability and reliable auditing.

The WVS design is robust. For example, in order to satisfy step (III) the
WVS implementation should be transparent in operation to the voters and the
operators. If that does not seem to be the case for some operation in (I), that op-
eration can be redesigned using the considerations in Section 6 and the problem
solved to the satisfaction of both (II) and (III).

The WVS design is extensible. Additional control variables can be added. For
example, a step (IIIa) could be inserted to promote low election cost, while a
step (IIIb) could measure voter feedback to assure accessibility compliance.

8.1 How It Works

With the objective of highlighting the basic concepts used in our approach,
section 2 presented a WVS implementation that was highly simplified and used
intuitive requirements. A more practical WVS implementation is presented here,
following the model presentation and qualified requirements of the previous sec-
tions. Additional WVS implementations are described in [14].

This presentation includes many considerations of our approach. Notably
missing from our implementations, but referenced in [17], we did not provide
examples of voter registration, voter authentication, and ballot authentication,
as well as their use in terms of specifying a “closed-circle” voting process.

Most importantly, the WVS captures what we call the “magic moment”, when
the voter sees and confirms the choices in order to cast the ballot. This is the
primary information that needs to be voter-verified and universally verifiable,
albeit anonymously and without creating a “voter pattern fingerprinting” vul-
nerability (Section 7.1). The WVS will also provide end-to-end verification that
ballots are processed correctly, giving voters and other parties independent ver-
ification capability that the votes are cast, collected, and counted as intended.

Without limitation, we consider that the message selected by a voter (i.e., the
ballot that a voter sees and casts) is transmitted initially to the ballot box, stored
there and later tallied, with totals made public. We further describe how the
influence of errors in the voting process (including fraud, malfunctions, passive
and active attacks) may be corrected to achieve an outcome error that can be
as close to zero as desired (error-free), using ways of transmitting and receiving
the information that are provably optimal in reducing errors.

We will often refer the reader to slides in [14] for visualization. The slides
are available online. Please load or print slide number 13 in [14]. To refer to
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elements in the slide we will use their three-digit number tags, such as (230) for
the witness device.

Slide 13 in [14] exemplifies a conventional electronic voting machine (also
called DRE, Direct Recording Electronic voting machine) with a first imple-
mentation of the witness device (230) within dotted lines, containing the beam-
splitter module32 (212), camera (216), computer (220) and cartridge B.

A voter (200) provides input voting data through an input device (202) which
provides an interface to a first computer (204). The computer (204) comprises
an electronic voting machine such as a DRE and includes an optical projector
(206) for projecting voter selection data on a touch screen or other display device
(208) which displays a ballot and receives a voter’s selections. The touch screen
(208) provides an image of the voter’s selections to the voter (200).

The image on the touch-screen (208) is created from a projector (206) that
transmits a light beam along path (210) to a beam-splitter module (212). Part of
the light continues along a path to the screen (208). Light deflected by the beam
splitter module (212) is provided to a digital camera such as a charge coupled
device CCD (216). Device (216) makes an image record of pixel data representing
the voter’s selections. The image record is communicatively coupled by data link
or lead (218) to computer (220). Computer (220) thus provides an unparsed
record of pixel data corresponding to the image on the screen (200) at the time
the voter confirms the ballot. Computer (220) may compress, authenticate and
encrypt the pixel image data, but does not parse or otherwise interpret the
optical image captured by element (216).

The “magic moment” occurs when the voter confirms the ballot selections by
accepting the data through an accept/reject interface (224); the accept interface
actuates the computer (220) to store the pixel data corresponding to a voter’s
ballot selections in a storage device, Cartridge B (ballot box B) at (222). Data are
stored in random fashion in Cartridge B to safeguard voter privacy. One method
for enabling the accept interface to actuate computer (220) to store the pixel
data representative of the voter’s confirmed selections could be for the voter’s
“accept” action, such as the click of a mouse over a predefined image area, a
hyperlink color change or a button changing color, or a screen border change
or other readily discernible video actuator, to intrinsically trigger an activation
event such as which the module (216) would record and thereby trigger the
computer (220) to store the pixel data at the time of the activation event. That
is, computer (220) would be responsive to a video event activated by the voter
which would indicate confirmation of the voter’s selections. If the voter rejects
the selections, the video event is not activated and the image data are not stored.
The voter, who following a procedure defined by an election official may notify
and be authorized by an election official, may repeat the voting process.

Witness record capture can also be used for audio events or for any other type
of output or assistive device, as in the case of voters who are visually impaired,
or other data, such as for example, the data used to create and record a voter’s

32 A beam splitter is a simple optical device that splits a beam of light in two. An
ordinary piece of glass can split a beam of light in two beams.
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selections in Braille, as may be used to communicate the voters selections to the
voter, for verification and authentication.

The witness device (230) makes an image record of the data evidencing the
voting event, such as the pixel data or other verifiable data record of the portion
of computer memory used for generating the ballot and corresponding selections
for each voter. Thus, the witness provides an efficient representation of voting
selections without parsing or interpreting the data. The witness module (230)
can be further seen as a means for taking a snapshot or image of pixel data
or other literal data in a selected portion of computer memory as such data
would represent, at the time of confirmation, the ballot and selections made
by each voter. An important aspect of the witness (230) is when it does not
interpret or effect any change in the voting data, also when any transformations
in the memory data recorded by the witness are independent of content. The
witness is applied in an example to generate an event record of the ballot and
voter’s selections, as evidence of the act of voting. Witness (230) thereby provides
transparency to the voter while ensuring reliability and accuracy of outcome as
intended by the voter (230). The witness further protects the system against
virus or attacks intended to change the data.

The witness device (230) approaches an ideal communication channel, with a
very simple code that can be verified to have zero loss, no viruses and no bugs;
however, absence of errors is not required (see Sections 8.3 and 2). The witness
(230) can thus make a video image, audio image or other snapshot of the specific
portion of computer memory used to generate the voting interface and the voter’s
selections at the point of authentication by the voter. Witness (230) also can be
adapted with a means for sending a verification of the voter’s selections back
to the voter (200) via a communication link and printer for providing the voter
with a voting receipt directly from the witness, that the voter can see but not
touch; the voting receipt should then be cut, for random storage purposes, and
dropped in a paper ballot box (not shown in the diagram).

The data corresponding to the authenticated vote by voter (200) is stored
in cartridge B and sent to the results module (232), which could be located at
a precinct. The memory image data from computer (220) may also be stored
in cartridge (B) to provide independent verification of the voting result. The
witness may be open to public scrutiny without having any effect on the data.

Computer (204), such as a DRE voting system, also records the voters selec-
tions from input device (202) and upon authentication by the voter, stores the
selections in cartridge A and sends a signal representative of the voter’s selec-
tions to the result (232). The results form cartridge A and from cartridge B are
stored for tallying at the results module (232), which is a reader object that may
be multiply provided by the EO and stakeholders.

The different witnesses and readers provide a means for auditing the accuracy
and reliability of various input data streams. In the event of a discrepancy, the
results are collected by a difference resolution module (234) and provided for
comparison against records of votes stored in cartridge B, representative of the
one or more cartridges attached to the witness.
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The outcome or election result (236) is calculated according to the election
rules, which also define the recount procedures (238), if any. The recount pro-
cedures (238) may use a different number of witnesses from cartridge A and of
stored votes from cartridge B.

As another possibility, the computer (220) in witness (230) stores only the
digital signature of the image data in cartridge B. That is, at the time the
voter (200) authenticates the vote selections, computer (220) is activated, as set
forth above, to record and store in cartridge B only the digital signature of the
image, without the image. If necessary, as in the case of a discrepancy, the data
from cartridge A can be used to recreate the image corresponding to its digital
signature in cartridge B in accordance with techniques which are well known.

Storage of digital signature data has significant advantages over storing ballot
image data. The size of compressed, encrypted ballot image data is on the order
of 500 kilobytes or more, for a single ballot. In contrast, digital signature data
size in on the order of 500 bytes. Thus, digital signature data can require three
orders of magnitude less storage space than compressed image data. For an
application such as electronic voting where large amounts of election data must
be transmitted and stored, storage of digital signature data may provide an
efficient, compact witness for the image data transmitted from cartridge A to
the result (232). Storage of digital signature data may also provide advantages
in terms of increased processing speed and makes more efficient use of memory
and system resources in a typical electronic voting environment.

The use of an optical witness device is not mandatory. Other slides of [14] show
how similar arrangements (in different WVS implementations) can be made for
an electrical witnesses of the electric signal that provides the image, for a display
card witness in the DRE that holds the pixels shown in the screen, instead of or
in addition to one or more optical witnesses.

A significant aspect of this design is that witnesses and readers from each
interested election stakeholder can be used at the same time and place. For
example, witnesses representing political parties A, B and C could be provided
by each party to anonymously watch each ballot as seen and cast by the voter.
Diverse tally modules, as reader objects, can also be provided by parties A, B
and C, where the tally process can be executed in parallel and employ diverse
error-correcting algorithms.

Slide number 16 in [14] shows how the inputs from various witness and readers
can be combined and evaluated, including error-detection, by weighed consensus
to calculate the election outcome at the final tally. Weighed consensus is a well-
known technique to increase fault-tolerance in the presence of interference and is
used here as a non-limiting error-correcting algorithm example to combat faults
and fraud (modeled as interference).

While the WVS may use closed-source components (e.g., EO’s or stakehold-
ers’ witness elements may include proprietary code), open-source elements can
also be used and their outputs openly compared for mutual verification at ev-
ery step of the process, including at the final tally, to assure election outcome
trustworthiness.
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8.2 Perspective

Here we provide a road-map to understand the WVS development.
Voting systems comprise four main components: [17]

(i) a registration service for verifying and registering legitimate voters,
(ii) voting stations where the voter makes choices on a ballot,
(iii) a device called the ballot box where the ballot is collected, and
(iv) a tallying service that counts the votes and announces the results.

This work focuses on the latter three parts, but it can also be applied to improve
the trustworthiness of voter registration.33

As it should be clear, this work does not propose any change in voting per
se but a qualitative change in how we understand and mathematically model
voting. Our approach comes from the realization that even though (a) voting is
deterministic, (b) does not include random sampling, and (c) all ballots must
be counted, it innately uses communication processes where, when we look close
enough, information must be defined by a stochastic model as pointed out in
Information Theory [9, 11].

The principles behind our approach are well-known since 1948 and have stood
the test of time as standard practice in modeling and optimizing information
flow, reliability, and availability. We note that contrary to its common use in
cryptography [10], Information Theory was not used in this work with the goal
to provide or improve upon communication secrecy per se, even though it is used
for example in meeting the secret ballot requirement.

In this work we used the Voting Information Transfer Model (VITM) to model,
in terms of information transfer, how voting works and how the election outcome
can be reliably and accurately measured, from the moment the voter asks for a
ballot to the moment that all votes are tallied and made public.

Our approach to voting has been publicly discussed since January 2000, with
public input [45, 46] and with the help from experts who worked on and verified
elections in the US and abroad for more than 25 years.

Leading a public discussion [47] at the Brookings Institute, we emphasized
early on the need for unlinkability (see Section 7.1) regarding fail-safe privacy
assurances in voting. This is a basic condition in our approach. The significant
aspect is that in order to preserve election integrity, the only person to whom the
vote is proved should be the voter himself.

Also in 2000, we presented some early results of the VITM application with
the Multi-Party protocol [41], which has been in continuous use by Safevote with
online voting in elections worldwide.

In 2001 we proposed and solved the “fundamental problem in voting” [18] also
using the VITM. Work on voting systems and requirements [18, 40] provided the

33 Voter registration receives little scrutiny in general, yet it can create numerous dif-
ficulties and disenfranchise many voters. Efforts to manipulate the number and po-
litical affiliation of persons voting may compromise an election even if the voting
system is error-free.
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foundation for presenting the Witness-Voting System (WVS) later in 2001 [14],
now extended in this work.

The components [VITM, Requirements, WVS], which provide the framework
used here, are based on our 1997 extensions of Information Theory: (1) we include
interference caused by faults as well as attacks and threats (adversaries) [16] in
the concept of noise; (2) we add the concept of trust [15]; and (3) we define an
Information Transfer Model (ITM) [16]. Extensions (1) and (2) are commented
in Sections 6.2 and 6.4, while extension (3) is used in Section 6. The ITM uses (1)
and (2) to achieve measurements with an error as small as desired in the presence
of fault, security and threat considerations. The ITM has been in continuous
development and, recently, the ITM was applied to qualitatively improve privacy
and security in email communications [48].

8.3 Witnesses and Readers

The WVS uses the VITM, which is a model based on observables (i.e., witnesses
or references) and observers (i.e., adequate readers of the witnesses).

Witnesses and readers may be “public” (i.e., independently accessible) or
restricted to a set of parties (e.g., within a qualified security boundary). For
transparency, often witnesses should be public, meaning that multiple parties
(possibly also adversaries) are able to access them. The WVS design is open to
the inclusion of public witnesses and readers, which more easily invites stake-
holders to be part of the election setup and assures transparency regarding any
step that may be seen as critical to the trustworthiness of the election’s outcome.
Further consideration is provided in [16].

A reader allows the information contained in the witnesses to be properly used
by a verifier; thus witnesses and readers must be “adequate”. However, perfect
functionality or full independence are not required in order for witnesses and
readers to be useful in reducing the effects of errors and fraud (see Sections 6.3
and 6.4).

An important question is what can we trust if both the software and the
hardware cannot be trusted? It is well-known that software cannot be trusted
[49]. The same applies to hardware, where counterfeit or malicious components34

can compromise the very platform where an otherwise trusted software runs.
Attacks such as defined in [49] and [50] are included in the definition of in-

terference used in this work and presented in Section 6.2. Accordingly, the re-
dundancy and diversity in the VITM/WVS design can increase reliability and
combat perturbations caused by such attacks. The number of different compo-
nents and implementations that we need to use, and how diverse they may be,
is set and adjusted operationally by the Error-Free Condition (Section 6.3) and
correction channel considerations (Section 6.4). As noted in Section 6.4, the oft-
cited security paradigm “the weakest link defines the security of the system” does
not apply here.
34 This threat is not new and defenses already exist (e.g., the MIL-SPEC process,

Orange Book). However, as shown in the work of King et. al. [50], such an attack is
becoming easier to create and more difficult to detect.
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9 Conclusions

Our presentation scope focuses on voting. We preface our conclusions, however,
by noting that this approach can also be applied to improve the trustworthiness
of voter registration and other aspects of an election, such as ballot design and
provisional voting. Voter registration receives little scrutiny in general, yet it can
create numerous difficulties and disenfranchise many voters. Efforts to manipu-
late the number and political affiliation of persons voting may compromise an
election even if the voting system is error-free. The Requirements presented here
can also be used to guide the development of more effective legal regulations.

This work shows that although voting is a deterministic process, the long-
standing problem of election outcome trustworthiness cannot be described, much
less solved, deterministically. Information is essentially stochastic in its nature
and voting, as a process that transfers information from voters to tally results,
is no exception in its use of information.

The Voting Information Transfer Model (VITM) presented in this work is an
information transfer model based on observables (i.e., witnesses or references)
and observers (i.e., adequate readers of the witnesses). The VITM applies to any
type of voting, with or without ballots, paper based, electronic, or online.

The VITM allows us to look deeper into the information flow of the voting
process, where information has to be modeled stochastically using Information
Theory. However, to prevent any confusion, we emphasized that the ballot seen
and cast by a voter is not a stochastic variable in our approach.

Anything that perturbs the election outcome is defined as interference, the
same definition used in Information Theory. The VITM further distinguishes
interference with functional and performance influence (called physical interfer-
ence) from interference with environmental and non-functional influence (called
conceptual interference). Accordingly, our formalism is expressive enough to
comprise a variety of means that can be falsely used to influence elections with-
out voting, including interference that does not even exist physically but merely
stays as a perceived threat.

The VITM directly uses results previously developed in 60 years of experience
with Information Theory to define a provably optimal design that can reduce
election outcome error to a value as close to zero as desired, which we call error-
free, establish comprehensive Voting System Requirements (Requirements) to
combat interference, and implement a conforming voting means —the Witness-
Voting System (WVS).

The [VITM, Requirements, WVS] define the three components of our frame-
work, describing a realistic voting system environment that includes interference
of the election outcome from faults, attacks and threats by adversaries.

In such a framework, requirements are not arbitrary. Requirements are cre-
ated and dictated by the goal of minimizing interference. Some Requirements
are naturally motivated in the VITM, such as the secret ballot, one valid bal-
lot per voter, and transparency. We present sixteen Requirements, including
functional, performance, environmental and non-functional considerations, pre-
senting a comprehensive consideration as to what is to be done (functional), how
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well a voting system is to perform (performance) and under what conditions it
is to operate (environmental and non-functional). The Requirements meet or ex-
ceed current public-election voting requirements. With our approach, the voter
and the vote are unlinkable (secret ballot) although each is identifiable.

We showed that conceptual interference can be physically prevented by the
WVS. Conversely, ignoring such possibility in the system design could create
conditions for unintended conceptual and physical interference.

The WVS can achieve an error-free election outcome by optimally preempting,
or at least resolving, any dispute regarding accuracy, reliability, voter privacy,
and election outcome trustworthiness.

The WVS design is open to the inclusion of public witnesses and readers,
including diverse cast ballot witnesses and error-correcting modules for tallying.
This invites stakeholders to be part of the election setup and assures trans-
parency regarding any step that may be seen as critical to the trustworthiness
of the election’s outcome.

We showed, quite generally and with potential applications to other security
problems, that the oft-cited security paradigm “the weakest link defines the se-
curity of the system” does not apply to the WVS. Perfection of each human and
each element of hardware and software is not required. Perfect independence is
also not required in order for witnesses and readers to be useful in reducing the
effects of errors and fraud. Rather, a central aspect of the WVS is that, exactly
because we know that all elements are imperfect, there are enough (as quali-
fied in Section 6.3, Error-Free Condition) multiple correction channels providing
feedback in order to enable the WVS to fully offset the influence of interference
such as caused by faults, attacks and threats by adversaries.

We discussed two WVS conforming implementations. The first WVS was
highly simplified and used intuitive requirements, with the objective of highlight-
ing the basic concepts used in our approach. A more practical WVS implemen-
tation followed the model presentation and the qualified requirements, including
many considerations of our approach. Notably missing from our implementation
discussions here, but referenced in our approach, we did not provide examples
of voter registration, voter authentication, and ballot authentication, as well as
their use in terms of specifying a “closed-circle” voting process.

The Witness-Voting System can also be applied to existing electronic voting
machines (e.g., DRE), including “black box” voting machines (with closed-source
software), to verify their accuracy and reliability before, after, and during an
election. Paper based voting systems, including optical scan ballots, may also
benefit by using the Witness-Voting System as a verification enhancement and
in providing multiple correction channels.

One of the most used correction channels is still the human factor (e.g., reading
the paper ballot). Yet, this does not mean that the human factor must remain as
the single correction channel in voting.We consider all-electronic and online voting
systems as firm possibilities when the capacity of correction channels is increased.

Mounting economic, political and social factors press for an evolution in vot-
ing, a par with everything else. More voter convenience with less cost and less
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time to vote, higher usability, higher public confidence in the election process,
reduced voter coercion in online voting (compared to mail voting), robust voter
registration, voter-verified auditing, increased opportunities for voter participa-
tion, reduced costs in the management of elections, secure storage of ballots, and
reduced time for tabulation and auditing are among the practical results that
can be quantified with the framework described in this paper. These and other
beneficial results have been confirmed in the continuous use of this framework
since 2000 with online voting in elections worldwide.
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Abstract. We introduce a model for electronic election schemes that involves
a more powerful adversary than previous work. In particular, we allow the ad-
versary to demand of coerced voters that they vote in a particular manner, abstain
from voting, or even disclose their secret keys. We define a scheme to be coercion-
resistant if it is infeasible for the adversary to determine whether a coerced voter
complies with the demands.

A first contribution of this paper is to describe and characterize this newly
strengthened adversary. In doing so, we additionally present what we believe to
be the first formal security definitions for electronic elections of any type. A sec-
ond contribution is a protocol that is provably secure against our formalized ad-
versary. While strong attack model are of theoretical interest, we emphasize that
our results lie close to practicality in two senses: We model real-life threats (such
as vote-buying), and our proposed protocol combines a fair degree of efficiency
with low structural complexity. While previous schemes have required an untap-
pable channel, ours has the more practical requirement of an anonymous channel.

Keywords: coercion-resistance, electronic voting, mix networks, receipt-freeness.

1 Introduction

Many voters participating in shareholder elections in the United States regularly cast
ballots over the Internet [1]. Geneva, Switzerland adopted Internet voting for civic elec-
tions in 2004 (enhanced by quantum cryptography in 2007) [45]. Similarly, tens of
thousands of members of the UMP political party in France participated by Internet in
a national Presidential primary in 2007 [46].1

These are just a few instances of a broadening trend toward Internet-based voting.
While voting of this kind appears to encourage higher voter turnout [44] and make ac-
curate accounting for votes easier, it also brings with it a heightened risk of large-scale
error and manipulation. A number of papers in the cryptographic literature have thus

1 The integrity of the vote in this case was specially ensured by the availability of only one
candidate.

D. Chaum et al. (Eds.): Towards Trustworthy Elections, LNCS 6000, pp. 37–63, 2010.
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described ways of achieving robust and verifiable electronic elections, in which ballots
and processing data are posted to a publicly accessible bulletin board. For some exam-
ples (but not by any means an exhaustive list), see [8,15,18,22,23,28,32,38,42,47,50].
This literature is distinct from the extensive body of work on the security of Direct-
Recording Electronic (DRE) machines, freestanding tallying devices in common use
today in public polling places. Researchers have demonstrated serious, fundamental
vulnerabilities in widely fielded DRE systems, e.g., [33].

There are two other threats, however, that it is equally crucial to address in a fair
and democratic election process: We speak of voter coercion and vote buying. Internet-
based voting does not introduce these problems, but it does have the potential to ex-
acerbate them by extending the reach and data collection abilities of an attacker. This
has been highlighted in one way by a notorious (possibly satirical) Web site that sup-
ported the auctioning of votes [2]. Seller compliance was in that case merely voluntary.
Conventional Internet voting schemes, however, including those described in the liter-
ature, actually provide an attacker with ready-made tools for verifying voter behavior
and thereby exerting influence or control over voters. Without careful system design,
the threats of coercion and vote buying are potentially far more problematic in Internet
voting schemes than in ordinary, physical voting schemes.

One commonly proposed way of achieving secure electronic voting systems is to
use a cryptographic system known as a mix network [14]. This is a tool that enables
a collection of servers to take as input a collection of ciphertexts and to output the
corresponding plaintexts according to a secret permutation. A straightforward way to
achieve an election system that preserves the privacy of voters, then, is to assign a
private digital signing key to each voter. To cast a ballot, the voter encrypts her choice
and signs it, and then posts it to a bulletin board (i.e., a publicly accessible memory
space). When all ballots have been collected and the corresponding signatures have
been checked, the ciphertexts are passed through a mix network. The resulting plaintext
versions of the voter choices may then be tallied. Thanks to the privacy preserving
property of the mix network, an adversary cannot tell which vote was cast by which
voter. This approach is frequently advocated in the mix-network literature, as in, e.g.,
[8,14,23,28].

In an ordinary mix-based scheme of this kind, an adversary can coerce a voter
straightforwardly. The adversary can simply furnish the voter with a ciphertext on a
particular candidate, and then verify that the voter posted a ballot containing that ci-
phertext. Alternatively, the adversary can demand the private signing key of the voter
and verify its correctness against the corresponding public key. An adversary attempt-
ing to buy votes can use the same means. Other types of cryptographic voting schemes,
namely homomorphic schemes [5,18] and schemes based on blind signatures [21,42],
suffer from similar vulnerabilities.

1.1 Previous Work

Previous investigations of coercion-resistant voting have been confined to a property
known as receipt-freeness. Roughly stated, receipt-freeness is the inability of a voter to
prove to an attacker that she voted in a particular manner, even if the voter wishes to do
so. For a more formal definition, see [42]. The property of receipt-freeness ensures that
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an attacker cannot determine exact voter behavior and therefore cannot coerce a voter
by dictating her choice of candidate. It also protects against vote-buying by preventing a
potential vote buyer from obtaining proof of the behavior of voters; voters can thereby
pretend to sell their votes, but defraud the vote buyer. The notion of receipt-freeness
first appeared in work by Benaloh and Tuinstra [5]; their scheme, based on homomor-
phic encryption, was shown in [26] not to possess receipt-freeness as postulated. An
independent introduction of the idea appeared in Niemi and Renvall [40]. Okamoto
[41] proposed a voting scheme which he himself later showed to lack the postulated
receipt-freeness; a repaired version by the same author, making use of blind signatures,
appears in [42]. Sako and Kilian [48] proposed a multi-authority scheme employing a
mix network to conceal candidate choices, and a homomorphic encryption scheme for
production of the final tally. The modelling of their scheme was clarified and refined
by Michels and Horster [36]. The Sako and Kilian scheme served as a conceptual basis
for the later work of Hirt and Sako [26], followed by the more efficient approach of
[3]; these two are the most efficient (and correct) receipt-free voting schemes to date.
A recenly proposed scheme by Magkos et al. [35] distinguishes itself by an approach
relying on tamper-resistant hardware, but is flawed.2

All of these receipt-free voting schemes include somewhat impractical assumptions.
For example, these schemes assume the availability of an untappable channel between
the voter and the authorities, that is, a channel that provides perfect secrecy in an
information-theoretic sense. (I.e., even encryption does not provide an untappable chan-
nel.) The scheme in [42] makes the even stronger assumption of an anonymous untap-
pable channel. (It is also not very practical in that it requires voter interaction with the
system three times in the course of an election.) Moreover, all of these schemes (except-
ing [42]) lose the property of coercion-resistance if the attacker is able to corrupt even
one of the tallying authorities in a distributed setting. The scheme of Hirt and Sako
still retains coercion-resistance when such corruption takes place, but only under the
strong assumption that the voter knows which tallying authorities have been corrupted;
the proposal of Baudron et al. has a similar property.

In a systems-level analysis confined to the special case of DREs, Karlof, Sastry, and
Wagner [31] have identified vulnerabilities in the influential and innovative schemes
of Chaum and Neff [20,39]. In particular, covert-channels in these schemes open up
the possibility of various forms of coercion. Also in context of such DRE systems,
Moran and Naor [37] have formalized and shown how to achieve the property of receipt-
freeness and proposed a partial solution to the problems identified by Karlof et al.).

Apart from their often impractical assumptions, there is a more serious problem with
of all of the receipt-free voting schemes described in the literature. Receipt-freeness

2 We are unaware of any other mention of a break of this scheme in the literature, and therefore
briefly describe one here. The Magkos et al. system employs an interactive honest-verifier ZK
proof made by a smartcard to the voter. Presumably because of the simulability of this proof,
the authors describe the proof as being “non-transferable.” This is not quite true, however.
In particular, an adversary can stipulate that the voter engage in the proof using a challenge
that the adversary has pre-selected. The proof then becomes transferable, yielding a means of
receipt construction by the adversary. As noted in [26], this type of attack also explains why
deniable encryption [13] does not solve the problem of coercion in a voting system.
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alone fails to protect against several forms of serious, real-world attack in election
systems, among them:

Randomization attack: This attack was noted by Schoenmakers in 2000 [51]; he de-
scribed its applicability to the scheme of Hirt and Sako. The idea is for an attacker to
coerce a voter by requiring that she submit randomly composed balloting material. In
this attack, the attacker (and perhaps even the voter) is unable to learn what candidate
the voter cast a ballot for. The effect of the attack, however, is to nullify the choice of the
voter with a large probability. For example, an attacker favoring the Republican party
in a United States election would benefit from mounting a randomization attack against
voters in a heavily Democratic district.

Forced-abstention attack: This is an attack related to the previous one based on ran-
domization. In this case, the attacker coerces a voter by demanding that she refrain
from voting. All of the schemes cited above are vulnerable to this simple attack. This is
because the schemes authenticate voters directly in order to demonstrate that they are
authorized to participate in the election. Thus, an attacker can see who has voted, and
use this information to threaten and effectively bar voters from participation.3

Simulation attack: The receipt-free schemes described above assume that the attacker
cannot coerce a voter by causing her to divulge her private keying material after the
registration process but prior to the election process. Such an attack, however, is a real
and viable one in previously proposed schemes, because these permit an attacker to ver-
ify the correctness of private keying material. For example, in [42], the voter provides
a digital signature which, if correct, results in the authority furnishing a blind digital
signature. In [26], the voter, when casting a ballot, proves knowledge of a private key
relative to a publicly committed or published value. In general, receipt-freeness does not
prevent an attacker from coercing voters into divulging private keys or buying private
keys from voters and then simulating these voters at will, i.e., voting on their behalf.

1.2 Our Contribution

We make a twofold contribution in this paper, which is an extended version of work
appearing in [30]. First, we investigate a stronger and broader notion of coercive at-
tacks than receipt-freeness. This notion, which we refer to as coercion-resistance, cap-
tures what we believe to be the fullest possible range of adversarial behavior in a
real-world, Internet-based voting scheme. A coercion-resistant scheme offers not only
receipt-freeness, but also defense against randomization, forced-abstention, and sim-
ulation attacks—all potentially in the face of corruption of a minority of tallying au-
thorities. We propose a formal definition of coercion-freeness in this paper. Two other
properties are essential for any voting scheme, whether or not it is coercion-resistant.
These are correctness and verifiability. As formal definitions for these properties are to

3 An exception is the scheme in [42], which does not appear to be vulnerable to a forced-
abstention attack. This is because the scheme seems to assume that the authority checks voter
enrollment privately. In other words, the scheme does not permit public verification that par-
ticipating voters are present on a published voter roll. This is potentially a problem in its own
right.
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the best of our knowledge lacking in the literature, we provide those definitions as well.
We thus provide what we believe to be the first formal security framework for electronic
elections in general.

To demonstrate the practical realizability of our definitions, we describe a voting
scheme that possesses the strong property of coercion-resistance proposed in this
paper—and also naturally possesses the properties of correctness and verifiability. Our
scheme does not require untappable channels, but instead assumes voter access to an
anonymous channel at some point during the voting process. Anonymous channels can
be realized in a practical way by use of mixnets, e.g., [23,38], while untappable chan-
nels require largely unrealistic physical assumptions. We note that anonymous channels
are in fact a minimal requirement for any coercion-resistant schemes: An attacker that
can identify which voters have participated can obviously mount a forced-abstention
attack. A drawback of our scheme is that, even with use of asymptotically efficient mix
networks as in [23,38], the overhead for tallying authorities is quadratic in the number
of voters. Thus the scheme is only practical for small elections. Our hope and belief,
however, is that our proposed scheme might serve as the basis for refinements with a
higher degree of practical application.

1.3 Intuition Behind Our Scheme

In a conventional voting scheme, and also in receipt-free schemes like [26], the voter Vi

identifies herself at the time she casts her ballot. This may be accomplished by means
of a digital signature on the ballot, or by an interactive authentication protocol. The key
idea behind our scheme is for the identity of a voter to remain hidden during the elec-
tion process, and for the validity of ballots instead to be checked blindly against a voter
roll. When casting a ballot, a voter incorporates a concealed credential. This takes the
form of a ciphertext on a secret value σ that is unique to the voter. The secret σ is a kind
of anonymous credential, quite similar in spirit to, e.g., [9,10]. To ensure that ballots
are cast by legitimate voters, the tallying authority T performs a blind comparison be-
tween hidden credentials and a list L of encrypted credentials published by an election
registrarR alongside the plaintext names of registered voters.

By means of mixing and blind comparison of ciphertext values, it is possible to
check whether a concealed credential is in the list L or not, without revealing which
voter the credential has been assigned to. In consequence, an attacker who is given a
fake credential σ̃ by a coerced voter cannot tell whether or not the credential is valid.
(The attacker will learn how many ballots were posted with bad credentials. Provided,
however, that some spurious ones are injected by honest players, authorities, or even
outsiders, the individuals associated with bad ballots will remain concealed.) Moreover,
the attacker cannot mount randomization or forced-abstention attacks, since there is no
feasible way to determine whether an individual voter has posted a ballot or not. In
particular, after divulging fake credential σ̃, a voter can go and vote again using her real
credential σ.

1.4 Organization

In section 2, we describe our setup and attack models and sketch a few of the ma-
jor adversarial strategies. We provide formal definitions in section 3. We describe the
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particulars of our proposed scheme in section 4, prefaced by a summary of the underly-
ing cryptographic building blocks. We give a detailed outline for proof of the coercion-
resistance of our scheme in section 5, and conclude in section 6.

2 Modelling

An election system consists of several sets of entities:

1. Registrars: Denoted by R = {R1, R2, . . . , RnR}, this is a set of nR entities re-
sponsible for jointly issuing keying material, i.e., credentials to voters.

2. Authorities (Talliers): Denoted by T = {T1, T2, . . . , TnT }, authorities are respon-
sible for processing ballots and jointly counting votes and publishing a final tally.

3. Voters: The set of nV voters, denoted by V = {V1, V2, . . . , VnV }, are the entities
participating in a given election administered by R. We let i be a public identifier
for Vi.

We make use of a bulletin board, denoted by BB. This is a piece of universally acces-
sible memory to which all players have appendive-write access. In other words, any
player can write data to BB, but cannot overwrite or erase existing data. Moreover,
voters will be able to read the contents of BB once the vote casting phase has ended.
For notational convenience, we assume that data are written to BB in μ-bit blocks for
an appropriate choice of μ. Shorter data segments may be padded appropriately. For
simplicity of exposition, we assume no ordering on the contents of BB.

2.1 Functions

We define a candidate slate C as an ordered set of nC distinct values {c1, c2, . . . , cnC},
each of which corresponds to a voter choice, typically a candidate or party name. In an
election, choice cj may be identified according to its index j. Thus, for cryptographic
purposes the candidate slate consists of the integers {1, 2, . . . , nC} and may be specified
by nC alone. We define a tally on an election under slate C to be a vector X of nC

positive integers x1, x2, . . . , xnC such that xj indicates the number of votes cast for
choice cj . The protocols composing an election system are then as follows:

– Registering: The function register(SKR, i, k1) → (ski, pki) takes as input the
private registrar key SKR, a (voter) identifier i and a security parameter k1, and
outputs a key pair (ski, pki). This is computed jointly by players in R, possibly in
interaction with voter Vi.

– Voting: The function vote(sk, PKT , nC , β, k2) → ballot takes as input a private
voting key, the public key of the authorities T , the candidate-slate specification nC ,
a candidate selection β, and a security parameter k2, and yields a ballot of bit length
at most μ. The form of the ballot will vary depending on the design of the election
system, but is in essence a digitally signed vote choice encrypted under PKT .

– Tallying: The function tally(SKT ,BB, nC , {pki}nV

i=1, k3) → (X , P ) takes as in-
put the private key of the authority T , the full contents of the bulletin board, the
candidate-slate size, all public voting keys, and a security parameter k3 and outputs
a vote tally X , along with a non-interactive proof P that the tally was correctly
computed.
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– Verifying: The function verify(PKT ,BB, nC , X, P ) → {0, 1} takes as input the
public key of the authorities, the contents of the bulletin board, the candidate-slate
size, the voting tally, and a non-interactive proof of correct tallying. It outputs a ‘0’
if the tally is incorrect and a ‘1’ otherwise.

We define an election scheme ES as the collection of these functions. Thus ES =
{register, vote, tally, verify}.

Remark: There are many election models in use throughout the world. The model
we propose here excludes important variants. In some systems, for example, voters are
asked to rank candidate choices, rather than just listing those they favor. Many systems
permit the use of write-in votes, i.e., the casting of a ballot in favor of a candidate
not listed on the slate for the election. We exclude write-in voting from our model
because it undermines the possibility of coercion resistance in any scheme where an
observer can see a complete election tally including write-in votes. An attacker may, for
example, require coerced voters to cast write-in ballots for candidate names consisting
of random strings pre-specified by the attacker. This way, the attacker can: (1) Verify
that coerced voters complied with instructions, by looking for the random strings the
attacker furnished, and (2) Ensure that the votes of coerced voters are not counted,
since random strings will most likely not correspond to real election choices. (Thus,
this would combine the forced abstentation attack and the randomization attack.)

2.2 Summary of the Attack Model

We consider the process for a single election as proceeding in these phases, correspond-
ing largely with the functions enumerated in section 2.1:

1. Setup: If not already available, key pairs are generated for or by R and T . The
candidate slate C for the election is published by R with appropriate integrity
protection.

2. Registration: The identities and eligibility of would-be participants in the election
are verified by R. With successful verification, an individual becomes a registered
voter, receiving fromR a credential permitting participation in the election. Previ-
ously registered voters can re-use their credentials.R publishes voter roll L.

3. Voting: Referring to the candidate slate C, registered voters use their credentials
to cast ballots.

4. Tallying: The authority T processes the contents of the bulletin board BB so as to
produce a tally vector X specifying the outcome of the election, along with a proof
of correctness P of the tally.

5. Verification: Any player, whether or not an election participant, can view BB, P
and L to verify that the tally produced by T in the previous phase is correct.

Assumptions in setup phase: Our security definitions allow static, active corruption by
the adversary of a minority of players inR and T in the setup phase. The security of our
construction then relies on generation of the key pairs (SKT , PKT ) and (SKR, PKR)
by a trusted third party, or, alternatively, on an interactive, computationally secure key-
generation protocol such as [25] between the players inR and those in T .
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Assumptions prior to registration: The adversary may coerce a voter prior to the reg-
istration phase by requiring that the voter retain transcripts of the registration process,
or by trying to dictate the voter’s future interaction with the registrar.

Assumptions in registration phase: We make the assumption that the registration
phase proceeds without any corruption of voters. This assumption is at some level a
requirement for a coercion-free election, as an attacker capable of corrupting and seiz-
ing the credentials of a voter in this initial phase can mount a simulation attack. More
precisely, we must make at least one of three assumptions about the registration phase:

1. Erasure of data from voter interaction with R is compulsory by the voter (e.g., en-
forced by smartcards provided to voters). This prevents an attacker from requesting
registration transcript data after the fact; or

2. The adversary cannot corrupt any players inR; or
3. Voters become aware of the identity of any corrupted player in R.

The reason we require at least one of these assumptions is as follows. If none of these as-
sumptions holds, then the adversary can, on demanding information from a voter, verify
the correctness of some portion thereof, where the voter would not know what portion
is being checked. In other words, the adversary can perform spot checks, with a high
probability of successfully detecting false transcripts. In consequence, the adversary
can coerce voters into divulging full transcripts of their interactions with R, thereby
enabling a simulation attack. In contrast, if at least one of the assumptions holds, we
show that it is possible to formulate a protocol that is coercion-resistant.

Assumptions on voting, tallying and verification phases: After registration, we as-
sume that the adversary can seize control of a minority of players in T and any number
of voters in a static, active manner. (Since R does not participate after registration, we
need not consider adversarial corruption of R at this point.) The adversary may also
attempt to coerce voters outside its control by having them divulge private keying ma-
terial4 or behave in a prescribed manner in voting. Voters are assumed to cast their
ballots via fully anonymous channels, i.e., channels such that an attacker cannot deter-
mine whether or not a given voter cast a ballot. This assumption is a requirement for
any election scheme to be fully coercion-resistant: If an attacker can tell whether or not
a given voter cast a ballot, then the attacker can mount a forced-abstention attack. In
practice, an anonymous channel may be achieved by letting voters cast ballots in busy
public places, by use of anonymizing, asynchronous mix-networks, etc.

3 Formal Definitions

We now turn our attention to formal security definitions of the essential properties of
correctness, verifiability, and coercion-resistance, respectively abbreviated corr, ver,
and c-resist. Our definitions hinge on a set of experiments involving an adversary A

4 We assume that coercion takes place remotely. That is, the adversary may not watch over the
shoulder of a voter, monitor her hard-drive, etc. Our proposed protocol does defend against
some shoulder-surfing, however, by permitting voters to use fake keys and/or re-vote.
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in interaction with components of the election system ES. This adversary is assumed to
retain state throughout the duration of an experiment. We formulate our experiments
such that in all cases, the aim of the adversary is to cause an output value of ‘1’.
Thus, for experiment ExpE

ES,A(·) on property E ∈ (ver, corr, c-resist), we define

SuccE
ES,A(·) = Pr[ExpE

ES,A(·) = ‘1’].
According to the standard definition, we say that a quantity f(k) is negligible in

k if for every positive integer c there is some lc such that f(k) < k−c for k > lc.
In most cases, we use the term negligible alone to mean negligible with respect to
the full set of relevant security parameters. Similarly, in saying that an algorithm has
polynomial running time, we mean that its running time is asymptotically bounded by
some polynomial in the relevant security parameters. As the properties of correctness
and verifiability are genearl ones that apply to any voting scheme, we discuss them first.
We then consider coercion resistance, the special focus of our work here.

Correctness: We first consider the property of correctness. It is a twofold property:
First, it stipulates that an adversary A cannot pre-empt, alter, or cancel the votes of
honest voters, i.e., those not controlled. Second, it stipulates that A cannot cause voters
to cast ballots resulting in double voting, i.e., use of one credential to vote multiple
times, where more than one vote per credential is counted in the tally.

For a strong definition of correctness, we give the adversary (artificially) strong pow-
ers. Apart from getting to select a set V of voters she will control, she can choose the
candidate-slate size nC , and choose what votes will be cast by voters she does not
control. If the adversary still cannot cause an incorrect tally to be computed (i.e., one
not corresponding to the votes cast), then the scheme has the correctness property. The
adversary aims to cause more than |V | ballots to be counted in the final tally on be-
half of the controlled voters, or to alter or delete the vote of at least one honest voter.
(This means that: (1) The verification of the tally succeeds, and (2) That either a vote
is“dropped” or “added.”) Our definition assumes implicitly that tally is computed cor-
rectly by the authority T . (The next property we consider, verifiability, addresses the
possibility that this is not so.) We let 〈Y 〉 here denote the multiset on to entries in the
vector Y , and |Y | denote the cardinality of set Y .

Experiment Expcorr
ES,A(k1, k2, k3, nC , nV )

{(ski, pki)← register(SKR, i, k2)}nV
i=1; % voters are registered

V ← A({pki}nV
i=1, “choose controlled voter set”); % A corrupts voters

{βi}i�∈V ← A(“choose votes for uncontrolled voters”); % A votes for honest voters
BB ⇐ {vote(ski, PKT , nC , βi, k2)}i�∈V ; % honest voters cast ballots
(X , P )← tally(SKT ,BB, nC , {pki}nV

i=1, k3); % honest ballots are tallied
BB ⇐ A(“cast ballots”,BB); % A posts ballots to BB
(X ′, P ′)← tally(SKT ,BB, nC , {pki}nV

i=1, k3); % all ballots are tallied
if verify(PKT ,BB, nC , X ′, P ′) = ‘1’ and % does verify accept?

({βi} �⊂ 〈X ′〉 or |〈X ′〉| − |〈X〉| > |V |) then % did A’s tampering work?
output ‘1’;

else
output ‘0’;
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We say that ES possesses the property of correctness if for all polynomial-time adver-
saries A, it is the case that Succcorr

ES,A(k1, k2, k3, nV ) is negligible.

Verifiability: As explained above, an election system has the property of correctness
if computation of tally always yields a valid tabulation of ballots. Given the ability of
an adversary A, however, to corrupt some number of authorities among T , we cannot
be assured that tally is always computed correctly. The property of verifiability is the
ability for any player to check whether the tally X has been correctly computed, that
is, to detect any misbehavior by T in applying the function tally.

A strong security definition for verifiability is appropriate given the high level of
auditability required for trustworthy elections. Such a definition considers an attacker
A capable of controlling all of the voters and tallying authorities in T . This attacker
seeks to construct a set of ballots on BB and a corresponding tally X and proof P of
correct tabulation such that the proof is accepted by verify, but the tally is in fact incor-
rect. By an incorrect tally, we mean one in which all of the valid ballots of a particular
voter (i.e., corresponding to a particular credential) are discounted, or else where mul-
tiple votes are tallied that could have been generated by the same voting credential. Our
experiment characterizing verifiability is as follows.

Experiment Expver
ES,A(k1, k2, k3, nC , nV )

{(ski, pki)← register(SKR, i, k2)}nV
i=1; % voters are registered

(BB, X , P )← % A concocts full election
(A(SKT , {(ski, pki)}nV

i=1, “forge election”); % A concocts full election
(X ′, P ′)← tally(SKT ,BB, nC , {pki}nV

i=1, k3); % tally is taken on BB
if X �= X ′ % A’s tally = correct BB tally?

and verify(PKT ,BB, nC , X , P ) = ‘1’ then % does function verify accept?
output ‘1’;

else
output ‘0’;

We say that ES possesses the property of verifiability if for all positive integers nV and
all adversariesA with polynomial running time, the quantity Succver

ES,A(k1, k2, k3, nV )
is negligible. A technical strengthening of this definition and that for correctness is
possible, and discussed in the next section, appendix A, of this paper.

Another aspect of verifiability that we do not formally define, but do mention here
and incorporate into our proposed protocol is that of verification against voter rolls.
In particular, it may be desirable for any election observer to check that credentials
were assigned only to voters whose names are on a published roll. This is not tech-
nically a requirement if we rule out corruption of players R, but may still be de-
sirable for high assurance of election integrity. Our definitions can be modified
accordingly.

Coercion resistance: Coercion resistance may be regarded as an extension of the basic
property of privacy. Privacy in an election system is defined in terms of an adversary
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that cannot interact with voters during the election process. In particular, we say that
an election is private if such an adversary cannot guess the vote of any voter better
than an adversarial algorithm whose only input is the election tally. (Note, for exam-
ple, in an election where all voters vote Republican, the system may have the property
of privacy, even though the adversary knows how all voters cast their ballots in that
election.)

Coercion resistance is a strong form of privacy in which it is assumed that the adver-
sary may interact with voters. In particular, the adversary may instruct targeted voters
to divulge their private keys subsequent to registration, or may specify that these vot-
ers cast ballots of a particular form. If the adversary can determine whether or not
voters behaved as instructed, then the adversary is capable of blackmail or otherwise
exercising undue influence over the election process. Hence a coercion-resistant voting
system is one in which the user can deceive the adversary into thinking that she has
behaved as instructed, when the voter has in fact cast a ballot according to her own
intentions.

Our definition of coercion resistance requires addition of a new function to voting
system ES:

– The function fakekey(PKT , sk, pk) → s̃k inputs the public key of the authorities
and the private/public key pair of the voter. It outputs a spurious key s̃k.

Of course, for the function fakekey to enable coercion resistance, the key s̃k must be
indistinguishable by the adversary A from a valid key, and only distinguishable by a
majority of talliers T . This property is captured in our experiment characterizing co-
ercion resistance. To simplify the formulation of the experiment, we assume implicitly
that tally is computed by an oracle (with knowledge of SKT ). It suffices, however,
for T to be computed via a protocol that achieves correct output and is computation-
ally simulable by the adversary A (who, it will be recalled, may corrupt a minority
of T ).

Our definition of coercion resistance centers on a kind of game between the adver-
sary A and a voter targeted by the adversary for coercive attack. A coin is flipped;
the outcome is represented by a bit b. If b = 0, then the voter casts a ballot with a
particular choice β, and provides the adversary with a false voting key s̃k; in other
words, the voter attempts to evade adversarial coercion. If b = 1, on the other hand,
then the voter submits to the coercion of the adversary; she simply furnishes the adver-
sary with her valid voting key sk, and does not cast a ballot. The task of the adversary
is to guess the value of the coin b, that is, to determine whether or not the targeted
voter in fact cast a ballot. We permit the adversary in this definitional game to spec-
ify the ballot value β. While it is somewhat unnatural for the adversary thus to spec-
ify the intention of the voter, this permits us to achieve the strongest possible security
definition.

If the adversary has perfect knowledge about the intentions of all voters, then coer-
cion is unavoidable. For example, if the adversary is attempting to coerce one voter in
a given election and knows that all hundred of the other eligible voters will cast ballots,
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then the adversary can mount an abstention attack straightforwardly. The adversary in
this case simply threatens the voter in the case that the total tally for the election is
one hundred and one. Similarly, suppose that the adversary does not know whether or
not any given voter will cast a ballot, but knows that all participating voters will cast a
ballot for the Republican party. In this case, the adversary can win the game we describe
above by specifying a ballot value β =“Democrat.”

It is evident therefore that for any definition of coercion-resistance to be meaning-
ful, the adversary must have uncertain knowledge about how—and indeed whether—
some voters will cast their ballots. In other words, coercion-resistance requires that
there be some “noise” or statistical uncertainty in the adversary’s view of voting pat-
terns. To our benefit, it is natural to expect that in a real-world election an adversary
can obtain only fragmentary knowledge about the likely behavior of voters. This means
that coercion-resistance is a viable possibility.5 For a collection of n voters outside
the control of the adversary—i.e., voters not subject to coercion—we characterize the
view of the adversary in terms of a probability distribution Dn,nC . We let φ be a
symbol denoting a null ballot, i.e., an abstention, and let λ denote a ballot cast with
an invalid credential. Then Dn,nC is a distribution over vectors (β1, β2, . . . , βn) ∈
(nC

⋃
φ

⋃
λ)n, i.e., over the set of possible ballot choices for an election plus ab-

stentions and invalid ballots. Thus, the distribution Dn,nC serves the purpose in our
experiment of defining the distribution of the “noise” that conceals the behavior of vot-
ers targeted by the adversary for coercion. For a set of n voting credentials {ski}, we
let vote({ski}, PKT , nC , Dn,nC , k2) denote the casting of ballots according to distri-
bution Dn,nC . In other words, a vector (β1, β2, . . . , βn) is drawn from Dn,nC and vote
βi is cast using credential ski.

We are now ready to present an experiment c-resist that defines the game described
above between an adversary and a voter targeted for coercion. Recall that k1, k2, and
k3 are security parameters defined above, nV is the total number of eligible voters
for the election, and nC is the number of candidates, i.e., the size of the candidate
slate. We let nA denote the number of voters that may be completely controlled, i.e.,
corrupted by the adversary. We define nU = nV −nA−1. In other words, the number of
uncertain votes nU equals the total number of possible votes, minus those coming from
voters controlled by the attacker, minus the vote coming from the voter the attacker is
trying to coerce (in the experiment). Note that nU is therefore the number of voters that
contribute “noise” to the experiment.

We consider a static adversary, i.e., one that selects voters to corrupt prior to proto-
col execution. We assume that the adversary has a list of “voter names,” i.e., a roll of
potential participating voters.

We let← denote assignment and⇐ denote the append operation, while % denotes
the beginning of an annotative comment on the experiment. Our experiment treats the
case in which the adversary seeks to coerce a single voter; extension of the definition to
coercion of multiple voters is straightforward. The experiments defined here halt when
an output value is produced.

5 Additionally, it is possible for voting authorities—or indeed any entity—intentionally to inject
“chaff” in the form of blank and invalid ballots into an election system.
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Experiment Expc-resist
ES,A,H (k1, k2, k3, nV , nA, nC)

V ← A(voter names, “control voters”); % A corrupts voters
{(ski, pki)← register(SKR, i, k2)}nV

i=1; % voters are registered
(j, β)← A({ski}i∈V , “set target voter and vote”); % A sets coercive target
if |V | �= nA or j �∈ {1, 2, . . . , nV } − V or

β �∈ {1, 2, . . . , nC} ∪ φ then % outputs of A checked for validity
output ‘0’;

b ∈U {0, 1}; % coin is flipped
if b = 0 then % voter evades coercion

s̃k ← fakekey(PKT , skj , pkj);
BB ⇐ vote(skj , PKT , nC , β, k2);

else % voter submits to coercion
s̃k ← skj ;

BB ⇐ vote({ski}i�=j,i�∈V , PKT , nC , DnU ,nC , k2); % ballots posted for honest voters
BB ⇐ A(s̃k,BB, “cast ballots”); % A posts to BB
(X , P )← tally(SKT ,BB, nC , {pki}nV

i=1, k3); % election results are tallied
b′ ← A(X , P, “guess b”); % A guesses coin flip
if b′ = b then % experimental output determined

output ‘1’;
else

output ‘0’;

The adversary A in the above experiment is quite powerful, being capable (when
b = 1) of complete coercion of the targeted voter. In order to characterize the success
of A, we must compare A with a second adversary A′. A′ is capable of coercion only
within the framework of an ideal voting experiment c-resist-ideal. In other words, A′

characterizes the type of security against coercion that we would like to achieve in ES.
The main feature we are aiming for in our ideal experiment c-resist-ideal is for A′

to learn nothing from the private keys she acquires from corrupted players and from
the coerced player. In particular, A′ cannot use private keys to perform active attacks.
We cause A′ to express voting choices in a direct, ideal process;A′ cannot cast ballots,
but merely enumerates the choices of players in her control. Additionally, A cannot
use private keys to learn information about the voting behavior of honest players or the
coerced player. The only information that A′ gets is the grand total X of votes in the
election.

One feature of our experiment is counterintuitive. Because this is an ideal experi-
ment,A′ is always given s̃k as the key of the coerced player. This is becauseA′ should
be unable to determine, on the basis of keying material, from the situation in which
coercion is successful or unsuccessful.

We require a function for the definition. We include here an ideal function ideal-tally
that tallies the ballots posted to BB in a special way. ideal-tally tallies in a normal man-
ner all of the ballots cast by honest voters, i.e., prior to adversarial posting. The ballots
cast by A′, however, are treated specially. In particular, the function ideal-tally deter-
mines for each ballot B what the underlying private key ski is. If i �∈ V , i.e., if the
private key is not one assigned to one of the corrupted players, then the corresponding
vote is not counted. Additionally, any double vote is not counted, i.e., ideal-tally per-
forms the weeding of double votes that normally occurs during the tallying procedure.
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Finally, ideal-tally does the following based on the value of the secret bit b. If b = 0,
then ideal-tally does not count any ballot cast (by the adversary) using private key s̃k.
If b = 1, then ideal-tally does include in the final tally a ballot cast using s̃k (excluding
double votes).

Our definition of ideal-tally here assumes that every ballot has a unique correspond-
ing private key. This is true of most natural ballot structures (and true of our pro-
posed scheme). This definition, of course, also assumes ideal functionality in ideal-tally,
namely the ability to extract private keys and plaintext votes from ballots. We do not
specify in our definition how this “oracle” power is achieves. In our proofs, we construct
a simulator capable of performing this functionality required from ideal-tally.

Note that although A′ learns the secret keys of voters, in our ideal experiment these
secret keys in fact provide A′ with no information useful in voting—the ideal func-
tion ideal-tally ensures against misuse of keys—and no information useful in learning
votes—becauseA′ never sees BB.

We are now ready to present the experiment c-resist-ideal that characterizes the
success of A′.

Experiment Expc-resist-ideal
ES,A,H (k1, k2, k3, nV , nA, nC)

V ← A′(voter names, “control voters”); % A′ corrupts voters
{(ski, pki)← register(SKR, i, k2)}nV

i=1; % voters are registered
(j, β)← A′(“set target voter and vote”); % A′ sets coercive target
if |V | �= nA or j �∈ {1, 2, . . . , nV } − V or

β �∈ {1, 2, . . . , nC} ∪ φ then % outputs ofA′ checked for validity
output ‘0’;

b ∈U {0, 1}; % coin is flipped
if b = 0 then % voter evades coercion

BB ⇐ vote(skj , PKT , nC , β, k2);
s̃k ⇐ skj ;
BB ⇐ vote({ski}i�=j,i�∈V , PKT , nC , DnU ,nC , k2); % ballots posted for honest voters
BB ⇐ A′(s̃k, {ski}i∈V , “cast ballots”); % A′ specifies vote choices
(X , P )← ideal-tally(SKT ,BB, nC , {pki}nV

i=1, k3); % election results are tallied
b′ ← A(X , “guess b”); % A′ guesses coin flip
if b′ = b then % experimental output determined

output ‘1’;
else

output ‘0’;

4 A Coercion-Resistant Election Protocol

We are now ready to introduce our protocol proposal. We begin by describing the cryp-
tographic building blocks we employ. Where appropriate, we model these as ideal prim-
itives, as explained.

El Gamal: El Gamal [24] represents a natural choice of cryptosystem for our purposes,
and is our focus in this paper. For reasons that we explain below, we will adopt a mod-
ified version of the basic El-Gamal scheme which can be seen as a simplified version
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of the well known Cramer-Shoup [19] cryptosystem (only providing semantic security
with respect to a passive adversary).

We let G denote the algebraic group over which we employ El Gamal, and q denote
the group order. For semantic security, we require that the Decision Diffie-Hellman
assumption hold over G [7,53]. A public/private key pair in El Gamal takes the form
(y(= gx), x), where x ∈U Zq. We let ∈U here and elsewhere denote uniform, random
selection from a set. The private key x may be distributed among the nT players in T
using (t, nT )-Shamir secret sharing [52] over GF [q], for t > nT /2. This private key
may be generated by a trusted third party or via a computationally secure simulation
of this process [25]. Each player then holds a public/private key pair (yi(= gxi), xi),
where xi is a point on the polynomial used for the secret sharing. A ciphertext in El
Gamal on message m ∈ G takes the form (α, β) = (myr, gr) for r ∈U Zq. For
succinctness of notation, we sometimes let Ey[m] denote a ciphertext on message m
under public key y. To re-encrypt a ciphertext (α, β), it suffices to multiply it pairwise
by a ciphertext on m = 1, i.e., to compute a new ciphertext (α′, β′) = (yr′

α, gr′
β) for

r′ ∈U Zq.
To decrypt a ciphertext (α, β), the plaintext m = α/βx is computed. To achieve a

threshold decryption of ciphertext (α, β), each active player i publishes a decryption
share βi = βxi . The value βx, and thus m, may be computed using standard LaGrange
interpolation. Player i may prove the correctness of its share using an NIZK proof of
the form PK{s : βi = βs

∧
ui = gs}—essentially two Schnorr identification proofs

[49] with conjunction achieved using techniques described in, e.g., [17]. We omit many
details in this description regarding the scheduling of these operations and the use of
commitments to avoid adversarial bias. (The reader is referred to, e.g., [12,25] for some
discussion of these issues in relation to key generation.)

We note that another possible choice of cryptosystem for our voting scheme is that
of Paillier [43].

Selected Cryptosystem, Modified El Gamal: As mentioned before our modified ver-
sion of the El Gamal cryptosystem can be seen as a simplified version of the Cramer-
Shoup [19], method. It is rather straightforward to prove that the scheme is actually
semantically secure under the decisional Diffie-Hellman assumption. The argument
closely follows the one presented in [19]. Here we provided a sketched version of such
an argument. Imagine there exists a probabilistic polynomial time algorithm A which
can break the semantic security of the proposed scheme. Then our goal is to describe
a different algorithm S (a simulator) which uses A to break the decisional DH prob-
lem. So assume S receives on input a quadruple (g1, g2, h1, h2) and has to determine
if this is a DDH quadruple or not. S constructs the public key (for the M-El Gamal
scheme) as follows. It chooses x1 and x2 at random and sets h = gx1

1 gx2 the rest is
unchanged.

What is different is the decryption procedure: On input (A, B, C) = (gr
1 , g

r
2, h

rm),
S retrieves the message m as m = C · (Ax1Bx2)−1

Note that in this way the simulator can always decrypt (and the distribution of the
key is perfectly indistinguishable from real).
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Next when the adversary comes up with the two messages m0, m1 he wants to be
challenged on S proceeds as follows. It flips a random (private) bit b, and encrypts mb

as follows

(hkx1
1 hkx2

2 m, hk
1 , h

k
2)

(where k is a random value)
Note that if the given quadruple is a DH one the ciphertext has the right distribution.

This is because hk
1 = gk′

1 andhk
2 = gk′

2 for some k′

and hx1
1 hx2

2 )k = hk′
(for the same k′)

If, on the other hand, the given quadruple is not a DH one then it is easy to check that
the A gains no information at all about the encrypted message (this is because this time
to decrypt adv has to know the secret exponents x1 and x2 which remains information
theoretically hidden by h).

Threshold cryptosystem with re-encryption: Our first building block is a threshold
public-key cryptosystem CS that permits re-encryption of ciphertexts with knowledge
only of public parameters and keys. The private key for CS is held by T in our con-
struction.

To describe our aim in the ideal, we would like any ciphertext E to be perfectly
hiding. We would like decryption to be possible only by having a majority of players in
T agree on a ciphertext to be decrypted. We model this latter ideal property as in terms
of a special decryption oracle denoted by ˜DEC. We assume further that any decryption
performed by ˜DEC is publicly verifiable.

Plaintext Equivalence Test (PET): A plaintext equivalence test (PET) [27,34] is cryp-
tographic primitive that operates on ciphertexts in a threshold cryptosystem. The input
to PET is a pair of ciphertexts; the output is a single bit indicating whether the corre-
sponding plaintexts are equal or not. PET may be realized as an efficient distributed
protocol that reveals no additional, non-negligible information about plaintexts. For a
detailed description of efficient methods to perform this verification, along with proofs
of the properties of the construction, see [34]. Rather than focusing on a specific em-
bodiment of PET, we model the ideal properties of the primitive by means of an oracle
denoted by ˜PET , and with the property of public verifiability.

Mix network: A (re-encryption) mix network (MN ) is a distributed protocol that
takes as input an ordered set E = {E1, E2, . . . , Ed} of ciphertexts generated in a
cryptosystem like El Gamal that permits re-encryption. The output of MN is an ordered
set E′ = {E′

π(1), E
′
π(2), . . . , E

′
π(d)}. Here, E′

π(i) is a re-encryption of Ei, while π is a
uniformly random, secret permutation. This is to say that MN randomly and secretly
permutes and re-encrypts inputs. Thus, the special privacy property of a mix network is
this: An adversary cannot determine which output ciphertext corresponds to which input
ciphertext, i.e., which inputs and outputs have common plaintexts. Stated another way,
an adversary cannot determine π(j) for any j with probability non-negligibly better
than a random guess. A number of mix network constructions have been proposed that
offer privacy and robustness against a static, active adversary capable of corrupting any
minority of the n players (servers) performing the mix network operation. Some of
these constructions offer the additional property of verifiability. In other words, a proof
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is output that is checkable by any party and demonstrates, relative to E and the public
key of the ciphertexts that E is correctly constructed. It is convenient to conceptualize
MN as an ideal primitive in terms of an oracle M̃N for MN with the property of
public verifiability.

There are many good choices of mix networks for our scheme; some examples of
such schemes are those of Furukawa and Sako [23] and Neff [38].

Proofs of knowledge: As sketched in the above descriptions, we make use of NIZK
(non-interactive zero-knowledge) proofs of knowledge [6] in a number of places. We
do not describe these tools in detail, as they are standard tools in the cryptographic
literature. Instead, we refer the reader to, e.g. [17], for discussion of construction and
logical composition of such protocols, and [11] for a notational overview and discussion
of efficient realization. As is the usual case, our use of NIZK proofs enforces a reliance
on the random oracle model in the security proofs for our scheme [4].

4.1 Our Proposed Protocol

Setup: The key pairs (SKR, PKR) and (SKT , PKT ) are generated (in an appro-
priately trustworthy manner, as described above), and PKT and PKR are published
along with all system parameters.

Registration: Upon sufficient proof of eligibility from Vi, the registrarR generates and
transmits to Vi a random string σi ∈U G that serves as the credential of the voter. Such
credentials can be generated in a distributed threshold manner (as in [25]), with each
active server of R sending the voter Vi its credential. R then adds Si = EPKT [σi] to
the voter roll L.6 The voter roll L is maintained on the bulletin board BB and digitally
signed as appropriate byR.

We assume that the majority of players in R are honest, and can thus ensure that
the R provides Vi with a correct credential. Nonetheless, it is possible forR to furnish
Vi with a proof that Si is a ciphertext on σi. To enforce coercion-resistance in the case
where erasure of secrets by voters is not automatic, a designated verifier proof [29] must
be employed for this proof. We note that credentials may be used for multiple elections.

Candidate-slate publication: R or some other appropriate authority publishes a can-
didate slate C containing the names and unique identifiers in G for nC candidates, with
appropriate integrity protection. This authority also publishes a unique, random election
identifier ε.

Voting: Voter Vi casts a ballot for candidate cj comprising M-El Gamal ciphertexts

(E(i)
1 , E

(i)
2 ) respectively on choice cj and credential σi. In particular, for a1, a2 ∈U Zq:

E
(i)
1 = (α1, α

′
1, β1) = (ga1

1 , ga1
2 , cjh

a1), E(i)
2 = (α2, α

′
2, β2) = (ga2

1 , ga2
2 , σih

a2).
6 In our definitions above, we use the common terminology of private and public keys—with

corresponding notation ski and pki—to describe the credentials associated with voters. Shift-
ing from a general exposition to our specific protocol, we now use σi instead of ski to denote
a voter credential, and Si instead of pki to denote a public representation thereof. This change
of notation aims to reflect the fact that voters do not employ a conventional form of public-key
authentication in our scheme.
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The first is a ciphertext on the candidate choice of the voter, the second a ciphertext on
the credential of the voter.

Additionally, Vi includes NIZK proofs of knowledge of σi and cj , a NIZK that αi, α
′
i

have the same discrete logarithm with respect to basis g1 and g2 and also a NIZK proof
that cj ∈ C, i.e., that cj represents a valid candidate choice. The latter can be ac-
complished, for example, using a disjuctive proof that the ciphertext constitutes a valid
encryption of a candidate choice in C. These three NIZK proofs, which we denote
collectively by Pf , may be accomplished efficiently using standard techniques. As is
standard practice, the challenge values for Pf are constructed using a call to a crypto-
graphic hash function, modeled in our security analysis by a random oracle ˜OW . Input
to ˜OW for these challenge values includes ε, E1, E2 and commitment values required
for realization of the NIZK proofs. Vi posts Bi = (E1, E2, Pf) to BB via an anony-
mous channel.

Tallying: To tally the ballots posted to BB, the authority T performs the following
steps:

1. Checking proofs: T verifies the correctness of all proofs on BB. Any ballots with
invalid proofs are discarded. For the valid, remaining ballots, let A1 denote the list
of ciphertexts on candidate choices (i.e., the E1 ciphertexts), and let B1 denote the
list of ciphertexts on credentials (i.e., the E2 ciphertexts).

2. Eliminating duplicates: The tallying authority T performs pairwise PETs on all
ciphertexts in B1, and removes duplicates according to some pre-determined pol-
icy, using e.g., order of postings to BB. When an element is removed from B1, the
corresponding element (i.e., that with the same index) is removed from A1. We let
B′

1 and A′
1 be the resulting “weeded” vectors. This is equivalent to retaining at

most one ballot per given credential.
3. Mixing: T applies MN to A′

1 and B′
1 (using the same, secret permutation for

both). Let A2 and B2 be the resulting lists of ciphertexts.
4. Checking credentials: T applies mix network MN to the encrypted list L of

credentials from the voter roll. T then compares each ciphertext of B2 to the ci-
phertexts of L using PET. T retains a vector A3 of all ciphertexts of A2 for which
the corresponding elements of B2 match an element of L according to PET. This
step achieves the weeding of ballots based on invalid voter credentials.

5. Tallying: T decrypts all ciphertexts in A3 and tallies the final result.

How to cheat a coercer: One possible implementation of the function fakekey is sim-
ply for the coerced voter Vi to select and reveal a random group element σ̃i, claiming
that this is the credential σi. (If coerced multiple times – whether for one or more
elections—the voter Vi would, of course, release the same value σ̃i.) In addition, partial
or full transcripts from the registration phase may be given to the adversary, depending
on the scenario, as we now explain.

Upon receiving a claimed credential σ̃i, the adversary would like to verify if it is
correct. Let us consider the possibility of doing so under each of our three possible
assumptions on the registration phase; in doing so, recall that we always assume that
the adversary can corrupt only a minority of servers in T , and so, will not be able to
decrypt any of the semantically secure encryptions of credentials.
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1. Assume that there is a mechanism forcing erasure of voter information no longer
needed at the end of the registration phase, and that only a minority of servers in
R may be corrupted. At the end of the registration process, each voter will erase
information specifying what part of the transcript leading to the credential σi he got
from what registration server. Without proofs or transcripts from individual servers
ofR, it is not possible for the adversary to verify the correctness of σ̃i.

2. Assume that the adversary cannot corrupt any server in R. As mentioned, the reg-
istration servers may if desired use designated verifier proofs to prove to each voter
that the share they send is authentic (i.e., will be part of the recorded transcript Si).
While the voter will be convinced of these proofs, the adversary will not; in fact, he
cannot distinguish between real such proofs and proofs simulated by Vi. Therefore,
Vi can convincingly release full simulated transcripts from the registration phase,
corresponding to a credential σ̃i.

3. Assuming that the user knows what (minority of) servers in R are corrupted, but
is not necessarily able to erase data, he can present the adversary with registration
transcripts that are consistent with the view of the servers he knows to be corrupted,
but inconsistent (in terms of the real share of σi) with the view of the servers that
are not. The latter transcripts will be accompanied by simulated designated verifier
proofs. Since the adversary may only corrupt a minority of servers in R, and a
majority is required to compute the credential σi, there will be at least one share of
σi that Vi can change to obtain a fake credential σ̃i �= σi, without the detection of
the adversary.

5 Proving Coercion-Freeness

In this section, we provide a detailed outline for proof of the property of coercion-
freeness in our proposed election protocol. (We do not consider correctness or verifiabil-
ity here, as these are more standard properties, and the proofs are more straightforward.)
For the purposes of this proof, we assume the use of the M-El Gamal cryptosystem over
a preselected group G of order q. The coercion-freeness of our scheme is dependent on
the Decision-Diffie Hellman (DDH) assumption on G. Briefly stated, this assumption
states that no algorithm with running-time polynomial in the security parameters for G
can distinguish between the two distributions D and D′ with non-negligible probabil-
ity: Here, D is the distribution of tuples of the form (y1, g1, y2, g2), where g1, g2 ∈U G,
y1 = gx

1 , and y2 = gx
2 for x ∈U Zq; i.e., the pair (y1, g1) and (y2, g2) are related by

a common exponent. D′ is the distribution of random tuples, i.e., tuples of the form
(y1, g1, y2, g2), where y1, g1, y2, g2 ∈U G. For detailed treatment of this assumption
(expressed in an alternative, equivalent form), see, e.g., [7].

5.1 Assumptions

As explained above, we simplify our analysis by assuming ideal constructions for a
number of components in our election protocol. Our aim in doing so is twofold: (1) Our
protocol is flexible enough to accommodate a range of cryptographic building blocks
from the literature and (2) We wish to retain a focus on the conceptual and definition
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elements of our paper, and not on protocol details. Hence, we assume the availabil-
ity of oracles for the four following cryptographic operations in our protocol: mixing,
plaintext equivalence testing (PET), threshold ciphertext decryption, and calls to the
one-way or hash function required for NIZK proofs. We denote these oracles respec-
tively by M̃N, ˜PET, ˜DEC and ˜OW . Although the functioning of these oracles should
be clear from our protocol description, we present it again here:

– The oracle M̃N performs exactly the same function as a mix network. It accepts
as input an ordered list E = {E1, E2, . . . , Ed} of ciphertexts under the public
key PKT of the tallying authorities. Its output on E is an ordered set E′ =
{E′

π(1), E
′
π(2), . . . , E

′
π(d)} for a secret, random permutation π, where E′

π(i) rep-
resents a re-encryption of ciphertext Ei.

– The oracle ˜PET takes as input a pair of ciphertexts (E, E′) under PKT . It outputs
a ‘1’ if E and E′ have identical corresponding plaintexts, and outputs ‘0’ otherwise.

– The oracle ˜DEC takes as input a ciphertext E under PKT . It outputs the corre-
sponding plaintext.

– The oracle ˜OW takes as input a query value in {0, 1}∗, and outputs a random value
{0, 1}k4 , where k4 is a security parameter (that may depend on k1, k2 and k3). The
output of ˜OW is consistent, in the sense that a given input value always yields
the same output value. This oracle may be viewed as the ideal embodiment of a
cryptographic hash function.

Each of these oracles accepts publicly viewable input from all participating authorities
(talliers). Each tallier may be thought of as having a publicly readable tape to which
it may write input values for a given oracle; each tape contains a write portion for
each time-step of the protocol, which we assume to be synchronous. At the end of a
given timestep, an oracle produces output according to the following procedure. If a
majority of talliers have furnished identical non-null values Z on their tapes, then the
oracle processes input Z and yields the corresponding output. If there is no non-null
majority input, then the oracle simply outputs the special symbol ⊥. The requirement
for majority input ensures that the protocol execution is determined by honest players,
i.e., effectively reduces A to an honest-but-curious adversary once the ballot-posting
phase for the election is complete.

We additionally assume for simplicity that key setup and registration are performed
by a trusted entity. Our proofs may be extended to accommodate more general assump-
tions in which these two processes are performed in a distributed manner.

5.2 Proof Overview

Recall that our definition of coercion-freeness revolves around a game played between
an adversaryA and a voter targeted for coercion. The aim ofA is to guess which of the
following two behaviors the voter has adopted during the execution of an election sys-
tem ES: (1) The voter has divulged valid voting credentials and abstained from voting
or (2) The voter has divulged fake credentials and cast a ballot. In order to demonstrate
that ES possesses coercion-freeness, we must show that A can guess successfully with
probability only negligibly better than a weaker poly-time adversaryA′ interacting with
an ideal election system. This adversaryA′ is passive, and its only input is the final tally
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X of votes cast by honest voters in the completed election plus Γ , the number of ballots
eliminated for invalid associated credentials.

Our proof strategy is to construct a polynomial-time algorithm S that takes a set
of ballots W of honest voters and simulates the election system ES in the experiment
c-resist. If the simulation is indistinguishable to A from use of the true functional
components of ES, andA cannot cause the simulation to deviate from correct execution,
then we see thatA learns nothing more than the correct election tally X and the number
of bad ballots Γ . This means in turn thatA is no more powerful than the ideal adversary
A′ characterized in our experiment c-resist-ideal. Thus ES is coercion-free.

The inability of the adversary to cause deviation in the experiment from correct ex-
ecution hinges on our oracle definitions, which require majority agreement on input
values. Given this, we show that the simulation produced by S is indistinguishable by
A from a real experimental execution of c-resist under the DDH assumption on G.
Our proof relies on the semantic security of M-El Gamal. In particular, we make use of
the following, useful fact implied by the DDH assumption: A poly-time adversary that
selects a plaintext m cannot distinguish between the distribution of M-El Gamal cipher-
texts on m (A1, A2, B) and the distribution of triplets of the form (α1, α2, β), where
β ∈U G and α1, α2 are distributed exactly as (A1, A2), with non-negligible probabil-
ity (in the security parameters for G). In consequence of this observation, it is possible
for S to simulate the election process by substituting random ciphertexts, i.e., random
triplets of group elements, for the real ciphertexts that would be processed in a true
execution of the experiment c-resist. In particular, S can simulate the ballots of voters
not controled by A with a list of random ciphertexts. Additionally, S can simulate the
oracle M̃N by setting its simulated output to a list of random ciphertexts. Under the
DDH assumption, A cannot distinguish between the random ciphertexts furnished by
S and the ciphertexts that would be processed in a true execution of ES.

5.3 The Simulation

We now outline the steps of the simulation of c-resist executed by S. Throughout the
simulation, according to the usual technique in the literature, S maintains state for the
simulated oracle ˜OW so as to ensure consistency of output values. Let W ∈ DnU ,nC

represent a set of ballots input into the simulation as representing the posting of honest
voters. At the very beginning the simulator receives a quadruple (g1, g2, h1, h2) which
is either a Diffie-Hellman quadruple or a random one, according to some hidden bit d.
More formally, d = 1 if the quadruple is a DH one and d = 0 otherwise. The goal of
the simulator is to guess which situation is dealing with.

1. Setup: S chooses uniformly and at random two elements x1, x2 ∈U Zq and sets
h = gx1

1 gx2
2 mod p. S publishes the public key (g1, g2, h) and also a randomized

candidate slate C = {ci}nC

i=1 such that ci = gri
1 for ri ∈U Zq. (For technical

reasons in our proof, we require that candidate identifiers here be random, rather
than comprising the set {1, 2, . . . , nC}.)

2. Registration: S simulates the registrar R, generating a set of credentials {σi =
gsi
1 } for si ∈U Zq. For the encrypted credential list L0, the simulator S publishes

a list of nV ciphertexts (using a public key generated as above).
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3. Adversarial corruption: The adversaryA selects a set V of nA voters to corrupt,
as well as a voter j for coercion and a target vote β. If any of these selections
are invalid, i.e., if V �= nA or j �∈ V − V or β �∈ C

⋃
φ, then the simulation is

terminated.
4. Coin flip: A coin b ∈U {0, 1} is flipped.
5. Credential release: S givesA the set of credentials {σi}i∈V as well as a credential

σ for the targeted voter j. If b = 1, then S gives σ = σj ; otherwise σ is a random
string.

6. Honest voter simulation: For each ballot element in W , the simulator posts a bal-
lot consisting of two ciphertexts (αi,1, α

′
i,1, βi,1), (αi,2, α

′
i,2, βi,2). S also furnishes

the associated NIZK proofs of the form specified above. Since the associated chal-
lenges value comes from ˜OW , and may therefore be predetermined by S, the NIZK
proof may be simulated using standard techniques. Let A0 be the list of these bal-
lots. Let A∗ be the associated set of plaintext ballot choices in W for which the
associated credential is correct, i.e., excluding λ elements.

The simulator creates the ciphertexts above as follows. For each ballot element
in W , S chooses two elements ri, ki at random in Zq and sets (αi,1 = hri

1 , α′
i,1 =

hri
2 , βi,1 = hrix1

1 hrix2
2 cj), (αi,2 = hki

1 , α′
i,2 = hki

2 , βi,2 = hkix1
1 hkix2

2 σi).
7. Adversarial ballot posting: The adversaryA posts a set of ballots B0 and associ-

ated NIZK proofs.
8. Decryption of ballots posted by the adversary: S checks the NIZK proofs in B0.

Let B1 be the list of ballots with correct proofs. For each ballot in B1 and each
credential in {σi}i∈V

⋃
σj , the simulator decrypts using his own private key (see

above).
9. Tallying simulation: S simulates the behavior of honest tallying authorities. Since

these are a majority, any deviating behavior by tallying authorities in the control of
A may be ignored. This part of the simulation proceeds as follows:

(a) Proof checking: Let E0 denote the combined list of input ballots A0 and B0.
S simulates the behavior of honest tallying authorities in rejecting all ballots
with invalid associated NIZK proofs. Let E1 be the resulting ballot list.

(b) Eliminating duplicates: Since no mixing has yet occurred, S may simulate
the elimination of duplicate ballots using its own decryption key. Let E2 be the
resulting ballot list.

(c) Mixing: S simulates the oracle M̃N as applied to E2 by outputting an equal-
length list E3 of random ciphertext triples. Likewise, S simulates the mixing
of L0 by outputting an equal-lengthed list L1 of random ciphertexts.

(d) Checking credentials: S simulates the process of credential checking. In a
true protocol execution, this would involve sequential comparison using ˜PET
between each ballot in E3 (more precisely, the credential ciphertext therein)
and the ciphertexts in L1. Either a match is found, in which case a ballot is
deemed to be based on a valid credential, or else the list L1 is exhausted, and
the ballot is rejected.
S simulates the output of ˜PET for this phase of the protocol using its own

decryption key as before. Let E4 be the resulting ballot list.
(e) Decryption: This is done straightforwardly.
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Now if the adversary outputs a guess bit b′ the simulator returns b′ as his own guess for
the decisional Diffie-Hellman challenge.

Observe that if the simulator’s input is a Diffie-Hellman triplet (that is d = 1) then
the simulation above is perfectly indistinguishable from the experiment Expc-resist

ES,A,H .
As a matter of fact, assuming g1 = g, g2 = ga, h1 = gb, h2 = gab for some g,

any ciphertext of the form (αi,1 = hri
1 , α′

i,1 = hri
2 , βi,1 = hrix1

1 hrix2
2 m) is actually

a valid one. Indeed hri
1 = gbri = gbri

1 , hri
2 = gabri = gbri

2 and hrix1
1 hrix2

2 m =
gbrix1gabrix2m = gbrix1

1 gbrix2
2 m = hbrim.

This means that

Pr[S = 1|d = 1] = Pr[Expc-resist
ES,A,H (V) = 1] = Succc-resist

ES,A (V)

where we denoted with V the view of the adversary.

On the other hand if the simulator’s input is not a Diffie-Hellman triplet (that is
d = 0) then the view produced by the simulation above does not give any information
(in a strong information theoretic sense) about the votes posted by the honest parties.
This is because, assuming g1 = g, g2 = ga, h1 = gb, h2 = gc for some c ∈U Zq,
one has that a ciphertext of the form (αi,1 = hri

1 , α′
i,1 = hri

2 , βi,1 = hrix1
1 hrix2

2 m)
actually “masks” the message m perfectly. Indeed hri

1 = gbri = gbri
1 , hri

2 = gcri =
gc′ri
2 and hrix1

1 hrix2
2 m = gbrix1gcrix2m = gbrix1

1 gc′rix2
2 m = gbrix1

1 gbrix2
2 gc′′rix2

2 m =
hbrigc′′rix2

2 m.
This means that, in this case, the probability that the simulator outputs one is equal

to the probability that the adversary outputs one in experiment Expc-resist-ideal.
More formally

Pr[S = 1|d = 0] = Pr[Expc-resist-ideal
ES,A,H (V) = 1] = Succc-resist-ideal

ES,A (V)

This means that

Advddh
S = Pr[S = 1|d = 1]− Pr[S = 1|d = 0] = Advc-resist

ES,A

under the Decisional DIffie-Hellman Assumption this quantity is negligible.

6 Conclusion

Beyond the fundamental properties of correctness and verifiability, an electronic elec-
tion system can ultimately inspire confidence in voters only if it is well protected against
criminal interference. We have sought here to define coercion resistance in the broadest
possible manner, encompassing not just abuse of voting receipts, but randomization,
forced-abstention, and simulation attacks. Our investigations also capture the funda-
mental statistical limits of adversarial interference in an election, showing how voters
can achieve true protection only by concealment in larger population. Our proposed
coercion-resistant voting scheme underscores that these limits may be within practical
reach. The main limitation on the scalability of our scheme is its quadratic complex-
ity. That said, since the initial publication [30] of the ideas presented here, Clarkson,
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Chong, and Myers [16] have devised and implemented a refined protocol in a system
called Civitas, and achieved good scalability by partitioning the population of voters. It
is certainly conceivable that there exists a provably secure, coercion-resistant electronic
voting scheme with lower complexity—perhaps even linear. Constructing one remains
an open problem.
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A Remark on Strong Verifiability

We set forth our definitions of correctness and verifiability in the body of the paper to
meet the minimal requirements for a fair election and to achieve some measure of con-
ceptual simplicity. These definitions are adequate for most election scenarios, but have a
technical deficiency that may be of concern in some cases. In particular, our definitions
allow for the possibility that a voter controlled byA casts a ballot corresponding to vote
β, but that the ballot gets counted as a vote for β′. SinceA can choose the vote cast by a
controlled voter in any case, this technical deficiency only means thatA can potentially
cause the votes of controlled voters only to change in the midst of the election process. It
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does not provideA with control of a larger number of votes. Most importantly, we note
that this definitional weakness does not apply to our proposed protocol, which meets
the stronger definition we now set forth.

Nonetheless, one can envisage some (somewhat artificial) scenarios in which stronger
guarantees may be desirable. For example, A might have the aim of causing the victor
in an election to win by the slimmest possible margin. In this case, if A controls a ma-
jority of T , then A might seek to decrypt all of the ballots cast in an election and alter
the votes of controlled voters so as to favor the losing candidate.

We discuss now how our definition of verifiability may be modified to discount the
possibility of this type of attack. (Analogous modifications may be made to the defini-
tion of correctness.) In particular, we can require that P be a proof that every tallied vote
corresponds uniquely to a credential for which a valid ballot has been cast. For this, we
require a natural technical restriction on vote. Let 〈vote(·)〉 denote the set of possible
outputs for the randomized function vote on a particular input. We require that an output
ballot be wholly unambiguous with respect to both the vote β and the credential sk. That
is, we require 〈vote(sk0, PKT , nC , β0, k2)〉

⋂
〈vote(sk1, PKT , nC , β1, k2)〉 = φ if

β0 �= β1 or sk0 �= sk1.
To strengthen our definition of verifiability, we alter Expver

ES,A(k1, k2, k3, nV ) such
that if the following conditions 1 and 2 are met, then the output of the experiment is ’1’.
Otherwise it is ’0’.

1. verify(PKT ,BB, nC , X, P ) = ’1’
2. For every injective mapping f : 〈X〉 → ZnV one of two conditions holds:

(a) ∃B : B ∈ BB, B ∈ 〈vote(ski, PKT , nC , β, k2)〉, ∀jf(j) �= i
(b) ∃β ∈X : f(β) = i, ∀B ∈ BB, B �∈ 〈vote(ski, PKT , nC , β, k2)〉

Conditions 2(a) and 2(b) here respectively specify that the adversary has successfully
defeated the verifiability of the system either by causing all of the valid ballots associ-
ated with a particular credential not to be counted or else enabling multiple votes to be
tallied for a single credential.

Given use of a verifiable mix network, our proposed protocol meets this stronger
security definition for verifiability.
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Abstract. We present a K-out-of-L voting scheme, i.e., a voting scheme
that allows every voter to vote for (up to) K candidates from a set
of L candidates. The scheme is receipt-free, which means that even a
malicious voter cannot prove to anybody how he voted. Furthermore, the
scheme can be based on any semantically secure homomorphic encryption
scheme, in particular also on the modified ElGamal encryption scheme
which does not allow for efficient decryption of arbitrary large messages
(but is more efficient than Paillier’s encryption scheme).

We note that in contrast to the standard setting with receipts, in a
receipt-free setting a K-out-of-L voting scheme cannot be derived di-
rectly from a yes/no voting scheme.

Finally, we show that the voting protocol of Lee and Kim is not
receipt-free, opposed to what is claimed in the paper.

1 Introduction

1.1 Problem Summary

The goal of an electronic voting protocol is to compute the sum of the votes of all
entitled voters. In the simplest case, every voter can cast one of two possible votes
(Yes/No-votes). More generally, every voter may vote for any K candidates out
of a list of L candidates (K-out-of-L voting schemes). A secure voting protocol
must (at least) satisfy the following fundamental properties:

– Eligibility. Only entitled voters are able to submit a vote (respectively, the
votes of unauthorized voters are not counted), and they are able to submit
only one single vote.

– Correctness. The tally that pops up at the end of the vote is the correct
sum of all valid votes; invalid votes have no influence to the tally.

– Universal verifiability. Anyone can verify that the published tally is
correct.

– Secrecy. It is infeasible to find out which voter has submitted which vote.
Secrecy should also be satisfied for partial information on votes, as well as
for relation between votes of several voters.

� A preliminary version of this text can be found in [Hir01, Chapter 5].
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– Receipt-freeness. The voter cannot obtain a receipt proving the vote he
has cast.

The receipt-free property is required to prevent voters from selling their votes.
Its importance is disputed within the voting community, as the problem of vote-
selling can be seen marginal. However, in a classical voting scheme, the absence
of vote-buying can never be demonstrated; even long after a vote, rumors about a
vote-buying server cannot be resolved, This is in contrast to the correctness of the
result, which can be proven at the end of the vote (using universal verifiability).
Hence, to our mind, limited correctness (with universal verifiability) might be
acceptable; limited receipt-freeness is not.

Receipt-freeness is not achievable without taking some additional assumption
on the communication model (e.g., untappable channels, voting booth) and/or
the trust model (e.g., trusted hardware tokens): Evidently, if the vote-buyer can
read all communication channels, then the voter’s initial randomness, secret-
keys etc. are a verifiable receipt for the submitted vote (the vote-buyer can
simulate the voter’s behavior by using the correct voting program, and compare
the communication with the effective communication seen on the channels). This
receipt can even be made zero-knowledge for the vote-buyer by using standard
techniques (the voter proves knowledge of a secret key matching his public key,
some randomness, such that when applying the voting program, the effective
communication is produced).

1.2 Contributions

We propose a construction for receipt-free voting protocols based on homomor-
phic encryption with the following advantages over previous voting protocols:

– Genericalness. The construction as well as the security proofs are
generic in the underlying encryption scheme, and can equally be instan-
tiated with Paillier’s scheme [Pai99] or with the modified ElGamal scheme
[ElG84, CGS97]. Note that the latter is significantly more efficient with com-
parable security (Paillier requires a bigger field for the same level of security
than ElGamal).

– Generality. The new protocol supports K-out-of-L elections for arbitrary
K and L. In contrast to most (even non-receipt-free) voting protocols in the
literature, we do not have to adjust the security parameter of the underlying
encryption scheme when L is large. Furthermore, this is the first receipt-free
scheme supporting arbitrary large K without exponential complexity (the
complexity of the new scheme is linear in L and independent of K).

– Efficiency. The proposed voting scheme is more efficient than any receipt-
free voting scheme in the literature. For K-out-of-L voting (for any K), it
requires only three times more communication than the most efficient 1-out-
of-L scheme which is not receipt-free [CGS97].

Note that the apparent idea for constructing K-out-of-L voting protocols,
namely running L parallel instances of a 1-out-of-2 protocol and have each
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voter prove that at most K instances contain a 1-vote [BY86], cannot gener-
ically be applied in a receipt-free model: For example, in the protocols of
[SK95, HS00, BFP+01], the voter does not know the randomness used for en-
crypting his own vote, and hence he cannot prove any statement on the submitted
vote(s).

The new protocol is constructed along the lines of the protocol of [CGS97]: A
set of N authorities jointly set-up a secret-key/public-key pair, where the secret-
key is shared among the authorities. Every voter then encrypts his vote under
the public-key, the authorities compute the sum of all submitted votes with using
the homomorphic property of the encryption function, and jointly decrypt (and
prove) the tally by applying techniques from threshold cryptography. Receipt-
freeness is achieved by techniques similar to those of [LK00, BFP+01]: Every
voter must have his encrypted vote re-randomized by a randomizer. This ran-
domizer can be a designated authority, or a piece of hardware given to the voter.
The randomizer acts as an “observer” [CP92] establishing receipt-freeness, but
cannot violate the secrecy or the correctness of the vote. More precisely, the ran-
domizer does not learn the vote, hence cannot violate the privacy of the protocol.
Furthermore, the randomizer must prove to the voter that the new encryption
is really a re-randomization of the original encryption, hence he cannot cannot
violate the correctness of the protocol. However, a malicious randomizer could
help a voter to sell his vote.

The security of the protocol is specified with respect to a fixed parameter
t: The correctness of the computed tally is guaranteed as long as at least t
authorities remain honest during the whole protocol execution, and the secrecy
of each vote is guaranteed as long as no t authorities maliciously collaborate with
each other. Vote-buying is disabled under the assumption that the randomizer
does not collaborate with the vote-buyer, and that the vote-buyer cannot tap the
communication between the voter and the randomizer. Therefore, we require that
the vote-buyer cannot tap the channels between the voters and the randomizer.
We stress that these additional assumptions are required solely for the receipt-
freeness of the scheme; even when the randomizer cooperates with the adversary
and/or the adversary can tap the channels between the randomizer and the
voter, still our voting scheme provides all security properties of non-receipt-free
voting schemes. Hence, receipt-freeness is provided as a strict add-on.

Finally, we analyze the security of the protocol of [LK00] and show that it is
not receipt-free, in contrast to what is claimed in the paper.

1.3 Previous Work and Comparison

Secret-ballot voting protocols were first proposed by Chaum [Cha81], based on
the idea of a mix-net. Cohen (Benaloh) and Fischer [CF85] and Benaloh [Ben87]
suggested a voting protocol based on a homomorphic encryption function. The
first voting schemes based on blind signatures and anonymous channels were
proposed by Chaum [Cha89] and Fujioka, Okamoto, and Ohta [FOO92]. Later,
many schemes based on these approaches were published [BY86, Ive91, PIK93,
Sak94, SK94, CFSY96, CGS97].
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The concept of receipt-freeness was first introduced by Benaloh and Tuinstra
[BT94], where also a first receipt-free voting protocol based on homomorphic en-
cryption is proposed. However, their main protocol turned out to be not receipt-
free [HS00]. Another receipt-free voting protocol was proposed in [NR94], but
as this scheme bases on generic cryptographic tools (like general zero-knowledge
proofs) it is very inefficient. We mention that using incoercible multi-party com-
putation [CG96] does not suffice to achieve receipt-freeness: Voters who want
to sell their vote can use committed random bits in the set-up phase, and can
then later prove their vote based on this randomness. In the sequel, we briefly
compare our scheme with the most prominent receipt-free voting schemes in the
literature.

Sako/Kilian [SK95]. This voting scheme is based on a mix-net channel. The
scheme suffers under similar disadvantages as other mix-net voting proto-
cols: it requires a high communication complexity in the mix (especially the
cut-and-choose proofs), and the tallying process cannot be performed in-
crementally (the whole mixing load must be performed after the last vote
has been cast). Furthermore, this scheme is vulnerable to the so-called ran-
domization attack [Sch99]: The coercer can force a voter to vote randomly
by instructing him which encrypted ballot to take from the generated list.
In this scheme, receipt-freeness is assumed under the assumption of physi-
cally untappable channel. If an adversary could tap these channels, then not
only he could violate the receipt-free property, but also the secrecy property.
However, this drawback can be fixed.

Okamoto [Oka96, Oka97]. This scheme uses the blind-signature approach.
It requires each voter to be active in three rounds, which is a significant
disadvantage in practice. Receipt-freeness is achieved under the (rather de-
manding) assumption of untappable anonymous channels. An adversary who
can violate this assumption can break both receipt-freeness and secrecy of
the scheme. It seems unclear how to get rid of this drawback.

Hirt/Sako [HS00]. This protocol uses homomorphic encryption for tallying
and a small mix-net for vote generation. This approach awards higher ef-
ficiency than the previous approaches. However, also this protocol is vul-
nerable to the randomization attack [Sch99]. Also this scheme relies on the
assumption of untappable channels, and also in this scheme, tapping these
channels violates the secrecy of the votes (can be fixed). Furthermore, this
protocol implements only 1-out-of-L elections for small L (the computational
complexity of decrypting the tally is exponential in L).

Lee/Kim [LK00], Baudron et al [BFP+01]. Recently, [LK00] introduced
the idea of using a randomizer for achieving receipt-freeness. However,
their protocol is insecure (cf. Appendix A). Independently, [BFP+01] pro-
posed a receipt-free voting protocol based on randomizers, using Pail-
lier encryption [Pai99] for secrecy and general diverted proofs [OO89] for
receipt-freeness. Paillier encryption makes the scheme less efficient than
schemes based on modified ElGamal (like ours): for achieving the same
level of security, Paillier requires a bigger security parameter than ElGamal.



68 M. Hirt

Furthermore, using general diverted proofs might also yield a high bit com-
plexity; this is not analyzed in the paper. Finally, the protocol is limited
to 1-out-of-L votes (in contrast to K-out-of-L votes), and for large L, the
security parameter of the underlying encryption scheme must be increased,
slowing down all computations.

2 Preliminaries

2.1 Σ-Proofs

A Σ-proof is a three-move special honest-verifier zero-knowledge proof of knowl-
edge. This notion originates from the notion of a Σ-protocol, as introduced by
Cramer [Cra96]. We call a Σ-proof linear if the verifier’s test predicate is lin-
ear, i.e., the sum of two accepting conversation is accepting as well. Several
Σ-proofs can easily be combined to a new Σ-proof proving knowledge of all
(AND-combination) or either (OR-combination) of the witnesses. For the AND-
combination, the protocols are run in parallel, but the verifier requests the same
challenge for all parallel instances. For the OR-combination, again the verifier
requests only one challenge, but the prover is allowed to split this challenge into
one sub-challenge for each instance, where the sub-challenges must add up to
the challenge. This allows the prover to run the simulator for all but one in-
stance. Note that both the AND- and the OR-combination preserves linearity.
Any Σ-proof can be made non-interactive by applying the Fiat-Shamir heuris-
tics [FS86]. Details and formal definitions of Σ-proofs are omitted due to space
restrictions.

2.2 Identification Scheme

For voter identification, we assume an identification scheme where the identifi-
cation protocol can be written as a linear Σ-proof. One can easily verify that
Schnorr’s identification scheme [Sch91] satisfies this requirement. A voter’s se-
cret key is denoted by zv, the corresponding public key by Zv = gzv for an an
appropriate generator g. Furthermore, in a model providing receipt-freeness, it
is essential that each voter knows his own secret key, and this should be ensured
by the underlying public-key infrastructure. A protocol for ensuring knowledge
of the secret-key for Schnorr’s identification scheme is given in [HS00].

2.3 Designated-Verifier Proofs

We will also make use of so-called designated-verifier proofs. A designated-verifier
proof is a proof which is convincing for one particular (designated) verifier, but
completely useless when transferred from this designated verifier to any other
entity. The notion of designated-verifier proofs was introduced in [JSI96]. The
key idea of designated-verifier proofs is to prove knowledge of either the witness
in question, or of the secret key of the designated verifier. Formally, the proof
will be constructed as the OR-combination of the proof in question and a proof
of knowledge of the designated verifier’s secret-key.
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3 The Encryption Function

We first state the requirements on the encryption function, and then show that
the two classical homomorphic encryption functions, namely modified ElGamal
and Paillier, satisfy the requirements. For space limitations, the full descriptions
have been deleted from this extended abstract.

3.1 Requirements

We consider a semantically-secure probabilistic public-key encryption function
EZ : V × R → E, (v, α) �→ e, where Z denotes the public key, V denotes a
set of votes, R denotes the set of random strings, and E denotes the set of
encryptions. We write E instead of EZ for shorthand. The decryption function
is Dz : E → V, e �→ v, where z denotes the secret key. Again, we write D instead
of Dz. Note that the computational complexity of the decryption function Dz

may be polynomial in the decrypted cleartext v. For arbitrary large v, decryption
is not required to be feasible.

We assume that E is a group homomorphism, i.e., E(v1, α1) ⊕ E(v2, α2) =
E(v1 + v2, α1 � α2) for the corresponding group operations + in V, � in R,
and ⊕ in E, respectively. Note that the group operation in V must be modular
addition, but the operations in the other groups can be arbitrary.

Furthermore, we require E to be q-invertible for a given q ∈ Z meaning that for
every encryption e, the decryption v and the randomness α of qe can be efficiently
computed, i.e., the function Dq : e �→ (vq, αq) such that qe = E(vq , αq) is efficient
(given Z). Additionally, we require that there is a number u ≤ q, large enough
that 1/u is considered negligible, with the property that all integers smaller
than u are co-prime with q, i.e., ∀u′ < u : gcd(u′, q) = 1. This property will
be used in the knowledge extractors of the Σ-proofs.1 Note that vq must be 0
due to the semantic security of E and the group structure of V. This notion
of q-invertibility is inspired by the notion of q-one-way group-homomorphism of
Cramer [Cra96, CD98].

Finally, we require the existence of verifiable distributed protocols for key gen-
eration and for decryption. Note that every encryption scheme can be turned into
a threshold variant by applying techniques of general multi-party computations,
but such an approach would be rather inefficient.

3.2 Modified ElGamal Encryption

The ElGamal encryption function [ElG84], modified according to [CGS97],
enhanced with a threshold setup protocol and a threshold group decryption
[Ped91], satisfies all above properties. When used over a finite field G with
|G| = q prime, then the encryption function is q-invertible, and we set u = q.

1 More generally, it would be sufficient to assume that for a given large u, there exists
an efficiently computable and invertible bijection from Zu onto a subset of Zq , where
each element in this subset is co-prime with q.
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What should still be mentioned here is that computational complexity for de-
cryption is linear in the size of the cleartext. However, in the context of this
work, this issue will not be a problem.

3.3 Paillier Encryption

Also the probabilistic encryption function of Paillier [Pai99], enhanced by thresh-
old setup and decryption [FPS00, DJ01], satisfies all required properties. For an
RSA modulus n, this encryption function is n-invertible, and let u be a large
prime which is guaranteed to be smaller than the smaller prime factor of n (e.g.,
we let n be the product of two secret 512-bit integers, and let u be a fixed 511-bit
prime).

4 Re-encrypting and Proving Re-encryptions

A random re-encryption e′ of a given encryption e = E(v, α) is an encryption
with the same vote v, but a new (independently chosen) randomness α′. Such
a re-encryption can be computed by adding a random encryption of 0 to e.
Formally, a witness ξ ∈R R is chosen at random, and e′ = e ⊕ E(0, ξ), i.e.,

e′ = R(e, ξ) = e ⊕ E(0, ξ).

Due to the homomorphic property of E, the randomness in e′ is uniformly dis-
tributed over R for a uniformly chosen ξ ∈R R.

Proving that a given e′ is indeed a re-encryption of e can easily be done by
proving that e′ � e is an encryption of 0. We present a simple linear Σ-proof for
proving knowledge of a witness α such that e = E(0, α) for any given encryption
e. The challenge for the protocol is uniformly selected from Zu, and the soundness
of the protocol is proven under the assumption that E is q-invertible and that
∀u′ < u : gcd(u′, q) = 1.

Prover Verifier

knows e, α,
s.t. e = E(0, α)

knows e

α′ ∈R R, e′ = E(0, α′) �e′

� c
c ∈R Zu

β = cα � α′ �β
E(0, β) ?= ce ⊕ e′

Completeness of the protocol is obvious by inspection. We next show that the
protocol satisfies special soundness, by showing that if for any e′ the prover can
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reply to two different challenges c1 	= c2, then he can compute a witness α with
e = E(0, α). So assume that for two different challenges c1 and c2, the prover
can answer with β1 and β2, respectively, such that both conversations (e′, c1, β1)
and (e′, c2, β2) are accepting, i.e., E(0, β1) = c1e⊕e′ and E(0, β2) = c2e⊕e′, and
hence E

(
0, β1 �β2

)
= (c1−c2)e. Without loss of generality assume that c1 > c2,

hence 0 < c1− c2 < u, and gcd(c1 − c2, q) = 1. Hence we can apply the extended
Euclidean algorithm to find two integers a and b such that a(c1 − c2) + bq = 1.
Then, using the q-invertibility of the encryption function we compute αq such
that qe = E(0, αq). This results in

e =
(
a(c1 − c2) + bq

)
e = a(c1 − c2)e ⊕ bqe

= aE
(
0, β1 � β2

) ⊕ bE(0, αq) = E
(
0, a(β1 � β2) � bαq

)
.

This concludes that indeed e encrypts 0 with witness α = a(β1 � β2) � bαq.
We now show that the protocol is special honest-verifier zero-knowledge by

constructing a simulator. The simulator is constructed as follows: For any given
c ∈ Zu, we select β from R at random, and set e′ = E(0, β)� ce. Obviously, the
probability distribution of β is the same as the distribution of a real conversation
in which α is chosen uniformly distributed (for the same challenge c).

It is important to note that the simulator can also be applied for an encryp-
tion e which does not encrypt 0, and the simulated conversation is computa-
tionally indistinguishable from a conversation where e encrypts 0 (an efficient
distinguisher of these conversations would contradict the semantic security of
the encryption function). This indistinguishability is important when several
re-encryption proofs are OR-combined.

5 Non-Receipt-Free Voting Protocol

In this section we present a very simple K-out-of-L voting protocol which is
not receipt free. The protocol is similar to the voting protocol of [CGS97], but
due to a different ballot encoding it allows for votes with K ≥ 2 and provides
a substantially better computation complexity for L > 2. The protocol will be
used as basis for the receipt-free protocol in the next section.

5.1 Model

We consider a model with N authorities A1, . . . , AN and M voters. Commu-
nication takes place by means of a bulletin board which is publicly readable,
and which every participant can write to (into his own section), but nobody can
delete from. The bulletin board can be considered as an authenticated public
channel with memory. A threshold t denotes the number of authorities that is
required for decrypting the tally, and which also is able to annihilate the secrecy
of any vote.



72 M. Hirt

5.2 Ballots

A ballot consists of a vector of votes, �v = (v1, . . . , vL), where vi is the vote for
the i-th candidate. In a K-out-of-L election, a ballot is valid if and only if each
vote vi is either 0 or 1, and the votes on the ballot sum up to K. If voters should
be allowed to vote for less than K candidates, then this is modeled as K-out-
of-(L + K) election, where the latter K candidates represent “abstain” and will
not be tallied.

As simple notation, we write E(�v, �α) for L-vectors �v = (v1, . . . , vL) and
�α = (α1, . . . , αL), meaning the component-wise application of the encryption
function, i.e., E(�v, �α) =

(
E(v1, α1), . . . , E(vL, αL)

)
. Analogously, we defined

R(�e, �ξ), �v1 + �v2, �α1 � �α2, and �e1 ⊕ �e2.

5.3 Set-Up

In the set-up phase, the authorities jointly generate a uniformly distributed
secret key and the corresponding public key for the encryption scheme, where
the secret key is shared among the authorities, and the public key is publicly
known. A protocol for (verifiable) generating a sharing of a randomly chosen
secret key and a public key is a requirement on the encryption function.

5.4 Casting a Ballot

A ballot is cast as follows: The voter constructs a random encryption �e = E(�v, �α)
for his vote vector �v and randomness �α ∈R R

L, and posts it onto the bulletin
board. Furthermore, the voter posts a proof of validity. A ballot �v = (v1, . . . , vL)
is valid if and only if vi ∈ {0, 1} for i = 1, . . . , L and

∑
vi = K. In the following

we construct a (finally non-interactive) validity proof for the encrypted ballot
�e = (e1, . . . , eL).

The validity proof is constructed as the AND-combination of a Σ-proof for
each i = 1, . . . , L, each stating that ei is an encryption of either 0 or 1, and a
Σ-proof stating that e1 ⊕ . . . ⊕ eL is an encryption of K. The proofs that ei is
an encryption of either 0 or 1 is constructed as an OR-combination of a proof
stating that ei encrypts 0 and a proof stating that ei encrypts 1.

For easier notation, we write ei,0 = ei and ei,1 = ei�E(1, 0), that is, ei,vi is an
encryption of 0 with randomness αi. Furthermore, we write eΣ = (e1⊕ . . .⊕eL),
αΣ = α1 � . . . � αL, and eΣ,K = eΣ � E(K, 0). A ballot is valid exactly if
for each i, either ei,0 or ei,1 encrypts 0, and eΣ,K encrypts 0. This proof can be
constructed straight-forward as AND-combination of OR-combinations of proofs
that a given encryption contain 0 (Section 4).

The following protocol is a OR-combined Σ-proof of knowledge of a witness
αi such that ei,0 = E(0, αi) OR ei,1 = E(0, αi). In the protocol for proving
ei,1−vi , the prover applies the simulator.
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Prover Verifier

knows vi ∈ {0, 1}, αi knows ei = E(vi, αi)

α′
i,vi

∈R R,
e′i,vi

= E(0, α′
i,vi

)
ci,1−vi ∈R Zu,
βi,1−vi ∈R R,
e′i,1−vi

= E(0, βi,1−vi)
�ci,1−viei,1−vi

�e′i,0, e
′
i,1

� c
c ∈R Zu

ci,vi = c − ci,1−vi (mod u),
βi,vi = ci,viαi � α′

i,vi
�ci,0, ci,1, βi,0, βi,1 c

?= ci,0 + ci,1 (mod u)

E(0, βi,0)
?= ci,0ei,0 ⊕ e′i,0

E(0, βi,1)
?= ci,1ei,1 ⊕ e′i,1

The finally validity proof is the AND-combination (i.e., parallel execution,
but same challenge for all instances) of the above protocol for i = 1, . . . , L plus a
Σ-proof that eΣ,K encrypts 0. A (short) non-interactive proof is then the vector
[c, c1,0, . . . , cL,0, β1,0, . . . , βL,0, β1,1, . . . , βL,1, βΣ ] satisfying

c
?= H

(
E(0, β1,0) � c1,0e1,0

∥∥
∥ . . .

∥∥
∥E(0, βL,0) � cL,0eL,0

∥∥
∥

E(0, β1,1) � (c − c1,0)e1,1

∥
∥
∥ . . .

∥
∥
∥E(0, βL,1) � (c − cL,0)eL,1

∥
∥
∥

E(0, βΣ) � ceΣ,K

)
.

The proof takes 3L + 2 field elements.

5.5 Tallying

Tallying is performed for each candidate separately: For candidate i, the i-th
components of each valid ballot are summed up (using the homomorphic prop-
erty of the encryption function) and decrypted (using the verifiable decryption
protocol of the encryption function). Note that it is known in advance that the
decrypted tally will be in the range (0, M); hence, decryption is efficient also for
the modified ElGamal scheme.

5.6 Security Analysis

The privacy of the proposed protocol is guaranteed under the assumption that
no t authorities maliciously pool their information, plus the assumption that
the encryption function is semantically secure. The tally is correct if at least t
authorities honestly participate in the tally decryption, plus the assumption that
no verifier can cast an invalid ballot. The probability that an invalid ballot passes
the validity proof is negligible if 1/u is negligible. The scheme is not receipt-free.
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5.7 Efficiency Analysis and Comparison

We analyze the communication efficiency of this voting protocol for a K-out-of-L
vote. The number of bits used to store one group element is denoted by B.

We ignore the costs for initialization and decryption of the final tally —
they are independent of the number M of voters. It remains to count the costs
for casting and proving votes. In order to cast his vote, every voter sends his
encrypted ballot (LB bits) together with the validity proof ((3L+2)B bits) onto
the bulletin board. In total, (4L + 2)MB bits are posted to the bulletin board.

As comparison, in [CGS97], a ballot takes only B bits, but the proof takes 2LB
bits. This gives a total of (2L+1)MB bits. However, this scheme only allows for
K = 1 (for larger K the communication complexity would grow exponentially),
and its decryption function is computationally inefficient for large L.

6 Receipt-Free Voting Protocol Based on Randomizers

In this section, the voting protocol of Section 5 is enhanced to be receipt-free.
Therefore, the procedure for casting a vote must be modified.

The protocol relies on special authority called randomizer, who re-randomizes
encrypted ballots of the voters. More precisely, each voter constructs an en-
crypted ballot containing his vote and secretly sends it to the randomizer. The
randomizer re-encrypts this ballot and posts it to the bulletin board. Further-
more, the randomizer proves to the voter (in designated-verifier manner) that
indeed the new encrypted ballot contains the same vote, and the voter and the
randomizer jointly generate a proof of validity for this new ballot.

In the following, we briefly discuss the new model, then formally describe the
new protocol for casting a ballot.

6.1 Model

In addition to the model of Section 5, we assume a special authority called
randomizer. Collaboration of the randomizer with a vote-buyer or coercer cannot
be tolerated. The randomizer does not learn the vote of any voter, nor can he
interfere with the correctness of the tally, but he can reject to re-encrypt the
ballot of any voter and thereby prevent this voter from participating the vote.
Therefore, several randomizers can be used.

We assume that the communication channels between the voter and the ran-
domizer are untappable for the vote-buyer. The privacy of these channel must
be physical, in such a way that even the recipient cannot prove to the vote-
buyer what was received from the channel (of course, the recipient can record
all received data, but he must not be able to prove that he received a particular
string). The untappable channels need not to be authenticated.

Furthermore, to each voter a secret key and a public key is associated, where
the public key must be publicly known and the secret key must be kept private.
We stress that in order to achieve receipt-freeness it must be guaranteed that
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each voter knows the secret key corresponding to his known public key (but the
voter is allowed to reveal the secret-key to the coercer). A protocol ensuring so
is given in [HS00].

Note that all above requirements are uniquely relevant for receipt-freeness.
If they are not met, then the proposed voting scheme still achieves all security
requirements but receipt-freeness.

6.2 Casting a Ballot

A ballot is cast as follows: The voter constructs a random encryption �e = E(�v, �α)
of his vote vector �v with randomness �α ∈R R

L, and sends it through the un-
tappable channel to the randomizer. The randomizer then computes random
re-encryption �e∗ = R(�e, �ξ) of �e, and proves to the voter in designated-verifier
manner that indeed �e∗ is a re-encryption of �e. Then, the voter and the ran-
domizer jointly generate a validity proof for �e∗, without the randomizer learning
anything about the vote vector �v, and without the voter learning anything about
the re-encryption witness �ξ. Finally, the randomizer posts the validity proof to
the bulletin board, and the voter posts the re-encrypted ballot �e∗.

Voter Randomizer
Bulletin-
Board

�e = E(�v, �α) �
�e

�
�e∗

�e∗ = R(�e, �ξ) �
�e∗

�
re-encr. proof

prove �e∗ ∼= �e

. . . ��
validity proof

. . .

�
val. proof

Designated-verifier re-encryption proof. The purpose of this proof is to
have the randomizer prove to the voter that the new encryption �e∗ is indeed
a re-encryption of �e. However, this proof must be non-transferable, such that
the verifier cannot convince someone else that �e∗ is a re-encryption of �e. This is
achieved by a designated-verifier proof (cf. Section 2.3): The randomizer proves
knowledge of either a re-randomization witness �ξ with �e∗ = R(�e, �ξ), or of the
voter’s secret key. Obviously, this proof is convincing for the voter, but com-
pletely useless when transferred from the voter to a third party.

The proof is constructed as an OR-combination of the Σ-proof that the en-
cryption �e∗ � �e contains the vote �0 (which again is an AND-combination that
E(0, ξi) = e∗i � ei for i = 1, . . . , L), and the Σ-proof of the identification scheme.



76 M. Hirt

The resulting proof will require L + 1 encryptions in the first message, then
one challenge, and in the final message, 2 sub-challenges plus 2L + 1 randoms.
Non-interactively, the proof can be made in 2L + 3 field elements.

We show the proof for Schnorr’s identification scheme. We denote the voter’s
secret key with zv and the public key with Zv = gzv . For shorthand, we set
�e− = �e∗ � �e. The following protocol is a Σ-proof of knowledge of either the
voter’s secret key zv satisfying gzv = Zv, OR a witness �ξ satisfying �e− = E(�0, �ξ).

Randomizer Voter

knows �e−, �ξ knows �e− = E(�0, �ξ)

�α′ ∈R R
L, �e′ = E(�0, �α′)

c2 ∈R Zu, s2 ∈R Zq,
t2 = gs2Z−c2

v
��e′, t2

� c
c ∈R Zu

c1 = c − c2 (mod u)
�β = c1

�ξ � �α′ �c1, c2, �β, s2
c

?= c1 + c2 (mod u)
E(�0, �β) ?= c1�e

− ⊕ �e′

gs2 ?= Zc2
v · t2

A non-interactive version of the proof is the vector [c1, c2, �β, s2] satisfying the
equation

c1 + c2
?= H

(
E(0, β1) � c1e

−
1

∥
∥
∥ . . .

∥
∥
∥E(0, βL) � c1e

−
L

∥
∥
∥gs2Z−c2

v

)
.

This proof takes L + 3 field elements.

Validity proof. The validity proof is a non-interactive proof that the random-
ized encryption �e∗ contains a valid vote, i.e., each ei is an encryption of either 0
or 1, and in total, there are exactly K encryptions of 1. Neither the voter (who
does not know the re-encryption witness �ξ) nor the randomizer (who does not
know the ballot �v) can generate the proof on their own, hence they need to gen-
erate the proof interactively. The generation of the proof proceeds in two steps:
First, the voter and the randomizer engage in an interactive protocol which gives
to the randomizer a uniformly selected random non-interactive validity proof for
�e (a so-called diverted proof [OO89]). Then, the randomizer adjusts this proof
into a validity proof for �e∗.

Generating a diverted validity proof for �e. We first observe that validity proofs
are linear Σ-protocols; hence, the sum of two accepting validity proofs (for the
same vote �e) is again an accepting validity proof for �e. A diverted version of the
validity proof can hence be generated as the sum of the normal validity proof
(from Section 5.4) and a uniformly random validity proof for �e, generated by the
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simulator. More precisely, a diverted proof for �e is generated as follows: First,
the randomizer used the simulator to generate a random validity proof for �e
with challenge 0 (here we use that the Σ-proof is special zero-knowledge). Then,
the voter and the randomizer engage in an interactive validity proof for �e. The
diverted proof is then the sum of these two proofs.

More precisely, the randomizer selects random “displacements” c′i,0 ∈R Zu,
c′i,1 = −c′i,0, and β′

i,0, β
′
i,1 ∈R R for i = 1, . . . , L. The displacements are chosen

such that c′i,1 + c′i,0 = 0 for all i, i.e., the sum of the new sub-challenges will
not change. Upon reception of the first message (e′i,0, e

′
i,1) of the interactive

Σ-proof, the randomizer computes the first “message” of the non-interactive
diverted proof as

e′′i,0 = e′i,0 ⊕ E(0, β′
i,0) � c′i,0ei,0, e′′i,1 = e′i,1 ⊕ E(0, β′

i,1) � c′i,1ei,1

and asks as challenge c = H(e′′i,0, e
′′
i,1). When receiving the third message (ci,0,

ci,1, βi,0, βi,1), the randomizer computes the third “message” (c′′i,0, c
′′
i,1, β

′′
i,0, β

′′
i,1)

of the non-interactive diverted proof as

c′′i,0 = ci,0 � c′i,0, c′′i,1 = ci,1 � c′i,1, β′′
i,0 = βi,0 � β′

i,0, β′′
i,1 = βi,1 � β′

i,1.

One can easily verify that the diverted conversation
(
(e′′i,0, e

′′
i,1), c, (c′′i,0, c

′′
i,1,

β′′
i,0, β

′′
i,1)

)
is accepting for ei (due to the linearity of the validity proof). Note

that in the interactive validity proof, L such proofs are run in parallel with the
same challenge (AND-combination). The above diversion is then applied on each
parallel instance independently. Furthermore, as the original interactive proof is
honest-verifier zero-knowledge only, one must ensure that the challenge of the
randomizer is chosen at random. This is achieved by having the randomizer not
only send c to the voter, but instead all e′′i,j , such that the voter can apply the
hash function himself. Obviously, then the voter knows that the challenge is
selected at random under the random oracle assumption.

Adjusting the diverted validity proof to �e∗. With the above protocol, the random-
izer can construct a diverted non-interactive validity proof for �e. It remains to
convert this proof into a validity proof for �e∗. So consider the following diverted
validity proof for �e: [c, c′′1,0, . . . , c

′′
L,0, β

′′
1,0, . . . , β

′′
L,0, β

′′
1,1, . . . , β

′′
L,1, β

′′
Σ ]. Then one

can easily verify that the following vector is a validity proof for the re-encrypted
ballot �e∗ = �e ⊕ E(0, �ξ):

[c, c′′1,0, . . . , c
′′
L,0, β′′

Σ � (ξ1 � . . . � ξL),
β′′

1,0 � c′′1,0ξ1, . . . , β
′′
L,0 � c′′L,0ξL, β′′

1,1 � c′′1,1ξ1, . . . , β
′′
L,1 � c′′L,1ξL].

6.3 Security Analysis (of the Vote-Casting Protocol)

The vote-casting protocol must satisfy two requirements: First, the randomizer
must not learn the vote. Second, the voter must not be able to proof any corre-
spondence between the original ballot �e and the re-encrypted ballot �e∗.
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In order to show that the randomizer does not learn the voters vote, we only
need to analyze the protocol for generating the diverted proof. This protocol
is an interactive honest-verifier zero-knowledge proof of knowledge, which gives
no information to the verifier (the randomizer) when the challenge is chosen
honestly at random. Due to the modification that the voter applies the hash
function by himself, it is clear that under the random oracle assumption the
challenge is random, hence the protocol is zero-knowledge, and the randomizer
learns nothing about the vote.

Secondly, in order to show that the protocol is receipt-free, we make use of
two observations: First, the generated diverted validity proof is uniformly chosen
among all validity proofs for �e∗, and second, the randomizer does not give any
information beyond the diverted proof to the voter. The second observation can
be verified by inspecting the protocol, but the first observation needs some more
explanations: The diverted validity proof is the sum of the interactive proof as
executed with the voter (and hence known to the voter), and a simulated proof
which is selected completely uniformly among all accepting proofs (except for
the challenge, which is random in the random oracle model). Hence the diverted
proof is random and statistically unlinked to the interactive protocol that the
voter is involved in. From the voter’s viewpoint, the validity proof for �e∗ is
uniformly random and independent from all his own information.

Once more we stress that even a malicious randomizer cannot interfere with
the secrecy or the correctness of the voting protocol. He only receives an en-
crypted ballot, and he must prove to the voter that the new ballot is a re-
encryption of the original ballot.

6.4 Efficiency Analysis and Comparison

We consider K-out-of-L voting, and denote the number of bits per group element
with B. As usual, we ignore the costs for initialization and decryption of the final
tally.

In order to cast his vote, every voter sends the ballot to the randomizer LB
bits, who sends a re-encryption and a re-encryption proof to the voter (LB +
(L + 3)B bits). Then, the voter and the randomizer run the interactive validity
protocol ((6L + 3)B bits), and the voter posts the randomized ballot (LB bits)
and the randomizer posts the non-interactive proof to the bulletin board ((3L+
2)B bits). This gives a total of (9L + 6)MB bits sent through the untappable
channels, and (4L + 2)MB bits sent to the bulletin board.

In comparison, the 1-out-of-L voting protocol of [HS00] with N authorities
and M voters requires 4LMNB bits sent through the untappable channels and
2L2MNB bits posted to the bulletin board. For K ≥ 2, this protocol has expo-
nential communication complexity. Furthermore, the protocol has exponential
computation complexity in L, and is hence applicable only for very small L.

Finally, we compare the proposed protocol with the 1-out-of-L voting proto-
col of [BFP+01]. The exact communication complexity of their protocol cannot
be determined, as they do not provide a concrete diverted proof. As a rough es-
timate, the protocol communicates 18LMB bits over the untappable channels.
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The size of their validity proof stored on the bulletin board is (according to their
analysis) (9L + 11)MB. Furthermore, as they are restricted to Paillier encryp-
tion, they require a larger B than our scheme with ElGamal encryption for the
same security level. Furthermore, they must require B ≥ L log2 M (a message
must have enough bits for the tally of each of the L candidates), which for large
L might require increasing B. Also their scheme cannot be used for K ≥ 2; the
size of the validity proof would grow exponentially.

6.5 Hardware Randomizer

In the proposed scheme, the randomizer essentially does not need to communi-
cate with the bulletin board or the authorities (he can send the diverted validity
proof signed to the voter, who then casts it on the bulletin board — a vote on
the bulletin board is accept only if it is signed by the randomizer). This allows
for a hardware-based receipt-free voting scheme: Every voter receives a person-
alized randomization-token, which performs the randomization of the vote, and
generates a signed diverted validity proof for the randomized vote. Note that
this randomization device acts as an “observer” [CP92]: It does not learn the
vote, nor can it falsify it. Even when the vote authorities would distribute bad
randomization tokens to the voter, still the privacy and the correctness of the
vote would be guaranteed (but not the receipt-freeness). However, the device
could reject to provide a proper validity proof; but in this case, the voter could
demonstrate other people that his token is broken, and could get a new one.

7 Conclusions

We have presented a generic receipt-free voting scheme, which is secure with any
homomorphic encryption scheme satisfying the required properties. There is no
need to adapt the protocol and proofs to the encryption function, as is necessary
for most voting schemes in the literature.

The resulting voting scheme is more efficient than any other receipt-free voting
scheme. For K-out-of-L votes and N authorities, the communication complexity
per voter is linear in L and independent of K and N . No other scheme in the
literature has these properties.

For 1-out-of-L votes, the storage complexity on the bulletin board is the same
that of the most efficient voting protocol which is not receipt-free [CGS97].
However, due to the communication with the randomizer, our communication
complexity is about 3 times higher.

To the best of our knowledge, the presented scheme is the first scheme which
can be based on ElGamal encryption without having a computation complex-
ity growing exponentially in K. There are schemes with efficient computation
also for large K, but they base on Paillier encryption [FPS00, DJ01]. Such
schemes rely one stronger cryptographic assumptions and require larger security
parameters, resulting in bigger constants in the computation and communication
complexities.
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A Analysis of the Lee-Kim Protocol

In this section, we show that the protocol of Kim and Lee [LK00] is not receipt-
free, opposed to what is claimed in the paper.

A.1 Key Ideas of [LK00]

The protocol of [LK00] is based on the assumption of an honest verifier who
ensures the validity of all cast votes. Each voter sends an encryption e of his
vote to this honest verifier and proves its validity. Then, the honest verifier
sends a random encryption e′ of 0 to the voter and proves (with a three-move
honest-verifier zero-knowledge protocol) that indeed e′ is an encryption of 0. The
final ballot of the voter is e∗ = e + e′, which obviously contains the same vote
as e, but different randomness. All communication between the voter and the
randomizer must take place over an untappable channel.

Note that in this protocol a malicious “honest verifier” can help a voter to cast
an invalid vote and thereby falsify the outcome of the whole vote. In our opinion,
such a protocol in which the correctness of the tally relies on the trustworthiness
of a single entity is questionable.

A.2 How to Construct a Receipt

The voter can easily construct a receipt: In the protocol where the honest verifier
proves to the voter that indeed e′ is an encryption of 0, the voter can choose
the challenge as the output of a hash function applied to the message in the
first move. This makes the transcript of the protocol a non-interactive proof
(according to Fiat-Shamir heuristics) that e′ is an encryption of 0. Hence, the
values e′, e, the witness of e, and this proof are a receipt of the cast vote e∗.
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1 Introduction

Electronic voting has the potential to be the most reliable, secure and trustwor-
thy form of voting implemented. Digital technology, complete with error correc-
tion, robust storage and cryptographic security offers the possibility to record,
transmit, store and tabulate votes far more reliably than paper. While current
implementations of electronic voting have been susceptible to various failures,
electronic voting itself is not fundamentally flawed. The Secure Architecture for
Voting Electronically (SAVE) is one proposed architecture for mitigating secu-
rity and trust issues with the voting process. In addition, the architecture enables
academics, small companies and organizations to easily and cheaply build their
own modules conforming to the standard.

Unfortunately, the first few examples of electronic voting machines have done
little to inspire confidence in the technology. Early touchscreen systems (Direct
Recording Electric or DRE) have suffered from poor user interfaces, system
failures and data loss, resulting in voter frustration and distrust. One possible
solution that is often presented as a solution to the trustworthiness of electronic
voting systems is a Voter Verifiable Paper Trail (VVPT) [19] or more generally,
Audit Trail (VVAT). VVATs are implemented as separate devices attached to,
or observing the voting process, and indicating on a separate recording device,
the selections of the voter.

Although the media has focused on recent failures of electronic voting systems,
paper and mechanical systems have historically been easy to manipulate as well.
Naturally, the term ’stuffing the ballot box’ comes from the simple fraudulent
addition of paper ballots. Computation actually enables better security through
cryptographic means to ensure the propriety of votes cast and counted. In addi-
tion, electronic voting enables new classes of voting interfaces that would enable
voters who have been discouraged from voting in the past.

Electronic voting systems present the opportunity to enfranchise many voters
who would ordinarily have great difficulty voting [9,6,3,2]. Voting with assistive
or speech interfaces as well as alternate means of ballot presentation could aid
people with diminished motor capacity, visual impairments and even some cog-
nitive impairments. If the general system of recording and processing votes is
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separated from the user interface, then a greater variety of assistive user interface
are possible to aid visually or physically impaired voters.

Changes in technology have solved or pushed security issues to different points
in the election process. For example, lever machines simultaneously eliminated
the individual ballots, which made counting less error-prone, while introducing
the possibility of manipulation of the odometers on the machines. Both punch
cards and optical-scan ballots permitted the ease of counting (and manipula-
tion at the counting level) but maintained the both the logistical difficulty and
integrity of individual ballots. So, large-scale fraud became possible, and if no
alert was raised, the original count was not compared to the individual ballots.

DRE systems eliminated ballots and provided immediate feedback to the
voter, allowing voters to correct problems with their votes. DRE feedback re-
duced the residual (voter error) rate to 0.4%, an improvement of over 50% over
optical scan ballots [3]. However, the elimination of individual ballots prevents
a meaningful audit trail.

A solution to security vulnerabilities posed by various mechanical and elec-
trical voting systems is SAVE (Secure Architecture for Voting Electronically).
SAVE is resilient to faults and malicious actors while maintaining voting secrecy
requirements. The primary principle of SAVE is that there can be no single point
of failure after the ballot leaves the control of the voter. It is modular, such than
an election commission can select a variety of modules from vendors, assemble
them, add the desired user interfaces and have a system that is inherently more
reliable and resistant to both failure and attack. SAVE employs n-version pro-
gramming, in which multiple versions of each module are written independently.
The key advantage of this n-version architecture is that each independently writ-
ten part is checking the others, ensuring that the system is well-behaved unless
a very large percent of its modules are compromised.

Furthermore, in order to achieve the n-version program model and help ensure
security, the system is broken into modules which each conduct a relatively
simple operation.

2 Background

The voting process dates back to the Greeks, who used different pieces of pottery
to indicate their votes for or against measures. The original voting process itself
had several characteristics that made it desirable: the choices were obvious in
that they were limited to a binary set, votes were represented by actual objects
that could be seen and felt, and it was easy to verify the vote tally due to these
two features. Today’s voting scenario is far different from the direct democracy of
the distant past. While typical ballots might have 12 races, some ballots contain
in excess of fifty selections, and in the case of the 2003 California Recall, the
candidate list for Governor was 135 candidates over six pages.

The current voting scene contains myriad technologies: lever machines from
the 19th century, punch cards from the ’60s, written ballots, optical scan ballots
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and Direct Recording Electronic (DRE touch screens). While great controversy
surrounded the punch card system in the 2000 election, there is a large and
growing concern about the trustworthiness of DRE systems, princinct-counted
optical scan and indeed all computers used in voting systems [15,19]. Clearly,
given the history of continuous improvements in voting systems, new systems
will emerge again in an attempt to ameliorate problems in previous technologies.

2.1 Security Requirements and Desires for the Voting Process

From an experience election researcher’s point of view, new voting systems have a
set of basic requirements that must be satisfied by any new system. For engineers,
implementing these requirements poses new and unique challenges. Voting has
a unique set of security requirements that are more complex and difficult to
combine than other settings [27,20,28,21,22]. The basic security requirements of
the voting process are:

1. Each voter must be verified to be permitted to vote on exactly the races for
which they are permitted to vote, no more and no less.

2. Every vote cast must be counted as the voter intended.
3. The voter must not be able to prove that their vote was cast a particular

way.

At the outset, the first two requirements are fairly straightforward. The first re-
quirement involves the entire voting process, particularly the registration system
and the polling station practices. The second requirement requires the user in-
terface (paper, screen, touchpad) to respond properly to the desired selections,
the chain of custody of that selection to be unbroken, and the final tally to
accurately count each vote. The third requirement (to prevent vote buying or
physical coercion) prevents a plaintext (Alice voted for Bob) receipt process.

2.2 Background Reliability of Electronic Devices

Computerization has been used with great success in the financial sector, a
setting which demands absolute accuracy and reliability.

Computation systems are designed to be the most reliable systems for tab-
ulation. By their very character, they are not subject to the kinds of mechan-
ical failures that plague traditional voting equipment. Despite the advantages
that electronic systems offer, several papers and well-known authors [15,19] have
raised fears, uncertainties and doubts as to the effectiveness and trustworthiness
of electronic voting equipment.

However, it is possible to create electronic voting systems that, by their very
nature, are secure, reliable and trustworthy. An analysis of types of possible
attacks, the possible scope of these attacks, and the likelihood that they will
occur is a place to begin. The architecture should address these vulnerabilities.
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3 Adversary Model

3.1 Unintentional Bugs and Physical Failures

On a systemwide basis, the largest likely contributor to failure in an electronic
voting system is the unintentional failure of one of the components in the system.
A monolithic system with one operating system, set of COTS (Common Off
The Shelf) hardware, communication mode and voting software will suffer a
catastrophic failure if a single component has a bug. While such failures may
not be common, having a common failure mode may cascade and could render
the entire system compromised. An example of such a large cascading failure is
the 2003 northeast power failure [1], which started at a single failure point and
affected the Eastern Seaboard, Midwest and Eastern Canada. In software, the
blaster worm [4], caused serious outages throughout the world. Having diversity
in the code of the voting system would help mitigate common failures and ensure
that the vote can be properly counted even if some modules are compromised.

One concern about the Internet is that electronic transmissions can be held up
or slowed down for one reason or another. A system that communicates electron-
ically can batch the communication for later transmission, use land telephone
lines to communicate the information, or use cell phones or satellite phones as
alternate communications modes to make communication reliable. SAVE mod-
ules utilize both encryption and cached data so that disruption or compromise
of the communication.

Additional hazards to the voting process include simple access to electronic
power, and problems in transmitting votes from the polling stations. The dangers
of power outages have successfully been addressed in Brazil where the computer-
based voting system relies on batteries that last 14 hours. The question of mes-
sages being intercepted is one of simple encryption; the issue of changed messages
would be dealt with using redundancy, cryptography and message authentication
codes (MACs) to ensure integrity.

3.2 Intentional Manipulations

There are four groups of actors that we surmise would be interested in compro-
mising the voting process.

The Evil Development Company. The danger of losing contracts due to
faulty equipment has been a constant concern of election technology com-
panies. They have small close-knit development organizations and review
their work together. These are all safeguards for their systems. Still, there is
concern that either as an individual or organization, the author of a voting
system might insert malicious code. This code could change votes, delay or
drop votes, or produce intentionally incorrect tallies. In addition, the code
could flood the rest of the system with invalid messages, damaging the per-
formance of the system. Finally, compromising elements such as specially
designed cryptographic code might be inserted to leak information about
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the election process to the otherwise secure communication channels. In-
cluded with this type of threat are the distributors of the code, as well as
the hardware providers.

External Hackers. To date, external hackers have not had enough time and
access to voting systems to hack them. Closed-Source voting systems such
as Diebolds, which was found on an open FTP server in source code form,
have appeard to have stark weaknesses [8,24,5,13]. That is, when Diebold’s
source code was exposed in this example, many vulnerabilities were easily
visible to the programmers reviewing the code. With experience with the
protocols and enough time– if a system is communicating over open lines–
outside hackers could modify, delete and/or record messages between system
components. If the system is not over an open network, this threat is of
far less concern. Access to code would enable hackers to analyze the user
interface and external ports for control codes that enable special modes
in which votes can be changed, added or deleted. In the vast majority of
voting systems which do not keep ballot images, the counts could easily be
manipulated without recourse.

Malicious Voters. A voter gaining access to the system could try to vote more
than once or as another person, or try to steal the votes of other individu-
als. Without gaining access to the system, voters may attempt to use phony
smart-cards, claim/demonstrate that the phony card does not work and ob-
tain a second valid card. While to date care has been taken to limit access to
smart cards or other methods to opening a poll, it is possible and important
to improve access control to the voting act.

Corrupt Election Officials. Election officials may be interested in more than
running a fair election. Often such officials are political appointments, and
as such may be subject to influence. In addition, poll workers may also have
ulterior motives in their work. Thus, it is extremely important to design
an architecture that would be resilient to and expose intentional fraudulent
behavior on the part of election workers and officials.

By implementing multiple, diverse versions of each part of the voting system, as
in SAVE, the evil development company suddenly can no longer compromise the
entire voting process. External hackers and corrupt election officials have many
more systems to analyze and compromise. Finally, malicious voters would now
have to overcome a registration system that actually marks their ballot with an
authentication code, preventing double voting.

3.3 Security of Paper Systems

Paper voting systems have a number of possible failure modes, as well as pos-
sible attacks. Even the best-practice methods of hand counting are more error-
pronethan electronic means, and most paper systems involve electronic scanning
and tabulation [9]. They still present several attacks that must be anticipated,
and countered. This section summarizes some attacks at various stages of the
voting process.
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Alteration of Ballots

Fraudulent Ballot. A paper ballot may be engineered to differ from the origi-
nal ballot, with candidate names swapped, but without changing the coding
on the ballot. This change would result in votes for a candidate A going to a
different candidate B instead. This attack may be implemented on standard
optical scanned ballots, or punch card ballots. This attack would be partic-
ularly successful if the target candidate has a large amount of support in a
particular precinct, the ballot can be tampered with and the votes diverted.
Countermeasures included validation of counts using small sample sets and
verifying manually that each type of ballot mark is counted the same as the
ballot text and markings should indicate.

Scanner Control Cards. Scanner control cards can be manipulated to achieve
the same effect as fraudulent ballots. With control cards, the punches rep-
resenting a vote for a candidate can be reprogrammed to vote for a differ-
ent candidate. Counting testing procedures can be implemented to validate,
using properly marked ballots (assuming they are not compromised), that
control cards are properly marked.

Pre/Post-Voting Ballot Invalidation. After ballots are completed, a nefar-
ious election worker may spoil ballots by adding overvotes or extraneous
marks to the ballot. The opportunity for this attack is present both at cen-
tral counting locations and at precinct counting locations. A ballot worker
out of sight may mark ballots using a writing utensil or in sight could use
even a clump of graphite hidden on the underside of a ring or fingernail to
selectively invalidate ballots [16]. A two-man system where two workers are
required to be present for the counting/moving or deposit of ballots would
help alleviate this attack.

Destruction/Replacement of Ballots

Denial of Service. Pre-election, ballots can be spoiled via a variety of means
including water damage, spilling ink, and surreptitious marking of ballots.
These actions may result in spoiled ballots, and denial of voting rights to
voters. While polling place operations could move voters to another precinct,
the action may cause significant voter falloff for voters who are unable or
unable to make it to an alternate site [23].

Post-Electon. A more direct and effective means of tampering with the ballots
would be simply to lose, ’misplace’ or selectively damage ballots. An election
worker may selectively invalidate (and replace) ballots to keep them from be-
ing counted properly. Effective countermeasures include placing digital sig-
natures and/or serial numbers on ballots and recording those signatures and
serial numbers along with a tally of the ballots passed out. Additional collu-
sion on the part of polling place workers would help invalidate or even take
advantage those countermeasures. Altering the serial numbers on the regis-
ter may cause valid ballots to be invalidated, or altering the count would
make the election appear invalid. Keeping careful records of ballot serial
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numbers may help ameliorate this attack, and combined with a secure hash-
ing algorithm, may provide public verifiability.

4 The SAVE Architecture

Our aim is to outline the architecture and principles of the SAVE system, rather
an describe in detail its implementation. The architectural overview will il-
lustrate the improvements and advantages over existing paper and electronic
systems.

The architecture is composed of five principal layers: A User Interface and
the Listeners which ensure proper capture of votes, the Registration to assure
that the user is valid, the Witnesses layer to create an auditable and secure
record, and Aggregators to establish an actual outcome. Additionally, feedback
layers give the voter proof that the vote was established and recorded, as well as
another layer between the registration systems and the aggregators, known as
a mix-network, which can perform random secure shuffles of ballots to further
guarantee anonymity in the final count.

Fig. 1. The Basic Architecture of the SAVE system: A user interface (UI) is the only
single point of failure in the system. Beyond the UI, multiple modules process each
ballot.

For communication, SAVE uses the eXtensible Markup Language (XML) and
an associated communication layer known as Simple Object Access Protocol
(SOAP) [7]. XML and SOAP are a set of protocols that are available on all
modern computer platforms. They are human readable, which means the com-
mands and much of the data is text that can be read and understood, and they
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allow for definitions of modules by virtually all programmers. Communication
between the components is provided by an SOAP, an XML based messaging
protocol.

Each level of the architecture logs the incoming and outgoing messages to aid
in auditing the system. The modules are split up into small parts so that each
of them contains fewer than 1000 lines of program code. This granularity will
enable a faster and more thorough review process, limiting the number of bugs
that can be introduced, while allowing enough space for code diversity.

4.1 Cryptographic Protocols

The entire process includes cryprographic protocols at appropriate stages: the
Listeners read the input from the User Interface, and then encrypt and sign
ballots; the registration module authenticates the voter and signs the ballot; the
witnesses sign the ballot; the aggregators perform secure shuffles on the ballots
and tally the results. Chaum [12,11] showed that it is possible to prove that a
vote appears in the tally without proving what the vote is, thus the aggregation
of ballots are published and a voter can verify that their vote is in the tally.

In addition to these fairly standard ways of protecting voting data, the system
employs a more specific set of schemes for protecting it. When sending a ballot
to a registration system, the architecture must assure that the voter is valid. The
registration system, on the other hand, should have no knowledge of how the
vote was cast. The filled ballot needs to be separated from the access to vote.
Encryption additionally prevents others from seeing the voter’s vote through
the registration system. For governments that keep ballot data together a voter
might vote absentee and also try to vote at a polling place. This type of fraud can
be eliminated by the following procedure: take a ballot, encrypt the vote, send
the vote along with the registration data to the registration server, and have
the registration server return the same encrypted ballot, but with a signature
attached. That signature is known as a blind signature. What is known as the
“blinding factor” is an additional layer of encryption that the voter can decrypt
[26,10,14]. It permits the system to obtain a signature for a plain text ballot even
if the signer does not know the plain text. It is analogous to putting a piece of
carbon paper in a sealed envelope and having someone sign the outside; the sig-
nature will appear on the inner piece of paper. Blind signatures maintain the pri-
vacy of the vote (not associated with the voter) while still proving that the vote
was cast through the correct process.

In addition to the registration server signing and validating the ballot, a num-
ber of other modules must sign the ballot as redundant verification. These are
known as witness modules, and various watchdog organizations as well as the
political parties could provide them. They could be smart cards or pieces of soft-
ware, and they all would provide a blind signature to ballots that are considered
valid. In that way, when ballots are recorded, they are recorded with the signa-
tures of all of these witnesses. The witness scheme permits an additional set of
independent modules the ability to mark ballots as bona-fide, and thus provides
enhanced verifiability and trustworthiness.
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Aggregators simply decrypt, verify, store, and count ballot information. Care
must be taken to make sure that they properly validate registration and witness
signatures on the ballots and that they are properly placing the data into the
repositories that they should be in. Having multiple aggregators allows us to
“recount” on the fly. Aggregators provide redundancy of data and verify the
entire process up to that point.

4.2 N-Versioning

The principle of redundancy with each module verifying the others is central. It
enables the system to continue to work even if there is a failure somewhere along
the line. Having multiple programs that process each stage of the ballot casting
can establish improved reliability. Consider two modules running on two servers.
Two modules compiled by different compilers, linked by different linkers, loaded
by different loaders, being run on different operating systems, communicating
with different communication stacks would have different errors in them, and be
vulnerable only to different attacks. Because these versions can be transmitting
over different networks, the system is more reliable. Because these are differ-
ent programs, subverting one of them would not affect the others and still would
ultimately enable an accurate vote to be cast. More importantly, if different peo-
ple and organizations write these modules, intentional tampering of one module
(discussed as the Evil Equipment Developer), such as putting in an Easter egg
(a secret module of code that invokes undocumented functionality), would not
affect the integrity of other modules.

N-version coding is currently used on a variety of critical applications. In
particular, vital systems on aircraft, and military equipment use n-version sys-
tems in all layers of implementation, including sensors, software and hardware.
In the case of nuclear weapons, even the humans involved conform to n-version
principles (the two-man rule).

N-versioning on the actual code can only take security so far. While it can
avoid common flaws amongst the modules, common flaws in the underlying hard-
ware and operating system might still compromise the code for all modules. Thus
it is essential to place different modules on different pieces of hardware, prefer-
ably with small, real-time operating systems, not large complicated systems such
as Windows.

Certainly, to be sure these new measures are effective, the system will have
to be tested beforehand. By forcing each module to comply with the speci-
fied abstraction-function behavior, the architecture will be uniformly black-box
testable to ensure compliance with the protocol. Clearly, any certification of the
system must include a thorough, formal review of the code. In addition, there
must be no difference between a test vote and a real vote as far as the software
is concerned.

The SAVE system separates the aspect of user interface from the rest of the
voting system. The intent is to allow user-interface designers to build the best
possible user interface for every type of user. A user who is blind might use
a different interface than a user who has little motor control. This separation
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of the user interface is an important one because user interfaces can be very
complicated to build and maintain. The amount of code needed to write them is
far larger than that required to perform cryptography or aggregation. However
the user interface is implemented, that piece of software must communicate with
the rest of the SAVE architecture in the same manner.

Once the user has filled out the ballot, the next step is to authenticate the voter.
A back-end system checks the person’s name against a database of registered vot-
ers. The registration server signs the vote, along with multiple electronic witnesses
as described above. The witnesses sign the vote to indicate that a valid voter, as
assessed by the registration server, cast it. At this point the signed, blinded bal-
lots are then sent to a variety of aggregation servers to be counted.

Clearly one of the most serious concerns raised about n-versioning is the
ability to truly diversify code. For simple operations there are a limited num-
ber of options a developer might choose. Developers may take similar overall
approaches; they may use different languages, break their code into different
functional blocks and write code in a particular style. Certainly a programmer
introducing secret functionality would be diverse from others. Differences in the
way code is written, just as for genetic diversity, leads some modules vulnerable
to attacks that others are safe from and vice-versa.

5 Security Analysis of SAVE

The SAVE architecture assumes that all modules are using the best available
standard encryption algorithms. The main security and reliability advantages
of SAVE come from its redundancy and overall modular structure. One of the
primary assumptions of SAVE is the independence of the code itself and the
reliability of the platform in general.

Consider n modules at each of m stages, Mn,m, each with an internal fail-
ure rate Fn,m, and attack susceptibility of An,m. In addition, we must include
inter-module communication channels between two modules a and b in different
stages, Cam,bm+1 , for all a and b in different stages. To begin, we exclude the
communication channel here, but include it below.

FM = 1 −
∏

m1,m2,...,mn

(1 − Fn,m)(1 − An,m) (1)

Thus, for the SAVE system, the total possible rate of failure in any module
(considering independence follows directly as shown in Equation 1.

However, SAVE implements an internal voting system which, for each stage,
requires a threshold t of agreed results to have a valid result. Each module
determines from the previous stage whether it has a valid input based on this
threshold. Including the threshold voting factor, the failure rate can be described
in equation 2.

FM = 1 −
n∑

u=t

(
n

u

) ∏

u

(1 − Fn,m)(1 − An,m)
∏

∀U

(Fn,mAn,m) (2)
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In the case of current electronic voting systems, there is a single direct line from
the voter to the ballot storage device to the aggregator. Each of these systems
has a failure probability, and the communication channels between them also
have the ability to be compromised. This model of the current electronic voting
system can be represented in Equation 2. For the entire stage to fail, there
can be failures in up to t modules. For each number of failures f , we have the
combination of

(
n
f

)
possible failures in various modules. For each of those, we

compute the probability of each number of failures f that result in a valid result.
To ensure the elimination of common potential vulnerabilities, the source code

for each system will be passed through a commonality checker such as PLAG or
SMAT [25,29]. This system tests for similarities between code, and is commonly
used to detect cheating in assignments. In addition to the source code, it is
prudent to examine the compiler used and in fact, varying the actual compilers
used aids in preventing the external introduction of common vulnerabilities.

The use of common components on the SAVE system can be modeled by
starting with the threshold failure model and collapsing the number of (effec-
tively) independent modules. Then, the threshold equation reduces the effective
number of components, resulting in an strictly higher probability of failure than
any system with full diversity.

Adding the communication channel into the mix adds another product factor
into each possible failure rate but does not fundamentally change the equation.
Using a common communication channel (the most likely scenario) between
components (e.g. ethernet) simply adds a common term shown in Equation 3.

Fig. 2. Example of a stage in the SAVE system. Each module receives input from each
module in the previous stage. The inputs each have a probability of being corrupted, and
each module has the possibility of being corrupted. The middle module in this example
was written by a nefarious programmer and thus is always compromised. The other two
modules prevent the compromised module from compromising the entire election.
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This factor accounts for the need to collect the ballots from the previous stage
modules.

FM = 1 − (1 − fcomm)
n∑

u=t

(
n

u

) ∏

u

(1 − Fn,m)(1 − An,m)
∏

∀U

(Fn,mAn,m) (3)

With storage (caching) of intermediate ballots, SAVE modules can batch up and
transmit ballots at a later time if the network connection fails or is intentionally
disrupted.

6 Discussion

6.1 Cost Considerations

The primary objection to the N-version programming SAVE in general is the
additional cost of building independent modules, platforms, and their respective
certification. This consideration is dealt with in SAVE by the specification of
small modules and the communication protocol such that modules are small,
easy to understand, and less able to obfuscate faulty or malicious code. The
platforms (the computer, operating system, and possible libraries/environments
such as Java) may already be certified and examined. Code can be made available
online for review by anyone at minimal cost.

Given that an entire top-to-bottom system was written by Soyini Libud at
MIT [18] in less than a year, it is clear that companies and interest groups with
modest budgets [17] (less than the cost of a full page ad in the New York Times)
can write a SAVE module. Furthermore, instead of having large companies that
build end-to-end proprietary voting systems, a wide community of developers
could flourish.

6.2 Improved Security

One of the most vulnerable parts of any system is the communication channel.
In SAVE, messages are passed in encrypted versions of plaintext XML. This ar-
rangement produces messages that often have the same format and even content.
Depending on the security of the cryptography implementations, these repeti-
tious messages might harm security.

The cryptographic keys could also be compromised by election officials. One
method of dealing with this problem is issuing distributed keys, in which each
individual does not have the entire key, and it takes a number of officials to
collude in order to compromise the election. However, the extent to which the
official would need to collude would also preclude a valid result in any other
election scheme.

6.3 Transparency

One of the principles governing security of voting is the privacy of the ballot.
A vote should not be traced back to the voter. This property is important as a
defense against coercion, bribery and threats against a voter. One of the benefits
of using cryptographic security is the ability to provide encrypted receipts to
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voters [12]. These receipts cannot prove what the voter voted on, but they can
prove that the vote is included in the tally. These receipts can help inspire
confidence in the entire process, showing voters that their vote was included in
the final tally.

In addition, the inclusion of witness modules written by political parties and
interest groups enables voters to see that votes were cast during valid voting
periods and helps reduce post-voting litigation due to accusations of ’stuffing
the ballot box.’

7 Conclusions

Paper balloting presents myriad opportunities for defrauding the election process,
and VVPT that have a legal preference over electronic systems retain the same
possibility for manipulation. VVPT systems also present the opportunity to sow
confusion amongst election officials and voters as to which result is actually valid.

Three different versions of SAVE systems have been written by students at
MIT. These systems have been implemented as C++ and Java, and coded
independently.

Whereas paper has no cryptographic security, electronic systems enable a
better way of ensuring the validity and privacy of ballots. By creating systems
with n-version programming, failures from denial of service attacks, nefarious
vendors and malicious poll workers can be mitigated.

The SAVE system takes the existing reliability of electronic voting systems
and adds resilience to both internal failures and malicious attack. The greater
the diversity achieved in the modules, the greater the protection from failure.
As always, cost is a factor, but as a modular architecture, SAVE systems should
be easy to build, understand and validate.
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Abstract. This paper presents anew framework–a reference architecture–
for voting that we feel has many attractive features. It is not a machine
design, but rather a framework that will stimulate innovation and design.
It is potentially the standard architecture for all future voting equip-
ment. The ideas expressed here are subject to improvement and further
research.

(An early version of this paper appeared in [2, Part III]. This version of
the paper is very similar, but contains a postscript (Section 8) providing
commentary and discussion of perspectives on this proposal generated
during the intervening years between 2001 and 2008.)

1 A Modular Voting Architecture–Overview

We call our framework A Modular Voting Architecture (AMVA). With AMVA
votes are recorded on physical items we call “Frogs”-a term chosen specifically
to convey no information about the physical form of the recording device. (Frog
is not an acronym. A picture of a Frog was chosen as a convenient piece of
clip art designed to get the reader’s mind off of a specific technology, such as
paper, mechanical devices, computer screens, or voice recorders.) A Frog is more
than a ballot because it contains information besides the list of votes cast. It
also contains information about the official who signed in the voter, about the
precinct, and about the form of the ballot. A Frog should be a physical object. It
is deposited and becomes part of the audit trail when the voter casts her vote1.

A central design choice for this architecture is that we separate the processes
of (1) recording a voter’s choices on a Frog (capture of voter’s selections), and
(2) casting the vote using the Frog as input. This separation is familiar to voters
using paper ballots or optical scan equipment, but not to those who use typical
DRE (Direct Recording Electronic) machines.

This separation is crucial. It can help reduce or even eliminate a number of
problems with existing voting technology (as discussed in [2]). These problems
include security threats posed by complex electronic voting machines, the decline
1 For convenience in this paper, voters will be feminine.
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in openness and public control, the need for improved ballot designs, the need
for more voter feedback so voters can catch errors, and obstacles to creating
independent audit trails, especially on electronic machinery.

The current voting process consists of several distinct steps:
First, voters sign in. Three important things happen when voters sign in.

They state who they are. They may be asked for identification (authentication).
And they are given an initialized and official ballot that contains the races for
which the voter is eligible to vote, based on the voter’s residence and/or party
affiliations.

Second, there is a mechanism to capture voters’ selections–for example, a
paper ballot or a panel of levers or buttons. The ballot presents choices to the
voter and the voter selects the preferred alternatives. We call this vote capture.

Third, voters confirm their selections.
Fourth, votes are cast. This is the critical moment for the security of the

ballot. Literally, the voter relinquishes control of the vote, and gives it over to
the vote management system.

Fifth, votes are counted.
Sixth, votes are audited (by recounting a statistical sample of the cast ballots).
Many systems combine steps two, three, and four. We think that both security

and innovation suffer as a consequence.
Security suffers because too much is required of a single, increasingly complex

machine.
Design and innovation suffer because the process for certifying equipment is

“all-at-once”–innovation in one aspect can’t be done without re-certifying the
entire system. The design of vote-capture components and user interfaces should
evolve quickly, without being tied to certification of other parts.

At the same time, we do need strict standards for security of the casting
device and reliability of counting mechanisms. Putting everything in one box
significantly limits the ability to have the best vote-capture components while
achieving a high level of security.

AMVA captures what we consider to be the strengths of both the optical
scanning and direct recording electronic systems.

Though optical scan is perhaps today’s dominant voting technology, it has
its own problems, including the high cost of printing ballots, the inflexibility of
the user interface, and the inaccuracy of the scanners. A good feature of optical
scan is that the ballot is directly filled out by the voter and becomes part of the
audit trail.

Electronic DRE machines (without VVPAT’s) have no printing costs and
offer flexible user interfaces. When issues such as rotating candidate positions
on the ballot and supporting multiple languages on a ballot are considered, it
seems clear that some form of electronic vote entry may someday become the
dominant voting technology. Furthermore, the cost of all forms of electronic
equipment continues to drop rapidly; a machine costing $5,000 today might cost
$500 in a decade.
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1. Initialization: Voter signs in,
gets Frog

2. Vote-Capture: Voter records
choices        on Frog, using
vote-capture device.

3. Vote-Casting: Voter  uses vote-casting
device to confirm selections made, and
to cast vote.

Fig. 1. A Modular Voting Architecture (“Frog Voting”)

However, electronic voting systems are likely to be complex, and complexity
is the enemy of security. Such voting systems are likely to be software-based.
Ensuring that software is bug-free and secure is notoriously difficult. There may
be little that an election official can do beyond accepting a vendor’s “trust us”
statement, an unacceptable situation, or trusting an equipment certification pro-
cess that does not include a rigorous security evaluation.

By separating vote capture from vote casting, and having the voter transport
her ballot on a Frog from one operation to the other, we achieve several security-
related objectives.

First, the voter’s ballot is recorded on a physical object (the Frog) that be-
comes part of the audit trail once the vote is cast.

Second, the certification of a vote-capture device may have different standards
than that of a vote-casting device. The vote-capture device might have lots of
graphics-oriented software that is difficult to certify, while the more critical vote-
casting device could be exceptionally simple and easily certifiable.

Third, different manufacturers could produce the vote-capture equipment and
the vote-casting equipment. (The recording formats and interfaces for Frogs
would be standardized and public.) The ability to replace any component with a
similar component from a different manufacturer (e.g., for a recount) can assist
in reducing the likelihood that corrupt vendor employees could bias an election.

We imagine that election officials purchase Frogs in bulk in blank, uninitialized
form. Thus, Frogs may be considerably cheaper than printed paper or optical
scan ballots. A blank Frog may be a blank piece of paper, a blank memory card
costing twenty cents or less, or some other medium with suitable properties. Some
form of electronic memory might eventually become the preferred representation
of a Frog.
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Roughly, voting with a Frog works as follows:

First, when a voter arrives at a poll site to vote, she identifies herself (and
authenticates herself as necessary) to an election official. The election official
takes a blank Frog, “initializes” it, and gives it to the voter. Alternatively, the
voter arrives with a Frog.

Second, the voter places her Frog in the appropriate “vote-capture” equipment
and makes her choices, which are recorded on the Frog.

Third, the voter then takes her Frog from the vote-capture equipment to the
“vote-casting” equipment, confirms her selections, and then casts her vote. Her
Frog is “taken hostage” and retained as part of the audit trail.

These steps should take place privately, so that the voter’s vote cannot be
observed.

2 Frog Initialization

Initializing a Frog records on the Frog the identity of the authorizing election
official. It also specifies the election and precinct, the corresponding ballot style
(that is, which races and candidates are to be presented to the voter), the lan-
guage to use, and what candidate rotation parameters (if any) are to be used.
The identity of the voter is not recorded.

We imagine that the election official has a small device for initializing Frogs as
necessary. Each election official may have a unique “key” that must be inserted
in order to operate the device, which specifies the official’s identity, and which
counts the number of Frogs initialized by each official that utilizes that device.

In short, initializing a Frog is similar to having ballots “printed on demand.”

3 Vote Capture

When a voter puts an initialized Frog into the vote entry equipment, it presents
the voter with the appropriate ballot choices, and allows the voter to enter her
selections. The voter is given generous feedback at all stages, and may change
her vote easily.

In a paper-based system, the Frog may be a scannable paper ballot. Marking
the paper ballot is the vote-capture stage.

In an electronic system, the vote-capture stage consists of a session at an
electronic screen or with a personal computer (PC). When the voter is satisfied
with her choices, she pushes a “vote-entry finished” button that causes the voter’s
choices to be recorded on the Frog. The voter removes the Frog so that she may
place it in the vote-casting equipment.

4 Vote Casting

The vote-casting equipment has five functions when the voter casts her vote.
The first is vote-confirmation. The Frog is “read” (scanned, electronically read,
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or whatever is appropriate for this form of Frog), and the voter’s choices are
displayed to the voter. The voter is asked to confirm that these are indeed her
choices. If they are not, the voter’s Frog is returned to her unaltered so that she
may return to the vote-entry station.

The second function is vote signing. The Frog is digitally signed–a cryp-
tographic digital signature of the voter’s choices is made by the vote-casting
equipment and entered into the Frog. The digital signature key is unique to that
vote-signing equipment. It identifies the machine being used and authenticates
the vote as having come from that machine. Different machines use different
keys. The signature does not identify the voter in any way.

The third function is vote copying. The equipment makes an electronic digital
copy of the signed vote. This copy will be communicated later on to the recording
system.

The fourth function is vote sealing. The Frog is “sealed” or frozen so that no
further changes may be made to the information it contains. With an electronic
memory card Frog, a fuse might be blown that disables further writing. With
paper, sealing might be more difficult to do and might have to be omitted,
although laminating the ballot might serve the same purpose.

The fifth function is Frog capture. The Frog is taken hostage and saved as part
of the audit trail.

5 Vote Recording

When the election is closed, the vote-casting equipment transmits the electronic
copies of the votes, including initialization data and digital signature, to the
recording system. Each vote-casting machine displays the number of votes it has
signed and transmitted, which is recorded by the election officials. The Frog-
initialization machines also display the number of Frogs they have initialized;
these numbers are also recorded.

The recording system makes all votes and associated counts publicly avail-
able. The votes might, for example, be posted on the Web. Anyone can check
the consistency of the counts, verify the digital signatures on the votes, and
add up the totals to see who has won each race. We believe that this form of
“universal verifiability” greatly enhances security and improves confidence in the
result. Universal verifiability of all votes is possible today on all systems except
lever machines and several models of DREs. Until recently, Los Angeles County,
California created an electronic copy of all ballots cast-the actual image of the
punch cards. The ballots could be publicly inspected.

6 Specific Examples of Frogs

The separation between vote capture and vote casting allows incredible flexibility
in the system. Frogs can be created and cast at the polling places as is currently
done. Frogs might also be created remotely and then recorded at a recording or
polling place.
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6.1 Paper Frogs

Hand-counted paper ballots most closely approximate the system we envision.
When a voter checks in, she is provided with a blank, official ballot. The voter
goes to a privacy booth and marks the ballot to correspond with her preferences
(vote capture). The voter can inspect and change the ballot if needed. When the
voter is satisfied with the ballot, she deposits the paper ballot in the ballot box.
Some ballot boxes date, time, and precinct stamp the ballot (vote casting).

This system lacks the authorization by the election official on the ballot itself.

6.2 Electronic Frogs in Precincts

When the voter checks in, she is given a memory card, containing the appropri-
ate information about the ballot, the precinct, and the election administrator.
The card is inserted into a slot in a PC. The PC’s screen then displays the al-
ternatives, and the voter makes her choices. The machine records the choices on
the memory card (vote capture). The voter then takes the memory card to a sta-
tion with a simple card reading device and screen. This is a completely separate
device. The screen displays the choices made by the voter. If the voter wishes to
change the ballot, she takes the memory card back to the vote-capture PC. If
the voter wishes to cast the ballot, she pushes the “CAST VOTE” button. The
memory card is then locked and kept as a physical audit trail. The vote-casting
machine records the votes electronically to be counted (vote casting).

Electronic voting today lacks a separate, physical audit trail, and the vote-
capture and vote-casting stages are in a single box, which can be both less secure
and more expensive.

6.3 Frogs from Anywhere

The Frog could also be a paper ballot that is printed from any computer, such as a
home PC. The paper shows a list of candidates chosen, the precinct number, and
other information such as the vendor’s name. The paper Frog also contains a two-
dimensional bar code (like in grocery stores) that contains the same information
as is printed, but in a format that is readily counted. The Frog is sealed and
brought to the polling place, verified, and submitted. The polling place would be
equipped with Frogs and with computers for capturing votes in case the voter
wanted to change the Frog prepared elsewhere.

One interesting aspect of this particular version of AMVA is, if we record the
vendor name on the Frog, then vendors could be compensated on a per ballot
basis. This would ensure that there was adequate money to stimulate innovation
in the development of software.

7 Discussion

We imagine that each county could purchase the vote-casting equipment. It
would consist of a very simple, very inexpensive box.
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An independent research laboratory working under the supervision of a panel
of security and voting experts would develop the specifications of the vote-casting
device. These specifications would be public information, and the device could
be built by anyone.

The vote-casting equipment would not be divided into “test” mode and “real”
mode. The only difference between a “test” and a “real” election would be the
cryptographic keys inserted into the device.

The vote-casting device does not need to understand the races being run and
the candidates running for each race. The device merely displays the choices
recorded on the Frog, which would be recorded and displayed in a standard text
format, such as in the accompanying Figure 2. The voter would be able to scroll
up and down if necessary to see everything.

State of Massachusetts, Middlesex County, Precinct 11

Ballot Initialized by Election Official 10

Election Closes November 7, 2004 at 8pm EST

Ballot: MA/Middlesex/1; English; No rotation

You have chosen:

U.S. President: Mary Morris

U.S. Vice President: Alice Applebee

Middlesex Dog Catcher: Sam Smith (write-in)

Proposition 1 (Casino): FOR

Proposition 2 (Taxes): AGAINST

Proposition 3 (Swimming Pool): FOR

Fig. 2. An illustration of a possible format for the information recorded on a Frog

We feel that such standardization of electronic formats for ballots will be a
major step forward in the evolution of voting systems. It enables the separation
of vote capture and vote casting. It provides a path towards remote voting, when
and if the security of remote voting systems can be sufficiently ensured. It is both
human and machine-readable, and so forms a bridge between these worlds. It
enables different vendors to produce interoperable equipment for a voting system.
We repeat our previous concern that systems that do not produce a separate
(preferably physical) audit trail are prone to security problems.

Similarly, we feel that monolithic systems that try to incorporate everything
may compromise security.

So, our design places most of the complicated user interface software in the
vote-capture system, which is considered to be somewhat less “security-critical.”
It does need to be reviewed, but it might be acceptable to have such a device
contain proprietary code. The vote-capture system might even be run on newly
purchased computers or laptops which could then be sold after the election as
used equipment.

On the other hand, the security of vote-casting equipment is absolutely criti-
cal. This is the last chance for a voter to see her vote before it becomes a truly
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anonymous element in the list of votes cast. The election officials and voters
must have strong reason to believe that the vote-casting equipment does not, at
the last instant, change the voter’s vote just before it is cast.

For this reason, we feel that the vote-casting equipment should be totally
“open source”–the software for such a machine should be publicly available.
The procedures for ensuring that the equipment actually contains the published
software should be public and followed by the election officials. Such machines
should be very rigorously evaluated during certification. A county may buy sev-
eral vote-casting machines for each precinct, from different manufacturers.

This division of equipment into two parts may thus solve a problem in the
industry: allowing manufacturers to protect some intellectual property (the code
for the vote-capture systems) while ensuring that the most security-critical por-
tions are open-source, heavily reviewed, and highly trustworthy.

Note that the vote-casting equipment does exactly the same thing for each elec-
tion: it merely displays the contents of the Frog, gets the voter’s final approval,
digitally signs the contents of the Frog, and makes a copy of everything. It does
not need to know anything about the particular election being run (although it
will use an election-specific digital signature key); the voter is herself taking re-
sponsibility for final approval. It does not even have the ability to change a user’s
vote, if the user does not approve it; that is the function of vote-capture. (Of
course, we expect that some voters may not bother to read the final confirmation
screen carefully; that is their choice. Indeed, we do not expect there are likely to
be problems at this stage, although some voters may change their minds at the
last instant or they may realize that they forgot to vote in some contest.)

The election officials can take the vote-casting equipment out of the closet,
initialize it with the cryptographic signing key it is to use, and then power it on.

Of course, a voter should not be allowed to use the vote-casting equipment
unless she has been identified as an eligible voter who has not previously voted.
Some physical control of the voters at the polling place is necessary. Conceivably
one could authenticate the voters at the vote-casting station, but then the issues
of ballot style, language, etc. may not get handled properly, and it seems more
awkward to have problems arise at this late stage if there have been problems
with the voter’s registration from the beginning of the process.

The use of digital signatures is an important and critical part of this design.
Anyone who could forge digital signatures could forge votes. The cryptographic
digital signature keys need to be carefully managed. A reasonable extension of
the basic AMVA design would allow the vote-casting machinery to simultane-
ously use several signature modules (e.g., each on its own memory card), so that
each cast vote is signed by all modules. In addition to the basic signature module
supplied by an election official, there may be signature modules supplied by each
political party. Requiring several signatures on a vote makes it much harder for
a single individual to surreptitiously “borrow” the equipment and forge signed
votes. The parties would keep a careful eye on their signature modules, not sup-
plying them until just before the election and retrieving them as soon as the
election was over.
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Of course, signatures work with paper systems also. The election officer might
stamp all of the relevant information on the top of the ballot. When the vote
is cast, the ballot is placed in a paper sleeve that only shows the top part. The
election administrator would then sign the top of the ballot without observing
the votes to certify that everything about the ballot (precinct, etc.) is correct.

The voter’s anonymity is nonetheless protected. Her ballot is identified only
by the name (or identification number) of the election official who authorized
her to vote, and the identity of the vote-casting machine that digitally signed
her vote. As long as a reasonable number of voters fall into each such category,
anonymity is ensured.

8 Postscript and Discussion

This section provides some comments on this proposal based on what has hap-
pened in the years 2001–2008.

The “electronic ballot marker” (essentially the vote-capture device as de-
scribed here) has appeared on the market; the Automark2 is one example. Pro-
posed federal standards for certifying electronic ballot markers are given in the
Voluntary Voting System Guidelines [4]. However, the federal government is
not yet proposing certifying voting system components, only complete voting
systems.

This proposed federal standard also prescribes the use of digital signatures
for use with voting system records, in a manner similar to what is proposed in
this paper. Digital signatures do however need to be handled carefully. It should
not be the case that a voter can be disenfranchised by malicious software that
intentionally produces invalid digital signatures. Invalid digital signatures should
cause an alarm to be raised for election officials to investigate, to see if there
is additional evidence supporting the hypothesis that a ballot (or collection of
ballots) is fraudulent. But the failure of a signature verification should probably
not by itself be enough to invalidate a ballot.

The standards requisite for information interchange between voting system
components is developing, most notably in the Election Markup Language
(EML) [1].

The present paper could perhaps have benefitted from the useful terminology
in the proposed VVSG [4], distinguishing between voting systems having direct
verification (i.e., with the voters own eyes, as for paper ballots), and indirect
verification (i.e. through the mediation of some device).

Another useful term introduced in [4] is that of “software independence” (see
also [3]); a voting system is said to be “software independent” if it is not the
case that an undetected software error can cause an undetectable change in
the election outcome. The system proposed in the present paper is software
independent when the ballots support direct verification; otherwise (when the
vote-casting device is necessary for the voter to confirm that her choices are

2 http://www.automarkts.com/
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correctly recorded) it is not software-independent. The authors now support the
proposal that voting systems should be software-independent.

The use of barcodes as suggested at one point in the present paper is prob-
lematic; if no barcodes are used then a paper ballot is directly verifiable by the
voter (and the system is software-independent); otherwise the ballot is only in-
directly verifiable, since a device is needed to read the barcodes (and the system
is not software-independent). Barcodes may not be worth the extra complexity
and potential security vulnerabilities.

There has been some interesting work on the problem of developing a very
small code base for a voting system. Most notable is that of Ka-Ping Yee and
colleagues [6,5], who propose using a small Python program driving a user-
interface with pre-rendered graphics. Their system does both vote capture and
vote casting.
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Abstract. In this chapter, we will show how to achieve unconditional
or information-theoretic security in electronic voting with the following
property:

1. Even all voters and tallying authorities have unbounded computing
power, the distorted integrity of the voting results can be detected
and proved incorrect by every honest voter,

2. If at least one tallying authority is honest, then the privacy of the
ballots are protected everlastingly even the other voters and tallying
authorities are malicious and have the unbounded computing power.

We assume single trusted authority who honestly delivers a particular
form of secret key to every voter and tallying authority. This author-
ity can be destroyed before the election is started. Two information-
theoretic primitives are introduced based on this pre-distributed secret
key, unconditionally secure oblivious polynomial evaluation (US-OPE)
and unconditionally secure publicly verifiable secret sharing (US-PVSS).
These primitives make the election process unconditionally secure in the
above sense and efficient. The resulting scheme requires in a case of 1
million voters, the storage complexity to store private key required for
each voter is 300MB. Communication complexity to verify the whole
tallying process (the heaviest part) is 27GB in a case of tolerating up
to 1000 colluding users, and 220GB in a case of tolerating up to 10,000
colluders.

1 Introduction

An invention of quantum computers [20] which efficiently solves factoring prob-
lems and discrete logarithm problems may totally break most of the current
public-key based information systems. More practically, TWIRL [21] proposed
by Shamir and Tromer or other dedicated hardwares for factoring is threaten-
ing to change our naive estimation of secure key sizes in the near future. It is
natural to hope a more secure scheme in principle which is not bothered by this
everlasting game.

In this chapter, we investigate several information theoretic primitives which
are useful to design more complicated distributed multiparty protocols. Oblivious
Polynomial Evaluation(OPE) is one of the very useful tools where two parties,
Alice and Bob, are given a polynomial and a value respectively on their private
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inputs. Then, after jointly executing a protocol, Bob outputs a value of the
polynomial evaluated at the value without learning any useful information about
the values of their private inputs each other. OPE is first proposed by Naor and
Pinkas [16] in the computational setting. In [6], they improved the efficiency of
OPE, and also proposed OPE in the information theoretic setting. However, the
security of their scheme depends on trustiness of a online trusted party. Our
result shows that if private keys are securely distributed to each players, then
unconditionally secure is efficiently implementable. The simplest implementation
of ou! r protocol requires a trusted party who engages only in the set-up phase
(trusted initializer [18]). Thus no online trusted party is required.

The other primitive introduced in this paper is information theoretic version
of Publicly Verifiable Secret Sharing (PVSS). PVSS is an extension of Verifiable
Secret Sharing [7,11] first introduced by Stadler [22] and later improved [12,19].
PVSS is a VSS with a property that not only the players but anyone can ver-
ify that the secret is shared properly. Interestingly, PVSS is possible under the
computationally bounded model or maybe under the storage bounded model,
but impossible in the information theoretic model. Since the schemes based on
computational assumption can utilize a public verification key to check the con-
sistency of the shares in such a way that the adversary cannot cheat a casual
user without solving a computational hard problem. However, in the informa-
tion theoretic model, it is impossible since the casual user has no information
theoretic advantage over the adversary. Thus, we restrict the notion of public
verifiability of PVSS to that every user with his own private key can verify the
integrity of PVSS. Since every user (including non-voters) is eligible to become a
public verifier, this restriction will not cause a major problem in an application
to e-voting.

1.1 Related Work

In electronic voting systems, the following two security properties are considered
with special importance [4]:

– Secret ballots (Receipt-freeness1)
Voter must not be able to convince others of how he or she voted.

– Unconditional integrity
Anyone should not allow incorrect tally (except with negligible probability).

Efficient schemes are ever proposed which protects one of the above property
unconditionally but the other only computationally. Chaum et al. [5] proposed
a scheme achieving unconditional integrity with computational receipt-freeness.
Moran and Naor [15] satisfies unconditional receipt-freeness but computational
integrity, and Cramer et al. [10] satisfies similar property but only uncondi-
tional secrecy of ballots. Chaum’s and Moran’s schemes are further designed to
1 Secrecy of ballots is defined in many articles as primary property of electronic vot-

ing. However, receipt-freeness is strictly stronger than secrecy of ballots as receipt-
freeness implies secrecy of ballots. Thus, only receipt-freeness is required here.
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cope with more demanding problem of the polling booth scenario where polling
machines are not trustworthy. Paper receipt from the polling machines can help
voters to verify the integrity of tally via internet, while providing receipt-freeness.
But generally speaking, it seems to be hard to design a scheme which satisfies
both of the properties unconditionally as far as we base them on cryptographic
primitives which must assume computational intractability.

Broadbent and Tapp [3] proposed electronic voting scheme which simultane-
ously satisfies unconditional secrecy of ballots and unconditional integrity. Their
scheme is based on information-theoretic primitives primarily on cut and choose
technique and multiparty computation. In their scheme, the integrity of tally
totally depends on the trust of authorities, where no one outside of the tallying
authorities can verify the integrity. Moreover, if one of the authorities is dishon-
est, then the dishonest authority can revoke any ballot from honest voters.

Our scheme simultaneously satisfies unconditional secrecy of ballots and uncon-
ditional integrity of tally. The integrity of tally is assured through information-
theoretic public verifiability, where everyone with private verification key can
detect the distorted integrity of the voting results and proved incorrect even if
all dishonest voters and tallying authorities have unbounded computing power.
If at least one tallying authority is honest, then the privacy of the ballots are pro-
tected everlastingly even the other voters and tallying authorities are malicious
and have the unbounded computing power.

Achieving unconditionally secure receipt-freeness and extending our uncondi-
tionally secure scheme to polling booth scenario still remain as open problems.

2 Preliminary

In this section, we introduce the most simplified version of our information the-
oretic tool, hidden point evaluation technique. The setting taken in this paper
is as follows. Each player is given some predistributed information described be-
low so that each player has an information theoretic advantage over the other
players. Our aim is to construct more complicated protocols like electronic vot-
ing using only this predistributed information, thus without depending on any
computational assumption.

Suppose we have a prover P and verifiers V1, . . . , Vn, all of them are proba-
bilistic polynomial-time algorithms. Let q be a prime power, and let F be a set
of all univariate polynomials in GF (q)[x].

For some polynomial f0 ∈ F of degree ω chosen randomly and uniformly. The
prover is given the polynomial f0 as is. On the other hand, each verifier V1, . . . , Vn

is given a randomly and uniformly chosen hidden point (xi, yi) satisfying yi =
f0(xi) for i = 1, . . . , n in a way that each hidden point is only known to the
corresponding verifier and that the other players including the prover have no
information on which point on y = f0(x) is chosen by the verifier.

Note that in Shamir’s secret sharing, the dealer(prover) knowing the poly-
nomial also knows each share delivered to each shareholder(verifier). However,
in our setting, the prover knows the polynomial but has no information on the
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shares held by the shareholders. Thus, in our setting, each verifier (shareholder)
also has an information theoretic advantage over the prover. Using this infor-
mation theoretic advantage of the verifiers, we can verify the correctness of a
polynomial posted by the prover.

Definition 1. (Verification) For a polynomial f ∈ F generated by the prover,
the polynomial f is called accepted by a verifier Vi, if and only if the polynomial
f satisfies yi = f(xi).

A polynomial f is evaluated by the verifier Vi whether the polynomial f passes
through a hidden point (xi, yi). Obviously, there are many polynomials possibly
accepted by the verifier. However, since the evaluation point is hidden, there
exists no better way than a random guess for the prover to find a good polynomial
f �= f0 to be accepted by the verifier. From this discussion, we have the following
lemmas.

Lemma 1. (Integrity) For any adversary A who may collapse the prover and
all the verifiers except for the targeted verifier Vi, the success probability that
the adversary A to force the verifier Vi accept a wrong polynomial f ′ �= f0 is
exponentially small with security parameter k.

This lemma implies that once the verifier Vi accepted a polynomial f(x) ∈ F ,
then the polynomial is correct, f(x) = f0(x) for all x ∈ GF (p), with high
probability. Thus, we have the following corollary.

Corollary 1. (Unanimity) Suppose that a polynomial f ∈ F is accepted by a
honest verifier Vi, then the probability that another honest verifier Vj to reject
the same polynomial f is exponentially small.

Now we turn to the security for the prover. The polynomial f0 given to the
prover is unconditionally hidden from the verifiers colluding of up to ω verifiers.

Lemma 2. (Secrecy) Suppose that the prover has a polynomial f0 ∈ F of degree
ω, and that we have any adversary A that have control over up to ω verifiers
with hidden points {(x1, y1), . . . , (xω, yω)}. Then, the success probability for the
adversary A to compute f ∈ F such that f will be accepted by at least one
non-colluding verifier is exponentially small.

Further, we introduce homomorphic property to the above scheme. As in many
multiparty computation defined over polynomial-based secret sharing schemes,
the above stated polynomial-based hidden point technique can also be equipped
with homomorphic property. Observe that for any two polynomials f1(x), f2(x) ∈
F and two points on each polynomial (vi, f1(vi)) and (vi, f2(vi)), any linear
combination of the two polynomials g(x) = af1(x) + bf2(x) with a, b in GF (q)
satisfies the following equation:

g(xi) = af1(vi) + bf2(vi).

More general definition follows.
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Definition 2. (Homomorphism) For a polynomial g(x) ∈ F generated from a
linear combination of polynomials f1(x), . . . , fn(x) ∈ F , and for a commitment
(a1, . . . , an) generated by the prover, the commitment-polynomial pair (a1, . . . , an)
and g(x) is called accepted by a verifier Vi, if and only if the following equation
is satisfied:

g(xi) =
n∑

j=1

ajfj(vi).

3 Information Theoretic Primitives

3.1 Oblivious Polynomial Evaluation

Oblivious polynomial evaluation(OPE) is an extension of the basic primitive,
oblivious transfer(OT), first introduced by Naor and Pinkas [16]. OPE is a two
party protocol where Alice is given a polynomial f(x) on her private input,
and Bob is given a value x0 on his private input. After executing a protocol,
Bob outputs a value y0 = f(x0) (with negligible error probability) in a way
that Alice has no information (or learns negligible amount of information) on
the Bob’s input x0 and that Bob has no more information (or learns negligible
information) on the Alice’s private input f(x) than that can be implied from y0.

Definitions and Bounds. In [13], OPE is formalized in the information theo-
retic setting. We restate the definitions and bounds on US-OPE in the following.

Definition 3. (ε-correct OPE) A OPE protocol π is called ε-correct if after
executing the protocol π with honest players, there exists ε satisfying the following
equation:

Pr(y �= y0 : (⊥, y)← π(f, x0)) ≤ ε

where y0 is the correct output such that y0 = f(x0).

Definition 4. (ε-private OPE) Let F , X and Y be the random variables repre-
senting the polynomial f on Alice’s private input, the value x0 on Bob’s private
input, and y on Bob’s private output. A OPE protocol π is called ε-private for
Bob if for any possible behavior of Alice,

I(V iewA; X) ≤ ε

where I(·; ·) is Shannon’s mutual information, V iewA is a random variable which
represents Alice’s view after completion of the protocol π, X is a random variable
representing Bob’s input x0.

Similarly, an OPE protocol π is called ε-private for Alice if for any possible
behavior of Bob, there exists ε such that

I(F ; X) ≤ ε,

I(F ; V iewB|XY ) ≤ ε.
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where V iewB is a random variable which represents Bob’s view after completion
of the protocol π, Y is a random variable representing Bob’s output y0.

An OPE protocol π is said to be ε-private if it is ε-private for Alice and
Bob. In the special case of ε = 0, we call the protocol π is perfectly private.

Let KA and KB be random variables representing information held by Alice
and Bob respectively before initiating the OPE protocol. The following theorem
gives the lower bound on the initial information.

Theorem 1. (Lower Bounds on Private Keys)
If a OPE protocol π is perfectly private, then π satisfies the following bounds.

H(KA) ≥ H(F ), H(KB) ≥ H(X) + H(Y |X)

Proofs are given in [13].

Construction. Now we will give the optimal construction of perfectly private
OPE.

Protocol OPE
Initial Information: Private Keys

Alice’s key: R(x) ∈ GF (q)[x] of degree at most n,
Bob’s key: (d, Rd) where d ∈ GF (q) and Rd = R(d).

OPE Phase
Alice’s input: f(x) ∈ GF (q)[x], deg f(x) ≤ n,
Bob’s input: x0 ∈ GF (q).

1. Bob sends to Alice e = x0 − d,
2. Alice sends to Bob g(x) = f(x + e) + R(x),
3. Bob outputs y = g(d)−Rd.

Theorem 2. The above stated protocol is a perfectly-correct and perfectly-private
oblivious polynomial evaluation. Moreover, it is optimal regarding its private key
size.

Proof. Correctness is obvious. Since if Alice and Bob are both honest, then after
the completion of the above protocol, Bob outputs the correct value f(x0) with
probability 1 (perfectly correct). To prove privacy for Bob, note that d is uni-
formly distributed and not known to Alice, thus H(X |KAV iewA) = H(X) holds.
Privacy for Alice follows from the fact that every action of Bob’s amounts to
choosing an x0. However, given x0 and f(x0), he can evidently simulate his view
of an execution of the above protocol: he simply chooses randomly d and Rd and
polynomial g(x) such that g(d) = f(x0) + Rd. Since this uses no further knowl-
edge of f , the security condition H(F |KBV iewB) ≤ H(F |XY |KBV iewB) =
H(F |XY ) holds.

Size of the private keys clearly meets the lower bound in Theorem 1 assuming
uniform distribution over all inputs.
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3.2 Publicly Verifiable Secret Sharing

We will introduce an information theoretic version of the powerful and important
primitive, publicly verifiable secret sharing (PVSS). PVSS is first introduced by
Stadler [22]. PVSS is a variant of verifiable secret sharing schemes with additional
property that every casual user can verify the consistency of publicly posted
encrypted shares. This property enables electronic voting schemes to enjoy the
important property that every citizen can check the correctness of voting and
tallying process.

PVSS schemes [22,19] based on computational assumption allows any casual
users can become a public verifier. The schemes uses public verification key so
that every casual user can obtain the key and verify the encrypted shares posted
on the bulletin board. This is a very nice feature of PVSS.

In the information theoretic PVSS (US-PVSS), verification of the shares with
a single public verification key is impossible. Thus, even public verifier must be
delivered a private verification key. In the single public verification key setting,
public verifier does not have any information theoretic advantage, that is, it is
always possible for the adversary (with unbounded computing power) to cheat
the public verifiers with invalid shares.

Definitions

Definition 5. A US-PVSS consists of a dealer, N participants P1, . . . , PN such
that each has a private encryption function Ei and a private decryption func-
tion Di shared with the dealer, public verifiers with a private verification key,
a monotone access structure A ⊆ 2{1 ...,N}, and algorithms Share, Recover, and
PubVerify which operate as follows:

– Share: The dealer uses public encryption function to distribute the shares by
calculating Si = Ei(si) for 1 ≥ i ≥ N . The dealer then publishes each share
Si.

– Recover: If a group of participants want to recover the secret, they run Re-
cover, which has the property that ∀A ∈ A it is infeasible to calculate s from
{Si | i ∈ A}.

– PubVerify : To verify the validity of all encrypted shares, PubVerify is run
by any inquiring party with private verification key vk. This algorithm has
the property that

∃u ∀A ∈ A, PubVerify(vk, {Si | i ∈ A}) = accept
⇒ Recover({Di(Si) | i ∈ A}) = u

∧
Pr [u �= s] ≤ ε.

Any participants and the dealer can be a public verifier (we call them simply
Verifiers in the following) if private verification key is provided.

Definition 6. A protocol π is ε-secure US-PVSS if it satisfies the following three
properties.
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1. Completeness:
A PVSS is said to be complete if whenever the dealer is honest (and the
(unique) value for s is recoverable by the participant(s)), the verifier accepts
the proof as valid with the error probability equal to or less than ε. It is said
to be perfect if ε = 0.

2. Soundness:
A PVSS is said to be sound if whenever the unique s is not recoverable, the
verifier accepts the proof with probability equal to or less than ε. It is said to
be perfect if ε = 0.

3. Secrecy:
A PVSS is said to be secret if any group not in the access structure can not
retrieve s. The probability gain against the secret s is equal to or less than
ε. It is said to be perfect if ε = 0.

Construction. Our construction of US-PVSS is a combination of the hidden
point evaluation technique described in the Preliminary section and the US-OPE
technique introduced in the previous section. The main idea is the following. Each
VSS share in our scheme is described as a polynomial. This share polynomial
is a linear combination of polynomials predistributed as Dealer’s VSS-key, and
it is verifiable with private verification keys using hidden point evaluation tech-
nique. Furthermore, the share polynomial is encrypted using US-OPE. Thus, the
original share is encrypted using the secrecy property of US-OPE. On the other
hand, the encrypted share is still verifiable since US-OPE obliviously leaks one
point (this point is designed to be equal to the private verification key) on the
original share polynomial.

Protocol US-PVSS
Initial Information: Private Keys
Dealer{

VSS-key F1, F2 ∈ GF (q)[x, y] of degree T and t
OPE-key Rj ∈ GF (q)[x] of degree 2T (1 ≤ j ≤ N)

Playerj

{OPE-key Rj ∈ GF (q)[x] of degree 2T (1 ≤ j ≤ N)

V erifierk⎧
⎨

⎩

VSS v-key vk ∈ GF (q)
F1(vk, y), F2(vk, y) ∈ GF (q)[y]

OPE p-key vk, Rj(vk) ∈ GF (q) (1 ≤ j ≤ L)

PVSS Phase
Dealer’s input: secret s

Share: Dealer first chooses α depending on s such that s = F1(0, 0) + αF2(0, 0).
A share for Player j is computed as sj(x) = F1(x, j) + αF2(x, j) + Rj(x). Then,
Dealer publishes the commitment α and a encrypted share sj(x).
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Recover: Let A ∈ A be the set of players trying to recover a secret. Now they have
a set of encrypted shares {sj(x) | j ∈ A}. To recover a secret, simply compute
the interpolate the secret from the decrypted shares {sj(0)−Rj(0) | j ∈ A}.
PubVerify : Verifierk will accept (or reject) the encrypted share sj(x) with the
commitment α if the following conditions satisfied:

sj(x)|x=vk
= F1(vk, y)|y=j + αF2(vk, y)|y=j + Rj(vk)

Theorem 3. The above protocol is a US-PVSS satisfying perfect-completeness,
ε-soundness and perfect-secrecy. Moreover, if the above protocol is constructed over
GF (q) and the number of public verifiers is upper-bounded by L, then the success
probability for all adversary to break the soundness property is at most L/q.

Proof. Completeness is obvious. Since if the dealer is honest, all honest Verifierk

accept all encrypted shares in PubVerify with probability 1.
To prove soundness, let A, B ∈ A be the set of players which outputs different

value: Recover({Di(Si) | i ∈ A}) �= Recover({Di(Si) | i ∈ B}). Then there exists
at least 1 share Si where i ∈ A ∪B such that Si is invalid, thus Si �= F1(x, i) +
αF2(x, i) + Ri(x), and there exists at least 1 honest verifier k ∈ {1, . . . , L} who
accepts the invalid encrypted share Si. From integrity (Lemma 1) and unanimity
(Corollary 1), the probability that this situation happen is less than L/q. This
probability is exponentially small with the security parameter |q|.

Secrecy is also trivial from the secrecy property of the underlying Shamir’s
polynomial-based secret sharing scheme and the secrecy property of US-OPE.

4 Unconditionally Secure Electronic Voting

4.1 Model

We follow the bulletin board model for electronic voting as introduced by Be-
naloh et al. [8,2]. The model assumes public bulletin board with which every
player can post their message to it. Players are comprised of a set of tallying
authorities, a set of voters Voter, and a set of passive public verifiers. An election
proceeds in two phases. The first phase is the voting phase. In this phase, each
voter posts his ballot to the bulletin board. Each ballot consists of encrypted
shares of his vote, its commitment to prove the consistency of the shares and a
proof that the ballot contains 0 or 1 in the two-value vote. Since the voters need
not be anonymous in this scheme, it is trivial to prevent double voting. Only
valid ballots will be accepted. The second phase is the tallying phase. In this
phase, tallying authorities are involved. They will check each ballot posted on
the bulletin board. Then, they decrypt and sum up the shares, like multiparty
computation, and post each sum! of the shares.

The property required to voting schemes is informally stated as follows.

– Eligibility
Ensures every eligible voter posts at most one ballot.

– Privacy
Ensures the secrecy of the contents of ballots.
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– Integrity
Ensures that any party, including public verifiers, can be convinced that all
valid votes have been included in the final tally.

More formally an information-theoretically secure electronic voting is defined as
follows.

Definition 7. (efficient electronic voting scheme) Suppose we have three kinds
of players, a finite set of voters, Voteri (i = 1, . . . , M), a finite set of tallying
authority, Authorityj (j = 1, . . . , N), and a finite set of passive public verifiers
, Verifierk (k = 1, . . . , L). Each player has its own private information Xi, Yj,
Zk respectively. Further, let P be public information and Ri (i = 1, . . . , M) be
internal random coins of each voter. In an efficient electronic voting scheme,
there exists the following three phases:

1. Voting Phase:
Given a private information Xi, public information P and internal random
coin Ri, a voter Voteri decides his vote si ∈ {0, 1} and computes and writes
information Eij (j = 1, . . . , N) on a bulletin board.

2. Tallying Phase:
Given a private information Yj , public information P and information on bul-
letin board {Eij} (i = 1, . . . , M), an tallying authority Authorityj outputs Sj.

3. Verification Phase:
Given a private information Zk, public information P and information on bul-
letin board {Eij}, a public verifier, Verifierk, outputs accept or reject on every
Eij for i = 1, . . . , M and j = 1, . . . , N . Furthermore, given a private infor-
mation Zk, public information P and the outputs of tallying authorities, {Sj}
(j = 1, . . . , N), a public verifier, Verifierk, outputs the final tally S or ⊥.

Definition 8. (ε-secure electronic voting) An electronic voting scheme is called
ε-secure in information theoretical sense if it satisfies the following properties.

1. Eligibility:
There exists a function f which maps Eij, the information on the bulletin
board, to a single voter Voteri′ such that for all i1 �= i2, where i1, i2 ∈
{1, . . . , M}, and for all j ∈ {1, . . . , N}, the following is satisfied:

f(Ei1j) �= f(Ei2j).

2. Privacy:
Let Yt be the collusion of tallying authorities with t authorities, and let
ZT be the collusion of public verifiers with T verifiers. Let P be the public
information including the information written on the bulletin board, hence
P , {Eij}, {Sj} and S. Then, given Yt, ZT, P, for every algorithm A, for
every i, for every choice of t corrupting tallying authorities and for every
choice of T corrupting public verifiers, the success probability of A to guess
the value of the vote si of Voteri over random guess is less than ε. That is,

∣∣∣∣Pr [A(Yt,ZT,P) = si]− 1
2

∣∣∣∣ ≤ ε.
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3. Integrity:
Let Verifierk1 and Verifierk2 be two public verifieres with private information
Zk1 and Zk2 respectively. Given all information on the Bulletin Board {Eij}
and given the outputs of all tallying authorities {Sj}, for every choice of
k1, k2, the probability that Verifierk1 and Verifierk2 outputs the different final
tally is less than ε. That is, for every k1, k2 ∈ {1, . . . , L}, there exists ε > 0
such that

Pr [S′ �= S′′; S′ ← Verifierk1({Eij}, {Sj}), S′′ ←Verifierk2({Eij}, {Sj})] ≤ε,

where S′ and S′′ are outputs of Verifierk1 and Verifierk2 as final tally. Note
that S′, S′′ ∈ Z ∪ {⊥}.

Further, if there exists a Verifierk who output a final tally S, then there
exists a list of voters V = {i1, i2, . . . , iM ′} ⊆ {1, . . . , M} whose casted votes
are valid and hence counted, and then S satisfies the following relation:

S =
∑

i∈V

si

where si is the value of Voteri’s vote.

For the privacy property of electronic voting schemes, one may notice that the
collusion of voters is not consdered in the definition. This is mainly because,
in the extreme case, it is trivial that every voter except for a targeted voter is
corrupted, then the content of the targeted voter’s vote is revealed from the final
tally and the choice of corrupted voters’ votes. In the other words, the level of
privacy highly depends on the number of honest voters. Thus, we excluded the
corruption of voters from the privacy definition. The construction proposed later
in this paper is actually robust against the corruption of fairly large portion of
voters only if there exists enough number of honest voters.

4.2 Parameters

In the following, we will use the parameters listed below.

L : number of public verifiers
M : number of eligible voters
m : number of participating voters (m ≤M)
N : number of authorities
T : maximum number of malicious verifiers
t : maximum number of malicious authorities

4.3 Construction

A construction of electronic voting scheme based on bulletin board model [8,2] is
given in the information theoretic model. Our construction is based on US-OPE
and US-PVSS described in the previous section. The construction is separated 4
phases: (1) description of private keys, (2) Voting Phase, (3) Verification Phase,
(4) Tallying Phase.
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Initial Information: Private Keys
Voteri{

VSS-key Si1, Si2 ∈ GF (q)[x, y] of degree T and t
OPE-key Rij ∈ GF (q)[x] of degree 2T (0 ≤ j ≤ N)

Authorityj

{OPE-key Rij ∈ GF (q)[x] of degree 2T (1 ≤ i ≤M)

Verifierk⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

VSS v-key vk ∈ GF (q)
Si1(vk, y), Si2(vk, y) ∈ GF (q)[y]
of degree t (1 ≤ i ≤M)

OPE h-key vk, Rij(vk) ∈ GF (q)
(1 ≤ i ≤M, 0 ≤ j ≤ N)

All private kyes are chosen randomly and uniformly.
Every tallying authority in our scheme is given a private key as Verifier:

{Verifier} = {Voter} ∪ {Authority} ∪ {Public Verifier}.
Also note that OPE-key Rij is shared between Voteri and Authorityj except

for Ri0.

Voting Phase
Each participating Voteri (i = 1, . . . , m) prepares his vote as follows:

1. Voteri decides his vote s ∈ {0, 1} and compute a commitment αi satisfying:
s = Si1(0, 0) + αiSi2(0, 0).

2. He computes all encrypted shares Eij(x) for each j = 1, . . . , N as Eij(x) =
Si1(x, j) + αiSi2(x, j) + Rij(x).

3. Then, Voteri computes a proof

Pi(x) = f(x)(f(x) − 1) + xRi0(x)

where f(x) = Si1(x, 0) + αiSi2(x, 0).
(Note that this random polynomial Ri0(x) is only known to the Voteri, and
also note that f(0) = s on the second equation.)

4. Finally, Voteri writes i, αi, Ei1(x), . . . , EiN (x), Pi(x) on the Bulletin Board.

Verification Phase
Let Vk(i, j, α) = Si1(vk, j) + αSi2(vk, j) be a verification function for Verifierk.
Everyone (say Verifierk) accept (or reject) the Voteri’s vote if the following
conditions satisfied:

⎧
⎨

⎩

Eij(vk) = Vk(i, j, αi) + Rij(vk) for all j = 1, . . . , N
Pi(0) = 0
Pi(vk) = Vk(i, 0, αi)(Vk(i, 0, αi)− 1) + Ri0(vk)
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Table 1. Storage Complexity

Estimates
M = 106, T/M=1%
N = (t + 1) = 10
q ≈ 280

M = 106, T/M=10%
N = (t + 1) = 10
q ≈ 280

Voter O(NT log q) 3MB 32MB
Authority O(T 2 log q) 2.3GB 200GB

Public Verifier O(MN log q) 310MB 310MB

Table 2. Communication Complexity

Estimates
M = 106, m/M=10%,
T/M=1%, q ≈ 280

N = (t + 1) = 10

M = 106, m/M=10%,
T/M=0.1%, q ≈ 280

N = (t + 1) = 3

1 Vote O(NT log q) 220KB 80KB
Verify&Tally O(mNT log q) 220GB 8GB

Tallying Phase
Let Uj ⊆ {1, . . . , M} (j = 1, . . . , N) be the set of indices which Authorityj

accepted during Verification Phase as a public verifier. Then, Authorityj (j =
1, . . . , N) sum up and decrypts all votes in Uj , and write Uj and Sj(x) on Bulletin
Board:

Sj(x) =
∑

i∈Uj

Eij(x)−
∑

i∈Uj

Rij(x).

Verifierk checks at least t of Uj ’s are equal. If so, let U be the agreed set of
correct votes. Then, Verifierk accepts the output of Authorityj if the following
equation holds:

Sj(vk) =
∑

i∈U

Vk(i, j, αi),

where Vk(i, j, α) is a verification function for Verifierk such that Vk(i, j, α) =
Si1(vk, j) + αSi2(vk, j).

Let Ak ⊆ {1, . . . , N} be the set of indices of authorities which Verifierk ac-
cepted in the previous step. Verifierk outputs the election result by reconstructing
from the set of shares {Sj(0) | j ∈ Ak} if |Ak| > t, otherwise outputs ⊥.

4.4 Security

Theorem 4. The above protocol is ε-secure electronic voting. Especially, given
ε′-secure oblivious polynomial evaluation and ε′-secure publicly verifiable secret
sharing, there exists ε-secure electronic voting, where ε < ε′.

Proof. We have to prove Eligibility, Privacy and Integrity of the above protocol.
Eligibility is obvious, since the protocol is based on the bulletin board model

where each voter is not anonymous. To prove the eligibility, it is enough to show
the existence of a function f . Putting f as f(Eij) = i regardless of j, it satisfies
the eligibility property.
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Next, we prove the privacy property is satisfied by the protocol.
From the definition of privacy, the adversary is allowed to corrupt with T

public verifiers and to corrupt with t public verifiers. Without loss of generalty,
we assume the adversary is corrupting a set of public verifiers

YT = {Verifier1, . . . , VerifierT }
and a set of tallying authorities

Zt = {Authority1, . . . , Authorityt},
respectively.

Let Voteri be a target voter, again without loss of generalty. The information
posted by Voteri is in the following form (Ei1(x), Ei2(x), . . . , EiN (x), αi, Pi(x))
where

Eij = Si1(x, j) + αSi2(x, j) + Rij(x)

for j = 1, . . . , N and

Pi(x) = (Si1(x, 0) + αSi2(x, 0))
×((Si1(x, 0) + αSi2(x, 0)− 1) + xRi0(x).

The casted information except for Pi(x) is exactly the same as that in the
US-PVSS. Thus, we focus on the information leak from Pi(x).

From YT, the adversary already knows

{Ri0(v1), . . . , Ri0(vT )},
{Si1(v1, y), . . . , Si1(vT , y)}, and

{Si2(v1, y), . . . , Si2(vT , y)}.
The adversary cannot recover Ri0(x) from {Ri0(v1), . . . , Ri0(vT )}, since Ri0(x)
is degree 2T . Further, the adversary still has the same entropy on a target
univariate polynomial Si1(x, 0) + αSi2(x, 0).

The rest of information available to the adversary is exactly the same as that
in the US-PVSS. The construction described above is based on the US-PVSS
construction in Section 3.2, thus it is perfectly-private from Theorem 3.

To prove integrity, we have to show that (1) the consistency of encrypted
shares, (2) security of the proof Pi(x) which convinces the verifiers that the
secret of each voter’s PVSS lies in 0 and 1, and (3) validity of the output of each
tallying authority.

(1) is straight-forward from the property of US-PVSS. In the construction,
we have L public verifiers. Thus, the probability that the malicious voter to put
inconsistent ballot E′

ij to be accepted at least one of the honest public verifiers
is upper-bounded by L/q from Theorem 3.

Next, we prove (2). It is easy to see that if the voter is honest, every honest
verifier will accept the proof with probability 1. We will further consider the case
that a malicious voter is trying to cheat at least one verifier, Verfierk, without
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loss of generalty, but the malicious voter is unable to identify who is the cheated
verifier. In this case, the malicious voter is trying to post a modified polynomial
P ′(x) where P ′(x) �= P (x). The verifier is trying to check the validity of the
proof by checking the equation

{
P ′(0) = 0
P ′(vk) = pk(pk − 1) + vkRi0(vk)

where pk = Si1(vk, y)|y=0 + αiSi2(vk, y)|y=0. Note that P ′(vk) must agree with
the value computed by Verifierk from pk and Ri0(vk). Here, P ′(0) = 0 must be
satisfied. Otherwise, every verifier reject the vote of the malicious voter. Thus, we
are interested in the case that second equation eventually holds for some verifier
k. Assuming the vk and the polynomials Si1(x), Si2(x), Ri0(x) are uniformly
distributed, the probability that this case happen is 1− ( q−1

q )L ≤ L/q.
Now we prove (3). In the Tallying phase, tallying authority Authorityj posts

(Uj , Sj(x)) on the bulletin board, where Uj is a set of indices of the votes which
the Authorityj accepted and Sj(x) is a verifiable share which is a sum of every
share of the votes posted for Authorityj . If all the talliers are honest, then
all Uj’s for j = 1, . . . , N agree with the same set unless they are cheated by
the voters with negligible probability (This is from unanimity property of US-
PVSS). Furthermore, every honest verifier accepts the verifiable shares {Sj(x)}
and can compute the final tally. We will consider the case that there exists at
least one verifier, for example k, is cheated by some malicious tallying authorities
(colluding up to t), but the malicious tallying authorities have no idea on who
is cheated. Thus, the goal of the malicious tallying authorities is to cheat some
verifier k with a wrong pair (U ′

j , S
′
j(x)) where (U ′

j , S
′
j(x)) �= (Uj , Sj(x)) to be

accepted.
Here, Sj(x) can be written as follows:

Sj(x) =
∑

i∈Uj

Eij(x)−
∑

i∈Uj

Rij(x)

=
∑

i∈Uj

Si1(x, j) + αiSi2(x, j).

Verifierk checks the validity of Sj(x) by the following equation:

Sj(vk) =
∑

i∈Uj

Si1(vk, j) + αiSi2(vk, j).

In a case that Uj = U ′
j , this must be the case that the malicious authority,

Authorityj output a tallying result Sj(x)′ �= Sj(x) and there exists at least one
k such that Verifierk accepted Sj(x)′. From the similar discussion as above, the
probability that at least one public verifier, Verifierk, accept the wrong polyno-
mial Sj(x)′ is 1− ( q−1

q )L ≤ L/q.
Otherwise, Uj �= U ′

j . This must be the case that there exists at least one
Eij(x) and at leasat one

This case happen is bounded by L/q. Thus, the success probability for the
malicious tallying authorities is again exponentially small.
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4.5 Efficiency

We will discuss the efficiency of the electronic voting scheme presented above.
The efficiency of our scheme can be investigated in two ways: (1) Storage Com-
plexity, (2) Communication Complexity. Since our scheme is computationally
efficient. Thus we omit the evaluation of computational complexity here.

Storage complexity of our scheme is evaluated by the size of private keys
required for each voter, each tallying authorities and each public verifier respec-
tively. As described in the construction of the scheme, the storage complexity of
each player is easily computed and shown in Fig. 1 under the indicated setting
of parameters. The required storage size for the Voter is the most critical part.
It requires 3MB and 32MB in the case of a million eligible voters and collusion
of up to 10,000 and 100,000 players are allowed respectively. If some of the users
want to verify the integrity of whole tallying process as a public verifier, they
must store additional private verification keys listed in the lowest row. Each
public verifier needs (users who requeted to become a public verifier) to store
310MB of private verification keys for each case.

Communication complexity of our scheme is shown in Fig. 2 in the case of 1
million eligible voters allowing collusion of up to 10,000 and 1,000 users. Casting
one vote requires only 220KB of data to post to the bulletin board. The heaviest
part is the communication for the Verify and Tally to download the commitment
posted by each voter (one million voters) to verify the whole tallying process.
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Abstract. This article aims to share some major lessons learned from the pio-
neering experience in Brazil with the world’s first full national implementation 
of universal electronic voting. Differing notions of security, and their “collateral 
entanglements”, appear to play a key role and are contrasted in Brazil’s pioneer-
ing electronic voting saga. After an introduction, we puzzle through what elec-
tion security may mean. We elaborate on how technological innovations may 
affect the underlying risks, their nature, corrections and balance. Then we de-
scribe some ways in which innovations have been deployed and validated, and 
how the results are being perceived, before some closing remarks.  

Keywords: Electronic Elections, Electronic Voting, Voting Auditability. 

1   Introduction 

Four times since 2000, until the writing of this article, more than one hundred million 
voters in Brazil have been obliged1 to vote using direct-recording electronic voting 
machines (DREs), which do not allow for recounts. This raises questions such as 
whether, and if so how, electronic elections can be audited meaningfully. Such ques-
tions have been the subject of academic debate worldwide, and in Brazil the discus-
sions started even before DREs were fully deployed2. 

The real issue is auditability. That is to say, the nature of possible assurances re-
garding the correct tallying of the votes cast by entitled voters. This boils down to the 
pertinence, or necessity, for a material representation of each vote to be held by the 
voting system, to allow for credible audits. Credible, here, meaning worthy of trust by 
                                                           
* Pedro Antonio Dourado de Rezende is a tenured professor at Computer Science Department, 

University of Brasilia (UnB). Advanced to Candidacy for PhD in Applied Mathematics from 
University of California at Berkeley in 1983, heads the UnB Cryptography and Info Security 
Extension Program since 1997. Author of over one hundred articles on related topics, was a 
member of Brazil's Public Key Infrastructure Steering Committee from 2003 to 2006, as rep-
resentative of civil society by presidential appointment. 

1  Voting in official elections in Brazil is mandatory for eligible voters of ages 18 to 65, under 
national electoral law. 

2  In Brazil, electronic voting machines were introduced in 1996. However, debates on electronic 
voting audit had already started in 1982, with the first reported case of electronic fraud in vote 
tallying. This happened in the gubernatorial election at the state of Rio de Janeiro, also the first 
to be tallied electronically, in what became known as the ProConsult case. [see ref. 1]. 
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the technical non-savvy. In the U.S., where local political subdivisions have signifi-
cant autonomy in how they run elections, the debate started in the mid 70’s, picked up 
some visibility in the 80’s, and gained global headlines with the 2000 Florida results. 
In Brazil, where federal law defines election processes uniformly, the debate gained 
equivalent attention twice, though each time only briefly, in 1982 and 20013.  

Many computer security experts from the U.S. and Europe participate in the U.S. 
debate. In Brazil, in spite of the pioneering and uniquely universal use of DREs, in-
volvement of experts in the debate has been quite limited. In either case, however, 
those in charge of running elections also have a point to make, mostly divergent from 
the experts'. 

2   The Puzzle of Election Security 

Officials responsible for organizing and running elections have been, for instance, 
largely against audit measures based on voter-viewable printouts. Some have been 
quite vocal about it, as in Brazil, presumably because of the inconvenience such 
measures might impose on their work4. But surely also because, although few 
would publicly admit it, eventual discrepancies between electronic and equivalent 
manual tallies would allow discovery of casual ineptitude, or even possible bad 
faith, in the discharge of their official duties. On the other hand, such audit capabil-
ity would also diminish whatever bully power, explicit or implicit, such officials 
might wield (or intermediate) among elected politicians and aspiring candidates or 
their political parties.  

However, most independent information technology experts who have written on 
the subject5 have tended to favor the requirement that each electronic voting machine 
be set to print a record of each vote, with the printed record visually checkable by the 
voter. The reasons for this opinion, explored more fully below, include anchoring 

                                                           
3  In 1982, with the ProConsult case (previous footnote), and in 2001, with the "Senate's panel 

scandal”, briefly covered ahead. [for a thorough account of the latter, see ref. 2]. 
4  Several electoral officials in Brazil, including judges, have publicly opined that this kind of 

audit measure constitutes “retrocession.” [see ref. 2]. 
5 Aviel Rubin, http://avi-rubin.blogspot.com/; Bruce Schneier, 
http://www.schneier.com/crypto-gram.html;  
Douglas Jones, http://www.cs.uiowa.edu/~jones/voting/cbc2004supp.shtml;  
Dan Wallach, http://avirubin.com/vote/analysis/index.html; 
David Chaum, http://people.csail.mit.edu/rivest/voting/papers/ 
CryptoBytes_Fall2004.pdf 
David Dill. http://securingamerica.com/ccn/node/8023g; 
Ed Felten, http://itpolicy.princeton.edu/voting/audit07full.pdf;Michael 
Waldman (Editor of the “Brennan Report”), http://www.brennancenter.org/ 
presscenter/releases_2006/pressrelease_2006_0627.html;  
Rebecca Mercuri, http://www.notablesoftware.com/evote.html; 
Ron Rivest, http://people.csail.mit.edu/rivest/ 
Rivest-TheThreeBallotVotingSystem.pdf 
Roy Saltman, http://www.votefraud.org/saltman_roy_1988_report.htm; 
Robert Strunk, http://www.votefraud.org/expert_strunk_report.htm 
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convictions of electoral results’ correctness in the participation and experience of in-
dividual common voters, as something essential for the voter confidence which – we 
believe – underlies the spirit of democracy.  

From the technical standpoint, these experts may defend the retention of some  
material representation of individual votes by electronic systems for another simple 
reason: if they are convinced that the scientific resources and technological tools 
available to, or even possible for, computer security are insufficient to sustain trust in 
the outcome of fully electronic secret ballots, at least to an extent consistent with the 
spirit of democracy. 

Among these experts we find living icons of Computer Science, such as Ronald 
Rivest (one of the inventors of the pioneer RSA method for digital signature), David 
Chaum (inventor of eCash “digital cash“) and Bruce Schneier (cryptographer and 
author of major best-sellers on computer security).  

Their repute has led, for instance, at least one political scientist to argue why it is 
much easier to protect financial electronic transactions against electronic fraud than to 
tally a fully electronic ballot of secret votes with equivalent overall security [17].  

Reliance on fully electronic mechanisms for voting and for election auditing pur-
poses yields more routes for plausible deniability to those who may wish to stealthily 
interfere in the electoral result while controlling the underlying technology. Relying 
solely on electronic measures for auditability has meant that any new measure de-
signed to close these routes end up opening their own. 

As a contribution to this debate, we posit that the heart of the disconnect between 
these two groups – formed by distinguished computer security experts and by election 
officials or suppliers in favor of fully electronic voting systems – may stem from the 
different way that each group, either by virtue of their craft or by gut feeling, under-
stands “security”: 

• [1st sense]: security from the standpoint of voters (and experts on their behalf) 

a) with rights to a secret ballot and to its correct tallying,  
b) against possible manipulations of the electoral process, 
c) by whoever in the electoral system, 
d) which should be readily detectable by voter oversight; 

• [2nd sense]: security from the standpoint of those running elections 

a) with rights to program or operate the electoral system, 
b) against detection by voter oversight, 
c) of whatever act imputable to ineptitude or bad faith, 
d) through which manipulations of the tallying is possible. 

3   Risk and Modernity 

The main difficulty we can point to, regarding the security of fully electronic voting 
systems as we see it, is rooted in an inconsistency between two basic requirements. 
The first of these requirements is vote secrecy, and the second is the requirement 
for dematerialization of votes (if the voting system is to be fully electronic). The 
inconsistency, explained in the next section, arises under real-world conditions, in 
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the context of real democracies, from the fact that at least three potentially conflict-
ing interests are at stake in elections: the interest of voters who believe in, or desire, 
democracy through fair and clean elections, and the interests of at least two compet-
ing candidacies. 

To understand how real life conditions make those two requirements inconsistent, 
one needs to note that election integrity can only be guaranteed if voters are also pro-
tected against manipulations of internal origin, which is to say, if operatives of the 
electoral process who may stealthily favor such tampering are to be, for that purpose, 
unprotected. This means that the first sense of security cited above, a legitimate sense 
from a perspective we believe to align with the spirit of democracy, can only be effec-
tive if coupled with the suppression of the second, an illegitimate sense from this per-
spective.  

On the other hand, attempts to have a voting system fulfill both requirements (vote 
secrecy and electronic dematerialization) at once, while formally aiming to achieve 
that first sense of security, may – or will, as we'll argue – yield the practical effect of 
reaching out for the second. This would turn the risk profile of such systems unstable. 
Thus, one may begin to understand how technical discussions which bypass the need 
to extricate these two senses of security will likely degenerate.  

A debate that fails to extricate these two senses of security will cloud the possible 
tracks through system design choices along which risk estimates can be reasonably 
expected to remain constant. This problem is aggravated when, from a position of 
authority further empowered by a choice for vote dematerialization, electoral officials 
in favor of fully electronic systems willfully ignore this analytical imperative, at the 
guise of specious, faulty or bogus arguments, mostly non-technical. 

This analytical imperative stems from the fact that processes with more than two 
potentially conflicting interests at play (as with any electoral process) pose risks of a 
kind known as collusion. These risks have in common the fact that they vary when 
security is sensed from the perspective of different interests. A typical collusion re-
quires two or more parties, engaged in the process, to disingenuously act as if their 
interests diverge, in order to reach a disguised benefit to some interest they stealthily 
share, at the expense of some illegitimate harm to a third interest.  

In electoral processes, collusion can happen through secret alliances, in which un-
compromising conflicts of interests (or independence of actions) are faked. Or they 
can happen the other way around. In short, electoral processes exist under the sys-
temic, intrinsic risk of collusions, either by fake conflict or by fake cohesion of inter-
ests or actions, aimed at harming other interests in order to improve the colluders' 
chances for later sharing power, more power or its bounty.  

Therefore, to blur paths where risks can conflate as they spread, making them ap-
pear as diluted, is not conductive to good policy or sound analysis, as the current 
global economic crisis, stemmed from financial innovation in free markets, is now 
showing. 

4   Balancing Risks 

Vote dematerialization enrich the ways through which risks of collusion can com-
pound and materialize, by offering colluders new means to hide their methods, if 
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enough electoral authority is inept or involved. Labeling such considerations as 
“paranoia” or “conspiracy theory” will not make these facts go away; rather, such ad-
hominem rhetoric signals that the extrication of those two senses of security is prereq-
uisite for a thorough, balanced analysis of the e-voting modernization phenomena. 
But the persistence of such ad-hominem rhetoric, specially by the mainstream media 
in chorus with the discourse of electoral officials and suppliers, also yields a construc-
tive reading. It reminds us that collusion strategies can, of course, start with obfusca-
tion of main motives for certain choices in the design and procurement of voting  
systems, in tandem with lobby for electoral regulation reform to legitimize them. If 
so, such strategies need to drive those two senses of security to appear indistinguish-
able, or inseparable. From there, to a collusion's full feast is an easy ride: through the 
disguising of the second sense of security as the first, say, as an inevitable conse-
quence of technological progress.  

Thus, the security of legitimate interests in representative democracies, at least in 
democracies bound to preserve the spirit of its humanist revival6, ought to be sought 
by fully acknowledging and considering not only risks of collusion, but also the ensu-
ing profile of risks and how this profile can change with changes in the electoral proc-
esses and in voter mentality. And not to be sought by unilateral control of the process, 
be it by the market's invisible hand or any other, or through jealously guarded secrets 
of its mechanisms, which over-empower the beholders.  

For its part, adequate protection against collusions can only be achieved with ade-
quate balance between transparency of the (electoral) subprocesses and distribution of 
their controls among legitimate and potentially conflicting interests, integrated in a 
way to allow for an effective oversight. In electoral processes, or in any other process 
intrinsically exposed to the risk of collusions, the more technological intermediation 
there is the more such balance will hinge on two basic elements: Carefully tailored 
regulation, and participation of stakeholders (voters) in the oversight process. 

This is of the utmost importance for elections, due to two main thrusts. First, the 
risk of collusions as a constant menace to representative democracy, due to its delicate 
political nature. Second, technological intermediation as a wedge, parting voters from 
autonomous oversight roles and, ultimately, risking their role as democracy's guaran-
tors of last resort. In our view, backed by the empirical evidence given here, inconsis-
tent voting system requirements can lock these two risks in positive feedback. And in 
our times, there seems to be nothing more effective for this than the requirements of 
vote secrecy and of vote dematerialization through complete computerization.  

For historical evidence, on the first thrust we cite the comprehensive research 
by John Fund published in 2004 [15], regarding the U.S., the nation with yet the 
most successful case of democratic rule7. And on the second, plus empirical evi-
dence on how these two thrusts may feedback, we offer the last sessions, regard-
ing Brazil, a hesitant latecomer to democratic rule. On feedback signs we pick 
some from a collective spell of supposed technological prowess Brazil seems to 

                                                           
6  From the French and the American Revolutions of the Eighteen Century. 
7  At least in the sense of being the nation with the longest continuous period of democratic 

rule.  
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be under, given its modern voting system, where most voters seem oblivious to 
the lessons from their Old Republic8.  

5   Collateral Entanglements 

In secret ballots, that is to say, in ballots requiring a voter's identity not to be associ-
able with his or her vote during casting or tallying, the electoral supervision process 
becomes, due to this vote secrecy requirement, sensitive to the physical way in which 
each vote is cast. As a consequence, if the electoral process dematerializes the votes, 
recording only by digital means partial tallies of votes cast, whatever oversight proc-
ess the system may feature seems to end up ineffective, as if “tied up”.  

Tied up in the sense that any oversight measure aimed at detecting or deterring in-
sider malfeasance (that is, malicious acts by electoral operatives in possible collusion 
with some candidate) will also serve to protect outside defrauders, that is, voters over-
seeing the process for a candidacy willing to sabotage the oversight process (to call 
maliciously into question an election deemed lost) or to subvert it (to insert defraud-
ing mechanisms into the system).  

Whereas, symmetrically, any measure to detect or deter sabotage or subversion in 
the oversight process will also serve to protect malfeasance by insiders holding privi-
leges to program or operate the system. These entanglements between intended and 
collateral effects, observable (as reported below) from Brazil's experience with its 
fully electronic voting system, raises the central question for this article: Is this ob-
served pattern of “collateral entanglements” due to inept implementations of security 
measures in a particular fully electronic voting system, or due to conflicting voting 
system requirements?  

Computer scientists who want to seriously study the computerization of elections 
shall not allow for ideologies to obfuscate the contours of the problems under focus, 
inherent to voting systems, but rather, they shall distinguish ideologies as a source 
for them, in so far as ideologies shape the social and political value of elections. 
From this perspective, the scientific study of electronic voting systems reached a 
milestone in 2000, with a PhD thesis successfully defended at the University of 
Pennsylvania [16]. In her thesis, Rebecca Mercuri is believed to have demonstrated 
                                                           
8  In Brazil, where the widespread use of DREs was pioneered from 1996 on, history books – 

and Wikipedia – explain how the nation's first period of democratic rule, from 1989 to 1930, 
known as "the Old Republic", was plagued by collusion. Election organizers and two main 
political groups, led by landed gentries, were involved. Regardless of the real outcome, the 
books were cooked at each election so that the two groups would alternate at filling the coun-
try's presidency, while the three pretended, with help from the fourth power – mainstream 
media --, to find no wrong through the electoral supervision process. The Old Republic's plot 
became known as "política café-com-leite" ('cappuccino' politics), from which voters took 
decades to realize detrimental consequences. This, in turn, led to civil unrest and a coup, the 
1930 revolution, to reform democratic rule. After two interruptions of democratic rule, (from 
1937 to 1945 and from 1964 to 1988), now under the spell of some supposed technological 
prowess, most Brazilians seem oblivious to the lessons from their Old Republic. Like their 
neighbors from Paraguay, where Brazil's DREs has been borrowed, but unlike their neighbors 
from Venezuela, whose later debut with democratic rule was plagued by similar plot, from 
1958 to 1998, know as "pacto del Punto Fijo". 
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that vote secrecy and tallying integrity are mutually exclusive guarantees that a 
fully electronic voting system can offer.  

In other words, with fully electronic elections, there is no way to have vote secrecy 
and tallying integrity protected in the same run because, to use a simplifying meta-
phor, these promises are like two sides of a coin. A coin representing the electronic 
voting system, with value corresponding to that of the electoral process it can execute, 
but a coin that cannot be "flipped" to show both sides during an election because it 
executes the election in a single run, without the possibility of recount for auditing 
purposes (due to dematerialization of the votes).  

One can argue about whether and how Dr. Mercuri's work can rigorously lead to 
such conclusion9, but the weight of its scientific arguments can be felt in many fronts. 
For instance, as an answer to the central question raised here, from Brazil's pattern of 
“collateral entanglements”. Or, in electoral legislation across the U.S., under pressure 
from civil and grassroots movements, specially after dubious ethics from main DRE 
suppliers began to surface [3], [4]. Between March 2004 and May 2005, fourteen fed-
erated states approved laws requiring voting machines to allow for Voter-Verifiable 
Printed Audit Trails (VVPAT), to retain or recover the supervising capacity common 
voters unquestionably had before elections were computerized.  

Before July 2006, 27 U.S. states have such laws already sanctioned, thirteen of 
them with mandatory manual audit. Only fifteen U.S. states appeared to see no prob-
lem yet with DREs. As for the U.S. Congress, several bills aimed at assuring that 
VVPAT becomes a federal tenet for electoral supervising processes are being consid-
ered. This, not to naively pretend to do away with election fraud, but to put all of their 
forms in a hard-playing leveled field, that is, to expose the ways to defraud – old and 
new – to the risk of detection by common voters in due time. In other words, to give 
back to common voters – with no PhD in Computer Science – their legitimate right to 
supervise elections with autonomy. 

6   Routes to Electronic Elections 

Each democracy has to answer the call to go modern, if for no other reason then be-
cause of the massive lobbying by DRE suppliers, the larger of which has gone global. 
A special look at the route taken by Brazil seems warranted, if not because of its pio-
neering widespread use of DREs, then because of the keen interest its system has 
raised within the Organization of American States (OAS), or because Brazil’s de-
ployment took a route leading to a landscape quite distinct from what has been por-
trayed by lobbies, by Brazil's mainstream media and by specialized global media, and 
perhaps also quite distinct from the route the U.S. seems to be taking10.  
                                                           
9  In the same year Mercuri defended her PhD thesis, for instance, Berry Schoenmaker 

published the article “Fully Auditable Electronic Secret-Ballot Elections”: 
http://www.xootic.nl/magazine/jul-2000/schoenmakers.pdf 

10  As far as we can tell, Brazil is unique among modern democratic republics in concentrating, 
in a single institution, the electoral functions from the three powers a republic should keep 
separate, namely, those to legislate, to execute and to adjudicate. This institution, called 
'Electoral Justice', is organized as a branch of the Judiciary, and binded only by the Constitu-
tion and federal election laws. The Constitution and electoral laws compel all statutory,  
executive and adjudicative matters regarding official elections into a Kafkean system of 
'electoral tribunals', one for each state, all under a federal 'Superior Electoral Tribunal' [TSE]. 
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In Brazil, the highest electoral authority – the Tribunal Superior Eleitoral (TSE) – 
has picked one model of voting machines to serve all 400 thousand plus precincts in 
the country, has procured, deployed and put to use such machines nationwide since 
the municipal elections held in 2000. TSE has designed its voting system around the 
voting machine model it has picked, which is a type of DRE with one added twist: a 
terminal used by precinct officials to check voter identity physically connected, by a 
12 ft. cable, to the voting machine itself.  

The voter ID number is typed in this terminal, to be checked by a software running 
on the voting machine. This ID is checked against a list of registered voters allowed 
to vote in that precinct, kept in a file stored alongside the file with the vote tallies, in a 
voting machine's storage media. If an entry is found with that ID, and if the entry isn't 
marked with “already voted”, the software shows the voter’s name on the terminal's 
single-line display and the machine is allowed to receive a vote. Otherwise, an error 
message is displayed. Thus, given the current oversight rules and practices, this 
choice of design makes vote secrecy an act of faith in software (non-)functionality.  

From 2001 on, the political input into Brazil's voting system's design began to 
change. In May of that year, from a collusion among top senators gone sour a case of 
electronic voting fraud in Brazil's Senate11 broke out in mainstream media, causing a 
great deal of public outrage. Besides how easy it was for operators to violate the se-
crecy of votes, the scandal also unveiled how fully electronic voting systems can be 
resourceful for colluders. Public indignation then pushed the Congress to take up the 
matter of revising election law, so that recount mechanisms would be introduced for 
general elections.  

A Bill to that effect was introduced12, but encountered fierce resistance from the 
authorities whose activities would be monitored under its provisions. The Bill's pas-
sage was targeted for disruption by the president of the TSE, in a series of actions that 
drew no attention from mainstream media. First he asked the Senate, in his capacity 
as the head of the highest electoral authority (appointed by, and from among Supreme 
Court Justices), to await for input from his institution. To deliver, he waited until  
five days before the constitutional deadline for passing the Bill if it were to have ef-
fect during the next elections, reminding senators of this urgency (meaning, no floor 
debate). 

Among the proposed amendments he sent to the Senate, on plain paper with no of-
ficial letterhead, one effectively did away with the printed vote function, by providing 
for prior selection, on election eve, of the voting machines to be used as sample in 
mandatory recount for audit purposes. The senator who sponsored these amendments 
and lobbied his peers for approval, under loose rules for matters declared urgent, was 
awarded by TSE, two weeks after the Bill was approved with this crippling amend-
ment, a 15-month mandate as governor of his state13.  

                                                           
11  A case of legislative vote fraud known as the “Senate panel scandal”. [see ref 2]. 
12  Senators Roberto Requião and Romeu Tuma introduced a Bill mandating that the DREs be 

adapted to run VVPAT extension modules, for unencumbered tally audit by manual recount 
of a 3% sample of precincts.  

13  A court case that had dragged on in TSE for more than two years, over a bid in which senator 
Hugo Napoleão had ran for governor of the state of Piauí in 1998. The declared winner had 
been governing for more than half the mandate, but the election was impugned, based on a 
claim that the winner's campaign finances were not up to snuff.  
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Then, after that deadline had elapsed and the crippled Bill was in the lower house, 
the same president of the TSE – where electoral laws are interpreted – changed the 
story, suggesting that better it be voted on as an urgent matter14, arguing that the mat-
ter could still go into effect for next election since it was, “after all, a technical mat-
ter”, and therefore beyond the constitutional restriction for electoral matters, of prior 
approval by one year.  

After the crippled Bill was passed and sanctioned as suggested, becoming Law 
number 10,408/02 (VVPAT Law), he invited some Congressmen to his office at the 
Supreme Court to inform them that he had misunderstood the constitutional restric-
tion: such legal matter was indeed electoral in nature, and therefore the VVPAT Law 
would not apply to the next election. As an excuse for his fumble, he offered to have 
electoral authorities voluntarily "test", in 3% of the voting machines at the upcoming 
2002 election (which included a bid for Brazil's presidency), the VVPAT mechanism 
that such Law had made, as he understood it then, obligatory only for elections 
scheduled to be held after 2003. 

For this “test” he would order the adaptation of only some of the existing DRE ma-
chines, expanded to allow the appendage of a VVPAT device (image below), as pro-
posed in VVPAT Law's justification. 

 

 

Fig. 1. Brazil's 2002 DRE with VVPAT module from www.unisys.com.br/img 

7   Political Design Validation 

The guest legislators accepted the offer, allowing the target of supervision to "test" a 
mechanism which Congress had chosen for monitoring their activities, and “test re-
sults” could be observed. Due to the purpose of this work, we'd rather mention what 
the mainstream media didn't: Failures in the instructions for how to set up the (vote) 
printers, failures in voter training (voters needed to press “confirm” one more time, 
but weren't told that), failures in voter registration (careless excess of voters registered 
precisely to precincts that featured printed vote without proper instructions) [10].  

                                                           
14 Again with no floor debate, and with no further amendments so that the Bill wouldn't have to 

go back to the Senate. 
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Failures that led to long lines, frustrations and problems, failures ignored both by 
mainstream media and by a self-evaluation that the TSE later published about such 
"test." Problems that the TSE self-evaluation and mainstream media blamed, as if ob-
vious, on the audit measure itself, not on the conflict of interest in having electoral au-
thorities test a mechanism that legislators had chosen for voters to supervise their 
power. This self-evaluation was prepared and presented to Congress, in 2003, by the 
TSE president who not only ran this plot, but also, as a congressman in the constitu-
tional assembly of 1988, admittedly smuggled articles into Brazil's Constitution [13]. 

Based on this TSE self-evaluation, a senator with unclean record15 then proposed a 
Bill that would amend the VVPAT Law so as to eliminate the VVPAT audit measure. 
The last shred of voters' right to recount votes after the computerization of elections 
was to be eliminated before it was ever exercised. To replace it, the senator offered 
Brazilian voters what he called "digital vote registry." As a justification for his offer, 
we learned that: 

"The substitution, proposed by the current Bill, of the printed vote by the digital 
record of the vote for each office, with the identification of the voting machine 
on which the vote was recorded and the possibility of recovering it, perhaps for 
future analysis, while protecting the voter's privacy, will without a doubt in-
crease the security and transparency of the elections process, making the print-
ing of a record for the voter to check a dispensable measure." 

Just like the crippled version of the VVPAT Bill, this amendment also passed with no 
floor debate and with no public hearing [8]. As to the “transparency of the process”, 
not a chance: every plea made thus far by election supervisors to access the encrypted 
“digital vote registry” has been denied “for security reasons” [14]. Meanwhile, Bra-
zil's on-again, off-again main supplier of DREs16 has been acquired by a company 
that has been selling DREs of the same basic design17 in the U.S., as code leaked from 
both reveals [5], [6], [7].  

8   Reductionism 

Several documents indicating serious security (in the first sense) flaws plaguing Bra-
zil's voting system18 were made available to lawmakers, as they considered amending 
                                                           
15  Sen. Eduardo Azeredo, who has been indicted in Federal criminal court for allegedly  

masterminding the money-laundering and embezzlement scheme that became known as 
“Valerioduto” [see ref. 14]. 

16  Procomp, an IT company formerly owned by Brazil's largest domestic bank, later bought up 
by the largest U.S. supplier of DREs in late 2007, Dieblold. 

17  Except for a new outfit and no VVPAT extension or dangling voter ID input modules. 
18  These documents include a manifesto and petition by university professors warning lawmak-

ers and the public of major risks inherent to fully electronic voting systems, which do not  
allow audits of the electoral process, asking that debates to legalize them include public hear-
ings; a Technical Reports from the Brazilian Computing Society (SBC) and from Coppetec, a 
technology research center from the largest public university in Brazil, the former recom-
mending the use of VVPAT modules in voting machines to allow for unencumbered tally 
audits by manual recount of a sample of the precincts; an Expert Report on a DRE from a 
Santo Estevão precinct, part the electoral lawsuit case TRE-BA 405/2000. This is a document 
produced for lawsuit in which two right-wing parties litigate over the result of Santo 
Estêvão's 2000 municipal election.  
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the VVPAT Law, but the indications were dismissed. These indications were later 
corroborated by source code leaked to the Internet, which turned out to be part of the 
software used in voting machines in Brazil's 2000 municipal elections, according to 
an analysis done by the author [6], comparing with code later appended to an expert 
report filed in a court case, in a lawsuit over a disputed municipal election known as 
the Santo Estêvão case [7].  

The code analyzed was the part which controls security for the DRE software 
(setup.bat file, in Brazil's 2000 voting machine model). The analysis revealed 
how ineffective the electoral oversight process was [6]. Despite the importance of 
such findings, they raised no interest with mainstream media or the general public. 
However, the Santo Estêvão expert report is extremely important because it docu-
ments the only independent technical analysis yet permitted on voting machines used 
in official elections in Brazil.  

The report reveals, for example, how the physical seals for the DRE machine, 
which purportedly guarantee them against tampering after software installation, were 
absolutely ineffective in the first sense of security cited above, while absolutely effec-
tive in the second sense19. Four physical seals were prescribed, in pedantic details as 
to the positions they should be placed, by an official bylaw20 which was amended as 
soon as the Santo Estêvão expert report was filed. This amending was done with 
backward dating, so that corrections appeared to have preceded the independent ex-
pert findings.  

This security flaw in Brazil's electronic voting system was acknowledged by au-
thorities only because the obscurantism surrounding the system briefly lapsed, when 
the Santo Estêvão's judge allowed an independent expert witness to examine voting 
machines. Yet, this cluster of facts does not connect dots in the public mind. Most 
people confuse such obscurantism with security, and this lapse of obscurantism with 
breach of security (as a breach by the expert witness).  

The report also reveals how the language of electoral bylaws, under such obscur-
antism and leveled by official boastings about the security they warrant, can shed 
light on the main questions raised here: on the nature of “collateral entanglements” in 
fully electronic voting systems, on how inconsistency in system requirements can 
entail such entanglements, and how these entanglements can feedback risks. It re-
veals, in other words, how that second sense of security can be disguised to appear as 
the first, through a discourse of authority. This episode has, in our view, the value of a 
cornerstone in understanding how such deceitful collective perception is build: 
weaved of flag-waving vainglory, of collective ignorance and of conceited arrogance, 
into a pattern of reductionist beliefs.  

Most victims of such reductionism so become by cutting corners in understanding 
what is at stake. By mixing up electoral process and electronic voting, or by confusing 
vote secrecy with secrecy in the process of collecting and tallying votes. Or, by na-
ively believing in rough conjectures about what transparency means, or how much of 

                                                           
19  The seals, if placed as prescribed, are left intact when the DRE cabinet is open by releasing a 

screw hidden behind the DRE's mounted battery. This would give access to the DRE physical 
storage (flashcards). On the other hand, any unauthorized access to voting machines, say, to 
unmount the battery and inspect the DRE, is a Federal crime.  

20  TSE Resolution nº 20.966. 
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it is enough in this process. Others so become by not knowing what good transpar-
ency could do when computers take over, and others, by being clueless about how 
much more important it becomes in these cases. Yet others, by believing in hunches 
about why more transparency would hurt security, in a vague and undefined – if not 
Manichean – sense: the hackers! 

To aggravate, there are “specialists” with thin scruples and cloudy ambitions  
always ready to explore such reductionism, as if voting machines were akin to magi-
cian's black boxes [9]. Thus, the urge to breach the dogma of security through obscur-
antism, frequently disguised as technicism, to reveal how fully electronic voting  
systems entangle legitimate and illegitimate senses of security. Those two senses of 
security cited here are not the same, in fact each can only be effective with the sup-
pression of the other. As to which will prevail, this is up for grabs when voters don't 
care to participate in the process all the way to the level of autonomous oversight. Not 
easy, because dogmas are powerful. 

9   Evoking the Holy Byte 

Fully electronic voting systems would have marveled Machiavelli, had they been 
available around his time. By the exuberance of belief patterns they seem prone to 
elicit, towards some kind of techno-messianism. The one sprouted in Brazil has been 
called “the creed of Saint Byte”, a pun with a local creed (pun translated as “the holy 
byte”)21. These patterns evolve with the dogmatization of some conjectures, circulated 
as commonsensical truths by mainstream media. Some conjectures are about how 
much transparency is good for electronic systems, with voting systems as a test bed 
for the faith.  

The creed of the holy byte purports to reveal how this leave-it-to-the-experts type 
of reductionism can save Brazil's democracy from human sin. By spreading the faith 
in the inseparability of those two senses of security [10], [11], the faith that put de-
signers, deployers and operators of such systems in a straight path to digital saint-
hood. The faith in the power of electronic purity, which shall free us from that evil 
plaguing civilizations for millenia: the diabolical, inefficient paper. Free at last!  

Perhaps due to its pioneering in electronic vote, Brazil is coming out as a copious 
source for signs of this techno-messianic phenomenon. One has only to ingest the 
potion22 offered by local mainstream media, through eyes and ears at the electronic 
altar of consumerism, to reach a Mystical Vision in one's own home: angelical beings 
designing, programming, configuring and operating DREs. 

                                                           
21 Translator's note: Creed of Saint Byte is a parody of Seita do Santo Daime, pronounced alike 

in Portuguese. The latter is, citing wikipedia, "a syncretic spiritual practice, which grew out 
of the Brazilian Amazonian state of Acre in the 1930s and became a worldwide movement in 
the 1990s. Practitioners of Santo Daime (who call themselves Daimistas) believe strongly in 
the spiritual benefits of drinking the sacramental tea Ayahuasca, [which may be classified as 
halucinogen], in the context of rituals, or spiritual works. Santo Daime can be understood as 
part of the rich spiritual landscape of religion in Brazil." To follow the pun's intention, we 
translate to “holy byte”. 

22  From the parody of the “Seita do Santo Daime” [see previous footnote]. 
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Fig. 2. 1987 advertisement: "Without it, life would be hell” 

To exemplify, we cite two impressive signs. One, the continuing veto by TSE of  
requests to allow for independent homologation procedures, prescribed by well-
established technical standards for electronic information systems23 (such as the Interna-
tional Standard Organization), on Brazil's official voting system. Two, the suppression 
of the only means by which voters could independently verify the tally, for any eventual 
manipulation therein, in the bylaws for the 2006 elections: ballot reports, printed and 
signed on paper by precinct officials at the end of voting period, shallhenceforth not be 
handed out to more than “one representative of the political parties”24.  

The alleged explanation for the first of these signs, for the shutdown of doors to in-
dependent homologation, is the self-serving argument that electoral bylaws (written by 
the system operators themselves) do not prescribe such tests. The only tests allowed, 
labeled as audit, as oversight or as independent homologation to suit the occasion, are 
 

                                                           
23 Among signs of this revelation we can cite: a dogmatic contamination of technical studies on 

the security of Brazil's electronic voting system, ordered and paid for by Brazil's main elec-
toral authority -- TSE --, such as the 2002 report "from Unicamp" in light of an independent 
analysis of the 2000 setup.bat file [see refs 6, 7 and 9]; a veto on the participation of Rebecca 
Mercury in a scientific meeting on electronic v, sponsored by TSE and the University of 
Santa Catarina in 2003, under the allegation that her views would have, according to a wit-
ness, "nothing to contribute to the betterment of our system"; a systematic refusal of TSE to 
allow any independent homologation of the voting system, by voters or by technical assis-
tants to candidacies, not even as prescribed by national or international industrial or commer-
cial standards such as ISO's for Information Systems' Security.  

24 As per § II of Art. 42 of Resolution nº 22.154, issued by TSE on May 2006, later amended by 
Resoluion nº 22.332, issued on August 8, 2006. Some state authorities, like São Paulo's 
(through TRE-SP Instruction nº 12.523 of Sept. 22, 2006), have directed precinct officials at 
the 2006 general election to ignore that late amendment, and thus, to deny printed ballot re-
ports to representatives of single political parties. 
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Fig. 3. The route of Brazil's voting system model 

the ones their own wisdom define, which amounts to overseers' mere hands-off obser-
vation of DREs emitting reports of self-indulgence. And for the second sign, for the 
shutdown of doors to tallying verification by disgruntled candidates or skeptical voters, 
the explanation is to expedite the proclamation of election winners and to save paper.  

None of these signs of techno-messianism seem to wake up the mainstream media 
to their investigative journalistic value, even as fables. Rather, Brazil's mainstream 
media has been busy with the self-appointed task of protecting the masses from the 
risk of “losing trust in our system”. For that, it endlessly recites, preferably through 
the mouth of some higher electoral authority, mantras from the creed of the holy byte. 
Such as: “our pioneer electronic voting system is 100 % secure, for if it was not, 
proofs of fraud would appear before us!”. 

While the holy byte dogmas circulate as self-evident truths, the real debate over the 
security of electronic voting systems is, to the general public, skewed or muted. While 
the new means to defraud elections entailed by fully electronic systems, bearing 
stealthier and more concentrated swindle power than ever, keep getting disparagement 
or silence from the fourth estate [12]. While the argument of tallying agility as justifi-
cation for this rationale remain bogus: France and Germany tally faster with paper 
ballots than Brazil does with DREs. 

Moved by a creed untold as such, mainstream media now behaves and report as 
if elections have become (except for proportional races) some sort of video game. 
The voter is invited to watch a sort of poll-driven virtual race, with the checkered 
flag falling on election day. In the final lap, the voter goes up to a black box and 
pushes some buttons, then sits down in front of the TV to see the results. “Experts” 
take care of the rest. The importance of autonomous voter oversight to the process 
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has disappeared from public awareness. Nonetheless, lessons from Brazil's Old Re-
public25 were not forgotten by all.  

10   History Lessons 

Those who heed History can observe – and in this case report – double standards be-
ing, again, applied to electoral matters. Given the aim of this article we now focus on 
the American continent, especially on a self-appointed role played lately by the OAS, 
the role of some sort of “democracy police”.  

Of the only country to have yet adopted VVPAT as uniform requirement for its 
electronic voting system26, OAS officials demanded, in an election held there in 2004, 
that the final tally be audited by manual recount in a sample they would help pick, of 
1.5% of the precincts. At the end, 54% of the precincts were audited clean by manual 
recount. This was a referendum that could have toppled an elected president at the 
middle of his mandate. For the rest of Latin America, however, OAS encourages, or 
engages as a broker for, the use of Brazil's electronic voting system, which does not 
allow for recount. The same system whose designers, operators and lobbyists fight 
hard to never allow to become effectively auditable, to the point of even defrauding 
the legislative process which sets its main requirements27.  

To brag about this engagement, TSE has even published a booklet with a list of coun-
tries OAS is helping get used to, or get to use, Brazil's electronic voting system28. Ar-
gentina, Costa Rica, Dominican Republic, Ecuador, Mexico and Paraguay29. However, 

                                                           
25 The flag from Brazil's state of Paraíba is a homage to a former candidate for Brazil's  

vice-presidency, João Pessoa, whose assassination is believed to have sparked the 1930 
Revolution, a popular revolt that busted the enduring collusion plot known as "política café-
com-leite" ('cappuccino' politics). Paraíba's capitol is also named after him. According to the 
state's official web site, the red part of the flag stands for the blood shed in his assassination, 
and the remaining black for the mourning feeling after his death. The word NEGO, which 
means "I refuse", over the red part refers to the ensuing revolt against the "café-com-leite" 
collusion practice, fueled by the state's refusal to accept the official 1930 presidential election 
result. That result had declared the defeat of João Pessoa, governor of Paraíba at the time, 
and of his presidential mate, Getúlio Vargas. The rebellion set in motion by Pessoa's assassi-
nation, before inauguration, ended up conducting Vargas to the presidency, exposing a dis-
tance which legality can stray away from legitimacy.  

26  Venezuela: http://www.cne.gov.ve 
27  The law revoking the undebuted VVPAT measure (Law 10.740 of 2003) and the law intro-

ducing electronic voting systems into Brazil's electoral process (Law. 9.100 of 1995) were 
admittedly drafted by TSE staff. Under constant lobbying by electoral officials, the corre-
sponding Bills were voted by the two houses of Congress, passed and sanctioned into Law by 
the president in record time (less than six months), with significant engagement of politicians 
involved in electoral litigation and not a single public hearing or amendment allowed. 
Throughout the process of drafting, discussing, voting and sanctioning them, any and all  
contributions offered by the academic community were ignored. Law nº 10.740 was ap-
proved by Brazil's Congress in September 29, 2003 with grave irregularities, documented in 
www.brunazo.eng.br/voto-e/textos/PLazeredo.htm (see [ref. 8]). 

28  “Informatization of Brazil's Electoral Justice” (Informatização da Justiça Eleitoral Brasileira), 
TSE, Brasília, 2005. 

29  By the time the booklet was published, presumably in 2005. 
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Argentinian judges have three times blocked the use of Brazil's DREs in official elec-
tions, in 2001, 2003 and 2005, allegedly because the machines did not allow for manual 
recounts or tally audits. In Mexico the offer was turned down, if for no other reason 
because some states there have been using VVPAT machines. Paraguay has been the 
only other country (besides Brazil) to have yet elected, in 2003, a president using mainly 
DREs (borrowed from TSE).  

This leads us to ask if the “technical debate” over the use of VVPAT or DRE sys-
tems hold any bearings to democracy, or to the sovereignty of democratic states. If so, 
taking into account the U.S. Secretary of State's proclaimed mission to help spread 
democracy, and her pattern-fitting suggestion that Venezuela's and Argentina's are not 
“true democracies”30, how would Mexico and Brazil fit in? What about the U.S. states 
that have adopted VVPAT as a norm, like Venezuela, or that mention paper ballots 
and ways to count them in its Constitution, like Argentina?  

This question can be rephrased as one regarding the possible relations between  
labels for democracy and levels of sovereignty. We can take note that Argentina's 
government has, in 2005, called the bluff on high-risk, high-yield IMF-backed irre-
sponsible investments that would have otherwise choked the nation's economy. That 
Mexico's 2006 presidential election is dealt with by U.S. mainstream media as some 
sort of anti-Ukraine-like story31. And that the DRE-elected president of Paraguay has 
sanctioned, in 2005, a law authorizing unlimited numbers of U.S. troops to station 
near his country's border with Argentina and Brazil, armed with immunity to local 
and international law besides guns.  

Democracy can spread in different ways. Since this article aims at contributing to 
constructive ways, we end by stressing our view on the importance of an electronic 
voting system's design being consistent, as the empirical evidence raised here goes to 
show. For those who care for their democracies in the spirit framed here, wherever 
located, whatever labeled, however spread, we offer a call to beware of the rationale 
behind any media-driven disparagement of common voter's right to unencumbered 
election auditing. No amount of spinning can be a substitute for effective auditing, due 
to the nature of the risks involved. And for those who don't, we ask to not pretend.  
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Abstract. We discuss an implementation of a network voting scheme
based on mix-net technology. We employed the scheme presented at Fi-
nancial Cryptography 2002, but replaced the numeric computations with
those on a elliptic curve. As a result, we obtained three times speed up
and data length shortening to one third. The system has been employed
in a private organization with roughly 20,000 voters since 2004.

1 Introduction

The three basic requirements on a secure network voting system are detection
of faulty voters, detection of faulty centers, and vote secrecy. Among other vot-
ing protocols achieving these three requirements, such as blind signature based
schemes [FOO92, Sak94, OMAFO] and homomorphic encryption based schemes
[CY85, SK94, CFSY96, CGS97, DJ01], we have chosen the mix-net based scheme
[PIK93, SK95, Abe99, FS01, Ne01] for implementing our voting system.

Although the scheme requires rather large amount of computation on mixers
who shuffle and decrypt the encrypted votes, and who we need to assume not
to collude with all other mixers, the scheme offers many desirable features for
voters and for administrators who manage voting system:

– it enjoys flexibility in representing a vote, unlike homomorphic encryption
based scheme where the design of the system depends heavily on the number
of choices in each vote.

– the voters can simply vote-and-go and require only a small computational
ability.

– by having authorities prove the correctness of their procedures, it achieves
public verifiability, that is, anyone can verify the correctness of the tally.

The cost that is paid for these properties is the computational cost to generate
proofs assuring correctness of shuffling and decryption. However, it can be re-
laxed by elaborating computational algorithms such as use of ”fixed-base comb
method” and ”Simultaneous multiple exponentiation method” exposed in [MOV]

As a result, the system was able to produce results that were verified correct
within 6.6 minutes following a vote participated in by ten thousand voters, with
three mixers each on a 1GHz PC.

D. Chaum et al. (Eds.): Towards Trustworthy Elections, LNCS 6000, pp. 141–154, 2010.
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For the proof, we used the scheme proposed in [FMMOS02]. Although
the scheme can not prove to have zero-knowledge property, it has complete
permutation-hiding property as discussed in [F04].

We note that the property of receipt-freeness is not achieved in our system.
Also, the privacy of abstaining is not currently being supported. On the other
hand, the administrators knowing who have voted and who have not, help to
send reminders to those who have not voted.

2 The Mix-Net Based Voting Scheme

2.1 Overview

The mix-net based voting schemes achieve anonymity of votes by distributing
the decryption key among multiple authorities called mixers. Voters send signed
but encrypted votes. These votes will be processed by the mixers, who shuffles
the votes and decrypt them. After all the mixers have done their work, the
encrypted vote will be completely decrypted, but its original owner can not be
identified due to the shuffles performed at every mixer. By providing shuffle-and-
decrypt proofs, anyone can verify the output is the correct decryptions of the
shuffled valid votes. The proofs should be made in a way it will not reveal the
permutation used in the shuffle nor the decryption key, so it would not infringe
the vote anonymity.

2.2 Model

We involve five kinds of players, which are

1. Election policy committee
2. Voting center
3. Shuffling management center
4. Shuffling center(mixer)
5. Voters

The election policy committee will be responsible for any fraud caused by the
voting center, the shuffling management center, and the shuffling centers. The
election policy committee does not engage in an actual run of the electronic
voting. It takes part in determining election and security policies, and assignment
of the centers. The committee authorizes the output computed by the other
centers, such as the parameters determined in a set-up phase and the final tally.

The voting center is in charge of handling transactions with the voters. It will
announce the voting procedures, collects pro forma votes from the authorized
voters, issues receipts of the collected votes, and announces the result of the
tally. The voting center will receive the result of the tally by sending the list of
collected votes to the shuffling management center.

The shuffling management center is responsible for decrypting and tallying
the list sent from the voting center, in collaboration with the shuffling cen-
ters(mixers). The shuffling management center passes the list to the first shuf-
fling center, and collects his answer which will be sent to of the next shuffling
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Fig. 1. System Configuration of Mix-net

center, and repeats the process until all the assigned shuffling centers shuffle and
decrypt the list. The shuffled result of decryption will be sent back to the vot-
ing center. The shuffling management center is also responsible for composing a
public key in the set-up phase, again in collaboration with the shuffling centers.

The shuffling center, whose other name is the mixer, is responsible for secure
management of the secret key generated in the set-up phase, and conducting
decryption using the key. He is also responsible for randomly shuffling the list
and keeping the permutation used in a shuffle confidential.

We require for the universal verifiability, that any party can verify that all
centers conducted correctly based on the policy approved by the election policy
committee. Our goal in vote privacy is that it will not be infringed as long as at
least one shuffling center remains honest.

Figure 1 illustrates how these players constitute an voting system. We note
that the roles of the voting center and the shuffling management center can be
played by one entity.

2.3 Protocol

In this subsection we describe the procedure to set-up, to encrypt votes, and to
tally the votes.

In the sequel, we assume there are m shuffling centers and n voters. All the
communication between the centers are digitally signed based on a public key
infrastructure.

Set-Up

1. The election policy committee will determine the parameters (q,E, g) which
will be used in ElGamal cryptosystem on an elliptic curve E . The numbers
q is a prime order of the elliptic curve E and g is a generator.
The shuffling management center announces the authorized parameters
(q,E, g) to all the shuffling centers. The j-th shuffling center, SCj , will ran-
domly choose xj mod q as his secret key, and report his public key yj = [xj ]g
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to the shuffling management center. The report is accompanied by the proof
y′

j , rj which ensures that SCj indeed knows the secret xj corresponding to
yj . The proof will be generated by SCj as follows.

y′
j = [βj ]g

cj = H(p, q, g, yj, y
′
j)

rj = cjxj + βj mod q

with a randomly generated βj ∈ Z/qZ.
2. The shuffling management center will verify the proof y′

j , rj for each public
key yj(j = 1, · · · , m) as follows.

cj = H(p, q, g, yj, y
′
j)

[rj ]g − [cj ]yj = y′
j

yj ∈ E , yj �= O

The verified public keys are combined to compose the common public key
Y .

Y =
m∑

j=1

yj

The proof for each public key is necessary to ensure that the common public
key Y corresponds to each of the secret keys that the mixers are aware of,
not those generated under a control of an adversary.

3. The election policy committee will certify the public keys yj and Y properly
generated as above.

Encryption of Votes

The V oteri will use the parameters Y and (q,E, g) certified by the election policy
committee and encrypt his vote mi as follows. (We assume here that mi is in
E.)

(Gi, Mi) = ([r̄i]g, mi + [r̄i]Y )

where r̄i is an element randomly chosen by the V oteri, and IDi is information
that identifies the voter. He may then prove the knowledge of mi by generating
the proof αi, ti by

αi = [γi]g
ci = H(p, q, g, Y, Gi, αi, IDi)
ti = cir̄i + γi mod q

with a randomly generated γi. This proof ensures that the plaintext awareness
property: that is, a voter who knows the content of his vote has generated the
encrypted vote. A vote duplication attack by copying someone else’s encrypted
vote will be thwarted here.
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The voting center will verify that the voter is eligible to vote. It will verify
that the proof satisfies

ci = H(p, q, g, Y, Gi, αi, IDi)
[ti]g − [ci]Gi = αi

and that the elements Gi and Mi are both in E. If everything is verified, then
it can optionally send back a receipt of acceptance. Such a receipt cuts in two
ways: it will add confidence to the voter that the center indeed accepted his vote
and will be an evidence for any disputes on vote delivery. On the other hand, it
will serve as a receipt in vote-buying or coercing scenario.

Tallying

The voting center will send the list of accepted votes from each voters
(Gi, Mi)i=1,···,n to the shuffling management center. The shuffling management
center will verify that all of each component is in E, and rename them to be
(Gi, Mi) = (G(1)

i , M
(1)
i ) for all i, which will be the input to the first shuffling

center SC1.
The list (G(j)

i , M
(j)
i )i will be sent to SCj . His response will be verified by the

shuffling management center and will be renamed to (G(j+1)
i , M

(j+1)
i )i and sent

to the next shuffling center. The response from the last shuffling center, SCm

will be verified and sent back to the voting center.
Below, we describe the procedures of each shuffling center.

1. SCj will receive the list (G(j)
i , M

(j)
i )i. He will choose a random permutation

π(j) and permute the input list (G(j)
i , M

(j)
i )i and achieve the list (Ḡ(j)

i , M̄
(j)
i )i

as follows:
(Ḡ(j)

i , M̄
(j)
i )i = (G(j)

π(j)(i)
, M

(j)

π(j)(i)
)i

2. The above permutation only changes the order of the ciphertexts, so it is
easy to trace the permutation. In order to hide the permutation, we need to
change the look of the ciphertext. The following procedure changes the look
without changing the message hidden in the ciphertext.
First, SCj combines the public keys of the subsequent shuffling centers as

Yj =
m∑

�=j

y�.

For each of (Ḡ(j)
i , M̄

(j)
i ), he chooses a random element s

(j)
i mod q and obtains

(G′(j)
i , M ′(j)

i )i by

G′(j)
i = Ḡ

(j)
i + [s(j)

i ]g

M ′(j)
i = M̄

(j)
i + [s(j)

i ]Yj
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3. SCj will decrypt each of (G′(j)
i , M ′(j)

i ) using his secret key xj as follows:

M ′′(j)
i = M ′(j)

i − [xj ]G′(j)
i G′′(j)

i = G′(j)
i

The list (G′′(j)
i , M ′′(j)

i )i will be returned to the shuffling management center.

Proving Correctness

Details of procedure for mixers to prove they have correctly shuffled and de-
crypted the input is described in the next section.

3 Details of Correctness Proof

For simplicity, we concentrate on one shuffling center and denote his secret key
as x. We represent by ȳ the product of the public keys of subsequent centers.
What we need to prove is the correctness of the following shuffle-and-decrypt
procedure.

Given n ciphertexts (Gi, Mi)i, where all {Gi} and {Mi} are in E, the shuffling
center randomly chooses a permutation π and a random element si ∈U Z/qZ to
obtain shuffle-and-decrypt result as follows:

(G′
i, M

′
i) =

(
[si]g + Gπ(i), [si]ȳ + Mπ(i) − [x]G′

i

)

for i = 1, . . . , n.

3.1 Generation of the Proof

We now provide the scheme to generate a proof that the shuffling center (which
will be denoted as the prover in the sequel) indeed shuffled and decrypted honestly.

We describe the scheme in a non-interactive way, where a challenge from a
verifier is given as an output of some universal one-way hash functions. We as-
sume here that all elements of input ciphertexts (Gi, Mi) and output ciphertexts
(G′

i, M
′
i) are in E.

To prove (G′
i, M

′
i) are generated correctly from (Gi, Mi), the prover computes

the following equations for randomly chosen z, zi, ρ, σ, τ , λ and λi, z
′ ∈U Z/qZ

(i = 1, . . . , n): We use H and H̃ to denote universal one-way hash functions
which output an element of Z/qZ and E, respectively.

g̃ = H̃(p, q, g, Y, 0), g̃i = H̃(p, q, g, Y, i)
v = [ρ]g, w = [σ]g, t = [τ ]g, u = [λ]g, ui = [λi]g

g̃′i = [si]g̃ + g̃π(i), g̃′ = [z]g̃ +
n∑

j=1

[zj]g̃j

g′ = [z]g +
n∑

j=1

[zj ]Gj , m′ = [z]ȳ +
n∑

j=1

[zj]Mj
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ṫi = [3zπ(i) + τλi]g, v̇i = [3zπ(i)
2 + ρsi]g

v̇ = [
n∑

j=1

zj
3 + τλ + ρz]g

ẇi = [2zπ(i) + σsi]g, ẇ = [
n∑

j=1

zj
2 + σz]g

ci = H(p, q, g, ȳ, g̃, {g̃j}, (Gj , Mj)j , (G′
j , M

′
j)j ,

g̃′, (g̃′j)j , g
′, m′, v, w, t, u, (uj)j ,

(ṫj)j , v̇, (v̇j)j , ẇ, (ẇj)j , i) (1)

ri = cπ−1(i) + zi, r =
n∑

j=1

sjcj + z mod q

λ′ =
n∑

j=1

λjcj
2 + λ mod q

ζ =
n∑

j=1

[cj ]G′
j , η = [x]ζ (2)

y′ = [z′]g, η′ = [z′]ζ (3)
c′ = H(p, q, g, y, ζ, η, y′, η′) (4)
r′ = c′x + z′ mod q (5)

The prover send the proof g′, m′, g̃′, g̃′i, v, w, t, u, ui, ṫi, v̇i, v̇, ẇi, ẇ, r, ri, λ′, η, η′,
y′, r′ (i = 1, . . . , n) to the verifier along with (G′

i, M
′
i)i.

3.2 Verifications of the Proof

The verifier first computes (ci)i=1,...,n according to Eq.(1). Next, the verifier
compute

ζ =
n∑

j=1

[cj ]G′
j

and generate c′ according to Eq.(4). The verifier accepts the proof if all of the
following equations hold.

v, t, w ∈ E

[r]g +
n∑

j=1

[rj ]Gj = g′ + ζ

[r]ȳ +
n∑

j=1

[rj ]Mj = η + m′ +
n∑

j=1

[cj ]M ′
j

[r]g̃ +
n∑

j=1

[rj ]g̃j = g̃′ +
n∑

j=1

[cj ]g̃′j
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[λ′]g = u +
n∑

j=1

[cj
2]uj

[λ′]t + [r]v + [
n∑

j=1

(rj
3 − cj

3)]g = v̇ +
n∑

j=1

[cj
2]ṫj +

n∑

j=1

[cj ]v̇j

[r]w + [sumj(rj
2 − cj

2)]g = ẇ +
n∑

j=1

[cj ]ẇj

[r′]g = [c′]y + y′ , [r′]ζ = [c′]η + η′.

3.3 Complete Permutation Hiding

We discuss here the notion of complete permutation hiding (CPH) as a core
requirement of unlinkability in verifiable shuffle-decryption. If a verifiable shuffle-
decryption is CPH, honest verifiers will learn nothing new about its permutation
from an interaction with a prover in an overwhelming number of cases of
random tape that a prover has chosen uniformly and randomly, whereas, if the
protocol is zero-knowledge, verifiers will learn nothing new in every case of the
random tape. In other words, we define CPH so that verifiers learn nothing about
the permutation in an overwhelming number of cases of common input Xn and
witness Wn that the generator GR (defined below) outputs.

Let In be a set of domain parameters 1n, q,E, where q is prime and is of
the length of the polynomial of n, and E is an elliptic curve of an order q,
private key x̄, plain texts {Mi ∈ E}i=1,...,k, and random tape Zn. Let enc(U) be
an encoding of a probabilistic polynomial time (PPT) Turing machine U which
generates cipher-texts (gi, mi)i=1,...,k input to the shuffle-decryption procedure.
We assume the existence of a knowledge extractor that can concurrently extract
{r̄i}i=1,...,k such that [r̄i]g0 = gi from U . This assumption is satisfied if all
generators of cipher-texts are imposed to run a concurrent proof of knowledge
of r̄i, and such a compulsion prevents an adaptively chosen cipher-text attack.

Definition 1. Given In(= {1n, q,E, x̄ ∈ Z/qZ, {Mi ∈ E}(i=1,...,n), Zn}) and
enc(U), instance Generator GR chooses g0 ∈R E, x′ ∈R Z/qZ,
{si ∈U Z/qZ}i=1,...,k, and a permutation π uniformly and randomly and computes;

m0 = [x′ + x̄]g0, y = [x′]g0

(gi, mi) = U(In, g0, y) ∈ E× E
(g′i, m

′
i) = ([si]g0 + gπ−1(i), [−x′]gi + [si]m0 + mπ−1(i)).

GR then outputs common input Xn and witness Wn:

Xn = {q,E, y, x̄, g0, m0, {(gi, mi)}(i=1,...,n), {(g′i, m′
i)}(i=1,...,n)},

Wn = {π, {si}(i=1,...,n), x
′}.

In the above definition, U is a PPT Turing machine that plays the role of (mali-
cious and colluding) players who generate cipher-texts {(gi, mi)}. Although U is
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determined before the public parameter is generated, it does not lose generality
because it has this public parameter as an input. In a case where U realizes
honest players, it outputs

(gi, mi) = ([r̄i]g0, Mi + [r̄i]m0)

using random numbers {r̄i}i=1,...,k generated from the random tape Zn.
We say Xn and Wn satisfy relation R if the following equations are satisfied:

m0 = [x′ + x̄]g0, y = [x′]g0

(g′i, m
′
i) = ([si]g0 + gπ−1(i), [−x′]gi + [si]m0 + mπ−1(i)).

We denote this fact as (Xn, Wn) ∈ R. If there exists a witness Wn for a common
input Xn that satisfies (Xn, Wn) ∈ R, common input Xn is a correct shuffle-
decryption. Generator GR outputs such a Xn.

Definition 2. Let V iewP
V (Xn, Wn) be V ’s view of an interaction with P , which

is composed of the common input Xn, messages V receives from P , random tape
input to V , and messages V sends to P during joint computation employing Xn,
where P has auxiliary input Wn s.t., (Xn, Wn) ∈ R. V iewP

V is an abbreviation
of V iewP

V (Xn, Wn).

We consider the case when a semi-honest verifier may collude with malicious
players who encrypt the ciphertexts and other provers who shuffle and decrypt
in the same mix-net. Such a verifier and players may obtain partial information
regarding the plain texts {Mi}, private key x̄ (the sum of other prover’s private
keys in the mix-net), random tapes of players, and even a part of the permutation
π in addition to V iewP

V . Moreover, they may obtain the results of other shuffle-
decryptions executed by the same prover.

Then it is reasonable to describe this extra information as
H(In, enc(U), Xn, π) and input cipher-texts generated by the malicious player
as U(In, g0, y) using PPT Turing machines H(·) and U(·). Note that {si} are
not included in the arguments of H , because we consider only the case where
the prover never reveals these values to any one and the case where the prover
never uses the same {si} for other shuffle-decryptions.

Even though the verifier and the players may obtain the results of other
shuffle-decryptions executed by the same prover who uses x′, we do not include
x′ into the input of U and H . Instead, we assume that there exists a PPT Turing
machine K such that the distribution of V iewP

V for such H and U and that of
K(In, g0, y, enc(U), π) are the same. We denote this as
V iewP

V ≈ K(In, g0, y, enc(U), π). The exclusion of x′ is crucial because it enables
us to consider the security of shuffle-decryption over the distribution of Xn i.e.,
of x′.

We describe information about the permutation π that verifiers try to learn
as f(π) using PPT Turing machine f . This description can be justified because
the expression f(π) is sufficient to express any bit of π and any kind of check
sum for π.
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Now we can say that a verifiable shuffle-decryption protocol hides its per-
mutations completely with respect to GR - i.e., CPH occurs - if there exists a
probabilistic polynomial time algorithm E′E (which has black box access to E )
with inputs Xn and H(In, enc(U), Xn, π) that suffers no disadvantage with re-
spect to learning anything about the permutations compared to any probabilistic
polynomial time verifier E having input V iewP

V and H(In, enc(U), Xn, π). This
leads to,

Definition 3. (complete permutation hiding) A verifiable shuffle decryption
protocol (P, V, GR) achieves complete permutation hiding if

∃E′E∀E∀H∀f∀U∀c > 0∃N∀n > N∀In

Pr[E(V iewP
V , H(In, enc(U), Xn, π)) = f(π)]

< Pr[E′E(Xn, H(In, enc(U), Xn, π)) = f(π)] +
1
nc

, (6)

and
∃K V iewP

V ≈ K(In, g0, y, enc(U), π)

where E′, E, H, f, U, K are PPT Turing machine. The left probability in Eq.(6)
is taken over the distribution of the random tapes input to GR,1 P, V, H, and E.
The right probability in Eq.(6) is taken over the distribution of the random tapes
input to GR, H, E′, and E. E′ may use E as a black box.

If the verifiable shuffle-decryption protocol is CPH, we can say that for ev-
ery input ciphertexts set {(gi, mi)} and its corresponding output cipher-
texts set {(g′i, m′

i)}, whatever an honest verifier who has partial information
(H(In, enc(U), Xn, π)) about the common input (Xn), can learn about the per-
mutation (π) after interacting with a prover, can also - in an overwhelming
number of cases of common input (Xn)- be efficiently computed from that com-
mon input (Xn) and that partial information (H(In, enc(U), Xn, π)) alone using
a PPT Turing machine E′ without interaction with the prover as long as the
prover has chosen the private key x′, permutation π, and random numbers {si}
uniformly and randomly.

Note that we are considering the case even where malicious and colluding
players, who have the results of other shuffle-decryptions with the same x′, are
engaged in generating {(gi, mi)} of common input. Hence, CPH guarantees secu-
rity when shuffle-decryptions with the same private key are repeatedly executed2.

1 Since the probability is taken over a distribution containing x′, we have excluded
any adversary who knows x′.

2 The definition of shuffle-decryption stated in [FMMOS02] is “No polynomially
bounded adversary can compute any partial information of the permutation from the
protocol”. Unlike our new definition, this definition does not mention the case where
the verifier has already obtained partial information before the protocol begins and
where the shuffle-decryptions with the same private key are repeatedly executed.
These cases seem to occur quite often.



An Implementation of a Mix-Net Based Network Voting Scheme 151

Table 1. Processing time and proof size

Total Time Length of Proof

number of voters 10,000 100,000 10,000 100,000

EC Implementation 6.6 min 1 hr 7 min 4.8Mbyte 48Mbyte

Mod p Implementation([FMMOS02]) 20 min 3 hrs 44 min 12.6Mbyte 126Mbyte

Tally without proof(EC) 69 sec 12 min – –

Tally without proof(Mod p) 8 min 1 hrs 10 min – –

4 Result of Implementation

We have evaluated the system under the following conditions:

– Key Size |q| = 160.
– Security parameter k=160
– The number of shuffling centers m = 3.
– CPU:PentiumIII 1GHz, memory 256Mbyte for each of mixers and shuffling

management center.
– Communication Line 100baseTX

As a result, with a ten thousand voters the system can output a certified tally
in 6.6 minutes and with a hundred thousand voters within 67 minutes, including
data transmission time. Less than one-fifth of the time are required for computing
the tally, and the rest of the time is devoted to proving and verifying the proof.

Table 1 compares the implementation results on Elliptic Curve and that on
modular p arithmetic reported in [FMMOS02]. Modular arithmetic requires the
length of p to be 512 where as EC implementation requires 160. This affects the
speed up in tallying and the shortening the proof size, both in the factor of 3.

We describe how we measured the tally. Since proving is the one that takes
the most of the time, we introduced parallel scheduling. That is, a shuffling
center returns the result of his shuffle-and-decrypt procedure to the shuffling
management center before he starts proving the correctness of his result. The
shuffling management center verifies the signature on the result and forwards the
result to the next shuffling center. Thus the next shuffling center can start his
job while the previous shuffling center is still engaging in the process of proving.
The correctness of the result is verified by the shuffling management center as
soon as the shuffling center completes generating a proof. Therefore, at a same
time, one shuffling center may be engaged in a shuffle-and-decrypt procedure,
another shuffling center may be proving, and a shuffling management center may
be verifying the proof reported from previous shuffling center. In this parallel
scheduling, we measured ’Tally without proof’ when the last shuffling center
reports the result of his shuffle-and-decrypt and the shuffling management center
verified the signature. For 10,000 voters, it was 69 seconds after the shuffling
management center send the encrypted votes to the first shuffling center. The
shuffling management center had to wait another 5.5 minutes to finish receiving
the proofs from three shuffling centers and verifying them each.
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Fig. 2. An window of Tallying Result

The parallel scheduling is risky in the sense that if a shuffling center returns
a properly signed wrong result, the following shuffling centers need to redo their
job in order to obtain a correct tally. Redoing brings many threats. We nonethe-
less chose this implementation assuming such a fraud is unlikely to happen and
even if it does, the shuffling center can be identified and be heavily blamed, Of
course, the schedule can be always be changed to sequential one, so that the
next shuffling receives the input only after the input has been verified, in cases
where the speed is not of a question or the threat is large. In the sequential im-
plementation, it takes 122 seconds for a shuffling center to shuffle-and-decrypt
and generate its proof for 10,000 votes, and 105 seconds for a shuffling manage-
ment center to verify the proof. We also note that 67 seconds out of 122 seconds
needed for a shuffling center to perform its job can be done before he receives
the input.

Figure 2 shows an example of tallying result collected at Shuffling Manage-
ment Center.

5 Deployment in a Private Organization

The system described above has been used in a private organization with roughly
20,000 voters since 2004. The system is being used almost every other months to
make organizational decisions reflecting opinions from anonymous members of
the organization. The cases include election of the president of the organization,
confirming the board member, changing the by-laws, and collecting the agree-
ments from the members to exercise organizational rights. The organization is
composed of multiple divisions. All the voting was tallied within the division.
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The organization had user authentication infrastructure within their intranet.
After the voter authorization protocol, the voter posted the encrypted vote gen-
erated with JAVA applet.

The administrators can chose the number of mixers in each voting. The secret
keys of mixers are refreshed every time. There was no major trouble after 3 years
of running the system but one, where a newly assigned administrator refreshed
the secret key but announced the old public key by mistake. Since the old secret
key had been properly destroyed, the voting with old public key had to revote.

It may be worth noting that the organization succeeded to cut the 90% of the
cost they spend in paper-based voting. The cost cut is mostly due to the cut of
man power to count paper ballots.

6 Ongoing Trial

We briefly describe here another ongoing trial using the components of the im-
plemented system. The trial is to select young researcher award in a symposium,
where roughly 650 participants of the symposium can vote among roughly 200
candidate presentations. The vote was conventionally done with paper ballots,
where a voter pick the best five presentations, and write down the paper num-
ber, the title, and the presentator for each selected ones. A voter had to make
a quick decision after he heard the last presentation and before he leaves the
place. By introducing network voting system, it was easy for voters to search
and chose the selection of his choice on web. The voters also had extra time for
the selection because he can cast the ballot from his home.

Moreover, the voter is allowed to submit the vote many times, but only the
latest one counts. Therefore, they could vote, say the third day of the four-days-
symposium and can change the vote if there were better presentations in the
last day.

7 Concluding Remarks

We discussed an implementation of mix-net based network voting scheme, which
realizes many plausible features. We also discussed its actual use in binded voting
within a private organization of voter size 20,000.
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Abstract. Looking at current cryptographic-based e-voting protocols,
one can distinguish three basic design paradigms (or approaches): (a)
Mix-Networks based, (b) Homomorphic Encryption based, and (c) Blind
Signatures based. Each of the three possesses different advantages and
disadvantages w.r.t. the basic properties of (i) efficient tallying, (ii) uni-
versal verifiability, and (iii) allowing write-in ballot capability (in addi-
tion to predetermined candidates). In fact, none of the approaches results
in a scheme that simultaneously achieves all three. This is unfortunate,
since the three basic properties are crucial for efficiency, integrity and
versatility (flexibility), respectively. Further, one can argue that a seri-
ous business offering of voting technology should offer a flexible technol-
ogy that achieves various election goals with a single user interface. This
motivates our goal, which is to suggest a new “vector-ballot” based ap-
proach for secret-ballot e-voting that is based on three new notions: Prov-
ably Consistent Vector Ballot Encodings, Shrink-and-Mix Networks and
Punch-Hole-Vector-Ballots. At the heart of our approach is the combi-
nation of mix networks and homomorphic encryption under a single user
interface; given this, it is rather surprising that it achieves much more
than any of the previous approaches for e-voting achieved in terms of the
basic properties. Our approach is presented in two generic designs called
“homomorphic vector-ballots with write-in votes” and “multi-candidate
punch-hole vector-ballots”; both of our designs can be instantiated over
any homomorphic encryption function.

1 Introduction

There are three basic paradigms for cryptographic secure ballot elections over a
network. The first method is based on mix-networks where the tallying officials
move the ballots between them and permute them in the process while changing
their representation (e.g., partially decrypting them). Methods for doing this
robustly and correctly have been designed in the last 20 years, starting with
the initial work of Chaum [7]. In practical implementations, this approach in its
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fully robust form (i.e., proving the correctness of the shuffling) is still consid-
ered a slow tallying process, even though there have been several steps toward
more efficient designs, see e.g. [40,6,25,29,1,33,21]. The second method is based
on homomorphic encryption (started by Benaloh [10,4,3], and then followed by
many other works including [13,11,42,19,14,2]). In this general approach the
ballots are encrypted and then “compressed” via a homomorphic encryption
scheme into a tally. This compression property allows fast tallying, and is what
makes this approach attractive. However the drawback is that pure “compress-
ible” homomorphic encryption is not suitable to deal with write-in ballots. In
fact, compression of the write-in ballots content is not possible since, informa-
tion theoretically, if this content has no redundancy (which is always possible in
the write-in ballots case) compression will ruin it. A third approach is based on
blind signatures, [20], and relies on the voters obtaining a certified secret ballot
from the authorities by employing a blind signature scheme [8]. This enables
them to embed any form of ballot (including write-in). Subsequently, this ap-
proach requires the employment of an anonymous channel between the voter and
the tallying authorities, to hide the identity of the user at the “ballot casting
stage.” This requirement may be inhibiting and thus it has been suggested to
combine this approach with the mix-net one so that the “anonymous channel”
is implemented formally. Furthermore, while the previous paradigms support
universal verifiability which assures robustness, this approach relies on tallier –
voter interaction and does not support it.

In recent years, there has been an increased interest in employing computer
equipment for carrying out voting procedures, see e.g., [26]. In the USA this has
also been motivated by the presidential election debacle in 2000 that spurred
a large legislative initiative (the Help America Vote Act or HAVA) but simi-
lar initiatives materialized elsewhere in the world. One effort that took place is
the joint Caltech-MIT electronic voting project. Rivest, who participated in this
project, has raised the question whether it is possible to incorporate write-in
ballots in homomorphic encryption based elections in a way that will still main-
tain its advantages and keep some of its computational gains. In fact, Rivest’s
question raises the more general concern that the cryptographic paradigms opti-
mize different goals, and business wise it may be wise to combine them under a
single user interface and hope to retain some of their individual advantages and
to try to gain more by a combinational approach.

Homomorphic Vector-Ballot with Write-In Votes. Motivated by this ques-
tion and the issues above, we started by attacking the problem of allowing write-in
ballots as follows: since homomorphic encryption elections are based on a sum-
mation register (ciphertexts are combined together which effectively sums-up the
ballots under the encryption), write-in ballots need to be read individually.

To incorporate a write-in choice into a homomorphic encryption based scheme,
we suggest the design of a composed ballot or a “vector ballot” that is cast by
each user, and is either a regular (predetermined candidate) ballot or a write-in
one with indistinguishable external representation in either case. This is the base
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of the vector-ballot approach. This sounds simple, but if done in a straightfor-
ward fashion this may give voters more “free choice” in ballot representation
and in cheating, and it may also give more ways to distinguish between users’
ballots. Thus, this new design leads to new concerns regarding ballot validity
and ballot uniformity. In particular, it leads us to the simple yet crucial notion
of provably consistent vector ballot encodings, which assures that in spite of the
extended scenario the ballot is nevertheless legal, i.e. the voter is forced to ei-
ther select a write-in, or a predetermined choice, but not both at the same time.
Further, whenever the voter makes one of the two choices, she is forced to enter
a “neutral” value in the other portion of the vector ballot. The added validation
proofs by the voter makes the ballot longer, however this price (constant increase
in validity proof) is reasonable given the enhancement (to be described below)
it enables. The ballot representation looks the same regardless of whether the
user votes for a predetermined candidate or casts a write-in ballot. After the
ballot casting, the vector ballot is split into a “supposedly regular portion” and
a “supposedly write-in portion” and they are processed (tallied) independently.

What we have described so far is a combination of two voting approaches:
homomorphic encryption based and mix-net based. While this is important (as it
allows the unification under the same user-interface of the efficient homomorphic
encryption based voting with the write-in “friendly” mix-net voting), by itself
the resulting scheme as a whole is not more efficient than the two individual
approaches (and clearly the real bottleneck is the slow tallying robust mix-net
approach).

It is thus, perhaps surprising that our approach that is based on the vector
ballots has the potential to achieve more efficient tallying than any previous
proposal for e-voting that allowed write-in ballots and is universally verifiable at
the same time. The two major points that allow this are explained below:

1. The predetermined candidate portions of all ballots can be compressed using
the efficient homomorphic encryption based tallying.

2. The write-in portions of all ballots are based on an indicator and a write-in
portion. Based on such indicators we show that they can be processed using
the new efficient method of shrink-and-mix that we propose. The method
takes advantage of the fact that the vector ballots are based on homomor-
phic encryption and the fact that, usually, most of the voters select one of
the predetermined candidates. Thus, using the compressibility of indicators
we can eliminate a great number of unused neutral write-in portions. We
note that in a fairly standard scenario, the method achieves a five-fold im-
provement over stand alone mix-network based election (and this will be a
noticeable factor in practice, since the gain is within the system’s perfor-
mance bottleneck component).

Further, the two tallying procedures above are independent. Thus, the tallying
can be performed in two phases. An on-line phase can just perform the homomor-
phic encryption tallying process of the predetermined candidate portions. This
is a very efficient mechanism. In most cases the actual tally and winner(s) can
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be declared based on the these regular votes only and the slower tallying of the
write-in portions can, in this case, be done off-line and at a later time. Typically,
the winner will be one selected among the leading predetermined candidates of
the established parties, whereas, say, Mickey Mouse (a popular write-in candi-
date in US elections) can afford waiting a bit longer till he knows the actual
number of votes he won.

The above is the first construction within the vector-ballot approach. It shows
how we achieve simultaneously the basic properties of universal verifiability and
support for write-in ballots together with an efficient tallying procedure. Com-
parison to previous election paradigms is given in Figure 1.

Multi-Candidate Punch-Hole Vector-Ballot. A modular extension of our
new approach employs our notion of punch-hole vector ballots which enables
a more suitable scheme for voting with a large number of predetermined can-
didates. It extends the functionality of our vector-ballot encodings (and thus
write-ins can still be incorporated). The method introduces a multitude of c
summation ciphertext registers, one per candidate, while earlier schemes packed
all the candidate tallies into a single summation register. Note that the vector
ballot portions in the ballot design correspond to various candidates and to the
corresponding summation registers. Note further that a ballot needs to have a
consistent valid encoding and the voter has to prove this validity. This is different
from the simplistic multi-election ballot in [4].

Employing separate registers relaxes the burden of participants by allowing
them to deal with smaller ciphertexts. The gain is especially noticeable in case
of many candidates. To formalize the ciphertext summation register size require-
ment, we introduce the notion of “capacity” of an homomorphic encryption func-
tion, which measures how many integers can be represented as plaintexts within
a given summation register. Our punch-hole vector ballot design requires the ca-
pacity of the underlying encryption to be only n (the number of voters), instead
of nc required for a single summation register used previously. In fact, all lead-
ing proposed election methods in the literature that employ summation registers,
[11,19,14], and allow for n voters and c candidates, indeed, require capacity of
nc. Note that this may cause problems in selecting the security parameter when
the number of candidates is very large: e.g., if the security parameter is 1024
bits, this restricts the capacity to 21024, and if the number of candidates is large,
e.g. c = 70, and the voting population is say around 35, 000, then the capacity
cannot contain the summation register.

An important and substantial gain in efficiency of tallying, results from the
new approach when applied over the ElGamal encryption. The recovery of the
final tally requires only time O(cn) which is polynomial in the number of can-
didates, instead of O(nc) which is exponential in c, as it would have been the
case if a straightforward brute-force has been applied for recovering the results;
such steps, or slight improvements thereof employing less naive discrete-log cal-
culations, have been employed in the past for ElGamal type of schemes in the
multi-candidate setting (see, e.g., [11]). We remark that this exponential gain is
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Approaches Efficient Tallying Univ. Verifiability Write-ins

Homomorphic Encryption
√ √ ×

Mix-networks × √ √
Blind-Signatures

√ × √
Vector-Ballot approach

√∗ √ √

Fig. 1. A comparison of the current approach to previous work with respect to the
following three important e-voting properties: (i) efficient-tallying: tallying does not
require the application of a robust-mix to the total number of ballots; ∗in the vector
ballot approach a robust-mix is still required but is applied on a fraction of the to-
tal number of ballots and typically as an offline operation. (ii) universal-verifiability:
any interested third party may verify that the election protocol is executed correctly
assuming a public digital record; (iii) write-ins: voters are allowed to enter write-in
votes.

traded against a quadratic – rather than linear – (in c) work done for validity
checking of ballots; in most settings this would be a reasonable price to pay for
such a speedup.

A preliminary version of this work appeared in [31].

2 Preliminaries

Requirements For Voting Schemes. A voting-scheme needs to fulfill a va-
riety of requirements. A brief presentation of these requirements follows.

Secrecy. Ensures the security of the contents of ballots. In the online setting,
this is typically achieved by relying on the honesty of a sufficient number of the
participating authorities and at the same time on some cryptographic intractabil-
ity assumption. In particular, any polynomial-time probabilistic adversary that
controls some arbitrary number of voters and a number of authorities (below
some predetermined threshold) should be incapable of distinguishing which one
of the predetermined choices a certain voter selected or whether the voter en-
tered a write-in. In all voting schemes, once a certain number of votes have been
aggregated into a partial tally, secrecy is not mandatory, e.g., once the votes of a
precinct have been aggregated it is ok to reveal the partial tally (in fact in many
cases it is not even desired to keep the partial tallies secret, if some regional
statistics are to be extracted from the election results). Thus, voter secrecy will
have an associated Privacy Perimeter b which will refer to the smallest number
of votes that need to be aggregated into a partial tally before some information
about the partial tally can be revealed; we will talk of secrecy with b-perimeter
in this case.

Universal-Verifiability. Ensures that any party, including an outsider, can
be convinced that all valid votes have been included in the final tally. In the
online setting, where votes are casted electronically in a distributed fashion this
property typically relies on the existence of a digital record that maintains the
communication between all parties participated in the system. This notion was
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abstracted as the “bulletin board” by Benaloh [3]. In principle one can employ
Byzantine agreement, c.f. [16,17,23,22], to ensure the integrity of such a record.
Moreover, in a practical implementation one can employ a publicly accessible
database server for storing the bulletin board data [32] and potentially rely on
database replication for maintaining the availability of the record.

Robustness. Ensures that the system can tolerate a certain number of faulty
participants while it maintains its secrecy and verifiability properties. Faults may
be non-malicious (e.g., processes crashing) or malicious (e.g., executing arbitrary
code).

Fairness. It should be ensured that no partial results become known prior to
the end of the election procedure to any subset of participants.

Another property, which we do not deal with here explicitly, is Receipt-
Freeness [5,41,34,27,30]. Standard techniques that use re-randomizers (see e.g.
[2]) can be readily employed in our schemes to allow certain forms of this property
assuming the independence of ciphertext randomizing entity from coercers or
malicious users.

Homomorphic Encryption Schemes. An encryption scheme is a triple 〈K, E ,
D〉. The key-generation K is a probabilistic TM which on input a parameter
1w (which specifies the key-length) outputs a key-pair pk, sk (public-key and
secret-key respectively). The encryption function is a probabilistic TM Epk :
R × P → C, where R is the randomness space, P is the plaintext space, and C

the ciphertext space. When P, for a given security parameter, equals Za where a
is an integer that is a function of the parameter, we will say that the encryption
function has “additive capacity” (or just capacity) a. The correctness property
of the encryption scheme is that Dsk(Esk(·, x)) = x for all x independently of the
coin tosses of the encryption function E . If we want to specify the coin tosses
of E we will write Epk(r, x) to denote the ciphertext that corresponds to the
plaintext x when the encryption function Epk makes the coin tosses r. Otherwise
we will consider Epk(x) to be a random variable. For homomorphic encryption,
we assume additionally the operations +,⊕,

⊙
defined over the respective spaces

P, R, C, so that 〈P, +〉, 〈R,⊕〉, 〈C,
⊙〉 are (families of) groups written additively

(the first two) and multiplicatively respectively.

Definition 1. An encryption function E is homomorphic if, for all r1, r2 ∈ R

and all x1, x2 ∈ P, it holds that Epk(r1, x1)
⊙ Epk(r2, x2) = Epk(r1 ⊕ r2, x1 + x2).

We will consider two examples of Homomorphic Encryption schemes: “additive”
ElGamal and Paillier Encryption. Both have been employed in the design of
e-voting schemes in the past, see [11] and [14,2] respectively (which are also part
of the current state-of-the-art schemes in the homomorphic encryption based
approach). We define them below:

Additive ElGamal Encryption. It is defined by a triple 〈K, E ,D〉: the key-generation
K outputs the description of a finite multiplicative group G of prime order q, with
three generators 〈g, h, f〉 which are set to be the public-key of the system pk; the
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secret-key sk is set to the value logg h. For a public-key 〈g, h, f〉 the encryption
function E(r, x) equals the tuple 〈gr, hrfx〉, and the domains P := Zq, R := Zq

and C := G × G (note that we abuse the notation as P, C, R are families of sets
parameterized by the security parameter). The operations +,⊕ are defined as
addition modulo q and the operation

⊙
is defined as point-wise multiplication

over G × G. The decryption function D for a secret-key logg h given 〈G, H〉 it
returns H/Glogg h, and then it performs a brute-force search over all possible
values fx to recover x. Observe that 〈P, +〉, 〈R,⊕〉 and 〈C,

⊙〉 are all groups,
and the encryption E is homomorphic with respect to these operations. Finally
notice that the capacity of E is q (but due to the brute force required for decryp-
tion the capacity would be required to be polynomial time bounded and thus
significantly less than q).

Paillier Encryption. [35]. It is a triple 〈K, E ,D〉, defined as follows: the key-
generation K outputs an integer N , that is a product of two safe primes, and an
element g ∈ Z

∗
N2 of order a multiple of N . The public-key of the system pk is

set to 〈g, N〉 and the secret-key sk is set to the factorization of N . For a public-
key 〈g, N〉, the encryption function E(r, x) equals the value gxrN (modN2) and
the domains P := ZN , R := Z

∗
N , and C := Z

∗
N2 (note that this is an abuse of

notation as P, R, C are families of sets). The operation + is defined as addition
modulo N , and the operations ⊕,

⊙
are defined as multiplication modulo N2,

N respectively. The decryption function D for a secret-key p, q it operates as
follows: first it computes λ := λ(N) the Carmichael function of N , and given a
ciphertext c, it returns L(cλ(modN2))/L(gλ(modN2)) where L(u) = u−1

N
and

L is defined over the set of integers {u | u ≡ 1(modN)}. Again, observe that
〈P, +〉, 〈R,⊕〉 and 〈C,

⊙〉 are all groups, and the encryption E is homomorphic
with respect to these operations. Finally notice that the capacity of E is N .

Proofs of Knowledge. Proofs of knowledge are protocols between two play-
ers, the Prover and the Verifier. In such protocols there is a publicly known
predicate Q for which the prover knows some witness x, i.e. Q(x) = 1. The goal
of such protocols is for the prover to convince the verifier that he indeed knows
such witness. We will concentrate on “3-move” protocols for which the prover
acts in the first and third move, and the verifier challenges in the second move
with a random value from the proper domain (see [12]). Conversations in such
protocols will be of the form 〈a, c, r〉, and the verifier will accept provided that
a, c, r satisfy some conditions given as part of the specifications of the protocol.
Proofs of knowledge can be made non-interactive by employing the Fiat-Shamir
heuristics, [18] (and then, security is shown in the random-oracle model, or al-
ternatively assuming a beacon, [39]). If the predicate Q accepts a non-interactive
zero-knowledge proof, and an agent possesses a witness for Q that he wants to
prove knowledge of, we will say that the agent “writes a proof for Q.” Proofs of
knowledge of the above type can be combined in “AND” and “OR” fashion in
an efficient manner [15,12].



162 A. Kiayias and M. Yung

Proofs of Knowledge for Homomorphic Encryption. Let 〈K, E ,D〉 be
a homomorphic encryption scheme. Below, we identify useful proof protocols
(which have been used in various settings and environments).

Proof of Knowledge of Properly Formed Ciphertext for a Public Plain-
text. A useful proof of knowledge in the context of e-voting is a proof that shows
that a ciphertext that encrypts a publicly known plaintext is properly formed. We
define the predicate Qm,V

cipher as follows Qm,V
cipher(r) = 1 if and only if Epk(r, m) = V .

We remark that proofs of knowledge for the two homomorphic encryptions that
we consider here (additive ElGamal, and Paillier) are standard and can be done
efficiently.

Proof of Knowledge for a Random Shuffle. Observe that using a homo-
morphic encryption scheme one can “re-randomize” a ciphertext C by computing
C′ := Epk(0)

⊙
C (i.e., C′ is uniformly distributed over all ciphertexts that corre-

spond to the plaintext of C). Suppose now that C1, . . . , Ck is a sequence of cipher-
texts and C′

1, . . . , C
′
k is a random re-encrypted permutation of these ciphertexts.

We define a predicate Q
C1,...,Ck,C′

1,...,C′
k

shuffle so that Q
C1,...,Ck,C′

1,...,C′
k

shuffle (r1, . . . , rk, π) =
1 if and only if C′

π(j) = Epk(rj , 0)
⊙

Cj , for j = 1, . . . , k.

A straightforward approach for a proof for Q
C1,...,Ck,C′

1,...,C′
k

shuffle would require
O(k2) space. Discovering more efficient proofs is a very active area of research
(as such proofs constitute the basic operation of a robust mix-network, a fun-
damental primitive for elections based on mixes) and several papers provided
sophisticated techniques of shortening the proof as well as relaxing the robust-
ness model to allow more efficient implementations, [25,29,33,21]. Two of the
most efficient recent protocols are that of [21] and [33], that allow O(k)-size
proofs with relatively small constant.

Threshold Homomorphic Encryption Schemes. A (t, m)-threshold homo-
morphic encryption scheme is a triple 〈K, E ,D〉 so that K is a protocol between
a set of participants A1, . . . , Am, that results in the publication of the public-key
pk and the sharing of the secret-key sk so that any t of them can reconstruct
it. Additionally, D is also a protocol between the participants A1, . . . , Am that
results in the decryption of the given ciphertext in a publicly verifiable manner
(i.e. each participant writes a proof that he follows the decryption protocol ac-
cording to the specifications). Both Additive ElGamal and Paillier encryptions
have threshold variants, see [37,38,24] and [19,14] respectively.

3 The Vector Ballot Approach

The participants in our schemes are the voters V1, . . . , Vn, the authorities A1, . . . ,
Am, and the bulletin board server which is responsible for maintaining an au-
thenticated communication transcript. Voter eligibility as well as basic ciphertext
processing operations are also handled by the bulletin board server. Our voting
approach is divided in four major steps: Setup, Ballot-Casting, Tallying,
Announcement of the Results.
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Fig. 2. The Vector-Ballot E-Voting Paradigm

In our approach, every encrypted ballot is in fact a “vector-ballot” that has
three coordinates: the first is a ciphertext that contains possibly one of the pre-
determined election choices, the second is a flag-ciphertext that encrypts the
information whether the voter selects a write-in choice or not; finally, the third
coordinate possibly contains a write-in choice. A proof of “consistent ballot en-
coding” will be broken into a number of “consistency arguments” and will ensure
that the vector ballot is formed properly (i.e., it either contains a predetermined
choice in the first coordinate or a write-in choice in the last coordinate and fur-
thermore the “flag” value is encrypted consistently). The tallying phase has two
independent phases: (i) tallying the non-write-in election results using the ho-
momorphic encryption function properties; (iia) shrinking the number of write-
in votes using the flag-ciphertexts; (iib) employing a mix-net over the shrunk
write-in ballot sequence. The general overview of these procedures is presented
in Figure 2. We describe our approach in detail in the following subsections.

3.1 Setup and Capacity Assumption

In our approach we will employ a threshold homomorphic encryption function
〈K, E ,D〉. We will also employ the necessary assumption regarding the capacity
of the encryption function:

Assumption 1. Capacity Assumption. The capacity of the encryption function
satisfies a > M c where c is the number of candidates, and M an integer with
M > n (the number of voters).
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Setup. The authorities A1, . . . , Am execute the protocol K which results in the
publication in the bulletin board of the public-key pk. At the same time the
secret-key sk is shared amongst the authorities A1, . . . , Am.

3.2 Ballot-Casting Step

Each eligible voter gets authorized to the bulletin board and reads the public-key
pk of the system. The set of choices is defined as Choices := {1, M, M2, . . . , M c−1}
where M is an integer with the property M > n.

Forming the Vector-Ballot. Each voter Vi publishes a vector ballot 〈C1[i], C2[i],
C3[i]〉. If the voter wishes to select one of the predetermined choices of the
election she selects C1[i] to be an encryption of one of the values in the set Choices
while C2[i], C3[i] are encryptions of 0; in particular C1[i] := Epk(M �i−1) where
�i ∈ {1, . . . , c} is the personal choice of the voter, and C2[i] := Epk(0), C3[i] :=
Epk(0). If the voter wishes to enter a write-in ballot she selects C1[i] to be an
encryption of 0, C2[i] to be an encryption of 1, and C3[i] to be an encryption of
some string stringi which is the voter’s write-in entry. Formally, C1[i] := Epk(0),
C2[i] := Epk(1) and C3[i] := Epk(stringi). Together with her vector ballot the voter
must publish a proof of “consistent ballot encoding.” In particular Vi writes a
proof for the following predicate:
(
(Q1,C1[i]

cipher ∨Q
M,C1[i]
cipher ∨ . . .∨Q

Mc−1,C1[i]
cipher )∧Q

0,C2[i]
cipher ∧Q

0,C3[i]
cipher

)
∨ (Q0,C1[i]

cipher ∧Q
1,C2[i]
cipher )

The above proof can be done efficiently as discussed in section 2, since it is
an AND/OR composition of the proof of knowledge for the predicate Qm,V

cipher

which can be done quite efficiently for either of the two homomorphic encryption
functions that we consider. Moreover it only adds a constant overhead compared
to proofs of previous homomorphic-encryption based voting schemes.

Regarding the above proof of consistent ballot encoding it is easy to prove the
following fact:

Fact 1. The only ballot encodings for 〈C1[i], C2[i], C3[i]〉 allowed are:

(i) The second ciphertext encrypts a 0, the first ciphertext contains a value from
the set Choices and the third ciphertext encrypts a 0.
(ii) The second ciphertext encrypts a 1, the first ciphertext encrypts a 0 and the
third ciphertext is unrestricted.

In the end of the ballot-casting step the bulletin board authority may seal the
election, by signing the contents of the bulletin-board.

3.3 Tallying Step

The Non-write-in Part. The vector ballots are parsed so that the first com-
ponent is collected and the sequence of ciphertexts C1[1], . . . , C1[n] is formed.
The “tally ciphertext” is defined as Ctally = C1[1]

⊙
. . .

⊙
C1[n]. It is easy to see

that due to the homomorphic property and the capacity assumption, Ctally is a
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ciphertext that hides a value T that satisfies T =
∑

i∈V M �i−1 (as an integer),
where V ⊆ {1, . . . , n} is the set of voters that did not select the write-in option.
Observe that if k0, . . . , kc−1 are the tallies won by each of the c candidates, it
holds that T = k0 + k1M + . . . + kc−1M

c−1, and k0, . . . , kc−1 < M , i.e., if we
write T as an integer in base M we can obtain the counts for each candidate.

Dealing with the Write-ins — Shrink-and-Mix networks. Write-in bal-
lots are not “compressible” into a single ciphertext like regular ballots and thus
they have to be mixed and revealed one by one. Nevertheless our approach al-
lows for a significant efficiency improvement that we call a Shrink-and-Mix
network. A shrink-and-mix network for voting is a mix-network that attempts
to shrink the input ballot sequence prior to the mix procedure in order to gain
efficiency. (Indeed gaining efficiency in settings where it is possible is crucial,
given the state of the art of Mix networks, see [25]). Shrink-and-mix is a concept
that naturally binds to our approach that combines write-in ballots with regular
homomorphic encryption based e-voting. This is because in our approach the
following unique properties are true:

1. Most voters will not cast a write-in ballot, but rather select one of the prede-
termined choices of the election.
2. There is a way to employ the homomorphic properties of the encryption
function to test whether a small batch of encrypted vector ballots contains a
write-in without violating the privacy of the voters (given security perimeter b).
3. There is a way to find the exact number of write-in votes prior to opening
them, without violating the secrecy of the voters (given security perimeter b).

Justification. For item 1, observe that in most settings the write-in option will
be used sparingly by the voters who will typically select one of the predeter-
mined candidates for the election. For item 2, recall that in the vector-ballot
approach, each vector ballot 〈C1[i], C2[i], C3[i]〉 contains a “flag-ciphertext” (the
value C2[i]) that encrypts the value 0 or 1 depending on whether the voter
voted with one of the predetermined choices (in C1[i]) or entered a write-in (in
C3[i]). Suppose now that we have a set of voters i1, . . . , ib and we want the
authorities to check whether one of them entered a write-in without violating
the privacy of the voters. Then, simply the authorities collect the flag cipher-
texts from the vector ballots of these voters C2[i1], . . . , C2[ib] and decrypt the
ciphertext Ci1,...,ib

:= C2[i1]
⊙

. . .
⊙

C2[ib]. Now observe that the decryption of
Ci1,...,ib

is the number of write-in votes entered by the voters {i1, . . . , ib} and
thus the authorities are capable of deducing whether there is a write-in entry
among the ciphertexts {C3[i1], . . . , C3[ib]}. We note that it is possible to further
enhance the privacy preserving aspects of this step by employing a protocol that
instead of decrypting Ci1,...,ib

it merely tests whether the ciphertexts decrypts
to 0 or not. Still in many settings the privacy leakage may not be significant
(given that the privacy perimeter b is sufficiently large).

For item 3, observe that the ciphertext C1,...,n := C2[1]
⊙

. . .
⊙

C2[n] is an
encryption of the number of write-in votes. Thus if the authorities wish to find
efficiently the exact number of write-ins they have to compute C1,...,n and decrypt
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it (recall that linear computations in the number of voters constitute practically
optimal complexity for the tallying phase).

Given the above properties we can now describe the shrink-and-mix method
which is divided in two separate stages (perhaps not surprisingly) named: (a)
shrink and (b) mix.

Shrink Stage. First we describe the shrink stage in detail below:

– Input: the sequence of all vector-ballots. Let V ⊆ {1, . . . , n} be the subset of
voters that entered a non-write-in ballot and denote by V ′ the set {1, . . . , n}−
V (the subset of voters that entered a write-in).

– Output: a set V ∗ such that V ′ ⊆ V ∗ ⊆ {1, . . . , n}.
– Initialize. The authorities A1, . . . , Am compute the number of write-ins

h (feasible by item 3 above). Let p denote the probability that an arbitrary
voter enters a write-in defined as p := h/n. Let b be the desired privacy
perimeter for the elections.

– Shrink. Let σ := 〈C2[1], . . . , C2[n]〉 be the sequence of the second compo-
nents of all ballot vectors and let V ∗ initially defined to {1, . . . , n}. The
authorities divide σ into n/b batches so that each batch contains b cipher-
texts. Since the probability of an arbitrary voter to enter a write-in is p it
follows that the probability that a batch contains no write-in is (1−p)b. The
authorities test whether each one of the n/b batches contains a write-in or
not (as described in the item 2 above). If the batch of flag-ciphertexts that
corresponds to the voters {i1, . . . , ib} does not contain a write-in we modify
V ∗ = V ∗ − {i1, . . . , ib}. Assuming that each batch is independent from the
other, it follows that the expected number of batches without a write-in is
n
b (1 − p)b, so the expected size of V ∗ will be n − n(1 − p)b. Observe that
the correctness of the shrink stage (i.e. V ′ ⊆ V ∗ ⊆ {1, . . . , n}) follows easily.
The closeness of V ∗ to V ′ (note that |V ∗| − |V ′| = n(1− p)(1− (1− p)b−1))
can be calibrated by lowering the parameter b (at the expense of reducing
privacy).

Mix Stage. The mix-stage is described next.

– Input: A sequence of ciphertexts σ∗ := 〈G[i]〉i=1,...,n∗ , where n∗ = |V ∗|, V ∗

is the output of the shrink stage and 〈G[1], . . . , G[n∗]〉 = 〈C3[i] | i ∈ V ∗〉.
– Output: a sequence of ciphertexts 〈G′[i]〉i=1,...,n∗ so that there is a permuta-

tion π on {1, . . . , n∗} that satisfies G′[i] is a random re-encryption of G[π(i)].

– Mix. The authorities A1, . . . , Am execute a “robust mix” for the sequence
of ciphertexts σ∗ = 〈G[1], . . . , G[n∗]〉. This can be accomplished by em-
ploying any existing robust-mix method, [25,29,33,21]. The most straightfor-
ward robust mix technique has each authority re-encrypting each ciphertext
G[i] and permuting the whole sequence randomly to obtain the sequence
〈G′[1], . . . , G′[n∗]〉 and also writing a proof for Q

G[1],...,G[n∗],G′[1],...,G′[n∗]
shuffle .

Note that authorities perform the above steps in sequence by acting on the
output of the previous authority.
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We remark that robust mixes are expensive in terms of computation and space;
for this reason the shrink stage that our model allows can be crucial for the
improvement of the efficiency of the mixing. The shrink ratio for a shrink-and-
mix network is the expected reduction percentage of the given sequence of ci-
phertexts 〈C3[i]〉i∈V ∗ i.e., the fraction (n − |V ∗|)/n. Observe that it holds that
(n − |V ∗|)/n = (1 − p)b and thus the expected shrink ratio equals is (1 − p)b.
To illustrate the gain we obtain using the shrink-and-mix network consider the
following scenario: in many elections it is reasonable to expect a write-in proba-
bility 1/100, so by setting the privacy perimeter b = 20 (which can be reasonable
for the privacy of the voters in most settings – especially given that only the fact
“a write-in exists in a batch of b votes” will be revealed) we obtain a shrink ratio
of approximately 0.81, which means that 81% of the ciphertexts will be discarded
prior to the execution of the robust mix. This translates to a significant gain in
the efficiency of the mixing procedure.

3.4 Announcement of the Results

First the authorities announce the results for the non-write-in part of the election
(in fact, this step can be performed prior to the execution of the shrink-and-mix
network). The authorities A1, . . . , Am execute the verifiable decryption protocol
D on the ciphertext Ctally to reveal the the value T . Due to the properties of the
value T it holds that if T , as an integer, is written in base M , then the tallies
for each candidate are revealed (cf. section 3.3); note that due to the capacity
assumption there will be no wrap-arounds during the computation of the tally
ciphertext Ctally.

Subsequently the authorities execute the shrink-and-mix network (and fre-
quently this will be done after the winner of the election is already determined
from the non-write-in votes) and then they execute the protocol D for each of
the ciphertexts G∗[1], . . . , G∗[n∗] that belong to the output of the shrink-and-
mix network. This will reveal all the strings stringi for i ∈ V ∗, where V ∗ is the
output of the shrink stage. Since V ′ ⊆ V ∗ ⊆ {1, . . . , n} (recall that V ′ is the
subset of voters that actually chose a write-in option) all entered write-ins will
be revealed (with, perhaps, a number of 0’s that correspond to the ciphertexts
that were entered by the voters in V ∗ − V ′). When stringi = 0 the entry will be
removed from the write-in vote listing (recall that “0” is not considered a valid
write-in vote). The final elections results consist of the counts for each of the
pre-determined candidates as well as counts for the write-in selections.

3.5 Properties of the Paradigm

Efficiency. First note that our vector-ballot approach can be readily instan-
tiated over the two homomorphic encryption functions (additive ElGamal or
Paillier) that we describe in section 2.

The Voters’ Perspective. The activity of each voter in the vector-ballot approach
includes the following operations: after the setup phase each voter must be au-
thenticated to the bulletin board server. The bulletin board server maintains
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the listing with all eligible voters. After authentication, the voter reads from the
bulletin board the public-key of the authorities and all other information that is
pertinent to the election, i.e., the listing of predetermined candidates. The voter
privately decides on one of the predetermined candidates or to a certain write-in
choice and publishes her encrypted ballot which consists of the three ciphertexts
as described in section 3.2. Further she needs to publish the proof of consistent
ballot-encoding. This is done by writing in the bulletin board the non-interactive
zero-knowledge proof as described in section 3.2. This proof has size linear to
the number of predetermined candidates and can be generated very efficiently
for the two homomorphic encryption schemes that we consider.

The Authorities’ Perspective. The work of the authorities is divided in two sep-
arate stages. (i) Before ballot-casting the authorities execute the Setup stage
of the election that requires them to run the key-generation protocol of the em-
ployed threshold homomorphic encryption scheme. (ii) After the ballot-casting
phase the authorities proceed to the tallying phase. The aggregation of the non-
writein part of voters’ encrypted ballots is a linear operation in the number of
voters that employs the homomorphic property of the underlying encryption
scheme. Observe that this task can be arbitrarily distributed to any number of
entities. Given the aggregated ciphertext, the authorities decrypt it by execut-
ing the decryption protocol of the underlying homomorphic encryption scheme;
this reveals the counts for the predetermined candidates. It is highly likely that a
winner of the election can be already determined at this stage. Subsequently, the
authorities execute the shrink-and-mix protocol. This requires the authorities to
execute a robust-mix protocol, but only over the encrypted writein ballots that
remain after the shrinking phase. The shrinking phase by itself is efficient as it
is only linear in the number of encrypted ballots. Subsequently the execution
of the robust-mix is performed in the shrunk writein encrypted ballot sequence
which may allow a significant gain as it is argued in section 3.3. Furthermore any
robust mix can be used in a black-box fashion by our shrink-and-mix method;
thus we can take advantage of any sophisticated robust shuffling protocol, e.g.
the schemes of [25,29,33,21].

Comparison to Previous Approaches. We first observe that the efficiency of
our scheme is comparable to previous approaches in the homomorphic encryption
based election. In fact the only difference is the small constant overhead that
is introduced in the part of the voter since she has to provide a proof of a
consistent ballot encoding. In previous homomorphic encryption based solutions
the “proof of ballot-validity”, is also linear in the number of candidates; note that
this cannot be improved further if we use encrypted-ballots coupled with a “1-
out-of-c” non-interactive zero-knowledge proof (which has by definition length
linear in c). Going beyond the homomorphic-encryption approach, our approach
allows the incorporation of writein votes. In this respect, we first observe that
our schemes achieve universal-verifiability, unlike the previous writein approach
based on blind signatures. When compared to the mix-network approach, we
also employ a “robust-mix” but we do so with a significant gain compared to
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the previous mix network protocols: indeed since the great majority of the voters
will not cast a write-in vote, our shrink-and-mix approach will achieve, e.g., a
five-fold improvement (assuming writein probability of 1/100, see section 3.3).
This can be a significant improvement in a practical setting.

Security. Regarding the security properties of our scheme we make the following
claim: The e-voting approach described above satisfies secrecy with b-perimeter,
universal-verifiability, robustness and fairness provided that (i) less than t au-
thorities are malicious (where t is the threshold required for performing decryp-
tion), (ii) the underlying homomorphic encryption scheme is semantically secure,
(iii) participants can consult a beacon for the purpose of generating challenges
for the zero-knowledge proofs.

Justification. First we argue about Universal-verifiability: a third party auditor
can verify that all votes have been counted by performing the following three
steps: (i) verifying the non-writein part: the auditor recomputes the tally cipher-
text Ctally from the first portion of every voter’s vector-ballot and verifies that
the authorities decrypted Ctally properly by checking the non-interactive zero-
knowledge proof of decryption; (ii) verifying the shrinking phase: the auditor
recomputes all ciphertexts Ci1,...,ib

that were used in the shrinking stage of the
shrink-and-mix network and verifies their decryption as in (i). (iii) verifying the
robust mix: the auditor checks all mixing proofs given by the shuffling authorities
during the mixing procedure. Regarding fairness, we observe that no partial sum
can be revealed to any third party due to the semantic-security of the homo-
morphic encryption function and the zero-knowledge properties of the proofs of
consistent ballot encodings. Regarding robustness observe that it is guaranteed
unconditionally for voters: any eligible voter may fail without having any impact
on the protocol; furthermore, any number of authorities below the threshold t
may fail without affecting the protocol. Note that we do not deal with failures
explicitly affecting the bulletin board server which is a formalism that we use in
a black-box fashion. Finally, the secrecy with b-perimeter of our scheme is justi-
fied based on the semantic security of the underlying homomorphic encryption
scheme.

4 Punch-Hole / Write-in Ballots

In settings where the number of candidates c and the number of voters n is
large it could be the case that it might be detrimental (in terms of efficiency)
to use any scheme based on the homomorphic encryption approach ([11,19,14])
as well as our approach of the previous section. This is because the capacity
assumption (employed by all the above protocols) mandates that the capacity
a of the encryption function satisfies the condition a > nc. Even worse if the
additive ElGamal instantiation is used (as e.g. in the case of the scheme of [11])
the tallying phase would require a brute-force step proportional to nc which is
very expensive (or nc/2 using a baby-step giant-step time-space tradeoff). For
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such cases we introduce an alternative generic vector ballot design for our e-
voting approach that is capable of dealing with such settings very efficiently. In
the variant of our approach of this section, the ballot of each voter consists of
c + 2 ciphertexts (instead of 3) and the only allowed ballot encodings are the
following (i) encrypt a single “1” in the first c ciphertexts and “0” everywhere
else, or (ii) enter a write-in ballot in the last ciphertext, encrypt a “0” in the first
c ciphertexts and encrypt a “1” in the (c+1)-th ciphertext (which plays the role
of the “flag-ciphertext”). The encoding can be thought of as “punch-hole/write-
in” voting because the voter either “punches” a hole in the first c locations (by
voting “1”) or enters his write-in choice in the last location. In the remaining we
briefly explain the approach, mentioning only the cases where there is significant
difference from our paradigm of section 3.

First we note that the capacity assumption will be relaxed as follows:

Assumption 2. Relaxed Capacity Assumption. The capacity a of the encryp-
tion function satisfies a > n (the number of voters).

Forming the Vector-Ballot. Each voter Vi publishes a vector ballot 〈C1[i], C2[i],
. . . , Cc+1[i], Cc+2[i]〉. If the voter wishes to select one of the predetermined
choices {1, . . . , c} of the election she selects C�i [i] := Epk(1), where �i ∈ {1, . . . , c}
is her choice, and then sets C�[i] := Epk(0) for all � ∈ {1, . . . , c + 2} − {�i}. On
the other hand, if the voter wishes to enter a write-in she selects Cc+2[i] :=
Epk(stringi) where stringi is her write-in choice, and sets Cc+1[i] := Epk(1) as well
as C�[i] := Epk(0) for � = 1, . . . , c. Together with her vector ballot the voter
publishes a proof of a consistent vector ballot encoding to ensure that her ballot
is formed properly. More specifically this is done as follows:

(Consistency Argument #1). Vi shows that the first c+1 locations of her vector
ballot contain only a single 1 among c 0’s; this is accomplished as follows: for
each � = 1, . . . , c + 1, Vi produces a proof for the predicate (Q0,C�[i]

cipher ∨ Q
1,C�[i]
cipher ),

i.e., showing that the C�[i] ciphertext either encrypts a 0 or a 1. Then she
calculates the ciphertext Cagg[i] = C1[i]

⊙
. . .

⊙
Cc+1[i] and produces a proof

for the predicate Q
1,Cagg[i]
cipher , i.e., she shows that it is an encryption of 1.

(Consistency Argument #2). The voter shows that either the two last ciphertexts
in the vector ballot encrypt 0, or that the (c+1)-th ciphertext encrypts a 1, i.e.,
Vi produces a proof for the predicate (Q0,Cc+1[i]

cipher ∧ Q
0,Cc+2[i]
cipher ) ∨ (Q1,Cc+1[i]

cipher ).
Alltogether the voter will have to show the following predicate for ballot

consistency:

∧c+1
�=1(Q

0,C�[i]
cipher ∨ Q

1,C�[i]
cipher ) ∧ Q

1,Cagg[i]
cipher ∧

(
(Q0,Cc+1[i]

cipher ∧ Q
0,Cc+2[i]
cipher ) ∨ (Q1,Cc+1[i]

cipher )
)

It is easy to verify that the above consistency arguments enforce the intended
ballot-encodings as stated in the following fact:

Fact 2. The only feasible ballot encodings allowed by the consistency arguments
above are:
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(i) The (c + 1)-th flag-ciphertext encrypts a 0, the first c ciphertexts contain a
single 1 among c − 1 zero’s and the (c + 2)-th ciphertext encrypts a 0.
(ii) The (c +1)-th flag-ciphertext encrypts a 1, the first c ciphertexts all encrypt
0’s, and the (c + 2)-th ciphertext is unrestricted.

In the end of the ballot-casting step the bulletin board authority may seal the
election, by signing the contents of the bulletin-board.

4.1 Tallying Step

The Non-write-in Part. In the tallying phase, the vector ballots are parsed
so that the first c components are collected and the c sequences of ciphertexts
C�[1], . . . , C�[n] are formed for � = 1, . . . , c. We define c “tally ciphertexts” as
C�

tally = C�[1]
⊙

. . .
⊙

C�[n]. It is easy to see that due to the homomorphic
property, C�

tally is a ciphertext that hides a integer value T� that equals the
number of votes that were won by the predetermined election candidate � ∈
{1, . . . , c}. Decrypting these ciphertexts reveals the votes accumulated by each
predetermined candidate. Dealing with the write-in part of each vector-ballot is
as in the paradigm of section 3.

Security and Efficiency. The security of the punch-hole/write-in version of
our paradigm can be argued in similar terms as the main paradigm. Regarding
efficiency, the main difference between the punch-hole paradigm and the general
vector-ballot paradigm is that the encrypted ballot contains c + 2 ciphertexts
instead of 3. While this may sound as a substantial increase in space it is not
necessarily so: indeed, the security parameter in the vector-ballot paradigm (as
well as in any homomorphic encryption scheme) is lower bounded by c · log n,
whereas the security parameter in the punch-hole approach is independent of c
(and is lower bounded by log n). Thus the two approaches are not substantially
different in terms of space when c and n are very large. In terms of time-efficiency,
the punch-hole approach requires more work from the voter in the proof of the
vector-ballot consistency, but it yields a significant gain from the fact that the
security parameter does not have to be proportional to the number of candidates
and that tallying (as described below) can be done very efficiently over additive
ElGamal encryption — in fact, an exponential gain.

Exponential gain for the additive-ElGamal instantiation. Observe that
when the above protocol approach is instantiated with additive ElGamal encryp-
tion the announcement of the results requires c brute-force searches of a space
of size n instead of a brute-force step of a space of size nc−1 as it is the case with
previous ElGamal-based encryption-schemes (e.g. [11]). This emphasizes further
the usefulness of the “punch-hole” approach to increase the efficiency of the sys-
tem. We remark that this significant gain is independent of the addition of the
writein part of the election and in fact it can be also executed in the non-writein
setting of [11].
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Remark. It has been brought to our attention that a scheme related to the
punch-hole approach (without the combination of vector-ballots/ write-in votes)
appeared in the Ph.D. Thesis of M. Hirt [28].

Space-Time Tradeoffs. It is possible to obtain a hybrid between the standard
paradigm and the punch-hole by having a vector of registers of smaller capacity
that will be aggregating the votes for small subsets of candidates (as opposed
to a single candidate in the punch-hole case above). This yields an immediate
space-time tradeoff in terms of encrypted ballot encoding and time to recover
the result.

Acknowledgement. We thank Ron Rivest for his motivating question regard-
ing homomorphic encryption and writein ballot combination and to Pierre-Alain
Fouque for getting it to our attention and for related discussions.
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On Optical Mark-Sense Scanning
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Abstract. Optical mark-sense scanning has lead to a resurgence in the
use of paper ballots in the United States, despite a century of strong
competition from paperless direct-recording voting systems. By the time
mark-sense technology emerged, procedural measures had been devel-
oped to counter most of the vulnerabilities of paper ballots. Automatic
counting of paper ballots poses technical and legal problems, but by
counting the paper ballots automatically in the presence of the voter,
mark-sense systems address some of the remaining problems with paper
ballots. The best current technology uses precinct-count optical scanners
to capture pixelized images of each ballot and then process the marks on
that image. While this technology may be among the best voting tech-
nologies available today for the conduct of complex general elections, it
faces one significant problem, access to voters with disabilities. There are
promising solutions to this problem, but work remains to be done.

1 Paper Ballots

Considerable effort has gone into developing paperless voting systems over the
past century, but paper ballots have proven to be a remarkably durable voting
technology. Mechanical voting machines, first used in the 1890s [16], promised
to eliminate the paper ballot. By the 1960’s, when Joseph Harris introduced the
Votomatic punched-card voting system [30], mechanical voting machines had
displaced paper throughout most of the United States.

Several mark-sense scanning systems were introduced at about the same time
that could directly read and tabulate marks made on paper ballots. Between
these systems, paper ballots made a strong comeback in the last three decades
of the 20th century. By 1988, machine-counted paper ballots were being used
by almost half of the electorate in the United States, while mechanical voting
machines were used by about one third [41].

The second technology to challenge paper ballots was the direct-recording
electronic voting machine. While there is one 19th century antecedent for this
technology [45], the first successful application of this idea was the Video-Voter,
patented in 1974 [37]. By 1988, this new technology had only very limited
market penetration, but by 2004, almost one third of the electorate in the
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United States was using direct-recording electronic voting machines, while an
equal number were using optical mark-sense machinery [23]. By this point in
time, hand-counting, mechanical voting machines and punched cards were all in
retreat.

2 The Decline and Re-emergence of Paper

The decline in hand-counted paper ballot use in the United States followed
from two distinct causes. The first is the perception that was very widespread
a century ago that mechanized vote tabulation was inherently more resistant to
fraud than hand-counted paper ballots. This position is very evident in several
important reports from the 1920s and 1930s, such as [46] and [29] (see pages 370
to 375).

The second reason for the decline of hand-counting is the complexity of general
elections in the United States. Where much of the world puts only one contest
on the ballot, general election ballots in the United States frequently contain
many referenda as well as partisan races for offices from the national level down
to the most local, and as many as ten parties compete in many races.

It is straightforward to hand count ballots with only one race on the ballot
and only a few candidates. A typical methodology is to sort the ballots into
piles by candidate and then count the pieces of paper in each pile. Such a count
is fairly easy to observe and check. In contrast, there is no simple method to
quickly and accurately hand count complex general election ballots.

A key to the survival of paper ballots was the development of the Australian
system of secret balloting. In this system, ballots listing all qualified candidates
are printed at government expense. Ballots are then distributed to voters at
polling places, where voters mark their ballots in the privacy of voting booths.

The Australian state of Victoria adopted this idea in 1856 [3], but its spread
outside of Australia was slow. The British adopted this system in 1872 [4]. By
1892, the same year that mechanical voting machines saw their first use in the
United States, the Australian model was in use in over 80 percent of the United
States [18].

While the Australian secret ballot requires no technology more advanced than
the printing press, as suggested by Figure 1, it is a sophisticated invention.
The sophistication is procedural, not technological. There are specific procedural
countermeasures to each of many threats to the integrity of an Australian secret
ballot election. Many of these defensive measures have been known for decades
[29]. Typical threats and defensive measures are summarized in the following
paragraphs:

Ballot box stuffing, that is, the addition of pre-voted ballots to the ballot
box, usually by corrupt election officials. To defend against this, the number of
pollbook signatures should be compared with the number of ballots in the ballot
box at the close of the polls. Ideally, there should be incident reports explaining
any discrepancies, such as voters who fled after signing the pollbook without
voting. All of these records should be public, so that the existence of problems
is exposed.
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Fig. 1. An Australian secret ballot, that is, a ballot with the names of all qualified
candidates printed on it. This example is for a fictional and greatly simplified general
election with two different races on the ballot.

Ballot box substitution and Pollbook alteration allow the above check to be
defeated. To prevent this, all processes should be open to public observation and
where this is difficult, all materials should be in the joint custody of mutually
distrustful adversaries such as members of opposing parties. Complete records
of the chain of custody need to be maintained for all critical materials, and these
should be public.

Ballot alteration during the count has been reported in some elections. No
pens, pencils or erasers should be allowed within reach of the tellers who handle
ballots, and tellers should wear white gloves or accept manicures from adver-
saries. This latter measure prevents hiding bits of pencil lead under fingernails.

Clerical Errors can corrupt the count, and where small errors are common,
election manipulation can be disguised as error. To prevent errors in the count,
tellers should sort ballots by how they are marked and then count the number
of ballots in each pile. This procedure is comparable to the way large quantities
of money are usually counted. As with money, counting does not alter what is
being counted, so in the event of any controversy about the count, the process
can be repeated.

Biased Counting is possible. For example, tellers can strictly apply the law
on proper ballot markings for ballots they disapprove of, while generously inter-
preting voter intent for ballots they like. To defend against this, tellers should
work in pairs made of representatives of opposing parties. While sorting ballots,
they should sort disputed ballots separately from ballots they agree on. Disputed
ballots should be further segregated by the nature of the dispute. The official
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record of the count should then include the number of ballots in each disputed
category. The purpose of this is to expose the existence of bias and the frequency
with which voters mark ballots in ways subject to dispute. In the event of any
controversy, the entire count can be redone.

Chain Voting is the most sophisticated fraud technique that has been em-
ployed against Australian ballot elections; it has been well documented for well
over half a century [29] (see pages pages 40, 298, 299 and 373). The organizer
of the chain needs one valid ballot to begin with. He then marks this ballot and
gives it to a voter willing to participate in the fraud. With each participant, the
organizer instructs the participant to vote the pre-voted ballot and bring back
a blank ballot from the polling place. Voters are paid for the blank ballot. The
best defense against chain voting involves printing a unique serial number on
a removable stub on each ballot. When ballots are issued to voters, the stub
numbers should be recorded. No ballot should be accepted for deposit in the
ballot box unless its stub number matches a recently issued number. Finally, to
preserve the voter’s right to a secret ballot, the stub should be torn from the
ballot before it is inserted in the ballot box.

Punched card ballots and optical mark-sense ballots are simple variations on
the Australian secret ballot. All of the procedural defenses of the Australian
method apply to these new technologies, and automated ballot counting ad-
dresses the single most challenging feature of the Australian model when applied
to an American general election, the presence of many tens of different races on
each ballot. Placement of multiple races on one ballot makes manual counting
both error prone and time consuming. It is so time consuming that observers
rarely stay through the entire process.

3 Mark-Sense Ballots

Practical mark-sense scanners were first developed for educational testing, but
by 1953, proposals for mark-sense ballots were being advanced [36]. The Norden
Electronic Vote Tallying System was the first system to apply optical mark
sensing to ballots [44] [20] (see pages 25-27 and 55). Both of these early systems
required the use of special inks, but the Votronic, patented in 1965, sensed
ordinary pencil marks [31] [38] (see page 27).

On these ballots and their successors, preprinted voting targets, indicate where
the voter is to mark the ballot. Scanners developed between the 1960s and the
1990s required that all voting targets be aligned in vertical tracks, one per sensor
assembly on the scanner. One or more additional tracks of index marks define
the positions of the voting targets along each track. Finally, it is common to
include an index mark at the top and bottom of each track in order to test for
faulty sensors and check for any skew in feeding the ballot through the scanner.
Figure 2 illustrates such a ballot layout.

While most mark-sense ballots use oval or elliptical targets, with the index
marks on opposite edges of the ballot, there are alternatives. The Optech line
of scanners, for example, use a broken-arrow as a target, instructing voters to
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Fig. 2. A mark-sense version of the ballot from Figure 1. Index marks have been
added around the edges to allow the scanner to locate the voting targets, the form of
the targets has been changed, and the instructions have been changed to match the
requirements of the scanner.

connect the two halves of the arrow in order to cast a vote. The two halves of the
arrow in this system are used as index marks to locate the target area between
them [39].

It is important to note that the sensitive area of the ballot, where marks will
be sensed as votes, need not be the same as the area outlined by the voting
target. Rather, the sensitive area is defined by the geometry of the sensor itself
and the positions of the index marks. The ballot shown in Figure 2, for example,
has index marks defining 8 rows and 6 columns, for a total of 48 sensitive areas.
Of these, only 7 have an assigned meaning on this ballot.

4 What Is a Vote?

The instructions for marking a ballot prescribe some mark, for example, filling
in the oval voting target or connecting the two halves of a broken arrow voting
target. This prescribed mark is designed to be reliably counted by the sensor
system and easily explained to voters. When the voting target is an oval or
ellipse, as shown in Figure 2, the prescribed mark is generally a perfectly filled
oval, as shown in Figure 3a.

The universe of all possible markings of a particular sensitive area on a ballot
can be classified as either legal votes if the law accepts them as indicating votes
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(a) The prescribed mark that vot-
ers are instructed to make.

(b) Reliably sensed marks that al-
ways count as votes.

(c) Reliably ignored marks that
never count as votes, including
(center) an accidental hesitation
mark and a smudge.

(d) Marginal marks that may or
may not be counted as votes from
one pass through the scanner to the
next.

Fig. 3. Classes of ballot markings, distinguished by how they are recognized by a
typical optical mark-sense ballot scanner. Illustration based on results for the Election
Systems and Software model 650 scanner, as reported in [33].

and legally ignored if the law considers them not to be votes. In addition, inde-
pendently of whether the mark is or is not considered a vote by the law, it may
be classified according to how the scanner interprets it.

Marks may be reliably sensed, if every time that mark is seen by a properly
adjusted scanner, it is always counted as a vote. In general, the scanners the
author has tested reliably sense a variety of marks. The results in Figure 3b
are typical. In general, attempts to duplicate the prescribed mark using pencil
are reliably sensed, regardless of what kind of marker is prescribed. In addition,
checks, X marks and single pen strokes made with the marker originally pre-
scribed by the developer of the voting system are reliably sensed. Some scanners
exhibit considerable variation in sensitivity [34] (see Exhibits 5 to 7).

A mark is reliably ignored if it is never seen by the scanner. Of course, an
unmarked voting target should be reliably ignored, but so should flecks in the
paper, smudges and hesitation marks, as suggested in Figure 3c. Hesitation marks
are a fairly common artifact found on mark-sense forms. They are the result of
people using the marker as a pointer to point to targets as they consider whether
to mark those targets.

Finally, there are invariably some marginal marks. These are marks that may
or may not be sensed, depending on when they are run through the voting
machine and which particular sensor the mark happens to be seen by. Dark
smudges, short lines within the voting target and marks entirely outside but
close to the voting target are frequently marginal. Attempts by voters to imitate
the prescribed mark using red ink are particularly problematic on scanners that
use red or infrared light to illuminate the page.

Obviously, the prescribed mark should be both a legal vote and reliably sensed,
as should all approximations of the prescribed mark likely to be made by vot-
ers. Similarly, smudges and similar accidental markings should be both legally
ignored and reliably ignored.

There is a three-way interaction here between the voting system, the law and
the voters. Unfortunately, there is no consensus about how the set of markings
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on a ballot should be legally classified. The most dangerous approach is known
as the machine model. This defines as legal votes whatever the machine accepts
[14]. The machine model does not allow for the existence of marginal marks, nor
does it provide any criteria for judging whether the scanners conform to the law.

At the other extreme are laws that enumerate the types of markings that are
legal votes. Consider, for example, Michigan’s rules as of 2004 [9]. These rules,
and the law on which they are based, do not distinguish between the sensitive
area and the voting target. They declare some markings to be legal votes that a
scanner may miss, while declaring other marks to be legally ignored even though
a scanner might count them, as illustrated in Figure 4.

(a) Legal votes that are not reliably
sensed because the marks are small
but deliberately made.

(b) Marks that may be sensed that
are not legal votes because they are
outside the target.

Fig. 4. Problematic ballot markings under Michigan law if scanned on the Election
Systems and Software model 650 scanner. Illustration combines results from [33] with
the law in [9].

These discrepancies between legal votes and what the scanner counts are
troublesome, but they are not necessarily a major problem. So long as real
voters rarely make these marks, they can be ignored except in very close races,
and when there is such a race, hand recounts can be used to resolve them. It is,
however, important to know what fraction of ballot markings are problematic.
Without knowing this, we cannot evaluate human factors problems with the
ballots, nor can we determine when to call for a hand recount.

5 Scanning Technology

The first generation of mark-sense scanners employed a single sensing element per
vertical track down the ballot, as illustrated in Figure 5. The Votronic system,
employing this sensor, saw widespread use from 1964 into the 1970s [20] (see
pages 27 56, 59-60 and 62). While the Votronic sensor employed an ordinary light
bulb to illuminate the ballot, the silicon photosensor had its peak sensitivity in
the infrared.

Infrared photosensors remain in use to this day. The advantage of such sensors
is that they allow voting targets to be printed red ink or some other ink invisible
to the photosensor, thus simplifying sensor calibration. The disadvantage of this
is that voters are ill equipped to judge whether the marks they have made are
reflective at infrared wavelengths.

The disadvantages of infrared scanning are clearly documented in the Optech
4C patent, where it is noted that “most common pens do not use ink that
adsorbs infra-red light” [43]. This is particularly troublesome with postal ballots
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Fig. 5. Section through the Votronic optical mark-sensing assembly along the direction
of paper motion, based on [31]

because it is difficult to control what kind of ballot markers are used outside the
controlled context of the voting booth.

While it is easy to imagine the sensitive area of the ballot having sharp edges,
most scanners using discrete sensors have relatively broad scanning tracks and
are more sensitive toward the center of the track than the edges. This is a
natural result of scanning through a circular aperture or an aperture with circular
corners, as illustrated in Figure 5. When the scanner does not physically contact
the ballot, for example, to avoid smudging any marks that might be present, the
edge of the sensitive area is not sharply defined.

In the direction along the scanning track, the boundary of the sensitive area
is defined by the temporal response of the scanning circuitry and by how the
analog signal from the sensor is sampled. In order to avoid sensing smudges, for
example, scanners can be designed to check not only the intensity signal but the
derivative of that signal, so that a faint mark with sharp edges is counted even
while a darker smudge is ignored.

Any systems that use paper must account for the fact that paper is not di-
mensionally stable. Paper expands with increasing humidity, with dimensional
changes approaching one percent [27]. The placement of index marks along the
long dimension of the page allows the scanner to automatically compensate for
changes in that dimension, and the use of voting targets and scanning tracks
that are wide along the short dimension of the page allows dimensional changes
along that dimension to be largely ignored.

The development of mass produced fax machines and page scanners allowed
more than one sensing element to be positioned over each track of the ballot.
With this change, mark-sensing shifts from the domain of signal processing to
the domain of image processing. The American Information Systems Model 100
Precinct Ballot Scanner was one of the first to employ imaging technology [1].
Although this fact and the pixel-counting threshold algorithm it used to distin-
guish between different types of ballot markings can be inferred from manuals
dating to 1997, public disclosure of these algorithms only occurred in the patent
issued in 2005 [22].

The emphasis in the design of the AIS Model 100 was on scanning ballot
formats originally developed for discrete-sensor scanners. These ballots included
a complete suite of index marks, with additional marks allowing the scanner to
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Fig. 6. A ballot based on those in Figures 1 and 2 designed for scanning using imag-
ing technology. Two fiducial marks in opposite corners allow the analysis software to
interpolate the voting target locations. A bar code allows the software to distinguish
between different ballot styles that might be used. The form shown here is based loosely
on that used by the Fidlar and Chambers AbScan-T [5].

detect the ballot orientation. In addition, one scanning track is used as what
is essentially a long low-density bar code to encode precinct-number and ballot
style. Another voting system vendor, Fidlar and Chambers, was not constrained
by compatibility with the past.

The Fidlar and Chambers AbScan-T absentee ballot system came to market
in early 2000 [13]. This system used a commercial off-the-shelf flatbed scanner
and page feeder to scan ballots for processing on a personal computer [7]. The
ballot layout used on this machine is illustrated, in reduced scale, in Figure 6.

The Fidlar ballot included two obvious changes from earlier mark-sense bal-
lots. First, it incorporated a conventional looking bar code where earlier scanners
had used code tracks or code regions that a naive observer might not recognize as
a bar code. Second, instead of index marks around the edges of the ballot, it had
just two fiducial marks on opposite corners of the ballot. The term fiducial mark
comes from the field of photogrammetry; it refers to a mark used as a point of
reference for locating or measuring the locations of features in an image. Having
located these marks, the ballot analysis software can use them to identify the
ballot scale and orientation before searching for the bar code and voting targets.

Scanners such as the AIS Model 100 rely on technology originally developed
for fax machines to see the ballot in black-and-white, with no shades of grey. At
most, such scanners allow the overall black-white threshold to be set once, before
the capture of a ballot image for processing. Image scanners offer the potential
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to dynamically adapt to the background color of the page and judge the presence
of markings on the ballot on the basis of criteria more sophisticated than merely
counting the black pixels within some predefined sensitive area around each
voting target.

To date, commercial mark-sense ballot scanners generally recognize marks by
counting the number of dark pixels in the sensitive area enclosing each voting
target. This approach reappears, for example, in the claims of a patent issued
in 2006 [24]. An experimental ballot tabulator has been demonstrated that uses
a significantly more sophisticated mark-recognition algorithm. It first analyzes
the image of the ballot using an edge detection algorithm, and then locates
closed rings of edges in the image. Unmarked voting targets appear as pairs
of concentric rings, while completely filled targets appear as single rings. With
this algorithm, the targets themselves can serve as fiducial marks, allowing easy
recovery of data from ballots images even if they are significantly distorted.
Reliance on edge detection eliminates sensitivity to the background illumination
level. The initial demonstration of this algorithm used a video camera to read
the ballots from a distance using ambient lighting and and off-axis viewing [19].

There is clearly room for considerable elaboration on the use of edge detection
in ballot image analysis. Consider the problem of dealing with non-standard but
legal marks such as were illustrated in Figure 3b; a simple search for closed rings
in the image will not count these as votes.

6 Second Chance Voting

With the advent of microprocessors, scanners became inexpensive enough that it
was practical to install one ballot tabulator in each precinct, integrated into the
ballot box. The Gyrex MTB-1, introduced in the mid 1970s, was an important
early example of such a machine [40] [38] (see page 42). This used a very primitive
bar code to encode ballot style, thus allowing the use of multiple ballot styles in
one precinct, as is required for partisan primary elections, and it incorporated a
printer so that it could print results immediately when the polls were closed. In
combination, these features address an important category of threat:

Ballot alteration or ballot substitution: Immediate scanning eliminates the
opportunity to alter ballots or substitute alternate ballots between the time
they are voted and the time they are counted. In effect, from the moment the
ballots are scanned onward, there are two independent records of the vote, one
on the marked paper ballot itself, and one in the scanner’s memory. Of course,
problems will be detected only if the paper ballots in the ballot box are actually
examined. In 1965, California enacted legislation requiring such an examination
in randomly selected precincts after every election; more recently, several other
states have enacted such legislation [8].

A second feature of precinct-count equipment emerged later, the ability to
return ballots to the voter. This emerged with the CESI Optech I scanner [28]
[20] (see pages 67-68). While this may have originated as a way to clear jams
and handle misread ballots, it quickly emerged that one of the most valuable
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features of precinct-count scanners was that they could reject overvoted ballots,
returning them to the voter. Direct recording mechanical and electronic voting
machines have routinely offered this protection since the 19th century [42]. With
the passage of the Help America Vote Act of 2002 (HAVA), all voting equipment
used at polling places in the United States is required to offer this protection [6].

Most precinct-count scanners in current use can also return ballots that scan
as blank. This offers protection for voters who use ballot markers invisible to the
scanner, and it offers protection for those who completely misunderstand the
ballot marking instructions by marking entirely outside the sensitive areas on
the ballot. Generally, when ballots contain multiple races, as in general elections
in the United States, it has not proven to be useful to return ballots where votes
are found in some races but not in others. In such elections, most voters abstain
some races.

When ballots are centrally counted, for example, where postal voting is used,
voters have no equivalent protection against overvoting. HAVA suggests that
voter education and instructions can substitute for this, but there is ample ev-
idence that this is not true. The best current practice for postal voting is to
require that the ballot scanner sort out all ballots that scan as blank or contain
overvotes. These ballots should then be examined by the canvassing board to
determine if they contain indications of voter intent. Typically, in general elec-
tions in the United States, the canvassing board must examine around 4 percent
of the ballots [21].

Imaging scanners allow an alternative approach to resolving questionable
markings on centrally counted ballots. Instead of sorting out the ballots requir-
ing human inspection, the vote tabulation system can present scanned images of
these ballots to the canvassing board for resolution. This was done in the 2007
Scottish Parliamentary elections [10], and the same functionality is present in
the Ballot Now system from Hart Intercivic [2]. When the actual ballot is not
examined to resolve the markings on the ballot, it is within reason to ask that
any audit of the election inspect the authenticity of the ballot images that were
examined as well as how each problematic marking was resolved.

7 Human Factors

All voting systems, from the most primitive to the most technological, are data-
capture systems. This is true whether we ask voters to enter their selection
directly into computers, to mark their selections on paper for manual processing,
or to mark their selections on paper for scanning by a vote tabulating machine.

The single greatest strength of mark-sense voting is that the basic medium,
pen or pencil marks on paper, is one with which the vast majority of voters are
expert. Most people began their formal training in the use of this medium in
kindergarten, and it is fair to say that the average person has far more training
and experience with making and interpreting marks on paper than with any
other data recording medium.

Despite this familiarity, there is ample evidence that very small changes in
voter instructions can lead to significant changes in the likelihood that voters
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will correctly express their intent [33]. For example, the instructions on the bal-
lot used in Maricopa County, Arizona, on September 7, 2004 said “TO VOTE:
Complete the arrow(s) pointing to your choice with a single line,” with appro-
priate illustrations. When the ballot tabulating system was tested, it was found
that a single line made with a common ballpoint pen was a marginal mark [34]
(see Exhibit 8). Fortunately, most voters scrupulously darken their marks, but
the instruction to make a single line may have mislead an unknown number of
voters.

The author suggests that a voting target be printed in the pollbook next
to the name of each eligible voter. On signing the pollbook, the voter could
then be asked to properly mark this oval. Doing this would give pollworkers an
opportunity to observe any difficulty people have making an appropriate mark
in a context where there is no threat to the voter’s right to a secret ballot.

The 1990 and 2002 federal voting system standards required that mark-sense
scanners distinguish between the prescribed mark, on the one hand, and smudges
or creases, on the other. They did not, however, require any exploration of the
universe of other markings voters might make [12] [17]. Unfortunately, while the
2005 guidelines incorporated an extensive human-factors section, this is focused
largely on handicapped accessibility and it does not alter the requirements for
mark-sense tabulation accuracy [15].

It is noteworthy that post election auditing of mark-sense ballot tabulation
systems can do more than audit the correctness of the count. A properly con-
ducted post-election audit of mark-sense ballots should also note the number of
ballots marked with nonstandard markings. In contrast, the audits proposed for
direct-recording electronic voting systems tend to focus exclusively on the count
and exclude human-factors issues [32].

8 Disability Problems

Mark-sense ballots do pose some difficult challenges. In jurisdictions requiring
multilingual ballots, adding an extra language to each ballot adds clutter, and
this decreases readability. This is tolerable with bilingual ballots, but where three
or more languages are required, readability declines rapidly.

A more serious problem involves access for voters with disabilities, particularly
blind voters, but also those with motor disabilities and poor eyesight. Voters
who need large print can be aided by providing them with magnifying glasses.
While these are somewhat cumbersome, they are also a very familiar technology.
Similarly, voters with motor disabilities can be provided with transparent ballot
overlays to protect the ballot from stray marks and scribbles. These measures
meet the needs of the majority of voters who might otherwise need assistance in
casting their votes, but they are rarely provided in modern polling places.

Since the passage of the Help America Vote Act of 2002 in the United States,
the problem of providing access to the blind has frequently solved by providing
one handicapped accessible voting system per polling place. In many jurisdic-
tions, a direct-recording electronic voting machine is used for this purpose. Use
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of multiple vote recording systems threatens voter privacy, particularly if only a
few voters use the accessible system while the majority use mark-sense ballots.

Voter privacy is improved if the ballots voted by blind voters or others needing
assistance are merged with all other ballots voted at the same location prior to
tabulation. This idea has lead to the development of several accessible ballot
marking devices that allow blind voters to mark paper ballots. The AutoMark
[25] and the Vote-PAD [11] are the two most widely discussed. These devices
seek to achieve the same goal, but they do so in radically different ways.

The AutoMark uses any of several input devices to capture the voter’s choice,
and then it uses ink-jet printer technology to record that choice on a standard
mark-sense ballot. The input devices are typical of direct-recording electronic
voting machines, enough so that this machine could be classified as an indirect-
recording electronic voting machine.

In contrast, the Vote-PAD is a tactile ballot [26]. That is, it is a template
that fits over the ballot, allowing the voter to mark the ballot through holes
in the template. This alone is sufficient to aid most sighted voters with motor
disabilities. For those who cannot read the ballot, a recorded script is provided
to narrate the ballot.

Tactile ballots have been used with great success in many countries, but in
most of these cases, elections typically involve a single race with only a few
candidates. When used for a general election in the United States, the audio
narration of the ballot can easily take 15 minutes, and audio instruction for how
to navigate a large ballot is both cumbersome and error prone.

There is clearly room to explore other solutions to making mark-sense ballots
more accessible. One proposal combines the mechanics of a tactile ballot with the
mechanism of a graphics tablet. With this system, instead of following an audio
script, the voter is free to explore the ballot by moving a sensing wand over the
template. The system senses the location of the wand and reads whatever ballot
position the voter selects, reporting on whether or not it has already been voted.
While such a mechanism might cost considerably more than a tactile ballot, it
would be considerably less expensive than an AutoMark machine [35].

9 Conclusion

Optical mark-sense vote tabulation will remain widely used into the indefinite fu-
ture. It is the only technology for automatic vote tabulation that is applicable to
postal voting, and there are promising technologies available to permit disabled
voters to use mark-sense ballots at polling places. From a security perspective,
it can be judged highly secure if appropriate post election audit procedures are
used.

As such, optical mark-sense systems are one of the best voting technologies
available for complex general elections. There are, however, several areas where
additional work needs to be done. First among these is the development of
assistive technologies that are both inexpensive and effective for complex general
elections.
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A second frontier lies at the heart of the mark-sensing mechanism itself. Mark-
sensing algorithms that make intelligent decisions based on image analysis are
currently in their infancy. Only the most tentative experiments have been made
with applying image processing techniques to this area.

As with all voting technologies, there are major problems with the diffusion
of best practices. Some jurisdictions have long employed sound practices for
post-election audits, processing of overvoted ballots, and wording of ballot in-
structions, while these same practices remain essentially unknown in other juris-
dictions. Voting system standards, state oversight and further professionalization
of voting system administrators will all play a role in solving this problem.
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Abstract. In this paper, we study the problem of simultaneously achiev-
ing several security properties, for voting schemes, without non-standard
assumptions. More specifically, we focus on the universal verifiability of
the computation of the tally, on the unconditional privacy/anonymity of
the votes, and on the receipt-freeness properties, for the most classical
election processes. Under usual assumptions and efficiency requirements,
we show that a voting system that wants to publish the final list of the
voters who actually voted, and to compute the number of times each
candidate has been chosen, we cannot achieve:

– universal verifiability of the tally (UV) and unconditional privacy
of the votes (UP) simultaneously, unless all the registered voters
actually vote;

– universal verifiability of the tally (UV) and receipt- freeness (RF),
unless private channels are available between the voters and/or the
voting authorities.

1 Introduction

1.1 Motivations

A huge number of properties for voting schemes have been proposed so far: and
namely, universal verifiability (UV), the unconditional privacy/anonymity of the
votes (UP), receipt-freeness (RF), and incoercibility.

Some properties seem quite important because usual systems and/or paper-
based systems achieve them, and some other seem more theoretical because they
are not (efficiently) satisfied in existing schemes: people expect much more from
electronic voting schemes than from paper-based systems: the best example is
the universal verifiability, which is definitely not satisfied with the paper-based
voting systems, since one can supervise one place only. On the other hand, an
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attack on an internet-based vote could be at a very large scale and thus much
more damaging.

Furthermore, some properties are easily satisfied by using physical assump-
tions such as voting booths, while they are difficult if one can vote from home:
this is the case of incoercibility. Since cryptography is usually very powerful and
makes possible some paradoxical things, one is tempted to build a system that
achieves as many properties as possible, with as few assumptions as possible.
But what is actually achievable?

1.2 Contributions

In this paper, we address this question: can we build a voting system that simul-
taneously satisfies several properties, without non-standard assumptions (such
as physical assumptions)? More precisely, we focus on the large class of election
systems that simply consist in counting the number of times that each candidate
has been chosen (whatever the constraints on the choices may be) and want to be
able to compute the list of the voters who actually voted. Such election rules are
used in many countries (such as in France). On the one hand we study the uni-
versal verifiability (UV) and the unconditional privacy of the votes (UP), which
is sometimes replaced by the unconditional anonymity of the voters. On the
other hand, we consider the universal verifiability (UV) and the receipt-freeness
(RF). In both cases, we show that we cannot simultaneously achieve the two
properties without strong extra assumptions, such as secure channel between
the voters and/or the authorities, which is unrealistic for efficient and practical
protocols.

The universal verifiability and the unconditional privacy can actually be si-
multaneously satisfied if all the registered voters do vote; similarly the universal
verifiability and the receipt-freeness can be simultaneously achieved if the vot-
ing transcript of a voter does not depend on the voter’s vote, his secret, some
personal possible private/random value, and additional public data only. It is
well-known that using multi-party computation techniques a strongly secure vot-
ing scheme can be built, that achieves all the above ideal properties, but using
secure channels between the parties (the voters and/or the authorities): efficient
voting schemes that guarantee receipt-freeness or incoercibility [2,4,13,17,18,21]
use such secure channels.

In the standard model we adopt below, we assume algorithmic assumptions
only, but no secret channels nor physical assumptions such as tamper-resistant
devices [18]. In addition, while studying the security properties of voting schemes,
we try to explain why the traditional schemes, based on blind signatures, mix-
nets or homomorphic encryption, satisfy these properties or not.

Having a clear view of which sets of properties are achievable has a practical
significance: one can easily conceive that the properties required for a national
election or for an internal company board vote are different. For instance, the
unconditional privacy (UP) of the vote will be important (if not required) for
national elections, while the receipt-freeness (RF) will not be as critical as it
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may be difficult to buy votes on a very large scale without detection. For a board
vote, a few number of voters typically have a very large number of shares, while
the rest have a small number of shares. The major voters choices are often not
private (let alone unconditionally private) because they can be inferred from the
result of the vote. However, it may be tempting for a dishonest important voter,
which could already have 40% of the shares, to buy the missing 10% to safeguard
a majority. The receipt-freeness property is therefore more critical in that case.

1.3 Organization

The paper is organized as follows: first, in section 2, we give formal definitions to
the above UV, UP and RF security notions. Then, we show the incompatibility
results in section 3.

1.4 Notation

We use the following notation in the rest of the paper:

– L represents the list of the registered voters,
– Vi is a voter, who casts his ballot,
– V is the list of the voters, who cast their ballots,
– vi is the vote of voter Vi,
– v is the set of votes,
– ri is the random coins of voter Vi,
– r is the set of the random coins,
– Bi is the transcript of Vi (that is the interactions between voter Vi and the

voting authority, assumed to be public),
– B is the set of transcripts, also known as the bulletin-board,
– T is the tally of the vote (the vector of the number of times that each

candidate has been chosen),
– w, w′ will denote the witnesses in some NP- relations R and R′,
– f , f ′, f ′′, g and h will be some functions.

Since we won’t assume any private channel, any interaction can be assumed
public, and also through the authority, and then included in the public transcript
available on the bulletin-board. Furthermore, for practical reasons, the vote-and-
go approach is often preferable, which excludes any complex interaction, but with
the authorities only.

2 Security Notions

In this section, we formally define the most usual security notions: universal
verifiability, unconditional privacy, and receipt-freeness.
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2.1 Universal Verifiability of the Tally

This security notion tries to prevent dishonest voting authorities from cheating
during the computation of the tally.

For example, voting schemes using blind-signature [8,16,20] cannot achieve
this property since the authority can add some ballots and bias the tally. On the
other hand, schemes using mix-nets [1,9,10,11,12,14,19,22] and/or homomorphic
encryption [3,6,7] may provide it.

First, in order to universally check the validity and the correctness of a vote,
one has to guarantee that a voter has not voted twice. Consequently, one needs
to authenticate the transaction in some way. To this end, one needs to be able
to verify both the link between the list of the registered voters L and the list of
the transcripts B (or the bulletin-board) in order to validate the vote, and the
link between the bulletin-board and the computation of the tally T .

Definition 1 (Voting Scheme). For a voting scheme to be practical and sound,
it must hold the following properties.

– Detection of individual fraud. From a partial list of transcripts B produced
by V1, . . . , Vn ∈ L, the voting authority should be able to determine whether
a new transcript B produced by Vn+1 is valid (well-formed and does not
correspond to a double vote). More formally, there exists a boolean function
f that can determine this fact,

∀n, ∀V1, . . . , Vn, Vn+1 ∈ L,
∀B← V1, . . . , Vn, B ← Vn+1,

f(B, B) =
{

0, if Vn+1 ∈ {V1, . . . , Vn}
1, if Vn+1 �∈ {V1, . . . , Vn}

}
∧B valid.

We thus denote by L the language of the bulletin-boards B which are itera-
tively valid.

– Computation of the tally. From the transcripts, the voting authority should
be able to compute the tally, that is a vector of the number of selections for
each candidates: there exists an efficient function f ′ that, from the bulletin-
board B, outputs the tally T ,

∀ B ∈ L, f ′(B) =
∑

i

vi = T.

– Computation of the list of the voters. From the transcripts, the voting au-
thority should be able to determine the list of the voters who actually casted
their ballots: there exists an efficient function f ′′ that, from the bulletin-board
B, extracts the sub-list V of the voters,

∀ B ∈ L, f ′′(B) = V.

When one wants the universal verifiability, everybody should be able to check
the correctness/validity of the votes and of the computation of the tally and
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the voters: the bulletin-board B, the tally T and the list of the voters V should
rely in an NP language L′, defined by the relation R: there exists a witness w
which allows an efficient verification. Furthermore, for any B, the valid T and
V should be unique:

Definition 2 (Universal Verifiability (UV)). Let R be the NP-relation for
the language L′ of the valid ballots and valid computation of the tally. A voting
scheme achieves the universal verification property if only one value for the tally
and the list of the voters can be accepted by the relation R, and the witness w
can be easily computed from the bulletin-board B using a function g:

∀ B ∈ L, ∃! (T,V) s.t. ∃w s.t. R(B, T,V, w) = 1
∀ B �∈ L, ∀ (T,V, w) R(B, T,V, w) = 0

∀ B ∈ L R(B, f ′(B), f ′′(B), g(B)) = 1.

Note that g is a function private to the authorities, to compute a short string
(the witness) that allows everybody to check the overall validity, granted the
public relation R.

The functions f , f ′, f ′′ and g may be keyed according to the system param-
eters: g is clearly private to the voting authority, while f and f ′′ may be public
(which is the case in schemes based on homomorphic encryption). The function
f ′ is likely to be private.

2.2 Unconditional Privacy

First, one should note that this notion can not be achieved in a very strong sense:
if all voters vote identically, the tally reveals the vote of each voter. Consequently,
privacy means that nobody should learn more information than what is leaked
by the tally. By unconditional privacy, we thus mean that nobody should be
able to learn any additional information even several centuries after the voting
process.

In voting schemes based on homomorphic encryption [3,6,7] privacy relies on
computational assumptions, and is thus not unconditional. When mix-nets are
used, this is the same, since the latter applies on asymmetric encryptions of the
votes. On the other hand, voting schemes based on blind signatures can achieve
this strong security notion, but under the assumption of anonymous channels,
which are usually obtained with asymmetric encryption: unconditional privacy
vanishes!

Definition 3 (Unconditional Privacy (UP)). A voting scheme achieves the
unconditional privacy if

D(v | T,B)
p,s≡ D(v | T ).

This equation means that the distribution of the votes, given the bulletin-board
and the tally T is the same as without any additional information to the tally.
The distance between these two distributions can be perfect or statistical, hence
the s and p. But we of course exclude any computational distance.
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2.3 Receipt-Freeness

The receipt-freeness property means that a voter cannot produce a proof of his
vote to a third party. In such a security notion, interactions with the third party
are allowed before and after the vote. Furthermore, if the vote is performed
outside a booth, we can also assume that the third party has access to the
channel between the voter and the voting authority: he has knowledge of the
transcript, but also of all the information known to the voter, as well as the
public information.

A receipt would thus be a proof of the vote vi, by the voter Vi to a third
party: a proof (a witness w′) that shows that the bulletin-board contains the
vote vi for voter Vi. The proof must be sound, which means that several proofs
are possible, but all for the same statement vi for a given voter Vi:

Definition 4 (Receipt-Freeness). A receipt is a witness w′ which allows a
third party to verify, in an unambiguous way, the vote of a voter Vi ∈ V:

∃! vi, s.t. ∃w′ s.t. R′(B, Vi, vi, w
′) = 1.

A voting scheme achieves the receipt-freeness property if there is no such a rela-
tion R′, or the witness w′ is hard to compute.

3 Incompatible Properties

In this section, we show that a voting scheme cannot provide

– the universal verifiability and the unconditional privacy of the votes, simul-
taneously, unless all the voters actually vote;

– the universal verifiability and the receipt-freeness, simultaneously, if the tran-
script of a voter depends on the voter, his vote, his own random, and public
values only.

3.1 Universal Verifiability and Unconditional Privacy

Theorem 1. In the standard model, it is impossible to build a voting scheme
that simultaneously achieves the universal verifiability and the unconditional
privacy unless all the voters actually vote.

Proof. Assume we have a universally verifiable voting scheme. Then, we want
to prove that the unconditional privacy cannot be achieved.

Because of the universal verifiability, there exists a public NP-relation R such
that R(B, T,V, w) = 1, where w is a witness, for a unique tally T and the unique
list of voters. Because of the existence of f ′, f ′′ and g, a powerful adversary can
guess V′ = f ′′(B′), T = f ′(B′) and w = g(B′) for any B′ ∈ L: excluding one
transcript from B to build B′, this adversary can get the name of the excluded
voter V ′, and the new tally T ′, which leaks the vote v′ = T −T ′ of the voter V ′.

With an exhaustive search among all the sub-parts of B, one can then get the
vote of a specific voter. 	
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This proof strongly relies on the latter sentence. And therefore, the contradiction
comes from the above relation R that applies whatever the size of B is, which
allows us to exclude one transcript and use the universal-verifiability relation R.

If the transcripts of all the registered voters in L were required in R, the
contradiction would not hold anymore, even if it is not clear whether a counter-
example exists or not. Anyway, requiring all the registered voters to actually
vote is not realistic. A denial of service would become very likely.

In [15], Kiayias and Yung propose a voting scheme in which the privacy is
maintained in a distributed way among all the voters. There is no voting au-
thority. They prove that the scheme provides the perfect ballot secrecy which
does not correspond to our notion of unconditional privacy: it means that the
security of a vote is guaranteed as long as the size of a coalition is not too large
and of course according to the tally result and coalition votes. However, in their
scheme, each ballot is encrypted using a public-key encryption scheme, that thus
requires a computational assumption for the privacy.

In [5], Cramer et al. propose a voting scheme that guarantees the uncondi-
tional privacy, by using unconditionally secure homomorphic commitments, but
only with respect to the voters, and not to the authorities, which would be able
to open each individual vote if they all collude.

3.2 Universal Verifiability and Receipt-Freeness

Theorem 2. Unless private channels are available, the universal verifiability
and the receipt-freeness properties cannot be simultaneously achieved.

Proof. Because of the universal verifiability, vi is uniquely determined by Bi

specific to the voter Vi. Since we exclude private channels, Bi can only be a
function of Vi, his vote vi, some input ri private to Vi, and public data Pi:
Bi = h(Vi, vi, ri, Pi). Therefore, ri is a good witness, and thus a receipt: the
scheme is not receipt-free. 	

If the transcript is more intricate, and namely includes some private interactions
between the voters and/or the authorities [13], then it may be possible to achieve
the two properties simultaneously: Bi is no longer available to the third-party,
and thus ri is no longer a witness either. But such an assumption of private
channels is not reasonable in practice.

4 Conclusion

As a conclusion, we have shown that voting systems with usual features cannot
simultaneously achieve strong security notions: we cannot achieve simultane-
ously universal verifiability of the tally and unconditional privacy of the votes
or receipt-freeness.
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Abstract. It is widely recognised that the security of even the best-
designed technical systems can be undermined by socio-technical weak-
nesses that stem from implementation flaws, environmental factors that
violate (often implicit) assumptions and human fallibility. This is espe-
cially true of cryptographic voting systems, which typically have a large
user base and are used infrequently.

In the spirit of the this observation, Karlof et al [11] have performed
an analysis of the Chaum [5] and Neff [18] schemes from the “systems
perspective”. By stepping outside the purely technical, protocol specifica-
tions, they identify a number of potential vulnerabilities of these schemes.
In this paper, we perform a similar analysis of the Prêt à Voter [6].

Firstly, we examine the extent to which the vulnerabilities identified
in [11] apply to Prêt à Voter. We then describe some further vulnerabili-
ties and threats not identified in [11]. Some of these, such as chain-voting
attacks, do not apply to the Chaum or Neff schemes, but are a poten-
tial threat in Prêt à Voter, or indeed any crypto system with pre-printed
ballot forms. Where appropriate, we propose enhancements and counter-
measures.

Our analysis shows that Prêt à Voter is remarkably robust against
a large class of socio-technical vulnerabilities, including those described
in [11].

1 Introduction

Voting systems are the bedrock of democratic societies, and date back several
millennia. While many different mechanisms for voting have been proposed [10],
they usually share a similar set of goals such as accuracy, ballot secrecy, verifia-
bility and coercion-resistance [13], [7].

In an attempt to improve the accessability and efficiency of the election pro-
cess, democracies have experimented with various automated voting systems
that increase speed and accuracy of ballot counting. Arguably, some of these
new mechanisms offer greater secrecy, and in the case of remote systems, in-
creased voter participation. However, these attempts have been fraught with
problems, many of which are due to reliance on computer hardware and soft-
ware performing as intended or claimed [3], [2], [12], [14].
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Recent proposals for cryptographic voting systems strive to resolve many of
these problems by introducing transparency and verifiability. Notable examples
are the Chaum [5] and Neff [17], [18] schemes and Prêt à Voter [6]. These strive to
provide assurance of secrecy and accuracy without any reliance on the underlying
technical system, i.e. software, hardware etc. Instead, the assurance is derived
from the properties of the cryptography and a high degree of transparency in
the vote recording and counting stages.

While it is important to analyse the core protocol in order to assess its secu-
rity [4], [13], it is also essential to consider its interaction with the surrounding
system, e.g. computer hardware and software, voters and voting officials. In addi-
tion, collusion between parties can make the attacks more difficult to detect and
resolve. This point was argued by Ryan [21], and more recently, demonstrated
by Karlof et al [11] in their examination of the Chaum and Neff schemes from
the “systems perspective”.

In this paper, we continue this theme with an analysis of Prêt à Voter, and
in doing so, find that it is remarkably robust against many of the vulnerabilities
described in [11]. In addition, we identify some new vulnerabilities, and offer
mitigation strategies, particularly where they may apply to Prêt à Voter.

The structure of the paper is as follows. In Section 2 we briefly describe the
Chaum and Neff schemes. In Section 3, we recall the potential weaknesses iden-
tified in [11]. In Section 4, we present an outline of the Prêt à Voter scheme.
Section 5 examines the extent to which the attacks of [11] also apply to Prêt
à Voter. Following this, in Section 6, we identify further possible attacks and
suggest mitigations. In Section 7 some other vulnerabilities of Prêt à Voter are
described, along with some counter-measures. Finally, we summarise and con-
clude in Section 8.

2 The Chaum and Neff Voting Schemes

Although the mechanisms differ in several ways, Prêt à Voter and the Chaum
and Neff schemes all provide voter verifiability. More precisely, after a vote is
cast, the voter is provided with a physical receipt which encodes the value of
her vote, and so ensuring secrecy. The voters can later check that their ballot
receipt has been correctly posted to the Web Bulletin Board (WBB). Tabulation
is performed by decryption and anonymisation via robust anonymising mixes.
To ensure accuracy, various checking mechanisms are deployed to detect any
failure or corruption in either the encryption or decryption of the receipts.

Due to space constraints, we only summarise the key features of the Chaum
and Neff schemes, and refer the reader to [6], [4] , [18], [19] for details, or [13], [23]
for overviews.

In the booth, the voter interacts with a machine, during which the voter’s
choice is communicated to the machine and encoded in a receipt. The voter is
given the opportunity to verifying that their vote is correctly encoded. This is
achieved by way of a “cut-and-choose” protocol, in which the device commits to
two or more encryptions of the vote, one of which the voter chooses to retain.
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The remaining encryptions are then opened, verified and discarded. A digital
copy of the chosen receipt is retained by the device and, once the voting period
has ended, is posted to a WBB . The voter retains a hard copy of her encrypted
ballot receipt, which she can subsequently check on the WBB to make sure that
the receipt has been correctly recorded.

The receipts are shuffled and decrypted in a series of anonymising mixes to
ensure that no link remains between the encrypted ballot receipts and the final
decrypted vote values. The results of each stage of the mix process are posted
to the WBB.

Aside from the details of the cryptographic primitives involved and the mix
processes, the essential difference between the two schemes is in the format of
the receipt.

In the Neff scheme, the receipt consists of a matrix of El Gamal ciphertexts
of the digits “0” or “1”. A chosen candidate is distinguished by the arrangement
of digits in the corresponding row.

In the Chaum scheme uses the RSA algorithm and the voter’s choice is rep-
resented using visual cryptography [16] to generate a 2-D ballot image showing
the candidate name, which is split between two encrypted, transparent layers.
The ballot image is visible when the two sheets are accurately overlaid but, when
separated, each sheet is a pattern of random pixels. The voter selects one layer
to retain as a receipt, so without knowledge of the crypto keys, the receipt does
not reveal the voter’s choice.

3 Cryptographic Voting Protocols: Chinks in the Armour

The vulnerabilities considered in [11] fall into three main categories: those due to
subliminal channels, ”social engineering”-style attacks against the cryptographic
protocols and denial of service attacks. In this section, we briefly recall each of
these vulnerabilities and how they may apply to the Chaum and Neff schemes.

3.1 Subliminal Channels

Subliminal channels provide a means for a malicious agent to transmit infor-
mation over a channel in a way that is hidden from the legitimate users of the
channel. They can arise whenever there are alternative valid encodings of the “in-
tended” information. Additional information can be encoded in suitable choices
between these alternatives. Public access to the WBB makes this a particularly
virulent threat for voter-verifiable schemes. There are two classes of subliminal
channel identified in [11]: random and semantic.

The Neff scheme makes use of randomised crypto variables in the creation
of the ballot receipt giving rise to a possible random subliminal channel. By
judicious selection of random values, the voter’s choice could be encoded in the
encrypted receipt [11]. Any agent with knowledge of the coding strategy could
then gather this information by observing the posted receipts.

Random channels do not occur in the Chaum scheme, as it uses determin-
istic algorithms. However, semantic subliminal channels, can occur if there are
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alternative valid representations of the ballot image. Certain information could
then be conveyed by altering the ballot image, for example by adjusting the font
size or positioning of the image. Note that, in contrast to the random channel
of the Neff scheme, this channel emerges after the anonymising mixes, when
the decrypted ballot images emerge. Thus a malicious device would presumably
encode information about the voter identity rather than the vote value.

Mitigation. Counter-measures for random subliminal channels are tricky, since
the randomness may be essential for security properties. A possible approach,
attributed to Neff [11], is to require the use of pre-determined randomness, e.g.,
from pre-generated tapes. In effect, the non-determinism is resolved before the
voter’s choices are communicated to the system. The difficulty with this approach
is ensuring that the devices adhere to this pre-determined entropy. In personal
communication, Neff describes a recent implementation of his scheme, in which
ballots are created in advance by a multi-authority process similar to a mix-net.
The function of the device is completely deterministic, so there is no possibility
of a subliminal channel. In addition, the voter only makes one random choice
for the entire ballot, rather than for each option, as described in [11]. Details of
these innovations can be obtained from [1].

With the Chaum scheme, one could enforce a standard format for each the
ballot image for each candidate option. This also runs into the difficulty of mon-
itoring and enforcing adherence. It is also difficult to square with the possibility
of “write-ins” that the scheme enables. In personal communication, Chaum ob-
served that such semantic channels are not strictly subliminal: exploitation of
such channels would be detectable.

Another possibility is to use trusted hardware [11], but this is contrary to the
principle of transparency and minimal dependence which the Chaum, Neff and
Prêt à Voter (see later) schemes aim to achieve.

3.2 Social Engineering Attacks

Both the Chaum and Neff schemes require non-trivial interactions between the
voter and the machine. Both schemes involve “cut-and-choose” protocols, and
the sequence of steps in the protocol can be highly significant. These are designed
to detect any attempt to construct receipts that do not encode the voter’s true
choice. We will refer to the choice the voter makes in a “cut-and-choose” step as
the “protocol choice” to distinguish this from the voter’s candidate choice.

By re-ordering the steps in the protocol, or introducing extra ones, the ma-
chine could learn the voter’s protocol choice before it has to commit to the
receipt encoding [11]. In this case the device can corrupt the vote value with
impunity. Voters may not notice or appreciate the significance of such changes
in the protocol execution.

Similarly, the machine could feign an error and re-boot after it learns the
voter’s protocol choice. Relying on the voter making the same choice in the
second round of the protocol, the machine then constructs a receipt for a different
candidate. If the voter changes her mind, the machine re-boots again until the
voter gets it “right” [11].
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Another possible vulnerability of the Chaum scheme, not identified in [11], but
mentioned in [21], is as follows. The machine attempts to corrupt the vote value
by incorrectly constructing one of the layers. If the voter chooses the other layer
for retention, the corruption will go undetected. However, if the voter chooses
the corrupted layer (which would lead to detection), the machine could try to
fool the voter by printing “destroy” instead of “retain” on the layer that the
voter chose as the receipt. If the voter fails to notice this, or simply ignores it,
the corruption will again pass undetected. This is another way that a corrupt
machine could undermine the “cut-and-choose” element of the protocol. Even if
the voter does notice the switch and is confident that they are right, it may be
difficult to demonstrate this to a voting official.

Mitigation. We refer the reader to [11] or [23] for suggested mitigations. The
obvious approach is to try to ensure that voters understand the procedures and
appreciate their motivation. This is similar to the notion of instilling a “security
culture” in an organisation. In practice of course, this may not really be feasible.
In the context of an election system, where the set of users can be vast and usage
infrequent, the possibilities for voter eduction is limited.

An alternative solution is to make the voter experience much simpler, as with
Prêt à Voter. However such simplicity seems to be at the cost of needing to place
more trust in the system.

3.3 Denial of Service

There are several ways in which DoS attacks could disrupt or invalidate an
election. See [11] for a discussion. For all such attacks, adequate error-handling
and recovery strategies need to be in place. In addition, some form of back-up
is desirable, e.g. a voter-verifiable paper audit trail (VVPAT) [15]. We return to
these attacks and counter-measures later, when we examine the robustness of
Prêt à Voter.

4 The Prêt à Voter Scheme

We now present an overview of the Prêt à Voter scheme. For full details see [6].
Prêt à Voter is inspired by the Chaum scheme, but replaces the visual crypto-
graphic techniques with a conceptually and technologically simpler mechanism
to represent the encrypted vote value in the ballot receipt. In the polling station,
voters select a ballot form at random, an example of which is shown below.

Obelix
Idefix

Asterix
Panoramix

7rJ94K
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In the booth, the voter makes her selection in the usual way by, for example,
placing a cross in the right-hand (RH) column against the candidate of choice.
She now separates the (RH) and left-hand (LH) sides, and the latter, which
carries the candidate list, is discarded to leave the ballot receipt. Supposing a
vote for Idefix, the receipt would appear as follows:

X

7rJ94K

She then leaves the booth and authenticates herself with an official, who scores
off her name in the register. The receipt is placed under an optical reader or sim-
ilar device, to record the cryptographic value at the bottom of the strip, and the
numerical representation of the cell into which the cross has been entered. The
voter retains the hard copy of the RH strip as her receipt. An anti-counterfeiting
device would be incorporated, and the receipt would be digitally signed when
the vote is cast.

Possession of a receipt might appear to open up the possibility of coercion or
vote-buying. However, the candidate lists on the ballot forms are randomised,
so the order in which the candidates are shown is unpredictable. Clearly, as long
as the LH strip is removed, the RH strip alone does not indicate which way the
vote was cast.

The crypto value printed on the bottom of the receipt, the “onion”, is the key
to extraction of the vote. Buried cryptographically in this value, is the seed infor-
mation needed to reconstruct the candidate list. This information is encrypted
under the secret keys of a number of tellers. Thus, only the tellers acting in con-
sort are able to reconstruct the candidate order and so interpret the vote value
encoded on the receipt.

Once the election has closed, all the receipts are transmitted to a central
tabulation server which posts them to a secure WBB. This is an append-only,
publicly visible facility. Only the tabulation server can write to this and, once
written, anything posted to it will remain unchanged. Voters can visit this WBB
and confirm that their receipt appears correctly.

After a suitable period, the tellers take over and perform a robust, anonymis-
ing, decryption mix on the batch of posted receipts. Various approaches to au-
diting the mixes can be used to ensure that the tellers perform the decryptions
correctly. Details of this can be found in [6].

Another place where the accuracy of the scheme could be undermined is in
the vote capture stage, and the encoding of votes in the receipts. In the case
of Prêt à Voter, this could occur if the ballot forms are incorrectly constructed,
i.e., the candidate list shown does not correspond to the crypto seeds buried in
the onion value. Various mechanisms can be deployed to detect and deter such
corruption. The approach suggested in [6] is to perform a random pre-audit of the
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ballot forms. In other words, both independent third parties and the voter can
check the well-formedness of the ballot forms. The checks performed in each case,
however, differ. The former involves extracting the crypto seeds, re-computing
the onions and checking that they correspond to the candidate permutation.

Later in this paper, we discuss an alternative approach using on-demand
creation and printing of forms along with a “cut-and-choose mechanism” and
post-auditing.

For full details of the mechanisms used to detect any malfunction or misbe-
haviour by the devices or processes that comprise the scheme, see [6].

5 Systems-Based Analysis of Prêt à Voter

In this section we examine the extent to which the vulnerabilities identified
in [11] apply to Prêt à Voter.

5.1 Subliminal Channels

Subliminal channels of the type identified by Karlof et al, are not a problem for
Prêt à Voter. This is due mainly to the rather special and, to our knowledge
unique, way that votes are encoded in Prêt à Voter. Most cryptographic voting
schemes require the voter to supply her vote choice to the device, which then
produces a (verifiable) encryption. In the case of Prêt à Voter, the voter’s choice
is encoded in a randomised frame of reference. It is the information that allows
this frame of reference to be recovered, the “seed” value, that is encrypted. This
can be done ahead of time without needing to know the vote value. In Prêt
à Voter, the ballot forms are generated in advance and allocated randomly to
voters. Hence, the cryptographic commitments are made before any linkage to
voter identities or vote choices are established.

Regarding semantic subliminal channels, suitable implementation should en-
sure that, for a given ballot form and vote choice, the digital representation in
a Prêt à Voter receipt is unique, i.e., the onion value and the index value indi-
cating the chosen cell on the LH column. Hence, there should be no possibility
of a semantic subliminal channel.

Like the Chaum scheme, Prêt à Voter “Classic”, [6], uses deterministic cryp-
tographic algorithms. In fact, in both schemes, all the tellers’ operations can be
made deterministic: encryption and decryption are deterministic and the tellers
can be required to post batches of transformed ballot receipts in lexical order at
each stage, thus eliminating random subliminal channels. It is not clear whether
this is really necessary, as the tellers do not have access to any privacy sensitive
information.

5.2 Social Engineering Attacks

In Prêt à Voter, the voter does not engage in a multi-step protocol with the
device so there is little scope for any social engineering-style attacks.
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It is worth noting that in Prêt à Voter, the analogue of the “cut-and-choose”
element of the Chaum or Neff schemes is performed by independent auditing
authorities who check a random selection of the ballot forms. This removes the
need for a “cut-and-choose” step in the voter’s phase of the protocol, as the au-
thority commits to the crypto material on the ballot forms ahead of the election.
A random selection of these are checked by the auditors for well-formedness. This
can be done before, during and after (on unused, left-over forms) the election
period. Assuming that they pass the checks, audited forms are destroyed. Forms
that fail the checks would be retained for forensic purposes.

Prêt à Voter also allows the possibility of voters performing random checks
on the ballot forms in addition to checks performed by auditors. This is more
in the spirit of arranging for the trust to reside solely in the voters themselves.
Care has to be taken, however, to avoid introducing other vulnerabilities, such
as the possibility of checking ballot forms that have been used to cast votes.

5.3 Denial of Service

Whilst these schemes succeed in removing the need to trust the devices and
tellers for the accuracy requirement, we may still be dependent on them to some
extent for availability. Unless suitable measures are taken, the failure of a teller
for example, could at least hold up and in the worst case block the tabulation.
Corruption of the digital copies of receipts would call the election into doubt.
Thus measures must be taken to make the scheme robust against (manifest)
failure or corruption of devices. In other words, we have ensured that, with high
probability, any (significant) failures or corruption will be detected, but we still
have to address the issue of error handling and recovery.

A possible enhancement of Prêt à Voter, detailed in [24], is to replace the
decryption mixes with re-encryption mixes. This has a number of advantages,
one being that recovery from DoS failures is much easier. There are a number
of reasons for this:

– The mix tellers do not need secret keys, they simply re-randomise the en-
cryption. A failed mix teller can therefore simply be replaced without all the
unpleasantness of having to surgically extract keys.

– The mix and audit can be independently re-run. With (deterministic) de-
cryption mixes, the selection of links for audits cannot be independently
selected on the re-run of the mix without compromising secrecy.

The use of threshold encryption schemes would also help to foil DoS attacks by
ensuring the failure of a proportion of the (decryption) tellers could be tolerated.

In [20], it is suggested that an encrypted VVPAT [15]-style mechanism be
incorporated. As the device scans the voter’s receipt, it generates an extra copy.
Once this copy has been verified by the voter (and possibly an official), it is
entered into a sealed audit box. This provides a physical back-up of receipts
cast, should recovery mechanisms need to be invoked.

We emphasise that this is actually quite different to the conventional notion
of VVPAT that generates a paper audit trail of unencrypted ballot slips. The
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conventional form of VVPAT suffers from a number of privacy problems. For
example, if the trail retains the order of votes cast, receipts could be linked to
voters by comparing the order in which votes are cast with that of voters entering
the booth. Also, any mismatch between the voter’s choice and the paper audit
record can be difficult to resolve without compromising the voter’s privacy.

Where encrypted receipts are recorded, these problems disappear. Note that,
due to the encrypted form of the receipts, it is possible for monitors to verify
a vote as it is cast, in addition to the voter checking. Any discrepancies can
be resolved without loss of voter privacy. We will henceforth refer to such a
mechanism as Verified Encrypted Paper Audit Trail (VEPAT).

5.4 Discarded Receipts

As with the Chaum and Neff schemes, carelessly discarded receipts could be a
problem in Prêt à Voter, as this could indicate which receipts will not be checkedby
voters on the WBB [11]. Malicious parties could delete or alter the corresponding
receipts, confident that the voters will not check them on the WBB.

Aside from voter education [11], a possible mitigation is, again, to invoke a
VEPAT mechanism, as described above. Independent observers could check the
correspondence between the VEPAT and the contents of the WBB. This has the
added advantage in that less reliance need be placed on the votes’ diligence in
checking their receipts on the WBB.

5.5 Invalid Digital Signatures

In the Chaum scheme, digital signatures act as a counter-measure against faked
receipts being used to discredit election integrity. However, a device that falsified
signatures could be used to discredit voters, leaving them without a way to prove
a dishonest system [11].

Voters should thus be provided with devices capable of verifying the digital
signatures. Such devices could be provided by various independent organisations,
such as the Electoral Commission, etc. Similar measures could be utilised for Prêt
à Voter.

Given that encrypted receipts can be cast in the presence of officials and other
observers, we have the possibility of checking digital signatures at the time of
casting and applying physical authentication mechanisms, such as franking, to
the receipt.

5.6 Insecure Web Bulletin Board

Like the Chaum and Neff schemes and indeed many cryptographic voting
schemes, Prêt à Voter relies on a secure WBB to allow voter and verifiabil-
ity. In a possible attack, the WBB arranges for the voter to see a correct record
of her ballot receipt, which, in collusion with the mix-net, has been deleted or
altered. As a result, the voter could mistakenly believe that her vote has been
accurately counted [11].
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However, we note that suggested mitigations, such as robust data storage
and allowing only authorised write access to the WBB [11] are still vulnerable
to corruption. The challenge is provide a trusted path from the WBB to the
voter. The problem of implementing secure web bulletin boards is the subject of
ongoing research in the cryptographic voting community.

6 Further Vulnerabilities

In this section, we discuss other possible vulnerabilities not identified in [11],
and suggest appropriate mitigation strategies.

6.1 Doll Matching Attack

This vulnerability is specific to the Chaum scheme and is not identified in [11].
Each of the layers that combine to reveal the ballot image have to carry a pair of
“dolls”, analogues of our “onions”, one for each layer. It is essential that these are
identical between the layers. The voter is required to check that values on the two
layers match. Failure to do this could allow the device to construct fake receipts
without detection. It might seem difficult to produce a fake “doll” that alters the
vote value whilst differing from the real “doll” in a way that is visually almost
imperceptible. This would be analogous to finding (approximate) collisions of
a cryptographic hash function. Nevertheless, this should still be considered a
potential vulnerability.

A counter-measure is to ensure that visual matching of the dolls is as easy to
perform as possible. Thus, for example, the dolls might be encoded aligned bar
codes on the two layers. Any mismatch would then show up as a misalignment
of the bars.

6.2 Undermining Public Confidence in the Secrecy of Encrypted
Receipts

Another potential attack against schemes employing encrypted receipts, is as
follows. The Mafia (falsely) claim to have a way of extracting a vote from the
encrypted receipt. If a sufficient number of voters were convinced by such a
claim, and so influenced to alter their vote, it may be possible to undermine the
outcome of the election. For instance, a coercer might urge voters to submit their
receipts, claiming that the “correctness”’ of the choice would be checked. Some
reward, such as entry into a lottery, would be offered for receipts that passed
the supposed checks.

Countering such a psychological attack, other than by voter education, could
be difficult.

6.3 Side-Channel Attacks

Karlof et al do not discuss the possibility of the vote-capture devices leaking the
voters choices via side-channels, e.g., hidden wires, wireless-enabled devices, etc.
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This may be because they are regarded as inevitable. In fact, in the case of Prêt
à Voter, such channels are not, in fact, a problem.

As explained earlier, the voter’s choice does not need to be communicated to
the device in order to obtain the encoding of this choice in the receipt. Hence,
even if such channels existed, they could not be exploited to leak information
from the booth device.

However, the potential for other kinds of side-channels still exists: hidden
cameras, “invisible” dots on the receipts etc.

6.4 Kleptographic Channel Attacks

The current version of Prêt à Voter is, however, vulnerable to kleptographic
channels, another form of subliminal channel. These were orginally described
by Young and Yung [25] and their relevance to voting schemes identified by
Gogolewski et al [9]. In the case of Prêt à Voter, the idea is that the authority
creating the ballot forms would carefully select the seed values in such a way as
to encode information about the candidate list in the onion values. This encoding
would use some secret key shared with a colluding third party. Thus, seeds would
be chosen so that a certain keyed hash applied to the onion value would carry
information about the corresponding candidate order. Clearly this would require
a significant amount of searching in the seed space and computation, but the
resulting selection of seeds would appear random to anyone not knowing the
coding strategy and secret hash key.

It is fairly straightforward to eliminate this kind of attack by arranging for the
seeds to be created in a distributed fashion by several entities in such a way that
no single entity can control or know the resulting seed values. Ryan et al [24]
describes such a mechanism, in which several trustees create proto-ballot forms
in a kind of pre-mix. The resulting proto-ballot forms have two distinct onions
encrypting the same seed value. The seed value, and hence candidate list, can
be extracted from one of these on demand to reveal the full ballot form. Full
details can be found in [24].

7 Prêt à Voter Specific Vulnerabilities

Our analysis of Prêt à Voter revealed other possible vulnerabilities that are
specific to the scheme. We discuss them and suggest possible mitigations.

7.1 Chain Voting

Chain voting is a well known style of attack that can be effective against some
conventional paper ballot schemes. In this attack, the coercer smuggles an unused
ballot form out of the polling station and marks his preferred candidate. The
voter is told that they will be rewarded if they emerge with a fresh, unmarked
form. This can then be marked again and passed to the next voter.
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Particularly vulnerable are election systems in which, as in the UK, the ballot
forms are a controlled resource: on registration, voters are given one ballot form
and they are observed to cast this before existing the polling station. The voter is
then under duress to cast the form marked by the coercer and to retain the fresh
form that they are provided with when they register. The procedures arguably
make it harder for the coercer to initialise the attack. However, a determined
attacker would certainly find a way, for example by bribing an official, or placing
a fake form in the ballot box. Once the attack is initialised, the procedure works
in the coercer’s favour.

A possible counter-measure is to make ballot forms freely available in the
polling stations, as, for example, in French elections. Voter identity is checked
when casting a vote rather than at the time of collecting a ballot form. Thus,
as it is not certain that a marked form was actually used to cast a vote, the
motivation for the attack is undermined.

Neither the Chaum nor the Neff schemes, in which the ballot forms and re-
ceipts are generated on demand in the booth, are vulnerable to this style of
attack. Prêt à Voter is, however, potentially vulnerable, as the ballot forms are
pre-printed. The counter-measure above does not work as cast receipts are posted
to a publicly-verifiable WBB, so allowing the coercer to confirm whether or not
the designated ballot form was actually used.

7.2 Mitigation

Observe that at the time of making her candidate choice, it is only necessary for
the voter to see the candidate list . A possible counter-measure therefore is to
conceal the onion by a “scratch strip”, similar to that used in lottery tickets. The
procedure could then be for the voter to register and collect a fresh ballot form,
with scratch strip intact. The voter goes to the booth, marks her selection, then
detaches and destroys the LH strip. She exits the booth and takes her receipt to an
official who checks her identity and that the scratch strip is intact. The voter, or
an official, now removes the strip and records the receipt as previously described.

Steps would need to be taken to ensure that the scratch strips cannot be
scanned with some device to read the concealed onions. This has reportedly
been done using the laser photo-acoustic effect. See [8] for details. Although
expense and technical know-how would be required on the part of the attacker,
it should still be considered a possible threat.

A rather different counter-measure is to return to an on-demand creation of
ballot forms, e.g. printing in the booths. The scheme for the distributed genera-
tion of encrypted ballot forms of [24] could be used here. This avoids chain voting
and certain chain of custody issues but at the cost of having to re-introduce the
voter involvement in the “cut-and-choose” along with post-auditing to the pro-
tocol. The trade-offs involved in this are investigated in [22].

7.3 Authority Knowledge

In the current version of Prêt à Voter, the authority has knowledge of ballot form
information, i.e. the crypto seeds used to generate the candidate offsets, hence
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the onions, and, in particular, the association between these values. This means
that the authority has to be trusted not to leak this information. Even if the
authority is entirely trustworthy, there is always a danger of this information
being leaked during distribution or storage of the ballot forms, i.e., chain of
custody issues.

A possible solution is to arrange for the ballot form material to be constructed
in a distributed fashion, in such a way as to ensure that no single entity knows
the association of onions and candidate lists. As noted previously, up until the
time of casting a vote, it is not necessary for the voter to see the onion. One could
thus devise a scheme in which the onion and candidate list are never exposed
simultaneously.

We now outline a simple scheme for distributed construction of “scratch card”
style ballot forms. It is based on onions encrypted using El Gamal, or a similar
randomised encryption algorithm. The ballot form material is generated by a
number of ballot clerks. The first clerk generates a large quantity of onions,
which then enter a re-encryption pre-mix involving the other clerks. The last
clerk collects the resulting permuted, random onions and, for each one, produces
two re-encryptions. These paired onions are now printed onto ballot forms, one
at the bottom of the LH column, the other on the bottom of the RH column. A
proto-ballot form is shown below:

7rJ94K
jH89Gq

These two onions should correspond to the same candidate list. The RH onion
is now concealed with a scratch strip.

These are now shuffled and passed to a final clerk who then dispatches the
visible, LH onions to the tellers. The tellers send back the corresponding candi-
date list which is now printed in the LH column and the LH onion is removed.
This results in ballot forms similar to those proposed in Section 4, but with the
onion value concealed by a scratch strip.

Note that no single entity now knows the association of onion and scratch
strip. Strictly speaking, the last two clerks acting in collusion could form the
association, but the scheme can be elaborated to raise the collusion threshold.
Interestingly, we note also that, even though these two clerks in collusion know
the onion/candidate list association, they cannot prove this knowledge to a third
party as they do not know the necessary crypto seeds used to compute the onion
values. Ballot forms can be randomly audited as before.

Alternatively, the pre-mix approach of [24] alluded to earlier as a counter to
kleptographic attacks, would also be effective here to eliminate the authority
knowledge problem.
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7.4 Enforcing the Destruction of the Left-Hand Strips

After the voter’s selection has been marked on the ballot form, the left-hand
strip must be destroyed. Failure to do so would allow the voter to use it as proof
of her vote to a third party. Clearly, this would lay the system open to coercion.

Several ways of enforcing this are possible. The voter could be required to de-
stroy the left-hand strip in the presence of an official, preferably in some mechani-
cal shredding device. This could be done at the time of casting the ballot form, as
suggested above. However, care would have to be taken to ensure that the official
is not able to record the association of the receipt and candidate list.

Another possibility is to have devices in the booth that would automatically
cut off and destroy the LH strip and then pass the receipt into a scanner. This
would make the voter’s interaction simpler, but such devices would have to be
carefully evaluated, and run counter to the “trust nobody and nothing” philos-
ophy of voter-verifiable schemes.

Another possibility is to make “decoy” left-hand strips freely available in the
booths, so the voter cannot convince the coercer that the one she emerges with
is genuine.

7.5 Confusion of Teller Modes

As previously mentioned, the tellers perform an anonymising decryption mix on
the receipts posted to the WBB. However, they also have a role in checking the
construction of ballot forms, both by auditors and, potentially, voters [6]. For
ballot forms selected for audit, the onions are sent to the tellers, who return
the corresponding seed values. The auditors then re-compute the onion values
and candidate offsets, and check that they are correct. In voter checking, the
tellers return the candidate ordering corresponding to the onion value sent by
the voter.

The checked forms should then be discarded. If the audited forms were later
used to cast a vote, there could be a threat to ballot secrecy. Conversely, it should
not be possible to run a check on a form that has been used to cast a vote.

To mitigate this, ballot forms could be checked by voters in the presence of
an official, who then ensures that used forms are discarded. Forms could be in-
validated once used, for example, using the described scratch strip mechanism.
An authentication code could be overprinted on the scratch strip that would be
necessary to enable the checking mode. Revealing the onion would entail remov-
ing the scratch strip and the code along with it, ensuring that the form could
not be reused later. Alternatively, an authorisation code could be introduced on
the LH strip that would be destroyed at the time of casting.

8 Conclusions

In this paper, we have performed a threat analysis of the Prêt à Voter scheme. In
particular, we have extended the analysis of Karlof et al with some further sys-
tems based vulnerabilities not identified in [11], and considered the applicability
of these vulnerabilities to the Prêt à Voter scheme.
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Prêt à Voter has proved to be remarkably resilient to these vulnerabilities,
many of which stem from voter interaction with devices and generation of en-
tropy at the time of voting. However, Prêt à Voter, is potentially prey to chain
voting attacks, which do not apply to schemes in which the crypto material
is generated on demand. In fact, as we have discussed, this attack is particu-
larly virulent in the context of voter-verifiable schemes with pre-prepared ballot
forms and Web Bulletin Boards. Wherever such threats apply to Prêt à Voter,
counter-measures have been suggested.

As with any secure system, voting schemes require great care in their design
and evaluation, not only of the cryptographic core, but also of the surrounding
system. This analysis has provided valuable insight into the way forward for Prêt
à Voter, and some enhancements have been suggested. It has also underlined the
need for adequate error-handling and recovery strategies, and that a VPEAT
style mechanism would be highly desirable.

The analysis presented here, as with the analysis of Karlof et al, does not
of course constitute an exhaustive, systematic, identification of all the system-
based threats to Prêt à Voter. Arguably, complete coverage for such an analysis
could never be guaranteed given the open-ended nature of systems. However, we
feel that this analysis constitutes a useful first step towards a more systematic
analysis technique for crypto voting systems. Here, we explore the space of pos-
sible failure modes and adversary capabilities, which will enable us to build a
threat model.

We already have the start of a taxonomy of attacks, i.e., classification into
subliminal channels, side-channels, kleptographic channels, social engineering
threats, psychological etc. It seems likely that a form of design-level information
flow analysis should help guide further analysis. This will be pursued in future
research.

Finally, we conclude that, provided that, in addition to a formal analysis of the
core, technical system, socio-technical considerations are incorporated into the
design and evaluation phases, there is every reason to suppose that cryptographic
schemes of this kind can provide trustworthy, verifiable elections.
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4. Bryans, J., Ryan, P.Y.A.: A dependability analysis of the chaum voting scheme.
Technical Report CS-TR-809, University of Newcastle upon Tyne (2003)

5. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security
and Privacy 2(1), 38–47 (2004)

6. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical, voter-verifiable election
scheme. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

7. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large
scale elections. In: Workshop on the Theory and Application of Cryptographic
Techniques: Advances in Cryptology, pp. 244–251. ACM, New York (1992)

8. Gerck, E.: Instant lottery cards too, re: reading pins in ‘secure’ mailers without
opening them (2005), http://www.mail-archive.com/cryptography

9. Gogolewski, M., Klonowski, M., Kubiak, P., Kutylowski, M., Lauks, A.,
Zagorski, F.: Kleptographic attacks on e-election schemes with receipts. In: Müller,
G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 494–508. Springer, Heidelberg (2006)

10. Jones, D.W.: A brief illustrated history of voting (2003),
http://www.cs.uiowa.edo/~jones/voting/pictures

11. Karlof, C., Sastry, N., Wagner, D.: Cryptographic voting protocols: A systems
perspective. In: USENIX Security Symposium (2005)

12. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic
voting system. In: Symposium on Security and Privacy. IEEE, Los Alamitos (2004)

13. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi-
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005)

14. Lauer, T.W.: The risk of e-voting. Electronic Journal of e-Government 2(3)
(December 2004)

15. Mercuri, R.: A better ballot box? IEEE Spectrum Online (October 2002)
16. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT

1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1994)
17. Neff, A.: A verifiable secret shuffle and its application to e-voting. In: Conference

on Computer and Communications Security, pp. 116–125. ACM, New York (2001)
18. Neff, A.: Practical high certainty intent verification for encrypted votes (2004),

http://www.votehere.net/documentation/vhti

19. Neff, A.: Verifiable mixing (shuffling) of el-gamal pairs (2004),
http://www.votehere.net/documentation/vhti

20. Randell, B., Ryan, P.Y.A.: Voting technologies and trust. IEEE Security & Privacy
(2005) (to appear)

21. Ryan, P.Y.A.: Towards a dependability case for the chaum voting scheme. In:
DIMACS Workshop on Electronic Voting – Theory and Practice (2004)

22. Ryan, P.Y.A.: Putting the human back in voting protocols. In: Christianson, B.
(ed.) Security Protocols 2006. LNCS, vol. 5087, pp. 20–25. Springer, Heidelberg
(2009)
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Abstract. According to international law, anonymity of the voter is a
fundamental precondition for democratic elections. In electronic voting,
several aspects of voter anonymity have been identified. In this paper,
we re-examine anonymity with respect to voting, and generalise existing
notions of anonymity in e-voting. First, we identify and categorise the
types of attack that can be a threat to anonymity of the voter, including
different types of vote buying and coercion. This analysis leads to a
categorisation of anonymity in voting in terms of a) the strength of the
anonymity achieved and b) the extent of interaction between voter and
attacker. Some of the combinations, including weak and strong receipt-
freeness, are formalised in epistemic logic.

1 Introduction

In the field of peer-to-peer (P2P) networks, much effort has been put into for-
malizing the concept of anonymity of messages (e.g. [14]). Intuitively, anonymity
means that it is impossible to determine who sent which message to whom. De-
pending on the context, different formalizations of the notion of anonymity seem
to be necessary [7].

The concept of anonymity is also of importance in electronic voting – often,
voters should have the ability to vote without anybody else knowing which op-
tion they voted for (although in some countries, such as the United Kingdom and
New Zealand, this is ultimately not the case). In the electronic voting commu-
nity, the property expressing precisely that is usually called “privacy” instead of
anonymity [6]. In voting, however, enabling privacy is not sufficient, as this does
not prevent vote buying. To prevent vote buying, an election needs to require
privacy – no voter should be able to convince any other party of how she voted.

The concept of receipt-freeness expresses that a voter cannot convince any
other party of how she voted by creating a receipt. The notion has been intro-
duced by [2], after which various receipt-free voting protocols were proposed,
such as [9,17]. Delaune et al. [5] provide a definition of receipt-freeness based on
observational equivalence. Independently, Jonker and De Vink [10] provide an
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alternate definition that allows identification of receipts. Juels et al. note in [11]
that receipt-freeness is not sufficient to prevent coercion in electronic elections,
and they introduced the notion of coercion-resistance. This broader notion is
again formalized by Delaune et al. in [6].

Given the differences in approaches and in notions, the question arises whether
these notions capture the specific needs for anonymity in voting. The three main
levels of anonymity that have been identified in voting, capture progressively
more strict notions of anonymity. The notion of receipt-freeness was motivated
as necessary to provide secret-ballot elections. If receipts can be obtained, using
a voting booth makes no difference to the secrecy: Votes can be bought, and
voters can be coerced.

To address the question of whether or not the notion of receipt-freeness is
sufficient, we reexamine voter influencing, focusing on vote buying. What is vote
buying, when can an action be called vote buying and when is it an election
promise? As this is, ultimately, a subjective issue, the goal is not to provide a
yes-or-no test. Instead, we aim to arrive at a charactarisation of vote buying /
election promises, which will enable election officials to decide which practices
are allowed and which should be abolished. Based on these findings, we then
reexamine the concept of receipt-freeness and adapt it to encompass uncovered
issues.

1.1 Related Work

Distinctions between vote buying and election promises have been investigated
by economists, philosophers and political scientists before.

Van Acker [1] discusses the relation between the notions of coercion, forced
abstention, randomisation and simulation. However, he includes vote buying in
the concept of coercion.

Kochin and Kochin [12] discuss the issue of giving benefits to individual voters
versus giving benefits to identifiable groups. They also consider the difference
between benefits offered through the normal processes of government (related
to being elected) versus benefits offered through private arrangements. Thirdly,
they mention that trading votes for or against proposals between parties or
members in parliament is acceptable.

The latter practice is also mentioned by Hasen [8] and called “legislative
logrolling”. Hasen further differentiates the issues of corporate vote buying, pay-
ments to increase turnout, campaign promises and campaign contributions, and
vote buying in so-called “special district”1 elections.

Schaffer [18] distinguishes between instrumental, normative and coercive com-
pliance in relation to vote buying. Instrumental compliance covers tangible bene-
fits in exchange for votes, normative compliance means voting based on a feeling
of obligation, and coercive compliance denotes voting based on threats. Schaffer
also mentions the possibility that money is offered for not changing voting be-
haviour. In order to check compliance, a buyer may monitor the individual vote,
1 “A special purpose unit of government assigned the performance of functions affect-

ing definable groups of constituents more than other constituents”.
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monitor the aggregate turnout, prevent people from voting altogether, make the
rewards dependent on his election, make voters believe in his goodness or make
voters feel personally obliged. The applicability of these strategies is dependent
on the mode of compliance the buyer is seeking. From the perspective of voters,
benefits can be received in the form of payment, gift or wage, with different
explicit and implicit meanings in terms of modes of compliance.

From these papers it is clear that what exactly constitutes acceptable influ-
ence and what does not, depends on the type of elections, the society in which
the elections are being held and the participants of the elections. In the end, the
matter is ultimately a subjective one. However, by determining the various char-
acteristics of vote buying, and their respective ranges, it is possible to establish
a pre-election consensus on allowed and disallowed practices. Such a pre-election
consensus enables putting precise requirements on voting systems to support the
one type of behaviour, while preventing the other type.

1.2 Outline of the Paper

In Section 2, we identify and categorise the types of attack that can be a threat
to anonymity of the voter, including different types of vote buying and coer-
cion. This analysis leads to a categorisation of anonymity in voting in terms
of a) the strength of the anonymity achieved and b) the extent of interaction
between voter and attacker, which is presented in Section 3. In Section 4, some
of the combinations, including weak and strong receipt-freeness, are formalised
in epistemic logic. The last section presents conclusions and future work.

2 Characteristics of Voter Influencing

In this section, we investigate the characteristics of voter influencing. The ex-
amples below are used as supporting guidelines throughout the section. These
examples are deliberately without context – in lieu of what was established in
Section 1.1. The reason for this is that the aim is to discover the generic char-
acteristics involved, irrespective of social and electoral context. The examples
are not meant to capture any precise attempt at influencing voters, but rather
they convey a broad idea of a, possibly controversial, attempt at changing the
outcome of an election by targeting the voters.

Example 1 (handout). At the polling station, I give each voter 100 euros together
with mentioning my candidacy.

Example 2 (theme park). The district with the highest percentage of votes for
me gets a theme park as my first act as elected official.

Example 3 (zalmsnip). If I get elected, everyone gets 100 euros tax refund.

Example 4 (election promise). If I get elected, disabled child prodigies get 100
euros (i.e. children with a physical handicap, who are members of Mensa).
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Example 5 (rf). I give 100 euro for anyone voting for the Democratic Party.

Example 6 (non-rf). I give 100 euro for anyone not voting for the Democratic
Party.

Example 7 (reimburse). I provide a reimbursement for voters for time away from
work.

The zalmsnip example is based on a tax rebate that occurred in the Nether-
lands in 1998 and 1999. The rf and non-rf examples are inspired by the notion
of receipt-freeness. The reimburse example is inspired by this practice occurring
in the 19th century in the Netherlands.

Note that – as long as there is no request to vote in a specific way – example 1
can be considered legitimate. Examples 3 and 4 are fabrications resembling pos-
sible election promises. Example 2 is dubious; examples 5–7 are outright illegal.

2.1 Legal and Illegal Influencing

Influencing voters can be done either legally or illegally. To avoid a legal dis-
cussion on what is allowed by which laws, we only focus upon characterising
what is desirable. As established in the introduction, this is a subjective notion.
The aim here is to outline the range of possibilities available, indicate where the
boundary between desirable and undesirable lies and give a supportive reasoning
for where we feel this boundary lies.

Note that, in general, there are two methods to influence a voter’s vote:

coercion where voters are threatened to ensure compliance;
enticement where voters are seduced into compliance.

Whereas persuasion is allowed, buying and coercion are not. Both buying and
coercion require proof of compliance, whereas persuasion does not. Both buying
and persuasion are dependent on voluntary cooperation of the voter, coercion is
not.

Voter influencing can be considered acceptable or unacceptable. What is con-
sidered acceptable depends on culture and the nature of the elections. That there
can exist both acceptable and unacceptable variants of the above two methods
is illustrated by the following list.

– acceptable coercion claiming that all other candidates have significantly worse
plans for the voter

– unacceptable coercion threatening with physical violence in case of non-
compliance

– acceptable enticement promising to lower taxes
– unacceptable enticement paying a voter to vote for you

The above list clearly indicates, that there is a distinction between acceptable in-
fluence and unacceptable influence. To establish the characteristics that together
determine the acceptability, we construct an objective tree of voter influencing
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in Section 2.2. Objective trees are attack trees (see [19,13]), but focus upon
meeting goals instead of achieving attacks.

Our objective tree deviates slightly from normal attack trees. The purpose of
our tree is to determine characteristics that distinguish acceptable from unac-
ceptable influence. To elucidate these detailed characteristics, details need to be
explicit in the tree. Hence, where normally attributes would be used, we promote
these characteristics to leaves. This makes these characteristics explicit.

2.2 Classifying Vote Buying

Based on the literature, the examples and the analysis above, the tree in Figure 1
was constructed and dimensions of vote buying were clarified. The main goal in
the tree is to buy a vote, by means of persuasion. The tree is thus from the
perspective of a vote buyer. Where necessary, the range of possible values has
been indicated in the tree (as leaves).

The tree is to be read as follows: before each entry, the type of the entry is
marked (‘or’ for or-nodes, ‘and’ for and-nodes, ‘leaf’ for leaves). Or-nodes are

– or reward time
• leaf before vote casting
• and later

∗ or trust required
· leaf rewarding sureness
· leaf consequences of non-reward
· leaf ensurance of compliance

∗ or hand out reward
· leaf after vote casting
· leaf after ballot box closes
· leaf after vote counting

– or type of reward
• leaf money
• leaf goods
• leaf immaterial

– or rewarding conditions
• leaf cast vote
• leaf election win
• leaf unconditional
• leaf complex

– leaf group size of reward receivers
– or proving compliance

• leaf before rewarding
• leaf after rewarding
• leaf not required

– leaf reward related to election

Fig. 1. Objective tree for vote buying
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nodes of which at least one of the branches must be satisfied, for an and-node
to be satisfied, all branches must be satisfied.
In the tree, the characteristic reward related to election poses the question
whether or not the reward can only be handed out by the election winner. An
example of such rewards is granting amnesty, which is not possible unless elected
to office.

As not all aspects of vote influencing are of direct interest to the buyer (e.g.
how sure is delivery of the reward), other trees for different objectives have been
constructed. Noting that this objective tree focuses upon vote acquisition only
via rewarding leads to the following dimension:

type of compliance how is compliance achieved?
instrumental (by rewarding), normative (by convincing), coercive.

A vote buyer, however, is not interested in acquiring one vote, but in acquiring
many votes. Specifically, a vote buyer’s goal is to acquire enough votes to make a
difference. This goal of a vote buyer encompasses the above objective of acquiring
one vote. A vote buyer could use various means to attempt vote acquisition of
many votes (as indicated by the examples). An analysis of this, similar to the
above one, uncovered the following dimensions of approaches to vote buying:

non-compliance what impact does non-compliance have?
no rewarding, rewarded anyway.

focusability can only the relevant people be the sole targets of the vote buying
method?
highly targetable, less targetable.

scalability how easy is it to employ this rewarding on a large scale?
high, medium, low.

costs do costs vary with the number of acquired votes or voters convinced?
variable, more fixed.

openness/publicity is the persuasion attempt general knowledge?
secret (known to buyer and seller(s)), not hidden, general knowledge.

Considering the point of view of the vote seller introduced the following dimen-
sions for vote buying:

rewarding certainty can rewarding be avoided?
unavoidable, avoidable.

consequences of non-reward what impact will not rewarding have?
high impact, low impact.

Note that these two dimensions are closely related; they can be combined as
commitment to reward.

Considering these various objectives together (i.e. vote seller, vote buyer for one
vote and for a group of votes) led to the following dimension:

proof of compliance who should prove compliance?
proof by buyer, proof by seller. in case of vote buying, proof by seller is
expected; in case of promises, proof by buyer is expected
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One remarkable observation, given these dimensions, is that absence of re-
ceipts (receipt-freeness, see e.g. [2]) is not sufficient to prevent vote buying –
it only suffices to prevent proving compliance. Forms of vote buying exist that
do not require proving compliance by the individual voter, as can be seen in
example 2.

2.3 Classifying the Targets

The set of possible targets for voter influencing can be characterised on various
levels. From large to small, we distinguish the following:

population (1)
⊇ eligible voters (2)
⊇ registered voters (3)
⊇ voters casting votes (4)
⊇ voters casting valid votes (5)
⊇ voters casting valid votes for vote buyer (6)

Additionally, preferences with respect to elections and vote buying differ from
person to person. Perhaps some individuals do not mind selling their votes, while
others may find the practice so repugnant they will not vote for anyone involved
with the practice – even if it is their preferred candidate. We distinguish the
following dimensions for voters:

will accept reward yes / no
initial preference buyer’s choice / other
awareness of attempt none / heard rumours / fully aware
is a desired target yes / no
cast vote buyer’s choice / other

This classification can be applied to each of the sets 1–6. This classification
extends the work of Acker [1], who classified voters targeted by election promises
as follows:

A. Already compliant voters — these would have voted for the coercer without
the election promise

B. Voters who change their votes — these vote for the coercer due to the election
promise

C. Non-compliant voters — these do not vote for the coercer, despite the election
promise

One category missing in that classification is explicitly included by our new
classification: the set of voters who, as a result of the vote buying attempt,
change their vote from “buyer’s choice” to “other”. Intuitively, these voters can
be characterised as the voters who find vote buying so repugnant, that they will
not vote for anyone involved with the practice.
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2.4 Classification of the Examples

Below we classify our examples of voter influencing, according to the dimensions2

established above. In addition, for each example we note which subset of voters
is targeted.

Example 1 (handout). conditions: unconditional; group size: individual; re-
lated: no; type: instrumental; non-compliance: rewarded; focus: not tar-
getable; scalable: low; costs: number of attempts; publicity: not hidden;
commitment: unavoidable, low; proof: none.
Targetted at voters casting votes (class 4).

Example 2 (theme park). conditions: conditional; group size: collective;
related: yes; type: instrumental; non-compliance: rewarded; focus: not tar-
getable; scalable: high; costs: fixed; publicity: public; commitment: avoid-
able, high; proof: none.
Targetted at registered voters (class 3).

Example 3 (zalmsnip). conditions: conditional; group size: collective; re-
lated: yes; type: instrumental; non-compliance: rewarded; focus: not
targetable; scalable: high; costs: fixed; publicity: public; commitment:
avoidable, high; proof: none.
Targetted at registered voters (class 3).

Example 4 (election promise). conditions: conditional; group size: collective;
related: yes; type: instrumental; non-compliance: rewarded; focus: highly
targetable; scalable: high; costs: fixed; publicity: public; commitment:
avoidable, high; proof: none.
Targetted at a subgroup of registered voters (class 3).

Example 5 (rf). conditions: conditional; group size: individual; related: no;
type: instrumental; non-compliance: unrewarded; focus: highly targetable;
scalable: low; costs: number of acquired vote; publicity: not hidden; com-
mitment: avoidable, low; proof: by voter.
Targetted at voters casting valid votes (class 5).

Example 6 (non-rf). conditions: conditional; group size: individual; related:
no; type: instrumental; non-compliance: unrewarded; focus: highly tar-
getable; scalable: low; costs: number of compliant voters; publicity: not hid-
den; commitment: avoidable, low; proof: by seller.
Targetted at voters casting valid votes (class 5).

Example 7 (reimburse). conditions: unconditional; group size: individual; re-
lated: no; type: instrumental; non-compliance: rewarded; focus: not tar-
getable; scalable: medium; costs: number of requesting voters; publicity:
public; commitment: unavoidable, –; proof: not required.
Targetted at registered voters (class 3).
2 Both time of reward and type of reward have been left out, as these are already

explicit in the examples.
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We find that, based on our distinctions, we can easily classify these examples. The
question remains which attributes indicate acceptable and unacceptable forms,
respectively. From our examples and their intuitive acceptability, we propose
that benefits that are related to the contested position, are unconditional and
openly announced, are most likely to be found legitimate.

2.5 Conclusions on Vote Influencing

We conclude that vote buying involves much more than offering money in ex-
change for a proof of compliance. Attributes that make it likely for an action to
be considered vote buying include:

– unrelated to contested position;
– reward independent of being elected;
– reward conditional on compliance (therefore proof by seller);
– highly targetable;
– variable costs (related to individual payment);
– secrecy of the attempt.

Individuality does not make things worse; buying a whole district is in itself no
better than buying votes one by one. The publication of any election result on a
level lower than strictly necessary (e.g. per polling station) facilitates collective
vote buying, and would best be eliminated from this perspective. Electronic
voting can facilitate such a transition, by storing votes independently from the
place where they were cast.

However, this is by itself not sufficient to stop collective vote buying. If a buyer
wants to buy a set of votes, and knows with 70% certainty that an individual
voter complies, she can be fairly sure that if she buys a large amount of votes,
70% of the votes will be hers, due to the law of large numbers.

Conversely, if in a particular set of votes 70% is for the buyer, she can derive
that a voter whose vote is in this set has voted for her with a 70% probability.
This particular observation gives rise to the notion of probabilistic vote buying –
where a buyer requires not exact votes, but is satisfied by a (significant) change
in the distribution of votes.

Furthermore, the non-rf example showed that it is possible to discourage
voting for a certain party or candidate in an action of vote buyinng. This is an
example of voter influencing that cannot be directly described in terms of the
intuitive notion of receipt-freeness, but is close to it.

In the next section, we categorise anonymity in voting based on these
observations.

3 Dimensions of Anonymity in Voting

Traditionally, the concept of vote buying has been related to the possibility of
providing a proof of one’s choice. The notion of receipt-freeness was proposed
to prevent such a proof. However, our framework developed in the previous
sections shows that a proof is not always necessary. The following actions would
be possible without a proof of the voter’s choice in a strict sense:
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– rewarding the voter if she does not vote for a specific party or candidate
(related to negative proof);

– rewarding the voter if it is likely that she made a certain choice.

It can be enough for a buyer to hand out the reward if a voter can show that she
did not vote for two of the buyer’s opponents (example 6). The buyer could also
pay a voter if after observing the outcome, it is more likely that this voter voted
for him than that another voter voted for him. If this can be observed from
messages sent in the voting protocol, this should be addressed by computer
science verification methods. One could also derive this from voter behaviour
[4], but that is hard to prevent using computer science tools.

Each of the notions of privacy, receipt-freeness and coercion-resistance can be
investigated with respect to these scenarios:

weak strong probabilistic
privacy this work this work Barghava et al.
receipt-freeness this work this work –
coercion-resistance Delaune et al. – –

The distinction between the three notions of anonymity depends on the rela-
tion between voter and attacker. In case of privacy, no cooperation of the voter
is assumed; the attacker tries to find out about the voter’s choice without co-
operation the voter. In case of receipt-freeness, the voter cooperates by sending
information to the attacker. In case of coercion-resistance, the voter even accepts
instructions from the attacker.

The weak variant of the notion then concerns the situation that an attacker
cannot be sure of the voter’s choice. The strong variant of the notion concerns
the situation that an attacker cannot be sure of what the voter did not choose
either. The probabilistic variant of the notion concerns the situation what an
attacker cannot deduce anything from the probability distribution of a voter’s
choices.

In the next section, we formalise the notions of strong and weak privacy
and receipt-freeness in an epistemic framework. Probabilistic privacy has been
investigated in [3] (where it is called probabilistic anonymity). The notion of
coercion-resistance is defined in [6]. Filling the remaining fields in the table
based on these definitions is future work.

4 Formalising Anonymity Properties

Garcia, Hasuo, Pieters and Van Rossum defined a framework for describing
anonymity properties of protocols in epistemic logic [7]. We use this framework
as the basis for our definitions of privacy and receipt-freeness. Their definitions
are based on a formalisation of runs in protocols. For the formal definitions, we
refer to the original paper.

Based on observational equivalence of runs, the following notions are defined
formally in the original paper. We include the informal definitions here. The
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formula A Sends m to B means: at some stage in the run, A sends a message to
B which contains m as a subterm. A Sends m means that A sends the message
m to someone. The formula A Possesses m means: after the run has finished,
A is capable of constructing the message m. The formula A Originates m means
that A Sends m, but A is not relaying. More precisely, m does not appear as a
subterm of a message which A has received before.

The formula �Aϕ is read as “after the run is completed, the agent A knows
that ϕ is true”. The formula ♦Aϕ is short for ¬�A¬ϕ and read as “after the
run is completed, the agent A suspects that ϕ is true”.

Garcia et al. define the information hiding properties of sender anonymity,
unlinkability and plausible deniability using the notion of an anonymity set (a
collection of agents among which a given agent is not identifiable) in epistemic
logic as follows:

Definition 1. (Sender anonymity) Suppose that r is a run of a protocol in which
an agent B receives a message m. We say that r provides sender anonymity with
anonymity set AS if it satisfies

r |=
∧

X∈AS

♦B(X Originates m).

This means that, as far as B is concerned, every agent in the anonymity set
could have sent the message.

Definition 2. (Unlinkability) A run r provides unlinkability for users A and B
with anonymity set AS iff

r |= (¬�spyϕ(A, B)
) ∧

∧

X∈AS

♦spyϕ(X, B) ,

where ϕ(X, Y ) = ∃n.
(
X Sends n ∧ Y Possesses n

)
.

Intuitively, the left side of the conjunction means that the spy (the adversary)
is not certain that A sent something to B. The right conjunct means that,
according to the spy, every other user could have sent a message to B. Sim-
ilarly, unlinkability between a user A and a message m could be defined as
|= ¬�spy(A Sends m) ∧ ∧

X∈AS ♦spy(X Sends m).
In certain circumstances (e.g. relays), agents might be interested in showing

that they did not know that they had some sensitive information m. This might
be modeled by the following epistemic formula:

Definition 3. (Plausible deniability) Agent A can plausibly deny message m in
run r iff

r |= �spy¬(�A(A Possesses m)) .

This formula is read as: the spy knows that A does not know that she possesses
m.
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We extend this set of definitions by providing the additional property of receipt-
freeness. Receipt-freeness of an agent A with respect to a message m (e.g. a vote)
intuitively means that A cannot send a message m′ to the spy that proves that
she sent m in the past. For this purpose, the definition of plausible deniability
is too strong, since A does know that she possesses m. Sender anonymity is par-
ticularly useful for providing anonymity of the voter with respect to the election
authorities, but in receipt-freeness, A herself tries to communicate with the spy.
Instead, it should not be possible to link A to her vote. Thus, unlinkability seems
the most natural property to base our definition of receipt-freeness upon.

In the anonymity framework, the concept of anonymity set is used to define
the set of entities between which an observer should not be able to distinguish.
To apply the framework to votes, we need to adapt the concept of anonymity
set. In voting, we are sure that each (actual) voter submits a vote. Therefore,
the point is not whether any other user in an anonymity set could have sent the
message, but whether the voter could have submitted any other vote. Therefore,
we define an anonymity set of messages, AMS, instead of an anonymity set of
agents. This set typically consists of all possible votes.

First of all, we define the notion of (weak) privacy. This can be achieved
without referring to the anonymity set.

Definition 4. (Weak privacy) A run of a protocol is weakly private for agent
A with respect to message m iff

r |= ¬�spy(A Sends m)

To be able to define receipt-freeness, we need to have a way to extend a given
run with one message: the receipt. We write this as r.(A → B : m)) for a given
run r, message m (the receipt), sender A and receiver B. For A to be able to
send the receipt, she needs to have the message in her possessions at the end
of the original run. The new run does not need to be a run of the protocol.
It does need to be legitimate with respect to the initial possession function.
PossIPo(r, A, |r| −1) denotes the possessions of agent A at the end of the original
run (see [7]).

Definition 5. (Weak receipt-freeness) A run of a protocol is weakly receipt-free
for agent A with respect to message m iff for all m′ ∈ PossIPo(r, A, |r| − 1),

r.(A → spy : m′) |= ¬�spy(A Sends m)

Weak receipt-freeness implies that the voter cannot prove to the spy that she sent
message m during the protocol, where m is the (part of a) message representing
the vote. However, this notion is still fairly limited. For example, suppose that
the spy wants the voter to vote for party X . Suppose, furthermore, that the
voter instead chooses to vote Y , which is represented by message m in the above
definition. Now, if the voter cannot show that she voted Y , this protocol is
receipt-free with respect to the definition above. However, if the spy can acquire
information which proves that the voter did not vote X , the spy will not be
satisfied. Therefore, we introduce stronger notions of privacy and receipt-freeness
as well.
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Definition 6. (Strong privacy) A run of a protocol is strongly private for agent
A with respect to a message m in anonymity set AMS iff

r |= (¬�spy(A Sends m)) ∧
∧

m′′∈ AMS

♦spy(A Sends m′′)

Definition 7. (Strong receipt-freeness) A run of a protocol is strongly receipt-
free for agent A with respect to a message m in anonymity set AMS iff for all
m′ ∈ PossIPo(r, A, |r| − 1),

r.(A → spy : m′) |= (¬�spy(A Sends m)) ∧
∧

m′′∈ AMS

♦spy(A Sends m′′)

Here, no matter what information the voter supplies to the spy, any vote in
the anonymity set is still possible. This is represented by the “suspects” symbol
♦spy. In other words, for all possible votes, the spy still suspects that the voter
cast this particular vote; or: the spy is not certain she did not cast this vote.
This requires that at least one message has been received (i.e. at least one vote
has been cast) for every message (vote) m′′ ∈ AMS. Otherwise, the spy could
observe from the results that no-one, in particular not voter A, cast a certain
vote. Thus, for votes, AMS is a subset of the set of candidates who received
votes.

Notice that this definition is analogous to the definition of unlinkability of
Garcia et al.

Theorem 1. If a run of a protocol is strongly receipt-free for agent A with
respect to message m in anonymity set AMS, then it is also weakly receipt-free
for agent A with respect to message m.

Proof. This follows directly from the definitions.

In the framework, it can be defined which part of the messages the spy can
observe. If the spy could read all the messages, the voter only needs to supply
the secret keys in order to provide a receipt. This is not what is commonly
understood by analyzing receipt-freeness. Instead, there are certain messages in
the protocol that the spy is not assumed to have access to (when the voter is in
a “voting booth”).

In our definition, we deviate from the approach by Delaune et al. [6]. In-
tuitively, receipt-freeness is achieved if a voter does not possess convincing,
exclusive evidence of how she voted. The approach by Delaune et al. defines
receipt-freeness using two voters (to preserve indistinguishability of the result).
By focusing on the actual receipt, our definition only relies on one voter, and
thus remains closer to the intuition. The indistinguishability is made explicit in
our definition by AMS, which does not need to encompass all candidates but can
be confined e.g. to all candidates for whom at least one vote was cast.
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5 Conclusions and Future Work

In this paper, we examined various dimensions of the notion of anonymity in elec-
tronic voting.Based on ananalysis of the acceptability of vote buying and coercion,
we found that many different dimensions contribute to whether an action is clas-
sified as vote buying or coercion, or not. Having established these dimensions, we
distinguished between weak, strong and probabilistic notions of anonymity in vot-
ing. This distinction applies to privacy, receipt-freeness and coercion-resistance.

Following the definitions of anonymity in [7], we introduced an approach to
formally verify weak and strong receipt-freeness in epistemic logic. To the best
of our knowledge, we are the first to do so. The approach has not been tested
on real protocols thus far.

One of the main benefits of our approach is the intuitive definition that it
provides for receipt-freeness. As opposed to other approaches, especially [6], the
“receipt” can easily be distinguished in our model as a separate message that the
voter sends to the spy. Instead of investigating whether the spy can recover
the vote from forwarded messages, we judge whether the spy really knows what
the voter’s choice was, based on any possible receipt. This notion of knows is
characteristic for the epistemic logic approach, and this justifies our choice for
the anonymity framework of [7] as a basis.

While our approach captures receipt-freeness, the investigation of the notion
of vote influencing clearly indicates that compliance with a technical criterion
such as receipt-freeness is insufficient to prevent voter influencing – if unaware,
a voter could still be susceptible to voter influencing. Further study in this area
(see also [16]) is needed to ensure that security requirements not only enable
secure voting, but that voters are sufficiently aware of the security they provide.

In future work, we aim at providing an alternative definition of receipt-freeness
in our model, based on the knowledge of the spy instead of on extension of a run.
We hope to prove that the two definitions are equivalent. Moreover, we wish to
apply the definitions to existing voting protocols, in order to prove (or disprove)
receipt-freeness. It may also be interesting to investigate the relation between ver-
ifiability [15] and receipt-freeness in epistemic logic, since both receipt-freeness
and verifiability are based on an agent’s knowledge instead of its possessions.

As we have seen, voter influencing can take many forms, and only some can be
hindered by technological means. However, being more precise in what we can
and cannot achieve in technology can lead to better decisions on which protocols
are acceptable and which are not. Again, the latter will depend on what is seen
as acceptable in a particular culture, which has been determined during a long
history of success and fraud.
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Abstract. All voting protocols proposed so far, with the exception of a few, have
the property that the privacy of the ballot is only computational. In this paper we
outline a new and conceptually simple approach allowing us to construct a proto-
col in which the privacy of the ballot is unconditional. Our basic idea is to modify
the protocol of Fujioka, Okamoto and Ohta[1], which uses blind signatures so that
the voter can obtain a valid ballot. However, instead of using a MIX net, we use
a new broadcast protocol for anonymously publishing the vote, a Non-Interactive
variation of the Dining Cryptographer Net.

1 Introduction

1.1 Motivation

Voting protocols are often divided in three categories: based on MIX networks, based
on blind signatures, and based on homomorphic encryption. See for instance [2] for
a some what simplified but nevertheless interesting overview. A major flaw of most
voting protocols proposed so far, is that the privacy of the ballot is only computational:

MIX. For protocols based on MIX nets[3] this is so since, besides the usual assumptions
about the authorities not revealing the permutations, their security is also based on
RSA or ElGamal: if one knows the factor of the moduli used for mixing, one can
trace back a vote through the cascade of mixes and find out who submitted the vote.

Blind signatures. The blind signature[4] allows a voter to obtain a signed ballot from
a voting authority, who will cross out the voter from the list of voters. After un-
blinding his vote, the voter needs to publish his ballot anonymously. All protocols
published so far use a MIX net for this purpose, which reduces it to the previous
case.

Homomorphic encryption. A homomorphic encryption scheme (see for instance [5])
uses a clever way to encrypt each individual vote, such that by manipulating (in
most cases: multiplying) the encryptions the votes can be tallied, so that the prob-
lem reduces to decrypting collectively some specific value. It is obvious that some-
one with infinite computational power could decrypt all the ballots and therefore
who voted for whom.

This flaw is really worrisome for the following reason: with storage becoming cheaper
and cheaper every year, we must assume that all data that has been made public through
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an election protocol, will never be erased, i.e. that some copy of it will be stored forever.
We also must assume that at some point in the future it will be possible to break the
underlying computational assumption, and then it will become public who voted for
whom. Though one can argue that this information might have become irrelevant after
many decades, this point is more important than it seems. For instance, people might
like to know who the President of the United States voted for when he was young. He
might have had a flirt with the communist party, who knows. Even today historians will
find it interesting to know Churchill’s voting behavior in 1900, when he was about 25
years old.

Real world voting systems always have had the property that the vote (the informa-
tion containing the voter’s choice) is irretrievably destroyed. Newly proposed protocols
should have this property too. Computational privacy is not enough for voting, since
one day or another the computational assumption will be broken. Of course, in less
important elections it might be acceptable that the privacy of the vote is only compu-
tational. But it should be pointed out that estimating for how long the privacy of the
ballot will be preserved is notoriously difficult, as various examples exist of computa-
tional assumptions being broken much earlier than expected.

1.2 Outline of This Paper

In this paper we describe a conceptually simple voting protocol which has uncondi-
tional voter privacy. The main ingredient is that we propose a non-interactive (i.e. one
round) version of the well-known Dining Cryptographers protocol[6], which, as far as
we know, has not been published before, and is of separate interest. Though the basic
idea is simple, some technical subtleties need to be resolved since, unlike the original
protocol, there is only one round. In the next section will will give a high level sketch of
the proposed voting protocol, whereas Section 3 contains a detailed description of the
non-interactive variation of the Dining Cryptographers protocol.

1.3 Relation to Other Work

We are not aware of any paper that proposes the non-interactive use of the Dining Cryp-
tographers protocols. Bos [7] presents a voting protocol based on DC nets, but this
protocol makes the (in our opinion unrealistic) assumption that all voters are simulta-
neously on-line. The protocol of [8] uses techniques whose mathematics is similar to
the math of DC nets. This protocol is exclusively devoted to voting and uses only one
slot (as is the case with [7]), while we propose the use of many slots to allow each
participant to broadcast his vote.

As a consequence, their protocol has a much smaller message size ours but is also
less general. It only deals with Yes/No votes, but if the number of candidates or the way
preferences are expressed changes, the protocol has to re-engineered. This is not the
case for our protocol; we basically propose an anonymous broadcast channel which is
insensitive to the exact lay-out of the message sent through it.

Another interesting paper is [9], which argues for “everlasting privacy” in voting, like
we do. It uses a non-interactive bit commitment scheme as the underlying assumption, a
primitive that we also need, but in most other aspects the techniques used in their paper
are completely different.
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2 A High-Level Sketch of the New Voting Protocol

The basic idea for this new voting protocol consists of two main ingredients, which are
presented separately. Note that the first ingredient is not new.

2.1 The First Ingredient: Blind Signatures

The idea is that by using a Chaum-like blind signature, the voter gets a valid ballot from
the voting authority. In particular there is the Fujioka, Okamoto e Ohta protocol [1] that
could be used here. This protocol allows the voter Alice to contact a Ballot Issuing Au-
thority in order to submit a blinded ballot. The Authority responds by (blindly) signing
Alice’s ballot and sending it back to her. Because the blinding process is perfect (since
all blinding factors are equiprobable, all possible votes are), the authority obtains no
information whatsoever about Alice’s vote.

It is important that the Authority marks Alice’s name on the list of eligible voters,
thus avoiding that Alice tries to vote twice. Equally important is that both parties sign
their messages and maintain records of them, in order to resolve later disputes.

When receiving the message from the Authority, Alice unblinds it and verifies that it
contains a valid, signed ballot.

2.2 Mixnets and Their Disadvantages

The next step of the Fujioka, Okamoto e Ohta protocol is that Alice must cast her ballot
through some anonymous broadcast mechanism. One possible way to accomplish this
is by using MIX-nets. This allows the voter to submit his ballot in encrypted form,
usually with several layers of encryption. All the ballots related to one election could be
placed on a web site, for instance. Now Mixing Authorities are involved in decrypting
the batch of ballots layer by layer, while shuffling the intermediate results. If the voter
followed the protocol correctly, the last decryption will show the vote, signed by the
Ballot Issuing Authority, in the clear. Later some audit protocol is run to verify (with
high probably) that none of the mixing authorities cheated.

When sending her vote, there is no reason for a voter to withhold her identity. On the
contrary, one can imagine that the identity of the voter is placed next to his encrypted
vote, since the privacy is supposedly guaranteed by the mix net. Consequently, when
(and not: if) at some moment in the future the private (RSA or ElGamal) keys are
broken, the permutation used by each mix can be reconstructed and all the links can be
established between the encrypted vote as submitted by the user, and the fully decrypted
result of the mix. So the privacy of the ballot will be violated.

2.3 The Second Ingredient: Non-interactive Dining Cryptographers

This is the reason we introduce a second and new ingredient of our protocol: instead of
using a (Chaum) mix-net, the voter uses a non-interactive (Chaum) Dining Cryptogra-
phers network to post her vote. This protocol can be informally described as follows:

Three cryptographers are having dinner. When they have finished their meal, the
waiter informs them that their meal has been paid already. The cryptographers decide
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they want to find out whether the meal was paid by an outsider (the NSA, say), or by
one of the three present. However, if the payer is one of them, the identity of this payer
should remain secret, i.e. the payer should be anonymous. In order to accomplish this,
they decide to run the following protocol:

1. Each one flips a coin, and shares the result with his neighbor on the right.
2. Each one looks at his own coin and the one of his left neighbor. The two coins

can have the same face up (heads-heads, tails-tails) or faces up (heads-tails, tails-
heads). Each person announces publicly SAME or DIFFERENT, but with the addi-
tional rule that the person who paid reverses his statement (he “lies”).

3. When an odd number of persons announces DIFFERENT they know one of them
has paid; when an even number of persons announces DIFFERENT they know an
outsider paid.

It is not difficult to see how this protocol extends to many bits and many parties. See [6]
and [7], Chapter 2. However, the model used in these papers is completely based on a
network setting: people connected to each other through a local area network (Ethernet
at the time), broadcasting messages to each other. An implication of this model is that
if problems occur, new transmission rounds are available to resolve those problems.

Here we propose a non-interactive variation of the DC net, an idea which, as far as we
know, has not been explored in the literature. The idea is that each voter submits once
a bit sequence, properly identified, which gets published on the Bulletin Board. This
sequence might be long but should still be reasonable for transmission, in the order of
ten of megabytes, say. The non-interactive variation works very much like the original
DC proposal:

1. in a preliminary phase, each pair of parties exchanges random bits.
2. based on these random bits and on the party’s input, it broadcasts a message.
3. all message are combined in such a way that all the random bits cancel, and only

the inputs of all parties remain.

It is well known that DC-nets provide unconditional anonymity; this follows from the
fact that the probability distribution on the random bits is uniform. See [6] for details.

In the non-interactive case, to avoid collisions, most bits of the sequence published
will contain the xors of the bits exchanged with other parties, but no message bits. Only
at a very short interval a message, containing the vote with its signature, will be added to
the xors as well. Very short signatures that allow blinding can be obtained using elliptic
curves, resulting in signature lengths of 160-200 bits.

Note that the signature scheme only need to be resistant to attacks from the voters
for the duration of the election to avoid any insertion of false votes. If the signature
scheme gets broken after the election, the result is not compromised; indeed, revealing
the private key after the election has completed (more precisely: when no more ballots
can be issued by the Ballot Issuing Authority) would not affect security.

After each participant has submitted (published) his sequence, the bitwise xor for
each bit position over all the sequences is computed, yielding anonymously the net
messages published by the participants, i.e. the votes. A tallying authority calculates
the final result, which can be verified by any scrutineer who cares to.



Anonymous One-Time Broadcast Using Non-interactive Dining Cryptographer Nets 235

2.4 Some Subtle Issues

Ideally this would be the end of it, but there are three problems to be resolved:

A) collisions;
B) disrupters;
C) voters that don’t show up (participated in the preliminary phase but did not submit

a sequence).

Ad A: The collision probability must be kept very low since it would imply that two
(random) votes get lost. However, there exist various straightforward techniques to keep
the collision probability low. They basically consist of increasing the length of the bit
sequence, or of sending the same message various times, through a different channel or
through the same one. See Section 4.1 for discussion.

Ad B: Disrupters: this is truly an annoying problem because in the traditional (inter-
active) DC setting catching disrupters is already problematic: all participants have to
engage in an on-line protocol to identify and drive out the disrupter(s). In our case we
cannot catch disrupters afterwards, so we must catch them when they submit. This can
be done by having the parties commit on their random bits exchanged. To preserve
privacy we will need a Bit Commitment Scheme that is computationally binding and
unconditionally hiding. Then we will use a cut-and-choose protocol in which the sender
shows that he is following the protocol. In particular he needs to show that for the whole
sequence, except the part that contains the message (vote), the bits are truly the result
of xors of bits already committed to. Whether he follows the protocol for the bits dedi-
cated to the message we could check but don’t have to; he could sent in garbage, but at
least he won’t be disrupting the channel.

Ad C: A no-shower is someone who went through the initial phase of the protocol,
has shared their random bits with other parties, but did not submit any sequence. Their
identity will become known, and the best solution is to have people who have inter-
acted with them recalculate their submissions. Alternatively, in a setting of a small set
of authorities who exchange random bits with each voter, the authorities can simply
disregard the random bits of the no-shower(s).

Note that in a situation where there is a relatively large amount of trust between the
participants, items B) and C) are of no concern.

3 A Detailed Description of the Non-interactive Anonymous
Broadcast Protocol

In this section we describe a Non-Interactive version of the Dining Cryptographers
protocol. Though the motivation for this protocol is voting, we describe the protocol in
a general setting, i.e. we do not use voting-specific terminology. But we do assume a
the same message size for all participants.

Some parts of the protocols are of a challenge-response nature, in which the re-
sponses are always either random bits or random permutations (which, of course, can
be obtained from random bits). In the protocol description we will write that a party
commits, and then receives a challenge from a trusted random source. However, it will
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be understood that this is implemented using the Feige-Shamir heuristic: after having
fixed the commitments, the party applies a hash function and uses the results for the
challenge. This technique is generally believed to be secure, and avoids the interaction.

3.1 Notation

We suppose there are P participants Pi, with i ∈ {1 . . . P}. The purpose of each partic-
ipant Pi is to publish a message vi anonymously. To this end a DC channel is available
of total size N bits, which is divided into S slots, each of size L. We define the net input
of participant Pi to the DC channel as Mi = Mi[1] . . .Mi[S]; here each Mi[s] denotes
a slot. Now Pi may occupy at most 1 out of those S slots to publish vi, so there is one
s ∈ {1 . . . S}. The other S − 1 slots must remain empty (contain zeroes), i.e. for s′ �= s
we have that Mi[s′] = 0L, a string consisting of L zeroes.

As in the original DC protocol, any pair of participants Pi,Pj can choose to engage
in an exchange of random bits. If this is the case they share an edge in the so-called
privacy graph and we call them neighbors. The privacy properties of our protocol are
identical to those described in the original paper.

We introduce the following notation:

– M [s] is the sth slot of M
– M [[u]] is the uth bit of M
– We denote the random string of size N = SL shared between Pi and Pj with Rij .

If no sharing takes place, we define Rij = 0N .
– The overall random string used by Pi for encryption is Ri =

⊕
Rij , where j

ranges over the neighbors of Pi.
– Pi’s overall contribution to the channel is called Ci, and we have therefore that

Ci = Mi ⊕ Ri.

3.2 Bit Commitments with XOR

An essential property of our protocol is that each participant must commit to his con-
tribution, and show that it has the proper format, though without showing the value.
Since we want unconditional privacy, we obviously need a bit commitment scheme that
is unconditionally hiding and computationally binding. There are various options here,
but for concreteness we use a bit (string) commitment scheme based on hash functions,
as presented in [10].

Actually, ordinary bit commitments are not good enough for our protocol, since we
will need a way to prove that linear relations between bit commitments hold without
opening the values. For instance, we would like to show that x1 ⊕ x2 ⊕ . . . ⊕ xk = 0.
That is, we want to show that the equality x1 ⊕x2⊕ . . . xk = 0 holds without revealing
any other information about the xi. We will show a general construction to accomplish
this property for any kind of bit commitment, at the expense of a factor 2K , where K
is a security parameter.

The solution presented here, attributed to Bennett and Rudich, is described Section
2.2 of [11], where it is called ”Bit Commitment with XOR”, abbreviated BCX. The
idea is to represent each BCX bit commitment as a vector of pairs of simple bit com-
mitments, such that each pair xors to the committed bit value. This allows for challenges
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on one half of the bit commitment, without revealing its value. We describe the scheme
here informally, using a simple example. A more formal description is given in [11],
which also shows that the scheme generalizes to proving linear relations between many
bit commitments.

Using this approach, a bit commitment to x = 1 could for instance be represented
by:−→x =〈(0, 1),(1, 0),(0, 1),(0, 1),(1, 0)〉, where K = 5, an artificially low value. The
two components (columns) are labeled 0 and 1, also named left and right; the rows
are labeled from 1 to K . Suppose A is committed to x = 1 and also to y = 0 as
follows: −→y =〈(1, 1),(1, 1),(0, 0),(1, 1),(0, 0)〉, and that she needs to prove that the two
bit commitments are different, i.e. that x ⊕ y = 1.

1. A tells for each pair of −→x and −→y whether the left component is equal or different.
Or, equivalently, she opens the values zk = xk0 ⊕ yk0 for k = 1, . . . , K .

2. A receives K challenge bits b1, . . . , bK from the trusted random source.
3. For each bk = 0, A is required to open the left component, xk0 and yk0, of the kth

pair of −→x and −→y , and B must check that they are equal; if b1 = 1 then A opens
xk1 and yk1 and B must check that they are different (their mod 2 sum adds to 1).
This must be executed for each challenge bit b1, . . . , bK .

It is easy to see that A does not reveal the actual values of the bit commitments through
this protocol since only either the left or the right component of each pair is revealed,
while the value is defined as the xor of both. As far as the binding property is con-
cerned: obviously, for each row in which she tries to cheat, A gets caught with a
probability 1/2.

It is important to observe that in the protocol of (in)equality between two BCXs,
the unopened halves are not lost (useless), implying that the BCX can (and must) be
preserved for future use. For instance, after a proof that −→x = −→y , the remaining halves
can constitute a new BCX

−→
t with the property that t = x = y. Note that the view of the

protocol showing inequality has the effect of flipping the semantics of the corresponding
bit commitment for the kth pair: t = xkb′k ⊕ ykb′k ⊕ zk, where b′k = 1 ⊕ bk, the
complement of bk.

3.3 Preliminary Phase

As in the original DC protocol, during the preliminary phase each pair of neighbors
creates their random bit string Rij of size N . But unlike the original protocol, we re-
quire that both Pi and Pj commit individually to each bit of Rij using the BCX bit
commitment scheme explained above. To avoid any type of collusion between them, it
is essential that they show to the world (the other participants, and any other observer)
that they are committed to the same value.

We do this as follows: we first consider Pi and Pj as one party, written Pij , who
will jointly create a set of N BCXs, but of size 2K instead of K . (If they cannot agree
on how to do this jointly, we assume that at least one party aborts and that this par-
ticular pair of parties will not contribute to the overall protocol.) They prove the well-
formedness to the other participants by showing that all pairs of the same BCX −→x
encode the same values, i.e. that xk0 ⊕ xk1 = x for k ∈ {1, . . . , 2K}. This is done as
follows:
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1. Pij creates an additional BCX −→y of the same value, i.e. x = y.
2. The trusted source of randomness supplies 2K challenge bits bi , as well as a ran-

dom permutation σ on {1, . . . , 2K}.
3. Pij proves equality between −→x and −→y , applying the permutation σ to shuffle the

pairs, i.e. by showing that either xk0 = yσ(k)0 or xk1 = yσ(k)1, depending on the
value bk.

If Pij tries to cheat on a subset A, this remains undetected only if the permutation σ

maps A onto itself. If a = #A > 1 this happens with probability
(
2K
a

)
/(2K)!. By

repeating the protocol this probability can be reduced to any desired level of security.
After this protocol has completed, Pi and Pj split their double BCX of size 2K in

two BCXs of size K by dividing the pairs evenly between them, for instance Pi stays
with the first K pairs 1, . . . , K and Pj stays with the second K pairs K + 1, . . . , 2K .

3.4 Publication Phase

During the second phase of the protocol each participant decides which message vi he
wants to publish, for instance a signed vote.

This part consists of the following substeps:

1. Pi commits to his input Mi, which contains vi, and proves that it has the proper
format;

2. Pi commits to the contribution Ci and proves that it has the proper format.

Commitment and proof of Mi

1. Let vi be the message that Pi wants to publish. Pi now creates Mi by selecting a
slot s ∈ {1, . . . , S} randomly. He sets Mi[s] := vi, whereas for s′ �= s he sets
Mi[s′] := 0L, a slot with only zeroes.

2. Pi commits to Mi[[1..N ]], the individual bits of Mi.
3. Through a proof,Pi must show that Mi has the proper format, i.e. that at least S−1

slots are zero. To this end we use a straightforward subprotocol:
i Pi chooses a random permutation σ of size S, and uses it to permute the slots

in Mi, thus creating M ′
i . In other words, M ′

i [s] := Mi[σ(s)]. Then he commits
to the individual bits of M ′

i .
ii A random challenge bit c is generated by the trusted source.

iii If c = 0 then Pi reveals the permutation σ and proves equality between
−→
M ′

i and−→
Mi under the permutation σ. If c = 1 then Pi opens the bit commitments of
M ′

i for those slots that contain zeroes only.

This protocol must be executed K times in parallel, where K is a security parame-
ter. Cheating succeeds only if Pi can predict the challenge bits in each round, which
happens with probability 2−K .

Commitment and proof of Ci. Pi now adds the random bits Ri exchanged between
his neighbors to the input Mi in order to compute his contribution Ci as follows:
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Ci[[n]] := Mi[[n]]⊕Ri[[n]] := Mi[[n]]⊕Rij1 [[n]]⊕ · · ·⊕Riju [[n]], where j1, . . . , ju

are the indexes of Pi’s neighbors, and where n ranges from 1 to N . Then Pi publishes
Ci and signs.

Observe that during the preliminary phase Pi committed himself to Rij , and in the
first step of the publication phase he committed to Mi, in both cases using the special
BCX commitment scheme presented in section 3.2. So using the protocol presented
in that section, Pi can show (in the ”committed world”) that the assignment of Ci is

correct, i.e. that indeed Ci[[n]] =
−−−−→
Mi[[n]] ⊕−−−−−→

Rij1 [[n]] ⊕ · · · ⊕ −−−−−→
Riju [[n]] for each n.

4 Technical Considerations

4.1 Calculating the Collision Probability

Considered separately from the context of voting, the Non-Interactive Dining Cryp-
tographers channel deserves a performance analysis. Since participants choose slots
randomly, there always exists a chance that a collision occurs, i.e. two participants oc-
cupy the same slot, and consequently the corresponding slot contents (the vs) are lost.
If S = 365 and P = 23, we are back to the birthday paradox: with probability approxi-
mately 1/2 we have a collision, so the message of two participants is lost. To reduce this
probability we can increase S. A well-known formula that approximates the collision
probability for this case is 1 − e−P (P−1)/2S .

Another solution is to run Q DC nets in parallel. The probability that in all of them
a collision occurs is (1/2)Q, and that the same participant is involved in all of them
equals ( 2

P )Q (where we assume that the collisions in the DC nets are independent, and
where we ignore collisions which involve more than two participants (which have a
very low probability)).

But we can do even better. Instead of using Q = 10 (say) parallel nets, it is certainly
more effective to use the same total number of slots, i.e. S′ = 3650 but let the partic-
ipant choose 10 slots randomly, instead of only one. Since the first version (Q parallel
nets) is a special case of the second (S′ = QS), the collision probability of the sec-
ond is bounded by the first. Preliminary computers simulations suggest it is orders of
magnitudes lower.

Approximating this probability accurately is not a simple exercise and a more careful
analysis is appropriate. For instance, it would be interesting to be see how the parame-
ters interrelate and be able to answer questions such as: Given a total of S slots and P
participants, how many message T should each participant send in order to maximize
successful completion of the protocol? Or reversely, given P participants, how should
we choose S and T if we want the failure probability to be really low, say 10−20? These
questions are still subject of ongoing research.

4.2 Optimizing the BCX

The current version of the protocol is rather crude, the main point of this paper being
to show that unconditional privacy in voting is possible in a conceptually simple way.
Very rough estimates indicate that the current version of this protocol will result in files
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in the order of giga- or terabytes, for P = 500 (the average size of a precinct in Brazil).
However, by fine-tuning of the protocol and a careful analysis of the probabilities, sub-
stantial gains can be had.

For instance, a major cause is the expansion caused by the BCX, as every bit of the
channel needs at least one BCX, which is very inefficient representation. In fact, we
can show that a generalization of the bit commitment scheme used by Bos in his voting
protocol ([7], Chapter 3) has exactly the desired properties but with a constant size,
resulting in substantial gains. This will be detailed in the final version of this paper.
Another possibility for savings is that the current protocol is in some sense too robust,
and that by trading off the probability of catching someone cheating on an individual
vote some efficiency can be gained.

4.3 How to Prevent Ballot Marking

In the case of voting, a problem is that Pi can choose the index s, the slot he wishes to
occupy, any way he likes. He could therefore abuse this freedom to mark his vote by
choosing a particular s, instead of choosing it at random.

The solution is to take away Pi´s freedom to choose s. Instead, s must be determined
in some deterministic, pseudo-random way. As a first approach, one could apply a hash
function on vi, but this property can only be verified after all the contributions have
been posted – it would imply that contributions that do not fulfill this property will be
declared invalid.

A more general solution is obtained by calculating the hash on a set of known values,
such as the BCXs on Mi and on the Rij . For instance, the value h(BCX(Mi), BCX(Rij))
could fix an arbitrary permutation π ∈ {1, . . . , S}, which would be used to mix the slots
of Ci, i.e. Ci[π(x)] = Mi[x] ⊕ Ri[x]. Again, the protocol in §3.2 would proof equality
respecting this permutation π.

5 Conclusions

This paper shows a conceptually simple protocol for voting with unconditional privacy.
The paper does so using a non-interactive version of the Dining-Cryptographers proto-
col, which is not as efficient (in terms of message size) as other voting protocols that
offer unconditional privacy, but is of interest in itself since it may have applications
other than voting.

The resulting protocol is certainly feasible for voting in small groups where the
chance of someone disrupting or not participating is low. Otherwise it might be wiser
to define a small number of authorities, whose main role is to reduce the interactions
necessary to eliminate no-showers. As in the mix networks, these authorities protect
the privacy of the voters, but unlike the mix case, there is no additional computational
assumption.

The author strongly believes that unconditional privacy for voting is a desirable prop-
erty. The fact that at some unknown point in the future voter privacy is completely vi-
olated is not acceptable, and the public may actually reject electronic voting systems
once this point becomes clear. Therefore, the search for practical voting protocols with
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this property is an important challenge. However, it seems that to get unconditional pri-
vacy each voter must exchange a sequence of random bits (dispose of a private channel)
with other voters or with authorities, For large elections this might be a very difficult to
accomplish.
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Abstract. PunchScan is a precinct-read optical-scan balloting system
that allows voters to take their ballot with them after scanning. This
does not violate the secret ballot principle because the ballots cannot
be read without secret information held by the distributed authority
in charge of the election. In fact, this election authority will publish the
ballots for everyone to see, allowing voters whose ballots were incorrectly
omitted to complain. PunchScan vote-counting is performed in private by
the election authority – who uses their secret information to decode the
ballots – but is verified in public by an auditor.In this paper we describe
how and why PunchScan works. We have kept most of the description at
an outline level so that it may be used as a straw model of a cryptographic
voting system.

1 Motivation

The accurate results of a democratic election are at the heart of any modern
society. Democracies are built throughout the world with the commitment to
have elected individuals representing the entire population of a nation. To be
able to record the wish of the people accurately we need to have a voting system
that is transparent, reliable and verifiable. We need to be able to prove that the
elections are run correctly, that every vote counts, and that the every person
going to the polls and exercising their right to vote can make a difference. At
the same time, we have to respect the secret nature of any vote. Linking a voter
to a vote should not be possible, with or without the complicity of the voter.

PunchScan is a novel voting system and extremely easy to use, both by the
voter and by the people running the elections. It is transparent and reliable, and
provides public verifiability, election integrity and enhanced voter privacy.

2 Key Elements/Ideas

There are three key elements that make PunchScan work:

1. The ballot is made out of two separate pages. When the two pages are put
together, the resulting ballot reveals the choices of the voter. When only one
page is viewed, it gives no information – in the computational sense – about
what candidates the voter chose. Thus, if one page of the ballot is destroyed,
the voter can keep the other page, without violating ballot secrecy.

D. Chaum et al. (Eds.): Towards Trustworthy Elections, LNCS 6000, pp. 242–259, 2010.
� IAVOSS/Springer-Verlag Berlin Heidelberg 2010
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2. A mechanism allows the recovery of the candidate choices from only one
page of the ballot

3. The integrity of the election is provable through pre- and post-election audits.

These ideas are common both to PunchScan and to a previous method of David
Chaum’s [Cha]. However, PunchScan is more practical, because it does not suffer
from the perfect alignment problem of the previous method, because the cryp-
tography used is simpler, and because the time required to find the result and
obtain the integrity proof is smaller.

3 High-Level System Design

PunchScan achieves publicly verifiable integrity while maintaining a voter
friendly interface using an optical scan-like ballot. It gives each voter the op-
portunity to take their vote home and check that it is counted in the final tally.
In this section, we first describe the ballot itself, then we present all the phases of
the voting process as seen by all the participants: voters, the election authority,
and candidates.

We assume that the candidates are auditing the election, since they are the
ones that should care most about a correct outcome; in particular, each candidate
would want to check that his rightful votes were not given to another candidate.

3.1 Ballot Design

A ballot consists of two stacked sheets of paper. The top page of the ballot
has holes in it, and the information on the bottom page can be read through
the holes. Both pages also contain all the text needed on the ballot, such as
contests (i.e.: ballot questions) and the candidates’ names. On the top page,
every answer has a symbol assigned to it and the assignment of symbols to
answers varies from ballot to ballot. On the bottom page of the ballot, there is
an (apparently) unordered list of symbols and their order differs from ballot to
ballot. The top and the bottom ballot pages are aligned in such a way that when
they are overlaid, for every question on the ballot, the symbols from the bottom
page are visible through the holes made on the top page (see figure 1(a)).

In PunchScan, the voter uses a dauber to mark the selection of candidates.
A dauber is a pen that leaves a disk of ink on the paper when it makes contact,
just like the ones used by Bingo players to mark the numbers on their tickets.
The diameter of the ink disc is greater then the diameter of the hole punched
through the top page, which means the dauber leaves a mark on both the top
and bottom ballot pages. Figure 1(b) contains a ballot voted for “Yes”.

Because the order of the symbols on the two pages of a ballot is different (and
independent), one cannot determine which mark is for which candidate by view-
ing only one page. We assume that the association of candidates with symbols
and the order of the symbols on the bottom page are uniformly random. Figure
1(c) has the right answer selected on the top layer; depending on which possible
bottom layer is this ballot’s actual bottom layer, that mark could represent a
vote for “Yes” or a vote for “No”, both with a probability of 50%.
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(a) A sample ballot.
When the two pages are
overlayed, the symbols
on the bottom page are
visible through the holes.

(b) A voted ballot. If you
look at each layer individ-
ually, you cannot say that
the mark is for “Yes” or
for “No”.

(c) Given only one layer of
the ballot, the marks on
that layer are equally likely
to represent a vote for any
candidate.

Fig. 1. PunchScan’s ballot

3.2 Chronological Description

There are three phases of the voting process:

– the preelection phase (labeled B for Before)
– the election phase (labeled E for Election)
– the postelection phase (labeled A for After)

The preelection phase. The preelection phase is preparatory and allows the
setup of the election and integrity proofs. During the preelection phase, the
ballots are generated, printed and audited. Also, the information that allows
recovering the choice from one page of the ballot is generated and checked. The
chronological order is the following:

B.1 The election authority generates ballots and commits to them.
B.2 The election authority generates and commits to the information necessary

for decrypting one page of the ballot when the other one is destroyed.
B.3 The candidates challenge the election authority and ask to see some of the

ballots (say half), along with the information from B.2.
B.4 The election authority provides the requested ballots, and opens the com-

mitments associated with them, thus spoiling them.
B.5 The candidates check to ensure that the commitments are consistent with

the opened ballots.

Election day. On election day, the voters go to their assigned polling places,
authenticate themselves as legitimate voters, and get a ballot from the election
officials.
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E.1 The voter is given a sealed ballot.
E.2 Without seeing the order of the symbols on either page, the voter commits

to the page that will be kept (e.g by making a special mark on the other
page).

E.3 The voter marks the hole that has the symbol associated with their favorite
candidates on the ballot.

E.4 The voter separates the two pages, destroys the unchosen one and keeps the
one chosen in [E.2].

E.5 The surviving page is scanned, and the positions of the marks are recorded
and made public. Henceforth, all references to “ballot” will refer to this
surviving page.

In an earlier version, the voter chose which page to keep after seeing and marking
their ballot. The early choice of the page to become a receipt is necessary to
prevent an attack described by John Kelsey.

The postelection phase. After all the polls close, the election is audited and
proofs carried out to ensure the integrity of the election. The chronological order
of the events following an election is as follows:

A.1 Any voter can go to the election authority web site, enter a serial number
for her ballot, check that the ballot is there, and that it accurately resembles
the page she possesses.

A.2 The election authority processes all ballots to produce decrypted versions,
along with a partially decrypted form of all the ballots.

A.3 The candidates ask to see some of the transformations from the original
ballots to the partially-decrypted forms, and some of the transformation
from the partially-decrypted form to the clear form.

A.4 The election authority replies to the challenges made by the candidates in
[A.3].

A.5 The candidates check to see if the reply of the election authority is consistent
with the commitments made in the preelection phase [B.2] and with the
information made public in [A.2].

4 Description by Roles

4.1 The Voter

On Election Day, a voter comes to the assigned polling place and authenticates
herself as a legitimate voter. She gets a dauber and a ballot, and before seeing it,
commits to the page that she will keep. She enters a private voting booth. She
chooses her favorite candidates by making a mark with the dauber on the hole
that has the symbol associated with her favorite candidate. She then shreds the
unchosen page and keeps the other one. Then, she scans the kept page. She may
walk out of the polling place with this page, which serves as her (encrypted)
receipt. Later, she can go to a web site, type in the serial number of her ballot,
and check that the ballot is there. No other checks are required from the voter.
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4.2 The Election Authority

In the preelection phase, the election authority decides the format of a canonical
ballot. This is the one from which all the other ballot variants will be generated.
Also, the canonical ballot is used to recover the choices of the voters, after one
page of the ballot has been destroyed.

The election authority generates at least twice the number of ballots needed
in the election, and commits to them (making the commitment public; the bal-
lots themselves remain secret). It also generates and commits to information
necessary to recover the intent of a voter from one page of the ballot.

In response to the preelection challenge [B.3], the election authority discloses
all the information about half (or a significant fraction) of the ballots (thus
spoiling them). This allows the candidates to check the commitments and ensures
(with high probability) that all the ballots have been correctly generated.

After the election, the election authority posts partially decrypted ballots and
cleartext ballots. To prove that both decryptions (partial and final) were done cor-
rectly, for each vote the election authority will reveal either how it transformed
the voted ballot into a partially decrypted one, or how it transformed a partial
decrypted ballot into a cleartext one, but not both for the same ballot. The au-
ditors choose which part will be revealed, and the chances of a cheating election
authority being detected grow exponentially with the number of votes cheated on.

4.3 The Candidates

We assume that the candidates are competing in an election. Because of this, we
can safely allow the candidates also to play the role of auditors. As auditors, the
candidates challenge the election authority during preelection and postelection
and check that the replies are consistent with the commitments.

5 An Example

We describe a minimal example: the election consists of a single binary con-
test; the voters vote “Yes” or “No”. The election authority decides that, in the
canonical ballot, the symbol “a” is associated with “Yes” and the symbol “b”
with “No” on the top page. The election authority also decides that the order
is “a” “b” on the bottom page. The canonical ballot is presented in figure 2(a).
The election authority defines what is a shift of one from the canonical form on
top and bottom pages. The canonical ballot corresponds to a shift of 0 (call it
a non-flipped ballot) and the non-canonical ballot corresponds to a shift of one
(call it a flipped ballot). Figure 3(a) contains all the possible top and bottom
pages. Any top page can be combined with any bottom page to produce a ballot
as seen in Figure 3(b). The four types of ballots are equally likely.

A non-flipped top page combined with a flipped bottom page results in a
flipped ballot. All the possibilities are in table 1. Note that we are only interested
in knowing if the entire ballot is flipped or not, not individual pages.

To decrypt one page of the ballot, it is necessary to know if it came from a
flipped or non-flipped ballot, to know if it should be flipped or not to get the
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Fig. 2. The canonical ballot for a Yes/No contest

(a) All possible pages of a Yes/No ballot (b) All possible ballots contain-
ing Yes/No contest

Fig. 3. PunchScan’s ballot

canonical ballot. In PunchScan, this information is split into two flip/non-flip
operations (flip1 and flip2) for each ballot. When combined, these operations
transform the ballot page to the canonical ballot. The information is split so
that one half can be made public for auditing purposes. The relation that has
to hold between the pages of the ballot and the information used for recovering
is: top ⊕ bottom = flip1 ⊕ flip2.

The election authority makes public commitments to the ballots and to flip1
and flip2. The candidates choose half the ballots at random and the election
authority makes public the requested ballots along with the flip1 and flip2 for
each ballot. Anyone can check that the equation top ⊕ bottom = flip1 ⊕ flip2
holds. Only the ballots that were not made public in this phase (pre election)
will be further used in the election.

Table 1. Flipped / Non Flipped logic

⊕ Non Flipped Flipped

Non Flipped Non Flipped Flipped

Flipped Flipped Non Flipped
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During the election phase, the election authority publishes all the marked
pages (half ballots) as voted on by voters. After the election, it publishes the
intermediary state of the ballots (ballots ⊕ flip1) and the decrypted ballots
(ballots ⊕ flip1 ⊕ flip2). These are commitments to the values of flip1 and flip2
used in the decryption of the voted half ballots.

During the postelection phase, the election authority is asked to open either
flip1 or flip2 but not both, since opening both would allow the linking of a voted
ballot to the corresponding decrypted one. Also, it is necessary that the partially-
decrypted ballots and the decrypted ones be in a random order (distinct from
each other and from the order of the voted ballots).

The election authority defines the following tables:

– P (for Print)
– D (for Decrypt)
– R (for Results)

The P table is indexed by ballot serial number and contains the top page (P1),
bottom page (P2), and space for the filled-in vote (to be entered after the elec-
tion). It also contains commitments to P1 and P2.

The D table contains the first (D2) and second (D4) mark permutations
(flips), the partially-decrypted vote (D3) to be filled in during decryption, and
information to connect it with the P table (D1) and the R table (D5). It also
contains a commitment for each row of D, as well as a commitment for columns
D1 and D2, and another commitment for columns D4 and D5.

The R table contains the cleartext votes (after postelection decryption).
For example, consider an election with six votes. The clear data in all the

tables is in Table 2. (No single person will ever see all of this information.)
Before the election, but after the election authority has made the commitments,
the tables look as they do in Table 3.

Table 2. PDR tables as the election authority sees them, with all the information
available. The tables are properly formed, because, for all the ballots, D2⊕D4 correctly
represents whether P2 is a flipped version of P1 or not. For example, for ballot number
3, on the top page, “a” is associated with “Yes”, and b with “No”. On the bottom
page, the order is “ba”, thus P2 is a flipped version of P1. In the D table, in the row
corresponding to 3, we have → ⊕ � = flip. For ballot 1, C1,1 is a commitment to P1,
C1,2 is a commitment to P2 and so on.

Ballot ID P1 P2 P3 CP1 CP2

1 ab ab C1,1 C1,2

2 ab ba C2,1 C2,2

3 ba ab C3,1 C3,2

4 ba ba C4,1 C4,2

5 ab ba C5,1 C5,2

6 ba ab C6,1 C6,2

D1 D2 D3 D4 D5 DC

6 → � 5 CA

5 � → 4 CB

2 � → 1 CC

1 � � 3 CD

4 → → 2 CE

3 → � 6 CF

CD1,2 CD4,5

Rid R1

1

2

3

4

5

6
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Table 3. PD tables in the preelection phase, as the public sees them

Ballot ID P1 P2 P3 CP1 CP2

1 C1,1 C1,2

2 C2,1 C2,2

3 C3,1 C3,2

4 C4,1 C4,2

5 C5,1 C5,2

6 C6,1 C6,2

D1 D2 D3 D4 D5 DC

CA

CB

CC

CD

CE

CF

CD1,2 CD4,5

Table 4. PD tables after the election authority has replied to the request to open
ballots 2, 4, and 5

Ballot ID P1 P2 P3 CP1 CP2

1 C1,1 C1,2

2 ab ba C2,1 C2,2

3 C3,1 C3,2

4 ba ba C4,1 C4,2

5 ab ba C5,1 C5,2

6 C6,1 C6,2

D1 D2 D3 D4 D5 DC

CA

5 � → 4 CB

2 � → 1 CC

CD

4 → → 2 CE

CF

CD1,2 CD4,5

The candidates challenge the election authority to open a random half of the
ballots, say the ones numbered 2, 4 and 5. The election authority reveals the
requested information, and the tables look as they do in Table 4. Ballots 2, 4,
and 5 now cannot be used in the election and are excluded from any further
representation of the tables (see Table 5).

Assume that the voters mark their ballots as follows: on ballot 1, the left mark
is marked, and the top page is chosen; on ballot 3, the right mark and the bottom
page are chosen; on ballot 6, the left mark and the top page are chosen. Because
the canonical ballot is “ab”,“ab” (that is, “ab” on both pages), left is associated
with “a”, and right with “b”. The voters’ choices eventually end up in P3, and
when they do, each row describes what can be learned through knowledge of the
ballot page chosen by the voter.

The election authority performs the first flip to ballots 1,3 and 6 to obtain the
partially decrypted ballots as in D3, and the totally decrypted ballots as in R1

(see Table 6). The ballots in both D and R are shuffled independently, so it is not
possible to link rows among tables P , R and D. During the postelection phase,
the auditor asks the election authority to open either the left or the right side of
D (but not both). If the election authority cheats, the auditor will catch it with
probability 0.5 (for a higher probability see section 6.4). In our example, suppose
the auditor chooses the right side. The election authority then reveals D4 and
D5. The auditor can now check that D3 ⊕ D4 = R1, and that the commitment
CD4,5 to the columns D4 and D5 is valid.
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Table 5. Ballots that can be used by voters on election day. The other ballots were
spoiled during the preelection phase. The row commitments are not shown anymore
because they won’t be checked, since no other complete row will ever be opened.

Ballot ID P1 P2 P3

1

3

6

D1 D2 D3 D4 D5

CD1,2 CD4,5

Table 6. PDR snapshot after the polls close. One cannot say what row in the D table
corresponds to what row in the P or R table, because the rows are shuffled. Thus, the
secret ballot principle is satisfied.

Ballot ID P1 P2 P3

1 ab a

3 ab b

6 ba a

D1 D2 D3 D4 D5

a

b

b

CD1,2 CD4,5

Rid R1

3 a

5 b

6 a

Table 7. PDR snapshot after the postelection audit. The election authority was asked
to open the right side of the D table. Anyone can check that the partially decrypted
result transformed by D4 gives the result in R (D3⊕D4 = R), so the election authority
did not cheat. Also CD4,5, the commitment to D4 and D5, is checked. Note that there
is still no link between P and R, so privacy is maintained.

Ballot ID P1 P2 P3

1 ab a

3 ab b

6 ba a

D1 D2 D3 D4 D5

a � 5

b � 3

b � 6

CD1,2 CD4,5

Rid R1

3 a

5 b

6 a

6 A More Technical Description

This section provides a more technical description of PunchScan.

6.1 The Ballot

Let S be a set of symbols. The symbols in S will appear on both the top and
bottom page. We assume that S is sorted and the order is fixed. We denote by
“canonical ballot” a ballot that will have S printed in order on both the top
and bottom page. Let Tp (top permutation), Bp (bottom permutation), and D2

be three random, independent permutations of S (in an implementation, the
permutation would be pseudorandomly generated as described in section A).

Compute D4 such that BpoT
−1
p = D2oD4. Therefore, D4 = D−1

2 oBpoT
−1
p .
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6.2 The Tables

We describe the PDR tables using notation from relational algebra, a system
of notation heavily used in databases. It has the notions of relations (tables),
projections (π - SQL SELECT), selection (σ - SQL WHERE) and join (��).
A relation R(A, B), A → B means that A implies B (given A, B is uniquely
identified). A is called a key of relation R.

Let P (print) be the following relation:

P (Bid, P1, P2, P3, CP1, CP2), Bid → (P1, P2, P3, CP1, CP2)

where Bid is the ballot id (the serial number of the ballot), P1 is Tp, P2 is Bp,
P3 is a projection of BpoT

−1
p (voter choices), CP1 is a commitment to P1, and

CP2 is a commitment to P2. The commitments are cryptographic commitments
(see Section B.2 for details). P contains 2n records.

Let D (decrypt) be the following relation:

D(D1, D2, D3, D4, D5, DC), D1 → (D2, D3, D4, D5, DC)

where D1 is a foreign key pointing to the Bid attribute of P , D5 is a foreign
key pointing to the Rid attribute of R (see below),D2 and D4 are permutations
of S described above, D3 is P3oD2, and DC is a commitment to the tuple
(D1, D2, D4, D5). D contains 2n records.

Let CD (commitments to the columns of D) be the following relation:

CD(CD1,2, CD3,4)

This relation has only one record. CD1,2 is a commitment to D1 and D2; CD4,5

is a commitments to D4 and D5.
Let R (results) be the following relation:

R(Rid, R1), Rid → (R1)

where Rid is a unique identifier and R1 is P3oD2oD4. R contains 2n records.
To select all the information for a ballot, we write:

(P ��Bid=D1 D) ��D5=Rid
R

6.3 The Timeline

Before the election the election authority computes P (Bid, P1, P2, CP1, CP2),
D(D1, D2, D4, D5, DC), CD(CD1,2, CD4,5) and makes public P (Bid, CP1, CP2),
D(DC) and CD(CD1,2, CD4,5).

In the preelection audit, the auditor randomly selects half of the records in
P . The election authority reveals P ��Bid=D1 D for all the requested records.
The auditor can check that BpoT

−1
p = D2oD4. and that the commitments CP1,

CP2, and DC are valid.
During the election, the voters fill in P3.
After the election, the election authority computes D3 = P3oD2 and R1 =

D3oD4 and makes D3 and R1 public.
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In the postelection audit, the auditor asks the election authority to either
reveal (D1, D2) or (D4, D5), but not both. The election authority reveals the
requested information. The auditor can either check that P3oD2 = D3 (using
P ��Bid=D1 D) or D3oD4 = R1 (using D ��D5=Rid

R). The chance of the
election authority cheating and not being caught is 50% (see section 6.4). CD1,2

and CD4,5 are also checked.

6.4 Multiple Instances of D

Because the election authority can cheat with 50% probability of success (i.e.,
nondetection), we introduce multiple instances of D. In other words, we modify
the relation D as follows: Let D (decrypt) be the following relation:

D(i, D1, D2, D3, D4, D5, DC), (i, D1) → (D2, D3, D4, D5, DC)

where i is the instance number and the rest is as described in Section 6.2
Let CD (commitments to the columns of D) be the following relation:

CD(i, CD1,2, CD3,4), i → (CD12 , CD3,4)

where i is a foreign key pointing to the i attribute of D.
In the postelection audit, we can now make k challenges, where k is the number

of D instances. The auditor will ask to open either (D1, D2) or (D4, D5) for each
instance of D. The chance that the election authority cheats successfully is one
out of 2k. We can make this probability arbitrarily small by increasing k.

6.5 Multiple-Question Ballots

We have been implicitly assuming that there is only one question per ballot. The
situation becomes slightly more complicated if this is not the case. PunchScan
works just fine for multiple-question ballots but the decrypted ballots will preserve
the “cross-question” relationships: for example, if 90% of the people who voted for
Alice for Governor also voted for Bob for President, the results will reflect this.
However, PunchScan can be extended to hide these correlations if desired.

Trivially, of course, if PunchScan works for one-question elections then we can
conduct an n-question election by giving each voter n one-question ballots. If we
want to preserve the cross-question relationship among two or more questions
(perhaps if someone voted “No” for a recall election then they are not allowed
to vote for a replacement candidate) then we could group those questions on the
same ballot. This would work but seems to us to be not as good (from a ballot
design, system overhead, and printing cost point of view) as the case when we
are using one ballot and running one election.

However, we can readily modify this scheme to fix this problem. Suppose we
are running n one-question elections. That is, each voter receives one ballot for
each of n elections and votes, then the votes are counted separately for each
election. In this situation, there is one P -table and one set of D-tables (and
associated R-table) for each of the n elections. Let us note that there is no
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information contained in the D-tables for election A that can be used to decrypt
the ballots for election B. Since the shuffles for each election are also independent,
we do not need to obscure the link between voter x’s encrypted ballots in election
A and B, because when they are decrypted the shuffling will obscure the cross-
question relationship for us. In other words, we can print these ballots together,
on the same piece of paper, with the same serial number (and the same P -table
row), just as in the original scheme that reveals the correlations. Because the
ballots are decrypted separately, this does not provide any more information
regarding the cross-question relationships.

7 Proofs

This section contains proofs of some security properties of PunchScan.

7.1 Privacy

In this context, the maintenance of privacy requires that an observer’s probability
distribution of the contents of a given ballot i (i.e.: the value of voter i’s vote) be
unchanged by observation of the cryptographically-hidden data. In other words,

p(bi|PDR) = p(bi|R),

where bi is the value of ballot i, PDR is the entire publicly-observable ballot
data matrix, and R is the results column of that matrix.

Attacks on P . The most straightforward way for an attacker to use the secret
parts of PDR to reveal the vote of voter i would be to simply decrypt P1,i

and P2,i and use those to decode P3,i. If the attacker is unable to break this
cryptography, then learning P would not affect his probability distribution on
bi. This cryptography can be made arbitrarily strong in order to protect privacy
at any desired level of computational security.

Attacks on D. Another method would involve an attack on the shuffle; that
is, decrypting the unrevealed link between P and D (D1) or between D and R
(D5). However, the same cryptography is used to secure those columns of D, so
again, an attacker unable to break the cryptography could not learn anything
useful from D.

7.2 Integrity

There are four elements of the PunchScan process that are vulnerable to some
extent to manipulation of the vote tally by the election authority.

– The ballots may be improperly formed.
– The ballots may be improperly printed.
– The ballot markings may be improperly recorded.
– The marked ballots may be improperly decrypted.

Each of these vulnerabilities is addressed by an audit procedure.
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7.3 First Audit

The first audit procedure ensures that the ballots are well-formed, meaning that
for each ballot, P1⊕P2 = D2⊕D4 for the row in each D-matrix associated with
that ballot. This involves spoiling some fraction of the ballots by unlocking this
secret data.

In general, suppose there are n ballots, the election authority has cheated by
malforming k of them, and f ballots are chosen at random to be examined. The
probability that the election authority gets away with this attack is the number
of possibilities where the auditor chooses only valid vote divided by the number
of all possible choices.

The number of all the possible choices is
(

f
n

)
(n choose f). The number

of ways to choose f valid ballots from a total of n ballots where k of then are

invalid, is
(

f
n − k

)
(choose f votes out of n− k that are valid). So the election

authority cheats successfully with the following probability:

p =

(
f
n − k

)
(

f
n

) =
(n−k)!

f !(n−k−f)!

n!
f !(n−f)!

=
(n−k)!

(n−k−f)!

n!
(n−f)!

Note that f + k < n, so that n − k − f > 0 and (n − k − f)! exists and is not
the special case 0!. If f + k > n then the probability is 0.

In the interest of simplicity, from here we may compute two upper bounds on
the chance that this attack will not be detected:

(n − k)!
n!

× (n − f)!
(n − k − f)!

=
(n − f) × (n − f − 1) × ...(n − f − k + 1)

n × (n − 1) × ... × (n − k + 1)

=
n − f

n
× n − f − 1

n − 1
× ... × n − f − k + 1

n − k + 1

= (1 − f

n
) × (1 − f

n − 1
) × ... × (1 − f

n − k + 1
)

< (1 − f

n
)
k

(n − k)!
(n − k − f)!

× (n − f)!
n!

=
(n − k) × (n − k − 1) × ... × (n − k − f + 1)

n × (n − 1) × ... × (n − f + 1)

=
n − k

n
× n − k − 1

n − 1
× ... × n − k − f + 1

n − f + 1

= (1 − k

n
) × (1 − k

n − 1
) × ... × (1 − k

n − f + 1
)

< (1 − k

n
)
f
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Thus, our upper bound on the probability that the election authority gets
away with malforming k out of n ballots when f of those ballots are audited
is min[(1 − f

n )k, (1 − k
n )f ].

7.4 Second Audit

In order to check that a given ballot receipt was properly printed, one can reen-
crypt it (that is, recompute the commitments) and compare it with the P -matrix.
Suppose n ballots remain unspoiled after the first audit, f are actually used by
voters who later check the commitments, and k of them are improperly printed.
Once again, the upper bound on the probability that none of the misprinted
ballots are detected is min[(1 − f

n )k, (1 − k
n )f ].

7.5 Third Audit

In addition to checking that the ballot is correctly printed, one can also verify
that the recorded ballot mark matches the mark on the receipt. In effect, this
verifies the correctness of P3. Again, if n ballots remain unspoiled after the
first audit, f are actually used by voters who verify that their ballot marks
are correctly recorded online, and k ballots are incorrectly recorded, then the
upper bound on the probability that none of the incorrectly-recorded marks are
detected is min[(1 − f

n )k, (1 − k
n )f ].

7.6 Fourth Audit

The election authority may influence the vote tally by incorrectly decrypting the
ballots. There are two methods we may use for auditing the election authority
to ensure that this does not occur.

Ballot-wise Auditing. Suppose the auditor goes through a D-matrix ballot-
by-ballot (that is, row-by-row) and randomly chooses whether to inspect (open)
the “left” or “right” commitment for each ballot. This situation is different from
the first three audits because all ballots are inspected, but each inspection has
only a 1

2 chance of catching a modification. This makes the situation simpler;
the chance of k modified ballots all escaping detection is 2−k.

Table-wise Auditing. On the other hand, the auditor may choose to open
all the “left” or “right” commitments for a given D-matrix. Assuming that the
election authority intends to cheat during the decryption and is aware of this,
he will put all his cheating in a given D-matrix in either the “left” or “right”
commitment, so that he has a 1

2 chance of escaping detection when that D-matrix
is inspected. If there are n D-matrices, then the chance of escaping detection if
any ballots are incorrectly decrypted is 2−n.

Comparison. Both of these methods have desirable properties. The ballot-wise
method has the feature that the probability of detecting cheating is a function of
the number of ballots cheated on, and increases exponentially with a linear in-
crease in number of cheated ballots. The table-wise method has the feature that
the audit does not reduce the size of the anonymity set created by the shuffle.
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8 Related Work

Verifiable electronic voting has been introduced by David Chaum in 1981
[Cha81]. The first voter verifiable version used visual cryptography [CvdGRV07].
Peter Ryan introduced the candidate permutation idea and developed an im-
proved ballot, much more usable and implementable in a voting system called
Pret-A-Voter [CRS05]. An early stage of PunchScan was analyzed by John
Kelsey [JK07] who came up with an attack based on the fact that the voter
can see the ballot and then decide which page to keep (see Section 3.2).
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Appendix

A Permutations

PunchScan requires two types of permutations to be generated:

– row permutations
– mark permutations

Row permutations refer to the permutations of the rows of the D table and mark
permutation refer to the order in which the positions are associated with marks
on the ballot and to D2 and D4.
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A.1 Row Permutations Generation

Consider an “unshuffled” D-matrix where D1 = [1, 2, . . . 2n], so row x of PDR
represents ballot x across the entire row, and D5 is blank. The election author-
ity should generate this matrix as the first step; call it δ. Generating the row
permutations will therefore take the form of the generation of D1 . . . DnD , where
Di denotes the ith shuffled D-matrix.

The D-matrices will be generated from δ as follows:

1. Randomly shuffle the rows of δ; call this D1.
2. Let D1

5 equal a random shuffling of {1, 2, . . . , 2n}.
3. For each i from 2, 3, . . . , 2n, let Di equal a random shuffling of the rows

of D1.

This involves nD + 1 permutations of {1, 2, . . . , 2n}. It should be clear that if
(y, Di

1) = x and (y, Di
5) = z, then for all j, (y, Dj

1 = x) implies that (y, Dj
5) = z;

in other words, since each row of D1 contains a pointer to a (unique) row (ballot)
of P in D1 and a (unique) pointer to R in D5, reordering its rows does not change
the destination (in R) of any ballot in P .

A.2 Implementation

Permutation Algorithm. We use the following permutation algorithm to
permute the unshuffled matrix. This algorithm generates a permutation π of
1, 2, . . .m, given as input m, some encryption function E, and some key K.

First, create a table with m rows and 2 columns. Populate column 1 of the
table with 1, 2, . . .m and column 2 of the table with EK(1), EK(2), . . . EK(m);
in other words, (i, 2) = EK((i, 1)) for every row i. Next, sort the table according
to column 2. Let π(i) = (i, 1); column 1 is now a permutation of 1, 2, . . .m.

If the key K were generated randomly, and the function E is a good encryption
algorithm, then the permutation output by the algorithm will be random. (That
is, it will preserve any randomness in K.)

Application of the Algorithm. The election authority can use this algorithm
to implement the D-matrix generation algorithm above as follows:

1. Generate a permutation πD1 of 1 . . . 2n. Let D1
1 = δ, sorted by πD1 ; that is,

row x of δ becomes row πD1(x) of D1.
2. Generate a permutation πR of 1 . . . 2n. Let D1

5 = πR.
3. For each i from 2 to nD, create Di by generating a permutation πDi of

1 . . . 2n. Let row y of D1 become row πDi(y) of Di.

A.3 Mark Permutations

The mark permutations, in contrast, are much simpler to generate. In order to
produce all possible associations of candidate names with ballot symbols, it is not
necessary to randomly permute both lists; it is only necessary to cyclically shift
both lists a (different) random amount. So to generate the mark permutations
for ballot x, where the ballot has c candidate names on the top page and c mark
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symbols on the bottom page, the election authority only needs to generate two
random numbers between 1 and c, and record these numbers as P1 and P2 to
indicate the shift distance for the pages of ballot x.

Each D-matrix instance will require its own set of decrypting mark permu-
tations (columns D2 and D4). (It is for this reason that at least the decrypting
mark permutations must be performed after the row permutations.) For each
row of each Di, the election authority generates a random number between 1
and c, and records this number in Di

2. Di
4 is set such that the modular sum of

the ballot’s entries in P1 and P2 equals the sum of its entries in D2 and D4.

Random Number Generation. The permutation algorithm described above
can also be used for the random number generation. The election authority can
compute a permutation π of 1, 2, . . . , c and use π(1) as the random number.

B Commitments

This section describes how the commitments in PunchScan are computed. We
use the comma (“,”) to represent the concatenation operation. There are two
secret AES 128-bit keys, MK1 and MK2, and a public 128-bit constant, C.

B.1 Computing AES Keys

This section requires the use of two 128-bit AES keys. Given message M , let
M128 be the first 128 bits of M (if M is shorter then 128 bits, M will be padded
with trailing zeros); a random key SKm is generated as follows:

SKm = DMK1(C ⊕ EMK2 (C ⊕ EMK1(M128)))

where ⊕ is the XOR operation and E and D are AES Encrypt and Decrypt
EBC NoPadding operations.

B.2 Commitment Algorithm

Given a message M , the commitment to M is computed as follows:

1. Generate a 128-bit AES key Km as described in Section B.1.
2. Encrypt the public constant C with Km, using AES 128-bit ECB NoPadding.

Let the result be SKm = AESKm(C). Note that SKm has 128 bits.
3. Concatenate M with SKm and hash everything using SHA256, resulting in

h1. So, h1 = SHA256(M, SKm).
4. Let h2 = SHA256(M, AESSKm(h1)), where the AES encryption is AES

128bit ECB PKCS#5Padding.
5. The commitment is h1, h2 (h1 concatenated with h2).

We now describe the computation of M for all the commitments needed in
PunchScan.
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M for P1. M is obtained by concatenating the serial number of the ballot to
a constant particular to P1 and with the text on the top page of the ballot.
M = i,“P1”, P1 where i is a string representing the serial number of the ballot,
“P1” is a constant string (capital “P” concatenated with digit “1”) and P1 is
the string in P1 (the string representation of the top page).

M for P2. M is obtained by concatenating the serial number of the ballot to
a constant particular for P2 and with the text on the bottom page of the ballot.
M = i,“P2”, P2 where i is a string representing the serial number of the ballot,
“P2” is a constant string (capital “P” concatenated with digit “2”) and P2 is
the string in P2 (the string representation of the bottom page).

M for rows in D. M is obtained by concatenating all the known values in
a row in D. The known values are: the pointer to the P table (D1), the first
mark permutation (D2), the second mark permutation (D4) and the link to the
R table (D5).
M = D1, D2, D4, D5, each Di being the string representation of a field in D.

M for columns in D. M is obtained by concatenating all the values in the
first column and then concatenating all the values in the second column.

For the leftmost columns:

M = D1,1, D2,1, D3,1, . . . , Dn,1, D1,2, D2,2, D2,3 . . . Dn,2

For the right most columns:
M = D1,4, D2,4, D3,4, . . . , Dn,4, D1,5, D2,5, D2,5 . . . Dn,5

We only need to protect two 128-bit AES keys, MK1 and MK2, in order to
preserve the privacy of the system. The keys can be distributed and recreated
as needed, only when a certain threshold of the participants is present.

Note that the public cannot verify that the AES keys have been generated
in this way, or rather in some other way. Therefore, this system unfortunately
introduces a potential covert channel via the AES keys.



Component Based Electronic Voting Systems

David Lundin

University of Surrey, Guildford, Surrey, GU2 7XH, UK
d.lundin@surrey.ac.uk

Abstract. An electronic voting system may be said to be composed of a
number of components, each of which has a number of properties. One of
the most attractive effects of this way of thinking is that each component
may have an attached in-depth threat analysis and verification strategy.
Furthermore, the need to include the full system when making changes
to a component is minimised and a model at this level can be turned
into a lower-level implementation model where changes can cascade to
as few parts of the implementation as possible.

1 Introduction

It appears that each researcher in the field of Electronic Voting Systems con-
tributes to some particular aspect but re-builds the whole system when they wish
to implement this rather specific contribution. The idea presented in this paper
is that in order to build an e-voting system we simply add certain distinct pieces
together — and in order to improve on a particular system we swap one distinct
piece for another that fits into the same slot. In short, we are proposing that we
start thinking about electronic voting systems as being component based.

A benefit of this thinking is that for each component slot, i.e. a place in a
layer where a component of the system can be slotted in, it is possible to define
the method of assessing the computational complexity of that component as well
as performing a threat analysis. Similarly, it we agree that all components of an
electronic voting system should be verifiable and/or auditable then it is possible
in this configuration to define for each component a method of verification or
audit. When an author then makes changes to one or more components it is
possible to in effect “re-run” checks on those components or to employ the same
verification method on a different component.

1.1 Domains Captured

As the reader goes through the description of the different layers, she may realise
that the components in those layers are not strictly components from a computer
systems design perspective. Instead, the components capture the full spectra of
the design and implementation of an electronic voting system — in other words
they capture the following domains:

– Computer system domain
– Human (user/voter) domain
– Legislative domain

D. Chaum et al. (Eds.): Towards Trustworthy Elections, LNCS 6000, pp. 260–273, 2010.
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We do not make distinctions between components in the hierarchy that we pro-
pose, that is to say that we do not treat components from different domains
differently. To a developer of electronic voting schemes this will be perfectly
natural as her overview of the system is total. When she considers all the com-
ponents then they must all fall into place and completely make up the (correct)
system. In fact, it is the duty of the developer to ensure that a component that
is put forward does fulfill all the requirements on that component.

Others may look differently on the component based electronic voting system.
A programmer (implementer) may look only on those components that are im-
plementable in software. Similarly someone who might be consulted on the legal
implications on the configuration of an electronic voting system may only con-
sider components from the legislative domain. Both these non-developer persons
are examples of people who must be able to trust that the system as a whole de-
pends on each of their respective components and that the configuration of their
components are reflections of the requirements and conform to the restrictions
of those same components.

It is encouraged that a developer of electronic voting systems that conform to
the proposed component based methodology considers the subset of components
that are to be implemented in code and makes available to programmers some
model that binds these together in some lower-level modelling scheme — this is
out of the scope of this paper but seems fairly straightforward in any (favourite)
modelling language.

1.2 Cascading Changes

When a system is considered to be component based we believe that changes can
easily cascade down the different layers, all the way down to the implementation.
In a trivial sense this might simply be that when the developer changes the
structure of a component this automatically becomes a list of changes for the
implementer to make in the actual code. This is likely to be the scope of other
papers in the modelling domain. However, it is easy to see that changes made to
one component will only result in changes to the implementation of that same
component and not to surrounding or distant components, restricting the work
needed to implement the changes.

2 Component Hierarchy

We suggest that an electronic voting system is made up of parts from four
comparatively separable and distinguishable layers, each of which builds on the
services provided by a lower level layer. We propose to name these layers in the
following fashion:

1. Human layer
2. Election layer
3. Computational layer
4. Physical layer
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The physical layer enables the reading in of voter choices and the transfer and
publishing of the same. The computational layer contains that which is chiefly
encapsulated in software and which relies on the physical services of the lower
level. The election level encapsulates all those options and configurations relating
to the election system being implemented by the two lower levels. Finally the
human layer deals with those aspects of the electronic voting system which face
the voters.

Table 1. Layers and components

Layer Components

Human layer Voter registration
Ballot form configuration
Polling station layout and management
Verifiability front-end

Election layer Election method
Election management system
Voter-ballot box communication channel

Computational layer Cryptography scheme
Anonymisation strategy
Tallying procedure

Physical layer Hardware authentication method
Publishing strategy
Transfer method

The layers and components are shown in Table 1. We will now go through
these layers from the bottom up so as to first provide a solid foundation and
then explain how all the aspects of electronic voting systems may fit into this
model.

2.1 Physical Layer

The physical layer is of course the most basic layer as it supports all other layers
with a physical infrastructure to facilitate different hardware based aspects of
the system. We divide the physical layer into the following components:

Hardware authentication method. The different physical components of the
electronic voting system must be identified using some authentication strategy,
for example an asymmetric key pair and a public key infrastructure (PKI) with
established trust among voters.

Publishing strategy. Voter verifiable electronic voting systems depend on the
information that voters need to perform the verification being delivered to them
in a way that they can trust. An observation is that a single source may be an
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unreliable publishing strategy but a combination of web sites and newspapers
and other independent outlets may be more reliable.

Transfer method. All electronic voting systems capture some information
from the voters and transfer it to some repository, be it central or distributed,
before the information is interpreted and tallied. In this slot fits methods for
transporting such digital information from polling stations to such repositories,
for example Secure Socket Layer (SSL) over the Internet or storage on flash
drives that are manually distributed.

2.2 Computational Layer

In the computational layer are defined all the components that are performed
implicitly by software. These include the following components:

Cryptography scheme. The cryptography scheme employed probably under-
pins much of the operation of other components in this layer so there is an
intra-layer dependence. However, the cryptography scheme is more easily de-
fined in its own component after which the other components of this layer (and
others that may rely on it, although restricting the use of the cryptography
scheme to the computational layer only would greatly simplify the definition of
a scheme in this model) may refer to it. One example of this may be where the
cryptography scheme employed is Elgamal and re-encryption mix networks are
used as anonymisation strategy in that component.

Anonymisation strategy. We believe that electronic voting schemes that are
both “receipt free” and voter verifiable must use some anonymisation strategy
to break the link between an encrypted receipt and the plain text vote. This
strategy is captured in this component although it most likely is heavily de-
pendent on the cryptography scheme defined in the previous. However, in some
cases the anonymisation scheme may rely on “any” cryptographic scheme and
so changing the cryptography scheme component does not necessarily interfere
with the anonymisation strategy component. One example of where this is true
is where the anonymisation strategy is a re-encryption mix network. It is logical
that the cryptography scheme may be Elgamal or Paillier and one scheme may
be removed and the other slotted in without this requiring the anonymisation
strategy to change.

Tallying procedure. The tallying procedure component is simply an encapsu-
lation of the procedure and software that performs the tallying of the decrypted
votes. This may seem like a trivial component at first glance but when the com-
ponent properties that we introduce below are considered it appears that a veri-
fication strategy and computational complexity analysis for example is done bet-
ter across this component than across some external “election administration”
software.
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2.3 Election Layer

This layer is very much derived from the laws that govern the election. It seems
likely that when this layer is implemented it may result in some components not
being turned into code and others may be external software. As an example of
the latter we can take that the implementation of a component may actually
be a formal specification of a piece of software that can successfully audit an
election. This is then published and any number of interested parties may write
their own piece of software.

The election layer consists of the following components:

Election method. This component contains a specification of the election
method that is used and into it is placed simply as much information about
the election that is available. If the model is scrutinised as a whole it may be
beneficial to have in one part of it the specification of the election at such a high
level.

Election management system. All schemes require an election to be set up
by some clerks or civil servants — or politicians or some trusted third party.
This component is, much like the previous, incorporated into the model for
completeness although it does require to communicate with other components.

Voter-ballot box communication channel. This may seem like a much more
low-level component but in fact it is included in this layer to enable the high-level
definition of the secrecy of the election. In other words it is possible to describe
here the full procedure that the voter goes through to cast a vote in a way that is
understood not only by the developers of the system but also the general public.
This definition may then be used as reference when other components at lower
levels in the model are composed.

2.4 Human Layer

Although some components in the previous layer have become human readable
and in fact only serve to further the understanding of the lower layers (or, ar-
guably, define the lower layers in a human readable way which then cascades
down) this layer deals with all those aspects of the electronic voting system that
are facing the voter. Therefore the components we expect to find in this layer
are:

Voter registration. The procedure for and timing of voter registration along
with the criteria that makes a voter eligible to register are all enshrined in the
law relevant to the use of the implementation of the modelled system. They
are included in the model in this component so as to provide completeness.
As mentioned in Section 1 the completeness of the system is entrusted to the
electronic voting system developer and so a change in this component must
trigger any necessary changes to other components — and these may of course
be components that are eventually implemented in code.
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Ballot form configuration. The ballot form configuration is very important
in any electronic voting system and it seems likely that this component has links
to other components, for example the cryptography component in the computa-
tional layer.

Polling station layout and management. This is another component that
is directly derived from the applicable national and regional legislation. If the
component is precise, by which we mean it is directly derived from legislation
which sets out exactly the layout and management, then this may dictate the
configuration of other components in the model. If it on the other hand is per-
missive then this would imply that only a few guidelines are given and that if
necessary the layout and management of polling stations may be adapted to suit
the electronic voting system.

Verifiability front-end. To present a unified verifiability front-end to voters
and concerned groups, this components acts to capture the requirements of such
a front-end at a high level and thus restrict other components that must comply
therewith.

2.5 Component Interaction

As has now become abundantly clear it is impossible to make all components of
an electronic voting system fully autonomous — and we simply are not striving
to do that. Instead, by making each component as distinct and autonomous
as possible and then providing links between components we can reach some
compromise between all the good properties brought by a component based
model and the necessity of component interaction.

The links we propose are not communication links as such, in fact we regard
the communication between different implemented components to be modelled
at a lower level. This is supported by the fact that only some components at
this level of abstraction are implemented and only some of those communicate
— in fact some of these components become entangled in an implementation,
for example the cryptography component which is used in an implementation of
the anonymisation strategy component in the computational layer.

The component links that we propose are of only two kinds and each link is a
mono-directional vector. The link carries some fact attached to it and it either
defines a restriction by one component on another or a permission given by one
component to another.

The links are fairly simplistic and can easily be illustrated in a graph, and
example of which is shown in Figure 1. If the underlying fact or facts are coded
in some way (perhaps just a unique numerical reference) within the imposing
component then the link can easily be shown in a graph simply using an arrow
with a name corresponding to that code (reference).
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Fig. 1. Component restriction and permission

3 Component Properties

The components in this model of electronic voting schemes have a number of
properties that can be defined much easier than similar properties for the system
as a whole. The properties that distinguish one component from another include:

3.1 Layer and Slot into Which It Fits

The hierarchy of components is determined before the model is set up for a
particular electronic voting system, and logically declaring the different parts of
“a” system before filling in those slots with a particular implementation does
seem to restrict the developer in some sense but on the other hand it does result
in a system that can be more easily explained and developed. From a verifiability
perspective such a system could also have associated with each component slot
methods for checking that those components are correct.

3.2 Origin, Requirements and Constraints Posed by the Slot

This set of properties describe the requirements on the component which fits
into the slot. As the requirements come from the model, rather than being made
up on the fly by the developer of the component, it is possible to change between
two components.
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3.3 Verification Strategy

In our opinion the electronic voting system research community can no longer
concern itself with systems that are not fully verifiable. In fact, we should re-
serve the term “electronic voting system” for something that is transparent and
verifiable. Thus the requirement on every single component of the component
based electronic voting system is that there exists some verification strategy —
again, in our opinion, a combination of voter verifiability and public verifiability
should be able to cover all components.

This may be one of the most attractive aspects of the component based method-
ology. By providing some overview of the verifiability of each component the de-
veloper can show that the full system is verifiable. By slotting one component out
and another in, the same verification strategy can still be in place, reducing the
work needed to compose a new component for a particular slot.

As an example of this we can mention the anonymisation strategy component
in the computational layer. Let us say that a decryption mix network makes
up this strategy (using the cryptography defined in the cryptography scheme
component). The verification strategy on this component is a variant of zero
knowledge proof. If a developer slots this anonymisation strategy component
out and replaces it with a re-encryption mix network instead, the verification
strategy remains the same.

3.4 Location in the System (Authority-Close or Voter-Close)

A component has a particular position in the system as a whole and this may
be described by whether it is close to the voter and controlled by her or if it is
close to an election authority and controlled by them.

One example of this might be the ballot form component in different versions
of Prêt à Voter. In Prêt à Voter 2005 [1] the ballot form is quite authority-close
in that it is set up by an election authority before the election and this authority
holds all information needed to decrypt the receipt. To combat the chain voting
attack [6] Prêt à Voter 2006 [7] introduces re-encryption mixes whereby the
creation of the decryption information is distributed among a number of trusted
parties. The form is printed on demand by the voter in the booth and can thus
be regarded to be voter-close.

3.5 Threat Analysis

Each component, just as it has a verification strategy, can have a threat analysis
attached to it. This analysis holds for any component that is slotted into the
same place. The output of such a threat analysis is a number of requirements on
the component.

3.6 Computational Complexity Analysis

Seemingly more dependent on the particular component, this property is part of
the computational complexity analysis of the complete system. By decomposing
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the system into smaller parts this analysis also becomes much easier, aiding the
implementation onto hardware.

4 Examples

In this section we apply this model to two already existing schemes, in the
first instance Punchscan [4,2,3] and in the second Prêt à Voter [1,5,6,7]. These
simplistic decompositions are included to illustrate that the model would be
applicable to schemes that already exist and that the further development of
those schemes could be done in a component based methodology.

4.1 Punchscan Decomposed

Punchscan relies heavily on a central election authority to set up, manage and
guarantee the safety, security and reliability of the voting system. The anonymi-
sation strategy can be audited using a zero knowledge proof method.

A simple decomposition of Punchscan is done here. A Punchscan developer
can of course make the decomposition much, much more detailed — at which
point it becomes useful. When the decomposition has been made of course
the continued development of the system is done in the component oriented
methodology.

Human layer

Voter registration. The voter returns a form delivered to her house by local
government. When she is registered a polling card is delivered by post.

Ballot form configuration. The ballot form is made up of two pages, the first
has holes through which the second can be seen. On the first page is printed the
races and the candidates in those races. Next to each candidate can be found a
symbol which matches a symbol on the second page, visible through one of the
holes. To vote the voter marks both pages using a bingo marker (“dauber”) over
the second page symbol which corresponds to the candidate she wishes to vote
for.

Polling station layout and management. When the voter enters the polling sta-
tion her name is checked against the register. She identifies herself using the
polling card.

Verifiability front-end. Voters can check their receipts on a web site as well as in
the local media. The audit of the full election can be viewed online or through
media reports.

Election layer

Election method. The local representative is elected by first past the post and
thus each voter gives her vote to a single candidate.
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Election management system. Before election day the election authority which
oversees the election calls a meeting of election officials and representatives of
the different political parties. In this meeting the election is set up on a diskless
workstation running trusted, audited software. The output of this process is
a database which is kept secret by the election authority for the purpose of
decrypting votes after the election together with instructions to a print company
which will print the ballot forms.

Voter-ballot box communication channel. The voter is allowed to fill out the
ballot form in the privacy of a voting booth. Before leaving the booth she is able
to create the encrypted receipt, making it hard for anyone to capture information
from both layers of the ballot form. The encrypted receipt is scanned (with the
aid of poll station workers) and transmitted electronically.

Computational layer

Cryptography scheme. Although no cryptography as such is used in Punchscan,
the vote is hidden behind a number of random translations that are in turn cap-
tured in a number of interlinked decryption tables. There exists one translation
for each of the two pages in each decryption table (the translation may be “no
translation”) and a number of decryption tables may be linked together.

Anonymisation strategy. The decryption tables are set up in advance such that
when a ballot form is made into an encrypted receipt, the application of all the
translations for that form in all decryption tables reveals the voter’s intention.
In order to anonymise a plaintext vote the full batch of encrypted receipts are
secretly mixed after the application of each decryption table. The decryption is
audited by making the authority commit to the decryption of a batch and then
challenge it to reveal a number (but not all) links between the input and output
batches. By not auditing all links the full link from an encrypted receipt through
to a plaintext vote is broken at some stage.

Tallying procedure. The encrypted receipts are published to the web, the election
authority applies its decryption tables and anonymisation strategy and publishes
the result of each step. When the plaintext votes appear at the end the authority,
and anyone wishing to check the result, can perform the tally.

Physical layer

Hardware authentication method. Each polling station machine is issued a cryp-
tographic key pair and an identity.

Publishing strategy. All encrypted receipts received by the central repository are
published, in some predetermined batch mode, to a publicly accessible read-only
online resource.

Transfer method. Communication between the polling station and the central
repository is encrypted using SSL.
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4.2 Changes to Cryptography Component in Prêt à Voter

In the original Prêt à Voter [1] the cryptography scheme component is RSA,
providing services to the anonymisation strategy component, which consisted of
a decryption mix network. This system suffered from the authority knowledge
(or chain voting) problem [6] and thus the next version [7] slotted in the RSA
cryptography component and slotted in an Elgamal cryptography component.
This new component was able to support a re-encryption mix network in the
anonymisation strategy component and this in turn meant the the ballot form
could be printed on demand in the booth, affecting the ballot form component.

4.3 Using Punchscan Style Ballot Form in Prêt à Voter

Quite interestingly we can show in this section that the “traditional” Prêt à Voter
[1] ballot form is completely interchangeable with the “traditional” Punchscan
[3] ballot form. The ballot form is thus a prime candidate for a component in
the electronic voting system decomposition.

The ballot form in Prêt à Voter, shown in Figure 2, has a randomly ordered
candidate list in the left of two columns. The right column consists of a grid
where the voter marks her choice(s). Below this grid is printed the onion which
encapsulates the order of the candidate list under a number of cryptographic lay-
ers. When the form is torn along a vertical perforation between the two columns
and the left column shredded, the encrypted receipt remains. The onion value
uniquely identifies the ballot form.

The Punchscan ballot form consists of two pages, shown in Figure 3, on the
first of which is printed the candidate list in the canonical order. Next to each
candidate on this page is also printed a symbol which corresponds to the same
symbol shown, through holes in the first page, on the second page. The voter
marks her choice using a bingo marker/dauber. This makes a mark on both
pages at the same time and when one page is randomly selected and the other
shredded, what remains is an encrypted receipt. The ballot form serial number
printed in the top-right corner uniquely identifies the ballot form.

In both schemes the encrypted receipt is scanned and transmitted digitally.
We can now describe both these forms with a component with the following
configuration:

Layer and slot into which it fits. Human layer, Ballot form configuration
slot.

Origin, requirements and constraints posed by the slot. The ballot form
must list the candidates in the race for which it is valid on one half of the form.
The other half must accept the voter’s intention. If the two halves are separated
one remaining half must not reveal the candidate(s) for which the vote was cast
but must be decryptable to reveal this information.

The form must be printed on paper, security paper is permitted. It must be
scannable and shreddable.
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Fig. 2. The Prêt à Voter ballot form

Fig. 3. The Punchscan ballot form

Verification strategy. A reference printed on the form must uniquely identify
it so that the voter may search for it in an online resource after the close of
the election. During the election the voter may also use this reference to audit a
form which will not be used for voting.

Location in the system (authority-close or voter-close). The ballot form
is created in advance by an election authority, distributed under guard to safe-
guard the secret of the form and picked out at random by the voter.

Threat analysis. The ballot form must never be seen by anyone other than
the voter before one half is removed to form the encrypted receipt as this may
remove the system’s coercion resistance [6]. The ballot form is therefore to be
distributed within an envelope that some physical procedure must guarantee
that only the voter may open within the booth.

Computational complexity analysis. Creating the ballot form involves cre-
ating some decryption information, applying it a number of times over and then
printing the form.

5 Discussion

This section provides a quick overview of some of the caveats with the component
based model that we have foreseen.



272 D. Lundin

5.1 Impossible to Have Strict Boundaries between Components

Defining electronic voting schemes as component based systems provides re-
searchers with the opportunity to focus development on a particular component
or to compare two different components that fit the same slot to determine
which is best. However, when the component based model is turned into an im-
plementation there may be complications. If an implementation is made of one
particular component based model and one or more components are changed
in the model then cascading these changes to the implementation may not be
trivial. For example, the implementation of the mixing strategy may be heavily
dependent on the cryptography scheme used and a change of the latter most
likely results in the change of code in the earlier.

5.2 Restrictions on the Developer

Some may wish to make the developer of electronic voting systems completely
without bounds — but this also implies that the developer will have no frame-
work and the structure of the system developed will not be easily decomposed
by others who wish to further the development.

5.3 Requirements Must Come from the Model

A developer of a component may look at the technical contribution of that
component and make up the requirements of the component from that. This
is easy to do but then suddenly the resulting system does not contain com-
ponents that may be re-used or changed easily. Therefore it is important that
the electronic voting system developer looks at the system as a whole and fully
defines the requirements on each component before proceeding to create those
components.

6 Summary

We have presented a first overview of a component based methodology for devel-
oping electronic voting systems. By not changing the complete system we hope
that developers may be encouraged to look in depth on a particular component
or set of components, providing a complete threat analysis as well as verification
strategy for each.
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6. Ryan, P., Peacock, T.: Prêt à voter: a system perspective. Technical Report of

University of Newcastle, CS-TR:929 (2005)
7. Ryan, P.Y.A., Schneider, S.A.: Prêt à voter with re-encryption mixes. In:
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Abstract. Farnel is a voting system proposed in 2001 in which each
voter signs a ballot. It uses two ballot boxes to avoid the association
between a voter and a vote. In this paper we first point out a flaw in
the ThreeBallot system proposed by Rivest that seems to have gone
unnoticed so far: it reveals statistical information about who is winning
the election. Then, trying to resolve this and other flaws, we present a
new, voter-verifiable version of the Farnel voting system in which voters
retain copies of ballot IDs as receipts.

Keywords: security, voting protocols, voter verification, paper-based,
Farnel.

1 Introduction

Secure voting systems are a cornerstone of modern democratic societies. They
can prevent or detect frauds or faults, and so provide accurate results. To increase
transparency in such systems, researchers have been designing voter-verifiable
schemes. These schemes allow the voter to verify whether her vote was taken
into account in the result, but without violating the vote privacy.

Different strategies have been used to design voter-verifiable schemes. Almost
all solutions described in the literature uses cryptography as basis, but the result-
ing protocols are often hard to grasp by a common person. Recently, a new kind
of scheme with verification property was proposed by Rivest [10] - the ThreeBal-
lot voting system. His proposal attempts to satisfy the voter verifiability without
employing cryptography. Many drawbacks, though, have been reported for this
scheme and improvements were incorporated in its newer versions.

In 2001, Custódio [3],[4] proposed a protocol, called Farnel1, in which uses
two ballot boxes and the voters sign ballots. In fact, Rivest uses the concept of
the Farnel to sidestep a flaw in his scheme.

This paper presents a new version of Farnel, which is voter-verifiable. Also,
it points out another flaw in the ThreeBallot scheme which seems to have gone
1 Farnel means basket in Portuguese.
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unnoticed so far; it leaks information. We do this as follows: Section 2 describes
the original Farnel protocol. Section 3 shows how the ThreeBallot protocol leaks
information. Section 4 describes the new Farnel protocol; it inherits some in-
teresting characteristics that can be incorporated to obtain a verifiable voting
system. Section 5 presents an electronic version of our protocol. Finally, Section 6
presents our conclusions.

2 The Original Farnel Scheme

Farnel [3],[4] was conceived to address the problems of a conventional ballot
box. This paper-based scheme requires each voter to sign one ballot. However,
in order to avoid an association between the voter and her ballot, the voter does
not sign her own ballot, but another one chosen at random, as explained below.
This way it is possible to know who the voters were, and any attempt to add,
modify, or delete votes, after the voting period, can be detected.

Initialization phase. Farnel uses two ballot boxes. Before voting starts, the first
ballot box is publicly initialized with ballots filled out and signed by a ballot au-
thority. This set of ballots must represent, with an equal probability, all possible
votes. The second ballot box starts empty.

Voting phase. In order to vote, the voter receives a blank valid ballot (signed
by the ballot authority), makes her choice, and casts the ballot into the first
(pre-initialized) ballot box. Then, through manual or mechanical shuffling, the
first ballot box presents a ballot chosen randomly from its current set of votes to
the voter. After receiving the ballot, the voter signs and drops it into the second
box. This ends the voting process for the voter.

Tallying phase. After the voting period has finished, the ballot authority opens
and signs a second time all the votes of the first ballot box and adds them into
the second box. Then the second box is opened and all ballots are counted. From
this result the ballots from the initialization step are subtracted.

Properties of Farnel. Farnel gives warranties to the voter that her ballot will
be counted, and that the exclusion or the addition of new votes is not possible
after the voting phase. Anyone can, for example, verify that all ballots are signed,
either by the voters or by the precinct. Moreover, everybody can check who voted
without needing the list of voters. The scheme, however, is not voter-verifiable.

3 Information Leakage in the ThreeBallot Voting System

We give a brief description of Rivest’s ThreeBallot voting scheme [10]. It gets its
name from the fact that each ballot consists of three columns, each representing
a full ballot. Each row of the ballot has a candidate name, and a ballot must have
exactly one of the three cells following the candidate name marked. However,
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candidate 1 X X

candidate 2 X

candidate 3 X

Fig. 1. A ballot for candidate 1

the candidate that gets chosen will have two cells marked. For instance, in the
ballot of Figure 1 the voter chose candidate 1.

Then the ballot is cut vertically, separating the three columns. One of the
columns is copied; this is the voter’s receipt. All three columns end up in the
ballot box.

When the voting phase has completed, all votes are tallied. Obviously each
candidate gets one free vote per ballot, so these votes must be subtracted to
obtain the final tally.

There is a flaw with this scheme which is not mentioned in the latest version
dated October 1, 2006; information about the contents of the ballot box is leaking
before the election has finished.

When reading the ThreeBallot paper superficially it may appear that the
secrecy of the ballot is perfect, i.e., that no information leaks. However, each
receipt in fact does reveal a tiny bit of information, so little that it cannot be
used against the voter. But in a large set of receipts statistical pattern do emerge.

The issue is best explained using an extreme example: suppose that candidate
1 gets all the votes and the other two none (we are assuming 3 candidates).
Furthermore, suppose that all voters behave uniformly random with regard to
where they put the marks and which column they choose as a receipt. Finally,
suppose that all voters are willing to show their receipt to some organization
who are at the polling station awaiting people who have just voted.

Counting the number of marks for each candidate (row) on the receipts reveals
information on who is winning the election at that particular polling place. In
this example, the winning candidate can expect 2/3 mark per receipt, whereas
all the others can expect only 1/3 mark per receipt. The information is of a
statistical nature.

To show the effect we wrote a small simulation program. Table 1 shows ten
simulations for an election with three candidates, where 100 receipts have been
collected and candidate 1 gets all the votes. The lines show the number of marks
for each candidate, leaving no doubt at all about who is winning already while
voting is still going on.

In fact we are dealing with two (p, n)-Bernoulli distributions: one with p =
2/3, and the others with p = 1/3. In both cases n=#receipts.

Observe that adding candidates (rows) to the ballot does not help. Adding
columns does, because it flattens the distributions (p = 1/4 vs. p = 2/4; p = 1/5
vs. p = 2/5 etc.), but this is undesirable for practical reasons.

Observe also that a statistical analysis is more difficult if the voters do not
behave randomly and the original scheme is used: the voter chooses which column
to copy.
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Table 1. A simulation of ten elections where every voter votes for candidate 1 and 100
receipts are collected

1 2 3 4 5 6 7 8 9 10

69 73 61 65 65 64 65 65 68 61
34 39 32 37 29 32 30 31 29 34
43 34 31 37 30 37 37 28 26 27

The flaw in the ThreeBallot system is debatable. It is true that the information
obtained from the receipts has the same effect as exit polls. But there is a
difference: not every country has or allows exit polls, and in addition voters
can lie about how they voted, whereas in the threeballot system the receipts
reveal actual information. In an election where the difference of votes among
two candidates is small, for example, the information obtained from the receipts
can certainly influence voters while the election is going on.

4 A Variant of the Farnel Scheme

As presented in Section 2, the Farnel scheme is not voter-verifiable; it just en-
sures, through signatures, that after the voting phase votes cannot be excluded
and that new votes cannot be added. In this Section we present a new paper-
based scheme inspired on Farnel. It also uses two ballot boxes, but does not
depend on signatures. It provides a receipt to the voter, but without leaking
information during the voting phase.

4.1 Prerequisites

The ballot form. The ballot form used is composed of two halves. The first
half is not much different from the layout traditionally used in elections. It is
composed of a list of voting options (including a blank vote option) where next to
each option there is a space to select it. It also contains an identification number
(ID) which identifies the ballot uniquely and associates it to the election. The
second half contains only the same ID (see Section 4.4 for a discussion about
the IDs). The halves are separated by a perforation to allow detachment by the
voter and the IDs are covered by scratch surfaces (see also Figure 2).

The ballot boxes. Two ballot boxes are used. One of them is a conventional
box; however, it must be initialized with filled out, fake ballots (i.e. just the part
that contains the options) before the voting starts (otherwise the first voters
would not have a set of random IDs to choose from).

The other ballot box is able to receive a slip containing an ID, to add it to a
set of already received slips, and to copy l randomly chosen IDs from this set.
To this end we assume that the box has some mechanism to shuffle its contents,
and that copies are made in a memoryless way. The shuffling mechanism, for
example, could be based on a bingo cage. For convenience, we call this special
ballot box Farnel in the text.
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4.2 The Protocol

Initialization phase. In this phase the ballot authority establishes the follow-
ing voting parameters : a number x of initial votes and a number l of IDs that
should be printed on the receipts (see Section 4.4 for a discussion about these
parameters). Moreover, he initializes publicly the ballot boxes. Let’s say that
there are v eligible voters in the election.

Before initializing the ballot boxes, the ballot authority performs a cut-and-
choose process to prove the correct formation of the ballots. For a number 2x
of blank ballots, he takes x ballots at random, detaches their protective layers,
and publishes them; these ballots are no longer used. After that, the authority
holds the other (entire) x blank ballots and tears each of them in two along
the perforation. Next, he marks an option on each of the parts containing the
options, detaches their layers, and casts them into the conventional ballot box.
The options can be selected at random, but each of them should have at least one
vote. The authority then scratches away the layers of the other parts (the slips
that contain copies of the IDs) and casts them into the Farnel ballot box. The
total number of fake votes for each option is published. Finally, the authority
seals both boxes until the voting begins. Note that neither the authority
nor third parties should be able to record or remember the IDs of the
initial votes.

Voting phase. After proving her eligibility to the voting authorities, the voter
receives a blank ballot form. The following steps are performed to cast a vote
and to obtain the receipt (see also Figure 2).

1. (Verifying and filling out the ballot form) The voter scratches away the layer
covering the IDs and matches them (a). If they are equal, she makes her
vote by marking one of the options available (b). We assume that the voter
cannot record or remember the ballot’s ID.

2. (Casting the vote) The voter separates the two parts (c) of the ballot form,
casting the part containing the ballot ID and the options into the conven-
tional ballot box (d). The other part, showing only the ID, is cast into the
Farnel ballot box (e).

3. (Obtaining the receipt) The Farnel ballot box is shuffled (f) and l copies are
produced of IDs which are printed as a receipt to the voter (g).

Tallying phase. In a public session the talliers open the two ballot boxes
and publish their contents on the bulletin board. To compute the results of the
election, all votes are tallied. The fake ballots cast in the initialization phase are
subtracted from the sums yielding the final result.

Ballot verification. Anyone can check on the bulletin board whether each bal-
lot from the conventional ballot box has a corresponding ID in the Farnel ballot
box. In addition, the voters confirm whether their receipts (i.e. the IDs) match
to ballots on the bulletin board. If one ballot and its ID were not published, the
voter can complain by showing her receipt to a voting authority.
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Fig. 2. Main voting steps of the new paper-based scheme

4.3 Security Requirements and the New Paper-Based Scheme

Here we sketch an analysis of our scheme based on the security requirements
normally found in the literature. In this analysis, we supposed that the bulletin
board cannot be compromised.

Accuracy. In our scheme duplication, elimination, substitution, and addition of
votes can be detected. The detection is accomplished by checking the information
published on the bulletin board. Duplicates can be identified by checking if the
IDs of the votes published are unique. Anyone can also detect elimination and
substitution of votes. Every vote on the board should have a corresponding ID
published. Moreover, the voters can independently match their receipts (i.e. the
IDs) to the votes on the board. Note, though, that the detection is probabilistic
since not all votes will have their IDs printed on the receipts. The addition of
votes can be detected through the total number of votes published. The total
should be the sum of the number of initial votes and of the number of voters
that cast their votes.

Privacy. The voter privacy in our scheme is ensured even if she wants to violate
it as follows. An adversary could try to violate the privacy by: obtaining an ID
of a specific vote or extracting information about votes from the receipts.

In the first case, a voter or a voting authority could attempt to remember or
record the ID of a ballot. In order to prevent this, the ballots in our scheme have
their IDs covered by scratch surfaces. We suppose, though, that the voter cannot
remember or record the ID of her own ballot (see Section 4.4 for a discussion
about the IDs).

In the second case, an adversary could ask a voter to point the ID of her vote
on her receipt. As the receipt is composed of a set of IDs chosen at random, the
voter can only try to guess an ID related to her option. Again, we consider that
the voter cannot remember the ID of her own ballot.

Alternatively, the adversary could collect the receipts of most of the voters
and try to determine the votes of the first voters; we call this attack of collecting
receipts. He could explore the fact that the IDs of the first voters are more
probable to appear on the receipts than the IDs of the last ones. To attempt to
determine the votes, the adversary would check the most repeated IDs on the
receipts and match them later to the votes on the board. Note, though, that the
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IDs cast before the election are as probable as the IDs of the first voters and
that the adversary cannot distinguish among them at least as long as there is
one initial vote for each option.

Verifiability. Our scheme can be verified by voters and by third parties. The
IDs on Farnel ballot box aim at verifying the votes on the conventional ballot
box. The publication of the IDs and of the votes allows anyone to verify the
exactness of the voting results.

The voter verifiability in our proposal is different from the normally found in
the literature. Instead of verifying if her own vote is in the final tally, the voter
verifies a small subset of all votes. This is accomplished by matching the IDs on
the receipt to the votes on the board. Note that here the verifiability depends
on the voting parameters.

Voter-verifiable election schemes usually take into account that the voters will
use their receipts to verify their ballots. Karlof et al. [7], though, pointed out that
some voters can discard their receipts. Consequently, an adversary could take
advantage of this and replace votes without being detected. Our scheme employs
two approaches to mitigate this problem. First, each receipt is composed of a set
of IDs and these IDs (or some of them) can be printed in other receipts. This
way, even if a voter discards her IDs, other voters can possibly verify the votes
related to these IDs. Second, the Farnel ballot box maintains the IDs of all votes
and they are also published. This way, it adds redundancy to the verification
process.

4.4 Discussion

We discuss now some aspects inherent to our scheme.

The IDs. The IDs on the ballot form should be easy to compare and difficult to
remember. The voter should compare the IDs to detect a possible malformation
of her ballot (i.e. different IDs) and should not be able to remember it afterwards.
Although these properties seem to be contradictory and difficult to implement,
barcodes could be used to encode IDs and prevent the voters to recall them; the
voter could compare barcodes easily as long as they are thick enough. However,
some voters may not perform the comparison or ignore the malformation of their
ballots.

A better solution is to avoid the voter comparing the IDs of her own ballot.
This way, the ID could be just an alphanumeric string. The drawback is that
malformed ballots would not be detected. To mitigate this, we employ a cut-
and-choose process for auditing the ballots. That is, before receiving a blank
ballot, the voter chooses some random ballots and detaches their scratches to
verify their IDs; these ballots are discarded. As the voter does not remove the
scratches of her own ballot, the Farnel ballot box now needs a special mechanism
to remove the scratch of the slip; the other scratch can be removed in the tallying
phase.
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Fig. 3. Ballot form to prevent chain voting

Chain voting. This is a real threat to our scheme. An adversary can smuggle
a valid blank ballot, mark an option on it, and corrupt a voter to use this ballot.
After voting, the voter returns to the adversary the blank ballot received from
the voting authorities. The adversary now can use the new blank ballot to corrupt
another voter in the same way.Besides the usual chain voting attack, the adversary
here can perform differently. He can obtain a slip containing an ID and corrupt
a voter to use it; the voter gives back the adversary the ID of her own ballot and
the adversary uses this ID to confirm the voter vote in the tallying phase. In both
cases, therefore, the security of the scheme would be compromised.

In order to prevent these attacks, we modify our ballot form. We add a serial
number to the ballot such as Jones [6]. The number is printed over the scratch
surface that covers the ID on the slip. We also change the position of the other ID to
allow the ballot to be folded showing just the scratch surfaces; now it is printed on
the back of the ballot (see Figure 3 for an example of this ballot form). In addition
to the ballot form, the following voting steps of the scheme must be modified. The
authorities should record the serial number of the ballot before giving it to the
voter and should confirm the number before the voter casts her vote. Note that
the scratch containing the serial number should be removed after the authorities
confirm it and that the voter does not compare the IDs on her ballot. As above, we
assume that the scratch is removed by the Farnel ballot box.

The voting parameters. As described before, the voting parameters are com-
posed of the number of initial votes x and the number of IDs l printed on the
receipts. These parameters as well as the number of voters v affect the voter
verifiability. Also, they are related to the privacy, that is, they can facilitate or
not the attack of collecting receipts (see Section 4.3). From these remarks, we
deduce the following:

Considering x much greater than the number of voters v (e.g. 10 times greater),
the IDs cast by the voters will be almost statistically indistinguishable from the
initial IDs. As result, if l is small (e.g. l = 1), an adversary cannot violate the vot-
ers privacy (particularly the privacy of the first voters) by distinguishing among
the voters IDs and the initial IDs from the receipts. A small l, though, affects
the voter verifiability as the chance of detecting problems in the tally decreases.

A v greater than x, on the other hand, results in more IDs of voters on
the receipts even if l is small. Consequently, an adversary has more chance to
distinguish among the voters IDs and the initial IDs. For example, if v = 500,
x = 2, and l = 4, the voters IDs will appear more on the receipts than the initial
ones and this facilitates the distinction.
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Table 2. x - number of initial votes; l - number of IDs on each receipt; 1st ID - prob.
of the 1st ID to appear on at least one of the receipts; Detection - prob. of detecting
an elimination of a vote in the tally by means of the receipts

x 100 300 1000 1500
l 1 2 1 2 3 4 5 4 5 6

1st ID % 83 97 62 86 70 80 87 68 76 82
Detection % 49 66 43 63 60 69 76 61 68 74

Certainly, voter verifiability and privacy in our scheme are related. To measure
the relation of these properties, we performed experiments considering a fix
number of voters v = 500 for different l and x. The experiments show the
probability of the ID cast by the first voter to appear on at least one of the 500
receipts. Also, they show the chance of detecting the elimination of a vote in the
tally through the receipts. Table 2 presents some results of these experiments.

The last votes and the receipts. As described in Section 4.3, the initial IDs
as well as the IDs cast by the first voters have more chance to appear on the
receipts. This way, the votes corresponding to these IDs are more probable to
be verified by the voters. Conversely, the IDs cast by the last voters have less
chance to be printed on the receipts. That is, the probability of an ID2 cast after
ID1 to appear on at least one receipt is less than the probability of ID1 to appear
on the receipts. Thus, considering a number of voters v, and the first and the
last voter, we observe that the ID of the first voter can appear in any of the v
receipts, while the ID of the last voter can appear only in the last receipt.

As the chance of the last IDs to appear on the receipts is less than the chance
of first IDs, an adversary could substitute a vote of one of the last voters without
being detected. Though, the adversary would need to identify these votes before
substituting them. In principle, because the adversary cannot distinguish the
first votes from the last ones, he cannot identify the last votes to replace them.
Hence, the best that the adversary can do is to try to guess the last votes.

On the other hand, by observing most of the receipts, the adversary could
identify the votes that would be possibly verified and substitute only the votes
in which the IDs do not appear on the receipts. We call this attack of substitution
of votes without receipts. As the Farnel box keeps all the IDs that compose the
receipts and these IDs are published on the bulletin board immediately after the
voting, the attack would be detected. However, the adversary can still succeed
if he is able to substitute votes (without receipts) and their corresponding IDs
before they are published.

In order to mitigate the attack, all IDs in the Farnel box should appear on
the receipts. Although this could be achieved by increasing the number of IDs
on the receipts, the IDs of the last voters still would have less chance to appear
on them. As solution, we propose to print a set of receipts at end of the voting.
In other words, after the last voter casts her ID and obtains her receipt, the
Farnel box shuffles its IDs (without receiving an input), prints a predefined
number of receipts, and outputs them. These receipts would be handed to help
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organizations and could be also published on the bulletin board. Alternatively,
the receipts could also be printed during the voting. However, the period defined
for printing should consider the chance of the last votes to appear on the receipts.

Supervising the votes. The ballot design is fundamental for the verification
of votes in our scheme. As presented, it is composed of two halves that have the
same ID. The halves are separated (i.e. by casting the two halves into different
boxes) during the voting phase and in the tallying phase they are associated
(i.e. by publishing the halves) to allow anyone to verify the vote. Still, the ID
printed on the halves may appear on different receipts, so the voters can verify
the corresponding vote independently.

However, due to the verification through the IDs, the talliers must be trust-
worthy. Particularly, from the opening of the conventional ballot box until the
publication of all votes on the bulletin board, the talliers should supervise strictly
the votes. Otherwise, an adversary (e.g. a malicious tallier) may replace votes
without being detected.

Suppose an adversary has access to the set of votes of the conventional ballot
box before the votes are published on the bulletin board. In order to replace a
vote, the adversary smuggles a vote from the set, makes a fake vote for a different
option but using the same ID of the vote smuggled, and includes the fake vote
in the set. This way, after publishing all ballots, the fake vote would appear on
the board instead of the smuggled one.

This attack would undermine the security of the scheme. Because votes are
verified through the IDs, voters and third parties would not detect the replace-
ment of the original vote by the fake one. However, the attack can be defeated by
using a ballot design in which the receipt part includes some information about
the option selected. We leave this ballot design as future work.

5 An Electronic Version of the Paper-Based Scheme

We now introduce an electronic version of the scheme presented in the previous
Section. It uses commitments as the IDs, which are constructed by a voting
machine (DRE). Also, it uses a special ballot box which accepts a ballot ID and
hands out copies of other ballot IDs.

5.1 Building Blocks

Threshold El Gamal Cryptosystem. As a basis for the scheme we employ
the El Gamal public key cryptosystem [5] under a subgroup of order q of Z∗

p ,
where p and q are large primes and q|p − 1. More specifically, we require a
threshold variant, as described by Cramer et al. [2].

We use the following notation: T is an El Gamal public key corresponding
to a secret key ̂T , while ET (i, s) is the El Gamal encryption of a message i
constructed with T and a random number s ∈R Zq, and D

̂T (i) is the El Gamal
decryption of i.
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Mix Net. In order to make messages anonymous during the tallying phase, we
employ a mix net. This primitive was introduced by Chaum [1] and further im-
proved by many others authors. Specifically, we require a verifiable reencryption
mix net such as the proposal of Neff [8].

Commitment scheme. Another cryptographic primitive is a commitment
scheme, which must be homomorphic and will be used to commit to the vot-
ing options. We use the El Gamal cryptosystem for this purpose. Though, the
Pedersen commitment [9] could be also employed.

Cut-and-choose. We employ a cut-and-choose process to prove the voter that
her vote was correctly formed by the voting machine. This is accomplished in a
similar way to Lee et al. [11]. Especially, the voting machine makes a number
of El Gamal ciphertexts and presents them to the voter; she then selects some
ciphertexts at random for verification and the machine opens them by revealing
the random numbers employed.

5.2 Prerequisites

The ballot. The ballot is constructed by the voting machine and is presented
to the voter. It contains each possible option and some encrypted stuff next to
it: each option i is associated to two commitments, as follows: 〈i, commit(i, ri1),
commit(i, ri2)〉 for ri2, ri1 ∈R Zq. In particular, each commitment is represented
by: commit(i, r) = 〈ET (i, s1), ET (r, s2), EM (ir, s3)〉 for r, s1, s2, s3 ∈R Zq. Here
r is chosen uniformly at random from Zq, and ir is the product of i and r, while
(T ,̂T ) stands for the El Gamal keys of the talliers, and (M ,̂M) stands for the
keys of the special ballot box which uses the same El Gamal modulus.

The special ballot box. The paper-based scheme from the previous Section
requires a ballot box that receives a ballot ID, shuffles its contents, and output
copies of randomly chosen IDs. Here our special ballot box is initialized with a
set of encrypted IDs which it keeps in a private list, L. It receives an enciphered
ID, adds it to L, decrypts some random elements from L, and prints the result
on the receipt. Elements selected are not deleted from the list, though.

There are four parties involved in our scheme:

Voters. The voters cast votes and receive receipts for checking data later. Each
receipt is composed of three parts: the ballot (with commitments and hidden
commitments) and some decommitments, the commitment of the option
chosen, and some plaintexts from the list L.

Voting machine (DRE). The voting machine generates ballots, makes the
first two parts of the receipts, and publishes commitments on the bulletin
board.

Special ballot box. It holds a private list of encryptions L and acts as de-
scribed before. It has a barcode reader and receives new ciphertexts through
this reader. It also prints the last part of the receipt.
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Tallying authorities. These authorities are responsible for running a mix net,
and for decrypting and counting the votes. They also define the number of
initial votes and generates them; in addition, they define the number of votes
that each voter verifies. They hold the keys T ,̂T . We suppose that a subset
of the talliers are trustworthy.

5.3 The Protocol

Initialization phase. In this phase, the following parameters of the voting are
established and published on the bulletin board: the voting options (or candi-
dates), the number of initial votes, the number of IDs that should be printed on
the receipt. Let’s say that there are m options i (i = 1, · · · , m), a number x of
initial votes, and a number l of IDs printed on the receipt.

The talliers generate the initial votes according to x and to the commitment
scheme explained before. Then the talliers publish commitments of the form:
commit(i, r) = 〈ET (i, s1), ET (r, s2), EM (ir, s3)〉 for different r, s1, s2, s3 ∈R Zq

in each commitment. The values EM (ir, s3) are handled by the special ballot
box as its private list L of encryptions.

Voting phase. After proving her eligibility to the voting authorities, the voter
is allowed to interact with the DRE in the voting booth. The following steps are
executed to cast a vote and to obtain the receipt. Figures 4 and 5 exemplify the
scheme for three voting options.

1. (Generating the ballot). For each option i (i = 1, · · · , n), the DRE generates
the triple: 〈i, commit(i, ri1), commit(i, ri2)〉 for ri2, ri1 ∈R Zq. As described
before, each commitment is composed of: 〈ET (i, s1), ET (r, s2), EM (ir, s3)〉
for r, s1, s2, s3 ∈R Zq. After that, the DRE prints the ballot on the receipt
(a). Here as well as in the next two steps the ballot is not shown to the voter.

2. (Opening some commitments). The voter informs the DRE to open the first
or the second commitment for each option i. After this, the DRE opens
the corresponding commitments (b). In other words, for a commitment
〈ET (i, s1), ET (r, s2), EM (ir, s3)〉 already printed on the receipt, the DRE
prints r, s1, s2, s3 on the receipt as decommitment.

3. (Voting). In order to vote, the voter informs her option i and the DRE prints
the corresponding, not opened, commitment on the receipt (c). In particular,
the DRE prints 〈ET (i, s1), ET (r, s2), EM (ir, s3)〉.

4. (Verifying the ballot). Now, the DRE shows the receipt (A) to the voter.
The voter should verify if the commitments selected were opened and if the
commitment corresponding to her vote was printed. If the receipt is cor-
rect, the voter confirms her vote. The DRE then prints a stripe on the not
opened commitments of the ballot to erase them. She also prints the bar-
code of EM (ir, s3) of the voter’s vote and adds a digital signature to the
receipt; the voter holds this receipt (B). The other elements of the vote,
〈ET (i, s1), ET (r, s2)〉, are sent to the bulletin board.
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Fig. 4. Parts I and II of the receipt. A - the receipt that the voter verifies; B - the
receipt that the voter holds.

Fig. 5. The last part of the receipt

5. (Obtaining the last part of the receipt). Using the barcodes reader, the voter
adds EM (ir, s3) to the special ballot box (d). The box writes EM (ir, s3) to
its private list L. Then, it chooses y elements at random from L, decrypts
them, and prints the results on the receipt (e). In doing so the elements are
not deleted from L. Figure 5 illustrates this step.

Tallying phase. After the election, the talliers send all pairs of encryptions
published on the bulletin board, 〈ET (i, s1), ET (r, s2)〉, to a mix net. The mix
net shuffles the pairs and publishes them on the bulletin board. After this, the
talliers cooperate to decrypt the pairs to obtain the options i and the random
numbers r. The talliers then multiply i and r, and publish the triples 〈i, r, ir〉 on
the bulletin board. To compute the elections results, all votes from the voting
phase (i.e. the i’s) are counted and from this result are subtracted the fake votes
generated in the setup phase.

Ballot verification. The voter receives a receipt composed of three parts. The
first part, which contains the ballot (with commitments and hidden commit-
ments) and the decommitments, is used to verify the construction of the ballot.
This may be accomplished by a helper organization through a computer. It con-
structs the commitments from the decommitment values of the receipt and then
checks if the resulting commitments match the commitments printed on the
receipt.
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The second part of the receipt, which contains the commitment of the option
chosen, is used to check if the commitment of the receipt appears on the bulletin
board.

The third part of the receipt contains a list of ir to verify if the values ir
match the values published by the talliers on the board.

6 Conclusion

We have presented a flaw in the ThreeBallot voting system and a new version of
the Farnel protocol which is voter-verifiable. Also, we have shown an electronic
scheme based on the new proposal.

Our schemes introduce a new way to verify votes: the voter does not verify
her own vote, but copies of a subset of votes cast so far. More precisely, the
voter receives copies of some randomly selected ballot IDs. These are used later
to compare with the IDs of the ballots published on the bulletin board.

The paper-based version relies on trustworthy talliers and on a special ballot
box that can shuffle and copy receipts. Although trustworthy talliers may be a
strong requisite, this requisite is not necessary as long as the receipts contain
some information related to the options selected. Receipts with this property,
though, depends on a new ballot design and are subject of future work.

We have used the paper-based version to model the electronic scheme. The
proposal works as expected and (differently from the paper-based scheme) pro-
duces receipts connected with the options chosen, but it has several drawbacks.
Especially, it requires a verifiable mix net in the tallying phase and the spe-
cial ballot box must be reliable. We believe, though, that this scheme can be
improved and are working in this direction.
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Abstract. While electronic elections promise the possibility of conve-
nient, efficient and secure facilities for recording and tallying votes, recent
studies have highlighted inadequacies in implemented systems. These in-
adequacies provide additional motivation for applying formal methods
to the validation of electronic voting protocols.

In this paper we report on some of our recent efforts in using the ap-
plied pi calculus to model and analyse properties of electronic elections.
We particularly focus on anonymity properties, namely vote-privacy and
receipt-freeness. These properties are expressed using observational equiv-
alence and we show in accordance with intuition that receipt-freeness
implies vote-privacy.

We illustrate our definitions on two electronic voting protocols from
the literature. Ideally, these properties should hold even if the election
officials are corrupt. However, protocols that were designed to satisfy
privacy or receipt-freeness may not do so in the presence of corrupt
officials. Our model and definitions allow us to specify and easily change
which authorities are supposed to be trustworthy.

1 Introduction

Electronic voting protocols. Electronic voting promises the possibility of a conve-
nient, efficient and secure facility for recording and tallying votes. It can be used
for a variety of types of elections, from small committees or on-line communities
through to full-scale national elections. Electronic voting protocols are formal
protocols that specify the messages sent between the voters and administrators.
Such protocols have been studied for several decades. They offer the possibility
of abstract analysis of the voting system against formally-stated properties.

In this paper, we recall some existing protocols which have been developed
over the last decades, and some of the security properties they are intended
to satisfy. We focus on privacy-type properties. We present a framework for
analysing those protocols and determining whether they satisfy the properties.
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Properties of electronic voting protocols. Some properties commonly sought for
voting protocols are the following:

– Eligibility: Only legitimate voters can vote, and only once.
– Fairness : No early results can be obtained which could influence the remain-

ing voters.
– Individual verifiability: A voter can verify that her vote was really counted.
– Universal verifiability: The published outcome really is the sum of all the

votes.
– Vote-privacy: The fact that a particular voter voted in a particular way is

not revealed to anyone.
– Receipt-freeness : A voter does not gain any information (a receipt) which

can be used to prove to a coercer that she voted in a certain way.
– Coercion-resistance: A voter cannot cooperate with a coercer to prove to

him that she voted in a certain way.

The last three of these are broadly privacy-type properties since they guarantee
that the link between the voter and her vote is not revealed by the protocol.
The weakest of the three, called vote-privacy, roughly states that the fact that a
voter voted in a particular way is not revealed to anyone. Receipt-freeness says
that the voter does not obtain any artefact (a “receipt”) which can be used
later to prove to another party how she voted. Such a receipt may be inten-
tional or unintentional on the part of the designer of the system. Unintentional
receipts might include nonces or keys which the voter is given during the proto-
col. Receipt-freeness is a stronger property than privacy. Intuitively, privacy says
that an attacker cannot discern how a voter votes from any information that the
voter necessarily reveals during the course of the election. Receipt-freeness says
the same thing even if the voter voluntarily reveals additional information.

Coercion-resistance is the third and strongest of the three privacy properties.
Again, it says that the link between a voter and her vote cannot be established
by an attacker, this time even if the voter cooperates with the attacker during
the election process. Such cooperation can include giving to the attacker any
data which she gets during the voting process, and using data which the attacker
provides in return. When analysing coercion-resistance, we assume that the voter
and the attacker can communicate and exchange data at any time during the
election process. Coercion-resistance is intuitively stronger than receipt-freeness,
since the attacker has more capabilities.

Verifying electronic voting protocols. Because security protocols in general are
notoriously difficult to design and analyse, formal verification techniques are
particularly important. In several cases, protocols which were thought to be
correct for several years have, by means of formal verification techniques, been
discovered to have major flaws. Our aim in this paper is to use and develop
verification techniques, focusing on the three privacy-type properties mentioned
above. We use the applied pi calculus as our basic modelling formalism [2], which
has the advantages of being based on well-understood concepts. The applied pi
calculus has a family of proof techniques which we can use, and it is partly
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supported by the ProVerif tool [5]. Moreover, the applied pi calculus allows
us to reason about equational theories in order to model the wide variety of
cryptographic primitives often used in voting protocols.

As it is often done in protocol analysis, we assume the Dolev-Yao abstraction:
cryptographic primitives are assumed to work perfectly, and the attacker controls
the public channels. The attacker can see, intercept and insert messages on
public channels, but can only encrypt, decrypt, sign messages or perform other
cryptographic operations if he has the relevant key. In general, we assume that
the attacker also controls the election officials, since the protocols we investigate
are supposed to be resistant even if the officials are corrupt. Some of the protocols
explicitly require a trusted device, such as a smart card; we do not assume that
the attacker controls those devices.

Outline of the paper. In Section 2, we recall the basic ideas and concepts of the
applied pi calculus. Next, in Section 3, we present the framework for formalising
voting protocols from the literature, and in Section 4 we show how two of our
three privacy-like properties are formalised, namely vote-privacy and receipt-
freeness. (We omit the formalisation of coercion-resistance for reasons of space;
see [9].) In Sections 5 and 6, we recall two voting protocols from the literature,
and show how they can be formalised in our framework. We analyse which of the
properties they satisfy. This paper summarises and provides a taster for a much
longer paper currently being submitted to the Journal of Computer Security [9].
In this paper we intend to give the flavour of our work without going into great
detail.

2 The Applied pi Calculus

The applied pi calculus [2] is a language for describing concurrent processes and
their interactions. It is based on an earlier language called the pi calculus, which
has enjoyed a lot of attention from computer scientists over the last decades
because of its simplicity and mathematical elegance. The applied pi calculus is
intended to be much richer than the pi calculus, while keeping its mathematical
rigour, and is therefore more convenient to use in real applications. The applied
pi calculus is similar to another pi calculus derivative called the spi calculus [3],
but the spi calculus has a fixed set of primitives built-in (symmetric and public-
key encryption), while the applied pi calculus allows one to define a wide class of
primitives by means of an equational theory. This is useful in electronic voting
protocols, where the cryptography is often sophisticated and purpose-built. The
applied pi calculus has been used to study a variety of security protocols, such
as a private authentication protocol [11] or a key establishment protocol [1].

2.1 Syntax and Informal Semantics

Messages. To describe processes in the applied pi calculus, one starts with a
infinite set of names (which are used to name communication channels or other
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atomic data), an infinite set of variables, and a signature Σ which consists of
the function symbols which will be used to define terms. In the case of secu-
rity protocols, typical function symbols will include enc for encryption, which
takes plaintext and a key and returns the corresponding ciphertext, and dec
for decryption, taking ciphertext and a key and returning the plaintext. Terms
are defined as names, variables, and function symbols applied to other terms.
Terms and function symbols are sorted, and of course function symbol appli-
cation must respect sorts and arities. When the set of variables occurring in a
term T is empty, we say that T is ground.

Example 1. Let Σ = {enc, dec}, where enc and dec are each of arity 2. Suppose
a, b, c are names (perhaps representing some bitstring constants or keys), and
x, y, z are variables. Then enc(a, b) is a ground term (which represents the en-
cryption of a using the key b). The term dec(enc(a, b), y) is also a term (but not
a ground term), representing the decryption by y of the result of encrypting a
with b. The symbols enc and dec may be nested arbitrarily.

By the means of an equational theory E we describe the equations which hold on
terms built from the signature. We denote =E the equivalence relation induced
by E. Two terms are related by =E only if that fact can be derived from the
equations in E.

Example 2. A typical example of an equational theory useful for cryptographic
protocols is dec(enc(x, y), y) = x. In this equational theory, we have that the
terms T1 := dec(enc(enc(n, k), k′), k′) and T2 := enc(n, k) are equal, i.e. T1 =E T2,
while obviously the syntactic equality T1 = T2 does not hold.

Equational theories are the means by which we represent cryptographic oper-
ations. We do not model the mechanisms (whether bitstring manipulation or
numerical calculation) that constitute the cryptographic operations. Rather, we
model the behaviour they are designed to exhibit. Thus, stipulating the equa-
tion dec(enc(x, y), y) = x models symmetric encryption. In the model terms are
unequal unless they can be proved equal by the equations. This means that the
only way of recovering x from enc(x, y) is by the application of dec(·, y) (and in
particular, the agent that makes that application is required to know the key y).

If M and N are terms, then the pair (M, N) is a term, and from it may be
extracted the components M and N . Formally, this requires us to introduce the
binary “pairing” function (·, ·) and the projection functions proj1 and proj2, but
usually we don’t bother with that and keep the equational theory for pairs (and
tuples of any finite length) implicit.

Processes. In order to model the dynamic part of protocols, we require pro-
cesses. In applied pi, there are two kinds of processes, namely plain processes,
denoted by P , Q, R and extended processes, denoted by A, B, C. In the gram-
mar described below, M and N are terms, n is a name, x a variable and u is a
metavariable, standing either for a name or a variable.
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P, Q, R := plain processes
0
in(u, x).P
out(u, N).P
if M = N then P else Q
P | Q
!P
νn.P

A, B, C := extended processes
P
A | B
νn.A
νx.A
{M/x}

The process 0 is the plain process that does nothing. The process in(u, x).P
waits to receive a message on the channel u, and then continues as P but with x
replaced by the received message. The process out(u, N).P outputs a term N on
the channel u, and then continues as P . The process if M = N then P else Q
runs as P if the ground terms M and N are equal in the equational theory, and
otherwise as Q. If there is no “else”, it means “else 0”. The process P | Q runs P
and Q in parallel. The process !P executes P some finite number of times. The
restriction νn is used to model the creation in a process of new random numbers
(e.g., nonces or key material), or of new private channels. The process νn.P is
the process that invents a new name n and continues as P .

Extended processes add active substitutions (the process {M/x}), restriction
on names νn, and restriction on variables νx. Active substitutions are the nota-
tion that is used to denote a process that has output a term. Consider the process
out(c, N).P , where c is a channel name, N is some term, and P is some continu-
ation process. If out(c, N).P is allowed to run in an environment, it will become
the process P | {N/x}, which means the process that can now run as P , and has
output the term N . We do not retain the name of the channel name c, but we
do give a handle name, here x, to the value that was output. The environment
may now refer to the term N as x.

The handle x is important when the environment cannot itself describe the
term that was output, except by referring to it as the term that was output
(i.e., by the handle x). Consider the process νk.out(c, enc(a, k)).P which cre-
ates a new key k and then outputs the name a encrypted with k. Here, a
is a “free name” (modelling some well-known value) rather than a restricted
name (like k) that was created by the process using the ν operator. The process
νk.out(c, enc(a, k)).P can output the term on the channel c, resulting in the pro-
cess νk.(P | {enc(a,k)/x}). In this process, the environment has the term enc(a, k),
but it doesn’t have k since the process hasn’t output k. The environment can
refer to the term enc(a, k) as x.

The syntax of extended processes also allows restriction νx on variables x. The
combination of νx and active substitutions generalise the familiar “let” operator
from many functional programming languages. We define “let x = M in P” as
an abbreviation of νx.({M/x} | P ).

A process can perform an input and then test the value of the input for
equality (modulo E) with some other term; for example, in(u, x). if x = M
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then P . Suppose that after checking the input the process makes no further use
it (i.e., x does not occur in P ). This idiom is quite common, so we abbreviate it
as in(u, =M).P .

An evaluation context C[ ] is an extended process with a hole instead of
an extended process; this is useful for describing part (e.g. the beginning) of a
process, while leaving the hole to represent the other part that will be filled in
later. Names and variables have scopes, which are delimited by restrictions νx
and νn, and by inputs in(u, x). We write fv (A), bv(A), fn(A) and bn(A) for the
sets of free and bound variables and free and bound names of A, respectively.
We also stipulate that, in an extended process, there is at most one substitution
for each variable, and there is exactly one when the variable is restricted. We say
that an extended process is closed if all its variables are either bound or defined
by an active substitution.

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined by
structural rules defining two relations: structural equivalence, noted ≡, and in-
ternal reduction, noted →.

Structural equivalence takes account of the fact that the syntax of processes
necessarily makes distinctions that are not important. For example, P | Q looks
different from Q | P but that difference is purely syntactic, and not important,
so we say that P | Q and Q | P are structurally equivalent. Formally, structural
equivalence is the smallest equivalence relation ≡ on extended processes that is
closed under α-conversion on names and variables (that is, renaming a bound
name or variable), application of evaluation contexts, and some other standard
rules such as associativity and commutativity of the parallel operator and com-
mutativity of the bindings. In addition the following three rules are related to
active substitutions and equational theories.

νx.{M/x} ≡ 0
{M/x} | A ≡ {M/x} | (A{M/x})

{M/x} ≡ {N/x} if M =E N

where, in the second equivalence, A{M/x} means A but with free occurrences
of x replaced by M . Note the absence of the |. In A{M/x}, the substitution is
not an active substitution, but a normal “metasyntactic” substitution; it tells
the reader to perform the substitution.

Example 3. Consider the following process P :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the message enc(s, k) by sending it on c1. The
second receives a message on c1, uses the secret key k to decrypt it, and forwards
the resulting plaintext on c2. The process P is structurally equivalent to the
following extended process A:

A = νs, k, x1.
(
out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1}

)
.
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Internal reduction is the smallest relation on extended processes closed under
structural equivalence and application of evaluation contexts such that

(Comm) out(a, x).P | in(a, x).Q → P | Q
(Then) if M = M then P else Q → P
(Else) if M = N then P else Q → Q

for any ground terms M and N such that M �=E N .

This definition looks more restrictive than it is, thanks to structural equivalence.
It is straightforward to prove that out(a, M).P | in(a, x).Q → P | Q{M/x} and
if M = N then P else Q → P in the case that M =E N .

The applied pi calculus has another kind of transition operation, called labelled
reduction, denoted α−→, where α is a label. We don’t define that formally here,
but refer the reader to our full paper [9] or the applied pi calculus paper [2].

2.3 Observational Equivalence

Now we are able to define observational equivalence. This relation is important
to understand how properties are defined in applied pi calculus. We write A ⇓ a
when A can send a message on a, that is, when A →∗ C[out(a, M).P ] for some
evaluation context C[ ] that does not bind a.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R
between closed extended processes with the same domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a;
2. if A →∗ A′, then B →∗ B′ and A′ R B′ for some B′;
3. C[A] R C[B] for all closing evaluation contexts C[ ].

Intuitively, two processes are observationally equivalent if they cannot be distin-
guished by any active attacker represented by any context.

Example 4. Let E be the theory defined by the axiom dec(enc(x, y), y) = x.
Consider the processes P0 = out(c, enc(s0, k)) and Q0 = out(c, enc(s1, k)). We
have that νk.P0 ≈ νk.Q0; intuitively, the attacker cannot distinguish between
the encryption of two known values s0 and s1 where the encryption is by a
secret key. Technically, there is no context C that, given these processes, can
distinguish them, e.g., by taking some observable action in the case of P0 but
not in the case of Q0. If the key k is available to the attacker, of course the
situation changes. We have P0 �≈ Q0, since the context

C[ ] = in(c, x). if dec(x, k) = s0 then out(c, “Found s0!”) |

distinguishes P0 and Q0.

Observational equivalence can be used to formalise many interesting security
properties, in particular anonymity properties, such as those studied in this
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paper (see Section 4). However, proofs of observational equivalences are difficult
because of the universal quantification over all contexts. In [9], our definitions
and proofs rely on labelled bisimulation which has been shown to coincide with
observational equivalence [2]. Labelled bisimulation has the advantage of being
more convenient to manipulate in proofs. Its definition relies on two further
notions: static equivalence and labelled reduction. To avoid additional definitions
and ease the presentation we stick to observational equivalence in this paper.

3 Formalising Voting Protocols

Before formalising security properties, we need to define what is an electronic
voting protocol in applied pi calculus. Different voting protocols often have sub-
stantial differences. However, we believe that a large class of voting protocols
can be represented by processes corresponding to the following structure.

Definition 2 (Voting process). A voting process is a closed plain process

VP ≡ νñ.(V σ1 | · · · | V σn | A1 | · · · | Am).

V is the template voter process, and the V σi are the actual voter processes (the
substitution σi provides the voter’s identity). The Ajs are the election authorities
that are required to be honest and the ñ are channel names. We also suppose that
v ∈ dom(σi) is a variable which refers to the value of the vote. We define an
evaluation context S which is as VP, but has a hole instead of two of the V σi.

In order to prove a given property, we may require some of the authorities to be
honest, while other authorities may be assumed to be corrupted by the attacker.
The processes A1, . . . , Am represent the authorities which are required to be
honest. The authorities under control of the attacker need not be modelled,
since we consider any possible behaviour for the attacker (and therefore any
possible behaviour for corrupt authorities). This arrangement implies that we
consider only one attacker; to put in another way, we consider that all dishonest
parties and attackers share information and trust each other, thus forming a
single coalition. This arrangement does not allow us to consider attackers that
do not share information with each other.

4 Formalising Privacy-Type Properties

In this section, we show how the anonymity properties, informally described in
the introduction, can be formalised in our setting. Actually, it is rather classical
to formalise anonymity properties as some kind of observational equivalence in a
process algebra or calculus, going back to the work of Schneider and Sidiropou-
los [15]. However, the definition of anonymity properties in the context of voting
protocols is rather subtle.
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4.1 Vote-Privacy

The privacy property aims to guarantee that the link between a given voter V
and his vote v remains hidden. While generally most security properties should
hold against an arbitrary number of dishonest participants, arbitrary coalitions
do not make sense here. Consider for instance the case where all but one voter
are dishonest: as the results of the vote are published at the end, the dishonest
voter can collude and determine the vote of the honest voter. A classical device
for modelling anonymity is to ask whether two processes, one in which VA votes
and one in which VB votes, are equivalent. However, such an equivalence does
not hold here as the voters’ identities are revealed (and they need to be revealed
at least to the administrator to verify eligibility). In a similar way, an equivalence
of two processes where only the vote is changed does not hold, because the votes
are published at the end of the protocol. To ensure privacy we need to hide the
link between the voter and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that
at least two voters are honest. We denote the voters VA and VB and their
votes a and b. We say that a voting protocol respects privacy whenever a pro-
cess where VA votes a and VB votes b is observationally equivalent to a process
where VA votes b and VB votes a. Formally, privacy is defined as follows.

Definition 3. A voting protocol respects vote-privacy (or just privacy) if

S[VA{a/v} | VB{b/v}] ≈ S[VA{b/v} | VB{a/v}]
for all possible votes a and b.

The intuition is that if an intruder cannot detect if arbitrary honest voters VA

and VB swap their votes, then in general he cannot know anything about how VA

(or VB) voted. Note that this definition is robust even in situations where the
result of the election is such that the votes of VA and VB are necessarily revealed.
For example, if the vote is unanimous, or if all other voters reveal how they voted
and thus allow the votes of VA and VB to be deduced.

As already noted, in some protocols the vote-privacy property may hold even
if authorities are corrupt, while other protocols may require the authorities to
be honest. When proving privacy, we choose which authorities we want to model
as honest, by including them in Definition 2 of VP (and hence S).

4.2 Receipt-Freeness

Similarly to privacy, receipt-freeness may be formalised as an observational
equivalence. However, we need to model the fact that VA is willing to provide
secret information, i.e., the receipt, to the coercer. We assume that the coercer
is in fact the attacker who, as usual in the Dolev-Yao model, controls the public
channels. To model VA’s communication with the coercer, we consider that VA

executes a voting process which has been modified: inputs and freshly generated
names of base type (i.e. not channel type) are forwarded to the coercer. We do
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not forward restricted channel names, as these are used for modelling purposes,
such as physically secure channels, e.g. the voting booth, or the existence of a
PKI which securely distributes keys (the keys are forwarded but not the secret
channel name on which the keys are received).

Definition 4. Let P be a plain process and ch be a channel name. We define
the process P ch as follows:

– 0ch = 0,
– (P | Q)ch = P ch | Qch,
– (νn.P )ch = νn.out(ch, n).P ch when n is name of base type,
– (νn.P )ch = νn.P ch otherwise,
– (in(u, x).P )ch = in(u, x).out(ch, x).P ch when x is a variable of base type,
– (in(u, x).P )ch = in(u, x).P ch otherwise,
– (out(u, M).P )ch = out(u, M).P ch,
– (!P )ch = !P ch,
– (if M = N then P else Q)ch = if M = N then P ch else Qch.

In the remainder, we assume that ch �∈ fn(P )∪ bn(P ) before applying the trans-
formation. Given an extended process A and a channel name ch, we need to
define the extended process A\out(ch,·). Intuitively, such a process is as the pro-
cess A, but hiding the outputs on the channel ch.

Definition 5. Let A be an extended process.

A\out(ch,·) =̂ νch.(A |!in(ch, x)).

We are now ready to define receipt-freeness. Intuitively, a protocol is receipt-free
if, for all voters VA, the process in which VA votes according to the intruder’s
wishes is indistinguishable from the one in which she votes something else. As in
the case of privacy, we express this as an observational equivalence to a process
in which VA swaps her vote with VB , in order to avoid the case in which the
intruder can distinguish the situations merely by counting the votes at the end.
Suppose the coercer’s desired vote is c. Then we define receipt-freeness as follows.

Definition 6 (Receipt-freeness). A voting protocol is receipt-free if there ex-
ists a closed plain process V ′ such that

– V ′\out(chc,·) ≈ VA{a/v},
– S[VA{c/v}chc | VB{a/v}] ≈ S[V ′ | VB{c/v}],

for all possible votes a and c.

As before, the context S in the second equivalence includes those authorities
that are assumed to be honest. V ′ is a process in which voter VA votes a but
communicates with the coercer C in order to feign cooperation with him. Thus,
the second equivalence says that the coercer cannot tell the difference between
a situation in which VA genuinely cooperates with him in order to cast the
vote c and one in which she pretends to cooperate but actually casts the vote a,
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provided there is some counterbalancing voter that votes the other way around.
The first equivalence of the definition says that if one ignores the outputs V ′

makes on the coercer channel chc, then V ′ looks like a voter process VA voting a.
The first equivalence of the definition may be considered too strong. Infor-

mally, one might consider that the equivalence should be required only in a
particular S context rather than requiring it in any context (with access to all
the private channels of the protocol). This would result in a weaker definition,
although one which is more difficult to work with. In fact, the variant definition
would be only slightly weaker. It is hard to construct a natural example which
distinguishes the two possibilities, and in particular it makes no difference to the
case studies of later sections. Therefore, we prefer to stick to Definition 6.

Note that “receipt-freeness” does not preclude voting systems which give some
kind of receipt to the voter that cannot be used for proving how she voted.

Intuition suggests an implication relation between receipt-freeness and vote-
privacy, which indeed holds and is formally proved in [9]:

If a protocol is receipt free (for a given set of honest authorities), then it
also respects vote-privacy (for the same set).

5 Protocol Due to Fujioka, Okamoto and Ohta

In this section we study a protocol due to Fujioka, Okamoto and Ohta [12].

5.1 Description

The protocol involves voters, an administrator, verifying that only eligible voters
can cast votes, and a collector, collecting and publishing the votes. In comparison
with authentication protocols, the protocol also uses some unusual cryptographic
primitives such as secure bit-commitment and blind signatures. Moreover, it relies
on anonymous channels. We deliberately do not specify the way these channels
are handled; most anonymiser mechanisms could be suitable depending on the
precise context the protocol is used in. One can use MIX-nets introduced by
Chaum [7] whose main idea is to permute and modify (by using decryption or
re-encryption) some sequence of objects in order to hide the correspondence
between elements of the original and the final sequences. Some other implemen-
tations may also be possible, e.g. onion routing [16].

A bit-commitment scheme allows an agent A to commit a value v to another
agent B without revealing it immediately. Moreover, B is ensured that A cannot
change her mind afterwards and that the value she later reveals will be the same
as she thinks at the beginning. For this, A encrypts the value v in some way and
sends the encryption to B. The agent B is not able to recover v until A sends
him the key.

A blind signature scheme allows a requester to obtain a signature of a mes-
sage m without revealing the message m to anyone, including the signer. Hence,
the signer is requested to sign a message blindly without knowing what he signs.
This mechanism is very useful in electronic voting protocol. It allows the voter
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to obtain a signature of her vote by an authority who checks that she has right
to vote without revealing it to the authority.

In a first phase, the voter gets a signature on a commitment to his vote
from the administrator. To ensure privacy, blind signatures [8] are used, i.e.
the administrator does not learn the commitment of the vote. (Throughout, we
assume signatures with message recovery.)

– The voter V selects a vote v, computes the commitment x = ξ(v,r) using a
random key r, computes the message e = χ(x, b) using a blinding function
χ and a random blinding factor b, and finally digitally signs e and sends her
signature σV (e) to the administrator A together with her identity.

– The administrator A verifies that V has the right to vote, has not voted yet
and that the signature is valid; if all these tests hold, A digitally signs e and
sends his signature σA(e) to V ;

– V unblinds σA(e) and obtains y = σA(x), i.e. a signed commitment to V ’s
vote.

The second phase of the protocol is the actual voting phase.

– V sends y, A’s signature on the commitment to V ’s vote, to the collector C
using an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters
(�, x, y) into a list as an �-th item.

The last phase of the voting protocol starts, once the collector decides that he
received all votes, e.g. after a fixed deadline. In this phase the voters reveal the
random key r which allows C to open the votes and publish them.

– C publishes the list (�i, xi, yi) of commitments he obtained;
– V verifies that her commitment is in the list and sends �, r to C via an

anonymous channel;
– C opens the �-th ballot using the random r and publishes the vote v.

Note that we need to separate the voting phase into a commitment phase and
an opening phase to avoid releasing partial results of the election and to ensure
privacy. This is ensured by requiring synchronisation between the different agents
involved in the election.

5.2 The Model in Applied pi

We only give the interesting parts of the modelling. A complete formalisation
can be found in [9].

Cryptographic primitives as an equational theory. We model cryptography in a
Dolev-Yao style as being perfect. The equations are given below.

open(commit(m, r), r) = m
checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m
unblind(sign(blind(m, r), sk), r) = sign(m, sk)
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(* private channels *)

ν privCh . ν pkaCh1 . ν pkaCh2 . ν skaCh . ν skvaCh . ν skvbCh .
(* administrators *)

( processK | processA | processA | processC | processC |
(* voters *)

( let skvCh = skvaCh in let v = a in processV ) |
( let skvCh = skvbCh in let v = b in processV ) )

Process 1. Main process

In this model we can note that bit commitment (modelled by the functions
commit and open) is identical to classical symmetric-key encryption. For sim-
plicity, we identify host names and public keys. Our model of cryptographic
primitives is an abstraction; for example, bit commitment gives us perfect bind-
ing and hiding. Digital signatures are modelled as being signatures with message
recovery, i.e. the signature itself contains the signed message which can be ex-
tracted using the checksign function. To model blind signatures we add a pair
of functions blind and unblind. These functions are again similar to perfect sym-
metric key encryption and bit commitment. However, we add a second equation
which permits us to extract a signature out of a blind signature, when the blind-
ing factor is known. Note that the equation modelling commitment cannot be
applied on the term open(commit(m, r1), r2) when r1 �= r2.

Process synchronisation. As mentioned, the protocol is divided into three phases,
and it is important that every voter has completed the first phase before going
onto the second one (and then has completed the second one before continuing
to the third). We enforce this in our model by the keyword synch. When a pro-
cess encounters synch n, it waits until all the other process that could encounter
synch n arrive at that point too. Then all the processes are allowed to continue.
If there are k processes that can encounter synch n, we can implement the syn-
chronisation as follows. The command synch n is replaced by out(n, 0); in(n, =1)
where n is a globally declared private channel. Moreover we assume an additional
process in(n, =0);. . . ; in(n, =0); out(n, 1); . . . ; out(n, 1) that has k ins and k outs.
This simple encoding is fine for our purpose since the value of k can be inferred
by inspecting the code; it would not work if new processes were created, e.g.
with “!”.

Main (Process 1). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the private channels are for key
distribution. We only model the protocol for two voters and launch two copies
of the administrator and collector process, one for each voter.

Voter (Process 2). First, each voter obtains her secret key from the PKI as
well as the public keys of the administrator. The remainder of the specification
follows directly the informal description given in Section 5.1.
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processV = (* parameters : skvCh , v *)

(* her private key *)

in ( skvCh , skv ) .
(* public keys of the administrator *)

in ( pkaCh1 , pubka ) .
ν b l i n d e r . ν r .
let committedvote = commit ( v , r ) in

let b l i ndedcommi t t ed vo t e=b l i n d ( committedvote , b l i n d e r ) in

out ( ch1 , ( pk ( skv ) , s i gn ( b l i ndedcommi t t edvo te , skv ) ) ) .
in ( ch2 ,m2) .
let r e s u l t = check s i gn (m2, pubka ) in

if r e s u l t = b l i ndedcommi t t e d vo t e then

let s i gnedcommi t t edvo te=unb l i nd (m2, b l i n d e r ) in

synch 1 .
out ( ch3 , ( committedvote , s i gnedcommi t t edvo te ) ) .
synch 2 .
in ( ch4 , ( l ,= committedvote ,= s i gnedcommi t t edvo te ) ) .
out ( ch5 , ( l , r ) )

Process 2. Voter process

Our model also includes a dedicated process for generating and distributing
keying material modelling a PKI (processK), a process for the administrator and
another one for the collector (those processes are not given here, see [9]).

5.3 Analysis

Vote-privacy. According to our definition, to show that the protocol respects
privacy, we need to show that

S[VA{a/v} | VB{b/v}] ≈ S[VA{b/v} | VB{a/v}] (1)

where VA = processV{skvaCh/skvCh}, VB = processV{skvbCh/skvCh}. We do not
require that any of the authorities are honest, so they are not modelled in S,
but rather left as part of the attacker context. However, we have to ensure that
both voters use the same public key for the administrator. Therefore, we send
this public key on a private channel (pkaCh1), although the public key and its
counterpart are known by the attacker. Actually, we show that

νpkaCh1.(VA{a/v} | VB{b/v}| processK)
≈

νpkaCh1.(VA{b/v} | VB{a/v}| processK)
(2)

The proof, detailed in [9], uses the (equivalent) definition of labelled bisimula-
tion instead of observational equivalence. We were able to automate parts of the
proof (the static equivalence relations) using the ProVerif tool [5]. The remain-
ing of the proof (the bisimulation part) is established manually by considering
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all cases. Although ProVerif provides observation equivalence checking, it was
unable to perform the proof in this case: observation equivalence checking being
undecidable, ProVerif aims at proving a finer relation which relies on easily
matching up the execution paths of the two processes [6]. This relation happens
to be too fine for proving equivalence 2. Our proof relies on matching VA{a/v}
on the left-hand side with VA{b/v} on the right-hand side during the first stage
(before synch 1) and matching VA{a/v} on the left with VB{a/v} on the right in
the following (after synch 1).

As mentioned above, the use of phases is crucial for privacy to be respected.
When we omit the synchronisation after the registration phase with the admin-
istrator, privacy is violated. Indeed, consider the following scenario. Voter VA

contacts the administrator. As no synchronisation is considered, voter VA can
send his committed vote to the collector before voter VB contacts the adminis-
trator. As voter VB could not have submitted the committed vote, the attacker
can link this commitment to the first voter’s identity. This problem was found
during a first attempt to prove the protocol where the phase instructions were
omitted. The original paper divides the protocol into three phases but does not
explain the crucial importance of the synchronisation after the first phase. Our
analysis emphasises this need and we believe that it increases the understanding
of some subtle details of the privacy property in this protocol.

Receipt-freeness. This scheme is not receipt-free and was in fact not designed
with receipt-freeness in mind. Indeed, if the voter gives away the random numbers
for blinding and commitment, i.e. bA and rA, the coercer can verify that the
committed vote corresponds to the coercer’s wish and by unblinding the first
message, the coercer can trace which vote corresponds to this particular voter.
Moreover, the voter cannot lie about these values as this will immediately be
detected by the coercer. In our framework, this corresponds to the fact that there
exists no V ′ such that:

– V ′\out(chc,·) ≈ VA{a/v},
– S[VA{c/v}chc | VB{a/v}] ≈ S[V ′ | VB{c/v}].

We have that VA{c/v}chc outputs the values rA and bA on the channel chc. This
will generate entries in the frame. Hence, V ′ needs to generate similar entries
in the frame. The coercer can now verify that the values rA and bA are used to
encode the vote c in the message sent to the administrator. Thus V ′ is not able to
commit to a value different from c, in order to satisfy the second equivalence. But
then V ′ will not satisfy the first equivalence, since he will be unable to change his
vote afterwards as the commitment to c has been signed by the administrator.
Thus, the requirements on V ′ are not satisfiable.

Note that the failure of receipt-freeness is not due to the possible dishonesty
of the administrator or collector; even if we include them as honest parties,
the protocol still doesn’t guarantee receipt-freeness. It follows that coercion-
resistance doesn’t hold either.
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6 Protocol Due to Okamoto

In this section we study a protocol due to Okamoto [13] which was designed to
be incoercible. However, Okamoto himself shows a flaw [14]. According to him,
one of the reasons why the voting scheme he proposed had such a flaw is that no
formal definition and proof of receipt-freeness and coercion-resistance have been
given when the concept of receipt-freeness has been introduced by Benaloh and
Tuinstra [4].

6.1 Description

The authorities managing the election are an administrator for registration, a
collector for collecting the tokens and a timeliness member (denoted by T ) for
publishing the final tally. The main difference with the protocol due to Fujioka
et al. is the use of a trap-door bit commitment scheme [10] in order to retrieve
receipt-freeness. Such a commitment scheme allows the agent who has performed
the commitment to open it in many ways. Hence, trap-door bit commitment does
not bind the voter to the vote v. Now, to be sure that the voter does not change
her mind at the end (during the opening stage) she has to say how she wants
to open her commitment during the voting stage. This is done by sending the
required information to T through an untappable anonymous channel, i.e. a
physical apparatus by which only voter V can send a message to a party, and
the message is perfectly secret to all other parties.

The first phase is similar to the one of the protocol due to Fujioka et al.. The
only change is that ξ is a trap-door bit commitment scheme. The second phase
of the protocol is the actual voting phase. Now, the voter has to say how she
wants to open her commitment to the timeliness member T .

– V sends y, A’s signature on the trap-door commitment to V ’s vote, to the
collector C using an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters (x, y)
into a list.

– V sends (v, r, x) to the timeliness member T through an untappable anony-
mous channel.

The last phase of the voting protocol starts, once the collector decides that he
received all votes, e.g. after a fixed deadline.

– C publishes the list (xi, yi) of trap-door commitments he obtained;
– V verifies that her commitment is in the list;
– T publishes the list of the votes vi in random order and also proves that

he knows the permutation π and the ri’s such that xπ(i) = ξ(vi, ri) without
revealing π or the ri’s.

We have chosen to not entirely model this last phase. In particular, we do not
model the zero-knowledge proof performed by the timeliness member T , as it
is not relevant for illustrating our definitions of privacy, receipt-freeness and
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(* private channels *)

ν privCh . ν pkaCh1 . ν pkaCh2 .
ν skaCh . ν skvaCh . ν skvbCh . ν chT .
(* administrators *)

( processK | processA | processA | processC | processC |
processT | processT |

(* voters *)

( let skvCh=skvaCh in let v=a in processV ) |
( let skvCh=skvbCh in let v=b in processV ) )

Process 3. Main process

coercion-resistance. This proof of zero-knowledge is very useful to ensure that T
outputs the correct vote chosen by the voter. This is important in order to
ensure correctness, even in the case that T is dishonest. However, the proof
of knowledge is unimportant for anonymity properties. In particular, if T is
the coercer himself, then he can enforce the voter to vote as he wants as in the
protocol due to Fujioka et al. Indeed, the timeliness member T can force the voter
to give him the trap-door she has used to forge her commitment and then he
can not only check if the voter has vote as he wanted, but he can also open her
vote as he wants.

6.2 The Model in Applied pi

Cryptographic primitives as an equational theory. The equations modelling pub-
lic keys and blind signatures are the same as in Section 5.2. To model trap-door
bit commitment, we consider the two following equations:

open(tdcommit(m, r, td), r) = m
tdcommit(m1, r, td) = tdcommit(m2, f(m1, r, td, m2), td)

Firstly, the term tdcommit(m, r, td) models the commitment of the message m
under the key r by using the trap-door td. The second equation is used to model
the fact that a commitment tdcommit(m1, r, td) can be viewed as a commitment
of any value m2. However, to open this commitment as m2 one has to know the
key f(m1, r, td, m2). Note that this is possible only if one knows the key r used to
forge the commitment tdcommit(m1, r, td) and the trap-door td.

Main (Process 3). Again, the main process sets up private channels and specifies
how the processes are combined in parallel. Most of the private channels are for
key distribution. The channel chT is the untappable anonymous channel on which
voters send to T how they want to open their commitment.

Voter (Process 4). This process is very similar to the one given in the previous
section. We use the primitive tdcommit instead of commit and at the end, the
voter sends, through the channel chT, how she wants to open her commitment.
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processV = (* parameters : skvCh , v *)

(* her private key *)

in ( skvCh , skv ) .
(* public keys of the administrator *)

in ( pkaCh1 , pubka ) .
ν b l i n d e r . ν r . ν td .
let committedvote = tdcommit ( v , r , td ) in

let b l i ndedcommi t t ed vo t e=b l i n d ( committedvote , b l i n d e r ) in

out ( ch1 , ( pk ( skv ) , s i gn ( b l i ndedcommi t t edvo te , skv ) ) ) .
in ( ch2 ,m2) .
let r e s u l t = check s i gn (m2, pubka ) in

if r e s u l t = b l i ndedcommi t t e d vo t e then

let s i gnedcommi t t edvo te=unb l i nd (m2, b l i n d e r ) in

synch 1 .
out ( ch3 , ( committedvote , s i gnedcommi t t edvo te ) ) .
out (chT , ( v , r , committedvote ) )

Process 4. Voter process

processT =
synch 1 .
(* reception du commitment *)

in (chT , ( vt , r t , x t ) ) .
synch 2 .
if open ( xt , r t ) = v t then

out ( board , v t )

Process 5. Timeliness process

Timeliness Member (Process 5). The timeliness member receives, through chT,
messages of the form (vt, rt, xt) where vt is the value of the vote, xt the trap-door
bit commitment and rt the key he has to use to open the commitment. In a second
phase, he checks that he can obtain vt by opening the commitment xt with rt.
Then, he publishes the vote vt on the board. This is modelled by sending vt on
a public channel.

We have also a dedicated process for generating and distributing keying mate-
rial modelling a PKI, an administrator process and a collector. Those processes
are not given here.

6.3 Analysis

Unfortunately, the equational theory which is required to model this protocol is
beyond the scope of ProVerif and we cannot rely on automated verification even
for the static equivalence parts. Thus, our analysis is entirely manual. We only
discuss receipt-freeness (since this implies vote privacy).
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processV =
(* her private key *)

in ( skvCh , skv ) . out ( chc , skv ) .
(* public keys of the administrator *)

in ( pkaCh1 , pubka ) . out ( chc , pubka ) .
ν b l i n d e r . ν r . ν td .
out ( chc , b l i n d e r ) . out ( chc , f ( a , r , td , c ) ) . out ( chc , td ) .
let committedvote = tdcommit (a , r , td ) in

let b l i ndedcommi t t ed vo t e=b l i n d ( committedvote , b l i n d e r ) in

out ( ch1 , ( pk ( skv ) , s i gn ( b l i ndedcommi t t edvo te , skv ) ) ) .
out ( chc , ( pk ( skv ) , s i gn ( b l i ndedcommi t t edvo te , skv ) ) ) .
in ( ch2 ,m2) .
let r e s u l t = check s i gn (m2, pubka ) in

if r e s u l t = b l i ndedcommi t t e d vo t e then

let s i gnedcommi t t edvo te=unb l i nd (m2, b l i n d e r ) in

synch 1 .
out ( ch3 , ( committedvote , s i gnedcommi t t edvo te ) ) .
out ( chc , ( committedvote , s i gnedcommi t t edvo te ) ) .
out (chT , ( a , r , committedvote ) ) .
out ( chc , ( c , f ( a , r , td , c ) , committedvote ) )

Process 6. V ′- Receipt-freeness

Receipt-freeness. To establish receipt-freeness one needs to construct a pro-
cess V ′ which successfully fakes all secrets to a coercer. The idea is for V ′ to
vote a, but when outputting secrets to the coercer, V ′ lies and gives him fake
secrets to pretend to cast the vote c. The crucial part is that, using trap-door
commitment and thanks to the fact that the key used to open the commitment
is sent through an untappable anonymous channel, the value given by the voter
to the timeliness member T can be different from the one she provides to the
coercer. Hence, the voter who forged the commitment, provides to the coercer
the one allowing the coercer to retrieve the vote c, whereas she sends to T the
one allowing her to cast the vote a.

We describe such a process V ′ in Process 6. To prove receipt-freeness, we need
to show that

– V ′\out(chc,·) ≈ VA{a/v}, and
– S[VA{c/v}chc | VB{a/v}] ≈ S[V ′ | VB{c/v}].

The context S we consider is νpkaCh1.νchT.( | processK | processT | processT).
The first equivalence may be seen informally by considering V ′ without the
instructions “out(chc, . . .)”, and comparing it visually with VA{a/v}. The two
processes are the same. To see the second labelled bisimulation, we have to
consider all the executions of each side. As before, the details may be found
in [9].
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7 Conclusion

We have defined a framework for modelling cryptographic voting protocols in
the applied pi calculus, and shown how to express in it the properties of vote-
privacy, receipt-freeness and coercion-resistance. Within the framework, we can
stipulate which parties are assumed to be trustworthy in order to obtain the
desired property. We investigated two protocols from the literature. Our results
are summarised in Figure 1.

Property Fujioka et al. Okamoto et al.

Vote-privacy � �
trusted authorities none timeliness mbr.

Receipt-freeness × �
trusted authorities n/a timeliness mbr.

Fig. 1. Summary of protocols and properties

We have stated the intuitive relationships between the two properties: for
a fixed set of trusted authorities, receipt-freeness implies vote-privacy. This is
proved in our full version [9].

Some of our reasoning about bisimulation in applied pi has been informal. In
the future, we hope to develop better techniques for formalising and automating
this reasoning.

Acknowledgments. Thanks to Michael Clarkson and Olivier Pereira for interest-
ing questions and discussions. Thanks also to the editors of this volume for de-
tailed comments about the presentation, which helped us improve the readability.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 340–354. Springer, Heidelberg
(2004)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proc. 28th ACM Symposium on Principles of Programming Languages (POPL
2001), London, UK, pp. 104–115. ACM, New York (2001)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
In: Proc. 4th ACM Conference on Computer and Communications Security (CCS
1997), pp. 36–47. ACM Press, New York (1997)

4. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract).
In: Proc. 26th Symposium on Theory of Computing (STOC 1994), pp. 544–553.
ACM Press, New York (1994)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: Proc. 14th IEEE Computer Security Foundations Workshop (CSFW 2001),
pp. 82–96. IEEE Comp. Soc. Press, Los Alamitos (2001)



Verifying Privacy-Type Properties of Electronic Voting Protocols: A Taster 309

6. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equiva-
lences for Security Protocols. In: Proc. 20th IEEE Symposium on Logic in Com-
puter Science (LICS 2005), pp. 331–340. IEEE Comp. Soc. Press, Los Alamitos
(2005)

7. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–88 (1981)

8. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology
– CRYPTO 1982, pp. 199–203. Plenum Press, New York (1983)

9. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Research report, Laboratoire Spécification et Vérification, ENS
Cachan, France (January 2008)

10. Fischlin, M.: Trapdoor Commitment Schemes and Their Applications. PhD thesis,
Fachbereich Mathematik Johann Wolfgang Goethe-Universität Frankfurt am Main
(2001)

11. Fournet, C., Abadi, M.: Hiding names: Private authentication in the applied pi
calculus. In: Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.)
ISSS 2002. LNCS, vol. 2609, pp. 317–338. Springer, Heidelberg (2003)

12. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large
scale elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–251. Springer, Heidelberg (1993)

13. Okamoto, T.: An electronic voting scheme. In: Proc. IFIP World Conference on IT
Tools, pp. 21–30 (1996)

14. Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In:
Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361,
pp. 25–35. Springer, Heidelberg (1998)

15. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H.,
Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218.
Springer, Heidelberg (1996)

16. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Proc. 18th IEEE Symposium on Security and Privacy (SSP 1997),
pp. 44–54. IEEE Comp. Soc. Press, Los Alamitos (1997)



Improving Remote Voting Security with

CodeVoting

Rui Joaquim, Carlos Ribeiro, and Paulo Ferreira

ISEL - Technical University of Lisbon - INESC-ID
rjoaquim@cc.isel.ipl.pt,

carlos.ribeiro@tagus.ist.utl.pt,

paulo.ferreira@inesc-id.pt

Abstract. One of the major problems that prevents the spread of elec-
tions with the possibility of remote voting over electronic networks, also
called Internet Voting, is the use of unreliable client platforms, such as
the voter’s computer and the Internet infrastructure connecting it to
the election server. A computer connected to the Internet is exposed to
viruses, worms, Trojans, spyware, malware and other threats that can
compromise the election’s integrity. For instance, it is possible to write
a virus that changes the voter’s vote to a predetermined vote on elec-
tion’s day. Another possible attack is the creation of a fake election web
site where the voter uses a malicious vote program on the web site that
manipulates the voter’s vote (phishing/pharming attack). Such attacks
may not disturb the election protocol, therefore can remain undetected
in the eyes of the election auditors.

We propose the use of CodeVoting to overcome insecurity of the client
platform. CodeVoting consists in creating a secure communication chan-
nel to communicate the voter’s vote between the voter and a trusted
component attached to the voter’s computer. Consequently, no one con-
trolling the voter’s computer can change the his/her’s vote. The trusted
component can then process the vote according to a cryptographic voting
protocol to enable cryptographic verification at the server’s side.

Keywords: Remote voting, Internet voting, vote manipulation, uncon-
trolled voting platform, insecure voting platform.

1 Introduction

Remote electronic voting over electronic networks, also called Internet voting,
is very appealing because it offers the possibility of voting from anywhere with
an Internet connection, on election day, avoiding the need to vote in advance.
Therefore, remote Internet voting offers a convenient way to vote for users away
from home on vacations, due to work, or for any other expected or unexpected
reason. However, surprisingly or not, there are not many Internet voting systems
in use today. One of the main reasons for this situation is that a computer
connected to the Internet does not offer a secure voting environment.
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A computer connected to the Internet is exposed to several threats, such
as viruses, worms and Trojans, among others. These threats take advantage of
vulnerabilities in software to perform malicious actions, including taking control
of the computer. The number of new vulnerabilities reported is too high to be
ignored, 8064 in 2006 and 5568 in the first three quarters of 2007 [1,2]. It is easy
to imagine a virus exploring one of those vulnerabilities to steal or change the
voter’s vote.

It is also possible, in some situations, to steal the voter’s vote without at-
tacking the voter’s computer. An attack to the Internet support infrastructure
could send the voter to a fake election web site. Once in the fake election web
site the attacker could use the voter’s authentication information and steal the
voter’s vote. Such type of attack is called pharming [3]. An example of an attack
technique against home routers can be found in [4]. Reports on recent pharming
attacks against banks in the US, Europe and Asia-Pacific can be found in [5,6].

Another important issue concerning remote voting in general is that there
are no guarantees that the voter will vote alone. Therefore, the voter may be
subject to coercion. A special case of coercion within family members that live
in the same house, named family voting, has been observed in several countries
[7] and is a problem to consider whenever remote voting is allowed, e.g. postal
voting, Internet voting. A problem that is somehow similar to coercion is vote
selling. Since the voters cast votes in an uncontrolled environment they can give
their ballot to anyone, or vote in the presence of anyone, therefore they may be
tempted to sell their vote. A possible protection against vote selling and coercion
is to allow the voter to update their vote, i.e. cast several votes [8].

The main difference between traditional remote voting, e.g. postal voting,
and Internet voting is that Internet voting attacks are able to target a large
number of voters with a fraction of the budget. Our opinion is that an attack to
steal/change the voter’s vote by attacking the voter’s computer or the Internet
infrastructure poses a potentially higher risk to the election’s integrity than an
online vote buying or coercion attack. We base our opinion on the following four
reasons:

– First, large scale vote buying/coercion, involving possibly thousands of vot-
ers, is quite unlikely to pass undetected. Additionally, vote buying/coercion
can be discouraged by allowing vote updates.

– Second, with all the security flaws in operating systems and applications, it
is easy to write a virus that would be active on election day to change the
voter’s vote.

– Third, we believe that writing a virus and disseminating it would be cheaper
and more difficult to trace back to the authors than a vote buying/coercion
attempt of a thousand voters, therefore, more appealing to an attacker.

– Fourth, punishing the attackers would be very difficult, if not impossible,
because the attack could be carried out from anywhere in the world.

Therefore, we can say that the insecure voting platform [9,10,11,12,13], offered
by a computer connected to the Internet, and the possibility of an unpunished
attack are the main issues that prevent the spread of remote Internet voting.
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We propose the use of CodeVoting, a technique to communicate the voter’s
vote between the voter and a trusted component attached to the voter’s com-
puter. Consequently, no one controlling the voter’s computer can change the
vote. CodeVoting offers a manually verifiable proof of correct vote fulfillment
and submission, based on the assumption about the existence of a trusted and
secure component attached to the voter’s computer. In this paper we present the
CodeVoting technique [14,15] and an enhancement to support large candidate
lists and multiple elections.

1.1 Why Cryptographic Voting Protocols Are Not Enough

In the last 30 years many cryptographic voting protocols were proposed to se-
cure electronic voting. Several cryptographic techniques were employed such as
blind signatures [16,17,18,19], mix-nets [20,21,22,23] and homomorphic ciphers
[24,25,26,27]. However, the main concern of these cryptographic voting protocols
is the protection against vote manipulation at server side, assuming a trusted
client to establish a secure communication channel to the election server and to
perform the cryptographic steps and verification of the voting protocol.

It is clear that these cryptographic voting protocols do not work well without
the assumption of a trusted voting client. The CodeVoting’s goal is to provide
the means to secure the use of a cryptographic voting protocol from a generic
computer connected to the Internet.

1.2 CodeVoting Overview

CodeVoting does not replace traditional voting protocols. It works by creating a
secure channel between the user and a trusted component that runs one of the
traditional voting protocols with the voting server (Fig. 1). Therefore, CodeVot-
ing can be considered a kind of user interface for the voting system.

Fig. 1. CodeVoting overview
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We propose the use of a tamper resistant device, such as a smart card, to be
the trusted component of the voting system at the client’s side. Since a smart
card provides a much more secure execution platform than an off-the-shelf PC,
using CodeVoting to create a secure communication channel to the smart card,
through the voter’s PC, will prevent automatic vote manipulation by malicious
software installed in the voter’s PC. Since we propose the use of a cheap tamper
resistant device, such as a smart card, that does not have network nor I/O
capabilities, the voter’s PC network and I/O capabilities will still be used to
interact with the voter and the server’s side of the voting system.

The use of secure devices, e.g. smart cards, in electronic voting is not a new
concept [28,29]. Secure devices are typically used as a way to provide secure
voter’s authentication and for the generation and secure storage of secret values
for a voting protocol. However, it is always necessary to use the voter’s computer
to show the ballot and collect the answer, and this is usually assumed to be per-
formed by a trusted vote client application. Our goal is to show how one can
build a simple, secure and private communication channel between the voters
and their trusted devices, without the need to trust in the voters’ computers.
Secure communication channels are easy to achieve between machines, e.g. by
sharing a secret key. However, making a secure and private communication chan-
nel between a machine and a human is not so straightforward. The challenge is
to keep the complexity of the communication channel as small as possible in
order for the human to be able to deal with it.

1.3 Vote Manipulation Attacks

A vote manipulation attack can be a modification of the voter’s vote. It can be
performed in two ways: i) changing a vote to a predetermined candidate, or ii)
changing a vote to a random candidate. While the first attack is more powerful,
the second may be easier to prepare in advance. In other words, to change a vote
to a predetermined candidate one must have the knowledge of which candidate
one wants to change the vote to, while to change the vote to a random candidate
there is no need to know the candidates in advance.

If one wants to increase the number of votes for a candidate A it is preferable
to perform an attack that will directly change the votes to votes for candidate A.
On the other hand, if one wants to decrease the number of votes for a candidate
B, it suffices to perform a random vote modification attack in an area known to
be more favorable to candidate B.

The other kind of vote manipulation attack is to fake a successful vote delivery.
In many voting systems this can be done by just presenting the message “Your
vote was successfully delivered. Thank you for voting.”. This attack allows an
attacker to reduce the votes on a candidate just by targeting an area with great
affinity for that candidate.

In the next section we describe the currently proposed approaches to minimize
the weaknesses at the client’s side. In section 3 we present the CodeVoting tech-
nique, a solution that prevents vote manipulation at the client’s side by using a
mix of “special security PC hardware” and “code sheet” approaches. We evaluate
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the CodeVoting proposal’s resistance to vote manipulation attacks in section 4.
In section 5 we present the Matrix CodeVoting, a CodeVoting enhancement to
support large candidate lists and multiple elections. Finally, in section 6, we
present the conclusions and future work.

2 Related Work

Cryptographic voting protocols can prevent vote manipulation at server side.
However, that is only relevant if the votes cannot be easily manipulated at the
uncontrolled client side of a remote voting system. Here we present an overview
of the approaches proposed to mitigate the problem of the unreliable vote client
platform [9,30].

2.1 Clean Operating System and Voting Application

This approach assumes the existence of a CD-ROM with a “clean” and certified
operating system and voting application. The voter should boot her computer
from the CD-ROM to have access to the vote application. One of the major
problems with this approach is how to design such CD-ROM so that it would
allow the voters to boot from any computer in use. Another problem is how
to provide Internet access. Voters have different types of Internet connections
at home, such as modem, ADSL, cable. Would the voters have to manually
configure their connection parameters?

The immediate consequence of such variety of configurations is that a large
amount of software, besides the operating system and voting application, has to
be on the CD-ROM, and consequently also, has to be verified. Therefore, some
questions remain: can we claim that a CD-ROM is clean? And to which extent?
Is it clean enough to provide a secure voting platform?

With all these questions/problems pending we do not believe that this ap-
proach could be successfully used to enable secure voting from any computer
with an Internet connection.

2.2 Special Secure Hardware for a PC

This approach assumes a dedicated software-closed security device, with secure
I/O, attached to the voter’s computer, e.g. through a USB port. Its purpose is
to display the ballot to the user, accept the voter’s choices as input, and per-
form cryptographic operations. In effect, the voting protocol is executed by the
secure device. Since the device is software-closed, meaning its software cannot
be changed, it is not subject to infection with a malicious code. The main disad-
vantage of this approach is the cost of such dedicated hardware. Moreover, the
manufacturer and the distribution process of the devices must be fully trusted.

Zúquete et al. [31] implemented a system based on this concept. They use a
secure smart card terminal with I/O capabilities to display the ballot and read
the voter’s answer. In addition, they use a smart card to provide public key
authentication. The main disadvantage of the system, besides the cost, is the
reduced display capacity of the terminal, which is only 4 lines of 20 characters.
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2.3 Closed Secure Devices

The use of closed secure devices was one of the proposals made by the California
Internet Voting Task Force in 2000 [9]. The proposal was the use of special
software-closed and Internet-capable devices, such as network computers (NCs)
or hand-held, wireless descendants of those days (early 2000s) cell phones and
electronic organizers.

However, modern cell phones and electronic organizers that have Internet
access usually allow the user to install arbitrary applications too. This facility
makes the systems open to malicious applications that take advantage of the
vulnerabilities of the operating system of the device.

Moreover, the use of closed secure devices just to access a web site on the
Internet, through which the voter votes, is vulnerable to attacks to the Internet
infrastructure, such as pharming attacks.

2.4 Secure PC Operating Systems

This approach suggests the use of secure PC operating systems that may be
composed of digitally-signed modules, allowing secure applications to exclude,
as untrusted, modules of dubious origins (i.e. potentially malicious programs).

Trusted computing is the name given to the technology that is being devel-
oped today to offer such secure platform support [32]. Trusted computing is a
technology that allows the remote attestation of machines and programs running
on them. With remote attestation it is possible to certify that a voter is using
a correct voting program. Trusted computing also provides ways to secure I/O
operations between the program and the physical I/O devices, therefore creating
a secure environment for an application to run. The attestation process is based
on measures performed on the software by a hardware module called trusted
platform module (TPM).

The client of a remote voting application needs to interact with the voter
(I/O device drivers), needs to establish a connection with a voting server (net-
work protocol stack + network adapter driver) and, last but not least, it needs
an environment to run on, i.e. a working operating system. The attestation of
the core of the operating system, the device drivers and the voting application
can be cumbersome. Moreover, there are also problems concerning the matu-
rity of the currently deployed technology [33] and concerning the revocation of
cracked machines [34]. We believe that, for the time being, the application of
trusted computing to remote voting as the only guarantee of the correct appli-
cation behavior is not a valid alternative. Nevertheless, there are proposals to
use trusted computing technology to solve the uncontrolled platform problem in
remote voting [35].

2.5 Code Sheets

This approach consists in secretly sending, e.g. by mail, code sheets to voters
that map their choices to entry codes on their ballot. While voting, the voter uses
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the code sheet to know what to type in order to vote for a particular candidate.
In effect, the voter does the vote encryption and, since no malicious software on
the PC has access to the code sheet, it is not able to change a voter’s intentions.

The first code sheet implementation we are aware of was proposed in 2001 by
Chaum [36], the SureVote system. SureVote allows the voter to cast a vote using
secret vote and reply codes. SureVote generates secret vote and reply codes for
each candidate and for each voter. The codes are delivered to the voters prior
to the election day. On election day the voter sends the vote code of her/his
favorite candidate through the voting channel, e.g. Internet. At server side, the
reply code is computed by a set of trustees and sent to the voter that confirms it
- in this way it is verified that there was no vote modification. After the election
day the trustees compute the real votes from the vote codes and publish the
results. However, if there is at least one corrupted trustee, SureVote does not
guarantee that in the counting phase the vote code is translated to the right
candidate.

A code sheet system was used in the UK on some pilots of Internet, SMS
and telephone voting [37,38]. A similar system was also proposed by Helbach
and Schwenk [39] in which they suggest the use of a three-way-handshake voting
protocol. They use a third code to confirm the vote.

The main drawback of this approach is the difficulty to guarantee that the
codes are secretly generated and anonymously delivered to the voters. Another
drawback is that there is no guarantee that the code vote is translated to the
right candidate at server side, i.e. the reply code only confirms that the vote has
reached an entity that knows the right reply code.

2.6 Test Ballots

This approach requires the use of special test ballots to be sent from clients and
checked by software at the election authorities’ office. The number, location,
timing, and contents of the test ballots should be known by the county, but they
should be otherwise indistinguishable from real ballots, so that any malicious
code that destroys or changes real ballots will affect the test ballots as well.
The analysis of the test ballots will enable any malicious code attacks to be
detected, the locations of infected machines to be determined, the approximate
time of the attack to be estimated, and the total number of votes affected to be
bounded. Note that this technique does not prevent malicious code attacks; it
only detects them after their occurrence. Hence it must be combined with one
of the previously presented techniques.

Of course, this technique only works if the attack is to be performed after the
vote is produced by the vote client software. The attack will not be noticed if it
just modifies the voter’s option before passing it to the method that processes
the vote and delivers it to the vote server.

Still, this approach can be used as a kind of intrusion detection system that
can detect any systematic cause of lost ballots, not just malicious code attacks,
and provide a quantitative measure of the size of any problem it detects.



Improving Remote Voting Security with CodeVoting 317

2.7 Obscurity/Complexity

This approach, while not sufficient to guarantee the security of the system, raises
the cost for potential attackers. Digital ballot formats and voting software may
be kept secret prior to the election and possibly randomly changed during the
election, or made complex in other ways. In order to successfully carry out an
attack and escape detection, malicious software authors must have a great deal
of information about the internal format of the ballot and voting software. If
these details are not available in advance, and/or if that information is complex,
the potential authors of attack software may not have enough time to develop
and distribute it during the election window.

On the other hand, it is difficult to establish a lower bound to the time needed
to write malicious software. Additionally, the system is still vulnerable to pharm-
ing attacks that collect voters’ authentication data and use them later in the real
voting client software.

2.8 External Channel Verification

This approach consists in having a secondary communication channel to the
election server that would allow the confirmation of the correct vote delivery.
Kuty�lowski and Zagórski [40] proposed a voting protocol where a voter uses a
secondary channel first to “decrypt” the ballot and choose the candidate, and
then to verify with a probability of 1

2 that the vote was correctly submitted to the
election server. The main disadvantage of this protocol is the complexity of the
verification tasks given to the voter that must deal directly with the encrypted
ballots.

Skagestein et al. [41] proposed the verification of the clear casted vote. In their
approach, a voter who wants to verify her/his vote can just use another PC and
ask to see the casted vote. This second PC asks the voting server for the voter’s
vote, opens it with the secret encryption key used to encrypt the vote that should
be stored in a secure medium at the time of vote casting, and displays the vote
to the voter. To minimize the danger of vote selling and coercion, the authors
proposed that the cast of several votes should be allowed; therefore, the vote
buyer or coercer would not know if the verified vote was the final one. The main
disadvantage of this protocol is that it does not prevent vote manipulation at
server side. Additionally, anyone with access to the encrypted ballots, considered
to be part of the final tally, can use them as a proof of vote since they can be
decrypted using the secret encryption keys kept by the voters.

The main disadvantage of this approach is that it requires the voter to have
access to two independent communication channels. Additionally, a verification
step sometime after the vote casting procedure is not convenient for voters.

3 CodeVoting

We propose CodeVoting, a solution/system to prevent vote manipulation at
client side while allowing the use of cryptographic voting protocols to protect
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Fig. 2. CodeVoting components’ overview

the election’s integrity at server side. CodeVoting is a mix of the “special security
PC hardware” and “code sheet” approaches, cf. sections 2.2 and 2.5. Figure 2
presents an overview of the CodeVoting components.

CodeVoting proposes the use of a tamper resistant device without any human
I/O capabilities, the Voter Security Token (VST), to perform a cryptographic
voting protocol at client side and securely authenticate the voter, e.g. by means
of digital signatures. The voter communicates her/his choice to the VST using a
code sheet approach based on codes printed on a paper card, the CodeCard. The
CodeCard is generated directly by the VST, which prevents vote manipulation
by a malicious computer. On the other hand, as explained later, the VST also
provides a proof of the correct conclusion of the voting protocol.

Briefly, our solution consists in the following steps: i) the voter expresses
her/his vote as a secret code, ii) the secret code is translated into the corre-
sponding candidate identifier (ID) (clear vote), iii) the clear vote is used in a
cryptographic voting protocol, and iv) once a cryptographic proof of the correct
vote delivery is received, a successful vote delivery code is released to the voter.

3.1 Voter Security Token

The VST is the component in charge of the vote code translation to the clear vote
as printed in the CodeCard (Sec. 3.2). After the vote code translation it is possible
to use it in any voting protocol. The voting protocol runs inside the VST to pre-
vent any vote manipulation at client side. It is possible to use a cryptographic vot-
ing protocol to prevent vote manipulation at server side. Usually, cryptographic
voting protocols require the use of digital signatures to authenticate the voters.
We suggest the use of the VST to enable such authentication mechanism. The
VST should be protected by a PIN to prevent unauthorized access.

We propose to distribute the VSTs to the voters in a preliminary registration
phase. This procedure is only required once, i.e. the VST will be reused in
subsequent elections. To provide a secure voter’s authentication mechanism, by
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means of a digital signature, a public key infrastructure (PKI) should be in
place before the registration process. The PKI can be set up just for election
purposes or can be more widely used in a national e-Government project. This
last approach can be useful to prevent, at some level, vote buying and coercion,
because if the voter gives her/his VST to a vote buyer/coercer it is not just a
vote that the s/he gives away, it is also all the e-Government rights of the voter.

3.2 CodeCard

The CodeCard is nothing more than a paper card that associates each candidate
ID to a vote code printed on it. There should be one CodeCard per VST so
that every voter votes with different codes. The voter should be the only one
with access to the codes printed on her/his CodeCard. Consequently, we have a
problem to solve: how to create the CodeCard, associate it with the VST and
give it to the voter without leaking the codes.

We propose to generate each voter’s CodeCard within the VST. This is a
viable option because the CodeCard becomes automatically associated with the
corresponding VST and no other entity besides the VST has access to the codes
on the CodeCard. However, we still have the problem of how to secretly print the
CodeCard, i.e. how to give it to the voter without leaking the codes. We believe
the best idea is to have a certified CodeCard printing machine, the CodeCard
generator interface (CCGI), available at the local authorities’ offices. Since the
codes are generated inside the VST, the CCGI would be very simple. It would
consist of only an interface to the VST, e.g. a smart card reader, in the case of
using smart cards, a keypad (for inserting a PIN to unlock the VST) and a small
printer. We believe that such simple hardware could be easily certified and sealed
to ensure the secrecy of the codes printed. With a certified CCGI in all local
authorities’ offices a voter can go to any local authority’s office and generate a
new CodeCard for her/his VST. For privacy reasons the CCGI should be inside
a private booth, similar to the ones used for traditional paper-based voting.

3.3 CodeVoting Details

CodeVoting can be seen as a rearrangement of the ideas presented by Chaum
[36]. However, the idea of CodeVoting is to only use the codes as a user interface
and not as the entire voting protocol. The secret codes are the base for the
secure communication channel between the voter and her/his VST. The voter
uses secret codes to choose her/his favorite candidate. Each VST has a set of
secret codes associated with it that are printed on a CodeCard.

For the voter, the voting process is quite simple. The voter just uses a Code-
Card to translate the candidate ID into a vote code. For instance, a voter, with
the ballot and CodeCard of Fig. 3, who wishes to vote for a candidate D only
has to enter WL764 as the vote code.

Every voter will have a different CodeCard. Therefore, different vote codes
exist for the same candidate. Each CodeCard is associated with a VST, which
is responsible for the translation of the vote code to the candidate ID. Only the



320 R. Joaquim, C. Ribeiro, and P. Ferreira

Election for the most important
figure in security.

A - Alice
B - Bob
C - Eavesdropper
D - Attacker

Enter your vote code:

CodeCard

Candicate Vote Code
Blank Vote SIT5Y

A A3CR2
B 97RG7
C GHFT1
D WL764
...

Confirmed vote delivery code:
6HKG2

Fig. 3. Example of a ballot (on the left) and a CodeCard (on the right)

voter and the VST should know the codes written on the CodeCard. Therefore,
CodeVoting is able to prevent a malicious voting application from changing the
voter’s vote. Note that there should also be a specific code for a blank or spoiled
vote to prevent the malicious voting application from easily casting such a vote.

After translating the vote code to the candidate ID, any voting protocol can
be used to cast the vote, e.g. a cryptographic voting protocol that protects the
election’s integrity at server side. When the VST receives a confirmation of a
successful vote delivery from the election server, it releases the confirmed vote
delivery code, assuring the voter that her vote was successfully delivered.

Based on the description of CodeVoting the reader can easily understand that
CodeVoting is a type of user interface plugin to a voting system that protects
the voter’s choice from manipulation.

Note that we do not use different reply codes for each candidate. The reason
for this is simple, as explained in section 2.5, the code sheet approach offers
no guarantees that the vote code is translated to the right candidate at server
side, i.e. the reply code only confirms that the vote has reached an entity that
knows the right reply code. Therefore, the only advantage of using a different
reply code for each candidate is that it makes it more difficult for an attacker
to change the vote to a random candidate without being detected by the voter,
i.e. the attacker needs to get the correct vote and reply codes.

However, to avoid vote stealing, the length of the vote codes must be defined
to prevent an attacker from guessing a valid vote code. Therefore, and from a
theoretical point of view, the use of a single reply code is enough to detect an
attacker trying to forge a successful vote delivery. Additionally, the use of only
one reply code reduces approximately by 1

3 the amount of information to be
printed on the CodeCard.

It is also important to note that CodeVoting is vulnerable to malicious applica-
tions that change the correspondence between the candidates and the candidates’
IDs. This vulnerability is due to the lack of secure output on the VST. However,
there are measures to prevent ballot modification, such as i) publicly exposing
the ballot some time before the election, ii) forcing the sorting of the candidates
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on the ballot, and the corresponding candidate IDs, in a verifiable way, e.g. al-
phabetical sorting, and iii) using an image that is hard to forge/modify as a
ballot.

4 Evaluation

We argue that CodeVoting protects against vote manipulations at the voter’s PC
under the following assumptions: i) the VST performs the protocols correctly and
cannot be manipulated by the voter’s computer, ii) the CodeCard is generated
in a secure and controlled environment by the VST (the voter is the only person
there), iii) the voter keeps her/his CodeCard secret, and iv) the correspondence
between the candidate and its ID cannot be changed.

Under these assumptions, changing a vote to a predetermined candidate is
virtually impossible because the corresponding vote code is not known by the
attacker, and the Probability of Guessing the Correct Vote Code Pgcvc = 1

365 ,
with 5 alphanumeric symbols, i.e. less than 1 in 60 millions. If we use both capital
and non-capital letters, we have Pgcvc = 1

625 , i.e. less than 1 in 900 millions.
A random change attack has almost the same probability of success as the

previous attack. If we have n candidates, the Probability of Guessing a Random
valid Vote Code is Pgrvc = n.Pgcvc.

However, to prevent an easy denial of service attack the VST should not
automatically block when the voter inserts invalid vote codes. Therefore, this
limitation allows an attacker to perform a brute force attack to get a random
valid vote code. Such attack can be minimized through simple measures, such as
delaying the vote code verification function, e.g. with a delay of three seconds the
attacker is limited to only 1200 tries in a one hour attack. Another possibility
for reducing the chances of success of a brute force attack is increasing the
domain of the vote codes, either by increasing the code length or by using more
symbols, e.g. capital and non-capital letters. For instance, by using 62 symbols,
the probability of a successful one hour brute force attack is 1 in 763444 for
5-digit codes, and 1 in more than 47 million for 6-digit codes.

The attacker can also try to manipulate the voter’s vote by fooling the voter
into believing that s/he has cast a vote, while in reality no vote was cast. To
prevent such an attack we propose the use of a code to confirm the vote delivery.
The VST only releases this code after getting a confirmation that the vote was
successfully delivered, e.g. it could be a message signed by the election server.
Therefore, if we use a confirmed vote delivery code with the same length as
the vote codes, this attack has the same probability of success as the attack of
changing a vote to a predetermined candidate. The confirmation received by the
VST can be stored inside it to provide a proof of vote delivery, therefore allowing
the voter to protest if her/his vote is not considered for the final tally.

Another important aspect is CodeVoting in the face of vote buying/coercion
problems. CodeVoting allows the voter to produce a receipt of the vote by giving
away the CodeCard to an attacker prior to the election day. On election day, the
attacker can demand the voter to vote using a computer controlled by him/her,
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e.g. by using a web site that is controlled by him/her or a special program also
developed by the him/her. In this case, the attacker will have a vote receipt that
proves the voter’s vote, therefore enabling vote buying and coercion. We think
the best way to prevent such an attack is by using a voting protocol that allows
the voter to cast several votes, i.e. update her/his vote. We believe that the
possibility of a vote update in a machine which is not controlled by the attacker
would discourage vote buying and coercion attacks [8].

CodeVoting offers protection against vote manipulation and allows the detec-
tion of malicious interference in the voting process. However, CodeVoting cannot
force a malicious computer to behave properly. Therefore, if any malicious inter-
ference in the voting process is detected, the voter should go to another computer
and vote again.

4.1 Is the VST Trustworthy?

CodeVoting relies on the correct behavior of the VST. Therefore one can ask:
CodeVoting is designed to protect the voter from the insecure voter’s PC, but
what guarantees are given that the VST does in fact do what it is supposed to
do? One way verify it is by testing the VST. Besides testing the VSTs in the
production phase, we believe that it would be good to have additional random
testing by an independent certification authority.

Additionally, we can also make voters part of the certification process. It
could be possible for a voter to verify her/his VST by running a fake election
with instant results sometime before the real election.

Nevertheless, one can point out that the application running inside the VST
is somehow able to detect that it is being subject to a test, and therefore will
act properly in the tests but will still change the voter’s vote on the real election
day. This scenario can be prevented if one is sure of the software running inside
the VST.

Fortunately, today there is secure tamper resistant hardware, such as smart
cards, that supports signed applications. Therefore, it is possible to use publicly
available and certified source code software. Of course, we can also have certified
applications running on a PC. However, since it is possible for an attacker to take
control of the voter’s PC, a signed application does not guarantee the correct
behavior. On the other hand, it is not possible to take control over secure tamper
resistant hardware, or at least it should be very difficult even with specialized
tools and impossible with just a common computer such as the ones at our homes.
Therefore, a signed application running on secure tamper resistant hardware can
guarantee the correct behavior.

5 Matrix CodeVoting

The presented CodeVoting technique has some limitations. First, it does not
support large candidate lists, so its application is limited. Indeed, the CodeCard
must have an entry for each possible candidate. If we consider elections with
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a large number of candidates, let’s say above thirty, the size of the CodeCard
could start to become too large or usability problems may arise, e.g. due to small
fonts used.

Another issue is the CodeCard reuse. If a voter uses the same CodeCard in
more than one election, it is possible for an attacker to replace the voter’s vote
by a random one. To be able to do this, an attacker must collect the codes used
during the first election. Additionally, the attacker must also be in control of
the PCs used by the voter to vote in each election. If the voter uses different
PCs, it will be much harder to perform the attack. We can also make this attack
harder by executing the whole voting protocol inside the VST, without leaking
the voter’s identification to the voter’s PC. Therefore, the different PCs only
have the unlocking PIN to identify the voter.

Of course, the voter can always protect himself/herself against this type of
attack by getting a new CodeCard for his/her VST between elections. However,
an issue still remains: simultaneous elections. The simultaneous elections’ issue
is a particular case of the CodeCard reuse, in which the voter cannot go (or
is not convenient for him/her to go) to the local authorities and get a new
CodeCard. One solution that may work in some particular cases is the use of
sequential candidate IDs throughout all the simultaneous elections, e.g. instead
of using candidate IDs A and B for elections 1 and 2, use candidate IDs A and
B for election 1 and candidate IDs C and D for election 2. This simple candidate
numbering solves the problem of simultaneous elections but can lead to the large
candidate list issue.

Next, we present the details of the Matrix CodeVoting, an enhancement to
CodeVoting to support large candidate lists and, consequently, simultaneous
elections as previously explained. Additionally, it also provides better security in
the case of reuse of a CodeCard in consecutive elections. The Matrix CodeVoting
allows the use of the CodeVoting technique in elections with a large candidate
list by using an encryption matrix that stores a large number of candidate ID
transformations in a compact form.

5.1 Matrix CodeVoting Details

The Matrix CodeVoting replaces the original CodeCard by a Matrix CodeCard
(Fig. 4). The ballot format suffers minor changes and the candidates are identi-
fied by numbers (e.g. 54598, 39027, etc.) instead of letters (e.g. A, B, C, etc.), as
illustrated in Fig. 5. The Matrix CodeCard consists in a matrix that the voter
will use to translate (encrypt) the candidate ID to the vote code, in opposition
to the direct associations printed in the original CodeCard.

Figure 6 shows how to use the Matrix CodeCard to get a vote code from
a candidate ID. In this example we use a 5-digit candidate ID which supports
100000 different candidate IDs, a much larger number than the number of pos-
sible candidates with the first CodeCard design. With the help of the Matrix
CodeCard the voter translates the candidate ID into a character string.

Of course, we still need to be careful when selecting the candidate IDs. For
instance, if we have nine candidates it is a bad idea to use candidate IDs from
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Matrix CodeCard

Candidate number d5 d4 d3 d2 d1

0 A S Q B U
E 1 W E P S I
n M 2 E W L V R
c a 3 R Q I G S
o t 4 Y U M N J
d r 5 V N H Y H
i i 6 B J T U T
n x 7 M M F K C
g 8 O X E W E

9 U T Z A P

Vote code v5 v4 v3 v2 v1

Confirmed vote delivery code: 6HKG2

Fig. 4. Matrix CodeCard for 5-digit candidate numbers

Election for the most important
figure in security.

A - Alice
B - Bob
C - Eavesdropper
D - Attacker

Enter your vote code:

Election for the most important
figure in security.

54598 - Alice
39027 - Bob
78351 - Eavesdropper
46209 - Attacker

Enter your vote code:

Fig. 5. A regular ballot is presented on the left and the Matrix Code-Voting is shown
on the right

Candidate number 4 6 2 0 9

0 A S Q B U
E 1 W E P S I

n M 2 E W L V R
c a 3 R Q I G S

o t 4 Y U M N J
d r 5 V N H Y H

i i 6 B J T U T
n x 7 M M F K C
g 8 O X E W E

9 U T Z A P

Vote code Y J L B P

Fig. 6. Example of the encryption of a candidate ID using the Matrix CodeCard
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00001 to 00009. In this case, the vote code for all candidates only differs in the
last digit; therefore, an attacker willing to change the voter’s vote to another
candidate would have a Probability of Guessing a Valid Vote Code Pgvvc = 8

25 ,
i.e. 32% of success in the first try. This probability can be reduced by increasing
the domain of the vote codes, e.g. by using capital and non-capital letters. With
this example it is clear that the candidate IDs should be as different as possible
to minimize the probability of an attacker guessing a valid vote code from the
one typed in by the voter, e.g. 02536, 63875 and other IDs where all digits in
the same positions are different.

Table 1. Number of different candidate IDs for 4 ≤ k ≤ 6 and candidate ID length
from 5 to 8. The results are an average of 100 rounds of random code generation.

Candidate ID Length

Security Parameter 5 6 7 8

k = 4 68 502 3483 25014

k = 5 - 65 387 2380

k = 6 - - 58 298

Since the candidate IDs are in base 10 it is only possible to have 10 candidate
IDs that differ in all positions. We propose the adoption of a security parameter
k, which defines the number of different digits between all candidate IDs. The
value of k must be chosen taking into account the probability of an attacker
guessing, at the first try, a valid vote code from the one inserted by the voter.
i.e. Pgvvc = ( 1

numberOfCodeSymbols−1 )k.
In Table 1 we present the possible number of candidates for 4 ≤ k ≤ 6 and a

candidate ID length from 5 to 8. Table 1 shows that the Matrix CodeVoting is
able to securely support large candidate list elections by slightly increasing the
length of candidate IDs.

As explained before, the problem of simultaneous elections can be reduced
to a large candidate list problem. One hasty conclusion is to assume that if the
Matrix CodeVoting offers a solution for elections with a large candidate list it
can be used to securely conduct simultaneous elections. We must say that this
is not entirely correct because if an attacker has access to different vote codes,
generated with the help of the same Matrix CodeCard, it can correlate the codes,
discover parts of the matrix and possibly substitute the voter’s vote.

The minimum number of codes needed to expose the entire matrix is 11, i.e. if
a unique correspondence between the candidate numbers can be established only
through an analysis of the repeated digits in the codes. For instance, given two
simultaneous elections with the following pairs of candidates 12345, 67890 and
43567, 82059. A voter could vote for candidate 12345 in the first election and
for candidate 82059 in the second election. Since the selected candidates are the
only ones that share the second digit, the vote client application automatically
has access to nine encrypted symbols in the encoding matrix, one in the column
of the shared digit and two in all the other columns.
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To minimize this threat it is important to choose candidate IDs in a way that
no repeated digits in the vote codes of different elections can allow for a unique
correspondence between candidate IDs, i.e. making the vote code correlation
harder by adding confusion to the process.

Concluding, the Matrix CodeCard reuse should be limited to a few elections
to prevent successful correlation attacks.

6 Conclusions and Future Work

Cryptographic voting protocols protect voting from manipulation at server side,
if the protocol is executed by a trusted vote client. However, in remote voting,
e.g. Internet voting, the voters use uncontrolled platforms to vote, therefore there
are no guarantees that the client machine is trusted.

In this paper we presented the CodeVoting technique that protects the voter’s
vote from malicious manipulations at the uncontrolled/untrusted vote client
platform, e.g. the voter’s PC. CodeVoting uses a “code sheet” approach to pro-
tect the communication between a voter and a VST attached to the voter’s
PC. The VST runs a cryptographic voting protocol to protect the vote from
manipulation at server side.

We presented the first code sheet format called CodeCard, that enables a
secure communication between the voter and her/his VST. However, this format
does not support elections with large candidate lists. Additionally, for improved
security, the voter should renew her/his CodeCard between elections. Then,
we introduced the Matrix CodeCard, a new CodeCard design that allows the
support of large candidate lists. The use of the Matrix CodeCard in consecutive
elections is also more secure.

In the future we want to enhance CodeVoting by introducing support for
multi-candidate selection and ordering.

At the moment, we have working prototypes of the CodeCard and the Matrix
CodeCard implemented in smart cards, namely JavaCards. We are now working
on the integration of the CodeCard prototypes with a fully cryptographic vote
client inside the VST (JavaCard).

Acknowledgments

We thank Patricia Lima and the editors of this book for the careful reading and
suggestions made to improve the legibility of this manuscript.

References

1. CERT: Vulnerability remediation statistics (2007),
http://www.cert.org/stats/vulnerability_remediation.html

2. USCERT: Cyber security bulletins (2007),
http://www.us-cert.gov/cas/bulletins/



Improving Remote Voting Security with CodeVoting 327

3. Wikipedia: Pharming (2007), http://en.wikipedia.org/wiki/Pharming
4. Stamm, S., Ramzan, Z., Jakobsson, M.: Drive-by pharming (2006),

http://www.symantec.com/avcenter/reference/Driveby_Pharming.pdf

5. Gaudin, S.: Pharming attack slams 65 financial targets. InformationWeek (2007),
http://www.informationweek.com/showArticle.jhtml?articleID=197008230

6. Kirk, J.: Pharming attack hits 50 banks. IDG News Service, TechWorld (2007),
http://www.techworld.com/security/news/index.cfm?newsid=8102

7. Council of Europe: Family voting. Congress of Local and Regional Authorities of
Europe session (2002),
http://www.coe.int/T/E/Com/Files/CLRAE-Sessions/

2002-06-Session/family voting.asp

8. Volkamer, M., Grimm, R.: Multiple casts in online voting: Analyzing chances. In:
Robert Krimmer, R. (ed.) Electronic Voting 2006, Castle Hofen, Bregenz, Austria.
LNI, vol. P-86, pp. 97–106. GI (2006)

9. California Internet Task Force: A report on the feasibility of internet voting (2000),
http://www.ss.ca.gov/executive/ivote

10. Internet Policy Institute: Report of the national workshop on internet voting: Issues
and research agenda (2001),
http://www.diggov.org/archive/library/dgo2000/dir/PDF/vote.pdf

11. Jefferson, D., Rubin, A.D., Simons, B., Wagner, D.: A security analysis of the
secure electronic registration and voting experiment (serve) (2004),
http://www.servesecurityreport.org/paper.pdf

12. Rivest, R.L.: Electronic voting. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339,
p. 243. Springer, Heidelberg (2001)

13. Rubin, A.D.: Security considerations for remote electronic voting. Commun.
ACM 45(12), 39–44 (2002)

14. Joaquim, R., Ribeiro, C.: Codevoting: protecting against malicious vote manipula-
tion at the voter’s pc. In: Chaum, D., Kuty�lowski, M., Rivest, R.L., Ryan, P.Y.A.
(eds.) Frontiers of Electronic Voting, no. 07311 in Dagstuhl, Germany. Dagstuhl
Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany (2007)

15. Joaquim, R., Ribeiro, C.: CodeVoting protection against automatic vote manip-
ulation in an uncontrolled environment. In: Alkassar, A., Volkamer, M. (eds.)
VOTE-ID 2007. LNCS, vol. 4896, pp. 178–188. Springer, Heidelberg (2007)

16. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large
scale elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–251. Springer, Heidelberg (1993)
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Abstract. Juels, Catalano, and Jakobsson (JCJ) proposed at WPES
2005 the first voting scheme that considers real-world threats and that
is more realistic for Internet elections. Their scheme, though, has a
quadratic work factor and thereby is not efficient for large scale elec-
tions. Based on the work of JCJ, Smith proposed an efficient scheme
that has a linear work factor. In this paper we first show that Smith’s
scheme is insecure. Then we present a new coercion-resistant election
scheme with a linear work factor that overcomes the flaw of Smith’s pro-
posal. Our solution is based on the group signature scheme of Camenisch
and Lysyanskaya (Crypto 2004).

1 Introduction

Remote electronic elections may provide many benefits to democratic societies.
They may increase elections turnouts, afford convenience to the voters, and
reduce costs, for instance. The risks inherent in such elections, though, can dis-
courage its use in major political elections. The main threat is that coercion and
vote-selling can be easily explored by adversaries. Remote elections, thus, must
have ways to prevent or at least mitigate such problems.

Most existing proposals for remote elections rely on the receipt-freeness re-
quirement and on assumptions to deal with coercion and vote-selling. Prevent-
ing receipts to be made, though, is not enough to counter these problems as
the voter can be observed while voting, for example. Many assumptions (e.g.
the voter cannot give away her private key material) are unrealistic for remote
scenarios.

Recently, Juels, Catalano, and Jakobsson (JCJ) [17] introduced a more com-
plete requirement for remote elections called coercion-resistance. This concept
considers not only the receipt-freeness requirement, but also real world attacks
related to coercion (and vote-selling). Coercion-resistance takes into account that
an adversary can force the voter to abstain from voting, can obtain private in-
formation from the voter and vote on her behalf, or can force the voter to send
a randomly formed ballot as her vote.

D. Chaum et al. (Eds.): Towards Trustworthy Elections, LNCS 6000, pp. 330–342, 2010.
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Besides the coercion-resistance requirement, JCJ introduced the first scheme
that fulfills it. The scheme basically mitigates coercive attacks by allowing the
voter to deceive adversaries about her vote intention. It, though, requires a
quadratic work factor (in number of votes) to compute the voting results and
hence it is impractical for large scale elections. Particularly, the scheme relies on
an inefficient blind comparison mechanism to determine the results.

Based on the JCJ solution, Smith [24] presented an efficient coercion-resistant
scheme. The proposal replaces the comparison mechanism of JCJ by a new
one that computes the voting results in a linear time. Also, it corrects some
problems observed by Smith in JCJ scheme. Weber et al. [26], however, pointed
out problems of Smith’s proposal and presented a protocol that combines the
ideas of JCJ with a variant of Smith’s mechanism.

Paper Contribution and Organization

In this work we first present a weakness in Smith’s mechanism of comparison
that makes his scheme insecure in the sense of coercion-resistance. The problem
is also relevant to the scheme of Weber et al. as it employs the ideas of Smith.
We introduce a new coercion-resistant scheme with a linear work factor. The
solution is based on JCJ ideas, but it has a linear work factor and does not rely
on inefficient comparisons to compute the voting results.

The paper is organized as follows: in Section 2 we review the proposal of
JCJ and the comparison mechanism of Smith; also, we describe the weakness of
Smith’s solution. After that, in Section 3, we present our proposal of coercion-
resistant scheme. Then, we sketch an analysis of our proposal in Section 4. Fi-
nally, we conclude our work in Section 5.

2 The Scheme of JCJ and Smith’s Comparison
Mechanism

In this section we recall shortly the proposal of Juels, Catalano, and Jakobsson
(JCJ) and present the mechanism of comparison proposed by Smith. Also, we
show the weakness of Smith’s mechanism.

2.1 The Proposal of JCJ

The scheme of Juels, Catalano, and Jakobsson [17] relies essentially on a method
of indirect identification through anonymous credentials to overcome coercive
attacks. Especially, the voter receives a valid credential (e.g. an alphanumeric
string) in a secure way and uses it when she want to cast her valid vote. A voter
under coercion, though, is able to make a fake credential and to hand it to a
coercer. After the end of the voting, a blind comparison mechanism distinguishes
the valid credentials from the fake ones to identify the valid votes; conversely,
an adversary has no way to perform this distinction.
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The scheme considers a registration phase free of adversaries and a bulletin
board communication model. Also, it requires the following cryptographic tools:
non-interactive zero-knowledge proofs, a probabilistic threshold public-key cryp-
tosystem, and universally verifiable mix nets. In particular, the scheme employs
a plaintext equivalence test [15]. This primitive takes two ciphertexts as input
and returns a bit indicating if the corresponding plaintexts are equal or not. The
JCJ solution is briefly described as follows:

Registration phase. In this phase a trustworthy authority issues a unique valid
credential, which is a random value, for each eligible voter and publishes a prob-
abilistic encryption of each credential on the bulletin board. Let L1 be the list
containing all credential ciphertexts published by the authority on the bulletin
board.

Voting phase. In order to vote, a voter sends the following data to the bulletin
board through an anonymous channel: a tuple containing her encrypted vote,
her encrypted credential, and zero-knowledge proofs that the vote is for a valid
candidate and that the voter knows the vote and the credential encrypted.

Tallying phase. At the end of the voting, the talliers verify all proofs posted on
the board and exclude tuples with invalid proofs. From the remaining tuples,
they perform a pairwise blind comparison by means of the plaintext equivalence
test to remove tuples with duplicated credentials. After removing the duplicates
keeping the last posted tuples, the remaining pairs of ciphertexts (a vote and a
credential) form the list L2 and this list is sent to a mix net. The mix net returns
L2′. Then, the list L1 created during the registration phase is sent to a different
mix net that returns L1′. Now, the plaintext equivalence test is used a second
time to compare (pairwise) the credentials on the list L1′ with the credentials on
the list L2′. A vote is removed if its encrypted credential in L2′ does not match
with an element of L1′. Finally, the votes with valid credentials are decrypted
by the talliers.

Drawback. Although the JCJ scheme fulfills the coercion-resistance require-
ment, the pairwise blind comparisons involving the plaintext equivalence tests
makes it inefficient for large scale elections. Let N be the number of voters and
V be the number of posted votes, one has V ≥ N and the overhead to perform
the tests is quadratic in V .

2.2 Smith’s Comparison Mechanism

Based on the JCJ proposal, Smith [24] introduced a more efficient coercion-
resistant scheme. The solution substitutes the previous comparison mechanism
of JCJ for a new one that computes the voting results in a linear time. Moreover,
it includes a timestamp in the tuple that the voter submits and a further mix
step in the tallying phase. The latter improvements, though, are irrelevant as
pointed out by Weber et al. [26].
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The mechanism of Smith performs a global blind comparison of ciphertexts in-
stead of pairwise comparing ciphertexts via a plaintext equivalence test. In order
to accomplish this, the method makes deterministic fingerprints from probabilis-
tic encrypted credentials and then compares the resulting fingerprints through
hash tables. The method depends on the El Gamal cryptosystem and is described
as follows:

Let s be an El Gamal private key shared among the talliers and corresponding
to a public key h = gs, where g is a group generator, k another private key shared,
ks the product of k and s also shared, and (gr, σhr) the El Gamal ciphertext of
a credential σ, where r is a random number. In order to make a fingerprint from
(gr, σhr), the talliers cooperatively compute (gr)ks = hrk and (σhr)k = σkhrk.
Then, they divide (σkhrk) by (hrk) to obtain σk. The talliers now use half of the
bits of σk as the fingerprint. This process is applied to all credential ciphertexts
using the same k and ks before comparing the resulting fingerprints.

Observe that the talliers need to publish σk before making the fingerprint.
Thus, anyone can verify the fingerprint is correct.

Weakness. Smith’s comparison method is efficient. However, it is insecure.
Especially, an adversary can determine whether a coerced voter gave him a valid
or a fake credential 1. In order to show this, we consider the following scenario:

Suppose an adversary forces the voter to reveal her credential σ. Now, the
adversary makes two tuples, one with the encryption of σ and the other with
the encryption of σ2, and publishes them on the bulletin board. In the tallying
phase, after applying Smith’s method, the talliers publish σk and σ2k on the
board. Now, by squaring a copy of each element on the board, the adversary is
able to test if a squared element matches an element on the board. Thus, if the
two votes corresponding to σ and its square were removed by the talliers, the
coercer learns that σ is an invalid credential.

3 Our Coercion-Resistant Voting Scheme

As we presented before, the scheme of JCJ is inefficient for large scale elections.
Also, we showed that the comparison mechanism of Smith is insecure. We now
introduce a new coercion-resistant voting scheme that employs some of the JCJ
ideas and that computes voting results in a linear time.

Our solution does not rely on blind comparisons to identify valid credentials.
Instead, we employ a particular mathematical structure to make the credentials
and use a function to identify them apart. The structure makes hard for a coercer
or a dishonest voter to forge new valid credentials, even after having seen several
valid ones.

The new scheme has the following advantages: its security can be proved, it
is a practical linear scheme (in the number of votes posted by the voters), one
cannot link the votes of a given voter in different elections, and the generation
of the credentials as well as the verification of their validity can be distributed
1 This problem was also observed independently by Clarkson et al. [8].
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among several authorities. Thus, a single corrupted authority cannot give valid
credentials to an attacker or tell to a coercer whether a credential is valid or not.

3.1 Building Blocks

The scheme requires the following tools:

Bulletin Boards. In order to help achieving global verifiability, our proposal
relies on bulletin boards as communication model. In this model the bulletin
board performs as a public broadcast channel by receiving information and by
allowing anyone to read any information received. Also, once receiving informa-
tion, the board stores it and cannot delete or modify it.

Bulletin boards may be implemented via a Byzantine agreement, such as the
proposal of Cachin et al. [4].

Universally Verifiable Mix Nets. In some steps of our scheme we employ
mix nets to provide anonymity. This cryptographic primitive was introduced by
Chaum [6] and further developed by many other authors. It performs by permut-
ing messages, and by reencrypting or by decrypting them. The scheme requires
a re-encryption mix net based on the El Gamal cryptosystem as introduced by
Park et al. [22]. However, in order to reduce the trust in the mix process, the
mix net should be universally verifiable. That is, after mixing messages, the mix
net must prove publicly the correctness of its shuffle. The proposal of Neff [19]
is an example of a universally verifiable mix net.

A Threshold Cryptosystem. Our scheme relies on a threshold version of a se-
mantically secure cryptosystem with homomorphic property, such as Paillier [21]
or El Gamal [12] under secure groups. We require here, though, the Modified El
Gamal cryptosystem proposed by JCJ [17]. This variant is described as follows:
let G be a cyclic group of order p where the decision Diffie-Hellman problem
(see Boneh [1] for details) is hard, the public key is composed of the elements
(g1, g2, h = gx1

1 gx2
2 ) with h, g1, g2 ∈ G and the corresponding private key is

formed by x1, x2 ∈ Zp. The Modified El Gamal ciphertext of a message m ∈ G
is (M = gs

1, N = gs
2, O = mhs), where s ∈ Zp is a random number. The message

m is obtained from the ciphertext (M, N, O) by O/(Mx1Nx2). In the threshold
version, the El Gamal public key and its corresponding private key are coop-
eratively generated by n parties; though, the private key is shared among the
parties. In order to decrypt a ciphertext, a minimal number of t out n parties
is necessary. See Cramer et al. [9] for a description of an El Gamal threshold
cryptosystem and Gennaro et al. [13] for a secure key generation protocol.

Non-Interactive Zero-knowledge Proofs. The proposal we present below
also requires several zero-knowledge proof protocols. These primitives help en-
suring security in our solution. The scheme employs Schnorr signatures [23] to
make ciphertexts plaintext aware (i.e. the party who makes the ciphertext should
be aware of what he is encrypting) and so preventing the use of the El Gamal
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malleability by adversaries; in addition, the verifier should check that the com-
ponents of the ciphertexts are of order p to prevent the attacks described in [18].
The solution, moreover, requires a protocol to prove that a ciphertext contains
a vote for a valid candidate. This can be accomplished, for example, through
the validity proof proposed by Hirt and Sako [14]. Besides these protocols, our
proposal uses the discrete log equality test owing to Chaum and Pedersen [7], a
protocol for proving knowledge of a representation, such as the one proposed by
Okamoto [20], and a plaintext equivalence test [15]. We employ the Fiat-Shamir
heuristic [10] to convert interactive zero-knowledge proofs into non-interactive
ones.

3.2 Security Model

The coercion-resistance requirement takes into account typical problems of re-
mote votings. The scheme we introduce here aims at satisfying this requirement.
In order to fulfill it, however, our proposal depends on certain assumptions and
conditions described here. Similarly to JCJ scheme, we consider the following:

– An adversary may impede the voter to vote, force the voter to post a random
composed ballot material, or demands secret information from the voter. The
adversary has limited computational power and is able to compromise only
a small number of authorities;

– The adversary may monitor the voter or interact with her during the voting
process. However, we suppose the adversary is not able to monitor or interact
with the voter continuously during the voting period;

– A registration phase free of adversaries. Also, we assume that the voter com-
municates to the registrars via a untappable channel and without the inter-
ference of adversaries. This channel provides information-theoretical secrecy
to the communication;

– Some anonymous channels in the voting phase. The voters are supposed to
have access to these channels and use them to post their votes;

– Voters cast their votes by means of reliable machines.

3.3 The Credentials

In the proposals of JCJ and of Smith, a valid credential is a random string.
Here, differently, a credential has a mathematical structure based on the group
signature scheme of Camenisch and Lysyanskaya [5].

A valid credential in our scheme has the following form: let G be a cyclic
group with prime order p where the decision Diffie-Hellman (DDH) problem is
hard, (x, y) two secret keys, a a random number in G (with a �= 1), r a random
number in Zp, the credential is composed of (r, a, b = ay, c = ax+rxy).

The security of our credentials relies heavily on the LRSW (see [5] for details)
and on the DDH assumptions. The former assumption ensures that even if an
adversary has many genuine credentials (ri, ai, bi, ci), it is hard for him to forge a
new and valid credential (r, a, b, c), with r �= ri for all i. This assumption is known
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to hold for generic groups and the security of Camenisch and Lysyanskaya’s
signature scheme also relies on it. The DDH assumption ensures that the voter
cannot prove to anyone else whether (r, a, b, c) is a valid credential or not. This
way, a voter under coercion can make a fake r to deceive an adversary who will
not be able to distinguish between a fake and a valid r.

In a real-world scenario, our credential can be seen as containing two parts: a
short one, that is r, which must be kept secret, and a long one, that is (a, b, c).
The first part (i.e. r) has around twenty ASCII characters (this corresponds to
160 bits, the actual secure size for the order of generic groups), so a small piece
of paper and a pen are sufficient to write r down. The other part can be stored
in a device or be even sent by email to the voter without compromising the
credential security.

3.4 The Scheme

Taking into account the security model and the building blocks introduced as
well as the new credential, we present now our coercion-resistant voting scheme.
The proposal is composed of four phases, that is, setup, registration, voting, and
tallying, and involves three participants:

Voter. The voter is denoted by V . She holds a valid credential and uses it when
she wants to cast her valid vote. Also, she is able to make fake credentials
and use them to deceive adversaries;

Talliers. These authorities are represented by T . They are responsible for con-
trolling the bulletin board, for running the mix net, and for computing the
voting results. They share a Modified El Gamal private key ̂T corresponding
to a public key T ;

Registrars. They are denoted by R. These authorities are responsible for issu-
ing a valid credential for each eligible voter. Also, they help the talliers to
identify valid credentials. They share two private keys, x and y corresponding
to the public keys Rx and Ry.

We employ the following notation in the description below: BB is a bulletin
board, ET [m] is a Modified El Gamal encryption of a message m constructed
with T , and DT̂ [m] is a Modified El Gamal decryption of m.

The scheme consists of the following procedures:

Setup phase. In this phase the general voting parameters are established and
published along with a digital signature on BB. These parameters consist of a
cyclic group G with prime order p where the decision Diffie-Hellman problem
is hard, a random generator o of G as well as the keys of T . Especially, the
talliers T cooperate to generate the public key T and the shared private key ̂T
via the Modified El Gamal threshold cryptosystem. The registrars R collaborate
to produce their public keys Rx and Ry and their respective shared private keys
x and y; these public keys are computed as follows: Rx = gx and Ry = gy where
g is a public random generator of G. Also, the list of voting candidates available
is published.
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Registration phase. After verifying that a voter is eligible, R issues to the
voter a secret credential σ = (r, a, b, c) via an untappable channel, where a is
a random element in G (with a �= 1), r is a random element in Zp, b = ay,
and c = ax+rxy. In addition, R may furnish the voter with a designated verifier
proof [16] of well-formedness for σ. Note that if (r, a, b, c) is valid, then for all r
the credential (r, al, bl, cl) for l ∈R Zp is a valid one too. This property is used
by the voter to change the values a, b, c each time she votes.

Voting phase. The voter casts her ballot by sending the tuple (ET [C], a, ET [ar],
ET [ary], ET [ax+rxy], or, P ) through an anonymous channel to BB, where C is
the candidate chosen, (r, a, ar, ary, ax+rxy) correspond to voter’s credential, o is
the public generator of G published in the setup phase, and P is a list of non-
interactive zero-knowledge proofs which ensure that the vote is well-formed. In
particular, P contains a proof that the vote is for a valid candidate, proofs of
knowledge of the plaintexts, and a proof that ET [ar] and or contain the same r.
Recall from the previous paragraph that the values a, b = ay, and c = ax+rxy

have been changed by the voter and are therefore different from the ones she
received from R.

The value or is used to detect duplicates and guarantees that only one vote
per voter will be counted. Otherwise, a dishonest voter could vote several times
without being detected.

Tallying phase. In order to compute the voting results, the talliers T perform
the following steps:

1. Verifying proofs. T verifies the proofs P on each tuple and remove tuples
with invalid proofs. That is, T verifies that a is in G and a �= 1, that ET [C]
is a vote for a valid candidate, the proofs of knowledge of the plaintexts, and
the proof that ET [ar] and or contain the same r;

2. Removing duplicates. In order to exclude duplicates, T first identifies
them by comparing all or, for instance, using a hashtable. After this, T
keeps the last posted tuples based on the order of posting on the bulletin
board;

3. Encrypting the plaintext element. The tuples that passed the previous
steps have their values or and P deleted, and their second component (i.e.
a) replaced by the Modified El Gamal ciphertext ET [a]. This way, only the
values ET [C], ET [a], ET [ar], ET [ary], ET [ax+rxy] are processed in the next
step;

4. Mixing tuples. T sends the tuples composed of ET [C], ET [a], ET [ar],
ET [ary], ET [ax+rxy] to a verifiable mix net and publish the output on BB.
Let the tuples formed by (t, u, v, w, z) = (ET [C]′, ET [a]′, ET [ar]′, ET [ary]′,
ET [ax+rxy]′) be the mix net output, where ET [X ]′ means a re-encryption of
ET [X ];

5. Identifying valid votes. For each tuple, R first employs its secret key y
to cooperatively compute vy. Then, R checks whether vy and w have the
same plaintext using a plaintext equivalence test. If the verification result is
positive, R generates a fresh shared key α ∈R Zp and cooperatively computes
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(zu−xw−x)α using the shared private key x that was generated along with y
in the setup phase. Now T collaborates to decrypt the resulting ciphertext
processed by R. The decryption is equal to 1 if and only if the credential
is a valid one. Note that if the credential is invalid, just computing and
decrypting (zu−xw−x) may give some information to an adversary, so the
random exponent α is necessary.

6. Decrypting and counting the votes. T employs its shared private key ̂T
to cooperatively decrypt ET [C] of each tuple with a valid credential. After
that, they count the votes and publish the results on BB.

Notice that a voter under coercion should reveal the correct values a and b of
her credential. Otherwise, an adversary can test whether this pair is correct
by mounting a ”1009 attack” [24]. That is, the adversary sends ”1009” ballots
containing pairs of the form (ali, bli) using 1009 random values li and checks
whether more than 1009 ballots passed the first test in step 5 of the tallying
phase.

3.5 Multiple Elections

The number of eligible voters may change in different elections. Some voters
may have their right to vote revoked after having participated in an election,
for instance. Also, a voter may be allowed to vote in several elections, but may
not vote in others. In order to satisfy these scenarios, a credential is normally
required to be used in multiple elections and should be revoked by the authorities
when necessary.

The credential we proposed may be used in multiple elections as long as the
same keys (x, y) are employed. However, in principle a credential cannot be
revoked. As only the voters knows their credentials, the authorities are not able
to revoke a credential. In addition, even if the authorities store all credentials
issued, they are not able to efficiently identify a revoked credential since the
credentials are published in an encrypted form.

Although the design of our scheme makes revocation difficult, the scheme has
some properties that help accomplishing this. Upon registering, a voter receives
(r, a, b = ay, c = ax+rxy). As stated before, the element r must be transmitted
via an untappable channel. However, the elements (a, b = ay, c = ax+rxy) may be
sent by post or even by email; this does not compromise the credential security
as long as the DDH assumption holds. Based on this, we suggest the following
method to revoke credentials and to perform new elections:

Besides generating and issuing a credential for each voter, the registrars R
cooperatively compute the encryption of (ar) and (a) (i.e. ER[a], ER[ar]) and
stores them in a list. These encryptions are performed using a public key R
corresponding to a shared private key ̂R especially generated for this purpose.

For each new election, instead of using the same keys (x, y), the registrars
generates new keys (x′, y′) and furnish the voters with new values (a′ = al, b′ =
a′y′

, c′ = a′x′+rx′y′
), computed from ER[a] and ER[ar], for a randomly chosen

l. That is, c′ is computed by raising ER[a] and ER[ar] to x′ and to x′y′ respec-
tively, and then by using homomorphism to obtain ER[ax′+rx′y′

]. After that,
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ER[ax′+rx′y′
] is raised to l and cooperatively decrypted. The values a′ and b′

can be obtained similarly, but without using homomorphism. The new elements
of the credential could be sent by mail to the voter or published on a dedicated
website.

4 Analysis

The scheme presented in the previous section aims at fulfilling the coercion-
resistant requirement as well as standard voting security requirements. We sketch
here an analysis of our scheme based on these requirements and considering the
security model introduced before.

4.1 Coercion Resistance

In order to be coercion resistant, a voting scheme must be receipt-free and de-
feat coercive attacks, such as randomization, forced-abstention, and simulation
attacks, as defined by JCJ.

A scheme is receipt-free if the voter is not able to make or obtain a receipt to
prove in which way she has voted. Especially, the voter here may not convince
an adversary that her credential is valid and that she used it to cast a particular
vote. Our proposal satisfies these requisites. The voter is not able to prove an
adversary that her credential is valid and an adversary cannot determine whether
a credential is valid or not unless he can break the DDH problem. In addition,
the credentials are verified only after a mixing process and the method employed
to verify them (see step 5 in the tallying phase) does not leak any information.
This way, the voter is not able to obtain any evidence that can be used as a
proof.

The proposal we presented is resistant to the randomization attack as well.
In this attack an adversary forces the voter to cast a ballot composed of random
information. As the voter in our scheme publishes her vote along with a set
of zero-knowledge proofs and all votes with invalid proves are excluded, ballots
randomly composed will not be tallied. In addition, even if the adversary observes
the voter and forces her to vote for a random candidate, she cannot verify the
voter performed this using her valid credential.

In the forced-abstention attack an adversary forces the voter to abstain from
voting. This attack is possible if the adversary can verify the voter has voted.
Our scheme, however, does not reveal any information about the voter identity.
The voter receives a valid credential that identifies her, but it is kept hidden
from adversaries. That is, the voter publishes the credential ciphertext on the
bulletin board via an anonymous channel and the credential is verified in the
tallying phase (step 5) without being decrypted. Hence, the adversary cannot
check whether the voter has voted or not.

The fact that the voter’s identity is concealed also prevent an adversary from
forcing a voter to show the random exponents used for encrypting her ballot
components. As the voter posts her ballot through an anonymous channel and
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no information about the credential is revealed during the tallying, the adversary
does not know who voted. This way, a coerced voter can say an adversary that
she did not vote and he cannot verify whether the voter told him the truth or
not. An adversary could also force the voter to reveal the exponents before she
sends her ciphertexts. However, the voter can use a fake credential and show the
exponents of the corresponding components.

Our scheme also prevents the simulation attack. In this attack an adversary
forces the voter to reveal her valid credential and vote on her behalf. However,
the voter in our solution is able to deceive the adversary by handing him a fake
credential and the adversary cannot distinguish a valid credential from a fake one
under the DDH assumption. The credential structure, the mix process as well
as the method used to identify valid credentials avoid the adversary performing
the distinction.

4.2 Democracy and Accuracy

In our proposal, the bulletin board may accept votes from eligible and non-
eligible voters and the voters may vote multiple times. However, only votes from
eligible voters appear in the final tally and only one vote per eligible voter is
counted. The scheme accomplishes this by excluding votes posted with the same
credential (see step 3 in tallying phase). This way, even if a voter uses the same
credential to vote many times, only the last vote will be processed. In addition,
the scheme checks whether the credentials are valid or not and excludes votes
with fake credentials. This is performed by the method that identifies valid
credentials in step 5 of the tallying phase. Since the method only outputs the
value one for valid credentials and that it is hard to forge valid credentials under
the LRSW assumption, it ensures that only votes from eligible voters will be in
the final tally. Conversely, the method outputs a random number as result for
invalid credentials. This way, votes from non-eligible voters (i.e. invalid votes)
will not be counted.

4.3 Universal Verifiability

Anyone is able to verify the correctness of the voting process and its results in
our solution. This requirement is ensured by the public bulletin board which is
secure and by the non-interactive zero-knowledge proofs (NIZKPs). The proofs
generated in all phases of the scheme are published on the bulletin board to
allow anyone to verify them. In addition, the voters publish their votes on bulletin
board, so anyone is able to verify the votes that will be processed. In the tallying
phase, the steps performed can also be verified by anyone through the bulletin
board; this includes the shuffle performed by the mix net and our method to
identify valid credentials.

The bulletin board and the NIZKPs also prevent the disassociation of the pair
of ciphertexts (a vote and a credential). After the voter publishes her ballot on
the board, any transformation of the ciphertexts (i.e. re-encryptions) is proved
through the NIZKPs.
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4.4 Efficiency

As stated before, the JCJ scheme requires a quadratic running time. The reason
for this is the pairwise blind comparison mechanism used for removing duplicates
and for identifying valid credentials. Our proposal, differently, does not relies on
blind comparisons. The duplicates are identified in the scheme by comparisons
that can be performed in a linear time, for instance by means of a hash table.
Similarly, the scheme identifies valid credentials by testing each credential apart
and this can be also performed efficiently. Thus, let N be the number of eligi-
ble voters and V the number of posted votes, our scheme has a running time
O(N +V ). As V may be much bigger than N , our scheme is linear in the number
of votes.

5 Conclusion

The scheme of Juels, Catalano, and Jakobsson (JCJ) considers realistic threats
and is more suitable for Internet elections. Unfortunately their scheme is inef-
ficient for large scale elections. Smith proposed an improved scheme, but his
solution is not coercion-resistant as we showed.

We have introduced a practical and secure scheme that satisfies the property
of coercion-resistance. Our scheme inherits some ideas from the JCJ protocol
as the use of anonymous credentials. It, however, employs special credentials of
which security depends on the DDH and on the LRSW assumptions; moreover,
it does not rely on comparisons to identify valid credentials and is efficient for
large scale elections.

The solution presented is based on the group signature scheme of Camenish
and Lysyanskaya. We have a variant of our proposal that employs the protocol
of Boneh et al. [2]. This variant will be presented in a forthcoming paper.

We have argued that our scheme is secure, but have not formally proved this
property. We will provide a formal proof in the full version of this paper.
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Abstract. We present Scratch, Click & Vote remote voting scheme. The scheme
is end-to-end verifiable and allows for voting over the Internet. It guarantees secu-
rity against malicious hardware and software used by a voter; a voter’s computer
does not get any knowledge about the voter’s choice. Moreover, it can blindly
change the voter’s ballot with a small probability only.

Keywords: Internet voting, e-voting, E2E, verifiable voting scheme, ThreeBallot,
Punchscan.

1 Introduction

There are two main scenarios of e-voting: advanced voting procedures at polling places
and remote electronic voting.

Polling station voting. Recently it has became evident that badly designed e-voting ma-
chines can be extremely dangerous to a voting process [1,9,13]. Fortunately, a number
of end-to-end auditable voting systems (E2E) has been presented recently. Interest-
ingly, some recent designs implement electronic voting without any electronic voting
machines [2,6,5,4]. Moreover, for these schemes each voter gets a receipt, which may
be used to check if the voter’s ballot has been included in the tally. It is also possible to
verify correctness of the results. On the other hand, the receipt cannot be used even by
the voter to prove how she voted. So they cannot help to sell or buy votes.

Internet voting. The Internet voting has not much in common with polling station sce-
nario. At the polling station it is relatively easy to preserve voter’s privacy; coercion and
vote buying is hard to hide. Another source of problems is that a voter must use some
electronic device. There is no convincing argument why a voter should blindly trust this
device. Malware can endanger integrity of the elections as well as privacy of the voter.

In case of remote voting one has also to deal with remote voter identification. For-
tunately, it can be solved in many ways, depending on a situation. For national elec-
tions one can use advanced electronic signatures, especially if supported by personal,
government-issued ID cards, or a novel technique described in [3]. For other elections
logins and passwords seem to serve well their purpose.
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In this paper we are concerned with an E2E systems for remote voting over electronic
networks. We assume that the electronic devices used by a voter might be infected by
malicious code, and that voter’s privacy and election integrity must be guaranteed in a
verifiable way.

1.1 Related Work

Three important ideas concerning E2E voting systems have been presented during the
last few years: Prêt à Voter, Punchscan, ThreeBallot (and related schemes). All of them
are dedicated to paper-based elections at polling stations. Recently, Punchscan and Prêt
à Voter have been adjusted to mail-in voting [15]. Since these methods are closely re-
lated to our scheme, we recall them briefly.

Prêt à Voter [6]. A voter, say Alice, obtains a ballot which consists of two parts. The
left part contains the official list of the candidates, altered by applying a circular shift by
x positions, where x depends on the ballot. The right part contains boxes where Alice
can put the ×-mark. In order to vote, she puts the ×-mark in the row that contains the
name of her favorite candidate on the left side. On the right side there is a kind of ballot
serial number S that is used for decoding Alice’s vote (namely, for reconstructing the
shift value x). The serial number is also included in the voting receipt obtained by Alice.
After making her choice, Alice separates both parts. The left part goes to a shredder,
while the right part is scanned and entered to the system.

Candidate S
2 Jerry
3 Edgar
0 Ervin
1 Donald

(a) Prêt à Voter ballot
with shift x = 2

Candidate S
2 Jerry
3 Edgar
0 Ervin ×
1 Donald

(b) A vote for candidate
number 0 (Ervin)

S

×

(c) The receipt of the
vote

Fig. 1. Ballot example for Prêt à Voter scheme

Punchscan [2]. The original ballot design of Punchscan is quite different from Prêt à
Voter, however it has been shown in [19] that the crucial mechanisms of Punchscan can
be used together with Prêt à Voter ballot layout.

The key issue is that Punchscan offers a complete back-end to perform E2E verifi-
able elections. Similar back-end is also used in Scantegrity [5] and Scantegrity II [4].
The values that are used in the ballot construction are committed and can be verified.
The verification process is twofold and consists of a pre-election audit and a post-
election audit. If the authority responsible for preparing ballots passes both audits, then
with an overwhelming probability the integrity of the elections is guaranteed.

ThreeBallot [16]. This scheme, presented by R. Rivest, is particularly appealing de-
spite of certain privacy weaknesses [7]. A voter, Alice, obtains a sheet of paper con-
sisting of four parts. The leftmost column contains the list of candidates (no shift is
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used). The next three columns are used to mark her choice. If she wants to vote for a
candidate V , then she puts two marks × in the row containing the name of V , while she
puts exactly one × mark in all remaining rows. After Alice makes her choice, all three

Candidate A B C
0 Ervin
1 Donald
2 Jerry
3 Edgar

(a) An empty ballot

Candidate A B C
0 Ervin × ×
1 Donald ×
2 Jerry ×
3 Edgar ×

(b) A vote for Ervin

A
×

×

(c) Exemplary receipt

Fig. 2. The ThreeBallot scheme

columns (ballots) are separated and cast into a ballot box. As a receipt Alice obtains a
copy of one of the columns/ballots of her choice (but the system does not know which
one).

Internet voting schemes. So far, the schemes designed by the academic community
do not fulfill all security demands. The most acute problem is that almost all schemes
ignore the fact that electronic voting equipment should be considered as a potential ad-
versary ([12,14]). Meanwhile, potentially the most dangerous in remote voting systems
is the equipment on the voter’s side. Voters’ machines can be infected with malware
that reveal the voter’s preferences or even change the encrypted ballot cast by the voter.

1.2 Our Contribution

Design goals. The main goal behind design of SC&V is to get an E2E scheme that
would be acceptable for casting votes over Internet. Unlike in the previous works, we
demand all key requirements to be satisfied. In particular, the scheme must be secure
without assuming that the voter’s PC or any of its components is trustworthy. We present
the scheme which is:

Human verifiable: A receipt obtained by a voter is human-readable and easy to exam-
ine by a moderately educated voter,

Voter friendly: A voter needs not to perform any complicated (and hard to understand
by an average voter) operations like: re-encryption, getting a blind signature, exe-
cuting oblivious transfer protocol etc.

Malware immune: Integrity of the elections and privacy of votes do not rely on any
assumption on trustworthiness of the equipment used by the voter,

Efficient: Computational overhead as well as communication volume are low.

Scheme design. In the next sections we provide a full description of SC&V . The
scheme can be described as a layered design in which we combine a number of tech-
niques/tricks:

Version 1: We start from a straightforward Internet-version of the ThreeBallot: a voter
needs to fill in a voting card using an application run on her PC. The filled ballot is
then sent to a voting server (Proxy).
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Version 2: In order to balance the number of ×marks in the columns (in order to make
the scheme immune against Strauss’-like attacks [7,10,17,18]) we add another col-
umn and another ×-mark (“FourBallot”).

Version 3: Since the voter’s PC knows exactly the voter’s choice – we introduce a
coding card which is prepared by a Proxy (see the diagram below). The coding card
hides from the PC the meaning of the voter’s choices (every candidate is “clicked”
exactly once). Moreover coding card is constructed in a way that the possibility of
modification of voter’s choice by her PC is reduced.

Version 4: Since Proxy still knows the voter’s choice, we introduce another server
– Election Authority (EA), which is responsible for preparation of ballots. In this
way Proxy does not know the choice, while Election Authority does not know who
voted.

Election Authority prepares voting cards in a similar way as for the Punchscan scheme.
Together with the ThreeBallot mechanisms this ensures verifiability of the voting
process.

Under the assumption that Proxy and Election Authority do not collude, SC&V offers
verifiable Internet voting with unconditional integrity and full privacy of a voter.

2 Ideas Overview

2.1 Ballots and Coding Cards

The voting process is a combination of paper based protocols. In order to vote one has to
get additional information that remains hidden from the computer used for vote casting.
This information might be obtained by the voter during voter’s in-person registration,
mailed to her home address or sent over an independent electronic link. In case of small
scale elections or elections of limited importance one can use emails with CAPTCHA
to sent information readible for a human voter, but hard to read by the voter’s computer.
Vote casting is done via electronic networks.

There is an Election Authority (EA) and a Proxy. EA prepares the ballots while
Proxy prepares coding cards. There is an Auditor which is responsible for pre- and
post-election audits.

In this section we describe the scheme from the point of view of a voter Alice. For
the sake of simplicity of exposition we assume that there is a single race where the voter
has to choose one out of m candidates (the pictures presented below depict the case of
m = 4).

Candidate A B C D
2 Jerry
3 Edgar
0 Ervin
1 Donald
S l

Fig. 3. A ballot with
π(i) = i + 2

Ballot layout. In order to cast a vote, Alice needs a ballot and a
coding card.

The ballot is prepared by EA, it consists of the following values
covered by a scratch surface:

– list of candidates permuted with some random permutation π.
Later we shall represent π = π′ ◦ π′′ where π′, π′′ are random.

– ballot serial number S l,
– four confirmation tokens: A, B,C,D – one per column. They

are prepared in a special way that will be described below.
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n Y n n
n Y n n
Y n n n
n n n Y
S r

Fig. 4. A coding card

The coding card is prepared by Proxy and consists of:

– four columns. In each row there is exactly one mark Y
standing for YES, and 3 marks n standing for NO. The
placement of Y in each row is random and independent
from the other choices.

– coding card serial number S r

2.2 Voter’s Point of View

Alice obtains both: the ballot and the coding card1. Alice lays them side by side and
thus obtains a complete ballot. Let us note that Alice gets exactly one ballot, but she
is allowed to have as many coding cards as she likes. Moreover, we assume that there
are many Proxies in the system2, so Alice can easily find one she trusts and gets coding
cards from this Proxy. A complete ballot (which Alice may put on her desk) may look
as follows:

complete ballot PC screen ballot matrix receipt
Candidate A B C D
2 Jerry n Y n n
3 Edgar n Y n n
0 Ervin Y n n n
1 Donald n n n Y

S l S r

�
�

�
�

S r

× ×
× ×
× × ×

× ×
S l

C,

×

×
×
, c

Alice visits an election website operated by the Proxy. She authenticates herself with
appropriate authentication method (login/password pair, electronic signature etc). She
clicks on the screen in the following way:

– she clicks on the position of Y in the row corresponding to the candidate that she
votes for,

– in each of the remaining rows, she clicks on one of the positions of n’s.

The Proxy commits to Alice’s clicks (the commitment is passed to EA), then Alice
enters coding card serial number S r. The Proxy checks S r and then transforms the
choice of the voter into an internal form called ballot matrix: Proxy puts × mark for
each nwhich has not been used yet (this transformation depends deterministically on the
positions of Y’s and n’s and the voter’s choice). So, for a row with the candidate chosen
by the voter Proxy puts three × marks, while in each row corresponding to different
candidates, there are only 2 ×marks. Note that Proxy knows which row corresponds to
the vote cast. On the other hand, due to the random permutation Proxy does not know
which candidate is corresponding to this row.

Then the columns of the ballot matrix, called ballot columns, are processed sep-
arately (analogously to ThreeBallot). In the next step Proxy obtains a blind signature
(BS) of EA under each ballot column. (A blind signature is necessary in order to prevent

1 Alice obtains it at registration office, by mail or by email, depending on election settings.
2 Moreover, a “decoy service” can be introduced – then Alice may obtain many different but

fake coding cards with the same serial number – in order to cheat a coercer or a vote-buyer.
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changing the ballot contents by EA at this moment). The voter enters ballot serial num-
ber (S l), then Proxy unblinds the signature, and sends ballot columns with S l to EA.
Simultaneously, the voter requests one ballot column as a receipt. The receipt contains:

– T ∈ {A, B,C,D} value of a confirmation token;
– y - ballot column,
– t such that T = signEA(t, S l), such t is called a pre-token of T .

The ballot columns are now separated and published just like for Punchscan scheme,
and then decrypted in a similar way. The number of votes for each candidate is counted
like for ThreeBallot.

3 Scratch, Click & Vote Scheme

The Ballots and Audit Tables. The ballots are created by EA. In order to guarantee
election integrity, EA generates audit tables P and R (see below for details). Each row
of table P corresponds to a single ballot matrix (which is a set of columns with the same
ballot serial number and the permutation of the candidates). Entries of R correspond to
single ballot columns. R is based on the same idea as Punchboard used in Punchscan.

Table P. The table P has 2 columns, called P1 and P2. It has 2n rows, where n is greater
or equal to the maximum number of voters.

P1 P2
.
.
.

.

.

.
S l(i) BC(iA), BC(iB), BC(iC ), BC(iD)
.
.
.

.

.

.

Example: Audit table P

The column P1 records the ballot serial numbers. The column P2 contains commit-
ments to 4 pointers to the rows of table R. Say, if a serial number S is in P1, then in the
same row, column P2 contains commitments

BC(iA(S )), BC(iB(S )), BC(iC(S )), BC(iD(S ))

to numbers iA(S ), iB(S ), iC(S ), iD(S ), where iX(S ) is the row number such that row
iX(S ) of table R contains an entry for the column X of the ballot with the serial number
S .

Table R. The table R consists of three parts: the starting part, the middle part and
the final part. Each part consists of a set of consecutive columns. R has 8n rows; this
corresponds to 2n ballots and 4 ·2n ballot columns. There are two types of permutations
used for constructing table R:

– ρ1, ρ2: permutations of rows of the R (i.e. permutations over {1, . . .8n}),
– permutations π′i , π

′′
i for i = 1, . . . , 8n over {1, . . . ,m}, where m is the number of

candidates (i.e. 2 permutations per each of 8n ballot columns). These permutations
have to be applied to ballot columns.
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Each row i in the starting part of R is devoted to a single ballot column of some ballot,
(and for each ballot column from some ballot there is exactly one such a row of R). Let
W(i) denote the ballot column corresponding to the ith row of R. Then for each i, data
concerning W(i) are placed in:

– row i of the starting part,
– row ρ1(i) of the middle part,
– row ρ2(ρ1(i)) of the final part.

Moreover:

– the starting part of row i will contain the ballot column W(i) as filled by the voter
(the order of the candidates is determined by πi = π

′
i ◦ π′′i , i.e. the entry for a

candidate j is given in row πi( j),
– the middle part at row ρ1(i) will contain W(i) permuted by (π′i)

−1),
– the final part at row ρ2(ρ1(i)) will contain W(i) permuted by (π′′i )−1 ◦ (π′i)

−1. Hence
the marks of W(i) will be permuted according to the standard ordering of candi-
dates: (π′′i )−1 ◦ (π′i)

−1 ◦ πi = (π′′i )−1 ◦ (π′i)
−1 ◦ π′i ◦ π′′i = id.

Below we describe the ith row of R. Let i = ρ1( j) and i = ρ2(ρ1(k)).

starting part (for W(i)) middle part (for W( j)) final part (for W(k))

i π̂i H(t(i)) ̂t(i) y(i) ̂ρ1(i) ̂π′j y( j) � (π′j)
−1

̂π′′j ̂ρ2(i) v

Organization of a row of table R

The starting part contains the following entries in row i (see the diagram above):

– i – the row index (i ∈ [1, 8n]),
– π̂i – a bit commitment to permutation of candidates πi used in the ballot containing

W(i),
– H(t(i)) – hash of a confirmation pre-token t(i), which satisfies the condition

T (i) = signEA(t(i), S l(i)) ,

where T (i) is the confirmation token used in conjunction with W(i), and S l(i) is the
serial number of the ballot containing W(i),

– ̂t(i) = BC(T (i), S i) – a bit commitment to the ballot serial number S l(i) of the ballot
containing W(i), and to the confirmation token T (i),

– y(i) = [y0(i), y1(i), . . . , ym−1(i)] – a vector holding mark × on those positions l such
that W(i) contains the × mark in row l. Initially, during creation of table R, the
vector y(i) is empty. It becomes filled after casting a vote.

– ̂ρ1(i) – a commitment to the value ρ1(i).

The middle part of R in row i contains the following entries:

– ̂π′j – a commitment to permutation of candidates π′j, where π j = π
′
j ◦ π′′j ,

– y( j) � (π′j)
−1 the vector y( j) permuted by (π′j)

−1,

– ̂π′′j – a commitment to permutation π′′j ,

– ̂ρ2(i) – a commitment to ρ2(i).

The final part of R in row i contains vector v equal to y(k) permuted by (π′k)−1 and then
by (π′′k )−1 (i.e., listed according to the standard ordering of the candidates).
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Preparation of Ballots and Audit Tables. The ballots and the audit tables P and R are
created by EA in the following way:

1. EA determines the election parameters: the number of candidates m, the official
list of candidates (with their official ordering), and an upper bound n on the total
number of voters.

2. EA chooses at random 2n serial numbers; for each serial number S :
– EA chooses at random a random permutation π,
– EA chooses at random confirmation pre-tokens tA(S ), tB(S ), tC(S ), tD(S ) and

computes confirmation tokens TA(S ), TB(S ), TC(S ), TD(S )

TX(S ) := signEA(S , tX(S )) for X = A, B,C,D .

3. EA creates audit table P: For this purpose, EA chooses at random a permutation
σ of 1, . . . , 8n. Then σ(4 j − 3), . . . , σ(4 j) are assigned to the jth serial number
S l( j). These numbers serve as pointers to the rows of the audit table R - and are
called iA(S l( j)), iB(S l( j)), iC(S l( j)), iD(S l( j)). Then for each serial number S l( j),
commitments to the values iA(S l( j)), iB(S l( j)), iC(S l( j)), iD(S l( j))) are created and
inserted in the row containing S l( j).

4. EA prepares the audit table R: For this purpose EA chooses random permutations
(on R-table rows) ρ1 and ρ2 of 1, . . . , 8n. For the jth serial number S l( j), its permu-
tation π (on ballot columns) is assigned to the rows iA(S l( j)), iB(S l( j)), iC(S l( j)),
iD(S l( j)) of the starting part of R. (i.e., πiA(S l( j)), πiB(S l( j)), πiC(S l( j)), and πiD(S l( j))) take
the value π). Separately for each row i of R, EA chooses at random permutations π′i
and π′′i such that πi = π

′
i ◦ π′′i .

5. Then the entries of R are filled according to the description from the previous sub-
section.

Finally, the ballots are printed so that their contents (the permutation of the list of can-
didates names, confirmation tokens and serial numbers) is hidden under a scratch layer.

The Pre-election Audit. As for Punchscan, the following steps are executed in order
to check that the audit tables have been created honestly:

1. The Auditors pick at random a set AS of n ballots. The remaining ballots create a
so called election set ES (and are not checked).

2. The contents of all ballots from AS is revealed, so in particular their serial numbers.
Based on the serial numbers it is possible to indicate the rows of P corresponding
to the ballots from AS .

3. EA opens all bit commitments from table P corresponding to the ballots from AS
as well as all bit commitments from table R corresponding to the ballot columns of
the ballots from AS .

4. The Auditors check whether the ballots and the entries in the audit tables were
created correctly.

5. All ballots from the audit set AS are discarded; the ballots with serial numbers in
ES are used for election.

In practice, the Auditors may confine themselves to controlling only a limited number
of ballots from AS , and check more ballots on demand.
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Preparing Coding Cards. The coding cards are prepared in an electronic form and are
published (as commitments) on a webpage by the Proxy. Their correctness is checked
in a standard way:

1. Proxy creates an audit table X in which it commits to coding card serial numbers
S r and positions of Y-marks on each coding card.

2. The Auditors select at random some number of coding cards to form an audit set
(these coding cards are not used for elections).

3. Proxy opens all bit commitments from the cards of the audit set.
4. The Auditors check if the revealed coding cards have been created correctly.

Elections. The following steps are during vote casting:

Step 1: The voter obtains a ballot (e.g. by visiting certain authorities, from a special
courier delivering the ballots at residence area, by certified mail services etc.). At
the same time, identity of the voter is verified and the ballot is given to her own
hands. Distribution of ballots is organized so that nobody knows who gets which
ballot. Since the ballot information is covered with a scratch surface, this is easy.

Step 2: The voter fetches (still unused) coding cards from one or more Proxies (for
convenience the coding cards can be printed).

Step 3: The voter peels-off the scratch-layer from the ballot.
Step 4: The voter logs in an election webpage run by a Proxy and authenticates herself.
Step 5: Proxy verifies voter’s credentials.
Step 6: The voter chooses one of the coding cards and lays it next to the ballot.
Step 7: The voter clicks on the PC screen on radio buttons corresponding to her choice

– that is, according to the permutation used for the ballot and alignment of n and
Y’s marks on the coding card.

Step 8: Proxy commits to voter’s clicks, sends the commitment to EA and to the voter
(so the voter can print it)3.

Step 9: The voter enters S r from the coding card used.
Step 10: Proxy transforms the voter’s choice into ballot columns.
Step 11: Proxy obtains a blind signature from EA under each of the ballot columns

(these signatures are then stored by Proxy for a post-election audit).
Step 12: The voter enters S l.
Step 13: Proxy passes S l and the ballot columns to EA.
Step 14: EA enters the obtained ballot columns into appropriate rows of the starting

part of table R (but EA publishes them when the election are closed), EA publishes
commitments to the ballot columns obtained from Proxy.

Step 15: The voter chooses a receipt (one of the four columns).

Tallying

1. When the voting time is over, EA publishes voter’s choices inserted into vectors
y(i) in the starting part of the table R. Then it computes the entries for the middle
part of R: y( j) � (π′j)

−1, and for the final part:

v = (y(k)� (π′k)−1) � (π′′k )−1.

3 This commitment can be later used during investigation in the case if a fraud was detected.
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2. From the entries v in the final part EA calculates the tally: If the number of ballot
columns is 4N (meaning that N votes have been cast) and there are together M
marks × in row j of all ballot columns in the final part of R, then the number of
votes cast for the jth candidate is M − 2N.

Post-Election Audit. First, each voter can check if her ballot column corresponding
to the receipt appears in the table R. This is possible, since due to knowledge of the
verification pre-token t, one can locate the right row containing H(t). If it is missing or
the contents of the ballot column disagrees with the receipt, then a fraud is detected.

Checking integrity of table R and the election results is performed in public by the
auditors. For this purpose the standard Randomized Partial Checking [11] procedure
is executed for R (for the sake of simplicity of description we assume that n voters
participated in the elections):

1. The auditors choose 2n rows of R at random and request EA to open commitments
̂ρ1(i) from these rows. Then for each row ρ1(i) in the middle part, for which ρ1(i)
has been revealed, the commitment ̂π′i is opened and it is checked that the ballot
column from the starting part permuted by (π′i)

−1 yields the ballot column in the
middle part.

2. For each row j in the middle part, not pointed to by any revealed commitment ρ1(i),
EA has to open the commitments to ρ2( j) and̂π′′. Then the ballot columns in the
middle part of row j permuted with π′′−1 and the ballot column in the final part of
row ρ2( j) should be equal.

4 Security Concerns

Voter’s PC misbehaviour. Here we assume that the Alice’s PC is dishonest, while EA
and Proxy behave correctly. This corresponds to the case when Alice’s PC is infected
by malware.

Integrity. In order to manipulate voter’s choice (change from Alice’s choice to any
other candidate, even a random one) the PC has to switch Alice’s choice from Y into n
in the row corresponding to the candidate chosen by Alice and at the same time, change
n into Y in one of the remaining rows. In order to do that, the PC has to guess which
row corresponds to the chosen candidate and succeeds with probability 1

k . Then, the PC
has to choose one of the remaining rows and guess which one of the unchosen three
columns corresponds to the mark Y – this succeeds with probability 1

3 .
So the probability of correct switching Alice’s choice is only 1

3k . But even then, Alice
can still detect a fraud by discovering that her receipt does not fit her choice. At least
one of the ballot columns is modified during such change (and sometimes it is just one
column). So the total probability of a successful and undetected vote change is 1

4k .

Privacy. Even if Alice’s PC sends all information it is aware of to an attacker he is
unable to determine the choice of Alice. Indeed, the attacker neither knows the config-
uration of Y’s on the coding card nor the permutation used on the ballot.
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EA misbehaviour. Now assume that EA is dishonest, but the PC of Alice and the Proxy
are honest.

Integrity. Misbehaviour in ballots’ preparation and counting is limited by the pre- and
post-election audits just like in the case of Punchscan.

Replacing ballot columns when inserting them to table R is risky, since the voter gets
a receipt, which is one of her four ballot columns signed by EA. If the receipt disagrees
with the contents of table R, then one can catch EA. Recall that the ballot columns are
signed blindly by EA before EA knows ballot’s serial number (and thus the permutation)
and that EA does not know which of the ballot columns is chosen for the receipt. Note
that since the hash value of the pre-token is posted in R, the voter can prove which entry
in the starting part of R corresponds to the ballot column from her receipt.

Privacy. The situation is like for Punchscan: If EA knows which ballot was used by
Alice, then it knows the vote cast by Alice. So it is crucial to apply appropriate proce-
dures of ballot distribution. Keeping the sensitive information under scratch surface is
a good solution - the ballots can be mixed before distribution, becoming thus indistin-
guishable. Also, it is crucial that voters never send ballot information directly to EA -
all communication must go through Proxy.

Proxy’s misbehaviour. Now we assume that Proxy is dishonest, while EA and the PC
of Alice behave correctly.

Integrity. Proxy commits to the voter’s clicks before it knows S r, so Proxy cannot
change voter’s choice.

If Proxy changes S l in order to change the permutation of a ballot then Alice obtains
a confirmation token that is different from the one stated on her ballot. Thus it will be
detected immediately by Alice.

Privacy. The assignments of Y’s and n’s are known to Proxy, so Proxy knows the row
corresponding to the voter’s choice. However, Proxy does not know the permutation
used in the ballot, so it cannot link the vote with any particular candidate.

External observer’s point of view. Here, we assume that the observer Charlie is not
physically present during casting a vote and does not control the PC used by Alice. We
assume that Alice casts the vote and then passes to Charlie (e.g. by mail or fax): the
ballot, the coding card and the receipt and informs which fields have been clicked. Of
course, Charlie has access to the bulletin board.

The key point is that Alice could use a coding card different from the one she shows
to the observer – receipt does not contain S r. So, the situation of Charlie is much differ-
ent from the situation of a Proxy: Charlie obtains only one ballot column (receipt) and
cannot be sure if the coding card obtained was really used.

Vote selling. In case of SC&V voter is identified electronically by the Proxy. The
identification protocol should guarantee that the voter would not risk transmitting her
electronic identity to the buyer. (In this way SC&V becomes superior over postal pro-
cedures, for which transferring a ballot to a buyer cannot be prevented.) This holds for
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instance, if the voter is using an electronic ID card or ID codes that are used also for
other purposes (like submitting a tax declaration).

Even if Alice casts the vote herself, she can record the whole voting session and
present it to the buyer together with the ballot and the coding card used. The ballots
have a non-electronic, paper form, so they can be presented to the remote buyer as
electronic copies. However, the scan of the ballot can be manipulated and the coding
card presented needs not to be the one actually used.

Things become more complicated for the buyer, if the authentication protocol is
based on a zero-knowledge protocol – then the buyer cannot be even sure that the voter
is casting a vote unless he is controlling directly the voter’s PC.

The only thing that the buyer can be convinced about is the receipt and the matching
entries in the bulletin board. However, at this moment we fall back to the case of the
external observer considered above.

Decoy service. Decoy service can be optionally launched in order to make vote-buying
and coercion harder. A voter can visit a webpage of a decoy service and download fake
coding card with any given serial number and arbitrarily chosen arrangement of Y’s and
n’s. Then, the voter may present such a coding card to a coercer or a vote buyer together
with a receipt and ballot to prove that she voted in a certain way.

Usability issues. The scheme might be uneasy to use at least for two reasons. First, a
voter needs to click next to every candidate. Second, a voter needs to find her candidate
on a permuted list of candidates. So use of shifted lists of candidates (as for Prêt à Voter)
can improve usability. Unfortunately, shifts have bad impact of privacy.

A receipt obtained by a voter is an k-row column. If permutations are used for re-
ordering lists of candidates, then there are k + 1 types of of receipts (any two receipts
with the same number of × marks are equivalent).

The situation is different, if shifts are used. Then, the number of different types of
receipts is equal to the number of k-bead necklaces with 2 colors which equals to (see
[8]): S(k) = 1

k

∑

d|k ϕ(d)2
k
d , where ϕ(k) is the Euler quotient function, i.e. for k-prime

S(k) = 2k/k. In this case, in order to achieve privacy of votes, the number of voters
has to be much higher than S(k). The other solution to this problem is to use so called
masked ballot columns.

The idea is that table R stores in its rows instead of ballot columns – k corresponding
masked ballot colums. Simply, the jth masked ballot column of a given ballot column
contains no × mark except for the row j, provided that the original ballot column con-
tains a ×mark in the row j. See an example of a ballot column and its masked versions:

a ballot column:

×

×
×
, masked ballot columns:

×
, , × ,

×

Let X be a ballot column and t be its pre-token. Then the jth masked ballot column
for X in the starting part of R is marked by the value H(t, j) (instead of H(t), as it was
for the first design). This enables the voter to check the entries of the bulletin board as
before - however the voter has to look for k different hashes and k rows instead of one.
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Checking integrity of R table is performed just as before, as well as vote counting:
the number of ×marks does not change, the number of votes is now the number of rows
of table R divided by 4k.

How do the masked ballot columns help to preserve anonymity? The key observation
is that the number of masked ballot columns of each kind is determined uniquely by
the election result. Therefore R table provides no additional information. So the Strauss’
attack and any other attack based on the particular choice of ballot columns fails.

The same technique may be applied to ThreeBallot scheme.

5 Final Remarks

SC&V allows for secure and verifiable vote casting over the Internet with unconditional
integrity. Privacy is preserved with the assumption that both authorities do not collude.

A voter cannot prove how she voted unless vote-casting is physically supervised by
an adversary (it is not the case in Internet version of Punchscan [15]).

Online vote-selling is almost impossible. In order to buy a vote, a buyer needs to
obtain:

– the record of a voting session from the voter’s computer (the serial numbers of
ballot and coding card, and the voter’s choices),

– ballot and coding card used.

Even if the voter’s PC is infected by viruses, her choice remains secret. Moreover, any
attempt of modification of voter’s choice is detected with high probability.
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Abstract. This paper presents a method for adding end-to-end verifi-
ability to any optical-scan vote counting system. A serial number and
set of letters, paired with every candidate, are printed on each optical-
scan ballot. The letter printed next to the candidate(s) chosen by the
voter is posted to a bulletin board, and these letters are used as input to
Punchscan’s verifiable tallying method. The letters do not reveal which
candidate was chosen by the voter. The method can be used as an inde-
pendent verification mechanism that provides assurance that each vote
is included in the final tally unmodified—a property not guaranteed by
a manual recount. We also provide a proof-of-concept process that al-
lows the election authority to settle disputes after the polls close while
preserving ballot secrecy.

Keywords: anonymity, cryptography, E2E, mix networks, optical-scan,
privacy, Punchscan, security, universal verifiability, voting.

1 Introduction

Abraham Lincoln once observed that democracy is “the government of the peo-
ple, by the people and for the people.” The foundation of any government by
the people rests on a society’s ability to hold inclusive elections and accurately
count every vote. Unfortunately, the introduction of new voting technology in
some countries, including the United States, has diminished voters’ confidence
in the security of their democratic contribution.

At the time of writing, the most prominent voting technology used in US elec-
tions are optical-scan systems [EDS06]. These systems provide two methods for
counting votes. Under precinct scanning1, the scanned ballots are electronically
tallied at the precinct after the polls close. Tallies produced this way rest on
software security, and recent security reviews of certified optical-scan systems
have demonstrated serious vulnerabilities that undermine the trustworthiness
of tallying through this method [WJB06, KMRS06, ea07]. The second tallying

1 Alternatively the ballots can be scanned centrally, however this requires greater
reliance on chain-of-custody.
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method is to conduct a manual recount. Hand counting ballots is slow and prone
to human error, but most seriously, manual recounts do not detect if ballots were
replaced or modified.

This paper2 proposes a simple way to add a third, superior vote counting
method to any optical-scan voting system—a method that is end-to-end (E2E)
verifiable. Our method does not interfere with the mechanics of the optical-scan
procedures. It permits voters to mark the ballot exactly as in the underlying
system, candidates can be listed in a fixed order, the electronic tally can be
performed on the same equipment, and manual recounts can be conducted as
necessary. Our method only requires the central election authority to print addi-
tional information on each ballot and follow some additional procedures after the
polls close. Procedures at the precinct remain essentially unchanged. Thus, we
introduce no additional risk of equipment failure and only generate a marginal
increase in cost. In return, each voter gains the ability to check her choices are
included in the tally unmodified and everyone can check that all included ballots
are counted correctly.

Our method evolved from the Punchscan voting system [PH06], which con-
tains two key elements: (1) The front-end which is the ballot, how it is con-
structed, marked, scanned, and posted; and (2) the back-end which provides a
universally verifiable method for recovering voter choices from the posted infor-
mation without compromising ballot secrecy. We introduce significant modifica-
tions to the front-end by pairing symbols with candidate names on each ballot.
The symbol paired with each chosen candidate is posted on a bulletin board.
The back-end only changes semantically by decoding what each letter means in
a verifiable way instead of decoding a position marked on the ballot. In addition,
we provide a dispute resolution process which can be conducted after the polls
close.

This paper is organized as follows. Preliminaries are provide in the next sec-
tion. Section 3 outlines our motivation for creating this method and our design
goals for the new ballot style which is introduced in Section 4. The voter experi-
ence at the precinct is explained in Section 5, while section 6 gives an overview
of how the tally is generated using the Punchscan back-end. Section 7 presents a
dispute resolution process for proclaimed discrepancies between a voter’s receipt
and the bulletin board. Finally, Section 8 provides implementation details and
Section 9 contains our concluding remarks.

2 Related Work

End-to-End (E2E) voting systems (also known as receipt-based or universally-
verifiable voting systems) represent a class of systems that offer unconditional
integrity of election results, usually by using cryptographic techniques. They
include VoteHere’s MarkPledge [Nef04a, Nef04b], Punchscan [ECCP07], Prêt
2 This paper is derived from a presentation by the first author at Frontiers of Electronic

Voting in 2007. Conceptually, the ideas herein predate a more thorough treatise of
the system to appear in IEEE Security and Privacy.
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à Voter [CRS04], Scratch & Vote [AR06] and Voter Initiated Auditing [Ben07].
Typically, an E2E system will provide the voter with a signed or stamped receipt
of her vote. To preserve ballot secrecy, the receipt does not reveal how she voted
but contains an indirect representation of her vote—either through encryption or
a permutation-based obfuscation. The polling place equipment records this same
indirect representation and never sees the voter’s actual choices. After the polls
close, the election authority publishes all of the representations it received on a
public bulletin board, allowing voters to check that their choices are included
and unmodified. In the case of an error, the signature on the receipt provides
the voter with proof of a discrepancy—an event that can trigger a variety of
responses, depending on election policy.

The election officials will generate the final tally by recovering the votes from
the indirect representations of the ballots, either through decryption or inverting
the obfuscating permutation. To preserve voter privacy, the tally is generated
through a specially designed protocol that explicitly removes the correspondence
between a receipt and the choices it represents. To ensure the unconditional in-
tegrity of this protocol, a mandatory auditing process is performed on the pro-
tocol which proves to a mathematical certainty that all ballots were recovered
properly and that the choices were unmodified—whether by a software error,
a malicious election official, or a hacker. This auditing process can be indepen-
dently duplicated by anyone.

3 Design Goals

The front-end of Punchscan has been criticized for its use of indirection, which
could introduce voter intention errors and significantly increase time-to-vote.
Filling out a Punchscan ballot requires the voter to find a letter correspond-
ing to the candidate of choice in a row of randomly ordered symbols and then
marking the corresponding hole. To date, no peer-reviewed user study has been
performed on the usability of a Punchscan ballot and so these criticisms are
unsubstantiated, however they appear reasonable.

A trade-off involved with the use of Punchscan is that it cannot produce on-
demand ballots. This is because it requires paper with holes punched in unique
positions for each election. While drilling holes through paper is very fast and
cheap, it does require special equipment. The system is also environmentally
wasteful, requiring the destruction of one of the two paper sheets composing the
ballot.

Another issue is that custom software to scan a Punchscan ballots is needed.
While current optical-scan voting equipment could be used to acquire an im-
age of the ballot, the hardware was developed to perform mark sense scanning,
which detects whether a shape has been filled in or an arrow has been drawn.
The software for scanning Punchscan ballots is simple but the cost and inconve-
nience of upgrading the software on already-owned optical scanners is a serious
impediment to the adoption of Punchscan.

Punchscan uses an unfamiliar mechanism for counting votes. While it pro-
vides exceptionally high integrity, it does not comply with legislation and voting
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standards that require hand-countable paper ballots for manual recounts. A pref-
erence for elements that voters and election officials are used to could ultimately
weigh the decision to adopt new voting technology away from systems like Punch-
scan. Having only minimal changes that can be easily explained and understood
by those running the elections is critical for the success of the adoption process.

With regards to privacy, Punchscan ballots are better than optical-scan bal-
lots. With Punchscan, the scanner does not get to see the full ballot, only the
receipt which does not indicate how the voter voted. Additionally, any finger-
prints that are left by the voter on the scanned paper are irrelevant. However this
makes it impossible to have results reported by the precinct optical scan or to
conduct a manual recount. Even though Punchscan ultimately offers a stronger
proof of accuracy than even a manual recount, this is a legal impediment to
Punchscan’s adoption in many jurisdictions.

Taking these criticisms, trade-offs, and shortcomings into consideration, we
have produced a set of design goals for a new ballot style that can interface with
Punchscan’s back-end. This is not meant as a replacement for Punchscan, nor
should it be thought of as an improvement in all regards. Some jurisdictions
may opted for the improved privacy properties offered by Punchscan in lieu of
the ability to conduct manual recounts or use existing equipment. Because the
back-end is shared with Punchscan, ballots could be mixed and matched in the
same election. Some ballots can be printed in Punchscan style, while others can
be of the new type. To summarize, our design goals are as follows:

1. Eliminate indirection,
2. Allow on-demand printing,
3. Use a single sheet,
4. Use a familiar method for marking the ballots,
5. Allow the use of existing voting equipment without upgrades,
6. Do not interfere with optical-scan tallying,
7. Do not preclude the option of a manual recount,
8. Allow Punchscan’s privacy-enhanced ballots to be used in conjunction.

4 Ballot Design

As will become evident, one major advantage of our technique is the ability to
preserve the ballot layout that is imposed by the law or an equipment manu-
facturer. With our method, the order in which the candidates appear on the
ballot can be the same on each ballot. We illustrate a typical optical scan ballot
configuration in Figure 1. Our method adds two elements to this ballot: symbols
that are paired with each candidate and a serial number represented in a form
that a mark sense scanner can read.

Before the election, a set of symbols is published for every contest on the
ballot. These symbols can be letters, numbers, shapes, or multi-character codes.
A fixed canonical order of the symbols, corresponding to candidate order, is
also established. The order itself is arbitrary and we use alphabetical order from
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Fig. 1. Normal Ballot. A typical optical scan ballot configuration. Candidates are
listed in a fixed order across all ballots and there is a designated location next to each
candidate that a voter marks.

Fig. 2. New Ballot Configuration. Next to each oval there is a different symbol.

here onward. For each ballot, the symbols are shuffled relative to the canonical
order and printed next to the ovals associated with the candidates as illustrated
in Figure 2). Figure 3 illustrates the set of possible symbol orders for a two-
candidate contest. Note that on any two different ballots, the symbols associated
with the same candidate may be different. Therefore if the distribution of possible
symbol orders is uniformly random across the ballots, the knowledge that a vote
was cast for any particular symbol provides one with no statistical advantage in
determining which candidate was voted for.

The serial number of each ballot is printed in such a way as to allow easy scan-
ning. Assuming that scanner uses the mark sense technology, the serial number
is represented using a matrix of digits, where the digits of the serial number
blackened out. This is illustrated in Figure 4. Using this representation, any ex-
isting mark sense scanner can be configured to recognize a serial number even if
its ignorant of the fact its scanning a serial number as opposed to votes. Mark
sense attempts to determine if the geometric shape is filled in or not. Sets of
shapes can be defined such that only one shape is allowed to be filled in, as
would be done in for each contest on a first-past-the-post ballot, and if it more
than one appears to be filled, the darkest is typically selected. The output of the
scanner is an electronic ballot images (EBIs) which is a list of each shape and its
state—filled or unfilled. For our method, the information stored by the precinct
scanners will be the positions that were filled in, where some of these positions
represent the serial number.

The last aspect of the new ballot is the reserved a portion that is to be used
as a stub—detachable along a perforation in the paper. The stub also bares the
serial number of the ballot printed on it but this serial number is for the voter to
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Fig. 3. Different Ballots. On two different ballots, the order of the symbols associated
with the candidates may be different.

Fig. 4. Representing the serial number. This format allows a mark sense scanner
to read it by checking which digits are black.

read, not the scanner, and can be represented in numeric form. A ballot adapted
from a real election is shown in Figure 5. We now address the purpose of this
stub and how it is used by the voters.

5 The Voting Ceremony

On voting day, after proper identification and verification, the voter is issued
our modified ballot by the poll workers. She fills out this ballot as she would
the ballot of any optical-scan system, filling in the ovals beside the candidates
she wishes to vote for. Before she scans the ballot, she detaches the ballot stub
and may write on it or any piece of paper the symbols that corresponded to the
candidates she chose. Afterward, the ballot is scanned and placed into a ballot
box as under the normal procedures of optical-scan voting.

While in the booth, if the voter makes a mistake while filling in her ballot,
the ballot is officially marked as spoiled and given back to the voter. Also, the
voter may choose to deliberately spoil a ballot in addition to the ballot she votes
on. If she wishes to do so, she must tell the election official before getting her
ballot. The election official will then present the voter with two ballots, both
faced down, such that the voter cannot see the order of the symbols. The voter
may choose one of the ballots to spoil and the other one to vote on. In section
6, we describe how these spoiled ballots can be used to audit the integrity of the
election. The voter may keep the spoiled ballot for herself or she may choose to
give them to an organization that she trusts (e.g. The League of Women Voters)
to use in checking the integrity of the election on her behalf.
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COUNTY - NONPARTISAN

PRESIDENTIAL

ELECTORS FOR PRESIDENT
AND VICE PRESIDENT

(A vote for the candidates will actually
be a vote for their electors.)

(Vote for One Group)

UNITED STATES SENATOR
(Vote For One)

TREASURER
(Vote For One)

COMMISSIONER OF EDUCATION
(Vote For One)

GEORGE W. BUSH
DICK CHENEY

REPUBLICAN

BILL McCOLLUM REP

BILL NELSON DEM

SHERIFF
(Vote For One)

LAWRENCE W. CROW, JR. REP

KIRK WARREN DEM

TOM GALLAGHER REP

JOHN COSGROVE DEM

JOE SIMONETTA LAW

CHARLIE CRIST REP

GEORGE H. SHELDON DEM

VASSILIA GAZETAS NPA

JOEL DECKARD REF

WILLIE LOGAN NPA

ANDY MARTIN NPA

DARRELL  L. McCORMICK NPA

AL GORE
JOE LIEBERMAN

DEMOCRATIC

HARRY BROWNE
ART OLIVER

LIBERTARIAN

RALPH NADER
WINONA LaDUKE

GREEN

JAMES HARRIS
MARGARET TROWE

SOCIALIST WORKERS

JOHN HAGELIN
NAT GOLDHABER

NATURAL LAW

PAT BUCHANAN
EZOLA FOSTER

REFORM

DAVID McREYNOLDS
MARY CAL HOLLIS

SOCIALIST

HOWARD PHILLIPS
J. CURTIS FRAZIER

CONSTITUTION

MONICA MOOREHEAD
GLORIA LA RIVA

WORKERS WORLD

CONGRESSIONAL COUNTY

LEGISLATIVE

Write-in For President/Vice President

Write-in

SUPERINTENDENT OF SCHOOLS
(Vote For One)

JIM THORNHILL REP

DENNY DUNN DEM

COUNTY COMMISSIONER
DISTRICT 1

(Vote For One)
DON GIFFORD REP

JANET SHEARER DEM

SUPERVISOR OF ELECTIONS
(Vote For One)

LORI EDWARDS

BARBARA OSTHOFF

GREGORY L. WILLIAMS DEM

STATE REPRESENTATIVE
44TH HOUSE DISTRICT

(Vote For One)
DAVE RUSSELL REP

REPRESENTATIVE  IN  CONGRESS
15TH CONGRESSIONAL DIST.

(Vote For One)
DAVE WELDON REP

GERRY L. NEWBY NPA

PATSY ANN KURTH DEM

Write-in

SAMPLE OFFICIAL BALLOT
GENERAL ELECTION

POLK COUNTY, FLORIDA
NOVEMBER 7, 2000
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Fig. 5. Ballot adapted from Florida’s 2000 Polk County Election[pol07]. At-
tached to a ballot there is a stub with the serial number of the ballot printed on it.

After the polls close, anyone can go to the bulletin board—an official election
web site—and enter the serial number of the ballot from a ballot stub. The
bulletin board responds with a list of symbols corresponding to the symbols that
were paired with the chosen candidates on the ballot.



364 S. Popoveniuc et al.

Fig. 6. Plausible Deniability. Knowing which symbol was marked does not reveal
which candidate was chosen, since on different ballots the same symbol can correspond
to different candidates.

Since the same symbol corresponds to different candidates on different ballots,
the bulletin board preserves ballot secrecy while providing enough information
to verifiably calculate election results. For example, if a coercer attempts to
influence a voter to cast a vote for “Alice” and sees on the bulletin board that the
ballot with her serial number had the oval corresponding to symbol “X” marked,
symbol “X” may correspond to “Alice” or “Bob” as shown in Figure 6. Thus,
the coercer has no assurance that the voter followed his directions. Even if she
wanted to, the voter cannot provide any evidence that any symbol corresponds
to a certain candidate for a ballot, since the paper she used to write down the
symbols is merely a personal record and does not bear any value for anyone else
but the voter.

If, after checking the bulletin board, the voter sees the same symbols she
recorded on her piece of paper, she is guaranteed the following three things:

1. The scanner properly read her ballot.
2. The scanner correctly posted the symbol.
3. The central election authority received and counted a ballot with the correct

symbol.

More generally, the voter is given assurance that her vote was properly inter-
preted and received by the election authority. However she still does not know
if her ballot was counted correctly for candidate she chose. The next section
presents the mechanism that ensures everyone, not only voters, that all the votes
were counted as recorded—i.e., that for each given serial number, the symbols
that are posted on the bulletin board are counted as votes for the same candidate
that the symbols appeared beside on that ballot.
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6 Generation of the Election Results

In the previous sections, we have described a new front-end for the Punchscan
voting system. We give a brief, conceptual overview of Punchscan’s back-end,
and then address how it is used to produce a universally verifiable set of election
results.

6.1 Punchscan’s Back-End: The Punchboard

The back-end of the Punchscan system, which translates voter marks into voter
choices, is called the Punchboard, and it is a specially constructed anonymity
network. A variety of anonymity networks have been proposed in literature,
most of which are based on Chaum’s mix networks [Cha81]. In a mix network,
anonymous messages are encrypted multiple times (forming an ‘onion’) and then
sent through a series of nodes, each of which remove the order-based correspon-
dence between their input and output message set by using a secret permutation,
and remove content-based correspondence by decrypting each message once. A
second type of anonymity network, also due to Chaum, is the DC-net [Cha88]
which hides an anonymous message amidst random numbers that cancel out
when summed together, revealing the message. The Punchboard is both distinct
from these two anonymity networks and similar in certain regards.

Similar to a mix network, the Punchboard operates on a batch of input mes-
sages (voter marks) and produces an output set (voter choices) in a permuted
order. However unlike a mix network, the Punchboard does not distribute trust
among multiple nodes. Instead the permutations are produced from a secret
election-wide key that is shared among multiple trustees in a threshold scheme.
This election key is never stored in memory but is regenerated by a crypto-
graphic combination of trustee-supplied pass phrases on each occasion that the
Punchboard is needed. The election trustees can be comprised of adversarial op-
ponents, such as representatives of each political party, along with government
officials to ensure the group has no incentive to collude.

Before the election commences, the election trustees use this election-wide
key to generate the secret permutations in the Punchboard. A cryptographic
commitment for each is computed and published. These commitments will later
form the basis of a proof that the Punchboard has not been altered through
the course of the election. This proof can be verified by any independent, in-
terested party. There is one path per ballot for the election. An advantage of
the Punchboard over the use of a mix network, which are used in some other
voting systems [CRS04], is that the Punchboard does not use encryption and
decryption functions. Rather it uses a much faster method based on modular
addition. The voter marks can be thought of as the sum of some random num-
bers (represented on a Punchscan ballot by the random order of the symbols)
and the position marked by the voter. The first node of the Punchboard adds
an additional random number to this sum so it is untraceable if one were to
examine the input and output set of the first node. The second node subtracts
off the sum of all the random numbers leaving the position of the candidate to
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receive a particular ballot’s vote3. As with the secret shuffles, all the random
numbers to be used are generated from the election-wide key and fixed prior to
the election through a cryptographic commitment.

Assuming that randomized partial checking [JJR02] is used for auditing the
Punchboard, a minimum of two nodes are sufficient. The commitments to the
random numbers can be independent, or can be blended into the commitments
to the paths, meaning that a path and a set of numbers are committed to at
the same time, using a single commitment. The Punchboard is very fast because
it can be implemented using an efficient hash-based commitment scheme and
without the use of public key or symmetric key cryptography. Full details of the
Punchboard have been omitted from this document but are available in previous
publications [PH06, ECCP07].

6.2 Using the Punchboard with the New Ballots

To ensure that the ballots are printed properly, some printed ballots are checked
in an audit. This audit, which is similar to the audit in [AN06], is performed by
a designated challenger, who is a voter or representative of an independent orga-
nization at the poll site. The designated challenger chooses a ballot from the set
of ballots. A poll worker then records the ballot as spoiled, marking all the con-
tests on it so that it cannot be used in the election, and gives it to the designated
challenger. For each spoiled ballot, the election authority reveals the entire path
through the Punchboard. The designated challenger is then able to check the re-
vealed path against what was committed to for that ballot, and be assured that
each symbol paired with the proper candidate and therefore would have been prop-
erly counted. This process can be repeated until a predefined statistical certainty
is reached that all the ballots are printed exactly as they were committed to.

In Punchscan, top layer symbols and bottom layer symbols are permuted from
the canonical order according to two statistically independent permutations. In
the new ballot style, the two permutations are composed such that marking
a certain symbol on the new ballot is equivalent to marking a certain hole in
Punchscan—e.g. marking the second symbol on the new ballot is equivalent to
marking the second hole on a Punchscan ballot in terms of which candidate
receives the vote. Using this method, the voter marks on the new ballot can be
transformed into voter choices using a Punchboard identical to the ones used for
Punchscan ballots. Indeed, this actually permits the new ballots and Punchscan
ballots to be mixed within the same election, and the ballot styles can be made
indistinguishable in their presentation on the bulletin board.

Since the optical scanner cannot read the symbols that were marked, it reads
the candidates that were chosen on each ballot. After receiving the electronic
ballot images from the polling place scanners, the election authority transforms
these clear votes into marked symbols. The information required to perform this
transformation is stored on the Punchboard. After this step, the symbols and
the results are posted on the official web site.
3 Instead of numbers in Zn and modular addition, permutations and permutation com-

position can be used, or more general any elements in a group and the group operation.
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7 Dispute Resolution

Any challenger in possession of a ballot stub, usually a voter, may initiate the
dispute resolution process if she believes the record on the bulletin board is incor-
rect. This process provides a privacy preserving method to resolve discrepancies
between voter records and the bulletin board. The reason records may not be the
same are usually caused by two situations:

1. The Voter is Wrong. Because there is no control over what symbol the
voter records, she could have recorded a symbol other than the symbol paired
with her chosen candidate.

2. The Record is Wrong. A scanner or software error may cause the recorded
vote to be incorrect. It is also possible that an attacker may have changed
or altered ballots, or that some other malfeasance occurred.

In 1, dispute resolution convinces all challengers that each ballot was received,
unaltered, and counted correctly. In 2, dispute resolution provides proof to any
observer that the record on the bulletin board is correct. In both situations,
dispute resolutions preserves ballot privacy.

The dispute resolution protocol is carried out between the election official
and a set of challengers as follows:

1. Proving the Ballot is Present and Unaltered
(a) Challengers present ballot stubs.
(b) Official retrieves ballots with serial number from each stub and places

them into a privacy sleeve that does not reveal candidate choices, but
does show the rest of the ballot including the part of the ballot where the
stub was taken and the back of the ballot. It should also show candidate
lists, but should hide the choices and symbols.

(c) Challengers verify ballot sheet has not been modified and may conduct
forensic analysis to verify the ballot stub was at one point attached to
the ballot presented by the official.

2. Showing the Selected Ballot Letters
(a) For each ballot with the same letter marked, the Official moves the ballot

to a separate privacy sleeve being careful to hide the choices made on
the ballot (e.g. with the back of the ballot facing the challengers). This
sleeve does not show the serial number but does show the choices and
symbols of the race in dispute. Official then drops each ballot into an
empty lottery-style hopper4.

(b) All ballots with the same symbol marked are mixed, and removed from
the hopper.

(c) Each challenger verifies that all ballots have the same symbol next to
the chosen candidate.

(d) This process repeats for all sets of ballots with different symbols marked.

4 If not enough ballots are available, the official can add fake ballots to the hopper.
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After all disputes are settled, everyone can assume that the public record of
chosen symbols is correct, and that no ballots were lost. If necessary, officials
re-compute the results from the corrected public record.

The current method may be unable to ballot secrecy if the race in question
is too long or not enough ballots with the same symbol marked are challenged.
Finding a more efficient dispute resolution procedure that does not require phys-
ical interaction or forensic analysis is an open problem to be addressed in future
work, as are the best methods for dealing with ballots with write-ins.

8 Implementation

Given that the speed of the system is largely dependent on the speed of the
Punchboard, the performance of our method is nearly equivalent to that of
Punchscan. However, we have produced an implementation and tested with both
moderate and large-sized elections. On a 1.73 GHz laptop, we were able to tabu-
late 1 million ballots in under 10 minutes. Using actual statistics from Florida’s
2000 Polk County election as a benchmark [pol07], where there were 32 contests
with an average of 3.2 candidates per contest, we tabulated 200,000 ballots in
under 4 minutes and audited the Punchboard in less than 2 minutes.

The complete source code written in Java, as well as object code, for our
implementation is available [web07], along with instructions on how to build it
and use it in a mock election. The object code is directly accessible from any
browser, via Java Network Launching Protocol (JNLP), without installing any
of the cryptographic libraries our implementation depends or performing any
other specific configuration.

Future work in this area includes developing an easier and more efficient dis-
pute resolution process or minimizing its need by using other techniques, proce-
dures for limiting access to the ballots before and after they are handed out to
the voters, addressing forced randomization attacks and simplifying the Punch-
board for the sake of efficiency and explanatory ease, especially with individuals
unfamiliar with verifiable mix networks or other anonymity networks.

9 Concluding Remarks

In this paper, we have created a new front-end for Punchscan with numerous
improvements. The new ballots eliminate the indirection in order to increase
usability. They are printed on a single sheet, which allows more efficient use
of resources, and the sheets do not contain holes which allows for on-demand
printing. The ballots are filled out exactly as in optical-scan voting which should
be a method familiar to many voters in the US. However, the greatest advantage
of our method is that it can be used as an add-on to the optical-voting systems
already owned by many election districts without software upgrades. Our method
does not interfere with the tally produced by optical-scan equipment, nor does it
preclude the option of a manual recount. Without detracting in any way, we add
end-to-end verifiability to a popular voting system and provide unconditional
assurance that every vote was counted accurately.
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Abstract. In this paper, we develop methods for constructing vote-
buying/coercion attacks on end-to-end voting systems, and describe vote-
buying/coercion attacks on three proposed end-to-end voting systems:
Punchscan, Prêt-à-voter , and ThreeBallot. We also demonstrate a dif-
ferent attack on Punchscan, which could permit corrupt election officials
to change votes without detection in some cases. Additionally, we con-
sider some generic attacks on end-to-end voting systems.

1 Introduction

Voting systems in widespread use today have a number of known vulnerabili-
ties [1,2,3]. Many of these vulnerabilities can be mitigated by following certain
procedures; the integrity of the election is then dependent on a combination of
correct behavior by software, hardware, and election officials.

The best of these systems provide security assurance based on the honesty
and correct behavior of a small set of election officials and other observers. Com-
monly, each political party or candidate provides a certain number of observers.
These individuals are expected to notice and report fraud that would deprive
their party or candidate of votes. Election officials are also expected to notice
and report fraud. In general, an outsider attempting to decide whether to trust
a reported election outcome must rely on the premise that correct procedures
were followed by observers and election officials.

A new kind of voting system has been proposed in recent years [4,5,6,7,8,9],
in which the voter interacts with the voting system to get a receipt. This receipt
can then be checked against a set of receipts published by the voting system.
These published receipts can be used to produce or verify the reported count
for the voting system, but must not be useful for selling votes (for example, by
proving how each voter voted). This class of voting system has been called end to
end, or E2E, to reflect the idea that each voter can check, to some high degree of
confidence, that his vote was correctly cast, and also that his vote was correctly
included in the final count. Other means must be used to ensure that the whole
election result is correct- for example, by ensuring that only authorized people
were permitted to vote, and that no additional votes were inserted into the count.
These systems build on older work on cryptographic voting systems [10,11,12],
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which typically relied on the assumption that a voter would have access to some
trusted computing devices.

In this paper, we consider the security of a number of proposed E2E voting
systems against attacks to tamper with election results and to permit the buying
or coercion of votes.

An important idea in this paper is that most E2E systems can be meaningfully
divided into:

1. A front-end, which describes the voter’s direct interaction with the voting
system to cast a vote and receive a receipt, and

2. A back-end, which describes the voting system’s public statements (such as
receipts posted to a bulletin board and the claimed vote totals), and the
mechanisms used to prove to voters and other observers that the reported
election results are consistent with the public statements.

Our attacks focus exclusively on the front-end, the voting systems’ interactions
with the voters. In general, our attacks provide ways in which corrupt election
officials or voters can subvert the real-world implementation of the front-ends
of these voting systems, to get very different properties from the voting systems
than were expected.

1.1 Attacking Voting Systems

In general, someone attacking a voting system wants to affect the outcome of
the election. The stakes in such an attack can be quite high, involving control
of enormous government resources. These stakes can be inferred by the amount
of money spent on lobbying and campaigning, both reported publicly in the
United States [13,14].

Election results can be changed by altering recorded votes or reported totals,
and also by finding a way to learn what each voter chose, so that voters can
be bribed or coerced into voting in some desired way. It can also be done by
disrupting the orderly operation of an election, which may simply delay an un-
desirable (to the attacker) result, or may force an election to be rerun, possibly
changing its result. Violations of voter privacy and disruption of elections may
be of some interest to attackers even when the election result cannot be altered,
but the impact of these attacks is much smaller.

1.2 Previous Work

Several end-to-end cryptographic voting protocols have been developed. This
paper analyzes Punchscan [6,7], Prêt-à-voter [15] and ThreeBallot [8,16], which
are described in Section 2.

Researchers have begun to perform security analyses of these schemes, and
some weaknesses have been discovered. A coercion attack against ThreeBallot,
dubbed the ThreePattern attack [8], involves a coercer telling voters to mark
their three ballots according to a particular pattern, then checking that that
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those patterns appear on the bulletin board. Strauss [17,18] notes several vul-
nerabilities in ThreeBallot, including the Reconstruction attack. Here, for suf-
ficiently long ballots, an attacker is able to look at one receipt and determine
which other two ballots on the bulletin board belong to the same multiballot.

A well known issue with these systems is that it is easy to force a voter to vote
for a random candidate by instructing them to return with a receipt showing a
vote for the first ballot choice. A formal study of the three voting schemes by
Clark, Essex and Adams [19] concludes that while ThreeBallot receipts provide
some clues for how voters voted, Prêt-à-voter and Punchscan receipts do not
contain any information that would help an attacker. Nonetheless, Moran and
Naor [20] developed a coercion attack against Punchscan that relied on the
voter’s choice of receipt. The Punchscan voting procedure was modified for the
VoComp competition [21] to prevent this and related attacks by requiring voters
to choose the receipt sheet prior to viewing the ballot.

1.3 Our Results

Briefly, our results can be summarized as follows:

Punchscan and Prêt-à-voter

– We provide a misprinting attack which can alter election results by mislead-
ing many voters into believing they have a receipt committing to a different
vote than is actually cast. This can be mitigated with a special audit of the
printed ballots, but that auditing requires trusting small numbers of election
observers, rather than all voters, with the integrity of the election.

– We provide a mechanism for using scratch-off cards, cellphones, or other
techniques to reliably buy or coerce votes.

Prêt-à-voter

– We report a previously-known but unpublished sleight-of-hand attack to
allow vote buying.

Threeballot

– We provide a mechanism to provide voters a financial incentive to vote in
some desired way, when the three ballots are filled-in in a random way by
some voting machine.

– We provide a technique for buying votes when the ballots are filled out
manually, using a variant of chain voting.

All End to End Systems

– We report a couple of known broad categories of attack on E2E systems we
did not find referenced in the literature.

– We provide a framework for vote-buying and coercion attacks.
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While our attacks are specific to particular E2E systems, the general ideas behind
them can be broadly applied. One goal of this paper is to get these ideas into
widespread circulation, so that systems we have not considered here may also
be subjected to the same analysis.

2 Background

2.1 E2E Voting Systems

Election systems in current use rely on procedures to provide integrity and
ballot secrecy. Typically, voters must trust election administrators to follow
these procedures. Secure elections using traditional voting systems are possi-
ble when tight controls are in place, such as maintaining the chain of custody
of ballots, but it is nearly impossible for voters to gain assurance that such
controls are followed. End-to-end (E2E) cryptographic voting schemes aim to
provide voters with a means of verifying that elections are honest, without
needing to trust election officials or that the chain of custody of ballots is
maintained.

End-to-end refers to the voter’s ability to verify the election from vote casting
to vote counting. Most schemes operate by encoding voters’ choices a special way
which can be read by election officials. The encoded ballot is posted on a public
bulletin board and each voter is given a voting receipt. The unique feature of
E2E voting schemes is that this receipt can be used to verify the encoded ballot
on the bulletin board but does not show how the voter voted.

Additionally, E2E voting schemes provide voters with a means to ensure cast
ballots are counted correctly. In nearly all cases this done by having the vot-
ing scheme prove that each encrypted vote on the bulletin board is correctly
decrypted, allowing anyone to verify the final vote tallies by recounting the
decrypted ballots.

Front-End vs. Back-End. E2E voting schemes involve a combination of activ-
ities performed by voters, election administrators and auditors. We refer to the
part of the voting system that the voter interacts with the system as the front-
end. This typically includes the ballot, receipt and bulletin board. Voters interact
with the front-end to gain assurance the voting system is functioning honestly,
often relying on auditors or tools to verify some parts of the voting protocol for
them. The voting scheme back-end is everything that occurs partially hidden
from the voter. This can include the cryptographic encoding and decodings of
ballots, ballot shuffling and various third-party auditing techniques. The attacks
discussed in this paper take place within the front-end of voting schemes. They
involve presenting misleading information to voters that cause their votes to be
miscounted, or providing voters with specific ways to interact with the front-
end of the voting scheme which can be used to encourage or coerce particular
votes.
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2.2 Punchscan

Punchscan [6,7] is a paper/electronic hybrid cryptographic voting scheme that
uses paper ballots.1 Each Punchscan ballot consists of two separate sheets. Voters
must interact with both of these sheets to cast a vote. Viewed separately, neither
sheet directly contains sufficient information to determine the selections of the
voter.

The top sheet of a Punchscan ballot contains the set of ballot questions.
For each question, the ballot maps each choice to a particular letter (or other
symbol), along with a set of holes. Those holes line up with a permutation of the
set letters which is printed on the bottom sheet. When the top sheet is stacked
directly on top of the bottom sheet the voter sees each question, mappings from
choices to letters, and the letter options through the holes in the top sheet.

Fig. 1. A Punchscan Ballot with vote for Smith

To cast a vote, the voter looks up the letter corresponding to his or her desired
response, and finds that letter by looking through the holes in the top sheet. The
voter then applies a bingo dauber to that letter, thereby marking the letter on
the bottom sheet and the area around the hole on the top sheet. The two sheets
of the ballot are separated and the voter selects one to destroy. The remaining
sheet is scanned, providing election administrators with a digital record of the
vote, while physical sheet becomes the voter’s receipt.2 A representation of the
digital ballot is posted on a public bulletin board, allowing the voter to compare
the marks on the receipt to those appearing on the bulletin board.

Election administrators use a table containing directions for decrypting each
ballot sheet to tally votes, called the Punchboard. By conducting audits before
and after the election, voters can be assured that their ballots halves are correctly
translated into their desired votes. The details of these audit procedures contain
1 Recently, a related set of end-to-end voting systems have been developed under the

name Scantegrity. We do not consider Scantegrity in this paper, but the mechanisms
are different enough that our current attacks do not appear to apply.

2 The current Punchscan voting procedure requires that voters select the top or bottom
sheet as the receipt prior to viewing the ballot. In this paper we will propose attacks
against both sets of Punchscan election procedures.
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the bulk of the cryptographic techniques. However, rather than attacking the
underlying cryptographic primitives of the election system, we will attack the
voting procedure.

2.3 Prêt-à-voter

A detailed description of the Prêt-à-voter scheme can be found in [15]. Like
Punchscan, Prêt-à-voter encodes votes based on a random permutation, in this
case of the candidates. A Prêt-à-voter ballot is split between two halves, sepa-
rated by a perforated edge. The left half of the ballot displays the candidates
in a permuted order, while the right half has boxes that are marked to indicate
a vote. Also, the right half contains a cryptographically-protected copy of the
permutation of the candidates on the left side. This permutation could be en-
crypted using threshold cryptography or onion encryption, so only a group of
election administrators would be able to decrypt that permutation. Typically,
the permutation of the candidates is a cyclic shift, represented as an offset from
a standard candidate ordering.

Fig. 2. A Prêt-à-voter Ballot with vote for White

To cast a ballot, voters mark the box next to the candidate of their choosing,
and separate the two halves along a perforated edge. The halves containing the
candidates names are destroyed, while the halves with ballot marks are scanned
in and recorded as votes. Voters are allowed to bring home the right halves of
ballots and compare them to the scanned copies, which are posted to a bulletin
board. The cryptographic algorithms in the scheme allows voters to verify that
the collection of posted ballots is properly decrypted.

The Prêt-à-voter system relies on the proper construction of ballots. That
is, the right half of the ballot must contain an encrypted representation of the
permutation of candidates displayed on the left ballot half. Each voter may
choose to audit a ballot by providing a special auditing device with the just
the right ballot half. The device would decrypt that half and respond with the
permutation of candidates. The voter could verify that this permutation matches
the candidate list on the left ballot half. Auditing a ballot also invalidates that
ballot, forcing a voter to obtain another ballot to either cast or audit. The attacks
outlined in this paper rely on the voter being allowed to choose between casting
or auditing a ballot after viewing it.
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2.4 ThreeBallot

The ThreeBallot voting system [8], like Punchscan and Prêt-à-voter , uses paper-
ballots. Unlike those systems, however, ThreeBallot is entirely paper based with-
out requiring advanced cryptographic techniques to perform auditing or maintain
voter privacy.

In ThreeBallot, each voter receives three identical ballots, each with a unique
serial number. To vote for a particular candidate, a voter marks the candidate’s
name on exactly two of the three ballots. For each of the remaining candidates,
the voter marks the candidate’s name on exactly one of the ballots. The voter
then feeds the multi-ballot into a checker which verifies that the ballot has been
properly filled out. If so, the checker places a red strip across the multi-ballot and
asks the voter to choose one of the three ballots to copy. The checker separates
the ballots and returns them to the voter, along with a copy of the chosen ballot.
The voter casts the original three ballots in a ballot box and takes the copied
ballot home as a receipt.

After the election digital representations of the cast ballots are posted on a
bulletin board. The voter can verify that there is a ballot on the bulletin which
matches the receipt taken home. Anyone can also tally the results of the election
by merely counting the votes on the ballots. The resulting tallies will be inflated
by the number of voters in the election.

Fig. 3. A ThreeBallot Ballot with vote for Jones

To improve the usability of ThreeBallot, it has been suggested [8] that voters
could interact with an electronic ballot marker (EBM) that would provide an
interface similar to that of a DRE. After the voter selected her choices, the
EBM would print out a randomly filled-in multiballot that would correspond to
those choices. The voter could verify that the multiballot properly reflected her
intended vote, and obtain a receipt for any one of the three ballots.

3 Election Fraud with Misprinted Ballots

The most serious threat to an election is an attack capable of changing the
outcome of the election. The goal of E2E schemes is to make any changes de-
tectable. Most E2E schemes claim to provide this, but such claims are only
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supported when election officials and auditors can be trusted to honestly follow
proper election procedures.

The accuracy of vote counts in Punchscan and Prêt-à-voter is dependent on
the proper construction of ballots. To deal with this both systems rely on pre-
election audits of the ballots to ensure the ballots were created correctly. In
the Punchscan scheme, election officials commit to the set of ballot forms and
audit some percentage of the ballots, looking for irregularities between the actual
ballot forms and the commitment on the Punchboard. Tampering with the set
of ballots between the audit and the election has a good chance of being caught
during the post-election audit. Here we will describe a way to tamper with the
ballots in a way that would not be detected with typical audit procedures.

In this attack, a small percentage of ballots are replaced with tampered ballots.
The front sheet of each of these ballots remains the same as their untampered
versions, while the back sheet is changed such that the placement of two letters
are swapped. Figure 4 gives an example of a tampered ballot. In this configura-
tion, votes for Smith and Jones will be swapped. That is, a voter attempting to
vote for Smith would mark the third hole, but that vote would instead be de-
crypted by the Punchboard to be a vote for Jones. Note that an attacker could
alternatively misprint the front sheets, keeping the back sheets untampered.

Fig. 4. Flipping Two Letters On Back Sheet

Misprinted ballot sheets are easily identifiable when compared to the Punch-
board, as they will not match the committed ballots. Misprinted back sheets,
when kept as a receipt, would provide evidence of election tampering. However,
when the front sheet is kept as a receipt, the back sheet, the only evidence of
tampering, is destroyed during the voting process. This leads to a very simple
vote swapping attack when voters tell election officials what sheets they will
take as receipts before the officials hand out ballots. In this case, election offi-
cials can provide misprinted ballots to only those voters who choose to keep the
unmodified front sheets. This could greatly change election results if voters of a
particular political party are targeted for attack.

This attack could be prevented by forcing election officials to commit to a
particular ballot before asking the voter to choose a receipt sheet. However,
similar attacks are still possible. In this case, attackers need to ensure that voters
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cannot cast a ballot and retain the modified sheet. This could be accomplished
by constructing the modified back sheet such that it looks normal to the human
eye but is unreadable to the scanner. Alternatively, the scanner could be involved
in the attack, and recognize the ballot ID as a tampered rear ballot that should
be rejected. In both cases the voter would have to obtain a new ballot and revote.
This attack can be prevented by including special procedures for the handling
of unscannable ballots. Unscannable ballots should be treated differently than
other invalid ballots. Voters must be allowed to keep an unmarked copy of the
unscannable ballot as a receipt and then be given an opportunity to vote again.
During the post-election audit, election officials should open the commitment to
the same half of the ballot the voter was given. The voter could use the receipt
to check whether this attack occurred by comparing the opened commitment to
the ballot receipt. The commitment to the other half should remain unopened
in order to protect against coercion attacks.

Variations of this attack can be applied to other E2E schemes. A similar attack
can be applied to Prêt-à-voter with the cooperation of ballot scanners. However,
this attack appears much less likely to go unnoticed in practice. In this case,
the right-hand side of the ballot would be altered by swapping the names of
two candidates. Attackers would also modify ballot scanners so that they would
respond with an error when modified ballots are audited.

4 Incentives, Voter Coercion and Vote Selling

Voter coercion attacks aim to give one person undue influence over another
person’s vote. Often, the attacker influences the voter by rewarding the voter
for voting for a particular candidate or punishing the voter for failing to do so.
However, as attackers can also seek to influence votes rather than force them,
it is acceptable for coercion attacks to provide an incentive toward voting a
particular way. This observation opens the door for a wide variety of attacks
that, while not perfect, can be effective at influencing voters.

Voter coercion is inherently a contract. Voters agree to vote a particular way
in exchange for a reward or to avoid punishment. A successful attack requires a
way to enforce the contract. The goal of a coercion attack is to create a protocol
between a coercer and voter that tends to reward voters that vote correctly. A
protocol need not be perfect. It may occasionally reward voters incorrectly that
voted for the wrong candidate. As long as the probability of being rewarded is
higher when a voter votes correctly, the protocol will provide an incentive for
voters to vote correctly. Alternatively, a protocol may occasionally fail to reward
voters that vote correctly. Protocols that never fail to reward honest voters can
be considered contract enforcement protocols. In this case, all voters failing to
be rewarded by the protocol could be punished severely3, knowing that only
dishonest voters would be punished.
3 A real world example of such punishment comes from the days of machine politics

in the United States, where city or state employees’ jobs could depend on voting the
right way.
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The voting system and the rules for what voters are allowed to bring into
the voting booth together determine what components an attacker can use to
enforce the vote buying protocol. For example, if voters are allowed to bring in
cameras almost any voting system will fall to a vote buying attack. Nonetheless,
it is impractical to ban everything from voting booths. A piece of paper and a
pen, a pre-marked ”voters guide” or even a cell phone might be used to enforce
a vote-buying contract.

4.1 Forged Ballots

A well-known attack in the end-to-end cryptographic voting community involves
providing voters forged ballot halves to destroy in place of actual ballot halves.
Punchscan and Prêt-à-voter ballots are split between two halves. Combined these
halves display a human-readable vote, but each half on its own acts as an en-
crypted vote that can only be read by the election officials. The combined sheets
can show anyone how the voter voted. For that reason, the election procedures
of Punchscan and Prêt-à-voter require that each voter destroy one half of the
ballot and retain the other half.

Voters able to leave a polling place with both halves of the ballot can use
these halves to prove how they voted. A voter may be able to do this without
raising suspicion from the election officials by secretly bringing a forged ballot
sheet to the polls. The voter would destroy the forged ballot sheet rather than
one of the original sheets. For instance, a voter may bring in a copy of the front
sheet of a Punchscan ballot. After voting, the voter would slip the actual front
sheet in his pocket, destroy the forged sheet in front of an election official and
keep the back sheet as a receipt4.

4.2 Incentives

Typical vote buying attacks involve an attacker paying individuals who prove
that they voted for a particular candidate. However, resourceful attackers can
still influence election results without learning how individuals voted by provid-
ing them with an incentive to vote a particular way. The idea is that voters will
maximize their expected return by following the coercer’s instructions. Three-
Ballot, when used with an electronic ballot marker, is particularly vulnerable
to incentive attacks5. In that variant of ThreeBallot, ballots are automatically
marked by a machine. Voters make their selections on a DRE-like machine which
randomly constructs a valid multiballot with votes for those selections. The at-
tacks work on the principle that although voters cannot control the specific
marks on their multiballots, their ballot choices will influence the marks.
4 Current Punchscan procedures include a clipboard lock. Each ballot is locked to a

clipboard before being handed to a voter. After marking a ballot the voter tears one
sheet out of the lock and destroys it, then returns to the official with the remaining
sheet still locked in place. As voters, rather than election officials, destroy the ballot
sheets, the clipboard locks do not prevent this attack

5 There are other attacks on hand-marked ThreeBallot which are not discussed here,
notably the Italian attack.
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ThreeBallot Pay-Per-Mark. A simple example of an incentive attack with a
machined-marked ThreeBallot device is to pay voters for each mark on a receipt
that is acceptable to the vote-buyer. For example, the vote-buyer would offer to
pay one dollar for every mark corresponding to a member of the Whig party.
A vote-seller would cast a multiballot, choose a receipt based on the number of
Whig votes contained on each ballot and present that receipt to the buyer in
exchange for payment. If the seller does not vote for the Whigs on any of n total
questions, each ballot would contain roughly n

3 Whig marks. However, voters
who vote for Whigs on every ballot question would expect to find a ballot with
2n
3 Whig marks. This is ineffective at influencing individual races and does not

work when races are separated from one another.

ThreeBallot Pay-for-Receipt. In many cases a vote buyer may only be inter-
ested in coercing a voter on a single ballot question. We can create an incentive
in machine-marked ThreeBallot to encourage voters to vote for a particular
candidate over another. Consider a close election between Smith and Jones. A
vote-buyer attempting to gain votes for Smith could force voters to return with
a ballot that contains a vote for Smith but not a vote for Jones. If a voter votes
as directed, the voter is guaranteed to obtain a ballot that contains a vote for
Smith but not Jones. However, if the voter instead casts a vote for Jones, then
the voter only has a 1

3 chance of obtaining such a ballot. If a neither Smith nor
Jones is chosen, then the voter has a 2

3 chance of obtaining such a receipt.
Because honest voters6 will always be able to return with the correct receipt

this attack can also serve as a voter coercion attack, demanding that a voter
return with the correct receipt to avoid punishment. Similar attacks can be
conducted against Punchscan by extending the ideas in [20]. An attacker could
develop a set of marked receipts, one of which is always obtainable if a voter
votes as directed, but may not be if the voter votes for a different candidate.

Fig. 5. Vote for Smith and Not Jones

Levels of Payment. We can construct slightly more complicated attacks that
are effective against Punchscan. Moran and Naor present a simple coercion at-
tack against a 2-candidate race in Punchscan in [20] which allows roughly 3

4 of
voters to vote how they wish, but forces 1

4 of voters to vote for a particular

6 In this context, an ”honest” voter is one who votes as he’s told.
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candidate. The attack works by paying for receipts marked particular ways; the
ballot layout determines what the voter can do to get paid. We extend that ap-
proach here to work with multiple candidates. The basic idea is that we will pay
people to vote against a particular candidate by using different levels of payouts
for different receipts.

Consider a vote buyer who wants to see Smith lose an election with n can-
didates. The buyer would offer $10 for any front receipt showing Smith=a with
the first hole marked, or $5 for any back receipt marked for a. If we assume
voters will always act to maximize their payout, any voters receiving a ballot
where Smith=a will return with the front sheet marked to randomize their vote.
Thus, we know any voter returning with a marked on the back sheet did not vote
for Smith. Effectively we are randomizing votes away from Smith. About 1

n2 of
voters will vote for Smith, while n+1

n2 of voters will vote for each of the remaining
n − 1 candidates, assuming voters always act to maximize their payoff.

4.3 Scratch-Off Card Attacks

Two-way communication between a voter in the voting booth and an attacker
can be a very powerful tool for creating coercion attacks. In this section we will
present several coercion attacks on E2E systems that work by simulating two-way
communication entirely within the voting booth. This is based on similar work by
Moran and Naor in [22] that used scratch-off cards to construct polling protocols.
By scratching off a portion of this card based on a marked ballot, voters will
permanently bind themselves to that ballot. The scratch-off card provides a
challenge to the voter, which they cannot receive until after committing to a
ballot form.

Basic Idea. Here we will present a simplified vote selling attack where the vote
buyer is in contact with a voter inside the voting booth using a cell phone. The
cell phone provides a means of communicating challenges and pledges between
the buyer and voter. Using the two-way communication with the vote buyer,
and the receipt provided by the voting system, the voter is able to convince the
buyer that he voted for the correct candidate.

The important observation here is that letting a voter choose one of two
sheets to retain reveals as much information as letting the voter retain both
sheets. This is damaging to paper-based E2E systems where a single ballot is
split across multiple sheets. In the case of Punchscan, possession of one receipt
and knowledge of the other (destroyed) sheet is sufficient to determine the voter’s
selection. This leads to the following vote-buying protocol:

1. The voter obtains a Punchscan ballot and enters booth.
2. Using the cell phone, the voter issues pledges for the two ballot sheets by

telling the buyer the letters associated with each candidate (the contents
of the top sheet) and the orders of the letters (the contents of the bottom
sheet).

3. The buyer randomly selects one of the pledges sheets and issues this selection
to the voter as a challenge.
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4. The voter keeps the challenged sheet as a receipt, casts the ballot, and returns
to the buyer.

5. The buyer compares the receipt to the pledged sheets from Step 2.

This protocol acts as a cut-and-choose proof of the truthfulness of the voter’s
pledges. Now that the buyer has obtained one sheet, and is convinced of the
contents of the other sheet, it is easy to determine the vote cast.

Scratch-Off Card. It might be difficult to have a cell phone conversation in the
voting booth without being noticed by an election official. In this section we will
discuss how to run the receipt-based vote buying protocol using a scratch-off card
in place of cell phone communication. We can replace the cell communication
with anything that lets a voter pledge commitments to two ballot sheets, and
only then receive a challenge.

Here we will show how this can be accomplished using scratch-off cards. Sup-
pose a group of voters agree to sell their votes to Smith. A voter can commit to
the two ballot sheets by revealing the letter associated with Smith on the top
ballot sheet, and the placement of that letter on the bottom sheet. We can do
this on a scratch-off card with two rows of scratch-off pads. The first row will
have a pad for each of the possible letters associated with Smith, the second row
will have a pad for each of the possible positions. Thus, for a typical Punchscan
ballot question with four candidates, our scratch off card would have a row of
four pads labeled a − d and a second row of pads labeled 1 − 4.

The card needs to provide the voter with a challenge after the commitments
are done. One way to do this is to have random integers under each pad. The
voter would scratch off the pads associated with his top and bottom sheets,
revealing two integers. The resulting sum of these integers would provide the
challenge; an even sum would indicate a challenge for the top sheet, an odd sum
a challenge for the bottom.

The attack works on the principle that knowledge of the top and bottom
sheets, along with placement of the mark on the ballot, is sufficient to determine
the cast vote. The scratch-off card contains commitments for the top and bottom
sheets, with the receipt showing the voter’s mark. Voters who fill out the scratch-
off cards honestly (that is, in a manner consistent with their ballots) are forced
to vote for the pledged candidate otherwise their deception would be detected. A
voter attempting deception would have to incorrectly fill out the scratch-off card
by misrepresenting the top or bottom sheet on the card. In that case, the voter’s
deception would be caught if the card’s challenge asks for the misrepresented
sheet.

Spoiling Ballots. The pledges on the scratch-off card pledge are meant to com-
mit the voter to a particular ballot, but this commitment is weak. A determined
voter might try to ”cheat” the vote buying protocol by repeatedly spoiling bal-
lots. For instance, he might vote for the wrong candidate and lie about one of
the ballot sheets on the scratch off card with a 50% of being caught. If he will
get caught, he could spoil ballots until obtaining one that will let him cheat.
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Fig. 6. A Committed Scratch-Off Card

However, introducing spoiled ballots allows us to create a more flexible attack
by modifying the previous protocol. In this case, voters will strongly commit to
a ballot and then find out whether or not to spoil that ballot.

Spoiled ballots play an important role in many paper-based E2E systems.
Punchscan and Prêt-à-voter rely on the blank ballots being properly constructed,
as was discussed in Section 3. One way to give voters assurance of proper con-
struction is to let them audit ballots on election day. This would involve posting
information about the audited ballot on a bulletin board and potentially allow
the voter to leave the polling place with a blank ballot. If someone were to vote
on the audited ballot (which is not allowed), the auditing information posted
would let anyone see how that person voted. That is what will make this an
effective attack.

The basic attack is an extension of the previous attack. In the case of Punch-
scan, voters must still commit to both ballot sheets. They must also commit to
their ballot serial numbers, in order to prevent voters from repeatedly spoiling
ballots. Thus, the scratch-off card would have three rows of scratch-off pads. The
first two rows would be for the letter associated with the desired candidate on
the top sheet and the location of that letter on the bottom sheet. The third row
would be for the last digit of the ballot serial number and would have pads for
the digits 0 − 9, perhaps with individual pads for multiple digits. As before, a
random integer is underneath each pad. After scratching off the pads associated
with his ballot, each voter would sum the three revealed integers. A sum congru-
ent to 1 (mod 10) indicates the voter must spoil the current ballot and obtain
a new ballot. Otherwise, the voter must cast the ballot. Either way, the voter
returns to the buyer after voting and provides the scratch-off card and either the
ballot receipt or the spoiled ballot. Figure 7 shows an example of a scratch-off
card.

In this case, ballot spoiling serves to check that the voter filled out the scratch-
off card correctly. A spoiled ballot allows the buyer to compare the scratch-
off marks with the actual ballot, or some representation of that ballot on the
bulletin board. Attempts at deception would be caught with 10% probability,
which should be enough to voters. If the ballot is cast instead of spoiled, the
buyer may assume the card was filled out correctly, and determine if the voter
chose the proper candidate. For example, if the top sheet is returned, the buyer
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Fig. 7. A Committed Scratch-Off Card indicating spoil

can check that the candidate-letter mapping was pledged correctly, and that the
location of the mark on the receipt matches the pledged location of the candidate
letter on the scratch-off card.

While this variant of the scratch-off attack, in general, detects cheating with
a lower probability than the previous version, it is more flexible. Namely, this
variant no longer requires the voter to choose one of two possible receipts after
filling out the card. Thus, it can be used against Punchscan even when procedures
force voters to choose a receipt sheet prior to viewing the ballot, a successful
countermeasure against the previous attack. Furthermore, it is effective against
other paper-based E2E systems, like Prêt-à-voter . In that case, voters would be
given scratch-off cards that allow them to commit to the cryptographic onion on
each ballot, and the placement of the desired candidate on the left-hand ballot
sheet.

4.4 Beacons

The scratch-off card attacks are effective because voters must first mark their
ballots a particular way then learn from a challenge whether they need to perform
an action that could reveal attempts at deception. More generally, we just need
a communications channel between the seller and buyer after a ballot is marked.
This channel could be as simple as the buyer holding up a small sign to voters
as they are about to cast their marked ballots.

Alternatively we could use a chain of coerced voters that would vote in succes-
sion. Each voter would deliver a challenge to the preceding voter. To illustrate
this attack, consider a ThreeBallot election. Each coerced voter would be in-
structed to fill out a hand-marked multiballot as shown in Figure 8. Voters
would enter the poll booths in a chain, with the buyer sending in the next voter
after the preceding voter has marked their ballot. The buyer would give the
voter a challenge to pass on that instructs the previous voter to return with
either the left, middle or right ballot. Voters who return with the correct receipt
are rewarded. Furthermore, the challenging voters are rewarded if the challenge
recipients return with the correct receipt.
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Fig. 8. ThreeBallot Marking Instructions

5 Conclusion

Procedural changes to the voting schemes can prevent most of the attacks dis-
cussed in this paper. Many of these attacks relied on the voter being free to
make a choice after viewing the ballot that would determine what information
is brought back from the poll booth; e.g., which receipt to take home or whether
to cast or audit a ballot. Schemes which give voters that choice are vulnerable
to coercion and vote buying attacks. However, procedural defenses can create
additional vulnerabilities. For instance, if election officials ask voters if they will
cast or audit a ballot prior to handing them one, the official could hand out
misprinted ballots to those intended to cast the ballot. This decreases the risk
of a vote buying attack, but increases the risk of election fraud, a serious attack.

End-to-end voting scheme designers should be wary to rely heavily on proce-
dures to maintain their security properties. The advantages of end-to-end voting
schemes over traditional systems are reduced when they rely on procedures; opti-
cal scan systems are relatively secure when proper chain of custody is maintained
with the ballots. Simple attacks, like the misprinting attack described in this pa-
per, can target these procedures to commit election fraud or violate privacy by
changing the election procedures in seemingly inconsequential ways. The chances
that a procedural change will go unnoticed increases as the number of procedural
controls increases. In many instances, such changes will look like simple mistakes
or oversights, rather than attempts at election fraud. While it is unrealistic to
imagine schemes where specific procedures need not be followed to achieve secu-
rity claims, a reasonable goal is to design systems whose verifiability claims are
not dependent on the actions of election administrators or third-party auditors.

The field of end-to-end cryptographic voting schemes is still relatively young.
Advances in the field of cryptography such as commitment schemes, signatures,
secret sharing schemes and verifiable shuffles give us a variety of tools, but there
is still room to improve the protocols which use these tools and the procedures
that should be followed to mitigate threats.
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Abstract. This article presents an ‘end-to-end’ integrity verification
mechanism for use in minimally equipped secret paper-ballot election en-
vironments. The scheme presented in this paper achieves high integrity
properties without interfering with the traditional marking and tabu-
lation procedures of paper-ballot elections. Officials and auditors can
respectively generate and independently verify ‘end-to-end’ audit trails,
with office stationery and entirely without cryptographic or mathematic
computations.

1 Introduction

Aperio

-verb (Latin)

1. to reveal, uncover, lay bare.

Practical proposals for “end-to-end” election verification mechanisms have re-
ceived much attention recently for their provision of election integrity indepen-
dent of the physical chain-of-custody of ballots, achievable in part through the
issuance of privacy-preserving receipts to voters [1,4,5,6,10]. These systems have
been primarily cryptographic and largely inspired by the concept of anonymizing
mixnets [3]. They also generally rely heavily on technology at the polling place
and specialized technical knowledge for the verification process. These systems
find their application predominantly in election environments with a pre-existing
infrastructure of electronic (e.g., optical scan) equipment. However the election
environments which arguably would benefit the most from the end-to-end in-
tegrity properties—in developing democracies—are ones in which a technological
infrastructure for voting is either not present, or not practical.

Three proposals were made in [14] for systems that do not directly utilize
cryptography. However the first two proposals, ThreeBallot and VAV require the
voter to mark the ballot in an arguably unintuitive way and still propose the use
of some electronic equipment (to validate the ballot). The third and more elegant
proposal, Twin, requires no electronic equipment or special ballot marking or
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tabulation procedures, although does carry an inherent custody assumption that
the “floating receipt” being issued to the voter is a valid copy of the ballot of
another (anonymous) voter. In response, we propose Aperio, a simple paper-
based election integrity verification mechanism for minimally equipped election
environments, similar in intent to Twin, but with end-to-end integrity properties
that do not rely on chain-of-custody.

2 Preliminaries

2.1 Integrity Properties

“End-to-end” (E2E) verification, as initially proposed in [7] offers two positive
guarantees of integrity to voters:

1. Their ballot is included unmodified in the same set of ballots that get tallied,
2. The tally produced from this set is correct.

A less stringent requirement, “software independence” (SI), has also been pro-
posed: “A voting system is software-independent if an undetected change or
error in its software cannot cause an undetectable change or error in the election
outcome” [13]. By definition, this term is not applicable to environments which
do not utilize software components. However the problem has a physical analog
to the so-called “chain of custody” of ballots. For our purposes we will defined
a new term “custody independence” (CI) to be defined as: “A voting system is
custody independent if an undetected change or error in its physical paper trail
cannot cause an undetectable change or error in the election outcome.”

In informal terms, this requirement states that any entity that can manage
to exchange the legitimate ballot box for another (rigged) one, cannot do so
undetectably. Therefore any system that is end-to-end verifiable can be shown
to exhibit the CI property. In the case of Twin [14], the first end-to-end criterion
is not directly satisfied by the floating receipt model it employs.

2.2 Roles

In the following section we roughly define four sets of roles within the election,
for which its members are not necessarily distinct (e.g., a voter can also function
as a verifier or poll official).

– Election Trustees. In addition to the existing requirements for the admin-
istration of a paper-ballot election, trustees oversee the generation, commit-
ment and decommitment of the audit commitment lists of the corresponding
ballots.

– Verifiers. An (unspecified) partnership of concerned entities, including po-
tentially candidates and their representatives, non-governmental organiza-
tions, voter advocacy groups and other election observers act to verify the
integrity (i.e., correctness) of the election outcome independently of physical
access to the official paper trail via the mechanism presented in the following
section.
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– Voters. Those who vote in the election. In addition to voting, voters are
given the option of retaining a (privacy-preserving) receipt.

– Poll Officials. Those responsible for administering the election at the polling
location with tasks that include voter authentication, ballot distribution and
casting.

3 Basic Paper Scheme

3.1 Ballot Format

In a conventional paper-ballot election, a voter is issued a single sheet of paper—
a ballot. Under the Aperio scheme, a voter is instead issued a “ballot assembly”
which consists of a paper ballot sheet, a receipt sheet and any number of audit
sheets stacked and joined in such a way that only the top ballot layer is visible
to the voter. These layers are defined as follows:

– A “ballot” is used to describe any paper Australian ballot1 with the specific
property that the list of candidates or proposals is printed in an indepen-
dently random order across the set of ballots in an election,

– a “receipt” is used to describe a sheet of paper, equivalent in size and layout
to a “ballot,” but without a candidate list, and additionally a unique serial
number, and

– an “audit sheet” is used to describe a sheet of paper, equivalent in size and
layout to a “ballot” but without a candidate list. It does not contain a serial
number, but has pre-printed regions in which to write one. Additionally
provided is a region in which to mark a “commitment reference number.”

For simplicity of the following description, we will consider the base-case ballot
assembly which includes two audit sheets. We will refer to the assembly’s layers
by a standard office-paper color pallet, in which the ballot, receipt, and two
audit sheets are assigned the colors “white,” “canary,” “goldenrod,” and “pink”
respectively (see Figure 1). The sheets are stacked in such a way that voter-made
marks on the ballot sheet will be transfered to the other sheets using carbon-
copy, or alternatively NCR brand (carbonless copy) paper (see Figure 2).

3.2 Initial Setup

As in other of E2E systems [1,4,5,6,10], the entity responsible for printing ballots
is generally entrusted with voter privacy. Although there likely exist protocols
under which ballots could be printed in either a threshold-trust or even a fully
oblivious manner, for simplicity we describe the following operations as being
performed by a single privacy-entrusted entity.

1 “An official ballot printed at public expense on which the names of all the candidates
and proposals appear and which is distributed only at the polling place and marked
in secret” [2].
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Fig. 1. Ballot Assembly: (Top left) Paper “Australian” ballot with random candi-
date order (white). (Top right) Receipt with unique serial number (canary). (Bottom
left) Audit sheet with “commitment reference number” (goldenrod). (Bottom right)
Audit sheet with independently assigned “commitment reference number” (pink).

Fig. 2. Ballot Assembly (Exploded View): Marks made on the top “ballot” layer
are transfered to the “receipt” and “audit sheet” layers using “carbon-copy” style paper

Generating Ballots. In order to preserve voter privacy, the association of can-
didate order and serial number must be secret and arbitrary, such that knowledge
of one in no way implies knowledge of the other. Consider a stack of b ballots,
each with an independently randomly printed candidate order. Likewise consider
a stack of b receipts each with unique serial number. An arbitrary association
can be formed by drawing the top ballot and receipt sheets from the respec-
tive stacks and joining (e.g., stapling) them together. Additionally the (blank)
audit sheets are joined to the ballot and receipt sheets, constituting a specific
instance of a ballot assembly. This is repeated to create b independent ballot
assemblies.
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Generating Commitment Lists. A “commitment list” is defined as a list of
b rows pre-printed with a monotonically increasing set of b “commitment refer-
ence numbers.” Next to each commitment reference number is a region, initially
blank, that will contain an associated value. We define two types of commitment
lists:

– Receipt commitment lists contain a set of b distinct commitment refer-
ence numbers, each with a (randomly) associated serial number

– Ballot commitment lists contain the same set of b distinct commitment
reference numbers, each with a (randomly) associated candidate list ordering.

To generate the commitment lists, we begin by considering a particular audit trail
color (e.g., pink). The pink receipt commitment list and pink ballot commitment
list are generated as follows:

1. A ballot assembly is drawn from the stack and the serial number s is noted.
A non-replaced random number i ∈ b is selected (e.g., on a slip of paper
drawn from a hat),

2. The pink audit sheet of the ballot is exposed, and the number i is written
in the commitment reference number space,

3. On the pink receipt commitment list, the number s is written in the blank
space beside commitment reference number i,

4. On the pink ballot commitment list, the candidate order o is written in the
blank space beside commitment reference number i.

These steps are performed on all ballot assemblies. The pink audit trail is now
complete and the goldenrod receipt commitment list and goldenrod ballot com-
mitment list (and any additional audit trail colors) can be generated in the same
manner. An example ballot assembly and corresponding entries in the commit-
ment lists is depicted in Figure 3.

Committing. For an election with two audit trails (pink and goldenrod), the
election trustees generate the pink receipt, pink ballot, goldenrod receipt and
goldenrod ballot commitment lists. They lock these values in time (i.e., commit
to them) through the following procedure:

1. Each commitment list is placed in its own appropriately labeled tamper-
evident document envelope and sealed,

2. The trustees present the sealed envelopes to the verifiers who are given the
opportunity to inspect the exterior of the envelope and sign on the flaps,

3. The envelopes are returned into the custody of the trustees.

3.3 Print Audit Selections

In order to ensure the commitment reference numbers of the ballot assemblies
point to the same candidate orderings/serial numbers appearing on the ballot
and receipt layers, some ballot assemblies will be selected by the verifiers for a
“print audit.” Procedure could vary between jurisdictions, but one recommen-
dation would be for the print audit selections to be made in conjunction with
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Fig. 3. Commitment Lists: For each audit trail (goldenrod and pink in this case)
two commitment lists are generated – a receipt list and a ballot list, each randomly
associating serial numbers and respectively candidate orderings with a distinct com-
mitment reference number

the random spot checks of the poll registration book at the polling place dur-
ing election day (as is the procedure in many paper ballot elections today). A
verifier would select a ballot at random from the stack of ballots, and the poll
worker would mark the ballot as spoiled (e.g., by punching a hole through the
layers). The spoiled ballot would then be given to the verifier to retain for a later
auditing procedure.

3.4 Voting

Voting is conducted in accordance with the jurisdiction’s procedures for paper
ballot elections. An eligible and authenticated voter is issued a ballot assembly
by a poll official and is directed to a voting booth. The voter marks the ballot
assembly as they normally would in any conventional paper ballot election. They
return the ballot assembly to the poll official who first inspects the assembly to
ensure the respective layers are still sealed together. The official then separates
and distributes the ballot layers in the following way: the ballot layer is cast
in the ballot box. The receipt (canary) layer is issued to the voter as a receipt.
The pink and goldenrod audit sheets are cast into “pink” and “goldenrod” audit
boxes respectively.

3.5 Election Outcome

After the close of the polls, the election results are tallied normally, in accordance
with the pre-existing procedures of the jurisdiction for paper ballot elections
using contents of the ballot box and is referred to as the “official tally.” At the
close of the polls, the “pink” and “goldenrod” audit boxes are relinquished into
custody of the verifiers.
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Fig. 4. Reconstituting the Receipt Audit Trail: The Decommited (goldenrod)
receipt commitment list (Left) can be used to reconstitute receipts from the corre-
sponding (goldenrod) audit trail (Middle). The reconstituted receipt audit trail can
be cross-referenced against voter receipts (Right).

3.6 Decomitting

A coin is flipped in public. If the outcome is heads, the pink audit box is selected
to become the ballot audit trail and the goldenrod audit box is selected to
become the receipt audit trail. If the outcome is tails, the opposite envelopes are
selected. Trustees respond by releasing (i.e., decommiting) the corresponding
commitment envelopes through the following procedure:

1. Trustees relinquish selected commitment envelopes into the custody of the
verifiers,

2. Verifiers inspect envelopes for the presence of their signatures on the flap
and for the absence of evidence of physical tampering of the envelope,

3. Trustees destroy (e.g., shred) the remaining unselected commitment
envelopes.

In the following explanation of the receipt and tally audit, for clarity, we will as-
sume a case in which heads was the outcome of the coin flip—meaning goldenrod
and pink were selected to become the receipt and ballot audit trails respectively.

3.7 Receipt Audit

Using the contents of the goldenrod audit trail box in conjunction with the
goldenrod receipt commitment list, a receipt trail can be reconstituted in the
following way (see Figure 4):

1. A goldenrod audit sheet is drawn from the goldenrod audit trail box. The
commitment reference number i ∈ b is noted,

2. The i-th row of the goldenrod receipt commitment list is consulted, and cor-
responding serial number s is noted,

3. The number s is written into the blank serial number space on the audit
sheet.

These steps are performed on all goldenrod audit sheets. The reconstituted re-
ceipts can be cross-referenced against voter receipts to ensure the records match.
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Fig. 5. Reconstituting the Ballot Audit Trail: The Decommited (pink) ballot
commitment list (Left) can be used to reconstitute ballots from the corresponding
(pink) audit trail (Middle). The reconstituted ballot audit trail can be tallied and the
totals cross-referenced against the official tally (Right).

Voters could optionally give their receipts to the verifiers to cross-reference on
their behalf, or alternatively the verifiers could publish the reconstituted re-
ceipt trail in a public venue (e.g., newspaper) with which voters could check for
themselves.

3.8 Tally Audit

Using the contents of the pink audit trail box in conjunction with the pink
ballot commitment list, a ballot can be reconstituted in the following way (see
Figure 5):

1. A pink audit sheet is drawn from the pink audit trail box. The commitment
reference number j ∈ b is noted,

2. The j-th row of the pink ballot commitment list is consulted, and correspond-
ing candidate list ordering o noted,

3. The candidates are written in order o into the blank candidate name spaces
on the audit sheet.

These steps are performed on all pink audit sheets. The reconstituted ballots
can be tallied and cross-referenced against the official tally to ensure a match.

3.9 Print Audit

Recalling the randomly selected (spoiled) ballots from section 3.3, the correctness
of a ballot assembly’s printing can be verified in the following way:

1. For a given ballot assembly, candidate order o and serial number s are noted,
2. The ballot assembly’s pink and goldenrod audit layers are reconstituted into

ballot and receipt audit layers as described in sections 3.7 and 3.8 to recover
the o′ and s′ pointed to by the respective commitment reference numbers,

3. The printing of this given ballot assembly is correct if o = o′ and s = s′.
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4 Security Analysis

In this section, we describe how Aperio meets the E2E integrity criteria as defined
in section 2. Further, we analyse the attack vectors that an adversary could use
to attempt to corrupt the results of an election and demonstrate the protections
offered by Aperio to thwart these attacks.

4.1 A Positive Assertion of Security

Let an unmarked Aperio ballot assembly be the tuple 〈o, s, cp, cg〉 for candidate
order, serial number, commitment reference number of the pink sheet, and com-
mitment reference number of the goldenrod sheet. Let ρ denote the position
marked by the voter on each element of the ballot assembly. For the following
discussion, again consider the instance in which the pink receipt commitment
list and the goldenrod ballot commitment list were selected to be decommit-
ted (although the following security properties are invariant to any particular
selection). The audit process establishes the following facts:

1. The voter’s receipt contains 〈s, ρ〉. By matching the voter’s receipt to the
receipt commitment list, it can be verified that ρ′ (of row s of the receipt
commitment list) matches the ρ on the voter’s receipt. Therefore, the voter’s
mark is included unmodified in the collection of ballots—the first E2E cri-
terion.

2. The print audit verifies that s and cp printed on a ballot are the same as in
the commitment reference sheet and additionally,

3. Verifies o and cg are the same as on the ballot reference sheet.
4. Since 2 and 3 are dependent on a random decision, it is probabilistic that s

and cg also are consistent between the printed ballots and reference sheets,
and additionally,

5. It is probabilistic that o and cp also are consistent between the printed ballots
and reference sheets. If the printed ballots are not consistent, this would be
detected with probability 1−(1−Y )x−1 where Y is the percentage of receipts
checked and x is the number of audit sheets.

6. By combining facts 2 and 5, or similarly 3 and 4, we infer that s and o on
the sheets are consistent with what the voter saw in the polling booth.

7. By combining 1 and 6, the voter is assured that the same ρ at s on their
receipt is in the ballot commitment list somewhere beside the same o that
was on their ballot.

8. Finally, given 7, the voter can generate a correct tally for all votes using
the ballot reference sheet proving that the collection of ballots is tallied
correctly—the second property of an E2E election.

The indirectness of this proof prevents the voter from proving which candidate
they voted for to a coercer or someone wishing to purchase their vote. The tally
that was generated to provide fact 8 can also be compared to the official tally
generated using the original paper ballots for additional assurance.
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4.2 Prevented Attacks

In addition to the positive security properties already outlined, it may be also
useful to demonstrate a set of attacks it is not susceptible to.

– Adding or removing ballots. In order to increase the number of votes for
a candidate, an adversary may “stuff” the ballot box with extra ballots for
their candidate of choice. Alternatively, given that elections are local events
and that correlations often exist between a locality and a political preference,
an adversary may attempt to destroy cast ballots in a discriminatory man-
ner by choosing locations based on expected political preference. We assume
that a voter registration list is maintained with the number of voters who
cast ballots in the election. This information may also be corroborated by
election observers. The number of ballots and audit sheets should be iden-
tical between them and should also be identical to the total voters on the
registration.

– Modifying ballots. A more sophisticated adversary would avoid upset-
ting the number of cast ballots by either replacing existing ballots with new
ballots marked for their candidate or modifying the marks on existing bal-
lots. Since a ballot assembly is distributed between distinct boxes, the tuple
〈o, s, cp, cg〉 becomes unlinked and subsequently unassociable once cast into
the respective boxes. If an adversary modifies or replaces o on a ballot, then
the audit tally will not match the tally generated from adding up all the top
layers. Its not in the interest of an adversary to modify cp or cg, as there is
no way of knowing which candidate a vote is for and which it will be mapped
to if modified. Furthermore, there is only a 50% chance that the tally will
change at all—alternatively the box will be used to decommit receipts. In
either case, such modifications will be detectable either because the tallies
will not match, or the receipts will not match. Since cg and cp hide o, the
voter cannot change both an o on a ballot and, say, cg on a goldenrod audit
sheet in a way that consistently changes both tallies, should the goldenrod
ballot commitment list be opened.

– Misprinting ballots. An adversary could also misprint ballot assemblies
before voting day, or mix-and-match sheets from one ballot assembly with
sheets of another. Most of these attacks will not affect the tally (only the
receipts) and there is only one method for potentially modifying the tally
in an undetectable way: switch both o and one audit sheet, say cg, with
another ballot with a different order o′, where o �= o′. If the goldenrod ballot
commitment list is selected to be decommited, the two tallies will match,
otherwise the attack will be detected. Furthermore, since the adversary has
no guarantee of which voter will receive the misprinted ballot, votes cannot
be predictably directed to a particular favored candidate. This attack is
marginal and can be further mitigated by using more than two audit layers,
which exponentially decreases the probability of a successful execution of
this attack.

– Forced randomization attack. An adversary could coerce a voter into re-
turning with a receipt with a particular position marked. Since the adversary
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has no knowledge of o, this is equivalent to forcing the voter to throw away
their vote by voting for a random candidate as demonstrated in [12]. Since a
random vote will be given to each candidate with equal probability, coercing
a random votes will have the same effect as coercing a voter to not vote at
all—the latter likely being easier to execute.

– Chain voting. An adversary who can capture an unmarked ballot can ex-
ecute a chain voting attack where they fill out the unmarked ballot for a
candidate they choose, then coerce a voter into casting the adversary’s bal-
lot in place of the unmarked ballot the voter receives, and demand that the
voter return to them the voter’s unmarked ballot so they can execute the at-
tack ad infinitum. This can be mitigated by the use of a detachable, uniquely
marked “counterfoil.” As the voter registration official issues the ballot, the
number n on the counterfoil is noted. When the voter returns, the official
verifies the presence of the counterfoil and notes the number n′. If n = n′,
the voter has not exchanged ballots. The counterfoil is then detached and
discarded, and the ballot assembly and the casting procedure continues as
in section 3.4. As an option, the counterfoil could be additionally utilized to
initially seal the ballot layers together to prevent anyone from viewing s, cg

and cp beforehand.
– Pattern Attacks. A voter wishing to sell their vote could mark their ballot

in a pattern that is likely to be uniquely identifiable and then point out its
location to the buyer in the ballot commitment list. This can be mitigated by
partitioning the audit into subaudits: i.e., having separate commitment lists
for each contest or small collections of contests. Exactly how to partition
a ballot to marginalize a pattern attack can be determined statistically—
i.e., [8].

5 Privacy

In this section we describe how the scheme protects voter privacy. With the
exception of the privacy entrusted entity that generates and prints ballot as-
semblies, no information about how a voter votes becomes known to the other
entities (i.e., voter, poll officials, verifiers) with the following justification:

– Ballot assembly. It is easy to see that through the decommiting process,
〈cp, cg〉 ⇒ 〈o, s〉, and therefore 〈cp, cg, ρ〉 ⇒ 〈o, s, ρ〉, which is the basis of
the print audit of spoiled ballot assemblies. Privacy is preserved on these
ballot assemblies given ρ = ∅. Assuming poll procedure is followed, then
〈cp, cg〉 will be physically unlinked by the poll official and logically unlinked
by the mixing in the audit trail ballot boxes. It is central to voter privacy
that neither the voters, poll officials or verifiers see 〈cp, cg〉 leading up to,
and during, the ballot casting process. The assembly layers might be sealed
(e.g., glued) together as previously suggested by a tear-off “counterfoil.”

– Ballot receipt. Given that 〈o, s〉 were randomly selected in section 3.2,
and known only to the privacy entrusted entity, then to all other entities
〈s〉 � 〈o〉 and therefore 〈s, ρ〉 � 〈o, s, ρ〉 given receipt 〈s, ρ〉.
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– Receipt Commitment Lists. Given ballot commitment lists CBg =
{〈cg1 , o1〉 , · · · , 〈cgb

, ob〉} and CBp = {〈cp1 , o1〉 , · · · , 〈cpb
, ob〉} and re-

ceipt commitment lists CRg = {〈cg1 , s1〉 , · · · , 〈cgb
, sb〉} and CRp =

{〈cp1 , s1〉 , · · · , 〈cpb
, sb〉}, but given that only one of 〈CBg, CRp〉 and

〈CRg, CBp〉 are ever made public, it is easy to see 〈cgi , oi〉 � 〈cgi , si〉 and
〈cpi , oi〉 � 〈cpi , si〉 and thus 〈cgi , ρi〉 � 〈oi, si, ρi〉 and likewise 〈cpi , ρi〉 �

〈oi, si, ρi〉.

5.1 Prevented Attacks

Under the privacy properties, a link cannot be established between a vote and
a receipt, and therefore the receipt cannot be used to prove how a voter voted.
That is to say any observer, given only the ballot receipt, cannot “guess” a voter’s
selections with non-negligible advantage. These privacy properties address the
following attacks:

– Vote Buying. A voter who votes a certain way, following an arrangement
made between the voter and any entity a priori to voting, cannot subse-
quently prove how they voted. This effectively relegates vote buying to, at
best, conventional threats, or at worst, to the previously mentioned forced-
randomization attack.

– Retribution. A subtly different threat, often overlooked in literature, is the
circumstance in which no precursory voting agreement exists, yet a possibil-
ity of retribution exists if the voter’s selections become known a postiori to
voting. Concern for future retribution would be legitimate cause for a voter
to vote differently than intended, and therefore is arguably as serious a con-
cern as vote buying and must likewise not be facilitated by any proposed
receipt scheme.

6 Extensions and Other Applications

6.1 Multiple Contests

The specific system presented in this paper considered a small, single contest
race. Under this scheme, uniquely patterned receipts are unlikely to occur under
the so-called “Short Ballot Assumption” of [14]. In the case of cryptographic
E2E systems, elections with multiple contests have attempted to mitigate against
pattern attacks by partitioning the anonymizing network by contest [11]. It is
easy to see the physical analog of this technique for a multi-contest ballot would
be to either to perforate the ballot assembly such that the assembly could be
separated by contest at casting time, or simply to have one assembly per contest
(a technique already employed by some jurisdictions).

6.2 Automation of Verification Process

Although an election environment may not provide for optical scanners at the
polling place, it may be reasonable to assume some computing capability on
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behalf of the trustees and verifiers. In this circumstance, the trustees might print
the commitment reference numbers on audit sheets as well as the commitment
lists in an optically readable format to speed the verification process. In this
scheme, the same audit operations would be undertaken, except by a computer.

6.3 Implications for Cryptographic Schemes

The anonymizing network model introduced by Aperio is fundamentally simpler
than the mixnet model employed by many cryptographic schemes in the sense
that it does not propagate mark states through mix nodes, and therefore does
not directly require a scheme such as randomized partial checking [9] to ver-
ify the network’s correctness. This could replace the anonymizing network of a
system such as Scantegrity [4] which employs multiple instances of a two stage
permutation-network, instead, with multiple (independently shuffled) instances
of 〈CR, CB〉. This change would likely decrease the total number of verification
operations, and arguably decreases the overall conceptual complexity of the ver-
ification process.

7 Conclusion

In this document we have introduced Aperio, a mechanism to provide custody
independent verification of election results without the use of electronic equip-
ment or special skill requirements for voting, tallying, or verification. Our intent
through this proposal is twofold. First, we hope to cultivate discussion on prac-
tical techniques for strengthening the democratic process in developing counties
and other minimally equipped or minimally funded election environments. Sec-
ond, it is our hope that Aperio will be useful as a more broadly-accessible educa-
tional tool for E2E concepts, especially for the purpose of growing understanding
and acceptance of its various cryptographic counterparts.

References

1. Adida, B., Rivest, R.L.: Scratch & vote: self-contained paper-based cryptographic
voting. In: WPES 2006: Proceedings of the 5th ACM workshop on Privacy in
electronic society, pp. 29–40 (2006)

2. Ballot, A.: Merriam-webster dictionary. Online
3. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.

Commun. ACM 24(2), 84–90 (1981)
4. Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, A.T., Vora,

P.: Scantegrity: End-to-end voter verifiable optical-scan voting. IEEE Security and
Privacy Magazine (May/June 2008)

5. Chaum, D., Ryan, P.Y.A., Schneider, S.A.: A Practical, Voter-verifiable, Election
Scheme. Technical Report Series CS-TR-880, University of Newcastle Upon Tyne,
School of Computer Science (December 2004)

6. Chaum, D., van de Graaf, J., Ryan, P.Y.A., Vora, P.L.: Secret ballot elections with
unconditional integrity. Technical report, IACR Eprint (2007),
http://eprint.iacr.org/



Aperio: High Integrity Elections for Developing Countries 401

7. United States Election Assistance Commission. 2005 voluntary voting system
guidelines (December 2005), http://eac.gov/vvsg_intro.htm

8. Henry, K., Stinson, D., Sui, J.: The effectiveness of receipt-based attacks on three-
ballot. Technical report, Centre for Applied Cryptographic Research, University of
Waterloo (2007)

9. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: USENIX Security 2002, pp. 339–353 (2002)

10. Popoveniuc, S., Hosp, B.: An Introduction to Punchscan. In: Preproceedings of the
2006 IAVoSS Workshop on Trustworthy Elections, Robinson College, Cambridge,
United Kingdom. International Association for Voting System Sciences (2006)

11. Popoveniuc, S., Stanton, J.: Undervote and pattern voting: Vulnerability and a
mitigation technique (June 2007)

12. Popoveniuc, S., Stanton, J.: Buying random votes is as hard as buying no-votes.
Cryptology ePrint Archive, Report 2008/059 (2008), http://eprint.iacr.org/

13. Rivest, R.L., Wack, J.: On the notion of “software independence” in voting systems.
DRAFT Version (July 28, 2006)

14. Rivest, R.L., Smith, W.D.: Three Voting Protocols: Threeballot, VAV, and Twin.
In: Usenix/Accurate EVT (August 2007)



Author Index

Adams, Carlisle 388
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Delaune, Stéphanie 289

Essex, Aleks 357, 388

Ferreira, Paulo 310
Foulle, Sébastien 330
Fouque, Pierre-Alain 191
Furukawa, Jun 141

Gerck, Ed 1
Goler, Jonathan A. 83
Graaf, Jeroen van de 231, 274

Hirt, Martin 64
Hosp, Ben 242

Imai, Hideki 107

Jakobsson, Markus 37
Jefferson, David 97
Joaquim, Rui 310
Jones, Douglas W. 175
Jonker, Hugo 216
Juels, Ari 37

Kelsey, John 370
Kiayias, Aggelos 155
Kremer, Steve 289
Kuty�lowski, Miros�law 343

Lundin, David 260

Moran, Tal 370
Mori, Kengo 141

Otsuka, Akira 107

Peacock, Thea 200
Pieters, Wolter 216
Pointcheval, David 191
Popoveniuc, Stefan 242, 357

Regenscheid, Andrew 370
Rezende, Pedro A.D. 124
Ribeiro, Carlos 310
Rivest, Ronald L. 97
Ryan, Mark 289
Ryan, Peter Y.A. 200

Sako, Kazue 141
Selker, Edwin J. 83
Stern, Julien 191
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