


Fundamental
Astronomy





H. Karttunen
P. Kröger
H. Oja
M. Poutanen
K. J. Donner (Eds.)

Fundamental
Astronomy
Fifth Edition
With 449 Illustrations
Including 34 Colour Plates
and 75 Exercises with Solutions

123



Dr. Hannu Karttunen
University of Turku, Tuorla Observatory,
21500 Piikkiö, Finland
e-mail: hannu.karttunen@utu.fi

Dr. Pekka Kröger
Isonniitynkatu 9 C 9, 00520 Helsinki, Finland
e-mail: pekka.kroger@stadia.fi

Dr. Heikki Oja
Observatory, University of Helsinki,
Tähtitorninmäki (PO Box 14), 00014 Helsinki, Finland
e-mail: heikki.oja@helsinki.fi

Dr. Markku Poutanen
Finnish Geodetic Institute,
Dept. Geodesy and Geodynamics,
Geodeetinrinne 2, 02430 Masala, Finland
e-mail: markku.poutanen@fgi.fi

Dr. Karl Johan Donner
Observatory, University of Helsinki,
Tähtitorninmäki (PO Box 14), 00014 Helsinki, Finland
e-mail: donner@astro.helsinki.fi

ISBN 978-3-540-34143-7 5th Edition
Springer Berlin Heidelberg New York

ISBN 978-3-540-00179-9 4th Edition
Springer-Verlag Berlin Heidelberg New York

Library of Congress Control Number: 2007924821

Cover picture: The James Clerk Maxwell Telescope. Photo credit:
Robin Phillips and Royal Observatory, Edinburgh. Image courtesy of
the James Clerk Maxwell Telescope, Mauna Kea Observatory, Hawaii

Frontispiece: The Horsehead Nebula, officially called Barnard 33,
in the constellation of Orion, is a dense dust cloud on the edge of
a bright HII region. The photograph was taken with the 8.2 meter
Kueyen telescope (VLT 2) at Paranal. (Photograph European Southern
Observatory)

Title of original Finnish edition:
Tähtitieteen perusteet (Ursan julkaisuja 56)
© Tähtitieteellinen yhdistys Ursa Helsinki 1984, 1995, 2003

Sources for the illustrations are given in the captions and more fully
at the end of the book. Most of the uncredited illustrations are
© Ursa Astronomical Association, Raatimiehenkatu 3A2,
00140 Helsinki, Finland

This work is subject to copyright. All rights are reserved, whether the
whole or part of the material is concerned, specifically the rights of
translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be
obtained from Springer-Verlag. Violations are liable for prosecution
under the German Copyright Law.

Springer is a part Springer Science+Business Media

www.springer.com

© Springer-Verlag Berlin Heidelberg 1987, 1994, 1996, 2003, 2007

The use of general descriptive names, registered names, trademarks,
etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typesetting and Production:
LE-TeX, Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: Erich Kirchner, Heidelberg/WMXDesign, Heidelberg
Layout: Schreiber VIS, Seeheim

Printed on acid-free paper
SPIN: 11685739 55/3180/YL 5 4 3 2 1 0



V

Preface to the Fifth Edition

As the title suggests, this book is about fundamental
things that one might expect to remain fairly the same.
Yet astronomy has evolved enormously over the last few
years, and only a few chapters of this book have been
left unmodified.

Cosmology has especially changed very rapidly
from speculations to an exact empirical science and
this process was happening when we were working
with the previous edition. Therefore it is understand-
able that many readers wanted us to expand the
chapters on extragalactic and cosmological matters.
We hope that the current edition is more in this
direction. There are also many revisions and addi-
tions to the chapters on the Milky Way, galaxies, and
cosmology.

While we were working on the new edition, the
International Astronomical Union decided on a precise
definition of a planet, which meant that the chapter on
the solar system had to be completely restructured and
partly rewritten.

Over the last decade, many new exoplanets have also
been discovered and this is one reason for the increasing
interest in a new branch of science – astrobiology, which
now has its own new chapter.

In addition, several other chapters contain smaller
revisions and many of the previous images have been
replaced with newer ones.

Helsinki The Editors
December 2006
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Preface to the First Edition

The main purpose of this book is to serve as a university
textbook for a first course in astronomy. However, we
believe that the audience will also include many serious
amateurs, who often find the popular texts too trivial.
The lack of a good handbook for amateurs has become
a problem lately, as more and more people are buying
personal computers and need exact, but comprehensible,
mathematical formalism for their programs. The reader
of this book is assumed to have only a standard high-
school knowledge of mathematics and physics (as they
are taught in Finland); everything more advanced is usu-
ally derived step by step from simple basic principles.
The mathematical background needed includes plane
trigonometry, basic differential and integral calculus,
and (only in the chapter dealing with celestial mechan-
ics) some vector calculus. Some mathematical concepts
the reader may not be familiar with are briefly explained
in the appendices or can be understood by studying
the numerous exercises and examples. However, most
of the book can be read with very little knowledge of
mathematics, and even if the reader skips the mathemat-
ically more involved sections, (s)he should get a good
overview of the field of astronomy.

This book has evolved in the course of many years
and through the work of several authors and editors. The
first version consisted of lecture notes by one of the edi-
tors (Oja). These were later modified and augmented by
the other editors and authors. Hannu Karttunen wrote
the chapters on spherical astronomy and celestial me-
chanics; Vilppu Piirola added parts to the chapter on
observational instruments, and Göran Sandell wrote the
part about radio astronomy; chapters on magnitudes, ra-
diation mechanisms and temperature were rewritten by

the editors; Markku Poutanen wrote the chapter on the
solar system; Juhani Kyröläinen expanded the chapter
on stellar spectra; Timo Rahunen rewrote most of the
chapters on stellar structure and evolution; Ilkka Tuomi-
nen revised the chapter on the Sun; Kalevi Mattila wrote
the chapter on interstellar matter; Tapio Markkanen
wrote the chapters on star clusters and the Milky Way;
Karl Johan Donner wrote the major part of the chapter
on galaxies; Mauri Valtonen wrote parts of the galaxy
chapter, and, in collaboration with Pekka Teerikorpi, the
chapter on cosmology. Finally, the resulting, somewhat
inhomogeneous, material was made consistent by the
editors.

The English text was written by the editors, who
translated parts of the original Finnish text, and rewrote
other parts, updating the text and correcting errors found
in the original edition. The parts of text set in smaller
print are less important material that may still be of
interest to the reader.

For the illustrations, we received help from Veikko
Sinkkonen, Mirva Vuori and several observatories and
individuals mentioned in the figure captions. In the
practical work, we were assisted by Arja Kyröläinen
and Merja Karsma. A part of the translation was read
and corrected by Brian Skiff. We want to express our
warmest thanks to all of them.

Financial support was given by the Finnish Ministry
of Education and Suomalaisen kirjallisuuden edistämis-
varojen valtuuskunta (a foundation promoting Finnish
literature), to whom we express our gratitude.

Helsinki The Editors
June 1987
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1. Introduction

1.1 The Role of Astronomy

On a dark, cloudless night, at a distant location far away
from the city lights, the starry sky can be seen in all
its splendour (Fig. 1.1). It is easy to understand how
these thousands of lights in the sky have affected peo-
ple throughout the ages. After the Sun, necessary to all
life, the Moon, governing the night sky and continuously
changing its phases, is the most conspicuous object in
the sky. The stars seem to stay fixed. Only some rela-

Fig. 1.1. The North America nebula in the constellation of Cygnus. The brightest star on the right is α Cygni or Deneb. (Photo
M. Poutanen and H. Virtanen)

tively bright objects, the planets, move with respect to
the stars.

The phenomena of the sky aroused people’s inter-
est a long time ago. The Cro Magnon people made
bone engravings 30,000 years ago, which may depict
the phases of the Moon. These calendars are the old-
est astronomical documents, 25,000 years older than
writing.

Agriculture required a good knowledge of the sea-
sons. Religious rituals and prognostication were based
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on the locations of the celestial bodies. Thus time reck-
oning became more and more accurate, and people
learned to calculate the movements of celestial bodies
in advance.

During the rapid development of seafaring, when
voyages extended farther and farther from home ports,
position determination presented a problem for which
astronomy offered a practical solution. Solving these
problems of navigation were the most important tasks
of astronomy in the 17th and 18th centuries, when
the first precise tables on the movements of the plan-
ets and on other celestial phenomena were published.
The basis for these developments was the discov-
ery of the laws governing the motions of the planets
by Copernicus, Tycho Brahe, Kepler, Galilei and
Newton.

Fig. 1.2. Although space
probes and satellites have
gathered remarkable new
information, a great ma-
jority of astronomical
observations is still Earth-
based. The most important
observatories are usually
located at high altitudes
far from densely populated
areas. One such observa-
tory is on Mt Paranal in
Chile, which houses the
European VLT telescopes.
(Photo ESO)

Astronomical research has changed man’s view of
the world from geocentric, anthropocentric conceptions
to the modern view of a vast universe where man and the
Earth play an insignificant role. Astronomy has taught
us the real scale of the nature surrounding us.

Modern astronomy is fundamental science, moti-
vated mainly by man’s curiosity, his wish to know more
about Nature and the Universe. Astronomy has a central
role in forming a scientific view of the world. “A scien-
tific view of the world” means a model of the universe
based on observations, thoroughly tested theories and
logical reasoning. Observations are always the ultimate
test of a model: if the model does not fit the observa-
tions, it has to be changed, and this process must not
be limited by any philosophical, political or religious
conceptions or beliefs.
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1.2 Astronomical Objects of Research

Modern astronomy explores the whole Universe and its
different forms of matter and energy. Astronomers study
the contents of the Universe from the level of elementary
particles and molecules (with masses of 10−30 kg) to
the largest superclusters of galaxies (with masses of
1050 kg).

Astronomy can be divided into different branches in
several ways. The division can be made according to
either the methods or the objects of research.

The Earth (Fig. 1.3) is of interest to astronomy for
many reasons. Nearly all observations must be made
through the atmosphere, and the phenomena of the
upper atmosphere and magnetosphere reflect the state
of interplanetary space. The Earth is also the most
important object of comparison for planetologists.

The Moon is still studied by astronomical methods,
although spacecraft and astronauts have visited its sur-
face and brought samples back to the Earth. To amateur
astronomers, the Moon is an interesting and easy object
for observations.

In the study of the planets of the solar system,
the situation in the 1980’s was the same as in lunar
exploration 20 years earlier: the surfaces of the plan-
ets and their moons have been mapped by fly-bys of
spacecraft or by orbiters, and spacecraft have soft-
landed on Mars and Venus. This kind of exploration
has tremendously added to our knowledge of the con-
ditions on the planets. Continuous monitoring of the
planets, however, can still only be made from the Earth,
and many bodies in the solar system still await their
spacecraft.

The Solar System is governed by the Sun, which
produces energy in its centre by nuclear fusion. The
Sun is our nearest star, and its study lends insight into
conditions on other stars.

Some thousands of stars can be seen with the
naked eye, but even a small telescope reveals mil-
lions of them. Stars can be classified according to
their observed characteristics. A majority are like the
Sun; we call them main sequence stars. However,
some stars are much larger, giants or supergiants,
and some are much smaller, white dwarfs. Different
types of stars represent different stages of stellar evo-
lution. Most stars are components of binary or multiple

Fig. 1.3. The Earth as seen from the Moon. The picture was
taken on the first Apollo flight around the Moon, Apollo 8 in
1968. (Photo NASA)

systems, many are variable: their brightness is not
constant.

Among the newest objects studied by astronomers
are the compact stars: neutron stars and black holes. In
them, matter has been so greatly compressed and the
gravitational field is so strong that Einstein’s general
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Fig. 1.4. The dimensions of the Universe
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theory of relativity must be used to describe matter and
space.

Stars are points of light in an otherwise seemingly
empty space. Yet interstellar space is not empty, but
contains large clouds of atoms, molecules, elemen-
tary particles and dust. New matter is injected into
interstellar space by erupting and exploding stars; at
other places, new stars are formed from contracting
interstellar clouds.

Stars are not evenly distributed in space, but form
concentrations, clusters of stars. These consist of stars
born near each other, and in some cases, remaining
together for billions of years.

The largest concentration of stars in the sky is the
Milky Way. It is a massive stellar system, a galaxy,
consisting of over 200 billion stars. All the stars visible
to the naked eye belong to the Milky Way. Light travels
across our galaxy in 100,000 years.

The Milky Way is not the only galaxy, but one of
almost innumerable others. Galaxies often form clusters
of galaxies, and these clusters can be clumped together
into superclusters. Galaxies are seen at all distances as

Fig. 1.5. The globular clus-
ter M13. There are over
a million stars in the
cluster. (Photo Palomar
Observatory)

far away as our observations reach. Still further out we
see quasars – the light of the most distant quasars we
see now was emitted when the Universe was one-tenth
of its present age.

The largest object studied by astronomers is the
whole Universe. Cosmology, once the domain of
theologicians and philosophers, has become the sub-
ject of physical theories and concrete astronomical
observations.

Among the different branches of research, spher-
ical, or positional, astronomy studies the coordinate
systems on the celestial sphere, their changes and the
apparent places of celestial bodies in the sky. Celes-
tial mechanics studies the movements of bodies in
the solar system, in stellar systems and among the
galaxies and clusters of galaxies. Astrophysics is con-
cerned with the physical properties of celestial objects;
it employs methods of modern physics. It thus has
a central position in almost all branches of astronomy
(Table 1.1).

Astronomy can be divided into different areas ac-
cording to the wavelength used in observations. We can
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Table 1.1. The share of different branches of astronomy in
1980, 1998 and 2005. For the first two years, the percantage
of the number of publications was estimated from the printed
pages of Astronomy and Astrophysics Abstracts, published by
the Astronomische Rechen-Institut, Heidelberg. The publica-
tion of the series was discontinued in 2000, and for 2005, an
estimate was made from the Smithsonian/NASA Astrophysics
Data System (ADS) Abstract Service in the net. The differ-
ence between 1998 and 2005 may reflect different methods
of classification, rather than actual changes in the direction of
research.

Branch of Percentage of publications
Astronomy in the year

1980 1998 2005

Astronomical instruments and techniques 6 6 8
Positional astronomy, celestial mechanics 4 2 5
Space research 2 1 9
Theoretical astrophysics 10 13 6
Sun 8 8 8
Earth 5 4 3
Planetary system 16 9 11
Interstellar matter, nebulae 7 6 5
Radio sources, X-ray sources, cosmic rays 9 5 12
Stellar systems, Galaxy, extragalactic
objects, cosmology 14 29 22

Fig. 1.6. The Large Mag-
ellanic Cloud, our nearest
neighbour galaxy. (Photo
National Optical Astron-
omy Observatories, Cerro
Tololo Inter-American
Observatory)

speak of radio, infrared, optical, ultraviolet, X-ray or
gamma astronomy, depending on which wavelengths
of the electromagnetic spectrum are used. In the fu-
ture, neutrinos and gravitational waves may also be ob-
served.

1.3 The Scale of the Universe

The masses and sizes of astronomical objects are
usually enormously large. But to understand their prop-
erties, the smallest parts of matter, molecules, atoms
and elementary particles, must be studied. The densi-
ties, temperatures and magnetic fields in the Universe
vary within much larger limits than can be reached in
laboratories on the Earth.

The greatest natural density met on the Earth is
22,500 kg m−3 (osmium), while in neutron stars den-
sities of the order of 1018 kg m−3 are possible. The
density in the best vacuum achieved on the Earth is
only 10−9 kg m−3, but in interstellar space the density



1.3 The Scale of the Universe

9

of the gas may be 10−21 kg m−3 or even less. Modern
accelerators can give particles energies of the order of
1012 electron volts (eV). Cosmic rays coming from the
sky may have energies of over 1020 eV.

It has taken man a long time to grasp the vast di-
mensions of space. Already Hipparchos in the second
century B.C. obtained a reasonably correct value for
the distance of the Moon. The scale of the solar system
was established together with the heliocentric system in
the 17th century. The first measurements of stellar dis-
tances were made in the 1830’s, and the distances to the
galaxies were determined only in the 1920’s.

We can get some kind of picture of the distances in-
volved (Fig. 1.4) by considering the time required for
light to travel from a source to the retina of the human
eye. It takes 8 minutes for light to travel from the Sun,

5 1
2 hours from Pluto and 4 years from the nearest star.

We cannot see the centre of the Milky Way, but the many
globular clusters around the Milky Way are at approxi-
mately similar distances. It takes about 20,000 years for
the light from the globular cluster of Fig. 1.5 to reach
the Earth. It takes 150,000 years to travel the distance
from the nearest galaxy, the Magellanic Cloud seen on
the southern sky (Fig. 1.6). The photons that we see now
started their voyage when Neanderthal Man lived on the
Earth. The light coming from the Andromeda Galaxy in
the northern sky originated 2 million years ago. Around
the same time the first actual human using tools, Homo
habilis, appeared. The most distant objects known, the
quasars, are so far away that their radiation, seen on the
Earth now, was emitted long before the Sun or the Earth
were born.
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2. Spherical Astronomy

Spherical astronomy is a science studying astronomical
coordinate frames, directions and apparent motions

of celestial objects, determination of position from astro-
nomical observations, observational errors, etc. We shall
concentrate mainly on astronomical coordinates, appar-
ent motions of stars and time reckoning. Also, some of
the most important star catalogues will be introduced.

For simplicity we will assume that the observer is
always on the northern hemisphere. Although all def-
initions and equations are easily generalized for both
hemispheres, this might be unnecessarily confusing. In
spherical astronomy all angles are usually expressed
in degrees; we will also use degrees unless otherwise
mentioned.

2.1 Spherical Trigonometry

For the coordinate transformations of spherical astron-
omy, we need some mathematical tools, which we
present now.

If a plane passes through the centre of a sphere, it will
split the sphere into two identical hemispheres along
a circle called a great circle (Fig. 2.1). A line perpen-
dicular to the plane and passing through the centre of
the sphere intersects the sphere at the poles P and P′.
If a sphere is intersected by a plane not containing the
centre, the intersection curve is a small circle. There
is exactly one great circle passing through two given
points Q and Q′ on a sphere (unless these points are an-

Fig. 2.1. A great circle is the intersection of a sphere and
a plane passing through its centre. P and P′ are the poles of
the great circle. The shortest path from Q to Q′ follows the
great circle

tipodal, in which case all circles passing through both
of them are great circles). The arc QQ′ of this great
circle is the shortest path on the surface of the sphere
between these points.

A spherical triangle is not just any three-cornered
figure lying on a sphere; its sides must be arcs of great
circles. The spherical triangle ABC in Fig. 2.2 has the
arcs AB, BC and AC as its sides. If the radius of the
sphere is r, the length of the arc AB is

|AB| = rc , [c] = rad ,

where c is the angle subtended by the arc AB as seen
from the centre. This angle is called the central angle
of the side AB. Because lengths of sides and central

Fig. 2.2. A spherical triangle is bounded by three arcs of great
circles, AB, BC and CA. The corresponding central angles
are c, a, and b
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angles correspond to each other in a unique way, it is
customary to give the central angles instead of the sides.
In this way, the radius of the sphere does not enter into
the equations of spherical trigonometry. An angle of
a spherical triangle can be defined as the angle between
the tangents of the two sides meeting at a vertex, or as
the dihedral angle between the planes intersecting the
sphere along these two sides. We denote the angles of
a spherical triangle by capital letters (A, B, C) and the
opposing sides, or, more correctly, the corresponding
central angles, by lowercase letters (a, b, c).

The sum of the angles of a spherical triangle is always
greater than 180 degrees; the excess

E = A + B +C −180◦ (2.1)

is called the spherical excess. It is not a constant, but
depends on the triangle. Unlike in plane geometry, it is
not enough to know two of the angles to determine the
third one. The area of a spherical triangle is related to
the spherical excess in a very simple way:

Area = Er2 , [E] = rad . (2.2)

This shows that the spherical excess equals the solid
angle in steradians (see Appendix A.1), subtended by
the triangle as seen from the centre.

Fig. 2.3. If the sides of a spherical triangle are extended all
the way around the sphere, they form another triangle ∆′,
antipodal and equal to the original triangle ∆. The shaded
area is the slice S(A)

To prove (2.2), we extend all sides of the triangle ∆
to great circles (Fig. 2.3). These great circles will form
another triangle ∆′, congruent with ∆ but antipodal to
it. If the angle A is expressed in radians, the area of the
slice S(A) bounded by the two sides of A (the shaded
area in Fig. 2.3) is obviously 2A/2π = A/π times the
area of the sphere, 4πr2. Similarly, the slices S(B) and
S(C) cover fractions B/π and C/π of the whole sphere.

Together, the three slices cover the whole surface
of the sphere, the equal triangles ∆ and ∆′ belonging
to every slice, and each point outside the triangles, to
exactly one slice. Thus the area of the slices S(A), S(B)
and S(C) equals the area of the sphere plus four times
the area of ∆, A(∆):

A + B +C

π
4πr2 = 4πr2 +4A(∆) ,

whence

A(∆)= (A + B +C −π)r2 = Er2 .

As in the case of plane triangles, we can derive re-
lationships between the sides and angles of spherical
triangles. The easiest way to do this is by inspecting
certain coordinate transformations.

Fig. 2.4. The location of a point P on the surface of a unit
sphere can be expressed by rectangular xyz coordinates or by
two angles, ψ and θ. The x′y′z′ frame is obtained by rotating
the xyz frame around its x axis by an angle χ
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Fig. 2.5. The coordinates of the point P in the rotated frame
are x′ = x, y′ = y cosχ+ z sinχ, z′ = z cosχ− y sinχ

Suppose we have two rectangular coordinate frames
Oxyz and Ox′y′z′ (Fig. 2.4), such that the x′y′z′ frame
is obtained from the xyz frame by rotating it around the
x axis by an angle χ.

The position of a point P on a unit sphere is uniquely
determined by giving two angles. The angle ψ is mea-
sured counterclockwise from the positive x axis along
the xy plane; the other angle θ tells the angular distance
from the xy plane. In an analogous way, we can de-
fine the angles ψ ′ and θ ′, which give the position of the
point P in the x′y′z′ frame. The rectangular coordinates
of the point P as functions of these angles are:

x = cosψ cos θ , x′ = cosψ ′ cos θ ′ ,
y = sinψ cos θ , y′ = sinψ ′ cos θ ′, (2.3)

z = sin θ, z′ = sin θ ′.

We also know that the dashed coordinates are obtained
from the undashed ones by a rotation in the yz plane
(Fig. 2.5):

x′ = x ,

y′ = y cosχ+ z sinχ , (2.4)

z′ = −y sinχ+ z cosχ .

By substituting the expressions of the rectangular
coordinates (2.3) into (2.4), we have

cosψ ′ cos θ ′ = cosψ cos θ ,

sinψ ′ cos θ ′ = sinψ cos θ cosχ+ sin θ sinχ , (2.5)

sin θ ′ = − sinψ cos θ sinχ+ sin θ cosχ .

Fig. 2.6. To derive triangulation formulas for the spherical
triangle ABC, the spherical coordinates ψ, θ, ψ′ and θ ′ of the
vertex C are expressed in terms of the sides and angles of the
triangle

In fact, these equations are quite sufficient for all co-
ordinate transformations we may encounter. However,
we shall also derive the usual equations for spherical
triangles. To do this, we set up the coordinate frames in
a suitable way (Fig. 2.6). The z axis points towards the
vertex A and the z′ axis, towards B. Now the vertex C
corresponds to the point P in Fig. 2.4. The angles ψ, θ,
ψ ′, θ ′ and χ can be expressed in terms of the angles and
sides of the spherical triangle:

ψ = A −90◦ , θ = 90◦ −b ,

ψ ′ = 90◦ − B , θ ′ = 90◦ −a , χ = c .
(2.6)

Substitution into (2.5) gives

cos(90◦ − B) cos(90◦ −a)

= cos(A −90◦) cos(90◦ −b) ,

sin(90◦ − B) cos(90◦ −a)

= sin(A −90◦) cos(90◦ −b) cos c

+ sin(90◦ −b) sin c ,

sin(90◦ −a)

= − sin(A −90◦) cos(90◦ −b) sin c

+ sin(90◦ −b) cos c ,
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or

sin B sin a = sin A sin b ,

cos B sin a = − cos A sin b cos c+ cos b sin c , (2.7)

cos a = cos A sin b sin c+ cos b cos c .

Equations for other sides and angles are obtained by
cyclic permutations of the sides a, b, c and the angles
A, B, C. For instance, the first equation also yields

sin C sin b = sin B sin c ,

sin A sin c = sin C sin a .

All these variations of the sine formula can be written
in an easily remembered form:

sin a

sin A
= sin b

sin B
= sin c

sin C
. (2.8)

If we take the limit, letting the sides a, b and c shrink
to zero, the spherical triangle becomes a plane trian-
gle. If all angles are expressed in radians, we have
approximately

sin a ≈ a , cos a ≈ 1− 1

2
a2 .

Substituting these approximations into the sine formula,
we get the familiar sine formula of plane geometry:

a

sin A
= b

sin B
= c

sin C
.

The second equation in (2.7) is the sine-cosine for-
mula, and the corresponding plane formula is a trivial
one:

c = b cos A +a cos B .

This is obtained by substituting the approximations of
sine and cosine into the sine-cosine formula and ignor-
ing all quadratic and higher-order terms. In the same
way we can use the third equation in (2.7), the cosine
formula, to derive the planar cosine formula:

a2 = b2 + c2 −2bc cos A .

2.2 The Earth

A position on the Earth is usually given by two spherical
coordinates (although in some calculations rectangular
or other coordinates may be more convenient). If neces-

sary, also a third coordinate, e. g. the distance from the
centre, can be used.

The reference plane is the equatorial plane, perpen-
dicular to the rotation axis and intersecting the surface of
the Earth along the equator. Small circles parallel to the
equator are called parallels of latitude. Semicircles from
pole to pole are meridians. The geographical longitude
is the angle between the meridian and the zero meridian
passing through Greenwich Observatory. We shall use
positive values for longitudes east of Greenwich and
negative values west of Greenwich. Sign convention,
however, varies, and negative longitudes are not used in
maps; so it is usually better to say explicitly whether the
longitude is east or west of Greenwich.

The latitude is usually supposed to mean the ge-
ographical latitude, which is the angle between the
plumb line and the equatorial plane. The latitude is
positive in the northern hemisphere and negative in
the southern one. The geographical latitude can be de-
termined by astronomical observations (Fig. 2.7): the
altitude of the celestial pole measured from the hori-

Fig. 2.7. The latitude φ is obtained by measuring the altitude
of the celestial pole. The celestial pole can be imagined as
a point at an infinite distance in the direction of the Earth’s
rotation axis
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zon equals the geographical latitude. (The celestial pole
is the intersection of the rotation axis of the Earth and
the infinitely distant celestial sphere; we shall return to
these concepts a little later.)

Because the Earth is rotating, it is slightly flattened.
The exact shape is rather complicated, but for most pur-
poses it can by approximated by an oblate spheroid,
the short axis of which coincides with the rotation
axis (Sect. 7.5). In 1979 the International Union of
Geodesy and Geophysics (IUGG) adopted the Geode-
tic Reference System 1980 (GRS-80), which is used
when global reference frames fixed to the Earth are de-
fined. The GRS-80 reference ellipsoid has the following
dimensions:

equatorial radius a = 6,378,137 m,

polar radius b = 6,356,752 m,

flattening f = (a −b)/a

= 1/298.25722210.

The shape defined by the surface of the oceans, called
the geoid, differs from this spheroid at most by about
100 m.

The angle between the equator and the normal to
the ellipsoid approximating the true Earth is called the
geodetic latitude. Because the surface of a liquid (like an
ocean) is perpendicular to the plumb line, the geodetic
and geographical latitudes are practically the same.

Because of the flattening, the plumb line does not
point to the centre of the Earth except at the poles and
on the equator. An angle corresponding to the ordinary
spherical coordinate (the angle between the equator and
the line from the centre to a point on the surface), the
geocentric latitude φ′ is therefore a little smaller than
the geographic latitude φ (Fig. 2.8).

We now derive an equation between the geographic
latitude φ and geocentric latitude φ′, assuming the Earth
is an oblate spheroid and the geographic and geodesic
latitudes are equal. The equation of the meridional
ellipse is

x2

a2
+ y2

b2
= 1 .

The direction of the normal to the ellipse at a point (x, y)
is given by

tanφ = −dx

dy
= a2

b2

y

x
.

Fig. 2.8. Due to the flattening of the Earth, the geographic
latitude φ and geocentric latitude φ′ are different

The geocentric latitude is obtained from

tanφ′ = y/x .

Hence

tanφ′ = b2

a2
tanφ = (1− e2) tanφ , (2.9)

where

e =
√

1−b2/a2

is the eccentricity of the ellipse. The difference ∆φ =
φ−φ′ has a maximum 11.5′ at the latitude 45◦.

Since the coordinates of celestial bodies in astro-
nomical almanacs are given with respect to the centre
of the Earth, the coordinates of nearby objects must be
corrected for the difference in the position of the ob-
server, if high accuracy is required. This means that
one has to calculate the topocentric coordinates, cen-
tered at the observer. The easiest way to do this is to use
rectangular coordinates of the object and the observer
(Example 2.5).

One arc minute along a meridian is called a nautical
mile. Since the radius of curvature varies with latitude,
the length of the nautical mile so defined would depend
on the latitude. Therefore one nautical mile has been
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defined to be equal to one minute of arc at φ = 45◦,
whence 1 nautical mile = 1852 m.

2.3 The Celestial Sphere

The ancient universe was confined within a finite spher-
ical shell. The stars were fixed to this shell and thus
were all equidistant from the Earth, which was at the
centre of the spherical universe. This simple model is
still in many ways as useful as it was in antiquity: it
helps us to easily understand the diurnal and annual
motions of stars, and, more important, to predict these
motions in a relatively simple way. Therefore we will
assume for the time being that all the stars are located
on the surface of an enormous sphere and that we are at
its centre. Because the radius of this celestial sphere is
practically infinite, we can neglect the effects due to the
changing position of the observer, caused by the rota-
tion and orbital motion of the Earth. These effects will
be considered later in Sects. 2.9 and 2.10.

Since the distances of the stars are ignored, we need
only two coordinates to specify their directions. Each
coordinate frame has some fixed reference plane passing
through the centre of the celestial sphere and dividing
the sphere into two hemispheres along a great circle.
One of the coordinates indicates the angular distance
from this reference plane. There is exactly one great
circle going through the object and intersecting this
plane perpendicularly; the second coordinate gives the
angle between that point of intersection and some fixed
direction.

2.4 The Horizontal System

The most natural coordinate frame from the observer’s
point of view is the horizontal frame (Fig. 2.9). Its ref-
erence plane is the tangent plane of the Earth passing
through the observer; this horizontal plane intersects
the celestial sphere along the horizon. The point just
above the observer is called the zenith and the antipodal
point below the observer is the nadir. (These two points
are the poles corresponding to the horizon.) Great cir-
cles through the zenith are called verticals. All verticals
intersect the horizon perpendicularly.

By observing the motion of a star over the course of
a night, an observer finds out that it follows a track
like one of those in Fig. 2.9. Stars rise in the east,
reach their highest point, or culminate, on the verti-
cal NZS, and set in the west. The vertical NZS is called
the meridian. North and south directions are defined as
the intersections of the meridian and the horizon.

One of the horizontal coordinates is the altitude or
elevation, a, which is measured from the horizon along
the vertical passing through the object. The altitude lies
in the range [−90◦,+90◦]; it is positive for objects
above the horizon and negative for the objects below
the horizon. The zenith distance, or the angle between

Fig. 2.9. (a) The apparent motions of stars during a night as
seen from latitude φ = 45◦. (b) The same stars seen from
latitude φ = 10◦
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the object and the zenith, is obviously

z = 90◦ −a . (2.10)

The second coordinate is the azimuth, A; it is the an-
gular distance of the vertical of the object from some
fixed direction. Unfortunately, in different contexts, dif-
ferent fixed directions are used; thus it is always advis-
able to check which definition is employed. The azimuth
is usually measured from the north or south, and though
clockwise is the preferred direction, counterclockwise
measurements are also occasionally made. In this book
we have adopted a fairly common astronomical conven-
tion, measuring the azimuth clockwise from the south.
Its values are usually normalized between 0◦ and 360◦.

In Fig. 2.9a we can see the altitude and azimuth of
a star B at some instant. As the star moves along its
daily track, both of its coordinates will change. Another
difficulty with this coordinate frame is its local charac-
ter. In Fig. 2.9b we have the same stars, but the observer
is now further south. We can see that the coordinates of
the same star at the same moment are different for dif-
ferent observers. Since the horizontal coordinates are
time and position dependent, they cannot be used, for
instance, in star catalogues.

2.5 The Equatorial System

The direction of the rotation axis of the Earth remains
almost constant and so does the equatorial plane per-
pendicular to this axis. Therefore the equatorial plane
is a suitable reference plane for a coordinate frame that
has to be independent of time and the position of the
observer.

The intersection of the celestial sphere and the equa-
torial plane is a great circle, which is called the equator
of the celestial sphere. The north pole of the celestial
sphere is one of the poles corresponding to this great
circle. It is also the point in the northern sky where the
extension of the Earth’s rotational axis meets the celes-
tial sphere. The celestial north pole is at a distance of
about one degree (which is equivalent to two full moons)
from the moderately bright star Polaris. The meridian
always passes through the north pole; it is divided by
the pole into north and south meridians.

Fig. 2.10. At night, stars seem to revolve around the celestial
pole. The altitude of the pole from the horizon equals the
latitude of the observer. (Photo Pekka Parviainen)

The angular separation of a star from the equatorial
plane is not affected by the rotation of the Earth. This
angle is called the declination δ.

Stars seem to revolve around the pole once every
day (Fig. 2.10). To define the second coordinate, we
must again agree on a fixed direction, unaffected by the
Earth’s rotation. From a mathematical point of view, it
does not matter which point on the equator is selected.
However, for later purposes, it is more appropriate to
employ a certain point with some valuable properties,
which will be explained in the next section. This point
is called the vernal equinox. Because it used to be in the
constellation Aries (the Ram), it is also called the first
point of Aries ant denoted by the sign of Aries, �. Now
we can define the second coordinate as the angle from
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the vernal equinox measured along the equator. This
angle is the right ascension α (or R.A.) of the object,
measured counterclockwise from �.

Since declination and right ascension are indepen-
dent of the position of the observer and the motions of
the Earth, they can be used in star maps and catalogues.
As will be explained later, in many telescopes one of the
axes (the hour axis) is parallel to the rotation axis of the
Earth. The other axis (declination axis) is perpendicular
to the hour axis. Declinations can be read immediately
on the declination dial of the telescope. But the zero
point of the right ascension seems to move in the sky,
due to the diurnal rotation of the Earth. So we cannot
use the right ascension to find an object unless we know
the direction of the vernal equinox.

Since the south meridian is a well-defined line in
the sky, we use it to establish a local coordinate cor-
responding to the right ascension. The hour angle is
measured clockwise from the meridian. The hour angle
of an object is not a constant, but grows at a steady rate,
due to the Earth’s rotation. The hour angle of the ver-
nal equinox is called the sidereal time Θ. Figure 2.11
shows that for any object,

Θ = h +α , (2.11)

where h is the object’s hour angle and α its right
ascension.

Fig. 2.11. The sidereal time Θ (the hour angle of the vernal
equinox) equals the hour angle plus right ascension of any
object

Since hour angle and sidereal time change with time
at a constant rate, it is practical to express them in
units of time. Also the closely related right ascen-
sion is customarily given in time units. Thus 24 hours
equals 360 degrees, 1 hour = 15 degrees, 1 minute of
time = 15 minutes of arc, and so on. All these quantities
are in the range [0 h, 24 h).

In practice, the sidereal time can be readily de-
termined by pointing the telescope to an easily
recognisable star and reading its hour angle on the hour
angle dial of the telescope. The right ascension found
in a catalogue is then added to the hour angle, giving
the sidereal time at the moment of observation. For any
other time, the sidereal time can be evaluated by adding
the time elapsed since the observation. If we want to
be accurate, we have to use a sidereal clock to measure
time intervals. A sidereal clock runs 3 min 56.56 s fast
a day as compared with an ordinary solar time clock:

24 h solar time

= 24 h 3 min 56.56 s sidereal time .
(2.12)

The reason for this is the orbital motion of the Earth:
stars seem to move faster than the Sun across the sky;
hence, a sidereal clock must run faster. (This is further
discussed in Sect. 2.13.)

Transformations between the horizontal and equa-
torial frames are easily obtained from spherical

Fig. 2.12. The nautical triangle for deriving transformations
between the horizontal and equatorial frames
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trigonometry. Comparing Figs. 2.6 and 2.12, we find
that we must make the following substitutions into (2.5):

ψ = 90◦ − A , θ = a ,

ψ ′ = 90◦ −h , θ ′ = δ , χ = 90◦ −φ . (2.13)

The angle φ in the last equation is the altitude of the
celestial pole, or the latitude of the observer. Making
the substitutions, we get

sin h cos δ= sin A cos a ,

cos h cos δ= cos A cos a sinφ+ sin a cosφ , (2.14)

sin δ= − cos A cos a cosφ+ sin a sinφ .

The inverse transformation is obtained by substitut-
ing

ψ = 90◦ −h , θ = δ , (2.15)

ψ ′ = 90◦ − A , θ ′ = a , χ = −(90◦ −φ) ,
whence

sin A cos a = sin h cos δ ,

cos A cos a = cos h cos δ sinφ− sin δ cosφ , (2.16)

sin a = cos h cos δ cosφ+ sin δ sinφ .

Since the altitude and declination are in the range
[−90◦,+90◦], it suffices to know the sine of one of
these angles to determine the other angle unambigu-
ously. Azimuth and right ascension, however, can have
any value from 0◦ to 360◦ (or from 0 h to 24 h), and
to solve for them, we have to know both the sine and
cosine to choose the correct quadrant.

The altitude of an object is greatest when it is on
the south meridian (the great circle arc between the
celestial poles containing the zenith). At that moment
(called upper culmination, or transit) its hour angle is
0 h. At the lower culmination the hour angle is h = 12 h.
When h = 0 h, we get from the last equation in (2.16)

sin a = cos δ cosφ+ sin δ sinφ

= cos(φ− δ)= sin(90◦ −φ+ δ) .
Thus the altitude at the upper culmination is

amax =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

90◦ −φ+ δ , if the object culminates
south of zenith ,

90◦ +φ− δ , if the object culminates
north of zenith .

(2.17)

Fig. 2.13. The altitude of a circumpolar star at upper and lower
culmination

The altitude is positive for objects with δ > φ−90◦.
Objects with declinations less than φ−90◦ can never be
seen at the latitude φ. On the other hand, when h = 12 h
we have

sin a = − cos δ cosφ+ sin δ sinφ

= − cos(δ+φ)= sin(δ+φ−90◦) ,

and the altitude at the lower culmination is

amin = δ+φ−90◦ . (2.18)

Stars with δ > 90◦ −φ will never set. For example, in
Helsinki (φ ≈ 60◦), all stars with a declination higher
than 30◦ are such circumpolar stars. And stars with
a declination less than −30◦ can never be observed
there.

We shall now study briefly how the (α, δ) frame can
be established by observations. Suppose we observe
a circumpolar star at its upper and lower culmination
(Fig. 2.13). At the upper transit, its altitude is amax =
90◦ −φ+ δ and at the lower transit, amin = δ+φ−90◦.
Eliminating the latitude, we get

δ= 1

2
(amin +amax) . (2.19)

Thus we get the same value for the declination, inde-
pendent of the observer’s location. Therefore we can
use it as one of the absolute coordinates. From the same
observations, we can also determine the direction of the
celestial pole as well as the latitude of the observer. Af-
ter these preparations, we can find the declination of
any object by measuring its distance from the pole.

The equator can be now defined as the great circle
all of whose points are at a distance of 90◦ from the
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pole. The zero point of the second coordinate (right
ascension) can then be defined as the point where the
Sun seems to cross the equator from south to north.

In practice the situation is more complicated, since
the direction of Earth’s rotation axis changes due to per-
turbations. Therefore the equatorial coordinate frame is
nowadays defined using certain standard objects the po-
sitions of which are known very accurately. The best
accuracy is achieved by using the most distant objects,
quasars (Sect. 18.7), which remain in the same direction
over very long intervals of time.

2.6 Rising and Setting Times

From the last equation (2.16), we find the hour angle h
of an object at the moment its altitude is a:

cos h = − tan δ tanφ+ sin a

cos δ cosφ
. (2.20)

This equation can be used for computing rising and
setting times. Then a = 0 and the hour angles cor-
responding to rising and setting times are obtained
from

cos h = − tan δ tanφ . (2.21)

If the right ascension α is known, we can use (2.11)
to compute the sidereal time Θ. (Later, in Sect. 2.14,
we shall study how to transform the sidereal time to
ordinary time.)

If higher accuracy is needed, we have to correct for
the refraction of light caused by the atmosphere of the
Earth (see Sect. 2.9). In that case, we must use a small
negative value for a in (2.20). This value, the horizontal
refraction, is about −34′.

The rising and setting times of the Sun given in al-
manacs refer to the time when the upper edge of the
Solar disk just touches the horizon. To compute these
times, we must set a = −50′ (= −34′−16′).

Also for the Moon almanacs give rising and setting
times of the upper edge of the disk. Since the distance
of the Moon varies considerably, we cannot use any
constant value for the radius of the Moon, but it has to
be calculated separately each time. The Moon is also so
close that its direction with respect to the background
stars varies due to the rotation of the Earth. Thus the
rising and setting times of the Moon are defined as the

instants when the altitude of the Moon is −34′ − s +π,
where s is the apparent radius (15.5′ on the average) and
π the parallax (57′ on the average). The latter quantity
is explained in Sect. 2.9.

Finding the rising and setting times of the Sun, plan-
ets and especially the Moon is complicated by their
motion with respect to the stars. We can use, for exam-
ple, the coordinates for the noon to calculate estimates
for the rising and setting times, which can then be used to
interpolate more accurate coordinates for the rising and
setting times. When these coordinates are used to com-
pute new times a pretty good accuracy can be obtained.
The iteration can be repeated if even higher precision is
required.

2.7 The Ecliptic System

The orbital plane of the Earth, the ecliptic, is the refer-
ence plane of another important coordinate frame. The
ecliptic can also be defined as the great circle on the
celestial sphere described by the Sun in the course of
one year. This frame is used mainly for planets and other
bodies of the solar system. The orientation of the Earth’s
equatorial plane remains invariant, unaffected by an-
nual motion. In spring, the Sun appears to move from
the southern hemisphere to the northern one (Fig. 2.14).
The time of this remarkable event as well as the direc-
tion to the Sun at that moment are called the vernal
equinox. At the vernal equinox, the Sun’s right ascen-
sion and declination are zero. The equatorial and ecliptic

Fig. 2.14. The ecliptic geocentric (λ, β) and heliocentric
(λ′, β′) coordinates are equal only if the object is very far
away. The geocentric coordinates depend also on the Earth’s
position in its orbit
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planes intersect along a straight line directed towards the
vernal equinox. Thus we can use this direction as the
zero point for both the equatorial and ecliptic coordi-
nate frames. The point opposite the vernal equinox is
the autumnal equinox, it is the point at which the Sun
crosses the equator from north to south.

The ecliptic latitude β is the angular distance from
the ecliptic; it is in the range [−90◦,+90◦]. The
other coordinate is the ecliptic longitude λ, measured
counterclockwise from the vernal equinox.

Transformation equations between the equatorial and
ecliptic frames can be derived analogously to (2.14) and
(2.16):

sin λ cosβ = sin δ sin ε+ cos δ cos ε sinα ,

cos λ cosβ = cos δ cosα , (2.22)

sinβ = sin δ cos ε− cos δ sin ε sinα ,

sinα cos δ= − sinβ sin ε+ cosβ cos ε sin λ ,

cosα cos δ= cos λ cosβ , (2.23)

sin δ= sinβ cos ε+ cosβ sin ε sin λ .

The angle ε appearing in these equations is the obliq-
uity of the ecliptic, or the angle between the equatorial
and ecliptic planes. Its value is roughly 23◦26′ (a more
accurate value is given in *Reduction of Coordinates,
p. 38).

Depending on the problem to be solved, we may
encounter heliocentric (origin at the Sun), geocentric
(origin at the centre of the Earth) or topocentric (origin
at the observer) coordinates. For very distant objects the
differences are negligible, but not for bodies of the solar
system. To transform heliocentric coordinates to geo-
centric coordinates or vice versa, we must also know the
distance of the object. This transformation is most easily
accomplished by computing the rectangular coordinates
of the object and the new origin, then changing the ori-
gin and finally evaluating the new latitude and longitude
from the rectangular coordinates (see Examples 2.4 and
2.5).

2.8 The Galactic Coordinates

For studies of the Milky Way Galaxy, the most nat-
ural reference plane is the plane of the Milky Way
(Fig. 2.15). Since the Sun lies very close to that plane,

Fig. 2.15. The galactic coordinates l and b

we can put the origin at the Sun. The galactic longitude l
is measured counterclockwise (like right ascension)
from the direction of the centre of the Milky Way
(in Sagittarius, α = 17 h 45.7 min, δ = −29◦00′). The
galactic latitude b is measured from the galactic plane,
positive northwards and negative southwards. This def-
inition was officially adopted only in 1959, when the
direction of the galactic centre was determined from
radio observations accurately enough. The old galactic
coordinates lI and bI had the intersection of the equator
and the galactic plane as their zero point.

The galactic coordinates can be obtained from the
equatorial ones with the transformation equations

sin(lN − l) cos b = cos δ sin(α−αP) ,

cos(lN − l) cos b = − cos δ sin δP cos(α−αP)

+ sin δ cos δP ,

sin b = cos δ cos δP cos(α−αP)

+ sin δ sin δP ,

(2.24)

where the direction of the Galactic north pole is αP =
12 h 51.4 min, δP = 27◦08′, and the galactic longitude
of the celestial pole, lN = 123.0◦.

2.9 Perturbations of Coordinates

Even if a star remains fixed with respect to the Sun,
its coordinates can change, due to several disturbing
effects. Naturally its altitude and azimuth change con-
stantly because of the rotation of the Earth, but even its
right ascension and declination are not quite free from
perturbations.

Precession. Since most of the members of the solar
system orbit close to the ecliptic, they tend to pull the
equatorial bulge of the Earth towards it. Most of this
“flattening” torque is caused by the Moon and the Sun.
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Fig. 2.16. Due to preces-
sion the rotation axis of
the Earth turns around the
ecliptic north pole. Nuta-
tion is the small wobble
disturbing the smooth
precessional motion. In
this figure the magnitude
of the nutation is highly
exaggerated

But the Earth is rotating and therefore the torque can-
not change the inclination of the equator relative to the
ecliptic. Instead, the rotation axis turns in a direction
perpendicular to the axis and the torque, thus describing
a cone once in roughly 26,000 years. This slow turning
of the rotation axis is called precession (Fig. 2.16). Be-
cause of precession, the vernal equinox moves along the
ecliptic clockwise about 50 seconds of arc every year,
thus increasing the ecliptic longitudes of all objects at
the same rate. At present the rotation axis points about
one degree away from Polaris, but after 12,000 years,
the celestial pole will be roughly in the direction of
Vega. The changing ecliptic longitudes also affect the
right ascension and declination. Thus we have to know
the instant of time, or epoch, for which the coordinates
are given.

Currently most maps and catalogues use the epoch
J2000.0, which means the beginning of the year 2000,
or, to be exact, the noon of January 1, 2000, or the Julian
date 2,451,545.0 (see Sect. 2.15).

Let us now derive expressions for the changes in
right ascension and declination. Taking the last trans-
formation equation in (2.23),

sin δ= cos ε sinβ+ sin ε cosβ sinλ ,

and differentiating, we get

cos δ dδ= sin ε cosβ cos λ dλ .

Applying the second equation in (2.22) to the right-hand
side, we have, for the change in declination,

dδ= dλ sin ε cosα . (2.25)

By differentiating the equation

cosα cos δ= cosβ cos λ ,

we get

− sinα cos δ dα− cosα sin δ dδ= − cosβ sin λ dλ ;
and, by substituting the previously obtained expression
for dδ and applying the first equation (2.22), we have

sinα cos δ dα= dλ(cosβ sin λ− sin ε cos2 α sin δ)

= dλ(sin δ sin ε+ cos δ cos ε sinα

− sin ε cos2 α sin δ) .

Simplifying this, we get

dα= dλ(sinα sin ε tan δ+ cos ε) . (2.26)

If dλ is the annual increment of the ecliptic longitude
(about 50′′), the precessional changes in right ascension
and declination in one year are thus

dδ= dλ sin ε cosα ,

dα= dλ(sin ε sinα tan δ+ cos ε) .
(2.27)

These expressions are usually written in the form

dδ= n cosα ,

dα= m +n sinα tan δ ,
(2.28)

where

m = dλ cos ε ,

n = dλ sin ε
(2.29)

are the precession constants. Since the obliquity of the
ecliptic is not exactly a constant but changes with time,
m and n also vary slowly with time. However, this vari-
ation is so slow that usually we can regard m and n
as constants unless the time interval is very long. The
values of these constants for some epochs are given in

Table 2.1. Precession constants m and n. Here, “a” means
a tropical year

Epoch m n

1800 3.07048 s/a 1.33703 s/a = 20.0554′′/a
1850 3.07141 1.33674 20.0511
1900 3.07234 1.33646 20.0468
1950 3.07327 1.33617 20.0426
2000 3.07419 1.33589 20.0383
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Fig. 2.17. The horizontal
parallax π of an object is
the angle subtended by the
Earth’s equatorial radius as
seen from the object

Table 2.1. For intervals longer than a few decades a more
rigorous method should be used. Its derivation exceeds
the level of this book, but the necessary formulas are
given in *Reduction of Coordinates (p. 38).

Nutation. The Moon’s orbit is inclined with respect to
the ecliptic, resulting in precession of its orbital plane.
One revolution takes 18.6 years, producing perturba-
tions with the same period in the precession of the Earth.
This effect, nutation, changes ecliptic longitudes as well
as the obliquity of the ecliptic (Fig. 2.16). Calculations
are now much more complicated, but fortunately nuta-
tional perturbations are relatively small, only fractions
of an arc minute.

Parallax. If we observe an object from different points,
we see it in different directions. The difference of the
observed directions is called the parallax. Since the
amount of parallax depends on the distance of the ob-
server from the object, we can utilize the parallax to
measure distances. Human stereoscopic vision is based
(at least to some extent) on this effect. For astronom-
ical purposes we need much longer baselines than the
distance between our eyes (about 7 cm). Appropriately
large and convenient baselines are the radius of the Earth
and the radius of its orbit.

Distances to the nearest stars can be determined from
the annual parallax, which is the angle subtended by
the radius of the Earth’s orbit (called the astronomical
unit, AU) as seen from the star. (We shall discuss this
further in Sect. 2.10.)

By diurnal parallax we mean the change of direc-
tion due to the daily rotation of the Earth. In addition to
the distance of the object, the diurnal parallax also de-
pends on the latitude of the observer. If we talk about
the parallax of a body in our solar system, we always
mean the angle subtended by the Earth’s equatorial ra-
dius (6378 km) as seen from the object (Fig. 2.17). This
equals the apparent shift of the object with respect to

the background stars seen by an observer at the equa-
tor if (s)he observes the object moving from the horizon
to the zenith. The parallax of the Moon, for example, is
about 57′, and that of the Sun 8.79′′.

In astronomy parallax may also refer to distance in
general, even if it is not measured using the shift in the
observed direction.

Aberration. Because of the finite speed of light, an
observer in motion sees an object shifted in the direction
of her/his motion (Figs. 2.18 and 2.19). This change
of apparent direction is called aberration. To derive

Fig. 2.18a,b. The effect of aberration on the apparent direction
of an object. (a) Observer at rest. (b) Observer in motion
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Fig. 2.19. A telescope is pointed in the true direction of a star.
It takes a time t = l/c for the light to travel the length of the
telescope. The telescope is moving with velocity v, which has
a component v sin θ, perpendicular to the direction of the light
beam. The beam will hit the bottom of the telescope displaced
from the optical axis by a distance x = tv sin θ = l(v/c) sin θ.
Thus the change of direction in radians is a = x/l = (v/c) sin θ

the exact value we have to use the special theory of
relativity, but for practical purposes it suffices to use the
approximate value

a = v

c
sin θ , [a] = rad , (2.30)

where v is the velocity of the observer, c is the speed
of light and θ is the angle between the true direction
of the object and the velocity vector of the observer.
The greatest possible value of the aberration due to the
orbital motion of the Earth, v/c, called the aberration
constant, is 21′′. The maximal shift due to the Earth’s ro-
tation, the diurnal aberration constant, is much smaller,
about 0.3′′.

Refraction. Since light is refracted by the atmosphere,
the direction of an object differs from the true direction
by an amount depending on the atmospheric conditions
along the line of sight. Since this refraction varies with
atmospheric pressure and temperature, it is very diffi-
cult to predict it accurately. However, an approximation
good enough for most practical purposes is easily de-
rived. If the object is not too far from the zenith, the
atmosphere between the object and the observer can be
approximated by a stack of parallel planar layers, each
of which has a certain index of refraction ni (Fig. 2.20).
Outside the atmosphere, we have n = 1.

Fig. 2.20. Refraction of a light ray travelling through the
atmosphere

Let the true zenith distance be z and the apparent
one, ζ . Using the notations of Fig. 2.20, we obtain the
following equations for the boundaries of the successive
layers:

sin z = nk sin zk ,
...

n2 sin z2 = n1 sin z1 ,

n1 sin z1 = n0 sin ζ ,

or

sin z = n0 sin ζ . (2.31)

When the refraction angle R = z − ζ is small and is
expressed in radians, we have

n0 sin ζ = sin z = sin(R + ζ)
= sin R cos ζ + cos R sin ζ

≈ R cos ζ + sin ζ .

Thus we get

R = (n0 −1) tan ζ , [R] = rad . (2.32)

The index of refraction depends on the density of
the air, which further depends on the pressure and tem-
perature. When the altitude is over 15◦, we can use an
approximate formula

R = P

273+ T
0.00452◦ tan(90◦ −a) , (2.33)
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where a is the altitude in degrees, T temperature in
degrees Celsius, and P the atmospheric pressure in
hectopascals (or, equivalently, in millibars). At lower
altitudes the curvature of the atmosphere must be taken
into account. An approximate formula for the refraction
is then

R = P

273+ T

0.1594+0.0196a +0.00002a2

1+0.505a +0.0845a2
.

(2.34)

These formulas are widely used, although they are
against the rules of dimensional analysis. To get cor-
rect values, all quantities must be expressed in correct
units. Figure 2.21 shows the refraction under different
conditions evaluated from these formulas.

Altitude is always (except very close to zenith) in-
creased by refraction. On the horizon the change is about
34′, which is slightly more than the diameter of the Sun.
When the lower limb of the Sun just touches the horizon,
the Sun has in reality already set.

Light coming from the zenith is not refracted at all if
the boundaries between the layers are horizontal. Under
some climatic conditions, a boundary (e.g. between cold
and warm layers) can be slanted, and in this case, there
can be a small zenith refraction, which is of the order
of a few arc seconds.

Stellar positions given in star catalogues are mean
places, from which the effects of parallax, aberration
and nutation have been removed. The mean place of
the date (i. e. at the observing time) is obtained by cor-

Fig. 2.21. Refraction at different altitudes. The refraction an-
gle R tells how much higher the object seems to be compared
with its true altitude a. Refraction depends on the density and
thus on the pressure and temperature of the air. The upper
curves give the refraction at sea level during rather extreme
weather conditions. At the altitude of 2.5 kilometers the aver-
age pressure is only 700 hPa, and thus the effect of refraction
smaller (lowest curve)

recting the mean place for the proper motion of the
star (Sect. 2.10) and precession. The apparent place is
obtained by correcting this place further for nutation,
parallax and aberration. There is a catalogue published
annually that gives the apparent places of certain refer-
ences stars at intervals of a few days. These positions
have been corrected for precession, nutation, parallax
and annual aberration. The effects of diurnal aberration
and refraction are not included because they depend on
the location of the observer.

2.10 Positional Astronomy

The position of a star can be measured either with
respect to some reference stars (relative astrometry)
or with respect to a fixed coordinate frame (absolute
astrometry).

Fig. 2.22. Astronomers discussing observations with the
transit circle of Helsinki Observatory in 1904
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Absolute coordinates are usually determined using
a meridian circle, which is a telescope that can be turned
only in the meridional plane (Fig. 2.22). It has only one
axis, which is aligned exactly in the east-west direction.
Since all stars cross the meridian in the course of a day,
they all come to the field of the meridian circle at some
time or other. When a star culminates, its altitude and the
time of the transit are recorded. If the time is determined
with a sidereal clock, the sidereal time immediately
gives the right ascension of the star, since the hour angle
is h = 0 h. The other coordinate, the declination δ, is
obtained from the altitude:

δ= a − (90◦ −φ) ,
where a is the observed altitude and φ is the geographic
latitude of the observatory.

Relative coordinates are measured on photographic
plates (Fig. 2.23) or CCD images containing some
known reference stars. The scale of the plate as well
as the orientation of the coordinate frame can be de-
termined from the reference stars. After this has been
done, the right ascension and declination of any object
in the image can be calculated if its coordinates in the
image are measured.

All stars in a small field are almost equally affected
by the dominant perturbations, precession, nutation, and
aberration. The much smaller effect of parallax, on the
other hand, changes the relative positions of the stars.

The shift in the direction of a star with respect to dis-
tant background stars due to the annual motion of the
Earth is called the trigonometric parallax of the star.
It gives the distance of the star: the smaller the paral-
lax, the farther away the star is. Trigonometric parallax
is, in fact, the only direct method we currently have of
measuring distances to stars. Later we shall be intro-
duced to some other, indirect methods, which require

Fig. 2.23.� (a) A plate photographed for the Carte du Ciel
project in Helsinki on November 21, 1902. The centre of the
field is at α= 18 h 40 min, δ= 46◦, and the area is 2◦ ×2◦.
Distance between coordinate lines (exposed separately on the
plate) is 5 minutes of arc. (b) The framed region on the same
plate. (c) The same area on a plate taken on November 7,
1948. The bright star in the lower right corner (SAO 47747)
has moved about 12 seconds of arc. The brighter, slightly
drop-shaped star to the left is a binary star (SAO 47767); the
separation between its components is 8′′

Fig. 2.24. The trigonometric parallax π of a star S is the an-
gle subtended by the radius of the orbit of the Earth, or one
astronomical unit, as seen from the star

certain assumptions on the motions or structure of stars.
The same method of triangulation is employed to mea-
sure distances of earthly objects. To measure distances
to stars, we have to use the longest baseline available,
the diameter of the orbit of the Earth.

During the course of one year, a star will appear
to describe a circle if it is at the pole of the ecliptic,
a segment of line if it is in the ecliptic, or an ellipse
otherwise. The semimajor axis of this ellipse is called
the parallax of the star. It is usually denoted by π. It
equals the angle subtended by the radius of the Earth’s
orbit as seen from the star (Fig. 2.24).

The unit of distance used in astronomy is parsec
(pc). At a distance of one parsec, one astronomical
unit subtends an angle of one arc second. Since one
radian is about 206,265′′, 1 pc equals 206,265 AU.
Furthermore, because 1 AU = 1.496×1011 m, 1 pc ≈
3.086×1016 m. If the parallax is given in arc seconds,
the distance is simply

r = 1/π , [r] = pc , [π] = ′′ . (2.35)

In popular astronomical texts, distances are usually
given in light-years, one light-year being the distance
light travels in one year, or 9.5×1015 m. Thus one
parsec is about 3.26 light-years.

The first parallax measurement was accomplished
by Friedrich Wilhelm Bessel (1784–1846) in 1838. He
found the parallax of 61 Cygni to be 0.3′′. The nearest
star Proxima Centauri has a parallax of 0.762′′ and thus
a distance of 1.31 pc.
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Fig. 2.25a–c. Proper motions of stars slowly change the ap-
pearance of constellations. (a) The Big Dipper during the last

ice age 30,000 years ago, (b) nowadays, and (c) after 30,000
years

In addition to the motion due to the annual parallax,
many stars seem to move slowly in a direction that does
not change with time. This effect is caused by the rela-
tive motion of the Sun and the stars through space; it is
called the proper motion. The appearance of the sky and
the shapes of the constellations are constantly, although
extremely slowly, changed by the proper motions of the
stars (Fig. 2.25).

The velocity of a star with respect to the Sun can be
divided into two components (Fig. 2.26), one of which
is directed along the line of sight (the radial component
or the radial velocity), and the other perpendicular to it
(the tangential component). The tangential velocity re-
sults in the proper motion, which can be measured by
taking plates at intervals of several years or decades.
The proper motion µ has two components, one giving
the change in declination µδ and the other, in right as-
cension,µα cos δ. The coefficient cos δ is used to correct
the scale of right ascension: hour circles (the great cir-
cles with α= constant) approach each other towards the
poles, so the coordinate difference must be multiplied
by cos δ to obtain the true angular separation. The total

Fig. 2.26. The radial and tangential components, vr and vt of
the velocity v of a star. The latter component is observed as
proper motion

proper motion is

µ=
√
µ2
α cos2 δ+µ2

δ . (2.36)

The greatest known proper motion belongs to Barnard’s
Star, which moves across the sky at the enormous speed
of 10.3 arc seconds per year. It needs less than 200 years
to travel the diameter of a full moon.

In order to measure proper motions, we must ob-
serve stars for decades. The radial component, on the
other hand, is readily obtained from a single observa-
tion, thanks to the Doppler effect. By the Doppler effect
we mean the change in frequency and wavelength of ra-
diation due to the radial velocity of the radiation source.
The same effect can be observed, for example, in the
sound of an ambulance, the pitch being higher when the
ambulance is approaching and lower when it is receding.

The formula for the Doppler effect for small ve-
locities can be derived as in Fig. 2.27. The source of
radiation transmits electromagnetic waves, the period of
one cycle being T . In time T , the radiation approaches
the observer by a distance s = cT , where c is the speed
of propagation. During the same time, the source moves
with respect to the observer a distance s′ = vT , where
v is the speed of the source, positive for a receding
source and negative for an approaching one. We find
that the length of one cycle, the wavelength λ, equals

λ= s + s′ = cT +vT .

Fig. 2.27. The wavelength of radiation increases if the source
is receding
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If the source were at rest, the wavelength of its radiation
would be λ0 = cT . The motion of the source changes
the wavelength by an amount

∆λ= λ−λ0 = cT +vT − cT = vT ,

and the relative change ∆λ of the wavelength is
∆λ

λ0
= v

c
. (2.37)

This is valid only when v� c. For very high velocities,
we must use the relativistic formula

∆λ

λ0
=
√

1+v/c
1−v/c −1 . (2.38)

In astronomy the Doppler effect can be seen in stellar
spectra, in which the spectral lines are often displaced
towards the blue (shorter wavelengths) or red (longer
wavelengths) end of the spectrum. A blueshift means
that the star is approaching, while a redshift indicates
that it is receding.

The displacements due to the Doppler effect are
usually very small. In order to measure them, a ref-
erence spectrum is exposed on the plate next to the
stellar spectrum. Now that CCD-cameras have replaced
photographic plates, separate calibration exposures of
reference spectra are taken to determine the wavelength
scale. The lines in the reference spectrum are produced
by a light source at rest in the laboratory. If the reference
spectrum contains some lines found also in the stellar
spectrum, the displacements can be measured.

Displacements of spectral lines give the radial ve-
locity vr of the star, and the proper motion µ can be
measured from photographic plates or CCD images. To
find the tangential velocity vt, we have to know the dis-
tance r, obtainable from e.g. parallax measurements.
Tangential velocity and proper motion are related by

vt = µr . (2.39)

If µ is given in arc seconds per year and r in parsecs
we have to make the following unit transformations to
get vt in km/s:

1 rad = 206,265′′ , 1 year = 3.156×107 s ,

1 pc = 3.086×1013 km .

Hence
vt = 4.74µr , [vt] = km/s ,

[µ] = ′′/a , [r] = pc .
(2.40)

The total velocity v of the star is then

v=
√
v2

r +v2
t . (2.41)

2.11 Constellations

At any one time, about 1000–1500 stars can be seen in
the sky (above the horizon). Under ideal conditions, the
number of stars visible to the naked eye can be as high as
3000 on a hemisphere, or 6000 altogether. Some stars
seem to form figures vaguely resembling something;
they have been ascribed to various mythological and
other animals. This grouping of stars into constellations
is a product of human imagination without any physical
basis. Different cultures have different constellations,
depending on their mythology, history and environment.

About half of the shapes and names of the constella-
tions we are familiar with date back to Mediterranean
antiquity. But the names and boundaries were far from
unambiguous as late as the 19th century. Therefore
the International Astronomical Union (IAU) confirmed
fixed boundaries at its 1928 meeting.

The official boundaries of the constellations were es-
tablished along lines of constant right ascension and
declination for the epoch 1875. During the time elapsed
since then, precession has noticeably turned the equato-
rial frame. However, the boundaries remain fixed with
respect to the stars. So a star belonging to a constella-
tion will belong to it forever (unless it is moved across
the boundary by its proper motion).

The names of the 88 constellations confirmed by the
IAU are given in Table C.21 at the end of the book.
The table also gives the abbreviation of the Latin name,
its genitive (needed for names of stars) and the English
name.

In his star atlas Uranometria (1603) Johannes Bayer
started the current practice to denote the brightest stars
of each constellation by Greek letters. The brightest
star is usually α (alpha), e. g. Deneb in the constella-
tion Cygnus is αCygni, which is abbreviated as αCyg.
The second brightest star is β (beta), the next one γ
(gamma) and so on. There are, however, several ex-
ceptions to this rule; for example, the stars of the Big
Dipper are named in the order they appear in the con-
stellation. After the Greek alphabet has been exhausted,
Latin letters can be employed. Another method is to use
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numbers, which are assigned in the order of increasing
right ascension; e. g. 30 Tau is a bright binary star in
the constellation Taurus. Moreover, variable stars have
their special identifiers (Sect. 13.1). About two hundred
bright stars have a proper name; e.g. the bright αAur is
called also Capella.

As telescopes evolved, more and more stars were
seen and catalogued. It soon became impractical to con-
tinue this method of naming. Thus most of the stars are
known only by their catalogue index numbers. One star
may have many different numbers; e. g. the abovemen-
tioned Capella (αAur) is number BD+45◦ 1077 in the
Bonner Durchmusterung and HD 34029 in the Henry
Draper catalogue.

2.12 Star Catalogues and Maps

The first actual star catalogue was published by Ptolemy
in the second century; this catalogue appeared in the
book to be known later as Almagest (which is a Latin
corruption of the name of the Arabic translation, Al-
mijisti). It had 1025 entries; the positions of these bright
stars had been measured by Hipparchos 250 years ear-
lier. Ptolemy’s catalogue was the only widely used one
prior to the 17th century.

The first catalogues still being used by astronomers
were prepared under the direction of Friedrich Wilhelm
August Argelander (1799–1875). Argelander worked in
Turku and later served as professor of astronomy in
Helsinki, but he made his major contributions in Bonn.
Using a 72 mm telescope, he and his assistants measured
the positions and estimated the magnitudes of 320,000
stars. The catalogue, Bonner Durchmusterung, contains
nearly all stars brighter than magnitude 9.5 between the
north pole and declination −2◦. (Magnitudes are further
discussed in Chap. 4.) Argelander’s work was later used
as a model for two other large catalogues covering the
whole sky. The total number of stars in these catalogues
is close to one million.

The purpose of these Durchmusterungen or general
catalogues was to systematically list a great number of
stars. In the zone catalogues, the main goal is to give
the positions of stars as exactly as possible. A typical
zone catalogue is the German Katalog der Astronomi-
schen Gesellschaft (AGK). Twelve observatories, each
measuring a certain region in the sky, contributed to

this catalogue. The work was begun in the 1870’s and
completed at the turn of the century.

General and zone catalogues were based on visual
observations with a telescope. The evolution of photog-
raphy made this kind of work unnecessary at the end
of the 19th century. Photographic plates could be stored
for future purposes, and measuring the positions of stars
became easier and faster, making it possible to measure
many more stars.

A great international program was started at the
end of the 19th century in order to photograph the
entire sky. Eighteen observatories participated in this
Carte du Ciel project, all using similar instruments
and plates. The positions of stars were first measured
with respect to a rectangular grid exposed on each plate
(Fig. 2.23a). These coordinates could then be converted
into declination and right ascension.

Positions of stars in catalogues are measured with
respect to certain comparison stars, the coordinates of
which are known with high accuracy. The coordinates
of these reference stars are published in fundamental
catalogues. The first such catalogue was needed for the
AGK catalogue; it was published in Germany in 1879.
This Fundamental Katalog (FK 1) gives the positions
of over 500 stars.

The fundamental catalogues are usually revised every
few decades. The fifth edition, the FK 5, appeared in
1984. At the same time, a new system of astronomical
constants was adopted. The catalogue contains 1535
fundamental and 3117 additional stars.

A widely used catalogue is the SAO catalogue, pub-
lished by the Smithsonian Astrophysical Observatory in
the 1960’s. It contains the exact positions, magnitudes,
proper motions, spectral classifications, etc. of 258,997
stars brighter than magnitude 9. The catalogue was ac-
companied by a star map containing all the stars in the
catalogue.

Fig. 2.28. The representations in four atlases of the Hyades �
cluster in the constellation Taurus. (a) Heis: Atlas Coelestis,
published in 1872. (b) Bonner Durchmusterung. (c) SAO,
(d) Palomar Sky Atlas, red plate. The big blob is the brightest
star of Taurus, or αTauri alias Aldebaran. (e) All the stars in
the Tycho Catalog, numbering over one million, are marked
on an all-sky chart. The bright lane is the Milky Way. (Picture
David Seal, NASA/JPL/Caltech)
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In the 1990’s a large astrometric catalogue, PPM (Po-
sitions and Proper Motions), was published to replace
the AGK and SAO catalogues. It contained all stars
brighter than 7.5 magnitudes, and was almost complete
to magnitude 8.5. Altogether, the four volumes of the
catalogue contained information on 378,910 stars.

The PPM was effectively replaced by the Tycho cat-
alogue from Hipparcos satellite. Hipparcos was the first
astrometric satellite, and was launched by the Euro-
pean Space Agency (ESA) in 1989. Although Hipparcos
didn’t reach the planned geosynchronous orbit, it gave
exact positions of over a hundred thousand stars. The
Hipparcos catalogue, based on the measurements of the
satellite, contains astrometric and photometric data of
118,000 stars. The coordinates are precise to a couple
of milliarcseconds. The less precise Tycho catalogue
contains the data of about one million stars.

In 1999 and 2000, the sixth version of the Funda-
mental Katalog, the FK6, was published. It combined
the Hipparcos data and FK5 for 4150 fundamental stars.
The typical mean error in proper motion was 0.35
milliarcseconds per year for the basic stars. With the
advance of the Internet, the printed versions of star cat-
alogues were discontinued in the first years of the new
millennium, and the catalogues were moved to compact
discs and the net.

With the new media, the size of the star catalogues
exploded. The first Hubble Guide Star Catalog from
the early 1990’s contained 18 million stars and the sec-
ond Guide Star Catalog from the year 2001, nearly 500
million stars. It was surpassed by the U.S. Naval Ob-
servatory USNO-B1.0 Catalog, which contains entries
for 1,024,618,261 stars and galaxies from digitized im-
ages of several photographic sky surveys. The catalogue
presents right ascension and declination, proper motion
and magnitude estimates.

The next step in the accuracy of astrometry will be
achieved in the 2010’s with a new European astrometric
satellite. The Gaia satellite, planned to be launched in
about 2014, is expected to improve the accurary to about
10−5 seconds of arc.

Star maps have been published since ancient times,
but the earliest maps were globes showing the celestial
sphere as seen from the outside. At the beginning of the
17th century, a German, Johannes Bayer, published the
first map showing the stars as seen from inside the ce-
lestial sphere, as we see them in the sky. Constellations

were usually decorated with drawings of mythological
figures. The Uranometria Nova (1843) by Argelander
represents a transition towards modern maps: mytho-
logical figures are beginning to fade away. The map
accompanying the Bonner Durchmusterung carried this
evolution to its extreme. The sheets contain nothing but
stars and coordinate lines.

Most maps are based on star catalogues. Photogra-
phy made it possible to produce star maps without the
cataloguing stage. The most important of such maps
is a photographic atlas the full name of which is The
National Geographic Society – Palomar Observatory
Sky Atlas. The plates for this atlas were taken with the
1.2 m Schmidt camera on Mount Palomar. The Palo-
mar Sky Atlas was completed in the 1950’s. It consists
of 935 pairs of photographs: each region has been pho-
tographed in red and blue light. The size of each plate is
about 35 cm×35 cm, covering an area of 6.6◦ ×6.6◦.
The prints are negatives (black stars on a light back-
ground), because in this way, fainter objects are visible.
The limiting magnitude is about 19 in blue and 20 in red.

The Palomar atlas covers the sky down to −30◦.
Work to map the rest of the sky was carried out later at
two observatories in the southern hemisphere, at Siding
Spring Observatory in Australia, and at the European
Southern Observatory (ESO) in Chile. The instruments
and the scale on the plates are similar to those used
earlier for the Palomar plates, but the atlas is distributed
on film transparencies instead of paper prints.

For amateurs there are several star maps of various
kinds. Some of them are mentioned in the references.

2.13 Sidereal and Solar Time

Time measurements can be based on the rotation of
the Earth, orbital motion around the Sun, or on atomic
clocks. The last-mentioned will be discussed in the next
section. Here we consider the sidereal and solar times
related to the rotation of the Earth.

We defined the sidereal time as the hour angle of
the vernal equinox. A good basic unit is a sidereal day,
which is the time between two successive upper culmi-
nations of the vernal equinox. After one sidereal day
the celestial sphere with all its stars has returned to its
original position with respect to the observer. The flow
of sidereal time is as constant as the rotation of the
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Earth. The rotation rate is slowly decreasing, and thus
the length of the sidereal day is increasing. In addition
to the smooth slowing down irregular variations of the
order of one millisecond have been observed.

Unfortunately, also the sidereal time comes in two va-
rieties, apparent and mean. The apparent sidereal time
is determined by the true vernal equinox, and so it is
obtained directly from observations.

Because of the precession the ecliptic longitude of
the vernal equinox increases by about 50′′ a year. This
motion is very smooth. Nutation causes more compli-
cated wobbling. The mean equinox is the point where
the vernal equinox would be if there were no nutation.
The mean sidereal time is the hour angle of this mean
equinox.

The difference of the apparent and mean sidereal time
is called the equation of equinoxes:

Θa −ΘM =∆ψ cos ε , (2.42)

where ε is the obliquity of the ecliptic at the instant of
the observation, and∆ψ, the nutation in longitude. This
value is tabulated for each day e.g. in the Astronomical
Almanac. It can also be computed from the formulae
given in *Reduction of Coordinates. It is at most about
one second, so it has to be taken into account only in
the most precise calculations.

Figure 2.29 shows the Sun and the Earth at vernal
equinox. When the Earth is at the point A, the Sun
culminates and, at the same time, a new sidereal day

Fig. 2.29. One sidereal day is the time between two successive
transits or upper culminations of the vernal equinox. By the
time the Earth has moved from A to B, one sidereal day has
elapsed. The angle ∆ is greatly exaggerated; in reality, it is
slightly less than one degree

begins in the city with the huge black arrow standing
in its central square. After one sidereal day, the Earth
has moved along its orbit almost one degree of arc to
the point B. Therefore the Earth has to turn almost
a degree further before the Sun will culminate. The
solar or synodic day is therefore 3 min 56.56 s (sidereal
time) longer than the sidereal day. This means that the
beginning of the sidereal day will move around the clock
during the course of one year. After one year, sidereal
and solar time will again be in phase. The number of
sidereal days in one year is one higher than the number
of solar days.

When we talk about rotational periods of planets, we
usually mean sidereal periods. The length of day, on
the other hand, means the rotation period with respect
to the Sun. If the orbital period around the Sun is P,
sidereal rotation period τ∗ and synodic day τ , we now
know that the number of sidereal days in time P, P/τ∗,
is one higher than the number of synodic days, P/τ :

P

τ∗
− P

τ
= 1 ,

or
1

τ
= 1

τ∗
− 1

P
. (2.43)

This holds for a planet rotating in the direction of its
orbital motion (counterclockwise). If the sense of rota-
tion is opposite, or retrograde, the number of sidereal
days in one orbital period is one less than the number
of synodic days, and the equation becomes

1

τ
= 1

τ∗
+ 1

P
. (2.44)

For the Earth, we have P = 365.2564 d, and τ = 1 d,
whence (2.43) gives τ∗ = 0.99727 d = 23 h 56 min 4 s,
solar time.

Since our everyday life follows the alternation of day
and night, it is more convenient to base our timekeeping
on the apparent motion of the Sun rather than that of
the stars. Unfortunately, solar time does not flow at
a constant rate. There are two reasons for this. First, the
orbit of the Earth is not exactly circular, but an ellipse,
which means that the velocity of the Earth along its
orbit is not constant. Second, the Sun moves along the
ecliptic, not the equator. Thus its right ascension does
not increase at a constant rate. The change is fastest at
the end of December (4 min 27 s per day) and slowest in
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mid-September (3 min 35 s per day). As a consequence,
the hour angle of the Sun (which determines the solar
time) also grows at an uneven rate.

To find a solar time flowing at a constant rate, we
define a fictitious mean sun, which moves along the ce-
lestial equator with constant angular velocity, making
a complete revolution in one year. By year we mean
here the tropical year, which is the time it takes for
the Sun to move from one vernal equinox to the next.
In one tropical year, the right ascension of the Sun in-
creases exactly 24 hours. The length of the tropical year
is 365 d 5 h 48 min 46 s = 365.2422 d. Since the direc-
tion of the vernal equinox moves due to precession,
the tropical year differs from the sidereal year, during
which the Sun makes one revolution with respect to the
background stars. One sidereal year is 365.2564 d.

Using our artificial mean sun, we now define an
evenly flowing solar time, the mean solar time (or sim-
ply mean time) TM, which is equal to the hour angle hM

of the centre of the mean sun plus 12 hours (so that the
date will change at midnight, to annoy astronomers):

TM = hM +12 h . (2.45)

The difference between the true solar time T and the
mean time TM is called the equation of time:

E.T. = T − TM . (2.46)

(In spite of the identical abbreviation, this has nothing
to do with a certain species of little green men.) The
greatest positive value of E.T. is about 16 minutes and
the greatest negative value about −14 minutes (see Fig.
2.30). This is also the difference between the true noon
(the meridian transit of the Sun) and the mean noon.

Both the true solar time and mean time are local
times, depending on the hour angle of the Sun, real or
artificial. If one observes the true solar time by direct
measurement and computes the mean time from (2.46),
a digital watch will probably be found to disagree with
both of them. The reason for this is that we do not use
local time in our everyday life; instead we use the zonal
time of the nearest time zone.

In the past, each city had its own local time. When
travelling became faster and more popular, the great va-
riety of local times became an inconvenience. At the end
of the 19th century, the Earth was divided into 24 zones,
the time of each zone differing from the neighboring
ones by one hour. On the surface of the Earth, one hour

Fig. 2.30. Equation of time. A sundial always shows (if cor-
rectly installed) true local solar time. To find the local mean
time the equation of time must be subtracted from the local
solar time

in time corresponds to 15◦ in longitude; the time of each
zone is determined by the local mean time at one of the
longitudes 0◦, 15◦, . . . , 345◦.

The time of the zero meridian going through Green-
wich is used as an international reference, Universal
Time. In most European countries, time is one hour
ahead of this (Fig. 2.31).

In summer, many countries switch to daylight saving
time, during which time is one hour ahead of the ordi-
nary time. The purpose of this is to make the time when
people are awake coincide with daytime in order to save
electricity, particularly in the evening, when people go
to bed one hour earlier. During daylight saving time, the
difference between the true solar time and the official
time can grow even larger.

In the EU countries the daylight saving time begins on
the last Sunday of March, at 1 o’clock UTC in the morn-
ing, when the clocks are moved forward to read 2 AM,
and ends on the last Sunday of October at 1 o’clock.

2.14 Astronomical Time Systems

Time can be defined using several different phenomena:

1. The solar and sidereal times are based on the rota-
tion of the Earth.

2. The standard unit of time in the current SI system,
the second, is based on quantum mechanical atom-
ary phenomena.

3. Equations of physics like the ones describing the
motions of celestial bodies involve a time variable
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Fig. 2.31. The time
zones. The map gives
the difference of the
local zonal time from
the Greenwich mean
time (UT). During
daylight saving time,
one hour must be
added to the given
figures. When travel-
ling across the date
line westward, the
date must be incre-
mented by one day,
and decremented if
going eastward. For
example, a traveller
taking a flight from
Honolulu to Tokyo
on Monday morning
will arrive on Tues-
day, even though (s)he
does not see a sin-
gle night en route.
(Drawing U.S. Nval
Observatory)
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corresponding to an ideal time running at a con-
stant pace. The ephemeris time and dynamical time
discussed a little later are such times.

Observations give directly the apparent sidereal time
as the hour angle of the true vernal equinox. From the
apparent sidereal time the mean sidereal time can be
calculated.

The universal time UT is defined by the equation

GMST(0 UT)= 24,110.54841 s

+ T ×8,640,184.812866 s

+ T 2 ×0.093104 s

− T 3 ×0.0000062 s ,

(2.47)

where GMST is the Greenwich mean sidereal time and
T the Julian century. The latter is obtained from the
Julian date J , which is a running number of the day
(Sect. 2.15 and *Julian date, p. 41):

T = J −2,451,545.0

36,525
. (2.48)

This gives the time elapsed since January 1, 2000, in
Julian centuries.

Sidereal time and hence also UT are related to the
rotation of the Earth, and thus contain perturbations due
to the irregular variations, mainly slowing down, of the
rotation.

In (2.47) the constant 8,640,184.812866 s tells how
much sidereal time runs fast compared to the UT in
a Julian century. As the rotation of the Earth is slowing
down the solar day becomes longer. Since the Julian
century T contains a fixed number of days, it will also
become longer. This gives rise to the small correction
terms in (2.47).

Strictly speaking this universal time is the time de-
noted by UT1. Observations give UT0, which contains
a small perturbation due to the wandering of the geo-
graphical pole, or polar variation. The direction of the
axis with respect to the solid surface varies by about
0.1′′ (a few metres on the surface) with a period of
about 430 days (Chandler period). In addition to this,
the polar motion contains a slow nonperiodic part.

The z axis of the astronomical coordinates is aligned
with the angular momentum vector of the Earth, but
the terrestrial coordinates refer to the axis at the epoch
1903.5. In the most accurate calculations this has to be
taken into account.

Nowadays the SI unit of time, the second, is de-
fined in a way that has nothing to do with celestial
phenomena. Periods of quantum mechanical phenom-
ena remain more stable than the motions of celestial
bodies involving complicated perturbations.

In 1967, one second was defined as 9,192,631,770
times the period of the light emitted by cesium 133 iso-
tope in its ground state, transiting from hyperfine level
F = 4 to F = 3. Later, this definition was revised to
include small relativistic effects produced by gravita-
tional fields. The relative accuracy of this atomic time
is about 10−12.

The international atomic time, TAI, was adopted
as the basis of time signals in 1972. The time is main-
tained by the Bureau International des Poids et Mesures
in Paris, and it is the average of several accurate atomic
clocks.

Even before atomic clocks there was a need for an
ideal time proceeding at a perfectly constant rate, cor-
responding to the time variable in the equations of
Newtonian mechanics. The ephemeris time was such
a time. It was used e.g. for tabulating ephemerides.
The unit of ephemeris time was the ephemeris second,
which is the length of the tropical year 1900 divided
by 31,556,925.9747. Ephemeris time was not known in
advance. Only afterwards was it possible to determine
the difference of ET and UT from observational data.

In 1984 ephemeris time was replaced by dynamical
time. It comes in two varieties.

The terrestrial dynamical time (TDT) corresponds to
the proper time of an observer moving with the Earth.
The time scale is affected by the relativistic time dila-
tion due to the orbital speed of the Earth. The rotation
velocity depends on the latitude, and thus in TDT it is
assumed that the observer is not rotating with the Earth.
The zero point of TDT was chosen so that the old ET
changed without a jump to TDT.

In 1991 a new standard time, the terrestrial time (TT),
was adopted. Practically it is equivalent to TDT.

TT (or TDT) is the time currently used for tabulat-
ing ephemerides of planets and other celestial bodies.
For example, the Astronomical Almanac gives the
coordinates of the planets for each day at 0 TT.

The Astronomical Almanac also gives the difference

∆T = TDT−UT (2.49)
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Fig. 2.32. The difference between the universal time UT1,
based on the rotation of the Earth, and the coordinated uni-
versal time UTC during 1972–2002. Because the rotation of
the Earth is slowing down, the UT1 will run slow of the UTC
by about 0.8 seconds a year. Leap seconds are added to the
UTC when necessary to keep the times approximately equal.
In the graph these leap seconds are seen as one second jumps
upward

for earlier years. For the present year and some future
years a prediction extrapolated from the earlier years is
given. Its accuracy is about 0.1 s. At the beginning of
1990 the difference was 56.7 s; it increases every year
by an amount that is usually a little less than one second.

The terrestrial time differs from the atomic time by
a constant offset

TT = TAI+32.184 s . (2.50)

TT is well suited for ephemerides of phenomena as
seen from the Earth. The equations of motion of the
solar system, however, are solved in a frame the ori-
gin of which is the centre of mass or barycentre of
the solar system. The coordinate time of this frame is
called the barycentric dynamical time, TDB. The unit
of TDB is defined so that, on the average, it runs at the
same rate as TT, the difference containing only periodic
terms depending on the orbital motion of the Earth. The
difference can usually be neglected, since it is at most
about 0.002 seconds.

Which of these many times should we use in our
alarm-clocks? None of them. Yet another time is needed
for that purpose. This official wall-clock time is called
the coordinated universal time, UTC. The zonal time
follows UTC but differs from it usually by an integral
number of hours.

UTC is defined so that it proceeds at the same rate
as TAI, but differs from it by an integral number of
seconds. These leap seconds are used to adjust UTC so
that the difference from UT1 never exceeds 0.9 seconds.

A leap second is added either at the beginning of a year
or the night between June and July.

The difference

∆AT = TAI−UTC (2.51)

is also tabulated in the Astronomical Almanac. Accord-
ing to the definition of UTC the difference in seconds
is always an integer. The difference cannot be predicted
very far to the future.

From (2.50) and (2.51) we get

TT = UTC+32.184 s+∆AT , (2.52)

which gives the terrestrial time TT corresponding to
a given UTC. Table 2.2 gives this correction. The table
is easy to extend to the future. When it is told in the
news that a leap second will be added the difference
will increase by one second. In case the number of leap
seconds is not known, it can be approximated that a leap
second will be added every 1.25 years.

The unit of the coordinated universal time UTC,
atomic time TAI and terrestrial time TT is the same

Table 2.2. Differences of the atomic time and UTC (∆AT) and
the terrestrial time TT and UTC. The terrestrial time TT used
in ephemerides is obtained by adding ∆AT+32.184 s to the
ordinary time UTC

∆AT TT−UTC

1.1.1972– 30.6.1972 10 s 42.184 s
1.7.1972–31.12.1972 11 s 43.184 s
1.1.1973–31.12.1973 12 s 44.184 s
1.1.1974–31.12.1974 13 s 45.184 s
1.1.1975–31.12.1975 14 s 46.184 s
1.1.1976–31.12.1976 15 s 47.184 s
1.1.1977–31.12.1977 16 s 48.184 s
1.1.1978–31.12.1978 17 s 49.184 s
1.1.1979–31.12.1979 18 s 50.184 s
1.1.1980– 30.6.1981 19 s 51.184 s
1.7.1981– 30.6.1982 20 s 52.184 s
1.7.1982– 30.6.1983 21 s 53.184 s
1.7.1983– 30.6.1985 22 s 54.184 s
1.7.1985–31.12.1987 23 s 55.184 s
1.1.1988–31.12.1989 24 s 56.184 s
1.1.1990–31.12.1990 25 s 57.184 s
1.1.1991– 30.6.1992 26 s 58.184 s
1.7.1992– 30.6.1993 27 s 59.184 s
1.7.1993– 30.6.1994 28 s 60.184 s
1.7.1994–31.12.1995 29 s 61.184 s
1.1.1996– 31.6.1997 30 s 62.184 s
1.7.1997–31.12.1998 31 s 63.184 s
1.1.1999–31.12.2005 32 s 64.184 s
1.1.2006– 33 s 65.184 s
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second of the SI system. Hence all these times proceed
at the same rate, the only difference being in their zero
points. The difference of the TAI and TT is always the
same, but due to the leap seconds the UTC will fall
behind in a slightly irregular way.

Culminations and rising and setting times of celes-
tial bodies are related to the rotation of the Earth. Thus
the sidereal time and hence the UT of such an event can
be calculated precisely. The corresponding UTC cannot
differ from the UT by more than 0.9 seconds, but the
exact value is not known in advance. The future coor-
dinates of the Sun, Moon and planets can be calculated
as functions of the TT, but the corresponding UTC can
only be estimated.

2.15 Calendars

Our calendar is a result of long evolution. The main
problem it must contend with is the incommensurability
of the basic units, day, month and year: the numbers of
days and months in a year are not integers. This makes
it rather complicated to develop a calendar that takes
correctly into account the alternation of seasons, day
and night, and perhaps also the lunar phases.

Our calendar has its origin in the Roman calendar,
which, in its earliest form, was based on the phases of
the Moon. From around 700 B.C. on, the length of the
year has followed the apparent motion of the Sun; thus
originated the division of the year into twelve months.
One month, however, still had a length roughly equal
to the lunar cycle. Hence one year was only 354 days
long. To keep the year synchronised with the seasons,
a leap month had to be added to every other year.

Eventually the Roman calendar got mixed up. The
mess was cleared by Julius Caesar in about 46 B.C.,
when the Julian calendar was developed upon his or-
ders. The year had 365 days and a leap day was added
to every fourth year.

In the Julian calendar, the average length of one year
is 365 d 6 h, but the tropical year is 11 min 14 s shorter.
After 128 years, the Julian year begins almost one day
too late. The difference was already 10 days in 1582,
when a calendar reform was carried out by Pope Gre-
gory XIII. In the Gregorian calendar, every fourth year
is a leap year, the years divisible by 100 being excep-
tions. Of these, only the years divisible by 400 are leap

years. Thus 1900 was not a leap year, but 2000 was.
The Gregorian calendar was adopted slowly, at differ-
ent times in different countries. The transition period
did not end before the 20th century.

Even the Gregorian calendar is not perfect. The dif-
ferences from the tropical year will accumulate to one
day in about 3300 years.

Since years and months of variable length make it
difficult to compute time differences, especially as-
tronomers have employed various methods to give each
day a running number. The most widely used numbers
are the Julian dates. In spite of their name, they are not
related to the Julian calendar. The only connection is
the length of a Julian century of 36,525 days, a quantity
appearing in many formulas involving Julian dates. The
Julian day number 0 dawned about 4700 B.C. The day
number changes always at 12 : 00 UT. For example, the
Julian day 2,451,545 began at noon in January 1, 2000.
The Julian date can be computed using the formulas
given in *Julian Date (p. 41).

Julian dates are uncomfortably big numbers, and
therefore modified Julian dates are often used. The zero
point can be e.g. January 1, 2000. Sometimes 0.5 is
subtracted from the date to make it to coincide with the
date corresponding to the UTC. When using such dates,
the zero point should always be mentioned.

* Reduction of Coordinates

Star catalogues give coordinates for some standard
epoch. In the following we give the formulas needed
to reduce the coordinates to a given date and time.
The full reduction is rather laborious, but the follow-
ing simplified version is sufficient for most practical
purposes.

We assume that the coordinates are given for the
epoch J2000.0.

1. First correct the place for proper motion unless it is
negligible.

2. Precess the coordinates to the time of the observation.
First we use the coordinates of the standard epoch
(α0, δ0) to find a unit vector pointing in the direction
of the star:

p0 =
⎛
⎜⎝cos δ0 cosα0

cos δ0 sinα0

sin δ0

⎞
⎟⎠ .
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Precession changes the ecliptic longitude of the ob-
ject. The effect on right ascension and declination can
be calculated as three rotations, given by three rota-
tion matrices. By multiplying these matrices we get
the combined precession matrix that maps the previ-
ous unit vector to its precessed equivalent. A similar
matrix can be derived for the nutation. The transfor-
mations and constants given here are based on the
system standardized by the IAU in 1976.
The precession and nutation matrices contain sev-
eral quantities depending on time. The time variables
appearing in their expressions are

t = J −2,451,545.0 ,

T = J −2,451,545.0

36,525
.

Here J is the Julian date of the observation, t the
number of days since the epoch J2000.0 (i. e. noon
of January 1, 2000), and T the same interval of time
in Julian centuries.
The following three angles are needed for the
precession matrix

ζ = 2306.2181′′T +0.30188′′T 2 +0.017998′′T 3 ,

z = 2306.2181′′T +1.09468′′T 2 +0.018203′′T 3 ,

θ = 2004.3109′′T −0.42665′′T 2 −0.041833′′T 3 .

The precession matrix is now

P =
⎛
⎜⎝P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞
⎟⎠ .

The elements of this matrix in terms of the
abovementioned angles are

P11 = cos z cos θ cos ζ − sin z sin ζ ,

P12 = − cos z cos θ sin ζ − sin z cos ζ ,

P13 = − cos z sin θ ,

P21 = sin z cos θ cos ζ + cos z sin ζ ,

P22 = − sin z cos θ sin ζ + cos z cos ζ ,

P23 = − sin z sin θ ,

P31 = sin θ cos ζ ,

P32 = − sin θ sin ζ ,

P33 = cos θ .

The new coordinates are now obtained by multiply-
ing the coordinates of the standard epoch by the
precession matrix:

p1 = Pp0 .

This is the mean place at the given time and date.
If the standard epoch is not J2000.0, it is proba-
bly easiest to first transform the given coordinates to
the epoch J2000.0. This can be done by computing
the precession matrix for the given epoch and multi-
plying the coordinates by the inverse of this matrix.
Inverting the precession matrix is easy: we just trans-
pose it, i. e. interchange its rows and columns. Thus
coordinates given for some epoch can be precessed
to J2000.0 by multiplying them by

P−1 =
⎛
⎜⎝P11 P21 P31

P12 P22 P32

P13 P23 P33

⎞
⎟⎠ .

In case the required accuracy is higher than about
one minute of arc, we have to do the following fur-
ther corrections.

3. The full nutation correction is rather complicated.
The nutation used in astronomical almanacs involves
series expansions containing over a hundred terms.
Very often, though, the following simple form is suf-
ficient. We begin by finding the mean obliquity of
the ecliptic at the observation time:

ε0 = 23◦ 26′ 21.448′′ −46.8150′′T
−0.00059′′T 2 +0.001813′′T 3 .

The mean obliquity means that periodic perturba-
tions have been omitted. The formula is valid a few
centuries before and after the year 2000.
The true obliquity of the ecliptic, ε, is obtained by
adding the nutation correction to the mean obliquity:

ε= ε0 +∆ε .
The effect of the nutation on the ecliptic longitude
(denoted usually by ∆ψ) and the obliquity of the
ecliptic can be found from

C1 = 125◦ −0.05295◦t ,

C2 = 200.9◦ +1.97129◦t ,

∆ψ = −0.0048◦ sin C1 −0.0004◦ sin C2 ,

∆ε= 0.0026◦ cos C1 +0.0002◦ cos C2 .
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Since ∆ψ and ∆ε are very small angles, we have,
for example, sin∆ψ ≈∆ψ and cos∆ψ ≈ 1, when
the angles are expressed in radians. Thus we get the
nutation matrix

N =
⎛
⎜⎝ 1 −∆ψ cos ε −∆ψ sin ε

∆ψ cos ε 1 −∆ε
∆ψ sin ε ∆ε 1

⎞
⎟⎠ .

This is a linearized version of the full transformation.
The angles here must be in radians. The place in the
coordinate frame of the observing time is now

p2 = Np1 .

4. The annual aberration can affect the place about as
much as the nutation. Approximate corrections are
obtained from

∆α cos δ= −20.5′′ sinα sinλ

−18.8′′ cosα cos λ ,

∆δ= 20.5′′ cosα sin δ sin λ

+18.8′′ sinα sin δ cos λ−8.1′′ cos δ cos λ ,

where λ is the ecliptic longitude of the Sun. Suf-
ficiently accurate value for this purpose is given
by

G = 357.528◦ +0.985600◦t ,

λ= 280.460◦ +0.985647◦t

+1.915◦ sin G +0.020◦ sin 2G .

These reductions give the apparent place of the date
with an accuracy of a few seconds of arc. The effects
of parallax and diurnal aberration are even smaller.

Example. The coordinates of Regulus (αLeo) for the
epoch J2000.0 are

α= 10 h 8 min 22.2 s = 10.139500 h ,

δ= 11◦ 58′ 02′′ = 11.967222◦ .

Find the apparent place of Regulus on March 12, 1995.
We start by finding the unit vector corresponding to

the catalogued place:

p0 =
⎛
⎜⎝−0.86449829

0.45787318

0.20735204

⎞
⎟⎠ .

The Julian date is J = 2,449,789.0, and thus
t = −1756 and T = −0.04807666. The angles
of the precession matrix are ζ = −0.03079849◦,
z = −0.03079798◦ and θ = −0.02676709◦. The pre-
cession matrix is then

P =⎛
⎜⎝ 0.99999931 0.00107506 0.00046717

−0.00107506 0.99999942 −0.00000025

−0.00046717 −0.00000025 0.99999989

⎞
⎟⎠ .

The precessed unit vector is

p1 =
⎛
⎜⎝−0.86390858

0.45880225

0.20775577

⎞
⎟⎠ .

The angles needed for the nutation are ∆ψ =
0.00309516◦,∆ε= −0.00186227◦, ε= 23.43805403◦,
which give the nutation matrix

N =⎛
⎜⎝ 1 −0.00004956 −0.00002149

0.00004956 1 0.00003250

0.00002149 −0.00003250 1

⎞
⎟⎠ .

The place in the frame of the date is

p2 =
⎛
⎜⎝−0.86393578

0.45876618

0.20772230

⎞
⎟⎠ ,

whence

α= 10.135390 h ,

δ= 11.988906◦ .
To correct for the aberration we first find the longi-

tude of the Sun: G = −1373.2◦ = 66.8◦, λ= −8.6◦.
The correction terms are then

∆α= 18.25′′ = 0.0050◦

∆δ= −5.46′′ = −0.0015◦ .
Adding these to the previously obtained coordinates we
get the apparent place of Regulus on March 12, 1995:

α= 10.1357 h = 10 h 8 min 8.5 s,

δ= 11.9874◦ = 11◦ 59′ 15′′ .
Comparison with the places given in the catalogue Ap-
parent Places of Fundamental Stars shows that we
are within about 3′′ of the correct place, which is
a satisfactory result.
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* Julian Date

There are several methods for finding the Julian date.
The following one, developed by Fliegel and Van Flan-
dern in 1968, is well adapted for computer programs.
Let y be the year (with all four digits), m the month and
d the day. The Julian date J at noon is then

J = 367y −{7[y + (m +9)/12]}/4
− (3{[y + (m −9)/7]/100+1})/4
+275m/9+d +1721029 .

The division here means an integer division, the decimal
part being truncated: e. g. 7/3 = 2 and −7/3 = −2.

Example. Find the Julian date on January 1, 1990.
Now y = 1990, m = 1 and d = 1.

J = 367×1990−7×[1990+ (1+9)/12]/4
−3×{[1990+ (1−9)/7]/100+1}/4
+275×1/9+1+1,721,029

= 730,330−3482−15+30+1+1,721,029

= 2,447,893 .

Astronomical tables usually give the Julian date at 0 UT.
In this case that would be 2,447,892.5.

The inverse procedure is a little more complicated.
In the following J is the Julian date at noon (so that it
will be an integer):

a = J +68,569 ,

b = (4a)/146,097 ,

c = a − (146,097b+3)/4 ,

d = [4000(c+1)]/1,461,001 ,

e = c− (1461d)/4+31 ,

f = (80e)/2447 ,

day = e− (2447 f)/80 ,

g = f/11 ,

month = f +2−12g ,

year = 100(b−49)+d + g .

Example. In the previous example we got J =
2,447,893. Let’s check this by calculating the
corresponding calendar date:

a = 2,447,893+68,569 = 2,516,462 ,

b = (4×2,516,462)/146,097 = 68 ,

c = 2,516,462− (146,097×68+3)/4 = 32,813 ,

d = [4000(32,813+1)]/1,461,001 = 89 ,

e = 32,813− (1461×89)/4+31 = 337 ,

f = (80×337)/2447 = 11 ,

day = 337− (2447×11)/80 = 1 ,

g = 11/11 = 1 ,

month = 11+2−12×1 = 1 ,

year = 100(68−49)+89+1 = 1990 .

Thus we arrived back to the original date.
Since the days of the week repeat in seven day cy-

cles, the remainder of the division J/7 unambiguously
determines the day of the week. If J is the Julian date
at noon, the remainder of J/7 tells the day of the week
in the following way:

0 = Monday ,
...

5 = Saturday ,

6 = Sunday .

Example. The Julian date corresponding to January 1,
1990 was 2,447,893. Since 2,447,893 = 7×349,699,
the remainder is zero, and the day was Monday.

2.16 Examples

Example 2.1 Trigonometric Functions in a Rectan-
gular Spherical Triangle

Let the angle A be a right angle. When the figure
is a plane triangle, the trigonometric functions of the
angle B would be:

sin B = b/a , cos B = c/a , tan B = b/c .
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For the spherical triangle we have to use the equations
in (2.7), which are now simply:

sin B sin a = sin b ,

cos B sin a

= cos b sin c ,

cos a = cos b cos c .

The first equation gives the sine of B:

sin B = sin b/sin a .

Dividing the second equation by the third one, we get
the cosine of B:

cos B = tan c/tan a .

And the tangent is obtained by dividing the first equation
by the second one:

tan B = tan b/sin c .

The third equation is the equivalent of the Pythagorean
theorem for rectangular triangles.

Example 2.2 The Coordinates of New York City

The geographic coordinates are 41◦ north and 74◦ west
of Greenwich, or φ = +41◦, λ= −74◦. In time units,
the longitude would be 74/15 h = 4 h 56 min west of
Greenwich. The geocentric latitude is obtained from

tanφ′ = b2

a2
tanφ =

(
6,356,752

6,378,137

)2

tan 41◦

= 0.86347 ⇒ φ′ = 40◦ 48′ 34′′ .

The geocentric latitude is 11′ 26′′ less than the
geographic latitude.

Example 2.3 The angular separation of two objects
in the sky is quite different from their coordinate differ-
ence.

Suppose the coordinates of a star A are α1 = 10 h, δ1 =
70◦ and those of another star B, α2 = 11 h, δ2 = 80◦.

Using the Pythagorean theorem for plane triangles,
we would get

d =
√
(15◦)2 + (10◦)2 = 18◦ .

But if we use the third equation in (2.7), we get

cos d = cos(α1 −α2)

× sin(90◦ − δ1) sin(90◦ − δ2)

+ cos(90◦ − δ1) cos(90◦ − δ2)

= cos(α1 −α2) cos δ1 cos δ2

+ sin δ1 sin δ2

= cos 15◦ cos 70◦ cos 80◦

+ sin 70◦ sin 80◦

= 0.983 ,

which yields d = 10.6◦. The figure shows why the result
obtained from the Pythagorean theorem is so far from
being correct: hour circles (circles with α = constant)
approach each other towards the poles and their angu-
lar separation becomes smaller, though the coordinate
difference remains the same.

Example 2.4 Find the altitude and azimuth of the
Moon in Helsinki at midnight at the beginning of 1996.

The right ascension is α = 2 h 55 min 7 s = 2.9186 h
and declination δ = 14◦ 42′ = 14.70◦, the sidereal
time is Θ = 6 h 19 min 26 s = 6.3239 h and latitude
φ = 60.16◦.

The hour angle is h =Θ−α = 3.4053 h = 51.08◦.
Next we apply the equations in (2.16):

sin A cos a = sin 51.08◦ cos 14.70◦ = 0.7526 ,

cos A cos a = cos 51.08◦ cos 14.70◦ sin 60.16◦

− sin 14.70◦ cos 60.16◦

= 0.4008 ,

sin a = cos 51.08◦ cos 14.70◦ cos 60.16◦

+ sin 14.70◦ sin 60.16◦

= 0.5225.

Thus the altitude is a = 31.5◦. To find the azimuth we
have to compute its sine and cosine:

sin A = 0.8827 , cos A = 0.4701 .

Hence the azimuth is A = 62.0◦. The Moon is in the
southwest, 31.5 degrees above the horizon. Actually,
this would be the direction if the Moon were infinitely
distant.
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Example 2.5 Find the topocentric place of the Moon
in the case of the previous example.

The geocentric distance of the Moon at that time is
R = 62.58 equatorial radii of the Earth. For simplicity,
we can assume that the Earth is spherical.

We set up a rectangular coordinate frame in such
a way that the z axis points towards the celestial pole
and the observing site is in the xz plane. When the radius
of the Earth is used as the unit of distance, the radius
vector of the observing site is

r0 =
⎛
⎜⎝cosφ

0

sinφ

⎞
⎟⎠=

⎛
⎜⎝0.4976

0

0.8674

⎞
⎟⎠ .

The radius vector of the Moon is

r = R

⎛
⎜⎝ cos δ cos h

− cos δ sin h

sin δ

⎞
⎟⎠= 62.58

⎛
⎜⎝ 0.6077

−0.7526

0.2538

⎞
⎟⎠ .

The topocentric place of the Moon is

r′ = r− r0 =
⎛
⎜⎝ 37.53

−47.10

15.02

⎞
⎟⎠ .

We divide this vector by its length 62.07 to get the unit
vector e pointing to the direction of the Moon. This can
be expressed in terms of the topocentric coordinates
δ′ and h′:

e =
⎛
⎜⎝ 0.6047

−0.7588

0.2420

⎞
⎟⎠=

⎛
⎜⎝ cos δ′ cos h′

− cos δ′ sin h′

sin δ′

⎞
⎟⎠ ,

which gives δ′ = 14.00◦ and h′ = 51.45◦. Next we can
calculate the altitude and azimuth as in the previous
example, and we get a = 30.7◦, A = 61.9◦.

Another way to find the altitude is to take the scalar
product of the vectors e and r0, which gives the cosine
of the zenith distance:

cos z = e · r0 = 0.6047×0.4976+0.2420×0.8674

= 0.5108 ,

whence z = 59.3◦ and a = 90◦ − z = 30.7◦. We see that
this is 0.8◦ less than the geocentric altitude; i. e. the
difference is more than the apparent diameter of the
Moon.

Example 2.6 The coordinates of Arcturus are α =
14 h 15.7 min, δ= 19◦ 1′1′. Find the sidereal time at the
moment Arcturus rises or sets in Boston (φ = 42◦ 19′).

Neglecting refraction, we get

cos h = − tan 19◦ 11′ tan 42◦ 19′

= −0.348×0.910 = −0.317 .

Hence, h = ±108.47◦ = 7 h 14 min. The more accurate
result is

cos h = − tan 19◦ 11′ tan 42◦ 19′

− sin 35′

cos 19◦ 11′ cos 42◦19′
= −0.331 ,

whence h = ±109.35◦ = 7 h 17 min. The plus and mi-
nus signs correspond to setting ant rising, respectively.
When Arcturus rises, the sidereal time is

Θ = α+h = 14 h 16 min−7 h 17 min

= 6 h 59 min

and when it sets, the sidereal time is

Θ = 14 h 16 min+7 h 17 min

= 21 h 33 min .

Note that the result is independent of the date: a star
rises and sets at the same sidereal time every day.

Example 2.7 The proper motion of Aldebaran is µ=
0.20′′/a and parallax π = 0.048′′. The spectral line of
iron at λ= 440.5 nm is displaced 0.079 nm towards the
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red. What are the radial and tangential velocities and
the total velocity?

The radial velocity is found from

∆λ

λ
= vr

c
⇒ vr = 0.079

440.5
·3×108 m/s = 5.4×104 m/s

= 54 km/s .

The tangential velocity is now given by (2.40), since
µ and π are in correct units:

vt = 4.74µr = 4.74µ/π = 4.74×0.20

0.048
= 20 km/s .

The total velocity is

v=
√
v2

r +v2
t =

√
542 +202 km/s = 58 km/s .

Example 2.8 Find the local time in Paris (longitude
λ= 2◦) at 12:00.

Local time coincides with the zonal time along the
meridian 15◦ east of Greenwich. Longitude difference
15◦ −2◦ = 13◦ equals (13◦/15◦)×60 min = 52 min-
utes. The local time is 52 minutes less than the official
time, or 11:08. This is mean solar time. To find the
true solar time, we must add the equation of time. In
early February, E.T. = −14 min and the true solar time
is 11:08−14 min = 10:54. At the beginning of Novem-
ber, ET = +16 min and the solar time would be 11:24.
Since −14 min and +16 min are the extreme values of
E.T., the true solar time is in the range 10:54–11:24,
the exact time depending on the day of the year. Dur-
ing daylight saving time, we must still subtract one hour
from these times.

Example 2.9 Estimating Sidereal Time

Since the sidereal time is the hour angle of the vernal
equinox �, it is 0 h when � culminates or transits the
south meridian. At the moment of the vernal equinox,
the Sun is in the direction of � and thus culminates at
the same time as �. So the sidereal time at 12:00 local
solar time is 0:00, and at the time of the vernal equinox,
we have

Θ = T +12 h ,

where T is the local solar time. This is accurate within
a couple of minutes. Since the sidereal time runs about
4 minutes fast a day, the sidereal time, n days after the
vernal equinox, is

Θ ≈ T +12 h+n ×4 min .

At autumnal equinox � culminates at 0:00 local time,
and sidereal and solar times are equal.

Let us try to find the sidereal time in Paris on April
15 at 22:00, Central European standard time (= 23:00
daylight saving time). The vernal equinox occurs on the
average on March 21; thus the time elapsed since the
equinox is 10+15 = 25 days. Neglecting the equation
of time, the local time T is 52 minutes less than the
zonal time. Hence

Θ = T +12 h+n ×4 min

= 21 h 8 min+12 h+25×4 min

= 34 h 48 min = 10 h 48 min .

The time of the vernal equinox can vary about one
day in either direction from the average. Therefore the
accuracy of the result is roughly 5 min.

Example 2.10 Find the rising time of Arcturus in
Boston on January 10.

In Example 2.6 we found the sidereal time of this event,
Θ = 6 h 59 min. Since we do not know the year, we
use the rough method of Example 2.9. The time be-
tween January 1 and vernal equinox (March 21) is about
70 days. Thus the sidereal time on January 1 is

Θ ≈ T +12 h−70×4 min = T +7 h 20 min ,

from which

T =Θ−7 h 20 min = 6 h 59 min−7 h 20 min

= 30 h 59 min−7 h 20 min = 23 h 39 min .

The longitude of Boston is 71◦ W, and the Eastern stan-
dard time is (4◦/15◦)×60 min = 16 minutes less, or
23:23.

Example 2.11 Find the sidereal time in Helsinki on
April 15, 1982 at 20:00 UT.
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The Julian date is J = 2,445,074.5 and

T = 2,445,074.5−2,451,545.0

36,525
= −0.1771526 .

Next, we use (2.47) to find the sidereal time at 0 UT:

Θ0 = −1,506,521.0 s = −418 h 28 min 41 s

= 13 h 31 min 19 s .

Since the sidereal time runs 3 min 57 s fast a day as
compared to the solar time, the difference in 20 hours
will be

20

24
×3 min 57 s = 3 min 17 s ,

and the sidereal time at 20 UT will be 13 h 31 min 19 s+
20 h 3 min 17 s = 33 h 34 min 36 s = 9 h 34 min 36 s.

At the same time (at 22:00 Finnish time, 23:00 day-
light saving time) in Helsinki the sidereal time is ahead
of this by the amount corresponding to the longitude
of Helsinki, 25◦, i. e. 1 h 40 min 00 s. Thus the sidereal
time is 11 h 14 min 36 s.

2.17 Exercises

Exercise 2.1 Find the distance between Helsinki and
Seattle along the shortest route. Where is the northern-
most point of the route, and what is its distance from the
North Pole? The longitude of Helsinki is 25◦E and lati-
tude 60◦; the longitude of Seattle is 122◦W and latitude
48◦. Assume that the radius of the Earth is 6370 km.

Exercise 2.2 A star crosses the south meridian at an
altitude of 85◦, and the north meridian at 45◦. Find the
declination of the star and the latitude of the observer.

Exercise 2.3 Where are the following statements true?

a) Castor (αGem, declination δ= 31◦53′) is circumpo-
lar.

b) Betelgeuze (αOri, δ= 7◦ 24′) culminates at zenith.
c) αCen (δ= −60◦ 50′) rises to an altitude of 30◦.

Exercise 2.4 In his Old Man and the Sea Hemingway
wrote:

It was dark now as it becomes dark quickly after
the Sun sets in September. He lay against the
worn wood of the bow and rested all that he
could. The first stars were out. He did not know
the name of Rigel but he saw it and knew soon
they would all be out and he would have all his
distant friends.

How was Hemingway’s astronomy?

Exercise 2.5 The right ascension of the Sun on June 1,
1983, was 4 h 35 min and declination 22◦ 00′. Find the
ecliptic longitude and latitude of the Sun and the Earth.

Exercise 2.6 Show that on the Arctic Circle the Sun

a) rises at the same sidereal time Θ0 between Decem-
ber 22 and June 22,

b) sets at the same sidereal time Θ0 between June 22
and December 22.

What is Θ0?

Exercise 2.7 Derive the equations (2.24), which give
the galactic coordinates as functions of the ecliptic
coordinates.

Exercise 2.8 The coordinates of Sirius for the epoch
1900.0 were α = 6 h 40 min 45 s, δ = −16◦ 35′,
and the components of its proper motion were
µα = −0.037 s/a, µδ = −1.12′′a−1. Find the coordi-
nates of Sirius for 2000.0. The precession must also be
taken into account.

Exercise 2.9 The parallax of Sirius is 0.375′′ and
radial velocity −8 km/s.

a) What are the tangential and total velocities of Sirius?
(See also the previous exercise.)

b) When will Sirius be closest to the Sun?
c) What will its proper motion and parallax be then?
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3. Observations and Instruments

Up to the end of the Middle Ages, the most impor-
tant means of observation in astronomy was the

human eye. It was aided by various mechanical devices
to measure the positions of celestial bodies in the sky.
The telescope was invented in Holland at the beginning
of the 17th century, and in 1609 Galileo Galilei made
his first astronomical observations with this new instru-

ment. Astronomical photography was introduced at the
end of the 19th century, and during the last few decades
many kinds of electronic detectors have been adopted for
the study of electromagnetic radiation from space. The
electromagnetic spectrum from the shortest gamma rays
to long radio waves can now be used for astronomical
observations.

3.1 Observing
Through the Atmosphere

With satellites and spacecraft, observations can be made
outside the atmosphere. Yet, the great majority of astro-
nomical observations are carried out from the surface of
the Earth. In the preceding chapter, we discussed refrac-
tion, which changes the apparent altitudes of objects.
The atmosphere affects observations in many other ways
as well. The air is never quite steady, and there are lay-
ers with different temperatures and densities; this causes
convection and turbulence. When the light from a star
passes through the unsteady air, rapid changes in re-
fraction in different directions result. Thus, the amount
of light reaching a detector, e. g. the human eye, con-
stantly varies; the star is said to scintillate (Fig. 3.1).
Planets shine more steadily, since they are not point
sources like the stars.

A telescope collects light over a larger area, which
evens out rapid changes and diminishes scintillation.
Instead, differences in refraction along different paths of
light through the atmosphere smear the image and point
sources are seen in telescopes as vibrating speckles. This

Fig. 3.1. Scintillation of
Sirius during four passes
across the field of view. The
star was very low on the
horizon. (Photo by Pekka
Parviainen)

phenomenon is called seeing, and the size of the seeing
disc may vary from less than an arc second to several
tens of arc seconds. If the size of the seeing disc is small,
we speak of good seeing. Seeing and scintillation both
tend to blot out small details when one looks through
a telescope, for example, at a planet.

Some wavelength regions in the electromagnetic
spectrum are strongly absorbed by the atmosphere. The
most important transparent interval is the optical win-
dow from about 300 to 800 nm. This interval coincides
with the region of sensitivity of the human eye (about
400–700 nm).

At wavelengths under 300 nm absorption by atmo-
spheric ozone prevents radiation from reaching the
ground. The ozone is concentrated in a thin layer
at a height of about 20–30 km, and this layer pro-
tects the Earth from harmful ultraviolet radiation. At
still shorter wavelengths, the main absorbers are O2,
N2 and free atoms. Nearly all of the radiation un-
der 300 nm is absorbed by the upper parts of the
atmosphere.

At wavelengths longer than visible light, in the near-
infrared region, the atmosphere is fairly transparent up



48

3. Observations and Instruments

Fig. 3.2. The transparency of the atmosphere at different wave-
lengths. 100% transmission means that all radiation reaches
the surface of the Earth. The radiation is also absorbed by inter-

stellar gas, as shown in the lowermost very schematic figure.
The interstellar absorption also varies very much depending
on the direction (Chap. 15)

to 1.3µm. There are some absorption belts caused by
water and molecular oxygen, but the atmosphere gets
more opaque only at wavelengths of longer than 1.3µm.
At these wavelengths, radiation reaches the lower parts
of the atmosphere only in a few narrow windows. All
wavelengths between 20µm and 1 mm are totally ab-
sorbed. At wavelengths longer than 1 mm, there is the
radio window extending up to about 20 m. At still longer
wavelengths, the ionosphere in the upper parts of the
atmosphere reflects all radiation (Fig. 3.2). The exact
upper limit of the radio window depends on the strength
of the ionosphere, which varies during the day. (The
structure of the atmosphere is described in Chap. 7.)

At optical wavelengths (300–800 nm), light is scat-
tered by the molecules and dust in the atmosphere,
and the radiation is attenuated. Scattering and absorp-
tion together are called extinction. Extinction must be
taken into account when one measures the brightness of
celestial bodies (Chap. 4).

In the 19th century Lord Rayleigh succeeded in ex-
plaining why the sky is blue. Scattering caused by the
molecules in the atmosphere is inversely proportional
to the fourth power of the wavelength. Thus, blue light
is scattered more than red light. The blue light we see
all over the sky is scattered sunlight. The same phe-
nomenon colours the setting sun red, because owing to



3.2 Optical Telescopes

49

the long, oblique path through the atmosphere, all the
blue light has been scattered away.

In astronomy one often has to observe very faint
objects. Thus, it is important that the background sky be
as dark as possible, and the atmosphere as transparent
as possible. That is why the large observatories have
been built on mountain tops far from the cities. The air
above an observatory site must be very dry, the number
of cloudy nights few, and the seeing good.

Astronomers have looked all over the Earth for opti-
mal conditions and have found some exceptional sites.
In the 1970’s, several new major observatories were
founded at these sites. Among the best sites in the world
are: the extinguished volcano Mauna Kea on Hawaii, ris-
ing more than 4000 m above the sea; the dry mountains
in northern Chile; the Sonoran desert in the U.S., near
the border of Mexico; and the mountains on La Palma,
in the Canary Islands. Many older observatories are
severely plagued by the lights of nearby cities (Fig. 3.3).

In radio astronomy atmospheric conditions are not
very critical except when observing at the shortest wave-

Fig. 3.3. Night views from the top of Mount Wilson. The
upper photo was taken in 1908, the lower one in 1988. The
lights of Los Angeles, Pasadena, Hollywood and more than 40
other towns are reflected in the sky, causing considerable dis-
turbance to astronomical observations. (Photos by Ferdinand
Ellerman and International Dark-Sky Association)

lengths. Constructors of radio telescopes have much
greater freedom in choosing their sites than optical
astronomers. Still, radio telescopes are also often con-
structed in uninhabited places to isolate them from
disturbing radio and television broadcasts.

3.2 Optical Telescopes

The telescope fulfills three major tasks in astronomical
observations:

1. It collects light from a large area, making it possible
to study very faint sources.

2. It increases the apparent angular diameter of the ob-
ject and thus improves resolution.

3. It is used to measure the positions of objects.

The light-collecting surface in a telescope is either
a lens or a mirror. Thus, optical telescopes are divided
into two types, lens telescopes or refractors and mirror
telescopes or reflectors (Fig. 3.4).

Geometrical Optics. Refractors have two lenses, the
objective which collects the incoming light and forms
an image in the focal plane, and the eyepiece which
is a small magnifying glass for looking at the image
(Fig. 3.5). The lenses are at the opposite ends of a tube
which can be directed towards any desired point. The
distance between the eyepiece and the focal plane can be
adjusted to get the image into focus. The image formed

Fig. 3.4. A lens telescope or refractor and a mirror telescope
or reflector
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Fig. 3.5. The scale and magnification of a refractor. The object
subtends an angle u. The objective forms an image of the
object in the focal plane. When the image is viewed through
the eyepiece, it is seen at an angle u′

by the objective lens can also be registered, e. g. on
a photographic film, as in an ordinary camera.

The diameter of the objective, D, is called the aper-
ture of the telescope. The ratio of the aperture D to the
focal length f , F = D/ f , is called the aperture ratio.
This quantity is used to characterize the light-gathering
power of the telescope. If the aperture ratio is large,
near unity, one has a powerful, “fast” telescope; this
means that one can take photographs using short expo-
sures, since the image is bright. A small aperture ratio
(the focal length much greater than the aperture) means
a “slow” telescope.

In astronomy, as in photography, the aperture ratio
is often denoted by f/n (e. g. f/8), where n is the fo-
cal length divided by the aperture. For fast telescopes
this ratio can be f/1 . . . f/3, but usually it is smaller,
f/8 . . . f/15.

The scale of the image formed in the focal plane
of a refractor can be geometrically determined from
Fig. 3.5. When the object is seen at the angle u, it forms
an image of height s,

s = f tan u ≈ fu , (3.1)

since u is a very small angle. If the telescope has a fo-
cal length of, for instance, 343 cm, one arc minute
corresponds to

s = 343 cm×1′

= 343 cm× (1/60)× (π/180)

= 1 mm .

The magnification ω is (from Fig. 3.5)

ω= u′/u ≈ f/ f ′ , (3.2)

where we have used the equation s = fu. Here, f is the
focal length of the objective and f ′ that of the eyepiece.
For example, if f = 100 cm and we use an eyepiece
with f ′ = 2 cm, the magnification is 50-fold. The mag-
nification is not an essential feature of a telescope, since
it can be changed simply by changing the eyepiece.

A more important characteristic, which depends on
the aperture of the telescope, is the resolving power,
which determines, for example, the minimum angular
separation of the components of a binary star that can
be seen as two separate stars. The theoretical limit for
the resolution is set by the diffraction of light: The tele-
scope does not form a point image of a star, but rather
a small disc, since light “bends around the corner” like
all radiation (Fig. 3.6).

The theoretical resolution of a telescope is of-
ten given in the form introduced by Rayleigh (see
*Diffraction by a Circular Aperture, p. 81)

sin θ ≈ θ = 1.22λ/D , [θ] = rad . (3.3)

As a practical rule, we can say that two objects are seen
as separate if the angular distance between them is

θ � λ/D , [θ] = rad . (3.4)

This formula can be applied to optical as well as ra-
dio telescopes. For example, if one makes observations
at a typical yellow wavelength (λ= 550 nm), the re-
solving power of a reflector with an aperture of 1 m is
about 0.2′′. However, seeing spreads out the image to
a diameter of typically one arc second. Thus, the the-
oretical diffraction limit cannot usually be reached on
the surface of the Earth.

In photography the image is further spread in the pho-
tographic plate, decreasing the resolution as compared
with visual observations. The grain size of photographic
emulsions is about 0.01–0.03 mm, which is also the
minimum size of the image. For a focal length of 1 m, the
scale is 1 mm = 206′′, and thus 0.01 mm corresponds to
about 2 arc seconds. This is similar to the theoretical
resolution of a telescope with an aperture of 7 cm in
visual observations.

In practice, the resolution of visual observations is
determined by the ability of the eye to see details.
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Fig. 3.6a–e. Diffraction and resolving power. The image of
a single star (a) consists of concentric diffraction rings, which
can be displayed as a mountain diagram (b). Wide pairs
of stars can be easily resolved (c). For resolving close bi-

naries, different criteria can be used. One is the Rayleigh
limit 1.22 λ/D (d). In practice, the resolution can be writ-
ten λ/D, which is near the Dawes limit (e). (Photo (a) Sky
and Telescope)

In night vision (when the eye is perfectly adapted to
darkness) the resolving capability of the human eye is
about 2′.

The maximum magnification ωmax is the largest mag-
nification that is worth using in telescopic observations.
Its value is obtained from the ratio of the resolving
capability of the eye, e ≈ 2′ = 5.8×10−4 rad, to the
resolving power of the telescope, θ,

ωmax = e/θ ≈ eD/λ= 5.8×10−4 D

5.5×10−7 m

≈ D/1 mm .

(3.5)

If we use, for example, an objective with a diameter of
100 mm, the maximum magnification is about 100. The
eye has no use for larger magnifications.

The minimum magnification ωmin is the smallest
magnification that is useful in visual observations. Its
value is obtained from the condition that the diameter
of the exit pupil L of the telescope must be smaller than
or equal to the pupil of the eye.

The exit pupil is the image of the objective lens,
formed by the eyepiece, through which the light from

the objective goes behind the eyepiece. From Fig. 3.7
we obtain

L = f ′

f
D = D

ω
. (3.6)

Thus the condition L ≤ d means that

ω≥ D/d . (3.7)

In the night, the diameter of the pupil of the human eye
is about 6 mm, and thus the minimum magnification of
a 100 mm telescope is about 17.

Fig. 3.7. The exit pupil L is the image of the objective lens
formed by the eyepiece
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Refractors. In the first refractors, which had a sim-
ple objective lens, the observations were hampered by
the chromatic aberration. Since glass refracts differ-
ent colours by different amounts, all colours do not
meet at the same focal point (Fig. 3.8), but the fo-
cal length increases with increasing wavelength. To
remove this aberration, achromatic lenses consisting
of two parts were developed in the 18th century. The
colour dependence of the focal length is much smaller
than in single lenses, and at some wavelength, λ0,
the focal length has an extremum (usually a min-
imum). Near this point the change of focal length
with wavelength is very small (Fig. 3.9). If the tele-
scope is intended for visual observations, we choose
λ0 = 550 nm, corresponding to the maximum sensitiv-
ity of the eye. Objectives for photographic refractors
are usually constructed with λ0 ≈ 425 nm, since normal
photographic plates are most sensitive to the blue part
of the spectrum.

By combining three or even more lenses of different
glasses in the objective, the chromatic aberration can
be corrected still better (as in apochromatic objectives).
Also, special glasses have been developed where the
wavelength dependences of the refractive index cancel
out so well that two lenses already give a very good cor-
rection of the chromatic aberration. They have, however,
hardly been used in astronomy so far.

The largest refractors in the world have an aperture
of about one metre (102 cm in the Yerkes Observatory
telescope (Fig. 3.10), finished in 1897, and 91 cm in the
Lick Observatory telescope (1888)). The aperture ratio
is typically f/10 . . . f/20.

The use of refractors is limited by their small field
of view and awkwardly long structure. Refractors are

Fig. 3.8. Chromatic aberration. Light rays of different colours
are refracted to different focal points (left). The aberration can
be corrected with an achromatic lens consisting of two parts
(right)

Fig. 3.9. The wavelength dependence of the focal length of
a typical achromatic objective for visual observations. The
focal length has a minimum near λ= 550 nm, where the eye
is most sensitive. In bluer light (λ= 450 nm) or in redder
light (λ= 800 nm), the focal length increases by a factor of
about 1.002

used, e. g. for visual observations of binary stars and in
various meridian telescopes for measuring the positions
of stars. In photography they can be used for accurate
position measurements, for example, to find parallaxes.

A wider field of view is obtained by using more
complex lens systems, and telescopes of this kind
are called astrographs. Astrographs have an objective
made up of typically 3–5 lenses and an aperture of
less than 60 cm. The aperture ratio is f/5 . . . f/7 and
the field of view about 5◦. Astrographs are used to
photograph large areas of the sky, e. g. for proper mo-
tion studies and for statistical brightness studies of the
stars.

Reflectors. The most common telescope type in astro-
physical research is the mirror telescope or reflector.
As a light-collecting surface, it employs a mirror
coated with a thin layer of aluminium. The form of
the mirror is usually parabolic. A parabolic mirror
reflects all light rays entering the telescope parallel
to the main axis into the same focal point. The im-
age formed at this point can be observed through an
eyepiece or registered with a detector. One of the
advantages of reflectors is the absence of chromatic
aberration, since all wavelengths are reflected to the
same point.

In the very largest telescopes, the observer can sit
with his instruments in a special cage at the primary
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Fig. 3.10. The largest refractor in the world is at the Yerkes Observatory, University of Chicago. It has an objective lens with
a diameter of 102 cm. (Photo by Yerkes Observatory)



54

3. Observations and Instruments

Fig. 3.11. Different locations of the focus in reflectors: pri-
mary focus, Newton focus, Cassegrain focus and coudé
focus. The coudé system in this figure cannot be used for

observations near the celestial pole. More complex coudé sys-
tems usually have three flat mirrors after the primary and
secondary mirrors

focus (Fig. 3.11) without eclipsing too much of the in-
coming light. In smaller telescopes, this is not possible,
and the image must be inspected from outside the tele-
scope. In modern telescopes instruments are remotely
controlled, and the observer must stay away from the
telescope to reduce thermal turbulence.

In 1663 James Gregory (1638–1675) described a re-
flector. The first practical reflector, however, was built
by Isaac Newton. He guided the light perpendicularly
out from the telescope with a small flat mirror. There-
fore the focus of the image in such a system is called the
Newton focus. A typical aperture ratio of a Newtonian
telescope is f/3 . . . f/10. Another possibility is to bore
a hole at the centre of the primary mirror and reflect
the rays through it with a small hyperbolic secondary
mirror in the front end of the telescope. In such a de-
sign, the rays meet in the Cassegrain focus. Cassegrain
systems have aperture ratios of f/8 . . . f/15.

The effective focal length ( fe) of a Cassegrain tele-
scope is determined by the position and convexity of
the secondary mirror. Using the notations of Fig. 3.12,
we get

fe = b

a
fp . (3.8)

If we choose a � b, we have fe 	 fp. In this way one
can construct short telescopes with long focal lengths.
Cassegrain systems are especially well suited for spec-
trographic, photometric and other instruments, which
can be mounted in the secondary focus, easily accessible
to the observers.

Fig. 3.12. The principle of a Cassegrain reflector. A concave
(paraboloid) primary mirror M1 reflects the light rays parallel
to the main axis towards the primary focus S1. A convex sec-
ondary mirror M2 (hyperboloid) reflects the rays back through
a small hole at the centre of the main mirror to the secondary
focus S2 outside the telescope

More complicated arrangements use several mirrors
to guide the light through the declination axis of the
telescope to a fixed coudé focus (from the French word
couder, to bend), which can even be situated in a sepa-
rate room near the telescope (Fig. 3.13). The focal length
is thus very long and the aperture ratio f/30 . . . f/40.
The coudé focus is used mainly for accurate spec-
troscopy, since the large spectrographs can be stationary
and their temperature can be held accurately constant.
A drawback is that much light is lost in the reflections in
the several mirrors of the coudé system. An aluminized
mirror reflects about 80% of the light falling on it, and
thus in a coudé system of, e. g. five mirrors (including
the primary and secondary mirrors), only 0.85 ≈ 30%
of the light reaches the detector.
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Fig. 3.13. The coudè system of the Kitt Peak 2.1 m reflector. (Drawing National Optical Astronomy Observatories, Kitt Peak
National Observatory)

The reflector has its own aberration, coma. It affects
images displaced from the optical axis. Light rays do
not converge at one point, but form a figure like a comet.
Due to the coma, the classical reflector with a paraboloid
mirror has a very small correct field of view. The coma
limits the diameter of the useful field to 2–20 minutes of
arc, depending on the aperture ratio of the telescope. The
5 m Palomar telescope, for instance, has a useful field
of view of about 4′, corresponding to about one-eighth
of the diameter of the Moon. In practice, the small field
of view can be enlarged by various correcting lenses.

If the primary mirror were spherical, there would
be no coma. However, this kind of mirror has its own
error, spherical aberration: light rays from the cen-
tre and edges converge at different points. To remove
the spherical aberration, the Estonian astronomer Bern-
hard Schmidt developed a thin correcting lens that is
placed in the way of the incoming light. Schmidt cam-
eras (Figs. 3.14 and 3.15) have a very wide (about 7◦),
nearly faultless field of view, and the correcting lens is

Fig. 3.14. The principle of the Schmidt camera. A correcting
glass at the centre of curvature of a concave spherical mirror
deviates parallel rays of light and compensates for the spheri-
cal aberration of the spherical mirror. (In the figure, the form
of the correcting glass and the change of direction of the light
rays have been greatly exaggerated.) Since the correcting glass
lies at the centre of curvature, the image is practically inde-
pendent of the incoming angle of the light rays. Thus there is
no coma or astigmatism, and the images of stars are points on
a spherical surface at a distance of R/2, where R is the radius
of curvature of the spherical mirror. In photography, the plate
must be bent into the form of the focal surface, or the field
rectified with a corrector lens
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so thin that it absorbs very little light. The images of the
stars are very sharp.

In Schmidt telescopes the diaphragm with the cor-
recting lens is positioned at the centre of the radius
of curvature of the mirror (this radius equals twice the
focal length). To collect all the light from the edges
of the field of view, the diameter of the mirror must
be larger than that of the correcting glass. The Palomar
Schmidt camera, for example, has an aperture of 122 cm
(correcting lens)/183 cm (mirror) and a focal length of
300 cm. The largest Schmidt telescope in the world is
in Tautenburg, Germany, and its corresponding values
are 134/203/400 cm.

A disadvantage of the Schmidt telescope is the curved
focal plane, consisting of a part of a sphere. When the
telescope is used for photography, the plate must be
bent along the curved focal plane. Another possibility
of correcting the curvature of the field of view is to
use an extra correcting lens near the focal plane. Such
a solution was developed by the Finnish astronomer
Yrjö Väisälä in the 1930’s, independently of Schmidt.
Schmidt cameras have proved to be very effective in
mapping the sky. They have been used to photograph
the Palomar Sky Atlas mentioned in the previous chapter
and its continuation, the ESO/SRC Southern Sky Atlas.

The Schmidt camera is an example of a catadiop-
tric telescope, which has both lenses and mirrors.
Schmidt–Cassegrain telescopes used by many amateurs
are modifications of the Schmidt camera. They have
a secondary mirror mounted at the centre of the correct-
ing lens; the mirror reflects the image through a hole in
the primary mirror. Thus the effective focal length can
be rather long, although the telescope itself is very short.
Another common catadioptric telescope is the Maksu-
tov telescope. Both surfaces of the correcting lens as
well as the primary mirror of a Maksutov telescope are
concentric spheres.

Another way of removing the coma of the classical
reflectors is to use more complicated mirror surfaces.
The Ritchey–Chrétien system has hyperboloidal pri-
mary and secondary mirrors, providing a fairly wide
useful field of view. Ritchey–Chrétien optics are used
in many large telescopes.

Fig. 3.15.� The large Schmidt telescope of the European South-
ern Observatory. The diameter of the mirror is 1.62 m and of
the free aperture 1 m. (Photo ESO)

Mountings of Telescopes. A telescope has to be
mounted on a steady support to prevent its shaking,
and it must be smoothly rotated during observations.
There are two principal types of mounting, equatorial
and azimuthal (Fig. 3.16).

In the equatorial mounting, one of the axes is directed
towards the celestial pole. It is called the polar axis
or hour axis. The other one, the declination axis, is
perpendicular to it. Since the hour axis is parallel to the
axis of the Earth, the apparent rotation of the sky can
be compensated for by turning the telescope around this
axis at a constant rate.

The declination axis is the main technical problem of
the equatorial mounting. When the telescope is pointing
to the south its weight causes a force perpendicular to
the axis. When the telescope is tracking an object and
turns westward, the bearings must take an increasing
load parallel with the declination axis.

In the azimuthal mounting, one of the axes is ver-
tical, the other one horizontal. This mounting is easier
to construct than the equatorial mounting and is more
stable for very large telescopes. In order to follow
the rotation of the sky, the telescope must be turned
around both of the axes with changing velocities.
The field of view will also rotate; this rotation must
be compensated for when the telescope is used for
photography.

If an object goes close to the zenith, its azimuth will
change 180◦ in a very short time. Therefore, around the
zenith there is a small region where observations with
an azimuthal telescope are not possible.

The largest telescopes in the world were equato-
rially mounted until the development of computers
made possible the more complicated guidance needed
for azimuthal mountings. Most of the recently built
large telescopes are already azimuthally mounted. Az-
imuthally mounted telescopes have two additional
obvious places for foci, the Nasmyth foci at both ends
of the horizontal axis.

The Dobson mounting, used in many amateur
telescopes, is azimuthal. The magnification of the New-
tonian telescope is usually small, and the telescope rests
on pieces of teflon, which make it very easy to move.
Thus the object can easily be tracked manually.

Another type of mounting is the coelostat, where ro-
tating mirrors guide the light into a stationary telescope.
This system is used especially in solar telescopes.
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Fig. 3.16. The equatorial mounting (left) and the azimuthal mounting (right)

To measure absolute positions of stars and accurate
time, telescopes aligned with the north–south direction
are used. They can be rotated around one axis only, the
east–west horizontal axis. Meridian circles or transit
instruments with this kind of mounting were widely
constructed for different observatories during the 19th
century. A few are still used for astrometry, but they
are now highly automatic like the meridian circle on La
Palma funded by the Carlsberg foundation.

New Techniques. Detectors are already approaching
the theoretical limit of efficiency, where all incident
photons are registered. Ultimately, to detect even fainter
objects the only solution is to increase the light gath-
ering area, but also the mirrors are getting close to the
practical maximum size. Thus, new technical solutions
are needed.

One new feature is active optics, used e.g. in the ESO
3.5 metre NTT telescope (New Technology Telescope)
at La Silla, Chile. The mirror is very thin, but its shape
is kept exactly correct by a computer controlled support
mechanism. The weight and production cost of such
a mirror are much smaller compared with a conventional

thick mirror. Because of the smaller weight also the
supporting structure can be made lighter.

Developing the support mechanism further leads to
adaptive optics. A reference star (or an artificial beam)
is monitored constantly in order to obtain the shape
of the seeing disk. The shape of the main mirror or
a smaller auxiliary mirror is adjusted up to hundreds
of times a second to keep the image as concentrated
as possible. Adaptive optics has been taken into use in
the largest telescopes of the world from about the year
2000 on.

Fig. 3.17a–c. �The largest telescopes in the world in 1947–
2000. (a) For nearly 30 years, the 5.1 m Hale telescope on
Mount Palomar, California, USA, was the largest telescope
in the world. (b) The BTA, Big Azimuthal Telescope, is situ-
ated in the Caucasus in the southern Soviet Union. Its mirror
has a diameter of 6 m. It was set in operation at the end of
1975. (c) The William M. Keck Telescope on the summit of
Mauna Kea, Hawaii, was completed in 1992. The 10 m mirror
consists of 36 hexagonal segments. (Photos Palomar Ob-
servatory, Spetsialnaya Astrofizitsheskaya Observatorya, and
Roger Ressmeyer – Starlight for the California Association
for Research in Astronomy)
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Fig. 3.19. The mirror of
a telescope can be made
up of several smaller seg-
ments, which are much
easier to manufacture, as
in the Hobby–Eberle Tele-
scope on Mount Fowlkes,
Texas. The effective diam-
eter of the mirror is 9.1 m.
A similar telescope is being
built in South Africa. (Photo
MacDonald Observatory)

Fig. 3.18a–c.� Some new large telescopes. (a) The 8.1 m
Gemini North telescope on Mauna Kea, Hawaii, was set in
operation in 1999. Its twin, Gemini South, was dedicated in
2000. (b) The European Southern Observatory (ESO) was
founded by Belgium, France, the Netherlands, Sweden and
West Germany in 1962. Other European countries have joined
them later. The VLT (Very Large Telescope) on Cerro Paranal
in Northern Chile, was inaugurated in 1998–2000. (c) The
first big Japanese telescope, the 8.3 m Subaru on Mauna Kea,
Hawaii, started observations in 1999. (Photos National Optical
Astronomy Observatories, European Southern Observatory
and Subaru Observatory)

The mirrors of large telescopes need not be mono-
lithic, but can be made of smaller pieces that are, e. g.
hexagonal. These mosaic mirrors are very light and can
be used to build up mirrors with diameters of several tens
of metres (Fig. 3.19). Using active optics, the hexagons
can be accurately focussed. The California Association
for Research in Astronomy has constructed the William
M. Keck telescope with a 10 m mosaic mirror. It is
located on Mauna Kea, and the last segment was in-
stalled in 1992. A second, similar telescope Keck II was
completed in 1996, the pair forming a huge binocular
telescope.

The reflecting surface does not have to be continu-
ous, but can consist of several separate mirrors. Such
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Fig. 3.20. The Hubble
Space Telescope after the
latest service flight in 2002.
The telescope got new so-
lar panels and several other
upgrades. (Photo NASA)

a telescope was operating on Mount Hopkins, Arizona,
in 1979–1999. It was the Multiple-Mirror Telescope
(MMT) with six 1.8 m mirrors together correspond-
ing to a single mirror having a diameter of 4.5 m.
In 2000 the six mirrors were replaced by one 6.5 m
mirror.

The European Southern Observatory has constructed
its own multi-mirror telescope. ESO’s Very Large Tele-
scope (VLT) has four closely located mirrors (Fig. 3.18).
The diameter of each mirror is eight metres, and the to-
tal area corresponds to one telescope with a 16 m mirror.
The resolution is even better, since the “aperture”, i. e.
the maximum distance between the mirrors, is several
tens of meters.

An important astronomical instruments of the 20th
century is the Hubble Space Telescope, launched in 1990
(Fig. 3.20). It has a mirror with a diameter of 2.4 m. The
resolution of the telescope (after the faulty optics was
corrected) is near the theoretical diffraction limit, since
there is no disturbing atmosphere. A second generation
Space Telescope, now called the James Webb Space
Telescope, with a mirror of about 6.5 m is planned to be
launched in about 2011.

The Hubble Space Telescope was the first large opti-
cal telescope in Earth orbit. In the future, satellites will
continue to be mainly used for those wavelength regions
where the radiation is absorbed by the atmosphere. Due
to budgetary reasons, the majority of astronomical ob-

servations will still be carried out on the Earth, and
great attention will be given to improving ground-based
observatories and detectors.

3.3 Detectors and Instruments

Only a limited amount of information can be obtained
by looking through a telescope with the unaided eye.
Until the end of the 19th century this was the only way
to make observations. The invention of photography in
the middle of the 19th century brought a revolution in
astronomy. The next important step forward in optical
astronomy was the development of photoelectric pho-
tometry in the 1940’s and 1950’s. A new revolution,
comparable to that caused by the invention of photog-
raphy, took place in the middle of the 1970’s with the
introduction of different semiconductor detectors. The
sensitivity of detectors has grown so much that today,
a 60 cm telescope can be used for observations similar
to those made with the Palomar 5 m telescope when it
was set in operation in the 1940’s.

The Photographic Plate. Photography has long been
one of the most common methods of observation in
astronomy. In astronomical photography glass plates
were used, rather than film, since they keep their shape
better, but nowadays they are no more manufactured,
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and CCD-cameras have largely replaced photography.
The sensitive layer on the surface of the film or plate
is made up of a silver halide, usually silver bromide,
AgBr. A photon absorbed by the halide excites an elec-
tron that can move from one atom to another. A silver
ion, Ag+, can catch the electron, becoming a neutral
atom. When the necessary amount of silver atoms have
been accumulated at one place, they form a latent image.
The latent image can be made into a permanent nega-
tive by treating the plate after exposure with various
chemicals, which transform the silver bromide crystals
enclosing the latent image into silver (“development”),
and remove the unexposed crystals (“fixing”).

The photographic plate has many advantages over
the human eye. The plate can register up to millions of
stars (picture elements) at one time, while the eye can
observe at most one or two objects at a time. The image
on a plate is practically permanent – the picture can be
studied at any time. In addition, the photographic plate
is cheap and easy to use, as compared to many other
detectors. The most important feature of a plate is its
capability to collect light over an extended time: the
longer exposures are used, the more silver atoms are
formed on the plate (the plate darkens). By increasing
the exposure times, fainter objects can be photographed.
The eye has no such capacity: if a faint object does not
show through a telescope, it cannot been seen, no matter
how long one stares.

One disadvantage of the photographic plate is its low
sensitivity. Only one photon in a thousand causes a re-
action leading to the formation of a silver grain. Thus
the quantum efficiency of the plate is only 0.1%. Several
chemical treatments can be used to sensitize the plate
before exposure. This brings the quantum efficiency
up to a few percent. Another disadvantage is the fact
that a silver bromide crystal that has been exposed once
does not register anything more, i. e. a saturation point is
reached. On the other hand, a certain number of photons
are needed to produce an image. Doubling the number
of photons does not necessarily double the density (the
‘blackness’ of the image): the density of the plate de-
pends nonlinearly on the amount of incoming light. The
sensitivity of the plate is also strongly dependent on
the wavelength of the light. For the reasons mentioned
above the accuracy with which brightness can be mea-
sured on a photographic plate is usually worse than
about 5%. Thus the photographic plate makes a poor

photometer, but it can be excellently used, e. g. for mea-
suring the positions of stars (positional astronomy) and
for mapping the sky.

Photocathodes, Photomultipliers. A photocathode is
a more effective detector than the photographic plate.
It is based on the photoelectric effect. A light quantum,
or photon, hits the photocathode and loosens an elec-
tron. The electron moves to the positive electrode, or
anode, and gives rise to an electric current that can be
measured. The quantum efficiency of a photocathode is
about 10–20 times better than that of a photographic
plate; optimally, an efficiency of 30% can be reached.
A photocathode is also a linear detector: if the number
of electrons is doubled, the outcoming current is also
doubled.

The photomultiplier is one of the most important
applications of the photocathode. In this device, the
electrons leaving the photocathode hit a dynode. For
each electron hitting the dynode, several others are re-
leased. When there are several dynodes in a row, the
original weak current can be intensified a millionfold.
The photomultiplier measures all the light entering it,
but does not form an image. Photomultipliers are mostly
used in photometry, and an accuracy of 0.1–1% can be
attained.

Photometers, Polarimeters. A detector measuring
brightness, a photometer, is usually located behind the
telescope in the Cassegrain focus. In the focal plane
there is a small hole, the diaphragm, which lets through
light from the object under observation. In this way,
light from other stars in the field of view can be pre-
vented from entering the photometer. A field lens behind
the diaphragm refracts the light rays onto a photocath-
ode. The outcoming current is intensified further in
a preamplifier. The photomultiplier needs a voltage of
1000–1500 volts.

Observations are often made in a certain wavelength
interval, instead of measuring all the radiation enter-
ing the detector. In this case a filter is used to prevent
other wavelengths from reaching the photomultiplier.
A photometer can also consist of several photomultipli-
ers (Fig. 3.21), which measure simultaneously different
wavelength bands. In such an instrument beam splitters
or semitransparent mirrors split the light beam through
fixed filters to the photomultipliers.
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Fig. 3.21. The principle of a photoelectric multicolour pho-
tometer. Light collected by the telescope arrives from the left.
The light enters the photometer through a small hole in the
focal plane, the diaphragm. A lens collimates the light into
a parallel beam. Semitransparent mirrors divide the beam to
several photomultipliers. A field lens guides the light through
a filter onto the photocathode of the photomultiplier. The
quanta of light, photons, release electrons from the cathodes.
The electrons are accelerated towards the dynodes with a volt-
age of about 1500 V. The electrons hitting the dynodes release
still more electrons, and the current is greatly enhanced. Ev-
ery electron emitted from the cathode gives rise to a pulse of
up to 108 electrons at the anode; the pulse is amplified and
registered by a pulse counter. In this way, the photons from
the star are counted

In a device called the photopolarimeter, a polarizing
filter is used, either alone or in combination with other
filters. The degree and direction of polarization can be
found by measuring the intensity of the radiation with
different orientations of the polarizers.

In practice, the diaphragm of a photometer will al-
ways also let through part of the background sky around
the observed object. The measured brightness is in re-
ality the combined brightness of the object and the sky.
In order to find the brightness of the object, the back-
ground brightness must be measured separately and
subtracted from the combined brightness. The accuracy
of the measurements is decreased if long observation
times are used and the background brightness undergoes
fast changes. The problem can be solved by observing
the brightness of the background sky and the object
simultaneously.

Photometric observations are often relative. If one is
observing, e. g. a variable star, a reference star close to

the actual target is observed at regular intervals. Using
the observations of this reference star it is possible to
derive a model for the slow changes in the atmospheric
extinction (see Chap. 4) and remove their effect. The in-
strument can be calibrated by observing some standard
stars, whose brightness is known very accurately.

Image Intensifiers. Different image intensifiers based
on the photocathode have been used since the 1960’s. In
the intensifier the information about the starting point
of the electron on the photocathode is preserved and the
intensified image is formed on a fluorescent screen. The
image can then be registered, e. g. with a CCD camera.
One of the advantages of the image intensifier is that
even faint objects can be imaged using relatively short
exposures, and observations can be made at wavelengths
where the detector is insensitive.

Another common type of detector is based on the
TV camera (Vidicon camera). The electrons released
from the photocathode are accelerated with a voltage of
a few kilovolts before they hit the electrode where they
form an image in the form of an electric charge dis-
tribution. After exposure, the charge at different points
of the electrode is read by scanning its surface with an
electron beam row by row. This produces a video sig-
nal, which can be transformed into a visible image on
a TV tube. The information can also be saved in digital
form. In the most advanced systems, the scintillations
caused by single electrons on the fluorescent screen of
the image intensifier can be registered and stored in the
memory of a computer. For each point in the image
there is a memory location, called a picture element or
pixel.

Since the middle of the 1970’s, detectors using
semiconductor techniques began to be used in increas-
ing numbers. With semiconductor detectors a quantum
efficiency of about 70–80% can be attained; thus, sensi-
tivity cannot be improved much more. The wavelength
regions suitable for these new detectors are much wider
than in the case of the photographic plate. The detec-
tors are also linear. Computers are used for collecting,
saving and analyzing the output data available in digital
form.

CCD Camera. The most important new detector is the
CCD camera (Charge Coupled Device). The detector
consists of a surface made up of light sensitive silicon
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Fig. 3.22a–e. The principle of reading a CCD camera. (a) Dur-
ing an exposure electrons are trapped in potential wells
corresponding to pixels of the camera. The number at each
pixel shows the number of electrons. (b) After the expo-
sure each horizontal line is moved one pixel to the right;
the rightmost row moves to the readout buffer. (c) The con-

tents of the buffer is moved down by one pixel. The lowermost
charge moves to the A/D converter, which sends the number
of electrons to the computer. (d) After moving the buffer down
several times one vertical row has been read. (e) The image
is again shifted right by one pixel. This procedure is repeated
till the whole image is read

diodes, arranged in a rectangular array of image ele-
ments or pixels. The largest cameras can have as many
as 4096×4096 pixels, although most are considerably
smaller.

A photon hitting the detector can release an elec-
tron, which will remain trapped inside a pixel. After
the exposure varying potential differences are used to
move the accumulated charges row by row to a read-
out buffer. In the buffer the charges are moved pixel by
pixel to an analogy/digital converter, which transmits
the digital value to a computer. Reading an image also
clears the detector (Fig. 3.22). If the exposures are very
short the readout times may take a substantial part of
the observing time.

The CCD camera is nearly linear: the number of
electrons is directly proportional to the number of pho-
tons. Calibration of the data is much easier than with
photographic plates.

The quantum efficiency, i. e. the number of electrons
per incident photon, is high, and the CCD camera is

much more sensitive than a photographic plate. The
sensitivity is highest in the red wavelength range, about
600–800 nm, where the quantum efficiency can be
80–90% or even higher.

The range of the camera extends far to the infrared. In
the ultraviolet the sensitivity drops due to the absorption
of the silicon very rapidly below about 500 nm. Two
methods have been used to avoid this problem. One is
to use a coating that absorbs the ultraviolet photons and
emits light of longer wavelength. Another possibility is
to turn the chip upside down and make it very thin to
reduce the absorption.

The thermal noise of the camera generates dark cur-
rent even if the camera is in total darkness. To reduce
the noise the camera must be cooled. Astronomical CCD
cameras are usually cooled with liquid nitrogen, which
efficiently removes most of the dark current. How-
ever, the sensitivity is also reduced when the camera
is cooled; so too cold is not good either. The tempera-
ture must be kept constant in order to obtain consistent
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data. For amateurs there are already moderately priced
CCD cameras, which are electrically cooled. Many of
them are good enough also for scientific work, if very
high sensitivity is not required.

The dark current can easily be measured by taking
exposures with the shutter closed. Subtracting this from
the observed image gives the real number of electrons
due to incident light.

The sensitivity of individual pixels may be slightly
different. This can be corrected for by taking an im-
age of an evenly illuminated field, like a twilight sky.
This image is called a flat-field. When observations are
divided by the flat-field, the error caused by different
pixels is removed.

The CCD camera is very stable. Therefore it is
not necessary to repeat the dark current and flat-field
observations very frequently. Typically these calibra-
tion exposures are taken during evening and morning
twilights, just before and after actual observations.

Cosmic rays are charged particles that can produce
extraneous bright dots in CCD images. They are usually
limited to one or two pixels, and are easily identified.
Typically a short exposure of a few minutes contains
a few traces of cosmic rays. Instead of a single long
exposure it is usually better to take several short ones,
clean the images from cosmic rays, and finally add the
images on a computer.

A more serious problem is the readout noise of the
electronics. In the first cameras it could be hundreds
of electrons per pixel. In modern cameras it is a few
electrons. This gives a limit to the faintest detectable
signal: if the signal is weaker than the readout noise, it
is indistinguishable from the noise.

Although the CCD camera is a very sensitive
detector, even bright light cannot damage it. A pho-
tomultiplier, on the other hand, can be easily destroyed
by letting in too much light. However, one pixel can
only store a certain number of electrons, after which
it becomes saturated. Excessive saturation can make
the charge to overflow also to the neighboring pixels.
If the camera becomes badly saturated it may have
to be read several times to completely remove the
charges.

The largest CCD cameras are quite expensive, and
even they are still rather small compared with photo-
graphic plates and films. Therefore photography still
has some use in recording extended objects.

Spectrographs. The simplest spectrograph is a prism
that is placed in front of a telescope. This kind of de-
vice is called the objective prism spectrograph. The
prism spreads out the different wavelengths of light
into a spectrum which can be registered. During the
exposure, the telescope is usually slightly moved per-
pendicularly to the spectrum, in order to increase the
width of the spectrum. With an objective prism spectro-
graph, large numbers of spectra can be photographed,
e. g. for spectral classification.

For more accurate information the slit spectrograph
must be used (Fig. 3.23). It has a narrow slit in the fo-
cal plane of the telescope. The light is guided through
the slit to a collimator that reflects or refracts all the
light rays into a parallel beam. After this, the light is
dispersed into a spectrum by a prism and focused with
a camera onto a detector, which nowadays is usually
a CCD camera. A comparison spectrum is exposed next
to the stellar spectrum to determine the precise wave-
lengths. In modern spectrographs using CCD cameras,
the comparison spectrum is usually exposed as a sepa-
rate image. A big slit spectrograph is often placed at the
coudé or Nasmyth focus of the telescope.

Instead of the prism a diffraction grating can be used
to form the spectrum. A grating has narrow grooves,
side by side, typically several hundred per millimetre.
When light is reflected by the walls of the grooves, the
adjoining rays interfere with each other and give rise
to spectra of different orders. There are two kinds of
gratings: reflection and transmission gratings. In a re-
flection grating no light is absorbed by the glass as in
the prism or transmission grating. A grating usually
has higher dispersion, or ability to spread the spectrum,

Fig. 3.23. The principle of the slit spectrograph. Light rays
entering through a slit are collimated (made parallel to each
other), dispersed into a spectrum by a prism and projected
onto a photographic plate or a CCD
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than a prism. The dispersion can be increased by in-
creasing the density of the grooves of the grating. In slit
spectrographs the reflection grating is most commonly
used.

Interferometers. The resolution of a big telescope is
in practice limited by seeing, and thus increasing the
aperture does not necessarily improve the resolution.
To get nearer to the theoretical resolution limit set by
diffraction (Fig. 3.6), different interferometers can be
used.

There are two types of optical interferometers. One
kind uses an existing large telescope; the other a system
of two or more separate telescopes. In both cases the
light rays are allowed to interfere. By analyzing the
outcoming interference pattern, the structures of close
binaries can be studied, apparent angular diameters of
the stars can be measured, etc.

One of the earliest interferometers was the Michelson
interferometer that was built shortly before 1920 for the
largest telescope of that time. In front of the telescope,
at the ends of a six metre long beam, there were flat
mirrors reflecting the light into the telescope. The form
of the interference pattern changed when the separation
of the mirrors was varied. In practice, the interference
pattern was disturbed by seeing, and only a few positive
results were obtained with this instrument.

The diameters of over 30 of the brightest stars have
been measured using intensity interferometers. Such
a device consists of two separate telescopes that can be
moved in relation to each other. This method is suitable
for the brightest objects only.

In 1970 the Frenchman Antoine Labeyrie introduced
the principle of speckle interferometry. In traditional
imaging the pictures from long exposures consist of
a large number of instantaneous images, “speckles”, that
together form the seeing disc. In speckle interferometry
very short exposures and large magnifications are used
and hundreds of pictures are taken. When these pictures
are combined and analyzed (usually in digital form),
the actual resolution of the telescope can nearly be
reached.

The accuracy of interferometric techniques was im-
proved at the beginning of 00’s. The first experiments
to use the two 10 m Keck telescopes as one interfero-
meter, were made in 2001. Similarly, the ESO VLT will
be used as an interferometer.

3.4 Radio Telescopes

Radio astronomy represents a relatively new branch
of astronomy. It covers a frequency range from a few
megahertz (100 m) up to frequencies of about 300 GHz
(1 mm), thereby extending the observable electromag-
netic spectrum by many orders of magnitude. The
low-frequency limit of the radio band is determined by
the opacity of the ionosphere, while the high-frequency
limit is due to the strong absorption from oxygen and
water bands in the lower atmosphere. Neither of these
limits is very strict, and under favourable conditions ra-
dio astronomers can work into the submillimetre region
or through ionospheric holes during sunspot minima.

At the beginning of the 20th century attempts were
made to observe radio emission from the Sun. These
experiments, however, failed because of the low sensi-
tivity of the antenna–receiver systems, and because of
the opaqueness of the ionosphere at the low frequen-
cies at which most of the experiments were carried out.
The first observations of cosmic radio emission were
later made by the American engineer Karl G. Jansky in
1932, while studying thunderstorm radio disturbances
at a frequency of 20.5 MHz (14.6 m). He discovered
radio emission of unknown origin, which varied within
a 24 hour period. Somewhat later he identified the source
of this radiation to be in the direction of the centre of
our Galaxy.

The real birth of radio astronomy may perhaps be
dated to the late 1930’s, when Grote Reber started
systematic observations with his homemade 9.5 m
paraboloid antenna. Thereafter radio astronomy de-
veloped quite rapidly and has greatly improved our
knowledge of the Universe.

Observations are made both in the continuum (broad
band) and in spectral lines (radio spectroscopy). Much
of our knowledge about the structure of our Milky Way
comes from radio observations of the 21 cm line of neu-
tral hydrogen and, more recently, from the 2.6 mm line
of the carbon monoxide molecule. Radio astronomy has
resulted in many important discoveries; e. g. both pul-
sars and quasars were first found by radio astronomical
observations. The importance of the field can also be
seen from the fact that the Nobel prize in physics has
recently been awarded twice to radio astronomers.

A radio telescope collects radiation in an aperture
or antenna, from which it is transformed to an electric



70

3. Observations and Instruments

signal by a receiver, called a radiometer. This signal is
then amplified, detected and integrated, and the output
is registered on some recording device, nowadays usu-
ally by a computer. Because the received signal is very
weak, one has to use sensitive receivers. These are of-
ten cooled to minimize the noise, which could otherwise
mask the signal from the source. Because radio waves
are electromagnetic radiation, they are reflected and re-
fracted like ordinary light waves. In radio astronomy,
however, mostly reflecting telescopes are used.

At low frequencies the antennas are usually dipoles
(similar to those used for radio or TV), but in order to
increase the collecting area and improve the resolution,
one uses dipole arrays, where all dipole elements are
connected to each other.

The most common antenna type, however, is
a parabolic reflector, which works exactly as an opti-
cal mirror telescope. At long wavelengths the reflecting
surface does not need to be solid, because the long
wavelength photons cannot see the holes in the reflec-
tor, and the antenna is therefore usually made in the

Fig. 3.24. The largest radio telescope in the world is the
Arecibo dish in Puerto Rico. It has been constructed over

a natural bowl and is 300 m in diameter. (Photo Arecibo
Observatory)

form of a metal mesh. At high frequencies the surface
has to be smooth, and in the millimetre-submillimetre
range, radio astronomers even use large optical tele-
scopes, which they equip with their own radiometers.
To ensure a coherent amplification of the signal, the sur-
face irregularities should be less than one-tenth of the
wavelength used.

The main difference between a radio telescope and
an optical telescope is in the recording of the signal.
Radio telescopes are not imaging telescopes (except
for synthesis telescopes, which will be described later);
instead, a feed horn, which is located at the antenna
focus, transfers the signal to a receiver. The wavelength
and phase information is, however, preserved.

The resolving power of a radio telescope, θ, can
be deduced from the same formula (3.4) as for opti-
cal telescopes, i. e. λ/D, where λ is the wavelength
used and D is the diameter of the aperture. Since the
wavelength ratio between radio and visible light is of
the order of 10,000, radio antennas with diameters of
several kilometres are needed in order to achieve the
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Fig. 3.25. The largest fully steerable radio telescope is in Green Bank, Virginia. Its diameter is 100×110 m. (Photo NRAO)

same resolution as for optical telescopes. In the early
days of radio astronomy poor resolution was the biggest
drawback for the development and recognition of radio
astronomy. For example, the antenna used by Jansky
had a fan beam with a resolution of about 30◦ in the
narrower direction. Therefore radio observations could
not be compared with optical observations. Neither was
it possible to identify the radio sources with optical
counterparts.

The world’s biggest radio telescope is the Arecibo an-
tenna in Puerto Rico, whose main reflector is fixed and
built into a 305 m diameter, natural round valley cov-
ered by a metal mesh (Fig. 3.24). In the late 1970’s the
antenna surface and receivers were upgraded, enabling
the antenna to be used down to wavelengths of 5 cm.
The mirror of the Arecibo telescope is not parabolic but
spherical, and the antenna is equipped with a movable
feed system, which makes observations possible within
a 20◦ radius around the zenith.

The biggest completely steerable radio telescope is
the Green Bank telescope in Virginia, U.S.A., dedicated
at the end of 2000. It is slightly asymmetric with a di-

ameter of 100×110 m (Fig. 3.25). Before the Green
Bank telescope, for over two decades the largest tele-
scope was the Effelsberg telescope in Germany. This
antenna has a parabolic main reflector with a diameter
of 100 m. The inner 80 m of the dish is made of solid
aluminium panels, while the outmost portion of the disk
is a metal mesh structure. By using only the inner por-
tion of the telescope, it has been possible to observe
down to wavelengths of 4 mm. The oldest and perhaps
best-known big radio telescope is the 76 m antenna at
Jodrell Bank in Britain, which was completed in the end
of the 1950’s.

The biggest telescopes are usually incapable of op-
erating below wavelengths of 1 cm, because the surface
cannot be made accurate enough. However, the millime-
tre range has become more and more important. In this
wavelength range there are many transitions of interstel-
lar molecules, and one can achieve quite high angular
resolution even with a single dish telescope. At present,
the typical size of a mirror of a millimetre telescope is
about 15 m. The development of this field is rapid, and
at present several big millimetre telescopes are in opera-
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Fig. 3.26. The 15 metre
Maxwell submillimetre
telescope on Mauna Kea,
Hawaii, is located in a dry
climate at an altitude
of 4100 m. Observations
can be made down to
wavelengths of 0.5 mm.
(Photo Royal Observatory,
Edinburgh)

tion (Table C.24). Among them are the 40 m Nobeyama
telescope in Japan, which can be used down to 3 mm,
the 30 m IRAM telescope at Pico Veleta in Spain, which
is usable down to 1 mm, and the 15 m UK James Clerk
Maxwell Telescope on Mauna Kea, Hawaii, operating
down to 0.5 mm (Fig. 3.26). The largest project in the
first decade of the 21st century is ALMA (Atacama
Large Millimetre Array), which comprises of 50 tele-
scopes with a diameter of 12 m (Fig. 3.27). It will be
built as an international project by the United States,
Europe and Japan.

As already mentioned, the resolving power of a radio
telescope is far poorer than that of an optical telescope.
The biggest radio telescopes can at present reach a reso-
lution of 5 arc seconds, and that only at the very highest

frequencies. To improve the resolution by increasing
the size is difficult, because the present telescopes are
already close to the practical upper limit. However,
by combining radio telescopes and interferometers, it
is possible to achieve even better resolution than with
optical telescopes.

As early as 1891 Michelson used an interferometer
for astronomical purposes. While the use of interfer-
ometers has proved to be quite difficult in the optical
wavelength regime, interferometers are extremely use-
ful in the radio region. To form an interferometer, one
needs at least two antennas coupled together. The spac-
ing between the antennas, D, is called the baseline. Let
us first assume that the baseline is perpendicular to the
line of sight (Fig. 3.28). Then the radiation arrives at
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Fig. 3.27. The Atacama Large Millimetre Array (ALMA) will
be built in cooperation by Europe, U.S.A. and Japan. The

original plan was to have 64 antennas, but for financial reasons
the number has been reduced to 50. (Drawing ESO/NOAJ)

both antennas with the same phase, and the summed
signal shows a maximum. However, due to the rotation
of the Earth, the direction of the baseline changes, pro-
ducing a phase difference between the two signals. The
result is a sinusoidal interference pattern, in which min-
ima occur when the phase difference is 180 degrees.
The distance between the peaks is given by

θD = λ ,

where θ is the angle the baseline has turned and λ is the
wavelength of the received signal. The resolution of the
interferometer is thus equal to that of an antenna with
a linear size equal to D.

If the source is not a point source, the radiation emit-
ted from different parts of the source will have phase
differences when it enters the antennas. In this case the
minima of the interference pattern will not be zero, but
will have some positive value Pmin. If we denote the
maximum value of the interference pattern by Pmax, the

ratio
Pmax − Pmin

Pmax + Pmin

gives a measure of the source size (fringe visibility).

Fig. 3.28. The principle of an interferometer. If the radiation
reaches the radio telescopes in the same phase, the waves am-
plify each other and a maximum is obtained in the combined
radiation (cases 1 and 3). If the incoming waves are in opposite
phase, they cancel each other (case 2)
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More accurate information about the source structure
can be obtained by changing the spacing between the
antennas, i. e. by moving the antennas with respect to
each other. If this is done, interferometry is transformed
into a technique called aperture synthesis.

The theory and techniques of aperture synthesis were
developed by the British astronomer Sir Martin Ryle.
In Fig. 3.29 the principle of aperture synthesis is il-
lustrated. If the telescopes are located on an east–west
track, the spacing between them, projected onto the sky,
will describe a circle or an ellipse, depending on the
position of the source as the the Earth rotates around
its axis. If one varies the distance between the tele-
scopes, one will get a series of circles or ellipses on
the sky during a 12 hour interval. As we can see from
Fig. 3.29, one does not have to cover all the spacings be-
tween the telescopes, because any antenna combination
which has the same relative distance will describe the
same path on the sky. In this way one can synthesize an
antenna, a filled aperture, with a size equal to the max-
imum spacing between the telescopes. Interferometers
working according to this principle are called aperture
synthesis telescopes. If one covers all the spacings up
to the maximum baseline, the result will be an accurate
map of the source over the primary beam of an indi-
vidual antenna element. Aperture synthesis telescopes
therefore produce an image of the sky, i. e. a “radio
photograph”.

A typical aperture synthesis telescope consists of one
fixed telescope and a number of movable telescopes,
usually located on an east–west track, although T or
Y configurations are also quite common. The number
of telescopes used determines how fast one can syn-
thesize a larger disk, because the number of possible
antenna combinations increases as n(n −1), where n is
the number of telescopes. It is also possible to syn-
thesize a large telescope with only one fixed and one
movable telescope by changing the spacing between
the telescopes every 12 hours, but then a full aperture
synthesis can require several months of observing time.
In order for this technique to work, the source must be
constant, i. e. the signal cannot be time variable during
the observing session.

The most efficient aperture synthesis telescope at
present is the VLA (Very Large Array) in New Mexico,
USA (Fig. 3.30). It consists of 27 paraboloid anten-
nas, each with a diameter of 25 m, which are located

Fig. 3.29a–c. To illustrate the principle of aperture synthesis,
let us consider an east–west oriented interferometer pointed
towards the celestial north. Each antenna is identical, has
a diameter D and operates at a wavelength λ. The minimum
spacing between each antenna element is a, and the maximum
spacing is 6a. In (a) there are only two antennas, A and B,
displaced by the maximum spacing 6a. When the earth ro-
tates, antennas A and B will, in the course of 12 hours, track
a circle on the plane of the sky with a diameter λ/(6a), the
maximum resolution that can be achieved with this interfer-
ometer. In (b) the antenna C is added to the interferometer,
thus providing two more baselines, which track the circles AC
and BC with radii of λ/(2a) and λ/(4a), respectively. In (c)
there is still another antenna D added to the interferometer.
In this case two of the baselines are equal, AD and CD, and
therefore only two new circles are covered on the plane of the
sky. By adding more interferometer elements, one can fill in
the missing parts within the primary beam, i. e. the beam of
one single dish, and thus obtain a full coverage of the beam.
It is also evident from (c), that not all of the antenna positions
are needed to provide all the different spacings; some antenna
spacings will in such a case be equal and therefore provide
no additional information. Obtaining a full aperture synthesis
with an east–west interferometer always takes 12 hours, if all
spacings are available. Usually, however, several antenna el-
ements are movable, in which case a full aperture synthesis
can take a long time before all spacings are filled in

on a Y-shaped track. The Y-formation was chosen be-
cause it provides a full aperture synthesis in 8 hours.
Each antenna can be moved by a specially built carrier,
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Fig. 3.30. The VLA at Socorro, New Mexico, is a synthesis telescope consisting of 27 movable antennas

and the locations of the telescopes are chosen to give
optimal spacings for each configuration. In the largest
configuration each arm is about 21 km long, thereby
resulting in an antenna with an effective diameter of
35 km. If the VLA is used in its largest configuration and
at its highest frequency, 23 GHz (1.3 cm), the resolution
achieved is 0.1 arc second, clearly superior to any optical
telescope. Similar resolution can also be obtained with
the British MERLIN telescope, where already existing
telescopes have been coupled together by radio links.
Other well-known synthesis telescopes are the Cam-
bridge 5 km array in Britain and the Westerbork array in
the Netherlands, both located on east–west tracks.

Even higher resolution can be obtained with an ex-
tension of the aperture synthesis technique, called VLBI
(Very Long Baseline Interferometry). With the VLBI
technique the spacing between the antennas is restricted
only by the size of the Earth. VLBI uses existing an-
tennas (often on different continents), which are all
pointed towards the same source. In this case the signal
is recorded together with accurate timing signals from
atomic clocks. The data files are correlated against each

other, resulting in maps similar to those obtained with
a normal aperture synthesis telescope. With VLBI tech-
niques it is possible to achieve resolutions of 0.0001′′.
Because interferometry is very sensitive to the distance
between the telescopes, the VLBI technique also pro-
vides one of the most accurate methods to measure
distances. Currently one can measure distances with
an accuracy of a few centimetres on intercontinental
baselines. This is utilized in geodetic VLBI experi-
ments, which study continental drift and polar motion
as a function of time.

In radio astronomy the maximum size of single an-
tennas has also been reached. The trend is to build
synthesis antennas, similar to the VLA in New Mex-
ico. In the 1990’s The United States built a chain of
antennas extending across the whole continent, and the
Australians have constructed a similar, but north–south
antenna chain across their country.

More and more observations are being made in the
submillimetre region. The disturbing effect of atmo-
spheric water vapour becomes more serious at shorter
wavelengths; thus, submillimetre telescopes must be lo-
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cated on mountain tops, like optical telescopes. All parts
of the mirror are actively controlled in order to accu-
rately maintain the proper form like in the new optical
telescopes. Several new submillimetre telescopes are
under construction.

3.5 Other Wavelength Regions

All wavelengths of the electromagnetic spectrum en-
ter the Earth from the sky. However, as mentioned
in Sect. 3.1, not all radiation reaches the ground. The
wavelength regions absorbed by the atmosphere have
been studied more extensively since the 1970’s, using
Earth-orbiting satellites. Besides the optical and radio
regions, there are only some narrow wavelength ranges
in the infrared that can be observed from high mountain
tops.

The first observations in each new wavelength region
were usually carried out from balloons, but not until
rockets came into use could observations be made from
outside the atmosphere. The first actual observations of
an X-ray source, for instance, were made on a rocket
flight in June 1962, when the detector rose above the
atmosphere for about 6 minutes. Satellites have made it
possible to map the whole sky in the wavelength regions
invisible from the ground.

Gamma Radiation. Gamma ray astronomy stud-
ies radiation quanta with energies of 105–1014 eV.
The boundary between gamma and X-ray astron-
omy, 105 eV, corresponds to a wavelength of 10−11 m.
The boundary is not fixed; the regions of hard
(= high-energy) X-rays and soft gamma rays partly
overlap.

While ultraviolet, visible and infrared radiation are
all produced by changes in the energy states of the
electron envelopes of atoms, gamma and hard X-rays
are produced by transitions in atomic nuclei or in
mutual interactions of elementary particles. Thus ob-
servations of the shortest wavelengths give information
on processes different from those giving rise to longer
wavelengths.

The first observations of gamma sources were ob-
tained at the end of the 1960’s, when a device in
the OSO 3 satellite (Orbiting Solar Observatory) de-
tected gamma rays from the Milky Way. Later on, some

satellites were especially designed for gamma astron-
omy, notably SAS 2, COS B, HEAO 1 and 3, and the
Compton Gamma Ray Observatory. The most effective
satellite at present is the European Integral, launched in
2002.

The quanta of gamma radiation have energies a mil-
lion times greater than those of visible light, but they
cannot be observed with the same detectors. These
observations are made with various scintillation de-
tectors, usually composed of several layers of detector
plates, where gamma radiation is transformed by the
photoelectric effect into visible light, detectable by
photomultipliers.

The energy of a gamma quantum can be determined
from the depth to which it penetrates the detector. An-
alyzing the trails left by the quanta gives information
on their approximate direction. The field of view is lim-
ited by the grating. The directional accuracy is low, and
in gamma astronomy the resolution is far below that in
other wavelength regions.

X-rays. The observational domain of X-ray astronomy
includes the energies between 102 and 105 eV, or the
wavelengths 10–0.01 nm. The regions 10–0.1 nm and
0.1–0.01 nm are called soft and hard X-rays, respec-
tively. X-rays were discovered in the late 19th century.
Systematic studies of the sky at X-ray wavelengths only
became possible in the 1970’s with the advent of satellite
technology.

The first all-sky mapping was made in the early
1970’s by SAS 1 (Small Astronomical Satellite), also
called Uhuru. At the end of the 1970’s, two High-
Energy Astronomy Observatories, HEAO 1 and 2 (the
latter called Einstein), mapped the sky with much higher
sensitivity than Uhuru.

The Einstein Observatory was able to detect sources
about a thousand times fainter than earlier X-ray tele-
scopes. In optical astronomy, this would correspond to
a jump from a 15 cm reflector to a 5 m telescope. Thus
X-ray astronomy has developed in 20 years as much as
optical astronomy in 300 years.

The latest X-ray satellites have been the Ameri-
can Chandra and the European XMM-Newton, both
launched in 1999.

Besides satellites mapping the whole sky, there have
been several satellites observing the X-ray radiation of
the Sun. The first effective telescopes were installed in
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Fig. 3.31. (a) X-rays are not reflected by an ordinary mirror,
and the principle of grazing reflection must be used for col-
lecting them. Radiation meets the paraboloid mirror at a very
small angle, is reflected onto a hyperboloid mirror and further

to a focal point. In practice, several mirrors are placed one in-
side another, collecting radiation in a common focus (b) The
European Integral gamma ray observatory was launched in
2002. (Picture ESA)

the Skylab space station, and they were used to study
the Sun in 1973–74. In the 1990’s, the European Soho
started making regular X-ray observations of the Sun.

The first X-ray telescopes used detectors similar to
those in gamma astronomy. Their directional accuracy
was never better than a few arc minutes. The more pre-
cise X-ray telescopes utilize the principle of grazing
reflection (Fig. 3.31). An X-ray hitting a surface per-
pendicularly is not reflected, but absorbed. If, however,
X-rays meet the mirror nearly parallel to its surface, just
grazing it, a high quality surface can reflect the ray.

The mirror of an X-ray reflector is on the inner sur-
face of a slowly narrowing cone. The outer part of the
surface is a paraboloid and the inner part a hyperboloid.
The rays are reflected by both surfaces and meet at a fo-
cal plane. In practice, several tubes are installed one
within another. For instance, the four cones of the Ein-
stein Observatory had as much polished optical surface
as a normal telescope with a diameter of 2.5 m. The res-
olution in X-ray telescopes is of the order of a few arc
seconds and the field of view about 1 deg.

The detectors in X-ray astronomy are usually
Geiger–Müller counters, proportional counters or scin-
tillation detectors. Geiger–Müller and proportional
counters are boxes filled with gas. The walls form a cath-
ode, and an anode wire runs through the middle of the
box; in more accurate counters, there are several anode
wires. An X-ray quantum entering the box ionizes the
gas, and the potential difference between the anode and
cathode gives rise to a current of electrons and positive
ions.

Ultraviolet Radiation. Between X-rays and the opti-
cal region lies the domain of ultraviolet radiation, with
wavelengths between 10 and 400 nm. Most ultraviolet
observations have been carried out in the soft UV re-
gion, at wavelengths near those of optical light, since
most of the UV radiation is absorbed by the atmosphere.
The wavelengths below 300 nm are completely blocked
out. The short wavelength region from 10 to 91.2 nm is
called the extreme ultraviolet (EUV, XUV).

Extreme ultraviolet was one of the last regions of
the electromagnetic radiation to be observed system-
atically. The reason for this is that the absorption of
interstellar hydrogen makes the sky practically opaque
at these wavelengths. The visibility in most directions
is limited to some hundred light years in the vicinity
of the Sun. In some directions, however, the density of
the interstellar gas is so low that even extragalactic ob-
jects can be seen. The first dedicated EUV satellite was
the Extreme Ultraviolet Explorer (EUVE), operating in
1992–2000. It observed about a thousand EUV sources.
In EUV grazing reflection telescopes similar to those
used in X-ray astronomy are employed.

In nearly all branches of astronomy important in-
formation is obtained by observations of ultraviolet
radiation. Many emission lines from stellar chromo-
spheres or coronas, the Lyman lines of atomic hydrogen,
and most of the radiation from hot stars are found in the
UV domain. In the near-ultraviolet, telescopes can be
made similar to optical telescopes and, equipped with
a photometer or spectrometer, installed in a satellite
orbiting the Earth.
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Fig. 3.32. (a) The European
X-ray satellite XMM-
Newton was launched in
1999. (Drawing D. Ducros,
XMM Team, ESA)
(b) FUSE satellite has
photographed far ultravi-
olet objects from Earth
orbit since 1999. (Graph-
ics NASA/JHU Applied
Physics Laboratory)

The most effective satellites in the UV have been the
European TD-1, the American Orbiting Astronomical
Observatories OAO 2 and 3 (Copernicus), the Interna-
tional Ultraviolet Explorer IUE and the Soviet Astron.
The instruments of the TD-1 satellite included both
a photometer and a spectrometer. The satellite measured
the magnitudes of over 30,000 stars in four different
spectral regions between 135 and 274 nm, and registered
UV spectra from over 1000 stars. The OAO satellites
were also used to measure magnitudes and spectra, and
OAO 3 worked for over eight years.

The IUE satellite, launched in 1978, was one of
the most successful astronomical satellites. IUE had
a 45 cm Ritchey-Chrétien telescope with an aperture
ratio of f/15 and a field of view of 16 arc minutes.
The satellite had two spectrographs to measure spec-
tra of higher or lower resolution in wavelength intervals
of 115–200 nm or 190–320 nm. For registration of the
spectra, a Vidicon camera was used. IUE worked on the
orbit for 20 years.

Infrared Radiation. Radiation with longer wave-
lengths than visible light is called infrared radiation.
This region extends from about 1 micrometre to
1 millimetre, where the radio region begins. Some-
times the near-infrared, at wavelengths below 5 m,
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Fig. 3.33. Refractors are
not suitable for infrared
telescopes, because in-
frared radiation cannot
penetrate glass. The
Cassegrain reflectors in-
tended especially for
infrared observations
have secondary mirrors
nodding rapidly back and
forth between the ob-
ject and the background
near the object. By sub-
tracting the brightness of
the background from the
brightness of the object,
the background can be
eliminated

and the submillimetre domain, at wavelengths between
0.1 and 1 mm, are considered separate wavelength
regions.

In infrared observations radiation is collected by
a telescope, as in the optical region. The incoming
radiation consists of radiation from the object, from
the background and from the telescope itself. Both
the source and the background must be continually
measured, the difference giving the radiation from the
object. The background measurements are usually made
with a Cassegrain secondary mirror oscillating be-
tween the source and the background at a rate of, say,
100 oscillations per second, and thus the changing back-
ground can be eliminated. To register the measurements,
semiconductor detectors are used. The detector must al-
ways be cooled to minimize its own thermal radiation.
Sometimes the whole telescope is cooled.

Infrared observatories have been built on high moun-
tain tops, where most of the atmospheric water vapour
remains below. Some favourable sites are, e. g. Mauna
Kea on Hawaii, Mount Lemon in Arizona and Pico del
Teide on Tenerife. For observations in the far-infrared
these mountains are not high enough; these observations
are carried out, e. g. on aeroplanes. One of the best-
equipped planes is the Kuiper Airborne Observatory,
named after the well-known planetary scientist Gerard
Kuiper.

Fig. 3.34. The most effective infrared satellite at present is the
American Spitzer, launched in 2003. (Drawing NASA)

Balloons and satellites are also used for infrared
observations. The most successful infrared observato-
ries so far have been the InfraRed Astronomy Satellite
IRAS, the European Infrared Space Observatory ISO,
and the present-day Spitzer (originally SIRTF, Space
InfraRed Telescope Facility). A very succesful satellite
was the 1989 launched COBE (Cosmic Background
Explorer), which mapped the background radiation
in submillimetre and infrared wavelengths. The Mi-
crowave Anisotropy Probe (MAP) has continued the
work of COBE, starting in 2001.

3.6 Other Forms of Energy

Besides electromagnetic radiation, energy arrives from
space in other forms: particles (cosmic rays, neutrinos)
and gravitational radiation.
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Fig. 3.35. The LIGO Livingston Observatory seen from the
air. (Photo LIGO/Caltech)

Cosmic Rays. Cosmic rays, consisting of electrons and
totally ionized nuclei of atoms, are received in equal
amounts from all directions. Their incoming directions
do not reveal their origin, since cosmic rays are electri-
cally charged; thus their paths are continually changed
when they move through the magnetic fields of the
Milky Way. The high energies of cosmic rays mean
that they have to be produced by high-energy phenom-
ena like supernova explosions. The majority of cosmic
rays are protons (nearly 90%) and helium nuclei (10%),
but some are heavier nuclei; their energies lie between
108 and 1020 eV.

The most energetic cosmic rays give rise to sec-
ondary radiation when they hit molecules of the
atmosphere. This secondary radiation can be observed
from the ground, but primary cosmic rays can only be
directly observed outside the atmosphere. The detectors
used to observe cosmic rays are similar to those used in
particle physics. Since Earth-based accelerators reach
energies of only about 1012 eV, cosmic rays offer an ex-
cellent “natural” laboratory for particle physics. Many
satellites and spacecraft have detectors for cosmic rays.

Neutrinos. Neutrinos are elementary particles with no
electric charge and a mass equal to zero or, at any rate,
less than 1/10,000 of the mass of the electron. Most
neutrinos are produced in nuclear reactions within stars;

since they react very weakly with other matter, they
escape directly from the stellar interior.

Neutrinos are very difficult to observe; the first
method of detection was the radiochemical method. As
a reactive agent, e. g. tetrachloroethene (C2Cl4) can be
used. When a neutrino hits a chlorine atom, the chlorine
is transformed into argon, and an electron is freed:

37Cl +ν→ 37Ar + e− .

The argon atom is radioactive and can be observed.
Instead of chlorine, lithium and gallium might be used
to detect neutrinos. The first gallium detectors have been
running in Italy and Russia from the end of the 1980’s.

Another observation method is based on the
Čerenkov radiation produced by neutrinos in extremely
pure water. The flashes of light are registered with pho-
tomultipliers, and thus it is possible to find out the
direction of the radiation. This method is used e.g. in
the Japanese Kamiokande detector.

Neutrino detectors must be located deep under the
ground to protect them from the secondary radiation
caused by cosmic rays.

The detectors have observed neutrinos from the Sun,
and the Supernova 1987A in the Large Magellanic
Cloud was also observed in 1987.

Gravitational Radiation. Gravitational astronomy is
as young as neutrino astronomy. The first attempts
to measure gravitational waves were made in the
1960’s. Gravitational radiation is emitted by accelerat-
ing masses, just as electromagnetic radiation is emitted
by electric charges in accelerated motion. Detection of
gravitational waves is very difficult, and they have yet
to be directly observed.

The first type of gravitational wave antenna was the
Weber cylinder. It is an aluminium cylinder which starts
vibrating at its proper frequency when hit by a gravi-
tational pulse. The distance between the ends of the
cylinder changes by about 10−17 m, and the changes in
the length are studied by strain sensors welded to the
side of the cylinder.

Another type of modern gravity radiation detectors
measures “spatial strain” induced by gravity waves and
consists of two sets of mirrors in directions perpendic-
ular to each other (Michelson interferometer), or one
set of parallel mirrors (Fabry–Perot interferometer).
The relative distances between the mirrors are moni-
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tored by laser interferometers. If a gravity pulse passes
the detector, the distances change and the changes can
be measured. The longest baseline between the mir-
rors is in the American LIGO (Laser Interferometer
Gravitational-wave Observatory) system, about 25 km
(Fig. 3.35). LIGO made the first scientific observations
in 2002.

* Diffraction by a Circular Aperture

Consider a circular hole of radius R in the xy plane.
Coherent light enters the hole from the direction of
the negative z axis (see figure). We consider light rays
leaving the hole parallel to the xz plane forming an
angle θ with the z axis. The light waves interfere on
a screen far away. The phase difference between a wave
through a point (x, y) and a wave going through the
centre of the hole can be calculated from the different
path lengths s = x sin θ:

δ= s

λ
2π = 2π sin θ

λ
x ≡ kx .

Thus, the phase difference δ depends on the x co-
ordinate only. The sum of the amplitudes of the waves
from a small surface element is proportional to the area
of the element dx dy. Let the amplitude coming through

the centre of the hole be da0 = dx dyî. The amplitude
coming from the point (x, y) is then

da = dx dy (cos δ î + sin δ ĵ) .

We sum up the amplitudes coming from different
points of the hole:

a =
∫

Aperture

da

=
R∫

x =−R

√
R2−x2∫

y =−
√

R2−x2

(cos kx î + sin kx ĵ) dy dx

= 2

R∫
−R

√
R2 − x2(cos kx î + sin kx ĵ) dx .

Since sine is an odd function (sin(−kx)= − sin(kx)),
we get zero when we integrate the second term. Cosine
is an even function, and so

a ∝
R∫

0

√
R2 − x2 cos kx dx .

We substitute x = Rt and define p = kR =
(2πr sin θ)/λ, thus getting

a ∝
1∫

0

√
1− t2 cos pt dt .

The zero points of the intensity observed on the
screen are obtained from the zero points of the
amplitude,

J(p)=
1∫

0

√
1− t2 cos pt dt = 0 .
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Inspecting the function J(p), we see that the first zero
is at p = 3.8317, or

2πR sin θ

λ
= 3.8317 .

The radius of the diffraction disc in angular units can
be estimated from the condition

sin θ = 3.8317λ

2πR
≈ 1.22

λ

D
,

where D = 2R is the diameter of the hole.
In mirror telescopes diffraction is caused also by the

support structure of the secondary mirror. If the aper-
ture is more complex and only elementary mathematics
is used calculations may become rather cumbersome.
However, it can be shown that the diffraction pattern can
be obtained as the Fourier transform of the aperture.

3.7 Examples

Example 3.1 The distance between the components
of the binary star ζ Herculis is 1.38′′. What should
the diameter of a telescope be to resolve the binary?
If the focal length of the objective is 80 cm, what
should the focal length of the eyepiece be to resolve
the components, when the resolution of the eye is 2′?

In the optical region, we can use the wavelength value
of λ≈ 550 nm. The diameter of the objective is obtained
from the equation for the resolution (3.4),

D ≈ λ

θ
= 550×10−9

(1.38/3600)× (π/180)
m

= 0.08 m = 8 cm .

The required magnification is

ω= 2′

1.38′′ = 87 .

The magnification is given by

ω= f

f ′ ,

and, thus, the focal length of the eyepiece should be

f ′ = f

ω
= 80 cm

87
= 0.9 cm .

Example 3.2 A telescope has an objective with
a diameter of 90 mm and focal length of 1200 mm.

a) What is the focal length of an eyepiece, the exit pupil
of which is 6 mm (about the size of the pupil of the
eye)?

b) What is the magnification of such an eyepiece?
c) What is the angular diameter of the Moon seen

through this telescope and eyepiece?

a) From Fig. 3.7 we get

L = f ′

f
D ,

whence

f ′ = f
L

D
= 1200 mm

6 mm

90 mm

= 80 mm .

b) The magnification is ω= f/ f ′ = 1200 mm/80 mm
= 15.

c) Assuming the angular diameter of the Moon is
α = 31′ = 0.52◦, its diameter through the telescope
is ωα= 7.8◦.

3.8 Exercises

Exercise 3.1 The Moon was photographed with a tele-
scope, the objective of which had a diameter of 20 cm
and focal length of 150 cm. The exposure time was 0.1 s.

a) What should the exposure time be, if the diameter of
the objective were 15 cm and focal length 200 cm?

b) What is the size of the image of the Moon in both
cases?

c) Both telescopes are used to look at the Moon with an
eyepiece the focal length of which is 25 mm. What
are the magnifications?

Exercise 3.2 The radio telescopes at Amherst, Mas-
sachusetts, and Onsala, Sweden, are used as an
interferometer, the baseline being 2900 km.

a) What is the resolution at 22 GHz in the direction of
the baseline?

b) What should be the size of an optical telescope with
the same resolution?
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4. Photometric Concepts and Magnitudes

Most astronomical observations utilize electromag-
netic radiation in one way or another. We can

obtain information on the physical nature of a radia-
tion source by studying the energy distribution of its
radiation. We shall now introduce some basic concepts
that characterize electromagnetic radiation.

4.1 Intensity, Flux Density
and Luminosity

Let us assume we have some radiation passing through
a surface element d A (Fig. 4.1). Some of the radiation
will leave d A within a solid angle dω; the angle between
dω and the normal to the surface is denoted by θ. The
amount of energy with frequency in the range [ν, ν+dν]
entering this solid angle in time dt is

dEν = Iν cos θ d A dν dω dt . (4.1)

Here, the coefficient Iν is the specific intensity of the
radiation at the frequency ν in the direction of the solid
angle dω. Its dimension is W m−2 Hz−1 sterad−1.

Fig. 4.1. The intensity Iν of radiation is related to the energy
passing through a surface element d A into a solid angle dω,
in a direction θ

The projection of the surface element d A as seen
from the direction θ is d An = d A cos θ, which explains
the factor cos θ. If the intensity does not depend on
direction, the energy dEν is directly proportional to the
surface element perpendicular to the direction of the
radiation.

The intensity including all possible frequencies is
called the total intensity I , and is obtained by integrating
Iν over all frequencies:

I =
∞∫

0

Iν dν .

More important quantities from the observational
point of view are the energy flux (Lν, L) or, briefly, the
flux and the flux density (Fν, F). The flux density gives
the power of radiation per unit area; hence its dimension
is W m−2 Hz−1 or W m−2, depending on whether we are
talking about the flux density at a certain frequency or
about the total flux density.

Observed flux densities are usually rather small, and
W m−2 would be an inconveniently large unit. There-
fore, especially in radio astronomy, flux densities are
often expressed in Janskys; one Jansky (Jy) equals
10−26 W m−2 Hz−1.

When we are observing a radiation source, we in
fact measure the energy collected by the detector dur-
ing some period of time, which equals the flux density
integrated over the radiation-collecting area of the
instrument and the time interval.

The flux density Fν at a frequency ν can be expressed
in terms of the intensity as

Fν = 1

d A dν dt

∫
S

dEν

=
∫
S

Iν cos θ dω , (4.2)

where the integration is extended over all possible
directions. Analogously, the total flux density is

F =
∫
S

I cos θ dω .
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For example, if the radiation is isotropic, i. e. if I is
independent of the direction, we get

F =
∫
S

I cos θ dω= I
∫
S

cos θ dω . (4.3)

The solid angle element dω is equal to a surface element
on a unit sphere. In spherical coordinates it is (Fig. 4.2;
also c. f. Appendix A.5):

dω= sin θ dθ dφ .

Substitution into (4.3) gives

F = I

π∫
θ= 0

2π∫
φ= 0

cos θ sin θ dθ dφ = 0 ,

so there is no net flux of radiation. This means that there
are equal amounts of radiation entering and leaving the
surface. If we want to know the amount of radiation
passing through the surface, we can find, for example,
the radiation leaving the surface. For isotropic radiation
this is

Fl = I

π/2∫
θ = 0

2π∫
φ= 0

cos θ sin θ dθ dφ = πI . (4.4)

Fig. 4.2. An infinitesimal solid angle dω is equal to
the corresponding surface element on a unit sphere:
dω= sin θ dθ dφ

In the astronomical literature, terms such as intensity
and brightness are used rather vaguely. Flux density is
hardly ever called flux density but intensity or (with
luck) flux. Therefore the reader should always carefully
check the meaning of these terms.

Flux means the power going through some surface,
expressed in watts. The flux emitted by a star into
a solid angle ω is L = ωr2 F, where F is the flux density
observed at a distance r. Total flux is the flux pass-
ing through a closed surface encompassing the source.
Astronomers usually call the total flux of a star the lu-
minosity L. We can also talk about the luminosity Lν at
a frequency ν ([Lν] = W Hz−1). (This must not be con-
fused with the luminous flux used in physics; the latter
takes into account the sensitivity of the eye.)

If the source (like a typical star) radiates isotropically,
its radiation at a distance r is distributed evenly on
a spherical surface whose area is 4πr2 (Fig. 4.3). If the
flux density of the radiation passing through this surface
is F, the total flux is

L = 4πr2 F . (4.5)

Fig. 4.3. An energy flux which at a distance r from a point
source is distributed over an area A is spread over an area 4A
at a distance 2r. Thus the flux density decreases inversely
proportional to the distance squared
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Fig. 4.4. An observer sees
radiation coming from
a constant solid angle ω.
The area giving off ra-
diation into this solid
angle increases when the
source moves further away
(A ∝ r2). Therefore the
surface brightness or the
observed flux density per
unit solid angle remains
constant

If we are outside the source, where radiation is not
created or destroyed, the luminosity does not depend on
distance. The flux density, on the other hand, falls off
proportional to 1/r2.

For extended objects (as opposed to objects such as
stars visible only as points) we can define the surface
brightness as the flux density per unit solid angle (Fig.
4.4). Now the observer is at the apex of the solid angle.
The surface brightness is independent of distance, which
can be understood in the following way. The flux density
arriving from an area A is inversely proportional to the
distance squared. But also the solid angle subtended by
the area A is proportional to 1/r2 (ω= A/r2). Thus the
surface brightness B = F/ω remains constant.

The energy density u of radiation is the amount of
energy per unit volume (J m−3):

u = 1

c

∫
S

I dω . (4.6)

Fig. 4.5. In time dt, the radiation fills a volume dV = c dt d A,
where d A is the surface element perpendicular to the
propagation direction of the radiation

This can be seen as follows. Suppose we have radiation
with intensity I arriving from a solid angle dω per-
pendicular to the surface d A (Fig. 4.5). In the time dt,
the radiation travels a distance c dt and fills a volume
dV = c dt d A. Thus the energy in the volume dV is
(now cos θ = 1)

dE = I d A dω dt = 1

c
I dω dV .

Hence the energy density du of the radiation arriving
from the solid angle dω is

du = dE

dV
= 1

c
I dω ,

and the total energy density is obtained by integrating
this over all directions. For isotropic radiation we get

u = 4π

c
I . (4.7)

4.2 Apparent Magnitudes

As early as the second century B. C., Hipparchos di-
vided the visible stars into six classes according to their
apparent brightness. The first class contained the bright-
est stars and the sixth the faintest ones still visible to the
naked eye.

The response of the human eye to the brightness of
light is not linear. If the flux densities of three stars are in
the proportion 1:10:100, the brightness difference of the
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first and second star seems to be equal to the difference
of the second and third star. Equal brightness ratios
correspond to equal apparent brightness differences: the
human perception of brightness is logarithmic.

The rather vague classification of Hipparchos was re-
placed in 1856 by Norman R. Pogson. The new, more
accurate classification followed the old one as closely
as possible, resulting in another of those illogical defini-
tions typical of astronomy. Since a star of the first class
is about one hundred times brighter than a star of the
sixth class, Pogson defined the ratio of the brightnesses
of classes n and n +1 as 5

√
100 = 2.512.

The brightness class or magnitude can be defined
accurately in terms of the observed flux density F
([F] = W m−2). We decide that the magnitude 0 cor-
responds to some preselected flux density F0. All other
magnitudes are then defined by the equation

m = −2.5 lg
F

F0
. (4.8)

Note that the coefficient is exactly 2.5, not 2.512! Mag-
nitudes are dimensionless quantities, but to remind us
that a certain value is a magnitude, we can write it, for
example, as 5 mag or 5m.

It is easy to see that (4.8) is equivalent to Pog-
son’s definition. If the magnitudes of two stars are m
and m +1 and their flux densities Fm and Fm+1,
respectively, we have

m − (m +1)= −2.5 lg
Fm

F0
+2.5 lg

Fm+1

F0

= −2.5 lg
Fm

Fm+1
,

whence
Fm

Fm+1
= 5

√
100 .

In the same way we can show that the magnitudes m1

and m2 of two stars and the corresponding flux densities
F1 and F2 are related by

m1 −m2 = −2.5 lg
F1

F2
. (4.9)

Magnitudes extend both ways from the original six
values. The magnitude of the brightest star, Sirius, is in
fact negative −1.5. The magnitude of the Sun is −26.8
and that of a full moon −12.5. The magnitude of the
faintest objects observed depends on the size of the tele-

scope, the sensitivity of the detector and the exposure
time. The limit keeps being pushed towards fainter ob-
jects; currently the magnitudes of the faintest observed
objects are over 30.

4.3 Magnitude Systems

The apparent magnitude m, which we have just de-
fined, depends on the instrument we use to measure it.
The sensitivity of the detector is different at different
wavelengths. Also, different instruments detect different
wavelength ranges. Thus the flux measured by the instru-
ment equals not the total flux, but only a fraction of it.
Depending on the method of observation, we can define
various magnitude systems. Different magnitudes have
different zero points, i. e. they have different flux densi-
ties F0 corresponding to themagnitude0.Thezeropoints
are usually defined by a few selected standard stars.

In daylight the human eye is most sensitive to
radiation with a wavelength of about 550 nm, the sen-
sitivity decreasing towards red (longer wavelengths)
and violet (shorter wavelengths). The magnitude cor-
responding to the sensitivity of the eye is called the
visual magnitude mv.

Photographic plates are usually most sensitive at blue
and violet wavelengths, but they are also able to register
radiation not visible to the human eye. Thus the photo-
graphic magnitude mpg usually differs from the visual
magnitude. The sensitivity of the eye can be simulated
by using a yellow filter and plates sensitised to yellow
and green light. Magnitudes thus observed are called
photovisual magnitudes mpv.

If, in ideal case, we were able to measure the radiation
at all wavelengths, we would get the bolometric magni-
tude mbol. In practice this is very difficult, since part of
the radiation is absorbed by the atmosphere; also, dif-
ferent wavelengths require different detectors. (In fact
there is a gadget called the bolometer, which, however,
is not a real bolometer but an infrared detector.) The
bolometric magnitude can be derived from the visual
magnitude if we know the bolometric correction BC:

mbol = mv −BC . (4.10)

By definition, the bolometric correction is zero for radi-
ation of solar type stars (or, more precisely, stars of the
spectral class F5). Although the visual and bolometric
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magnitudes can be equal, the flux density corresponding
to the bolometric magnitude must always be higher. The
reason of this apparent contradiction is in the different
values of F0.

The more the radiation distribution differs from that
of the Sun, the higher the bolometric correction is. The
correction is positive for stars both cooler or hotter than
the Sun. Sometimes the correction is defined as mbol =
mv +BC in which case BC ≤ 0 always. The chance
for errors is, however, very small, since we must have
mbol ≤ mv.

The most accurate magnitude measurements are
made using photoelectric photometers. Usually filters
are used to allow only a certain wavelength band to
enter the detector. One of the multicolour magnitude
systems used widely in photoeletric photometry is the
UBV system developed in the early 1950’s by Harold
L. Johnson and William W. Morgan. Magnitudes are
measured through three filters, U = ultraviolet, B = blue
and V = visual. Figure 4.6 and Table 4.1 give the wave-
length bands of these filters. The magnitudes observed
through these filters are called U , B and V magnitudes,
respectively.

The UBV system was later augmented by adding
more bands. One commonly used system is the five
colour UBVRI system, which includes R = red and
I = infrared filters.

There are also other broad band systems, but they
are not as well standardised as the UBV, which has
been defined moderately well using a great number of

Fig. 4.6. Relative transmission profiles of filters used in the
UBVRI magnitude system. The maxima of the bands are nor-
malized to unity. The R and I bands are based on the system
of Johnson, Cousins and Glass, which includes also infrared
bands J, H, K, L and M. Previously used R and I bands differ
considerably from these

Table 4.1. Wavelength bands of the UBVRI and uvby filters
and their effective (≈ average) wavelengths

Magnitude Band width Effective
[nm] wavelength [nm]

U ultraviolet 66 367
B blue 94 436
V visual 88 545
R red 138 638
I infrared 149 797

u ultraviolet 30 349
v violet 19 411
b blue 18 467
y yellow 23 547

standard stars all over the sky. The magnitude of an
object is obtained by comparing it to the magnitudes of
standard stars.

In Strömgren’s four-colour or uvby system, the bands
passed by the filters are much narrower than in the UBV
system. The uvby system is also well standardized, but
it is not quite as common as the UBV. Other narrow
band systems exist as well. By adding more filters,
more information on the radiation distribution can be
obtained.

In any multicolour system, we can define colour
indices; a colour index is the difference of two mag-
nitudes. By subtracting the B magnitude from U we get
the colour index U − B, and so on. If the UBV system
is used, it is common to give only the V magnitude and
the colour indices U − B and B − V .

The constants F0 in (4.8) for U , B and V magnitudes
have been selected in such a way that the colour indices
B − V and U − B are zero for stars of spectral type A0
(for spectral types, see Chap. 8). The surface tempera-
ture of such a star is about 10,000 K. For example, Vega
(αLyr, spectral class A0V) has V = 0.03, B − V = U −
B = 0.00. The Sun has V = −26.8, B − V = 0.62 and
U − B = 0.10.

Before the UBV system was developed, a colour
index C.I., defined as

C.I. = mpg −mv ,

was used. Since mpg gives the magnitude in blue and
mv in visual, this index is related to B − V . In fact,

C.I. = (B − V)−0.11 .



88

4. Photometric Concepts and Magnitudes

4.4 Absolute Magnitudes

Thus far we have discussed only apparent magnitudes.
They do not tell us anything about the true brightness of
stars, since the distances differ. A quantity measuring
the intrinsic brightness of a star is the absolute magni-
tude. It is defined as the apparent magnitude at a distance
of 10 parsecs from the star (Fig. 4.7).

We shall now derive an equation which relates the
apparent magnitude m, the absolute magnitude M and
the distance r. Because the flux emanating from a star
into a solid angle ω has, at a distance r, spread over an
areaωr2, the flux density is inversely proportional to the
distance squared. Therefore the ratio of the flux density
at a distance r, F(r), to the flux density at a distance of
10 parsecs, F(10), is

F(r)

F(10)
=
(10 pc

r

)2
.

Thus the difference of magnitudes at r and 10 pc, or the
distance modulus m − M, is

m − M = −2.5 lg
F(r)

F(10)
= −2.5 lg

(10 pc

r

)2

or

m − M = 5 lg
r

10 pc
. (4.11)

Fig. 4.7. The flux density at a distance of 10 parsecs from the
star defines its absolute magnitude

For historical reasons, this equation is almost always
written as

m − M = 5 lg r −5 , (4.12)

which is valid only if the distance is expressed in par-
secs. (The logarithm of a dimensional quantity is, in
fact, physically absurd.) Sometimes the distance is given
in kiloparsecs or megaparsecs, which require different
constant terms in (4.12). To avoid confusion, we highly
recommend the form (4.11).

Absolute magnitudes are usually denoted by capital
letters. Note, however, that the U , B and V magnitudes
are apparent magnitudes. The corresponding absolute
magnitudes are MU, MB and MV.

The absolute bolometric magnitude can be expressed
in terms of the luminosity. Let the total flux density at
a distance r = 10 pc be F and let F� be the equivalent
quantity for the Sun. Since the luminosity is L = 4πr2 F,
we get

Mbol − Mbol,� = −2.5 lg
F

F�
= −2.5 lg

L/4πr2

L�/4πr2
,

or

Mbol − Mbol,� = −2.5 lg
L

L�
. (4.13)

The absolute bolometric magnitude Mbol = 0 corre-
sponds to a luminosity L0 = 3.0×1028 W.

4.5 Extinction and Optical Thickness

Equation (4.11) shows how the apparent magnitude
increases (and brightness decreases!) with increasing
distance. If the space between the radiation source and
the observer is not completely empty, but contains some
interstellar medium, (4.11) no longer holds, because part
of the radiation is absorbed by the medium (and usu-
ally re-emitted at a different wavelength, which may be
outside the band defining the magnitude), or scattered
away from the line of sight. All these radiation losses
are called the extinction.

Now we want to find out how the extinction de-
pends on the distance. Assume we have a star radiating
a flux L0 into a solid angle ω in some wavelength range.
Since the medium absorbs and scatters radiation, the
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flux L will now decrease with increasing distance r
(Fig. 4.8). In a short distance interval [r, r +dr], the ex-
tinction dL is proportional to the flux L and the distance
travelled in the medium:

dL = −αL dr . (4.14)

The factor α tells how effectively the medium can ob-
scure radiation. It is called the opacity. From (4.14) we
see that its dimension is [α] = m−1. The opacity is zero
for a perfect vacuum and approaches infinity when the
substance becomes really murky. We can now define
a dimensionless quantity, the optical thickness τ by

dτ = α dr . (4.15)

Substituting this into (4.14) we get

dL = −L dτ .

Next we integrate this from the source (where L = L0

and r = 0) to the observer:

L∫
L0

dL

L
= −

τ∫
0

dτ ,

which gives

L = L0e−τ . (4.16)

Here, τ is the optical thickness of the material between
the source and the observer and L, the observed flux.
Now, the flux L falls off exponentially with increasing

Fig. 4.8. The interstellar medium absorbs and scatters radiation; this usually reduces the energy flux L in the solid angle ω
(dL ≤ 0)

optical thickness. Empty space is perfectly transpar-
ent, i. e. its opacity is α= 0; thus the optical thickness
does not increase in empty space, and the flux remains
constant.

Let F0 be the flux density on the surface of a star and
F(r), the flux density at a distance r. We can express the
fluxes as

L = ωr2 F(r) , L0 = ωR2 F0 ,

where R is the radius of the star. Substitution into (4.16)
gives

F(r)= F0
R2

r2
e−τ .

For the absolute magnitude we need the flux density at
a distance of 10 parsecs, F(10), which is still evaluated
without extinction:

F(10)= F0
R2

(10 pc)2
.

The distance modulus m − M is now

m − M = −2.5 lg
F(r)

F(10)

= 5 lg
r

10 pc
−2.5 lg e−τ

= 5 lg
r

10 pc
+ (2.5 lg e)τ

or

m − M = 5 lg
r

10 pc
+ A , (4.17)
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where A ≥ 0 is the extinction in magnitudes due to the
entire medium between the star and the observer. If the
opacity is constant along the line of sight, we have

τ = α

r∫
0

dr = αr ,

and (4.17) becomes

m − M = 5 lg
r

10 pc
+ar , (4.18)

where the constant a = 2.5α lg e gives the extinction in
magnitudes per unit distance.

Colour Excess. Another effect caused by the interstellar
medium is the reddening of light: blue light is scattered
and absorbed more than red. Therefore the colour index
B − V increases. The visual magnitude of a star is, from
(4.17),

V = MV +5 lg
r

10 pc
+ AV , (4.19)

where MV is the absolute visual magnitude and AV is
the extinction in the V passband. Similarly, we get for
the blue magnitudes

B = MB +5 lg
r

10 pc
+ AB .

The observed colour index is now

B − V = MB − MV + AB − AV ,

or

B − V = (B − V )0 + EB−V , (4.20)

where (B − V )0 = MB − MV is the intrinsic colour of
the star and EB−V = (B − V )− (B − V )0 is the colour
excess. Studies of the interstellar medium show that the
ratio of the visual extinction AV to the colour excess
EB−V is almost constant for all stars:

R = AV

EB−V
≈ 3.0 .

This makes it possible to find the visual extinction if the
colour excess is known:

AV ≈ 3.0 EB−V . (4.21)

When AV is obtained, the distance can be solved directly
from (4.19), when V and MV are known.

We shall study interstellar extinction in more detail
in Sect. 15.1 (“Interstellar Dust”).

Atmospheric Extinction. As we mentioned in Sect.
3.1, the Earth’s atmosphere also causes extinction.
The observed magnitude m depends on the location
of the observer and the zenith distance of the ob-
ject, since these factors determine the distance the
light has to travel in the atmosphere. To compare dif-
ferent observations, we must first reduce them, i. e.
remove the atmospheric effects somehow. The magni-
tude m0 thus obtained can then be compared with other
observations.

If the zenith distance z is not too large, we can ap-
proximate the atmosphere by a plane layer of constant
thickness (Fig. 4.9). If the thickness of the atmosphere
is used as a unit, the light must travel a distance

X = 1/ cos z = sec z (4.22)

in the atmosphere. The quantity X is the air mass. Ac-
cording to (4.18), the magnitude increases linearly with
the distance X:

m = m0 + kX , (4.23)

where k is the extinction coefficient.
The extinction coefficient can be determined by ob-

serving the same source several times during a night
with as wide a zenith distance range as possible. The
observed magnitudes are plotted in a diagram as a func-
tion of the air mass X. The points lie on a straight line the
slope of which gives the extinction coefficient k. When

Fig. 4.9. If the zenith distance of a star is z, the light of the star
travels a distance H/ cos z in the atmosphere; H is the height
of the atmosphere
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this line is extrapolated to X = 0, we get the magni-
tude m0, which is the apparent magnitude outside the
atmosphere.

In practice, observations with zenith distances higher
than 70◦ (or altitudes less than 20◦) are not used to
determine k and m0, since at low altitudes the curva-
ture of the atmosphere begins to complicate matters.
The value of the extinction coefficient k depends on
the observation site and time and also on the wave-
length, since extinction increases strongly towards short
wavelengths.

4.6 Examples

Example 4.1 Show that intensity is independent of
distance.

Suppose we have some radiation leaving the surface
element d A in the direction θ. The energy entering the
solid angle dω in time dt is

dE = I cos θ d A dω dt ,

where I is the intensity. If we have another surface d A′
at a distance r receiving this radiation from direction θ ′,
we have

dω= d A′ cos θ ′/r2 .

The definition of the intensity gives

dE = I ′ cos θ ′ d A′ dω′ dt ,

where I ′ is the intensity at d A′ and

dω′ = d A cos θ/r2 .

Substitution of dω and dω′ into the expressions of dE
gives

I cos θ dθ d A
d A′ cos θ ′

r2
dt

= I ′ cos θ ′ d A′ d A cos θ

r2
dt ⇒ I ′ = I .

Thus the intensity remains constant in empty space.

Example 4.2 Surface Brightness of the Sun

Assume that the Sun radiates isotropically. Let R be the
radius of the Sun, F� the flux density on the surface of
the Sun and F the flux density at a distance r. Since the
luminosity is constant,

L = 4πR2 F� = 4πr2 F ,

the flux density equals

F = F�
R2

r2
.

At a distance r 	 R, the Sun subtends a solid angle

ω= A

r2
= πR2

r2
,

where A = πR2 is the cross section of the Sun. The
surface brightness B is

B = F

ω
= F�

π
.

Applying (4.4) we get

B = I� .

Thus the surface brightness is independent of dis-
tance and equals the intensity. We have found a simple
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interpretation for the somewhat abstract concept of
intensity.

The flux density of the Sun on the Earth, the solar
constant, is S� ≈ 1370 W m−2. The angular diameter of
the Sun is α= 32′, whence

R

r
= α

2
= 1

2
× 32

60
× π

180
= 0.00465 rad .

The solid angle subtended by the Sun is

ω= π

(
R

r

)2

= π×0.004652

= 6.81×10−5 sterad .

and the surface brightness

B = S�
ω

= 2.01×107 W m−2 sterad−1 .

Example 4.3 Magnitude of a Binary Star

Since magnitudes are logarithmic quantities, they can
be a little awkward for some purposes. For example, we
cannot add magnitudes like flux densities. If the mag-
nitudes of the components of a binary star are 1 and 2,
the total magnitude is certainly not 3. To find the total
magnitude, we must first solve the flux densities from

1 = −2.5 lg
F1

F0
, 2 = −2.5 lg

F2

F0
,

which give

F1 = F0 ×10−0.4 , F2 = F0 ×10−0.8 .

Thus the total flux density is

F = F1 + F2 = F0(10−0.4 +10−0.8)

and the total magnitude,

m = −2.5 lg
F0(10−0.4 +10−0.8)

F0

= −2.5 lg 0.5566 = 0.64 .

Example 4.4 The distance of a star is r = 100 pc
and its apparent magnitude m = 6. What is its absolute
magnitude?

Substitution into (4.11)

m − M = 5 lg
r

10 pc

gives

M = 6−5 lg
100

10
= 1 .

Example 4.5 The absolute magnitude of a star is M =
−2 and the apparent magnitude m = 8. What is the
distance of the star?

We can solve the distance r from (4.11):

r = 10 pc×10(m − M )/5 = 10×1010/5pc

= 1000 pc = 1 kpc .

Example 4.6 Although the amount of interstellar ex-
tinction varies considerably from place to place, we
can use an average value of 2 mag/kpc near the galac-
tic plane. Find the distance of the star in Example 4.5,
assuming such extinction.

Now the distance must be solved from (4.18):

8− (−2)= 5 lg
r

10
+0.002 r ,

where r is in parsecs. This equation cannot be solved
analytically, but we can always use a numerical method.
We try a simple iteration (Appendix A.7), rewriting the
equation as

r = 10×102−0.0004 r .

The value r = 1000 pc found previously is a good initial
guess:

r0 = 1000

r1 = 10×102 − 0.0004 × 1000 = 398

r2 = 693

...

r12 = r13 = 584 .

The distance is r ≈ 580 pc, which is much less than
our earlier value 1000 pc. This should be quite obvious,
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since due to extinction, radiation is now reduced much
faster than in empty space.

Example 4.7 What is the optical thickness of a layer
of fog, if the Sun seen through the fog seems as bright
as a full moon in a cloudless sky?

The apparent magnitudes of the Sun and the Moon
are −26.8 and −12.5, respectively. Thus the total
extinction in the cloud must be A = 14.3. Since

A = (2.5 lg e)τ ,

we get

τ = A/(2.5 lg e)= 14.3/1.086 = 13.2 .

The optical thickness of the fog is 13.2. In reality, a frac-
tion of the light scatters several times, and a few of the
multiply scattered photons leave the cloud along the
line of sight, reducing the total extinction. Therefore
the optical thickness must be slightly higher than our
value.

Example 4.8 Reduction of Observations

The altitude and magnitude of a star were measured
several times during a night. The results are given in the
following table.

Altitude Zenith distance Air mass Magnitude

50◦ 40◦ 1.31 0.90
35◦ 55◦ 1.74 0.98
25◦ 65◦ 2.37 1.07
20◦ 70◦ 2.92 1.17

By plotting the observations as in the following fig-
ure, we can determine the extinction coefficient k and
the magnitude m0 outside the atmosphere. This can
be done graphically (as here) or using a least-squares
fit.

Extrapolation to the air mass X = 0 gives m0 = 0.68.
The slope of the line gives k = 0.17.

4.7 Exercises

Exercise 4.1 The total magnitude of a triple star is 0.0.
Two of its components have magnitudes 1.0 and 2.0.
What is the magnitude of the third component?

Exercise 4.2 The absolute magnitude of a star in the
Andromeda galaxy (distance 690 kpc) is M = 5. It ex-
plodes as a supernova, becoming one billion (109) times
brighter. What is its apparent magnitude?

Exercise 4.3 Assume that all stars have the same ab-
solute magnitude and stars are evenly distributed in
space. Let N(m) be the number of stars brighter than
m magnitudes. Find the ratio N(m +1)/N(m).

Exercise 4.4 The V magnitude of a star is 15.1,
B − V = 1.6, and absolute magnitude MV = 1.3. The
extinction in the direction of the star in the visual band
is aV = 1 mag kpc−1. What is the intrinsic colour of the
star?

Exercise 4.5 Stars are observed through a triple win-
dow. Each surface reflects away 15% of the incident
light.

a) What is the magnitude of Regulus (MV = 1.36) seen
through the window?

b) What is the optical thickness of the window?
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5. Radiation Mechanisms

In the previous chapters we have studied the physical
properties and detection of electromagnetic radiation.

Next we shall briefly discuss concepts related to emis-
sion and absorption of radiation. Since we can give here
only a summary of some essential results without delv-
ing into quantum mechanical explanations, the reader
interested in the details is advised to consult any good
physics textbook.

5.1 Radiation of Atoms and Molecules

Electromagnetic radiation is emitted or absorbed when
an atom or a molecule moves from one energy level
to another. If the energy of the atom decreases by an
amount ∆E, the atom emits or radiates a quantum
of electromagnetic radiation, called a photon, whose
frequency ν is given by the equation

∆E = hν , (5.1)

where h is the Planck constant, h = 6.6256×10−34 J s.
Similarly, if the atom receives or absorbs a photon of
a frequency ν, its energy increases by ∆E = hν.

The classical model describes an atom as a nucleus
surrounded by a swarm of electrons. The nucleus con-
sists of Z protons, each having a charge +e and N
electrically neutral neutrons; Z is the charge number of
the atom and A = Z + N is its mass number. A neutral
atom has as many electrons (charge −e) as protons.

An energy level of an atom usually refers to an energy
level of its electrons. The energy E of an electron cannot
take arbitrary values; only certain energies are allowed:
the energy levels are quantized. An atom can emit or
absorb radiation only at certain frequencies νif corre-
sponding to energy differences between some initial
and final states i and f : |Ei − Ef| = hνif. This gives rise
to the line spectrum, specific for each element (Fig. 5.1).
Hot gas under low pressure produces an emission spec-
trum consisting of such discrete lines. If the same gas
is cooled down and observed against a source of white
light (which has a continuous spectrum), the same lines
are seen as dark absorption lines.

At low temperatures most atoms are in their lowest
energy state, the ground state. Higher energy levels are
excitation states; a transition from lower to higher state
is called excitation. Usually the excited atom will re-
turn to the lower state very rapidly, radiating a photon
(spontaneous emission); a typical lifetime of an excited
state might be 10−8 seconds. The frequency of the emit-
ted photon is given by (5.1). The atom may return to the
lower state directly or through some intermediate states,
emitting one photon in each transition.

Downward transitions can also be induced by radi-
ation. Suppose our atom has swallowed a photon and
become excited. Another photon, whose frequency ν
corresponds to some possible downward transition from
the excited state, can now irritate the atom, causing it
to jump to a lower state, emitting a photon with the
same frequency ν. This is called induced or stimu-
lated emission. Photons emitted spontaneously leave
the atom randomly in all directions with random phases:
the radiation is isotropic and incoherent. Induced radi-
ation, on the other hand, is coherent; it propagates in
the same direction as and in phase with the inducing
radiation.

The zero level of the energy states is usually chosen
so that a bound electron has negative energy and a free
electron positive energy (cf. the energy integral of plan-
etary orbits, Chap. 6). If an electron with energy E < 0
receives more energy than |E|, it will leave the atom,
which becomes an ion. In astrophysics ionization is of-
ten called a bound-free transition (Fig. 5.2). Unlike in
excitation all values of energy (E > 0) are now possi-
ble. The extraneous part of the absorbed energy goes to
the kinetic energy of the liberated electron. The inverse
process, in which an atom captures a free electron, is
the recombination or free–bound transition.

When an electron scatters from a nucleus or an ion
without being captured, the electromagnetic interaction
can change the kinetic energy of the electron produc-
ing free–free radiation. In a very hot gas (T> 106 K)
hydrogen is fully ionized, and the free–free radiation is
the most important source of emission. It is then usu-
ally called thermal bremsstrahlung. The latter part of
the name derives from the fact that decelerating elec-
trons hitting the anode of an X-ray tube emit similar
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Fig. 5.1a,b. Origin of line spectra. (a) Emission spectrum.
Atoms of glowing gas returning from excited states to lower
states emit photons with frequencies corresponding to the
energy difference of the states. Each element emits its own
characteristic wavelengths, which can be measured by spread-

ing the light into a spectrum with a prism or diffraction
grating. (b) Absorption spectrum. When white light con-
taining all wavelengths travels through gas, the wavelengths
characteristic of the gas are absorbed

Fig. 5.2. Different kinds of transitions between energy levels.
Absorption and emission occur between two bound states,
whereas ionization and recombination occur between a bound
and a free state. Interaction of an atom with an free electron
can result in a free–free transition

radiation. In an analogous way the absorption process
can be called a bound–bound transition.

Electromagnetic radiation is transverse wave motion;
the electric and magnetic fields oscillate perpendicular
to each other and also perpendicular to the direction
of propagation. The light of an ordinary incandescent
lamp has a random distribution of electric fields vi-
brating in all directions. If the directions of electric
fields in the plane perpendicular to the direction of
propagation are not evenly distributed, the radiation is
polarized (Fig. 5.3). The direction of polarization of lin-
early polarized light means the plane determined by
the electric vector and the direction of the light ray.
If the electric vector describes a circle, the radiation
is circularly polarized. If the amplitude of the elec-
tric field varies at the same time, the polarization is
elliptic.
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Fig. 5.3. Polarization of light. The light of an incandescent
bulb contains all possible directions of vibration and is there-
fore unpolarized. Some crystals, for example, pass electric
fields oscillating only in certain directions, and the transmit-
ted part of the light becomes linearly polarized. E is the electric
field and B the magnetic field

If polarized radiation travels through a magnetic
field, the direction of the polarization will rotate. The
amount of such Faraday rotation is proportional to the
component of the magnetic field parallel to the line of
sight, number of electrons along the line of sight, dis-
tance travelled, and square of the wavelength of the
radiation.

Scattering is an absorption followed by an instan-
taneous emission at the same wavelength but usually
in a new direction. On the macroscopic scale, radia-
tion seems to be reflected by the medium. The light
coming from the sky is sunlight scattered from atmo-
spheric molecules. Scattered light is always polarized,
the degree of polarization being highest in the direction
perpendicular to the direction of the original radiation.

5.2 The Hydrogen Atom

The hydrogen atom is the simplest atom, consisting of
a proton and an electron. According to the Bohr model
the electron orbits the proton in a circular orbit. (In
spite of the fact that this model has very little to do
with reality, it can be successfully used to predict some
properties of the hydrogen atom.) Bohr’s first postulate
says that the angular momentum of the electron must be
a multiple of �:

mvr = n� , (5.2)

where

m = mass of the electron ,

v= speed of the electron ,

r = radius of the orbit ,

n = the principal quantum number ,

n = 1, 2, 3, . . . ,

�= h/2π ,

h = the Planck constant .

The quantum mechanical interpretation of Bohr’s
first postulate is obvious: the electron is represented
as a standing wave, and the “length of the orbit”
must be a multiple of the de Broglie wavelength,
λ= �/p = �/mv.

A charged particle in a circular orbit (and thus in
accelerated motion) should emit electromagnetic radia-
tion, losing energy, were it to obey the rules of classical
electrodynamics. Therefore our electron should spiral
down towards the nucleus. But obviously, Nature does
not behave this way, and we have to accept Bohr’s sec-
ond postulate, which says that an electron moving in
an allowed orbit around a nucleus does not radiate. Ra-
diation is emitted only when the electron jumps from
a higher energy state to a lower one. The emitted quan-
tum has an energy hν, equal to the energy difference of
these states:

hν = En2 − En1 . (5.3)

We shall now try to find the energy of an electron in
the state En . Coulomb’s law gives the force pulling the
electron towards the proton:

F = 1

4πε0

e2

r2
n

, (5.4)

where

ε0 = the vacuum permittivity

= 8.85×10−12 N−1 m−2 C2 ,

e = the charge of the electron = 1.6×10−19 C ,

rn = the distance between the electron
and the proton .

The acceleration of a particle moving in a circular
orbit of radius rn is

a = v2
n

rn
,

and applying Newton’s second law (F = ma), we get

mv2
n

rn
= 1

4πε0

e2

r2
n
. (5.5)
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From (5.2) and (5.5) it follows that

vn = e2

4πε0�

1

n
, rn = 4πε0�

2

me2
n2 .

The total energy of an electron in the orbit n is now

En = T + V = 1

2
mv2

n − 1

4πε0

e2

rn

= − me4

32π2ε2
0�

2

1

n2
≡ −C

1

n2
,

(5.6)

where C is a constant. For the ground state (n = 1), we
get from (5.6)

E1 = −2.18×10−18 J = −13.6 eV .

Fig. 5.4. Transitions of a hy-
drogen atom. The lower
picture shows a part of
the spectrum of the star
HD193182. On both sides
of the stellar spectrum we
see an emission spectrum
of iron. The wavelengths
of the reference lines are
known, and they can be
used to calibrate the wave-
lengths of the observed
stellar spectrum. The hy-
drogen Balmer lines are
seen as dark absorption
lines converging towards
the Balmer ionization limit
(also called the Balmer dis-
continuity) at λ= 364.7 nm
to the left. The numbers
(15, . . . , 40) refer to the
quantum number n of the
higher energy level. (Photo
by Mt. Wilson Observatory)

From (5.3) and (5.6) we get the energy of the quantum
emitted in the transition En2 → En1 :

hν = En2 − En1 = C

(
1

n2
1

− 1

n2
2

)
. (5.7)

In terms of the wavelength λ this can be expressed as

1

λ
= ν

c
= C

hc

(
1

n2
1

− 1

n2
2

)
≡ R

(
1

n2
1

− 1

n2
2

)
, (5.8)

where R is the Rydberg constant, R = 1.097×107 m−1.
Equation (5.8) was derived experimentally for n1 = 2

by Johann Jakob Balmer as early as 1885. That is why
we call the set of lines produced by transitions En → E2

the Balmer series. These lines are in the visible part of
the spectrum. For historical reasons the Balmer lines are
often denoted by symbols Hα, Hβ, Hγ etc. If the electron
returns to its ground state (En → E1), we get the Lyman
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series, which is in the ultraviolet. The other series with
specific names are the Paschen series (n1 = 3), Bracket
series (n1 = 4) and Pfund series (n1 = 5) (see Fig. 5.4).

5.3 Line Profiles

The previous discussion suggests that spectral lines
would be infinitely narrow and sharp. In reality, how-
ever, they are somewhat broadened. We will now
consider briefly the factors affecting the shape of a spec-
tral line, called a line profile. An exact treatment would
take us too deep into quantum mechanics, so we cannot
go into the details here.

According to quantum mechanics everything cannot
be measured accurately at the same time. For example,
even in principle, there is no way to determine the x co-
ordinate and the momentum px in the direction of the
x axis with arbitrary precision simultaneously. These
quantities have small uncertainties ∆x and ∆px , such
that

∆x∆px ≈ � .
A similar relation holds for other directions, too.
Time and energy are also connected by an uncertainty
relation,

∆E∆t ≈ � .
The natural width of spectral lines is a consequence of
this Heisenberg uncertainty principle.

If the average lifetime of an excitation state is T , the
energy corresponding to the transition can only be de-
termined with an accuracy of ∆E = �/T = h/(2πT ).
From (5.1) it follows that ∆ν =∆E/h. In fact, the un-
certainty of the energy depends on the lifetimes of both
the initial and final states. The natural width of a line is
defined as

γ = ∆Ei +∆Ef

�
= 1

Ti
+ 1

Tf
. (5.9)

It can be shown that the corresponding line profile is

Iν = γ

2π

I0

(ν−ν0)2 +γ 2/4
, (5.10)

where ν0 is the frequency at the centre of the line and
I0 the total intensity of the line. At the centre of the line
the intensity per frequency unit is

Iν0 = 2

πγ
I0 ,

and at the frequency ν = ν0 +γ/2,

Iν0+γ/2 = 1

πγ
I0 = 1

2
Iν0 .

Thus the width γ is the width of the line profile at
a depth where the intensity is half of the maximum.
This is called the full width at half maximum (FWHM).

Doppler Broadening. Atoms of a gas are moving the
faster the higher the temperature of the gas. Thus spec-
tral lines arising from individual atoms are shifted by
the Doppler effect. The observed line consists of a col-
lection of lines with different Doppler shifts, and the
shape of the line depends on the number of atoms with
different velocities.

Each Doppler shifted line has its characteristic natu-
ral width. The resulting line profile is obtained by giving
each Doppler shifted line a weight proportional to the
number of atoms given by the velocity distribution and
integrating over all velocities. This gives rise to the Voigt
profile (Fig. 5.5), which already describes most spectral
lines quite well. The shapes of different profiles don’t

Fig. 5.5. Each spectral line has its characteristic natural width
(solid line). Motions of particles broaden the line further due
to the Doppler effect, resulting in the Voigt profile (dashed
line). Both profiles have the same area
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Fig. 5.6. The full width at half maximum (FWHM) of a spec-
tral line is the width at the depth where the intensity is half of
the maximum. The equivalent width W is defined so that the
line and the shaded rectangle have the same area in the pic-
ture. The two measures are not generally the same, although
they usually are close to each other

seem very different; the most obvious consequence of
the broadening is that the maximum depth decreases.

One way to describe the width of a line is to give its
full width at half maximum (Fig. 5.6). Due to Doppler
broadening this is usually greater than the natural width.
The equivalent width is another measure of a line
strength. It is the area of a rectangular line that has
the same area as the line profile and that emits no light
at all. The equivalent width can be used to describe
the energy corresponding to a line independently of the
shape of the line profile.

5.4 Quantum Numbers, Selection
Rules, Population Numbers

Quantum Numbers. The Bohr model needs only one
quantum number, n, to describe all the energy levels of
the electron. This can explain only the coarse features
of an atom with a single electron.

Quantum mechanics describes the electron as a three
dimensional wave, which only gives the probability of
finding the electron in a certain place. Quantum me-
chanics has accurately predicted all the energy levels
of hydrogen atoms. The energy levels of heavier atoms
and molecules can also be computed; however, such
calculations are very complicated. Also the existence of

quantum numbers can be understood from the quantum
mechanical point of view.

The quantum mechanical description involves four
quantum numbers, one of which is our n, the principal
quantum number. The principal quantum number de-
scribes the quantized energy levels of the electron. The
classical interpretation of discrete energy levels allows
only certain orbits given by (5.6). The orbital angular
momentum of the electron is also quantized. This is de-
scribed by the angular momentum quantum number l.
The angular momentum corresponding to a quantum
number l is

L =√
l(l +1)� .

The classical analogy would be to allow some elliptic
orbits. The quantum number l can take only the values

l = 0, 1, . . . , n −1 .

For historical reasons, these are often denoted by the
letters s, p, d, f , g, h, i, j.

Although l determines the magnitude of the angular
momentum, it does not give its direction. In a mag-
netic field this direction is important, since the orbiting
electron also generates a tiny magnetic field. In any
experiment, only one component of the angular momen-
tum can be measured at a time. In a given direction z
(e. g. in the direction of the applied magnetic field), the
projection of the angular momentum can have only the
values

Lz = ml� ,

where ml is the magnetic quantum number

ml = 0,±1,±2, . . . ,±l .

The magnetic quantum number is responsible for
the splitting of spectral lines in strong magnetic fields,
known as the Zeeman effect. For example, if l = 1, ml

can have 2l +1 = 3 different values. Thus, the line aris-
ing from the transition l = 1 → l = 0 will split into three
components in a magnetic field (Fig. 5.7).

The fourth quantum number is the spin describing
the intrinsic angular momentum of the electron. The
spin of the electron is

S =√
s(s +1)� ,
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Fig. 5.7. The Zeeman effect. In strong magnetic fields each
energy level of a hydrogen atom splits into (2l +1) separate
levels, which correspond to different values of the magnetic
quantum number ml = l, l −1, . . . ,−l. The energy differences
of the successive levels have the same constant value∆E. For
example the p state (l = 1) splits into three and the d state
(l = 2) into five sublevels. The selection rules require that
in electric dipole transitions ∆ml equals 0 or ±1, and only
nine different transitions between p and d states are possible.
Moreover, the transitions with the same ∆ml have the same
energy difference. Thus the spectrum has only three separate
lines

where the spin quantum number is s = 1
2 . In a given

direction z, the spin is

Sz = ms� ,

where ms can have one of the two values:

ms = ±1

2
.

All particles have a spin quantum number. Parti-
cles with an integral spin are called bosons (photon,
mesons); particles with a half-integral spin are fermions
(proton, neutron, electron, neutrino etc.).

Classically, spin can be interpreted as the rotation of
a particle; this analogy, however, should not be taken
too literally.

The total angular momentum J of an electron is the
sum of its orbital and spin angular momentum:

J = L + S .

Depending on the mutual orientation of the vectors L
and S the quantum number j of total angular momentum
can have one of two possible values,

j = l ± 1

2
,

(except if l = 0, when j = 1
2 ). The z component of the

total angular momentum can have the values

m j = 0,±1,±2, . . .± j .

Spin also gives rise to the fine structure of spectral
lines. Lines appear as close pairs or doublets.

Selection Rules. The state of an electron cannot change
arbitrarily; transitions are restricted by selection rules,
which follow from certain conservation laws. The se-
lection rules express how the quantum numbers must
change in a transition. Most probable are the electric
dipole transitions, which make the atom behave like an
oscillating dipole. The conservation laws require that in
a transition we have

∆l = ±1 ,

∆ml = 0,±1 .

In terms of the total angular momentum the selection
rules are

∆l = ±1 ,

∆ j = 0,±1 ,

∆m j = 0,±1 .

The probabilities of all other transitions are much
smaller, and they are called forbidden transitions; exam-
ples are magnetic dipole transitions and all quadrupole
and higher multipole transitions.

Spectral lines originating in forbidden transitions are
called forbidden lines. The probability of such a tran-
sition is so low that under normal circumstances, the
transition cannot take place before collisions force the
electron to change state. Forbidden lines are possible
only if the gas is extremely rarified (like in auroras and
planetary nebulae).
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Fig. 5.8. The origin of the hydrogen 21 cm line. The spins of
the electron and the proton may be either parallel or opposite.
The energy of the former state is slightly larger. The wave-
length of a photon corresponding to a transition between these
states is 21 cm

The spins of an electron and nucleus of a hydrogen
atom can be either parallel or antiparallel (Fig. 5.8). The
energy of the former state is 0.0000059 eV higher. But
the selection rules make an electric dipole transition be-
tween these states impossible. The transition, which is
a magnetic dipole transition, has a very low probability,
A = 2.8×10−15 s−1. This means that the average life-
time of the higher state is T = 1/A = 11×106 years.
Usually collisions change the state of the electron well
before this period of time has elapsed. But in interstel-
lar space the density of hydrogen is so low and the total
amount of hydrogen so great that a considerable number
of these transitions can take place.

The wavelength of the radiation emitted by this
transition is 21 cm, which is in the radio band of the
spectrum. Extinction at radio wavelengths is very small,
and we can observe more distant objects than by using
optical wavelengths. The 21 cm radiation has been of
crucial importance for surveys of interstellar hydrogen.

Population Numbers. The population number ni of an
energy state i means the number of atoms in that state
per unit volume. In thermal equilibrium, the population

Fig. 5.9. Spectrum of carbon monoxide CO from 430 nm to
670 nm. The various bands correspond to different vibrational
transitions. Each band is composed of numerous rotational
lines. Near the right edge of each band the lines are so closely

packed that they overlap and at this resolution, the spectrum
looks continuous. (R.W.B. Pearse, A.G. Gaydon: The Identi-
fication of Molecular Spectra (Chapman & Hall Ltd., London
1976) p. 394)

numbers obey the Boltzmann distribution:
ni

n0
= gi

g0
e−∆E/(kT ) , (5.11)

where T is the temperature, k is the Boltzmann constant,
∆E = Ei − E0 = hν is the energy difference between
the excited and ground state, and gi is the statistical
weight of the level i (it is the number of different states
with the same energy Ei). The subscript 0 always refers
to the ground state. Often the population numbers differ
from the values given by (5.11), but still we can define
an excitation temperature Texc in such a way that (5.11)
gives correct population numbers, when T is replaced
by Texc. The excitation temperature may be different for
different energy levels.

5.5 Molecular Spectra

The energy levels of an atom are determined by its elec-
trons. In the case of a molecule, there are many more
possibilities: atoms can vibrate around their equilibria
and the molecule can rotate around some axis. Both vi-
brational and rotational states are quantized. Transitions
between successive vibrational states typically involve
photons in the infrared band, while transitions between
rotational states involve photons in the microwave band.
These combined with transitions of electrons produce
a band spectrum, characteristic for molecules (Fig. 5.9).
The spectrum has several narrow bands composed of
a great number of lines.

5.6 Continuous Spectra

We have already mentioned some processes that pro-
duce continuous spectra. Continuous emission spectra
can originate in recombinations and free–free tran-
sitions. In recombination, an atom captures a free
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electron whose energy is not quantized; in free–free
transitions, both initial and final states are unquan-
tized. Thus the emission line can have any frequency
whatsoever. Similarly, ionizations and free–free tran-
sitions can give rise to a continuous absorption
spectrum.

Each spectrum contains a continuous component, or
continuum, and spectral lines. Sometimes, however, the
lines are so closely packed and so broad that they seem
to form a nearly continuous spectrum.

When the pressure of hot gas is increased, the spec-
tral lines begin to broaden. At high pressure, atoms
bump into each other more frequently, and the close
neighbors disturb the energy levels. When the pres-
sure is high enough, the lines begin to overlap. Thus
the spectrum of hot gas at high pressure is continu-
ous. Electric fields also broaden spectral lines (the Stark
effect).

In liquids and solids the atoms are more densely
packed than in gaseous substances. Their mutual
perturbations broaden the energy levels, producing
a continuous spectrum.

5.7 Blackbody Radiation

A blackbody is defined as an object that does not reflect
or scatter radiation shining upon it, but absorbs and re-
emits the radiation completely. A blackbody is a kind of
an ideal radiator, which cannot exist in the real world.
Yet many objects behave very much as if they were
blackbodies.

The radiation of a blackbody depends only on its
temperature, being perfectly independent of its shape,
material and internal constitution. The wavelength dis-
tribution of the radiation follows Planck’s law, which
is a function of temperature only. The intensity at
a frequency ν of a blackbody at temperature T is

Bν(T )= B(ν; T )= 2hν3

c2

1

ehν/(kT )−1
, (5.12)

where

h = the Planck constant = 6.63×10−34 J s ,

c = the speed of light ≈ 3×108 m s−1 ,

k = the Boltzmann constant = 1.38×10−23 J K−1 .

By definition of the intensity, the dimension of Bν is
W m−2 Hz−1 sterad−1.

Blackbody radiation can be produced in a closed
cavity whose walls absorb all radiation incident upon
them (and coming from inside the cavity). The walls
and the radiation in the cavity are in equilibrium; both
are at the same temperature, and the walls emit all the
energy they receive. Since radiation energy is constantly
transformed into thermal energy of the atoms of the
walls and back to radiation, the blackbody radiation is
also called thermal radiation.

The spectrum of a blackbody given by Planck’s law
(5.12) is continuous. This is true if the size of the radiator
is very large compared with the dominant wavelengths.
In the case of the cavity, this can be understood by con-
sidering the radiation as standing waves trapped in the
cavity. The number of different wavelengths is larger,
the shorter the wavelengths are compared with the size
of the cavity. We already mentioned that spectra of solid
bodies are continuous; very often such spectra can be
quite well approximated by Planck’s law.

We can also write Planck’s law as a function of
the wavelength. We require that Bν dν = −Bλ dλ. The
wavelength decreases with increasing frequency; hence
the minus sign. Since ν = c/λ, we have

dν

dλ
= − c

λ2
, (5.13)

whence

Bλ = −Bν
dν

dλ
= Bν

c

λ2
, (5.14)

or

Bλ(T )= 2hc2

λ5

1

ehc/(λkT )−1
,

[Bλ] = W m−2 m−1 sterad−1 .

(5.15)

The functions Bν and Bλ are defined in such a way that
the total intensity can be obtained in the same way using
either of them:

B(T )=
∞∫

0

Bν dν =
∞∫

0

Bλ dλ .

Let us now try to find the total intensity using the
first of these integrals:

B(T )=
∞∫

0

Bν(T ) dν = 2h

c2

∞∫
0

ν3 dν

ehν/(kT )−1
.
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We now change the integration variable to x = hν/(kT ),
whence dν = (kT/h)dx:

B(T )= 2h

c2

k4

h4
T 4

∞∫
0

x3 dx

ex −1
.

The definite integral in this expression is just a real
number, independent of the temperature. Thus we find
that

B(T )= AT 4 , (5.16)

where the constant A has the value

A = 2k4

c2h3

π4

15
. (5.17)

(In order to get the value of A we have to evaluate the
integral. There is no elementary way to do that. We can
tell those who are familiar with all the exotic functions
so beloved by theoretical physicists, that the integral can
rather easily be expressed as Γ(4)ζ(4), where ζ is the
Riemann zeta function and Γ is the gamma function.
For integral values, Γ(n) is simply the factorial (n −1)!.
The difficult part is showing that ζ(4)= π4/90. This can
be done by expanding x4 − x2 as a Fourier-series and
evaluating the series at x = π.)

The flux density F for isotropic radiation of intensity
B is (Sect. 4.1):

F = πB

or

F = σT 4 . (5.18)

This is the Stefan-Boltzmann law, and the constant σ
(= πA) is the Stefan-Boltzmann constant,

σ = 5.67×10−8 W m−2 K−4 .

From the Stefan-Boltzmann law we get a relation
between the luminosity and temperature of a star. If the
radius of the star is R, its surface area is 4πR2, and if
the flux density on the surface is F, we have

L = 4πR2 F .

If the star is assumed to radiate like a blackbody, we
have F = σT 4, which gives

L = 4πσR2T 4 . (5.19)

In fact this defines the effective temperature of the star,
discussed in more detail in the next section.

The luminosity, radius and temperature of a star are
interdependent quantities, as we can see from (5.19).
They are also related to the absolute bolometric magni-
tude of the star. Equation (4.13) gives the difference of
the absolute bolometric magnitude of the star and the
Sun:

Mbol − Mbol,� = −2.5 lg
L

L�
. (5.20)

But we can now use (5.19) to express the luminosities
in terms of the radii and temperatures:

Mbol − Mbol,� = −5 lg
R

R�
−10 lg

T

T�
. (5.21)

As we can see in Fig. 5.10, the wavelength of the
maximum intensity decreases with increasing total in-
tensity (equal to the area below the curve). We can find
the wavelength λmax corresponding to the maximum in-
tensity by differentiating Planck’s function Bλ(T ) with

Fig. 5.10. Intensity distributions of blackbodies at temperature
12,000 K, 9000 K and 6000 K. Since the ratios of the temper-
atures are 4:3:2, the wavelengths of intensity maxima given
by the Wien displacement law are in the proportions 1:4, 1:3
and 1:2, or 3, 4 and 6. The actual wavelengths of the maxima
are 241.5 nm, 322 nm and 483 nm. The total intensities or the
areas below the curves are proportional to 44, 34 and 24
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respect to λ and finding zero of the derivative. The result
is the Wien displacement law:

λmaxT = b = const , (5.22)

where the Wien displacement constant b is

b = 0.0028978 K m .

We can use the same procedure to find the maximum
of Bν. But the frequency νmax thus obtained is different
from νmax = c/λmax given by (5.22). The reason for this
is the fact that the intensities are given per unit frequency
or unit wavelength, and the dependence of frequency on
wavelength is nonlinear.

When the wavelength is near the maximum or much
longer than λmax Planck’s function can be approx-
imated by simpler expressions. When λ ≈ λmax (or
hc/(λkT )	 1), we have

ehc/(λkT ) 	 1 .

In this case we get the Wien approximation

Bλ(T )≈ 2hc2

λ5
e−hc/(λkT ) . (5.23)

When hc/(λkT )� 1 (λ	 λmax), we have

ehc/λkT ≈ 1+hc/(λkT ) ,

which gives the Rayleigh–Jeans approximation

Bλ(T )≈ 2hc2

λ5

λkT

hc
= 2ckT

λ4
. (5.24)

This is particularly useful in radio astronomy.
Classical physics predicted only the Rayleigh–Jeans

approximation. Were (5.24) true for all wavelengths, the
intensity would grow beyond all limits when the wave-
length approaches zero, contrary to observations. This
contradiction was known as the ultraviolet catastrophe.

5.8 Temperatures

Temperatures of astronomical objects range from al-
most absolute zero to millions of degrees. Temperature
can be defined in a variety of ways, and its numerical
value depends on the specific definition used. All these
different temperatures are needed to describe different

physical phenomena, and often there is no unique ‘true’
temperature.

Often the temperature is determined by comparing
the object, a star for instance, with a blackbody. Al-
though real stars do not radiate exactly like blackbodies,
their spectra can usually be approximated by blackbody
spectra after the effect of spectral lines has been elim-
inated. The resulting temperature depends on the exact
criterion used to fit Planck’s function to observations.

The most important quantity describing the surface
temperature of a star is the effective temperature Te.
It is defined as the temperature of a blackbody which
radiates with the same total flux density as the star.
Since the effective temperature depends only on the
total radiation power integrated over all frequencies, it
is well defined for all energy distributions even if they
deviate far from Planck’s law.

In the previous section we derived the Stefan-
Boltzmann law, which gives the total flux density as
a function of the temperature. If we now find a value Te

of the temperature such that the Stefan-Boltzmann law
gives the correct flux density F on the surface of the
star, we have found the effective temperature. The flux
density on the surface is

F = σT 4
e . (5.25)

The total flux is L = 4πR2 F, where R is the radius of
the star, and the flux density at a distance r is

F ′ = L

4πr2
= R2

r2
F =

(α
2

)2
σT 4

e , (5.26)

where α= 2R/r is the observed angular diameter of the
star. For direct determination of the effective tempera-
ture, we have to measure the total flux density and the
angular diameter of the star. This is possible only in
the few cases in which the diameter has been found by
interferometry.

If we assume that at some wavelength λ the flux
density Fλ on the surface of the star is obtained from
Planck’s law, we get the brightness temperature Tb. In
the isotropic case we have then Fλ = πBλ(Tb). If the
radius of the star is R and distance from the Earth r, the
observed flux density is

F ′
λ = R2

r2
Fλ .
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Again Fλ can be determined only if the angular diame-
ter α is known. The brightness temperature Tb can then
be solved from

F ′
λ =

(α
2

)2
πBλ(Tb) . (5.27)

Since the star does not radiate like a blackbody,
its brightness temperature depends on the particular
wavelength used in (5.27).

In radio astronomy, brightness temperature is used
to express the intensity (or surface brightness) of the
source. If the intensity at frequency ν is Iν, the brightness
temperature is obtained from

Iν = Bν(Tb) .

Tb gives the temperature of a blackbody with the same
surface brightness as the observed source.

Since radio wavelengths are very long, the condition
hν� kT of the Rayleigh–Jeans approximation is usu-
ally satisfied (except for millimetre and submillimetre
bands), and we can write Planck’s law as

Bν(Tb)= 2hν3

c2

1

ehν/(kTb)−1

= 2hν3

c2

1

1+hν/(kTb)+ . . .−1

≈ 2kν2

c2
Tb .

Thus we get the following expression for the radio
astronomical brightness temperature:

Tb = c2

2kν2
Iν = λ2

2k
Iν . (5.28)

A measure of the signal registered by a radio
telescope is the antenna temperature TA. After the an-
tenna temperature is measured, we get the brightness
temperature from

TA = ηTb , (5.29)

where η is the beam efficiency of the antenna (typically
0.4� η� 0.8). Equation (5.29) holds if the source is
wide enough to cover the whole beam, i. e. the solid
angle ΩA from which the antenna receives radiation. If
the solid angle subtended by the source, ΩS, is smaller
than ΩA, the observed antenna temperature is

TA = η
ΩS

ΩA
Tb , (ΩS <ΩA) . (5.30)

The colour temperature Tc can be determined even
if the angular diameter of the source is unknown
(Fig. 5.11). We only have to know the relative energy
distribution in some wavelength range [λ1, λ2]; the ab-
solute value of the flux is not needed. The observed flux
density as a function of wavelength is compared with
Planck’s function at different temperatures. The tem-
perature giving the best fit is the colour temperature in
the interval [λ1, λ2]. The colour temperature is usually
different for different wavelength intervals, since the
shape of the observed energy distribution may be quite
different from the blackbody spectrum.

A simple method for finding a colour temperature is
the following. We measure the flux density F ′

λ at two
wavelengths λ1 and λ2. If we assume that the intensity
distribution follows Planck’s law, the ratio of these flux
densities must be the same as the ratio obtained from
Planck’s law:

F ′
λ1
(T )

F ′
λ2
(T )

= Bλ1(T )

Bλ2(T )
= λ5

2

λ5
1

ehc/(λ2kT )−1

ehc/(λ1kT )−1
. (5.31)

The temperature T solved from this equation is a colour
temperature.

The observed flux densities correspond to certain
magnitudes mλ1 and mλ2 . The definition of magnitudes
gives

mλ1 −mλ2 = −2.5 lg
F ′
λ1

F ′
λ2

+ const ,

where the constant term is a consequence of the different
zero points of the magnitude scales. If the temperature

Fig. 5.11. Determination of the colour temperature. The ratio
of the flux densities at wavelengths λ1 and λ2 gives the tem-
perature of a blackbody with the same ratio. In general the
result depends on the wavelengths chosen
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is not too high, we can use the Wien approximation in
the optical part of the spectrum:

mλ1 −mλ2 = −2.5 lg
Bλ1

Bλ2

+ const

= −2.5 lg

(
λ2

λ1

)5

+2.5
hc

kT

(
1

λ1
− 1

λ2

)
lg e+ const .

This can be written as

mλ1 −mλ2 = a +b/Tc , (5.32)

where a and b are constants. This shows that there
is a simple relationship between the difference of two
magnitudes and the colour temperature.

Strictly speaking, the magnitudes in (5.32) are
monochromatic, but the same relation can be also used
with broadband magnitudes like B and V . In that case,
the two wavelengths are essentially the effective wave-
lengths of the B and V bands. The constant is chosen
so that B − V = 0 for stars of the spectral type A0
(see Chap. 8). Thus the colour index B − V also gives
a colour temperature.

The kinetic temperature Tk, is related to the average
speed of gas molecules. The kinetic energy of an ideal
gas molecule as a function of temperature follows from
the kinetic gas theory:

Kinetic energy = 1

2
mv2 = 3

2
kTk .

Solving for Tk we get

Tk = mv2

3k
, (5.33)

where m is the mass of the molecule, v its average ve-
locity (or rather its r.m. s velocity, which means that
v2 is the average of the squared velocities), and k, the
Boltzmann constant. For ideal gases the pressure is di-
rectly proportional to the kinetic temperature (c. f. *Gas
Pressure and Radiation Pressure, p. 238):

P = nkTk , (5.34)

where n is the number density of the molecules
(molecules per unit volume). We previously defined the
excitation temperature Texc as a temperature which, if
substituted into the Boltzmann distribution (5.11), gives

the observed population numbers. If the distribution of
atoms in different levels is a result of mutual collisions
of the atoms only, the excitation temperature equals the
kinetic temperature, Texc = Tk.

The ionization temperature Ti is found by compar-
ing the number of atoms in different states of ionization.
Since stars are not exactly blackbodies, the values of
excitation and ionization temperatures usually vary, de-
pending on the element whose spectral lines were used
for temperature determination.

In thermodynamic equilibrium all these various
temperatures are equal.

5.9 Other Radiation Mechanisms

The radiation of a gas in thermodynamic equilib-
rium depends on the temperature and density only. In
astrophysical objects deviations from thermodynamic
equilibrium are, however, quite common. Some ex-
amples of non-thermal radiation arising under such
conditions are mentioned in the following.

Maser and Laser (Fig. 5.12). The Boltzmann distri-
bution (5.11) shows that usually there are fewer atoms
in excited states than in the ground state. There are,
however, means to produce a population inversion, an
excited state containing more atoms than the ground
state. This inversion is essential for both the maser and
the laser (Microwave/Light Amplification by Stimu-
lated Emission of Radiation). If the excited atoms are
now illuminated with photons having energies equal to
the excitation energy, the radiation will induce down-
ward transitions. The number of photons emitted greatly
exceeds the number of absorbed photons, and radiation
is amplified. Typically the excited state is a metastable
state, a state with a very long average lifetime, which
means that the contribution of spontaneous emission is
negligible. Therefore the resulting radiation is coher-
ent and monochromatic. Several maser sources have
been found in interstellar molecular clouds and dust
envelopes around stars.

Synchrotron Radiation. A free charge in accelerated
motion will emit electromagnetic radiation. Charged
particles moving in a magnetic field follow helices
around the field lines. As seen from the direction of
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Fig. 5.12. The operational principle of the maser and the laser.
A metastable state (a state with a relatively long average life-
time) stores atoms where they accumulate; there are more
atoms in the metastable state than in the ground state. This pop-
ulation inversion is maintained by radiatively exciting atoms
to a higher excitation state (“pumping”), from which they
spontaneously jump down to the metastable state. When the
atoms are illuminated by photons with energies equal to the
excitation energy of the metastable state, the photons will in-
duce more radiation of the same wavelength, and the radiation
is amplified in geometric progression

the field, the motion is circular and therefore acceler-
ated. The moving charge will radiate in the direction of
its velocity vector. Such radiation is called synchrotron
radiation. It will be further discussed in Chap. 15.

5.10 Radiative Transfer

Propagation of radiation in a medium, also called
radiative transfer, is one of the basic problems of astro-
physics. The subject is too complicated to be discussed
here in any detail. The fundamental equation of radiative
transfer is, however, easily derived.

Assume we have a small cylinder, the bottom of
which has an area d A and the length of which is dr.
Let Iν be the intensity of radiation perpendicular
to the bottom surface going into a solid angle dω
([Iν] = W m−2 Hz−1 sterad−1). If the intensity changes
by an amount d Iν in the distance dr, the energy changes

by

dE = d Iν d A dν dω dt

in the cylinder in time dt. This equals the emission
minus absorption in the cylinder. The absorbed energy
is (c. f. (4.14))

dEabs = αν Iν dr d A dν dω dt , (5.35)

where αν is the opacity of the medium at frequency ν.
Let the amount of energy emitted per hertz at fre-
quency ν into unit solid angle from unit volume and
per unit time be jν ([ jν] = W m−3 Hz−1 sterad−1). This
is called the emission coefficient of the medium. The
energy emitted into solid angle dω from the cylinder is
then

dEem = jν dr d A dν dω dt . (5.36)

The equation

dE = −dEabs +dEem

gives then

d Iν = −αν Iνdr + jνdr

or

d Iν
αν dr

= −Iν + jν
αν
. (5.37)

We shall denote the ratio of the emission coefficient jν
to the absorption coefficient or opacity αν by Sν:

Sν = jν
αν
. (5.38)

Sν is called the source function. Because αν dr = dτν,
where τν is the optical thickness at frequency ν, (5.37)
can be written as

d Iν
dτν

= −Iν + Sν . (5.39)

Equation (5.39) is the basic equation of radiative
transfer. Without solving the equation, we see that if
Iν < Sν, then d Iν/dτν > 0, and the intensity tends to in-
crease in the direction of propagation. And, if Iν > Sν,
then d Iν/dτν < 0, and Iν will decrease. In an equilib-
rium the emitted and absorbed energies are equal, in
which case we find from (5.35) and (5.36)

Iν = jν/αν = Sν . (5.40)
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Substituting this into (5.39), we see that d Iν/dτν = 0. In
thermodynamic equilibrium the radiation of the medium
is blackbody radiation, and the source function is given
by Planck’s law:

Sν = Bν(T )= 2hν3

c2

1

ehν/(kT )−1
.

Even if the system is not in thermodynamic equilibrium,
it may be possible to find an excitation temperature Texc

such that Bν(Texc)= Sν. This temperature may depend
on frequency.

A formal solution of (5.39) is

Iν(τν)= Iν(0) e−τν +
τν∫

0

e−(τν−t)Sν(t) dt . (5.41)

Here Iν(0) is the intensity of the background radiation,
coming through the medium (e. g. an interstellar cloud)
and decaying exponentially in the medium. The second
term gives the emission in the medium. The solution
is only formal, since in general, the source function Sν
is unknown and must be solved simultaneously with
the intensity. If Sν(τν) is constant in the cloud and the
background radiation is ignored, we get

Iν(τν)= Sν

τν∫
0

e−(τν−t)dt = Sν(1− e−τν ) . (5.42)

If the cloud is optically thick (τν 	 1), we have

Iν = Sν , (5.43)

i. e. the intensity equals the source function, and the
emission and absorption processes are in equilibrium.

An important field of application of the theory of
radiative transfer is in the study of planetary and stellar
atmospheres. In this case, to a good approximation, the
properties of the medium only vary in one direction, say
along the z axis. The intensity will then depend only on z
and θ, where θ is the angle between the z axis and the
direction of propagation of the radiation.

In applications to atmospheres it is customary to
define the optical depth τν in the vertical direction as

dτν = −αν dz .

Conventionally z increases upwards and the optical
depth inwards in the atmosphere. The vertical line el-

ement dz is related to that along the light ray, dr,
according to

dz = dr cos θ .

With these notational conventions, (5.39) now yields

cos θ
d Iν(z, θ)

dτν
= Iν − Sν . (5.44)

This is the form of the equation of radiative transfer
usually encountered in the study of stellar and planetary
atmospheres.

A formal expression for the intensity emerging
from an atmosphere can be obtained by integrating
(5.44) from τν = ∞ (we assume that the bottom of
the atmosphere is at infinite optical depth) to τν = 0
(corresponding to the top of the atmosphere). This yields

Iν(0, θ)=
∞∫

0

Sν e−τν sec θ sec θ dτν . (5.45)

This expression will be used later in Chap. 8 on the
interpretation of stellar spectra.

5.11 Examples

Example 5.1 Find the wavelength of the photon emit-
ted in the transition of a hydrogen atom from n2 = 110
to n1 = 109.

Equation (5.8) gives

1

λ
= R

(
1

n2
1

− 1

n2
2

)

= 1.097×107 m−1
(

1

1092
− 1

1102

)
= 16.71 m−1 ,

whence

λ= 0.060 m .

This is in the radio band. Such radiation was observed
for the first time in 1965 by an NRAO radio telescope.

Example 5.2 The effective temperature of a star is
12,000 K and the absolute bolometric magnitude 0.0.
Find the radius of the star, when the effective tempera-
ture of the Sun is 5000 K and the absolute bolometric
magnitude 4.7.
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We can apply (5.21):

Mbol − Mbol,� = −5 lg
R

R�
−10 lg

T

T�

⇒ R

R�
=
(

Te�
Te

)2

10−0.2(−Mbol,�)

=
(

5800

12000

)2

10−0.2(0.0−4.7)

= 2.0 .

Thus the radius is twice the Solar radius.

Example 5.3 Derive the Wien displacement laws.
Let us denote x = hc/(λkT ). Planck’s law then

becomes

Bλ(T )= 2k5T 5

h4c3

x5

ex −1
.

For a given temperature, the first factor is constant.
Thus, it is sufficient to find the maximum of the function
f(x)= x5/(ex −1).

First we must evaluate the derivative of f :

f ′(x)= 5x4(ex −1)− x5ex

(ex −1)2

= x4ex

(ex −1)2
(5−5e−x − x) .

By definition, x is always strictly positive. Hence
f ′(x) can be zero only if the factor 5−5e−x − x is
zero. This equation cannot be solved analytically. In-
stead we write the equation as x = 5−5e−x and solve
it by iteration:

x0 = 5 , (this is just a guess)

x1 = 5−5e−x0 = 4.96631 ,

...

x5 = 4.96511 .

Thus the result is x = 4.965. The Wien displacement
law is then

λmaxT = hc

xk
= b = 2.898×10−3 K m .

In terms of frequency Planck’s law is

Bν(T )= 2hν3

c2

1

ehν/(kT )−1
.

Substituting x = hν/(kT ) we get

Bν(T )= 2k3T 3

h2c2

x3

ex −1
.

Now we study the function f(x)= x3/(ex −1):

f ′(x)= 3x2(ex −1)− x3ex

(ex −1)2

= x2ex

(ex −1)2
(3−3e−x − x) .

This vanishes, when 3−3e−x − x = 0. The solution of
this equation is x = 2.821. Hence

cT

νmax
= hc

kx
= b′ = 5.100×10−3 K m

or
T

νmax
= 1.701×10−11 K s .

Note that the wavelength corresponding to νmax is dif-
ferent from λmax. The reason is that we have used
two different forms of Planck’s function, one giving
the intensity per unit wavelength, the other per unit
frequency.

Example 5.4 a) Find the fraction of radiation that
a blackbody emits in the range [λ1, λ2], where λ1 and
λ2 	 λmax. b) How much energy does a 100 W in-
candescent light bulb radiate in the radio wavelengths,
λ≥ 1 cm? Assume the temperature is 2500 K.

Since the wavelengths are much longer than λmax

we can use the Rayleigh–Jeans approximation Bλ(T )≈
2ckT/λ4. Then

B′ =
λ2∫
λ1

Bλ(T )dλ≈ 2ckT

λ2∫
λ1

dλ

λ4

= 2ckT

3

(
1

λ3
1

− 1

λ3
2

)
,

and hence
B′

Btot
= 5c3h3

k3π4

1

T 3

(
1

λ3
1

− 1

λ3
2

)
.

Now the temperature is T = 2500 K and the wavelength
range [0.01 m,∞), and so

B′ = 100 W×1.529×10−7 1

25003

1

0.013

= 9.8×10−10 W .
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It is quite difficult to listen to the radio emission of
a light bulb with an ordinary radio receiver.

Example 5.5 Determination of Effective Temperature

The observed flux density of Arcturus is

F ′ = 4.5×10−8 W m−2 .

Interferometric measurements give an angular diameter
of α= 0.020′′. Thus, α/2 = 4.85×10−8 radians. From
(5.26) we get

Te =
(

4.5×10−8

(4.85×10−8)2 ×5.669×10−8

)1/4

K

= 4300 K .

Example 5.6 Flux densities at the wavelengths
440 nm and 550 nm are 1.30 and 1.00 W m−2 m−1,
respectively. Find the colour temperature.

If the flux densities at the wavelengths λ1 and λ2 are
F1 and F2, respectively, the colour temperature can be
solved from the equation

F1

F2
= Bλ1(Tc)

Bλ2(Tc)
=
(
λ2

λ1

)5 ehc/(λ2kTc)−1

ehc/(λ1kTc)−1
.

If we denote

A = F1

F2

(
λ1

λ2

)5

,

B1 = hc

λ1k
,

B2 = hc

λ2k
,

we get the equation

A = eB2/Tc −1

eB1/Tc −1

for the colour temperature Tc. This equation must be
solved numerically.

In our example the constants have the following
values:

A = 1.00

1.30

(
550

440

)5

= 2.348 ,

B1 = 32,700 K , B2 = 26,160 K .

By substituting different values for Tc, we find that Tc =
7545 K satisfies our equation.

5.12 Exercises

Exercise 5.1 Show that in the Wien approximation
the relative error of Bλ is
∆Bλ
Bλ

= −e−hc/(λkT ) .

Exercise 5.2 If the transition of the hydrogen atom
n +1 → n were to correspond to the wavelength
21.05 cm, what would the quantum number n be? The
interstellar medium emits strong radiation at this wave-
length. Can this radiation be due to such transitions?

Exercise 5.3 The space is filled with background radi-
ation, remnant of the early age of the universe. Currently
the distribution of this radiation is similar to the ra-
diation of a blackbody at the temperature of 2.7 K.
What is λmax corresponding to this radiation? What is
its total intensity? Compare the intensity of the back-
ground radiation to the intensity of the Sun at the visual
wavelengths.

Exercise 5.4 The temperature of a red giant is T =
2500 K and radius 100 times the solar radius.

a) Find the total luminosity of the star, and the luminos-
ity in the visual band 400 nm ≤ λ≤ 700 nm.

b) Compare the star with a 100 W lamp that radiates 5%
of its energy in the visual band. What is the distance
of the lamp if it looks as bright as the star?

Exercise 5.5 The effective temperature of Sirius is
10,000 K, apparent visual magnitude −1.5, distance
2.67 kpc and bolometric correction 0.5. What is the
radius of Sirius?

Exercise 5.6 The observed flux density of the Sun at
λ= 300 nm is 0.59 W m−2 nm−1. Find the brightness
temperature of the Sun at this wavelength.

Exercise 5.7 The colour temperature can be deter-
mined from two magnitudes corresponding to two
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different wavelengths. Show that

Tc = 7000 K

(B − V )+0.47
.

The wavelengths of the B and V bands are 440 nm and
548 nm, respectively, and we assume that B = V for

stars of the spectral class A0, the colour temperature of
which is about 15,000 K.

Exercise 5.8 The kinetic temperature of the plasma
in the solar corona can reach 106 K. Find the average
speed of the electrons in such a plasma.
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6. Celestial Mechanics

Celestial mechanics, the study of motions of celes-
tial bodies, together with spherical astronomy, was

the main branch of astronomy until the end of the
19th century, when astrophysics began to evolve rapidly.
The primary task of classical celestial mechanics was to
explain and predict the motions of planets and their
satellites. Several empirical models, like epicycles and Ke-
pler’s laws, were employed to describe these motions.
But none of these models explained why the planets
moved the way they did. It was only in the 1680’s
that a simple explanation was found for all these mo-

tions − Newton’s law of universal gravitation. In this
chapter, we will derive some properties of orbital mo-
tion. The physics we need for this is simple indeed,
just Newton’s laws. (For a review, see *Newton’s Laws,
p. 126)

This chapter is mathematically slightly more involved
than the rest of the book. We shall use some vector cal-
culus to derive our results, which, however, can be easily
understood with very elementary mathematics. A sum-
mary of the basic facts of vector calculus is given in
Appendix A.4.

6.1 Equations of Motion

We shall concentrate on the systems of only two bodies.
In fact, this is the most complicated case that allows
a neat analytical solution. For simplicity, let us call the
bodies the Sun and a planet, although they could quite
as well be a planet and its moon, or the two components
of a binary star.

Let the masses of the two bodies be m1 and m2 and the
radius vectors in some fixed inertial coordinate frame
r1 and r2 (Fig. 6.1). The position of the planet relative
to the Sun is denoted by r = r2 − r1. According to New-
ton’s law of gravitation the planet feels a gravitational
pull proportional to the masses m1 and m2 and inversely
proportional to the square of the distance r. Since the
force is directed towards the Sun, it can be expressed as

F = Gm1m2

r2

−r
r

= −Gm1m2
r

r3
, (6.1)

where G is the gravitational constant. (More about this
in Sect. 6.5.)

Newton’s second law tells us that the acceleration r̈2

of the planet is proportional to the applied force:

F = m2 r̈2 . (6.2)

Combining (6.1) and (6.2), we get the equation of
motion of the planet

m2 r̈2 = −Gm1m2
r

r3
. (6.3)

Fig. 6.1. The radius vectors of the Sun and a planet in an
arbitrary inertial frame are r1 and r2, and r = r2 − r1 is the
position of the planet relative to the Sun

Since the Sun feels the same gravitational pull, but
in the opposite direction, we can immediately write the
equation of motion of the Sun:

m1 r̈1 = +Gm1m2
r

r3
. (6.4)

We are mainly interested in the relative motion of
the planet with respect to the Sun. To find the equation
of the relative orbit, we cancel the masses appearing on
both sides of (6.3) and (6.4), and subtract (6.4) from
(6.3) to get

r̈ = −µ r
r3
, (6.5)

where we have denoted

µ= G(m1 +m2) . (6.6)
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The solution of (6.5) now gives the relative orbit
of the planet. The equation involves the radius vector
and its second time derivative. In principle, the solu-
tion should yield the radius vector as a function of time,
r = r(t). Unfortunately things are not this simple in
practice; in fact, there is no way to express the radius
vector as a function of time in a closed form (i. e. as
a finite expression involving familiar elementary func-
tions). Although there are several ways to solve the
equation of motion, we must resort to mathematical
manipulation in one form or another to figure out the
essential properties of the orbit. Next we shall study one
possible method.

6.2 Solution of the Equation of Motion

The equation of motion (6.5) is a second-order (i. e.
contains second derivatives) vector valued differential
equation. Therefore we need six integration constants
or integrals for the complete solution. The solution is
an infinite family of orbits with different sizes, shapes
and orientations. A particular solution (e.g. the orbit
of Jupiter) is selected by fixing the values of the six
integrals. The fate of a planet is unambiguously deter-
mined by its position and velocity at any given moment;
thus we could take the position and velocity vectors at
some moment as our integrals. Although they do not
tell us anything about the geometry of the orbit, they
can be used as initial values when integrating the orbit
numerically with a computer. Another set of integrals,
the orbital elements, contains geometric quantities de-
scribing the orbit in a very clear and concrete way. We
shall return to these later. A third possible set involves
certain physical quantities, which we shall derive next.

We begin by showing that the angular momentum
remains constant. The angular momentum of the planet
in the heliocentric frame is

L = m2r× ṙ . (6.7)

Celestial mechanicians usually prefer to use the angular
momentum divided by the planet’s mass

k = r× ṙ . (6.8)

Let us find the time derivative of this:

k̇ = r× r̈+ ṙ× ṙ .

The latter term vanishes as a vector product of two
parallel vectors. The former term contains r̈, which is
given by the equation of motion:

k̇ = r× (−µr/r3)= −(µ/r3)r× r = 0 .

Thus k is a constant vector independent of time (as is L,
of course).

Since the angular momentum vector is always per-
pendicular to the motion (this follows from (6.8)), the
motion is at all times restricted to the invariable plane
perpendicular to k (Fig. 6.2).

To find another constant vector, we compute the
vector product k× r̈:

k× r̈ = (r× ṙ)× (−µr/r3)

= −µ

r3
[(r · r)ṙ− (r · ṙ)r] .

The time derivative of the distance r is equal to the
projection of ṙ in the direction of r (Fig. 6.3); thus, using
the properties of the scalar product, we get ṙ = r · ṙ/r,
which gives

r · ṙ = rṙ . (6.9)

Hence,

k× r̈ = −µ(ṙ/r − rṙ/r2)= d

dt
(−µr/r) .

The vector product can also be expressed as

k× r̈ = d

dt
(k× ṙ) ,

Fig. 6.2. The angular momentum vector k is perpendicular
to the radius and velocity vectors of the planet. Since k is
a constant vector, the motion of the planet is restricted to the
plane perpendicular to k
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Fig. 6.3. The radial velocity ṙ is the projection of the velocity
vector ṙ in the direction of the radius vector r

since k is a constant vector. Combining this with the
previous equation, we have

d

dt
(k× ṙ+µr/r)= 0

and

k× ṙ+µr/r = const = −µe . (6.10)

Since k is perpendicular to the orbital plane, k× ṙ
must lie in that plane. Thus, e is a linear combination
of two vectors in the orbital plane; so e itself must be
in the orbital plane (Fig. 6.4). Later we shall see that it
points to the direction where the planet is closest to the
Sun in its orbit. This point is called the perihelion.

One more constant is found by computing ṙ · r̈:

ṙ · r̈ = −µṙ · r/r3 = −µrṙ/r3

= −µṙ/r2 = d

dt
(µ/r) .

Since we also have

ṙ · r̈ = d

dt

(
1

2
ṙ · ṙ
)
,

we get

d

dt

(
1

2
ṙ · ṙ− µ

r

)
= 0

or
1

2
v2 −µ/r = const = h . (6.11)

Here v is the speed of the planet relative to the Sun. The
constant h is called the energy integral; the total energy
of the planet is m2h. We must not forget that energy

Fig. 6.4. The orbit of an object in the gravitational field of an-
other object is a conic section: ellipse, parabola or hyperbola.
Vector e points to the direction of the pericentre, where the or-
biting object is closest to central body. If the central body is
the Sun, this direction is called the perihelion; if some other
star, periastron; if the Earth, perigee, etc. The true anomaly f
is measured from the pericentre

and angular momentum depend on the coordinate frame
used. Here we have used a heliocentric frame, which in
fact is in accelerated motion.

So far, we have found two constant vectors and one
constant scalar. It looks as though we already have seven
integrals, i. e. one too many. But not all of these con-
stants are independent; specifically, the following two
relations hold:

k · e = 0 , (6.12)

µ2(e2 −1)= 2hk2 , (6.13)

where e and k are the lengths of e and k. The first
equation is obvious from the definitions of e and k. To
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prove (6.13), we square both sides of (6.10) to get

µ2e2 = (k× ṙ) · (k× ṙ)+µ2 r · r
r2

+2(k× ṙ) · µr
r
.

Since k is perpendicular to ṙ, the length of k× ṙ is
|k||ṙ| = kv and (k× ṙ) · (k× ṙ)= k2v2. Thus, we have

µ2e2 = k2v2 +µ2 + 2µ

r
(k× ṙ · r) .

The last term contains a scalar triple product, where we
can exchange the dot and cross to get k · ṙ× r. Next we
reverse the order of the two last factors. Because the
vector product is anticommutative, we have to change
the sign of the product:

µ2(e2 −1)= k2v2 − 2µ

r
(k · r× ṙ)= k2v2 − 2µ

r
k2

= 2k2
(

1

2
v2 − µ

r

)
= 2k2h .

This completes the proof of (6.13).
The relations (6.12) and (6.13) reduce the number

of independent integrals by two, so we still need one
more. The constants we have describe the size, shape
and orientation of the orbit completely, but we do not
yet know where the planet is! To fix its position in the
orbit, we have to determine where the planet is at some
given instant of time t = t0, or alternatively, at what time
it is in some given direction. We use the latter method
by specifying the time of perihelion passage, the time
of perihelion τ .

6.3 Equation of the Orbit
and Kepler’s First Law

In order to find the geometric shape of the orbit, we
now derive the equation of the orbit. Since e is a con-
stant vector lying in the orbital plane, we choose it as
the reference direction. We denote the angle between
the radius vector r and e by f . The angle f is called
the true anomaly. (There is nothing false or anomalous
in this and other anomalies we shall meet later. Angles
measured from the perihelion point are called anoma-
lies to distinguish them from longitudes measured from
some other reference point, usually the vernal equinox.)
Using the properties of the scalar product we get

r · e = re cos f .

But the product r · e can also be evaluated using the
definition of e:

r · e = − 1

µ
(r ·k× ṙ+µr · r/r)

= − 1

µ
(k · ṙ× r+µr)= − 1

µ
(−k2 +µr)

= k2

µ
−r .

Equating the two expressions of r · e we get

r = k2/µ

1+ e cos f
. (6.14)

This is the general equation of a conic section in polar
coordinates (Fig. 6.4; see Appendix A.2 for a brief sum-
mary of conic sections). The magnitude of e gives the
eccentricity of the conic:

e = 0 circle ,

0< e< 1 ellipse ,

e = 1 parabola ,

e> 1 hyperbola .

Inspecting (6.14), we find that r attains its minimum
when f = 0, i. e. in the direction of the vector e. Thus,
e indeed points to the direction of the perihelion.

Starting with Newton’s laws, we have thus managed
to prove Kepler’s first law:

The orbit of a planet is an ellipse, one focus of
which is in the Sun.

Without any extra effort, we have shown that also
other conic sections, the parabola and hyperbola, are
possible orbits.

6.4 Orbital Elements

We have derived a set of integrals convenient for study-
ing the dynamics of orbital motion. We now turn to
another collection of constants more appropriate for de-
scribing the geometry of the orbit. The following six
quantities are called the orbital elements (Fig. 6.5):

– semimajor axis a,
– eccentricity e,
– inclination i (or ι),
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Fig. 6.5a–c. Six integration constants are needed to describe
a planet’s orbit. These constants can be chosen in various
ways. (a) If the orbit is to be computed numerically, the sim-
plest choice is to use the initial values of the radius and velocity
vectors. (b) Another possibility is to use the angular momen-
tum k, the direction of the perihelion e (the length of which

gives the eccentricity), and the perihelion time τ . (c) The
third method best describes the geometry of the orbit. The
constants are the longitude of the ascending nodeΩ, the argu-
ment of perihelion ω, the inclination i, the semimajor axis a,
the eccentricity e and the time of perihelion τ

– longitude of the ascending node Ω,
– argument of the perihelion ω,
– time of the perihelion τ .

The eccentricity is obtained readily as the length of
the vector e. From the equation of the orbit (6.14), we
see that the parameter (or semilatus rectum) of the orbit
is p = k2/µ. But the parameter of a conic section is
always a|1− e2|, which gives the semimajor axis, if
e and k are known:

a = k2/µ

|1− e2| . (6.15)

By applying (6.13), we get an important relation
between the size of the orbit and the energy integral h:

a =
⎧⎨
⎩−µ/2h , if the orbit is an ellipse ,

µ/2h , if the orbit is a hyperbola .
(6.16)

For a bound system (elliptical orbit), the total energy
and the energy integral are negative. For a hyperbolic
orbit h is positive; the kinetic energy is so high that
the particle can escape the system (or more correctly,
recede without any limit). The parabola, with h = 0, is
a limiting case between elliptical and hyperbolic orbits.
In reality parabolic orbits do not exist, since hardly
any object can have an energy integral exactly zero.

However, if the eccentricity is very close to one (as with
many comets), the orbit is usually considered parabolic
to simplify calculations.

The orientation of the orbit is determined by the di-
rections of the two vectors k (perpendicular to the orbital
plane) and e (pointing towards the perihelion). The three
angles i, Ω and ω contain the same information.

The inclination i gives the obliquity of the orbital
plane relative to some fixed reference plane. For bod-
ies in the solar system, the reference plane is usually
the ecliptic. For objects moving in the usual fashion,
i. e. counterclockwise, the inclination is in the interval
[0◦, 90◦]; for retrograde orbits (clockwise motion), the
inclination is in the range (90◦, 180◦]. For example, the
inclination of Halley’s comet is 162◦, which means that
the motion is retrograde and the angle between its orbital
plane and the ecliptic is 180◦ −162◦ = 18◦.

The longitude of the ascending node, Ω, indicates
where the object crosses the ecliptic from south to
north. It is measured counterclockwise from the vernal
equinox. The orbital elements i and Ω together de-
termine the orientation of the orbital plane, and they
correspond to the direction of k, i. e. the ratios of its
components.

The argument of the perihelion ω gives the direction
of the perihelion, measured from the ascending node
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in the direction of motion. The same information is
contained in the direction of e. Very often another angle,
the longitude of the perihelion� (pronounced as pi), is
used instead of ω. It is defined as

� =Ω+ω . (6.17)

This is a rather peculiar angle, as it is measured partly
along the ecliptic, partly along the orbital plane. How-
ever, it is often more practical than the argument of
perihelion, since it is well defined even when the incli-
nation is close to zero in which case the direction of the
ascending node becomes indeterminate.

We have assumed up to this point that each planet
forms a separate two-body system with the Sun. In
reality planets interfere with each other by disturb-
ing each other’s orbits. Still their motions do not
deviate very far from the shape of conic sections,
and we can use orbital elements to describe the or-
bits. But the elements are no longer constant; they
vary slowly with time. Moreover, their geometric in-
terpretation is no longer quite as obvious as before.
Such elements are osculating elements that would de-
scribe the orbit if all perturbations were to suddenly
disappear. They can be used to find the positions
and velocities of the planets exactly as if the ele-
ments were constants. The only difference is that we
have to use different elements for each moment of
time.

Table C.12 (at the end of the book) gives the mean or-
bital elements for the nine planets for the epoch J2000.0
as well as their first time derivatives. In addition to these
secular variations the orbital elements suffer from peri-
odic disturbations, which are not included in the table.
Thus only approximate positions can be calculated with
these elements. Instead of the time of perihelion the
table gives the mean longitude

L = M +ω+Ω , (6.18)

which gives directly the mean anomaly M (which will
be defined in Sect. 6.7).

6.5 Kepler’s Second and Third Law

The radius vector of a planet in polar coordinates is
simply

r = r êr , (6.19)

where êr is a unit vector parallel with r (Fig. 6.6). If the
planet moves with angular velocity f , the direction of
this unit vector also changes at the same rate:

˙̂er = ḟ êf , (6.20)

where êf is a unit vector perpendicular to êr . The veloc-
ity of the planet is found by taking the time derivative
of (6.19):

ṙ = ṙ êr +r ˙̂er = ṙ êr +r ḟ êf . (6.21)

The angular momentum k can now be evaluated using
(6.19) and (6.21):

k = r× ṙ = r2 ḟ êz , (6.22)

where êz is a unit vector perpendicular to the orbital
plane. The magnitude of k is

k = r2 ḟ . (6.23)

The surface velocity of a planet means the area swept
by the radius vector per unit of time. This is obviously
the time derivative of some area, so let us call it Ȧ. In
terms of the distance r and true anomaly f , the surface
velocity is

Ȧ = 1

2
r2 ḟ . (6.24)

Fig. 6.6. Unit vectors êr and ê f of the polar coordinate frame.
The directions of these change while the planet moves along
its orbit
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By comparing this with the length of k (6.23), we find
that

Ȧ = 1

2
k . (6.25)

Since k is constant, so is the surface velocity. Hence we
have Kepler’s second law:

The radius vector of a planet sweeps equal areas
in equal amounts of time.

Since the Sun–planet distance varies, the orbital ve-
locity must also vary (Fig. 6.7). From Kepler’s second
law it follows that a planet must move fastest when it is
closest to the Sun (near perihelion). Motion is slowest
when the planet is farthest from the Sun at aphelion.

We can write (6.25) in the form

d A = 1

2
k dt , (6.26)

and integrate over one complete period:

∫
orbital ellipse

d A = 1

2
k

P∫
0

dt , (6.27)

where P is the orbital period. Since the area of the
ellipse is

πab = πa2
√

1− e2 , (6.28)

Fig. 6.7. The areas of the shaded sectors of the ellipse are
equal. According to Kepler’s second law, it takes equal times
to travel distances AB, CD and EF

where a and b are the semimajor and semiminor axes
and e the eccentricity, we get

πa2
√

1− e2 = 1

2
kP . (6.29)

To find the length of k, we substitute the energy inte-
gral h as a function of semimajor axis (6.16) into (6.13)
to get

k =
√

G(m1 +m2)a (1− e2) . (6.30)

When this is substituted into (6.29) we have

P2 = 4π2

G(m1 +m2)
a3 . (6.31)

This is the exact form of Kepler’s third law as derived
from Newton’s laws. The original version was

The ratio of the cubes of the semimajor axes of
the orbits of two planets is equal to the ratio of
the squares of their orbital periods.

In this form the law is not exactly valid, even for
planets of the solar system, since their own masses in-
fluence their periods. The errors due to ignoring this
effect are very small, however.

Kepler’s third law becomes remarkably simple if
we express distances in astronomical units (AU), times
in sidereal years (the abbreviation is unfortunately a,
not to be confused with the semimajor axis, denoted
by a somewhat similar symbol a) and masses in solar
masses (M�). Then G = 4π2 and

a3 = (m1 +m2)P
2 . (6.32)

The masses of objects orbiting around the Sun can safely
be ignored (except for the largest planets), and we have
the original law P2 = a3. This is very useful for deter-
mining distances of various objects whose periods have
been observed. For absolute distances we have to mea-
sure at least one distance in metres to find the length
of one AU. Earlier, triangulation was used to measure
the parallax of the Sun or a minor planet, such as Eros,
that comes very close to the Earth. Nowadays, radiote-
lescopes are used as radar to very accurately measure,
for example, the distance to Venus. Since changes in
the value of one AU also change all other distances, the
International Astronomical Union decided in 1968 to
adopt the value 1 AU = 1.496000×1011 m. The semi-
major axis of Earth’s orbit is then slightly over one AU.
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But constants tend to change. And so, after 1984, the
astronomical unit has a new value,

1 AU = 1.49597870×1011 m .

Another important application of Kepler’s third law
is the determination of masses. By observing the period
of a natural or artificial satellite, the mass of the central
body can be obtained immediately. The same method
is used to determine masses of binary stars (more about
this subject in Chap. 9).

Although the values of the AU and year are accu-
rately known in SI-units, the gravitational constant is
known only approximately. Astronomical observations
give the product G(m1 +m2), but there is no way to dis-
tinguish between the contributions of the gravitational
constant and those of the masses. The gravitational con-
stant must be measured in the laboratory; this is very
difficult because of the weakness of gravitation. There-
fore, if a precision higher than 2–3 significant digits is
required, the SI-units cannot be used. Instead we have
to use the solar mass as a unit of mass (or, for example,
the Earth’s mass after Gm⊕ has been determined from
observations of satellite orbits).

6.6 Systems of Several Bodies

This far we have discussed systems consisting of only
two bodies. In fact it is the most complex system for
which a complete solution is known. The equations of
motion are easily generalized, though. As in (6.5) we
get the equation of motion for the body k, k = 1, . . . , n:

r̈k =
i = n∑

i = 1, i �= k

Gmi
ri − rk

|ri − rk|3 , (6.33)

where mi is the mass of the ith body and ri its radius
vector. On the right hand side of the equation we now
have the total gravitational force due to all other objects,
instead of the force of just one body. If there are more
than two bodies, these equations cannot be solved ana-
lytically in a closed form. The only integrals that can be
easily derived in the general case are the total energy,
total momentum, and total angular momentum.

If the radius and velocity vectors of all bodies are
known for a certain instant of time, the positions at
some other time can easily be calculated numerically

from the equations of motion. For example, the plan-
etary positions needed for astronomical yearbooks are
computed by integrating the equations numerically.

Another method can be applied if the gravity of
one body dominates like in the solar system. Plan-
etary orbits can then be calculated as in a two-body
system, and the effects of other planets taken into ac-
count as small perturbations. For these perturbations
several series expansions have been derived.

The restricted three-body problem is an extensively
studied special case. It consists of two massive bodies or
primaries, moving on circular orbits around each other,
and a third, massless body, moving in the same plane
with the primaries. This small object does in no way
disturb the motion of the primaries. Thus the orbits of
the massive bodies are as simple as possible, and their
positions are easily computed for all times. The problem
is to find the orbit of the third body. It turns out that there
is no finite expression for this orbit.

The Finnish astronomer Karl Frithiof Sundman
(1873–1949) managed to show that a solution exists
and derive a series expansion for the orbit. The series
converges so slowly that it has no practical use, but as
a mathematical result it was remarkable, since many
mathematicians had for a long time tried to attack the
problem without success.

Fig. 6.8. The Lagrangian points of the restricted three-body
problem. The points L1, L2 and L3 are on the same line with
the primaries, but the numbering may vary. The points L4
and L5 form equilateral triangles with the primaries
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The three-body problem has some interesting special
solutions. It can be shown that in certain points the third
body can remain at rest with respect to the primaries.
There are five such points, known as the Lagrangian
points L1, . . . , L5 (Fig. 6.8). Three of them are on the
straight line determined by the primaries. These points
are unstable: if a body in any of these points is disturbed,
it will escape. The two other points, on the other hand,
are stable. These points together with the primaries form
equilateral triangles. For example, some asteroids have
been found around the Lagrangian points L4 and L5 of
Jupiter and Mars. The first of them were named after
heroes of the Trojan war, and so they are called Trojan
asteroids. They move around the Lagrangian points and
can actually travel quite far from them, but they can-
not escape. Fig. 7.56 shows two distinct condensations
around the Lagrangian points of Jupiter.

6.7 Orbit Determination

Celestial mechanics has two very practical tasks:
to determine orbital elements from observations and
to predict positions of celestial bodies with known
elements. Planetary orbits are already known very ac-
curately, but new comets and minor planets are found
frequently, requiring orbit determination.

The first practical methods for orbit determination
were developed by Johann Karl Friedrich Gauss (1777–
1855) at the beginning of the 19th century. By that time
the first minor planets had been discovered, and thanks
to Gauss’s orbit determinations, they could be found
and observed at any time.

At least three observations are needed for computing
the orbital elements. The directions are usually mea-
sured from pictures taken a few nights apart. Using
these directions, it is possible to find the corresponding
absolute positions (the rectangular components of the
radius vector). To be able to do this, we need some
additional constraints on the orbit; we must assume
that the object moves along a conic section lying in
a plane that passes through the Sun. When the three ra-
dius vectors are known, the ellipse (or some other conic
section) going through these three points can be de-
termined. In practice, more observations are used. The
elements determined are more accurate if there are more
observations and if they cover the orbit more completely.

Although the calculations for orbit determination are
not too involved mathematically, they are relatively
long and laborious. Several methods can be found in
textbooks of celestial mechanics.

6.8 Position in the Orbit

Although we already know everything about the geom-
etry of the orbit, we still cannot find the planet at a given
time, since we do not know the radius vector r as a func-
tion of time. The variable in the equation of the orbit is
an angle, the true anomaly f , measured from the perihe-
lion. From Kepler’s second law it follows that f cannot
increase at a constant rate with time. Therefore we need
some preparations before we can find the radius vector
at a given instant.

The radius vector can be expressed as

r = a(cos E − e)î +b sin E ĵ , (6.34)

where î and ĵ are unit vectors parallel with the major and
minor axes, respectively. The angle E is the eccentric
anomaly; its slightly eccentric definition is shown in
Fig. 6.9. Many formulas of elliptical motion become
very simple if either time or true anomaly is replaced

Fig. 6.9. Definition of the eccentric anomaly E. The planet is
at P, and r is its radius vector
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by the eccentric anomaly. As an example, we take the
square of (6.34) to find the distance from the Sun:

r2 = r · r

= a2(cos E − e)2 +b2 sin2 E

= a2[(cos E − e)2 + (1− e2)(1− cos2 E)]
= a2[1−2e cos E + e2 cos2 E] ,

whence

r = a (1− e cos E) . (6.35)

Our next problem is to find how to calculate E for
a given moment of time. According to Kepler’s second
law, the surface velocity is constant. Thus the area of
the shaded sector in Fig. 6.10 is

A = πab
t − τ

P
, (6.36)

where t −τ is the time elapsed since the perihelion, and
P is the orbital period. But the area of a part of an
ellipse is obtained by reducing the area of the corre-
sponding part of the circumscribed circle by the axial
ratio b/a. (As the mathematicians say, an ellipse is an

Fig. 6.10. The area of the shaded sector equals b/a times the
area SP′ X. S = the Sun, P = the planet, X = the perihelion

affine transformation of a circle.) Hence the area of SPX
is

A = b

a
(area of SP′ X )

= b

a
(area of the sector CP′ X

− area of the triangle CP′S)

= b

a

(
1

2
a ·aE − 1

2
ae ·a sin E

)

= 1

2
ab(E − e sin E) .

By equating these two expressions for the area A, we
get the famous Kepler’s equation,

E − e sin e = M , (6.37)

where

M = 2π

P
(t − τ) (6.38)

is the mean anomaly of the planet at time t. The
mean anomaly increases at a constant rate with time.
It indicates where the planet would be if it moved in
a circular orbit of radius a. For circular orbits all three
anomalies f , E, and M are always equal.

If we know the period and the time elapsed after the
perihelion, we can use (6.38) to find the mean anomaly.
Next we must solve for the eccentric anomaly from
Kepler’s equation (6.37). Finally the radius vector is
given by (6.35). Since the components of r expressed
in terms of the true anomaly are r cos f and r sin f , we
find

cos f = a(cos E − e)

r
= cos E − e

1− e cos E
,

sin f = b sin E

r
=
√

1− e2
sin E

1− e cos E
.

(6.39)

These determine the true anomaly, should it be of
interest.

Now we know the position in the orbital plane.
This must usually be transformed to some other pre-
viously selected reference frame. For example, we may
want to know the ecliptic longitude and latitude, which
can later be used to find the right ascension and dec-
lination. These transformations belong to the realm
of spherical astronomy and are briefly discussed in
Examples 6.5–6.7.
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6.9 Escape Velocity

If an object moves fast enough, it can escape from the
gravitational field of the central body (to be precise:
the field extends to infinity, so the object never re-
ally escapes, but is able to recede without any limit).
If the escaping object has the minimum velocity allow-
ing escape, it will have lost all its velocity at infinity
(Fig. 6.11). There its kinetic energy is zero, since v= 0,
and the potential energy is also zero, since the distance r
is infinite. At infinite distance the total energy as well as
the energy integral h are zero. The law of conservation
of energy gives, then:

1

2
v2 − µ

R
= 0 , (6.40)

Fig. 6.11. A projectile is
shot horizontally from
a mountain on an atmo-
sphereless planet. If the
initial velocity is small, the
orbit is an ellipse whose
pericentre is inside the
planet, and the projectile
will hit the surface of the
planet. When the velocity
is increased, the pericentre
moves outside the planet.
When the initial velocity
is vc, the orbit is circular. If
the velocity is increased fur-
ther, the eccentricity of the
orbit grows again and the
pericentre is at the height
of the cannon. The apocen-
tre moves further away until
the orbit becomes parabolic
when the initial velocity
is ve. With even higher ve-
locities, the orbit becomes
hyperbolic

where R is the initial distance at which the object is
moving with velocity v. From this we can solve the
escape velocity:

ve =
√

2µ

R
=
√

2G(m1 +m2)

R
. (6.41)

For example on the surface of the Earth, ve is about
11 km/s (if m2 � m⊕).

The escape velocity can also be expressed using the
orbital velocity of a circular orbit. The orbital period P
as a function of the radius R of the orbit and the orbital
velocity vc is

P = 2πR

vc
.
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Substitution into Kepler’s third law yields

4π2 R2

v2
c

= 4π2 R3

G(m1 +m2)
.

From this we can solve the velocity vc in a circular orbit
of radius R:

vc =
√

G(m1 +m2)

R
. (6.42)

Comparing this with the expression (6.41) of the escape
velocity, we see that

ve = √
2vc . (6.43)

6.10 Virial Theorem

If a system consists of more than two objects, the equa-
tions of motion cannot in general be solved analytically
(Fig. 6.12). Given some initial values, the orbits can, of
course, be found by numerical integration, but this does
not tell us anything about the general properties of all
possible orbits. The only integration constants available
for an arbitrary system are the total momentum, angular
momentum and energy. In addition to these, it is pos-
sible to derive certain statistical results, like the virial
theorem. It concerns time averages only, but does not
say anything about the actual state of the system at some
specified moment.

Suppose we have a system of n point masses mi with
radius vectors ri and velocities ṙi . We define a quantity A
(the “virial” of the system) as follows:

A =
n∑

i = 1

mi ṙi · ri . (6.44)

The time derivative of this is

Ȧ =
n∑

i = 1

(mi ṙi · ṙi +mi r̈i · ri) . (6.45)

The first term equals twice the kinetic energy of the
ith particle, and the second term contains a factor mi r̈i

which, according to Newton’s laws, equals the force
applied to the ith particle. Thus we have

Ȧ = 2T +
n∑

i = 1

Fi · ri , (6.46)

Fig. 6.12. When a system consists of more than two bodies, the
equations of motion cannot be solved analytically. In the solar
system the mutual disturbances of the planets are usually small
and can be taken into account as small perturbations in the or-
bital elements. K.F. Sundman designed a machine to carry out
the tedious integration of the perturbation equations. This ma-
chine, called the perturbograph, is one of the earliest analogue
computers; unfortunately it was never built. Shown is a design
for one component that evaluates a certain integral occurring in
the equations. (The picture appeared in K.F. Sundman’s paper
in Festskrift tillegnad Anders Donner in 1915.)

where T is the total kinetic energy of the system. If 〈x〉
denotes the time average of x in the time interval [0, τ],
we have

〈 Ȧ〉 = 1

τ

τ∫
0

Ȧ dt = 〈2T 〉+
〈

n∑
i = 1

Fi · ri

〉
. (6.47)
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If the system remains bounded, i. e. none of the particles
escapes, all ri’s as well as all velocities will remain
bounded. In such a case, A does not grow without limit,
and the integral of the previous equation remains finite.
When the time interval becomes longer (τ → ∞), 〈 Ȧ〉
approaches zero, and we get

〈2T 〉+
〈

n∑
i = 1

Fi · ri

〉
= 0 . (6.48)

This is the general form of the virial theorem. If the
forces are due to mutual gravitation only, they have the
expressions

Fi = −Gmi

n∑
j = 1, j �= i

m j
ri − r j

r3
ij

, (6.49)

where rij = |ri − r j |. The latter term in the virial theorem
is now

n∑
i = 1

Fi · ri = −G
n∑

i = 1

n∑
j = 1, j �= i

mim j
ri − r j

r3
ij

· ri

= −G
n∑

i = 1

n∑
j = i + 1

mim j
ri − r j

r3
ij

· (ri − r j) ,

where the latter form is obtained by rearranging the
double sum, combining the terms

mim j
ri − r j

r3
ij

· ri

and

m jmi
r j − ri

r3
ji

· r j = mim j
ri − r j

r3
ij

· (−r j) .

Since (ri − r j) · (ri − r j)= r2
ij the sum reduces to

−G
n∑

i = 1

n∑
j = i + 1

mim j

rij
= U ,

where U is the potential energy of the system. Thus, the
virial theorem becomes simply

〈T 〉 = −1

2
〈U〉 . (6.50)

6.11 The Jeans Limit

We shall later study the birth of stars and galaxies. The
initial stage is, roughly speaking, a gas cloud that begins
to collapse due to its own gravitation. If the mass of the
cloud is high enough, its potential energy exceeds the
kinetic energy and the cloud collapses. From the virial
theorem we can deduce that the potential energy must be
at least twice the kinetic energy. This provides a criterion
for the critical mass necessary for the cloud of collapse.
This criterion was first suggested by Sir James Jeans in
1902.

The critical mass will obviously depend on the
pressure P and density ρ. Since gravitation is the
compressing force, the gravitational constant G will
probably also enter our expression. Thus the critical
mass is of the form

M = CPaGbρc , (6.51)

where C is a dimensionless constant, and the constants
a, b and c are determined so that the right-hand side
has the dimension of mass. The dimension of pressure
is kg m−1 s−2, of gravitational constant kg−1 m3 s−2 and
of density kg m−3. Thus the dimension of the right-hand
side is

kg(a−b+c) m(−a+3b−3c) s(−2a−2b) .

Since this must be kilograms ultimately, we get the
following set of equations:

a −b+ c = 1 , −a +3b−3c = 0

−2a −2b = 0 .

The solution of this is a = 3/2, b = −3/2 and c = −2.
Hence the critical mass is

MJ = C
P3/2

G3/2ρ2
. (6.52)

This is called the Jeans mass. In order to determine the
constant C, we naturally must calculate both kinetic and
potential energy. Another method based on the propa-
gation of waves determines the diameter of the cloud,
the Jeans length λJ, by requiring that a disturbance of
size λJ grow unbounded. The value of the constant C
depends on the exact form of the perturbation, but its
typical values are in the range [1/π, 2π]. We can take
C = 1 as well, in which case (6.52) gives a correct or-
der of magnitude for the critical mass. If the mass of
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a cloud is much higher than MJ, it will collapse by its
own gravitation.

In (6.52) the pressure can be replaced by the kinetic
temperature Tk of the gas (see Sect. 5.8 for a definition).
According to the kinetic gas theory, the pressure is

P = nkTk , (6.53)

where n is the number density (particles per unit vol-
ume) and k is Boltzmann’s constant. The number density
is obtained by dividing the density of the gas ρ by the
average molecular weight µ:

n = ρ/µ ,

whence

P = ρkTk/µ .

By substituting this into (6.52) we get

MJ = C

(
kTk

µG

)3/2 1√
ρ
. (6.54)

* Newton’s Laws

1. In the absence of external forces, a particle will
remain at rest or move along a straight line with
constant speed.

2. The rate of change of the momentum of a particle is
equal to the applied force F:

ṗ = d

dt
(mv)= F .

3. If particle A exerts a force F on another particle B,
B will exert an equal but opposite force −F on A.

If several forces F1, F2, . . . are applied on a particle,
the effect is equal to that caused by one force F which
is the vector sum of the individual forces (F = F1 + F2

+ . . . ).
Law of gravitation: If the masses of particles A and B

are m A and m B and their mutual distance r, the force
exerted on A by B is directed towards B and has the mag-
nitude Gm A m B/r2, where G is a constant depending
on the units chosen.

Newton denoted the derivative of a function f by ḟ
and the integral function by f ′. The corresponding no-
tations used by Leibniz were d f/dt and

∫
f dx. Of

Newton’s notations, only the dot is still used, always
signifying the time derivative: ḟ ≡ d f/dt. For example,
the velocity ṙ is the time derivative of r, the acceleration
r̈ its second derivative, etc.

6.12 Examples

Example 6.1 Find the orbital elements of Jupiter on
August 23, 1996.

The Julian date is 2,450,319, hence from (6.17), T =
−0.0336. By substituting this into the expressions of
Table C.12, we get

a = 5.2033 ,

e = 0.0484 ,

i = 1.3053◦ ,
Ω = 100.5448◦ ,
� = 14.7460◦ ,
L = −67.460◦ = 292.540◦ .

From these we can compute the argument of perihelion
and mean anomaly:

ω=�−Ω = −85.7988◦ = 274.201◦ ,
M = L −� = −82.2060◦ = 277.794◦ .

Example 6.2 Orbital Velocity

a) Comet Austin (1982g) moves in a parabolic orbit.
Find its velocity on October 8, 1982, when the distance
from the Sun was 1.10 AU.

The energy integral for a parabola is h = 0. Thus
(6.11) gives the velocity v:

v=
√

2µ

r
=
√

2G M�
r

=
√

2×4π2 ×1

1.10
= 8.47722 AU/a

= 8.47722×1.496×1011 m

365.2564×24×3600 s
≈ 40 km/s .

b) The semimajor axis of the minor planet 1982 RA is
1.568 AU and the distance from the Sun on October 8,
1982, was 1.17 AU. Find its velocity.
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The energy integral (6.16) is now

h = −µ/2a .

Hence

1

2
v2 − µ

r
= − µ

2a
,

which gives

v=
√
µ

(
2

r
− 1

a

)

=
√

4π2

(
2

1.17
− 1

1.568

)

= 6.5044 AU/a ≈ 31 km/s .

Example 6.3 In an otherwise empty universe, two
rocks of 5 kg each orbit each other at a distance of 1 m.
What is the orbital period?

The period is obtained from Kepler’s third law:

P2 = 4π2a3

G(m1 +m2)

= 4π21

6.67×10−11(5+5)
s2

= 5.9×1010 s2 ,

whence

P = 243,000 s = 2.8 d .

Example 6.4 The period of the Martian moon Phobos
is 0.3189 d and the radius of the orbit 9370 km. What is
the mass of Mars?

First we change to more appropriate units:

P = 0.3189 d = 0.0008731 sidereal years ,

a = 9370 km = 6.2634×10−5 AU .

Equation (6.32) gives (it is safe to assume that mPhobos �
mMars)

mMars = a3/P2 = 0.000000322 M�
(≈ 0.107 M⊕) .

Example 6.5 Derive formulas for a planet’s heliocen-
tric longitude and latitude, given its orbital elements and
true anomaly.

We apply the sine formula to the spherical triangle
of the figure:

sinβ

sin i
= sin(ω+ f )

sin(π/2)
or

sinβ = sin i sin(ω+ f ) .

The sine-cosine formula gives

cos(π/2) sinβ

= − cos i sin(ω+ f ) cos(λ−Ω)
+ cos(ω+ f ) sin(λ−Ω) ,

whence

tan(λ−Ω)= cos i tan(ω+ f ) .

Example 6.6 Find the radius vector and heliocentric
longitude and latitude of Jupiter on August 23, 1996.

The orbital elements were computed in Example 6.1:

a = 5.2033 AU ,

e = 0.0484 ,

i = 1.3053◦ ,
Ω = 100.5448◦ ,
ω= 274.2012◦ ,
M = 277.7940◦ = 4.8484 rad .
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Since the mean anomaly was obtained directly, we need
not compute the time elapsed since perihelion.

Now we have to solve Kepler’s equation. It cannot be
solved analytically, and we are obliged to take the brute
force approach (also called numerical analysis) in the
form of iteration. For iteration, we write the equation
as

En+1 = M + e sin En ,

where En is the value found in the nth iteration.
The mean anomaly is a reasonable initial guess, E0.
(N.B.: Here, all angles must be in radians; other-
wise, nonsense results!) The iteration proceeds as
follows:

E0 = M = 4.8484 ,

E1 = M + e sin E0 = 4.8004 ,

E2 = M + e sin E1 = 4.8002 ,

E3 = M + e sin E2 = 4.8002 ,

after which successive approximations no longer
change, which means that the solution, accurate to four
decimal places, is

E = 4.8002 = 275.0◦ .

The radius vector is

r = a(cos E − e) î +a
√

1− e2 sin E ĵ

= 0.2045 î −5.1772 ĵ

and the distance from the Sun,

r = a(1− e cos E)= 5.1813 AU .

The signs of the components of the radius vector show
that the planet is in the fourth quadrant. The true
anomaly is

f = arctan
−5.1772

0.2045
= 272.3◦ .

Applying the results of the previous example, we find
the latitude and longitude:

sinβ = sin i sin(ω+ f )

= sin 1.3◦ sin(274.2◦ +272.3◦)
= −0.0026

⇒ β = −0.15◦ ,

tan(λ−Ω)= cos i tan(ω+ f )

= cos 1.3◦ tan(274.2◦ +272.3◦)
= 0.1139

⇒ λ=Ω+186.5◦

= 100.5◦ +186.5◦

= 287.0◦ .

(We must be careful here; the equation for tan(λ−Ω)
allows two solutions. If necessary, a figure can be drawn
to decide which is the correct one.)

Example 6.7 Find Jupiter’s right ascension and
declination on August 23, 1996.

In Example 6.6, we found the longitude and lat-
itude, λ = 287.0◦, β = −0.15◦. The corresponding
rectangular (heliocentric) coordinates are:

x = r cos λ cosβ = 1.5154 AU ,

y = r sin λ cosβ = −4.9547 AU ,

z = r sinβ = −0.0133 AU .

Jupiter’s ecliptic coordinates must be transformed to
equatorial ones by rotating them around the x-axis by
an angle ε, the obliquity of the ecliptic (see *Reduction
of Coordinates, p. 38):

XJ = x = 1.5154 AU ,

YJ = y cos ε− z sin ε= −4.5405 AU ,

ZJ = y sin ε+ z cos ε= −1.9831 AU .

To find the direction relative to the Earth, we have
to find where the Earth is. In principle, we could repeat
the previous procedure with the orbital elements of the
Earth. Or, if we are lazy, we could pick up the near-
est Astronomical Almanac, which lists the equatorial
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coordinates of the Earth:

X⊕ = 0.8815 AU ,

Y⊕ = −0.4543 AU ,

Z⊕ = −0.1970 AU .

Then the position relative to the Earth is

X0 = XJ − X⊕ = 0.6339 AU ,

Y0 = YJ −Y⊕ = −4.0862 AU ,

Z0 = ZJ − Z⊕ = −1.7861 AU .

And finally, the right ascension and declination are

α= arctan(Y0/X0)= 278.82◦ = 18 h 35 min ,

δ= arctan
Z0√

X2
0 +Y 2

0

= −23.4◦ .

If the values given by the Astronomical Almanac are
rounded to the same accuracy, the same result is ob-
tained. We should not expect a very precise position
since we have neglected all short-period perturbations
in Jupiter’s orbital elements.

Example 6.8 Which is easier, to send a probe to the
Sun or away from the Solar system?

The orbital velocity of the Earth is about 30 km/s.
Thus the escape velocity from the Solar system is√

2×30 ≈ 42 km/s. A probe that is sent from the Earth
already has a velocity equal to the orbital velocity of
the Earth. Hence an extra velocity of only 12 km/s is
needed. In addition, the probe has to escape from the
Earth, which requires 11 km/s. Thus the total velocity
changes are about 23 km/s.

If the probe has to fall to the Sun it has to get rid of the
orbital velocity of the Earth 30 km/s. In this case, too,
the probe has first to be lifted from the Earth. Thus the
total velocity change needed is 41 km/s. This is nearly
impossible with current technology. Therefore a probe
to be sent to the Sun is first directed close to some
planet, and the gravitational field of the planet is used
to accelerate the probe towards its final destination.

Example 6.9 An interstellar hydrogen cloud contains
10 atoms per cm3. How big must the cloud be to collapse

due to its own gravitation? The temperature of the cloud
is 100 K.

The mass of one hydrogen atom is 1.67×10−27 kg,
which gives a density

ρ = nµ= 107 m−3 ×1.67×10−27 kg

= 1.67×10−20 kg/m3 .

The critical mass is

MJ =
(

1.38×10−23 J/K×100 K

1.67×10−27 kg×6.67×10−11 N m2 kg−2

)3/2

× 1√
1.67×10−20 kg/m3

≈ 1×1034 kg ≈ 5000 M� .

The radius of the cloud is

R = 3

√
3

4π

M

ρ
≈ 5×1017 m ≈ 20 pc .

6.13 Exercises

Exercise 6.1 Find the ratio of the orbital velocities at
aphelion and perihelion va/vp. What is this ratio for the
Earth?

Exercise 6.2 The perihelion and aphelion of the orbit
of Eros are 1.1084 and 1.8078 astronomical units from
the Sun. What is the velocity of Eros when its distance
from the Sun equals the mean distance of Mars?

Exercise 6.3 Find the radius of the orbit of a geosta-
tionary satellite; such a satellite remains always over the
same point of the equator of the Earth. Are there areas
on the surface of the Earth that cannot be seen from any
geostationary satellite? If so, what fraction of the total
surface area?

Exercise 6.4 From the angular diameter of the Sun
and the length of the year, derive the mean density of
the Sun.
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Exercise 6.5 Find the mean, eccentric and true anoma-
lies of the Earth one quarter of a year after the
perihelion.

Exercise 6.6 The velocity of a comet is 5 m/s, when
it is very far from the Sun. If it moved along a straight
line, it would pass the Sun at a distance of 1 AU. Find

the eccentricity, semimajor axis and perihelion distance
of the orbit. What will happen to the comet?

Exercise 6.7 a) Find the ecliptic geocentric radius
vector of the Sun on May 1, 1997 (J = 2450570).
b) What are the declination and right ascension of the
Sun then?
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7. The Solar System

The solar systemconsists ofa central star, called the Sun,
eight planets, several dwarf planets, dozens of moons

or satellites, millions of asteroids and Trans-Neptunian
Objects (TNOs), and myriads of comets and meteoroids.

Borders between the categories are not clear. Discov-
eries of new Solar System bodies caused that in 2006

the International Astronomical Union (IAU) in its General
Assembly defined three distinct categories to clarify the
situation:

(1) A planet is a celestial body that: (a) is in orbit around
the Sun, (b) has sufficient mass for its self-gravity to over-
come rigid body forces so that it assumes a hydrostatic
equilibrium (nearly round) shape, and (c) has cleared the
neighbourhood around its orbit.

(2) A dwarf planet or a planetoid is a celestial body
that: (a) is in orbit around the Sun, (b) has sufficient mass
for its self-gravity to overcome rigid body forces so that it
assumes a hydrostatic equilibrium (nearly round) shape,
(c) has not cleared the neighbourhood around its orbit,
and (d) is not a satellite.

(3) All other objects orbiting the Sun shall be referred
to collectively as Small Solar System Bodies. These include
most of the asteroids, Trans-Neptunian Objects, comets,
and other small bodies.

A satellite is a body which orbits the primary body so
that the centre of mass (barycentre) is inside the primary.
If this is not the case, then the system is called a binary
system. For example, in the case of the Earth and Moon
the barycentre of the system is inside the Earth, and the
Moon is Earth’s satellite. In the Pluto-Charon system the
centre of mass is outside Pluto, and therefore they are
called a binary system.

The planets in order from the Sun are: Mercury, Venus,
Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

According to the IAU 2006 definition, Pluto is
a dwarf planet and the prototype of a new category of
Trans-Neptunian objects.

The planets from Mercury to Saturn are bright and well
visible with a naked eye. Uranus and Neptune can be seen
with a pair of binoculars. In addition to the bright planets,
only the brightest comets are visible with a naked eye.

Distances in the solar system are often measured in
astronomical units (AU), the mean distance of the Sun
and Earth. The semimajor axis of the orbit of Mercury is

0.39 AU, and the distance of Neptune is 30 AU. Beyond the
orbit of Neptune there is a huge population of small icy
bodies extending out to tens of thousands AUs. The Solar
System has no obvious outer edge. The distance to the
nearest star, Proxima Centauri is over 270,000 AU.

Gravitation controls the motion of the solar system
bodies. The planetary orbits around the Sun (Fig. 7.1) are
almost coplanar ellipses which deviate only slightly from
circles. The orbital planes of asteroids, minor bodies that
circle the Sun mainly between the orbits of Mars and
Jupiter, are often more tilted than the planes of the plane-
taryorbits.AsteroidsanddistantTrans-NeptunianObjects
revolve in thesamedirectionas themajorplanets; comets,
however, may move in the opposite direction. Cometary
orbits can be very elongated, even hyperbolic. Most of the
satellites circle their parent planets in the same direction
as the planet moves around the Sun. Only the motions
of the smallest particles, gas and dust are affected by the
solar wind, radiation pressure and magnetic fields.

The planets can be divided into physically different
groups (see Fig. Fig. 7.2). Mercury, Venus, Earth, and Mars
are called terrestrial (Earth-like) planets; they have a solid
surface, are of almost equal size (diameters from 5000

to 12,000 km), and have quite a high mean density
(4000−5000 kg m−3; thedensityofwater is1000 kg m−3).
The planets from Jupiter to Neptune are called Jovian
(Jupiter-like) or giant planets. The densities of the giant
planets are about 1000−2000 kg m−3, and most of their
volume is liquid. Diameters are ten times greater than
those of the terrestrial planets.

Dwarf planet Pluto is falling outside this classification.
Pluto is the prototype to the family of icy bodies orbiting
the Sun at the outer edges of the solar system. The dis-
covery of large objects since early 1990’s beyond the orbit
of Neptune raised the question of the status of Pluto. The
discussion culminated in the General Assembly of the IAU
in 2006 when a new planetary definition was accepted.
This reduced the number of major planets to eight.

Mostandmostaccuratesolarsystemdataaretodaycol-
lected by spacecraft. Many methods used in geosciences
are nowadays applied in planetary studies. Landers have
beensenttoMoon,Venus,Mars,andSaturnianmoonTitan
and all major planets, their satellites, and many asteroids
andcometshavebeenstudiedwithspacecraft.



Fig. 7.1. (a) Planetary orbits from Mercury to Mars. The
dashed line represents the part of the orbit below the ecliptic;
the arrows show the distances travelled by the planets dur-
ing one month (January 2000). (b) Planets from Jupiter to

Neptune and the dwarf planet Pluto. The arrows indicate the
distances travelled by the planets during the 10 year interval
2000–2010.

Fig. 7.2. Major planets from Mercury to Neptune. Four inner-
most planets are called terrestrial planets and four outermost
ones are giant planets. Three dwarf planets are also shown.

Relative size of the Sun is shown at left. Planetary distances
to the Sun are not in scale. (The International Astronomical
Union/Martin Kornmesser)
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7.1 Planetary Configurations

The apparent motions of the planets are quite com-
plicated, partly because they reflect the motion of the
Earth around the Sun (Fig. 7.3). Normally the planets
move eastward (direct motion, counterclockwise as seen
from the Northern hemisphere) when compared with the
stars. Sometimes the motion reverses to the opposite or
retrograde direction. After a few weeks of retrograde
motion, the direction is changed again, and the planet
continues in the original direction. It is quite understand-
able that the ancient astronomers had great difficulties
in explaining and modelling such complicated turns and
loops.

Figure 7.4 explains some basic planetary configura-
tions. A superior planet (planet outside the orbit of the
Earth) is said to be in opposition when it is exactly op-
posite the Sun, i. e. when the Earth is between the planet
and the Sun. When the planet is behind the Sun, it is
in conjunction. In practise, the planet may not be ex-
actly opposite or behind the Sun because the orbits of
the planet and the Earth are not in the same plane. In as-
tronomical almanacs oppositions and conjunctions are
defined in terms of ecliptic longitudes. The longitudes
of a body and the Sun differ by 180◦ at the moment
of opposition; in conjunction the longitudes are equal.
However, the right ascension is used if the other body is

Fig. 7.3. (a) Apparent motion of Mars during the 1995 op-
position. (b) Relative positions of the Earth and Mars. The
projection of the Earth–Mars direction on the infinitely distant
celestial sphere results in (a)

Fig. 7.4. Planetary configurations. The angle α (Sun–object–
Earth) is the phase angle and ε (Sun–Earth–object) is the
elongation

not the Sun. Those points at which the apparent motion
of a planet turns toward the opposite direction are called
stationary points. Opposition occurs in the middle of the
retrograde loop.

Inferior planets (Mercury and Venus) are never in
opposition. The configuration occurring when either of
these planets is between the Earth and the Sun is called
inferior conjunction. The conjunction corresponding to
that of a superior planet is called upper conjunction or
superior conjunction. The maximum (eastern or west-
ern) elongation, i. e. the angular distance of the planet
from the Sun is 28◦ for Mercury and 47◦ for Venus.
Elongations are called eastern or western, depending on
which side of the Sun the planet is seen. The planet is
an “evening star” and sets after the Sun when it is in
eastern elongation; in western elongation the planet is
seen in the morning sky as a “morning star”.

The synodic period is the time interval between two
successive events (e. g. oppositions). The period which
we used in the previous chapters is the sidereal pe-
riod, the true time of revolution around the Sun, unique
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for each object. The synodic period depends on the
difference of the sidereal periods of two bodies.

Let the sidereal periods of two planets be P1 and P2

(assume that P1 < P2). Their mean angular velocities
(mean motions) are 2π/P1 and 2π/P2. After one syn-
odic period P1,2, the inner planet has made one full
revolution more than the outer planet:

P1,2
2π

P1
= 2π+ P1,2

2π

P2
,

or
1

P1,2
= 1

P1
− 1

P2
. (7.1)

The angle Sun–planet–Earth is called the phase an-
gle, often denoted by the Greek letter α. The phase
angle is between 0◦ and 180◦ in the case of Mercury
and Venus. This means that we can see “full Venus”,
“half Venus”, and so on, exactly as in the phases of the
Moon. The phase angle range for the superior planets is
more limited. For Mars the maximum phase is 41◦, for
Jupiter 11◦, and for Neptune only 2◦.

7.2 Orbit of the Earth
and Visibility of the Sun

The sidereal year is the real orbital period of the Earth
around the Sun. After one sidereal year, the Sun is seen
at the same position relative to the stars. The length
of the sidereal year is 365.256363051 days of 86,400
SI seconds at the epoch J2000.0 = 2000 January 1
12:00:00 TT.

We noted earlier that, owing to precession, the direc-
tion of the vernal equinox moves along the ecliptic at
about 50′′ per year. This means that the Sun returns to
the vernal equinox before one complete sidereal year
has elapsed. This time interval, called the tropical year,
is 365.24218967 days.

A third definition of the year is based on the perihe-
lion passages of the Earth. Planetary perturbations cause
a gradual change in the direction of the Earth’s perihe-
lion. The time interval between two perihelion passages
is called the anomalistic year, the length of which is
365.259635864 days, a little longer than the sidereal
year. It takes about 21,000 years for the perihelion to
revolve 360◦ relative to the vernal equinox.

The equator of the Earth is tilted about 23.5◦ with
respect to the ecliptic. Owing to perturbations, this angle

changes with time. If periodic terms are neglected, the
obliquity of the ecliptic ε can be expressed as:

ε= 23◦26′21.448′′ −46.8150′′T
−0.00059′′T 2 +0.001813′′T 3 ,

(7.2)

where T is the time elapsed since the epoch 2000.0 in
Julian centuries (see Sect. 2.14). The expression is valid
for a few centuries before and after the year 2000. The
obliquity varies between 22.1◦ and 24.5◦ with a 41,000
year periodicity. At present the tilt is decreasing. There
are also small short term variations, the nutation.

The declination of the Sun varies between −ε and +ε
during the year. At any given time, the Sun is seen
at zenith from one point on the surface of the Earth.
The latitude of this point is the same as the declination
of the Sun. At the latitudes −ε (the Tropic of Capri-
corn) and +ε (the Tropic of Cancer), the Sun is seen
at zenith once every year, and between these latitudes
twice a year. In the Northern hemisphere the Sun will
not set if the latitude is greater than 90◦ − δ, where δ is
the declination of the Sun.

The southernmost latitude where the midnight Sun
can be seen is thus 90◦ − ε= 66.55◦. This is called
the Arctic Circle. (The same holds true in the South-
ern hemisphere.) The Arctic Circle is the southernmost
place where the Sun is (in theory) below the horizon
during the whole day at the winter solstice. The sunless
time lasts longer and longer when one goes north (south
in the Southern hemisphere). At the poles, day and night
last half a year each. In practise, refraction and location
of the observing site will have a large influence on the
visibility of the midnight Sun and the number of sun-
less days. Because refraction raises objects seen at the
horizon, the midnight Sun can be seen a little further
south than at the Arctic Circle. For the same reason the
Sun can be seen simultaneously at both poles around
the time of vernal and autumnal equinox.

The eccentricity of the Earth’s orbit is about 0.0167.
The distance from the Sun varies between 147–152
million km. The flux density of solar radiation varies
somewhat at different parts of the Earth’s orbit, but this
has practically no effect on the seasons. In fact the Earth
is at perihelion in the beginning of January, in the middle
of the northern hemisphere’s winter. The seasons are due
to the obliquity of the ecliptic.

The energy received from the Sun depends on three
factors. First the flux per unit area is proportional to
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sin a, where a is the altitude of the Sun. In summer the
altitude can have greater values than in winter, giving
more energy per unit area. Another effect is due to
the atmosphere: When the Sun is near the horizon, the
radiation must penetrate thick atmospheric layers. This
means large extinction and less radiation at the surface.
The third factor is the length of the time the Sun is above
the horizon. This is important at high latitudes, where
the low altitude of the Sun is compensated by the long
daylight time in summer. These effects are discussed in
detail in Example 7.2.

There are also long-term variations in the annual
Solar flux. Serbian geophysicist Milutin Milanković
(1879–1958) published in the 1930’s and 1940’s his the-
ory of ice ages. During last 2–3 million years, large ice
ages have been repeated approximately every 100,000
years. He proposed that variations of the Earth’s orbit
cause long-term periodic climate change, now known as
Milanković cycles. Milanković claimed that the cycles in
eccentricity, direction of the perigee, obliquity, and pre-
cession result in 100,000 year ice age cycle. The cycle
of precession is 26,000 years, direction of the perigee
relative to the equinoxes is 22,000 years, and the obliq-
uity of the ecliptic has a 41,000 year cycle. Changes in
orbital eccentricity are not fully periodic but some peri-
ods above 100,000 years can be found. The eccentricity
varies between 0.005–0.058 and is currently 0.0167.

The annual incoming Solar flux varies with these
orbital changes and the effect is largest at high lati-
tudes. If, for example, the eccentricity is high, and the
Earth is near the apogee during the hemisphere’s win-
ter, then winters are long and cold and summers are
short. However, the theory is controversial, orbital forc-
ing on the climate change is not well understood, and
probably not enough to trigger glaciation. There ex-
ist also positive feedback loops, like the effect of low
albedo of snow and ice. It means that ice reflects more
radiation back into space, thus cooling the climate. The
system is highly chaotic so that even minor changes in
the primary conditions will result in large differences
in the outcome. There are also other effects causing
climate change, including emerging gases from large
lava flows and eruptions of volcanos and, nowadays,
anthropogenic reasons.

The future is also uncertain. Some theories predict
that the warm period will continue next 50,000 years,
whereas others conclude that the climate is already

cooling. Anthropogenic reasons, like ever increasing
fraction of green house gases, e.g. carbon dioxide, will
change the short-term predictions.

7.3 The Orbit of the Moon

The Earth’s satellite, the Moon, circles the Earth coun-
terclockwise. One revolution, the sidereal month, takes
about 27.322 days. In practise, a more important period
is the synodic month, the duration of the Lunar phases
(e. g. from full moon to full moon). In the course of one
sidereal month the Earth has travelled almost 1/12 of
its orbit around the Sun. The Moon still has about 1/12
of its orbit to go before the Earth–Moon–Sun configu-
ration is again the same. This takes about 2 days, so the
phases of the Moon are repeated every 29 days. More
exactly, the length of the synodic month is 29.531 days.

The new moon is that instant when the Moon is in
conjunction with the Sun. Almanacs define the phases of
the Moon in terms of ecliptic longitudes; the longitudes
of the new moon and the Sun are equal. Usually the new
moon is slightly north or south of the Sun because the
lunar orbit is tilted 5◦ with respect to the ecliptic.

About 2 days after the new moon, the waxing crescent
moon can be seen in the western evening sky. About
1 week after the new moon, the first quarter follows,
when the longitudes of the Moon and the Sun differ
by 90◦. The right half of the Moon is seen lit (left
half when seen from the Southern hemisphere). The
full moon appears a fortnight after the new moon, and
1 week after this the last quarter. Finally the waning
crescent moon disappears in the glory of the morning
sky.

The orbit of the Moon is approximately elliptic. The
length of the semimajor axis is 384,400 km and the ec-
centricity 0.055. Owing to perturbations caused mainly
by the Sun, the orbital elements vary with time. The
minimum distance of the Moon from the centre of
the Earth is 356,400 km, and the maximum distance
406,700 km. This range is larger than the one calcu-
lated from the semimajor axis and the eccentricity. The
apparent angular diameter is in the range 29.4′–33.5′.

The rotation time of the Moon is equal to the sidereal
month, so the same side of the Moon always faces the
Earth. Such synchronous rotation is common among



136

7. The Solar System

Fig. 7.5. Librations of the Moon can be seen in this pair of photographs taken when the Moon was close to the perigee and the
apogee, respectively. (Helsinki University Observatory)

the satellites of the solar system: almost all large moons
rotate synchronously.

The orbital speed of the Moon varies according to
Kepler’s second law. The rotation period, however, re-
mains constant. This means that, at different phases of
the lunar orbit, we can see slightly different parts of
the surface. When the Moon is close to its perigee, its
speed is greater than average (and thus greater than
the mean rotation rate), and we can see more of the
right-hand edge of the Moon’s limb (as seen from the
Northern hemisphere). Correspondingly, at the apogee
we see “behind” the left edge. Owing to the libration,
a total of 59% of the surface area can be seen from the
Earth (Fig. 7.5). The libration is quite easy to see if one
follows some detail at the edge of the lunar limb.

The orbital plane of the Moon is tilted only about 5◦ to
the ecliptic. However, the orbital plane changes gradu-
ally with time, owing mainly to the perturbations caused
by the Earth and the Sun. These perturbations cause the
nodal line (the intersection of the plane of the ecliptic

and the orbital plane of the Moon) to make one full rev-
olution in 18.6 years. We have already encountered the
same period in the nutation. When the ascending node
of the lunar orbit is close to the vernal equinox, the
Moon can be 23.5◦ +5◦ = 28.5◦ north or south of the
equator. When the descending node is close to the vernal
equinox, the zone where the Moon can be found extends
only 23.5◦ −5◦ = 18.5◦ north or south of the equator.

The nodical or draconic month is the time in which
the Moon moves from one ascending node back to the
next one. Because the line of nodes is rotating, the nod-
ical month is 3 hours shorter than the sidereal month,
i. e. 27.212 days. The orbital ellipse itself also precesses
slowly. The orbital period from perigee to perigee, the
anomalistic month, is 5.5 h longer than the sidereal
month, or about 27.555 days.

Gravitational differences caused by the Moon and
the Sun on different parts of the Earth’s surface give
rise to the tides. Gravitation is greatest at the sub-lunar
point and smallest at the opposite side of the Earth. At
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these points, the surface of the seas is highest (high tide,
flood). About 6 h after flood, the surface is lowest (low
tide, ebb). The tide generated by the Sun is less than half
of the lunar tide. When the Sun and the Moon are in the
same direction with respect to the Earth (new moon) or
opposite each other (full moon), the tidal effect reaches
its maximum; this is called spring tide.

The sea level typically varies 1 m, but in some narrow
straits, the difference can be as great as 15 m. Due to
the irregular shape of the oceans, the true pattern of the
oceanic tide is very complicated. The solid surface of
the Earth also suffers tidal effects, but the amplitude is
much smaller, about 30 cm.

Tides generate friction, which dissipates the rota-
tional and orbital kinetic energy of the Earth–Moon
system. This energy loss induces some changes in the
system. First, the rotation of the Earth slows down until
the Earth also rotates synchronously, i. e. the same side
of Earth will always face the Moon. Secondly, the semi-
major axis of the orbit of the Moon increases, and the
Moon drifts away about 3 cm per year.

* Tides

Let the tide generating body, the mass of which is M to
be at point Q at a distance d from the centre of the Earth.
The potential V at the point A caused by the body Q is

V(A)= G M

s
, (7.3)

where s is the distance of the point A from the body Q.

Applying the cosine law in the triangle OAQ, the
distance s can be expressed in terms of the other sides
and the angle z = AOQ

s2 = d2 +r2 −2dr cos z ,

where r is the distance of the point A from the centre of
the Earth. We can now rewrite (7.3)

V(A)= G M√
d2 +r2 −2dr cos z

. (7.4)

When the denominator is expanded into a Taylor series

(1+ x)−
1
2 ≈ 1− 1

2
x + 3

8
x2 −· · ·

where

x = r2

d2
−2

r

d
cos z

and ignoring all terms higher than or equal to 1/d4 one
obtains

V(A)= G M

d
+ G M

d2
r cos z

+ G Mr2

d3

1

2
(3 cos2 z −1) .

(7.5)

The gradient of the potential V(A) gives a force vec-
tor per mass unit. The first term of (7.5) vanishes, and
the second term is a constant and independent of r.
It represents the central motion. The third term of the
force vector, however, depends on r. It is the main term
of the tidal force. As one can see, it depends inversely
on the third power of the distance d. The tidal forces
are diminished very rapidly when the distance of a body
increases. Therefore the tidal force caused by the Sun
is less than half of that of the Moon in spite of much
greater mass of the Sun.

We may rewrite the third term of (7.5) as

V2 = 2D

(
cos2 z − 1

3

)
, (7.6)

where

D = 3

4
G M

r2

d3

is called Doodson’s tidal constant. It’s value for the
Moon is 2.628 m2 s−2 and for the Sun 1.208 m2 s−2. We
can approximate that z is the zenith angle of the body.
The zenith angle z can be expressed in terms of the hour
angle h and declination δ of the body and the latitude φ
of the observer

cos z = cos h cos δ cosφ+ sin δ sinφ .
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Inserting this into (7.6) we obtain after a lengthy
algebraic operation

V2 = D

(
cos2 φ cos2 δ cos 2h

+ sin 2φ cos 2δ cos h

+ (3 sin2 φ−1)

(
sin2 δ− 1

3

))

= D(S + T + Z ) .

(7.7)

Equation (7.7) is the traditional basic equation of the
tidal potential, the Laplace’s tidal equation.

In (7.7) one can directly see several characteristics of
tides. The term S causes the semi-diurnal tide because it
depends on cos 2h. It has two daily maxima and minima,
separated by 12 hours, exactly as one can obtain in
following the ebb and flood. It reaches its maximum at
the equator and is zero at the poles (cos2 φ).

The term T expresses the diurnal tides (cos h). It
has its maximum at the latitude ±45◦ and is zero at the
equator and at the poles (sin 2φ). The third term Z is
independent of the rotation of the Earth. It causes the
long period tides, the period of which is half the or-
bital period of the body (about 14 days in the case of the
Moon and 6 months for the Sun). It is zero at the latitude
±35.27◦ and has its maximum at the poles. Moreover,
the time average of Z is non-zero, causing a permanent
deformation of the Earth. This is called the permanent
tide. It slightly increases the flattening of the Earth and
it is inseparable from the flattening due to the rotation.

The total value of the tidal potential can be computed
simply adding the potentials caused by the Moon and
the Sun. Due to the tidal forces, the whole body of the
Earth is deformed. The vertical motion ∆r of the crust
can be computed from

∆r = h
V2

g
≈ 0.06 V2 [m] , (7.8)

where g is the mean free fall acceleration,
g ≈ 9.81 m s−2 and h is a dimensionless number, the
Love number, h ≈ 0.6, which describes the elastic-
ity of the Earth. In the picture below, one can see
the vertical motion of the crust in Helsinki, Finland
(φ= 60◦, λ= 25◦) in January 1995. The non-zero value
of the temporal mean can already be seen in this picture.

The tides have other consequences, too. Because the
Earth rotates faster than the Moon orbits the Earth, the
tidal bulge does not lie on the Moon–Earth line but is
slightly ahead (in the direction of Earth’s rotation), see
below.

Due to the drag, the rotation of the Earth slows
down by about 1–2 ms per century. The same reason
has caused the Moon’s period of rotation to slow down
to its orbital period and the Moon faces the same side to-
wards the Earth. The misaligned bulge pulls the Moon
forward. The acceleration causes the increase in the
semimajor axis of the Moon, about 3 cm per year.

7.4 Eclipses and Occultations

An eclipse is an event in which a body goes through
the shadow of another body. The most frequently ob-
served eclipses are the lunar eclipses and the eclipses
of the large satellites of Jupiter. An occultation takes
place when an occulting body goes in front of another
object; typical examples are stellar occultations caused
by the Moon. Generally, occultations can be seen only
in a narrow strip; an eclipse is visible wherever the body
is above the horizon.

Solar and lunar eclipses are the most spectacular
events in the sky. A solar eclipse occurs when the Moon
is between the Earth and the Sun (Fig. 7.6). (According
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Fig. 7.6. (a) A total solar eclipse can be seen only inside
a narrow strip; outside the zone of totality the eclipse is partial.
(b) An eclipse is annular if the Moon is at apogee from where
the shadow of the Moon does not reach the Earth. (c) A lunar
eclipse is visible everywhere where the Moon is above the
horizon

Fig. 7.7. The total eclipse of the Sun occurred in 1990 over
Finland. (Photo Matti Martikainen)

to the definition, a solar eclipse is not an eclipse but
an occultation!) If the whole disk of the Sun is behind
the Moon, the eclipse is total (Fig. 7.7); otherwise, it is
partial. If the Moon is close to its apogee, the apparent
diameter of the Moon is smaller than that of the Sun,
and the eclipse is annular.

A lunar eclipse is total if the Moon is entirely inside
the umbral shadow of the Earth; otherwise the eclipse is
partial. A partial eclipse is difficult to see with the un-
aided eye because the lunar magnitude remains almost
unchanged. During the total phase the Moon is coloured
deep red because some red light is refracted through the
Earth’s atmosphere.

If the orbital plane of the Moon coincided with the
plane of the ecliptic, one solar and one lunar eclipse
would occur every synodic month. However, the plane
is tilted about 5◦; therefore, at full moon, the Moon
must be close to the nodes for an eclipse to occur. The
angular distance of the Moon from the node must be
smaller than 4.6◦ for a total lunar eclipse, and 10.3◦ for
a total solar eclipse.

Two to seven eclipses occur annually. Usually
eclipses take place in a set of 1–3 eclipses, separated
by an interval of 173 days. In one set there can be just
one solar eclipse or a succession of solar, lunar and an-
other solar eclipse. In one year, eclipses belonging to
2 or 3 such sets can take place.

The Sun and the (ascending or descending)
node of the lunar orbit are in the same direc-
tion once every 346.62 days. Nineteen such periods
(= 6585.78 days = 18 years 11 days) are very close to
the length of 223 synodic months. This means that the
Sun–Moon configuration and the eclipses are repeated
in the same order after this period. This Saros period
was already known to the ancient Babylonians.

During a solar eclipse the shadow of the Moon on
Earth’s surface is always less than 270 km wide. The
shadow moves at least 34 km/min; thus the maximum
duration of an eclipse is 7 1

2 minutes. The maximum
duration of a lunar eclipse is 3.8 h, and the duration of
the total phase is always shorter than 1.7 h.

Observations of the stellar occultations caused by
the Moon formerly served as an accurate method for
determining the lunar orbit. Because the Moon has no
atmosphere, the star disappears abruptly in less than
1/50 s. If a fast photometer is used for recording the
event, the typical diffraction pattern can be seen. The
shape of the diffraction is different for a binary star.
In the first decades of radio astronomy the occultations
of some radio sources were used for determining their
exact positions.

The Moon moves eastwards, and stars are occulted
by the dark edge of the Moon during the first quarter.
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Therefore occultation is easier to observe, and photo-
metric measurements are possible; at the same time it
is much more difficult to observe the appearance of
an object. There are some bright stars and planets in-
side the 11◦ wide zone where the Moon moves, but the
occultation of a bright, naked-eye object is quite rare.

Occultations are also caused by planets and asteroids.
Accurate predictions are complicated because such an
event is visible only in a very narrow path. The Uranian
rings were found during an occultation in 1977, and the
shapes of some asteroids have been studied during some
favourable events, timed exactly by several observers
located along the predicted path.

A transit is an event in which Mercury or Venus
moves across the Solar disk as seen from the Earth.
A transit can occur only when the planet is close to its
orbital node at the time of inferior conjunction. Transits
of Mercury occur about 13 times per century; transits
of Venus only twice. The next transits of Mercury are:
May 9, 2016; Nov 11, 2019; Nov 13, 2032 and Nov 7,
2039. The next transits of Venus are: Jun 6, 2012;
Dec 11, 2117; Dec 8, 2125 and Jun 11, 2247. In the
18th century the two transits of Venus (1761 and 1769)
were used for determining the value of the astronomical
unit.

7.5 The Structure and Surfaces
of Planets

Since the 1960’s a vast amount of data have been col-
lected using spacecraft, either during a flyby, orbiting
a body, or directly landing on the surface. This gives
a great advantage compared to other astronomical ob-
servations. We may even speak of revolution: the solar
system bodies have turned from astronomical objects
to geophysical ones. Many methods traditionally used
in various sibling branches of geophysics can now be
applied to planetary studies.

The shape and irregularities of the gravitation field
generated by a planet reflects its shape, internal structure
and mass distribution. Also the surface gives certain
indications on internal structure and processes.

The perturbations in the orbit of a satellite or space-
craft can be used in studying the internal structure of
a planet. Any deviation from spherical symmetry is
visible in the external gravitational field.

The IAU planet definition states that planets are bod-
ies in hydrostatic equilibrium. Gravity of a body will
pull its material inwards, but the body resist the pull
if the strength of the material is greater than the pres-
sure exerted by the overlying layers. If the diameter is
larger than about 800–1000 km, gravity is able to de-
form rocky bodies into spherical shape. Smaller bodies
than this have irregular shapes. On the other hand, e.g.
icy moons of Saturn are spherical because ice is more
easily deformed than rock.

Hydrostatic equilibrium means that the surface of
the body approximately follows an equipotential sur-
face of gravity. This is true e.g. on the Earth, where the
sea surface very closely follows the equipotential sur-
face called the geoid. Due to internal strength of rocks,
continents can deviate from the geoid surface by a few
kilometers but compared to the diameter of the Earth
the surface topography is negligible.

A rotating planet is always flattened. The amount of
flattening depends on the rotation rate and the strength
of the material; a liquid drop is more easily deformed
than a rock. The shape of a rotating body in hydrostatic
equilibrium can be derived from the equations of mo-
tion. If the rotation rate is moderate, the equilibrium
shape of a liquid body is an ellipsoid of revolution. The
shortest axis is the axis of rotation.

If Re and Rp are the equatorial and polar radii, re-
spectively, the shape of the planet can be expressed as

x2

R2
e

+ y2

R2
e

+ z2

R2
p

= 1 .

The dynamical flattening, denoted by f is defined as

f = Re − Rp

Re
. (7.9)

Because Re > Rp, the flattening f is always positive.
The giant planets are in practise close to hydrostatic

equilibrium, and their shape is determined by the rota-
tion. The rotation period of Saturn is only 10.5 h, and
its dynamical flattening is 1/10 which is easily visible.

Asteroids and other minor bodies are so small that
they are not flattened by rotation. However, there is an
upper limit for a rotation rate of an asteroid before it
breaks apart due to centrifugal forces. If we assume
that the body is held together only by gravity, we can
approximate the the maximum rotation rate by setting
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the centrifugal force equal to the gravitational force:

G Mm

R2
= mv2

R
, (7.10)

where m is a small test mass on the surface at a dis-
tance of R from the center of the body. Substituting the
rotation period P,

P = 2πR

v
,

we get

G M

R2
= 4π2 R

P2
,

or

P = 2π

√
R3

G M
= 2π

√
3

4πGρ
=
√

3π

Gρ
. (7.11)

If we substitute the density ρ with the mean density
of terrestrial rocks, i.e. 2700 kg m−3, we get for the
minimum rotation period P ≈ 2 hours.

The structure of the terrestrial planets (Fig. 7.8) can
also be studied with seismic waves. The waves formed in
an earthquake are reflected and refracted inside a planet
like any other wave at the boundary of two different
layers. The waves are longitudinal or transversal (P and
S waves, respectively). Both can propagate in solid ma-
terials such as rock. However, only the longitudinal

Fig. 7.8. Internal structure and relative sizes of the terrestrial
planets. The percentage shows the volume of the core relative
to the total volume of the planet. In the case of the Earth, the
percentage includes both the outer and the inner core

wave can penetrate liquids. One can determine whether
a part of the interior material is in the liquid state and
where the boundaries of the layers are by studying the
recordings of seismometers placed on the surface of
a planet. Naturally the Earth is the best-known body,
but quakes of the Moon, Venus, and Mars have also
been observed.

The terrestrial planets have an iron-nickel core. Mer-
cury has the relatively largest core; Mars the smallest.
The core of the Earth can be divided into an inner and
an outer core. The outer core (2900–5150 km) is liq-
uid but the inner core (from 5150 km to the centre) is
solid.

Around the Fe–Ni core is a mantle, composed of
silicates (compounds of silicon). The density of the out-
ermost layers is about 3000 kg m−3. The mean density
of the terrestrial planets is 3500–5500 kg m−3.

The internal structure of the giant planets (Fig. 7.9)
cannot be observed with seismic waves since the planets
do not have a solid surface. An alternative is to study the
shape of the gravitational field by observing the orbit of
a spacecraft when it passes (or orbits) the planet. This
will give some information on the internal structure, but
the details depend on the mathematical and physical
models used for interpretation.

Fig. 7.9. Internal structure and relative sizes of the giant plan-
ets. Differences in size and distance from the Sun cause
differences in the chemical composition and internal struc-
ture. Due to smaller size, Uranus and Neptune do not have
any layer of metallic hydrogen. The Earth is shown in
scale
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Fig. 7.10. Ages of the surfaces of Mercury, the Earth, the Moon
and Mars. The curve represents the fraction of the surface
which existed at a certain time. Most of the surface of the
Moon, Mercury and Mars are more than 3500 million years
old, whereas the surface of the Earth is mostly younger than
200 million years

Fig. 7.11. An example of
resurfacing. Two volcanic
plumes on Jupiter’s moon Io
observed by Galileo space-
craft in 1997. One plume
was captured on the bright
limb or edge of the moon
(inset at upper right), erupt-
ing over a caldera named
Pillan Patera. The plume is
140 kilometers high. The
second plume, seen near
the terminator, is called
Prometheus. The shadow
of the 75 km high airborne
plume can be seen ex-
tending to the right of the
eruption vent. (NASA/JPL)

The mean densities of the giant planets are quite low;
the density of Saturn, for example, is only 700 kg m−3.
(If Saturn were put in a gigantic bathtub, it would float
on the water!) Most of the volume of a giant planet is
a mixture of hydrogen and helium. In the centre, there is
possibly a silicate core, the mass of which is a few Earth
masses. The core is surrounded by a layer of metallic
hydrogen. Due to the extreme pressure, hydrogen is not
in its normal molecular form H2, but dissociated into
atoms. In this state, hydrogen is electrically conducting.
The magnetic fields of the giant planets may originate
in the layer of metallic hydrogen.

Closer to the surface, the pressure is lower and hy-
drogen is in molecular form. The relative thickness of
the layers of metallic and molecular hydrogen vary from
planet to planet. Uranus and Neptune may not have any
layer of metallic hydrogen because their internal pres-
sure is too low for dissociation of the hydrogen. Instead,
a layer of “ices” surround the core. This is a layer of
a water-dominant mixture of water, methane and am-
monia. Under the high pressure and temperature the
mixture is partly dissolved into its components and it
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Fig. 7.12. The number of meteorite impact craters is an indi-
cator of the age of the surface and the shapes of the craters
give information on the strength of the material. The upper
row shows Mercury (left) and the Moon, and the second row,
the Jovian moons Europa (left), Ganymede (centre) and Cal-
listo. The pictures of the Jovian moons were taken by the
Galileo orbiter with a resolution of 150 metres/pixel. Europa
has only a few craters, there are areas of different ages on the
surface Ganymede and the surface of Callisto is the oldest.

Note the grooves and ridges that indicate different geologi-
cal processes. IN the bottom there are two volcanic plumes on
Jupiter’s moon Io observed by Galileo spacecraft in 1997. One
plume was captured on the bright limb or edge of the moon
(inset at upper right), erupting over a caldera named Pillan
Patera. The plume is 140 kilometers high. The second plume,
seen near the terminator, is called Prometheus. The shadow of
the 75 km high airborne plume can be seen extending to the
right of the eruption vent.(NASA/JPL and DLR)
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behaves more like a molten salt and it is also electrically
conductive like the metallic hydrogen.

On top of everything is a gaseous atmosphere, only
a few hundred kilometres thick. The clouds at the top of
the atmosphere form the visible “surface” of the giant
planets.

The interior temperatures of the planets are con-
siderably larger than the surface temperatures. For
example, the temperature in the Earth’s core is
about 4500–5000 K, and in the core of Jupiter about
30,000 K.

A part of that heat is the remnant of the released po-
tential energy from the gravitational contraction during
the formation of planets. Decay of radioactive isotopes
also releases heat. Soon after the formation of planets in-
tense meteorite bombardment was an important source
of heat. Together with heat from short-lived radioactive
isotopes this caused melting of terrestrial planets. The
planets were differentiated: the originally relatively ho-
mogeneous material became segregated into layers of
different chemical composition. The heaviest elements
sank into centre thus forming the Fe–Ni core.

The material of the giant planets is differentiated as
well. In Saturn the differentiation may still be going on.
Saturn is radiating about 2.8 times the heat it gets from
the Sun, more than any other planet. This heat is sus-
pected to originate from the separation of hydrogen and
helium, where the heavier helium is gradually sinking
toward the centre of the planet.

Planetary surfaces are modified by several ge-
ological processes. These include continental drift,
volcanism, meteorite impacts and climate. The Earth
is an example of a body whose surface has been re-
newed many times during past aeons. The age of the
surface depends on the processes and thus implies the
geological evolutionary history of the planet Figs. 7.10,
7.11, 7.12).

Continental drift gives rise, for example, to mountain
formation. The Earth is the only planet where plate
tectonics is active today. On other terrestrial planets
the process has either ceased long ago or has never
occurred.

Volcanism is a minor factor on the Earth (at least
now), but the surface of the Jovian moon Io is changing
rapidly due to violent volcanic eruptions (Fig. 7.11).
Volcanoes have been observed on Mars and Venus, but
not on the Moon.

Lunar craters are meteorite impact craters, common
on almost every body with a solid surface. Meteorites
are bombarding the planets continuously, but the rate
has been diminishing since the beginnings of the solar
system. The number of impact craters reflects the age
of the surface (Fig. 7.12).

The Jovian moon Callisto is an example of a body
with an ancient surface which is not fully inactive. Lack
of small craters indicates some resurfacing process fill-
ing and degrading the minor surface features. The Earth
is an example of a body, whose atmosphere both pro-
tects the surface and destroys the traces of impacts. All
smaller meteorites are burned to ashes in the atmosphere
(one need only note the number of shooting stars), and
some larger bodies are bounced back to outer space. The
traces on the surface are destroyed very quickly by ero-
sion in less than a few million years. Venus is an even
more extreme case where all small craters are missing
due to a thick protective atmosphere.

Climate has the greatest influence on the Earth and
Venus. Both planets have a thick atmosphere. On Mars,
powerful dust storms deform the landscape, too, often
covering the planet with yellowish dust clouds.

7.6 Atmospheres and Magnetospheres

Excluding Mercury, all major planets have an at-
mosphere. The composition, thickness, density and
structure of the atmosphere vary from planet to planet,
but some common features can be found (see, e. g.,
Figs. 7.13, 7.14).

Let us first study the dependence of the tempera-
ture T , pressure P, and density ρ on the height h. Let us
consider a cylinder with a length dh. The change in the
pressure d P from the height h to h +dh is proportional
to the mass of the gas in the cylinder:

d P = −gρ dh , (7.12)

where g is the acceleration of gravity. Equation (7.12) is
the equation of hydrostatic equilibrium. (It is discussed
in detail in Chap. 10.)

As a first approximation, we may assume that g does
not depend on height. In the case of the Earth, the error
is only about 3% if g is considered constant from the
surface to a height of 100 km.
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Fig. 7.13. (a) Temperature as a function of height in the atmo-
spheres of Venus, Earth, and Mars. (b) Temperature profiles of
the atmospheres of Jupiter and Saturn. The zero height is cho-
sen to be the point where the pressure is 100 mbar. Numbers
along the curves are pressures in millibars

The equation of state of the ideal gas

PV = NkT (7.13)

gives the expression for the pressure P

P = ρkT

µ
, (7.14)

Fig. 7.14. Relative abun-
dances of the most
abundant gases in the at-
mospheres of Venus, Earth,
and Mars. The number at
the bottom of each cir-
cle denotes the surface
pressure in atms

where N is the number of atoms or molecules, k is
the Boltzmann constant, µ is the mass of one atom or
molecule and

ρ = µN

V
. (7.15)

By using the equation of hydrostatic equilibrium (7.12)
and the equation of state (7.14), we obtain

d P

P
= −g

µ

kT
dh .

Integration yields P as a function of height:

P = P0 exp

⎛
⎝−

h∫
0

µg

kT
dh

⎞
⎠

= P0 exp

⎛
⎝−

h∫
0

dh

H

⎞
⎠ .

(7.16)

The variable H , which has the dimension of length, is
called the scale height:

H = kT

µg
. (7.17)

The scale height defines the height at which the pressure
has decreased by a factor e. H is a function of height,
but here we may assume that it is constant. With this
approximation, we obtain

− h

H
= ln

P

P0

or, using (7.14),

ρT(h)

ρ0T0
= e−h/H . (7.18)
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Table 7.1. Scale heights of some gases in the atmospheres of
Venus, Earth, and Mars

Gas Molecular Earth Venus Mars
weight [amu] H [km] H [km] H [km]

H2 2 120 360 290
O2 32 7 23 18
H2O 18 13 40 32
CO2 44 5 16 13
N2 28 8 26 20

Temperature [K] 275 750 260
Acceleration of
gravity [m/s2] 9.81 8.61 3.77

The scale height is an important parameter in many
formulas describing the structure of the atmosphere
(Table 7.1). For example, if the change of the pressure
or the density is known as a function of height, the mean
molecular weight of the atmosphere can be computed.
The scale height of the Jovian atmosphere was deter-
mined in 1952 when Jupiter occulted a star. With these
observations, the scale height was calculated to be 8 km,
and the mean molecular weight 3–5 amu (atomic mass
unit, 1/12 of the mass of 12C). Thus the main compo-
nents are hydrogen and helium, a result later confirmed
by spacecraft data.

In terrestrial observations, infrared data are limited
by water vapour and carbon dioxide. The scale height
of CO2 is 5 km, which means that the partial pres-
sure is already halved at a height of 3.5 km. Thus
infrared observations can be made on top of high moun-
tains (like Mauna Kea in Hawaii). The scale height
of water vapour is 13 km, but the relative humidity
and hence the actual water content is very site- and
time-dependent.

The scale height and the temperature of the atmo-
sphere define the permanence of the atmosphere. If the
speed of a molecule is greater than the escape veloc-
ity, the molecule will escape into space. The whole
atmosphere could disappear in a relatively short time.

According to the kinetic gas theory, the mean ve-
locity v of a molecule depends both on the kinetic
temperature Tk of the gas and the mass m of the
molecule:

v=
√

3kTk

m
.

If the mass of a planet is M and its radius R, the escape
velocity is

ve =
√

2G M

R
.

Even if the mean velocity is smaller than the escape ve-
locity, the atmosphere can evaporate into space if there
is enough time, since some molecules will always have
velocities exceeding ve. Assuming a velocity distribu-
tion, one can calculate the probability for v > ve Hence
it is possible to estimate what fraction of the atmosphere
will disappear in, say, 109 years. As a rule of thumb, it
can be said that at least half of the atmosphere will
remain over 1000 million years if the mean velocity
v < 0.2ve.

The probability that a molecule close to the surface
will escape is insignificantly small. The free mean path
of a molecule is very small when the gas density is
high (Fig. 7.15). Thus the escaping molecule is most
probably leaving from the uppermost layers. The crit-
ical layer is defined as a height at which a molecule,

Fig. 7.15. Close to the surface, the mean free path of
a molecule is smaller than higher in the atmosphere where
the gas density is smaller. The escaping molecules originate
close to the critical layer
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Fig. 7.16. Structure of the magnetosphere of the Earth. (A. Nurmi/Tiede 2000)

moving upward, has a probability 1/e of hitting another
molecule. The part of the atmosphere above the criti-
cal layer is called the exosphere. The exosphere of the
Earth begins at a height of 500 km, where the kinetic
temperature of the gas is 1500–2000 K and the pressure
is lower than in the best terrestrial vacuums.

The magnetosphere is the “outer boundary” of
a planet. Size and shape depend on the strength of the
magnetic field of the planet and on the solar wind. The
solar wind is a flux of charged particles, mostly elec-
trons and protons, outflowing from the Sun. The speed
of the wind at the distance of the Earth is about 400 km/s
and the density 10 particles/cm3 but both values can
change considerably depending on the solar activity.

On the solar side there is a bow shock (Fig. 7.16),
typically at a distance of a few tens of planetary radii
(Table 7.2). At the bow shock, particles of the solar
wind first hit the magnetosphere. The magnetosphere
is limited by the magnetopause, flattened on the so-
lar side and extended to a long tail on the opposite
side. Charged particles inside the magnetopause are
captured by the magnetic field and some particles are
accelerated to great velocities. If the velocities are in-
terpreted according to the kinetic gas theory, these
velocities even correspond to millions of kelvins. How-
ever, the density, and thus the total energy, is very
small. The “hottest” places found are around Jupiter
and Saturn.
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Table 7.2. Planetary magnetic fields

Dipole moment Field strength Polarity2 Angle3 Magneto-
(Earth = 1) (gauss)1 pause4

Mercury 0.0007 0.003 ⇑ 14◦ 1.5

Venus < 0.0004 < 0.00003 – – –

Earth 1.0 0.305 ⇑ 11◦ 10

Mars < 0.0002 < 0.0003 – – –

Jupiter 20,000. 4.28 ⇓ 10◦ 80

Saturn 600. 0.22 ⇓ < 1◦ 20

Uranus 50. 0.23 ⇓ 59◦ 20

Neptune 25. 0.14 ⇓ 47◦ 25

1 at equator (1 gauss equals 10−4 T);
2 ⇑ same as the Earth, ⇓ opposite;
3 angle between magnetic and rotational axes;
4 average magnetopause distance in the direction of the Sun in planetary radii

The region of space containing trapped charged par-
ticles, the radiation belts around the Earth, are named
van Allen’s belts (Fig. 7.17). These radiation zones were
discovered by the first US satellite, Explorer 1, in 1958.

Fig. 7.17. A glow of hot plasma trapped inside the Earth’s
magnetosphere. The picture was taken by NASA’s Imager
for Magnetopause to Aurora Global Exploration (IMAGE)
spacecraft on August 11, 2000 at 18:00 UT. The Sun is outside
the picture area toward the top right corner. (NASA and the
IMAGE science team)

The number of charged particles increases after strong
solar bursts. Some of these particles “leak” to the atmo-
sphere, resulting in auroras. Similar effects have also
been detected in Jupiter, Saturn and Uranus.

The solar magnetic field arises from the turbulent
motions of the electrically conductive matter. The en-
ergy driving the convection in the layer is coming from
the nuclear fusion in the core. This, however, cannot
explain planetary magnetism. Neither can the remanent
primordial magnetic field explain it because the inter-
nal temperature of planets is well above the Curie point
(about 850 K for magnetite). If the temperature is above
the Curie point, ferromagnetic materials will lose their
remanent magnetism.

The planetary dynamo generating the magnetic field
requires that the planet is rotating and has a convec-
tive layer of electrically conductive material. Terrestrial
planets have a liquid Fe–Ni core, or a liquid layer in the
core, Jupiter and Saturn have a layer of liquid metallic
hydrogen and Uranus and Neptune have a mixture of
water, ammonia and methane. In all cases the tempera-
ture gradient between the bottom and top of the layer is
large enough to cause the convection.

The strength of the magnetic field varies a lot
from planet to planet. It can be characterised by
the dipole magnetic moment. The magnetic moment
of Jupiter is about 100 million times that of Mer-
cury. The magnetic moment of the Earth is about
7.9×1025 gauss cm3 that can be compared to the typical
strong electromagnetic fields achieved in the laborato-
ries, about 100,000 gauss cm3. Inducing such a strong
field requires currents that are of the order of 109 Am-
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Fig. 7.18. Planetary magnetic fields

peres. When divided by the cube of planetary radii,
one gets an estimate of the field strength on the
equator.

The alignment of the magnetic field with respect to
the rotation axis of a planet differs from planet to planet
(Fig. 7.18). Saturn’s magnetic field is close to the ideal
case where rotational axis and magnetic axis coincide.
Also the Earth and Jupiter show reasonably good point
dipole field with a tilt of about 10◦. However, fields
of Uranus and Neptune are both offset from the centre
of the planet and tilted by about 50◦ from the rotation
axis. This may indicate a different mechanism for the
dynamo.

The magnetic fields of Mercury and the Earth have
an opposite polarity than the fields of other planets. It
is known that the polarity of the Earth’s magnetic field
has reversed several times over geologic time scales,
previously about 750,000 years ago. There are some
indications that the reversal of the polarity is begin-
ning now because the field strength is declining about
one percent per decade, magnetic poles are moving
more rapidly and the field asymmetry is increasing. The
whole process will take several thousand years during
which the Earth’s surface is more open to the cosmic
rays.

The Galileo mission also revealed that the Jovian
moon Ganymede has a magnetic field. The field is weak
and too small to have a magnetotail or trapped particles
around the moon. Callisto, which is of the same size,
does not show any magnetosphere. Neither does our
Moon have any global magnetic field.

7.7 Albedos

The planets and all other bodies of the solar system only
reflect the radiation of the Sun (we may neglect here
the thermal and radio wave radiation and concentrate
mainly on the visual wavelengths). The brightness of
a body depends on its distance from the Sun and the
Earth, and on the albedo of its surface. The term albedo
defines the ability of a body to reflect light.

If the luminosity of the Sun is L�, the flux density at
the distance r is (Fig. 7.19)

F = L�
4πr2

. (7.19)

If the radius of the planet is R, the area of its cross
section is πR2, and the total flux incident on the surface

Fig. 7.19. Symbols used in the photometric formulas
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of the planet is

L in = πR2 L�
4πr2

= L� R2

4r2
. (7.20)

Only a part of the incident flux is reflected back. The
other part is absorbed and converted into heat which
is then emitted as a thermal emission from the planet.
The Bond albedo A (or spherical albedo) is defined
as the ratio of the emergent flux to the incident flux
(0 ≤ A ≤ 1). The flux reflected by the planet is thus

Lout = AL in = AL� R2

4r2
. (7.21)

The planet is observed at a distance∆. If radiation is
reflected isotropically, the observed flux density should
be

F = Lout

4π∆2
. (7.22)

In reality, however, radiation is reflected anisotropically.
If we assume that the reflecting object is a homoge-
neous sphere, the distribution of the reflected radiation
depends on the phase angle α only. Thus we can express
the flux density observed at a distance ∆ as

F = CΦ(α)
Lout

4π∆2
. (7.23)

The function Φ giving the phase angle dependence
is called the phase function. It is normalised so that
Φ(α= 0◦)= 1.

Since all the radiation reflected from the planet is
found somewhere on the surface of the sphere, we must
have∫

S

CΦ(α)
Lout

4π∆2
dS = Lout (7.24)

or
C

4π∆2

∫
S

Φ(α) dS = 1 , (7.25)

where the integration is extended over the surface of the
sphere of radius∆. The surface element of such a sphere
is dS =∆2 dα sinα dφ, and we have∫

S

Φ(α) dS =∆2

π∫
α= 0

2π∫
φ= 0

Φ(α) sinα dα dφ

=∆22π

π∫
0

Φ(α) sinα dα .

(7.26)

The normalisation constant C is

C = 4π∆2∫
S Φ(α) dS

= 2∫ π
0 Φ(α) sinα dα

. (7.27)

The quantity

q = 2

π∫
0

Φ(α) sinα dα (7.28)

is the phase integral. In terms of the phase integral the
normalisation constant is

C = 4

q
. (7.29)

Remembering that Lout = AL in, the equation (7.23) can
be written in the form

F = CA

4π
Φ(α)

1

∆2
L in . (7.30)

The first factor is intrinsic for each object, the second
gives the phase angle dependence, the third the distance
dependence and the fourth, the incident radiation power.
The first factor is often denoted by

Γ = CA

4π
. (7.31)

When we substitute here the expression of C (7.29), and
solve for the Bond albedo, we get

A = 4πΓ

C
= πΓ

4

C
= πΓq = pq . (7.32)

Here p = πΓ is called the geometric albedo and q is the
previously introduced phase integral. These quantities
are related by

A = pq . (7.33)

The geometric albedo seems to have appeared as an
arbitrary factor with no obvious physical interpretation.
We’ll now try to explain this quantity using a Lam-
bertian surface. A Lambertian surface is defined as an
absolutely white, diffuse surface which reflects all radia-
tion, i. e. its Bond albedo is A = 1. Moreover, its surface
brightness is the same for all viewing directions, which
means that the phase function is

Φ(α)=
⎧⎨
⎩cosα , if 0 ≤ α ≤ π/2 ,

0 , otherwise .
(7.34)
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In reality, no such surface exists but there are some ma-
terials which behave almost like a Lambertian surface.
A wall with a mat white finish is a good approxima-
tion; although it doesn’t reflect all incident light, the
distribution of the reflected light is about right, and its
brightness looks the same from all directions.

For a Lambertian surface the constant C is

C = 2∫ π
0 Φ(α) sinα dα

= 2∫ π/2
0 cosα sinα dα

(7.35)

= 2

1/2
= 4 .

Thus the geometric albedo of a Lambertian surface is

p = πΓ = CA

4
= 4×1

4
= 1 . (7.36)

At the phase angle zero Φ(α = 0◦) = 1 and the
reflected flux density is

F = CA

4π

1

∆2
L in .

If we replace the object with a Lambertian surface of
the same size, we get

FL = 4

4π

1

∆2
L in .

The ratio of these flux densities is
F

FL
= CA

4
= πΓ = p . (7.37)

Now we have found a physical interpretation for p:
the geometric albedo is the ratio of the flux densi-
ties at phase angle α = 0◦ reflected by a planet and
a Lambertian surface of the same cross section.

The geometric albedo depends on the reflectance of
the surface but also on the phase function Φ. Many
rough surfaces reflect most of the incident radiation di-
rectly backward. In such a case the geometric albedo p
is greater than in the case of an isotropically reflect-
ing surface. On some surfaces p> 1, and in the most
extreme case, the specular reflection, p = ∞. The ge-
ometric albedo of solar system bodies vary between
0.03–1. The geometric albedo of the Moon is p = 0.12
and the greatest value, p = 1.0, has been measured for
the Saturnian moon Enceladus.

It turns out that p can be derived from the observa-
tions, but the Bond albedo A can be determined only if
the phase integral q is also known. That will be discussed
in the next section.

7.8 Photometry, Polarimetry
and Spectroscopy

Having defined the phase function and albedos we are
ready to derive a formula for planetary magnitudes. The
flux density of the reflected light is

F = CA

4π
Φ(α)

1

∆2
L in .

We now substitute the incident flux

L in = L� R2

4r2

and the constant factor expressed in terms of the
geometric albedo

CA

4π
= Γ = p

π
.

Thus we get

F = p

π
Φ(α)

1

∆2

L� R2

4r2
. (7.38)

The observed solar flux density at a distance of a =
1 AU from the Sun is

F� = L�
4πa2

. (7.39)

The ratio of these is
F

F�
= pΦ(α)R2a2

∆2r2
. (7.40)

If the apparent solar magnitude at a distance of 1 AU
is m� and the apparent magnitude of the planet m we
have

m −m� = −2.5 lg
F

F�

= −2.5 lg
pΦ(α)R2a2

∆2r2

= −2.5 lg
pR2

a2

a4

∆2r2
Φ(α) (7.41)

= −2.5 lg p
R2

a2
−2.5 lg

a4

∆2r2
−2.5 lgΦ(α)

= −2.5 lg p
R2

a2
+5 lg

∆r

a2
−2.5 lgΦ(α) .
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If we denote

V(1, 0)≡ m� −2.5 lg p
R2

a2
, (7.42)

then the magnitude of a planet can be expressed as

m = V(1, 0)+5 lg
r∆

a2
−2.5 lgΦ(α) . (7.43)

The first term V(1, 0) depends only on the size of the
planet and its reflection properties. So it is a quantity
intrinsic to the planet, and it is called the absolute mag-
nitude (not to be confused with the absolute magnitude
in stellar astronomy!). The second term contains the dis-

Fig. 7.20. The phase curves and polarization of different types
of asteroids. The asteroid characteristics are discussed in more
detail in Sect. 7.14. (From Muinonen et al., Asteroid pho-

tometric and polarimetric phase effects, in Bottke, Binzel,
Cellino, Paolizhi (Eds.) Asteroids III, University of Arizona
Press, Tucson.)

tance dependence and the third one the dependence on
the phase angle.

If the phase angle is zero, and we set r =∆= a,
(7.43) becomes simply m = V(1, 0). The absolute mag-
nitude can be interpreted as the magnitude of a body if
it is at a distance of 1 AU from the Earth and the Sun
at a phase angle α = 0◦. As will be immediately no-
ticed, this is physically impossible because the observer
would be in the very centre of the Sun. Thus V(1, 0) can
never be observed.

The last term in (7.43) is the most problematic one.
For many objects the phase function is not known very
well. This means that from the observations, one can
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calculate only

V(1, α)≡ V(1, 0)−2.5 lgΦ(α) , (7.44)

which is the absolute magnitude at phase angle α.
V(1, α), plotted as a function of the phase angle, is
called the phase curve (Fig. 7.20). The phase curve
extrapolated to α= 0◦ gives V(1, 0).

By using (7.41) at α= 0◦, the geometric albedo can
be solved for in terms of observed values:

p =
(

r∆

aR

)2

10−0.4(m0 − m�) , (7.45)

where m0 = m(α= 0◦). As can easily be seen, p can be
greater than unity but in the real world, it is normally
well below that. A typical value for p is 0.1–0.5.

The Bond albedo can be determined only if the phase
functionΦ is known. Superior planets (and other bodies
orbiting outside the orbit of the Earth) can be observed
only in a limited phase angle range, and therefore Φ is
poorly known. The situation is somewhat better for the
inferior planets. Especially in popular texts the Bond
albedo is given instead of p (naturally without men-
tioning the exact names!). A good excuse for this is the
obvious physical meaning of the former, and also the
fact that the Bond albedo is normalised to [0, 1].

Opposition Effect. The brightness of an atmosphere-
less body increases rapidly when the phase angle
approaches zero. When the phase is larger than
about 10◦, the changes are smaller. This rapid brighten-
ing close to the opposition is called the opposition effect.
The full explanation is still in dispute. A qualitative
(but only partial) explanation is that close to the oppo-
sition, no shadows are visible. When the phase angle
increases, the shadows become visible and the bright-
ness drops. An atmosphere destroys the opposition
effect.

The shape of the phase curve depends on the geo-
metric albedo. It is possible to estimate the geometric
albedo if the phase curve is known. This requires at
least a few observations at different phase angles. Most
critical is the range 0◦–10◦. A known phase curve can
be used to determine the diameter of the body, e. g.
the size of an asteroid. Apparent diameters of asteroids
are so small that for ground based observations one
has to use indirect methods, like polarimetric or radio-
metric (thermal radiation) observations. Beginning from

the 1990’s, imaging made during spacecraft fly-bys and
with the Hubble Space Telescope have given also direct
measures of the diameter and shape of asteroids.

Magnitudes of Asteroids. When the phase angle is
greater than a few degrees, the magnitude of an aster-
oid depends almost linearly on the phase angle. Earlier
this linear part was extrapolated to α= 0◦ to estimate
the opposition magnitude of an asteroid. Due to the op-
position effect the actual opposition magnitude can be
considerably brighter.

In 1985 the IAU adopted the semi-empirical HG sys-
tem where the magnitude of an asteroid is described by
two constants H and G. Let

a1 = (1− G)×10−0.4 H ,

a2 = G ×10−0.4 H .
(7.46)

The phase curve can be approximated by

V(1, α)= −2.5

× log

[
a1 exp

(
−3.33

(
tan

α

2

)0.63
)

(7.47)

+a2 exp

(
−1.87

(
tan

α

2

)1.22
)]

.

When the phase angle is α= 0◦ (7.47) becomes

V(1, 0)= −2.5 log(a1 +a2)

= −2.5 log 10−0.4 H = H .
(7.48)

The constant H is thus the absolute magnitude and G de-
scribes the shape of the phase curve. If G is great, the
phase curve is steeper and the brightness is decreasing
rapidly with the phase angle. For very gentle slopes G
can be negative. H and G can be determined with a least
squares fit to the phase observations.

Polarimetric Observations. The light reflected by the
bodies of the solar system is usually polarized. The
amount of polarization depends on the reflecting mate-
rial and also on the geometry: polarization is a function
of the phase angle. The degree of polarization P is
defined as

P = F⊥ − F‖
F⊥ + F‖

, (7.49)
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where F⊥ is the flux density of radiation, perpendicular
to a fixed plane, and F‖ is the flux density parallel to the
plane. In solar system studies, polarization is usually
referred to the plane defined by the Earth, the Sun,
and the object. According to (7.49), P can be positive
or negative; thus the terms “positive” and “negative”
polarization are used.

The degree of polarization as a function of the phase
angle depends on the surface structure and the atmo-
sphere. The degree of polarization of the light reflected
by the surface of an atmosphereless body is positive
when the phase angle is greater than about 20◦. Closer
to opposition, polarization is negative. When light is re-
flected from an atmosphere, the degree of polarization

Fig. 7.21. Spectra of the Moon and the giant planets. Strong absorption bands can be seen in the spectra of Uranus and Neptune.
(Lowell Observatory Bulletin 42 (1909))

as a function of the phase angle is more complicated.
By combining observations with a theory of radiative
transfer, one can compute atmosphere models. For ex-
ample, the composition of Venus’ atmosphere could be
studied before any probes were sent to the planet.

Planetary Spectroscopy. The photometric and polari-
metric observations discussed above were monochro-
matic. However, the studies of the atmosphere of
Venus also used spectral information. Broadband UBV
photometry or polarimetry is the simplest example
of spectrophotometry (spectropolarimetry). The term
spectrophotometry usually means observations made
with several narrowband filters. Naturally, solar sys-
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tem objects are also observed by means of “classical”
spectroscopy.

Spectrophotometry and polarimetry give information
at discrete wavelengths only. In practise, the number of
points of the spectrum (or the number of filters available)
is often limited to 20–30. This means that no details
can be seen in the spectra. On the other hand, in or-
dinary spectroscopy, the limiting magnitude is smaller,
although the situation is rapidly improving with the new
generation detectors, such as the CCD camera.

The spectrum observed is the spectrum of the Sun.
Generally, the planetary contribution is relatively small,
and these differences can be seen when the solar spec-
trum is subtracted. The Uranian spectrum is a typical
example (Fig. 7.21). There are strong absorption bands
in the near-infrared. Laboratory measurements have
shown that these are due to methane. A portion of the
red light is also absorbed, causing the greenish colour of
the planet. The general techniques of spectral observa-
tions are discussed in the context of stellar spectroscopy
in Chap. 8.

7.9 Thermal Radiation of the Planets

Thermal radiation of the solar system bodies depends
on the albedo and the distance from the Sun, i. e. on the
amount of absorbed radiation. Internal heat is important
in Jupiter and Saturn, but we may neglect it at this point.

By using the Stefan-Boltzmann law, the flux on the
surface of the Sun can be expressed as

L = 4πR2
�σT 4

� .

If the Bond albedo of the body is A, the fraction of the
radiation absorbed by the planet is (1− A). This is later
emitted as heat. If the body is at a distance r from the
Sun, the absorbed flux is

Labs = R2�σT 4�πR2

r2
(1− A) . (7.50)

There are good reasons to assume that the body is in
thermal equilibrium, i. e. the emitted and the absorbed
fluxes are equal. If not, the body will warm up or cool
down until equilibrium is reached.

Let us first assume that the body is rotating slowly.
The dark side has had time to cool down, and the thermal
radiation is emitted mainly from one hemisphere. The

flux emitted is

Lem = 2πR2σT 4 , (7.51)

where T is the temperature of the body and 2πR2 is the
area of one hemisphere. In thermal equilibrium, (7.50)
and (7.51) are equal:

R2�T 4�
r2

(1− A)= 2T 4 ,

whence

T = T�
(

1− A

2

)1/4 ( R�
r

)1/2

. (7.52)

A body rotating quickly emits an approximately equal
flux from all parts of its surface. The emitted flux is then

Lem = 4πR2σT 4

and the temperature

T = T�
(

1− A

4

)1/4 ( R�
r

)1/2

. (7.53)

The theoretical temperatures obtained above are not
valid for most of the major planets. The main “culprits”
responsible here are the atmosphere and the internal
heat. Measured and theoretical temperatures of some
major planets are compared in Table 7.3. Venus is an
extreme example of the disagreement between theoret-
ical and actual figures. The reason is the greenhouse
effect: radiation is allowed to enter, but not to exit. The
same effect is at work in the Earth’s atmosphere. With-
out the greenhouse effect, the mean temperature could
be well below the freezing point and the whole Earth
would be ice-covered.

7.10 Mercury

Mercury is the innermost planet of the solar system.
Its diameter is 4800 km and its mean distance from
the Sun 0.39 AU. The eccentricity of the orbit is 0.21,
which means that the distance varies between 0.31 and
0.47 AU. Because of the high eccentricity, the surface
temperature of the subsolar point varies substantially:
at the perihelion, the temperature is about 700 K; at
the aphelion, it is 100 K lower. Temperature variations
on Mercury are the most extreme in the solar system
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Table 7.3. Theoretical and observed temperatures of some planets

Albedo Distance from Theoretical Observed maximum
the Sun [AU] temperature [K] temperature [K]

(7.52) (7.53)

Mercury 0.06 0.39 525 440 700

Venus 0.76 0.72 270 230 750

Earth 0.36 1.00 290 250 310

Mars 0.16 1.52 260 215 290

Jupiter 0.73 5.20 110 90 130

because in the night side the temperature drops below
100 K.

The precession of the perihelion of Mercury is more
than 0.15◦ per century. When the Newtonian perturba-
tions are subtracted, there remains an excess of 43′′.
This is fully explained by the general theory of rela-
tivity. The explanation of the perihelion precession was
one of the first tests of the general theory of relativity.

Mercury is always found in the vicinity of the Sun;
its maximum elongation is only 28◦. Observations are
difficult because Mercury is always seen in a bright sky
and close to the horizon. Moreover, when closest to the
Earth in the inferior conjunction, the dark side of the
planet is toward us.

The first maps of Mercury were drawn at the end of
the 19th century but the reality of the details was not
confirmed. As late as in the beginning of the 1960’s, it
was believed that Mercury always turns the same side
toward the Sun. However, measurements of the thermal
radio emission showed that the temperature of the night
side is too high, about 100 K, instead of almost absolute
zero. Finally, the rotation period was established by
radar. One revolution around the Sun takes 88 days. The
rotation period is two-thirds of this, 59 days. This means
that every second time the planet is in, say, perihelion,
the same hemisphere faces the Sun (Fig. 7.22). This
kind of spin–orbit coupling can result from tidal forces
exerted by a central body on an object moving in a fairly
eccentric orbit.

Re-examination of old observations revealed why
Mercury had been presumed to rotate synchronously.
Owing to its geometry, Mercury is easiest to observe in
spring and autumn. In six months, Mercury orbits twice
around the Sun, rotating exactly three times around its
own axis. Consequently, during observations, the same
side was always facing the Sun! The details visible
on the surface are very obscure and the few excep-

tional observations were interpreted as observational
errors.

The best (and thus far unique) data were received in
1974 and 1975, when the US space craft Mariner 10
passed Mercury three times. The orbital period of
Mariner 10 around the Sun was exactly twice the period
of Mercury. The two-thirds-factor meant that the same
side of the planet was illuminated during every fly-by!
The other side is still unknown.

The Mariner 10 data revealed a moon-like landscape
(Fig. 7.23). Mercury’s surface is marked by craters
and larger circular areas, caused by impacts of minor
planets. The craters are 3000–4000 million years old,
indicating that the surface is old and undisturbed by

Fig. 7.22. Length of day in Mercury. The positions of Mercury
during the first revolution are shown outside the ellipse. Upon
returning to the aphelion, the planet has turned 540◦ (1½
revolutions). After two full cycles the planet has rotated three
times around its axis and the same side points toward the Sun.
The length of the day is 176 d, longer than on any other planet
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Fig. 7.23. (Left) A mosaic picture of Mercury. (NASA)
(Right) Surface details on Mercury. One of the most prominent
scarps photographed by Mariner 10 during it’s first encounter
with Mercury in 1974. The scarp is about 350 kilometres long

and transects two craters 35 and 55 kilometres in diameter. It is
up to 2 km high in some places and it appears to be a fault pro-
duced by compression of the crust. (NASA/JPL/Northwestern
University)

continental drift or volcanic eruptions. Most of Mer-
cury’s surface is covered by old and heavily cratered
plains but there are some areas that are less saturated
and the craters are less than 15 kilometres in diameter.
These areas were probably formed as lava flows buried
the older terrain.

The largest lava-filled circular area is the 1300 km
wide Caloris Basin. The shock wave produced by the
Caloris impact was focused to the antipodal point,
breaking the crust into complex blocks in a large area,
the diameter of which is about 100 km. There are also
faults that were possibly produced by compression of
the crust. The volume change probably was due to the
cooling of the planet.

Mercury’s relatively small size and proximity to the
Sun, resulting in low gravity and high temperature, are
the reasons for its lack of atmosphere. There is a layer
made up of atoms blasted off the surface by the solar
wind. The tenuous “atmosphere” is composed mainly of
oxygen, sodium, and helium. The atoms quickly escape
into space and are constantly replenished.

Due to the absence of an atmosphere, the temperature
on Mercury drops very rapidly after sunset. The rota-
tional axis is almost perpendicular to the orbital plane;
therefore it is possible that, close to the poles, there are
areas where the temperature is permanently below the
freezing point. Radar echos from the surface of Mercury
show several anomalously reflective and highly depo-
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larized features at the north and south poles. Some of
these areas can be addressed to the craters, the bottoms
of which are permanently in shadow. One candidate of
the radar-bright features is water ice that has survived
in the permanent shadow.

The only relevant data concerning the interior of Mer-
cury were obtained during the Mariner 10 fly-by when
the gravity field was measured. Since Mercury has no
satellites, the mass (and mass distribution) and density
could not be determined before the force exerted by the
gravitational field on a spacecraft was measured.

It has been said that Mercury looks like the Moon
from the outside but is terrestrial from the inside. Ac-
cording to theoretical models, the internal structure is
similar to that of the Earth but the core is substantially
larger. The density of the planet is about the same as
that of the Earth, indicating that the size of the Fe–Ni
core is roughly about 75% of the planet’s radius.

Due to the vicinity of the Sun, the temperature of
the primeval nebula at the distance of Mercury was
quite high during planetary formation. Thus the relative
abundances of the volatile elements are smaller than on
any other terrestrial planet.

Mercury has a weak magnetic field, about 1% as
strong as that of the Earth. The presence of the magnetic
field is unexpected because Mercury is much smaller
than the Earth and it rotates slowly. According to the
dynamo theory, a magnetic field is generated by flows
in a liquid, electrically conducting core. The magnetic
field cannot be a remnant from ancient times, since the
internal temperature of the planet must have exceeded
the critical Curie point. Therefore, it must be assumed
that a part of the core is molten.

7.11 Venus

Venus is the brightest object in the sky, after the Sun
and the Moon. Like Mercury, Venus can be seen only
in the morning or in the evening sky. (It is sometimes
possible to see Venus even if the Sun is above the hori-
zon, if its exact position is known.) In antiquity, Venus
was thought to be two different planets, Hesperos and
Phosphorus, evening star and morning star.

The maximum elongation of Venus is about 47◦.
Venus is a remarkable object when shining in the dark
sky at its brightest, 35 days before or after the inferior

Fig. 7.24. The phases of Venus were discovered by Galileo
Galilei in 1610. This drawing illustrates how the apparent size
of Venus changes with phase. The planet is far behind the Sun
when the illuminated side faces the Earth

conjunction, when one-third of the surface is seen lit
(Fig. 7.24). At the inferior conjunction, the Earth–Venus
distance is only 42 million km. The diameter of Venus is
about 12,000 km, which means that the apparent diam-
eter can be as large as one arc minute. Under favourable
conditions it is even possible to see the shape of the cres-
cent Venus with binoculars. At the superior conjunction,
the apparent diameter is only 10 arc seconds.

Venus is covered by clouds. Its surface is nowhere
visible; only featureless yellowish cloud tops can be
seen (Fig. 7.25). The rotation period was long unknown,
and the measured 4-day period was the rotation time
of the clouds. Finally, in 1962, radar measurements re-
vealed that the rotation period is 243 days in a retrograde
direction, i. e. opposite to the rotation of other planets.
The axis of rotation is almost perpendicular to the orbital
plane; the inclination is 177◦.

The temperature at the cloud tops is about 250 K.
Because the Bond albedo is as high as 75%, the surface
temperature was believed to be moderate, even suitable
for life. Opinions changed dramatically when thermal
radio emission was measured at the end of the 1950’s.
This emission originates on the surface of the planet
and can penetrate the clouds. The surface temperature
turned out to be 750 K, well above the melting point of
lead. The reason for this is the greenhouse effect. The
outgoing infrared radiation is blocked by atmospheric
carbon dioxide, the main component of the atmosphere.

The chemical composition of the Venusian atmo-
sphere was known prior to the space age. Spectroscopic
observations revealed CO2, and some clues to the cloud
composition were obtained from polarimetric observa-
tions. The famous French planetary astronomer Bernard
Lyot made polarimetric observations in the 1920’s, but
not until decades later was it realised that his obser-
vations could be explained by assuming that light was
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Fig. 7.25. Left: Venus in visible light imaged by the Galileo
orbiter in February 1990. The cloud features are caused by
winds that blow from east to west at about 100 m/s. Right:
The northern hemisphere of Venus in a computer-generated

picture of the radar observations. The north pole is at the centre
of the image of the Magellan synthetic aperture radar mosaic.
(NASA/JPL)

scattered by liquid spherical particles whose index of
refraction is 1.44. This is significantly higher than the
index of refraction of water, 1.33. Moreover, water is
not liquid at that temperature. A good candidate was
sulphuric acid H2SO4. Later, spacecraft confirmed this
interpretation.

Venus’ atmosphere is very dry: the amount of water
vapour present is only 1/1,000,000 of that in the Earth’s
atmosphere. One possible explanation is that, due to so-
lar UV radiation, the water has dissociated to hydrogen
and oxygen in the upper layers of the atmosphere, the
former escaping into interplanetary space.

About 1% of the incident light reaches the surface
of Venus; this light is deep red after travelling through
clouds and the thick atmosphere. Most of the incident
light, about 75%, is reflected back from the upper layers
of clouds. The absorbed light is emitted back in in-
frared. The carbon dioxide atmosphere very effectively
prevents the infrared radiation from escaping, and the
temperature had not reached the equilibrium until at
750 K.

The pressure of the atmosphere at the surface is
90 atm. The visibility is several kilometres, and even

in the clouds, a few hundred metres. The densest clouds
are at a height of 50 km, but their thickness is only
2–3 km. Above this, there are haze-like layers which
form the visible “surface” of the planet. The uppermost
clouds move rapidly; they rotate around the planet in
about 4 days, pushed by strong winds powered by the
Sun. The sulphuric acid droplets do not rain on the Venu-
sian surface but they evaporate in the lower atmosphere
before reaching the surface.

Mariner 2 (1962) was the first spacecraft to encounter
the planet. Five years later, the Soviet Venera 4 sent
the first data from below the clouds, and the first pic-
tures of the surface were sent by Venera 9 and 10 in
1975. The first radar map was completed in 1980, after
18 months of mapping by the US Pioneer Venus 1. The
best and the most complete maps (about 98% of the
planet’s surface) were made using the synthetic aper-
ture radar observations of the Magellan spacecraft in
1990–1994. The resolution of the maps is as high as
100 m and the elevation was measured with a resolution
of 30 metres.

Radar mapping revealed canyons, mountains, craters,
volcanoes and other volcanic formations (Fig. 7.26).
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Fig. 7.26. Surface features of Venus. (Top left): A Magel-
lan image of a 50 km peak-ring crater Barton at 27.4◦ N and
337.5◦ E. (Top right): A Magellan radar image of a region
300 km across, located in a vast plain to the south of Aphrodite
Terra. The large circular structure near the centre of the im-
age is a corona, approximately 200 km in diameter. North of

the corona is a 35 km flat-topped volcanic construct known as
a pancake dome. Complex fracture patterns like in the upper
right of the image are often observed in association with coro-
nas and various volcanic features. (NASA/JPL). (Bottom):
The surface of Venus photographed by the Venera 14 lander
in March 1982

The surface of Venus is covered by about 20% of low-
land plains, 70% of gently rolling uplands and lava
flows, and 10% of highlands. There are only two major
highland areas. The largest continent, Aphrodite Terra,
is close to the equator of Venus; its size is similar to
South America. Another large continent at the latitude
70◦ N is called Ishtar Terra, where the highest mountain
on Venus, the 12 km high Maxwell Montes is situ-
ated. (IAU has decided that the Venusian nomenclature
has to be feminine. Maxwell Montes, after the famous
physicist James Clerk Maxwell, is an exception.)

Unlike the Earth, volcanic features are quite evenly
distributed all over the surface of Venus. There is no
evidence of massive tectonic movement although local
deformations can exist. Almost all volcanism on Venus
seems to involve fluid lava flows without any explosive

eruptions. Due to the high air pressure, Venusian lavas
need a much higher gas content than the Earth lavas
to erupt explosively. The main gas driving lava explo-
sions on the Earth is water, which does not exist on
Venus.

Venus has more volcanoes than any other planet in
the solar system. Over 1500 major volcanoes or vol-
canic features are known, and there may even be one
million smaller ones. Most are shield volcanoes, but
there are also many complex features. None are known
to be active at present, although large variations of sul-
phur dioxide in the atmosphere may indicate that some
volcanoes are active.

Flat-topped volcanic constructs known as pancake
domes are probably formed by the eruption of an ex-
tremely viscous lava. A corona is a circular trench
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surrounding an elevated plain, the diameter of which
can be as big as several hundreds of kilometres. They
are possibly examples of local hot spots, mantle up-
wellings that have expanded and formed bulges. When
the flow has stopped, the bulge has sunk and formed
a set of ring mountains.

In other places fluid lava flows have produced long,
sinuous channels extending for hundreds of kilometres.

Most of the Venusian impact craters are undeformed.
This indicates that the Venusian surface must be young
because erosion, volcanism and tectonic forces should
affect the craters, too. Resurfacing processes may fre-
quently cover the old craters, and all craters visible
are therefore young, presumably less than 500 million
years. There are no impact crates smaller than about
1.5–2 km because smaller meteoroids are burned in the
thick atmosphere.

The Earth and Venus are almost equal in size, and
their interiors are assumed to be similar. Venus has an
iron core about 3000 km in radius and a molten rocky
mantle covering the majority of the planet. Probably due
to its slow rotation, however, Venus has no magnetic
field. The analyses made by the Venera landers have
shown that the surface material of Venus is similar to
terrestrial granite and basalt (Fig. 7.26).

Venus has no satellites.

7.12 The Earth and the Moon

The third planet from the Sun, the Earth, and its satellite,
the Moon, form almost a double planet. The relative size
of the Moon is larger than that of any other satellite,
excluding the moon of Pluto. Usually satellites are much
smaller than their parent planets.

The Earth is a unique body, since a considerable
amount of free water is found on its surface. This is pos-
sible only because the temperature is above the freezing
point and below the boiling point of water and the atmo-
sphere is thick enough. The Earth is also the only planet
where life is known to exist. (Whether it is intelligent or
not is yet to be resolved. . . ). The moderate temperature
and the water are essential for terrestrial life, although
some life forms can be found in extreme conditions.

The diameter of the Earth is 12,000 km. At the centre,
there is an iron–nickel core where the temperature is

Fig. 7.27. Internal structure of the Earth. The speed of the
seismic waves, density, pressure, and temperature are shown
as a function of depth

5000 K, the pressure 3×1011 N m−2 and the density
12,000 kg m−3 (Fig. 7.27).

The core is divided into two layers, inner and outer
core. The inner core, below 5150 km comprises only of
1.7% of the mass of the Earth. It is solid because of
high pressure. The nonexistence of the seismic trans-
verse S waves below a depth of 2890 km indicates that
the outer core is molten. However, the speed of the lon-
gitudinal P waves change rapidly at a depth of 5150 km
showing an obvious phase transition. It has been dis-
covered that the solid inner core rotates with respect to
the outer core and mantle.
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The outer core comprises about 31% of the mass of
the Earth. It is a hot, electrically conducting layer of
liquid Fe–Ni where the convective motions take place.
There are strong currents in the conductive layer that
are responsible for the magnetic field.

Between the outer core and the lower mantle there is
a 200 km thick transition layer. Although this D′′ layer
is often included as a part of the lower mantle, seismic
discontinuities suggest that it might differ chemically
from the lower mantle.

A silicate mantle extends from 2890 km upward up
to a depth of few tens of kilometres. The part below
650 km is often identified as the lower mantle. It con-
tains about 49% of the mass and is composed mainly of
silicon, magnesium, and oxygen but some iron, calcium,
and aluminium may also exist. The major minerals
are olivine (Mg,Fe)2SiO4 and pyroxene (Mg,Fe)SiO3.
Under pressure the material behaves like a viscous liq-
uid or an amorphous medium, resulting in slow vertical
flows.

Between the lower and upper mantle there is
a 250 km thick transition region or mesosphere. It
is the source of basaltic magmas and is rich in cal-
cium and aluminium. The upper mantle, between
some tens of kilometres down to 400 km contains
about 10% of the mass. Part of the upper man-
tle, called the asthenosphere, might be partially
molten.

A thin crust floats on the mantle. The thickness of
the crust is only 10–70 km; it is thickest below high
mountain ranges such as the Himalayas and thinnest
below the mid-ocean basins. The seismic discontinu-
ity showing the border between the crust and mantle
was discovered in 1909 by the Croatian scientist An-
drija Mohorovičić, and it is now known as the Moho
discontinuity.

The basaltic oceanic crust is very young, mostly
less than 100 million years and nowhere more than
200 Ma. It is made through tectonic activity at the
mid-ocean ridges. The continental crust is mainly com-
posed of crystalline rocks that are dominated by quartz
(SiO2) and feldspars (metal-poor silicates). Because the
continental crust is lighter than the oceanic crust (aver-
age densities are about 2700 kg m−3 and 3000 kg m−3,
respectively), the continents are floating on top of
other layers, and currently they are neither created nor
destroyed.

The lithosphere is the rigid outer part of the Earth
(crust and the topmost part of the upper mantle). Below
that is the partially molten asthenosphere where the
damping of seismic waves is stronger than in the rigid
lithosphere.

The lithosphere is not a single rigid and seamless
layer; instead it is divided into more than 20 individual
plates. The plate tectonics (“continental drift”) is pow-
ered by the motion of the material in the mantle. New
material is flowing up at the mid-ocean ridges, pushing
the tectonic plates apart. New oceanic crust is gener-
ated at the rate of 17 km3 per year. The Earth is the
only planet that shows any large-scale tectonic activ-
ity. The history of the motion can be studied by using
e.g. the paleomagnetic data of magnetic orientation of
crystallised rocks.

At the end of the Precambrian era, about 700 million
years ago, more than half of the continents were together
forming the continent known as Gondwana, contain-
ing Africa, South America, Australia and Antarctica.
About 350 million years ago Gondwana was on the
South Pole but it moved toward the equator before the
final breakup. Mutual collisions formed new mountains
and finally in the beginning of the Mesozoic era, about
200 million years ago, all the continents were joined
into one supercontinent, Pangaea.

Quite soon the flow pattern in the mantle changed and
the Pangaea broke up. The Atlantic Ocean is still grow-
ing and new material is flowing up at the mid-Atlantic
ridge. North America is drifting away from Europe at
the rate of a few centimetres per year (your fingernails
are growing at the same speed). At the same time, parts
of the Pacific oceanic plate are disappearing below other
plates. When an oceanic crust is pushed below a conti-
nental crust, a zone of active volcanoes is created. The
earthquakes in the subduction zones can even originate
600 km below the surface. In the mid-ocean ridges, the
depth is only tens of kilometres (Fig. 7.28).

Mountains are formed when two plates collide.
The push of the African plate toward the Eurasian
plate formed the Alps about 45 million years ago.
The collision of the Indian plate created the Hi-
malayas some 40 million years ago, and they are still
growing.

Most of the surface is covered with water which
condensed from the water vapour released in volcanic
eruptions. The primordial atmosphere of the Earth was
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Fig. 7.28. The tectonic plates. The dots on the map indicate
the location of earthquakes with magnitudes greater than 5
in the years 1980–1989. Arrows show the velocities observed

with permanent GPS (Global Positioning System) tracking
stations. The velocity scale is shown at lower left

very different from the modern one; there was, for ex-
ample, no oxygen. When organic chemical processes
started in the oceans more than 2×109 years ago, the
amount of oxygen rapidly increased (and was poison
to the first forms of life!). The original carbon dioxide
is now mainly concentrated in carbonate rocks, such
as limestone, and the methane was dissociated by solar
UV radiation.

The Earth’s main atmospheric constituents are nitro-
gen (77% by volume) and oxygen (21%). Other gases,
such as argon, carbon dioxide, and water vapour are
present in minor amounts. The chemical composition is
unchanged in the lower part of the atmosphere, called
the troposphere. Most of the climatic phenomena occur
in the troposphere, which reaches up to 8–10 km. The
height of the layer is variable, being lowest at the poles,
and highest at the equator, where it can extend up to
18 km.

The layer above the troposphere is the stratosphere,
extending up to 60 km. The boundary between the tropo-
sphere and the stratosphere is called the tropopause. In
the troposphere, the temperature decreases 5–7 K/km,

but in the stratosphere it begins to rise, due to the ab-
sorption of solar radiation by carbon dioxide, water
vapour and ozone. The ozone layer, which shields the
Earth from the solar UV radiation, is at a height of
20–25 km.

A total of 99% of air is in the troposphere and
stratosphere. The stratopause at a height of 50–60 km
separates the stratosphere from the mesosphere.

The mesosphere extends up to 85 km. In this layer,
the temperature decreases again, reaching the mini-
mum of about −90 ◦C at the height of 80–90 km in the
mesopause. Chemicals in the mesosphere are mostly in
an excited state, as they absorb energy from the Sun.

Above the mesopause is the thermosphere that ex-
tends up to 500 kilometres. The temperatures increases
with altitude and can be above 1200 ◦C at the height of
500 km. The gas is in the form of a fully ionised plasma.
Therefore, the layer above the mesopause is also called
the ionosphere.

The density of air below a height of 150 km is high
enough to cause colliding meteoroids to burn into ashes
due to friction. It also plays an important role in radio
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Fig. 7.29. Hurricane Katrina in the Gulf of Mexico, before
devastating the city of New Orleans. It was photographed from

the GOES-12 weather satellite on August 28, 2005. Compare
this to the Great Red Spot of Jupiter in Fig. 7.57. (NOAA)

communications, since radio waves are reflected by the
ionosphere. Auroras are phenomena of the upper part
of the ionosphere.

The thermosphere goes over into the exosphere at
about 500 km. There the air pressure is much lower
than in the best laboratory vacuums.

The magnetic field of the Earth is generated by flows
in its core. The field is almost a dipole but there are
considerable local and temporal variations. The mean
field strength close to the equator is 3.1×10−5 Tesla
(0.31 Gauss). The dipole is tilted 11◦ with respect to the
Earth’s axis, but the direction gradually changes with
time. Moreover, the magnetic north and south poles
have exchanged places several times during the past

million years. More details are explained in Sect. 7.6
and in Figs. 7.16, 7.17, 7.18, and in Table 7.2.

The Moon. Our nearest neighbour in space is the
Moon. Dark and light areas are visible even with the
naked eye. For historical reasons, the former are called
seas or maria (from Latin, mare, sea, pl. maria). The
lighter areas are uplands but the maria have noth-
ing in common with terrestrial seas, since there is
no water on the Moon. Numerous craters, all mete-
orite impacts, can be seen, even with binoculars or
a small telescope (Fig. 7.30). The lack of atmosphere,
volcanism, and tectonic activity help to preserve these
formations.
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Fig. 7.30. A map of the Lunar surface, composed of images
taken by the Clementine space probe in 1994. Note the large
areas of maria in the Lunar near side, at the centre of the figure,

as compared to the almost complete absence of the maria at
the Lunar far side. (US Naval Observatory)

The Moon is the best-known body after the Earth.
The first man landed on the Moon in 1969 during the
Apollo 11 flight. A total of over 2000 samples, weigh-
ing 382 kg, were collected during the six Apollo flights
(Fig. 7.31). Moreover, the unmanned Soviet Luna space-
craft collected and returned about 310 grams of Lunar
soil. Instruments placed on the Moon by the Apollo
astronauts operated as long as eight years. These in-
cluded seismometers, which detected moonquakes and
meteorite impacts, and passive laser reflectors which
made exact Earth–Moon distance measurements possi-
ble. The reflectors are still used for Lunar laser ranging
(LLR) measurements.

Seismometric and gravimetric measurements have
supplied basic information on the internal structure
of the Moon. Moonquakes take place at a depth of
800–1000 km, considerably deeper than earthquakes,
and they are also much weaker than on the Earth. Most
of the quakes occur at the boundary of the solid mantle,
the lithosphere, and the asthenosphere (Fig. 7.32). The
transversal S waves cannot penetrate the asthenosphere,
indicating that it is at least partially molten. Tidal forces
may generate at least some of the moonquakes because
most of them occur close to perigee or apogee.

Lunar orbiters have observed local mass concen-
trations, mascons, beneath the maria. These are large
basaltic blocks, formed after the huge impacts which
produced the maria. The craters were filled by lava flows
during the next billion years or so in several phases. This
can be seen, e. g. in the area of Mare Imbrium. Large
maria were formed about 4×109 years ago when me-
teorite bombardment was much heavier than today. The
last 3×109 years have been quite peaceful, without any
major events.

The centre of mass is not at the geometric centre of
the Moon but about 2.5 km away due to the 20–30 km
thick basaltic plates below the large maria. Moreover,
the thickness of the crust varies, being the thickest at the
far side of the Moon, about 100 km. On the near side
the thickness of the crust is about 60 km.

The mean density of the Moon is 3400 kg m−3, which
is comparable to that of basaltic lavas on the Earth. The
Moon is covered with a layer of soil with scattered rocks,
regolith. It consists of the debris blasted out by meteorite
impacts. The original surface is nowhere visible. The
thickness of the regolith is estimated to be at least tens
of metres. A special type of rock, breccia, which is
a fragment of different rocks compacted and welded
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Fig. 7.31. Apollo 17 astronaut Harrison Schmitt on the Moon in 1972. (NASA)

together by meteor impacts, is found everywhere on the
Moon.

The maria are mostly composed of dark basalts,
which form from rapid cooling of massive lava flows.
The highlands are largely composed of anorthosite, an
igneous rock that forms when lava cools more slowly
than in the case of basalts. This implies that the rocks
of the maria and highlands cooled at different rates
from the molten state and were formed under different
conditions.

Data returned by the Lunar Prospector and Clemen-
tine spacecraft indicated that water ice is present at both

the north and south lunar poles. Data indicates that there
may be nearly pure water ice buried beneath the dry re-
golith. The ice is concentrated at the bottoms of deep
valleys and craters that are in a permanent shadow where
the temperature is below 100 K.

The Moon has no global magnetic field. Some
of the rocks have remanent magnetism indicating
a possible global magnetic field early in the Moon’s
history. Without the atmosphere and magnetic field,
the solar wind can reach the Moon’s surface di-
rectly. The ions from the solar wind have embedded
in the regolith. Thus samples returned by the Apollo
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Fig. 7.32. Structure of the Moon. The height differences of the
surface are strongly exaggerated

missions proved valuable in studies of the solar
wind.

The origin of the Moon is still uncertain; it has,
however, not been torn off from the Earth at the Pa-
cific Ocean, as is sometimes believed. The Pacific is
less than 200 million years old and formed as a re-
sult of continental drift. Also, the chemical composition
of the lunar soil is different from that of terrestrial
material.

Left: A typical halo; Right: Auroras (Photos P. Parviainen)

Recently it was suggested that the Moon was formed
in the early stages of the formation of the Earth, when
a lot of protoplanet embryos were orbiting the Sun.
An off-axis collision of a Mars-size body resulted in
ejection of a large amount of debris, a part of which
then accreted to form the Moon. Differences in chemical
compositions of the modern Earth and the Moon can be
explained with the theory, as well as the orientation and
evolution of the Moon’s orbit and the Earth’s relatively
fast spin rate.

* Atmospheric Phenomena

The best-known atmospheric phenomenon is the rain-
bow, which is due to the refraction of light from
water droplets. The radius of the arc of the rainbow
is about 41◦ and the width, 1.7◦. The centre of the arc
is opposite the Sun (or any other source of light). When
the light is refracted inside a water droplet, it is di-
vided into a spectrum, where the red colour is at the
outer edge and blue, at the inner edge. Light can be re-
flected twice inside the droplet, resulting in a secondary
rainbow outside the primary one. The colours of the
secondary rainbow are in reversed order and its radius
is 52◦. A rainbow caused by the Moon is usually very
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weak and colourless, since the human eye is incapable
of resolving colours of a dim object.

A halo results when the solar or lunar light is reflected
from atmospheric ice crystals. The most common halo
is a 22◦ arc or circle around the Sun or the Moon.
Usually the halo is white, but occasionally even bright
colours can be seen. Another common form is the side
lobes which are at the same height as the Sun but at
a distance of 22◦ from it. All other forms of halo are
less common. The best “weather” for halos is when
there are cirrostratus or cirrus clouds or an icy fog in
the sky.

Noctilucent clouds are thin formations of cloud, at
a height of approximately 80 km. The clouds contain
particles, which are less than one micron in diameter,
and become visible only when the Sun (which is below
the horizon) illuminates the clouds. Most favourable
conditions are at the northern latitudes during the sum-
mer nights when the Sun is only a few degrees below
the horizon.

The night sky is never absolutely dark. One reason
(in addition to light pollution) is the airglow or light
emitted by excited atmospheric molecules. Most of the
radiation is in the infrared domain, but e. g. the forbidden
line of oxygen at 558 nm, has also been detected.

The same greenish oxygen line is clearly seen in
auroras, which are formed at a height of 80–300 km.
Auroras can be seen mainly from relatively high north-
ern or southern latitudes because the Earth’s magnetic
field forces charged particles, coming from the Sun,
close toward the magnetic poles. Alaska and northern
Scandinavia are the best places to observe auroras. Oc-
casionally, auroras can be seen as far south as 40◦. They
are usually greenish or yellow-green, but red auroras
have been observed, too. They most commonly appear
as arcs, which are often dim and motionless, or as belts,
which are more active and may contain rapidly varying
vertical rays.

Meteors (also called shooting stars although they
have nothing to do with stars) are small grains of sand,
a few micrograms or grams in weight, which hit the
Earth’s atmosphere. Due to friction, the body heats
up and starts to glow at a height of 100 km. Some
20–40 km lower, the whole grain has burnt to ashes.
The duration of a typical meteor is less than a second.
The brightest meteors are called bolides (magnitude
smaller than about −2). Even larger particles may sur-

vive down to the Earth. Meteors are further discussed in
Sect. 7.18.

7.13 Mars

Mars is the outermost of the terrestrial planets. Its di-
ameter is only half of that of the Earth. Seen through
a telescope, Mars seems to be a reddish disk with dark
spots and white polar caps. The polar caps wax and
wane with the Martian seasons, indicating that they are
composed of ice. Darker areas were suspected to be
vegetation. At the end of the 19th century, an Italian as-
tronomer, Giovanni Schiaparelli claimed that there are
canals on Mars.

In the United States, the famous planetary as-
tronomer Percival Lowell studied the canals and even
published books on the topic. Martians were also very
popular in science fiction literature. Now the canals are
known to be nonexistent, an optical illusion when the
obscure details at the limit of visibility seem to form
straight lines, canals. Finally, the first clear pictures by
Mariner 4 in 1965 buried even the most optimistic hopes
concerning life on Mars. Later spacecraft revealed more
details of the planet.

Mars is a superior planet, which means that it is most
easily observable when it is closest to the Earth, i. e.
during opposition, when the planet is above the horizon
all night long.

The rotation axis of Mars is tilted 25◦ to the ecliptic,
about the same amount as the Earth’s axis. A Martian
day is only half an hour longer than a terrestrial day.
Mars’ orbit is significantly elliptical, resulting in tem-
perature variations of about 30 ◦C at the subsolar point
between the aphelion and perihelion. This has a major
influence on the climate. Huge dust storms are occa-
sionally seen on Mars (Fig. 7.33). Usually the storms
begin when Mars is at the perihelion. Heating of the
surface gives rise to large temperature differences that
in turn cause strong winds. The wind-driven dust ab-
sorbs more heat and finally the whole planet is covered
by a dust storm where the wind speeds exceed 100 m/s.

The atmosphere of Mars is mainly composed of car-
bon dioxide (95%). It contains only 2% nitrogen and
0.1–0.4% oxygen. The atmosphere is very dry: if all
the moisture were condensed on the surface, the wa-
ter layer would be thinner than 0.1 mm. Even the minor
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Fig. 7.33. Two pictures of Mars, taken by the Mars Global
Surveyor in June and July 2001. The view from June (left)
shows the Tharsis volcanic region, Valles Marineris and the

late winter south polar cap. The view from July shows the same
regions, but most of the details are hidden by dust storms and
haze. (NASA/JPL/Malin Space Science Systems)

Fig. 7.34. A topographic shade map of Mars made from the
Mars Global Surveyor data. The most prominent features
are the large shield volcanoes in the northern hemisphere

and the Valles Marineris canyon system that is more than
3000 km long and up to 8 km deep. (MOLA Science
Team/NASA)
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amount of water vapour is sufficient to occasionally
form some thin clouds or haze.

The air pressure is only 5–8 mbar. A part of the at-
mosphere has escaped but it is probable that Mars never
had a thick atmosphere. The primordial atmosphere of
Mars was, however, somewhat similar to that of the
Earth. Almost all of its carbon dioxide was used up to
form carbonate rocks. Because there are no plate tec-
tonics on Mars, the carbon dioxide was not recycled
back into the atmosphere as on the Earth. Therefore, the
greenhouse effect on Mars is significantly smaller than
on the Earth.

Craters were already found in the first pictures. The
southern hemisphere is especially marked by craters, in-
dicating that the original surface is still visible there. The
largest impacts, Hellas and Argyre are about 2000 km in
diameter. On the other hand, the northern hemisphere
has an abundance of large lava basins and volcanoes
(Fig. 7.34). The surface is younger than in the south-

Fig. 7.35a–c. Volcanoes, impact craters and rivers. (a) Mars
Global Surveyor wide-angle view of Olympus Mons in
April 1998. (b) Small impact craters and sand dunes
wuth a resolution of 1.5 m per pixel. The picture covers
a 1.5 km wide portion of Isidis Planitia. (c) Three ma-
jor valley systems east of the Hellas plains. These valleys

have probably been formed by large outbursts of liquid
water but the age of the valleys is unknown. The valleys
are all roughly 1 km deep and 10–40 km wide. The pic-
ture covers an area approximately 800 km across. (Mars
Global Surveyor, 2000) (NASA/JPL/Malin Space Science
Systems)

ern hemisphere. The largest volcano, Olympus Mons
(Fig. 7.35), protrudes more than 20 km above the sur-
rounding terrain. The diameter at the bottom is about
600 km.

There are no active volcanoes on Mars. The mare-
like plains on Mars are of the same age as the Lunar
maria, about 3×109 years old. Volcanism in the high-
land and mare-like plains stopped at that time, but
the giant shield volcanoes are much younger, pos-
sibly 1–2×109 years. The youngest lava flows on
Olympus Mons are possibly less than 100 million
years old. Mars shows no sign of plate tectonics. It
has no mountain chains, nor any global patterns of
volcanism.

There are also several canyons, the largest of which
is Valles Marineris (Fig. 7.34). Its length is 5000 km,
width 200 km, and depth about 6 km. Compared with
Valles Marineris, the Grand Canyon is merely a scratch
on the surface.
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Fig. 7.36. The 360 degree panorama was taken by the Mars Pathfinder Lander in 1997. The Sojourner rover is visible near the
centre of the panorama, in front of the ramp. (NASA/JPL)

Ancient riverbeds (Fig. 7.35), too small to be seen
from the Earth, were also discovered by spacecraft.
Rivers were probably formed soon after the formation
of Mars itself, when there was a great deal of water and
the atmospheric pressure and temperature were higher.
At present, the temperature and air pressure on Mars are
too low for free water to exist, although there have been
speculations on warm weather cycles in the more re-
cent history of the planet. The mean temperature is now
below −50 ◦C and, on a warm summer day, the tem-
perature can rise close to zero near the equator. Most
of the water is contained in kilometres deep permafrost
below the surface and in the polar caps. The theory
was confirmed in 2002, when the Mars Odyssey space-
craft detected a large supply of subsurface water ice of
a wide area near the south pole. The ice is mixed into
the soil a meter below the surface. Two rovers, Spirit
and Opportunity, operating on the Mars discovered in
2004 minerals like hematite and goethite which proved
the existence of liquid water on the surface of Mars. The
period when the liquid water existed is unknown.

The polar caps are composed both of water and car-
bon dioxide ice. The northern cap is almost season-
independent, extending down to latitude 70◦. On the
other hand, the southern cap, which reaches to the lati-
tude −60◦ in the southern winter, disappears almost
totally during the summer. The southern cap consists
mostly of CO2 ice. The permanent parts are of ordinary
water ice, since the temperature, −73 ◦C, is too high for
CO2 ice. The water ice layers can be hundreds of metres
thick.

The dark areas are not vegetation, but loose dust,
moved around by strong winds. These winds raise the
dust high into the atmosphere, colouring the Martian
sky red. The Mars landers have revealed a reddish re-
golithic surface, scattered with boulders (Fig. 7.36). The

red colour is caused mainly by iron oxide, rust; already
in the 1950’s, the existence of limonite (2 FeO3 3 H2O)
was deduced from polarization measurements. The on-
site analysis showed that the soil consists of 13% iron
and 21% silicon. The abundance of sulphur was found
to be ten times that found on the Earth.

The interior of Mars is not well known. Mars has
probably a dense core approximately 1700 km in radius,
a molten rocky mantle which is denser than the Earth’s
mantle and a thin crust. The crust is 80 km thick in
the southern hemisphere but only about 35 km thick in
the northern one. The low mean density compared with
other terrestrial planets may indicate that in addition
to iron the core contains a relatively large fraction of
sulphur .

The Mars Global Surveyor confirmed in 1997 a weak
magnetic field. It is probably a remnant of an ear-
lier global field that has since disappeared. This has
important implications for the structure of Mars’ inte-
rior. There are no electric currents creating a magnetic
field and therefore the core may be (at least partially)
solid.

Three biological experiments of the Viking landers in
1976 searched for signs of life. No organic compounds
were found – however, the biological tests did give some
unexpected results. A closer look at the results indicated
no life, but some uncommon chemical reactions.

Mars has two moons, Phobos and Deimos (Fig. 7.37).
The size of Phobos is roughly 27 km×21 km×19 km,
and the orbital period around Mars is only 7 h 39 min.
In the Martian sky, Phobos rises in the west and
sets in the east. Deimos is smaller. Its diameter is
15 km × 12 km × 11 km. There are craters on both
moons. Polarimetric and photometric results show that
they are composed of material resembling carbonaceous
chondrite meteorites.
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Fig. 7.37. Phobos (left) and Deimos, the two moons of Mars. They can be captured asteroids. (NASA)

7.14 Jupiter

The realm of terrestrial planets ends at the asteroid belt.
Outside this, the relative abundance of volatile elements
is higher and the original composition of the solar nebula
is still preserved in the giant planets. The first and largest
is Jupiter. Its mass is 2.5 times the total mass of all
other planets, almost 1/1000 of the solar mass. The
bulk of Jupiter is mainly hydrogen and helium. The
relative abundance of these elements are approximately
the same as in the Sun, and the density is of the same
order of magnitude, namely 1330 kg m−3.

During oppositions, the angular diameter of Jupiter
is as large as 50′′. The dark belts and lighter zones are
visible even with a small telescope. These are cloud for-
mations, parallel to the equator (Fig. 7.38). The most fa-
mous detail is the Great Red Spot, a huge cyclone, rotat-
ing counterclockwise once every six days. The spot was
discovered by Giovanni Cassini in 1655; it has survived
for centuries, but its true age is unknown (Fig. 7.39).

The rotation of Jupiter is rapid; one revolution takes
9 h 55 min 29.7 s. This is the period determined from
the variation of the magnetic field, and it reflects the
speed of Jupiter’s interiors where the magnetic field is
born. As might be expected, Jupiter does not behave
like a rigid body. The rotation period of the clouds is
about five minutes longer in the polar region than at the
equator. Due to its rapid rotation, Jupiter is nonspherical;
flattening is as large as 1/15.

There is possibly an iron-nickel core in the centre
of Jupiter. The mass of the core is probably equal to
a few tens of Earth masses. The core is surrounded by
a layer of metallic liquid hydrogen, where the temper-
ature is over 10,000 K and the pressure, three million
atm. Owing to this huge pressure, the hydrogen is dis-
sociated into single atoms, a state unknown in ordinary
laboratory environments. In this exotic state, hydro-
gen has many features typical of metals. This layer
is electrically conductive, giving rise to a strong mag-
netic field. Closer to the surface where the pressure
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Fig. 7.38. A composed image of Jupiter taken by the
Cassini spacecraft in December 2000. The resolution is

114 km/pixel. The dark dot is the shadow of the moon Europa.
(NASA/JPL/University of Arizona)

is lower, the hydrogen is present as normal molecu-
lar hydrogen, H2. At the top there is a 1000 km thick
atmosphere.

The atmospheric state and composition of Jupiter has
been accurately measured by the spacecraft. In situ ob-
servations were obtained in 1995, when the probe of
the Galileo spacecraft was dropped into Jupiter’s atmo-
sphere. It survived nearly an hour before crushing under
the pressure, collecting the first direct measurements of
Jupiter’s atmosphere.

Belts and zones are stable cloud formations (Fig.
7.38). Their width and colour may vary with time, but
the semi-regular pattern can be seen up to the latitude
50◦. The colour of the polar areas is close to that of the
belts. The belts are reddish or brownish, and the motion
of the gas inside a belt is downward. The gas flows
upward in the white zones. The clouds in the zones are
slightly higher and have a lower temperature than those
in the belts. Strong winds or jet streams blow along the
zones and belts. The speed of the wind reaches 150 m/s
at some places in the upper atmosphere. According to
the measurements of the Galileo probe, the wind speeds

in the lower cloud layers can reach up to 500 m/s. This
indicates that the winds in deeper atmospheric layers
are driven by the outflowing flux of the internal heat,
not the solar heating.

The colour of the Great Red Spot (GRS) resembles
the colour of the belts (Fig. 7.39). Sometimes it is almost
colourless, but shows no signs of decrepitude. The GRS
is 14,000 km wide and 30,000–40,000 km long. Some
smaller red and white spots can also be observed on
Jupiter, but their lifetime is generally much less than
a few years.

The ratio of helium to hydrogen in the deep atmo-
sphere is about the same as in the Sun. The results of
the Galileo spacecraft gave considerably higher abun-
dance than previous estimates. It means that there are no
significant differentiation of helium, i. e. helium is not
sinking to the interior of the planet as was expected ac-
cording to the earlier results. Other compounds found in
the atmosphere include methane, ethane and ammonia.
The temperature in the cloud tops is about 130 K.

Jupiter radiates twice the amount of heat that it re-
ceives from the Sun. This heat is a remnant of the
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Fig. 7.39. Jupiter’s Great Red Spot and its surroundings with several smaller ovals as seen by Voyager 1 in 1979. Cloud details
of 160 kilometres are visible. (NASA)

energy released in the gravitational contraction during
the formation of the planet. Thus Jupiter is still grad-
ually cooling. The internal heat is transferred outward
by convection; this gives rise to flows in the metallic
hydrogen, causing the strong magnetic field (Fig. 7.41).

The ring of Jupiter (Fig. 7.40) was discovered in
1979. The innermost toroid-shaped halo is between
92,000–122,500 km from Jupiter’s centre. It consists of

dust falling from the main ring toward the planet. The
main ring extends from the halo boundary out to about
128,940 km, just inside the orbit of the moon Adrastea.
The ring particles are small, a few microns only, and
they scatter light forward much more effectively than
backward. Therefore, they were not discovered prior
the Voyager flyby. A ring consisting of such small
particles cannot be stable, and new material must en-
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Fig. 7.40. Mosaic of Jupiter’s ring system taken by the Galileo
spacecraft when the spacecraft was in Jupiter’s shadow look-
ing back toward the Sun. Jupiter’s ring system is composed
of three parts: a thin outermost ring, a flat main ring, and

an innermost doughnut-shaped halo. These rings are made
up of dust-sized particles that originate from Io, or are
blasted off from the nearby inner satellites by small impacts.
(NASA/University of Arizona)

Fig. 7.41. Left: NASA Hubble Space Telescope close-up view
of an aurora on Jupiter. The image shows the main oval of the
aurora, centred over the magnetic north pole, and diffuse emis-
sions inside the polar cap. (NASA, John Clarke/University
of Michigan) Right: The image taken on January 2001 by

NASA’s Cassini spacecraft shows the bubble of charged
particles trapped in the magnetosphere. The magnetic field
and the torus of the ionised material from the volcanoes
of Io are drawn over the image. (NASA/JPL/Johns Hopkins
University)
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ter the ring continuously. The most probable source is
Io.

The two faint outermost rings are fairly uniform in
nature. The inner of them extends from the orbit of
Adrastea out to the orbit of Amalthea at 181,000 km.
The fainter outermost ring extends out to Thebe’s orbit
at 221,000 km.

Jupiter’s rings and moons exist within an intense
radiation belt of Jupiter’s magnetic field. The magne-
tosphere extends 3–7 million kilometres toward the
Sun, depending on the strength of the solar wind. In
the opposite direction it stretches to a distance of at
least 750 million kilometres, behind Saturn’s orbit.

Jupiter is an intense radio source. Its radio emission
can be divided into three components, namely thermal
millimetre and centimetre radiation, nonthermal deci-
metric radiation and burstal-decametric radiation. The
nonthermal emission is most interesting; it is partly syn-
chrotron radiation, generated by relativistic electrons in
the Jovian magnetosphere. Its intensity varies in phase
with Jupiter’s rotation; thus the radio emission can be
used for determining the exact rotation rate. The deca-
metric bursts are related to the position of the innermost
large moon, Io, and are possibly generated by the mil-
lion Ampere electric current observed between Jupiter
and the plasma torus at the orbit of Io.

In the beginning of year 2006 there were 63 known
moons of Jupiter. The four largest, Io, Europa,
Ganymede and Callisto are called the Galilean satellites

Fig. 7.42. (Top) The Galilean satellites of Jupiter. From left
to right: Io, Europa, Ganymede, and Callisto (NASA/DLR).
(Right page top) Surface details of Io and Europa. (Right

page bottom) Surface details of Ganymede and Callisto
(NASA/Brown University, NASA/JPL)

(Fig. 7.42), in honour of Galileo Galilei, who discov-
ered them in 1610. The Galilean satellites can already
be seen with ordinary binoculars. They are the size of
the Moon or even planet Mercury. The other moons are
small, most of them only a few kilometres in diameter.

Owing to tidal forces, the orbits of Io, Europa and
Ganymede have been locked into a resonance, so that
their longitudes λ strictly satisfy the equation

λIo −3λEuropa +2λGanymede = 180◦ . (7.54)

Hence the moons can never be in the same direction
when seen from Jupiter.

Io is the innermost Galilean satellite. It is a little
larger than the Moon. Its surface is spotted by numer-
ous calderas, volcanoes without a mountain. The molten
material is ejected up to a height of 250 km, and a part
of the gas gets into Io’s orbit. The volcanic activity on
Io is much stronger than on the Earth. There is a 100 m
bulk of the permanent tide raised by Jupiter. Due to the
orbital perturbations caused by Europa and Ganymede
the orbit of Io is slightly elliptical and therefore the or-
bital speed varies. The tidal bulk is forced to move with
respect to the surface. This generates friction, which is
transformed to heat. This heat keeps the sulphur com-
pounds molten beneath the colourful surface of Io. No
traces of impact craters are visible. The whole surface
is new, being renewed continuously by eruptions. There
is no water on Io.
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Europa is the smallest of the Galilean satellites, a lit-
tle smaller than the Moon. The surface is ice-covered
and the geometric albedo is as high as 0.6. The surface
is smooth with only a few features more than a hundred
metres high. Most of the markings seem to be albedo
features with very low relief. Only a few impact craters

have been found indicating that the surface is young.
The surface is renewed by fresh water, trickling from
the internal ocean. Galileo spacecraft has found a very
weak magnetic field. The field varies periodically as
it passes through Jupiter’s magnetic field. This shows
that there is a conducting material beneath Europa’s sur-
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face, most likely a salty ocean that could even be 100 km
deep. At the centre, there is a solid silicate core.

Ganymede is the largest moon in the solar system. Its
diameter is 5300 km; it is larger than the planet Mercury.
The density of craters on the surface varies, indicat-
ing that there are areas of different ages. Ganymede’s
surface is partly very old, highly cratered dark re-
gions, and somewhat younger but still ancient lighter
regions marked with an extensive array of grooves
and ridges. They have a tectonic origin, but the de-
tails of the formations are unknown. About 50% of the
mass of the moon is water or ice, the other half be-
ing silicates (rocks). Contrary to Callisto, Ganymede
is differentiated: a small iron or iron/sulphur core sur-
rounded by a rocky silicate mantle with an icy (or liquid
water) shell on top. Ganymede has a weak magnetic
field.

Callisto is the outermost of the large moons. It is
dark; its geometric albedo is less than 0.2. Callisto
seems to be undifferentiated, with only a slight increase
of rock toward the centre. About 40% of Callisto is ice
and 60% rock/iron. The ancient surface is peppered by
meteorite craters; no signs of tectonic activity are vis-
ible. However, there have been some later processes,
because small craters have mostly been obliterated and
ancient craters have collapsed.

The currently known moons can be divided into
two wide groups: regular moons containing the small
moons inside the orbits of the Galilean satellites, and
the Galilean satellites, and irregular moons outside the
orbit of the Galilean satellites. The orbits of the inner
group are inclined less than one degree to the equator
of Jupiter. Most of the outermost moons are in eccen-
tric and/or retrograde orbits. It is possible that many of
these are small asteroids captured by Jupiter.

7.15 Saturn

Saturn is the second largest planet. Its diameter is about
120,000 km, ten times the diameter of the Earth, and the
mass, 95 Earth masses. The density is only 700 kg m−3,
less than the density of water. The rotation axis is tilted
about 27◦ with respect to the orbital plane, so every
15 years, the northern or the southern pole is well
observable.

Fig. 7.43. Saturn and its rings. Three satellites (Tethys, Dione,
and Rhea) are seen to the left of Saturn, and the shadows
of Mimas and Tethys are visible on Saturn’s cloud tops.
(NASA/JPL)

The rotation period is 10 h 39.4 min, determined
from the periodic variation of the magnetic field by the
Voyager spacecraft in 1981. However, Cassini space-
craft observed in 2004 the period of 10 h 45 min. The
reason for the change is unknown. Due to the rapid ro-
tation, Saturn is flattened; the flattening is 1/10, which
can be easily seen even with a small telescope.

The internal structure of Saturn resembles that of
Jupiter. Due to its smaller size, the metallic hydrogen
layer is not so thick as on Jupiter. The thermal radia-
tion of Saturn is 2.8 times that of the incoming solar
flux. The heat excess originates from the differentia-
tion of helium. The helium atoms are gradually sinking
inward and the released potential energy is radiated
out as a thermal radiation. The abundance of helium
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in Saturn’s atmosphere is only about half of that on
Jupiter.

The winds, or jet streams, are similar to those of
Jupiter but Saturn’s appearance is less colourful. Viewed
from the Earth, Saturn is a yellowish disk without
any conspicuous details. The clouds have fewer fea-
tures than those on Jupiter, because a haze, composed
of hydrogen, ammonium and methane floats above
the cloud tops. Furthermore, Saturn is farther from
the Sun than Jupiter and thus has a different energy
budget.

The temperature at the cloud tops is about 94 K.
Close to the equator the wind speeds exceed 400 m/s
and the zone in which the direction of the wind re-
mains the same extends 40◦ from the equator. Such high
speeds cannot be explained with external solar heat, but
the reason for the winds is the internal flux of heat.

Saturn’s most remarkable feature is a thin ring system
(Fig. 7.44, 7.45), lying in the planet’s equatorial plane.
The Saturnian rings can be seen even with a small tele-
scope. The rings were discovered by Galileo Galilei in
1610; only 45 years later did Christian Huygens estab-
lish that the formation observed was actually a ring,
and not two oddly behaving bulbs, as they appeared
to Galileo. In 1857 James Clerk Maxwell showed the-
oretically that the rings cannot be solid but must be
composed of small particles.

The rings are made of normal water ice. The size
of the ring particles ranges from microns to truck-size
chunks. Most of the particles are in range of centime-
tres to metres. The width of the ring system is more
than 60,000 km (about the radius of Saturn) and the

Fig. 7.44. A schematic drawing of the structure of the
Saturnian rings

Fig. 7.45. At a close distance, the rings can be seen to be
divided into thousands of narrow ringlets. (JPL/NASA)

thickness, at most 100 m, and possibly only a few
metres. Cassini spacecraft discovered also molecular
oxygen around the rings, probably as a product of the
disintegration of water ice from the rings.

According to Earth-based observations, the rings are
divided into three parts, called simply A, B, and C. The
innermost C ring is 17,000 km wide and consists of
very thin material. There is some material even inside
this (referred to as the D ring), and a haze of particles
may extend down to the clouds of Saturn.

The B ring is the brightest ring. Its total width is
26,000 km, but the ring is divided into thousands of
narrow ringlets, seen only by the spacecraft (Fig. 7.45).
From the Earth, the ring seems more or less uniform.
Between B and A, there is a 3000 km wide gap, the
Cassini division. It is not totally void, as was previously
believed; some material and even narrow ringlets have
been found in the division by the Voyager space probes.

The A ring is not divided into narrow ringlets as
clearly as the B ring. There is one narrow but obvious
gap, Encke’s division, close to the outer edge of the
ring. The outer edge is very sharp, due to the “shepherd”
moon, some 800 km outside the ring. The moon prevents
the ring particles from spreading out to larger orbits.
It is possible that the appearance of B is due to yet-
undiscovered moonlets inside the ring.
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The F ring, discovered in 1979, is about 3000 km out-
side A. The ring is only a few hundred kilometres wide.
On both sides there is a small moon; these shepherds
prevent the ring from spreading. An interior moon pass-
ing a ring particle causes the particle to move to a larger
orbit. Similarly, at the outer edge of the ring, a second

moon forces the particles inward. The net result is that
the ring is kept narrow.

Outside the F ring, there are some zones of
very sparse material, sometimes referred to as the
G and E rings. These are merely collections of small
particles.
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Fig. 7.46a–e. Saturnian
moons photographed by
the Cassini spacecraft in
2005–2006 (a) Hyperion,
(b) Enceladus, (c) Iapetus
and (d) Tethys. (e) A radar
picture of the northern lat-
itudes of Titan, taken by
Cassini in summer 2006.
The black patches are prob-
ably methane lakes. The
width of the picture is about
450 km. (Photo NASA)

The Saturnian rings were possibly formed together
with Saturn and are not debris from some cosmic catas-
trophe, like remnants of a broken moon. The total mass
of the rings is 10−7 of the mass of Saturn. If all ring par-
ticles were collected together, they would form an ice
ball, 600 km in diameter.

A total of 56 moons (late 2006) of Saturn are known.
Many of the large Saturnian moons (Fig. 7.46) were
observed by Pioneer 11 and Voyager 1 and 2 spacecrafts.
Large moons (excluding Titan) are composed mainly
of ice. The temperature of the primeval nebula at the
distance of Saturn was so low that bodies of pure ice
could form and survive.

Some moons are dynamically interesting; some have
an exotic geological past. Outside the F ring, there
are two moonlets, Epimetheus and Janus, almost in
the same orbit; the difference of the semimajor axes
is about 50 km, less than the radii of the moons. The
inner moon is gaining on the outer one. The moons
will not collide, since the speed of the trailing moon
increases and the moon moves outward. The speed of
the leading moon decreases and it drops inward. The
moons exchange their roles roughly every four years.
There are also several shepherding satellites, like At-
las, Prometheus and Pandora that keep rings in their
place. Their gravitational pull prevents ring particles
from drifting away.

The innermost of the “old” moons is Mimas. There
is a huge crater on Mimas’ surface with a diameter of
100 km and a depth of 9 km (Fig. 7.46). Bigger craters
exist in the solar system, but relative to the size of the
parent body, this is almost the biggest crater there could
be room for (otherwise the crater would be bigger than

Mimas itself). On the opposite side, some grooves can
be seen, possibly signifying that impact has almost torn
the moon apart.

The surface of the next moon, Enceladus, consists of
almost pure ice, and one side is nearly craterless. Craters
and grooves can be found on the other hemisphere. Tidal
forces result in volcanic activity where water (not lava
or other “hot” material) is discharged to the surface.

Titan is the largest of the Saturnian moons. Its di-
ameter is 5150 km, so it is only slightly smaller than
Jupiter’s moon Ganymede. Titan is the only moon with
a dense atmosphere. The atmosphere is mainly nitrogen
(98.4%) and methane, and the pressure at the surface
is 1.5–2 bar. The temperature is about 90 K. Reddish
clouds form the visible surface some 200 km above
the solid body. Measurements and images of Huy-
gens probe landing on Titan in 2005 did not reveal
liquid methane lakes. However, Cassini orbiter radar
data in 2006 strongly indicate the presence of the lakes
(Fig. 7.44). An independent proof of liquids in the re-
cent past can be seen in several surface features which
possibly have been formed by flowing fluids.

7.16 Uranus and Neptune

The planets from Mercury to Saturn were already known
in antiquity. Uranus and Neptune can only be observed
with a telescope. Uranus and Neptune are giants, similar
to Jupiter and Saturn.

Uranus. The famous German-English amateur as-
tronomer William Herschel discovered Uranus in 1781.
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Herschel himself first thought that the new object was
a comet. However, the extremely slow motion revealed
that the body was far beyond the orbit of Saturn. Based
on the first observations, the Finnish astronomer Anders
Lexell calculated a circular orbit. He was one of the first
to propose that the newly discovered object was a planet.
Johann Bode of the Berlin Observatory suggested the
name Uranus but more than five decades passed before
the name was unanimously accepted.

The mean distance of Uranus is 19 AU, and the or-
bital period 84 years. The inclination of the rotation
axis is 98◦, which is totally different from the other
planets. Due to this uncommon geometry, the poles are
either lit or in darkness for decades. The rotation period,
confirmed by the Voyager 2 magnetometric measure-
ments in 1986, is 17.3 hours; the exact period had been
uncertain prior to the fly-by.

Uranus is greenish, as viewed through a telescope.
Its colour is due to the strong methane absorption bands
in the near-infrared. A part of the red light is also
absorbed, leaving the green and blue part of the spec-
trum untouched. Uranus is almost featureless (Fig. 7.47)
because its clouds are below a thick haze or smog.

The strong limb darkening makes the terrestrial de-
termination of the Uranus’ size difficult. Therefore, the

Fig. 7.47. Two views of Uranus. The left picture shows Uranus
as it would appear to the naked eye. (NASA). At the right there
is a Hubble Space Telescope view of Uranus surrounded by

its rings. Also 10 satellites are visible in the original picture.
(Seidelmann, U.S. Naval Observatory, and NASA)

radius was not accurately determined until 1977 dur-
ing a stellar occultation caused by Uranus. The rings of
Uranus were discovered at the same time.

The internal structure of Uranus is thought to be
slightly different from that of other giant planets. Above
the innermost rocky core, there is a layer of water,
which, in turn, is surrounded by a mantle of hydrogen
and helium. The mixture of water and ammonia and
methane therein are dissociated to ions under the heavy
pressure. This mixture behaves more like a molten salt
than water. The convection flows in this electrically con-
ductive “sea” give rise to the Uranian magnetic field.
The strength of the magnetic field at the cloud tops
is comparable to the terrestrial field. However, Uranus
is much larger then the Earth, so the true strength of
the field is 50 times greater than that of the Earth. The
Uranian magnetic field is tilted 60◦ with respect to the
rotation axis. No other planet has such a highly inclined
magnetic field.

The Uranian rings (Fig. 7.48) were discovered in
1977, during a stellar occultation. Secondary occulta-
tions were observed before and after the main event.
A total of 13 rings are known, nine of which were dis-
covered in the occultation. The innermost ring is broad
and diffuse. All other rings are dark and very narrow,
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Fig. 7.48. Left: The rings of Uranus are very narrow and com-
posed of a dark material. Nine rings are visible in the picture
of Voyager in 1986. Right: Rings seen in the light scattered

forward when the Voyager spacecraft was in the shadow of
the planet. (NASA)

only a few hundred metres or a few kilometres wide.
The Voyager 2 results showed that the rings contain
very little dust, unlike those of Jupiter and Saturn. The
mean size of the ring particles is more than 1 metre. The
ring particles are darker than practically any known ma-
terial in the solar system; the cause of this dark colour
is unknown.

There are 27 moons (2006 number) orbiting around
Uranus, ten of which were discovered by Voyager 2. The
geological history of some moons is puzzling, and many
features reminiscent of an active past can be found.

The innermost of the large moons, Miranda, is one of
the most peculiar objects discovered (Fig. 7.49). It has
several geological formations also found elsewhere (but
here they are all mixed together), in addition to the quite
unique V-shaped formations. It is possible that Miran-
da’s present appearance is the result of a vast collision
that broke the moon apart; some pieces may have later
settled down, inside out. Another peculiar object is Um-
briel. It belongs to the ever increasing family of unusual
dark bodies (such as the Uranian rings, one side of Ia-
petus and Halley’s comet). The dark surface of Umbriel
is covered by craters without any traces of geological
activity.

Neptune. The orbit of Uranus was already well known
in the beginning of the 19th century. However, some
unknown perturbations displaced Uranus from its pre-
dicted orbit. Based on these perturbations, John Couch
Adams, of Cambridge, and Urbain Jean-Joseph Le Ver-
rier, of Paris, independently predicted the position of
the unknown perturbing planet.

The new planet was discovered in 1846 by Johann
Gottfried Galle at the Berlin Observatory; Le Verrier’s
prediction was found to be only 1◦ off. The discov-
ery gave rise to a heated controversy as to who should
be given the honour of the discovery, since Adams’
calculations were not published outside the Cambridge
Observatory. When the quarrel was settled years later,
both men were equally honoured. The discovery of Nep-
tune was also a great triumph of the Newtonian theory
of gravitation.

The semimajor axis of the orbit of Neptune is 30 AU
and the orbital period around the Sun 165 years. The in-
ternal rotation period, confirmed by Voyager 2 in 1989,
is 16 hours 7 minutes and the rotation period of the outer
layers of the clouds is about 17 hours. The obliquity of
the rotation axis is 29◦ but the magnetic field is tilted
some 50◦ with respect to the rotation axis. The mag-
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Fig. 7.49. Four Uranian moons (from top left to lower right): Miranda, Ariel, Titania and Umbriel. (NASA)

netic field is tilted like in Uranus, but the field strength
is much smaller.

The density of Neptune is 1660 kg m−3, and the
diameter 48,600 km. Thus the density of Neptune is
higher than that of other giant planets. The inter-
nal structure is quite simple: The core, composed

of silicates (rocks) is about 16000 km in diame-
ter. This is surrounded by a layer of water and
liquid methane and the outermost gaseous layer, at-
mosphere, is mainly composed of hydrogen and
helium, methane and ethane being a minor com-
ponents.
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Fig. 7.50. (Left) Neptune shows more features than Uranus.
In the picture of Voyager 2 the Great Dark Spot, ac-
companied by bright, white clouds is well visible. Their
appearance is changing rapidly. To the south of the Great
Dark Spot is a bright feature and still farther south is an-
other dark spot. Each feature moves eastward at a different

velocity. (Right) Details of the Southern Dark Spot. The
V-shaped structure near the right edge of the bright area
indicates that the spot rotates clockwise. Unlike the Great
Red Spot on Jupiter, which rotates counterclockwise, the
material in the Neptune’s dark oval will be descending.
(NASA/JPL)

Cloud structures are more complicated than on
Uranus, and some dark spots, like in Jupiter, were visi-
ble during the Voyager fly-by (Fig. 7.50). The speed of
the winds are high, up to 400 m/s.

Like other giants, Neptune also has rings (Fig. 7.51).
The rings were discovered by Voyager 2, although their
existence was already expected prior the fly-by. Two
relatively bright but very narrow rings are at a distance
of 53,000 and 62,000 km from the centre of the planet.
Moreover, there are some faint areas of fine dust.

There are 13 known moons, six of which were dis-
covered by Voyager 2. The largest of the moons, Triton,
is 2700 km in diameter, and it has a thin atmosphere,
mainly composed of nitrogen. The albedo is high: Tri-
ton reflects 60–80% of the incident light. The surface
is relatively young, without any considerable impact
craters (Fig. 7.52). There are some active “geysers” of
liquid nitrogen, which partly explains the high albedo

Fig. 7.51. The rings of Neptune. Ring particles are small and
best visible in the forward scattered light. There are several
brightenings in the outermost ring. One of the rings appears
to have a twisted structure. Neptune at left is overexposed.
(NASA/JPL)
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Fig. 7.52. The southern hemisphere of Triton, Neptune’s
largest satellite in a picture taken in 1989 by Voyager 2. The
dark spots may indicate eruptions of “icy volcanoes”. Voy-
ager 2 images showed active geyser-like eruptions spewing
nitrogen gas and dark dust particles several kilometres into
the atmosphere. (NASA)

and the lack of the craters. The low surface tempera-
ture of Triton, 37 K, means that the nitrogen is solid
and covers the surface like snow. It is the lowest surface
temperature known in the solar system.

7.17 Minor Bodies of the Solar System

So far we have considered only planets and planetary
satellites. There is a great number of other bodies in
the solar system, like dwarf planets, asteroids, comets,
meteoroids and interplanetary dust. However, there are
no distinct borders between different types of objects.
Some asteroids have similar features or origin as the
comets, and some near-Earth asteroids are possibly
cometary remnants where all volatile elements have
disappeared. Thus our classification has been based
more on the visual appearance and tradition than on
real physical differences.

In 2006 the International Astronomical Union (IAU)
in its General Assembly defined three distinct cate-
gories, namely planets, dwarf planets, and Small Solar
System Bodies which include the rest of the Solar Sys-
tem bodies, like asteroids, Trans-Neptunian Objects,
comets and meteoroids.

Dwarf planets. According to the IAU definition a dwarf
planet is a celestial body that: (a) is in orbit around
the Sun, (b) has sufficient mass for its self-gravity to
overcome rigid body forces so that it assumes a hy-
drostatic equilibrium (nearly round) shape, (c) has not
cleared the neighbourhood around its orbit, and (d) is
not a satellite.

The upper and lower limits to the size and mass of
dwarf planets are not strictly specified. The lower limit,
however, is determined by the hydrostatic equilibrium
shape, but the size at which this happens may vary
according to the composition and history of the object.
It is estimated that up to 40–50 dwarf planets will be
discovered in coming years.

Currently, there are three dwarf planets in the Solar
System, namely Ceres, Pluto and Eris. Ceres was for-
merly counted as an asteroid, Pluto was a planet and
Eris (2003 UB 313, known also by the nickname Xena)
was the first Trans-Neptunian object which turned out
to be larger than Pluto.

Pluto was discovered in 1930 at the Lowell Obser-
vatory, Arizona, after an extensive photographic search
(Fig. 7.53). This search had already been initiated in the
beginning of the century by Percival Lowell, on the ba-
sis of the perturbations observed in the orbits of Uranus
and Neptune. Finally, Clyde Tombaugh discovered Pluto
less than 6◦ off the predicted position. However, Pluto
turned out to be far too small to cause any perturba-
tions on Uranus or Neptune. Thus the discovery was
purely accidental, and the perturbations observed were
not real, but caused by minor errors of old observations.

Pluto has no visible disk as seen with terrestrial
telescopes; instead, it resembles a point, like a star
(Fig. 7.54). This fact gave an upper limit for the di-
ameter of Pluto, which turned out to be about 3000 km.
The exact mass was unknown until the discovery of the
Plutonian moon, Charon, in 1978. The mass of Pluto
is only 0.2% of the mass of the Earth. The orbital pe-
riod of Charon is 6.39 days, and this is also the period
of rotation of both bodies. Pluto and Charon rotate syn-
chronously, each turning the same side towards the other
body. The rotation axis of Pluto is close to the orbital
plane: the tilt is 122◦.

Mutual occultations of Pluto and Charon in 1985–
1987 gave accurate diameters of each body: The
diameter of Pluto is 2300 km and that of Charon,
1200 km. The density of Pluto turned out to be about
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Fig. 7.53. A small portion of the pair of pictures where Pluto was discovered in 1930. The planet is marked with an arrow.
(Lowell Observatory)

2100 kg m−3. Thus Pluto is not a huge iceball but about
2/3 of its mass is composed of rocks. The relatively
small abundance of ices is possibly due to the low tem-
perature during the planetary accretion when most of the
free oxygen was combined with carbon forming carbon
monoxide. The computed lower limit for water ice is
about 30% which is fairly close to the value observed
in Pluto.

Pluto has a thin methane atmosphere and there is
possibly a thin haze over the surface. The surface pres-
sure is 10−5–10−6 atm. It has been speculated that when

Fig. 7.54. Even with large terrestrial telescopes Pluto is seen
only as a point of light. The best views have been ob-
tained from the Hubble Space Telescope showing some
albedo differences on the surface. (Alan Stern/Southwest
Research Institute, Marc Buie/Lowell Observatory, NASA
and ESA). (right) The Hubble Space Telescope pho-

tographed Pluto and its three known moons in February
2006. The smaller moons were found in 2005, and
were later named Nix and Hydra. Their diameter is es-
timated as 40–160 km. (M. Mutchler (STScI), A. Stern
(SwRI), and the HST Pluto Companion Search Team, ESA,
NASA)

Pluto is far from perihelion, the whole atmosphere will
become frozen and fall on the surface.

Pluto has three satellites. Two of them were discov-
ered by the Hubble Space Telescope in 2005 (Fig. 7.54).
They orbit Pluto counterclockwise twice the distance of
Charon.

The orbit of Pluto is different from planetary orbits.
The eccentricity is 0.25 and the inclination is 17◦. Dur-
ing its 250 year orbit, Pluto is closer to the Sun than
Neptune for 20 years; one such period lasted from 1979
to 1999. There is no danger of Pluto and Neptune col-
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liding, since Pluto is high above the ecliptic when at the
distance of Neptune. Pluto’s orbital period is in a 3:2
resonance with Neptune.

Since 1990’s a number of distant Trans-Neptunian
objects (TNOs) have been discovered. In the Kuiper
belt, a vast collection of icy bodies beyond the orbit of
Neptune, there are objects even larger than Pluto. One of
them is Eris which is now classified as a dwarf planet. It
was discovered in 2003, and it was for some time known
by an unofficial name Xena. Eris is slightly larger than
Pluto; the diameter is estimated to be about 2400 km.
The semimajor axis of the orbit is 97 AU, orbital period
560 years and inclination 45◦.

The third dwarf planet Ceres was the first asteroid
discovered in 1801 by Giuseppe Piazzi. The diameter
of Ceres is about 1000 km, thus exceeding the limit to
be in the hydrostatic equilibrium. Contrary to Pluto and
Eris, Ceres is a more close object. It orbits the Sun in the
main asteroid belt between Mars and Jupiter. We will
discuss asteroids and other Small Solar System Bodies
below.

Asteroids. Asteroids form a large and scattered group of
Sun-orbiting bodies. The oldest and best-known group
form the main asteroid belt between Mars and Jupiter,
with distances of 2.2–3.3 AU from the Sun (Fig. 7.56).
The most distant asteroids are far beyond the orbit of
Pluto, and there are a number of asteroids that come
closer to the Sun than the Earth. Diameters of asteroids
vary from hundreds of meters to hundreds of kilometers.
The largest asteroid (1) Ceres is classified as a dwarf
planet and the border between smallest asteroids and
meteoroids is not specified. Structure and composition
of asteroids range from comet-like icy and loose clumps
of material to iron-nickel or stony hard and solid bodies.

An asteroid observer needs a telescope, since even the
brightest asteroids are too faint to be seen with the naked
eye. Asteroids are points of light like a star, even if seen
through a large telescope; only their slow motion against
the stellar background reveals that they are members
of the solar system. The rotation of an asteroid gives
rise to a regular light variation. The amplitude of light
variation is in most cases well below 1 magnitude and
typical rotation periods range from 4 to 15 hours.

At the end of year 2006 there were more than 140,000
numbered asteroids. The number of catalogued aster-
oids increases currently by thousands every month. It

has been estimated that more than one million asteroids
larger than 1 km exist in the Solar System.

The characteristics of the main belt asteroids are best
known. Total mass of the main belt asteroids is less than
1/1000 of the mass of the Earth. The centre of the as-
teroid belt is at a distance of approximately 2.8 AU,
as predicted by the Titius–Bode law (Sect. 7.19). Ac-
cording to a formerly popular theory, asteroids were
thought to be debris from the explosion of a planet.
This theory, like catastrophe theories in general, has
been abandoned.

The currently accepted theory assumes that asteroids
were formed simultaneously with the major planets. The
primeval asteroids were large chunks, most of them or-
biting between the orbits of Mars and Jupiter. Due to
mutual collisions and fragmentation, the present aster-
oids are debris of those primordial bodies which were
never able to form a large planet. Some of the biggest
asteroids may be those original bodies. The orbital el-
ements of some asteroids are very similar. These are
called the Hirayama families. They are probably rem-
nants of a single, large body that was broken into a group
of smaller asteroids. There are tens of identified Hi-
rayama families, the largest ones including Hungarias,
Floras, Eos, Themis, and Hildas (named after the main
asteroid in the group).

The distribution of asteroids inside the asteroid belt
is uneven (Fig. 7.56); they seem to avoid some areas
known as the Kirkwood gaps. The most prominent void
areas are at distances where the orbital period of an
asteroid around the Sun (given by Kepler’s third law)
is in the ratio 1:3, 2:5, 3:7, or 1:2 to the orbital period
of Jupiter. The motion of an asteroid orbiting in such
a gap would be in resonance with Jupiter, and even small
perturbations would tend to grow with time. The body
would eventually be moved to another orbit. However,
the resonance effects are not so simple: sometimes an
orbit is “locked” to a resonance, e. g. the Trojans move
along the same orbit as Jupiter (1:1 resonance), and the
Hilda group is in the 2:3 resonance.

Many groups of asteroids orbit the Sun outside the
main belt. These include the above-mentioned Trojans,
which orbit 60◦ behind and ahead of Jupiter. The Tro-
jans, which are close to the special points L4 and L5

of the solution of the restricted three-body problem. At
these Lagrangian points, a massless body can remain
stationary with respect to the massive primaries (in this
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Fig. 7.55. Left: Asteroid (951) Gaspra was photographed by
the Galileo spacecraft in October 1991. The illuminated part
of the asteroid is about 16×12 km. The smallest craters in
this view are about 300 m across. Right: A mosaic of asteroid

(433) Eros was taken by the NEAR spacecraft from a distance
of 200 km. The crater on top is about 5 km in diameter. The
NEAR spacecraft orbited Eros for one year and finally landed
on it in 2001. (JPL/NASA)

case, Jupiter and the Sun). In fact, the asteroids are oscil-
lating around the stationary points, but the mean orbits
can be shown to be stable against perturbations.

Another large family is the Apollo-Amor asteroids.
The perihelia of Apollo and Amor are inside the Earth’s
orbit and between the orbits of the Earth and Mars, re-
spectively. These asteroids are all small, less than 30 km
in diameter. The most famous is 433 Eros (Fig. 7.55),
which was used in the early 20th century for determin-
ing the length of the astronomical unit. When closest to
the Earth, Eros is at a distance of only 20 million km
and the distance can be directly measured using the
trigonometric parallax. Some of the Apollo-Amor as-
teroids could be remnants of short-period comets that
have lost all their volatile elements.

There is a marginal probability that some Earth-
crossing asteroids will collide with the Earth. It has been
estimated that, on the average, a collision of a large aster-
oid causing a global catastrophe may take place once in
one million years. Collisions of smaller bodies, causing
damage similar to a nuclear bomb, may happen once per
century. It has been estimated that there are 500–1000

near-Earth asteroids larger than one kilometre in di-
ameter but possibly tens of thousands smaller objects.
Programs have been started to detect and catalogue all
near-Earth asteroids and to predict the probabilities of
hazardous collisions.

Distant asteroids form the third large group out-
side the main asteroid belt. The first asteroid belonging
to this group (2060) Chiron, was discovered in 1977.
Chiron’s aphelion is close to the orbit of Uranus and
the perihelion is slightly inside the orbit of Saturn.
Distant asteroids are very faint and thus difficult to
find.

Already in the 1950’s Gerard Kuiper suggested that
comet-like debris from the formation of the solar system
can exist beyond the orbit of Neptune as an additional
source of comets to the more distant Oort cloud. Later,
computer simulations of the solar system’s formation
showed that a disk of debris should form at the outer
edge of the solar system. The disk is now known as the
Kuiper belt (Fig. 7.58).

The first Trans-Neptunian asteroid (1992 QB1) was
discovered in 1992, and in the beginning of year 2006
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Fig. 7.56. (a) Most of the asteroids orbit the Sun in the asteroid
belt between Mars and Jupiter. The figure shows the positions
of about 96,000 catalogued asteroids on January 1, 2000, and
the orbits and the positions of some major planets. The orbital
elements of the asteroids are from the Lowell Observatory data

base. (b) The total number of asteroids as a function of the
distance from the Sun. Each bin corresponds to 0.1 AU. The
empty areas, the Kirkwood gaps, are at those points, where the
orbital period of an asteroid is in a simple ratio to the orbital
period of Jupiter

there were about 1000 known members. The total num-
ber of Kuiper belt objects larger than 100 km in diameter
is estimated to be over 70,000. Some of them may
be even larger than Pluto. The Kuiper belt objects are
remnants from the early accretion phases of the solar
system. Several of the Trans-Neptunian objects are in
or near a 3:2 orbital period resonance with Neptune, the
same resonance as Pluto.

The exact sizes of asteroids were long unknown. Ed-
ward E. Barnard of the Lick Observatory determined
visually the diameters of (1) Ceres, (2) Vesta, (3) Juno,
and (4) Pallas in the 1890’s (Fig. 7.57). Practically no
other reliable results existed prior to the 1960’s, when
indirect methods applying photometry and spectroscopy
were adopted. Moreover, several stellar occultations
caused by asteroids have been observed since 1980’s.

The first images of asteroids were obtained in the
early 1990’s. In 1991 the Galileo spacecraft passed as-
teroid (951) Gaspra, and in 1993 asteroid (243) Ida, on
its long way to Jupiter (see Sect. 7.15). Finally, in 2001,
the NEAR spacecraft landed on asteroid (433) Eros after
orbiting it for one year.

Fig. 7.57. Sizes of some asteroids compared with the Moon.
(Moon image, NASA)
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Fig. 7.58. The Kuiper Belt
is a disk-shaped cloud of
distant icy bodies inside the
halo of the Oort cloud. The
short-period comets orig-
inate in the Kuiper belt,
whereas a huge amount of
icy bodies that form a source
of long period comets re-
sides in the Oort cloud (see
Sect. 7.18). (JPL/NASA)

The images of asteroids (Fig. 7.55) show irregular,
crater-filled bodies with regolith and pulverised rock on
their surface. Some asteroids may once have been two
separate objects that merged into one. In 1992 aster-
oid (4179) Toutatis passed the Earth only by 4 million
kilometres. Radar images revealed a two-body system,
where the components were touching each other. Dou-
ble asteroids may be quite common, and there exist light
curves of some asteroids which have been interpreted
as results of twin bodies. Another example of a twin
asteroid is 243 Ida that has a “moon”, a smaller body
gravitationally bound to it.

The composition of main belt asteroids is similar
to that of iron, stone and iron-stone meteorites. Most
asteroids can be divided into three groups, according to
their photometric and polarimetric properties. 95% of
the classified asteroids belong to the types C and S types.
Metal-rich M type asteroids are rarer.

About 75 percent of asteroids belong to the type
C type. The C asteroids are dark due to radiation dark-
ening (geometric albedo p ≈ 0.06 or less), and they
contain a considerable amount of carbon (mnemonic
C for carbon). They resemble stony meteorites. The
material is undifferentiated and thus they belong to the
most primordial bodies of the solar system. The re-
flectivity of silicate-rich S asteroids is higher and their
spectra are close to those of stone-iron meteorites. Their
spectra show signs of silicates, such as olivine, e. g. fos-
terite Mg2SiO4 or fayalite Fe2SiO4. M type asteroids
have more metals, mostly nickel and iron; they have
undergone at least a partial differentiation.

The compositions and even sizes of the Trans-
Neptunian objects are difficult to determine. They are
dim, and due to their low temperature, the black-body
radiation maximum is around 60 µm. This wavelength
is almost impossible to observe on the Earth. Even the
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Fig. 7.59. Top: Comet Mrkos in 1957. (Palomar Observatory).
Lower left: The impactor of the Deep Impact spacecraft col-
lided with the nucleus of comet Tempel 1 in July 2005. In this
picture, the collision point is between the two sharp craters
in the lower part of the body. The diameter of the nucleus is

about 5 km. (Photo NASA) Lower right: A composite im-
age of the nucleus of comet P/Halley taken by ESA Giotto
spacecraft in 1986. The size of the nucleus is approximately
13×7 km. Dust jets are originating from two regions on the
nucleus. (ESA/Max Planck Institut für Aeronomie)
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estimations of the albedos, and therefore the diameter
are very uncertain.

Colors of TNOs range from blue-grey to red and the
distribution appears to be uniform. However, popula-
tion of the low-inclination objects seem to be red and
high-inclination objects blue. The unperturbed orbits of
the low-inclination objects suggest that they represent
a relic of the original population of the Kuiper belt.

Interpretations of the spectra are ambiguous and
spectra may not describe the composition of the whole

Fig. 7.60. Orbits of short period comets projected to the plane
of the ecliptic

Fig. 7.61. Comet Shoemaker–Levy 9 five months before its collision to Jupiter as seen by the Hubble Space Telescope.
(JPL/NASA)

object. The surface is altered by intense radiation, solar
wind and micrometeorites and it can be quite different
from the regolith and deeper layers underneath.

Small TNOs are probably mixtures of rock and
ice with some organic surface material. The com-
position is similar to the comets. High density
(2000–3000 kg m−3) of some large objects suggests
a high non-ice content, similar to Pluto.

Comets. Comets are agglomerates of ice, snow, and
dust; a typical diameter is of the order of 10 km or less.
The nucleus contains icy chunks and frozen gases with
embedded rock and dust. At its centre, there can be
a small, rocky core.

A comet is invisible when far from the Sun; when it
gets closer than about 2 AU, the heat of the Sun starts to
melt the ice and snow. The outflowing gas and dust form
an envelope, the coma around the nucleus. Radiation
pressure and the solar wind push ionised gas and dust
away from the Sun, resulting in the typical long-tailed
shape of a comet (Fig. 7.59).

The tail is always pointing away from the Sun, a fact
which was noticed in the 16th century. Usually, there are
two tails, an ion tail (gas tail) and a dust tail. The partly
ionised gas and very fine dust in the ion tail are driven by
the solar wind. Some of the light is reflected solar light,
but the brightness of the ion tail is mostly due to emis-
sion by the excited atoms. The dust tail is caused by the
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Fig. 7.62. A schematic diagram of the distribution of the semi-
major axes of long-period comets. The abscissa is the inverse
of the semimajor axis, 1/a [AU]−1. The Oort cloud is visi-
ble as a strong peak at the very small positive values of 1/a.
The orbits shown here are the “original orbits”, i. e. computed
backward in time to remove all known perturbations

radiation pressure. Because the velocities of the parti-
cles of the dust tail are lower than the velocities in the ion
tail, the dust tail is often more curved than the ion tail.

Fred Whipple introduced in 1950’s a “dirty snow-
ball” theory to describe the cometary structure.
According to this model, cometary nuclei are composed
of ice mixed with gravel and dust. The observations have
revealed that the classical dirty snowball model is not
quite accurate; at least the surface is more dirt than snow,
also containing organic compounds. Several chemical
compounds have been observed, including water ice,
which probably makes up 75–80% of the volatile ma-
terial. Other common compounds are carbon monoxide
(CO), carbon dioxide (CO2), methane (CH4), ammonia
(NH3), and formaldehyde (H2CO).

The most famous (and also best known) periodic
comet is Halley’s comet. Its orbital period is about
76 years; it was last in perihelion in 1986. During the
last apparition, the comet was also observed by space-
craft, revealing the solid cometary body itself for the
first time. Halley is a 13×7 km, peanut-shaped chunk
whose surface is covered by an extremely black layer
of a possibly tar-like organic or other similar material.
Violent outbursts of gas and dust make an exact pre-
diction of its brightness impossible, as often noticed

when cometary magnitudes have been predicted. Near
the perihelion, several tons of gas and dust burst out
every second.

Cometary material is very loose. Ablation of gas
and dust, large temperature variations and tidal forces
sometimes cause the whole comet to break apart. Comet
Shoemaker–Levy 9 which impacted into Jupiter in 1994
was torn apart two years earlier when it passed Jupiter
at a distance of 21,000 km (Fig. 7.63). The impact of
Shoemaker–Levy 9 showed that there can be density
variation (and perhaps variation in composition, too)
inside the original cometary body.

Comets are rather ephemeral things, surviving only
a few thousand revolutions around the Sun or less. The
short-period comets are all newcomers and can survive
only a short time here, in the central part of the solar
system.

Since comets in the central solar system are rapidly
destroyed, there has to be some source of new short-
period comets. In 1950 Jan Oort discovered a strong
peak for aphelia of long period comets at a distance
of about 50,000 AU, and that there is no preferential
direction from which comets come (Fig. 7.62). He pro-
posed that there is a vast cloud of comets at the outer
reaches of the solar system, now know as the Oort cloud
(Fig. 7.60). The total mass of the Oort cloud is esti-
mated to be tens of Earth masses, containing more than
1012 comets.

A year later Gerard Kuiper showed that there is a sep-
arate population of comets. Many of the short period
comets, with periods less than 200 years, have the or-
bital inclination less than 40◦, and they orbit the Sun in
the same direction as the Earth. The orbital inclination
of long period comets are not peaked around the plane
of the ecliptic but they are more random. Kuiper argued
that the short period comets originate from a separate
population of comets that resides in a disk-like cloud
beyond the orbit of Neptune. The area is now known as
the Kuiper belt (Fig. 7.60).

Occasionally perturbations from passing stars send
some of the comets in the Oort cloud into orbits, which
bring them into the central parts of the solar system,
where they are seen as long-period comets. Around
a dozen “new” comets are discovered each year. Most of
these are visible only with a telescope, and only a cou-
ple of times per decade one can see a bright naked-eye
comet.
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Fig. 7.63. Meteors are easy to capture on film: one just leaves
a camera loaded with a sensitive film on a tripod with the

shutter open for an hour or so. Stars make curved trails on the
film. (L. Häkkinen)

Some of the long period comets are put into short
period orbits by the perturbations of Jupiter and Sat-
urn, whereas some others can be ejected from the solar
system. However, there are no comets that have been
proven to come from interstellar space, and the relative
abundances of several isotopes in the cometary matter
are the same as in other bodies of our solar system.

The origin of the Oort cloud and Kuiper belt is differ-
ent. The Oort cloud objects were formed near the giant
planets and have been ejected to the outer edge of the
solar system by gravitational perturbations soon after
the formation of the solar system. Small objects beyond
the orbit of Neptune had no such interactions and they
remained near the accretion disk.

Meteoroids. Solid bodies smaller than asteroids are
called meteoroids. The boundary between asteroids and

meteoroids, however, is diffuse; it is a matter of taste
whether a ten metre body is called an asteroid or a me-
teoroid. We could say that it is an asteroid if it has been
observed so often that its orbital elements are known.

When a meteoroid hits the atmosphere, an optical
phenomenon, called a meteor (“shooting star”) is seen
(Fig. 7.63). The smallest bodies causing meteors have
a mass of about 1 gram; the (micro)meteoroids smaller
than this do not result in optical phenomena. However,
even these can be observed with radar which is able
to detect the column of ionised air. Micrometeoroids
can also be studied with particle detectors installed in
satellites and space crafts. Bright meteors are called
bolides.

The number of meteoroids increases rapidly as their
size diminishes. It has been estimated that at least 105 kg
of meteoritic material falls on the Earth each day. Most
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of this material is micrometeoroids and causes no visible
phenomena.

Due to perspective, all meteors coming from the same
direction seem to radiate from the same point. Such
meteor streams (meteor showers) are, e. g. the Perseids
in August and the Geminides in December; the names
are given according to the constellation in which the
radiation point seems to be. On the average, one can
see a few sporadic meteors per hour. During a strong
meteor shower one can see even tens of meteors per
minute, although a normal rate is some tens per hour.

Most of the meteoroids are small and burn to ashes at
a height of 100 km. However, larger bodies may come
through and fall to the Earth. These are called mete-
orites. The relative speed of a typical meteoroid varies
in the range 10–70 km/s. The speed of the largest bod-
ies does not diminish in the atmosphere; thus, they hit
the Earth at their cosmic speeds, resulting in large im-
pact craters. Smaller bodies slow down and drop like
stones but impacts of large bodies (diameter meters or
more) may cause large-scale disaster.

Iron meteorites or irons, composed of almost pure
nickel-iron, comprise about one quarter of all mete-
orites. Actually the irons are in a minority among

Fig. 7.64. A projection of the entire infrared sky created from
observations of the COBE satellite. The bright horizontal band
is the Milky Way. The dust of the solar system, visible on the

Earth as zodiacal light is an S-shaped glow across the image.
(G. Greaney and NASA)

meteoroids, but they survive their violent voyage
through the atmosphere more easily than weaker bod-
ies. Three-quarters are stony meteorites, or stone-iron
meteorites.

Meteoroids themselves can be divided into three
groups of roughly equal size. One-third is ordinary
stones, chondrites. The second class contains weaker
carbonaceous chondrites and the third class includes
cometary material, loose bodies of ice and snow which
are unable to survive down to the Earth.

Many meteor streams are in the same orbit as a known
comet, so at least some meteoroids are of cometary
origin. Near a perihelion passage, every second sev-
eral tons of gravel is left on the orbit of a comet.
There are several examples of meteorites that have
their origin in the Moon or Mars. Debris of large im-
pacts may have been ejected into space and finally
ended up on the Earth. Some meteoroids are debris of
asteroids.

Interplanetary Dust. Two faint light phenomena,
namely zodiacal light and gegenschein (counterglow)
make it possible to observe interplanetary dust, small
dust particles reflecting the light of the Sun (Fig. 7.64).
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This weak glow can be seen above the rising or setting
Sun (zodiacal light) or exactly opposite the Sun (gegen-
schein). The interplanetary dust is concentrated near the
plane of the ecliptic. The typical sizes of the particles
are in the range of 10–100µm.

Solar Wind. Elementary particles hitting the Earth orig-
inate both in the Sun and outside the solar system.
Charged particles, mainly protons, electrons and alpha
particles (helium nuclei) flow continuously out of the
Sun. At the distance of the Earth, the speed of this so-
lar wind is 300–500 km/s. The particles interact with
the solar magnetic field. The strength of the solar mag-
netic field at the Earth’s distance is about 1/1000 of that
of the Earth. Particles coming from outside the solar
system are called cosmic rays (Sect. 15.8).

7.18 Origin of the Solar System

Cosmogony is a branch of astronomy which studies the
origin of the solar system. The first steps of the plan-
etary formation processes are closely connected to star
formation.

The solar system has some very distinct features
which have to be explained by any serious cosmogonical
theory. These include:

– planetary orbits are almost coplanar and also paral-
lel to the solar equator;

– orbits are almost circular;
– planets orbit the Sun counterclockwise, which is also

the direction of solar rotation;
– planets also rotate around their axes counterclock-

wise (excluding Venus, Uranus and Pluto);
– planetary distances approximately obey the empiri-

cal Titius-Bode law, i. e.

a = 0.4+0.3×2n ,

n = −∞, 0, 1, 2, · · · (7.55)

where the semimajor axis a is expressed in AU;
– planets have 98% of the angular momentum of the

solar system but only 0.15% of the total mass;
– terrestrial and giant planets exhibit physical and

chemical differences;
– the structure of planetary satellite systems resembles

miniature solar systems.

The first modern cosmogonical theories were intro-
duced in the 18th century. One of the first cosmogonists
was Immanuel Kant, who in 1755 presented his nebular
hypothesis. According to this theory, the solar system
condensed from a large rotating nebula. Kant’s nebu-
lar hypothesis is surprisingly close to the basic ideas of
modern cosmogonical models. In a similar vein, Pierre
Simon de Laplace suggested in 1796 that the planets
have formed from gas rings ejected from the equator of
the collapsing Sun.

The main difficulty of the nebular hypothesis was its
inability to explain the distribution of angular momen-
tum in the solar system. Although the planets represent
less than 1% of the total mass, they possess 98% of the
angular momentum. There appeared to be no way of
achieving such an unequal distribution. A second ob-
jection to the nebular hypothesis was that it provided
no mechanism to form planets from the postulated gas
rings.

Already in 1745, Georges Louis Leclerc de Buffon
had proposed that the planets were formed from a vast
outflow of solar material, ejected upon the impact of
a large comet. Various catastrophe theories were pop-
ular in the 19th century and in the first decades of the
20th century when the cometary impact was replaced
by a close encounter with another star. The theory was
developed, e. g. by Forest R. Moulton (1905) and James
Jeans (1917).

Strong tidal forces during the closest approach would
tear some gas out of the Sun; this material would later
accrete into planets. Such a close encounter would be
an extremely rare event. Assuming a typical star density
of 0.15 stars per cubic parsec and an average relative
velocity of 20 km/s, only a few encounters would have
taken place in the whole Galaxy during the last 5×109

years. The solar system could be a unique specimen.
The main objection to the collision theory is that

most of the hot material torn off the Sun would be
captured by the passing star, rather than remaining in
orbit around the Sun. There also was no obvious way
how the material could form a planetary system.

In the face of the dynamical and statistical difficul-
ties of the collision theory, the nebular hypothesis was
revised and modified in the 1940’s. In particular, it be-
came clear that magnetic forces and gas outflow could
efficiently transfer angular momentum from the Sun
to the planetary nebula. The main principles of plane-
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Fig. 7.65. Hubble Space
Telescope images of four
protoplanetary disks, “pro-
plyds”, around young stars
in the Orion nebula. The
disk diameters are two
to eight times the diam-
eter of our solar system.
There is a T Tauri star in
the centre of each disk.
(Mark McCaughrean/Max-
Planck-Institute for Astron-
omy, C. Robert O’Dell/Rice
University, and NASA)

tary formation are now thought to be reasonably well
understood.

The oldest rocks found on the Earth are about
3.9×109 years old; some lunar and meteorite samples
are somewhat older. When all the facts are put together,
it can be estimated that the Earth and other planets were
formed about 4.6×109 years ago. On the other hand,
the age of the Galaxy is at least twice as high, so the
overall conditions have not changed significantly dur-
ing the lifetime of the solar system. Moreover, there is
even direct evidence nowadays, such as other planetary
systems and protoplanetary disks, proplyds (Fig. 7.65).

The Sun and practically the whole solar system
simultaneously condensed from a rotating collapsing
cloud of dust and gas, the density of which was some
10,000 atoms or molecules per cm3 and the temper-

ature 10–50 K (Fig. 7.66). The elements heavier than
helium were formed in the interiors of stars of preced-
ing generations, as will be explained in Sect. 11.8. The
collapse of the cloud was initiated perhaps by a shock
wave emanating from a nearby supernova explosion.

The original mass of the cloud must be thousands of
Solar masses to exceed the Jeans mass. When the cloud
contract the Jeans mass decrease. Cloud fragments and
each fragment contract independently as explained in
later chapters of star formation. One of the fragments
became the Sun.

When the fragment continued its collapse, parti-
cles inside the cloud collided with each other. Rotation
of the cloud allowed the particles to sink toward the
same plane, perpendicular to the rotation axis of the
cloud, but prevented them from moving toward the axis.
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Fig. 7.66a–g. A schematic plot on the forma-
tion of the solar system. (a) A large rotating
cloud, the mass of which was 3–4 solar
masses, began to condense. (b) The inner-
most part condensed most rapidly and a disk
of gas and dust formed around the proto-
sun. (c) Dust particles in the disk collided
with each other forming larger particles and
sinking rapidly to a single plane. (d) Par-
ticles clumped together into planetesimals
which were of the size of present asteroids.
(e) These clumps drifted together, forming
planet-size bodies which began (f) to col-
lect gas and dust from the surrounding cloud.
(g) The strong solar wind “blew” away ex-
tra gas and dust; the planet formation was
finished
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Fig. 7.67. Temperature distribution in the solar system dur-
ing planet formation. The present chemical composition of
the planets reflects this temperature distribution. The approxi-
mate condensing temperatures of some compounds have been
indicated

This explains why the planetary orbits are in the same
plane.

The mass of the proto-Sun was larger than the mass of
the modern Sun. The flat disk in the plane of the ecliptic
contained perhaps 1/10 of the total mass. Moreover, far
outside, the remnants of the outer edges of the original
cloud were still moving toward the centre. The Sun was
losing its angular momentum to the surrounding gas by
means of the magnetic field. When nuclear reactions
were ignited, a strong solar wind carried away more
angular momentum from the Sun. The final result was
the modern, slowly rotating Sun.

The small particles in the disk were accreting to larger
clumps by means of continuous mutual collisions, re-
sulting finally in asteroid-size bodies, planetesimals.
The gravitation of the clumps pulled them together,
forming ever growing seeds of planets. When these
protoplanets were large enough, they started to ac-
crete gas and dust from the surrounding cloud. Some
minor clumps were orbiting planets; these became
moons. Mutual perturbations may have prevented plan-
etesimals in the current asteroid belt from ever being
able to become “grown-up” planets. Moreover, reso-
nances could explain the Titius-Bode law: the planets
were able to accrete in very limited zones only
(Table 7.4).

The temperature distribution of the primordial cloud
explains the differences of the chemical composition of
the planets (Fig. 7.67). The volatile elements (such as

Table 7.4. True distances of the planets from the Sun and
distances according to the Titius–Bode law (7.55)

Planet n Calculated True
distance distance
[AU] [AU]

Mercury −∞ 0.4 0.4
Venus 0 0.7 0.7
Earth 1 1.0 1.0
Mars 2 1.6 1.5
Ceres 3 2.8 2.8
Jupiter 4 5.2 5.2
Saturn 5 10.0 9.2
Uranus 6 19.6 19.2
Neptune 7 38.8 30.1
Pluto 8 77.2 39.5

hydrogen and helium, and ices) are almost totally ab-
sent in the innermost planets. The planets from Mercury
to Mars are composed of “rocks”, relatively heavy ma-
terial which condenses above 500 K or so. The relative
abundance of this material in the primeval nebula was
only 0.4%. Thus the masses of terrestrial planets are rel-
atively small. More than 99% of the material was left
over.

At the distance of Mercury, the temperature was
about 1400 K. At this temperature, iron and nickel com-
pounds begin to condense. The relative abundance of
these compounds is greatest on Mercury and smallest
on Mars, where the temperature was only 450 K. Thus
the amount of iron(II)oxide, FeO, is relatively high on
Mars, whereas there is practically no FeO on Mercury.

At the distance of Saturn, the temperature was so low
that bodies of ice could form; e.g. some moons of Saturn
are almost pure water ice. Because 98.2% of the primor-
dial material was hydrogen and helium, the abundance
of hydrogen and helium in Jupiter and Saturn is close to
those values. However, the relative importance of ices
became more prominent at the distance of Uranus and
Neptune. A considerable amount of the mass of these
planets can be water.

Meteorite bombardment, contraction and radioactive
decay produced a great deal of heat after the planetary
formation. This gave rise to the partial melting of some
terrestrial planets, resulting in differentiation of mate-
rial: the heavy elements sank to the centre and the light
dross was left to float on the surface.

The left over material wandered among the planets.
Planetary perturbations caused bodies in unstable or-
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bits to collide with planets or to be slung outer edges
of the solar system, as happened to the bodies now in
the Oort cloud. Asteroids remained in their stable or-
bits. On the outskirts of the solar system, bodies of ice
and dust, such as the Kuiper belt objects, could also
survive.

The beginning of the solar nuclear reactions meant
the end of planetary formation. The Sun was in the
T Tauri phase losing mass to a strong solar wind. The
mass loss was as high as 10−7 M�/a. However, this
phase was relatively short and the total mass loss did
not exceed 0.1 M�. The solar wind “blew” away the
interplanetary gas and dust, and the gas accretion to the
planets was over.

The solar wind or radiation pressure has no effect
on millimetre- and centimetre-sized particles. However,
they will drift into the Sun because of the Poynting–
Robertson effect, first introduced by John P. Poynting in
1903. Later H.P. Robertson derived the effect by using
the theory of relativity. When a small body absorbs and
emits radiation, it loses its orbital angular momentum
and the body spirals to the Sun. At the distance of the as-
teroid belt, this process takes only a million years or so.

7.19 Examples

Example 7.1 Sidereal and Synodic Period

The time interval between two successive oppositions of
Mars is 779.9 d. Calculate the semimajor axis of Mars’
orbit.

The synodic period is 779.9 d = 2.14 years. We
obtain from (7.1)

1

P2
= 1

1
− 1

2.14
= 0.53 ⇒ P2 = 1.88 a .

By using Kepler’s third law, (m � M�), the semimajor
axis is found to be

a = P2/3 = 1.882/3 = 1.52 AU .

Example 7.2 Solar Energy Flux on the Earth

Calculate the diurnal solar energy flux per unit area at
the distance of the Earth.

The solar flux density outside the Earth’s atmosphere
(the solar constant) is S0 = 1370 W/m2. Consider a sit-
uation at latitude φ, when the solar declination is δ. If
the atmospheric extinction is neglected, the flux density
on the surface is

S = S0 sin a ,

where a is the elevation of the Sun. We can write sin a
as a function of latitude, declination, and hour angle h:

sin a = sin δ sinφ+ cos δ cosφ cos h .

On a cloudless day, the energy is received between sun-
rise and sunset. The corresponding hour angles can be
obtained from the equation above, when a = 0:

cos h0 = − tan δ tanφ .

In the course of one day, the energy received on a unit
area is

W =
h0∫

−h0

S dt .

The hour angle h is expressed in radians, so the time t
is

t = h

2π
P ,

where P = 1 d = 24 h. The total energy is thus

W =
h0∫

−h0

S0(sin δ sinφ+ cos δ cosφ cos h)
P

2π
dh

= S0 P

π
(h0 sin δ sinφ+ cos δ cosφ sin h0) ,

where

h0 = arccos(− tan δ tanφ) .

For example near the equator (φ = 0◦) cos h0 = 0 and

W(φ = 0◦)= S0 P

π
cos δ .

At those latitudes where the Sun will not set, h0 = π

and

Wcirc = S0 P sin δ sinφ .
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Near the poles, the Sun is always circumpolar when
above the horizon, and so

W(φ = 90◦)= S0 P sin δ .

Interestingly enough, during the summer when the dec-
lination of the Sun is large, the polar areas receive more
energy than the areas close to the equator. This is true
when

W(φ = 90◦) > W(φ = 0◦)

⇔ S0 P sin δ > S0 P cos δ/π

⇔ tan δ > 1/π

⇔ δ > 17.7◦ .

The declination of the Sun is greater than this about two
months every summer.

However, atmospheric extinction diminishes these
values, and the loss is at its greatest at the poles, where
the elevation of the Sun is always relatively small. Ra-
diation must penetrate thick layers of the atmosphere
and the path length is comparable to 1/ sin a. If it is as-
sumed that the fraction k of the flux density reaches the
surface when the Sun is at zenith, the flux density when
the Sun is at the elevation a is

S′ = S0 sin a k1/ sin a .

The total energy received during one day is thus

W =
h0∫

−h0

S′dt =
h0∫

−h0

S0 sin a k1/ sin adt .

This cannot be solved in a closed form and numerical
methods must be used.

The figure on next page shows the daily received
energy W [kWh/m2] during a year at latitudes φ =
0◦, 60◦, and 90◦ without extinction, and when k = 0.8,
which is close to the real value.

Example 7.3 Magnitude of a Planet

The apparent magnitude of Mars during the 1975 op-
position was m1 = −1.6 and the distance to the Sun,
r1 = 1.55 AU. During the 1982 opposition, the distance
was r2 = 1.64 AU. Calculate the apparent magnitude in
the 1982 opposition.

At opposition, the distance of Mars from the Earth
is ∆= r −1. The observed flux density depends on the
distances to the Earth and the Sun,

F ∝ 1

r2∆2
.

Using the magnitude formula (4.9) we obtain

m1 −m2 = −2.5 lg
r2

2(r2 −1)2

r2
1(r1 −1)2

⇒ m2 = m1 +5 lg
r2(r2 −1)

r1(r1 −1)

= −1.6+5 lg
1.64×0.64

1.55×0.55
≈ −1.1 .

The same result is obtained if (7.43) is separately written
for both oppositions.

Example 7.4 The Brightness of Venus

Find the instant when Venus is brightest if the brightness
is proportional to the projected size of the illuminated
surface. The orbits are assumed to be circular.
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The size of the illuminated surface is the area of the
semicircle ACE± half the area of the ellipse ABCD.
The semiaxes of the ellipse are R and R cosα. If the
radius of the planet is R, the illuminated area is

π
R2

2
+ 1

2
πR × R cosα= π

2
R2(1+ cosα) ,

where α is the phase angle. The flux density is inversely
proportional to the square of the distance ∆. Thus

F ∝ 1+ cosα

∆2
.

The cosine formula yields

M2
⊕ = r2 +∆2 −2∆r cosα .

When cosα is solved and inserted in the flux density we
obtain

F ∝ 2∆r +r2 +∆2 − M2⊕
2r∆3

.

The minimum of the equation yields the distance where
Venus is brightest:

∂F

∂∆
= −4r∆+3r2 −3 M2⊕ +∆2

2r∆4
= 0

⇒ ∆= −2r ±
√

r2 +3 M2⊕ .

If r = 0.723 AU and R⊕ = 1 AU, the distance is ∆=
0.43 AU and the corresponding phase angle isα= 118◦.

Thus Venus is brightest shortly after the largest
eastern elongation and before the largest western

elongation. From the sine formula we obtain

sin ε

r
= sinα

M⊕
.

The corresponding elongation is ε= 40◦, and

1+ cosα

2
×100% = 27%

of the surface is seen lit.

Example 7.5 Size of an Asteroid

The apparent visual magnitude V of a minor planet at
the moment of opposition was observed to be V0 = 10.0.
Give an estimate of the asteroid’s size when the geo-
metric albedo is assumed to be p = 0.15. Give an error
estimate if the geometric albedo is wrong by a factor of
two. The visual magnitude of the Sun is V� = −26.8,
and the distance of the asteroid from the Earth was
∆= 3 AU.

At opposition the distance of a body from the Sun is
r =∆+1. Assuming that r⊕ = 1 AU, the radius R can
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be solved from (7.45)

R = r∆

r⊕

√
10−0.4(V0−V�)

p

= 3 ·4

1

√
10−0.4(10+26.8)

0.15
×1.5×108 km

= 200 km .

If p = 0.075, the size of the asteroid is R = 290 km and
if p = 0.3, the radius will be R = 140 km.

Example 7.6 The Roche Limit

A French mathematician Edouard Roche computed in
1848 a limit where a moon will be torn apart due to
the tidal forces if it approaches its parent planet. Roche
proposed that the Saturnian rings were formed in that
way.

We can compute the Roche limit for a body at
a distance R of a planet the mass of which is M ap-
proximating the body with two small spheres of radius r
and mass m. The difference of gravitation affecting the
small spheres by the planet is

∆F = G Mm

[
1

(R −r)2
− 1

(R +r)2

]

R 	 r≈ G Mm
4r

R3
.

The gravitational force between the small spheres is

F ′ = Gm2

4r2
.

If ∆F> F ′, the small spheres will be pulled apart. The
forces are equal at the Roche limit:

G Mm
4r

R3
= Gm2

4r2
.

Thus the distance of the Roche limit R is

R = 3

√
16r3 M

m
.

Inserting the masses of the planet and the spheres in
terms of the radii of the planet S and spheres r, and
assuming that the densities ρ are equal, m = 4

3πr3ρ,
M = 4

3πS3ρ, we obtain

R ≈ 2.5× S .

Our result is valid only for a body without any internal
strength. Smaller bodies with internal strength can sur-
vive inside the Roche limit. You, dear reader, act as an
excellent example of this, because you read this exam-
ple well inside the Roche limit of the Earth. A 100 km
stony asteroid will survive even if it orbits the Earth just
above the atmosphere but a sphere of water of the same
size would break apart.

7.20 Exercises

Exercise 7.1 What is the greatest possible elongation
of Mercury, Venus and Mars? How long before sunrise
or after sunset is the planet visible? Assume that the
declination of the planet and the Sun is δ= 0◦.

Exercise 7.2 a) What is the greatest possible geocen-
tric latitude of Venus, i. e. how far from the Sun can the
planet be at the inferior conjunction? Assume the or-
bits are circular. b) When is the situation possible? The
longitude of the ascending node of Venus is 77◦.

Exercise 7.3 The interval between two oppositions of
a planet was 398.9 d. The angular diameter of the planet
at the opposition was 47.2′′. Find the sidereal period,
semimajor axis, and the true diameter (in kilometres) of
the planet. Which planet was it?

Exercise 7.4 a) Assume that three bodies move along
circular orbits with angular velocities (mean motions)
n1, n2 and n3. Show that these bodies have a common
synodic period if and only if there are nonzero integers
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k1, k2 and k3 such that

k1n1 + k2n2 + k3n3 = 0 , k1 + k2 + k3 = 0 .

b) The resonance of the Galilean satellites can be
expressed in terms of their mean motions as

nIo −3nEuropa +2nGanymede = 0 .

Find the synodic period of these three moons.

Exercise 7.5 a) Find the daily retrograde apparent mo-
tion of an exterior planet at its opposition. Assume that
the planet and the Earth have circular orbits. b) Pluto
was found in 1930 from two plates, exposed 6 days apart
during the opposition of the planet. On those plates one
degree corresponded to 3 cm. How much (in cm) had
Pluto moved between the exposures? How much does
a typical main belt asteroid move in the same time?

Exercise 7.6 A planet is observed at the opposition
or inferior conjunction. Due to the finite speed of light
the apparent direction of the planet differs from the true
place. Find this difference as a function of the radius of
the orbit. You can assume the orbits are circular. Which
planet has the largest deviation?

Exercise 7.7 The angular diameter of the Moon
is 0.5◦. The full moon has an apparent magnitude
of −12.5 and the Sun −26.7. Find the geometric and
Bond albedos of the Moon, assuming that the reflected
light is isotropic (into a solid angle 2π sterad).

Exercise 7.8 The eccentricity of the orbit of Mercury
is 0.206. How much does the apparent magnitude of the
Sun vary as seen from Mercury? How does the surface
brightness of the Sun vary?

Exercise 7.9 An asteroid with a diameter of 100 m
approaches the Earth at a velocity of 30 km s−1. Find
the apparent magnitude of the asteroid a) one week,
b) one day before the collision. Assume that the phase
angle is α= 0◦ and the geometric albedo of the asteroid
is p = 0.1. What do you think about the chances of
finding the asteroid well in advance the crash?

Exercise 7.10 Find the distance of a comet from the
Sun when its temperature reaches 0 ◦C and 100 ◦C.
Assume the Bond albedo of the comet is 0.05.
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8. Stellar Spectra

All our information about the physical properties of
stars comes more or less directly from studies of their

spectra. In particular, by studying the strength of various
absorption lines, stellar masses, temperatures and com-
positions canbededuced. The line shapes containdetailed
information about atmospheric processes.

As we have seen in Chap. 3, the light of a star can be dis-
persed intoaspectrumbymeansofaprismoradiffraction
grating. The distribution of the energy flux density over
frequency can then be derived. The spectra of stars con-
sist of a continuous spectrum or continuum with narrow
spectral lines superimposed (Fig. 8.1). The lines in stel-
lar spectra are mostly dark absorption lines, but in some
objects bright emission lines also occur.

In a very simplified way the continuous spectrum can
be thought of as coming from the hot surface of the star.
Atoms in the atmosphere above the surface absorb cer-
tain characteristic wavelengths of this radiation, leaving

dark ‘‘gaps’’ at the corresponding points in the spec-
trum. In reality there is no such sharp separation between
surface and atmosphere. All layers emit and absorb ra-
diation, but the net result of these processes is that less
energy is radiated at the wavelengths of the absorption
lines.

The spectra of stars are classified on the basis of the
strengths of the spectral lines. Isaac Newton observed
the solar spectrum in 1666, but, properly speaking, spec-
troscopy began in 1814 when Joseph Fraunhofer observed
the dark lines in the spectrum of the Sun. He assigned
capital letters, like D, G, H and K, to some of the stronger
dark lines without knowing the elements responsible for
the origin of the lines (Sect. 8.2). The absorption lines are
also known as Fraunhofer lines. In 1860, Gustav Robert
Kirchhoff and Robert Bunsen identified the lines as the
characteristic lines produced by various elements in an
incandescent gas.

8.1 Measuring Spectra

The most important methods of forming a spectrum are
by means of an objective prism or a slit spectrograph. In
the former case one obtains a photograph, where each

Fig. 8.1a–g. Typical stellar spectra. The spectrum of ηPegasi
(f) is very similar to that of the Sun. The continuous spectrum
is brightest at about 550 nm and gets fainter towards smaller

and larger wavelengths. Dark absorption lines are superim-
posed on the continuum. See also Exercise 8.1. (Mt. Wilson
Observatory)

stellar image has been spread into a spectrum. Up to sev-
eral hundred spectra can be photographed on a single
plate and used for spectral classification. The amount of
detail that can be seen in a spectrum depends on its dis-
persion, the range of wavelengths per millimetre on the
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plate (or per pixel on a CCD). The dispersion of an ob-
jective prism is a few tens of nanometres per millimetre.
More detailed observations require a slit spectrograph,
which can reach a dispersion 1–0.01 nm/mm. The de-
tailed shape of individual spectral lines can then be
studied.

The photograph of the spectrum is converted to an
intensity tracing showing the flux density as a function
of wavelength. This is done by means of a microden-
sitometer, measuring the amount of light transmitted by
the recorded spectrum. Since the blackening of a pho-
tographic plate is not linearly related to the amount
of energy it has received, the measured blackening
has to be calibrated by comparison with known ex-

Fig. 8.2. (a) A section of a photograph of a stellar spectrum
and the corresponding rectified microdensitometer intensity
tracing. The original spectrum was taken at the Crimean Ob-
servatory. (b) A more extensive part of the spectrum. (c) The

picture the intensity curve of the first picture has been rec-
tified by normalizing the value of the continuum intensity
to one. (Pictures by J. Kyröläinen and H. Virtanen, Helsinki
Observatory)

posures. In modern CCD spectrographs the intensity
curve is determined directly without the intervening
step of a photographic plate. For measurements of line
strengths the spectrum is usually rectified by dividing
by the continuum intensity.

Figure 8.2 shows a photograph of the spectrum of
a star and the intensity curve obtained from a calibrated
and rectified microdensitometer tracing. The second
pair of pictures shows the intensity curve before and
after the normalisation. The absorption lines appear as
troughs of various sizes in the curve. In addition to
the clear and deep lines, there are large numbers of
weaker lines that can barely be discerned. The graini-
ness of the photographic emulsion is a source of noise
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which appears as irregular fluctuations of the intensity
curve. Some lines are so close together that they appear
blended at this dispersion.

The detailed shape of a spectral line is called the
line profile (Sect. 5.3). The true shape of the line re-
flects the properties of the stellar atmosphere, but the
observed profile is also spread out by the measuring
instrument. However, the total absorption in the line,
usually expressed in terms of the equivalent width, is
less sensitive to observational effects (see Fig. 5.6).

The equivalent width of a spectral line depends on
how many atoms in the atmosphere are in a state in
which they can absorb the wavelength in question. The
more atoms there are, the stronger and broader the spec-
tral line is. For example, a typical equivalent width
of a metal line (Fe) in the solar spectrum is about
10 pm. Line widths are often expressed in ångströms
(1 Å = 10−10 m = 0.1 nm).

Only in weak lines the equivalent width depends lin-
early on the number of absorbing atoms. The equivalent
width as a function of the amount of absorbing atoms
is known as the curve of growth. It is, however, beyond
the scope of this book.

Line profiles are also broadened by the Doppler ef-
fect. In stellar atmospheres there are motions of small
and large scale, like thermal motion of the atoms and
convective flows.

The chemical composition of the atmosphere can be
determined from the strengths of the spectral lines. With
the introduction of large computers it has become fea-
sible to construct quite detailed models of the structure
of stellar atmospheres, and to compute the emergent
spectrum for a given model. The computed synthetic
spectrum can be compared with the observations and
the theoretical model modified until a good fit is ob-
tained. The theoretical models then give the number of
absorbing atoms, and hence the element abundances, in
the atmosphere. The construction of model atmospheres
will be discussed in Sect. 8.6.

8.2 The Harvard Spectral Classification

The spectral classification scheme in present use was
developed at Harvard Observatory in the United States
in the early 20th century. The work was begun by Henry
Draper who in 1872 took the first photograph of the

spectrum of Vega. Later Draper’s widow donated the
observing equipment and a sum of money to Harvard
Observatory to continue the work of classification.

The main part of the classification was done by Annie
Jump Cannon using objective prism spectra. The Henry
Draper Catalogue (HD) was published in 1918–1924. It
contains 225,000 stars extending down to 9 magnitudes.
Altogether more than 390,000 stars were classified at
Harvard.

The Harvard classification is based on lines that are
mainly sensitive to the stellar temperature, rather than
to gravity or luminosity. Important lines are the hydro-
gen Balmer lines, the lines of neutral helium, the iron
lines, the H and K doublet of ionized calcium at 396.8
and 393.3 nm, the G band due to the CH molecule and
some metals around 431 nm, the neutral calcium line at
422.7 nm and the lines of titanium oxide (TiO).

The main types in the Harvard classification are de-
noted by capital letters. They were initially ordered in
alphabetical sequence, but subsequently it was noticed
that they could be ordered according to temperature.
With the temperature decreasing towards the right the
sequence is

C

O−B−A−F−G−K−M−L−T .

S
Additional notations are Q for novae, P for planetary
nebulae and W for Wolf–Rayet stars. The class C con-
sists of the earlier types R and N. The spectral classes C
and S represent parallel branches to types G–M, dif-
fering in their surface chemical composition. The most
recent addition are the spectral classes L and T con-
tinuing the sequence beyond M, representing brown
dwarfs. There is a well-known mnemonic for the spec-
tral classes, but due to its chauvinistic tone we refuse to
tell it.

The spectral classes are divided into subclasses de-
noted by the numbers 0 . . . 9; sometimes decimals are
used, e. g. B 0.5 (Figs. 8.3 and 8.4). Spectra of brown
dwarfs are shown in Fig. 8.4a compared with those of
M dwarfs.

The main characteristics of the different classes are:

O Blue stars, surface temperature 20,000–35,000 K.
Spectrum with lines from multiply ionized atoms,
e. g. He II, C III, N III, O III, Si V. He I visible, H I
lines weak.
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Fig. 8.3a,b. Spectra of early and late spectral type stars be-
tween 375 and 390 nm. (a) The upper star is Vega, of spectral
type A0, and (b) the lower one is Aldebaran, of spectral type

K5. The hydrogen Balmer lines are strong in the spectrum of
Vega; in that of Aldebaran, there are many metal lines. (Lick
Observatory)

B Blue-white stars, surface temperature about
15,000 K. He II lines have disappeared, He I
(403 nm) lines are strongest at B2, then get weaker
and have disappeared at type B9. The K line of Ca II
becomes visible at type B3. H I lines getting stronger.
O II, Si II and Mg II lines visible.

A White stars, surface temperature about 9000 K. The
H I lines are very strong at A0 and dominate the
whole spectrum, then get weaker. H and K lines of
Ca II getting stronger. He I no longer visible. Neutral
metal lines begin to appear.

F Yellow-white stars, surface temperature about
7000 K. H I lines getting weaker, H and K of Ca II
getting stronger. Many other metal lines, e. g. Fe I,
Fe II, Cr II, Ti II, clear and getting stronger.

G Yellow stars like the Sun, surface temperature about
5500 K. The H I lines still getting weaker, H and
K lines very strong, strongest at G0. Metal lines get-
ting stronger. G band clearly visible. CN lines seen
in giant stars.

K Orange-yellow stars, surface temperature about
4000 K. Spectrum dominated by metal lines. H I lines
insignificant. Ca I 422.7 nm clearly visible. Strong H
and K lines and G band. TiO bands become visible
at K5.

M Red stars, surface temperature about 3000 K. TiO
bands getting stronger. Ca I 422.7 nm very strong.
Many neutral metal lines.

L Brown (actually dark red) stars, surface temperature
about 2000 K. The TiO and VO bands disappear for
early L class. Very strong and broad lines of Na I and
K I.

T Brown dwarfs, surface temperature about 1000 K.
Very strong molecular absorption bands of CH4 and
H2O.

C Carbon stars, previously R and N. Very red stars,
surface temperature about 3000 K. Strong molecu-
lar bands, e. g. C2, CN and CH. No TiO bands. Line
spectrum like in the types K and M.

S Red low-temperature stars (about 3000 K). Very clear
ZrO bands. Also other molecular bands, e. g. YO,
LaO and TiO.

The main characteristics of the classification scheme
can be seen in Fig. 8.5 showing the variations of some
typical absorption lines in the different spectral classes.
Different spectral features are mainly due to different ef-
fective temparatures. Different pressures and chemical
compositions of stellar atmospheres are not very impor-
tant factors in the spectral classification, execpt in some
peculiar stars. The early, i. e. hot, spectral classes are
characterised by the lines of ionized atoms, whereas the
cool, or late, spectral types have lines of neutral atoms.
In hot stars molecules dissociate into atoms; thus the ab-
sorption bands of molecules appear only in the spectra
of cool stars of late spectral types.

To see how the strengths of the spectral lines are
determined by the temperature, we consider, for exam-
ple, the neutral helium lines at 402.6 nm and 447.2 nm.
These are only seen in the spectra of hot stars. The rea-
son for this is that the lines are due to absorption by
excited atoms, and that a high temperature is required
to produce any appreciable excitation. As the stellar
temperature increases, more atoms are in the required
excited state, and the strength of the helium lines in-
creases. When the temperature becomes even higher,
helium begins to be ionized, and the strength of the
neutral helium lines begins to decrease. In a similar
way one can understand the variation with temperature
of other important lines, such as the calcium H and K
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Fig. 8.4. (a) Intensity
curves for various spectral
classes showing charac-
teristic spectral features.
The name of the star and
its spectral and luminos-
ity class are given next to
each curve, and the most
important spectral features
are identified. (Drawing
by J. Dufay) (b) Optical
spectra of M stars and
brown dwarfs. In an ap-
proximate sense, the brown
dwarfs continue the spec-
tral sequence towards lower
temperatures, although in
many respects they differ
from the earlier spectral
types. (J.D. Kirkpatrick
2005, ARAA 43, 205)
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Fig. 8.5. Equivalent widths
of some important spec-
tral lines in the various
spectral classes. [Struve, O.
(1959): Elementary Astron-
omy (Oxford University
Press, New York) p. 259]

lines. These lines are due to singly ionized calcium,
and the temperature must be just right to remove one
electron but no more.

The hydrogen Balmer lines Hβ, Hγ and Hδ are
stongest in the spectral class A2. These lines corre-
spond to transitions to the level the principal quantum
number of which is n = 2. If the temprature is too high
the hydrogen is ionized and such transitions are not
possible.

8.3 The Yerkes Spectral Classification

The Harvard classification only takes into account the
effect of the temperature on the spectrum. For a more
precise classification, one also has to take into ac-
count the luminosity of the star, since two stars with
the same effective temperature may have widely differ-
ent luminosities. A two-dimensional system of spectral
classification was introduced by William W. Morgan,
Philip C. Keenan and Edith Kellman of Yerkes Obser-
vatory. This system is known as the MKK or Yerkes
classification. (The MK classification is a modified,
later version.) The MKK classification is based on
the visual scrutiny of slit spectra with a dispersion of
11.5 nm/mm. It is carefully defined on the basis of stan-
dard stars and the specification of luminosity criteria.
Six different luminosity classes are distinguished:

– Ia most luminous supergiants,
– Ib less luminous supergiants,

– II luminous giants,
– III normal giants,
– IV subgiants,
– V main sequence stars (dwarfs).

The luminosity class is determined from spectral
lines that depend strongly on the stellar surface gravity,
which is closely related to the luminosity. The masses
of giants and dwarfs are roughly similar, but the radii of
giants are much larger than those of dwarfs. Therefore
the gravitational acceleration g = G M/R2 at the surface
of a giant is much smaller than for a dwarf. In conse-
quence, the gas density and pressure in the atmosphere
of a giant is much smaller. This gives rise to luminos-
ity effects in the stellar spectrum, which can be used to
distinguish between stars of different luminosities.

1. For spectral types B–F, the lines of neutral hydrogen
are deeper and narrower for stars of higher lumi-
nosities. The reason for this is that the metal ions
give rise to a fluctuating electric field near the hydro-
gen atoms. This field leads to shifts in the hydrogen
energy levels (the Stark effect), appearing as a broad-
ening of the lines. The effect becomes stronger as the
density increases. Thus the hydrogen lines are nar-
row in absolutely bright stars, and become broader
in main sequence stars and even more so in white
dwarfs (Fig. 8.6).

2. The lines from ionized elements are relatively
stronger in high-luminosity stars. This is because the
higher density makes it easier for electrons and ions
to recombine to neutral atoms. On the other hand, the
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Fig. 8.6. Luminosity effects in
the hydrogen Hγ line in A stars.
The vertical axis gives the nor-
malized intensity. HD 223385
(upper left) is an A2 supergiant,
where the line is very weak,
θ Aurigae A is a giant star and
α2 Geminorum is a main se-
quence star, where the line is
very broad. [Aller, L.H. (1953):
Astrophysics. The Atmospheres
of the Sun and Stars
(The Ronald Press Company,
New York) p. 318]

rate of ionization is essentially determined by the ra-
diation field, and is not appreciably affected by the
gas density. Thus a given radiation field can main-
tain a higher degree of ionization in stars with more
extended atmospheres. For example, in the spectral
classes F–G, the relative strengths of the ionized
strontium (Sr II) and neutral iron (Fe I) lines can be
used as a luminosity indicator. Both lines depend on
the temperature in roughly the same way, but the Sr II
lines become relatively much stronger as the lumi-
nosity increases.

3. Giant stars are redder than dwarfs of the same spec-
tral type. The spectral type is determined from the
strengths of spectral lines, including ion lines. Since
these are stronger in giants, a giant will be cooler,
and thus also redder, than a dwarf of the same spec-
tral type.

4. There is a strong cyanogen (CN) absorption band
in the spectra of giant stars, which is almost totally
absent in dwarfs. This is partly a temperature ef-
fect, since the cooler atmospheres of giants are more
suitable for the formation of cyanogen.
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8.4 Peculiar Spectra

The spectra of some stars differ from what one would
expect on the basis of their temperature and luminos-
ity (see, e. g., Fig. 8.7). Such stars are celled peculiar.
The most common peculiar spectral types will now be
considered.

The Wolf–Rayet stars are very hot stars; the first ex-
amples were discovered by Charles Wolf and Georges
Rayet in 1867. The spectra of Wolf–Rayet stars have
broad emission lines of hydrogen and ionized helium,
carbon, nitrogen and oxygen. There are hardly any ab-
sorption lines. The Wolf–Rayet stars are thought to be
very massive stars that have lost their outer layers in
a strong stellar wind. This has exposed the stellar in-
terior, which gives rise to a different spectrum than
the normal outer layers. Many Wolf–Rayet stars are
members of binary systems.

In some O and B stars the hydrogen absorption lines
have weak emission components either at the line centre
or in its wings. These stars are called Be and shell stars
(the letter e after the spectral type indicates that there are
emission lines in the spectrum). The emission lines are
formed in a rotationally flattened gas shell around the
star. The shell and Be stars show irregular variations,
apparently related to structural changes in the shell.

Fig. 8.7a,b. Peculiar spectra. (a) R Geminorum (above) is
an emission line star, with bright emission lines, indicated
by arrows, in its spectrum; (b) the spectrum of a normal

star is compared with one in which the zirconium lines
are unusually strong. (Mt. Wilson Observatory and Helsinki
Observatory)

About 15% of all O and B stars have emission lines in
their spectra.

The strongest emission lines are those of the P Cygni
stars, which have one or more sharp absorption lines
on the short wavelength side of the emission line. It
is thought that the lines are formed in a thick expand-
ing envelope. The P Cygni stars are often variable. For
example, P Cygni itself has varied between three and
six magnitudes during the past centuries. At present its
magnitude is about 5.

The peculiar A stars or Ap stars (p = peculiar) are
usually strongly magnetic stars, where the lines are
split into several components by the Zeeman effect. The
lines of certain elements, such as magnesium, silicon,
europium, chromium and strontium, are exceptionally
strong in the Ap stars. Lines of rarer elements such as
mercury, gallium or krypton may also be present. Other-
wise, the Ap stars are like normal main sequence stars.

The Am stars (m = metallic) also have anomalous
element abundances, but not to the same extent as the
Ap stars. The lines of e. g. the rare earths and the heaviest
elements are strong in their spectra; those of calcium and
scandium are weak.

We have already mentioned the S and C stars, which
are special classes of K and M giants with anoma-
lous element abundances. In the S stars, the normal
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lines of titanium, scandium and vanadium oxide are
replaced with oxides of heavier elements, zirconium,
yttrium and barium. A large fraction of the S stars
are irregular variables. The name of the C stars refers
to carbon. The metal oxide lines are almost com-
pletely absent in their spectra; instead, various carbon
compounds (CN, C2, CH) are strong. The abundance
of carbon relative to oxygen is 4–5 times greater in
the C stars than in normal stars. The C stars are
divided into two groups, hotter R stars and cooler
N stars.

Another type of giant stars with abundance anomalies
are the barium stars. The lines of barium, strontium, rare
earths and some carbon compounds are strong in their
spectra. Apparently nuclear reaction products have been
mixed up to the surface in these stars.

Fig. 8.8. The Hertzsprung–
Russell diagram. The
horizontal coordinate can
be either the colour index
B − V , obtained directly
from observations, or the
spectral class. In theoretical
studies the effective tem-
perature Te is commonly
used. These correspond
to each other but the
dependence varies some-
what with luminosity. The
vertical axis gives the
absolute magnitude. In
a (lg(L/L�), lg Te) plot
the curves of constant ra-
dius are straight lines. The
densest areas are the main
sequence and the horizon-
tal, red giant and asymptotic
branches consisting of gi-
ant stars. The supergiants
are scattered above the gi-
ants. To the lower left are
some white dwarfs about
10 magnitudes below the
main sequence. The appar-
ently brightest stars (m < 4)
are marked with crosses and
the nearest stars (r < 50 ly)
with dots. The data are from
the Hipparcos catalogue

8.5 The Hertzsprung--Russell Diagram

Around 1910, Ejnar Hertzsprung and Henry Norris
Russell studied the relation between the absolute mag-
nitudes and the spectral types of stars. The diagram
showing these two variables is now known as the
Hertzsprung–Russell diagram or simply the HR dia-
gram (Fig. 8.8). It has turned out to be an important aid
in studies of stellar evolution.

In view of the fact that stellar radii, luminosities and
surface temperatures vary widely, one might have ex-
pected the stars to be uniformly distributed in the HR
diagram. However, it is found that most stars are lo-
cated along a roughly diagonal curve called the main
sequence. The Sun is situated about the middle of the
main sequence.
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The HR diagram also shows that the yellow and
red stars (spectral types G-K-M) are clustered into two
clearly separate groups: the main sequence of dwarf
stars and the giants. The giant stars fall into several
distinct groups. The horizontal branch is an almost hor-
izontal sequence, about absolute visual magnitude zero.
The red giant branch rises almost vertically from the
main sequence at spectral types K and M in the HR di-
agram. Finally, the asymptotic branch rises from the
horizontal branch and approaches the bright end of the
red giant branch. These various branches represent dif-
ferent phases of stellar evolution (c. f. Sects. 11.3 and
11.4): dense areas correspond to evolutionary stages in
which stars stay a long time.

A typical horizontal branch giant is about a hundred
times brighter than the Sun. Since giants and dwarfs
of the same spectral class have nearly the same surface
temperature, the difference in luminosity must be due to
a difference in radius according to (5.21). For example
Arcturus, which is one of the brightest stars in the sky,
has a radius about thirty times that of the Sun.

The brightest red giants are the supergiants with mag-
nitudes up to MV = −7. One example is Betelgeuze. in
Orion, with a radius of 400 solar radii and 20,000 times
more luminous than the Sun.

About 10 magnitudes below the main sequence are
the white dwarfs. They are quite numerous in space, but
faint and difficult to find. The best-known example is
Sirius B, the companion of Sirius.

There are some stars in the HR diagram which
are located below the giant branch, but still clearly
above the main sequence. These are known as sub-
giants. Similarly, there are stars below the main
sequence, but brighter than the white dwarfs, known
as subdwarfs.

When interpreting the HR diagram, one has to take
into account selection effects: absolutely bright stars
are more likely to be included in the sample, since
they can be discovered at greater distances. If only
stars within a certain distance from the Sun are in-
cluded, the distribution of stars in the HR diagram
looks quite different. This can be seen in Fig. 8.8:
there are no giant or bright main sequence stars among
these.

The HR diagrams of star clusters are particularly
important for the theory of stellar evolution. They will
be discussed in Chap. 16.

8.6 Model Atmospheres

The stellar atmosphere consists of those layers of the
star where the radiation that is transmitted directly to
the observer originates. Thus in order to interpret stellar
spectra, one needs to be able to compute the structure
of the atmosphere and the emerging radiation.

In actual stars there are many factors, such as rota-
tion and magnetic fields, that complicate the problem
of computing the structure of the atmosphere. We shall
only consider the classical problem of finding the struc-
ture, i. e. the distribution of pressure and temperature
with depth, in a static, unmagnetized atmosphere. In
that case a model atmosphere is completely specified
by giving the chemical composition, the gravitational
acceleration at the surface, g, and the energy flux
from the stellar interior, or equivalently, the effective
temperature Te.

The basic principles involved in computing a model
stellar atmosphere are the same as for stellar interiors
and will be discussed in Chap. 10. Essentially, there are
two differential equations to be solved: the equation of
hydrostatic equilibrium, which fixes the distribution of
pressure, and an equation of energy transport, which will
have a different form depending on whether the atmo-
sphere is radiative or convective, and which determines
the temperature distribution.

The values of the various physical quantities in an
atmosphere are usually given as functions of some
suitably defined continuum optical depth τ . Thus pres-
sure, temperature, density, ionization and the population
numbers of various energy levels can all be obtained
as functions of τ . When these are known, the inten-
sity of radiation emerging from the atmosphere can be
computed. In *The Intensity Emerging from a Stellar
Atmosphere (p. 218), it is shown that approximately
the emergent spectrum originates at unit optical depth,
measured along each light ray. On this basis, one can
predict whether a given spectral line will be present in
the spectrum.

Consider a spectral line formed when an atom (or
ion) in a given energy state absorbs a photon. From
the model atmosphere, the occupation number of the
absorbing level is known as a function of the (con-
tinuum) optical depth τ . If now there is a layer above
the depth τ = 1 where the absorbing level has a high oc-
cupancy, the optical depth in the line will become unity
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before τ = 1, i. e. the radiation in the line will origi-
nate higher in the atmosphere. Because the temperature
increases inwards, the intensity in the line will corre-
spond to a lower temperature, and the line will appear
dark. On the other hand, if the absorbing level is un-
occupied, the optical depth at the line frequency will
be the same as the continuum optical depth. The radia-
tion at the line frequency will then come from the same
depth as the adjacent continuum, and no absorption line
will be formed.

The expression for the intensity derived in *The In-
tensity Emerging from a Stellar Atmosphere (p. 218)
also explains the phenomenon of limb darkening seen
in the Sun (Sect. 12.2). The radiation that reaches us
from near the edge of the solar disc emerges at a very
oblique angle (θ near 90◦), i. e. cos θ is small. Thus this
radiation originates at small values of τ , and hence at
low temperatures. In consequence, the intensity com-
ing from near the edge will be lower, and the solar disc
will appear darker towards the limb. The amount of
limb darkening also gives an empirical way of deter-
mining the temperature distribution in the solar atmo-
sphere.

Our presentation of stellar atmospheres has been
highly simplified. In practice, the spectrum is computed
numerically for a range of parameter values. The val-
ues of Te and element abundances for various stars can
then be found by comparing the observed line strengths
and other spectral features with the theoretical ones. We
shall not go into details on the procedures used.

8.7 What Do the Observations Tell Us?

To conclude this chapter, we shall give a summary of
the properties of stars revealed by the observations. At
the end of the book, there are tables of the brightest and
of the nearest stars.

Of the brightest stars, four have a negative magnitude.
Some of the apparently bright stars are absolutely bright
supergiants, others are simply nearby.

In the list of the nearest stars, the dominance of faint
dwarf stars, already apparent in the HR diagram, is
worth noting. Most of these belong to the spectral types
K and M. Some nearby stars also have very faint com-
panions with masses about that of Jupiter, i. e. planets.
They have not been included in the table.

Stellar spectroscopy offers an important way of de-
termining fundamental stellar parameters, in particular
mass and radius. However, the spectral information
needs to be calibrated by means of direct measurements
of these quantities. These will be considered next.

The masses of stars can be determined in the case
of double stars orbiting each other. (The details of the
method will be discussed in Chap. 9.) These observa-
tions have shown that the larger the mass of a main
sequence star becomes, the higher on the main se-
quence it is located. One thus obtains an empirical
mass–luminosity relation, which can be used to estimate
stellar masses on the basis of the spectral type.

The observed relation between mass and luminos-
ity is shown in Fig. 8.9. The luminosity is roughly
proportional to the power 3.8 of the mass:

L ∝ M3.8 . (8.1)

The relations is only approximate. According to it, a ten
solar mass star is about 6300 times brighter than the
Sun, corresponding to 9.5 magnitudes.

The smallest observed stellar masses are about 1/20
of the solar mass, corresponding to stars in the lower
right-hand part of the HR diagram. The masses of white
dwarfs are less than one solar mass. The masses of the
most massive main sequence and supergiant stars are
between 10 and possibly even 150 M�.

Direct interferometric measurements of stellar an-
gular diameters have been made for only a few dozen
stars. When the distances are known, these immediately
yield the value of the radius. In eclipsing binaries, the
radius can also be directly measured (see Sect. 9.4). Al-
together, close to a hundred stellar radii are known from
direct measurements. In other cases, the radius must
be estimated from the absolute luminosity and effective
temperature.

In discussing stellar radii, it is convenient to use
a version of the HR diagram with lg Te on the hori-
zontal and Mbol or lg(L/L�) on the vertical axis. If
the value of the radius R is fixed, then (5.21) yields
a linear relation between the bolometric magnitude and
lg Te. Thus lines of constant radius in the HR diagram
are straight. Lines corresponding to various values of
the radius are shown in Fig. 8.8. The smallest stars are
the white dwarfs with radii of about one per cent of
the solar radius, whereas the largest supergiants have
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Fig. 8.9. Mass–luminosity relation. The picture is based on bi-
naries with known masses. Different symbols refer to different
kinds of binaries. (From Böhm-Vitense: Introduction to Stellar
Astrophysics, Cambridge University Press (1989–1992))

radii several thousand times larger than the Sun. Not
included in the figure are the compact stars (neutron
stars and black holes) with typical radii of a few tens of
kilometres.

Since the stellar radii vary so widely, so do the den-
sities of stars. The density of giant stars may be only
10−4 kg/m3, whereas the density of white dwarfs is
about 109 kg/m3.

The range of values for stellar effective temper-
atures and luminosities can be immediately seen in

the HR diagram. The range of effective temperature
is 2,000–40,000 K, and that of luminosity 10−4–106

L�.
The rotation of stars appears as a broadening of the

spectral lines. One edge of the stellar disc is approach-
ing us, the other edge is receding, and the radiation
from the edges is Doppler shifted accordingly. The
rotational velocity observed in this way is only the
component along the line of sight. The true velocity
is obtained by dividing with sin i, where i is the an-
gle between the line of sight and the rotational axis.
A star seen from the direction of the pole will show no
rotation.

Assuming the axes of rotation to be randomly ori-
ented, the distribution of rotational velocities can be
statistically estimated. The hottest stars appear to rotate
faster than the cooler ones. The rotational velocity at the
equator varies from 200–250 km/s for O and B stars to
about 20 km/s for spectral type G. In shell stars, the
rotational velocity may reach 500 km/s.

The chemical composition of the outer layers is de-
duced from the strengths of the spectral lines. About
three-fourths of the stellar mass is hydrogen. Helium
comprises about one-fourth, and the abundance of other
elements is very small. The abundance of heavy ele-
ments in young stars (about 2%) is much larger than in
old ones, where it is less than 0.02%.

* The Intensity Emerging
from a Stellar Atmosphere

The intensity of radiation emerging from an atmosphere
is given by the expression (5.45), i. e.

Iν(0, θ)=
∞∫

0

Sν(τν) e−τν sec θ sec θ dτν . (8.2)

If a model atmosphere has been computed, the source
function Sν is known.

An approximate formula for the intensity can be de-
rived as follows. Let us expand the source function as
a Taylor series about some arbitrary point τ∗, thus

Sν = Sν(τ
∗)+ (τν − τ∗)S′

ν(τ
∗)+ . . .

where the dash denotes a derivative. With this ex-
pression, the integral in (8.2) can be evaluated,
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yielding

Iν(0, θ)= Sν(τ
∗)+ (cos θ− τ∗)S′

ν(τ
∗)+ . . . .

If we now choose τ∗ = cos θ, the second term will
vanish. In local thermodynamic equilibrium the source
function will be the Planck function Bν(T ). We thus
obtain the Eddington–Barbier approximation

Iν(0, θ)= Bν(T [τν = cos θ]) .

According to this expression, the radiation emerging in
a given direction originated at unit optical depth along
that direction.

8.8 Exercise

Exercise 8.1 Arrange the spectra in Fig. 8.1 in the
order of decreasing temperature.
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9. Binary Stars and Stellar Masses

Quite often, two stars may appear to be close together
in the sky, although they are really at very different

distances. Such chance pairs are called optical binary stars.
However, many close pairs of stars really are at the same
distance and form a physical system in which two stars
are orbiting around each other. Less than half of all stars
are single stars like the Sun. More than 50 % belong to
systems containing two or more members. In general, the
multiple systems have a hierarchical structure: a star and
a binary orbiting around each other in triple systems, two
binaries orbiting around each other in quadruple systems.
Thus most multiple systems can be described as binaries
with several levels.

Binaries are classified on the basis of the method of
their discovery. Visual binaries can be seen as two sepa-
rate components, i. e. the separation between the stars is
larger than about 0.1 arc seconds. The relative position of
the components changes over the years as they move in
their orbits (Fig. 9.1). In astrometric binary stars only one
component is seen, but its variable proper motion shows
that a second invisible component must be present. The
spectroscopic binary stars are discovered on the basis of

their spectra. Either two sets of spectral lines are seen or
else the Doppler shift of the observed lines varies period-
ically, indicating an invisible companion. The fourth class
of binaries are the photometric binary stars or eclipsing
variables. In these systems the components of the pair
regularly pass in front of each other, causing a change in
the total apparent magnitude.

Binary stars can also be classified on the basis of
their mutual separation. In distant binaries the separa-
tion between the components is tens or hundreds of
astronomical units and their orbital periods are from tens
to thousands of years. In close binaries the separation is
from about one AU down to the radius of the stars. The
orbital period ranges from a few hours to a few years. The
components of contact binaries are so close that they are
touching each other.

The stars in a binary system move in an elliptical or-
bit around the centre of mass of the system. In Chap. 6
it was shown that the relative orbit, too, is an ellipse,
and thus the observations are often described as if one
component remained stationary and the other orbited
around it.

Fig. 9.1. When a visual binary is followed for a long time, the components can be seen to move with respect to each other.
Picture of Krüger 60. (Yerkes Observatory)
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9.1 Visual Binaries

We consider a visual binary, assuming initially that the
brighter primary component is stationary and the fainter
secondary component is orbiting around it. The angu-
lar separation of the stars and the angular direction to
the secondary can be directly observed. Making use of
observations extending over many years or decades, the
relative orbit of the secondary can be determined. The
first binary orbit to be determined was that of ξ UMa in
1830 (Fig. 9.2).

The observations of visual binaries only give the pro-
jection of the relative orbital ellipse on the plane of the
sky. The shape and position of the true orbit are not
known. However, they can be calculated if one makes
use of the fact that the primary should be located at
a focal point of the relative orbit. The deviation of
the projected position of the primary from the focus
of the projected relative orbit allows one to determine
the orientation of the true orbit.

The absolute size of the orbit can only be found if
the distance of the binary is known. Knowing this, the
total mass of the system can be calculated from Kepler’s
third law.

The masses of the individual components can be de-
termined by observing the motions of both components
relative to the centre of mass (Fig. 9.3). Let the semi-
major axes of the orbital ellipses of the primary and the
secondary be a1 and a2. Then, according to the definition
of the centre of mass,

a1

a2
= m2

m1
, (9.1)

Fig. 9.2. In 1830 the orbit of ξ Ursae Majoris was the first
binary orbit determined observationally

Fig. 9.3. The components of a binary system move around
their common centre of mass. A1, A2 denote the positions of
the stars at a given time A, and similarly for B and C

where m1 and m2 are the component masses. The
semimajor axis of the relative orbit is

a = a1 +a2 . (9.2)

For example, the masses of the components of ξ UMa
have been found to be 1.3 and 1.0 solar masses.

9.2 Astrometric Binary Stars

In astrometric binaries, only the orbit of the brighter
component about the centre of mass can be observed.
If the mass of the visible component is estimated, e. g.
from its luminosity, the mass of the invisible companion
can also be estimated.

The first astrometric binary was Sirius, which in
the 1830’s was observed to have an undulating proper
motion. It was concluded that it had a small compan-
ion, which was visually discovered a few decades later
(Figs. 9.4 and 14.1). The companion, Sirius B, was
a completely new type of object, a white dwarf.

The proper motions of nearby stars have been
carefully studied in the search for planetary systems.
Although e.g. Barnard’s star may have unseen compan-
ions, the existence of planetary systems around other
stars was not established by proper motion studies but
with spectroscopic observations (see below).

9.3 Spectroscopic Binaries

The spectroscopic binaries (Fig. 9.5) appear as single
stars in even the most powerful telescopes, but their



9.3 Spectroscopic Binaries

223

Fig. 9.4. The apparent paths
of Sirius and its companion
in the sky

spectra show a regular variation. The first spectroscopic
binary was discovered in the 1880’s, when it was found
that the spectral lines of ζ UMa or Mizar split into two
at regular intervals.

The Doppler shift of a spectral line is directly propor-
tional to the radial velocity. Thus the separation of the
spectral lines is largest when one component is directly
approaching and the other is receding from the observer.
The period of the variation is the orbital period of the
stars. Unfortunately, there is no general way of deter-
mining the position of the orbit in space. The observed
velocity v is related to the true velocity v0 according to

v= v0 sin i , (9.3)

where the inclination i is the angle between the line of
sight and the normal of the orbital plane.

Fig. 9.5. Spectrum of the spectroscopic binary κArietis. In the upper spectrum the spectral lines are single, in the lower one
doubled. (Lick Observatory)

Consider a binary where the components move in
circular orbits about the centre of mass. Let the radii
of the orbits be a1 and a2. From the definition of the
centre of mass m1a1 = m2a2, and writing a = a1 +a2,
one obtains

a1 = am2

m1 +m2
. (9.4)

The true orbital velocity is

v0,1 = 2πa1

P
,

where P is the orbital period. The observed orbital
velocity according to (9.3) is thus

v1 = 2πa1 sin i

P
. (9.5)
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Substituting (9.4), one obtains

v1 = 2πa

P

m2 sin i

m1 +m2
.

Solving for a and substituting it in Kepler’s third law,
one obtains the mass function equation:

m3
2 sin3 i

(m1 +m2)2
= v3

1 P

2πG
. (9.6)

If one component in a spectroscopic binary is so faint
that its spectral lines cannot be observed, only P and v1

are observed. Equation (9.6) then gives the value of the
mass function, which is the expression on the left-hand
side. Neither the masses of the components nor the total
mass can be determined. If the spectral lines of both
components can be observed, v2 is also known. Then
(9.5) gives

v1

v2
= a1

a2

and furthermore the definition of the centre of mass
gives

m1 = m2v2

v1
.

When this is substituted in (9.6), the value of m2 sin3 i,
and correspondingly, m1 sin3 i, can be determined.
However, the actual masses cannot be found without
knowing the inclination.

The size of the binary orbit (the semimajor axis a)
is obtained from (9.5) apart from a factor sin i. In gen-
eral the orbits of binary stars are not circular and the
preceding expressions cannot be applied as they stand.
For an eccentric orbit, the shape of the velocity varia-
tion departs more and more from a simple sine curve as
the eccentricity increases. From the shape of the veloc-
ity variation, both the eccentricity and the longitude of
the periastron can be determined. Knowing these, the
mass function or the individual masses can again be
determined to within a factor sin3 i.

From accurate studies of the spectra of nearby stars,
several planet-sized companions have been found. In
the years 1995–2002, about 100 extrasolar planets were
observed, with masses in the range of 0.1 up to 13 Jupiter
masses.

9.4 Photometric Binary Stars

In the photometric binaries, a periodic variation in the
total brightness is caused by the motions of the com-
ponents in a double system. Usually the photometric
binaries are eclipsing variables, where the brightness
variations are due to the components passing in front of
each other. A class of photometric binaries where there
are no actual eclipses are the ellipsoidal variables. In
these systems, at least one of the components has been
distorted into an ellipsoidal shape by the tidal pull of
the other one. At different phases of the orbit, the pro-
jected surface area of the distorted component varies.
The surface temperature will also be lower at the ends
of the tidal bulges. Together these factors cause a small
variation in brightness.

The inclination of the orbit of an eclipsing binary
must be very close to 90◦. These are the only spectro-
scopic binaries for which the inclination is known and
thus the masses can be uniquely determined.

The variation of the magnitude of eclipsing variables
as a function of time is called the lightcurve. According
to the shape of the lightcurve, they are grouped into
three main types: Algol, β Lyrae and W Ursae Majoris
type (Fig. 9.6).

Algol Stars. The Algol-type eclipsing variables have
been named after β Persei or Algol. During most of
the period, the lightcurve is fairly constant. This corre-
sponds to phases during which the stars are seen separate
from each other and the total magnitude remains con-
stant. There are two different minima in the lightcurve,
one of which, the primary minimum, is usually much
deeper than the other one. This is due to the bright-
ness difference of the stars. When the larger star, which
is usually a cool giant, eclipses the smaller and hotter
component, there is a deep minimum in the lightcurve.
When the small, bright star passes across the disc of the
giant, the total magnitude of the system does not change
by much.

The shape of the minima depends on whether the
eclipses are partial or total. In a partial eclipse the
lightcurve is smooth, since the brightness changes
smoothly as the depth of the eclipse varies. In a total
eclipse there is an interval during which one component
is completely invisible. The total brightness is then con-
stant and the lightcurve has a flat bottomed minimum.
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Fig. 9.6. Typical lightcurves and schematic views of Algol,
β Lyrae and W Ursae Majoris type binary systems. The size
of the Sun is shown for comparison

The shape of the minima in Algol variables thus gives
information on the inclination of the orbit.

The duration of the minima depends on the ratio
of the stellar radii to the size of the orbit. If the star
is also a spectroscopic binary, the true dimensions of

the orbit can be obtained. In that case the masses and
the size of the orbit, and thus also the radii can be
determined without having to know the distance of the
system.

βLyrae Stars. In the β Lyrae-type binaries, the total
magnitude varies continuously. The stars are so close
to each other that one of them has been pulled into el-
lipsoidal shape. Thus the brightness varies also outside
the eclipses. The β Lyrae variables can be described
as eclipsing ellipsoidal variables. In the β Lyrae sys-
tem itself, one star has overfilled its Roche lobe (see
Sect. 11.6) and is steadily losing mass to its compan-
ion. The mass transfer causes additional features in the
lightcurve.

W UMa Stars. In W UMa stars, the lightcurve minima
are almost identical, very round and broad. These are
close binary systems where both components overfill
their Roche lobes, forming a contact binary system.

The observed lightcurves of photometric binaries
may contain many additional features that confuse the
preceding classification.

– The shape of the star may be distorted by the tidal
force of the companion. The star may be ellipsoidal
or fill its Roche surface, in which case it becomes
drop-like in shape.

– The limb darkening (Sects. 8.6 and 12.2) of the star
may be considerable. If the radiation from the edges
of the stellar disc is fainter than that from the centre,
it will tend to round off the lightcurve.

– In elongated stars there is gravity darkening: the parts
most distant from the centre are cooler and radiate
less energy.

– There are also reflection phenomena in stars. If the
stars are close together, they will heat the sides facing
each other. The heated part of the surface will then
be brighter.

– In systems with mass transfer, the material falling
onto one of the components will change the surface
temperature.

All these additional effects cause difficulties in
interpreting the lightcurve. Usually one computes a the-
oretical model and the corresponding lightcurve, which
is then compared with the observations. The model is
varied until a satisfactory fit is obtained.
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So far we have been concerned solely with the prop-
erties of binary systems in the optical domain. Recently
many double systems that radiate strongly at other wave-
lengths have been discovered. Particularly interesting
are the binary pulsars, where the velocity variation
can be determined from radio observations. Many dif-
ferent types of binaries have also been discovered at
X-ray wavelengths. These systems will be discussed in
Chap. 14.

The binary stars are the only stars with accurately
known masses. The masses for other stars are estimated
from the mass-luminosity relation (Sect. 8.7), but this
has to be calibrated by means of binary observations.

9.5 Examples

Example 9.1 The Mass of a Binary Star

The distance of a binary star is 10 pc and the largest an-
gular separation of the components is 7′′ and the smallest
is 1′′. The orbital period is 100 years. The mass of the bi-
nary is to be determined, assuming that the orbital plane
is normal to the line of sight.

From the angular separation and the distance, the
semimajor axis is

a = 4′′ ×10 pc = 40 AU .

According to Kepler’s third law

m1 +m2 = a3

P2
= 403

1002
M� = 6.4 M� .

Let the semimajor axis of one component be a1 = 3′′ and
for the other a2 = 1′′. Now the masses of the components
can be determined separately:

m1a1 = m2a2 ⇒ m1 = a2

a1
m2 = m2

3
,

m1 +m2 = 6.4 ⇒ m1 = 1.6 , m2 = 4.8 .

Example 9.2 The Lightcurve of a Binary

Let us suppose that the line of sight lies in the orbital
plane of an Algol type binary, where both components
have the same radius. The lightcurve is essentially as
shown in the figure. The primary minimum occurs when
the brighter component is eclipsed. The depth of the
minima will be calculated.

If the effective temperatures of the stars are TA and
TB and their radius is R, their luminosities are given by

L A = 4πR2σT 4
A , L B = 4πR2σT 4

B .

The flat part of the curve corresponds to the total
luminosity

L tot = L A + L B .

The luminosities may be expressed as absolute bolomet-
ric magnitudes by means of (4.13). Since the distance
moduli of the components are the same, the apparent
bolometric magnitude at the primary minimum will be

m A −mtot = MA − Mtot

= −2.5 lg
L A

L tot
= +2.5 lg

L tot

L A

= 2.5 lg
4πR2σT 4

A +4πR2σT 4
B

4πR2σT 4
A

= 2.5 lg

(
1+

(
TB

TA

)4
)
.

Similarly the depth of the secondary minimum is

m B −mtot = 2.5 lg

(
1+

(
TA

TB

)4
)
.

Let the effective temperatures of the stars be
TA = 5,000 K and TB = 12,000 K. The depth of the
primary minimum is then

m A −mtot = 2.5 lg

(
1+

(
12,000

5,000

)4
)

≈ 3.8 mag .
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The secondary minimum is

m B −mtot = 2.5 lg

(
1+

(
5000

12000

)4
)

≈ 0.03 mag .

9.6 Exercises

Exercise 9.1 The components of a binary move along
circular orbits. The mutual distance is 1 AU, and the
mass of each component is 1 M�. An observer in the
plane of the orbit will see periodic splitting of the
spectral lines. What is the maximum separation of the
components of the Hγ line.

Exercise 9.2 A planet (mass m) is orbiting a star
(mass M) at a distance a. The distance of the star from
the centre of gravity of the system is a′. Show that

MP2 = a2 (a −a′) ,

where P is period in years, distances are in AU’s and
masses in solar masses.

Exercise 9.3 The distance of Barnard’s star is 1.83 pc
and mass 0.135 M�. It has been suggested that it oscil-
lates with an amplitude of 0.026′′ in 25 year periods.
Assuming this oscillation is caused by a planet, find the
mass and radius of the orbit of this planet.
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10. Stellar Structure

The stars are huge gas spheres, hundreds of thou-
sands or millions of times more massive than the

Earth. A star such as the Sun can go on shining steadily
for thousands of millions of years. This is shown by stud-
ies of the prehistory of the Earth, which indicate that the
energyradiatedbytheSunhasnotchangedbymuchdur-
ing the last four thousand million years. The equilibrium
of a star must remain stable for such periods.

10.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal equilib-
rium of a star can be expressed as four differential
equations governing the distribution of mass, gas pres-
sure and energy production and transport in the star.
These equations will now be derived.

Hydrostatic Equilibrium. The force of gravity pulls
the stellar material towards the centre. It is resisted by
the pressure force due to the thermal motions of the gas
molecules. The first equilibrium condition is that these
forces be in equilibrium.

Consider a cylindrical volume element at the distance
r from the centre of the star (Fig. 10.1). Its volume is
dV = d A dr, where d A is its base area and dr its height;
its mass is dm = ρ d A dr, where ρ = ρ(r) is the gas
density at the radius r. If the mass inside radius r is Mr ,
the gravitational force on the volume element will be

dFg = −G Mr dm

r2
= −G Mrρ

r2
d A dr ,

where G is the gravitational constant. The minus sign in
this expression means that the force is directed towards
the centre of the star. If the pressure at the lower surface
of the volume element is P and at its upper surface
P +d P, the net force of pressure acting on the element
is

dFp = P d A − (P +d P)d A

= −dP d A .

Fig. 10.1. In hydrostatic equilibrium the sum of the gravi-
tational and pressure force acting on a volume element is
zero

Since the pressure decreases outwards, dP will be
negative and the force dFp positive. The equilibrium
condition is that the total force acting on the volume
element should be zero, i. e.

0 = dFg +dFp

= −G Mrρ

r2
d A dr −d P d A

or

dP

dr
= −G Mrρ

r2
. (10.1)

This is the equation of hydrostatic equilibrium.

Mass Distribution. The second equation gives the mass
contained within a given radius. Consider a spherical
shell of thickness dr at the distance r from the centre
(Fig. 10.2). Its mass is

dMr = 4πr2ρ dr ,
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Fig. 10.2. The mass of a thin spherical shell is the product of
its volume and its density

giving the mass continuity equation

dMr

dr
= 4πr2ρ . (10.2)

Energy Production. The third equilibrium condition
expresses the conservation of energy, requiring that any
energy produced in the star has to be carried to the
surface and radiated away. We again consider a spherical
shell of thickness dr and mass dMr at the radius r
(Fig. 10.3). Let Lr be the energy flux, i. e. the amount
of energy passing through the surface r per unit time. If
ε is the energy production coefficient, i. e. the amount
of energy released in the star per unit time and mass,
then

dLr = Lr+dr − Lr = εdMr = 4πr2ρε dr .

Thus the energy conservation equation is

dLr

dr
= 4πr2ρε . (10.3)

The rate at which energy is produced depends on the
distance to the centre. Essentially all of the energy ra-
diated by the star is produced in the hot and dense core.
In the outer layers the energy production is negligible
and Lr is almost constant.

Fig. 10.3. The energy flowing out of a spherical shell is the
sum of the energy flowing into it and the energy generated
within the shell

The Temperature Gradient. The fourth equilibrium
equation gives the temperature change as a function
of the radius, i. e. the temperature gradient dT/dr. The
form of the equation depends on how the energy is
transported: by conduction, convection or radiation.

In the interiors of normal stars conduction is very
inefficient, since the electrons carrying the energy can
only travel a short distance without colliding with other
particles. Conduction only becomes important in com-
pact stars, white dwarfs and neutron stars, where the
mean free path of photons is extremely short, but that of
some electrons can be relatively large. In normal stars
conductive energy transport can be neglected.

In radiative energy transport, photons emitted in hot-
ter parts of the star are absorbed in cooler regions, which
they heat. The star is said to be in radiative equilibrium,
when the energy released in the stellar interior is carried
outwards entirely by radiation.

The radiative temperature gradient is related to the
energy flux Lr according to

dT

dr
=
(

− 3

4ac

)(
κρ

T 3

)(
Lr

4πr2

)
, (10.4)
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where a = 4σ/c = 7.564×10−16 J m−3 K−4 is the radi-
ation constant, c the speed of light, and ρ the density.
The mass absorption coefficient κ gives the amount
of absorption per unit mass. Its value depends on the
temperature, density and chemical composition.

In order to derive (10.4), we consider the equation of
radiative transfer (5.44). In terms of the variables used
in the present chapter, it may be written

cos θ
dIν
dr

= −κνρIν + jν .

In this equation κν is replaced with a suitable mean
value κ. The equation is then multiplied with cos θ and
integrated over all directions and frequencies. On the
left hand side, Iν may be approximated with the Planck
function Bν. The frequency integral may then be eval-
uated by means of (5.16). On the right-hand side, the
first term can be expressed in terms of the flux density
according to (4.2) and the integral over directions of the
second gives zero, since jν does not depend on θ. One
thus obtains

4π

3

d

dr

( ac

4π
T 4
)

= −κρFr .

Finally, using the relation

Fr = Lr

4πr2
,

between the flux density Fr and the energy flux Lr , one
obtains (10.4).

The derivative dT/dr is negative, since the tem-
perature increases inwards. Clearly there has to be
a temperature gradient, if energy is to be transported
by radiation: otherwise the radiation field would be
the same in all directions and the net flux Fr would
vanish.

If the radiative transfer of energy becomes inefficient,
the absolute value of the radiative temperature gradient
becomes very large. In that case motions are set up in the
gas, which carry the energy outwards more efficiently
than the radiation. In these convective motions, hot gas
rises upwards into cooler layers, where it loses its energy
and sinks again. The rising and sinking gas elements
also mix the stellar material, and the composition of
the convective parts of a star becomes homogeneous.
Radiation and conduction, on the other hand, do not
mix the material, since they move only energy, not gas.

In order to derive the temperature gradient for the
convective case, consider a rising bubble. Assume that

the gas moving with the bubble obeys the adiabatic
equation of state

T ∝ P1− 1
γ , (10.5)

where P is the pressure of the gas and γ , the adiabatic
exponent

γ = CP/CV , (10.6)

is the ratio of the specific heats in constant pressure and
constant volume. This ratio of the specific heats depends
on the ionization of the gas, and can be computed when
the temperature, density and chemical composition are
known.

Taking the derivative of (10.5) we get the expression
for the convective temperature gradient

dT

dr
=
(

1− 1

γ

)
T

P

dP

dr
. (10.7)

In the practical computation of stellar structure, one
uses either (10.4) or (10.7), depending on which equa-
tion gives a less steep temperature gradient. In the
outermost layers of stars heat exchange with the sur-
roundings must be taken into account, and (10.7) is no
longer a good approximation. An often used method
for calculating the convective temperature gradient in
that case is the mixing-length theory. The theory of
convection is a difficult and still imperfectly under-
stood problem, which is beyond the scope of this
presentation.

The convective motions set in when the radiative tem-
perature gradient becomes larger in absolute value than
the adiabatic gradient, i. e. if either the radiative gradi-
ent becomes steep or if the convective gradient becomes
small. From (10.4) it can be seen that a steep radiative
gradient is expected, if either the energy flux density
or the mass absorption coefficient becomes large. The
convective gradient may become small, if the adiabatic
exponent approaches 1.

Boundary Conditions. In order to obtain a well-
posed problem, some boundary conditions have to be
prescribed for the preceding differential equations:

– There are no sources of energy or mass at the centre
inside the radius r = 0; thus M0 = 0 and L0 = 0.

– The total mass within the radius R of the star is fixed,
MR = M.
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– The temperature and pressure at the stellar surface
have some determinate values, TR and PR. These
will be very small compared to those in the interior,
and thus it is usually sufficient to take TR = 0 and
PR = 0.

In addition to these boundary conditions one needs
an expression for the pressure, which is given by the
equation of state as well as expressions for the mass
absorption coefficient and the energy generation rate,
which will be considered later. The solution of the ba-
sic differential equations give the mass, temperature,
density and energy flux as functions of the radius. The
stellar radius and luminosity can then be calculated and
compared with the observations.

The properties of a stellar equilibrium model are es-
sentially determined once the mass and the chemical
composition have been given. This result is known as
the Vogt–Russell theorem.

10.2 Physical State of the Gas

Due to the high temperature the gas in the stars is almost
completely ionized. The interactions between individual
particles are small, so that, to a good approximation, the
gas obeys the perfect gas equation of state,

P = k

µmH
ρT , (10.8)

where k is Boltzmann’s constant, µ the mean molecular
weight in units of mH, and mH the mass of the hydrogen
atom.

The mean molecular weight can be approximately
calculated assuming complete ionization. An atom with
nuclear charge Z then produces Z +1 free particles (the
nucleus and Z electrons). Hydrogen gives rise to two
particles per atomic mass unit; helium gives rise to three
particles per four atomic mass units. For all elements
heavier than hydrogen and helium it is usually sufficient
to take Z +1 to be half the atomic weight. (Exact values
could easily be calculated, but the abundance of heavy
elements is so small that this is usually not necessary.)
In astrophysics the relative mass fraction of hydrogen is
conventionally denoted by X, that of helium by Y and
that of all heavier elements by Z, so that

X +Y + Z = 1 . (10.9)

(The Z occuring in this equation should not be confused
with the nuclear charge, which is unfortunately denoted
by the same letter.) Thus the mean molecular weight
will be

µ= 1

2X + 3
4 Y + 1

2 Z
. (10.10)

At high temperatures the radiation pressure has to
be added to the gas pressure described by the perfect
gas equation. The pressure exerted by radiation is (see
p. 239)

Prad = 1

3
aT 4 , (10.11)

where a is the radiation constant. Thus the total pressure
is

P = k

µmH
ρT + 1

3
aT 4 . (10.12)

The perfect gas law does not apply at very high
densities.

The Pauli exclusion principle states that an atom with
several electrons cannot have more than one electron
with all four quantum numbers equal. This can also be
generalized to a gas consisting of electrons (or other
fermions). A phase space can be used to describe the
electrons. The phase space is a 6-dimensional space,
three coordinates of which give the position of the par-
ticle and the other three coordinates the momenta in x,
y and z directions. A volume element of the phase space
is

∆V =∆x∆y∆z∆px∆py∆pz . (10.13)

From the uncertainty principle it follows that the small-
est meaningful volume element is of the order of h3.
According to the exclusion principle there can be only
two electrons with opposite spins in such a volume ele-
ment. When density becomes high enough, all volume
elements of the phase space will be filled up to a certain
limiting momentum. Such matter is called degenerate.

Electron gas begins to degenerate when the density
is of the order 107 kg/m3. In ordinary stars the gas
is usually nondegenerate, but in white dwarfs and in
neutron stars, degeneracy is of central importance. The
pressure of a degenerate electron gas is (see p. 239)

P ≈
(

h2

me

)(
N

V

)5/3

, (10.14)
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where me is the electron mass and N/V the number of
electrons per unit volume. This equation may be written
in terms of the density

ρ = NµemH/V ,

whereµe is the mean molecular weight per free electron
in units of mH. An expression for µe may be derived in
analogy with (10.10):

µe = 1

X + 2
4 Y + 1

2 Z
= 2

X +1
. (10.15)

For the solar hydrogen abundance this yields

µe = 2/(0.71+1)= 1.17 .

The final expression for the pressure is

P ≈
(

h2

me

)(
ρ

µemH

)5/3

. (10.16)

This is the equation of state of a degenerate electron
gas. In contrast to the perfect gas law the pressure no
longer depends on the temperature, only on the density
and on the particle masses.

In normal stars the degenerate gas pressure is negli-
gible, but in the central parts of giant stars and in white
dwarfs, where the density is of the order of 108 kg/m3,
the degenerate gas pressure is dominant, in spite of the
high temperature.

At even higher densities the electron momenta be-
come so large that their velocities approach the speed
of light. In this case the formulas of the special theory of
relativity have to be used. The pressure of a relativistic
degenerate gas is

P ≈ hc

(
N

V

)4/3

= hc

(
ρ

µemH

)4/3

. (10.17)

In the relativistic case the pressure is proportional to
the density to the power 4/3, rather than 5/3 as for
the nonrelativistic case. The transition to the relativistic
situation takes place roughly at the density 109 kg/m3.

In general the pressure inside a star depends on the
temperature (except for a completely degenerate gas),
density and chemical composition. In actual stars the gas
will never be totally ionized or completely degenerate.
The pressure will then be given by more complicated
expressions. Still it can be calculated for each case of
interest. One may then write

P = P(T, ρ, X,Y, Z) , (10.18)

giving the pressure as a known function of the
temperature, density and chemical composition.

The opacity of the gas describes how difficult it is for
radiation to propagate through it. The change d I of the
intensity in a distance dr can be expressed as

d I = −Iα dr ,

where α is the opacity (Sect. 4.5). The opacity depends
on the chemical composition, temperature and density
of the gas. It is usually written as α= κρ, where ρ is the
density of the gas and κ the mass absorption coefficient
([κ] = m2/kg).

The inverse of the opacity represents the mean free
path of radiation in the medium, i. e. the distance it
can propagate without being scattered or absorbed. The
different types of absorption processes (bound–bound,
bound–free, free–free) have been described in Sect. 5.1.
The opacity of the stellar material due to each process
can be calculated for relevant values of temperature and
density.

10.3 Stellar Energy Sources

When the equations of stellar structure were derived,
the character of the source of stellar energy was left un-
specified. Knowing a typical stellar luminosity, one can
calculate how long different energy sources would last.
For instance, normal chemical burning could produce
energy for only a few thousand years. The energy re-
leased by the contraction of a star would last slightly
longer, but after a few million years this energy source
would also run out.

Terrestrial biological and geological evidence shows
that the solar luminosity has remained fairly constant
for at least a few thousand million years. Since the age
of the Earth is about 5000 million years, the Sun has
presumably existed at least for that time. Since the solar
luminosity is 4×1026 W, it has radiated about 6×1043 J
in 5×109 years. The Sun’s mass is 2×1030 kg; thus it
must be able to produce at least 3×1013 J/kg.

The general conditions in the solar interior are
known, regardless of the exact energy source. Thus, in
Example 10.5, it will be estimated that the temperature
at half the radius is about 5 million degrees. The central
temperature must be about ten million kelvins, which is
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Fig. 10.4. The nuclear bind-
ing energy per nucleon as
a function of the atomic
weight. Among isotopes
with the same atomic
weight the one with the
largest binding energy is
shown. The points cor-
respond to nuclei with
even proton and neutron
numbers, the crosses to
nuclei with odd mass
numbers. Preston, M.A.
(1962): Physics of the
Nucleus (Addison-Wesley
Publishing Company, Inc.,
Reading, Mass.)

high enough for thermonuclear fusion reactions to take
place.

In fusion reactions light elements are transformed
into heavier ones. The final reaction products have
a smaller total mass than the initial nuclei. This mass
difference is released as energy according to Einstein’s
relation E = mc2. Thermonuclear reactions are com-
monly referred to as burning, although they have no
relation to the chemical burning of ordinary fuels.

The atomic nucleus consists of protons and neutrons,
together referred to as nucleons. We define

mp = proton mass ,

mn = neutron mass ,

Z = nuclear charge = atomic number ,

N = neutron number ,

A = Z + N = atomic weight ,

m(Z, N)= mass of the nucleus .

The mass of the nucleus is smaller than the sum of
the masses of all its nucleons. The difference is called
the binding energy. The binding energy per nucleon is

Q = 1

A
(Zmp + Nmn −m(Z, N))c2 . (10.19)

It turns out that Q increases towards heavier elements
up to iron (Z = 26). Beyond iron the binding energy
again begins to decrease (Fig. 10.4).

It is known that the stars consist mostly of hydrogen.
Let us consider how much energy would be released
by the fusion of four hydrogen nuclei into a helium nu-
cleus. The mass of a proton is 1.672×10−27 kg and
that of a helium nucleus is 6.644×10−27 kg. The mass
difference, 4.6×10−29 kg, corresponds to an energy
difference E = 4.1×10−12 J. Thus 0.7% of the mass
is turned into energy in the reaction, corresponding to
an energy release of 6.4×1014 J per one kilogram of
hydrogen. This should be compared with our previous
estimate that 3×1013 J/kg is needed.

Already in the 1930’s it was generally accepted
that stellar energy had to be produced by nuclear fu-
sion. In 1938 Hans Bethe and independently Carl
Friedrich von Weizsäcker put forward the first de-
tailed mechanism for energy production in the stars, the
carbon–nitrogen–oxygen (CNO) cycle. The other im-
portant energy generation processes (the proton–proton
chain and the triple-alpha reaction) were not proposed
until the 1950’s.

The Proton–Proton Chain (Fig. 10.5). In stars with
masses of about that of the Sun or smaller, the energy
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Fig. 10.5. The proton–
proton chain. In the
ppI branch, four pro-
tons are transformed into
one helium nucleus, two
positrons, two neutrinos
and radiation. The relative
weights of the reactions
are given for conditions in
the Sun. The pp chain is
the most important energy
source in stars with mass
below 1.5 M�

is produced by the proton–proton (pp) chain. It consists
of the following steps:

ppI: (1) 1H + 1H → 2H + e+ +νe ,

1H + 1H + e− → 2H +νe ,

(2) 2H + 1H → 3He +γ ,

(3) 3He + 3He → 4He +2 1H .

For each reaction (3) the reactions (1) and (2) have
to take place twice. The first reaction step has a very
small probability, which has not been measured in the

laboratory. At the central density and temperature of
the Sun, the expected time for a proton to collide with
another one to form a deuteron is 1010 years on the
average. It is only thanks to the slowness of this reaction
that the Sun is still shining. If it were faster, the Sun
would have burnt out long ago. The neutrino produced
in the reaction (1) can escape freely from the star and
carries away some of the energy released. The positron
e+ is immediately annihilated together with an electron,
giving rise to two gamma quanta.

The second reaction, where a deuteron and a pro-
ton unite to form the helium isotope 3He, is very fast
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compared to the preceding one. Thus the abundance of
deuterons inside stars is very small.

The last step in the pp chain can take three different
forms. The ppI chain shown above is the most probable
one. In the Sun 91% of the energy is produced by the
ppI chain. It is also possible for 3He nuclei to unite into
4He nuclei in two additional branches of the pp chain.

ppII: (3) 3He + 4He → 7Be +γ ,

(4) 7Be + e− → 7Li +νe ,

(5) 7Li + 1H → 4He + 4He ,

ppIII: (3) 3He + 4He → 7Be +γ ,

(4) 7Be + 1H → 8B +γ ,

(5) 8B → 8Be + e+ +νe ,

(6) 8Be → 4He + 4He .

The Carbon Cycle (Fig. 10.6). At temperatures below
20 million degrees the pp chain is the main energy
production mechanism. At higher temperatures corre-
sponding to stars with masses above 1.5 M�, the carbon
(CNO) cycle becomes dominant, because its reaction
rate increases more rapidly with temperature. In the
CNO cycle carbon, oxygen and nitrogen act as catalysts.
The reaction cycle is the following:

(1) 12C + 1H → 13N +γ ,

(2) 13N → 13C + e+ +νe ,

(3) 13C + 1H → 14N +γ ,

(4) 14N + 1H → 15O +γ ,

(5) 15O → 15N +γ+νe ,

(6) 15N + 1H → 12C + 4He .

Reaction (4) is the slowest, and thus determines the
rate of the CNO cycle. At a temperature of 20 million
degrees the reaction time for the reaction (4) is a million
years.

The fraction of energy released as radiation in the
CNO cycle is slightly smaller than in the pp chain,
because more energy is carried away by neutrinos.

The Triple Alpha Reaction. As a result of the pre-
ceding reactions, the abundance of helium in the stellar
interior increases. At a temperature above 108 degrees

Fig. 10.6. The CNO cycle is catalysed by 12C. It transforms
four protons into a helium nucleus, two positrons, two neutri-
nos and radiation. It is the dominant energy source for stars
more massive than 1.5 M�

the helium can be transformed into carbon in the triple
alpha reaction:

(1) 4He + 4He ↔ 8Be ,

(2) 8Be + 4He → 12C +γ .

Here 8Be is unstable and decays into two helium
nuclei or alpha particles in 2.6×10−16 seconds. The
production of carbon thus requires the almost simulta-
neous collision of three particles. The reaction is often
written

3 4He → 12C +γ .

Once helium burning has been completed, at higher
temperatures other reactions become possible, in which
heavier elements up to iron and nickel are built up.
Examples of such reactions are various alpha reactions
and oxygen, carbon and silicon burning.

Alpha Reactions. During helium burning some of the
carbon nuclei produced react with helium nuclei to form
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oxygen, which in turn reacts to form neon, etc. These
reactions are fairly rare and thus are not important as
stellar energy sources. Examples are

12C + 4He → 16O +γ ,

16O + 4He → 20Ne +γ ,

20Ne + 4He → 24Mg +γ .

Carbon Burning. After the helium is exhausted, carbon
burning sets in at the temperature (5–8)×1010 K:

12C + 12C → 24Mg +γ

→ 23Na + 1H

→ 20Ne + 4He

→ 23Mg +n

→ 16O +2 4He .

Oxygen Burning. Oxygen is consumed at slightly
higher temperatures in the reactions

16O + 16O → 32S +γ

→ 31P + 1H

→ 28Si + 4He

→ 31S +n

→ 24Mg +2 4He .

Silicon Burning. After several intermediate steps the
burning of silicon produces nickel and iron. The total
process may be expressed as

28Si + 28Si → 56Ni +γ ,

56Ni → 56Fe +2 e+ +2 νe .

When the temperature becomes higher than about
109 K, the energy of the photons becomes large enough
to destroy certain nuclei. Such reactions are called
photonuclear reactions or photodissociations.

The production of elements heavier than iron requires
an input of energy, and therefore such elements can-
not be produced by thermonuclear reactions. Elements
heavier than iron are almost exclusively produced by
neutron capture during the final violent stages of stellar
evolution (Sect. 11.5).

The rates of the reactions presented above can be
determined by laboratory experiments or by theoreti-
cal calculations. Knowing them, one can calculate the
rate at which energy is released per unit mass and time
as a function of the density, temperature and chemical
composition:

ε= ε(T, ρ, X,Y, Z) . (10.20)

In reality the relative abundance of each of the heav-
ier nuclei needs to be known, not just their total
abundance Z.

10.4 Stellar Models

A theoretical stellar model is obtained if one solves the
differential equations for stellar structure. As we have
already noted, the model is uniquely defined once the
chemical composition and the mass of the star have been
given.

Stars just formed out of the interstellar medium are
chemically homogeneous. When stellar models for ho-
mogeneous stars are plotted in the HR diagram, they fall
along the lower edge of the main sequence. The theo-
retical sequence obtained in this way is called the zero
age main sequence, ZAMS. The exact position of the
ZAMS depends on the initial chemical composition. For
stars with an initial abundance of heavy elements like
that in the Sun, the computed ZAMS is in good agree-
ment with the observations. If the initial value of Z is
smaller, the theoretical ZAMS falls below the main se-
quence in the subdwarf region of the HR diagram. This
is related to the classification of stars into populations I
and II, which is discussed in Sect. 17.2.

The theoretical models also provide an explanation
for the mass–luminosity relation. The computed proper-
ties of zero age main sequence stars of different masses
are given in Table 10.1. The chemical composition as-
sumed is X = 0.71 (hydrogen mass fraction), Y = 0.27
(helium) and Z = 0.02 (heavier elements), except for
the 30 M� star, which has X = 0.70 and Y = 0.28. The
luminosity of a one solar mass star is 0.74 L� and the
radius 0.87 R�. Thus the Sun has brightened and ex-
panded to some extent during its evolution. However,
these changes are small and do not conflict with the ev-
idence for a steady solar energy output. In addition the
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Table 10.1. Properties of zero age main sequence stars.
(Tc = central temperature;ρc = central density; Mci = relative

mass of convective interior; Mce = relative mass of convective
envelope)

M R L Te Tc ρc Mci Mce

[M�] [R�] [L�] [K] [106 K] [kg/m3] [M] [M]

30 6.6 140,000 44,000 36 3,000 0.60 0
15 4.7 21,000 32,000 34 6,200 0.39 0
9 3.5 4,500 26,000 31 7,900 0.26 0
5 2.2 630 20,000 27 26,000 0.22 0
3 1.7 93 14,000 24 42,000 0.18 0
1.5 1.2 5.4 8,100 19 95,000 0.06 0
1.0 0.87 0.74 5,800 14 89,000 0 0.01
0.5 0.44 0.038 3,900 9.1 78,000 0 0.41

biological evidence only goes back about 3000 million
years.

The model calculations show that the central tem-
perature in the smallest stars (M ≈ 0.08 M�) is about
4×106 K, which is the minimum temperature required
for the onset of thermonuclear reactions. In the biggest
stars (M ≈ 50 M�), the central temperature reaches
4×107 K.

The changes in chemical composition caused by the
nuclear reactions can be computed, since the rates of
the various reactions at different depths in the star are
known. For example, the change ∆X of the hydrogen
abundance in the time interval ∆t is proportional to the
rate of energy generation ε and to ∆t:

∆X ∝ −ε∆t . (10.21)

The constant of proportionality is clearly the amount of
hydrogen consumed per unit energy [kg/J]. The value
of this constant of proportionality is different for the pp
chain and the CNO cycle. Therefore the contribution
from each reaction chain must be calculated separately
in (10.21). For elements that are produced by the nuclear
reactions, the right-hand side contribution in (10.21) is
positive. If the star is convective, the change in compo-
sition is obtained by taking the average of (10.21) over
the convection zone.

* Gas Pressure and Radiation Pressure

Let us consider noninteracting particles in a rectangular
box. The particles may also be photons. Let the sides
of the box be ∆x, ∆y and ∆z, and the number of par-
ticles, N . The pressure is caused by the collisions of
the particles with the sides of the box. When a particle

hits a wall perpendicular to the x axis, its momentum in
the x direction, px , changes by ∆p = 2px . The particle
will return to the same wall after the time∆t = 2∆x/vx .
Thus the pressure exerted by the particles on the wall
(surface area A =∆y∆z) is

P = F

A
=
∑
∆p/∆t

A
=
∑

pxvx

∆x∆y∆z
= N〈pxvx〉

V
,

where V =∆x∆y∆z is the volume of the box and the
angular brackets represent the average value. The mo-
mentum is px = mvx (where m = hν/c2 for photons),
and hence

P = Nm〈v2
x〉

V
.

Suppose the velocities of the particles are isotropically
distributed. Then 〈v2

x〉 = 〈v2
y〉 = 〈v2

z 〉, and thus

〈v2〉 = 〈v2
x〉+〈v2

y〉+〈v2
z 〉 = 3〈v2

x〉
and

P = Nm〈v2〉
3V

.

If the particles are gas molecules, the energy of
a molecule is ε= 1

2 mv2. The total energy of the gas is
E = N〈ε〉 = 1

2 Nm〈v2〉, and the pressure may be written

P = 2

3

E

V
(gas) .

If the particles are photons, they move with the speed
of light and their energy is ε= mc2. The total energy of
a photon gas is thus E = N〈ε〉 = Nmc2 and the pressure
is

P = 1

3

E

V
(radiation) .
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According to (4.7), (4.4) and (5.16) the energy
density of blackbody radiation is

E

V
= u = 4π

c
I = 4

c
F = 4

c
σT 4 ≡ aT 4 ,

where a = 4σ/c is the radiation constant. Thus the
radiation pressure is

Prad = a T 4/3 .

* The Pressure of a Degenerate Gas

A gas where all available energy levels up to a lim-
iting momentum p0, known as the Fermi momentum,
are filled is called degenerate. We shall determine the
pressure of a completely degenerate electron gas.

Let the volume of the gas be V . We consider electrons
with momenta in the range [p, p+d p]. Their avail-
able phase space volume is 4πp2d pV . According to the
Heisenberg uncertainty relation the elementary volume
in phase space is h3 and, according to the Pauli exclu-
sion principle, this volume can contain two electrons
with opposite spins. Thus the number of electrons in
the momentum interval [p, p+d p] is

dN = 2
4πp2d p V

h3
.

The total number of electrons with momenta smaller
than p0 is

N =
∫

dN = 8πV

h3

p0∫
0

p2 d p = 8πV

3h3
p3

0 .

Hence the Fermi momentum p0 is

p0 =
(

3

π

)1/3 h

2

(
N

V

)1/3

.

Nonrelativistic Gas. The kinetic energy of an electron
is ε= p2/2me. The total energy of the gas is

E =
∫
ε dN = 4πV

meh3

p0∫
0

p4 d p

= 4πV

5 meh3
p5

0 .

Introducing the expression for the Fermi momentum p0,
one obtains

E = π

40

(
3

π

)5/3 h2

me
V

(
N

V

)5/3

.

The pressure of the gas was derived in *Gas Pressure
and Radiation Pressure:

P = 2

3

E

V

= 1

20

(
3

π

)2/3 h2

me

(
N

V

)5/3

(nonrelativistic) .

Here N/V is the number density of electrons.

Relativistic Gas. If the density becomes so large that
the electron kinetic energy ε corresponding to the Fermi
momentum exceeds the rest energy mec2, the relativistic
expression for the electron energy has to be used. In the
extreme relativistic case ε= cp and the total energy

E =
∫
ε dN = 8πcV

h3

p0∫
0

p3 d p

= 2πcV

h3
p4

0 .

The expression for the Fermi momentum remains
unchanged, and hence

E = π

8

(
3

π

)4/3

hcV

(
N

V

)4/3

.

The pressure of the relativistic electron gas is obtained
from the formula derived for a photon gas in *Gas
Pressure and Radiation Pressure:

P = 1

3

E

V

= 1

8

(
3

π

)1/3

hc

(
N

V

)4/3

(relativistic) .

We have obtained the nonrelativistic and extreme rel-
ativistic approximations to the pressure. In intermediate
cases the exact expression for the electron energy,

ε= (m2
ec4 + p2c2)1/2 ,

has to be used.
The preceding derivations are rigorously valid only

at zero temperature. However, the densities in compact



240

10. Stellar Structure

stars are so high that the effects of a nonzero temper-
ature are negligible, and the gas may be considered
completely degenerate.

10.5 Examples

Example 10.1 The Gravitational Acceleration at the
Solar Surface

The expression for the gravitational acceleration is

g = G M�
R2

.

Using the solar mass M = 1.989×1030 kg and radius
R = 6.96×108 m, one obtains

g = 274 m s−2 ≈ 28 g0 ,

where g0 = 9.81 m s−2 is the gravitational acceleration
at the surface of the Earth.

Example 10.2 The Average Density of the Sun

The volume of a sphere with radius R is

V = 4

3
πR3 ;

thus the average density of the Sun is

ρ = M

V
= 3M

4πR3
≈ 1410 kg m−3 .

Example 10.3 Pressure at Half the Solar Radius

The pressure can be estimated from the condition for
the hydrostatic equilibrium (10.1). Suppose the density
is constant and equal to the average density ρ. Then the
mass within the radius r is

Mr = 4

3
πρr3 ,

and the hydrostatic equation can be written

dP

dr
= −G Mrρ

r2
= −4πGρ2r

3
.

This can be integrated from half the solar radius, r =
R�/2, to the surface, where the pressure vanishes:

0∫
P

d P = −4

3
πGρ2

R�∫
R�/2

r dr ,

which gives

P = 1

2
πGρ2 R2

�

≈ 1

2
π 6.67×10−11 ×14102 × (6.96×108)2N/m2

≈ 1014 Pa .

This estimate is extremely rough, since the density
increases strongly inwards.

Example 10.4 The Mean Molecular Weight of the Sun

In the outer layers of the Sun the initial chemical com-
position has not been changed by nuclear reactions. In
this case one can use the values X = 0.71, Y = 0.27 and
Z = 0.02. The mean molecular weight (10.10) is then

µ= 1

2×0.71+0.75×0.27+0.5×0.02
≈ 0.61 .

When the hydrogen is completely exhausted, X = 0 and
Y = 0.98, and hence

µ= 1

0.75×0.98+0.5×0.02
≈ 1.34 .

Example 10.5 The Temperature of the Sun at
r = R�/2

Using the density from Example 10.2 and the pressure
from Example 10.3, the temperature can be estimated
from the perfect gas law (10.8). Assuming the surface
value for the mean molecular weight (Example 10.4),
one obtains the temperature

T = µmH P

kρ
= 0.61×1.67×10−27 ×1.0×1014

1.38×10−23 ×1410

≈ 5×106 K .
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Example 10.6 The Radiation Pressure in the Sun at
r = R�/2

In the previous example we found that the temperature
is T ≈ 5×106 K. Thus the radiation pressure given by
(10.11) is

Prad = 1

3
aT 4 = 1

3
×7.564×10−16 × (5×106)4

≈ 2×1011 Pa .

This is about a thousand times smaller than the gas
pressure estimated in Example 10.3. Thus it confirms
that the use of the perfect gas law in Example 10.5 was
correct.

Example 10.7 The Path of a Photon from the Centre
of a Star to Its Surface

Radiative energy transport can be described as a random
walk, where a photon is repeatedly absorbed and re-
emitted in a random direction. Let the step length of the
walk (the mean free path) be d. Consider, for simplicity,
the random walk in a plane. After one step the photon
is absorbed at

x1 = d cos θ1 , y1 = d sin θ1 ,

where θ1 is an angle giving the direction of the step.
After N steps the coordinates are

x =
N∑

i = 1

d cos θi , y =
N∑

i = 1

d sin θi ,

and the distance from the starting point is

r2 = x2 + y2

= d2

⎡
⎣( N∑

1

cos θi

)2

+
(

N∑
1

sin θi

)2
⎤
⎦ .

The first term in square brackets can be written(
N∑
1

cos θi

)2

= (cos θ1 + cos θ2 + . . .+ cos θN)
2

=
N∑
1

cos2 θi +
∑
i �= j

cos θi cos θ j .

Since the directions θi are randomly distributed and
independent,∑

i �= j

cos θi cos θ j = 0 .

The same result applies for the second term in square
brackets. Thus

r2 = d2
N∑
1

(cos2 θi + sin2 θi)= Nd2 .

After N steps the photon is at the distance r = d
√

N
from the starting point. Similarly, a drunkard taking
a hundred one-metre steps at random will have wan-
dered ten metres from his/her starting point. The same
result applies in three dimensions.

The time taken by a photon to reach the sur-
face from the centre depends on the mean free path
d = 1/α = 1/κρ. The value of κ at half the solar ra-
dius can be estimated from the values of density and
temperature obtained in Example 10.2 and 10.5. The
mass absorption coefficient in these conditions is found
to be κ = 10 m2/kg. (We shall not enter on how it is
calculated.) The photon mean free path is then

d = 1

κρ
≈ 10−4 m .

This should be a reasonable estimate in most of the
solar interior. Since the solar radius r = 109 m, the
number of steps needed to reach the surface will be
N = (r/d)2 = 1026. The total path travelled by the
photon is s = Nd = 1022 m, and the time taken is
t = s/c = 106 years; a more careful calculation gives
t = 107 years. Thus it takes 10 million years for the
energy generated at the centre to radiate into space. Of
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course the radiation that leaves the surface does not con-
sist of the same gamma photons that were produced near
the centre. The intervening scattering, emission and ab-
sorption processes have transformed the radiation into
visible light (as can easily be seen).

10.6 Exercises

Exercise 10.1 How many hydrogen atoms are there
in the Sun per each helium atom?

Exercise 10.2 a) How many pp reactions take place
in the Sun every second? The luminosity of the Sun
is 3.9×1026 W, the mass of a proton is 1.00728 amu,
and that of the α particle 4.001514 amu (1 amu is
1.6604×10−27 kg).

b) How many neutrinos produced in these pp
reactions will hit the Earth in one second?

Exercise 10.3 The mass absorption coefficient of
a neutrino is κ = 10−21 m2 kg−1. Find the mean free
path at the centre of the Sun.
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11. Stellar Evolution

In the preceding chapter we have seen how one can
compute the evolution of a star by starting from a ho-

mogeneous model representing a newly formed system.
When the chemical composition of the star changes with
time, a new model is computed each time. In this chap-

ter we shall consider the theoretical evolutionary paths of
systems with various masses and see how the computed
evolution explains the observational data. The following
discussion is ratherqualitative, since thedetailsof the the-
oretical calculations are too involved for the present book.

11.1 Evolutionary Time Scales

Changes in a star may take place on quite different time
scales at different evolutionary phases. There are three
important basic time scales: the nuclear time scale tn,
the thermal time scale tt and the dynamical or freefall
time scale td.

The Nuclear Time Scale. The time in which a star radi-
ates away all the energy that can be released by nuclear
reactions is called the nuclear time scale. An estimate
of this time can be obtained if one calculates the time
in which all available hydrogen is turned into helium.
On the basis of theoretical considerations and evolu-
tionary computations it is known that only just over
10% of the total mass of hydrogen in the star can be
consumed before other, more rapid evolutionary mech-
anisms set in. Since 0.7% of the rest mass is turned into
energy in hydrogen burning, the nuclear time scale will
be

tn ≈ 0.007×0.1 Mc2

L
. (11.1)

Mass Spectral type Contraction Main Main Red
[M�] on the main to main sequence sequence to giant

sequence sequence red giant

30 O5 0.02 4.9 0.55 0.3
15 B0 0.06 10 1.7 2
9 B2 0.2 22 0.2 5
5 B5 0.6 68 2 20
3 A0 3 240 9 80
1.5 F2 20 2,000 280
1.0 G2 50 10,000 680
0.5 M0 200 30,000
0.1 M7 500 107

Table 11.1. Stellar life-
times (unit 106 years)

For the Sun one obtains the nuclear time scale
1010 years, and thus

tn ≈ M/M�
L/L�

×1010 a . (11.2)

This gives the nuclear time scale as a function of the
mass M and luminosity L of a given star. For example,
if the mass is 30 M�, one obtains tn about 2 million
years. The reason for the shorter time scale is that the
stellar luminosity strongly increases for higher masses
(Table 10.1).

The Thermal Time Scale. The time in which a star
would radiate away all its thermal energy if the nuclear
energy production were suddenly turned off is called
the thermal time scale. This is also the time it takes
for radiation from the centre to reach the surface. The
thermal time scale may be estimated as

tt ≈ 0.5 G M2/R

L

≈ (M/M�)2

(R/R�)(L/L�)
×2×107 a ,

(11.3)



244

11. Stellar Evolution

where G is the constant of gravity and R the stellar
radius. For the Sun the thermal time scale is about
20 million years or 1/500 of the nuclear time scale.

The Dynamical Time Scale. The third and shortest
time scale is the time it would take a star to collapse if
the pressure supporting it against gravity were suddenly
removed. It can be estimated from the time it would take
for a particle to fall freely from the stellar surface to the
centre. This is half of the period given by Kepler’s third
law, where the semimajor axis of the orbit corresponds
to half the stellar radius R:

td = 2π

2

√
(R/2)3

G M
≈
√

R3

G M
. (11.4)

The dynamical time scale of the Sun is about half an
hour.

The ordering of the time scales is normally like that
in the Sun, i. e. td � tt � tn.

11.2 The Contraction of Stars Towards
the Main Sequence

The formation and subsequent gravitational collapse of
condensations in the interstellar medium will be con-
sidered in a later chapter. Here we shall follow the
behaviour of such a protostar, when it is already in
the process of contraction.

When a cloud contracts, gravitational potential en-
ergy is released and transformed into thermal energy
of the gas and into radiation. Initially the radiation can
propagate freely through the material, because the den-
sity is low and the opacity small. Therefore most of the
liberated energy is radiated away and the temperature
does not increase. The contraction takes place on the
dynamical time scale; the gas is falling freely inwards.

The density and the pressure increase most rapidly
near the centre of the cloud. As the density increases, so
does the opacity. A larger fraction of the released energy
is then turned into heat, and the temperature begins to
rise. This leads to a further increase in the pressure that
is resisting the free fall. The contraction of the central
part of the cloud slows down. The outer parts, however,
are still falling freely.

At this stage, the cloud may already be considered
a protostar. It consists mainly of hydrogen in molec-

ular form. When the temperature reaches 1800 K, the
hydrogen molecules are dissociated into atoms. The dis-
sociation consumes energy, and the rise in temperature
is slowed down. The pressure then also grows more
slowly and this in turn means that the rate of contrac-
tion increases. The same sequence of events is repeated,
first when hydrogen is ionized at 104 K, and then when
helium is ionized. When the temperature has reached
about 105 K, the gas is essentially completely ionized.

The contraction of a protostar only stops when a large
fraction of the gas is fully ionized in the form of plasma.
The star then settles into hydrostatic equilibrium. Its fur-
ther evolution takes place on the thermal time scale,
i. e. much more slowly. The radius of the protostar
has shrunk from its original value of about 100 AU to
about 1/4 AU. It will usually be located inside a larger
gas cloud and will be accreting material from its sur-
roundings. Its mass therefore grows, and the central
temperature and density increase.

The temperature of a star that has just reached equi-
librium is still low and its opacity correspondingly large.
Thus it will be convective in its centre. The convective
energy transfer is quite efficient and the surface of the
protostar will therefore be relatively bright.

We now describe the evolution in the HR diagram.
Initially the protostar will be faint and cool, and it will
reside at the lower far right in the HR diagram (outside
Fig. 11.1). During the collapse its surface rapidly heats
up and brightens and it moves to the upper right of
Fig. 11.1. At the end of the collapse the star will settle
at a point corresponding to its mass on the Hayashi
track. The Hayashi track (Fig. 11.1) gives the location
in the HR diagram of completely convective stars. Stars
to its right cannot be in equilibrium and will collapse
on the dynamic time scale.

The star will now evolve almost along the Hayashi
track on the thermal time scale. In the HR diagram it
moves almost vertically downwards, its radius decreases
and its luminosity drops (Fig. 11.1). As the temperature
goes on increasing in its centre, the opacity diminishes
and energy begins to be transported by radiation. The
mass of the radiative region will gradually grow until
finally most of the star is radiative. By then the cen-
tral temperature will have become so large that nuclear
reactions begin. Previously all the stellar energy had
been released potential energy, but now the nuclear re-
actions make a growing contribution and the luminosity
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Fig. 11.1. The paths in the
HR diagram of stars contract-
ing to the main sequence on
the thermal time scale. Af-
ter a rapid dynamical collapse
the stars settle on the Hayashi
track and evolve towards the
main sequence on the thermal
time scale. (Models by Iben, I.
(1965): Astrophys. J. 141, 993)

increases. The stellar surface temperature will also in-
crease and the star will move slightly upwards to the
left in the HR diagram. In massive stars, this turn to the
left occurs much earlier, because their central tempera-
tures are higher and the nuclear reactions are initiated
earlier.

For solar mass stars, the rapid collapse of the proto-
stellar cloud only lasts for a few hundred years. The final
stage of condensation is much slower, lasting several
tens of millions of years. This length of time strongly

depends on the stellar mass because of the luminosity
dependence of the thermal time scale. A 15 M� star con-
denses to the main sequence in 60,000 years, whereas
for a 0.1 M� star, the time is hundreds of millions of
years.

Some of the hydrogen burning reactions start already
at a few million degrees. For example, lithium, beryl-
lium and boron burn to helium in the ppII and ppIII
branches of the pp chain long before the complete chain
has turned on. Because the star is convective and thus
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Fig. 11.2. Herbig–Haro ob-
ject number 555 lies at
the end of the “elephant’s
trunk" in Pelican Nebula in
Cygnus. The small wings
are shockwaves, which
give evidence for power-
ful outflows from newly
formed stars embedded
within the clouds. (Photo
University of Colorado,
University of Hawaii and
NOAO/AURA/NSF)

well mixed during the early stages, even its surface ma-
terial will have been processed in the centre. Although
the abundances of the above-mentioned elements are
small, they give important information on the central
temperature.

The beginning of the main sequence phase is marked
by the start of hydrogen burning in the pp chain at
a temperature of about 4 million degrees. The new form
of energy production completely supersedes the energy
release due to contraction. As the contraction is halted,
the star makes a few oscillations in the HR diagram, but
soon settles in an equilibrium and the long, quiet main
sequence phase begins.

It is difficult to observe stars during contraction, be-
cause the new-born stars are usually hidden among
dense clouds of dust and gas. However, some con-
densations in interstellar clouds have been discovered
and near them, very young stars. One example are
the T Tauri stars. Their lithium abundance is relatively
high, which indicates that they are newly formed stars
in which the central temperature has not yet become
large enough to destroy lithium. Near the T Tauri stars,
small, bright, star-like nebulae, Herbig–Haro objects,

have been discovered. These are thought to be pro-
duced in the interaction between a stellar wind and the
surrounding interstellar medium.

11.3 The Main Sequence Phase

The main sequence phase is that evolutionary stage in
which the energy released by the burning of hydrogen
in the core is the only source of stellar energy. Dur-
ing this stage, the star is in stable equilibrium, and its
structure changes only because its chemical composi-
tion is gradually altered by the nuclear reactions. Thus
the evolution takes place on a nuclear time scale, which
means that the main sequence phase is the longest part
of the life of a star. For example, for a solar mass star,
the main sequence phase lasts for about 10,000 million
years. More massive stars evolve more rapidly, because
they radiate much more power. Thus the main sequence
phase of a 15 solar mass star is only about 10 mil-
lion years. On the other hand, less massive stars have
a longer main sequence lifetime: a 0.25 M� star spends
about 70,000 million years on the main sequence.
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Since stars are most likely to be found in the stage of
steady hydrogen burning, the main sequence in the HR
diagram is richly populated, in particular at its low-mass
end. The more massive upper main sequence stars are
less abundant because of their shorter main sequence
lifetimes.

If the mass of a star becomes too large, the force
of gravity can no longer resist the radiation pressure.
Stars more massive than this upper limit cannot form,
because they cannot accrete additional mass during the
contraction phase. Theoretical computations give a lim-
iting mass of about 120 M�; the most massive stars
observed are claimed to be about 150 M�.

There is also a lower-mass limit of the main sequence.
Stars below 0.08 M� never become hot enough for hy-
drogen burning to begin. They can still generate some
luminosity from the burning of deuterium, but this en-
ergy source is rapidly exhausted. These brown dwarfs
have surface temperatures in the range of 1000–2000 K
Hundreds of brown dwarfs have now been found in ded-
icated surveys. The lower limit for brown dwarf mass is
sometimes taken to be about 0.015,M�, corresponding
to the minimum mass for deuterium burning.

If the mass is even lower there are no nuclear sources
of energy. The smallest protostars therefore contract to
planet-like dwarfs. During the contraction phase they
radiate because potential energy is released, but even-
tually they begin to cool. In the HR diagram such stars
first move almost vertically downwards and then further
downwards to the right.

Is there a difference between the lowest-mass brown
dwarfs and the most massive planets? If brown dwarfs
have formed by gravitational collapse and fragmen-
tation as described in the previous section and in
Abschn. 15.4, there is no reason not to count them as
stars, although they are not producing energy by nu-
clear reactions. Planets in contrast are thought to form
much more slowly by the clumping of solids and accre-
tion of gas in a protoplanetary disc. The objects formed
by this mechanism start out with a quite different struc-
ture. Whether such a clear-cut distinction between the
formation mechanisms of dark stars and planets really
can be made still remains an open question.

The Upper Main Sequence. The stars on the upper
main sequence are so massive and their central tem-
perature so high that the CNO cycle can operate. On

the lower main sequence the energy is produced by the
pp chain. The pp chain and the CNO cycle are equally
efficient at a temperature of 18 million degrees, corre-
sponding to the central temperature of a 1.5 M� star.
The boundary between the upper and the lower main
sequence corresponds roughly to this mass.

The energy production in the CNO cycle is very
strongly concentrated at the core. The outward energy
flux will then become very large, and can no longer
be maintained by radiative transport. Thus the upper
main sequence stars have a convective core, i. e. the
energy is transported by material motions. These keep
the material well mixed, and thus the hydrogen abun-
dance decreases uniformly with time within the entire
convective region.

Outside the core, there is radiative equilibrium, i. e.
the energy is carried by radiation and there are no nu-
clear reactions. Between the core and the envelope, there
is a transition region where the hydrogen abundance
decreases inwards.

The mass of the convective core will gradually dimin-
ish as the hydrogen is consumed. In the HR diagram the
star will slowly shift to the upper right as its luminosity
grows and its surface temperature decreases (Fig. 11.3).
When the central hydrogen supply becomes exhausted,
the core of the star will begin to shrink rapidly. The sur-
face temperature will increase and the star will quickly
move to the upper left. Because of the contraction of the
core, the temperature in the hydrogen shell just outside
the core will increase. It rapidly becomes high enough
for hydrogen burning to set in again.

The Lower Main Sequence. On the lower main
sequence, the central temperature is lower than for mas-
sive stars, and the energy is generated by the pp chain.
Since the rate of the pp chain is not as sensitive to
temperature as that of the CNO cycle, the energy pro-
duction is spread over a larger region than in the more
massive stars (Fig. 11.4). In consequence, the core never
becomes convectively unstable, but remains radiative.

In the outer layers of lower main sequence stars, the
opacity is high because of the low temperature. Ra-
diation can then no longer carry all the energy, and
convection will set in. The structure of lower main se-
quence stars is thus opposite to that of the upper main
sequence: the centre is radiative and the envelope is
convective. Since there is no mixing of material in
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Fig. 11.3. Stellar evolution-
ary paths in the HR diagram
at the main sequence phase
and later. On the main se-
quence, bounded by dashed
curves, the evolution is on
the nuclear time scale. The
post-main sequence evolu-
tion to the red giant phase
is on the thermal time scale.
The point marked He cor-
responds to helium ignition
and in low-mass stars the
helium flash. The straight
line shows the location of
stars with the same radius.
(Iben, I. (1967): Annual
Rev. Astron. Astrophys.
5, 571; data for 30 M�
from Stothers, R. (1966):
Astrophys. J. 143, 91)

the core, the hydrogen is most rapidly consumed at
the very centre, and the hydrogen abundance increases
outwards.

As the amount of hydrogen in the core decreases,
the star will slowly move upwards in the HR diagram,
almost along the main sequence (Fig. 11.3). It becomes
slightly brighter and hotter, but its radius will not change

by much. The evolutionary track of the star will then
bend to the right, as hydrogen in the core nears its end.
Eventually the core is almost pure helium. Hydrogen
will continue to burn in a thick shell around the core.

Stars with masses between 0.08 M� and 0.26 M�
have a very simple evolution. During their whole main
sequence phase they are fully convective, which means
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Fig. 11.4a–c. Energy transport in the main sequence phase.
(a) The least massive stars (M < 0.26 M�) are convec-
tive throughout. (b) For 0.26 M� < M < 1.5 M� the core
is radiative and the envelope convective. (c) Massive stars
(M > 1.5 M�) have a convective core and a radiative
envelope

that their entire hydrogen content is available as fuel.
These stars evolve very slowly toward the upper left
in the HR diagram. Finally, when all their hydrogen
has burned to helium, they contract to become white
dwarfs.

11.4 The Giant Phase

The main-sequence phase of stellar evolution ends when
hydrogen is exhausted at the centre. The star then set-
tles in a state in which hydrogen is burning in a shell
surrounding a helium core. As we have seen, the transi-
tion takes place gradually in lower main-sequence stars,
giving rise to the Subgiant Branch in the HR diagram,
while the upper main-sequence stars make a rapid jump
at this point.

The mass of the helium core is increased by the hy-
drogen burning in the shell. This leads to the expansion
of the envelope of the star, which moves almost horizon-
tally to the right in the HR diagram. As the convective
envelope becomes more extensive, the star approaches
the Hayashi track. Since it cannot pass further to the
right, and since its radius continues to grow, the star has
to move upwards along the Hayashi track towards larger
luminosities (Fig. 11.3). The star has become a red giant.

In low-mass stars (M ≤ 2.3 M�), as the mass of the
core grows, its density will eventually become so high
that it becomes degenerate. The central temperature will
continue to rise. The whole helium core will have a uni-
form temperature because of the high conductivity of
the degenerate gas. If the mass of the star is larger than
0.26 M� the central temperature will eventually reach

about 100 million degrees, which is enough for helium
to burn to carbon in the triple alpha process.

Helium burning will set in simultaneously in the
whole central region and will suddenly raise its tem-
perature. Unlike a normal gas, the degenerate core
cannot expand, although the temperature increases
(c. f. (10.16)), and therefore the increase in tempera-
ture will only lead to a further acceleration of the rate of
the nuclear reactions. When the temperature increases
further, the degeneracy of the gas is removed and the
core will begin to expand violently. Only a few seconds
after the ignition of helium, there is an explosion, the
helium flash.

The energy from the helium flash is absorbed by the
outer layers, and thus it does not lead to the complete
disruption of the star. In fact the luminosity of the star
drops in the flash, because when the centre expands,
the outer layers contract. The energy released in the
flash is turned into potential energy of the expanded
core. Thus after the helium flash, the star settles into
a new state, where helium is steadily burning to carbon
in a nondegenerate core.

After the helium flash the star finds itself on the
horizontal giant branch in the HR diagram. The exact
position of a star on the horizontal branch after the he-
lium flash is a sensitive function of its envelope mass.
This in turn depends on the amount of mass lost by the
star in the helium flash, which can vary randomly from
star to star. While the luminosity does not vary much
along the horizontal branch, the effective temperatures
are higher for stars with less mass in the envelope. The
horizontal branch is divided into a blue and a red part
by a gap corresponding to the pulsational instability
leading to RR Lyrae variables (see Section 13.2). The
form of the horizontal branch for a collection of stars
depends on their metal-abundance, in the sense that
a lower metal abundance is related to a more promi-
nent blue horizontal branch. Thus the blue horizontal
branch in globular clusters with low metal-abundances
is strong and prominent (Section 16.3). For stars with
solar element abundances the horizontal branch is re-
duced to a short stump, the red clump, where it joins the
red giant branch.

In intermediate-mass stars (2.3 M� ≤ M ≤ 8 M�),
the central temperature is higher and the central den-
sity lower, and the core will therefore not be degenerate.
Thus helium burning can set in non-catastrophically as
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the central regions contract. As the importance of the
helium burning core increases, the star first moves away
from the red giant branch towards bluer colours, but then
loops back towards the Hayashi track again. An impor-
tant consequence of these blue loops is that they bring
the star into the strip in the HR diagram corresponding
to the cepheid instability (Section 13.2). This gives rise
to the classical cepheid variables, which are of central
importance for determining distances in the Milky Way
and to the nearest galaxies.

In the most massive stars helium burning starts before
the star has had time to reach the red giant branch. Some
stars will continue moving to the right in the HR dia-
gram. For others this will produce a massive stellar wind
and a large mass loss. Stars in this evolutionary phase,
such as P Cygni and η Carinae, are known as luminous
blue variables, LBV, and are among the brightest in the
Milky Way. If the star can retain its envelope it will
become a red supergiant. Otherwise it will turn back to-
wards the blue side of the HR diagram, ending up as
a Wolf–Rayet star.

The asymptotic giant branch. The evolution that fol-
lows core helium burning depends strongly on the stellar
mass. The mass determines how high the central tem-
perature can become and the degree of degeneracy when
heavier nuclear fuels are ignited.

When the central helium supply is exhausted, helium
will continue to burn in a shell, while the hydrogen
burning shell is extinguished. In the HR diagram the
star will move towards lower effective temperature and
higher luminosity. This phase is quite similar to the
previous red giant phase of low-mass stars, although
the temperatures are slightly hotter. For this reason it is
known as the asymptotic giant branch, AGB.

After the early phase, when the helium shell catches
up with the extinguished hydrogen shell, the AGB star
enters what is known as the thermally pulsing phase,
where hydrogen and helium shell burning alternate.
A configuration with two burning shells is unstable, and
in this phase the stellar material may become mixed or
matter may be ejected into space in a shell, like that of
a planetary nebula.

The thermally pulsing AGB coninues until radiation
pressure has led to the complete expulsion of the outer
layers into a planetary nebula. Low- and intermediate-
mass giants (M ≤ 8 M�) never become hot enough to

ignite carbon burning in the core, which remains as
a carbon–oxygen white dwarf.

The End of the Giant Phase. After the end of he-
lium burning the evolution of a star changes character.
This is because the nuclear time scale at the centre be-
comes short compared to the thermal time scale of the
outer layers. Secondly, the energy released in nuclear
reactions will be carried away by neutrinos, instead of
being deposited at the centre. In consequence, while the
thermonuclear burning follows the same pattern as hy-
drogen and helium burning, the star as a whole does not
have time to react immediately.

In stars with masses around 10 M� either carbon or
oxygen may be ignited explosively just like helium in
low-mass stars: there is a carbon or oxygen flash. This
is much more powerful than the helium flash, and may
make the star explode as a supernova (Sects. 11.5 and
13.3).

For even larger masses the core remains non-
degenerate and burning will start non-catastrophically
as the core goes on contracting and becoming hotter.
First carbon burning and subsequently oxygen and sil-
icon burning (see Sect. 10.3) will be ignited. As each
nuclear fuel is exhausted in the centre, the burning will
continue in a shell. The star will thus contain several nu-
clear burning shells. At the end the star will consist of
a sequence of layers differing in composition, in mas-
sive stars (more massive than 15 M�) all the way up to
iron.

The central parts of the most massive stars with
masses larger than 15 M� burn all the way to iron 56Fe.
All nuclear sources of energy will then be completely
exhausted. The structure of a 30 solar mass star at this
stage is schematically shown in Fig. 11.5. The star is
made up of a nested sequence of zones bounded by
shells burning silicon 28Si, oxygen 16O and carbon
12C, helium 4He and hydrogen 1H. However, this is
not a stable state, since the end of nuclear reactions
in the core means that the central pressure will fall,
and the core will collapse. Some of the energy re-
leased in the collapse goes into dissociating the iron
nuclei first to helium and then to protons and neu-
trons. This will further speed up the collapse, just like
the dissociation of molecules speeds up the collapse
of a protostar. The collapse takes place on a dynami-
cal time scale, which, in the dense stellar core, is only
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Fig. 11.5. The structure of a massive star (30 M�) at a late
evolutionary stage. The star consists of layers with different
composition separated by nuclear burning shells

a fraction of a second. The outer parts will also col-
lapse, but more slowly. In consequence, the temperature

Fig. 11.6. The usual endpoint for the development of a star
with a mass of less than three solar masses, is a white dwarf,
with an expanding planetary nebula around it. On the left, the
planetary nebula NGC 6369, photographed with the 8-meter
Gemini South telescope. For a massive star, the life ends with

a supernova explosion. On the right, the supernova remnant
Cassiopeia A on radio wavelengths. The image was cre-
ated by the VLA telescope. (Images Gemini Observatory/Abu
Team/NOAO/AURA/NSF and NRAO/AUI)

will increase in layers containing unburnt nuclear fuel.
This will burn explosively, releasing immense amounts
of energy in a few seconds, principally in the form of
neutrinos.

The final stages of stellar evolution may be described
as an implosion of the core, which is briefly halted every
time a new source of nuclear fuel becomes available
for burning It is still an open problem how exactly the
energy released in this collapse is transformed into the
disrupton of the entire star and the ejection of its outer
layers. It is also still unclear whether in a given case the
remnant will be a neutron star or a black hole.

Although the exact mechanism is not yet understood,
the end-point of the evolution of stars more massive the
about 8 M� is that the outer layers explode as a super-
nova. In the dense central core, the protons and electrons
combine to form neutrons. The core will finally consist
almost entirely of neutrons, which become degenerate
because of the high density. The degeneracy pressure
of the neutrons will stop the collapse of a small mass
core. However, if the mass of the core is large enough,
a black hole will probably be formed.
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11.5 The Final Stages of Evolution

The endpoints of stellar evolution can be seen from
Fig. 11.8. This shows the relation between mass and
central density for a body at zero temperature, i. e. the fi-
nal equilibrium when a massive body has cooled. There
are two maxima on the curve. The mass corresponding
to the left-hand maximum is called the Chandrasekhar
mass, MCh ≈ 1.2–1.4 M�, and that corresponding to
the right-hand one, the Oppenheimer–Volkoff mass,
MOV ≈ 1.5–2 M�.

Let us first consider a star with mass less than MCh.
Suppose the mass does not change. When the nu-

Fig. 11.7. Evolution schemes for stars with different masses.
The radius is scaled to be the same in all drawings. In real-
ity, there are vast differences in the sizes of different stars and
different phases of evolution. In the beginning (1) a gas cloud
is contracting rapidly in free fall. Because the gas is quite rar-
efied, radiation escapes easily from the cloud. As the density
increases, radiation transport becomes more difficult, and the
released energy tends to warm up the gas. The contraction

lasts until the gas is completely ionized, and the star, which
has become a protostar, is in hydrostatic equilibrium (2). The
star is convective throughout its interior.

Now evolution continues on a thermal time scale. The con-
traction is much slower than in the free-fall phase. The phases
of further evolution are determined by the mass M of the
star. For M< 0.08 M� the temperature in the centre does not
rise high enough for hydrogen burning, and these stars con-

clear fuel is exhausted, the star will become a white
dwarf, which will gradually cool down and contract. In
Fig. 11.8 it moves horizontally to the right. Finally it
will reach zero temperature and end up on the left-hand
rising part of the equilibrium curve. Its final equilibrium
is a completely degenerate black dwarf.

If the mass of the star is larger than MCh but
smaller than MOV, it can continue cooling until it
reaches the right-hand rising section of the curve. Again
there is a stable final state, this time corresponding to
a completely degenerate neutron star.

An even more massive star with mass larger than
MOV will go on contracting past the density correspond-



11.5 The Final Stages of Evolution

253

tract to planetlike brown dwarfs. Stars with M ≥ 0.08 M�
start hydrogen burning when the temperature has reached
about 4×106 K. This is the beginning of the main sequence
phase. In the main sequence, the lowest-mass stars with
0.08 M� ≤ M ≤ 0.26 M� are entirely convective, and thus
they remain homogeneous (3). Their evolution is very slow,
and after all the hydrogen has been burnt to helium, they con-
tract to white dwarfs (4).

The increasing temperature makes the stars with
M > 0.26 M� radiative in the centre as the opacity de-
creases (5). The low-mass stars with 0.26 M� ≤ M ≤ 1.5 M�
remain radiative in the centre during the main sequence
phase (6) as they burn their hydrogen through the pp chain.
The outer part is convective. At the end of the main sequence
phase, hydrogen burning continues in a shell surrounding the
helium core (7).

The outer part expands, and the giant phase begins. The
contracting helium core is degenerate and warms up. At about
108 K, the triple alpha process begins and leads immediately
to the helium flash (8). The explosion is damped by the outer
parts, and helium burning goes on in the core (9). Hydrogen
is still burning in an outer shell. As the central helium is ex-
hausted, helium burning moves over to a shell (10). At the

same time, the outer part expands and the star loses some
of its mass. The expanding envelope forms a planetary neb-
ula (11). The star in the centre of the nebula becomes a white
dwarf (12).

In the upper main sequence with M ≥ 1.5 M� energy is
released through the CNO cycle, and the core becomes convec-
tive, while the outer part is radiative (13). The main sequence
phase ends as the hydrogen in the core is exhausted, and shell
burning begins (14). The helium core remains convective and
nondegenerate, and helium burning begins without perturba-
tions (15 and 19). Afterwards, helium burning moves over to
a shell (16 and 20). For stars with 3 M� ≤ M ≤ 15 M� the car-
bon in the core is degenerate, and a carbon flash occurs (17).
This leads to a supernova explosion (18) and possibly to the
complete destruction of the star.

For the most massive stars with M ≥ 15 M� the carbon
core remains convective, and carbon burns to oxygen and mag-
nesium. Finally, the star consists of an iron core surrounded
by shells with silicon, oxygen, carbon, helium and hydro-
gen (21). The nuclear fuel is now exhausted, and the star
collapses on a dynamical time scale. The result is a super-
nova (22). The outer parts explode, but the remaining core
continues to contract to a neutron star or a black hole
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Fig. 11.8. The evolutionary end points of stars with differ-
ent masses shown as a function of central density. The curve
shows the behaviour of the central density of completely de-
generate (T = 0 K) bodies. The Chandrasekhar mass MCh and
the Oppenheimer–Volkoff mass MOV correspond to maxima
on this curve

ing to a neutron star. There is then no longer any known
possible stable equilibrium, and the star must go on
contracting to form a black hole.

The only endpoints of stellar evolution predicted by
theory are the two stable states of Fig. 11.8 and the
two extreme possibilities, collapse to a black hole or
explosive disruption.

The preceding considerations are purely theoretical.
The final evolutionary stages of real stars involve many
imperfectly known factors, which may affect the final
equilibrium. Perhaps most important is the question of
mass loss, which is very difficult to settle either obser-
vationally or theoretically. For example, in a supernova
explosion the whole star may be disrupted and it is very
uncertain whether what remains will be a neutron star,
a black hole or nothing at all. (The structure of compact
stars will be discussed in Chap. 14.)

A summary of the variuos evolutionary paths is given
in Fig. 11.7.

11.6 The Evolution of Close Binary Stars

If the components of a binary star are well separated,
they do not significantly perturb one another. When
studying their evolution, one can regard them as two
single stars evolving independently, as described above.

Fig. 11.9a–c. The types
of close binary sys-
tems: (a) detached,
(b) semidetached and
(c) contact binary

However, in close binary pairs, this will no longer be
the case.

Close binary stars are divided into three classes, as
shown in Fig. 11.9: detached, semidetached and contact
binaries. The figure-eight curve drawn in the figure is
an equipotential surface called the Roche surface. If the
star becomes larger than this surface, it begins to lose
mass to its companion through the waist of the Roche
surface.

During the main sequence phase the stellar radius
does not change much, and each component will re-
main within its own Roche lobe. When the hydrogen
is exhausted, the stellar core will rapidly shrink and the
outer layers expand, as we have seen. At this stage a star
may exceed its Roche lobe and mass transfer may set in.

Close binary stars are usually seen as eclipsing bina-
ries. One example is Algol in the constellation Perseus.
The components in this binary system are a normal
main sequence star and a subgiant, which is much
less massive than the main sequence star. The sub-
giant has a high luminosity and thus has apparently
already left the main sequence. This is unexpected, since
the components were presumably formed at the same
time, and the more massive star should evolve more
rapidly. The situation is known as the Algol paradox:
for some reason, the less massive star has evolved more
rapidly.

In the 1950’s a solution to the paradox proposed that
the subgiant was originally more massive, but that it
had lost mass to its companion during its evolution.
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Fig. 11.10a–f. Evolu-
tion of a low-mass
binary: (a) both com-
ponents on the main
sequence; (b) mass
transfer from the more
massive component;
(c) light subgiant and
massive main sequence
star; (d) white dwarf
and main sequence star;
(e) mass transferred to
the white dwarf from
the more massive com-
ponent leads to nova
outbursts; (f) the white
dwarf mass exceeds the
Chandrasekhar mass
and explodes as a type
I supernova

Since the 1960’s mass transfer in close binary systems
has been much studied, and has turned out be a very
significant factor in the evolution of close binaries.

As an example, let us consider a close binary,
where the initial masses of the components are 1 and
2 solar masses and the initial orbital period 1.4 days
(Fig. 11.10). After evolving away from the main se-
quence the more massive component will exceed the
Roche limit and begin to lose mass to its companion.
Initially the mass will be transferred on the thermal
time scale, and after a few million years the roles of
the components will be changed: the initially more
massive component has become less massive than its
companion.

The binary is now semidetached and can be observed
as an Algol-type eclipsing binary. The two compo-
nents are a more massive main sequence star and a less
massive subgiant filling its Roche surface. The mass
transfer will continue, but on the much slower nuclear
time scale. Finally, mass transfer will cease and the
less massive component will contract to a 0.6 M� white
dwarf.

The more massive 2.4 M� star now evolves and be-
gins to lose mass, which will accumulate on the surface
of the white dwarf. The accumulated mass may give
rise to nova outbursts, where material is ejected into
space by large explosions. Despite this, the mass of the
white dwarf will gradually grow and may eventually
exceed the Chandrasekhar mass. The white dwarf will
then collapse and explode as a type I supernova.

As a second example, we can take a massive bi-
nary with the initial masses 20 and 8 M� and the initial
period 4.7 days (Fig. 11.11). The more massive compo-
nent evolves rapidly, and at the end of the main sequence
phase, it will transfer more than 15 M� of its material
to the secondary. The mass transfer will occur on the
thermal time scale, which, in this case, is only a few
ten thousand years. The end result is a helium star,
having as a companion an unevolved main sequence
star. The properties of the helium star are like those of
a Wolf–Rayet star.

Helium continues to burn to carbon in the core of the
helium star, and the mass of the carbon core will grow.
Eventually the carbon will be explosively ignited, and
the star will explode as a supernova. The consequences
of this explosion are not known, but let us suppose that
a 2 M� compact remnant is left. As the more massive
star expands, its stellar wind will become stronger, giv-
ing rise to strong X-ray emission as it hits the compact
star. This X-ray emission will only cease when the more
massive star exceeds its Roche surface.

The system will now rapidly lose mass and angular
momentum. A steady state is finally reached when the
system contains a 6 M� helium star in addition to the
2 M� compact star. The helium star is seen as a Wolf–
Rayet star, which, after about a million years, explodes
as a supernova. This will probably lead to the breakup
of the binary system. However, for certain values of
the mass, the binary may remain bound. Thus a binary
neutron star may be formed.
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11.7 Comparison with Observations

The most important direct support for the theoretical
evolutionary models is obtained from the properties of
observed HR diagrams. If the theoretical models are
correct, the observed number of stars should reflect the
duration of the various evolutionary phases. These are
given for stars of different masses in Table 11.1. The

Fig. 11.11a–h.� Evolution of a massive binary. It has been as-
sumed that the supernova explosion of a 5 M� helium star
leaves a 2 M� compact remnant (neutron star or black hole).
(a) Main sequence phase; (b) beginning of the first mass trans-
fer phase; (c) end of the first mass transfer phase; the first
Wolf–Rayet phase begins; (d) the helium star (Wolf–Rayet
star) has exploded as a supernova; (e) the 23 M� component
becomes a supergiant; the compact component is a strong X-
ray source; (f) beginning of the second mass transfer phase;
the X-ray source is throttled and large-scale mass loss be-
gins; (g) second Wolf–Rayet phase; (h) the 6 M� helium star
has exploded as a supernova; the binary may or may not be
disrupted, depending on the remaining mass

stars are most numerous along the main sequence. Gi-
ants are also common and, in addition to these, there are
white dwarfs, subgiants, etc. The sparsely populated re-
gion to the right of the main sequence, the Hertzsprung
gap, is explained by the rapid transition from the main
sequence to the giant phase.

The cepheids provide an important test for the
evolutionary models. The pulsations and the relation
between period and luminosity for the cepheids can be
understood on the basis of theoretical stellar models.

The evolutionary models can also explain the HR
diagrams of star clusters. Let us assume that all the
stars in a cluster were formed at the same time. In
the youngest systems, the associations, the stars will
mainly be found on the upper main sequence, since the
most massive stars evolve most rapidly. To the right of
the main sequence, there will be less massive T Tauri
stars, which are still contracting. In intermediate age
open clusters, the main sequence will be well devel-
oped and its upper end should bend to the right, since
the most massive stars will already have begun to evolve
off the main sequence. In the old globular clusters, the
giant branch should increase in importance in the older
clusters. These predictions are confirmed by the obser-
vations, which will be further discussed in Chap. 16 on
star clusters.

Of course, the most detailed observations can be
made of the Sun, which is therefore a crucial point of
comparison for the theoretical models. If a star of one
solar mass with an initial composition of 71% hydro-
gen, 27% helium and 2% heavier elements is allowed
to evolve for 5000 million years, it will be very sim-
ilar to our present Sun. In particular, it will have the
same radius, surface temperature and luminosity. Ac-
cording to calculations, about half of the Sun’s supply
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Fig. 11.12. The Wolf–Rayet star WR 104 photographed by
the 10-m Keck telescope. The spiral is dust and gas which
is thrown out from the rotating binary system. The spiral
“pinwheel” is seen to make a full revolution in about 220
days. (Photo U.C. Berkeley Space Sciences Laboratory/W.M.
Keck Observatory)

of hydrogen fuel has been consumed. The Sun will go
on shining like a normal main sequence star for another
5000 million years, before there will be any dramatic
change.

Some problems remain in regard to the observations.
One is the solar neutrino problem. The neutrinos pro-
duced by solar nuclear reactions have been observed
since the beginning of the 1970’s by the techniques
described in Sect. 3.7. Only the neutrinos formed in
the relatively rare ppIII reaction are energetic enough
to be observed in this way. Their observed number is
too small: whereas the models predict about 5 units,
the observations have consistently only registered
1–2.

The discrepancy may be due to a fault in the observa-
tional technique or to some unknown properties of the
neutrinos. However, if the solar models are really in er-
ror, the central temperature of the Sun would have to be
about 20% lower than thought, which would be in se-
rious conflict with the observed solar luminosity. One
possibility is that some of the electron neutrinos change

to other, unobservable particles during their passage to
Earth. (See also Sect. 12.1.)

A second problem is the observed abundance of
lithium and beryllium. The solar surface contains a nor-
mal abundance of beryllium, but very little lithium. This
should mean that during its contraction, the Sun was still
fully convective when the central temperature was high
enough to destroy lithium (3×106 K), but not beryl-
lium (4×106 K). However, according to the standard
solar evolution models, convection ceased in the cen-
tre already at a temperature of 2×106 K. One suggested
explanation is that the convection has later carried down
lithium to layers where the temperature is high enough
to destroy it.

11.8 The Origin of the Elements

There are just under a hundred naturally occurring el-
ements, and about 300 isotopes in the solar system
(Fig. 11.13). In Sect. 11.4, we have seen how the ele-
ments up to iron are produced when hydrogen burns
to helium and helium further to carbon, oxygen and
heavier elements.

Almost all nuclei heavier than helium were pro-
duced in nuclear reactions in stellar interiors. In the
oldest stars, the mass fraction of heavy elements is
only about 0.02%, whereas in the youngest stars it
is a few per cent. Nevertheless, most of the stellar
material is hydrogen and helium. According to the
standard cosmological model, those were formed in
the early stages of the Universe, when the tempera-
ture and density were suitable for nuclear reactions.
(This will be discussed in Chap. 19.) Although he-
lium is produced during the main sequence stellar
evolution, very little of it is actually returned into
space to be incorporated into later stellar genera-
tions. Most of it is either transformed into heavier
elements by further reactions, or else remains locked
up inside white dwarf remnants. Therefore the helium
abundance does not increase by much due to stellar
processes.

The most important nuclear reactions leading to
the build-up of the heavy nuclei up to iron were pre-
sented in Sect. 10.3. The probabilities of the various
reactions are determined either by experiments or by
theoretical calculations. When they are known, the rel-
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Fig. 11.13. Element abun-
dances in the solar system
as a function of the nu-
clear mass number. The
abundance of Si has been
normalized as 106

ative abundances of the various nuclei produced can be
calculated.

The formation of elements heavier than iron requires
an input of energy, and thus they cannot be explained
in the same manner. Still heavy nuclei are continually
produced. In 1952 technetium was discovered in the
atmosphere of a red giant. The half-life of the most
longlived isotope 98Tc is about 1.5×106 years, so that
the observed technetium must have been produced in
the star.

Most of the nuclei more massive than iron are formed
by neutron capture. Since the neutron does not have

an electric charge, it can easily penetrate into the nu-
cleus. The probability for neutron capture depends
both on the kinetic energy of the incoming neutron
and on the mass number of the nucleus. For example,
in the solar system the abundances of isotopes show
maxima at the mass numbers A = 70–90, 130, 138,
195 and 208. These mass numbers correspond to nu-
clei with closed neutron shells at the neutron numbers
N = 50, 82, and 126. The neutron capture probability
for these nuclei is very small. The closed shell nuclei
thus react more slowly and are accumulated in greater
abundances.
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In a neutron capture, a nucleus with mass number A
is transformed into a more massive nucleus:

(Z, A)+n → (Z, A +1)+γ .

The newly formed nucleus may be unstable to β decay,
where one neutron is transformed into a proton:

(Z, A +1)→ (Z +1, A +1)+ e− +νe .

Two kinds of neutron capture processes are encoun-
tered, depending on the value of the neutron flux. In
the slow s-process, the neutron flux is so small that any
β decays have had time to occur before the next neutron
capture reaction takes place. The most stable nuclei up
to mass number 210 are formed by the s-process. These
nuclei are said to correspond to the β stability valley.
The s-process explains the abundance peaks at the mass
numbers 88, 138 and 208.

When the neutron flux is large, β decays do not have
time to happen before the next neutron capture. One
then speaks of the rapid r-process, which gives rise
to more neutron-rich isotopes. The abundance maxima
produced by the r-process lie at mass numbers about ten
units smaller than those of the s-process.

A neutron flux sufficient for the s-process is obtained
in the course of normal stellar evolution. For example,
some of the carbon and oxygen burning reactions pro-
duce free neutrons. If there is convection between the
hydrogen and helium burning shells, free protons may be
carried into the carbon-rich layers. Then the following
neutron-producing reaction chain becomes important:

12C +p → 13N +γ ,

13N → 13C + e+ +νe ,

13C + 4He → 16O +n .

The convection can also carry the reaction products
nearer to the surface.

The neutron flux required for the r-process is about
1022 cm−3, which is too large to be produced during
normal stellar evolution. The only presently known site
where a large enough neutron flux is expected is near
a neutron star forming in a supernova explosion. In this
case, the rapid neutron capture leads to nuclei that can-
not capture more neutrons without becoming strongly
unstable. After one or more rapid β decays, the process
continues.

The r-process stops when the neutron flux decreases.
The nuclei produced then gradually decay by the β-

process towards more stable isotopes. Since the path of
the r-process goes about ten mass units below the stabil-
ity valley, the abundance peaks produced will fall about
ten units below those of the s-process. This is shown
in Fig. 11.14. The most massive naturally occurring el-
ements, such as uranium, thorium and plutonium, are
formed by the r-process.

There are about 40 isotopes on the proton-rich
side of the β stability valley that cannot be pro-
duced by neutron capture processes. Their abundances
are very small, relative to the neighbouring isotopes.
They are formed in supernova explosions at temper-
atures higher than 109 K by reactions known as the
p-process. At this temperature, pair formation can take
place:

γ→e+ + e− .

The positron may either be annihilated immediately or
be consumed in the reaction

e+ + (Z, A)→ (Z +1, A)+νe .

Another reaction in the p-process is

(Z, A)+p → (Z +1, A +1)+γ .

Finally, the fission of some heavier isotopes may give
rise to p-process nuclei. Examples of this are the iso-
topes 184W, 190Pt and 196Hg formed by the fission of
lead.

All the preceding reaction products are ejected into
the interstellar medium in the supernova explosion. Col-
lisions between cosmic rays and heavy nuclei then
finally give rise to the light elements lithium, beryl-
lium and boron. Thus the abundances of essentially all
naturally occurring isotopes can be explained.

During succeeding generations of stars the relative
abundance of heavy elements increases in the interstel-
lar medium. They can then be incorporated into new
stars, planets – and living beings.

11.9 Example

Example 11.1 An interstellar cloud has a mass of one
solar mass and density of 1010 hydrogen atoms per cm3.
Its rotation period is 1000 years. What is the rotation
period after the cloud has condensed into a star of solar
size?
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Fig. 11.14. Neutron capture paths for the s-process and r-
process (from left to right). The s-process follows a path along
the line of beta stability. The stable r-process nuclei (small
circles) result from beta decay of their neutron rich progenitors
on the shaded path shown lower. Beta decay occurs along

straight lines A = const. The closed neutron shells in nuclei
at N = 50, 82 and 126 correspond to abundance peaks in s-
process nuclei at A = 88, 138 and 208, and in r-process nuclei
at A = 80, 130 and 195. (Seeger, P.A., Fowler, W.A., Clayton,
D.D. (1965): Astrophys. J. Suppl. 11, 121)

The angular momentum is L = Iω, where ω is the
angular velocity and I is the moment of inertia. For
a homogeneous sphere

I = 2

5
MR2 ,

where M is the mass and R the radius. From the
conservation of the angular momentum we get

L = I1ω1 = I2ω2

⇒ I12π

P1
= I22π

P2

⇒ P2 = P1
I2

I1
= P1

2
5 MR2

2
2
5 MR2

1

= P1

(
R2

R1

)2

,

where P1 and P2 are the rotation periods before and
after the collapse. The mass of the cloud is

M = 4

3
πR3ρ

= 4

3
πR3 ×1016 ×1.6734×10−27 kg

= 1 M� = 1.989×1030 kg .

Solving for the radius we get R = 3×1013 m. The
rotation period after the collapse is

P2 = 1000 a×
(

6.96×108 m

3×1013 m

)2

= 5.4×10−7 a = 17 s .
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This is several orders of magnitude shorter than the
actual period. Somehow the star has to get rid of most
of its angular momentum during the process.

11.10 Exercises

Exercise 11.1 Find the free fall time scale for a hydro-
gen cloud, if the density of H2 molecules is 3000 cm−3.
Assume that stars condense from such clouds, there
are 100 clouds in the Galaxy, the mass of each cloud
is 5×104 M�, and 10% of the mass is converted into

stars. Also assume that the average mass of a star is
1 M�. How many stars are born in one year?

Exercise 11.2 The mass of Vega (spectral class A0 V)
is 2 M�, radius 3 R�, and luminosity 60 L�. Find its
thermal and nuclear time scales.

Exercise 11.3 Assume that a star remains 109 years in
the main sequence and burns 10% of its hydrogen. Then
the star will expand into a red giant, and its luminosity
will increase by a factor of 100. How long is the red
giant stage, if we assume that the energy is produced
only by burning the remaining hydrogen?
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12. The Sun

The Sun is our nearest star. It is important for astron-
omy because many phenomena which can only be

studied indirectly in other stars can be directly observed
in the Sun (e.g. stellar rotation, starspots, the structure
of the stellar surface). Our present picture of the Sun is

based both on observations and on theoretical calcula-
tions. Some observations of the Sun disagree with the
theoretical solar models. The details of the models will
have to be changed, but the general picture should remain
valid.

12.1 Internal Structure

The Sun is a typical main sequence star. Its principal
properties are:

mass m = M� = 1.989×1030 kg
radius R = R� = 6.960×108 m
mean density ρ̄ = 1409 kg/m3

central density ρc = 1.6×105 kg/m3

luminosity L = L� = 3.9×1026 W
effective temperature Te = 5785 K
central temperature Tc = 1.5×107 K
absolute bolometric magnitude Mbol = 4.72
absolute visual magnitude MV = 4.79
spectral class G2 V
colour indices B − V = 0.62

U − B = 0.10
surface chemical composition X = 0.71

Y = 0.27
Z = 0.02

rotational period
at the equator 25 d
at latitude 60◦ 29 d

On the basis of these data, the solar model shown in
Fig. 12.1 has been calculated. The energy is produced
by the pp chain in a small central region. 99% of the
solar energy is produced within a quarter of the solar
radius.

The Sun produces energy at the rate of 4×1026 W,
which is equivalent to changing about four million
tonnes of mass into energy every second. The mass
of the Sun is so large, about 330,000 times that of the
Earth, that during the whole main sequence lifetime of
the Sun less than 0.1% of its mass is turned into energy.

When the Sun formed about 5000 million years ago,
its composition was the same everywhere as its present
surface composition. Since energy production is con-
centrated at the very centre, hydrogen is consumed most

Fig. 12.1. The distribution of temperature, pressure, energy
production and mass as functions of radius in the Sun

rapidly there. At about a quarter of the radius the hydro-
gen abundance is still the same as in the surface layers,
but going inwards from that point it rapidly decreases.
In the central core only 40% of the material is hydrogen.
About 5% of the hydrogen in the Sun has been turned
into helium.

The radiative central part of the Sun extends to
about 70% of the radius. At that radius the temper-
ature has dropped so much that the gas is no longer
completely ionized. The opacity of the solar material
then strongly increases, inhibiting the propagation of
radiation. In consequence, convection becomes a more
efficient means of energy transport. Thus the Sun has
a convective envelope (Fig. 12.2).



Fig. 12.2. (a) The rotation rate of the Sun inferred from helio-
seismological observations. The equator is at the horizontal
axis and the pole is at the vertical axis, both axes being la-
belled by fractional radius. Some contours are labelled in nHz,
and, for clarity, selected contours are shown as bold. (430 nHz
is about 26.9 days.) The dashed circle is at the base of the con-
vection zone and the tick marks at the edge of the outer circle
are at latitudes 15◦, 30◦, 45◦, 60◦, 75◦. The shaded area in-
dicates the region in the Sun where no reliable inference can
be made with present data. The slanted dotted lines are at an
angle of 27◦ with the rotation axis. (Adapted from Schou et
al. 1998). (J. Christensen-Dalsgaard 2007, astro-ph/0610942,
Fig. 2) (b) The interior and surface of the Sun. The various
kinds of solar phenomena are schematically indicated. (Based
on Van Zandt, R.P. (1977): Astronomy for the Amateur, Plan-
etary Astronomy, Vol. 1, 3rd ed. (published by the author,
Peoria, III.))
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The Solar Neutrino Problem. The central nuclear re-
actions produce neutrinos at several of the steps in the
pp chain (see Fig. 10.5). These neutrinos can propagate
freely through the outer layers, and thus give direct in-
formation about conditions near the centre of the Sun.
When neutrinos from the Sun were first observed in the
1970’s, their number was found to be only about a third
of what was predicted. This disagreement is called the
solar neutrino problem.

In the first experiments only neutrinos from the ppII
and ppIII branches were observed (Sect. 10.3). Since
only a small fraction of the solar luminosity is produced
in these reactions, it was not clear what were the conse-
quences of these results for solar models. In the 1990’s
neutrinos produced in the ppI branch, the main branch
of the pp chain, were observed. Although the disagree-
ment with the standard models was slightly smaller in
these observations (about 60% of the predicted flux was
observed), the neutrino problem still remained.

Perhaps the most popular explanation for the solar
neutrino problem was based on neutrino oscillations.
According to this explanation, if neutrinos have a small
mass (about 10−2 eV), an electron neutrino could change
into a µ or a τ neutrino as it passed through the outer
parts of the Sun. In the early experiments only electron
neutrinos were observed, representing only part of the
total number of neutrinos produced.

In 2001 results were announced from experiments
in Canada and Japan that measured both the number
of electron neutrinos and the total number of neutrinos
arriving from the Sun. The total flux agreed with the
predictions of the standard solar model, whereas the flux
of electron neutrinos were in agreement with the lower
values measured in the earlier experiments. This result
proved the existence of neutrino oscillations turning
some of the electron neutrinos produced in the centre of
the sun into other kinds.

The solar neutrino problem can now be considered to
be solved. The solution is a great success for the standard
solar model. But it has also revealed the existence of
neutrino oscillations, proving that neutrinos have a small
but non-zero rest mass. This shows that the standard
model of particle physics needs to be revised in some
respects.

The Solar Rotation. As soon as telescopes were intro-
duced, it was observed from the motions of sunspots

that the Sun is rotating with a rotational period of about
27 days. As early as 1630 Christoph Scheiner showed
that there was differential rotation: the rotational period
near the poles was more than 30 days, while it was only
25 days at the equator. The rotational axis of the Sun is
inclined at 7◦ with respect to the plane of the ecliptic,
so that the North Pole of the Sun is best visible from the
Earth in September.

The motions of sunspots still give the best informa-
tion on the rotation near the surface of the Sun. Other
surface features also have been used for this purpose.
The rotational velocity has also been measured directly
from the Doppler effect. The angular velocity is usually
written

Ω = A − B sin2 ψ , (12.1)

where ψ is the latitude with respect to the equator. The
measured values of the coefficients are A = 14.5 and
B = 2.9 degrees/day.

The rotational velocity deeper down in the Sun can-
not be directly observed. In the 1980’s a method to
estimate the rotation in the interior became available,
when it became possible to measure the frequencies of
solar oscillations from the variations in spectral lines.
These oscillations are essentially sound waves produced
by turbulent gas motions in the convection zone. These
sound waves have calculable oscillation periods (about
3–12 minutes), which depend on the conditions in the
solar interior. By comparing the observed and theoreti-
cal values one can get information about the conditions
deep inside the Sun. The idea of the method is the same
as that used when studying the interior of the Earth by
means of waves from earthquakes, and it is therefore
called helioseismology.

Using helioseismology, models for the solar rotation
throughout the convection zone have been deduced. It
appears that the angular velocity in the whole convec-
tion zone is almost the same as at the surface, although
it decreases slightly with radius near the equator, and
increases near the poles. The angular velocity of the ra-
diative core is still uncertain, but there are indications
that the core is rotating as a solid body with approx-
imately the average surface angular velocity. At the
bottom of the convection zone there is a thin layer
known as the tachocline, where the angular velocity
changes rapidly with radius. The internal solar rotation
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according to the helioseismological studies is shown in
Fig. 12.2a.

The solar differential rotation is maintained by gas
motions in the convection zone. Explaining the ob-
served behaviour is a difficult problem that is not yet
completely understood.

12.2 The Atmosphere

The solar atmosphere is divided into the photosphere
and the chromosphere. Outside the actual atmosphere,
the corona extends much further outwards.

The Photosphere. The innermost layer of the at-
mosphere is the photosphere, which is only about
300–500 km thick. The photosphere is the visible sur-
face of the Sun, where the density rapidly increases
inwards, hiding the interior from sight. The tempera-
ture at the inner boundary of the photosphere is 8000 K
and at the outer boundary 4500 K. Near the edge
of the solar disc, the line of sight enters the pho-
tosphere at a very small angle and never penetrates
to large depths. Near the edges one therefore only
sees light from the cooler, higher layers. For this
reason, the edges appear darker; this phenomenon is
known as limb darkening. Both the continuous spectrum

Fig. 12.3. The granula-
tion of the solar surface.
The granules are pro-
duced by streaming gas.
Their typical diameter
is 1000 km. (Photograph
T. Rimmele/Richard B.
Dunn Solar Telescope,
NSO/AURA/NSF)

and the absorption lines are formed in the photo-
sphere, but the light in the absorption lines comes
from higher layers and therefore the lines appear
dark.

The solar convection is visible on the surface as the
granulation (Fig. 12.3), an uneven, constantly changing
granular pattern. At the bright centre of each granule,
gas is rising upward, and at the darker granule bound-
aries, it is sinking down again. The size of a granule seen
from the Earth is typically 1′′, corresponding to about
1000 km on the solar surface. There is also a larger scale
convection called supergranulation in the photosphere.
The cells of the supergranulation may be about 1′ in di-
ameter. The observed velocities in the supergranulation
are mainly directed along the solar surface.

The Chromosphere. Outside the photosphere there is
a layer, perhaps about 500 km thick, where the tem-
perature increases from 4500 K to about 6000 K, the
chromosphere. Outside this layer, there is a transition
region of a few thousand kilometres, where the chromo-
sphere gradually goes over into the corona. In the outer
parts of the transition region, the kinetic temperature is
already about 106 K.

Normally the chromosphere is not visible, because its
radiation is so much weaker than that of the photosphere.
However, during total solar eclipses, the chromosphere
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Fig. 12.4. Flash spectrum
of the solar chromosphere,
showing bright emission
lines

Fig. 12.5. The solar sur-
face in the hydrogen Hα

line. Active regions appear
bright; the dark filaments
are prominences. Limb
darkening has been re-
moved artificially, which
brings to light spicules
and prominences above the
limb. The photograph was
taken in October 1997.
(Photograph Big Bear Solar
Observatory/NJIT)
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shines into view for a few seconds at both ends of the
total phase, when the Moon hides the photosphere com-
pletely. The chromosphere then appears as a thin reddish
sickle or ring.

During eclipses the chromospheric spectrum, called
the flash spectrum, can be observed (Fig. 12.4). It is an
emission line spectrum with more than 3000 identified
lines. Brightest among these are the lines of hydrogen,
helium and certain metals.

One of the strongest chromospheric emission lines
is the hydrogen Balmer α line (Fig. 12.5) at a wave-
length of 656.3 nm. Since the Hα line in the normal
solar spectrum is a very dark absorption line, a pho-
tograph taken at this wavelength will show the solar
chromosphere. For this purpose, one uses narrow-band
filters letting through only the light in the Hα line. The
resulting pictures show the solar surface as a mottled,
wavy disc. The bright regions are usually the size of
a supergranule, and are bounded by spicules (Fig. 12.6).
These are flamelike structures rising up to 10,000 km
above the chromosphere, and lasting for a few min-
utes. Against the bright surface of the Sun, they look

Fig. 12.6. Spicules, flamelike uprisings near the edge of the solar disc. (Photograph Big Bear Solar Observatory)

like dark streaks; at the edges, they look like bright
flames.

The Corona. The chromosphere gradually goes over
into the corona. The corona is also best seen during
total solar eclipses (Fig. 12.7). It then appears as a halo
of light extending out to a few solar radii. The surface
brightness of the corona is about that of the full moon,
and it is therefore difficult to see next to the bright
photosphere.

The inner part of the corona, the K corona, has
a continuous spectrum formed by the scattering of the
photospheric light by electrons. Further out, a few solar
radii from the surface, is the F corona, which has a spec-
trum showing Fraunhofer absorption lines. The light of
the F corona is sunlight scattered by dust.

In the latter part of the 19th century strong emission
lines, which did not correspond to those of any known
element, were discovered in the corona (Fig. 12.8). It
was thought that a new element, called coronium, had
been found – a little earlier, helium had been discovered
in the Sun before it was known on Earth. About 1940, it
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Fig. 12.7. Previously, the
corona could be studied
only during total solar
eclipses. The picture is from
the eclipse on March 7,
1970. Nowadays the corona
can be studied continuously
using a device called the
coronagraph

Fig. 12.8. The presence
of lines from highly ion-
ized atoms in the coronal
spectrum shows that the
temperature of the corona
has to be very high
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was established that the coronal lines were due to highly
ionized atoms, e. g. thirteen times ionized iron. Much
energy is needed to remove so many electrons from the
atoms. The entire corona has to have a temperature of
about a million degrees.

A continuous supply of energy is needed in order to
maintain the high temperature of the corona. According
to earlier theories, the energy came in the form of acous-
tic or magnetohydrodynamic shock waves generated at
the solar surface by the convection. Most recently, heat-
ing by electric currents induced by changing magnetic
fields has been suggested. Heat would then be gen-
erated in the corona almost like in an ordinary light
bulb.

In spite of its high temperature the coronal gas is
so diffuse that the total energy stored in it is small. It
is constantly streaming outwards, gradually becoming
a solar wind, which carries a flux of particles away
from the Sun. The gas lost in this way is replaced with
new material from the chromosphere. Near the Earth the
density of the solar wind is typically 5–10 particles/cm3

and its velocity about 500 km/s. The mass loss of the
Sun due to the solar wind is about 10−13 M� per year.

12.3 Solar Activity

Sunspots. The clearest visible sign of solar activity
are the sunspots. The existence of sunspots has been
known for long (Fig. 12.9), since the largest ones can be
seen with the naked eye by looking at the Sun through
a suitably dense layer of fog. More precise observations
became available beginning in the 17th century, when
Galilei started to use the telescope for astronomical
observations.

A sunspot looks like a ragged hole in the solar sur-
face. In the interior of the spot there is a dark umbra and
around it, a less dark penumbra. By looking at spots
near the edge of the solar disc, it can be seen that the
spots are slightly depressed with respect to the rest of the
surface. The surface temperature in a sunspot is about
1500 K below that of its surroundings, which explains
the dark colour of the spots.

The diameter of a typical sunspot is about 10,000 km
and its lifetime is from a few days to several months,
depending on its size. The larger spots are more likely
to be long-lived. Sunspots often occur in pairs or in

larger groups. By following the motions of the spots,
the period of rotation of the Sun can be determined.

The variations in the number of sunspots have been
followed for almost 250 years. The frequency of spots
is described by the Zürich sunspot number Z:

Z = C(S +10 G) , (12.2)

where S is the number of spots and G the number of
spot groups visible at a particular time. C is a con-
stant depending on the observer and the conditions of
observation.

In Fig. 12.10, the variations in the Zürich sunspot
number between the 18th century and the present are
shown. Evidently the number of spots varies with an av-
erage period of about 11 years. The actual period may be
between 7 and 17 years. In the past decades, it has been
about 10.5 years. Usually the activity rises to its maxi-
mum in about 3–4 years, and then falls off slightly more
slowly. The period was first noted by Samuel Heinrich
Schwabe in 1843.

The variations in the number of sunspots have been
fairly regular since the beginning of the 18th century.
However, in the 17th century there were long intervals
when there were essentially no spots at all. This quies-
cent period is called the Maunder minimum. The similar
Spörer minimum occurred in the 15th century, and other
quiet intervals have been inferred at earlier epochs. The
mechanism behind these irregular variations in solar
activity is not yet understood.

The magnetic fields in sunspots are measured on the
basis of the Zeeman effect, and may be as large as
0.45 tesla. (The magnetic field of the Earth is 0.03 mT.)
The strong magnetic field inhibits convective energy
transport, which explains the lower temperature of the
spots.

Sunspots often occur in pairs where the components
have opposite polarity. The structure of such bipolar
groups can be understood if the field rises into a loop
above the solar surface, connecting the components of
the pair. If gas is streaming along such a loop, it becomes
visible as a loop prominence (Fig. 12.11).

The periodic variation in the number of sunspots re-
flects a variation in the general solar magnetic field.
At the beginning of a new activity cycle spots first be-
gin to appear at latitudes of about ±40◦. As the cycle
advances, the spots move closer to the equator. The
characteristic pattern in which spots appear, shown in
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Fig. 12.9. The sunspots are
the form of solar activ-
ity that has been known
for the longest time. The
photograph was taken with
the Swedish 1-meter So-
lar Telescope in July 2002.
(Photograph Royal Swedish
Academy of Sciences)

Fig. 12.10. The Zürich sunspot number from 1700 to 2001.
Prior to 1700 there are only occasional observations. The

number of sunspots and spot groups varies with a period of
about 11 years
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Fig. 12.11. In pairs of sunspots the magnetic field lines form
a loop outside the solar surface. Material streaming along the
field lines may form loop prominences. Loops of different size

can be seen in this image, which the Trace satellite took in
1999. (Photo Trace)

Fig. 12.12, is known as the butterfly diagram. Spots of
the next cycle begin to appear while those of the old
one are still present near the equator. Spots belonging

Fig. 12.12. At the begin-
ning of an activity cycle,
sunspots appear at high
latitudes. As the cycle ad-
vances the spots move
towards the equator. (Dia-
gram by H. Virtanen, based
on Greenwich Observatory
observations)

to the new cycle have a polarity opposite to that of the
old ones. (Spots in opposite hemispheres also have op-
posite polarity.) Since the field is thus reversed between
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Fig. 12.13. Because the Sun rotates faster at the equator than at the poles, the field lines of the solar magnetic field are drawn
out into a tight spiral

consecutive 11 year cycles the complete period of solar
magnetic activity is 22 years.

The following general qualitative description of the
mechanism of the solar cycle was proposed by Ho-
race W. Babcock. Starting at a solar minimum, the
field will be of a generally dipolar character. Because
a conducting medium, such as the outer layers of the
Sun, cannot move across the field lines, these will be
frozen into the plasma and carried along by it. Thus
the differential rotation will draw the field into a tight
spiral (Fig. 12.13). In the process the field becomes

Fig. 12.14. A quiet Sun in August 2006 around the last sunspot
minimum. Both pictures were taken by the Michelson Doppler
Imager on the SOHO satellite. On the left the Sun in visible

light, on the right a magnetogram, which shows the opposite
polarities of the magnetic fields as black and white. (Photo
SOHO/NASA/ESA)

stronger, and this amplification will be a function of
latitude.

When the subsurface field becomes strong enough,
it gives rise to a “magnetic buoyancy” that lifts ropes of
magnetic flux above the surface. This happens first at
a latitude about 40◦, and later at lower latitudes. These
protruding flux ropes expand into loops forming bipo-
lar groups of spots. As the loops continue expanding
they make contact with the general dipolar field, which
still remains in the polar regions. This leads to a rapid
reconnection of the field lines neutralising the general
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Fig. 12.15. (a) Quiescent “hedgerow” prominence (Photo-
graph Sacramento Peak Observatory). (b) Larger eruptive
prominence (Photograph Big Bear Solar Observatory)

field. The final result when activity subsides is a dipolar
field with a polarity opposite the initial one.

Thus the Babcock model accounts for the butterfly
diagram, the formation of bipolar magnetic regions and
the general field reversal between activity maxima. Nev-
ertheless, it remains an essentially phenomenological
model, and alternative scenarios have been proposed.
In dynamo theory quantitative models for the origin of
magnetic fields in the Sun and other celestial bodies are
studied. In these models the field is produced by convec-
tion and differential rotation of the gas. A completely
satisfactory dynamo model for the solar magnetic cycle
has not yet been found. For example, it is not yet known
whether the field is produced everywhere in the con-
vection zone, or just in the boundary layer between the
convective and radiative regions, as some indications
suggest.

Other Activity. The Sun shows several other types
of surface activity: faculae and plages; prominences;
flares.

The faculae and plages are local bright regions in
the photosphere and chromosphere, respectively. Ob-
servations of the plages are made in the hydrogen Hα

or the calcium K lines (Fig. 12.14). The plages usually
occur where new sunspots are forming, and disappear
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Fig. 12.16. A violent flare
near some small sunspots.
(Photograph Sacramento
Peak Observatory)

when the spots disappear. Apparently they are caused
by the enhanced heating of the chromosphere in strong
magnetic fields.

The prominences are among the most spectacular
solar phenomena. They are glowing gas masses in the
corona, easily observed near the edge of the Sun. There
are several types of prominences (Fig. 12.15): the quies-
cent prominences, where the gas is slowly sinking along
the magnetic field lines; loop prominences, connected
with magnetic field loops in sunspots; and the rarer
eruptive prominences, where gas is violently thrown
outwards.

The temperature of prominences is about
10,000–20,000 K. In Hα photographs of the chro-
mosphere, the prominences appear as dark filaments
against the solar surface.

The flare outbursts are among the most violent forms
of solar activity (Fig. 12.16). They appear as bright
flashes, lasting from one second to just under an hour.
In the flares a large amount of energy stored in the mag-
netic field is suddenly released. The detailed mechanism
is not yet known.

Flares can be observed at all wavelengths. The hard
X-ray emission of the Sun may increase hundredfold

during a flare. Several different types of flares are ob-
served at radio wavelengths (Fig. 12.17). The emission
of solar cosmic ray particles also rises.

The flares give rise to disturbances on the Earth. The
X-rays cause changes in the ionosphere, which affect
short-wave radio communications. The flare particles
give rise to strong auroras when they enter the Earth’s
magnetic field a few days after the outburst.

Solar Radio Emission. The Sun is the strongest ra-
dio source in the sky and has been observed since
the 1940’s. In contrast to optical emission the radio
picture of the Sun shows a strong limb brightening.
This is because the radio radiation comes from the
upper layers of the atmosphere. Since the propaga-
tion of radio waves is obstructed by free electrons,
the high electron density near the surface prevents ra-
dio radiation from getting out. Shorter wavelengths can
propagate more easily, and thus millimetre-wavelength
observations give a picture of deeper layers in the atmo-
sphere, whereas the long wavelengths show the upper
layers. (The 10 cm emission originates in the upper lay-
ers of the chromosphere and the 1 m emission, in the
corona.)
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Fig. 12.17. An X-ray picture of the active Sun, taken by the
Japanese Yohkoh satellite in 1999, around the last maximum
of sunspot activity. (Photo JAXA)

The Sun looks different at different wavelengths.
At long wavelengths the radiation is coming from the
largest area, and its electron temperature is about 106 K,
since it originates in the corona.

The radio emission of the Sun is constantly changing
according to solar activity. During large storms the total
emission may be 100,000 times higher than normal.

X-ray and UV Radiation. The X-ray emission of the
Sun is also related to active regions. Signs of activity
are bright X-ray regions and smaller X-ray bright points,
which last for around ten hours. The inner solar corona
also emits X-rays. Near the solar poles there are coronal
holes, where the X-ray emission is weak.

Ultraviolet pictures of the solar surface show it as
much more irregular than it appears in visible light.
Most of the surface does not emit much UV radiation,
but there are large active regions that are very bright in
the ultraviolet.

Several satellites have made observations of the Sun
at UV and X-ray wavelengths, for example Soho (Solar
and Heliospheric Observatory, 1995–). These observa-
tions have made possible detailed studies of the outer
layers of the Sun. Observations of other stars have re-

Fig. 12.18. The SOHO (Solar and Heliospheric Observatory)
satellite keeps a constant watch on the Sun and its surround-
ings in many wavelengths. Here the LASCO (Large Angle and
Spectrometric Coronagraph) instrument sees a large Coronal
Mass Ejection erupting from the Sun. The surface of the Sun
is covered by a disk, and the size and position of the Sun is
indicated by the white circle. (Photo SOHO/NASA/ESA)

vealed coronae, chromospheres and magnetic variations
similar to those in the Sun. Thus the new observational
techniques have brought the physics of the Sun and the
stars nearer to each other.

12.4 Example

Example 12.1 Assume that the Sun converts 0.8% of
its mass into energy. Find an upper limit for the age
of the Sun, assuming that its luminosity has remained
constant.

The total amount of energy released is

E = mc2 = 0.008 M�c2

= 0.008×2×1030 kg× (3×108 ms−1)2

= 1.4×1045 J .

The time needed to radiate this energy is

t = E

L�
= 1.4×1045 J

3.9×1026 W

= 3.6×1018 s ≈ 1011 years .
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12.5 Exercises

Exercise 12.1 The solar constant, i. e. the flux density
of the solar radiation at the distance of the Earth is
1370 W m−2.

a) Find the flux density on the surface of the Sun, when
the apparent diameter of the Sun is 32′′.

b) How many square metres of solar surface is needed
to produce 1000 megawatts?

Exercise 12.2 Some theories have assumed that the
effective temperature of the Sun 4.5 billion years ago
was 5000 K and radius 1.02 times the current radius.
What was the solar constant then? Assume that the orbit
of the Earth has not changed.
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13. Variable Stars

Stars with changing magnitudes are called variables
(Fig. 13.1). Variations in the brightness of stars were

first noted in Europe at the end of the 16th century, when
Tycho Brahe’s supernova lit up (1572) and the regular light
variation of the star o Ceti (Mira) was observed (1596).
The number of known variables has grown steadily as
observational precision has improved (Fig. 13.2). The most
recent catalogues contain about 40,000 stars known or
suspected to be variable.

Strictly speaking, all stars are variable. As was seen in
Chap. 11, the structure and brightness of a star change as
it evolves. Although these changes are usually slow, some
evolutionary phases may be extremely rapid. In certain
evolutionary stages, there will also be periodic variations,
for example pulsations of the outer layers of a star.

Small variations in stellar brightness are also caused by
hotandcool spotsonastar’s surface, appearinganddisap-

pearing as it rotates about its axis. The luminosity of the
Sun changes slightly because of the sunspots. Probably
there are similar spots on almost all stars.

Initially stellar brightnesses were determined visually
by comparing stars near each other. Later on, comparisons
were made on photographic plates. At present the most
accurate observations are made photoelectrically or using
a CCD camera. The magnitude variation as a function of
time is called the lightcurve of a star (Fig. 13.3). From it one
obtains the amplitude of the magnitude variation and its
period, if the variation is periodic.

The basic reference catalogue of variable stars is the
General Catalogue of Variable Stars by the Soviet as-
tronomer Boris Vasilyevich Kukarkin. New, supplemented
editions appear at times; the fourth edition published
in 1985−1987, edited by P.N. Kholopov, contains about
32,000 variables of the Milky Way galaxy.

Fig. 13.1. The variables
are stars changing in
brightness. Two vari-
ables in Scorpius, R and
S Sco (Photograph Yerkes
Observatory)
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Fig. 13.2. The location of
variables in the HR diagram

13.1 Classification

When a new variable is discovered, it is given a name
according to the constellation in which it is located. The
name of the first variable in a given constellation is R,
followed by the name of the constellation (in the gen-
itive case). The symbol for the second variable is S,
and so on, to Z. After these, the two-letter symbols RR,
RS, . . . to ZZ are used, and then AA to QZ (omitting I).
This is only enough for 334 variables, a number that has
long been exceeded in most constellations. The number-
ing therefore continues: V335, V336, etc. (V stands for
variable). For some stars the established Greek letter
symbol has been kept, although they have later been
found to be variable (e. g. δCephei).

The classification of variables is based on the shape
of the lightcurve, and on the spectral class and ob-
served radial motions. The spectrum may also contain
dark absorption lines from material around the star. Ob-

servations can be made outside the optical region as
well. Thus the radio emission of some variables (e. g.
flare stars) increases strongly, simultaneously with their
optical brightness. Examples of radio and X-ray vari-
ables are the radio and X-ray pulsars, and the X-ray
bursters.

Variables are usually divided into three main
types: pulsating, eruptive and eclipsing variables. The
eclipsing variables are binary systems in which the
components periodically pass in front of each other.
In these variables the light variations do not corre-
spond to any physical change in the stars. They have
been treated in connection with the binary stars. In the
other variables the brightness variations are intrinsic
to the stars. In the pulsating variables the variations
are due to the expansion and contraction of the outer
layers. These variables are giants and supergiants that
have reached an unstable stage in their evolution. The
eruptive variables are usually faint stars ejecting mass.
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Fig. 13.3. The variation of brightness, colour and size of
a cepheid during its pulsation

They are mostly members of close binary systems in
which mass is transferred from one component to the
other.

In addition a few rotating variables are known, where
the brightness variations are due to an uneven temper-
ature distribution on the surface, starspots coming into
sight when the star rotates. Such stars may be quite
common – after all, our Sun is a weak rotating vari-
able. The most prominent group of rotating variables
are the magnetic A stars (e. g. the α2 Canum Venatico-
rum stars). These stars have strong magnetic fields that
may be giving rise to starspots. The periods of rotat-
ing variables range from about 1 day to 25 d, and the
amplitudes are less than 0.1 mag.

13.2 Pulsating Variables

The wavelengths of the spectral lines of the pulsating
variables change along with the brightness variations
(Table 13.1). These changes are due to the Doppler
effect, showing that the outer layers of the star are indeed

Table 13.1. The main properties of pulsating variables (N ,
number of stars of the given type in Kukarkin’s catalogue,
P, pulsation period in days, ∆m, pulsation amplitude in
magnitudes)

Variable N P Spectrum ∆m

Classical cepheids 800 1–135 F–K I � 2
(δCep, W Vir)

RR Lyrae 6100 < 1 A–F8 � 2

Dwarf cepheids 200 0.05–7 A–F � 1
(δ Scuti)

β Cephei 90 0.1–0.6 B1–B3 III � 0.3

Mira variables 5800 80–1000 M–C � 2.5

RV Tauri 120 30–150 G–M � 4

Semiregular 3400 30–1000 K–C � 4.5

Irregular 2300 – K–M � 2

pulsating. The observed gas velocities are in the range
of 40–200 km/s.

The period of pulsation corresponds to a proper fre-
quency of the star. Just like a tuning fork vibrates with
a characteristic frequency when hit, a star has a fun-
damental frequency of vibration. In addition to the
fundamental frequency other frequencies, “overtones”,
are possible. The observed brightness variation can be
understood as a superposition of all these modes of
vibration. Around 1920, the English astrophysicist Sir
Arthur Eddington showed that the period of pulsation P
is inversely proportional to the square root of the mean
density,

P ∝ 1√
ρ
. (13.1)

The diameter of the star may double during the pulsa-
tion, but usually the changes in size are minor. The main
cause of the light variation is the periodic variation of the
surface temperature. We have seen in Sect. 5.6 that the
luminosity of a star depends sensitively on its effective
temperature, L ∝ T 4

e . Thus a small change in effective
temperature leads to a large brightness variation.

Normally a star is in stable hydrostatic equilibrium.
If its outer layers expand, the density and temperature
decrease. The pressure then becomes smaller and the
force of gravity compresses the gas again. However,
unless energy can be transferred to the gas motions,
these oscillations will be damped.

The flux of radiative energy from the stellar interior
could provide a source of energy for the stellar oscil-
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lations, if it were preferentially absorbed in regions of
higher gas density. Usually this is not the case but in
the ionization zones, where hydrogen and helium are
partially ionized, the opacity in fact becomes larger
when the gas is compressed. If the ionization zones
are at a suitable depth in the atmosphere, the energy
absorbed during compression and released during ex-
pansion of an ionization zone can drive an oscillation.
Stars with surface temperatures of 6000–9000 K are li-
able to this instability. The corresponding section of the
HR diagram is called the cepheid instability strip.

Cepheids. Among the most important pulsating vari-
ables are the cepheids, named after δCephei (Fig. 13.3).
They are population I supergiants (stellar populations
are discussed in Sect. 17.2) of spectral class F–K. Their
periods are 1–50 days and their amplitudes, 0.1–2.5
magnitudes. The shape of the light curve is regular,
showing a fairly rapid brightening, followed by a slower
fall off. There is a relationship between the period of
a cepheid and its absolute magnitude (i. e. luminosity),
discovered in 1912 by Henrietta Leavitt from cepheids
in the Small Magellanic Cloud. This period–luminosity
relation (Fig. 13.4) can be used to measure distances of
stars and nearby galaxies.

We have already noted that the pulsation period is
related to the mean density. On the other hand the size

Fig. 13.4. The period–luminosity relation for cepheids. The
black points and squares are theoretically calculated values,
the crosses and the straight line represent the observed relation.
(Drawing from Novotny, E. (1973): Introduction to Stellar
Atmospheres and Interiors (Oxford University Press, New
York) p. 359)

of a star, and hence its mean density, is related to its total
luminosity. Thus one can understand why there should
be a relation between the period and the luminosity of
a pulsating star.

The magnitudes M and periods P of classical
cepheids are shown in Fig. 13.4. The relation between M
and log P is linear. However, to some extent, the
cepheid luminosities also depend on colour: bluer stars
are brighter. For accurate distance determinations, this
effect needs to be taken into consideration.

W Virginis Stars. In 1952 Walter Baade noted that there
are in fact two types of cepheids: the classical cepheids
and the W Virginis stars. Both types obey a period–
luminosity relation, but the W Vir stars of a given period
are 1.5 magnitudes fainter than the corresponding clas-
sical cepheids. This difference is due to the fact that
the classical cepheids are young population I objects,
whereas the W Vir stars are old stars of population II.
Otherwise, the two classes of variables are similar.

Earlier, the W Vir period–luminosity relation had
been used for both types of cepheids. Consequently
the calculated distances to classical cepheids were too
small. For example, the distance to the Andromeda
Galaxy had been based on classical cepheids, since
only these were bright enough to be visible at that
distance. When the correct period–luminosity relation
was used, all extragalactic distances had to be doubled.
Distances within the Milky Way did not have to be
changed, since their measurements were based on other
methods.

RR Lyrae Stars. The third important class of pulsating
variables are the RR Lyrae stars. Their brightness vari-
ations are smaller than those of the cepheids, usually
less than a magnitude. Their periods are also shorter,
less than a day. Like the W Vir stars, the RR Lyrae stars
are old population II stars. They are very common in
the globular star clusters and were therefore previously
called cluster variables.

The absolute magnitudes of the RR Lyrae stars are
about MV = 0.6±0.3. They are all of roughly the same
age and mass, and thus represent the same evolutionary
phase, where helium is just beginning to burn in the core.
Since the absolute magnitudes of the RR Lyrae variables
are known, they can be used to determine distances to
the globular clusters.
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Fig. 13.5. The lightcurve of a long period Mira variable

Mira Variables (Fig. 13.5). The Mira variables (named
after Mira Ceti) are supergiants of spectral classes M,
S or C, usually with emission lines in their spectrum.
They are losing gas in a steady stellar wind. Their pe-
riods are normally 100–500 days, and for this reason,
they are also sometimes called long period variables.
The amplitude of the light variations is typically about
6 magnitudes in the visual region. The period of Mira
itself is about 330 days and its diameter is about 2 AU.
At its brightest, Mira has the magnitude 2–4, but at light
minimum, it may be down to 12. The effective temper-
ature of the Mira variables is only about 2000 K. Thus
95% of their radiation is in the infrared, which means
that a very small change in temperature can cause a very
large change in visual brightness.

Other Pulsating Variables. One additional large group
of pulsating stars are the semiregular and irregular vari-
ables. They are supergiants, often very massive young
stars with unsteady pulsations in their extended outer
layers. If there is some periodicity in the pulsations,
these variables are called semiregular; otherwise they
are irregular. An example of a semiregular variable
is Betelgeuse (αOrionis). The pulsation mechanism of
these stars is not well understood, since their outer lay-
ers are convective, and the theory of stellar convection
is still poorly developed.

In addition to the main types of pulsating vari-
ables, there are some smaller separate classes, shown
in Fig. 13.2.

The dwarf cepheid and the δ Scuti stars, which are
sometimes counted as a separate type, are located below
the RR Lyrae stars in the cepheid instability strip in the
HR diagram. The dwarf cepheids are fainter and more
rapidly varying than the classical cepheids. Their light

curves often show a beating due to interference between
the fundamental frequency and the first overtone.

The β Cephei stars are located in a different part
of the HR diagram than the other variables. They are
hot massive stars, radiating mainly in the ultraviolet.
The variations are rapid and of small amplitude. The
pulsation mechanism of the β Cephei stars is unknown.

The RV Tauri stars lie between the cepheids and the
Mira variables in the HR diagram. Their period depends
slightly on the luminosity. There are some unexplained
features in the light curves of the RV Tauri stars, e. g.
the minima are alternately deep and shallow.

13.3 Eruptive Variables

In the eruptive variables there are no regular pulsations.
Instead sudden outbursts occur in which material is
ejected into space. Nowadays such stars are divided
into two main categories, eruptive and cataclysmic
variables. Brightness changes of eruptive variables
are caused by sudden eruptions in the chromosphere
or corona, the contributions of which are, however,
rather small in the stellar scale. These stars are usu-
ally surrounded by a gas shell or interstellar matter
participating in the eruption. This group includes e.g.
flare stars, various kinds of nebular variables, and R
Coronae Borealis stars. Eruptions of the cataclysmic
variables are due to nuclear reactions on the stellar sur-
face or interior. Explosions are so violent that they can
even destroy the whole star. This group includes no-
vae and nova-like stars, dwarf novae and supernovae
(Table 13.2).

Flare Stars. The flare or UV Ceti stars are dwarf stars of
spectral class M. They are young stars, mostly found in
young star clusters and associations. At irregular inter-
vals there are flare outbursts on the surface of the stars
similar to those on the Sun. The flares are related to dis-
turbances in the surface magnetic fields. The energy of
the outbursts of the flare stars is apparently about the
same as in solar flares, but because the stars are much
fainter than the Sun, a flare can cause a brightening by
up to 4–5 magnitudes. A flare lights up in a few sec-
onds and then fades away in a few minutes (Fig. 13.6).
The same star may flare several times in one day. The
optical flare is accompanied by a radio outburst, like in
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Table 13.2. Main properties of eruptive variables (N , number
of stars of the given type in Kukarkin’s catalogue,∆m, change
in brightness in magnitudes. The velocity is the expansion
velocity in km/s, based on the Doppler shifts of the spectral
lines)

Variable N ∆m Velocity

Supernovae 7 � 20 4000–10000
Ordinary novae 7–18 200–3500

210
Recurrent novae � 10 600
Nova-like stars 80 � 2 30–100

(P Cygni, symbiotic)
Dwarf novae 330 2–6 (700)

(SS Cyg = U Gem, ZZ Cam)
R Coronae Borealis 40 1–9 –
Irregular 1450 � 4 (300)

(nebular variables,
T Tau, RW Aur)

Flare stars 750 � 6 2000
(UV Ceti)

Fig. 13.6. The outbursts of typical flare stars are of short
duration

the Sun. In fact, the flare stars were the first stars to be
detected as radio sources.

Nebular Variables. In connection with bright and dark
interstellar clouds e.g. in the constellations of Orion,
Taurus and Auriga, there are variable stars. The T Tauri
stars are the most interesting of them. These stars are
newly formed or just contracting towards the main se-
quence. The brightness variations of the T Tauri stars
are irregular (Fig. 13.7). Their spectra contain bright
emission lines, formed in the stellar chromosphere, and
forbidden lines, which can only be formed at extremely
low densities. The spectral lines also show that matter
is streaming out from the stars.

Fig. 13.7. Light curve of a T Tauri variable

Fig. 13.8. In 1969–1970, the star V1057 Cygni brightened by
almost 6 magnitudes

Since the T Tauri stars are situated inside dense gas
clouds, they are difficult to observe. However, this situ-
ation has improved with the development of radio and
infrared techniques.

Stars in the process of formation may change in
brightness very rapidly. For example, in 1937, FU Ori-
onis brightened by 6 magnitudes. This star is a strong
source of infrared radiation, which shows that it is still
enveloped by large quantities of interstellar dust and gas.
A similar brightening by six magnitudes was observed
in 1969 in V1057 Cygni (Fig. 13.8). Before its bright-
ening, it was an irregular T Tauri variable; since then, it
has remained a fairly constant tenth-magnitude AB star.

Stars of the R Coronae Borealis type have “inverse
nova” light curves. Their brightness may drop by al-
most ten magnitudes and stay low for years, before
the star brightens to its normal luminosity. For exam-
ple, R CrB itself is of magnitude 5.8, but may fade to
14.8 magnitudes. Figure 13.9 shows its recent decline,
based on observations by Finnish and French amateurs.
The R CrB stars are rich in carbon and the decline is pro-
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Fig. 13.9. The decline of
R Coronae Borealis in
1977–1978; observations
by Finnish and French
amateur astronomers. (Kel-
lomäki, Tähdet ja Avaruus
5/1978)

duced when the carbon condenses into a circumstellar
dust shell.

One very interesting variable is ηCarinae (Fig.
13.10). At present it is a six magnitude star surrounded
by a thick, extensive envelope of dust and gas. In the
early 19th century ηCarinae was the second brightest
star in the sky after Sirius. Around the middle of the
century it rapidly dimmed to magnitude 8, but during

Fig. 13.10. In the 19th century,ηCarinae was one of the bright-
est stars in the sky; since then it has dimmed considerably. In
an outburst in 1843 the star ejected an expanding nebula, which

has been called “Homunculus”. The Hubble photograph has
been printed negative, to show finer details in the bipolar
outflow. (Photograph NASA/HST/University of Minnesota)

the 20th century it has brightened somewhat. The cir-
cumstellar dust cloud is the brightest infrared source in
the sky outside the solar system. The energy radiated by
ηCarinae is absorbed by the nebula and re-radiated at
infrared wavelengths. It is not known whether ηCarinae
is related to the novae or whether it is a very young star
that cannot evolve in the normal way because of the
very thick cloud surrounding it.
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Fig. 13.11. The light curve
of the dwarf nova SS
Cygni in the beginning
of 1966. (Drawing by
Martti Perälä is based on
observations by Nordic
amateurs)

Novae. One of the best known types of eruptive
variables are the novae. They are classified into sev-
eral subtypes: ordinary novae, recurrent novae and
nova-like variables. The dwarf novae (Fig. 13.11) are
nova-like rather frequently eruptive stars with some
special characteristics. They are nowadays divided into
three subgroups.

The outbursts of all novae are rapid. Within a day
or two the brightness rises to a maximum, which may
be 7–18 magnitudes brighter than the normal luminos-
ity. This is followed by a gradual decline, which may
go on for months or years. The light curve of a typ-
ical nova is shown in Fig. 13.12. This light curve of
Nova Cygni 1975 has been composed from hundreds of
observations, mostly by amateurs.

In recurrent novae, the brightening is somewhat less
than 10 magnitudes and in dwarf novae, 2–6 magni-
tudes. In both types there are repeated outbursts. For
recurrent novae the time between outbursts is a few
decades and for the dwarf novae 20–600 days. The inter-
val depends on the strength of the outburst: the stronger
the outburst, the longer the time until the next one. The
brightening in magnitudes is roughly proportional to the
logarithm of the recharging interval. It is possible that
ordinary novae obey the same relationship. However,
their amplitude is so much larger that the time between
outbursts should be thousands or millions of years.

Observations have shown all novae and dwarf novae
to be members of close binary systems. One component
of the system is a normal star and the other is a white
dwarf surrounded by a gas ring. (The evolution of close
binary systems was considered in Sect. 11.6, where it
was seen how this kind of system might have been
formed.) The normal star fills its Roche surface, and

material from it streams over to the white dwarf. When
enough mass has collected on the surface of the white
dwarf, the hydrogen is explosively ignited and the outer
shell is ejected. The brightness of the star grows rapidly.
As the ejected shell expands, the temperature of the star
drops and the luminosity gradually decreases. However,
the outburst does not stop the mass transfer from the
companion star, and gradually the white dwarf accretes
new material for the next explosion (Fig. 13.13).

The emission and absorption lines from the expand-
ing gas shell can be observed in the spectrum of a nova.
The Doppler shifts correspond to an expansion velocity
of about 1000 km/s. As the gas shell disperses, its spec-
trum becomes that of a typical diffuse emission nebula.
The expanding shell around a nova can also sometimes
be directly seen in photographs.

A considerable fraction of the novae in our Galaxy
are hidden by interstellar clouds and their number
is therefore difficult to estimate. In the Andromeda
Galaxy, observations indicate 25–30 nova explosions
per year. The number of dwarf novae is much larger. In
addition there are nova-like variables, which share many
of the properties of novae, such as emission lines from
circumstellar gas and rapid brightness variations. These
variables, some of which are called symbiotic stars, are
close binaries with mass transfer. Gas streaming from
the primary hits a gas disc around the secondary in a hot
spot, but there are no nova outbursts.

Supernovae. The supernovae are stars with the largest
brightness variations. In a few days their brightness may
rise more than 20 magnitudes, i. e. the luminosity may
increase by a factor of a hundred million. After the
maximum, there is a slow decline lasting several years.
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Fig. 13.12. In 1975 a new
variable, Nova Cygni or
V1500 Cygni, was dis-
covered in Cygnus. In
the upper photograph the
nova is at its brightest
(about 2 magnitudes), and
in the lower photograph
it has faded to magni-
tude 15. (Photographs Lick
Observatory)
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Fig. 13.13. The novae are thought to
be white dwarfs accreting matter from
a nearby companion star. At times, nu-
clear reactions burning the accreted
hydrogen are ignited, and this is seen as
the flare-up of a nova

The supernovae are exploding stars. In the explo-
sion a gas shell expanding with a velocity around
10,000 km/s is ejected. The expanding gas shell re-
mains visible for thousands of years. A few tens of such
supernova remnants have been discovered in the Milky
Way. The remnant of the actual star may be a neutron
star or a black hole.

The supernovae are classified as type I and type II
based on whether their spectra show evidence of hydro-
gen. Type I supernovae are further divided into types Ia
(silicon is present), Ib (no silicon, but helium present),
and Ic (no silicon, little helium).

Fig. 13.14. The lightcurves of the two types of super-
novae. Above SN 1972e type I and below SN 1970g type II.
(Kirchner, R.P. (1976): Sci. Am. 235, No. 6, 88)

The supernova types also differ in regard to their
light curves (Fig. 13.14). Type I supernovae fade away
in a regular manner, almost exponentially. The decline
of a type II supernova is less regular and its maximum
luminosity is smaller. Type II supernovae have been
further subdivided into several classes on the basis of
their light curves.

In Chap. 11 it was mentioned that there are several
possible ways in which a star may come to explode
at the end of its evolution. The type II supernova is
the natural endpoint of the evolution of a single star.
Types Ib and Ic also arise from massive stars that have
lost their hydrogen envelope by winds or to a companion
(e. g. Wolf–Rayet stars). These types are collectively
referred to as core-collapse supernovae.

The type Ia supernovae, on the other hand, have about
the mass of the Sun and should end up as white dwarfs.
However, if a star is accreting mass from a binary com-
panion, it will undergo repeated nova outbursts. Some
of the accreted material will then be turned into he-
lium or carbon and oxygen, and will collect on the star
and increase its mass. Finally the mass may exceed the
Chandrasekhar limit. The star will then collapse and
explode as a supernova.

At least six supernova explosions have been ob-
served in the Milky Way. Best known are the “guest
star” seen in China in 1054 (whose remnant is the
Crab nebula), Tycho Brahe’s supernova in 1572 and
Kepler’s supernova in 1604. On the basis of observa-
tions of other Sb–Sc-type spiral galaxies, the interval
between supernova explosions in the Milky Way is
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Fig. 13.15. Supernova 1987A in the Large Magellanic Cloud before and after the explosion. (Photographs ESO)

predicted to be about 50 years. Some will be hid-
den by obscuring material, but the 400 years’ interval
since the last observed supernova explosion is unusually
long.

On February 23, 1987 the first burst of light from
a supernova in the Large Magellanic Cloud, the small
companion galaxy of the Milky Way, reached the Earth
(Fig. 13.15). This supernova, SN 1987A, was of type II,
and was the brightest supernova for 383 years. After
its first detection, SN 1987A was studied in great detail
by all available means. Although the general ideas of
Sects. 11.4 and 11.5 on the final stages of stellar evolu-
tion have been confirmed, there are complications. Thus
e.g. the progenitor star was a blue rather than a red giant
as expected, perhaps because of the lower abundance of
heavy elements in the Large Magellanic Cloud com-
pared to that in the Milky Way. The collapse of its core
released a vast amount of energy as a pulse of neutrinos,
which was detected in Japan and the USA. The amount

of energy released indicates that the remnant is a neu-
tron star. As of January 2006 the remnant has, however,
not been seen yet.

13.4 Examples

Example 13.1 The observed period of a cepheid is
20 days and its mean apparent magnitude m = 20. From
Fig. 13.4, its absolute magnitude is M ≈ −5. According
to (4.11), the distance of the cepheid is

r = 10×10(m − M)/5 = 10×10(20 + 5)/5

= 106 pc = 1 Mpc .

Example 13.2 The brightness of a cepheid varies
2 mag. If the effective temperature is 6000 K at the max-
imum and 5000 K at the minimum, how much does the
radius change?
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The luminosity varies between

Lmax = 4πR2
maxσT 4

max,

Lmin = 4πR2
minσT 4

min .

In magnitudes the difference is

∆m = −2.5 lg
Lmin

Lmax
= −2.5 lg

4πR2
minσT 4

min

4πR2
maxσT 4

max

= −5 lg
Rmin

Rmax
−10 lg

Tmin

Tmax
.

This gives

lg
Rmin

Rmax
= −0.2∆m −2 lg

Tmin

Tmax

= −0.4−2 lg
5000

6000
= −0.24 ,

whence

Rmin

Rmax
= 0.57 .

13.5 Exercises

Exercise 13.1 The absolute visual magnitude of
RR Lyrae variables is 0.6±0.3. What is the relative
error of distances due to the deviation in the magnitude?
Exercise 13.2 The bolometric magnitude of a long
period variable varies by one magnitude. The effective
temperature at the maximum is 4500 K.
a) What is the temperature at the minimum, if the vari-
ation is due to temperature change only?
b) If the temperature remains constant, what is the
relative variation in the radius?

Exercise 13.3 In 1983 the radius of the Crab nebula
was about 3′. It is expanding 0.21′′ a year. Radial ve-
locities of 1300 km s−1 with respect to the central star
have been observed in the nebula.

a) What is the distance of the nebula, assuming its ex-
pansion is symmetric?

b) A supernova explosion has been observed in the di-
rection of the nebula. Estimate, how long time ago?

c) What was the apparent magnitude of the supernova,
if the absolute magnitude was a typical −18?
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14. Compact Stars

In astrophysics those stars in which the density of matter
is much larger than in ordinary stars are known as com-

pact objects. These include white dwarfs, neutron stars,
and black holes. In addition to a very high density, the
compact objects are characterised by the fact that nuclear
reactions have completely ceased in their interiors. Conse-
quently they cannot support themselves against gravity
by thermal gas pressure. In the white dwarfs and neutron
stars, gravity is resisted by the pressure of a degenerate
gas. In the black holes the force of gravity is completely

dominant and compresses the stellar material to infinite
density.

Compact stars in binary systems give rise to a variety
of striking new phenomena. If the companion star is los-
ing mass by a stellar wind or a Roche lobe overflow, the
gas that is shed may be accreted by the compact object.
This will release gravitational energy that can be observ-
able in the form of X-ray emission and strong and rapid
brightness variations.

14.1 White Dwarfs

As was mentioned in Sect. 10.2, in ordinary stars the
pressure of the gas obeys the equation of state of an
ideal gas. In stellar interiors the gas is fully ionized, i. e.
it is plasma consisting of ions and free electrons. The

Fig. 14.1. Two views of the best-known white dwarf Sirius B,
the small companion to Sirius. On the left, a picture in visible
light by the Hubble Space Telescope. Sirius B is the tiny white
dot on lower left from the overexposed image of Sirius. On the

right, an X-ray picture of the pair taken by the Chandra X-ray
observatory. Sirius B is now the brighter source, and Sirius is
weaker, because its surface is much cooler than the surface of
the white dwarf. (Photos NASA / HST and Chandra)

partial pressures of the ions and electrons together with
the radiation pressure important in hot stars comprise
the total pressure balancing gravitation. When the star
runs out of its nuclear fuel, the density in the interior
increases, but the temperature does not change much.
The electrons become degenerate, and the pressure is



292

14. Compact Stars

mainly due to the pressure of the degenerate electron
gas, the pressure due to the ions and radiation being
negligible. The star becomes a white dwarf.

As will be explained in *The Radius of White Dwarfs
and Neutron Stars (p. 298) the radius of a degenerate
star is inversely proportional to the cubic root of the
mass. Unlike in a normal star the radius decreases as
the mass increases.

The first white dwarf to be discovered was Sirius B,
the companion of Sirius (Fig. 14.1). Its exceptional na-
ture was realized in 1915, when it was discovered that
its effective temperature was very high. Since it is faint,
this meant that its radius had to be very small, slightly
smaller than that of the Earth. The mass of Sirius B was
known to be about equal to that of the Sun, so its density
had to be extremely large.

The high density of Sirius B was confirmed in 1925,
when the gravitational redshift of its spectral lines was
measured. This measurement also provided early obser-
vational support to Einstein’s general theory of relativity.

White dwarfs occur both as single stars and in binary
systems. Their spectral lines are broadened by the strong
gravitational field at the surface. In some white dwarfs
the spectral lines are further broadened by rapid rotation.
Strong magnetic fields have also been observed.

White dwarfs have no internal sources of energy,
but further gravitational contraction is prevented by
the pressure of the degenerate electron gas. Radiating
away the remaining heat, white dwarfs will slowly cool,
changing in colour from white to red and finally to black.
The cooling time is comparable to the age of the Uni-
verse, and even the oldest white dwarfs should still be
observable. Looking for the faintest white dwarfs has
been used as a way to set a lower limit on the age of the
Universe.

Cataclysmic variables. When a white dwarf is a mem-
ber of a close binary system, it can accrete mass from
its companion star. The most interesting case is where
a main sequence star is filling its Roche lobe, the largest
volume it can have without spilling over to the white
dwarf. As the secondary evolves, it expands and begins
to lose mass, which is eventually accreted by the pri-
mary. Binary stars of this kind are known as cataclysmic
variables.

The present definition of the class of cataclysmic
variables has gradually evolved, and in consequence

many types of systems that were earlier viewed as sep-
arate are now collected under this heading. In principle,
even type Ia supernovae should be included. The clas-
sical novae, whose eruptions are caused by the sudden
ignition of hydrogen that has collected on the surface
of the white dwarf, have been described in Sect. 13.3.
In the eruptions most of the accreted gas is expelled
in a shell, but if the mass transfer continues in the sys-
tem further eruptions may occur, giving rise to recurrent
novae. Finally, cataclysmic variables without eruptions,
for example pre-novae or post-novae, are classified as
nova-like variables.

The dwarf novae, also described in Sect. 13.3, are
produced by a quite different mechanism. In their case
the outbursts are not caused by thermonuclear reactions,
but by instabilities in the accretion flow around the white
dwarf. Although the details of the outburst mechanism
are still not completely clear, the basic picture is that
the disc has two possible states, a hot and a cool one,
available. Under some conditions the disc cannot remain
permanently in either of these states, and has to jump
repeatedly between the hot outburst state and the cool
quiescent state.

A special type of nova-like variables are the magnetic
cataclysmic variables. In the polars the magnetic field is
so strong that the accreted gas cannot settle into an ac-
cretion disc. Instead it is forced to follow the magnetic
field lines, forming an accretion column. As the gas hits
the surface of the white dwarf it is strongly heated giving
rise rise to bright X-ray emission, which is a character-
istic feature of polars. Systems with a slightly weaker
magnetic field are called intermediate polars. These sys-
tems exhibit both X-ray emission and variations due to
an accretion disc.

14.2 Neutron Stars

If the mass of a star is large enough, the density of mat-
ter may grow even larger than in normal white dwarfs.
The equation of state of a classical degenerate electron
gas then has to be replaced with the corresponding rel-
ativistic formula. In this case decreasing the radius of
the star no longer helps in resisting the gravitational
attraction. Equilibrium is possible only for one partic-
ular value of the mass, the Chandrasekhar mass MCh,
already introduced in Sect. 11.5. The value of MCh is
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about 1.4 M�, which is thus the upper limit to the
mass of a white dwarf. If the mass of the star is larger
than MCh, gravity overwhelms the pressure and the star
will rapidly contract towards higher densities. The final
stable state reached after this collapse will be a neu-
tron star (Fig. 14.2). On the other hand, if the mass is
smaller than MCh, the pressure dominates. The star will
then expand until the density is small enough to allow
an equilibrium state with a less relativistic equation of
state.

When a massive star reaches the end of its evolution
and explodes as a supernova, the simultaneous collapse
of its core will not necessarily stop at the density of
a white dwarf. If the mass of the collapsing core is larger
than the Chandrasekhar mass (� 1.4 M�), the collapse
continues to a neutron star.

An important particle reaction during the final stages
of stellar evolution is the URCA process, which was put
forward by Schönberg and Gamow in the 1940’s and
which produces a large neutrino emission without oth-
erwise affecting the composition of matter. (The URCA
process was invented in Rio de Janeiro and named after
a local casino. Apparently money disappeared at URCA
just as energy disappeared from stellar interiors in the
form of neutrinos. It is claimed that the casino was
closed by the authorities when this similarity became
known.) The URCA process consists of the reactions

(Z, A)+ e− → (Z −1, A)+νe ,

(Z −1, A)→ (Z, A)+ e− + ν̄e ,

where Z is the number of protons in a nucleus; A the
mass number; e− an electron; and νe and ν̄e the electron
neutrino and antineutrino. When the electron gas is de-
generate, the latter reaction is suppressed by the Pauli

Fig. 14.2. The structure of
a neutron star. The crust is rigid
solid material and the mantle
a freely streaming superfluid

exclusion principle. In consequence the protons in the
nuclei are transformed into neutrons. As the number
of neutrons in the nuclei grows, their binding energies
decrease. At densities of about 4×1014 kg/m3 the neu-
trons begin to leak out of the nucleus, and at 1017 kg/m3

the nuclei disappear altogether. Matter then consists of
a neutron “porridge”, mixed with about 0.5% electrons
and protons.

Neutron stars are supported against gravity by the
pressure of the degenerate neutron gas, just as white
dwarfs are supported by electron pressure. The equa-
tion of state is the same, except that the electron mass is
replaced by the neutron mass, and that the mean molec-
ular weight is defined with respect to the number of
free neutrons. Since the gas consists almost entirely of
neutrons, the mean molecular weight is approximately
one.

The typical diameters of neutron stars are about
10 km. Unlike ordinary stars they have a well-defined
solid surface. The atmosphere above it is a few cen-
timetres thick. The upper crust is a metallic solid with
the density growing rapidly inwards. Most of the star
is a neutron superfluid, and in the centre, where the
density exceeds 1018 kg/m3, there may be a solid nu-
cleus of heavier particles (hyperons), or of quark matter,
where the quarks that normally constitute neutrons have
become unconfined.

A neutron star formed in the explosion and collapse
of a supernova will initially rotate rapidly, because its
angular momentum is unchanged while its radius is
much smaller than before. In a few hours the star will
settle in a flattened equilibrium, rotating several hun-
dred times per second. The initial magnetic field of the
neutron star will also be compressed in the collapse,
so that there will be a strong field coupling the star
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to the surrounding material. The angular momentum
of the neutron star is steadily decreased by the emis-
sion of electromagnetic radiation, neutrinos, cosmic ray
particles and possibly gravitational radiation. Thus the
angular velocity decreases. The rotation can also break
the star into several separate objects. They will even-
tually recombine when the energy of the system is
reduced. In some cases the stars can remain separated,
resulting e. g. in a binary neutron star.

The theory of neutron stars was developed in the
1930’s, but the first observations were not made until
the 1960’s. At that time the pulsars, a new type of rapidly
pulsating radio sources, were discovered and identi-
fied as neutron stars. In the 1970’s neutron stars were
also seen as members of X-ray binaries, such as X-ray
pulsars and X-ray bursters (Fig. 14.9) (see Sect. 14.4).

Pulsars. The pulsars were discovered in 1967, when
Anthony Hewish and Jocelyn Bell in Cambridge, Eng-
land, detected sharp, regular radio pulses coming from
the sky. Since then about 1500 pulsars have been dis-
covered (Fig. 14.4). Their periods range from 0.0016 s
(for the pulsar 1937+214) up to 20 minutes.

In addition to the steady slowing down of the rota-
tion, sometimes small sudden jumps in the period are
observed. These might be a sign of rapid mass move-
ments in the neutron star crust (“starquakes”) or in its
surroundings.

The origin of the radio pulses can be understood
if the magnetic field is tilted at an angle of 45◦ −90◦
with respect to the rotation axis. There will then be
a magnetosphere around the star, where the particles
are tied to the magnetic field and rotate with it (Fig.
14.3). At a certain distance from the star, the speed
of rotation approaches the speed of light. The rapidly
moving particles will there emit radiation in a narrow
cone in their direction of motion. As the star rotates, this
cone sweeps around like a lighthouse beam, and is seen
as rapid pulses. At the same time relativistic particles
stream out from the neutron star.

The best-known pulsar is located in the Crab nebula
(Fig. 14.5). This small nebula in the constellation Taurus
was noted by the French astronomer Charles Messier
in the middle of the 18th century and became the first
object in the Messier catalogue, M1. The Crab nebula
was found to be a strong radio source in 1948 and an
X-ray source in 1964. The pulsar was discovered in

Fig. 14.3. The magnetic field around a rotating neutron star
carries plasma with it. At a certain distance the speed of
the plasma approaches the speed of light. At this distance
the radiating regions S emit radiation in a narrow forward
beam. Radiation from the point P hits the observer located
in the direction of the arrow. (Drawing from Smith, F.G.
(1977): Pulsars (Cambridge University Press, Cambridge)
p. 189)

Fig. 14.4. Consecutive radio pulses at 408 MHz from two
pulsars. To the left PSR 1642-03 and to the right PSR 1133+16.
Observations made at Jodrell Bank. (Picture from Smith, F.G.
(1977): Pulsars (Cambridge University Press, Cambridge) pp.
93, 95)
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Fig. 14.5. A time-sequence
of the pulsation of the
Crab pulsar in visible light.
The pictures were taken
once about every millisec-
ond; the period of the
pulsar is about 33 mil-
liseconds. (Photos N.A.
Sharp/NOAO/AURA/NSF)

1968. In the following year it was observed optically
and was also found to be an X-ray emitter.

Neutron stars are difficult to study optically, since
their luminosity in the visible region is very small (typ-
ically about 10−6 L�). For instance the Vela pulsar has
been observed at a visual magnitude of about 25. In the
radio region, it is a very strong pulsating source.

A few pulsars have been discovered in binary sys-
tems; the first one, PSR 1913+16, in 1974. In 1993
Joseph Taylor and Russell Hulse were awarded the No-
bel prize for the detection and studies of this pulsar. The
pulsar orbits about a companion, presumably another
neutron star, with the orbital eccentricity 0.6 and the pe-
riod 8 hours. The observed period of the pulses is altered
by the Doppler effect, and this allows one to determine
the velocity curve of the pulsar. These observations can
be made very accurately, and it has therefore been pos-
sible to follow the changes in the orbital elements of
the system over a period of several years. For example,
the periastron direction of the binary pulsar has been
found to rotate about 4◦ per year. This phenomenon can
be explained by means of the general theory of rela-
tivity; in the solar system, the corresponding rotation
(the minor fraction of the rotation not explained by the

Newtonian mechanics) of the perihelion of Mercury is
43 arc seconds per century.

The binary pulsar PSR 1913+16 has also provided the
first strong evidence for the existence of gravitational
waves. During the time of observation the orbital period
of the system has steadily decreased. This shows that
the system is losing orbital energy at a rate that agrees
exactly with that predicted by the general theory of
relativity. The lost energy is radiated as gravitational
waves.

Magnetars. The energy emitted by common pulsars has
its origin in the slowing down of their rotation. In some
neutron stars, the magnetars, the magnetic field is so
strong that the energy released in the decay of the field
is the main source of energy. Whereas in ordinary pul-
sars the magnetic field is typically 108 T, in magnetars
a typical value may be 109–1011 T.

Magnetars were first invoked as an explanation of the
soft gamma repeaters (SGR), X-ray stars that irregularly
emit bright, short (0.1 s) repeating flashes of low-energy
gamma rays. Later a second class of mysterious objects,
the anomalous X-ray pulsars (AXP), were identified
as magnetars. AXP are slowly rotating pulsars, with a
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rotation period of 6 to 12 seconds. Despite this they are
bright X-ray sources, which can be understood if their
energy is of magnetic origin.

It is thought that magnetars are the remnants of
stars that were more massive and rapidly rotating than
those giving rise to ordinary pulsars, although the de-
tails are still subject to debate. A magnetar first appears
as a SGR. During this phase, which only lasts about
10,000 years, the very strong magnetic field is slow-
ing down the rate of rotation. At the same time the field
is drifting with respect to the neutron star crust. This
causes shifts in the crust structure, leading to powerful
magnetic flares and the observed outbursts. After about
10,000 years the rotation has slowed down so much that
the outbursts cease, leaving the neutron star observable
as an AXP.

Gamma ray bursts. For a long time the gamma ray
bursts (GRB), very short and sharp gamma ray pulses
first discovered in 1973, remained a mystery. Unlike the
much less common SGR, the GRB never recurred, and
they had no optical or X-ray counterparts. A first ma-
jor advance was made when satellite observations with
the Compton Gamma Ray Observatory showed that the
gamma ray bursts are almost uniformly distributed in
the sky, unlike the known neutron stars.

The nature of the gamma ray bursts is now becom-
ing clear thanks to dedicated observing programmes
that have used burst detections by gamma and X-ray
satellites such as Beppo-SAX and, in particular, Swift
rapidly to look for afterglows of the GRB at opti-
cal wavelengths. The detection of these afterglows has
made it possible to determine distances to the bursts and
their location in their host galaxies (see Fig. 14.6).

It has become clear that there are at least two kinds of
bursts, with the self-descriptive names long soft bursts,
and short hard bursts. The long soft gamma ray bursts,
lasting longer than 2 seconds, have now been convinc-
ingly shown to be produced in the explosions of massive
stars at the end of their life, specifically supernovae of
types Ib and Ic (Sect. 13.3). Only a small fraction of
all type Ibc SNe give rise to GRB. The explosions that
produce GRB have been called hypernovae, and are
among the brightest objects in the Universe. A gamma
ray burst observed in late 2005 took place when the
Universe was only 900 million years old, making it
one of the most distant objects ever observed. The con-

Fig. 14.6. The location of the peculiar type Ibc supernova
SN 1998bw at redshift z = 0.0085 is in the circle to the lower
left. This was also the position of the faint gamma-ray burst
GRB 980425, the first GRB to be connected with a supernova.
The circle on the upper right marks an ultraluminous X-ray
source. (C.Kouveliotou et al. 2004, ApJ 608, 872, Fig. 1)

Fig. 14.7. Some pulsars shine brightly in gamma-rays. In the
center the Crab pulsar and on the upper left the gamma source
Geminga, which was identified in 1992 to be the nearest pul-
sar with a distance of about 100 pc from the Sun. (Photo by
Compton Gamma Ray Observatory)
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Fig. 14.8. The pulses of the
X-ray pulsar Hercules X1
have the period 1.24 s. The
best-fitting curve has been
superimposed on the ob-
servations. (Tananbaum, H.
et al. (1972): Astrophys. J.
(Lett.) 174, L143)

ditions required for hypernova explosions are still not
certain.

The nature of the systems giving rise to short gamma
ray bursts, lasting less than 2 seconds, have been more
difficult to ascertain. The most popular theory has been

Fig. 14.9. The variations
of the rapid X-ray burster
MXB 1730–335. An 100 sec-
ond interval is marked in
the diagram. (Lewin, W.H.G.
(1977): Ann. N.Y. Acad. Sci.
302, 310)

that they are produced in compact binary systems con-
sisting of two neutron stars or a neutron star and a black
hole. These systems lose energy by gravitational radia-
tion, and eventually the two components should merge,
producing a burst of gamma radiation. This theory has
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now received strong support when the afterglow of a
few short bursts has been detected in the outer parts of
their host galaxies. Since the stars in these regions are
all old and no longer give rise to core-collapse super-
novae, the neutron star merger hypothesis appears most
likely. However, it is still also possible that some of the
short bursts are exceptionally bright magnetar flares.

* The Radius of White Dwarfs and Neutron Stars

The mass of a white dwarf or a neutron star determines
its radius. This follows from the equation of hydro-
static equilibrium and from the pressure-density relation
for a degenerate gas. Using the hydrostatic equilibrium
equation (10.1)

dP

dr
= −G Mrρ

r2

one can estimate the average pressure P:∣∣∣∣dP

dr

∣∣∣∣≈ P

R
∝ M × M/R3

R2
= M2

R5
.

Here we have used ρ ∝ M/R3. Thus the pressure obeys

P ∝ M2/R4 . (14.1)

In the nonrelativistic case, the pressure of a degenerate
electron gas is given by (10.16):

P ≈ (h2/me)(µemH)
−5/3ρ5/3

and hence

P ∝ ρ5/3

meµ
5/3
e

. (14.2)

By combining (14.1) and (14.2) we obtain

M2

R4
∝ M5/3

R5meµ
5/3
e

or

R ∝ 1

M1/3meµ
5/3
e

∝ M−1/3 .

Thus the smaller the radius of a white dwarf is, the larger
its mass will be. If the density becomes so large that the
relativistic equation of state (10.17) has to be used, the
expression for the pressure is

P ∝ ρ4/3 ∝ M4/3

R4
.

As the star contracts, the pressure grows at the same
rate as demanded by the condition for hydrostatic sup-
port (14.1). Once contraction has begun, it can only
stop when the state of matter changes: the electrons and
protons combine into neutrons. Only a star that is mas-
sive enough can give rise to a relativistic degenerate
pressure.

The neutrons are fermions, just like the electrons.
They obey the Pauli exclusion principle, and the de-
generate neutron gas pressure is obtained from an
expression analogous to (14.2):

Pn ∝ ρ5/3

mnµ
5/3
n

,

where mn is the neutron mass and µn, the molecular
weight per free neutron. Correspondingly, the radius of
a neutron star is given by

Rns ∝ 1

M1/3mnµ
5/3
n

.

If a white dwarf consists purely of helium, µe = 2; for
a neutron star, µn ≈ 1. If a white dwarf and a neutron
star have the same mass, the ratio of their radii is

Rwd

Rns
=
(

Mns

Mwd

)1/3 (
µn

µe

)5/3 mn

me

≈ 1×
(

1

2

)5/3

×1840 ≈ 600 .

Thus the radius of a neutron star is about 1/600 of that
of a white dwarf. Typically Rns is about 10 km.

14.3 Black Holes

If the mass of a star exceeds MOV, and if it does not
lose mass during its evolution it can no longer reach
any stable final state. The force of gravity will dominate
over all other forces, and the star will collapse to a black
hole. A black hole is black because not even light can
escape from it. Already at the end of the 18th century
Laplace showed that a sufficiently massive body would
prevent the escape of light from its surface. According
to classical mechanics, the escape velocity from a body
of radius R and mass M is

ve =
√

2G M

R
.
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This is greater than the speed of light, if the radius is
smaller than the critical radius

RS = 2G M/c2 . (14.3)

The same value for the critical radius, the Schwarzschild
radius, is obtained from the general theory of relativity.
For example, for the Sun, RS is about 3 km; however,
the Sun’s mass is so small that it cannot become a black
hole by normal stellar evolution. Because the mass of
a black hole formed by stellar collapse has to be larger
than MOV the radius of the smallest black holes formed
in this way is about 5–10 km.

The properties of black holes have to be studied on
the basis of the general theory of relativity, which is
beyond the scope of this book. Thus only some basic
properties are discussed qualitatively.

An event horizon is a surface through which no infor-
mation can be sent out, even in principle. A black hole
is surrounded by an event horizon at the Schwarzschild
radius (Fig. 14.10). In the theory of relativity each ob-
server carries with him his own local measure of time.
If two observers are at rest with respect to each other
at the same point their clocks go at the same rate. Oth-
erwise their clock rates are different, and the apparent
course of events differs, too.

Near the event horizon the different time definitions
become significant. An observer falling into a black

Fig. 14.10. A black hole is surrounded by a spherical event
horizon. In addition to this a rotating black hole is surrounded
by a flattened surface inside which no matter can remain
stationary. This region is called the ergosphere

hole reaches the centre in a finite time, according to his
own clock, and does not notice anything special as he
passes through the event horizon. However, to a distant
observer he never seems to reach the event horizon; his
velocity of fall seems to decrease towards zero as he
approaches the horizon.

The slowing down of time also appears as a decrease
in the frequency of light signals. The formula for the
gravitational redshift can be written in terms of the
Schwarzschild radius as (Appendix B)

ν∞ = ν

√
1− 2G M

rc2
= ν

√
1− RS

r
. (14.4)

Here, ν is the frequency of radiation emitted at a dis-
tance r from the black hole and ν∞ the frequency
observed by an infinitely distant observer. It can be
seen that the frequency at infinity approaches zero for
radiation emitted near the event horizon.

Since the gravitational force is directed towards the
centre of the hole and depends on the distance, different
parts of a falling body feel a gravitational pull that is
different in magnitude and direction. The tidal forces
become extremely large near a black hole so that any
material falling into the hole will be torn apart. All atoms
and elementary particles are destroyed near the central
point, and the final state of matter is unknown to present-
day physics. The observable properties of a black hole
do not depend on how it was made.

Not only all information on the material composi-
tion disappears as a star collapses into a black hole; any
magnetic field, for example, also disappears behind the
event horizon. A black hole can only have three observ-
able properties: mass, angular momentum and electric
charge.

It is improbable that a black hole could have a signif-
icant net charge. Rotation, on the other hand, is typical
to stars, and thus black holes, too, must rotate. Since
the angular momentum is conserved, stars collapsed to
black holes must rotate very fast.

In 1963 Roy Kerr managed to find a solution of the
field equations for a rotating black hole. In addition to
the event horizon a rotating hole has another limiting
surface, an ellipsoidal static limit (Fig. 14.10). Objects
inside the static limit cannot be kept stationary by any
force, but they must orbit the hole. However, it is pos-
sible to escape from the region between the static limit
and the event horizon, called the ergosphere. In fact it is
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Fig. 14.11. The arrow
shows the variable star
V1357 Cyg. Its companion
is the suspected black hole
Cygnus X-1. The bright star
to the lower right of V1357
is ηCygni, one of the bright-
est stars in the constellation
Cygnus

possible to utilize the rotational energy of a black hole
by dropping an object to the ergosphere in such a way
that part of the object falls into the hole and another part
is slung out. The outcoming part may then have consid-
erably more kinetic energy than the original object.

At present the only known way in which a black hole
could be directly observed is by means of the radiation
from gas falling into it. For example, if a black hole is
part of a binary system, gas streaming from the com-
panion will settle into a disc around the hole. Matter at
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Fig. 14.12. Scale drawings of 16 black-hole binaries in the
Milky Way (courtesy of J.Orosz). The Sun–Mercury distance
(0.4AU) is shown at the top. The estimated binary inclination

is indicated by the tilt of the accretion disk. The colour of
the companion star roughly indicates its surface temperature.
(R.A.Remillard, J.E.McClintock 2006, ARAA 44, 54)

the inner edge of the disc will fall into the hole. The ac-
creting gas will lose a considerable part of its energy
(up to 40% of the rest mass) as radiation, which should
be observable in the X-ray region.

Some rapidly and irregularly varying X-ray sources
of the right kind have been discovered. The first strong
evidence for black hole in an X-ray binary was for
Cygnus X-1 (Fig. 14.10). Its luminosity varies on the
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time scale of 0.001 s, which means that the emitting
region must be only 0.001 light-seconds or a few hun-
dred kilometres in size. Only neutron stars and black
holes are small and dense enough to give rise to such
high-energy processes. Cygnus X-1 is the smaller com-
ponent of the double system HDE 226868. The larger
component is an optically visible supergiant with a mass
20–25 M�. The mass of the unseen component has been
calculated to be 10–15 M�. If this is correct, the mass
of the secondary component is much larger than the up-
per limit for a neutron star, and thus it has to be a black
hole.

Today 20 such systems are known, where the com-
pact component has a mass larger than 3 M�, and
therefore is probably a black hole. As shown in
Fig. 14.12 these can be of very different sizes. Nearly
all of them have been discovered as X-ray novae.

Many frightening stories about black holes have been
invented. It should therefore be stressed that they obey
the same dynamical laws as other stars – they are not
lurking in the darkness of space to attack innocent
passers-by. If the Sun became a black hole, the plan-
ets would continue in their orbits as if nothing had
happened.

So far we have discussed only black holes with
masses in the range of stellar masses. There is however
no upper limit to the mass of a black hole. Many active
phenomena in the nuclei of galaxies can be explained
with supermassive black holes with masses of millions
or thousands of millions solar masses (see Sect. 18.4
and 19.9).

14.4 X-ray Binaries

Close binaries where a neutron star or a black hole is
accreting matter from its companion, usually a main se-
quence star, will be visible as strong X-ray sources. They
are generally classified as high-mass X-ray binaries
(HMXB), when the companion has a mass larger than
about 10 M�, and low-mass X-ray binaries (LMXB)
with a companion mass smaller than 1.2 M�. In HMXBs
the source of of the accreted material is a strong stellar
wind. LMXBs are produced by Roche-lobe overflow of
the companion star, either because the major axis of the
binary decreases due to angular momentum loss from

the system, or else because the radius of the companion
is increasing as it evolves.

Because of the rapid evolution of the massive
component in HMXBs these systems are young and
short-lived, 105–107 a. In LMXBs the lifetime is deter-
mined by the mass-transfer process, and may be longer,
107–109 a). In many respects they are similar to cata-
clysmic variables (see Sect. 14.1), and may give rise to
analogous phenomena.

Many kinds of variable X-ray sources have been dis-
covered since they were first observed in the 1970’s.
Among these, the X-ray pulsars and the X-ray bursters
can only be neutron stars. In other types of X-ray bina-
ries it can be difficult to determine whether the primary
is a neutron star or a black hole.

Neutron stars and black holes are formed in super-
nova explosions, and in a binary system the explosion
would normally be expected to disrupt the binary. An
X-ray binary will only form under special conditions.
Some examples are shown in Sect. 11.6.

X-ray Pulsars. X-ray pulsars always belong to bi-
nary systems and may be either HMXBs or LMXBs.
The pulse periods of X-ray pulsars in high-mass
systems are significantly longer than those of ra-
dio pulsars, from a few seconds to tens of minutes.
In contrast to radio pulsars, the period of the
pulsed emission of these pulsars decreases with
time.

The characteristic properties of X-ray pulsars can
be understood from their binary nature. A neutron star
formed in a binary system is first seen as a normal
radio pulsar. Initially, the strong radiation of the pulsar
prevents gas from falling onto it. However, as it slows
down, its energy decreases, and eventually the stellar
wind from the companion can reach its surface. The
incoming gas is channelled to the magnetic polar caps
of the neutron star, where it emits strong X-ray radiation
as it hits the surface. This produces the observed pulsed
emission.

In low-mass systems, the angular momentum of the
incoming gas speeds up the rotation of the pulsar. The
maximum possible rotation rate of a neutron star be-
fore centrifugal forces start to break it up corresponds
to a period of about a millisecond. A few millisecond
pulsars with periods of this order are known, both in the
radio and in the X-ray region. It is thought that these
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are (or, in the radio case, have once been) members of
binary systems.

The emission curve of a typical fast X-ray pulsar,
Hercules X1, is shown in Fig. 14.8. The period of the
pulses is 1.24 s. This neutron star is part of an eclips-
ing binary system, known from optical observations as
HZ Herculis. The orbital properties of the system can
therefore be determined. Thus e.g. the mass of the pul-
sar is about one solar mass, reasonable for a neutron
star.

X-ray Bursters. X-ray bursters are irregular variables,
showing sudden brightenings, known as type I X-ray
bursts, at random times (Fig. 14.9). The typical interval
between outbursts is a few hours or days, but more rapid
bursters are also known. The strength of the outburst
seems to be related to the recharging time.

Type I X-ray bursts are analogous to the eruptions
of classical novae. However, the source of radiation in
X-ray bursters cannot be the ignition of hydrogen, since
the maximum emission is in the X-ray region. Instead,
gas from the companion settles on the surface of the
neutron star, where hydrogen burns steadily to helium.
Then, when the growing shell of helium reaches a crit-
ical temperature, it burns to carbon in a rapid helium
flash. Since, in this case, there are no thick damp-
ing outer layers, the flash appears as a burst of X-ray
radiation.

Fig. 14.13. Light-curves of a neutron-
star (Aql X-1) and a black-hole
(GRO J1655-40) transient source, as
observed by the All Sky Monitor
on RXTE. (D.Psaltis 2006, in Com-
pact Stellar X-ray Sources, ed. Lewin,
vdKlis, CUP, p. 16, Fig. 1.9)

X-ray Novae. The X-ray pulsars and bursters have to
be neutron stars. Other X-ray binaries may be either
neutron stars or black holes. All compact X-ray sources
are variable to some extent. In the persistent sources the
variations are moderate, an the sources always visible.
The majority of sources are transient.

If the X-ray bursters correspond to classical novae,
the counterparts of dwarf novae are the X-ray novae,
also known as soft X-ray transients (SXT). Quantita-
tively there are large differences between these types of
systems. Dwarf novae have outbursts lasting for a few
days at intervals of a few months, for SXTs the outbursts
happen at decade-long intervals and last for months.
A dwarf nova brightens by a factor about 100 during
outbursts, a SXT by a factor of 106. The light-curves
of neutron-star and black-hole SXTs are compared in
Fig. 14.13.

The SXTs are alternating between (at least) two
states: During the high state thermal radiation from the
accretion disc dominates, whereas in the low state the
X-ray have a higher energy, and are produced by Comp-
ton scattering by hot electrons in a disc corona or a jet.

Microquasars. One interesting aspect of X-ray bina-
ries is their connection to models of active galactic
nuclei (AGN, Sect. 18.7). In both systems a black hole,
which in the case of AGN may have a mass in the range
106–109 M�, is surrounded by an accretion disc.
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In an X-ray binary there is similarly an accretion
disc surrounding a compact object, a stellar-mass black
hole. It will exhibit phenomena in many respects similar
to those in AGN. Since the galactic sources are much
nearer, and vary on much shorter time-scales, they may
allow more detailed observations of these phenomena.

For example, relativistic jets perpendicular to the disc
are common in AGN, and they can also be expected in
X-ray binaries. A few examples of such microquasars
have been discovered, see Fig. 14.14.

Furthermore, in AGN the jet may sometimes be
pointing straight at us. Relativistic effects will then lead
to a brightening of the source. In a microquasar there
might be a similar effect, which would provide one
explanation for the ulraluminous X-ray sources (ULX),
sources which appear to be too luminous to be produced
by ordinary stellar-mass black holes. This is important,
because according to an alternative model ULXs con-
tain an intermediate mass black hole with a mass about
103 M�. The origin of such intermediate mass black
holes, if they exist, is an intriguing problem.

Fig. 14.14. Observed outburst of the microquasar GRS
1915+105 on 9 September, 1997. The disappearance of
the internal part of the accretion disc (decrease in the X-
ray flux) is followed by an ejection of relativistic plasma
clouds (oscillation in the infrared and radio). (S. Chaty,
astro-ph/0607668)

14.5 Examples

Example 14.1 Assume that the Sun collapses into
a neutron star with a radius of 20 km. a) What will
be the mean density of the neutron star? b) What would
be it rotation period?

a) The mean density is

ρ = M�
4
3πR3

= 2×1030 kg
4
3π(20×103)3 m3

≈ 6×1016 kg/m3 .

One cubic millimetre of this substance would weigh
60 million kilos.

b) To obtain an exact value, we should take into ac-
count the mass distributions of the Sun and the resulting
neutron star. Very rough estimates can be found as-
suming that both are homogeneous. Then the moment
of inertia is I = 2

5 MR2, and the angular momentum
is L = Iω. The rotation period is then obtained as in
Example 11.1:

P = P�
(

R

R�

)2

= 25 d

(
20×103 m

6.96×108 m

)2

= 2.064×10−8 d

≈ 0.0018 s .

The Sun would make over 550 revolutions per second.

Example 14.2 What should be the radius of the Sun
if the escape velocity from the surface were to exceed
the speed of light?

The escape velocity exceeds the speed of light if√
2G M

R
> c

or

R<
2G M

c2
= RS .

For the Sun we have

RS = 2×6.67×10−11 m3 s−2 kg−1 ×1.989×1030 kg

(2.998×108 m s−1)2

= 2950 m .
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14.6 Exercises

Exercise 14.1 The mass of a pulsar is 1.5 M�, radius
10 km, and rotation period 0.033 s. What is the angular
momentum of the pulsar? Variations of 0.0003 s are ob-
served in the period. If they are due to radial oscillations
(“starquakes”), how large are these oscillations?

Exercise 14.2 In Dragon’s Egg by Robert L. Forward
a spaceship orbits a neutron star at a distance of 406 km
from the centre of the star. The orbital period is the same
as the rotation period of the star, 0.1993 s.

a) Find the mass of the star and the gravitational
acceleration felt by the spaceship.

b) What is the effect of the gravitation on a 175 cm
tall astronaut, if (s)he stands with her/his feet pointing
towards the star? And if (s)he is lying tangential to the
orbit?

Exercise 14.3 A photon leaves the surface of a star
at a frequency νe. An infinitely distant observer finds
that its frequency is ν. If the difference is due to
gravitation only, the change in the energy of the pho-
ton, h∆ν, equals the change in its potential energy.
Find the relation between ν and νe, assuming the
mass and radius of the star are M and R. How much
will the solar radiation redshift on its way to the
Earth?
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15. The Interstellar Medium

Although most of the mass of the Milky Way Galaxy is
condensed into stars, interstellar space is not com-

pletely empty. It contains gas and dust in the form
both of individual clouds and of a diffuse medium. In-
terstellar space typically contains about one gas atom
per cubic centimetre and 100 dust particles per cubic
kilometre.

Altogether, about 10 % of the mass of the Milky Way
consists of interstellar gas. Since the gas is strongly con-
centrated in the galactic plane and the spiral arms, in
these regions there are many places where the quanti-
ties of stars and interstellar matter are about equal. The
dust (a better name would be ‘‘smoke’’, since the particle
sizes are much smaller than in terrestrial dust) constitutes
about one percent of the gas. High-energy cosmic ray par-
ticlesaremixedwiththegasanddust. There isalsoaweak,
but still very important, galactic magnetic field.

At present the most important observations of the
interstellar medium are made at radio and infrared wave-
lengths, since the peak of the emission often lies at these
wavelengths. But many forms of interstellar matter (such

as solid bodies with diameters larger than 1 mm) would
be almost impossible to detect on the basis of their emis-
sion or absorption. In principle, the mass of these forms
of matter might be larger than the observed mass of all
other forms put together. However, an upper limit on the
total mass of interstellar matter, regardless of its form,
can be derived on the basis of its gravitational effects.
This is the Oort limit. The galactic gravitational field is
determined by the distribution of matter. By observing
the motions of stars perpendicular to the galactic plane,
the vertical gravitational force and hence the amount of
mass in the galactic plane can be determined. The re-
sult is that the local density within 1 kpc of the Sun is
(7.3−10.0) × 10

−21 kg m−3. The density of known stars is
(5.9−6.7) × 10

−21 kg m−3 and that of known interstellar
matter about 1.7 × 10

−21 kg m−3. Thus there is very little
room for unknown forms of mass in the solar neighbour-
hood. However, the limit concerns only the dark matter
concentrated in the galactic plane. There are indications
that the Milky Way is surrounded by a spherical halo of
dark matter (Chap. 17).

15.1 Interstellar Dust

The first clear evidence for the existence of interstel-
lar dust was obtained around 1930. Before that, it had
been generally thought that space is completely trans-
parent and that light can propagate indefinitely without
extinction.

In 1930 Robert Trumpler published his study of the
space distribution of the open clusters. The absolute
magnitudes M of the brightest stars could be estimated
on the basis of the spectral type. Thus the distance r
to the clusters could be calculated from the observed
apparent magnitudes m of the bright stars:

m − M = 5 lg
r

10 pc
. (15.1)

Trumpler also studied the diameters of the clusters. The
linear diameter D is obtained from the apparent angular
diameter d by means of the formula

D = dr , (15.2)
where r is the distance of the cluster.

It caught Trumpler’s attention that the more distant
clusters appeared to be systematically larger than the
nearer ones (Fig. 15.1). Since this could hardly be true,
the distances of the more distant clusters must have
been overestimated. Trumpler concluded that space is
not completely transparent, but that the light of a star is
dimmed by some intervening material. To take this into
account, (15.1) has to be replaced with (4.17)

m − M = 5 lg
r

10 pc
+ A , (15.3)

where A ≥ 0 is the extinction in magnitudes due to
the intervening medium. If the opacity of the medium
is assumed to be the same at all distances and in all
directions, A can be written

A = ar , (15.4)

where a is a constant. Trumpler obtained for the average
value of a in the galactic plane, apg = 0.79 mag/kpc,
in photographic magnitudes. At present, a value of
2 mag/kpc is used for the average extinction. Thus the
extinction over a 5 kpc path is already 10 magnitudes.



308

15. The Interstellar Medium

Fig. 15.1. The diameters of open star clusters calculated with
the distance given by the formula (15.1) according to Trumpler
(1930). The increase of the diameter with distance is not a real
phenomenon, but an effect of interstellar extinction, which was
discovered in this way

Extinction due to dust varies strongly with direc-
tion. For example, visible light from the galactic centre
(distance 8–9 kpc) is dimmed by 30 magnitudes. There-
fore the galactic centre cannot be observed at optical
wavelengths.

Extinction is due to dust grains that have diame-
ters near the wavelength of the light. Such particles
scatter light extremely efficiently. Gas can also cause
extinction by scattering, but its scattering efficiency per
unit mass is much smaller. The total amount of gas al-
lowed by the Oort limit is so small that scattering by

Fig. 15.2. Extinction by a distribution of particles. In the
volume element with length dl and cross section d A, there
are n d A dl particles, where n is the particle density in the
medium. If the extinction cross section of one particle is Cext,

the total area covered by the particles is n d A dl Cext. Thus
the fractional decrease in intensity over the distance dl is
d I/I = −n d A dl Cext/d A = −n Cext dl

gas is negligible in interstellar space. (This is in con-
trast with the Earth’s atmosphere, where air molecules
make a significant contribution to the total extinction).

Interstellar particles can cause extinction in two
ways:

1. In absorption the radiant energy is transformed into
heat, which is then re-radiated at infrared wave-
lengths corresponding to the temperature of the dust
particles.

2. In scattering the direction of light propagation is
changed, leading to a reduced intensity in the original
direction of propagation.

An expression for interstellar extinction will now
be derived. The size, index of refraction and num-
ber density of the particles are assumed to be known.
For simplicity we shall assume that all particles are
spheres with the same radius a and the geometrical
cross section πa2. The true extinction cross section of
the particles Cext will be

Cext = Qextπa2 , (15.5)

where Qext is the extinction efficiency factor.
Let us consider a volume element with length dl and

cross section d A, normal to the direction of propagation
(Fig. 15.2). It is assumed that the particles inside the
element do not shadow each other. If the particle density
is n, there are n dl d A particles in the volume element
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and they will cover the fraction dτ of the area d A, where

dτ = n d A dl Cext

d A
= n Cext dl .

In the length dl the intensity is thus changed by

d I = −I dτ . (15.6)

On the basis of (15.6) dτ can be identified as the optical
depth.

The total optical depth between the star and the Earth
is

τ(r)=
r∫

0

dτ =
r∫

0

n Cext dl = Cextnr ,

where n is the average particle density along the given
path. According to (4.18) the extinction in magnitudes
is

A = (2.5 lg e)τ ,

and hence

A(r)= (2.5 lg e)Cextnr . (15.7)

This formula can also be inverted to calculate n, if the
other quantities are known.

The extinction efficiency factor Qext can be calcu-
lated exactly for spherical particles with given radius a
and refractive index m. In general,

Qext = Qabs + Qsca ,

where

Qabs = absorption efficiency factor ,

Qsca = scattering efficiency factor .

If we define

x = 2πa/λ , (15.8)

where λ is the wavelength of the radiation, then

Qext = Qext(x,m) . (15.9)

The exact expression for Qext is a series expansion
in x that converges more slowly for larger values of x.
When x � 1, the process is called Rayleigh scattering;
otherwise it is known as Mie scattering. Figure 15.3
shows Qext as a function of x for m = 1.5 and m = 1.33.
For very large particles, (x 	 1) Qext = 2, as appears

Fig. 15.3. Mie scattering: the extinction efficiency factor for
spherical particles for the refractive indices m = 1.5 and m =
1.33 (refractive index of water). The horizontal axis is related
to the size of the particle according to x = 2πa/λ, where a is
the particle radius and λ, the wavelength of the radiation

from Fig. 15.3. Purely geometrically one would have
expected Qext = 1; the two times larger scattering effi-
ciency is due to the diffraction of light at the edges of
the particle.

Other observable phenomena, apart from extinction,
are also caused by interstellar dust. One of these is the
reddening of the light of stars. (This should not be con-
fused with the redshift of spectral lines.) Reddening is
due to the fact that the amount of extinction becomes
larger for shorter wavelengths. Going from red to ultra-
violet, the extinction is roughly inversely proportional
to wavelength. For this reason the light of distant stars
is redder than would be expected on the basis of their
spectral class. The spectral class is defined on the basis
of the relative strengths of the spectral lines which are
not affected by extinction.

According to (4.20), the observed colour index B − V
of a star is

B − V = MB − MV + AB − AB

= (B − V )0 + EB−V , (15.10)

where (B − V )0 is the intrinsic colour of the star and
EB−V the colour excess. As noted in Sect. 4.5 the ratio
between the visual extinction AV and the colour excess
is approximately constant:

R = AV

EB−V
= AV

AB − AV
≈ 3.0 . (15.11)
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Fig. 15.4. (a) Schematic
representation of the in-
terstellar extinction. As
the wavelength increases,
the extinction approaches
zero. (Drawing based on
Greenberg, J. M. (1968):
“Interstellar Grains”, in
Nebulae and Interstellar
Matter, ed. by Middle-
hurst, B.M., Aller, L.H.,
Stars and Stellar Systems,
Vol. VII (The University
of Chicago Press, Chicago)
p. 224). (b) Measured ex-
tinction curve, normalized
to make EB−V = 1. (Hoyle,
F., Narlikar, J. (1980): The
Physics-Astronomy Fron-
tier (W. H. Freeman and
Company, San Francisco)
p. 156. Used by permission)

R does not depend on the properties of the star or the
amount of extinction. This is particularly important in
photometric distance determinations because of the fact
that the colour excess EB−V can be directly determined
from the difference between the observed colour in-
dex B −V and the intrinsic colour (B −V )0 known from
the spectral class. One can then calculate the extinction

AV ≈ 3.0 EB−V (15.12)

and finally the distance. Since the interstellar medium is
far from homogeneous, the colour excess method gives
a much more reliable value than using some average
value for the extinction in (4.18).

The wavelength dependence of the extinction, A(λ),
can be studied by comparing the magnitudes of stars
of the same spectral class in different colours. These
measurements have shown that A(λ) approaches zero
as λ becomes very large. In practice A(λ) can be mea-
sured up to a wavelength of about two micrometres. The
extrapolation to zero inverse wavelength is then fairly
reliable. Figure 15.4a shows A(λ) as a function of in-
verse wavelength. It also illustrates how the quantities
AV and EB−V, which are needed in order to calculate the
value of R, are obtained from this extinction or redden-
ing curve. Figure 15.4b shows the observed extinction
curve. The points in the ultraviolet (λ≤ 0.3 m) are based
on rocket measurements.

It is clear from Fig. 15.4b that interstellar extinction
is largest at short wavelengths in the ultraviolet and
decreases for longer wavelengths. In the infrared it is
only about ten percent of the optical extinction and in
the radio region it is vanishingly small. Objects that are
invisible in the optical region can therefore be studied
at infrared and radio wavelengths.

Another observed phenomenon caused by dust is the
polarization of the light of the stars. Since spherical
particles cannot produce any polarization, the interstel-
lar dust particles have to be nonspherical in shape.

Fig. 15.5. In a homogeneous medium the extinction in mag-
nitudes is proportional to the pathlength traversed. If the
extinction in the direction of the galactic pole is ∆m, then
the extinction at the galactic latitude b will be ∆m/ sin b
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If the particles in a cloud are aligned by the inter-
stellar magnetic field, they will polarize the radiation
passing through the cloud. The degree of polariza-
tion and its wavelength dependence give information
on the properties of the dust particles. By study-
ing the direction of polarization in various directions,
one can map the structure of the galactic magnetic
field.

Fig. 15.6. The Coalsack is a dark nebula next to the Southern Cross. (Photograph K. Mattila, Helsinki University)

In the Milky Way interstellar dust is essentially con-
fined to a very thin, about 100 pc, layer in the galactic
plane. The dust in other spiral galaxies has a similar
distribution and is directly visible as a dark band in the
disc of the galaxy (Fig. 18.12b). The Sun is located near
the central plane of the galactic dust layer, and thus the
extinction in the direction of the galactic plane is very
large, whereas the total extinction towards the galactic
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poles may be less than 0.1 magnitudes. This is appar-
ent in the distribution of galaxies in the sky: at high
galactic latitudes, there are many galaxies, while near
the galactic plane, there is a 20◦ zone where hardly any
galaxies are seen. This empty region is called the zone
of avoidance.

If a homogeneous dust layer gives rise to a total ex-
tinction of∆m magnitudes in the vertical direction, then
according to Fig. 15.5, the total extinction at galactic
latitude b will be

∆m(b)=∆m/ sin b . (15.13)

If the galaxies are uniformly distributed in space, then
in the absence of extinction, the number of galaxies per
square degree brighter than the magnitude m would be

lg N0(m)= 0.6 m +C , (15.14)

where C is a constant (see Exercise 17.1). However,
due to extinction, a galaxy that would otherwise have
the apparent magnitude m0 will have the magnitude

m(b)= m0 +∆m(b)= m0 +∆m/ sin b , (15.15)

where b is the galactic latitude. Thus the observable
number of galaxies at latitude b will be

lg N(m, b)= lg N0(m −∆m(b))

= 0.6(m −∆m(b))+C

= lg N0(m)−0.6∆m(b)

or

lg N(m, b)= C′ −0.6
∆m

sin b
, (15.16)

where C′ = lg N0(m) does not depend on the galactic
latitude. By making galaxy counts at various latitudes b,
the extinction ∆m can be determined. The value ob-
tained from galaxy counts made at Lick Observatory is
∆mpg = 0.51 mag.

The total vertical extinction of the Milky Way has
also been determined from the colour excesses of stars.
These investigations have yielded much smaller extinc-
tion values, about 0.1 mag. In the direction of the north
pole, extinction is only 0.03 mag. The disagreement be-
tween the two extinction values is probably largely due
to the fact that the dust layer is not really homogeneous.
If the Sun is located in a local region of low dust con-
tent, the view towards the galactic poles might be almost
unobstructed by dust.

Dark Nebulae. Observations of other galaxies show
that the dust is concentrated in the spiral arms, in partic-
ular at their inner edge. In addition dust is concentrated
in individual clouds, which appear as star-poor regions
or dark nebulae against the background of the Milky
Way. Examples of dark nebulae are the Coalsack in
the southern sky (Fig. 15.6) and the Horsehead nebula
in Orion. Sometimes the dark nebulae form extended
winding bands, and sometimes small, almost spheri-
cal, objects. Objects of the latter type are most easy to
see against a bright background, e. g. a gas nebula (see
Fig. 15.19). These objects have been named globules by
Bart J. Bok, who put forward the hypothesis that they
are clouds that are just beginning to contract into stars.

The extinction by a dark nebula can be illustrated and
studied by means of a Wolf diagram, shown schemat-
ically in Fig. 15.7. The diagram is constructed on the
basis of star counts. The number of stars per square
degree in some magnitude interval (e. g. between mag-
nitudes 14 and 15) in the cloud is counted and compared
with the number outside the nebula. In the compari-
son area, the number of stars increases monotonically
towards fainter magnitudes. In the dark nebula the num-

Fig. 15.7. Wolf diagram. The horizontal coordinate is the mag-
nitude and the vertical coordinate is the number of stars per
square degree in the sky brighter than that magnitude. A dark
nebula diminishes the brightness of stars lying behind it by
the amount ∆m
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bers first increase in the same way, but beyond some
limiting magnitude (10 in the figure) the number of
stars falls below that outside the cloud. The reason for
this is that the fainter stars are predominantly behind the

Fig. 15.8a–c. Bright and dark nebulae in Scorpius and
Ophiuchus. Photograph (a) was taken in the blue colour
region, λ= 350–500 nm, and (b) in the red colour region,
λ = 600–680 nm. (The sharp rings in (b) are reflections
of Antares in the correction lens of the Schmidt camera.)
The nebulae located in the area are identified in draw-
ing (c). B44 and H4 are dark nebulae. There is a large
reflection nebula around Antares, which is faintly visible
in the blue (a), but bright in the red (b) regions. Antares
is very red (spectral class M1) and therefore the reflec-

tion nebula is also red. In contrast, the reflection nebulae
around the blue stars ρOphiuchi (B2), CD-24◦ 12684 (B3),
22 Scorpii (B2) and σ Scorpii (B1) are blue and are visi-
ble only in (a). In (b) there is an elongated nebula to the
right of σ Scorpii, which is invisible in (a). This is an emis-
sion nebula, which is very bright in the red hydrogen Hα

line (656 nm). In this way reflection and emission nebulae
can be distinguished by means of pictures taken in differ-
ent wavelength regions. (Photograph (a) E. Barnard, and (b)
K. Mattila)

nebula, and their brightness is reduced by some constant
amount ∆m (2 magnitudes in the figure). The brighter
stars are mostly in front of the nebula and suffer no
extinction.
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Fig. 15.9. The reflection
nebula NGC 2068 (M78)
in Orion. In the middle of
the nebula there are two
stars of about magnitude 11.
The northern one (at the
top) is the illuminating star,
while the other one proba-
bly lies in the foreground.
(Photography Lunar and
Planetary Laboratory,
Catalina Observatory)

Reflection Nebulae. If a dust cloud is near a bright
star, it will scatter, i. e. reflect the light of the star. Thus
individual dust clouds can sometimes be observed as
bright reflection nebulae. Some 500 reflection nebulae
are known.

The regions in the sky richest in reflection nebulae
are the areas around the Pleiades and around the gi-
ant star Antares. Antares itself is surrounded by a large
red reflection nebula. This region is shown in Fig. 15.8.
Figure 15.9 shows the reflection nebula NGC 2068,
which is located near a large, thick dust cloud a few
degrees northwest of Orion’s belt. It is one of the bright-
est reflection nebulae and the only one included in the
Messier catalogue (M78). In the middle of the neb-
ula there are two stars of about 11 magnitudes. The
northern star illuminates the nebula, while the other one
is probably in front of the nebula. Figure 15.10 shows
the reflection nebula NGC 1435 around Merope in the
Pleiades. Another bright and much-studied reflection
nebula is NGC 7023 in Cepheus. It, too, is connected
with a dark nebula. The illuminating star has emission
lines in its spectrum (spectral type Be). Infrared stars

have also been discovered in the area of the nebula,
probably a region of star formation.

In 1922 Edwin Hubble published a fundamental in-
vestigation of bright nebulae in the Milky Way. On
the basis of extensive photographic and spectroscopic
observations, he was able to establish two interesting
relationships. First he found that emission nebulae only
occur near stars with spectral class earlier than B0,
whereas reflection nebulae may be found near stars of
spectral class B1 and later. Secondly Hubble discovered
a relationship between the angular size R of the neb-
ula and the apparent magnitude m of the illuminating
star:

5 lg R = −m + const . (15.17)

Thus the angular diameter of a reflection nebula is
larger for a brighter illuminating star. Since the mea-
sured size of a nebula generally increases for longer
exposures, i. e. fainter limiting surface brightness, the
value of R should be defined to correspond to a fixed
limiting surface brightness. The value of the constant in
the Hubble relation depends on this limiting surface
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Fig. 15.10. The reflection nebula NGC 1435 around Merope
(23 Tau, spectral class B6) in the Pleiades. This figure
should be compared with Fig. 16.1, where Merope is visible

as the lowest of the bright stars in the Pleiades. (Na-
tional Optical Astronomy Observatories, Kitt Peak National
Observatory)



316

15. The Interstellar Medium

Fig. 15.12a,b. Interstellar dust is best seen in infrared
wavelengths. Two examples of the images by the IRAS
satellite. (a) In a view towards the Galactic centre, the
dust is seen to be concentrated in a narrow layer in
the galactic plane. Several separate clouds are also seen.

(b) Most of the constellation Orion is covered by a com-
plex area of interstellar matter. The densest concentrations
of dust below the centre of the image, are in the region
of the Horsehead nebula and the Orion nebula. (Photos
NASA)

Fig. 15.11. The Hubble relation for reflection nebulae. The
horizontal axis shows the radius R of the nebulae in arc min-
utes and the vertical axis, the (blue) apparent magnitude m of
the central star. No measurements were made in the hatched
region. (van den Bergh, S. (1966): Astron. J. 71, 990)

brightness. The Hubble relation for reflection nebu-
lae is shown in Fig. 15.11, based on measurements
by Sidney van den Bergh from Palomar Sky Atlas
plates. Each point corresponds to a reflection nebula and
the straight line represents the relation (15.17), where
the value of the constant is 12.0 (R is given in arc
minutes).
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The Hubble relation can be derived theoretically, if
it is assumed that the illumination of a dust cloud is
inversely proportional to the square of the distance to the
illuminating star, and that the dust clouds are uniformly
distributed in space. The theoretical Hubble relation also
gives an expression for the constant on the right-hand
side, which involves the albedo and the phase function
of the grains.

The observations of reflection nebulae show that the
albedo of interstellar grains must be quite high. It has not
yet been possible to obtain its precise numerical value
in this way, since the distances between the nebulae and
their illuminating stars are not known well enough.

One may also consider the surface brightness of dark
nebulae that are not close enough to a star to be visible
as reflection nebulae. These nebulae will still reflect the
diffuse galactic light from all the stars in the Milky
Way. Calculations show that if the dust grains have
a large albedo, then the reflected diffuse light should be
bright enough to be observable, and it has indeed been
observed. Thus the dark nebulae are not totally dark.
The diffuse galactic light constitutes about 20–30% of
the total brightness of the Milky Way.

Dust Temperature. In addition to scattering the inter-
stellar grains also absorb radiation. The absorbed energy
is re-radiated by the grains at infrared wavelengths cor-
responding to their temperatures. The temperature of
dust in interstellar space (including dark nebulae) is
about 10–20 K. The corresponding wavelength accord-
ing to Wien’s displacement law (5.21) is 300–150µm.
Near a hot star the temperature of the dust may be
100–600 K and the maximum emission is then at
30–5µm. In H II regions the dust temperature is about
70–100 K.

The rapid development of infrared astronomy in the
1970’s has brought all the above-mentioned dust sources
within the reach of observations (Fig. 15.12). In addition
infrared radiation from the nuclei of normal and active
galaxies is largely thermal radiation from dust. Thermal
dust emission is one of the most important sources of
infrared radiation in astronomy.

One of the strongest infrared sources in the sky is the
nebula around the star ηCarinae. The nebula consists
of ionized gas, but infrared radiation from dust is also
clearly visible in its spectrum (Fig. 15.13). In even more
extreme cases, the central star may be completely ob-

Fig. 15.13. More than 99% of the radiation from the ηCarinae
nebula (Fig. 13.10) is in the infrared. The peak in the visual
region is from the hydrogen Hα line (0.66µm). In the infrared,
the silicate emission from dust is evident at 10µm. (Allen,
D.A. (1975): Infrared, the New Astronomy (Keith Reid Ltd.,
Shaldon) p. 103)

scured, but revealed by the infrared emission from hot
dust.

Composition and Origin of the Dust (Table 15.1).
From the peaks in the extinction curve, it may be
concluded that interstellar dust contains water ice and
silicates, and probably graphite as well. The sizes of
the grains can be deduced from their scattering proper-
ties; usually they are smaller than one micrometre. The
strongest scattering is due to grains of about 0.3µm but
smaller particles must also be present.

Dust grains are formed in the atmospheres of stars
of late spectral types (K, M). Gas condenses into grains
just as water in the Earth’s atmosphere may condense
into snow and ice. The grains are then expelled into
interstellar space by the radiation pressure. Grains may
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Property Gas Dust

Mass fraction 10% 0.1%

Composition H I, H II, H2 (70%) Solid particles
He (28%) d ≈ 0.1–1µm
C, N, O, Ne, Na, H2O (ice), silicates,
Mg, Al, Si, S, ... (2%) graphite + impurities

Particle density 1 /cm3 10−13 /cm3 = 100 /km3

Mass density 10−21 kg/m3 10−23 kg/m3

Temperature 100 K (H I), 104 K (H II) 10–20 K
50 K (H2)

Method of study Absorption lines in stellar Absorption and scattering
spectra. of starlight.
Optical:

Ca I, Ca II, Na I, Interstellar reddening
K I, Ti II, Fe I, Interstellar polarization
CN, CH, CH+ Thermal infrared emission

Ultraviolet:
H2, CO, HD

Radio lines:
hydrogen 21 cm
emission and absorption;
H II, He II, C II
recombination lines;
molecular emission and
absorption lines
OH, H2CO, NH3, H2O,
CO, H2C2HCN, C2H5OH

Table 15.1. Main proper-
ties of interstellar gas and
dust

also form in connection with star formation and possibly
directly from atoms and molecules in interstellar clouds
as well.

15.2 Interstellar Gas

The mass of gas in interstellar space is a hundred times
larger than that of dust. Although there is more gas,
it is less easily observed, since the gas does not cause
a general extinction of light. In the optical region it can
only be observed on the basis of a small number of
spectral lines.

The existence of interstellar gas began to be sus-
pected in the first decade of the 20th century, when in
1904 Johannes Hartmann observed that some absorp-
tion lines in the spectra of certain binary stars were not
Doppler shifted by the motions of the stars like the other
lines. It was concluded that these absorption lines were
formed in gas clouds in the space between the Earth and
the stars. In some stars there were several lines, appar-
ently formed in clouds moving with different velocities.
The strongest lines in the visible region are those of neu-

tral sodium and singly ionized calcium (Fig. 15.14). In
the ultraviolet region, the lines are more numerous. The
strongest one is the hydrogen Lyman α line (121.6 nm).

On the basis of the optical and ultraviolet lines, it has
been found that many atoms are ionized in interstellar
space. This ionization is mainly due to ultraviolet radi-
ation from stars and, to some extent, to ionization by
cosmic rays. Since the density of interstellar matter is
very low, the free electrons only rarely encounter ions,
and the gas remains ionized.

About thirty elements have been discovered by ab-
sorption line observations in the visible and ultraviolet
region. With a few exceptions, all elements from hy-
drogen to zinc (atomic number 30) and a few additional
heavier elements have been detected (Table 15.3). Like
in the stars, most of the mass is hydrogen (about 70%)
and helium (almost 30%). On the other hand, heavy el-
ements are significantly less abundant than in the Sun
and other population I stars. It is thought that they have
been incorporated into dust grains, where they do not
produce any absorption lines. The element abundances
in the interstellar medium (gas + dust) would then be
normal, although the interstellar gas is depleted in heavy
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Observable phenomenon Cause

Interstellar extinction and polarization Non-spherical dust grains aligned by magnetic field

Dark nebulae, uneven distribution Dust clouds
of stars and galaxies

Interstellar absorption lines in Atoms and molecules in the interstellar gas
stellar spectra

Reflection nebulae Interstellar dust clouds illuminated by nearby stars

Emission nebulae or H II regions Interstellar gas and dust cloud, where a nearby hot
(optical, infrared and radio emission) star ionizes the gas and heats the dust to 50–100 K

Optical galactic background (diffuse Interstellar dust illuminated by the integrated
galactic light) light of all stars

Galactic background radiation:
a) short wavelength (� 1 m) Free–free emission from hot interstellar gas
b) long wavelength (� 1 m) Synchrotron radiation from cosmic ray electrons

in the magnetic field

Galactic 21 cm emission Cold (100 K) interstellar neutral hydrogen clouds
(H I regions)

Molecular line emission (extended) Giant molecular clouds (masses even
105 –106 M�),
dark nebulae

Point-like OH, H2O and SiO sources Maser sources near protostars and
long-period variables

Table 15.2. Phenomena
caused by the interstellar
medium

Fig. 15.14. (a) The D lines
D1 and D2 of interstellar
sodium (rest wavelengths
589.89 and 589.00 nm) in
the spectrum of the star
HD 14134. Both lines con-
sist of two components
formed in the gas clouds
of two spiral arms. The ra-
dial velocity difference of
the arms is about 30 km/s.
(Mt. Wilson Observatory).
(b) The interstellar absorp-
tion lines of ionized calcium
Ca II and ionized methyli-
dyne CH+ in the spectra of
several stars. The emission
spectrum of iron is shown
for comparison in (a) and
(b). (Lick Observatory)
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Table 15.3. Element abundances in the interstellar medium
towards ζ Ophiuchi and in the Sun. The abundances are given
relative to that of hydrogen, which has been defined to be

1,000,000. An asterisk (*) means that the abundance has been
determined from meteorites. The last column gives the ratio
of the abundances in the interstellar medium and in the Sun

Atomic Name Chemical Interstellar Solar Abundance
number symbol abundance abundance ratio

1 Hydrogen H 1,000,000 1,000,000 1.00
2 Helium He 85,000 85,000 ≈ 1
3 Lithium Li 0.000051 0.00158* 0.034
4 Beryllium Be < 0.000070 0.000012 < 5.8
5 Boron B 0.000074 0.0046* 0.016
6 Carbon C 74 370 0.20
7 Nitrogen N 21 110 0.19
8 Oxygen O 172 660 0.26
9 Fluorine F – 0.040 –

10 Neon Ne – 83 –
11 Sodium Na 0.22 1.7 0.13
12 Magnesium Mg 1.05 35 0.030
13 Aluminium Al 0.0013 2.5 0.00052
14 Silicon Si 0.81 35 0.023
15 Phosphorus P 0.021 0.27 0.079
16 Sulfur S 8.2 16 0.51
17 Chlorine Cl 0.099 0.45 0.22
18 Argon Ar 0.86 4.5 0.19
19 Potassium K 0.010 0.11 0.094
20 Calcium Ca 0.00046 2.1 0.00022
21 Scandium Sc – 0.0017 –
22 Titanium Ti 0.00018 0.055 0.0032
23 Vanadium V < 0.0032 0.013 < 0.25
24 Chromium Cr < 0.002 0.50 < 0.004
25 Manganese Mn 0.014 0.26 0.055
26 Iron Fe 0.28 25 0.011
27 Cobalt Co < 0.19 0.032 < 5.8
28 Nickel Ni 0.0065 1.3 0.0050
29 Copper Cu 0.00064 0.028 0.023
30 Zinc Zn 0.014 0.026 0.53

elements. This interpretation is supported by the obser-
vation that in regions where the amount of dust is smaller
than usual, the element abundances in the gas are closer
to normal.

Atomic Hydrogen. Ultraviolet observations have pro-
vided an excellent way of studying interstellar neutral
hydrogen. The strongest interstellar absorption line, as
has already been mentioned, is the hydrogen Lyman
α line (Fig. 15.15). This line corresponds to the transi-
tion of the electron in the hydrogen atom from a state
with principal quantum number n = 1 to one with n = 2.
The conditions in interstellar space are such that almost
all hydrogen atoms are in the ground state with n = 1.
Therefore the Lyman α line is a strong absorption line,
whereas the Balmer absorption lines, which arise from
the excited initial state n = 2, are unobservable. (The

Balmer lines are strong in stellar atmospheres with tem-
peratures of about 10,000 K, where a large number of
atoms are in the first excited state.)

The first observations of the interstellar Lyman α line
were made from a rocket already in 1967. More exten-
sive observations comprising 95 stars were obtained by
the OAO 2 satellite. The distances of the observed stars
are between 100 and 1000 parsecs.

Comparison of the Lyman α observations with ob-
servations of the 21 cm neutral hydrogen line have been
especially useful. The distribution of neutral hydrogen
over the whole sky has been mapped by means of the
21 cm line. However, the distances to nearby hydrogen
clouds are difficult to determine from these observa-
tions. In the Lyman α observations one usually knows
the distance to the star in front of which the absorbing
clouds must lie.
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Fig. 15.15. Interstellar absorption lines in the ultraviolet spec-
trum of ζ Ophiuchi. The strongest line is the hydrogen Lyman
α line (equivalent width, more than 1 nm). The observa-

tions were made with the Copernicus satellite. (Morton, D.C.
(1975): Astrophys. J. 197, 85)

The average gas density within about 1 kpc of
the Sun derived from the Lyman α observations is
0.7 atoms/cm3. Because the interstellar Lyman α line
is so strong, it can be observed even in the spectra of
very nearby stars. For example, it has been detected by
the Copernicus satellite in the spectrum of Arcturus,
whose distance is only 11 parsecs. The deduced density
of neutral hydrogen between the Sun and Arcturus is
0.02–0.1 atoms/cm3. Thus the Sun is situated in a clear-
ing in the interstellar medium, where the density is less
than one tenth of the average density.

If a hydrogen atom in its ground state absorbs radia-
tion with a wavelength smaller than 91.2 nm, it will be
ionized. Knowing the density of neutral hydrogen, one
can calculate the expected distance a 91.2 nm photon
can propagate before being absorbed in the ionization
of a hydrogen atom. Even in the close neighbourhood
of the Sun, where the density is exceptionally low, the
mean free path of a 91.2 nm photon is only about a par-
sec and that of a 10 nm photon a few hundred parsecs.
Thus only the closest neighbourhood of the Sun can
be studied in the extreme ultraviolet (XUV) spectral
region.

The Hydrogen 21 cm Line. The spins of the electron
and proton in the neutral hydrogen atom in the ground
state may be either parallel or opposite. The energy dif-
ference between these two states corresponds to the
frequency of 1420.4 MHz. Thus transitions between
these two hyperfine structure energy levels will give
rise to a spectral line at the wavelength of 21.049 cm
(Fig. 5.8). The existence of the line was theoretically

predicted by Hendrick van de Hulst in 1944, and was
first observed by Harold Ewen and Edward Purcell in
1951. Studies of this line have revealed more about
the properties of the interstellar medium than any other

Fig. 15.16. Hydrogen 21 cm emission line profiles in the galac-
tic plane at longitude 180◦, 90◦ and 1◦ (in the direction l = 0◦
there is strong absorption). The horizontal axis gives the radial
velocity according to the Doppler formula, the vertical axis
gives the brightness temperature. (Burton, W. B. (1974): “The
Large Scale Distribution of Neutral Hydrogen in the Galaxy”,
in Galactic and Extra-Galactic Radio Astronomy, ed. by Ver-
schuur, G.L., Kellermann, K.I. (Springer, Berlin, Heidelberg,
New York) p. 91)
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method – one might even speak of a special branch of
21 cm astronomy. The spiral structure and rotation of
the Milky Way and other galaxies can also be studied
by means of the 21 cm line.

Usually the hydrogen 21 cm line occurs in emission.
Because of the large abundance of hydrogen, it can be
observed in all directions in the sky. Some observed
21 cm line profiles are shown in Fig. 15.16. Rather than
frequency or wavelength, the radial velocity calculated
from the Doppler formula is plotted on the horizon-
tal axis. This is because the broadening of the 21 cm
spectral line is always due to gas motions either within
the cloud (turbulence) or of the cloud as a whole. The
vertical axis is mostly plotted in terms of the antenna
temperature TA (see Chap. 5), the usual radio astronom-
ical measure of intensity. The brightness temperature of
an extended source is then Tb = TA/ηB, where ηB is the
beam efficiency of the antenna.

Fig. 15.17. The distribution
of neutral hydrogen in the
galaxy from the Leiden and
Parkes surveys. The den-
sity is given in atoms/cm3.
(Oort, J.H., Kerr, P.T., West-
erhout, G.L. (1958): Mon.
Not. R. Astron. Soc. 118,
379)

For the 21 cm line hν/k = 0.07 K, and thus
hν/kT � 1 for all relevant temperatures. One may
therefore use the Rayleigh–Jeans approximation (5.24)

Iν = 2ν2kT

c2
. (15.18)

In the solution of the equation of radiative transfer (5.42)
the intensity can thus be directly related to a corre-
sponding temperature. By definition, Iν is related to the
brightness temperature Tb, and the source function Sν is
related to the excitation temperature Texc, i. e.

Tb = Texc(1− e−τν ) . (15.19)

In certain directions in the Milky Way there is so
much hydrogen along the line of sight that the 21 cm
line is optically thick, τν 	 1. In that case

Tb = Texc , (15.20)
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i. e. the brightness temperature immediately yields the
excitation temperature of the cloud. This is often
referred to as the spin temperature TS.

The excitation temperature need not always agree
with the kinetic temperature of the gas. However, in the
present case the population numbers of the hyperfine
levels are determined by mutual collisions of hydro-
gen atoms: the time between collisions is 400 years on
the average, whereas the time for spontaneous radiative
transitions is 11 million years; thus the excitation tem-
perature will be the same as the kinetic temperature.
The observed temperature is T ≈ 125 K.

The distance to a source cannot be obtained directly
from the observed emission. Thus one can only study the
number of hydrogen atoms in a cylinder with a 1 cm2

base area extending from the observer to outside the
Milky Way along the line of sight. This is called the
projected or column density and is denoted by N . One
may also consider the column density N(v) dv of atoms
with velocities in the interval [v, v+dv].

It can be shown that if the gas is optically thin, the
brightness temperature in a spectral line is directly pro-
portional to the column density N of atoms with the
corresponding radial velocity. Hence, if the diameter L
of a cloud along the line of sight is known, the gas den-
sity can be determined from the observed line profile:

n = N/L .

The diameter L can be obtained from the apparent diam-
eter, if the distance and shape of the cloud are assumed
known.

The distances of clouds can be determined from their
radial velocities by making use of the rotation of the
Milky Way (Sect. 17.3). Thus if the observed peaks in
the 21 cm line profiles (Fig. 15.16) are due to individual
clouds, their distances and densities can be obtained.
Since radio observations are not affected by extinction,
it has been possible in this way to map the density distri-
bution of neutral hydrogen in the whole galactic plane.
The resulting distribution, based on observations at Lei-
den and Parkes, is shown in Fig. 15.17. It appears that
the Milky Way is a spiral galaxy and that the interstellar
hydrogen is concentrated in the spiral arms. The av-
erage density of interstellar hydrogen is 1 atom/cm3,
but the distribution is very inhomogeneous. Typically
the hydrogen forms denser regions, a few parsecs in

size, where the densities may be 10–100 atoms/cm3.
Regions where the hydrogen is predominantly neutral
are known as H I regions (in contrast to H II regions of
ionized hydrogen).

The hydrogen 21 cm line may also occur in absorp-
tion, when the light from a bright radio source, e. g.
a quasar, passes through an intervening cloud. The
same cloud may give rise to both an absorption and
an emission spectrum. In that case the temperature, op-
tical thickness and hydrogen content of the cloud can
all be derived.

Like interstellar dust hydrogen is concentrated in
a thin disc in the galactic plane. The thickness of the
hydrogen layer is about twice that of the dust or about
200 pc.

H II Regions. In many parts of space hydrogen does
not occur as neutral atoms, but is ionized. This is true
in particular around hot O stars, which radiate strongly
in the ultraviolet. If there is enough hydrogen around
such a star, it will be visible as an emission nebula
of ionized hydrogen. Such nebulae are known as H II
region (Figs. 15.18 and 15.19).

A typical emission nebula is the great nebula in
Orion, M42. It is visible even to the unaided eye, and is
a beautiful sight when seen through a telescope. In the
middle of the nebula there is a group of four hot stars
known as the Trapezium, which can be distinguished in-
side the bright nebula, even with a small telescope. The
Trapezium stars emit strong ultraviolet radiation, which
keeps the gas nebula ionized.

Unlike a star a cloud of ionized gas has a spectrum
dominated by a few narrow emission lines. The contin-
uous spectrum of H II regions is weak. In the visible
region the hydrogen Balmer emission lines are particu-
larly strong. These are formed when a hydrogen atom
recombines into an excited state and subsequently re-
turns to the ground state via a sequence of radiative
transitions. Typically a hydrogen atom in a H II region
remains ionized for several hundred years. Upon recom-
bination it stays neutral for some months, before being
ionized again by a photon from a nearby star.

The number of recombinations per unit time and vol-
ume is proportional to the product of the densities of
electrons and ions,

nrec ∝ neni . (15.21)
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Fig. 15.18.� The great nebula in Orion (M42, NGC 1976). The
nebula gets its energy from newly formed hot stars. The dark
regions are opaque dust clouds in front of the nebula. Radio
and infrared observations have revealed a rich molecular cloud
behind the nebula (Fig. 15.20). In the upper part of this picture
is the gas nebula NGC 1977, in the lower part the bright star
ιOrionis. (Lick Observatory)

In completely ionized hydrogen, ne = ni, and hence

nrec ∝ n2
e . (15.22)

Most recombinations will include the transition n =
3 → 2, i. e. will lead to the emission of a Hα photon.

Fig. 15.19. The Lagoon nebula (M8, NGC 6523) in Sagittar-
ius. This H II region contains many stars of early spectral
types and stars that are still contracting towards the main
sequence. Small, round dark nebulae, globules, are also vis-

ible against the bright background. These are presumably
gas clouds in the process of condensation into stars. (Na-
tional Optical Astronomy Observatories, Kitt Peak National
Observatory)

Thus the surface brightness of a nebula in the Hα line
will be proportional to the emission measure,

EM =
∫

n2
e dl , (15.23)

where the integral is along the line of sight through the
nebula.

The ionization of a helium atom requires more energy
than that of a hydrogen atom, and thus regions of ionized
helium are formed only around the hottest stars. In these
cases, a large H II region will surround a smaller central
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He+ or He++ region. The helium lines will then be
strong in the spectrum of the nebula.

Although hydrogen and helium are the main con-
stituents of clouds, their emission lines are not always
strongest in the spectrum. At the beginning of this cen-
tury it was even suggested that some strong unidentified
lines in the spectra of nebulae were due to the new ele-
ment nebulium. However, in 1927 Ira S. Bowen showed
that they were forbidden lines of ionized oxygen and
nitrogen, O+, O++ and N+. Forbidden lines are ex-
tremely difficult to observe in the laboratory, because
their transition probabilities are so small that at labora-
tory densities the ions are de-excited by collisions before
they have had time to radiate. In the extremely diffuse
interstellar gas, collisions are much less frequent, and
thus there is a chance that an excited ion will make the
transition to a lower state by emitting a photon.

Because of interstellar extinction, only the nearest
H II regions can be studied in visible light. At infrared
and radio wavelengths much more distant regions can be
studied. The most important lines at radio wavelengths
are recombination lines of hydrogen and helium; thus
the hydrogen transition between energy levels 110 and
109 at 5.01 GHz has been much studied. These lines are
also important because with their help radial velocities,
and hence (using the galactic rotation law), distances
of H II regions can be determined, just as for neutral
hydrogen.

The physical properties of H II regions can also be
studied by means of their continuum radio emission.
The radiation is due to bremsstrahlung or free–free
emission from the electrons. The intensity of the ra-
diation is proportional to the emission measure EM
defined in (15.23). H II regions also have a strong in-
frared continuum emission. This is thermal radiation
from dust inside the nebula.

H II regions are formed when a hot O or B star begins
to ionize its surrounding gas. The ionization steadily
propagates away from the star. Because neutral hy-
drogen absorbs ultraviolet radiation so efficiently, the
boundary between the H II region and the neutral gas is
very sharp. In a homogeneous medium the H II region
around a single star will be spherical, forming a Ström-
gren sphere. For a B0 V star the radius of the Strömgren
sphere is 50 pc and for an A0 V star only 1 pc.

The temperature of a H II region is higher than that
of the surrounding gas, and it therefore tends to ex-

pand. After millions of years, it will have become
extremely diffuse and will eventually merge with the
general interstellar medium.

15.3 Interstellar Molecules

The first interstellar molecules were discovered in
1937–1938, when molecular absorption lines were
found in the spectra of some stars. Three simple di-
atomic molecules were detected: methylidyne CH, its
positive ion CH+ and cyanogen CN. A few other
molecules were later discovered by the same method
in the ultraviolet. Thus molecular hydrogen H2 was
discovered in the early 1970’s, and carbon monoxide,
which had been discovered by radio observations, was
also detected in the ultraviolet. Molecular hydrogen is
the most abundant interstellar molecule, followed by
carbon monoxide.

Molecular Hydrogen. The detection and study of
molecular hydrogen has been one of the most important
achievements of UV astronomy. Molecular hydrogen
has a strong absorption band at 105 nm, which was first
observed in a rocket experiment in 1970 by George R.
Carruthers, but more extensive observations could only
be made with the Copernicus satellite. The observations
showed that a significant fraction of interstellar hydro-
gen is molecular, and that this fraction increases strongly
for denser clouds with higher extinction. In clouds with
visual extinction larger than one magnitude essentially
all the hydrogen is molecular.

Hydrogen molecules are formed on the surface of
interstellar grains, which thus act as a chemical catalyst.
Dust is also needed to shield the molecules from the
stellar UV radiation, which would otherwise destroy
them. Molecular hydrogen is thus found where dust is
abundant. It is of interest to know whether gas and dust
are well mixed or whether they form separate clouds
and condensations.

UV observations have provided a reliable way of
comparing the distribution of interstellar gas and dust.
The amount of dust between the observer and a star is
obtained from the extinction of the stellar light. Fur-
thermore, the absorption lines of atomic and molecular
hydrogen in the ultraviolet spectrum of the same star
can be observed. Thus the total amount of hydrogen



15.3 Interstellar Molecules

327

(atomic + molecular) between the observer and the star
can also be determined.

Observations indicate that the gas and dust are well
mixed. The amount of dust giving rise to one magnitude
visual extinction corresponds to 1.9×1021 hydrogen
atoms (one molecule is counted as two atoms). The
mass ratio of gas and dust obtained in this way is 100.

Radio Spectroscopy. Absorption lines can only be ob-
served if there is a bright star behind the molecular
cloud. Because of the large dust extinction, no observa-
tions of molecules in the densest clouds can be made in
the optical and ultraviolet spectral regions. Thus only
radio observations are possible for these objects, where
molecules are especially abundant.

Radio spectroscopy signifies an immense step for-
ward in the study of interstellar molecules. In the early
1960’s, it was still not believed that there might be more
complicated molecules than diatomic ones in interstel-
lar space. It was thought that the gas was too diffuse for
molecules to form and that any that formed would be
destroyed by ultraviolet radiation. The first molecular

Fig. 15.20. Radio map of
the distribution of carbon
monoxide 13C16O in the
molecular cloud near the
Orion nebula. The curves
are lines of constant inten-
sity. (Kutner, M. L., Evans
11, N. J., Tucker K. D.
(1976): Astrophys. J. 209,
452)

radio line, the hydroxyl radical OH, was discovered in
1963. Many other molecules have been discovered since
then. By 2002, about 130 molecules had been detected,
the heaviest one being the 13-atom molecule HC11N.

Molecular lines in the radio region may be ob-
served either in absorption or in emission. Radiation
from diatomic molecules like CO (see Fig. 15.20) may
correspond to three kinds of transitions. (1) Electron
transitions correspond to changes in the electron cloud
of the molecule. These are like the transitions in single
atoms, and their wavelengths lie in the optical or ultra-
violet region. (2) Vibrational transitions correspond to
changes in the vibrational energy of the molecule. Their
energies are usually in the infrared region. (3) Most
important for radio spectroscopy are the rotational tran-
sitions, which are changes in the rotational energy of
the molecule. Molecules in their ground state do not ro-
tate, i. e. their angular momentum is zero, but they may
be excited and start rotating in collisions with other
molecules. For example, carbon sulfide CS returns to
its ground state in a few hours by emitting a millimetre
region photon.
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Table 15.4. Some molecules observed in the interstellar
medium

Molecule Name Year of discovery

Discovered in the optical and ultraviolet region:

CH methylidyne 1937
CH+ methylidyne ion 1937
CN cyanogen 1938
H2 hydrogen molecule 1970
CO carbon monoxide 1971

Discovered in the radio region:

OH hydroxyl radical 1963
CO carbon monoxide 1970
CS carbon monosulfide 1971
SiO silicon monoxide 1971
SO sulfur monoxide 1973
H2O water 1969
HCN hydrogen cyanide 1970
NH3 ammonia 1968
H2CO formaldehyde 1969
HCOOH formic acid 1975
HCCNC isocyanoacetylene 1991
C2H4O vinyl alcohol 2001
H2CCCC cumulene carbene 1991
(CH3)2O dimethyl ether 1974
C2H5OH ethanol 1975
HC11N cyanopentacetylene 1981

A number of interstellar molecules are listed in Ta-
ble 15.4. Many of them have only been detected in
the densest clouds (mainly the Sagittarius B2 cloud at
the galactic centre), but others are very common. The
most abundant molecule H2 cannot be observed at ra-
dio wavelengths, because it has no suitable spectral
lines. The next most abundant molecules are carbon
monoxide CO, the hydroxyl radical OH and ammonia
NH3, although their abundance is only a small fraction
of that of hydrogen. However, the masses of interstel-
lar clouds are so large that the number of molecules
is still considerable. (The Sagittarius B2 cloud con-
tains enough ethanol, C2H5OH, for 1028 bottles of
vodka.)

Both the formation and survival of interstellar
molecules requires a higher density than is common
in interstellar clouds; thus they are most common in
dense clouds. Molecules are formed in collisions of
atoms or simpler molecules or catalysed on dust grains.
Molecular clouds must also contain a lot of dust to ab-
sorb the ultraviolet radiation entering from outside that
otherwise would disrupt the molecules. The most suit-

able conditions are thus found inside dust and molecular
clouds near dense dark nebulae and H II regions.

Most of the molecules in Table 15.4 have only been
detected in dense molecular clouds occurring in con-
nection with H II regions. Almost every molecule yet
discovered has been detected in Sagittarius B2 near the
galactic centre. Another very rich molecular cloud has
been observed near the H II region Orion A. In visi-
ble light this region has long been known as the Orion
nebula M42 (Fig. 15.18). Inside the actual H II regions
there are no molecules, since they would be rapidly dis-
sociated by the high temperature and strong ultraviolet
radiation. Three types of molecular sources have been
found near H II regions (Fig. 15.21):

Fig. 15.21. Infrared map of the central part of the Orion nebula.
In the lower part are the four Trapezium stars. Above is an
infrared source of about 0.5′′ diameter, the Kleinmann–Low
nebula (KL). BN is an infrared point source, the Becklin–
Neugebauer object. Other infrared sources are denoted IRS.
The large crosses indicate OH masers and the small crosses
H2O masers. On the scale of Fig. 15.18 this region would
only be a few millimetres in size. (Goudis, C. (1982): The
Orion Complex: A Case Study of Interstellar Matter (Reidel,
Dordrecht) p. 176)
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T n
[K] [cm−3]

1. Very cold molecular gas clouds (mostly hydrogen H2) 20 � 103

2. Cold gas clouds (mostly atomic neutral hydrogen) 100 20
3. Warm neutral gas enveloping the cooler clouds 6000 0.05–0.3
4. Hot ionized gas (mainly H II regions around hot stars) 8000 > 0.5
5. Very hot and diffuse ionized coronal gas, ionized and 106 10−3

heated by supernova explosions

Table 15.5. The five phases
of interstellar gas

1. Large gas and dust envelopes around the H II region.
2. Small dense clouds inside these envelopes.
3. Very compact OH and H2O maser sources.

The large envelopes have been discovered primarily
by CO observations. OH and H2CO have also been
detected. Like in the dark nebulae the gas in these clouds
is probably mainly molecular hydrogen. Because of the
large size and density (n ≈ 103–104 molecules/cm3) of
these clouds, their masses are very large, 105 or even 106

solar masses (Sgr B2). They are among the most massive
objects in the Milky Way. The dust in molecular clouds
can be observed on the basis of its thermal radiation. Its
peak falls at wavelengths of 10–100µm, corresponding
to a dust temperature of 30–300 K.

Some interstellar clouds contain very small maser
sources. In these the emission lines of OH, H2O and
SiO may be many million times stronger than else-
where. The diameter of the radiating regions is only
about 5–10 AU. The conditions in these clouds are such
that radiation in some spectral lines is amplified by
stimulated emission as it propagates through the cloud.
Hydroxyl and water masers occur in connection with
dense H II regions and infrared sources, and appear to
be related to the formation of protostars. In addition
maser emission (OH, H2O and SiO) occurs in connec-
tion with Mira variables and some red supergiant stars.
This maser emission comes from a molecule and dust
envelope around the star, which also gives rise to an
observable infrared excess.

15.4 The Formation of Protostars

The mass of the Milky Way is about 1011 solar masses.
Since its age is about 1010 years, stars have been forming
at the average rate of 10 M� per year. This estimate is
only an upper limit for the present rate, because earlier

the rate of star formation must have been much higher.
Since the lifetime of O stars is only about a million
years, a better estimate of the star formation rate can
be made, based on the observed number of O stars.
Accordingly, it has been concluded that at present, new
stars are forming in the Milky Way at a rate of about
three solar masses per year.

Stars are now believed to form inside large dense
interstellar clouds mostly located in the spiral arms of
the Galaxy. Under its own gravity, a cloud begins to
contract and fragment into parts that will become pro-
tostars. The observations seem to indicate that stars are
not formed individually, but in larger groups. Young
stars are found in open clusters and in loose associa-
tions, typically containing a few hundred stars which
must have formed simultaneously.

Theoretical calculations confirm that the formation
of single stars is almost impossible. An interstellar cloud
can contract only if its mass is large enough for gravity
to overwhelm the pressure. As early as in the 1920’s,
James Jeans calculated that a cloud with a certain tem-
perature and density can condense only if its mass is
high enough. If the mass is too small the pressure of the
gas is sufficient to prevent the gravitational contraction.
The limiting mass is the Jeans mass (Sect. 6.11), given
by

MJ ≈ 3×104

√
T 3

n
M� ,

where n is the density in atoms/m3 and T the tem-
perature.

In a typical interstellar neutral hydrogen cloud n =
106 and T = 100 K, giving the Jeans mass, 30,000 M�.
In the densest dark clouds n = 1012 and T = 10 K and
hence, MJ = 1 M�.

It is thought that star formation begins in clouds of
a few thousand solar masses and diameters of about
10 pc. The cloud begins to contract, but does not heat
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up because the liberated energy is carried away by ra-
diation. As the density increases, the Jeans mass thus
decreases. Because of this, separate condensation nu-
clei are formed in the cloud, which go on contracting
independently: the cloud fragments. Fragmentation is
further advanced by the increasing rotation velocity. The
original cloud has a certain angular momentum which
is conserved during the contraction; thus the angular
velocity must increase.

This contraction and fragmentation continues until
the density becomes so high that the individual frag-
ments become optically thick. The energy liberated by
the contraction can then no longer escape, and the tem-

Fig. 15.22. The Helix nebula (NGC 7293). The planetary
nebulae are formed during the final stages of evolution of
solar-type stars. The centrally visible star has ejected its outer

layers into space. (National Optical Astronomy Observatories,
Kitt Peak National Observatory)

perature will begin to rise. In consequence the Jeans
mass begins to increase, further fragmentation ceases
and the rising pressure in existing fragments stops their
contraction. Some of the protostars formed in this way
may still be rotating too rapidly. These may split into
two, thus forming double systems. The further evolution
of protostars has been described in Sect. 11.2.

Although the view that stars are formed by the col-
lapse of interstellar clouds is generally accepted, many
details of the fragmentation process are still highly con-
jectural. Thus the effects of rotation, magnetic fields
and energy input are very imperfectly known. Why
a cloud begins to contract is also not certain; one theory
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is that passage through a spiral arm compresses clouds
and triggers contraction (see Sect. 17.4). This would ex-
plain why young stars are predominantly found in the
spiral arms of the Milky Way and other galaxies. The
contraction of an interstellar cloud might also be ini-
tiated by a nearby expanding H II region or supernova
explosion.

Star formation can be observed particularly well in
the infrared, since the temperatures of of the condens-
ing clouds and protostars are of the order 100–1000 K
and the infrared radiation can escape even the dens-
est dust clouds. For example, in connection with the
Orion nebula there is a large cloud of hydrogen, found

Fig. 15.23. The Crab nebula (M1, NGC 1952) in Taurus is
the remnant of a supernova explosion observed in 1054. The
photograph was taken at red wavelengths. The nebula is also

a strong radio source. Its energy source is the central rapidly
rotating neutron star, pulsar, which is the collapsed core of the
original star. (Palomar Observatory)

in radio observations, containing small infrared sources.
E.g. the Becklin–Neugebauer object has a temperature
of a couple of hundred kelvins but a luminosity that is
thousandfold compared with the Sun. It is a strong H2O
maser source, located next to a large H II region.

15.5 Planetary Nebulae

Bright regions of ionized gas do not occur only in con-
nection with newly formed stars, but also around stars
in late stages of their evolution. The planetary nebu-
lae are gas shells around small hot blue stars. As we
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have seen in connection with stellar evolution, instabil-
ities may develop at the stage of helium burning. Some
stars begin to pulsate, while in others the whole outer
atmosphere may be violently ejected into space. In the
latter case, a gas shell expanding at 20–30 km/s will
be formed around a small and hot (50,000–100,000 K)
star, the core of the original star.

The expanding gas in a planetary nebula is ionized
by ultraviolet radiation from the central star, and its
spectrum contains many of the same bright emission
lines as that of an H II region. Planetary nebulae are,
however, generally much more symmetrical in shape
than most H II regions, and they expand more rapidly.
For example, the well-known Ring nebula in Lyra (M57)
has expanded visibly in photographs taken at 50-year
intervals. In a few ten thousand years, the planetary
nebulae disappear in the general interstellar medium
and their central stars cool to become white dwarfs.

The planetary nebulae were given their name in the
19th century, because certain small nebulae visually
look quite like planets such as Uranus. The apparent di-
ameter of the smallest known planetary nebulae is only
a few arc seconds, whereas the largest ones (like the He-
lix nebula) may be one degree in diameter (Fig. 15.22).

The brightest emission lines are often due to forbid-
den transitions, like in H II regions. For example, the
green colour of the central parts of the Ring nebula in
Lyra is due to the forbidden lines of doubly ionized oxy-
gen at 495.9 and 500.7 nm. The red colour of the outer
parts is due to the hydrogen Balmer α line (656.3 nm)
and the forbidden lines of ionized nitrogen (654.8 nm,
658.3 nm).

The total number of planetary nebulae in the Milky
Way has been estimated to be 50,000. About 2000 have
actually been observed.

15.6 Supernova Remnants

In Chap. 11 we have seen that massive stars end their
evolution in a supernova explosion. The collapse of the
stellar core leads to the violent ejection of the outer
layers, which then remain as an expanding gas cloud.

About 120 supernova remnants (SNR’s) have been
discovered in the Milky Way. Some of them are optically
visible as a ring or an irregular nebula (e. g. the Crab
nebula; see Fig. 15.23), but most are detectable only

Fig. 15.24. The radio spectra of typical H II regions and su-
pernova remnants. The radiation of H II regions is thermal and
obeys the Rayleigh–Jeans law, I ∝ ν2, at wavelengths larger
than 1 m. In supernova remnants the intensity decreases with
increasing frequency. (After Scheffler, H., Elsässer, H. (1987):
Physics of the Galaxy and the Interstellar Matter (Springer,
Berlin, Heidelberg, New York))

in the radio region (because radio emission suffers no
extinction).

In the radio region the SNR’s are extended sources
similar to H II regions. However, unlike H II regions the
radiation from SNR’s is often polarized. Another char-
acteristic difference between these two kinds of sources
is that whereas the radio brightness of H II regions grows
or remains constant as the frequency increases, that
of SNR’s falls off almost linearly (in a log Iν − log ν
diagram) with increasing frequency (Fig. 15.24).

These differences are due to the different emission
processes in H II regions and in SNR’s. In an H II re-
gion, the radio emission is free–free radiation from
the hot plasma. In a SNR it is synchrotron radiation
from relativistic electrons moving in spiral orbits around
the magnetic field lines. The synchrotron process gives
rise to a continuous spectrum extending over all wave-

Fig. 15.25. �The Veil nebula (NGC 6960 at the right, NGC 6992
at the left) in Cygnus is the remnant of a supernova explosion
which occurred several ten thousand years ago. (Mt. Wilson
Observatory)
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length regions. For example, the Crab nebula looks
blue or green in colour photographs because of optical
synchrotron radiation.

In the Crab nebula red filaments are also visible
against the bright background. Their emission is princi-
pally in the hydrogen Hα line. The hydrogen in a SNR
is not ionized by a central star as in the H II regions, but
by the ultraviolet synchrotron radiation.

The supernova remnants in the Milky Way fall into
two classes. One type has a clearly ring-like structure
(e. g. Cassiopeia A or the Veil nebula in Cygnus; see
Fig. 15.25); another is irregular and bright at the middle
(like the Crab nebula). In the remnants of the Crab
nebula type there is always a rapidly rotating pulsar at
the centre. This pulsar provides most of the energy of the
remnant by continuously injecting relativistic electrons
into the cloud. The evolution of this type of SNR reflects
that of the pulsar and for this reason has a time scale of
a few ten thousand years.

Ring-like SNR’s do not contain an energetic pulsar;
their energy comes from the actual supernova explo-
sion. After the explosion, the cloud expands at a speed
of 10,000–20,000 km/s. About 50–100 years after the
explosion the remnant begins to form a spherical shell
as the ejected gas starts to sweep up interstellar gas
and to slow down in its outer parts. The swept-up shell
expands with a decreasing velocity and cools until, af-
ter about 100,000 years, it merges into the interstellar
medium. The two types of supernova remnants may be
related to the two types (I and II) of supernovae.

* Synchrotron Radiation

Synchrotron radiation was first observed in 1948 by
Frank Elder, Robert Langmuir and Herbert Pollack,
who were experimenting with an electron synchrotron,
in which electrons were accelerated to relativistic en-
ergies in a magnetic field. It was observed that the
electrons radiated visible light in a narrow cone along
their momentary direction of motion. In astrophysics
synchrotron radiation was first invoked as an explana-
tion of the radio emission of the Milky Way, discovered
by Karl Jansky in 1931. This radiation had a spec-
trum and a large metre-wave brightness temperature
(more than 105 K) which were inconsistent with ordi-
nary thermal free-free emission from ionized gas. In
1950 Hannes Alfvén and Nicolai Herlofson as well as

Karl-Otto Kiepenheuer proposed that the galactic radio
background was due to synchrotron radiation. Accord-
ing to Kiepenheuer the high-energy cosmic ray electrons
would emit radio radiation in the weak galactic magnetic
field. This explanation has turned out to be correct. Syn-
chrotron radiation is also an important emission process
in supernova remnants, radio galaxies and quasars. It is
a non-thermal radiation process, i. e. the energy of the
radiating electrons is not due to thermal motions.

The emission of synchrotron radiation. A charged particle
(electron) propagating in a magnetic field moves in a spi-
ral. Because of the centripetal acceleration, the particle emits
electromagnetic radiation

The origin of synchrotron radiation is schematically
shown in the figure. The magnetic field forces the elec-
tron to move in a spiral orbit. The electron is thus
constantly accelerated and will emit electromagnetic
radiation. According to the special theory of relativ-
ity, the emission from a relativistic electron will be
concentrated in a narrow cone. Like the beam from
a lighthouse, this cone sweeps across the observer’s
field of vision once for each revolution. Thus the ob-
server sees a sequence of radiation flashes of very short
duration compared with their interval. (In the total emis-
sion of a large number of electrons, separate flashes
cannot be distinguished.) When this series of pulses is
represented as a sum of different frequency components
(Fourier transform), a broad spectrum is obtained with
a maximum at

νmax = aB⊥E2 ,
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where B⊥ is the magnetic field component perpendicu-
lar to the velocity of the electron, and E its energy, a is
a constant of proportionality.

The table gives the frequency and wavelength of the
maximum as functions of the electron energy for the
typical galactic field strength 0.5 nT:

λmax νmax [Hz] E [eV]

300 nm 1015 6.6×1012

30µm 1013 6.6×1011

3 mm 1011 6.6×1010

30 cm 109 6.6×109

30 m 107 6.6×108

To produce even radio synchrotron radiation, very
energetic electrons are required, but these are known
to be present in the cosmic radiation. In the optical
galactic background radiation, the contribution from
synchrotron radiation is negligible, but, for example, in
the Crab nebula, a significant part of the optical emission
is due to this mechanism.

Fig. 15.26. Galaxy’s hot corona. NGC 2403 is a spiral galaxy,
similar to our Milky Way. On the right, it is photographed
in visual light. On the left, in a VLA radio image, on the
same scale with the optical image, a large hydrogen corona

is seen around the galaxy. Large holes created by supernova
explosions are seen in the gas corona. (Image NRAO/AUI and
Tom Oosterloo, Astron, The Netherlands)

15.7 The Hot Corona of the Milky Way

As early as 1956 Lyman Spitzer showed that the Milky
Way has to be surrounded by a large envelope of very hot
gas (Fig. 15.26). Almost two decades later the Coperni-
cus satellite, whose scientific program was directed by
Spitzer, found evidence for this kind of gas, which be-
gan to be called galactic coronal gas, in analogy with
the solar corona. The satellite observed emission lines of
e.g. five times ionized oxygen (O VI), four times ion-
ized nitrogen (N V) and triply ionized carbon (C IV).
The formation of these lines requires a high tempera-
ture (100,000–1,000,000 K), and a high temperature is
also indicated by the broadening of the lines.

Galactic coronal gas is distributed through the whole
Milky Way and extends several thousand parsecs from
the galactic plane. Its density is only of the order of
10−3 atoms/cm3 (recall that the mean density in the
galactic plane is 1 atom/cm3). Thus coronal gas forms
a kind of background sea, from which the denser and
cooler forms of interstellar matter, such as neutral hy-
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drogen and molecular clouds, rise as islands. In the early
1980’s the IUE satellite also detected similar coronae
in the Large Magellanic Cloud and in the spiral galaxy
M100. Coronal gas is probably quite a common and
important form of matter in galaxies.

Supernova explosions are probably the source of both
coronal gas and its energy. When a supernova explodes,
it forms a hot bubble in the surrounding medium. The
bubbles from neighbouring supernovae will expand and
merge, forming a foamlike structure. In addition to su-
pernovae, stellar winds from hot stars may provide some
of the energy of the coronal gas.

15.8 Cosmic Rays
and the Interstellar Magnetic Field

Cosmic Rays. Elementary particles and atomic nuclei
reaching the Earth from space are called cosmic rays.
They occur throughout interstellar space with an energy
density of the same order of magnitude as that of the ra-
diation from stars. Cosmic rays are therefore important
for the ionization and heating of interstellar gas.

Since cosmic rays are charged, their direction of
propagation in space is constantly changed by the mag-
netic field. Their direction of arrival therefore gives no
information about their place of origin. The most im-
portant properties of cosmic rays that can be observed
from the Earth are their particle composition and energy
distribution. As noted in Sect. 3.6, these observations
have to be made in the upper atmosphere or from satel-
lites, since cosmic ray particles are destroyed in the
atmosphere.

The main constituent of the cosmic rays (about 90%)
is hydrogen nuclei or protons. The second most im-
portant constituent (about 9%) is helium nuclei or
α particles. The rest of the particles are electrons and
nuclei more massive than helium.

Most cosmic rays have an energy smaller than
109 eV. The number of more energetic particles drops
rapidly with increasing energy. The most energetic pro-
tons have an energy of 1020 eV, but such particles are
very rare – the energy of one such proton could lift
this book about one centimetre. (The largest particle
accelerators reach “only” energies of 1012 eV.)

The distribution of low-energy (less than 108 eV) cos-
mic rays cannot be reliably determined from the Earth,

since solar “cosmic rays”, high-energy protons and elec-
trons formed in solar flares fill the solar system and
strongly affect the motion of low-energy cosmic rays.

The distribution of cosmic rays in the Milky Way
can be directly inferred from gamma-ray and radio ob-
servations. The collisions of cosmic ray protons with
interstellar hydrogen atoms gives rise to pions which
then decay to form a gamma-ray background. The radio
background is formed by cosmic ray electrons which
emit synchrotron radiation in the interstellar magnetic
field.

Both radio and gamma-ray emission are strongly
concentrated in the galactic plane. From this it has been
concluded that the sources of cosmic rays must also
be located in the galactic plane. In addition there are
individual peaks in the backgrounds around known su-
pernova remnants. In the gamma-ray region such peaks
are observed at e. g. the Crab nebula and the Vela pul-
sar; in the radio region the North Polar Spur is a large,
nearby ring-like region of enhanced emission.

Apparently a large fraction of cosmic rays have their
origin in supernovae. An actual supernova explosion
will give rise to energetic particles. If a pulsar is formed,
observations show that it will accelerate particles in
its surroundings. Finally the shock waves formed in
the expanding supernova remnant will also give rise to
relativistic particles.

On the basis of the relative abundances of various
cosmic ray nuclei, it can be calculated how far they
have travelled before reaching the Earth. It has been
found that typical cosmic ray protons have travelled
for a period of a few million years (and hence also
a distance of a few million light-years) from their point
of origin. Since the diameter of the Milky Way is about
100,000 light-years, the protons have crossed the Milky
Way tens of times in the galactic field.

The Interstellar Magnetic Field. The strength and di-
rection of the interstellar magnetic field are difficult to
determine reliably. Direct measurements are impossi-
ble, since the magnetic fields of the Earth and the Sun
are much stronger. However, using various sources it
has been possible to deduce the existence and strength
of the field.

We have already seen that interstellar grains give rise
to interstellar polarization. In order to polarize light, the
dust grains have to be similarly oriented; this can only
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Fig. 15.27. The polarization of starlight. The dashes give
the direction and degree of the polarization. The thinner
dashes correspond to stars with polarization smaller than
0.6%; the thicker dashes to stars with larger polarization.

The scale is shown in the upper left-hand corner. Stars with
polarization smaller than 0.08% are indicated by a small cir-
cle. (Mathewson, D.S., Ford, V.L. (1970): Mem. R.A.S. 74,
139)

be achieved by a general magnetic field. Figure 15.27
shows the distribution of interstellar polarization over
the sky. Stars near each other generally have the same
polarization. At low galactic latitudes the polarization is
almost parallel to the galactic plane, except where one
is looking along a spiral arm.

More precise estimates of the strength of the mag-
netic field can be obtained from the rotation of the
plane of polarization of the radio radiation from dis-
tant sources. This Faraday rotation is proportional to
the strength of the magnetic field and to the electron
density. Another method is to measure the Zeeman split-
ting of the 21 cm radio line. These measurements have
fairly consistently given a value of 10−10–10−9 T for
the strength of the interstellar magnetic field. This is
about one millionth of the interplanetary field in the
solar system.

15.9 Examples

Example 15.1 Estimate the dust grain size and
number density in the galactic plane.

Let us compare the interstellar extinction curve in
Fig. 15.4b with the Mie scattering curves in Fig. 15.3.
We see that the leftmost parts of the curves may corre-
spond to each other: the interval 0< x< 5 with m = 1.5

in Fig. 15.3 matches the interval 0< 1/λ < 5µm−1 in
Fig. 15.4b. Remembering that x = 2πa/λ, this suggests
a constant grain radius a, given by 2πa ≈ 1µm, or
a ≈ 0.16µm.

In the blue wavelength region (λ= 0.44µm), x = 2.3
and, according to the upper Fig. 15.3, Qext ≈ 2. Using
A = 2 mag for the interstellar extinction at r = 1 kpc, we
get, substituting (15.5) into (15.7), n ≈ 4×10−7 m−3.
This should give the order of magnitude of the
interstellar dust density.

As a summary we could say that a considerable frac-
tion of the interstellar extinction might be due to grains
of diameter 0.3µm and particle density of the order of
10−7 m−3 = 100 km−3.

Example 15.2 Estimate the time interval between suc-
cessive collisions of a hydrogen atom in interstellar
gas.

Two atoms will collide if the separation between their
centres becomes less than 2r, where r is the radius of
the atom. Thus, the microscopic cross section for the
collision is σ = π(2r)2 = 4πr2. The macroscopic cross
section, or the number of collisions of an H atom per unit
length, is then Σ = nσ , where n is the number density
of the H atoms. The mean free path l of an atom is the
inverse of the macroscopic cross section, l = 1/Σ, and
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the time between two collisions is t = l/v, where v is
the velocity of the atom.

Considering the numerical values, the Bohr radius of
an H atom is r = 5.3×10−11 m. Taking n = 1 cm−3 we
get l = 2.8×1013 m ≈ 0.0009 pc. The average velocity
is not far from the root mean square velocity at T =
125 K, given by (5.33):

v=
√

3kT

m
= 1760 m s−1 .

These values of l and v give t = l/v = 510 years for
the collision interval. Taking into account the velocity
distribution in the gas, the mean free path appears to be
shorter by a factor of 1/

√
2, which reduces the time to

about 400 years.

Example 15.3 Consider the lowest rotational tran-
sition of the CO molecule. For 12CO the frequency
of this line is ν(12CO)= 115.27 GHz, and for 13CO,
ν(13CO) = 110.20 GHz. Estimate the optical thick-
ness of each line in a molecular cloud, where the
observed brightness temperatures of the lines are
Tb(

12CO)= 40 K and Tb(
13CO)= 9 K.

For the 12CO line, hν/k = 5.5 K. Thus, the Rayleigh–
Jeans approximation is valid if the temperature is
considerably higher than 5 K. This is not always the
case, but the measured value of Tb(

12CO) suggests that
the approximation can be used.

Ignoring the background, (15.19) gives

Tb = Texc
(
1− e−τν) .

The optical thickness τν is proportional to the opacity
or the absorption coefficient αν [see (4.15)], and αν is
evidently proportional to the number of CO molecules
present. Other differences between the lines are small,
so we can write

τν(
12CO)

τν(13CO)
≈ n(12CO)

n(13CO)
.

Adopting the terrestrial value n(12CO)/n(13CO)= 89,
we set

τν(
12CO)= 89τν(

13CO) .

Assuming the excitation temperatures equal and
denoting τν(12CO) by τ , we get

Texc
(
1− e−τ)= 40 ,

Texc
(
1− e−τ/89)= 9 .

The solution of this pair of equations is

τν(
12CO)= 23, τν(

13CO)= 0.25, Texc = 40 K .

Thus, the 12CO line seems to be optically thick, and
Texc = Tb(

12CO). If also the 13CO line were optically
thick, the brightness temperatures would be practi-
cally equal, and the optical thicknesses could not be
determined.

15.10 Exercises

Exercise 15.1 Two open clusters, which are seen
near each other in the galactic plane, have angu-
lar diameters α and 3α, and distance moduli 16.0
and 11.0, respectively. Assuming their actual diame-
ters are equal, find their distances and the interstellar
extinction coefficient a in (15.4).

Exercise 15.2 Estimate the free fall velocity on the
surface of a spherical gas cloud contracting under the
influence of its own gravity. Assume n(H2)= 103 cm−3

and R = 5 pc.

Exercise 15.3 The force F exerted by a magnetic
field B on a charge q moving with velocity v is
F = qv× B. If v is perpendicular to B, the path of the
charge is circular. Find the radius of the path of an in-
terstellar proton with a kinetic energy of 1 MeV. Use
B = 0.1 nT for the galactic magnetic field.
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16. Star Clusters and Associations

Several collections of stars can be picked out in the sky,
even with the naked eye. Closer study reveals that they

really do form separate clusters in space. E.g. the Pleiades
in Taurus and the Hyades around Aldebaran, the brightest
star inTaurus,aresuchopenstarclusters.Almost thewhole
of the constellation Coma Berenices is also an open star
cluster. Many objects appearing as nebulous patches to
the unaided eye, when looked at with a telescope, turn
out to be star clusters, like Praesepe in the constellation
Cancer, or Misan, the double cluster in Perseus (Fig. 16.1).
In addition to open clusters some apparently nebulous
objects are very dense globular clusters, such as those in
Hercules and in Canes Venatici (Fig. 16.2).

The first catalogue of star clusters was prepared by the
French astronomer Charles Messier in 1784. Among his
103 objects there were about 30 globular clusters and the
same number of open clusters, in addition to gas nebulae
and galaxies. A larger catalogue, published in 1888, was
theNewGeneralCatalogueofNebulaeandClustersof Stars
preparedby theDanishastronomer JohnLouis EmilDreyer.
The catalogue numbers of objects in this list are preceded
by the initials NGC. For example, the large globular cluster
in Hercules is object M13 in the Messier catalogue, and it
is also known as NGC 6205. The NGC catalogue was sup-
plemented with the Index Catalogue in 1895 and 1910.
The objects of this catalogue are given the initials IC.

16.1 Associations

In 1947 the Soviet astronomer Viktor Amazaspovich
Ambartsumyan discovered that there are groups of
young stars scattered over so large regions of the sky
that they would be very difficult to identify merely on
the basis of their appearance. These associations may
have a few tens of members. One association is found
around the star ζ Persei, and in the region of Orion, there
are several associations.

Associations are groups of very young stars. They are
usually identified on the basis either of absolutely bright
main sequence stars or of T Tauri stars. According to the
type, one speaks of OB associations and T Tauri associ-
ations. The most massive stars of spectral class O stay
on the main sequence for only a few million years, and
therefore associations containing them are necessarily
young. The T Tauri stars are even younger stars that are
in the process of contracting towards the main sequence.

Studies of the internal motions in associations show
that they are rapidly dispersing. There are so few stars
in an association that their gravity cannot hold them
together for any length of time. The observed motions
have often confirmed that the stars in an association were
very close together a few million years ago (Fig. 16.3).

Large amounts of interstellar matter, gas and dust
nebulae often occur in connection with associations,
supplying information about the connection between
star formation and the interstellar medium. Infrared ob-

servations have shown that stars are now forming or
have recently formed in many dense interstellar clouds.

Associations are strongly concentrated in the spiral
arms in the plane of the Milky Way. Both in the Orion re-
gion and in the direction of Cepheus, three generations
of associations have been identified, the oldest ones
being most extended and the youngest ones, most dense.

16.2 Open Star Clusters

Open clusters usually contain from a few tens to a few
hundreds of stars. The kinetic energy of the clus-
ter members, the differential rotation of the Milky
Way (Sect. 17.3) and external gravitational disturbances
tend to gradually disperse the open clusters. Still,
many of them are fairly permanent; for example, the
Pleiades is many hundreds of millions of years old, but
nevertheless, quite a dense cluster.

The distances of star clusters – and also of asso-
ciations – can be obtained from the photometric or
spectroscopic distances of their brightest members. For
the nearest clusters, in particular for the Hyades, one can
use the method of kinematic parallaxes, which is based
on the fact that the stars in a cluster all have the same av-
erage space velocity with respect to the Sun. The proper
motions in the Hyades are shown in Fig. 16.4a. They all
appear to be directed to the same point. Figure 16.4b
explains how this convergence can be understood as an
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effect of perspective, if all cluster members have the
same velocity vector with respect to the observer. Let θ
be the angular distance of a given star from the conver-
gence point. The angle between the velocity of the star
and the line of sight will then also be θ. The velocity
components along the line of sight and at right angles
to it, vr and vt, are therefore given by

vr = v cos θ ,

vt = v sin θ .
(16.1)

The radial velocity vr can be measured from the Doppler
shift of the stellar spectrum. The tangential velocity vt

is related to the proper motion µ and the distance r:

vt = µr . (16.2)

Fig. 16.1a–c. Open clusters. (a) The Hyades slightly to the
lower left in the photograph. Above them to the right the
Pleiades (Photograph M. Korpi). (b) The Pleiades pho-
tographed with the Metsähovi Schmidt camera. The diameter
of the cluster is about 1◦. Reflection nebulae are visible around
some of the stars (Photograph M. Poutanen and H. Virtanen,
Helsinki University). (c) Misan or h and χ Persei, the double
cluster in Perseus. The separation between the clusters is about
25′. Picture taken with the Metsähovi 60-cm Ritchey Chrétien
telescope (Photograph T. Markkanen, Helsinki University)

Thus the distance can be calculated:

r = vt

µ
= v sin θ

µ
= vr

µ
tan θ . (16.3)

By means of this method, the distances of the indi-
vidual stars can be determined from the motion of the
cluster as a whole. Since the method of (ground-based)
trigonometric parallaxes is reliable only out to a distance
of 30 pc, the moving cluster method is an indispensable
way of determining stellar distances. The distance of the
Hyades obtained in this way is about 46 pc. The Hyades
is the nearest open cluster.

The observed HR diagram or the corresponding
colour–magnitude diagram of the Hyades and other
nearby star clusters show a very well-defined and narrow
main sequence (Fig. 16.5). Most of the cluster mem-
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Fig. 16.2. The globular clus-
ter ωCentauri. The picture
was taken with the Danish
1.5-m telescope at La Silla,
Chile. Thanks to the ex-
cellent seeing, one can see
through the entire cluster
in some places. (Photo-
graph T. Korhonen, Turku
University)

Fig. 16.3. ζ Persei associ-
ation. O and B stars are
shown as open circles. The
proper motion vectors show
the movements of the stars
in the next 500,000 years
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Fig. 16.4. (a) Proper motions of the Hyades. The vectors
show the movement of the stars in about 10,000 years. (van
Bueren, H. G. (1952): Bull. Astr. Inst. Neth. 11). (b) If all

stars move in the same direction, their tangential velocity
components appear to be directed towards the convergence
point K

bers are main sequence stars; there are only a few
giants. There are quite a few stars slightly less than
one magnitude above the main sequence. These are ap-
parently binary stars whose components have not been
resolved. To see this, let us consider a binary, where both
components have the same magnitude m and the same
colour index. If this system is unresolved, the colour in-
dex will still be the same, but the observed magnitude
will be m −0.75, i. e. slightly less than one magnitude
brighter.

The main sequences of open clusters are generally lo-
cated in the same section of the HR or colour-magnitude
diagram (Fig. 16.6). This is because the material from
which the clusters formed has not varied much, i. e. their
initial chemical composition has been fairly constant. In
younger clusters the main sequence extends to brighter
and hotter stars and earlier spectral types. Usually one
can clearly see the point in the diagram where the main

sequence ends and bends over towards the giant branch.
This point will depend very strongly on the age of the
cluster. It can therefore be used in determining the ages
of open clusters. Star clusters are of central importance
in the study of stellar evolution.

The colour–magnitude diagrams of star clusters can
also be used to determine their distances. The method is
called main sequence fitting. By means of multicolour
photometry the reddening due to interstellar dust can
be removed from the observed colours B − V of the
stars, yielding the intrinsic colours (B − V )0. Most star
clusters are so far away from us that all cluster members
can be taken to be at the same distance. The distance
modulus

mV0 − MV = 5 lg
r

10 pc
(16.4)

will then be the same for all members. In (16.4), mV0 is
the apparent, MV the absolute visual magnitude of a star,
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Fig. 16.5. Colour–magnitude diagram of the Hyades. Appar-
ent visual magnitude on the left-hand vertical axis; absolute
visual magnitude on the right-hand one

Fig. 16.6. Schematic colour–magnitude diagrams of star clus-
ters. M3 is a globular cluster; the others are open clusters.
Cluster ages are shown along the main sequence. The age of
a cluster can be told from the point where its stars begin to
turn off the main sequence. (Sandage, A. (1956): Publ. Astron.
Soc. Pac. 68, 498)

and r the distance. It has been assumed that the extinc-
tion due to interstellar dust AV has been determined
from multicolour photometry and its effect removed
from the observed visual magnitude mV:

mV0 = mV − AV .

When the observed colour–magnitude diagram of the
cluster is plotted using the apparent magnitude mV0

rather than the absolute magnitude MV on the vertical
axis, the only change will be that the position of the
main sequence is shifted vertically by an amount corre-
sponding to the distance modulus. The observed (mV0 ,
(B − V )0) diagram may now be compared with the
Hyades (MV, (B − V )0) diagram used as a standard. By
demanding that the main sequences of the two diagrams
agree, the distance modulus and hence the distance can
be determined. The method is very accurate and effi-
cient. It can be used to determine cluster distances out
to many kiloparsecs.

16.3 Globular Star Clusters

Globular star clusters usually contain about 105 stars.
The distribution of the stars is spherically symmetric,
and the central densities are about ten times larger than
in open clusters. Stars in globular clusters are among
the oldest in the Milky Way, and therefore they are of
great importance for studies of stellar evolution. There
are about 150–200 globular clusters in the Milky Way.

The colour-magnitude diagram of a typical globu-
lar cluster is shown in Fig. 16.7. The main sequence
only contains faint red stars; there is a prominent giant
branch, and the horizontal and asymptotic branches are
clearly seen. The main sequence is lower than that of
the open clusters, because the metal abundance is much
lower in the globular clusters.

The horizontal branch stars have a known absolute
magnitude, which has been calibrated using principally
RR Lyrae type variables. Because the horizontal branch
stars are bright, they can be observed even in distant
clusters, and thus using them the distances of globular
clusters can be well determined.

Using the known distances, the linear sizes of globu-
lar clusters can be calculated. It is found that most of the
mass is concentrated to a central core with a radius of
about 0.3–10 pc. Outside this there is an extended en-
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Fig. 16.7. Colour–magnitude diagram of the globular clus-
ter M5. In addition to the main sequence one can see the
giant branch bending to the right and to its left the horizontal
brunch. (Arp, H. (1962): Astrophys. J. 135, 311)

velope with a radius that may be 10–100 times larger.
At even larger radii stars will escape from the cluster
because of the tidal force of the Galaxy.

The masses of globular clusters can be roughly esti-
mated from the virial theorem, if the stellar velocities in
the cluster have been measured. More precise values are
calculated by fitting theoretical models to the observed
density and velocity distributions. In this way masses in
the range 104–106 M� have been obtained.

The globular clusters in the Milky Way fall into two
classes. In the classification given in Table 17.1 these
correspond to intermediate and halo population II. The
disc globular clusters are concentrated towards the cen-
tre and the plane of the Milky Way and they form
a system that is rotating with the general rotation of
the Milky Way. In contrast, the halo clusters are al-
most spherically distributed in an extensive distribution
reaching out to at least 35 kpc. The system of halo
clusters does not rotate, but instead the velocities of
individual clusters are uniformly distributed in all direc-
tions. The abundance of heavy elements is also different
in the two classes of clusters. For disc clusters it is typ-
ically about 30% of the solar value, for halo clusters it
is only about 1%. The smallest known heavy element
abundances, about 10−3 times the solar value, have been

detected in some halo globular clusters. They therefore
give important information about the production of el-
ements in the early Universe and during the formation
of the Milky Way.

All globular clusters are old, and the halo clusters
are among the oldest known astronomical objects. De-
termining a precise age is difficult, and requires both
accurate observations of the turn-off point of the main
sequence in the HR diagram, as well detailed theoret-
ical stellar evolution models. The ages obtained have
been about (13–16)×109 years. This age is close to the
age of the Universe calculated from its rate of expansion
(see Chap. 19).

16.4 Example

Example 16.1 Assume that a globular cluster has a di-
ameter of 40 pc and contains 100,000 stars of one solar
mass each.

a) Use the virial theorem to find the average velocity of
the stars. You can assume that the average distance
between stars equals the radius of the cluster.

b) Find the escape velocity.

c) Comparing these velocities, can you tell something
about the stability of the cluster?

a) First, we have to estimate the potential energy. There
are n(n −1)/2 ≈ n2/2 pairs of stars in the cluster,
and the average distance of each pair is R. Thus the
potential energy is about

U = −G
m2

R

n2

2
,

where m = 1 M�. The kinetic energy is

T = 1

2
mv2n ,

where v is the root mean square velocity. According
to the virial theorem we have T = −1/2U , whence

1

2
mv2n = 1

2
G

m2

R

n2

2
.
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Solving for the velocity we get

v2 = Gmn

2R

= 6.7×10−11 m3 kg−1 s−2 ×2.0×1030 kg×105

40×3.1×1016 m

= 1.1×107 m2 s−2 ,

which gives v≈ 3 km s−1.

b) The escape velocity from the edge of the cluster is

ve =
√

2Gmn

R

=
√

4v2 = 2v= 6 km s−1 .

c) No. The average velocity seems to be smaller than
the escape velocity, but it was derived from the virial
theorem assuming that the cluster is stable.

16.5 Exercises

Exercise 16.1 A globular cluster consists of
100,000 stars of the solar absolute magnitude. Calcu-
late the total apparent magnitude of the cluster, if its
distance is 10 kpc.

Exercise 16.2 The Pleiades open cluster contains
230 stars within 4 pc. Estimate the velocities of the stars
in the cluster using the virial theorem. For simplicity,
let the mass of each star be replaced by 1 M�.



Hannu Karttunen et al. (Eds.), The Milky Way.
In: Hannu Karttunen et al. (Eds.), Fundamental Astronomy, 5th Edition. pp. 347–366 (2007)
DOI: 11685739_17 © Springer-Verlag Berlin Heidelberg 2007

347

17. The Milky Way

On clear, moonless nights a nebulous band of light
can be seen stretching across the sky. This is the

Milky Way (Fig. 17.1). The name is used both for the
phenomenon in the sky and for the large stellar system
causing it. The Milky Way system is also called the Galaxy
− with a capital letter. The general term galaxy is used to
refer to the countless stellar systems more or less like our
Milky Way.

The band of the Milky Way extends round the whole
celestial sphere. It is a huge system consisting mostly
of stars, among them the Sun. The stars of the Milky
Way form a flattened disc-like system. In the direction
of the plane of the disc huge numbers of stars are visible,
whereas relatively few are seen in the perpendicular direc-
tion. The faint light of distant stars merges into a uniform
glow, and therefore the Milky Way appears as a nebu-
lous band to the naked eye. A long-exposure photograph
reveals hundreds of thousands of stars (Fig. 17.2).

In the early 17th century Galileo Galilei, using his first
telescope, discovered that the Milky Way consists of innu-
merable stars. In the late 18th century William Herschel
attempted to determine the size and shape of the Milky
Way by means of star counts. Only early in the 20th cen-
tury did the Dutch astronomer Jacobus Kapteyn obtain the
first estimate of the size of the Milky Way. The true size
of the Milky Way and the Sun’s position in it became clear
in the 1920’s from Harlow Shapley’s studies of the space
distribution of globular clusters.

In studying the structure of the Milky Way, it is con-
venient to choose a spherical coordinate system so that
the fundamental plane is the symmetry plane of the
Milky Way. This is defined to be the symmetry plane
of the distribution of neutral hydrogen, and it agrees
quite closely with the symmetry plane defined by the
distribution of stars in the solar neighbourhood (within
a few kpc).

Fig. 17.1. The nebulous band of the Milky Way stretches across the entire sky. (Photograph M. and T. Kesküla, Lund Observatory)
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The basic direction in the fundamental plane has
been chosen to be the direction of the centre of the
Milky Way. This is located in the constellation Sagittarius
(α= 17 h 45.7 min, δ =− 29

◦
00

′, epoch 2000.0) at a dis-
tance of about 8.5 kpc. The galactic latitude is counted

from the plane of the Galaxy to its pole, going from 0
◦ to

+ 90
◦, and to the galactic south pole, from 0

◦ to − 90
◦.

The galactic coordinate system is shown in Fig. 17.3 (see
also Sect. 2.8).

Fig. 17.2. A section of
about 40◦ of the Milky
Way between the con-
stellations of Cygnus and
Aquila. The brightest star
at the upper right is Vega
(αLyrae). (Photograph
Palomar Observatory)
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Fig. 17.3. The directions to the galactic centre and the North
galactic pole (NGP) in equatorial coordinates. The galactic
longitude l is measured from the galactic centre along the
galactic plane. The coordinates of the Galactic centre are
precessed from the defining equinox 1950 and are not very
accurate (see A.P. Lane (1979), PASP, 91, 405)

17.1 Methods of Distance Measurement

In order to study the structure of the Milky Way, one
needs to know how various kinds of objects, such as
stars, star clusters and interstellar matter, are distributed
in space. The most important ways of measuring the
distances will first be considered.

Trigonometric Parallaxes. The method of trigono-
metric parallaxes is based on the apparent yearly
back-and-forth movement of stars in the sky, caused
by the orbital motion of the Earth. From Earth-based
observations the trigonometric parallaxes can be reli-
ably measured out to a distance of about 30 pc; beyond
100 pc this method is no longer useful. The situa-
tion is, however, changing. The limit has already been
pushed to a few hundred parsecs by the Hipparcos
satellite, and Gaia will mean another major leap in the
accuracy.

Fig. 17.4. Because of the motion of the Sun towards the apex,
the average radial velocity of the nearby stars appears largest
in the apex and antapex directions

The Motion of the Sun with Respect to the Neigh-
bouring Stars. The Local Standard of Rest. The
motion of the Sun with respect to the neighbouring
stars is reflected in their proper motions and radial ve-
locities (Fig. 17.4). The point towards which the Sun’s
motion among the stars seems to be directed is called
the apex. The opposite point is the antapex. The stars
near the apex appear to be approaching; their (nega-
tive) radial velocities are smallest, on the average. In
the direction of the antapex the largest (positive) radial
velocities are observed. On the great circle perpendic-
ular to the apex-antapex direction, the radial velocities
are zero on the average, but the proper motions are large.
The average proper motions decrease towards the apex
and the antapex, but always point from the apex towards
the antapex.

In order to study the true motions of the stars, one has
to define a coordinate system with respect to which the
motions are to be defined. The most practical frame of
reference is defined so that the stars in the solar neigh-
bourhood are at rest, on the average. More precisely,
this local standard of rest (LSR) is defined as follows:

Let us suppose the velocities of the stars being con-
sidered are distributed at random. Their velocities with
respect to the Sun, i. e. their radial velocities, proper mo-
tions and distances, are assumed to be known. The local
standard of rest is then defined so that the mean value
of the velocity vectors is opposite to the velocity of the
Sun with respect to the LSR. Clearly the mean velocity
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of the relevant stars with respect to the LSR will then
be zero. The motion of the Sun with respect to the LSR
is found to be:

Apex coordinates α= 18 h 00 min = 270◦ l = 56◦
δ= +30◦ b = +23◦

Solar velocity v0 = 19.7 kms−1

The apex is located in the constellation of Hercules.
When the sample of stars used to determine the LSR is
restricted to a subset of all the stars in the solar neigh-
bourhood, e. g. to stars of a given spectral class, the
sample will usually have slightly different kinematic
properties, and the coordinates of the solar apex will
change correspondingly.

The velocity of an individual star with respect to the
local standard of rest is called the peculiar motion of
the star. The peculiar velocity of a star is obtained by
adding the velocity of the Sun with respect to the LSR
to the measured velocity. Naturally the velocities should
be treated as vectors.

The local standard of rest is at rest only with respect
to a close neighbourhood of the Sun. The Sun and the
nearby stars, and thus also the LSR, are moving round
the centre of the Milky Way at a speed that is ten times
greater than the typical peculiar velocities of stars in the
solar neighbourhood (Fig. 17.5).

Statistical Parallaxes. The velocity of the Sun with
respect to neighbouring stars is about 20 km s−1. This
means that in one year, the Sun moves about 4 AU with
respect to the stars.

Let us consider a star S (Fig. 17.6), whose angular
distance from the apex is ϑ and which is at a distance r
from the Sun. In a time interval t the star will move
away from the apex at the angular velocity u/t = µA

because of the solar motion. In the same time interval,
the Sun will move the distance s. The sine theorem for
triangles yields

r ≈ r ′ = s sinϑ

sin u
≈ s sinϑ

u
, (17.1)

because the distance remains nearly unchanged and the
angle u is very small. In addition to the component µA

due to solar motion, the observed proper motion has
a component due to the peculiar velocity of the star.
This can be removed by taking an average of (17.1) for

Fig. 17.5. The local standard of rest, defined by the stars in
the solar neighbourhood, moves with respect to the galac-
tic centre. However, the average value of the stellar peculiar
velocities with respect to the LSR is zero

Fig. 17.6. When the Sun has moved the distance s towards the
apex, the direction to the star S appears to have changed by
the angle u

a sample of stars, since the peculiar velocities of the
stars in the solar neighbourhood can be assumed to be
randomly distributed. By observing the average proper
motion of objects known to be at the same distance one
thus obtains their actual distance. A similar statistical
method can be applied to radial velocities.

Objects that are at the same distance can be found
as follows. We know that the distance modulus m − M
and the distance r are related according to:

m − M = 5 lg(r/10 pc)+ A(r) , (17.2)

where A is the interstellar extinction. Thus objects that
have the same apparent and the same absolute magni-
tude will be at the same distance. It should be noted
that we need not know the absolute magnitude as long
as it is the same for all stars in the sample. Suitable
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classes of stars are main sequence A4 stars, RR Lyrae
variables and classical cepheids with some given pe-
riod. The stars in a cluster are also all at the same
distance. This method has been used, for example, to
determine the distance to the Hyades as explained in
Sect. 16.2.

Parallaxes based on the peculiar or apex motion of
the Sun are called statistical or secular parallaxes.

Main Sequence Fitting. If the distance of a cluster
is known, it is possible to plot its HR diagram with
the absolute magnitude as the vertical coordinate. An-
other cluster, whose distance is to be determined, can
then be plotted in the same diagram using the apparent
magnitudes as the vertical coordinate. Now the vertical
distance of the main sequences tells how much the ap-
parent magnitudes differ from the absolute ones. Thus
the distance modulus m − M can be measured. This
method, known as the main sequence fitting, works for
clusters whose stars are roughly at the same distance;
if the distances vary too much, a clear main sequence
cannot be distinguished.

Photometric Parallaxes. The determination of the dis-
tance directly from (17.2) is called the photometric
method of distance determination and the corresponding
parallax, the photometric parallax. The most difficult
task when using this method usually involves finding
the absolute magnitude; there are many ways of doing
this. For example, the two-dimensional MKK spectral
classification allows one to determine the absolute mag-
nitude from the spectrum. The absolute magnitudes of
cepheids can be obtained from their periods. A spe-
cially useful method for star clusters is the procedure
of main sequence fitting. A condition for the photomet-
ric method is that the absolute magnitude scale first be
calibrated by some other method.

Trigonometric parallaxes do not reach very far. For
example, even with the Hipparcos satellite, only a few
cepheid distances have been accurately measured by
this method. The method of statistical parallaxes is in-
dispensable for calibrating the absolute magnitudes of
bright objects. When this has been done, the photomet-
ric method can be used to obtain distances of objects
even further away.

Other examples of indicators of brightness, lumi-
nosity criteria, are characteristic spectral lines or the

periods of cepheids. Again, their use requires that they
first be calibrated by means of some other method. It
is a characteristic feature of astronomical distance de-
terminations that the measurement of large distances
is based on knowledge of the distances to nearer
objects.

17.2 Stellar Statistics

The Stellar Luminosity Function. By systematically
observing all stars in the solar neighbourhood, one can
find the distribution of their absolute magnitudes. This
is given by the luminosity function Φ(M), which gives
the relative number of main sequence stars with absolute
magnitudes in the range [M −1/2,M +1/2]. No stars
appear to be forming at present in the region of space
where the luminosity function has been determined.
The age of the Milky Way is 10–15 Ga, which means
that all stars less massive than 0.9 M�, will still be on
the main sequence. On the other hand, more massive
stars, formed early in the history of the Milky Way, will
have completed their evolution and disappeared. Low-
mass stars have accumulated in the luminosity function
for many generations of star formation, whereas
bright, high-mass stars are the result of recent star
formation.

By taking into account the different main sequence
lifetimes of stars of different masses and hence of differ-
ent magnitudes, one can determine the initial luminosity
function Ψ(M), which gives the brightness distribution
at the time of star formation, the zero age main se-
quence luminosity function. The relation between the
function Ψ and the observed luminosity function is

Ψ(M)=Φ(M)T0/tE(M) , (17.3)

where T0 is the age of the Milky Way and tE(M) is the
main sequence lifetime of stars of magnitude M. Here
we assume that the birth rate of stars of magnitude M has
remained constant during the lifetime of the Milky Way.
The initial luminosity function is shown in Fig. 17.7.

The Fundamental Equation of Stellar Statistics. The
Stellar Density. A crucial problem for studies of the
structure of the Milky Way is to find out how the density
of stars varies in space. The number of stars per unit
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Fig. 17.7. The observed luminosity function Φ(MV) and
the initial luminosity function Ψ(MV) for main sequence
stars in the solar neighbourhood. The functions give the
number of stars per cubic parsec in the magnitude inter-
val [MV −1/2, MV +1/2]; they are actually the products DΦ
and DΨ , where D is the stellar density function (in the solar
neighbourhood)

volume at a distance r in the direction (l, b) from the
Sun is given by the stellar density D = D(r, l, b).

The stellar density cannot be directly observed except
in the immediate neighbourhood of the Sun. However, it
can be calculated if one knows the luminosity function
and the interstellar extinction as a function of distance
in a given direction. In addition the number of stars
per unit solid angle (e. g. per square arc second) can be
determined as a function of limiting apparent magnitude
by means of star counts (Fig. 17.8).

Let us consider the stars within the solid angle ω in
the direction (l, b) and in the distance range [r, r +dr].
We let their luminosity function Φ(M) be the same as
in the solar neighbourhood and their unknown stellar
density D. The absolute magnitude M of the stars of
apparent magnitude m is, as usual,

M = m −5 lg(r/10 pc)− A(r) .

The number of stars in the apparent magnitude
interval [m − 0.5,m + 0.5] in the volume element
dV = ωr2dr at distance r is (Fig. 17.9)

dN(m)= D(r, l, b)

×Φ
[
m −5 lg

r

10 pc
− A(r)

]
dV .

(17.4)

The stars of apparent magnitude m in the given area
of the sky will in reality be at many different distances.

Fig. 17.8. The stellar density is determined by means of star
counts. In practice, the counting is done on photographic
plates. (Cartoon S. Harris)

In order to obtain their total number N(m), one has to
integrate dN(m) over all distances r:

N(m)=
∞∫

0

D(r, l, b) (17.5)

×Φ
[
m −5 lg

r

10 pc
− A(r)

]
ωr2 dr .

Equation (17.5) is called the fundamental equation of
stellar statistics. Its left-hand side, the number of stars
in the apparent magnitude interval [m −0.5,m +0.5]
in the solid angle ω, is obtained from the observations:
one counts the stars of different magnitudes in a chosen
area of a photographic plate. The luminosity function
is known from the solar neighbourhood. The extinc-
tion A(r) can be determined for the chosen areas, for
instance, by means of multicolour photometry. In order
to solve the integral equation (17.5) for D(r, l, b), sev-
eral methods have been developed, but we shall not go
into them here.
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Fig. 17.9. The size of the volume element at distance r in the
direction (l, b) is ωr2dr

Figure 17.10a shows the stellar density in the so-
lar neighbourhood in the plane of the Milky Way, and
Fig. 17.10b in the direction perpendicular to the plane.
There are several individual concentrations, but e. g. spi-
ral structure cannot be observed in such a limited region
of space.

The Distribution of Bright Objects. Using stellar
statistical methods, one can only study the close neigh-
bourhood of the Sun, out to about 1 kpc at the most.
Absolutely faint objects cannot be observed very far.
Since the solar neighbourhood appears to be fairly rep-
resentative of the general properties of the Milky Way,
its study is naturally important, giving information e.g.

Fig. 17.10a,b. The stel-
lar density near the Sun.
(a) The stellar density of
spectral classes A2–A5 in
the galactic plane, accord-
ing to S.W. McCuskey.
The numbers next to the
isodensity curves give
the number of stars in
10,000 pc3. (b) The distri-
bution of different spectral
classes perpendicularly to
the galactic plane according
to T. Elvius. The density in
the galactic plane has been
normalized to one

on the distributions and luminosity functions of stars
of various spectral types. However, in order to get an
idea of the larger-scale structure of the Milky Way, one
has to make use of objects that are as absolutely bright
as possible, and which can be observed even at large
distances.

Examples of suitable objects are stars of early spec-
tral types, H II regions, OB associations, open star
clusters, cepheids, RR Lyrae stars, supergiants and gi-
ants of late spectral types, and globular clusters. Some
of these objects differ greatly in age, such as the young
OB associations, on the one hand, and the old globular
clusters, on the other. Any differences in their space dis-
tribution tell us about changes in the general structure
of the Milky Way.

The young optical objects, the H II regions, OB asso-
ciations and open clusters, are strongly concentrated in
the plane of the Milky Way (Table 17.1). Figure 17.11
shows that they also appear to be concentrated in three
drawn-out bands, at least within the observed region.
Since these types of objects in other galaxies are known
to be part of a spiral structure, the observed bands in
the Milky Way have been interpreted as portions of
three spiral arms passing through the solar neighbour-
hood. Stars of later spectral types seem to be much more
evenly distributed. Apart from a few special directions,
interstellar dust limits observations in the galactic plane
to within 3–4 kpc.
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Population Typical Average age z vr Metal
objects [109 a] [pc] [k/s] abundance

Halo population II Subdwarfs, 14–12 2000 75 0.001
globular clusters
RR Lyr (P> 0.4 d)

Intermediate population II Long period 12–10 700 25 0.005
variables

Disc population Planetary 12–2 400 18 0.01–0.02
nebulae, novae
bright red
giants

Old population I A stars, 2–0.1 160 10 0.02
Me dwarfs
classical
cepheids

Young population I Gas, dust, 0.1 120 0.03–0.04
supergiants,
T Tau stars

Table 17.1. Populations of
the Milky Way; z is the
vertical distance from the
galactic plane, and vr the
velocity component per-
pendicular to the galactic
plane

Fig. 17.11. The distribu-
tion of various objects in
the galactic plane. Three
condensations can be dis-
cerned: the Sagittarius arm
(lowest), the local arm near
the Sun and (outermost) the
Perseus arm

Old objects, particularly the globular clusters, have
an almost spherical distribution about the centre of the
Milky Way (Fig. 17.12). The space density of old objects
increases towards the galactic centre. They can be used
to determine the distance of the Sun from the galactic
centre; the value of this distance is about 8.5 kpc.

Stellar Populations. Studies of the motions of the stars
in the Milky Way have revealed that the orbits of stars
moving in the galactic plane are almost circular. These
stars are also usually young, a few hundred million
years at the most. They also contain a relatively large
amount of heavy elements, about 2–4%. The interstel-
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Fig. 17.12. The distribu-
tion of globular clusters.
(From S.R. Majewski, Stel-
lar populations and the
Milky Way, in C. Martínez
Roger, I. Perez Fournón,
F. Sánchez (Eds.) Glob-
ular Clusters, Cambridge
University Press, 1999)

lar material similarly moves in the galactic plane in
almost circular orbits. On the basis of their motions
and their chemical composition, the interstellar medium
and the youngest stars are collectively referred to as
population I.

Outside the plane of the Milky Way, an almost spheri-
cally symmetric halo extends out to 50 kpc and beyond.
The stellar density is largest near the galactic centre
and decreases outwards. The halo contains very little
interstellar matter, and its stars are old, perhaps up to
15×109 years. These stars are also very metal-poor.
Their orbits may be very eccentric and show no prefer-
ence for the galactic plane. On the basis of these criteria,
one defines stars of population II. Typical population II
objects are the globular clusters, and the RR Lyrae and
W Virginis stars.

The stars of population II have large velocities with
respect to the local standard of rest, up to more than
300 km s−1. In reality their velocities at the solar dis-
tance from the galactic centre are quite small and may
sometimes be opposite to the direction of motion of the
LSR. The large relative velocities only reflect the mo-
tion of the LSR with a velocity of about 220 km s−1

round the galactic centre.

Between these two extremes, there is a sequence of
intermediate populations. In addition to populations I
and II, one generally also speaks of a disc population,
including the Sun, for instance. The typical motions,
chemical composition and age of the various popula-
tions (Table 17.1) contain information about the evolu-
tion of our Galaxy and about the formation of its stars.

17.3 The Rotation of the Milky Way

Differential Rotation. Oort’s Formulas. The flatness
of the Milky Way is already suggestive of a general
rotation about an axis normal to the galactic plane.
Observations of the motions both of stars and of in-
terstellar gas have confirmed this rotation and shown it
to be differential. This means that the angular velocity
of rotation depends on the distance from the galactic
centre (Fig. 17.13). Thus the Milky Way does not rotate
like a rigid body. Near the Sun, the rotational velocity
decreases with radius.

The observable effects of the galactic rotation were
derived by the Dutch astronomer Jan H. Oort. Let us
suppose the stars are moving in circular orbits about
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Fig. 17.13a–d. The effect of differential rotation on the radial
velocities and proper motions of stars. (a) Near the Sun the
orbital velocities of stars decrease outwards in the Galaxy.
(b) The relative velocity with respect to the Sun is obtained by

subtracting the solar velocity from the velocity vectors in (a).
(c) The radial components of the velocities with respect to the
Sun. This component vanishes for stars on the same orbit as
the Sun. (d) The tangential components of the velocities

the galactic centre (Fig. 17.14). This approximation is
acceptable for population I stars and gas. The star S,
seen from the Sun � at galactic longitude l at distance r,
has circular velocity V at a distance R from the centre.
Similarly for the Sun the galactic radius and velocity
are R0 and V0. The relative radial velocity vr of the star
with respect to the Sun is the difference between the
projections of the circular velocities on the line of sight:

vr = V cosα− V0 sin l , (17.6)

where α is the angle between the velocity vector of
the star and the line of sight. From Fig. 17.14 the an-
gle CS� = α+90◦. By applying the sine theorem to
the triangle CS� one obtains

sin(α+90◦)
sin l

= R0

R
or

cosα= R0

R
sin l . (17.7)

Denoting the angular velocity of the star byω= V/R
and that of the Sun by ω0 = V0/R0, one obtains the

observable radial velocity in the form

vr = R0(ω−ω0) sin l . (17.8)

The tangential component of the relative velocity
of the Sun and the star is obtained as follows. From
Fig. 17.14,

vt = V sinα− V0 cos l = Rω sinα− R0ω0 cos l .

The triangle �CP gives

R sinα= R0 cos l −r ,

and hence

vt = R0(ω−ω0) cos l −ωr . (17.9)

Oort noted that in the close neighbourhood of the Sun
(r � R0), the difference of the angular velocities will
be very small. Therefore a good approximation for the
exact equations (17.8) and (17.9) is obtained by keeping
only the first term of the Taylor series of ω−ω0 in the
neighbourhood of R = R0:

ω−ω0 =
(

dω

dR

)
R=R0

(R − R0)+ . . . .
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Fig. 17.14. In order to derive Oort’s formulas, the velocity
vectors of the Sun and the star S are divided into components
along the line �S and normal to it

Using ω= V/R and V(R0)= V0, one finds

ω−ω0 ≈ 1

R2
0

[
R0

(
dV

dR

)
R=R0

− V0

]
(R − R0) .

For R ≈ R0 	 r, the difference R − R0 ≈ −r cos l. One
thus obtains an approximate form

vr ≈
[

V0

R0
−
(

dV

dR

)
R=R0

]
r cos l sin l

or

vr ≈ Ar sin 2l , (17.10)

where A is a characteristic parameter of the solar
neighbourhood of the Galaxy, the first Oort constant:

A = 1

2

[
V0

R0
−
(

dV

dR

)
R=R0

]
. (17.11)

For the tangential relative velocity, one similarly
obtains, since ωr ≈ ω0r:

vt ≈
[

V0

R0
−
(

dV

dR

)
R=R0

]
r cos2 l −ω0r .

Because 2 cos2 l = 1+ cos 2l, this may be written

vt ≈ Ar cos 2l + Br , (17.12)

where A is the same as before and B, the second Oort
constant, is

B = −1

2

[
V0

R0
+
(

dV

dR

)
R=R0

]
. (17.13)

The proper motion µ = vt/r is then given by the
expression

µ≈ A cos 2l + B . (17.14)

Equation (17.10) says that the observed radial veloc-
ities of stars at the same distance should be a double
sine curve as a function of galactic longitude. This has
been confirmed by observations (Fig. 17.15a). If the dis-
tance to the stars involved is known, the amplitude of
the curve determines the value of the Oort constant A.

Independently of distance, the proper motions of the
stars form a double sine wave as a function of galactic

Fig. 17.15a,b. The velocity components due to differential
rotation according to Oort’s formulas as functions of galactic
longitude. (a) Radial velocities for objects at a distance of 1
and 2 kpc. (Compare with Fig. 17.13.) Strictly, the longitude
at which the radial velocity vanishes depends on the distance.
Oort’s formulas are valid only in the close vicinity of the Sun.
(b) Proper motions
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longitude, as seen in Fig. 17.15b. The amplitude of the
curve is A and its mean value, B.

In 1927 on the basis of this kind of analysis, Oort
established that the observed motions of the stars indi-
cated a differential rotation of the Milky Way. Taking
into account an extensive set of observational data, the
International Astronomical Union IAU has confirmed
the present recommended values for the Oort constants:

A = 15 km s−1 kpc−1, B = −10 km s−1 kpc−1 .

The Oort constants obey some interesting relations.
By subtracting (17.13) from (17.11), one obtains

A − B = V0

R0
= ω0 . (17.15)

Adding (17.13) and (17.11) gives

A + B = −
(

dV

dR

)
R=R0

. (17.16)

Knowing the values of A and B, one can calculate
the angular velocity ω0 = 0.0053′′/year, which is the
angular velocity of the local standard of rest around the
galactic centre.

The circular velocity of the Sun and the LSR can be
measured in an independent way by using extragalactic
objects as a reference. In this way a value of about
220 km s−1 has been obtained for V0. Using (17.15) one
can now calculate the distance of the galactic centre R0.
The result is about 8.5 kpc, in good agreement with the
distance to the centre of the globular cluster system.
The direction to the galactic centre obtained from the
distribution of radial velocities and proper motions by
means of (17.10) and (17.14) also agrees with other
measurements.

The orbital period of the Sun in the Galaxy accord-
ing to these results is about 2.5×108 years. Since the
Sun’s age is nearly 5×109 years, it has made about 20
revolutions around the galactic centre. At the end of the
previous revolution, the Carboniferous period had ended
on Earth and the first mammals would soon appear.

The Distribution of Interstellar Matter. Radio radi-
ation from interstellar gas, in particular that of neutral
hydrogen, is not strongly absorbed or scattered by inter-
stellar dust. It can therefore be used to map the structure

Fig. 17.16. Clouds P1, P2, . . . seen in the same direction at
various distances

of the Milky Way on large scales. Radio signals can be
detected even from the opposite edge of the Milky Way.

The position of a radio source, for example an
H I cloud, in the Galaxy cannot be directly deter-
mined. However, an indirect method exists, based on
the differential rotation of the Galaxy.

Figure 17.16 is a schematic view of a situation in
which gas clouds on the circles P1, P2, . . . are observed
in the direction l (−90◦ < l< 90◦). The angular velocity
increases inwards, and therefore the greatest angular
velocity along the line of sight is obtained at the point Pk ,
where the line of sight is tangent to a circle. This means
that the radial velocity of the clouds in a fixed direction
grows with distance up to the maximum velocity at
cloud Pk:

vr,max = Rk(ω−ω0) , (17.17)

where Rk = R0 sin l. The distance of cloud Pk from the
Sun is r = R0 cos l. When r increases further, vr de-
creases monotonically. Figure 17.17 shows how the
observed radial velocity in a given direction varies with
distance r, if the gas moves in circular orbits and the
angular velocity decreases outwards.
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Fig. 17.17. The radial velocity as a function of distance (shown
schematically)

The neutral hydrogen 21 cm line has been par-
ticularly important for mapping the Milky Way.
Figure 17.18 gives a schematic view of how the hy-
drogen spectral line is made up of the radiation of many
individual concentrations of neutral hydrogen, clouds
or spiral arms. The line component produced by each
cloud has a wavelength which depends on the radial
velocity of the cloud and a strength depending on its
mass and density. The total emission is the sum of these
contributions.

By making observations at various galactic longi-
tudes and assuming that the clouds form at least partly
continuous spiral arms, the distribution of neutral hydro-
gen in the galactic plane can be mapped. Figure 15.17
shows a map of the Milky Way obtained from 21 cm
line observations of neutral hydrogen. It appears that the
neutral hydrogen is concentrated in spiral arms. How-
ever, interpretation of the details is difficult because of
the uncertainties of the map. In order to obtain the dis-
tances to the gas clouds, one has to know the rotation
curve, the circular velocity as a function of the galactic
radius. This is determined from the same radial veloc-
ity observations and involves assumptions concerning
the density and rotation of the gas. The interpretation of

Fig. 17.18. Clouds at different distances have different veloc-
ities and therefore give rise to emission lines with different
Doppler shifts. The observed flux density profile (continu-
ous curve) is the sum of the line profiles of all the individual
line profiles (dashed curves). The numbers of the line profiles
correspond to the clouds in the upper picture

the spiral structure obtained from radio observations
is also still uncertain. For example, it is difficult to
fit the radio spiral structure to the one obtained near
the Sun from optical observations of young stars and
associations.

The Rotation, Mass Distribution and Total Mass of
the Milky Way. In (17.17) the galactic longitude l gives
the galactic radius Rk of the clouds with maximum
radial velocity. By making observations at different
longitudes, one can therefore use (17.17) to determine
the angular velocity of the gas for various distances
from the galactic centre. (Circular motions must be as-
sumed.) In this way, the rotation curve ω= ω(R) and
the corresponding velocity curve V = V(R) (= ωR) are
obtained.

Figure 17.19 shows the rotation curve of the Milky
Way. Its central part rotates like a rigid body, i. e. the



360

17. The Milky Way

Fig. 17.19. Rotation curve
of the Milky Way based on
the motions of hydrogen
clouds. Each point repre-
sents one cloud. The thick
line represents the rota-
tion curve determined by
Maarten Schmidt in 1965. If
all mass were concentrated
within the radius 20 kpc,
the curve would continue
according to Kepler’s third
law (broken line). The ro-
tation curve determined
by Leo Blitz on the basis
of more recent observa-
tions begins to rise again
at 12 kpc

angular velocity is independent of the radius. Outside
this region, the velocity first drops and then begins to
rise gradually. A maximum velocity is reached at about
8 kpc from the centre. Near the Sun, about 8.5 kpc from
the centre, the rotational velocity is about 220 km s−1.
According to earlier opinions, the velocity continues to
decrease outwards. This would mean that most of the
mass is inside the solar radius. This mass could then
be determined from Kepler’s third law. According to
(6.34),

M = R0V 2
0 /G .

Using the values R0 = 8.5 kpc and V0 = 220 km s−1,
one obtains

M = 1.9×1041 kg = 1.0×1011 M� .

The escape velocity at radius R is

Ve =
√

2G M

R
= V

√
2 . (17.18)

This gives an escape velocity near the Sun
Ve = 310 km s−1. One therefore should not see many
stars moving in the direction of galactic rotation,
l = 90◦, with velocities larger than 90 km s−1 with re-
spect to the local standard of rest, since the velocity of

such stars would exceed the escape velocity. This has
been confirmed by observations.

The preceding considerations have been based on
the assumption that near the Sun, the whole mass of
the Galaxy can be taken to be concentrated in a central
point. If this were true, the rotation curve should be
of the Keplerian form, V ∝ R−1/2. That this is not the
case can be established from the values of the Oort
constants.

The derivative of the Keplerian relation

V =
√

G M

R
= √

G M R−1/2

yields

dV

dR
= −1

2

√
G M R−3/2 = −1

2

V

R
.

Using the properties (17.15) and (17.16) of the Oort
constants, one finds

(A − B)/(A + B)= 2 (17.19)

for a Keplerian rotation curve. This disagrees with the
observed value and thus the assumed Keplerian law does
not apply.

The mass distribution in the Milky Way can be stud-
ied on the basis of the rotation curve. One looks for
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a suitable mass distribution, such that the correct ro-
tation curve is reproduced. Recently distant globular
clusters have been discovered, showing that the Milky
Way is larger than expected. Also, observations of the
rotation curve outside the solar circle suggest that the
rotational velocity might begin to rise again. These re-
sults suggest that the mass of the Galaxy might be as
much as ten times larger than had been thought.

17.4 Structural Components
of the Milky Way

We have seen how the structure of the Milky Way can be
globally described by means of an almost spherical halo
of old stars and and a disc of gas and young and middle-
aged stars. In a more detailed picture more small-scale
features can also be distinguished.

The Thick Disc. In the traditional scheme dividing the
stars of the Milky Way into a series of populations it
was left undecided whether the populations should be
considered as qualitatively different classes or merely
steps along a continuous sequence. As the quality and
quantity of observations have improved, it has become
clear that what was defined as the intermediate popu-
lation II really represents a separate component of the
Milky Way with a pattern of element abundances stellar
motions that separate it clearly from the old (thin) disc.
This population is now referred to as the thick galactic
disc. A thick disc has also been detected in some other
galaxies, but it does not appear to be a universal feature
of all disc galaxies.

The Galactic Bar. As will be seen in the next chap-
ter, Sect. 18.1, a large fraction of all disc galaxies are
barred, with an elongated light distribution at the cen-
tre. The first indication that this might also be the case
for the Milky Way was found in velocity measure-
ments of neutral hydrogen, which were incompatible
with gas moving along circular orbits. In 1971 W. W.
Shane showed that the motions of the gas could be ex-
plained, if there is a central bar pointing about 20◦ away
from the direction of the Galatic centre.

It is more difficult to detect a bar in observations of
the stars. This was first done using the COBE satel-
lite, which (apart from mapping the cosmic microwave

background, see Sect. 19.7) also made a map of the sky
at the infrared wavelengths dominated by the light of old
stars. Because of perspective, the nearer end of the bar
at positive galactic longitude will look slightly different
than the farther end. Such an asymmetry was present
in the infrared map, consistent with a bar with an axial
ratio of 0.6.

Later confirmation of the existence of the bar has
come from mapping of the central distribution of old
stars using near-infrared photometric distances, see Fig.
17.20.

Spiral Structure. As mentioned earlier, the Milky Way
appears to be a spiral galaxy, but there is no general
agreement on the detailed form of the spiral pattern. For
example, in 1976 Y.M. Georgelin and Y.P. Georgelin
determined the distances of H II regions by radio and
optical observations. In the optical region their method
is independent of assumptions about the galactic rota-
tion law. They then fitted four spiral arms through the
H II regions.

Fig. 17.20. The Milky Way bar viewed from the North Galactic
pole. Solid symbols indicate the mean positions of red clump
giants in given directions, and the thick grey lines represent the
range of their distances. The line through the mean distances
illustrates a bar of 3 kpc length inclined 22.5◦ to the direc-
tion to the Galactic centre. The contour map shows a model
of the bar derived from infrared observations. (C.Babusiaux,
G.Gilmore 2005, MNRAS 358, 1309, Fig.6)
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Later investigations using a variety of methods, both
optical and radio have confirmed that a four-armed pat-
tern gives the best description of the spiral structure in
the Sun’s vicinity (Fig. 17.22). The pitch angle of the
spiral in this model is about 11.3◦. Three of the arms
start at the position of the galactic bar.

The cause of the spiral structure is a long-standing
problem. A small perturbation in the disc will quickly
be stretched into a spiral shape by differential rotation.
However, such a spiral would disappear in a few galactic
revolutions, a few hundred million years.

An important step forward in the study of the spi-
ral structure was the density wave theory developed by
Chia-Chiao Lin and Frank H. Shu in the 1960’s. The
spiral structure is taken to be a wavelike variation of the
density of the disc. The spiral pattern rotates as a solid
body with an angular velocity smaller than that of the
galactic rotation, while the stars and gas in the disc pass
through the wave.

Fig. 17.21. The central parts of the Milky Way in a radio
picture. The observations were made with the VLA telescope.
(Image Kassim et. al., Naval Research Laboratory)

Fig. 17.22. General view of the spiral pattern of the Milky Way.
Different tracers of spiral arms lead to somewhat different
patterns, but they tend to agree that a four-armed pattern like
the the one indicated here gives the best overall representation.
The names of the arms are those most commonly used. See
also Fig. 17.11. (Y.Xu et al. 2006, Science 311,54)

The density wave theory explains in a natural way
why young objects, like molecular clouds, H II regions
and bright young stars are found in the spiral arms. As
gas passes through the wave, it is strongly compressed.
The internal gravity of the gas clouds then becomes
more important and causes them to collapse and form
stars.

It takes about 107 years for the material to pass
through a spiral arm. By that time, the hot, bright stars
have finished their evolution, their ultraviolet radiation
has ceased and the H II regions have disappeared. The
less massive stars formed in the spiral arms are spread
out in the disc by their peculiar velocities.

It is not yet clear what gives rise to the spiral wave.
For some further discussion of spiral structure, see
Sect. 18.4.

The Galactic Centre. Our knowledge of the centre of
the Milky Way is mostly based on radio and infrared
observations. In the optical region the view to the cen-
tre is blocked by the dark clouds in the Sagittarius spiral
arm about 2 kpc from us. The galactic centre is inter-
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esting because it may be a small-scale version of the
much more violently active nuclei of some external
galaxies (see Sect. 18.7). It therefore provides oppor-
tunities to study at close hand phenomena related to
active galaxies. Since active galactic nuclei are thought
to contain black holes with masses larger than 107 M�,
there may also be a large black hole at the galactic
centre.

As one approaches the galactic centre the stellar den-
sity continues to rise towards a sharp central peak. In
contrast, the galactic gas disc has a central hole of ra-
dius about 3 kpc. This may be due to the galactic bar,
which will channel gas into the galactic nucleus leaving
a gas-free zone at larger radii.

Inside the central hole is a dense nuclear gas disc.
Its radius is about 1.5 kpc in neutral hydrogen, but most
of its mass is molecular and concentrated within 300 pc
of the nucleus. In this region the mass of molecular
gas is about 108 M�, or 5% of the total molecular mass
of the Milky Way. The molecular clouds are proba-
bly confined by the pressure from surrounding very hot
(T ≈ 108 K) gas. This hot gas may then expand verti-
cally, forming a galactic wind. Gas lost to a wind or
to star formation is replenished with infalling gas from
larger radii.

The central 10 pc are dominated by the radio contin-
uum source Sgr A and a dense star cluster observed in
the infrared. There is also molecular gas with complex
motions and signs of star formation activity. Within
Sgr A there is a unique point-like radio continuum
source known as Sgr A∗. The position of Sgr A∗ agrees
to within 1′′ with the centre of a cluster of stars that
is much denser than anything observed in the galactic
disc. If the galactic centre contains a large black hole,
Sgr A∗ is the natural candidate.

The luminosity of the galactic centre could be pro-
vided by the central star cluster, but there are still reasons
to expect that a large black hole may be present. The
central mass distribution can be estimated by modelling
the observed motions of stars and gas (cf. Sect. 18.2).
In particular it has recently become possible to measure
the proper motion of stars in the central cluster, which
has allowed the determination of their orbits. The best
fit with the observations is obtained with models with an
extended stellar mass distribution together with a point-
mass of about 3×106 M�. The size of Sgr A∗ measured
by very long baseline interferometry is less than 10 AU.

The most plausible explanation of this very compact
structure is that Sgr A∗ is indeed a black hole with mass
of a few million solar masses.

17.5 The Formation and Evolution
of the Milky Way

Like all galaxies the Milky Way is supposed to have
formed through the collapse of a region of higher than
average density in the Universe. The general view of
how this happened will be presented in the next two
chapters,in particular in Sects. 18.8 and 19.7. Some
traces of the formation process will be preserved in the
properties of local stars of different ages. These repre-
sent information about the formation of the Milky Way
that is not available for other galaxies.

The Ages of Stars. The most direct way of studying the
evolution of the Milky Way is by means of the observed
ages of stars. The tradional sequence of populations
described in Sect. 17.2 is also a sequence corresponding
to stars of different ages. The oldest component, the
stellar halo forms an almost spherical distribution of
stars with ages 12–14 Ga, representing the oldest part
of the Milky Way.

In contrast, the old and young population I consists
of stars with ages less than 10 Ga, which were initially
formed in a very thin layer that has been thickened
by encounters with spiral arms and molecular cloud
complexes.

Intermediate between these two, as we have noted,
is the thick disc with an age about 10–12 Ga. Another
intermediate population in the Milky Way is the central
bulge including the galactic bar, and containing stars of
ages 7–11 Ga.

Chemical Enrichment. The history of the formation of
the Milky Way is preserved in the properties of its older
stars, above all in their “chemical” composition, i. e.
the abundances of elements and isotopes heavier than
helium. (All these heavier elements are often referred
to as “metals” in the astrophysical jargon.)

Only hydrogen and helium were were present as
the first stars formed. As successive generations of
stars evolved, nuclear reactions produced heavy ele-
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ments, some of which were returned to the interstellar
gas in supernova explosions or stellar winds. These
heavy elements were then incorporated into the follow-
ing generation of stars, gradually increasing the metal
abundance in the interstellar medium.

Some of the stars formed were of low mass, and
had life-times long enough that they are still present.
Their chemical composition will reflect the abundances
in the interstellar medium at the time they were formed.
Studying the chemical abundances of stars of different
ages therefore gives information on the star forma-
tion history of the Milky Way, both on the rate at
which stars have formed at a given epoch and on the
masses and other characteristics of those stars when
they formed.

One commonly used indicator of the metal abun-
dance in stars is the mass of iron relative to hydrogen,
in logarithmic units and measured relative to the solar
values, [Fe/H]. Fig. 17.23 shows the value of [FE/H] for
different types of objects of various ages. The general
picture is that the metal abundance rose rapidly during
the first billion years and has afterwards grown only
slowly. The lowest values of [Fe/H] discovered in old
halo stars are about −5. Many models have been de-
veloped describing the chemical evolution of the Milky

Fig. 17.23. The age–
metallicity relation of the
Milky Way for different
components. TDO: thin
disc open clusters; TDG:
thick disc globulars; B:
bulge; YHG: young halo
globulars; OHG: old halo
globulars. The shaded ar-
eas correspond to thin disc
field stars, thick disc field
stars, and halo field stars,
in order of increasing age.
(K. Freeman, J. Bland-
Hawthorn 2002, ARAA 40,
487, Fig. 2)

Way and other galaxies, incorporating prescriptions for
star formation, and infall of gas from the outside. In
particular the rapid early rise of the metal abundance
is difficult to explain in the simplest models. This dif-
ficulty, the scarcity of old metal-poor disc stars, has
become known as the “G dwarf problem”, since the
oldest stars still on the main series are of spectral class
G. The most direct way that the G dwarf problem can
be avoided is to suppose that a large portion of the inter-
stellar gas was accreted after the formation of the oldest
stars.

Formation of the Milky Way. Galaxies are thought
to be formed when gas clouds of higher than average
density in the Universe collapse under the force of their
own gravity. As the gas is compressed stars are born in
it. After the end of the collapse the cloud settles into a
quasi-stationary state. Evolution continues at a slower
pace. Evolving stars return chemically enriched gas to
interstellar space, where it is mixed with remaining,
unprocessed gas and star formation continues.

There are two competing pictures of how galaxy for-
mation proceeds. In the monolithic collapse model it
is assumed that large galaxies form coherently in the
collapse of a massive cloud containing the bulk of the
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material constituting the galaxy. In the hierarchical pic-
ture most of the stars form in much smaller clouds,
which later agglomerate together to form the galaxies
we now observe. The evidence for these pictures in other
galaxies will be considered in the next chapter.

The case of the Milky Way already shows that the
contrast of the monolithic and the hierarchical picture
is oversimplified. Some aspects of galactic structure fit
more naturally into a monolithic theory. For example,
the rapid collapse of the halo, followed by a more grad-
ual build-up of the disc fits with this picture. The pattern
of chemical abundances are also homogeneous in a way
that is more compatible with a pattern of star formation
that was uniform throughout galactic history.

Other observations are indicative of a hierarchical
formation history. For example, stellar abundance pat-
terns in the thick disc differ from those in the old thin
disc. The most natural way of explaining this is that
the thick disc formed by the accretion of one or more
small satellite galaxies with different histories of star
formation. Another sign of the importance of the infall
of satellite galaxies is the existence of systems such as
the Sagittarius dwarf galaxy, which appears to be in the
course of being disrupted by the Milky Way.

17.6 Examples

Example 17.1 Show that if the stars are uniformly dis-
tributed in space and there is no interstellar extinction,
the number of stars brighter than apparent magnitude m
is

N0(m)= N0(0)×100.6 m .

Let us suppose first that all stars have the same ab-
solute magnitude M. The distance in parsecs of those
stars having the apparent magnitude m is

r = 10×100.2(m−M ) .

In order to appear brighter than m, a star has to be
within a sphere of radius r. Because the stellar density
is constant, the number of such stars is proportional to
the volume:

N0(m)∝ r3 ∝ 100.6 m .

The result does not depend on the absolute magni-
tudes of the stars, so that the same result still applies
when the magnitudes are not equal, as long as the lumi-
nosity function does not depend on distance. Thus the
equation is generally valid under the stated conditions.

Example 17.2 The Estimation of Distances by Means
of Oort’s Formulas

An object in the galactic plane at longitude l = 45◦ has
the radial velocity of 30 km s−1 with respect to the LSR.
What is its distance?

According to (17.10),

vr = Ar sin 2l .

Thus

r = vr

A sin 2l
= 30 km s−1

15 km s−1 kpc−1 = 2 kpc .

In practice, the peculiar velocities are so large that
this method cannot be used for distance determination.
Oort’s formulas are mostly suitable only for statistical
studies.

Example 17.3 Discussion of the Gravitational Field
of a Uniform Disc

It can be shown that the gravitational field of a homoge-
neous infinite thin disc is constant and directed towards
the plane of the disc. If the mass per unit area of the disc
is σ , the gravitational field is

g = 2πGσ .

A test particle located outside the plane will therefore
get a constant acceleration towards the plane. Taking
a numerical example, assume a mass of 1011 M� dis-
tributed uniformly on a circular disc 20 kpc in diameter.
The mass per unit area will be a

σ = 1011 ×2×1030 kg

π(104 ×3.086×1016 m)2

= 0.67 kg m−2 .
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The corresponding gravitational field is

g = 2.8×10−10 m s−2 .

Let a star be located at d = 1 kpc above the plane, ini-
tially at rest (not very near the edge of the disk, in order
to keep our approximation valid). The disc will pull it
towards the plane, and when the star crosses the plane,
it has acquired a velocity given by

v=√
2gd = 130 km s−1 .

The time required to reach the plane is

t = v/g = 15×106 a .

17.7 Exercises

Exercise 17.1 Assume that the Sun and a star move
around the Galaxy at the same speed in the same circular
orbit in the galactic plane. Show that the proper motion
of the star is independent of its distance. How big is this
proper motion?

Exercise 17.2 a) A cepheid has a radial velocity of
80 km s−1, and its galactic longitude is 145◦. What is
the distance of the cepheid?

b) The period of the cepheid is 3.16 d, and the
apparent visual magnitude is 12.3. What is the dis-
tance derived from this information? Are the distances
consistent?

Exercise 17.3 a) How many of the nearest stars
(Table C.15) are also among the brightest stars
(Table C.16)? Explain.

b) If the stellar density were constant, how many stars
would there be within the distance of Canopus?

Exercise 17.4 a) Assume that the Galaxy is a homo-
geneous disk and the Sun lies in the central plane of the
disk. The absolute magnitude of a star is M, galactic
latitude b, and distance from the central plane z. What
is the apparent magnitude of the star, if the extinction
inside the Galaxy is a mag kpc−1?

b) Assume that the thickness of the galactic disk is
200 pc. Find the apparent magnitude of a star with M =
0.0, b = 30◦, distance r = 1 kpc, and a = 1 mag kpc−1.
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18. Galaxies

The galaxies are the fundamental building blocks of the
Universe. Some of them are very simple in structure,

containing only normal stars and showing no particular
individual features. There are also galaxies that are almost
entirely made of neutral gas. On the other hand, others
are complex systems, built up from many separate com-
ponents − stars, neutral and ionized gas, dust, molecular
clouds, magnetic fields, cosmic rays . . . . The galaxies may
form small groups or large clusters in space. At the cen-
tre of many galaxies, there is a compact nucleus that may
sometimes be so bright that it overwhelms all the normal
radiation of the galaxy.

The luminosity of the brightest normal galaxies may
correspond to 10

12 solar luminosities, but most of them
are much fainter − the smallest ones that have been
discovered are about 10

5 L�. Since galaxies do not have
a sharp outer edge, to some extent their masses and

radii depend on how these quantities are defined. If
only the bright central parts are included, a giant galaxy
may typically have a mass of about 10

13 M�, and a ra-
dius of 30 kpc, and a dwarf, correspondingly, 10

7 M�, and
0.5 kpc. In addition, it seems that the outer parts of most
galaxies contain large quantities of non-luminous mat-
ter that might increase galaxy masses by an order of
magnitude.

The density of matter may be very different in different
galaxies and in different parts of the same galaxy. Thus
the evolution of a galaxy will be the result of processes
occurring on vastly different time and energy scales, and
no generally accepted comprehensive picture of it exists
as yet. In the following, the most important observed
properties of galaxies will be presented. Many of them
still await an explanation in current theories of galaxy
evolution.

18.1 The Classification of Galaxies

A useful first step towards an understanding of galaxies
is a classification based on their various forms. Although
such a morphological classification must always be to
some extent subjective, it provides a framework within
which the quantitative properties of galaxies can be
discussed in a systematic fashion. However, it should
always be remembered that the picture thus obtained
will be limited to those galaxies that are large and bright
enough to be easily visible in the sky. An idea of the
consequent limitations can be obtained from Fig. 18.1,
showing the radii and magnitudes of normal galaxies.
One sees that only within a narrow region of this dia-
gram can galaxies be easily found. If a galaxy has too
large a radius for its magnitude (small surface bright-
ness), it will disappear in the background light from the

Fig. 18.1. Magnitudes and diameters of observable extragalac-
tic objects. Objects to the upper left look like stars. The quasars
in this region have been discovered on the basis of their spec-
tra. Objects to the lower right have a surface brightness much
smaller than that of the night sky. In recent years large num-
bers of low surface brightness galaxies have been discovered
in this region. (Arp, H. (1965): Astrophys. J. 142, 402)
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night sky. On the other hand, if its radius is too small,
it looks like a star and is not noticed on a photographic
plate. In the following, we shall mainly be concerned
with bright galaxies that fit within these limits.

If a classification is to be useful, it should at least
roughly correspond to important physical properties of
the galaxies. Most classifications accord in their main
features with the one put forward by Edwin Hubble in
1926. Hubble’s own version of the Hubble sequence is
shown in Fig. 18.2. The various types of galaxies are
ordered in a sequence from early to late types. There
are three main types: elliptical, lenticular, and spiral
galaxies. The spirals are divided into two sequences,
normal and barred spirals. In addition, Hubble included
a class of irregular galaxies.

The elliptical galaxies appear in the sky as elliptical
concentrations of stars, in which the density falls off in
a regular fashion as one goes outwards. Usually there
are no signs of interstellar matter (dark bands of dust,
bright young stars). The ellipticals differ from each other
only in shape and on this basis they are classified as E0,
E1, . . . , E7. If the major and minor axes of an elliptical
galaxy are a and b, its type is defined to be En, where

n = 10

(
1− b

a

)
. (18.1)

An E0 galaxy thus looks circular in the sky. The apparent
shape of an E galaxy depends on the direction from
which it is seen. In reality an E0 galaxy may therefore
be truly spherical or it may be a circular disc viewed
directly from above.

A later addition to the Hubble sequence is a class of
giant elliptical galaxies denoted cD. These are gener-

Fig. 18.2. The Hubble se-
quence in Hubble’s 1936
version. At this stage the
existence of type S0 was
still doubtful. Photographs
of the Hubble types are
shown in Figs. 18.6 and
18.15 (E); 18.3 and 18.4
(S0 and S); 18.12 (S and
Irr II); 18.5 (Irr I and dE).
(Hubble, E.P. (1936): The
Realm of the Nebulae
(Yale University Press, New
Haven))

ally found in the middle of clusters of galaxies. They
consist of a central part looking like a normal elliptical
surrounded by an extended fainter halo of stars.

In the Hubble sequence the lenticulars or S0 galaxies
are placed between the elliptical and the spiral types.
Like the ellipticals they contain only little interstellar
matter and show no signs of spiral structure. However,
in addition to the usual elliptical stellar component, they
also contain a flat disc made up of stars. In this respect
they are like spiral galaxies (Figs. 18.3, 18.4).

The characteristic feature of spiral galaxies is a more
or less well-defined spiral pattern in the disc. Spiral
galaxies consist of a central bulge, which is structurally
similar to an E galaxy, and of a stellar disc, like in an
S0 galaxy. In addition to these, there is a thin disc of gas
and other interstellar matter, where young stars are being
born, forming the spiral pattern. There are two sequences
of spirals, normal Sa–Sb–Sc, and barred SBa–SBb–SBc
spirals. In the barred spirals the spiral pattern ends at
a central bar, whereas in the normal spirals the spiral pat-
tern may end at an inner ring or continue all the way to
the centre. The position of a galaxy within the spiral se-
quence is determined on the basis of three criteria (which
are not always in agreement): later types have a smaller
central bulge, more narrow spiral arms and a more open
spiral pattern. The Milky Way Galaxy is thought to be
of type SABbc (intermediate between Sb and Sc, and
between normal and barred spirals).

The classical Hubble sequence is essentially based
on bright galaxies; faint galaxies have been less easy to
fit into it (Fig. 18.5). For example, the irregular galaxies
of the original Hubble sequence can be divided into the
classes Irr I and Irr II. The Irr I galaxies form a continua-
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Fig. 18.3. The classification of normal spiral and S0 galaxies. (Mt. Wilson Observatory)
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Fig. 18.4. Different types of SB0 and SB galaxies. The type (r) or (s) depends on whether the galaxy has a central ring or not.
(Mt. Wilson Observatory)
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Fig. 18.5. Above: The Small
Magellanic Cloud (Hub-
ble type Irr I), a dwarf
companion of the Milky
Way. (Royal Observatory,
Edinburgh). Below: The
Sculptor Galaxy, a dE dwarf
spheroidal. (ESO)
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Fig. 18.6. M32 (type E2),
a small elliptical companion
of the Andromeda Galaxy.
(NOAO/Kitt Peak National
Observatory)

tion of the Hubble sequence towards later types beyond
the Sc galaxies. They are rich in gas and contain many
young stars. Type Irr II are dusty, somewhat irregular
small ellipticals. Other types of dwarf galaxies are of-
ten introduced. One example is the dwarf spheroidal
type dE, similar to the ellipticals, but with a much less
centrally concentrated star distribution. Another is the
blue compact galaxies (also called extragalactic H II re-
gions), in which essentially all the light comes from
a small region of bright, newly formed stars.

18.2 Luminosities and Masses

Distances. In order to determine the absolute lumi-
nosities and linear dimensions of galaxies one needs
to know their distances. Distances are also needed in
order to estimate the masses of galaxies, because these
estimates depend on the absolute linear size. Distances
within the Local Group can be measured by the same
methods as inside the Milky Way, most importantly by
means of variable stars. On the very large scale (beyond
50 Mpc), the distances can be deduced on the basis of

the expansion of the Universe (see Sect. 19.1). In or-
der to connect these two regions one needs methods
of distance determination based on the properties of
individual galaxies.

To some extent local distances can be determined us-
ing structural components of galaxies, such as the sizes
of H II regions or the magnitudes of globular clusters.
However, to measure distances of tens of megaparsecs,
one needs a distance-independent method to determine
the absolute luminosities of entire galaxies. Several such
methods have been proposed. For example, a luminosity
classification has been introduced for late spiral types
by Sidney van den Bergh. This is based on a correlation
between the luminosity of a galaxy and the prominence
of its spiral pattern.

Other distance indicators are obtained if there is some
intrinsic property of the galaxy, which is correlated with
its total luminosity, and which can be measured indepen-
dently of the distance. Such properties are the colour, the
surface brightness and the internal velocities in galax-
ies. All of these have been used to measure distances
to both spiral and elliptical galaxies. For example, the
absolute luminosity of a galaxy should depend on its
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Fig. 18.7. Compound luminosity function of thirteen clusters
of galaxies. The open symbols have been obtained by omitting
the cD galaxies. The distribution is then well described by
(18.2). The cD galaxies (filled symbols) cause a deviation at
the bright end. (Schechter, P. (1976): Astrophys. J. 203, 297)

mass. The mass, in turn, will be reflected in the veloc-
ities of stars and gas in the galaxy. Accordingly there
is a relationship between the absolute luminosity and
the velocity dispersion (in ellipticals) and the rotational
velocity (in spirals). Since rotational velocities can be
measured very accurately from the width of the hy-
drogen 21-cm line, the latter relationship (known as
the Tully–Fisher relation) is perhaps the best distance
indicator currently available.

The luminosity of the brightest galaxies in clusters
has been found to be reasonably constant. This fact
can be used to measure even larger distances, providing
a method which is important in cosmology.

Luminosities. The definition of the total luminosity of
a galaxy is to some extent arbitrary, since galaxies do
not have a sharp outer edge. The usual convention is to

measure the luminosity of a galaxy out to a given value
of the surface brightness, e. g. to 26.5 mag/sq.arcsec.
For a given Hubble type, the total luminosity L may
vary widely.

As in the case of stars, the distribution of galaxy lu-
minosities is described by the luminosity functionΦ(L).
This is defined so that the space density of galaxies with
luminosities between L and L +dL is Φ(L) dL. It can
be determined from the observed magnitudes of galax-
ies, once their distances have been estimated in some
way. In practice, one assumes some suitable functional
form for Φ(L), which is then fitted to the observations.
One common form is Schechter’s luminosity function,

Φ(L) dL =Φ∗
(

L

L∗

)α
e−L/L∗

d

(
L

L∗

)
. (18.2)

The values of the parametersΦ∗, L∗, α are observation-
ally determined for different types of objects; in general,
they will be functions of position.

The shape of the luminosity function is described
by the parameters α and L∗. The relative number
of faint galaxies is described by α. Since its ob-
served value is about −1.1, the density of galaxies
grows monotonically as one goes towards fainter lu-
minosities. The luminosity function falls off steeply
above the luminosity L∗, which therefore represents
a characteristic luminosity of bright galaxies. The
observed L∗ corresponds to an absolute magnitude
M∗ = −21.0 mag. The corresponding magnitude for
the Milky Way Galaxy is probably −20.2 mag. The
cD giant galaxies do not obey this brightness distri-
bution; their magnitudes may be −24 mag and even
brighter.

The parameter Φ∗ is proportional to the space den-
sity of galaxies and is therefore a strong function of
position. Since the total number density of galaxies
predicted by relation (18.2) is infinite, we define n∗ =
density of galaxies with luminosity> L∗. The observed
average value of n∗ over a large volume of space is
n∗ = 3.5×10−3 Mpc−3. The mean separation between
galaxies corresponding to this density is 4 Mpc. Since
most galaxies are fainter than L∗, and since, in addition,
they often belong to groups, we see that the distances
between normal galaxies are generally not much larger
than their diameters.
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Masses. The distribution of mass in galaxies is a cru-
cial quantity, both for cosmology and for theories of
the origin and evolution of galaxies. Observationally
it is determined from the velocities of the stars and
interstellar gas. Total masses of galaxies can also be
derived from their motions in clusters of galaxies. The
results are usually given in terms of the correspond-
ing mass-luminosity ratio M/L, using the solar mass
and luminosity as units. The value measured in the
solar neighbourhood of the Milky Way is M/L = 3.
If M/L were constant, the mass distribution could be
determined from the observed luminosity distribution
by multiplying with M/L.

The masses of eliptical galaxies may be obtained
from the stellar velocity dispersion given by the broad-
ening of spectral lines. The method is based on the virial
theorem (see Sect. 6.10), which says that in a system
in equilibrium, the kinetic energy T and the potential
energy U are related according to the equation

2T +U = 0 . (18.3)

Since ellipticals rotate slowly, the kinetic energy of the
stars may be written

T = Mv2/2 , (18.4)

where M is the total mass of the galaxy and v the velocity
width of the spectral lines. The potential energy is

U = −G M2/2R , (18.5)

Fig. 18.8. Velocity of rotation V(R) [km s−1] and velocity dis-
persionσ(R) [km s−1] as functions of radius [kpc] for types E2

and E5. The latter galaxy is rotating, the former is not. (Davies,
R. L. (1981): Mon. Not. R. Astron. Soc. 194, 879)

where R is a suitable average radius of the galaxy that
can be estimated or calculated from the light distri-
bution. Introducing (18.4) and (18.5) into (18.3) we
obtain:

M = 2v2 R/G . (18.6)

From this formula the mass of an elliptical galaxy can be
calculated when v2 and R are known. Some observations
of velocities in elliptical galaxies are given in Fig. 18.8.
These will be further discussed in Sect. 18.4. The value
of M/L derived from such observations is about 10
within a radius of 10 kpc. The mass of a bright elliptical
might thus be up to 1013 M�.

The masses of spiral galaxies are obtained from their
rotation curve v(R), which gives the variation of their
rotational velocity with radius. Assuming that most of
the mass is in the almost spherical bulge, the mass within
radius R, M(R), can be estimated from Kepler’s third
law:

M(R)= Rv(R)2/G . (18.7)

Some typical rotation curves are shown in Fig. 18.9. In
the outer parts of many spirals, v(R) does not depend
on R. This means that M(R) is directly proportional to
the radius – the further out one goes, the larger the in-
terior mass is. Since the outer parts of spirals are very
faint, at large radii the value of M/L is directly propor-
tional to the radius. For the disc, one finds that M/L = 8
for early and M/L = 4 for late spiral types. The largest
measured total mass is 2×1012 M�.
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Fig. 18.9. Rotation curves
for seven spiral galaxies.
(Rubin, V.C., Ford, W.K.,
Thonnard, N. (1978): As-
trophys. J. (Lett.) 225,
L107)

In order to measure the mass at even larger radii
where no emission can be detected, motions in systems
of galaxies have to be used. One possibility is to use
pairs of galaxies. In principle, the method is the same
as for binary stars. However, because the orbital period
of a binary galaxy is about 109 years, only statistical
information can be obtained in this way. The results are
still uncertain, but seem to indicate values of M/L =
20–30 at pair separations of about 50 kpc.

A fourth method to determine galaxy masses is to
apply the virial theorem to clusters of galaxies, assum-
ing that these are in equilibrium. The kinetic energy T
in (18.4) can then be calculated from the observed red-
shifts and the potential energy U , from the separations
between cluster galaxies. If it is assumed that the masses
of galaxies are proportional to their luminosities, it is
found that M/L is about 200 within 1 Mpc of the cluster
centre. However, there is a large variation from cluster
to cluster.

Present results suggest that as one samples larger
volumes of space, one obtains larger values for the mass-
luminosity ratio. Thus a large fraction of the total mass
of galaxies must be in an invisible and unknown form,
mostly found in the outer parts. This is known as the
missing mass problem, and is one of the central unsolved
questions of extragalactic astronomy.

18.3 Galactic Structures

Ellipticals and Bulges. In all galaxies the oldest stars
have a more or less round distribution. In the Milky Way
this component is represented by the population II stars.
Its inner parts are called the bulge, and its outer parts
are often referred to as the halo. There does not appear
to be any physically significant difference between the
bulge and the halo. The population of old stars can
be best studied in ellipticals, which only contain this
component. The bulges of spiral and S0 galaxies are
very similar to ellipticals of the same size.

The surface brightness distribution in elliptical galax-
ies essentially depends only on the distance from the
centre and the orientation of the major and minor axis.
If r is the radius along the major axis, the surface
brightness I(r) is well described by de Vaucouleurs’
law:

log
I(r)

Ie
= −3.33

[(
r

re

)1/4

−1

]
. (18.8)

The constants in (18.8) have been chosen so that half
of the total light of the galaxy is radiated from within
the radius re and the surface brightness at that radius
is Ie. The parameters re and Ie are determined by fitting
(18.8) to observed brightness profiles. Typical values for
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elliptical, normal spiral and S0 galaxies are in the ranges
re = 1–10 kpc and Ie corresponds to 20–23 magnitudes
per square arc second.

Although de Vaucouleurs’ law is a purely empirical
relation, it still gives a remarkably good representation
of the observed light distribution. However, in the outer
regions of elliptical galaxies, departures may often oc-
cur: the surface brightness of dwarf spheroidals often
falls off more rapidly than (18.8), perhaps because the
outer parts of these galaxies have been torn off in tidal
encounters with other galaxies. In the giant galaxies of
type cD, the surface brightness falls off more slowly
(see Fig. 18.10). It is thought that this is connected with
their central position in clusters of galaxies.

Although the isophotes in elliptical galaxies are el-
lipses to a good approximation, their ellipticities and
the orientation of their major axes may vary as a func-
tion of radius. Different galaxies differ widely in this
respect, indicating that the structure of ellipticals is
not as simple as it might appear. In particular, the fact
that the direction of the major axis sometimes changes
within a galaxy suggests that some ellipticals may not
be axially symmetric in shape.

From the distribution of surface brightness, the three-
dimensional structure of a galaxy may be inferred as
explained in *Three-Dimensional Shape of Galaxies.

Fig. 18.10. The distribu-
tion of surface brightness
in E and cD galaxies. Or-
dinate: surface magnitude,
mag/sq.arcsec; abscissa:
(radius [kpc])1/4. Equa-
tion (18.8) corresponds to
a straight line in this repre-
sentation. It fits well with
an E galaxy, but for type cD
the luminosity falls off more
slowly in the outer regions.
Comparison with Fig. 18.11
shows that the brightness
distribution in S0 galaxies
behaves in a similar fashion.
cD galaxies have often been
erroneously classified as S0.
(Thuan, T.X., Romanishin,
W. (1981): Astrophys. J.
248, 439)

The relation (18.8) gives a brightness profile which is
very strongly peaked towards the centre. The real distri-
bution of axial ratios for ellipticals can be statistically
inferred from the observed one. On the (questionable)
assumption that they are rotationally symmetric, one
obtains a broad distribution with a maximum corre-
sponding to types E3–E4. If the true shape is not
axisymmetric, it cannot even statistically be uniquely
determined from the observations.

Discs. A bright, massive stellar disc is characteristic
for S0 and spiral galaxies, which are therefore called
disc galaxies. There are indications that in some el-
lipticals there is also a faint disc hidden behind the
bright bulge. In the Milky Way the disc is formed by
population I stars.

The distribution of surface brightness in the disc is
described by the expression

I(r)= I0 e−r/r0 . (18.9)

Figure 18.11 shows how the observed radial bright-
ness distribution can be decomposed into a sum
of two components: a centrally dominant bulge
and a disc contributing significantly at larger radii.
The central surface brightness I0 typically corre-
sponds to 21–22 mag./sq.arcsec, and the radial scale
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Fig. 18.11. The distribu-
tion of surface brightness in
types S0 and Sb. Ordinate:
mag/sq.arc sec; abscissa:
radius [arc sec]. The ob-
served surface brightness
has been decomposed into
a sum of bulge and disc con-
tributions. Note the larger
disc component in type Sb.
(Boroson, T. (1981): As-
trophys. J. Suppl. 46,
177)

length r0 = 1–5 kpc. In Sc galaxies the total brightness
of the bulge is generally slightly smaller than that of
the disc, whereas in earlier Hubble types the bulge has
a larger total brightness. The thickness of the disc, mea-
sured in galaxies that are seen edge-on, may typically
be about 1.2 kpc. Sometimes the disc has a sharp outer
edge at about 4 r0.

The Interstellar Medium. Elliptical and S0 galaxies
contain very little interstellar gas. However, in some
ellipticals neutral hydrogen amounting to about 0.1%
of the total mass has been detected, and in the same
galaxies there are also often signs of recent star for-
mation. In some S0 galaxies much larger gas masses
have been observed, but the relative amount of gas is
very variable from one galaxy to another. The lack of
gas in these galaxies is rather unexpected, since during
their evolution the stars release much more gas than is
observed.

The relative amount of neutral hydrogen in spiral
galaxies is correlated with their Hubble type. Thus
Sa spirals contain about 2%, Sc spirals 10%, and Irr I
galaxies up to 30% or more.

The distribution of neutral atomic hydrogen has been
mapped in detail in nearby galaxies by means of radio
observations. In the inner parts of galaxies the gas forms
a thin disc with a fairly constant thickness of about
200 pc, sometimes with a central hole of a few kpc
diameter. The gas disc may continue far outside the
optical disc, becoming thicker and often warped from
the central disc plane.

Most of the interstellar gas in spiral galaxies is in the
form of molecular hydrogen. The hydrogen molecule
cannot be observed directly, but the distribution of car-
bon monoxide has been mapped by radio observations.
The distribution of molecular hydrogen can then be de-
rived by assuming that the ratio between the densities
of CO and H2 is everywhere the same, although this
may not always be true. It is found that the distribu-
tion obeys a similar exponential law as the young stars
and H II regions, although in some galaxies (such as
the Milky Way) there is a central density minimum.
The surface density of molecular gas may be five times
larger than that of H I, but because of its strong central
concentration its total mass is only perhaps two times
larger.

The distribution of cosmic rays and magnetic fields in
galaxies can be mapped by means of radio observations
of the synchrotron radiation from relativistic electrons.
The strength of the magnetic field deduced in this way is
typically 0.5–1 nT. The observed emission is polarized,
showing that the magnetic field is fairly well-ordered on
large scales. Since the plane of polarization is perpen-
dicular to the magnetic field, the large-scale structure of
the magnetic field can be mapped. However, the plane of
polarization is changed by Faraday rotation, and for this
reason observations at several wavelengths are needed
in order to determine the direction of the field. The
results show that the field is generally strongest in the
plane of the disc, and is directed along the spiral arms in
the plane. The field is thought to have been produced by
the combined action of rising elements of gas, perhaps
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produced by supernova explosions, and the differential
rotation, in principle in the same way as the production
of solar magnetic fields was explained in Chapter 12.

* Three-Dimensional Shape of Galaxies

Equations (18.8) and (18.9) describe the distribution
of galactic light projected on the plane of the sky.
The actual three-dimensional luminosity distribution in
a galaxy is obtained by inverting the projection. This is
easiest for spherical galaxies.

Let us suppose that a spherical galaxy has the pro-
jected luminosity distribution I(r) (e. g. as in (18.8)).
With coordinates chosen according to the figure, I(r) is
given in terms of the three-dimensional luminosity
distribution ρ(R) by

I(r)=
∞∫

−∞
ρ(R) dz .

Since z2 = R2 − r2, a change of the variable of
integration yields

I(r)= 2

∞∫
r

ρ(R)R dR√
R2 −r2

.

This is known as an Abel integral equation for ρ(R),
and has the solution

ρ(R)= − 1

πR

d

dR

∞∫
R

I(r)r dr√
r2 − R2

= − 1

π

∞∫
R

(d I/dr) dr√
r2 − R2

.

Introducing the observed I(r) into this expression, one
obtains the actual luminosity distribution ρ(R). In the
figure the solid curve shows the three-dimensional lu-
minosity distribution obtained from the Vancouleurs’
law (the dashed line).

If the galaxy is not spherical, its three-dimensional
shape can only be determined if its inclination with
respect to the line of sight is known. Since galactic discs
are thin and of constant thickness, the inclination i of
a disc galaxy is obtained directly from the axis ratio of
its projected image: sin i = b/a.

When the inclination is known, the real axis ratio
of the bulge q0 can be determined from the projected
value q. For a rotationally symmetric bulge the relation
between q and q0 is

cos2 i = 1−q2

1−q2
0

.

The flattenings of disc galaxy bulges obtained from this
relation lie in the range q0 = 0.3–0.5. Since the incli-
nations of ellipticals are generally unknown, only the
statistical distribution of q can be determined from that
of q0.
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18.4 Dynamics of Galaxies

We have seen how the masses of galaxies can be derived
from observed velocities of stars and gas. The same ob-
servations can be used to study the internal distribution
of mass in more detail.

Slowly Rotating Systems. The dynamics of elliptical
galaxies and disc galaxy bulges are studied by means
of the Doppler shifts and broadenings of stellar absorp-
tion lines. Since a given absorption line is the sum of
contributions from many individual stars, its Doppler
shift gives their mean velocity, while its broadening is
increased by an amount depending on the dispersion of
stellar velocities around the mean. By observing how
the wavelengths and widths of spectral lines behave as
functions of the radius, one can get some insight into
the distribution of mass in the galaxy.

Examples of the observed radial dependence of the
rotational velocity and velocity dispersion derived for
some ellipticals were given in Fig. 18.8. The observed
rotational velocities are often small (< 100 km s−1),
while the velocity dispersion may typically be about
200 km s−1. If elliptical galaxies were in fact ellip-
soids of revolution, there should be a statistical relation
(when projection effects have been taken into account)
between flatness, rotational velocity and velocity disper-
sion. Such a relationship has been observed for fainter
ellipticals and for disc galaxy bulges. However, some
of the brightest ellipticals rotate very slowly. Therefore
their flattening cannot be due to rotation.

The radial dependence of the velocity dispersion
gives information on the distribution of mass within the
galaxy. Since it also depends on how the shapes of stel-
lar orbits in the galaxy are distributed, its interpretation
requires detailed dynamical models.

Rotation Curves. In spiral galaxies the distribution of
mass can be studied directly using the observed ro-
tational velocities of the interstellar gas. This can be
observed either at optical wavelengths from the emis-
sion lines of ionised gas in H II regions or at radio
wavelengths from the hydrogen 21 cm line. Typical
galactic rotation curves were shown in Fig. 18.9.

The qualitative behaviour of the rotation curve in
all spiral galaxies is similar to the rotation curve of
the Milky Way: there is a central portion, where the

rotational velocity is directly proportional to the radius,
corresponding to solid body rotation. At a few kpc radius
the curve turns over and becomes flat, i. e. the rotational
velocity does not depend on the radius. In early Hubble
types, the rotation curve rises more steeply near the
centre and reaches larger velocities in the flat region
(Sa about 300 km s−1, Sc about 200 km s−1). A higher
rotational velocity indicates a larger mass according
to (18.7), and thus Sa types must have a larger mass
density near the centre. This is not unexpected, since
a more massive bulge is one of the defining properties
of early type spirals.

A decrease of the rotational velocity at large radii
would be an indication that most of the mass is in-
side that radius. In some galaxies such a decrease has
been detected, in others the rotational velocity remains
constant as far out as the observations can reach.

Spiral Structure. Spiral galaxies are relatively bright
objects. Some have a well-defined, large-scale two-
armed spiral pattern, whereas in others the spiral
structure is made up of a large number of short fila-
mentary arms. From galaxies where the pattern is seen
in front of the central bulge, it has been deduced that the
sense of winding of the spiral is trailing with respect to
the rotation of the galaxy.

The spiral structure is most clearly seen in the in-
terstellar dust, H II regions, and the OB associations
formed by young stars. The dust often forms thin lanes
along the inner edge of the spiral arms, with star forming
regions on their outside. Enhanced synchrotron radio
emission associated with spiral arms has also been
detected.

The spiral pattern is generally thought to be a wave in
the density of the stellar disc, as discussed in Sect. 17.4.
As the interstellar gas streams through the density wave
a shock, marked by the dust lanes, is formed as the
interstellar gas is compressed, leading to the collapse
of molecular clouds and the formation of stars. The
density wave theory predicts characteristic streaming
motions within the arm, which have been detected in
some galaxies by observations of the H I 21 cm line.

It is not known how the spiral wave was produced. In
multiarmed galaxies the spiral arms may be short-lived,
constantly forming and disappearing, but extensive, reg-
ular, two-armed patterns have to be more long-lived. In
barred spirals the bar can drive a spiral wave in the
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Fig. 18.12. Above: A spi-
ral galaxy from above: M51
(type Sc). The interacting
companion is NGC 5195
(type Irr II). (Lick Obser-
vatory). Below: A spiral
galaxy from the side:
the Sb spiral NGC 4565.
(NOAO/Kitt Peak National
Observatory)
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gas. Some normal spirals may have been produced by
the tidal force from another galaxy passing nearby. Fi-
nally, in some galaxies a two-armed spiral may have
been spontaneously generated by an instability of the
disc.

18.5 Stellar Ages and Element
Abundances in Galaxies

From the Milky Way we know that stars of populations I
and II are different not only in respect to their spatial
distribution, but also in respect to their ages and heavy
element abundances. This fact gives important evidence
about the formation of the Milky Way, and it is therefore
of interest if a similar connection can be found in other
galaxies.

The indicators of composition most easily measured
are the variations of colour indices inside galaxies and
between different galaxies. Two regularities have been
discovered in these variations: First, according to the
colour–luminosity relation for elliptical and S0 galaxies,
brighter galaxies are redder. Secondly, there is a colour–
aperture effect, so that the central parts of galaxies are
redder. For spirals this relationship is due to the presence
of young, massive stars in the disc, but it has also been
observed for elliptical and S0 galaxies.

Galactic spectra are composed of the spectra of all
their stars added together. Thus the colours depend both
on the ages of the stars (young stars are bluer) and on
the heavy element abundance Z (stars with larger Z are
redder). The interpretation of the observational results
thus has to be based on detailed modelling of the stellar
composition of galaxies or population synthesis.

Stars of different spectral classes contribute different
characteristic absorption features to the galaxy spec-
trum. By observing the strength of various spectral
features, one can find out about the masses, ages and
chemical composition of the stars that make up the
galaxy. For this purpose, a large number of character-
istic properties of the spectrum, strengths of absorption
lines and broad-band colours are measured. One then
attempts to reproduce these data, using a represen-
tative collection of stellar spectra. If no satisfactory
solution can be found, more stars have to be added
to the model. The final result is a population model,
giving the stellar composition of the galaxy. Combin-

ing this with theoretical stellar evolution calculations,
the evolution of the light of the galaxy can also be
computed.

Population synthesis of E galaxies show that practi-
cally all their stars were formed simultaneously about
15×109 years ago. Most of their light comes from red
giants, whereas most of their mass resides in lower main
sequence stars of less than one solar mass. Since all
stars have roughly the same age, the colours of ellip-
tical galaxies are directly related to their metallicities.
Thus the colour–luminosity relation indicates that Z in
giant ellipticals may be double that in the solar neigh-
bourhood, while it may be smaller by a factor 100 in
dwarfs. Similarly, the radial dependence of the colours
can be explained if the value of Z at the centre is an
order of magnitude larger than it is at larger radii.

The stellar composition of disc galaxy bulges is
generally similar to that of ellipticals. The element abun-
dances in the gas in spirals can be studied by means of
the emission lines from H II regions ionised by newly
formed stars. In this case too, the metallicity increases
towards the centre, but the size of the variation varies in
different galaxies, and is not yet well understood.

18.6 Systems of Galaxies

The galaxies are not smoothly distributed in space;
rather, they form systems of all sizes: galaxy pairs,
small groups, large clusters and superclusters formed
from several groups and clusters. The larger a given
system, the less its density exceeds the mean density of
the Universe. On the average, the density is twice the
background density for systems of radius 5 Mpc and
10% above the background at radius 20 Mpc.

Interactions of Galaxies. The frequency of differ-
ent types of galaxies varies in the various kinds of
groups. This could either be because certain types of
galaxies are formed preferentially in certain environ-
ments, or because interactions between galaxies have
changed their shapes. There are many observed inter-
acting systems where strong tidal forces have produced
striking distortions, “bridges” and “tails” in the member
galaxies.

The interactions between galaxies are not always dra-
matic. For example, the Milky Way has two satellites,



382

18. Galaxies

Fig. 18.13. Above: The ir-
regular Virgo Cluster of
galaxies. Below: The reg-
ular Coma Cluster (ESO
and Karl-Schwarzschild-
Observatorium)
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the Large and Small Magellanic Clouds (see Fig. 18.5),
which are Irr I type dwarf galaxies at about 60 kpc dis-
tance. It is thought that approximately 5×108 years
ago, these passed the Milky Way at a distance of about
10–15 kpc, leaving behind the Magellanic Stream,
a 180◦ long thin stream of neutral hydrogen clouds.
Systems of this type, where a giant galaxy is sur-
rounded by a few small companions, are quite common.
Computations show that in many such cases the tidal
interactions are so strong that the companions will
merge with the parent galaxy at the next close ap-
proach. This is likely to happen to the Magellanic
Clouds.

During earlier epochs in the Universe, when the den-
sity was larger, interactions between galaxies must have
been much more common than at present. Thus it has
been proposed that a large fraction of bright galaxies
have undergone major mergers at some stage in their his-
tory. In particular, there are good reasons to believe that
the slowly rotating, non-axisymmetric giant ellipticals
may have formed by the merger of disc galaxies.

Groups. The most common type of galaxy systems
are small, irregular groups of a few tens of galaxies.
A typical example is the Local Group, which contains
two larger galaxies in addition to the Milky Way – the
Andromeda Galaxy M31, an Sb spiral of about the same
size as the Milky Way with two dwarf companions,
and the smaller Sc spiral M33. The rest of the about
35 members of the Local Group are dwarfs; about 20
are of type dE and 10 of type Irr I. The diameter of the
Local Group is about 1.2 Mpc.

Clusters. A system of galaxies may be defined to be
a cluster if it contains a larger number (at least 50) of
bright galaxies. The number of members and the size of
a cluster depend on how they are defined. One way of
doing this is to fit the observed distribution of galaxies
within a cluster with an expression of the form (18.8). In
this way a characteristic cluster radius of about 2–5 Mpc
is obtained. The number of members depends both on
the cluster radius and on the limiting magnitude. A large
cluster may contain several hundred galaxies that are
less than two magnitudes fainter than the characteristic
luminosity L∗ of (18.2).

Clusters of galaxies can be ordered in a sequence
from extended, low-density, irregular systems (some-

times called clouds of galaxies) to denser and more
regular structures (Fig. 18.13). The galaxy type com-
position also varies along this sequence in the sense
that in the loose irregular clusters, the bright galax-
ies are predominantly spirals, whereas the members of
dense clusters are almost exclusively type E and S0.
The nearest cluster of galaxies is the Virgo Cluster at
a distance of about 15 Mpc. It is a relatively irregular
cluster, where a denser central region containing early
galaxy types is surrounded by a more extended distri-
bution of mainly spiral galaxies. The nearest regular
cluster is the Coma Cluster, roughly 90 Mpc away. In
the Coma Cluster a central pair of giant ellipticals is
surrounded by a flattened (axis ratio about 2 : 1) system
of early type galaxies.

X-ray emission from hot gas has been detected in
many clusters. In irregular clusters the gas temperature
is about 107 K and the emission is generally concen-
trated near individual galaxies; in the regular ones the
gas is hotter, 108 K, and the emission tends to be more
evenly distributed over the whole cluster area. By and
large, the X-ray emission follows the distribution of the
galaxies. The amount of gas needed to explain this emis-
sion is about equal to the mass of the galaxies – thus
it cannot solve the missing mass problem. X-ray emis-
sion lines from multiply ionised iron have also been
observed. On basis of these lines, it has been concluded
that the metal abundance of intergalactic gas is roughly
equal to that of the Sun. For this reason it is most likely
that the gas has been ejected from the galaxies in the
cluster.

Superclusters. Groups and clusters of galaxies may
form even larger systems, superclusters. For example,
the Local Group belongs to the Local Supercluster,
a flattened system whose centre is the Virgo Cluster,
containing tens of smaller groups and clouds of galax-
ies. The Coma Cluster is part of another supercluster.
The diameters of superclusters are 10–20 Mpc. How-
ever, on this scale, it is no longer clear whether one
can reasonably speak of individual systems. Perhaps
it would be more accurate to think of the distribution
of galaxies as a continuous network, where the large
clusters are connected by walls and strings formed by
smaller systems. Between these there remain empty re-
gions containing very few galaxies, which can be up to
50 Mpc in diameter (Fig. 18.14).
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Fig. 18.14. The large-scale space
distribution of 245 591 galaxies.
The radial co-ordinate is the red-
shift, which can be translated into
a distance using a value for the
Hubble constant. The thickness of
the slices is about 10◦. (2dFGRS
Team, http://www2.aao.gov.au/
TDFgg/)

18.7 Active Galaxies and Quasars

So far in this chapter we have been concerned with
the properties of normal galaxies. In some galaxies,
however, the normal galaxy is overshadowed by violent
activity. This activity is produced in the nucleus, which
is then called an active galactic nucleus (AGN).

The luminosities of active galactic nuclei may be
extremely large, sometimes much larger than that of

the rest of the galaxy. It seems unlikely that a galaxy
could maintain such a large power output for long. For
this reason it is thought that active galaxies do not form
a separate class of galaxy, but rather represent a passing
stage in the evolution of normal galaxies.

Activity appears in many different forms. Some
galaxies have an exceptionally bright nucleus similar
to a large region of ionised hydrogen. These may be
young galaxies, where near the centre large numbers of
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stars are forming and evolving into supernovae (star-
burst nuclei). In other nuclei the radiation cannot have
been produced by stars, and the most plausible source
of energy in these nuclei is the gravitational energy of
a supermassive black hole (mass > 108 M�). In some
galaxies, the spectral lines are unusually broad, indi-
cating large internal velocities. These may be either
rotational velocities near a black hole or due to explo-
sive events in the nucleus. In some galaxies, jets are
seen coming out of the nucleus. Many active galaxies
radiate a nonthermal spectrum, apparently synchrotron
radiation produced by fast electrons in a magnetic
field.

The classification of active galaxies has been de-
veloped rather unsystematically, since many of them
have been discovered only recently, and have not been
completely studied. For example, the Markarian galax-
ies catalogued by Benyamin Yerishevich Markarian in
the early 1970’s are defined by strong ultraviolet emis-
sion. Many Markarian galaxies are Seyfert galaxies;
others are galaxies undergoing a burst of star formation.
The N galaxies form another class closely similar to the
Seyfert galaxies.

Two natural basic classes of active galaxies are the
Seyfert galaxies and the radio galaxies. The former
are spirals; the latter are ellipticals. Some astronomers
think that the Seyfert galaxies represent the active stage
of normal spiral galaxies and the radio galaxies that of
ellipticals.

Seyfert Galaxies. The Seyfert galaxies are named after
Carl Seyfert, who discovered them in 1943. Their most
important characteristics are a bright, pointlike central
nucleus and a spectrum showing broad emission lines.
The continuous spectrum has a nonthermal component,
which is most prominent in the ultraviolet. The emission
lines are thought to be produced in gas clouds moving
close to the nucleus with large velocities.

On the basis of the spectrum, Seyfert galaxies are
classified as type 1 or 2. In a type 1 spectrum, the al-
lowed lines are broad (corresponding to a velocity of
104 km s−1), much broader than the forbidden lines. In
type 2, all lines are similar and narrower (< 103 km s−1).
Transitions between these types and intermediate cases
have sometimes been observed. The reason for the dif-
ference is thought to be that the allowed lines are formed
in denser gas near the nucleus, and the forbidden lines in

more diffuse gas further out. In type 2 Seyfert galaxies,
the denser gas is missing or obscured.

Almost all Seyfert galaxies with known Hubble types
are spirals; the possible exceptions are of type 2. They
are strong infrared sources. Type 1 galaxies often show
strong X-ray emission.

The true Seyfert galaxies are relatively weak radio
sources. However, there are compact radio galaxies with
an optical spectrum that is essentially the same as for
Seyfert galaxies. These should probably be classified
with the Seyfert galaxies. In general, the stronger radio
emission seems to come with a type 2 spectrum.

It is estimated that about 1% of all bright spiral galax-
ies are Seyfert galaxies. The luminosities of their nuclei
are about 1036–1038 W, of the same order as all the rest
of the galaxy. Brightness variations are common.

Radio Galaxies. By definition, radio galaxies are galax-
ies that are powerful radio sources. The radio emission
of a radio galaxy is non-thermal synchrotron radia-
tion. The radio luminosity of radio galaxies is typically
1033–1038 W, and may thus be as large as the total
luminosity of a normal galaxy. The main problem in
explaining radio emission is to understand how the elec-
trons and magnetic fields are produced, and above all,
where the electrons get their energy.

The forms and sizes of the radio emitting regions
of radio galaxies have been studied ever since the
1950’s, when radio interferometers achieved the res-
olution of optical telescopes. The characteristic feature
of a strong radio galaxy is a double structure: there
are two large radio emitting regions on opposite sides
of the observed galaxy. The radio emitting regions
of some radio galaxies are as far apart as 6 Mpc, al-
most ten times the distance between the Milky Way
and Andromeda galaxies. One of the smallest double
radio sources is the galaxy M87 (Fig. 18.15), whose
two components are only a few kpc distant from each
other.

The double structure of radio galaxies appears to be
produced by ejections from the nucleus. However, the
electrons in the radio lobes cannot be coming from the
centre of the galaxy, because they would lose all their
energy during such a long transit. Therefore electrons
have to be continuously accelerated within the radio-
emitting regions. Within the radio lobes there are almost
point-like regions, hot spots. These are generally sym-
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Fig. 18.15. Above: The ac-
tive galaxy M87. In the
lower right-hand corner
a short exposure of the
core region has been in-
serted (same scale as in
the main photograph). One
sees a blue jet coming out
of the nucleus of a nor-
mal E0 galaxy. (NOAO/Kitt
Peak National Observa-
tory). Below: In the radio
map made using the VLA
the jet is observed to be
two-sided. The area shown
is much smaller than in the
upper picture. (Owen, F.N.,
Hardee, P.E., Bignell, R.C.
(1980): Astrophys. J. (Lett.)
239, L11)

metrically placed with respect to the nucleus, and are
apparently consequences of nuclear ejections.

“Tailed” radio sources also exist. Their radio emis-
sion mainly comes from one side of the galaxy, forming

a curved tail, which is often tens of times longer than
the diameter of the galaxy. The best examples are
NGC 1265 in the Perseus cluster of galaxies and 3C129,
which appears to be in an elliptical orbit around a com-
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panion galaxy. The tail is interpreted as the trail left by
the radio galaxy in intergalactic space.

Another special feature revealed by the radio maps
is the presence of jets, narrow lines of radio emission,
usually starting in the nucleus and stretching far outside
the galaxy. The best known may be the M87 jet, which
has also been observed as an optical and X-ray jet. The
optically observed jet is surrounded by a radio source.
A similar radio source is seen on the opposite side of the
nucleus, where no optical jet is seen. Our nearest radio
galaxy Centaurus A also has a jet extending from the nu-
cleus to near the edge of the galaxy. VLBI observations
of radio jets have also revealed superluminal motions:
in many compact sources the components appear to be
separating faster than the speed of light. Since such
velocities are impossible according to the theory of rel-
ativity, the observed velocities can only be apparent, and
several models have been proposed to account for them.

Quasars. The first quasar was discovered in 1963, when
Maarten Schmidt interpreted the optical emission lines
of the known radio source 3C273 as hydrogen Balmer
lines redshifted by 16%. Such large redshifts are the
most remarkable characteristics of the quasars. Prop-
erly speaking, the word quasar is an abbreviation for
quasistellar radio source, and some astronomers prefer
to use the designation QSO (quasistellar object), since
not all quasars emit radio radiation.

Optically the quasars appear almost as point sources,
although improved observational techniques have re-
vealed an increasing number of quasars located inside
more or less normal galaxies (Fig. 18.16). Although the
first quasars where discovered by radio observations,
only a small fraction of all optically identified quasars
are bright radio sources. Most radio quasars are point
sources, but some have a double structure like the radio
galaxies. Satellite X-ray pictures also show the quasars
to be pointlike.

In the visible region the quasar spectra are dominated
by spectral lines with rest wavelengths in the ultravio-
let. The first observed quasar redshifts were z = 0.16
and 0.37, and later searches have continued to turn up
ever larger redshifts. The present record is 6.3. The
light left the quasar when the Universe was less than
one-tenth of its present age. The large inferred dis-
tances of the quasars mean that their luminosities have
to be extremely large. Typical values lie in the range

of 1038–1041 W. The brightness of quasars may vary
rapidly, within a few days or less. Thus the emitting re-
gion can be no larger than a few light-days, i. e. about
100 AU.

The quasars often have both emission and absorption
lines in their spectra. The emission lines are very broad
and are probably produced in the quasar itself. Much of
the absorption spectrum consists of densely distributed
narrow lines that are thought to be hydrogen Lyman
α lines formed in gas clouds along the line of sight to
the quasar. The clouds producing this “Lyman α forest”
are young galaxies or protogalaxies, and they there-
fore provide important evidence about the formation of
galaxies.

Some astronomers have questioned the cosmolog-
ical interpretation of the redshift. Thus Halton Arp
has discovered small systems of quasars and galaxies
where some of the components have widely discrepant
redshifts. For this reason, Arp thinks that the quasar
redshifts are produced by some unknown process. This
claim is highly controversial.

Unified Models. Although the forms of galactic activ-
ity may at first sight appear diverse, they can be unified
within a fairly widely accepted schematic model. Ac-
cording to this model, most galaxies contain a compact
central nucleus, which is a supermassive black hole,
with mass 107–109 M�, surrounded by a disc or ring of
gas. The source of energy is the gravitational energy re-
leased as gas is accreted into the black hole. The disc
may also give rise to a jet, where some of the energy
is converted into perpendicular motions along the rota-
tional axis. Thus active galactic nuclei are similar to the
nucleus of the Milky Way, although the masses of both
the black hole and the gas disc may be much larger.

Deducing the mass of the central black hole is diffi-
cult and uncertain. However, using a variety of methods
involving the motions of stars and gas at the centre of
nearby galaxies black hole masses for about 30 galax-
ies have been determined. The most important result of
these studies is that there is a close relationship between
the black hole mass and the central velocity dispersion
of the galaxy. According to the virial theorem the ve-
locity dispersion is a measure of the bulge mass, and
therefore the conclusion is that there is a close relation-
ship between the mass of the bulge and the mass of the
central black hole.



388

18. Galaxies

Fig. 18.16. One of the nearest quasars, 3C 273, photographed
with two cameras aboard the Hubble Space Telescope. On
the left, the Wide Field Planetary Camera sees a bright point-
like source, with a jet blasted out from the quasar (towards 5
o’clock). On the right, a coronagraph in the Advanced Cam-
era for Surveys blocks out the brightest parts of the quasar.
Spiral arms in the host galaxy can be seen, with dark dust
lanes, as well as new details in the path of the jet. (Photos
Hubble/NASA/ESA)

A first characteristic parameter of the unified model
is obviously the total luminosity. For example, the only
essential difference between Seyfert 1 galaxies and
radio-quiet quasars is the larger luminosity of quasars.
A second basic parameter is the radio brightness, which
may be related to the strength of a jet. On the basis of
their radio luminosity one can connect Seyfert galaxies

Fig. 18.17. (a) The components of the Einstein cross are grav-
itationally lensed images of the same quasar. (ESA/NASA)
(b) The massive galaxy cluster Abell 2218 deflects light rays
passing through it and acts as a giant gravitational lens. In

this Hubble picture from January 2000, dozens of arc-shaped
images of distant galaxies can be seen. (Photo A. Fruchter,
S. Baggett, R. Hook and Z. Levay, NASA/STScI)

and radio-quiet quasars on one hand, and radio galaxies
and radio quasars on the other.

The third important parameter of unified models is
the angle from which we happen to view the nuclear
disc. For example, if the disc is seen edge-on, the actual
nucleus is obscured by the disc. This could explain the
difference between Seyfert types 1 and 2: in type 2 we do
not see the broad emission lines formed near the black
hole, but only the narrower lines from the disc. Similarly
a galaxy that looks like a double radio source when seen
edge-on, would look like a radio quasar if the disc were
seen face-on. In the latter case there is a possibility
that we may be seeing an object directly along the jet.
It will then appear as a blazar, an object with rapid
and violent variations in brightness and polarization,
and very weak or invisible emission lines. If the jet is
almost relativistic, its transverse velocity may appear
larger than the speed of light, and thus superluminal
motions can also be understood.

One prediction of the unified model is that there
should be a large number of quasars where the nucleus is
obscured by the disc as in the Seyfert 2 galaxies. In anal-
ogy with the Seyfert galaxies these objects are referred
to as type 2 AGN or quasars. Because of the obscuration
such sources would not be included in surveys at opti-
cal, UV, or soft X-ray wavelengths. In hard X-rays the
obscuration is less, and in the far infrared the absorbed
energy is re-radiated. Searches for type 2 quasars have
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been made at these wavelengths with the Chandra X-ray
satellite and with the Spitzer Space Telescope. The in-
dications from these searches are that at least 3/4 of all
supermassive black holes are heavily obscured.

Gravitational Lenses. An interesting phenomenon first
discovered in connection with quasars are gravitational
lenses. Since light rays are bent by gravitational fields,
a mass (e. g. a galaxy) placed between a distant quasar
and the observer will distort the image of the quasar.
The first example of this effect was discovered in 1979,
when it was found that two quasars, 5.7′′ apart in the
sky, had essentially identical spectra. It was concluded
that the “pair” was really a double image of a single
quasar. Since then several other gravitationally lensed
quasars have been discovered (Fig. 18.17).

Gravitational lenses have also been discovered in
clusters of galaxies. Here the gravitational field of the
cluster distorts the images of distant galaxies into arcs
around the cluster centre. In addition in 1993 microlens-
ing was observed in the Milky Way, where the brightness
of a star is momentarily increased by the lensing effect
from a mass passing in front of the star. Thus the study of
gravitational lens effects offers a new promising method
of obtaining information on the distribution of mass in
the Universe.

18.8 The Origin and Evolution
of Galaxies

Because the speed of light is finite we see distant galax-
ies at earlier stages in their life. In the next chapter
we show how the age of a galaxy with given redshift
can be calculated based on the rate of expansion of the
Universe. However, this relationship will depend on the
cosmological model, which therefore always has to be
specified when studying the evolution of galaxies.

The beginning of galaxy evolution was marked by the
formation of the first stars at a redshift around 10–20.
The ultraviolet radiation of the earliest objets reionised
the intergalactic gas, which made the Universe trans-
parent to radiation, and thus made the distant galaxies
and quasars visible in principle. The largest observed
redshifts known at present are about 6.5.

According to the currently widely accepted cosmo-
logical models most of the matter in the Universe is

in a form that emits no radiation, and is only observ-
able from its gravitational effects. In this Cold Dark
Matter (CDM) theory (see Sect. 19.7) the first systems
to collapse and start forming stars were small, with
masses like those of dwarf galaxies. Larger galaxies
were formed later as these smaller fragments collected
into larger clumps. This model, where most stars are
formed in small galaxies is usually described as the hi-
erarchical model. Before the introduction of the CDM
model, the dominant model was one where the most
massive systems are the first to start forming stars, which
is often called the monolithic model. We have already
seen in Sect. 17.5 that the formation of the Milky Way
shows aspects of both types of models.

A large part of our theoretical ideas on galaxy evo-
lution is based on numerical simulations of the collapse
of gas clouds and star formation in them. Using some
prescription for star formation one can try to compute
the evolution of the spectral energy distribution and
the chemical abundances in the resulting galaxies. The
results of the models can be compared with the obser-
vational data presented in the previous sections of this
chapter.

The density distribution of dark matter is expected
to be very irregular, containing numerous small-scale
clumps. The collapse will therefore be highly in-
homogeneous, both in the hierarchical and in the
monolithic picture, and subsequent mergers between
smaller systems should be common. There are addi-
tional complicating factors. Gas may be expelled from
the galaxy, or there may be an influx of fresh gas. In-
teractions with the surroundings may radically alter the
course of evolution – in dense systems they may lead
to the complete merging of the individual galaxies into
one giant elliptical. Much remains to be learned about
how the formation of stars is affected by the general dy-
namical state of the galaxy and of how an active nucleus
may influence the formation process.

Our observational knowledge of galaxy evolution
is advancing very rapidly. Essentially all the relation-
ships described earlier in this chapter have been studied
as functions of time. Still, a complete generally ac-
cepted description of the way the Universe reached its
present state has not yet been established. Here we
can only mention a few of the most central aspects
of the processes leading to the galaxies we observe
to-day.
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Fig. 18.18. Galaxy counts in the U, B, I, and K wavelength
bands. The counts are compared to those in a cosmological
model without evolution. The cosmological parameters cor-
respond to the currently preferred “concordance” model (see
Sect. 19.5). (H.C. Ferguson et al. 2000, ARAA 38, 667, Fig. 4)

Density and Luminosity Evolution The the most basic
way of studying the formation and evolution of galaxies
is by counting their numbers, either the number brighter
than some given magnitude limit (as was already done
by Hubble in the 1930’s, see Sect. 19.1) or else the
number density as a function of redshift. The counts
can be compared with the numbers expected if there is
no evolution, which depend on the cosmological model.
They can therefore be used either as a cosmological
test, or as a test of evolutionary models. However, the
present situation is that more reliable cosmological tests
are available, and the number counts are mainly used to
study the evolution of galaxies.

There are two ways in which the number counts
are affected by galaxy evolution. In density evolution
the actual number of galaxies is changing, whereas in
luminosity evolution only the luminosity of individual
galaxies is evolving. The simplest form of luminos-
ity evolution is called passive luminosity evolution,

and is due to the changing luminosity of stars during
normal stellar evolution. Pure luminosity evolution is
expected to be predominant in the monolithic picture.
In the hierarchical picture density evolution will be more
prominent, since in this picture smaller galaxies are to
a greater extent being destroyed to produce larger more
luminous ones.

Figure 18.18 gives an example of the results of num-
ber counts. A model without evolution cannot explain
these observed counts, and various models incorporat-
ing evolutionary effects have to be introduced. However,
a unique model cannot be determined using just the
number counts.

Distant Galaxies. A more direct approach to galaxy
formation is the direct search for the most distant ob-
jects visible. In Fig. 18.19 we show the Hubble Deep
Field (HDF), an area of the sky observed at several
wavelengths with the Hubble Space Telescope using a
very long exposure. These images show large numbers
of galaxies with redshifts about 2.5–3.5, when the Uni-
verse was about 2 Ga old. The galaxies visible in the
HDF appear to be bluer and more irregular than the

Fig. 18.19. The Hubble Deep Field South in the direction of
the Tucana constellation (NASA; a colour version of the same
picture is seen as Plate 33 in the colout supplement)
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galaxies in our present neighbourhood, suggesting that
they in the process of formation.

One striking result that the search for very distant
galaxies has revealed is that some galaxies with stel-
lar masses 1011–1012 M� had already formed around
a redshift of 1–2, and with masses 1010 M� at the
redshift 3, or even 5–6, when the Universe was only
1 Ga old. This rapid onset of star formation in massive
galaxies is against the expectations that the first stars
should be found in dwarf galaxies. Even for nearby sys-
tems there is a scarcity of dwarfs compared to the most
immediate estimates of the CDM theory. The observa-
tional evidence seems to be pointing in the direction of
downsizing: star formation is initially largely confined
to massive systems, and starts to shift to smaller sys-
tems at a redshift about 2–1. The processes invoked in
the hierarchical scheme may then take over as the most
important force driving galaxy evolution.

The unexpected discovery of old galaxies at large
redshifts has led to a classification of distant galax-
ies into a red and a blue class depending on whether
star formation is still going on. These two classes will
have different evolutionary histories, and by charting
these histories we may learn better to understand the
whole process of galactic evolution. The distant red ob-
jects have also inspired searches for their progenitors.
Some such progenitors have been identified as ultralu-
minous infrared galaxies and as submillimeter galaxies,
but general agreement about their status does not yet
exist.

Evolution of AGN The first clear indication of cos-
mic evolution was in the numbers of radio galaxies and
quasars. Already in the late 1960’s it was becoming clear
that the density of quasars was increasing dramatically
towards higher redshifts. Roughly, the number density
of quasars increases relative to the present density by
a factor 100 out to a broad maximum at redshift about
2. The observed behaviour may be due to either density
or luminosity evolution. The density of radio galaxies
also has a maximum at redshifts about 1.5–3, which is
sometimes referred to as the quasar era.

The Star Formation History of the Universe. Since
the Universe contained only neutral gas as the first stars
began to form, the most general description of how
galaxies came to be is in terms of the rate at which

Fig. 18.20. Star formation history of the Universe. The rate at
which gas is being turned into stars is fairly well-determined
up to a redshift of about 6. Estimates for even more dis-
tant epochs are still uncertain. The symbols refer to different
searches for distant galaxies. The shaded and hatched regions
indicate theoretical fits using various models for the initial
mass function of the stars. The dashed line corresponds to the
level of star formation required to reionise the Universe at that
redshift. (A.M. Hopkins 2006, astro-ph/0611283, Fig. 3)

the gas is being turned into stars. The star formation
history going back to a redshift about 6 is shown in
Fig. 18.20. The star formation rate was about an order
of magnitude larger than its current value at redshift
1–2. For even larger redshifts it seems to have remained
nearly constant or decreased slowly.

18.9 Exercises

Exercise 18.1 The galaxy NGC 772 is an Sb spiral,
similar to M31. Its angular diameter is 7′ and appar-
ent magnitude 12.0. The corresponding values of M31
are 3.0◦ and 5.0. Find the ratio of the distances of the
galaxies

a) assuming their sizes are equal,
b) assuming they are equally bright.

Exercise 18.2 The brightness of the quasar 3C279
has shown changes with the time scale of one week.
Estimate the size of the region producing the radiation.
The apparent magnitude is 18. If the distance of the
quasar is 2000 Mpc, what is its absolute magnitude and
luminosity? How much energy is produced per AU3?
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19. Cosmology

After the demise of the Aristotelian world picture, it
took hundreds of years of astronomical observations

and physical theories to reach a level at which a satis-
factory modern scientific picture of the physical universe
could be formed. The decisive steps in the development
were the clarification of the nature of the galaxies in the
1920’s and the general theory of relativity developed by

Einstein in the 1910’s. Research in cosmology tries to an-
swer questions such as: How large and how old is the
Universe? How is matter distributed? How were the ele-
ments formed? What will be the future of the Universe?
The central tenet of modern cosmology is the model of
the expanding universe. On the basis of this model, it has
been possible to approach these questions.

19.1 Cosmological Observations

The Olbers Paradox. The simplest cosmological ob-
servation may be that the sky is dark at night. This fact
was first noted by Johannes Kepler, who, in 1610, used it
as evidence for a finite universe. As the idea of an infinite
space filled with stars like the Sun became widespread in
consequence of the Copernican revolution, the question
of the dark night sky remained a problem. In the 18th
and 19th centuries Edmond Halley, Loys de Chéseaux
and Heinrich Olbers considered it in their writings. It
has become known as the Olbers paradox (Fig. 19.1).

The paradox is the following: Let us suppose the
Universe is infinite and that the stars are uniformly dis-
tributed in space. No matter in what direction one looks,

Fig. 19.1. The Olbers paradox. If the stars were uniformly
distributed in an unending, unchanging space, the sky should
be as bright as the surface of the Sun, since each line of sight
would eventually meet the surface of a star. A two-dimensional

analogy can be found in an optically thick pine forest where
the line of sight meets a trunk wherever one looks. (Photo M.
Poutanen and H. Karttunen)

sooner or later the line of sight will encounter the surface
of a star. Since the surface brightness does not depend
on distance, each point in the sky should appear to be
as bright as the surface of the Sun. This clearly is not
true. The modern explanation of the paradox is that the
stars have only existed for a finite time, so that the light
from very distant stars has not yet reached us. Rather
than proving the world to be finite in space, the Olbers
paradox has shown it to be of a finite age.

Extragalactic Space. In 1923 Edwin Hubble showed
that the Andromeda Galaxy M31 was far outside the
Milky Way, thus settling a long-standing controversy
concerning the relationship between the nebulae and
the Milky Way. The numerous galaxies seen in pho-
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tographs form an extragalactic space vastly larger than
the dimensions of the Milky Way. It is important for
cosmology that the distribution and motions of the ba-
sic components of extragalactic space, the galaxies and
clusters of galaxies, should everywhere be the same as
in our local part of the Universe. Galaxies generally oc-
cur in various systems, ranging from small groups to
clusters of galaxies and even larger superclusters. The
largest structures observed are about 100 Mpc in size
(see Sect. 18.6). They are thus significantly smaller than
the volume of space ( a few thousand Mpc in size) in
which the distribution of galaxies has been investigated.
One way of studying the large-scale homogeneity of the
galaxy distribution is to count the number of galaxies
brighter than some limiting magnitude m. If the galaxies
are uniformly distributed in space, this number should
be proportional to 100.6m (see Example 17.1). For exam-
ple, the galaxy counts made by Hubble in 1934, which
included 44,000 galaxies, were consistent with a galaxy
distribution independent of position (homogeneity) and
of direction (isotropy). Hubble found no “edge” of the
Universe, nor have later galaxy counts found one.

Similar counts have been made for extragalactic
radio sources. (Instead of magnitudes, flux densi-
ties are used. If F is the flux density, then because
m = −2.5 lg(F/F0), the number count will be propor-
tional to F−3/2.) These counts mainly involve very
distant radio galaxies and quasars (Fig. 19.3). The re-
sults seem to indicate that the radio sources were either
much brighter or much more common at earlier epochs
than at present (Sect. 18.8). This constitutes evidence in
favour of an evolving, expanding universe.

In general the simple geometric relation between
brightness and number counts will only hold for objects
that are uniformly distributed in space. Local inho-
mogeneities will cause departures from the expected
relationship. For more distant sources the geometry of
the Universe as well as cosmic evolution will change
the basic 100.6m behaviour.

Hubble’s Law (Fig. 19.4). In the late 1920’s, Hub-
ble discovered that the spectral lines of galaxies were
shifted towards the red by an amount proportional to
their distances. If the redshift is due to the Doppler ef-
fect, this means that the galaxies move away from each
other with velocities proportional to their separations,
i. e. that the Universe is expanding as a whole.

In terms of the redshift z = (λ−λ0)/λ0, Hubble’s
law can be written as

z = (H/c)r , (19.1)

where c is the speed of light, H is the Hubble constant
and r the distance of the galaxy. For small velocities
(V � c) the Doppler redshift z = V/c, and hence

V = Hr , (19.2)

which is the most commonly used form of Hubble’s law.
For a set of observed “standard candles”, i. e. galaxies

whose absolute magnitudes are close to some mean M0,
Hubble’s law corresponds to a linear relationship be-
tween the apparent magnitude m and the logarithm of
the redshift, lg z. This is because a galaxy at distance r
has an apparent magnitude m = M0 +5 lg(r/10 pc), and
hence Hubble’s law yields

m = M0 +5 lg

(
cz

H ×10 pc

)
= 5 lg z +C , (19.3)

where the constant C depends on H and M0. Suitable
standard candles are e.g. the brightest galaxies in clus-
ters and Sc galaxies of a known luminosity class. Some
other methods of distance determination for galaxies
were discussed in Sect. 18.2. Most recently, type Ia su-
pernovae (Sect. 13.3) in distant galaxies have been used
to determine distances out to the redshift z = 1, where
departures from Hubble’s law are already detectable.

If the Universe is expanding, the galaxies were once
much nearer to each other. If the rate of expansion had
been unchanging, the inverse of the Hubble constant,
T = H−1, would represent the age of the Universe. If
the expansion is gradually slowing down, the inverse
Hubble constant gives an upper limit on the age of the
Universe (Fig. 19.4). According to present estimates,
60 km s−1 Mpc−1<H<80 km s−1 Mpc−1, correspond-
ing to 11 Ga< T< 17 Ga. In fact, current indications
(discussed later in this chapter) are that the rate of ex-
pansion is accelerating at present. In that case the age
of the Universe may also be larger. However, H−1 will
still be an estimate for the age of the Universe.

Fig. 19.2. �The quasar 3C295 and its spectrum. The quasars
are among the most distant cosmological objects. (Photograph
Palomar Observatory)
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Fig. 19.3. Hubble’s law for type Ia supernovae. The solid curve
represents the “concordance” model. The other curves show
that models with a vanishing cosmological constant can be
excluded. (R.A. Knop et al. 2003, ApJ 598,102; taken from
http://supernova.lbl.gov/)

One reason for the difficulty in determining the value
of the Hubble constant is the uncertainty in extragalactic
distances. A second problem is that the measured val-
ues of the velocity V , corrected to take into account the
motion of the Sun within the Local Group, contain a sig-
nificant component due to the peculiar motions of the
galaxies. These peculiar velocities are caused by local
mass concentrations like groups and clusters of galax-
ies. It is possible that the Local Group has a significant
velocity towards the centre of the Local Supercluster
(the Virgo Cluster). Because the Virgo Cluster is of-
ten used to determine the value of H , neglecting this
peculiar velocity leads to a large error in H . The size
of the peculiar velocity is not yet well known, but it is
probably about 250 km s−1.

The most ambitious recent project for determin-
ing H used the Hubble Space Telescope in order
to measure cepheid distances to a set of nearby
galaxies. These distances were then used to calibrate
other distance indicators, such as the Tully–Fisher
relation and type Ia supernovae. The final result
was H = (72±8) km s−1 Mpc−1. The largest remain-
ing source of error in this result is the distance to

Fig. 19.4. If the expansion of the Universe is slowing down,
the inverse Hubble constant gives an upper limit of the age.
The real age depends on the variable rate of expansion

Fig. 19.5. A regular expansion according with Hubble’s law
does not mean that the Milky Way (O) is the centre of the
Universe. Observers at any other galaxy (O′) will see the
same Hubble flow (dashed lines)

the Large Magellanic Cloud, used for calibrating the
cepheid luminosity.

The form of Hubble’s law might give the impression
that the Milky Way is the centre of the expansion, in
apparent contradiction with the Copernican principle.
Figure 19.5 shows that, in fact, the same Hubble’s law
is valid at each point in a regularly expanding universe.
There is no particular centre of expansion.

The Thermal Microwave Background Radiation.
The most important cosmological discovery since Hub-
ble’s law was made in 1965. In that year Arno Penzias
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and Robert Wilson discovered that there is a universal
microwave radiation, with a spectrum corresponding to
that of blackbody radiation (see Sect. 5.6) at a temper-
ature of about 3 K (Fig. 19.6). For their discovery, they
received the Nobel prize in physics in 1979.

The existence of a thermal cosmic radiation back-
ground had been predicted in the late 1940’s by George
Gamow, who was one of the first to study the ini-
tial phases of expansion of the Universe. According
to Gamow, the Universe at that time was filled with
extremely hot radiation. As it expanded, the radiation
cooled, until at present, its temperature would be a few
kelvins. After its discovery by Penzias and Wilson,
the cosmic background radiation has been studied at
wavelengths from 50 cm to 0.5 cm. The first detailed
measurements, made from the COBE (Cosmic Back-
ground Explorer) satellite showed that it corresponds
closely to a Planck spectrum at 2.725±0.002 K. More
recently the CMB has been mapped in evene greater
detail by the WMAP satellite.

The existence of the thermal cosmic microwave
background (CMB) gives strong support to the belief
that the Universe was extremely hot in its early stages.
The background is very nearly isotropic, which sup-
ports the isotropic and homogeneous models of the
Universe. The COBE and WMAP satellites have also
detected temperature variations of a relative amplitude
6×10−6 in the background. These fluctuations are in-

Fig. 19.6. Observations of the cosmic microwave background
radiation made by the COBE satellite in 1990 are in agreement
with a blackbody law at 2.7 K

terpreted as a gravitational redshift of the background
produced by the mass concentrations that would later
give rise to the observed structures in the Universe.
They are the direct traces of initial irregularities in the
big bang, and provide important constraints for theories
of galaxy formation. Perhaps even more importantly,
the amplitude of the fluctuations on different angular
scales have provided crucial constraints on the cos-
mological model. We shall return to this question in
Sect. 19.7.

The Isotropy of Matter and Radiation. Apart from the
CMB, several other phenomena confirm the isotropy of
the Universe. The distribution of radio sources, the X-
ray background, and faint distant galaxies, as well as
Hubble’s law are all isotropic. The observed isotropy
is also evidence that the Universe is homogeneous,
since a large-scale inhomogeneity would be seen as an
anisotropy.

The Age of the Universe. Estimates of the ages of the
Earth, the Sun and of star clusters are important cos-
mological observations that do not depend on specific
cosmological models. From the decay of radioactive
isotopes, the age of the Earth is estimated to be 4600 mil-
lion years. The age of the Sun is thought to be slightly
larger than this. The ages of the oldest star clusters in
the Milky Way are 10–15 Ga.

The values thus obtained give a lower limit to the age
of the Universe. In an expanding universe, the inverse
Hubble constant gives another estimate of that age. It
is most remarkable that the directly determined ages
of cosmic objects are so close to the age given by the
Hubble constant. This is strong evidence that Hubble’s
law really is due to the expansion of the Universe. It also
shows that the oldest star clusters formed very early in
the history of the Universe.

The Relative Helium Abundance. A cosmological the-
ory should also give an acceptable account of the origin
and abundances of the elements. Even the abundance
of the elementary particles and the lack of antimat-
ter are cosmological problems that have begun to be
investigated in the context of theories of the early
Universe.

Observations show that the oldest objects contain
about 25% by mass of helium, the most abundant
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element after hydrogen. The amount of helium pro-
duced is sensitive to the temperature of the Universe,
which is related to that of the background radiation.
The computations made for the standard models of
the expanding Universe (the Friedmann models) yield
a helium abundance of exactly the right size.

19.2 The Cosmological Principle

One hopes that as ever larger volumes of the Universe
are observed, its average properties will become simple
and well defined. Figure 19.7 attempts to show this.
It shows a distribution of galaxies in the plane. As
the circle surrounding the observer O becomes larger,
the mean density inside the circle becomes practically
independent of its size. The same behaviour occurs, re-
gardless of the position of the centre of O: at close
distances, the density varies randomly (Fig. 19.8), but
in a large enough volume, the average density is con-
stant. This is an example of the cosmological principle:
apart from local irregularities, the Universe looks the
same from all positions in space.

Fig. 19.7. The cosmologi-
cal principle. In the small
circle (A) about the ob-
server (O) the distribution
of galaxies does not yet
represent the large-scale
distribution. In the larger
circle (B) the distribution
is already uniform on the
average

The cosmological principle is a far-reaching assump-
tion, which has been invoked in order to put constraints
on the large variety of possible cosmological theories.
If in addition to the cosmological principle one also
assumes that the Universe is isotropic, then the only
possible cosmic flow is a global expansion. In that case,
the local velocity difference V between two nearby
points has to be directly proportional to their separation
(V = Hr); i. e. Hubble’s law must apply.

The plane universe of Fig. 19.7 is homogeneous and
isotropic, apart from local irregularities. Isotropy at each
point implies homogeneity, but homogeneity does not
require isotropy. An example of an anisotropic, homoge-
neous universe would be a model containing a constant
magnetic field: because the field has a fixed direction,
space cannot be isotropic.

We have already seen that astronomical observations
support the homogeneity and isotropy of our observ-
able neighbourhood, the metagalaxy. On the grounds
of the cosmological principle, these properties may be
extended to the whole of the Universe.

The cosmological principle is closely related to
the Copernican principle that our position in the
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Fig. 19.8. The galaxies seem to be distributed in a “foamlike” way. Dense strings and shells are surrounded by relatively empty
regions. (Seldner, M. et al. (1977): Astron. J. 82, 249)

Universe is in no way special. From this principle,
it is only a short step to assume that on a large
enough scale, the local properties of the metagalaxy
are the same as the global properties of the Uni-
verse.

Homogeneity and isotropy are important simplify-
ing assumptions when trying to construct cosmological
models which can be compared with local observations.
They may therefore reasonably be adopted, at least as
a preliminary hypothesis.
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19.3 Homogeneous
and Isotropic Universes

Under general conditions, space and time coordinates
in a universe may be chosen so that the values of the
space coordinates of observers moving with the matter
are constant. It can be shown that in a homogeneous and
isotropic universe, the line element (Appendix B) then
takes the form

ds2 = − c2dt2 + R2(t)

×
[

dr2

1− kr2
+r2(dθ2 + cos2 θdφ2)

]
,

(19.4)

known as the Robertson–Walker line element. (The ra-
dial coordinate r is defined to be dimensionless.) R(t) is
a time-dependent quantity representing the scale of the
Universe. If R increases with time, all distances, includ-
ing those between galaxies, will grow. The coefficient k
may be +1, 0 or −1, corresponding to the three possible
geometries of space, the elliptic or closed, the parabolic
and the hyperbolic or open model.

The space described by these models need not be
Euclidean, but can have positive or negative curvature.
Depending on the curvature, the volume of the universe
may be finite or infinite. In neither case does it have
a visible edge.

The two-dimensional analogy to elliptical (k = +1)
geometry is the surface of a sphere (Fig. 19.9): its sur-
face area is finite, but has no edge. The scale factor R(t)
represents the size of the sphere. When R changes, the
distances between points on the surface change in the

Fig. 19.9. The two-dimensional analogues of the Friedmann
models: A spherical surface, a plane and a saddle surface

same way. Similarly, a three-dimensional “spherical sur-
face”, or the space of elliptical geometry, has a finite
volume, but no edge. Starting off in an arbitrary direc-
tion and going on for long enough, one always returns
to the initial point.

When k = 0, space is flat or Euclidean, and the ex-
pression for the line element (19.4) is almost the same as
in the Minkowski space. The only difference is the scale
factor R(t). All distances in a Euclidean space change
with time. The two-dimensional analogue of this space
is a plane.

The volume of space in the hyperbolic geometry
(k = −1) is also infinite. A two-dimensional idea of
the geometry in this case is given by a saddle surface.

In a homogeneous and isotropic universe, all phys-
ical quantities will depend on time through the scale
factor R(t). For example, from the form of the line ele-
ment, it is evident that all distances will be proportional
to R (Fig. 19.10). Thus, if the distance to a galaxy is r
at time t, then at time t0 (in cosmology, the subscript 0
refers to the present value) it will be

R(t0)

R(t)
r . (19.5)

Similarly, all volumes will be proportional to R3. From
this it follows that the density of any conserved quantity
(e. g. mass) will behave as R−3.

It can be shown that the wavelength of radiation in an
expanding universe is proportional to R, like all other
lengths. If the wavelength at the time of emission, cor-
responding to the scale factor R, is λ, then it will be λ0

Fig. 19.10. When space expands, all galaxy separations grow
with the scale factor R: r ′ = [R(t′0)/R(t0)]r
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when the scale factor has increased to R0:

λ0

λ
= R0

R
. (19.6)

The redshift is z = (λ0 −λ)/λ, and hence

1+ z = R0

R
; (19.7)

i. e. the redshift of a galaxy expresses how much the
scale factor has changed since the light was emitted.
For example, the light from a quasar with z = 1 was
emitted at a time when all distances were half their
present values.

For small values of the redshift, (19.7) approaches the
usual form of Hubble’s law. This can be seen as follows.
When z is small, the change in R during the propagation
of a light signal will also be small and proportional to
the light travel time t. Because t = r/c approximately,
where r is the distance of the source, the redshift will
be proportional to r. If the constant of proportionality
is denoted by H/c, one has

z = Hr/c . (19.8)

This is formally identical to Hubble’s law (19.1).
However, the redshift is now interpreted in the sense
of (19.7).

As the universe expands, the photons in the back-
ground radiation will also be redshifted. The energy of
each photon is inversely proportional to its wavelength,
and will therefore behave as R−1. It can be shown that
the number of photons will be conserved, and thus their
number density will behave as R−3. Combining these
two results, one finds that the energy density of the back-
ground radiation is proportional to R−4. The energy
density of blackbody radiation is proportional to T 4,
where T is the temperature. Thus the temperature of
cosmic background radiation will vary as R−1.

19.4 The Friedmann Models

The results of the preceding section are valid in any ho-
mogeneous and isotropic universe. In order to determine
the precise time-dependence of the scale factor R(t)
a theory of gravity is required.

In 1917 Albert Einstein presented a model of the
Universe based on his general theory of relativity. It
described a geometrically symmetric (spherical) space
with finite volume but no boundary. In accordance with
the cosmological principle, the model was homoge-
neous and isotropic. It was also static: the volume of
space did not change.

In order to obtain a static model, Einstein had
to introduce a new repulsive force, the cosmological
term, in his equations. The size of this cosmological
term is given by the cosmological constant Λ. Ein-
stein presented his model before the redshifts of the
galaxies were known, and taking the Universe to be
static was then reasonable. When the expansion of the
Universe was discovered, this argument in favour of
the cosmological constant vanished. Einstein himself
later called it the biggest blunder of his life. Nev-
ertheless, the most recent observations now seem to
indicate that a non-zero cosmological constant has to
be present.

The St. Petersburg physicist Alexander Friedmann
and later, independently, the Belgian Georges Lemaître
studied the cosmological solutions of Einstein’s equa-
tions. IfΛ= 0, only evolving, expanding or contracting
models of the Universe are possible. From the Fried-
mann models exact formulas for the redshift and
Hubble’s law may be derived.

The general relativistic derivation of the law of ex-
pansion for the Friedmann models will not be given
here. It is interesting that the existence of three types
of models and their law of expansion can be derived
from purely Newtonian considerations, with results in
complete agreement with the relativistic treatment. The
detailed derivation is given on p. 411, but the essential
character of the motion can be obtained from a simple
energy argument.

Let us consider a small expanding spherical region
in the Universe. In a spherical distribution of matter,
the gravitational force on a given spherical shell de-
pends only on the mass inside that shell. We shall here
assume Λ= 0.

We can now consider the motion of a galaxy of
mass m at the edge of our spherical region. Accord-
ing to Hubble’s law, its velocity will be V = Hr and the
corresponding kinetic energy,

T = mV 2/2 . (19.9)
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The potential energy at the edge of a sphere of mass M
is U = −G Mm/r. Thus the total energy is

E = T +U = mV 2/2− G Mm/r , (19.10)

which has to be constant. If the mean density of the Uni-
verse is ρ, the mass is M = (4πr3/3)ρ. The value of ρ
corresponding to E = 0 is called the critical density, ρc.
We have

E = 1

2
m H2r2 − G Mm

r

= 1

2
m H2r2 − Gm

4π

3

r3ρc

r

= mr2
(

1

2
H2 − 4

3
πGρc

)
= 0 ,

(19.11)

whence

ρc = 3H2

8πG
. (19.12)

The expansion of the Universe can be compared
to the motion of a mass launched vertically from the
surface of a celestial body. The form of the orbit de-
pends on the initial energy. In order to compute the
complete orbit, the mass M of the main body and the
initial velocity have to be known. In cosmology, the
corresponding parameters are the mean density and the
Hubble constant.

The E = 0 model corresponds to the Euclidean Fried-
mann model, the Einstein–de Sitter model. If the density
exceeds the critical density, the expansion of any spher-
ical region will turn to a contraction and it will collapse
to a point. This corresponds to the closed Friedmann
model. Finally, if ρ < ρc, the ever expanding hyperbolic
model is obtained. The behaviour of the scale factor in
these three cases is shown in Fig. 19.11.

These three models of the universe are called the
standard models. They are the simplest relativistic cos-
mological models for Λ= 0. Models with Λ �= 0 are
mathematically more complicated, but show the same
general behaviour.

The simple Newtonian treatment of the expansion
problem is possible because Newtonian mechanics is
approximately valid in small regions of the Universe.
However, although the resulting equations are formally
similar, the interpretation of the quantities involved (e.g.
the parameter k) is not the same as in the relativistic

Fig. 19.11. The time dependence of the scale factor for
different values of k. The cosmological constant Λ= 0

context. The global geometry of the Friedmann models
can only be understood within the general theory of
relativity.

Consider two points at a separation r. Let their
relative velocity be V . Then

r = R(t)

R(t0)
r0 and V = ṙ = Ṙ(t)

R(t0)
r0 , (19.13)

and thus the Hubble constant is

H = V

r
= Ṙ(t)

R(t)
. (19.14)

The deceleration of the expansion is described by the
deceleration parameter q, defined as

q = −RR̈/Ṙ2 . (19.15)

The deceleration parameter describes the change of the
rate of the expansion Ṙ. The additional factors have
been included in order to make it dimensionless, i. e.
independent of the choice of units of length and time.

The value of the deceleration parameter can be ex-
pressed in terms of the mean density. The density
parameter Ω is defined as Ω = ρ/ρc, so that Ω = 1
corresponds to the Einstein–de Sitter model. From the
conservation of mass, it follows that ρ0 R3

0 = ρR3. Us-
ing expression (19.12) for the critical density, one then
obtains

Ω = 8πG

3

ρ0 R3
0

R3 H2
. (19.16)
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On the other hand, using (19.26), q can be written

q = 4πG

3

ρ0 R3
0

R3 H2
. (19.17)

Thus there is a simple relation between Ω and q:

Ω = 2q . (19.18)

The value q = 1/2 of the deceleration parameter corre-
sponds to the critical densityΩ = 1. Both quantities are
in common use in cosmology. It should be noted that
the density and the deceleration can be observed inde-
pendently. The validity of (19.18) is thus a test for the
correctness of general relativity with Λ= 0.

19.5 Cosmological Tests

A central cosmological problem is the question of which
Friedmann model best represents the real Universe. Dif-
ferent models make different observational predictions.
Recently there has been considerable progress in the de-
termination of the cosmological parameters, and for the
first time there is now a set of parameters that appear
capable of accounting for all observations. In the fol-
lowing, some possible tests will be considered. These
tests are related to the average properties of the Uni-
verse. Further cosmological constraints can be obtained
from the observed structures. These will be discussed
in Sect. 19.7.

The Critical Density. If the average density ρ is larger
than the critical density ρc, the Universe is closed. For
the Hubble constant H = 100 km s−1 Mpc−1, the value
of ρc = 1.9×10−26 kg m−3, corresponding to roughly
ten hydrogen atoms per cubic metre. Mass determina-
tions for individual galaxies lead to smaller values for
the density, favouring an open model. However, the den-
sity determined in this way is a lower limit, since there
may be significant amounts of invisible mass outside
the main parts of the galaxies.

If most of the mass of clusters of galaxies is dark and
invisible, it will increase the mean density nearer the
critical value. Using the virial masses of X-ray clusters
of galaxies (Sect. 18.2), one finds Ω0 = 0.3. Consider-
ations of the observed velocities of clusters of galaxies
indicate that the relative amount of dark matter does not
increase further on even larger scales.

It may be that the neutrino has a small mass (about
10−4 electron mass). A large neutrino background
should have been produced in the big bang. In spite of
the small suggested mass of the neutrino, it would still
be large enough to make neutrinos the dominant form of
mass in the Universe, and would probably make the den-
sity larger than critical. Laboratory measurement of the
mass of the neutrino is very difficult, and the claims for
a measured nonzero mass have not won general accep-
tance. Instead much recent work in cosmology has been
based on the hypothesis of Cold Dark Matter (CDM),
i. e. the idea that a significant part of the mass of the
Universe is in the form of non-relativistic particles of
an unknown kind.

The Magnitude-Redshift Test. Although for small
redshifts, all models predict the Hubble relationship
m = 5 lg z +C for standard candles, for larger redshifts
there are differences, depending on the deceleration
parameter q. This provides a way of measuring q.

The models predict that galaxies at a given redshift
look brighter in the closed models than in the open ones
(see Fig. 19.4). Measurements of type Ia supernovae
out to redshifts z = 1 using the Hubble Space Telescope
have now shown that the observed q is inconsistent with
models havingΛ= 0. AssumingΩ0 = 0.3 these obser-
vations require ΩΛ = 0.7, where ΩΛ is defined below
((19.30)). The Hubble diagram for Type Ia supernovae
is shown in Colour Supplement Plate 34.

The Angular Diameter–Redshift Test. Along with the
magnitude-redshift test, the relation between angular di-
ameter and redshift has been used as a cosmological
test. Let us first consider how the angular diameter θ
of a standard object varies with distance in static mod-
els with different geometries. In a Euclidean geometry,
the angular diameter is inversely proportional to the dis-
tance. In an elliptical geometry, θ decreases more slowly
with distance, and even begins to increase beyond a cer-
tain point. The reason for this can be understood by
thinking of the surface of a sphere. For an observer at
the pole, the angular diameter is the angle between two
meridians marking the edges of his standard object. This
angle is smallest when the object is at the equator, and
grows without limit towards the opposite pole. In a hy-
perbolic geometry, the angle θ decreases more rapidly
with distance than in the Euclidean case.
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In an expanding closed universe the angular diameter
should begin to increase at a redshift of about one. This
effect has been looked for in the diameters of radio
galaxies and quasars. No turnover has been observed,
but this may also be due to evolution of the radio sources
or to the selection of the observational data. At smaller
redshifts, the use of the diameters of clusters of galaxies
has yielded equally inconclusive results.

Basically the same idea can be applied to the an-
gular scale of the strongest fluctuation in the cosmic
microwave background. The linear size of these de-
pends only weakly on the cosmological model and can
therefore be treated as a standard measuring rod. Their
redshift is determined by the decoupling of matter and
radiation (see Sect. 19.6). Observations of their angular
size have provided strong evidence that Ω0 +ΩΛ = 1,
i. e. the Universe is flat.

Primordial Nucleosynthesis. The standard model pre-
dicts that 25% of the mass of the Universe turned into
helium in the “big bang”. This amount is not sensi-
tive to the density and thus does not provide a strong
cosmological test. However, the amount of deuterium
left over from helium synthesis does depend strongly
on the density. Almost all deuterons formed in the big
bang unite into helium nuclei. For a larger density the
collisions destroying deuterium were more frequent.
Thus a small present deuterium abundance indicates
a high cosmological density. Similar arguments apply
to the amounts of 3He and 7Li produced in the big
bang. The interpretation of the observed abundances
is difficult, since they have been changed by later
nuclear processes. Still, present results for the abun-
dances of these nuclei are consistent with each other
and with a density corresponding to Ω0 about 0.04.
Note that this number only refers to the mass in the
form of baryons, i. e. protons and neutrons. Since the
virial masses of clusters of galaxies indicate that Ω0 is
about 0.3, this has stimulated models such as the CDM
model, where most of the mass is not in the form of
baryons.

Ages. The ages of different Friedmann models can be
compared with known ages of various systems. The

age t0 of a Friedmann model with given Ω0 and ΩΛ is
obtained by integrating equation (19.30). This gives

t0 = H−1
0

1∫
0

da
(
Ω0a−1 +ΩΛa2 +1−Ω0 −ΩΛ

)−1/2
.

(19.19)

This age is required to be larger than the ages of the
oldest known astronomical objects.

If the density is critical andΛ= 0, t0 H0 = 2/3. Thus
if H0 = 75 km s−1 Mpc−1, the age is t0 = 9 Ga. Larger
values ofΩ0 give smaller ages, whereas positive values
of Λ lead to larger ages. It has been a source of em-
barrassment that the best values of H have tended to
give an age for the Universe only marginally consistent
with the ages of the oldest astronomical objects. With
the introduction of a positive cosmological constant and
a slight downward revision of stellar ages this problem
has disappeared. The best current parameter values give
13–14 Ga for the age of the Universe.

The “Concordance” Model. In summary there has
been a remarkable recent convergence between different
cosmological tests. The resulting model has a positive
cosmological constant, and most of the matter is cold
and dark. It is thus referred to as the ΛCDM model.
The best parameter values are H = 70 km s−1 Mpc−1,
ΩΛ = 0.7, Ω0 = 0.3, with cold dark matter making up
85% of the total density.

The concordance model is by no means definitive.
In particular the reason for the cosmological constant
is a major puzzle. In order to allow for the possibility
that Λ is variable it has become customary to refer to it
as dark energy, saving the term cosmological constant
for the case of a constant Λ. Even if some alternative
mechanism can produce the same effect as a non-zeroΛ,
finding at least one set of acceptable parameters is an
important step forward.

An additional set of constraints on the cosmologi-
cal model comes from the large-scale structures of the
Universe. These constraints, which contribute further
support for the concordance model, will be considered
in Sect. 19.8.
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19.6 History of the Universe

We have seen how the density of matter and of radiation
energy and temperature can be computed as functions
of the scale factor R. Since the scale factor is known
as a function of time, these quantities can be calculated
backwards in time.

At the earliest times, densities and temperatures were
so immense that all theories about the physical pro-
cesses taking place are highly conjectural. Nevertheless
first attempts have been made at understanding the most
fundamental properties of the Universe on the basis of
modern theories of particle physics. For example, no
indications of significant amounts of antimatter in the
Universe have been discovered. Thus, for some reason,
the number of matter particles must have exceeded that
of antimatter particles by a factor of 1.000000001. Be-
cause of this symmetry breaking, when 99.9999999%
of the hadrons were annihilated, 10−7% was left later
to form galaxies and everything else. It has been spec-
ulated that the broken symmetry originated in particle
processes about 10−35 s after the initial time.

The breaking of fundamental symmetries in the early
Universe may lead to what is known as inflation of the
Universe. In consequence of symmetry breaking, the
dominant energy density may be the zero-point energy
of a quantum field. This energy density will lead to
inflation, a strongly accelerated expansion, which will
dilute irregularities and drive the density very close to
the critical value. One may thus understand how the
present homogeneity, isotropy and flatness of the Uni-
verse have come about. In the inflationary picture the
Universe has to be very nearly flat, Ω0 +ΩΛ = 1. The
inflationary models also make specific predictions for
the form of the irregularities in the CMB. These pre-
dictions are in general agreement with what has been
observed.

As the Universe expanded, the density and tempera-
ture decreased (Fig. 19.12) and conditions became such
that known physical principles can be applied. Dur-
ing the hot early stages, photons and massive particles
were continually changing into each other: high-energy
photons collided to produce particle-antiparticle pairs,
which then were annihilated and produced photons. As
the Universe cooled, the photon energies became too
small to maintain this equilibrium. There is a threshold
temperature below which particles of a given type are

Fig. 19.12. The energy densities of matter and radiation de-
crease as the Universe expands. Nucleon–antinucleon pairs
annihilate at 10−4 s; electron–positron pairs at 1 s

no longer produced. For example, the threshold tem-
perature for hadrons (protons, neutrons and mesons)
is T = 1012 K, reached at the time t = 10−4 s. Thus the
present building blocks of the atomic nuclei, protons and
neutrons, are relics from the time 10−8–10−4 s, known
as the hadron era.

The Lepton Era. In the time period 10−4 –1 s, the lepton
era, the photon energies were large enough to produce
light particles, such as electron–positron pairs. Because
of matter-antimatter symmetry breaking, some of the
electrons were left over to produce present astronomi-
cal bodies. During the lepton era neutrino decoupling
took place. Previously the neutrinos had been kept in
equilibrium with other particles by fast particle reac-
tions. As the density and temperature decreased, so did
the reaction rates, and finally they could no longer keep
the neutrinos in equilibrium. The neutrinos decoupled
from other matter and were left to propagate through
space without any appreciable interactions. It has been
calculated that there are at present 600 such cosmolog-
ical neutrinos per cubic centimetre, but their negligible
interactions make them extremely difficult to observe.

The Radiation Era. After the end of the lepton era,
about 1 s after the initial time, the most important form
of energy was electromagnetic radiation. This stage
is called the radiation era. At its beginning the tem-
perature was about 1010 K and at its end, about one
million years later, when the radiation energy density
had dropped to that of the particles, it had fallen to
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about 40,000 degrees. At the very beginning of the ra-
diation era within a few hundred seconds helium was
produced.

Just before the epoch of helium synthesis, the number
ratio of free protons and neutrons was changing because
of the decay of the free neutrons. After about 100 s
the temperature had dropped to about 109 K, which is
low enough for deuterons to be formed. All remaining
neutrons were then incorporated in deuterons; these, in
turn, were almost entirely consumed to produce helium
nuclei. Thus the amount of helium synthesized was de-
termined by the number ratio of protons and neutrons
at the time of deuterium production t = 100 s. Calcu-
lations show that this ratio was about 14 : 2. Thus, out
of 16 nucleons, 2 protons and 2 neutrons were incorpo-
rated in a helium nucleus. Consequently 4/16 = 25% of
the mass turned into helium. This is remarkably close
to the measured primordial helium abundance.

Only the isotopes 2H, 3He, 4He and 7Li were pro-
duced in appreciable numbers by nuclear processes in
the big bang. The heavier elements have formed later in
stellar interiors, in supernova explosions and perhaps in
energetic events in galactic nuclei.

Radiation Decoupling. The Matter Era. As we have
seen, the mass density of radiation (obtained from the
formula E = mc2) behaves as R−4, whereas that of or-
dinary matter behaves as R−3. Thus the radiation mass
density decreases more rapidly. At the end of the radia-
tion era it became smaller than the ordinary mass den-
sity. The matter era began, bringing with it the formation
of galaxies, stars, planets and human life. At present, the
mass density of radiation is much smaller than that of
matter. Therefore the dynamics of the Universe is com-
pletely determined by the density of massive particles.

Soon after the end of the radiation era, radiation
decoupled from matter. This happened when the tem-
perature had dropped to a few thousand degrees, and
the protons and electrons combined to form hydro-
gen atoms. It was the beginning of the “dark ages” at
redshifts z = 1000–100, before stars and galaxies had
formed, when the Universe only contained dark matter,
blackbody radiation, and slowly cooling neutral gas.

At present, light can propagate freely through space.
The world is transparent to radiation: the light from dis-
tant galaxies is weakened only by the r−2 law and by the
redshift. Since there is no certain detection of absorp-

Fig. 19.13. The motion of the Milky Way in relation to the
microwave background can be seen in the measurements of
WMAP. One side of the sky is darker (colder), and the other
side is lighter (warmer). The horizontal stripe is the densest
part of the Milky Way. (Photo NASA)

tion by neutral gas, there must have been a reionisation
of the Universe. It is thought that this occurred around
z = 5–10.

19.7 The Formation of Structure

As we go backward in time from the present, the dis-
tances between galaxies and clusters of galaxies become
smaller. For example, the typical separation between
galaxies is 100 times their diameter. At the redshift
z = 101 most galaxies must have been practically in
contact. For this reason galaxies in their present form
cannot have existed much earlier than about z = 100.
Since the stars were presumably formed after the galax-
ies, all present astronomical systems must have formed
later than this.

It is thought that all observed structures in the
Universe have arisen by the gravitational collapse of
small overdensities. Whereas the presently observable
galaxies have undergone considerable evolution, which
makes it difficult to deduce their initial state, on larger
scales the density variations should still be small and
easier to study. These are the structures considered in
the present section. The later evolution of galaxies is
discussed in Sect. 18.8, and the formation of the Milky
Way in Sect. 17.5.

The Statistical Description of Large-scale Structure.
The departures from strict homogeneity in the Universe
are random in character, and must therefore be described
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using statistical methods. Perhaps the most straightfor-
ward way of doing this is to take regions of a given size,
specified in terms of their mass, and give the probability
distribution for relative density variations on that scale.

A second method is to consider the spatial separa-
tions between individual objects such as galaxies or
clusters. The distribution of these separations is used to
define the correlation function, which is a measure of
the clustering of the objects in question.

A third method to describe large-scale fluctuations
is by means of the power spectrum. Here the density
variations (in space or in projection on the sky) are
represented as sum of waves. The power spectrum is
the squared amplitude of these waves as a function of
wavelength.

All three methods are representations of the density
variations in the Universe, and they are theoretically
closely related. However, in practice they are observed
in different ways, and therefore, which representation is
most suitable depends on what kind of observations are
being analysed. The density variations are usually de-
scribed by means of a spectral index n and an amplitude
σ8 to be introduced below.

The Growth of Perturbations. In order to describe the
growth of structures in the Universe, consider a given
region containing the mass M. If its denity is slightly
larger than the mean density, its expansion will be
slightly slower than that of the rest of the Universe, and
its relative overdensity will grow. The rate of growth
as a function of mass depends on the relative impor-
tance of the material components of the Universe, dark
matter, radiation, and ordinary baryonic matter.

It is assumed that there is an initial distribution of per-
turbations where the fluctuations with mass M have an
amplitude that is proportional to M−(n+3)/6. The spectral
index n is a cosmological parameter to be determined
from observations.

The first step in structure formation is when a given
mass comes within the horizon, i. e. when there has
been enough time since the big bang for light signals
to cross the given region. During the radiation era the
horizon mass grows proportionally to t3/2, and thus the
time at which the mass M comes within the horizon
will be proportional to M2/3 . Any perturbation will ini-
tially be larger than the horizon mass, and while this is
the case it grows in proportion to t. Once a matter per-

turbation comes inside the horizon its amplitude will
remain constant. This constant amplitude will behave
as tM−(n+3)/6, which is proportional to M−(n−1)/6. If
n = 1, the perturbations enter the horizon with an am-
plitude that is independent of mass. We shall see that
the observed value of n is in fact very close to 1.

Perturbations of both dark and baryonic matter den-
sity will behave as described above during the radiation
era. At the end of the radiation era at time tEQ, when the
mass densities of radiation and (non-relativistic) mat-
ter become equal, the amplitude of the perturbations
will be given by the horizon mass MEQ ≈ 1016 M� for
M � MEQ, and will be proportional to M−(n+3)/6 for
M 	 MEQ. After equality the dark matter perturbations
will be free to start growing again as t2/3, independent
of mass.

Unlike dark matter, ordinary baryonic matter per-
turbations cannot grow as long as the Universe remains
ionised. Instead there is a minimum mass of a collapsing
gas cloud given by the Jeans mass MJ:

MJ ≈ P3/2

G3/2ρ2
, (19.20)

where ρ and P are the density and pressure in the cloud
(see Sect. 6.11). The value of MJ before decoupling was

MJ = 1018 M� (19.21)

and after decoupling

MJ = 105 M� . (19.22)

The reason for the large difference is that before decou-
pling, matter feels the large radiation pressure (P = u/3,
see *Gas Pressure and Radiation Pressure, p. 238). After
decoupling, this pressure no longer affects the gas.

The large Jeans mass before decoupling means that
overdense regions of normal gas cannot start growing
before z = 1000. Rather than growing they oscillate like
sound waves. After decoupling a large range of masses
become Jeans unstable. By then density perturbations
of dark matter have had time to grow, and the gas will
therefore rapidly fall into their potential wells. The first
stars will start forming in the collapsing regions, and
will reionise the Universe.

Because the expansion of the Universe works against
the collapse, the density of Jeans unstable regions grows
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rather slowly. In order to produce the observed systems,
the density perturbations at decoupling cannot be too
small. In models without dark matter the variations in
the CMB predicted on this basis tended to be too large.
In the CDM model the predicted variations are of the
expected amplitude.

In the CDM model the amplitude of fluctuations on
scales about MEQ and smaller depends only weakly on
mass. This is why the CDM model leads to an hierar-
chical description of structure formation. In this picture,
systems of all masses above 105 M� begin forming af-
ter decoupling. Because smaller systems will collapse
more rapidly, they are the first to form, at redshifts
about 2 0. Once the first sources of light, starbursts
or AGNs, had formed, they could reionise the gas.
This marked the ending of the dark ages at redshifts
z = 10–5.

The redshift of reionisation is still not well known,
and is therefore treated as a parameter to be determined
in tests based on large-scale structures. It is usually
expressed by means of τ , the optical depth to electron
scattering of the background radiation. A larger value
of τ corresponds to a higher electron density, implying
reionisation at a higher redshift. Since galaxies can be
seen at redshifts larger than 6, the corresponding value
of τ = 0.03 represents a minimum. The result of the first
year of observations with WMAP gave τ = 0.16, which
would have corresponded to a redshift 17.

One finally has to ask where the initial perturba-
tions came from. An attractive feature of the inflationary
model is that it makes specific predictions for these ini-
tial perturbations, deriving them from quantum effects
at very early times. In this way the observed properties
of the largest astronomical systems contain information
about the earliest stages of our Universe.

Fluctuations of the Cosmic Microwave Background.
One important way of studying the large-scale structure
of the early Universe is by means of the irregularities
of the cosmic microwave background. The overdensi-
ties that were later to give rise to observed structures
should also give rise to temperature variations of the
CMB.

The temperature variations in the microwave back-
ground have been mapped, first by the COBE satellite,
and later by WMAP. A map of the CMB according to
WMAP is shown in Colour Supplement Plate 34. The

observed variations are in qualitative agreement with
the scenario for structure formation described above.

A more quantitative view of the observations is pro-
vided by the power spectrum of the observations shown
in Fig. 19.14. This shows the amplitude of the tempera-
ture variations as a function of angular scale on the sky.

The physical processes we have described give rise
to the features in the power spectrum. Thus the first
peak is produced by perturbations that have just had
time to collapse to a maximum density since equality
of matter and radiation, before bouncing back. The lin-
ear size of this peak does not depend strongly on the
exact parameters of the model, and its postion (angu-
lar scale) can therefore be used as a standard measuring
rod in the diameterâ“redshift test. The second and third
peaks in the power spectrum, the “acoustic peaks”,
correspond to perturbations that have bounced back and
collapsed again, respectively. The positions and ampli-
tudes of these features in the power spectrum depend on
the cosmological parameters. Thus the WMAP observa-
tions of the CMB can be fitted using a model containing
six free parameters: the Hubble constant, the densities
of dark matter and baryons, the optical depth τ , and the
amplitude σ8 and shape n of the initial perturbations.
The curvature of the Universe, 1−Ω0 −ΩΛ can be set
equal to zero, which determines the value of ΩΛ. The
results of three years of observations with WMAP have
given values for these parameters in full agreement with
the concordance model. In particular, the optical depth
τ = 0.1, corresponding to a redshift 7–12.

Very Large Scale Structure. After decoupling struc-
tures on different scales are free to grow. The important
dividing line is whether a given overdensity is still ex-
panding with the rest of the Universe or whether it
has had time to recollapse. Systems that have recol-
lapsed will fairly rapidly virialise, i. e. settle down into
a stationary state. Such systems can be considered real
astronomical systems.

The largest astronomical systems are clusters of
galaxies. For some time there was controversy about
whether even larger structures, superclusters, existed.
The controversy was settled in the 1970’s when it was
realized that this largely depended on what was meant
by superclusters. Regions of higher density existed on
scales larger than clusters of galaxies (a few Mpc), all
the way up to 100 Mpc, but they did not really form in-
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Fig. 19.14. Angular power spectrum of the temperature varia-
tions of the cosmic microwave background from the three-year
results the WMAP satellite. This gives the square of the ampli-

tude of the temperature variations on different angular scales.
(http://map.gsfc.nasa.gov/m_mm.html)

dividual structures in approximate equilibrium like the
clusters of galaxies.

Between these two alternatives are structures that are
only now turning round and beginning to recollapse.
One way of specifying the amplitude of the initial fluc-
tuations is to give the scale of this transition point. This
scale corresponds roughly to a present linear size of
8 Mpc, and for this reason the fluctuation amplitude is
commonly given by means of σ8, the amplitude of the
fluctuations at present scale 8 Mpc. Because of the way
it has been chosen σ8 should be close to 1.

Smaller systems will already have collapsed. There
are many ways of statistically describing their large-
scale distribution. One of the most studied descriptors

of clustering is the correlation function, ξ(r). Consider
two infinitesimal volumes dV1 and dV2 separated by
the distance r. If there were no clustering, the prob-
ability of finding galaxies in these volumes would
be N2dV1dV2, where N is the number density of
galaxies. Because of clustering this probability is actu-
ally N2(1+ ξ(r))dV1dV2. The correlation function thus
measures the higher probabilty of finding galaxies near
each other.

Although there are ways of estimating the correlation
function from the distribution on the sky, a more reli-
able estimate can be made by mapping the distribution
of galaxies in three dimensions, using redshifts to de-
termine their distances. The distribution from one such
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Fig. 19.15. Correlation function for galaxies in the 2dF Galaxy
Redshift Survey (see Fig. 18.14). The galaxies have been di-
vided into passive and actively star-forming types based on
their spectra, roughly corresponding to the division into early
(E and S0) and late (spiral and irregular) Hubble types. Over a
large range of separations the correlation functions are well de-
scribed by power laws with slopes 1.93 and 1.50, respectively.
(D.S. Madgwick et al. 2003, MNRAS 344, 847, Fig. 3)

survey, the Two-degree Field Galaxy Redshift Survey
(2dFGRS) is shown in Fig. 19.15.

It has been known since the 1970’s that the correla-
tion function is approximately proportional to rγ . The
constant of proportionality is related to the amplitude
σ8 and the exponent γ is related to the index n of the
initial perturbations. The observed value of γ is about
1.8, depending to some extent on the sample of objects
studied.

In order to determine the cosmological parameters
the (three-dimensional) power spectrum of the galaxy
distribution is usually used. It is then compared to the-
oretical power spectra that depend on the parameters in
order to find the best-fitting model. The optical depth
parameter τ does not affect these tests. The results
have been completely consistent with the concordance
model.

The Concordance Model Again. We have discussed
the use of the cosmic microwave background and
the large-scale distribution of galaxies in order to
determine the cosmological parameters. Both meth-
ods independently give consistent results. Combining
them produces even more (formally) accurate values.
Furthermore, these values are in agreement with the
ones obtained from the traditional cosmological tests
discussed in Sect. 19.5.

There are eight basic parameters describing the
concordance model. Currently their values, with an
accuracy of about 10%, are: Hubble constant H0

73 km s−1 Mpc−1, baryon density parameter Ωb 0.04,
mass density parameter Ω0 0.24, optical depth τ 0.1,
spectral index n 0.95, fluctuation amplitude σ8 0.75.

Other, less comprehensive tests, such as the grav-
itational lensing by cosmic structures, the velocities
induced by mass concentrations, and the number of
clusters of galaxies, have added support to the con-
cordance model. This remarkable agreement between
many independent determinations of the cosmological
parameters have earned the model its name. Once the
parameters necessary for a general description of the
Universe are reasonably well known, other components,
such as gravitational waves or neutrinos, can be included
in the cosmological model. This new development has
been called the era of precision cosmology. However, it
should still not be forgotten that in the model one has to
assume the presence of both dark matter and dark en-
ergy, neither of which is based on any evidence apart
from their role in cosmology.

19.8 The Future of the Universe

The standard models allow two alternative prospects
for the future development of the Universe. Expansion
may either go on forever, or it may reverse to a contrac-
tion, where everything is eventually squeezed back to
a point. In the final squeeze, the early history of the Uni-
verse would be repeated backwards: in turn, galaxies,
stars, atoms and nucleons would be broken up. Finally
the state of the Universe could no longer be treated by
present-day physics.

In the open models the future is quite different. The
evolution of the stars may lead to one of four end results:
a white dwarf, a neutron star or a black hole may be
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formed, or the star may be completely disrupted. After
about 1011 years, all present stars will have used up their
nuclear fuel and reached one of these four final states.

Some of the stars will be ejected from their galaxies;
others will form a dense cluster at the centre. In about
1027 years the central star clusters will become so dense
that a black hole is formed. Similarly the galaxies in
large clusters will collide and form very massive black
holes.

Not even black holes last forever. By a quantum me-
chanical tunnelling process, mass can cross the event
horizon and escape to infinity – the black hole is said to
“evaporate”. The rate of this phenomenon, known as the
Hawking process, is inversely proportional to the mass
of the hole. For a galactic-mass black hole, the evapora-
tion time is roughly 1098 years. After this time, almost
all black holes will have disappeared.

The ever expanding space now contains black dwarfs,
neutron stars and planet-size bodies (unless the pre-
dictions of a finite proton lifetime of about 1031 years
are confirmed; in that case all these systems will have
been destroyed by proton decay). The temperature of
the cosmic background radiation will have dropped to
10−20 K.

Even further in the future, other quantum phenomena
come into play. By a tunnelling process, black dwarfs
can change into neutron stars and these, in turn, into
black holes. In this way, all stars are turned into black
holes, which will then evaporate. The time required has
been estimated to be 101026

years! At the end, only
radiation cooling towards absolute zero will remain.

It is of course highly doubtful whether our cur-
rent cosmological theories really are secure enough
to allow such far-reaching predictions. New theories
and observations may completely change our present
cosmological ideas.

* Newtonian Derivation of a Differential Equation
for the Scale Factor R(t)
Let us consider a galaxy at the edge of a massive sphere
(see figure). It will be affected by a central force due to
gravity and the cosmological force

mr̈ = −4πG

3

r3ρm

r2
+ 1

3
mΛr ,

or

r̈ = −4π

3
Gρr + 1

3
Λr . (19.23)

In these equations, the radius r and the density ρ are
changing with time. They may be expressed in terms of
the scale factor R:

r = (R/R0)r0 , (19.24)

where R is defined to be R0 when the radius r = r0.

ρ = (R0/R)3ρ0 , (19.25)

where the density ρ = ρ0 when R = R0. Introducing
(19.24) and (19.25) in (19.23), one obtains

R̈ = − a

R2
+ 1

3
ΛR , (19.26)

where a = 4πG R3
0ρ0/3. If (19.26) is multiplied on both

sides by Ṙ, the left-hand side yields

Ṙ R̈ = 1

2

d(Ṙ2)

dt
,

and thus (19.26) takes the form

d(Ṙ2)= − 2a

R2
dR + 2

3
ΛRdR . (19.27)

Let us define R0 = R(t0). Integrating (19.27) from t0 to
t gives

Ṙ2 − Ṙ2
0 = 2a

(
1

R
− 1

R0

)

+ 1

3
Λ(R2 − R2

0) .

(19.28)

The constants Ṙ0 and a can be eliminated in favour of
the Hubble constant H0 and the density parameter Ω0.
Because ρc = 3H2

0 /8πG,

2a = 8πG R3
0ρ0/3

= H2
0 R3

0ρ0/ρc = H2
0 R3

0Ω0 ,
(19.29)
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where Ω0 = ρ0/ρc. Using expression (19.29) and
Ṙ0 = H0 R0 in (19.28), and defining ΩΛ =Λ/(3H2

0 ),
one obtains

Ṙ2

H2
0 R2

0

=Ω0
R0

R
+ΩΛ

(
R

R0

)2

+1−Ω0 −ΩΛ

(19.30)

as the basic differential equation governing R(t).
For simplicity we now set ΩΛ = 0. Then the time

behaviour of the scale factor R depends on the value
of the density parameter Ω0. Because Ṙ2 > 0 always,
according to (19.30)

Ω0
R0

R
−Ω0 +1 ≥ 0 ,

or

R0

R
≥ Ω0 −1

Ω0
. (19.31)

If Ω0 > 1, this means that

R ≤ R0
Ω0

Ω0 −1
≡ Rmax .

When the scale factor reaches its maximum value Rmax,
then according to (19.30), Ṙ = 0, and the expansion
turns into contraction. If Ω0 < 1, the right-hand side of
(19.30) is always positive and the expansion continues
forever.

The equation for the time dependence of the scale
factor in the general theory of relativity contains the
constant k which determines the geometry of space:

Ṙ2 = 8πG R3
0ρ0

3R
− kc2 . (19.32)

Equations (19.32) and (19.28) (or (19.30)) can be made
identical if one chooses

H2
0 R2

0(Ω0 −1)= kc2 .

Thus, complete agreement between the Newtonian and
the relativistic equation for R is obtained. The values
of the geometrical constant k = +1, 0, −1 correspond
respectively to Ω0 > 1, = 1 and < 1. More generally,
the condition for a flat model, k = 0, corresponds to
Ω0 +ΩΛ = 1.

When k = 0, the time dependence of the expansion
is very simple. Setting Ω0 = 1 and using (19.32) and

(19.29), one obtains

Ṙ2 = H2
0 R3

0

R
.

The solution of this equation is

R =
(

3H0t

2

)2/3

R0 . (19.33)

It is also easy to calculate the time from the beginning
of the expansion: R = R0 at the time

t0 = 2

3

1

H0
.

This is the age of the Universe in the Einstein–de Sitter
model.

* Three Redshifts

The redshift of a distant galaxy is the result of three
different mechanisms acting together. The first one is
the peculiar velocity of the observer with respect to the
mean expansion: the Earth moves about the Sun, the
Sun about the centre of the Milky Way, and the Milky
Way and the Local Group of galaxies is falling towards
the Virgo Cluster. The apparatus measuring the light
from a distant galaxy is not at rest; the velocity of the
instrument gives rise to a Doppler shift that has to be
corrected for. Usually the velocities are much smaller
than the speed of light. The Doppler shift is then

zD = v/c . (19.34)

For large velocities the relativistic formula has to be
used:

zD =
√

c+v
c−v −1 . (19.35)

The redshift appearing in Hubble’s law is the cosmo-
logical redshift zc. It only depends on the values of the
scale factor at the times of emission and detection of the
radiation (R and R0) according to

zc = R0/R −1 . (19.36)
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The third type of redshift is the gravitational redshift zg.
According to general relativity, light will be redshifted
by a gravitational field. For example, the redshift of
radiation from the surface of a star of radius R and
mass M will be

zg = 1√
1− RS/R

−1 , (19.37)

where RS = 2G M/c2 is the Schwarzschild radius of
the star. The gravitational redshift of the radiation from
galaxies is normally insignificant.

The combined effect of the redshifts can be calculated
as follows. If the rest wavelength λ0 is redshifted by the
amounts z1 and z2 by two different processes, so that

z = λ2 −λ0

λ0
= λ2

λ0
−1 = λ2

λ1

λ1

λ0
−1 ,

or

(1+ z)= (1+ z1)(1+ z2) .

Similarly, the three redshifts zD, zc and zg will combine
to give an observed redshift z, according to

1+ z = (1+ zD)(1+ zc)(1+ zg) . (19.38)

19.9 Examples

Example 19.1 a) In a forest there are n trees per
hectare, evenly spaced. The thickness of each trunk
is D. What is the distance of the wood not seen for
the trees? (Find the probability that the line of sight will
hit a trunk within a distance x.) b) How is this related
to the Olbers paradox?

a) Imagine a circle with radius x around the observer.
A fraction s(x), 0 ≤ s(x) ≤ 1, is covered by trees.
Then we’ll move a distance dx outward, and draw an-
other circle. There are 2πnx dx trees growing in the
annulus limited by these two circles. They hide a dis-
tance 2πxnD dx or a fraction nD dx of the perimeter
of the circle. Since a fraction s(x) was already hid-
den, the contribution is only (1− s(x))nD dx. We
get

s(x +dx)= s(x)+ (1− s(x))nD dx ,

which gives a differential equation for s:

ds(x)

dx
= (1− s(x))nD .

This is a separable equation, which can be integrated:

s∫
0

ds

1− s
=

x∫
0

nD dx .

This yields the solution

s(x)= 1− e−nDx .

This is the probability that in a random direction we
can see at most to a distance x. This function s is a cu-
mulative probability distribution. The corresponding
probability density is its derivative ds/dx. The mean
free path λ is the expectation of this distribution:

λ=
∞∫

0

x

(
ds(x)

dx

)
dx = 1

nD
.

For example, if there are 2000 trees per hectare, and
each trunk is 10 cm thick, we can see to a distance of
50 m, on the average.

b) The result can easily be generalized into three di-
mensions. Assume there are n stars per unit volume,
and each has a diameter D and surface A = πD2

perpendicular to the line of sight. Then we have

s(x)= 1− e−n Ax ,

where

λ= 1/n A .

For example, if there were one sun per cubic parsec,
the mean free path would be 1.6×104 parsecs. If the
universe were infinitely old and infinite in size, the
line of sight would eventually meet a stellar surface in
any direction, although we could see very far indeed.
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Example 19.2 Find the photon density of the 2.7 K
background radiation.

The intensity of the radiation is

Bν = 2hν3

c2

1

ehν/(kT )−1

and the energy density

uν = 4π

c
Bν = 8πhν3

c3

1

ehν/(kT )−1
.

The number of photons per unit volume is found by
dividing the energy density by the energy of a single
photon, and integrating over all frequencies:

N =
∞∫

0

uνdν

hν
= 8π

c3

∞∫
0

ν2 dν

ehν/(kT )−1
.

We substitute hν/kT = x and dν = (kT/h)dx:

N = 8π

(
kT

hc

)3 ∞∫
0

x2 dx

ex −1
.

The integral cannot be expressed in terms of elementary
functions (however, it can be expressed as an infinite
sum 2

∑∞
n=0(1/n

3)), but it can be evaluated numerically.

Its value is 2.4041. Thus the photon density at 2.7 K is

N = 16π

(
1.3805×10−23 J K−1 ×2.7 K

6.6256×10−34 Js×2.9979×108 m s−1

)3

×1.20206

= 3.99×108 m−3 ≈ 400 cm−3 .

19.10 Exercises

Exercise 19.1 The apparent diameter of the galaxy
NGC 3159 is 1.3′, apparent magnitude 14.4, and radial
velocity with respect to the Milky Way 6940 km s−1.
Find the distance, diameter and absolute magnitude of
the galaxy. What potential sources of error can you think
of?

Exercise 19.2 The radial velocity of NGC 772 is
2562 km s−1. Compute the distance obtained from this
information and compare the result with Exercise 18.1.

Exercise 19.3 If the neutrinos have nonzero mass, the
universe can be closed. What is the minimum mass
needed for this? Assume thatΛ= 0, the density of neu-
trinos is 600 cm−3, and the density of other matter is
one tenth of the critical density.
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20. Astrobiology

Is there life elsewhere in the universe? And if there is,
are there any intelligent beings? How did life emerge

on the Earth, and, as a matter of fact, how do we define
life and intelligence? These are probably the most inter-

esting unsolved questions in science. During the last few
decades a whole new field of astrobiology has evolved
around these problems.

20.1 What is life?

There have been several science fiction tv-series show-
ing extraterrestrial life forms. Usually the sentient
beings have appeared quite humanlike, except of some
appendices or other rather trivial features that try to
make them unattractive. They may even have sex
with humans. However, if the foreign life forms have
evolved independently, interbreeding would be totally
impossible.

The chemistry of foreign beings could be totally dif-
ferent from ours. Could we even understand that they
are living beings? In fact, what is life? It seems that
life is an elusive concept, difficult to define in terms of
just a few properties. We have only one example of life,
and therefore it is difficult to make general conclusions
of its properties. However, we can assume that certain
properties of the known life forms may be generalised
also to foreign life.

Common features of all terrestrial life forms are re-
production and evolution. If living beings produced
exact replicas of themselves, there would be no evo-
lution and no adaptation to changing environments.
Thus the reproduction process must be slightly im-
perfect leading to a variety of descendants. This will
give material for the natural selection, ‘survival of the
fittest’.

Natural selection is a fairly general principle, work-
ing in some sense also outside of biology. Are there any
other general principles related to the evolution of life?
If we could find even one example of life that evolved
independently of ours, this would vastly improve our
knowledge.

Energy consumption is also characteristic of life. Life
requires increasing order, i.e. decreasing entropy. Local
decrease of entropy is not against thermodynamics: it
only means that a living being must be able to take

energy in some form and utilize it for reproduction,
growth, motion or other purposes.

To produce similar offsprings a living being must
have the ability to store information and pass it to
its descendants. All terrestrial life forms use DNA or
RNA molecules composed of nucleotides for storing
information (see next section).

Carbon can combine to form very complex
molecules. Silicon can also form large molecules but
they are not as stable as carbon compounds, and silicon
cannot form rings like carbon. Maybe some simple life
forms could be based on silicon, or on something quite
different that we have not even thought of.

Also a liquid solvent is needed. Our own life would
not be possible without water. It remains liquid in
a much wider temperature range than most other sub-
stances, which makes it a good solvent. Yet in the
astronomical sense the temperature range is rather lim-
ited. In a colder environment, methane or ammonium
might act as the solvent.

The basic building block of all terrestrial life forms
is the cell. It has a membrane surrounding liquid cy-
toplasm. The cell membrane is semipermeable and
functions as a two-way filter that lets certain molecules
go in and others come out; this selective transport is
mediated via specific proteinaceous channels. There are
two kinds of cells, simpler prokaryotic cells and more
complex eukaryotic cells. In eukaryotic cells the ge-
netic material, in the form of DNA molecules, is inside
a nucleus, surrounded by a nuclear membrane. In the
prokaryotic cells there is no separate nucleus, and the
DNA floats coiled in the cytoplasm.

Terrestrial life is divided into three domains, Bacte-
ria, Archaea and Eukarya. Both Bacteria and Archaea
contain usually a single prokaryotic cell. Eukarya
contains all more complex beings, like animals and
plants.
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According to this scheme viruses are not alive al-
though they have certain properties common to living
beings. There are also some other molecules, such as
viroids and prions, that are not classified as living; yet
they are not quite inanimate.

If even the definition of terrestrial life leads to such
borderline cases, a more general definition of all possi-
ble kinds of life is truly challenging. Facing this problem
we have to restrict our discussion to life that, at least to
some extent, resembles our own.

20.2 Chemistry of life

The set of really important elements is relatively small;
it includes hydrogen (H), oxygen (O), nitrogen (N),
carbon (C), sulphur (S) and phosphor (P). The heavier
elements can be remembered by the mnemonic SPONC.

The importance of carbon is in its ability to make lots
of different very complex molecules, which are essential
for life. There are three basic types of molecules that
function as common building blocks to all life: lipids
for membranes, nucleotides and amino acids.

Amino acids consist of three different components,
a carboxyl (COOH), an amine part (NH2) and a side
chain, which can be just a single hydrogen or a more
complex structure. Altogether there are dozens of dif-
ferent amino acids, but only 20 of them are used in
genetically coded proteins.

Amino acids can join to form more complex
molecules, proteins. Typically, up to several hundred
amino acids are needed for a protein molecule. Pro-
teins have numerous functions: they support structures,
they act as catalysts in nearly all biological reactions, in
which case they are called enzymes, they carry messages
as hormons, and so on.

Nucleotides are basic building blocks of the ge-
netic material, DNA and RNA. A nucleotide has three
components, a sugar, a phosphate group and a base.
The phosphate parts are always the same. All DNA
molecules have the same sugar part; also all RNA
molecules have the same sugar part, which, however,
differs from the sugar of the DNA molecules by hav-
ing one additional oxygen atom. The base can be one of
five different types, adenine (A), guanine (G), cytosine
(C), thymine (T), or uracil (U). DNA molecules contain
bases A, G, C and T, and RNA molecules A, G, C and U.

Nucleotides join to form long chains. The deoxyri-
bonucleic acid or DNA (Fig. 20.1) consists of two
such chains that are bound together as two intertwined
helices. The corresponding bases join together by hy-
drogen bonds. The bases come always in matching pairs,
AT, TA, CG, or GC.

A helix is like a screw that can be either left- or
righthanded. All terrestrial DNA molecules have the
same handedness or chirality: they are all of L-type, or
lefthanded. The reason for the asymmetry is not quite
understood.

The DNA molecule contains information on how
to make proteins. Three consequtive base pairs form
a code, called a codon, that specifies one amino acid.
Usually thousands of such triplets together contain
instructions for building a protein.

The basic units of heredity are called genes. They are
regions of DNA whose final products are either proteins
or RNA molecules.

Human cells contain some 25 000 genes, and the
DNA consists of 3×109 base pairs. In plants the
numbers can be much higher, but the simplest known
bacterial genomes have only a few hundred genes. It
has been estimated that the minimum number of genes
needed for a living being is about 200–300.

Actually, only a part of the DNA contains genetic
information. The rest is called junk-DNA since it has
no known function. The fraction of the junk-DNA is
highly variable; in some bacteria the amount is very
small.

The DNA is the storage of the genetic code, but the
code is not functional directly from the DNA. Instead
a complex molecular translation machinery is needed to
execute the instructions.

First, the instructions encoded in the genetic se-
quence are copied (or transcribed) into another type
of nucleic acid. This ribonucleic acid or RNA resem-
bles the DNA but has one more oxygen atom in its
sugar. Different RNA molecules serve several roles in
the translation process. Messenger RNA (mRNA) car-
ries the information in the DNA to an organ called
ribosome, composed of several RNA’s and multiple pro-
teins. There another RNA, the transfer RNA (tRNA),
brings amino acids into the reaction site, and still an-
other RNA molecule, or one of the ribosomal RNA’s
(rRNA) forms the linkages (peptide bonds) between the
adjacent amino acids.



20.3 Prerequisites of life

417

RNA molecules have to carry instructions for making
just one protein, and thus they are much shorter than
DNA molecules. Still they contain similar information,
and in some simple life forms like viruses they can act
as the storage of the genetic code.

Fig. 20.1. (a) The DNA molecule consists of two strands of al-
ternating phosphate groups and sugars connected by matching
base pairs. When the information stored in a fragment of the
DNA is needed, the strands separate and the bases are used to
produce an RNA molecule that will contain the same informa-
tion. (b) The strands coil to form a double helix. (Webb: Where
is everybody?)

20.3 Prerequisites of life

Just after the big bang there were hardly any other el-
ements than hydrogen and helium. Heavier elements
are needed, both for life itself and for solid planets on
which life can evolve. Thus at least some of the earliest
stars had to explode as supernovas and eject their fusion
products to the interstellar space.

Most stars in elliptic galaxies and globular clusters
are very old and have a low metallicity. Therefore they
are not very probable locations for life. The most suit-
able places for life seem to be the disk populations
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of spiral galaxies, containing young stars with high
abundances of heavier elements.

Not all places of the galactic disk are equally prof-
itable. Far out from the galactic centre the star birth rate
and consequently the metallicity is low. Close to the
centre, metallicity is high but the environment is rather
hostile. Star density is very high, and therefore radia-
tion is intense, and nearby stars disturb planetary orbits.
A rough estimate is that only about 20% of the stars of
the Milky Way or a similar galaxy lie within the galactic
habitable zone.

Assume that a star is in the galactic habitable zone.
The star has its own habitable zone where habitable
planets can exist. This zone is usually defined as the
region where the temperature is between the freez-
ing and boiling points of water. For a fast-rotating
perfect blackbody (A = 0 in Eq. (7.53)) orbiting the
Sun this would mean that its distance should be in the
range 0.56–1.04 AU. Planets, however, are not black-
bodies, and the real situation is more complicated. If
a planet has a high albedo, it reflects away most of
the incident radiation and its temperature will be much
lower. But depending on the chemical composition of
the atmosphere and possible clouds the greenhouse ef-
fect may increase the temperature considerably. Many
gases are transparent to visible light, allowing it to
heat the surface. Most of the energy is emitted back
in the infrared region, which is effectively absorbed by
these greenhouse gases, such as water vapour, carbon
dioxide and methane, and thus remains trapped in the
atmosphere.

If the star is cool, the habitable zone is very narrow.
Hot stars have wider habitable zones, but their main
sequence phase is short, giving little time for life to
evolve. Thus main sequence stars not too different from
the Sun are usually considered the best candidates for
having habitable planets.

During the main sequence phase a star will be-
come a little brighter, which will push the habitable
zone slightly outwards. Thus the region where the tem-
perature remains suitable for a long period of time is
narrower than the habitable zone at any given moment.
The continuously habitable zone can be defined as the
region that remains habitable for a time that is compa-
rable to the main sequence phase of the star. For the
Sun the estimates of the width of this region vary at
least from 0.06 AU up to 0.2 AU. The problem is how

to model albedo and greenhouse effects over a very long
period of time.

Binary stars are very common, but at least earlier it
was thought that they could not have habitable planets,
since planetary orbits would be complicated or unstable.
However, there are two kinds of possible orbits that
might be suitable. If the components of a binary are
far away from each other, each component could have
a planetary system of its own. Or, if it’s a close binary,
there can be distant planets orbiting the whole binary
system.

20.4 Hazards

Even if life could emerge, there are many hazards that
may wipe it out. By looking at the Moon we can see that
meteor bombardment was very intense in the young so-
lar system. Collision of a big asteroid or comet could
be fatal, the immediate devastation caused by the explo-
sion being only one of the consequences. The collision
would eject a lot of dust to the atmosphere cooling the
climate for several years. The mass extinction 65 million
years ago seems to have been caused by such an event.
As the comet Shoemaker-Levy hitting Jupiter in 1994
showed, such collisions are still possible. Fortunately
they are not very frequent any more.

Almost all of the currently known exoplanets are
Jupiter-like giants. They seem to be necessary for habit-
able planets, because their perturbations clean the young
solar system from debris by ejecting it outside the plane-
tary system. However, many of the known giant planets
move on highly eccentric orbits, and they may disturb
also the orbits of earthlike planets. Thus it is further re-
quired that the giant planets should be on nearly circular
orbits and not too close to the star.

Also smaller planets have participated in clearing the
regions around their orbits, which is reflected in the new
definition of a planet.

Seasons depend on the obliquity of the rotation axis
and the eccentricity of the orbit. High values will lead
to strong seasonal temperature variations. In the case of
the Earth the Moon seems to have a stabilizing effect;
without the Moon the tilt of the axis would have varied
much more, possibly causing more severe ice ages fatal
to life. Hence also a relatively big moon seems to be in
the shopping list of a habitable planet.
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We have only recently started to understand the rather
delicate balance and complex feedback effects working
in the atmosphere. Currently the climate is warming
due to the increasing greenhouse effect, but the Earth
has experienced also quite opposite phases. If the albedo
increases, the amount of energy reaching the surface de-
creases, glaciers and snow cover expand, and the amount
of clouds increases till most of the atmospheric humid-
ity is solidified as snow and ice. All this will increase the
albedo further, speeding up this icehouse effect. There
is geological evidence of global glaciation periods 750–
580 million years ago and possibly also 2.3 billion years
ago. The Snowball Earth hypothesis assumes that the
climate cooled down for millions of years and the whole
surface was covered by a layer of ice at least one kilo-
meter thick. During the long cold period most of the
living organisms, all of which at that time lived in wa-
ter, became extinct. Volcanic activity was still going
on, adding more carbon dioxide to the atmosphere. Fi-
nally the resulting greenhouse effect started to warm the
climate.

There are many factors that seem to be crucial for
life. Some of them may not look very important, but
might still have made it impossible for life to emerge.
However, in many cases we don’t know how important
they really are or if they are equally crucial for foreign
life forms.

20.5 Origin of life

One way to try to understand the origin of the ter-
restrial life is to start with the available atoms and
molecules and see if they could produce life. During
the last decades there has been considerable progress,
but the process is very complicated and not yet well un-
derstood. Here we can only outline briefly how it might
have happened.

In a famous experiment in 1953 Harold Urey and
Stanley Miller sent energy in the form of electric sparks
through a gas mixture supposed to be similar to the
early atmosphere of the Earth, containing methane, am-
monia, hydrogen and water vapour. After a few days
the solution contained several organic compounds, in-
cluding some amino acids. At that time it was assumed
that the early atmosphere was reducing. More recent
studies suggest that this is not quite true, and the ear-

liest atmosphere was rather neutral, containing mostly
CO2, CO, N2, H2O and maybe some H2. Such an atmo-
sphere would have produced organic compounds much
slowlier, if at all.

Some amino acids have been found in meteorites.
Thus they seem to have been already present in the
nebula from which the planetary system condensed.
Complex organic molecules have been found also in
interstellar molecule clouds (Sect. 15.3). There have
even been claims of detecting the simplest amino acid,
glycine, but the results are controversial.

The next step, putting the basic blocks together to
form DNA or RNA molecules, is much more difficult.
This looks like the chicken and egg paradox: the in-
formation contained in the DNA is needed to make
proteins, and proteins are needed to catalyse the produc-
tion of the nucleotides, which are the building blocks of
the nucleic acids. So which came first?

In the 1980’s Sidney Altman and Thomas Cech found
that some RNA molecules can act as catalysts. Since
RNA resembles DNA, it can store genetic material to
some extent. Thus there is no need for the DNA and
proteins. Even RNA fragments cannot be synthesized
easily, but as they act as enzymes and can replicate, it
is assumed that the initial chemical evolution first led to
short and relatively simple RNA molecules. Eventually
some of then combined to more complex ones, some
of which were better adapted to the environment either
by replicating faster or by being more durable. Thus
the natural selection started to produce more complex
molecules; this chemical evolution was working already
before actual life emerged.

The first cell-like structures could evolve from asym-
metric molecules or lipids, one end of which attracts
water and the other end repels water. In water such
molecules tend to form bi-layered membranes where
the hydrophilic or water-attracting end points outwards
and hydrophobic or water-repelling end inwards. Fur-
ther on, such membranes form spontaneously spherical
vesicles. If RNA happened to get inside such a mem-
brane, it may have been protected from the environment,
and could have been contained within its own chemical
environment. In some cases this could have improved
its replication, and thus led to further increase its
concentration within the vesicle.

It is currently assumed that the first primitive life
forms were RNA life. RNA has, however, some draw-
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Fig. 20.2. Black smokers in the Mid-
Atlantic Ridge are hydrothermal vents
that sprout hot mineral-rich water.
(Photo: P. Rona, Credit: OAR/National
Undersea Research Program (NURP);
NOAA)

backs. It is not as stable as DNA, and its replication is
not as accurate as the protein mediated replication of
DNA. Evolution of RNA led finally to the appearance
of DNA molecules. Since DNA is superior to RNA due
to its stability, it soon took over the role of information
carrier.

Currently the energy of sunlight is utilized by plants
and some bacteria in photosynthesis, which produces

carbohydrates from water and carbon dioxide. There
are also organisms that do not need sunlight but can
use chemical energy to produce organic matter in a pro-
cess called chemosynthesis. Such organisms have been
found e.g. near hydrothermal vents on mid-ocean ridges
(Fig. 20.2). These vents eject hot mineral-rich water to
the ocean. Even though the temperature can be as high as
400 ◦C, the high pressure prevents the water from boil-
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ing. Although this is too hot for life, there are regions
around the vents where the temperature is suitable for
such thermophiles. They could have been the first life
forms, in which case life did not emerge in a Darwinian
warm pond but in a hot pressure kettle.

This kind of bottom-up approach tries to build
life from the simple constituents already available in
the interstellar space. Another approach, the top-down
method, tries to trace life back in time as far as possible.

The oldest sediment rocks on the Earth, found in
Isua in western Greenland, are 3.8 Ga old. Since they
contain sediments, deposited by water, and pillow lavas,
formed in water, the temperature at that time could not
have a value very different from the current one. The
solar luminosity was then lower than nowadays, but
the difference was compensated by a higher amount of
decaying radioactive materials and remanent heat of the
recently born Earth.

Oldest signs of life are almost as old. These signs
are, however, just isotope ratios that can be inter-

Fig. 20.3. A simplified phylogenetic
tree. A branch is the older the closer
it is to the last common ancestor,
LUCA. (Adapted from Webb: Where
is everybody?)

preted as results of bacterial life. The carbon isotope
12C is about 100 times as abundant as the heavier
isotope 13C. The lighter isotope is somewhat more re-
active and tends to be enriched in living organisms.
In the Isua rocks there are sediments with a small
excess of 12C, which might indicate some kind of
life.

In the Warrawoona Group in Australia there are
3.5 Ga old formations that look like stromatolites,
mounds consisting of layers of microbial cells and cal-
cium carbonate. If they are real stromatolites, they may
have been formed by cyanobacteria, but this is still
a matter of debate.

In the early times, at least for a billion years,
photosynthesis was non-oxygenic. Cyanobacteria were
possibly the first organisms capable of oxygenic photo-
synthesis. They started to produce oxygen, but initially
it was dissolved in water and consumed in different
oxidation reactions. Eventually also the amount of at-
mospheric oxygen started to rise, and 2.2 Ga ago it
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reached 10% of the current value, i.e. about 2% of the
total abundance in the atmosphere.

First eukaryotes appeared in the fossil record 2.1 Ga
ago and multicellular organisms 1.5 Ga ago. The fossil
evidence becomes much clearer towards the end of the
Proterozoic era. The Ediacara fauna, which is about 600
million years old, contains the oldest fossils of big and
complex animals. These were softbodied animals. At
the end of the Cambrian period 543 million years ago
traces of the Ediacara fauna disappear and are replaced
by a huge variety of new animals, many with protecting
shields. This increase in the variety of life forms is called
the Cambrian explosion.

All life forms use similar genetic codes, which in-
dicates that they have the same origin. This forefather
of all life is called LUCA, the Last Universal Common
Ancestor.

Relationships of living beings can be studied by com-
paring their DNA or RNA. The more the molecules of
two species differ, the more distant the species are in
the evolutionary sense. These distances can be plotted
as a map, called the phylogenetic tree (Fig. 20.3).

The phylogenetic tree, as we now know it, has
three branches, the domains of Archaea, Bacteria and
Eukarya. The organisms closest to the root are ther-
mophiles that live close to hydrothermal vents or in hot
water. Obviously, the LUCA lived in such a hot envi-
ronment. However, RNA molecules do not remain intact
in such hot environments. If the earliest life was RNA
life, it would have evolved in a cooler environment.
Currently we do not know the real birthplace of life.

Although the phylogenetic tree points to a common
origin, there may have been other starts, too, but natural
selection has eliminated the other ones that were less
competitive.

20.6 Are we Martians?

Mars and the Earth have very similar rotation periods
and axial tilts. Since the notorius ‘discovery’ of canals,
Mars and its inhabitants have been a popular subject
in science fiction stories. Later observations revealed
a very thin atmosphere and low temperature, which
make Mars a rather hostile place. Finally, the Viking
landers showed a marred planet. Yet the possibility of
some simple life forms cannot be excluded.

In 1984 a meteorite was found in the Allan Hills
region in Antarctica and labelled as ALH 84001 (Fig.
20.4). The piece of rock was estimated to be 3.9 Ga old.
Chemistry of the meteorite shows that it had originated
on Mars; an impact had thrown it to an orbit that brought
it to the Earth.

In 1996 a group of NASA scientists announced that
the meteorite contained structures resembling fossilized
microbes and compounds that could be products of
living organisms, such as polycyclic aromatic hydro-
carbons (or PAH) and magnetite. However, they can be
produced by other processes, too. Not surprisingly, the
results and the implications of Martian life caused a lot
of skepticism. Only further Mars expeditions and pos-
sible in situ experiments can decide whether there has
been life on Mars.

In case there has really been life on Mars, there are
several possibilities:

Life originated independently on the Earth and Mars.

Life originated only on the Earth and was then trans-
ported to Mars.

Life originated only on Mars and was transported to the
Earth.

It seems that life on the Earth emerged almost as soon
as the conditions became favourable. It has been argued
that the life appeared even too quickly. This problem
would be solved if life originated on Mars. The surface
of the more distant and smaller Mars had cooled down
faster to become habitable before the Earth. Thus life
would have had more time to evolve on Mars, and was
transferred to the Earth when conditions here became
suitable. Thus our earliest ancestors could be Martian
bacteria. Presently such considerations are, however,
just speculations.

The idea of life spreading from one celestial body
to another is known as panspermia. The idea dates
back to the antiquity, but its first serious advocate was
the Swedish chemist Svante Arrhenius, who published
a book on the subject in 1908. Of the later propo-
nents, Sir Fred Hoyle was the most famous. Panspermia
fit well to his cosmology: the universe had no begin-
ning, neither did life, but had always existed. Thus
the tough problem of the origin of life was neatly
avoided.
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Fig. 20.4. The meteorite
ALH 84001 found in
Antarctica has a chemical
composition that indicates
its Martian origin. The
meteorite contains sub-
stances that can be produced
by living organisms. The
wormlike structures resem-
ble bacteria. It is, however,
reasonable to ask whether
one single sample can prove
that once there was life on
Mars. (NASA)
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Now panspermia, in a certain more limited sense,
begins to seem a little more possible theory. Primitive
life forms can survive inside meteorites in the coldness
and lethal radiation of the interplanetary space long
enought to travel from one planet to another. Interstellar
distances, though, are too long, and the probability of
a meteoroid from one planetary system hitting another
system is too low. It seems obvious that our life has
originated here in our own solar system.

20.7 Life in the Solar system

Once there may have been life on Mars. Although
probes have not detected signs of life, it is not impossi-
ble that there might still be some microscopic life, but
we cannot expect to find any macroscopic life forms.
The same is true for other places in our solar system.

Mercury has no atmosphere, Venus is too hot, and the
giant planets have no solid surface. Besides the Earth
and Mars this leaves only some satellites as possible
habitats. It has also been speculated that there might
be living things floating in the atmospheres of the giant
planets, but the emergence and evolution of such things
seems rather improbable.

Europa as well as some other icy satellites are nowa-
days considered potential places for life. Their surfaces
are too cold, but tidal heating keeps the interiors warm
enough. Big satellites rotate synchronously, but if the
orbit is not perfectly circular, the orbital velocity varies
according to Kepler’s second law. Thus the satellite li-
brates just like our Moon, which means that the direction
of the tidal distortion keeps changing. Also the distance
to the planet varies, and therefore the magnitude of the
tidal force varies, too. These effects deform the satellite
continuously giving rise to tidal heating.

Europa’s surface is covered by ice. In some places
the ice cover is broken into plates that obviously have
moved relative to each other. The rotation period of the
surface differs from the rotation period of the magnetic
field, which is frozen to the interior. Observations seem
to indicate that the ice cover floats on an ocean.

The illumination under the ice is too dim for pho-
tosynthesis, but there might be thermal vents as in
the oceans of the Earth. Hence the ocean could be
a habitat for microbes that can utilize the thermal
energy.

Titan is the only satellite with a thick atmosphere.
The atmosphere is also rich in organic compounds, like
methane. Methane dissociates rapidly, and thus the high
methane content means that there must be a source of
new methane. Living organisms are one such source, but
because of its coldness Titan does not look like a promis-
ing place for life. A more plausible theory was that there
was a methane ocean on Titan but the Huygens probe
revealed a rather dry landscape, which, however, has
signs of liquid flows. Radar images sent by the Cassini
probe show some dark areas that might be methane lakes
(Fig. 7.44).

20.8 Exoplanets

Planetary systems are common around stars. However,
such systems are difficult to observe, since the bright-
ness of a planet is much less than the brightness of the
nearby star.

Earliest observations were based on astrometric mea-
surements. A planet orbiting a star makes the star
wobble in a periodic manner. Sinc this motion is very
minute, it is difficult to measure reliably, and the results
were not conclusive.

An easier method for detecting possible planets is to
observe the spectrum of the star. The periodic perturba-
tions caused by a planet can also be seen as Doppler
shifts in the spectral lines. The first candidate was
discovered in 1992 orbiting a pulsar. The first planet
orbiting a normal star, 51 Pegasi, was discovered in
1995.

Yet another method is based on occultations. If we
happen to be in the plane of the planetary orbit, the
planet will periodically cross the stellar disk, which
will be seen as a small decrese in the brightness.

Theoretical models predict that planetesimals are ac-
creting to planets much like in our solar system. One of
the best examples is the accretion disk around β Pictoris
(Fig. 20.5). There are also several other examples of
disks.

Most calculations have dealt with single stars around
which stable planetary orbits are easier to find. However,
stable orbits can also be found around binary stars either
close to one of the components, or far from both.

At the end of 2006 over 200 planetary systems had
been found. Most of the planetary systems have a planet
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Fig. 20.5. A detailed image of the circumstellar disk around
β Pictoris was obtained with the ESO ADONIS adaptive op-
tics system at the 3.6 m telescope at La Silla, Chile, and the
Observatoire de Grenoble coronagraph at the wavelength of
1.25 microns in 1996. The full extent of the disk is about
1500 AU. The area around the star masked by the corona-
graph is only 24 AU (corresponding to a distance from the
Sun to halfway between Uranus and Neptune). No planets are
directly seen but their gravitational effects can be detected as
a bending of the main plane in the inner part of the disk. (ESO)

Fig. 20.6. Distribution of the orbits and masses of the extraso-
lar planets known at the end of 2006. Open circles are planets
orbiting a pulsar.

Fig. 20.7. The first image of an exoplanet was obtained in
2004 with the VLT telescope. The mass of the planet is about
five times the mass of Jupiter and it orbits a brown dwarf at
a distance of 55 AU. (ESO)

or planets that are more massive than Jupiter and their
distance from the central star is small (Fig. 20.6). Such
bodies are easier to discover than smaller and more
distant planets but it is only a question of observing ac-
curacy and time. With the aid of new giant telescopes
and adaptive optics, the observing accuracy will im-
prove so that it will also become possible to detect
smaller planets. First images of giant exoplanets have
already been obtained (Fig. 20.7), but we are still far
from direct imaging of earthlike planets outside our
solar system.

Our picture on other solar systems has changed
rapidly in the beginning of the new millennium. Spec-
ulations have changed to discoveries and we now have
several examples of planetary systems.
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20.9 Detecting life

If we find a potentially habitable planet, is there any
hope that we can see if life has emerged on it? The
question can be answered by studying whether we can
find life on the Earth from satellite observations. In 1990
the Galileo probe made just such experiments, and it
seems that it is indeed possible to detect life, at least the
kind of life we have on the Earth. Similar observations
of the Moon showed no traces of life.

The detection is based on spectroscopic observations
that can reveal some signatures of life. These signatures
are in the infrared part of the spectrum, thus requiring
observations made outside the atmosphere.

There are two emission features that are strong
indicators of life, ozone and methane. Photosynthe-
sis is the most probable source of molecular oxygen,
which is then broken into two oxygen atoms by
ultraviolet radiation. The free oxygen atoms join
to molecules to form ozone. Methane is also pro-
duced by living beings. It is quickly oxidized, and
has to be continuously replenished to keep the level
noticeable. However, there can be large reservoirs
of methane, particularly in cold environments. Thus
methane itself is not a sign of life, but if it is
found together with ozone, the evidence becomes more
convincing.

Another feature is the infrared reflectance spectrum
of the green plants. Chlorophyll absorbs visible light,
particularly blue and red, but there is a distinct cutoff
called the red-edge, seen as a steep gradient of the spec-
trum between 690 and 740 nm. Longer wavelengths are
very effectively reflected to avoid excessive heating.

20.10 SETI — detecting intelligent life

Mankind has been sending radio transmissions for al-
most a century. Our radio signals are now filling a sphere
with a radius of almost one hundred lightyears. Another
civilization orbiting a nearby star might be able to pick
up this transmission with a big radio telescope. Such
leakage radiation is, however, very weak. Sensitivity of
our own radio receivers has increased enormously since
they were invented. Thus it has been possible to reduce
the power of the transmitters, and the signals leaking
to space have become weaker. Also, more and more

signals are sent in cables and optical fibres. If another
civilization has undergone similar development, detect-
ing leakage signals is extremely difficult. Chances are
much better if the signal has been sent intentionally to-
wards potential receivers in the hope that somebody will
detect it.

One might think that galaxies and star clusters are
worth listening, since there are many stars in the nar-
row beam of the telescope. Unfortunately, it is not
quite so. Other galaxies are so far away that the sig-
nal could be too weak to be detected. Globular clusters
consist of very old stars with low metallicity. Thus
the probability of finding a habitable planet is tiny
indeed. Open clusters are relatively young, and life
may not have had time to evolve to a communicating
civilization.

What frequency should we use? If the sending and
receiving party have developed radio astronomy, they
must be aware of certain common frequencies, like the
hydrogen 21 cm radiation. Such a wavelength itself may
not be a good choice because of the background noise,
but some of its multiples or a sum of two common
frequencies might fall in the quiet part of the radio
spectrum. A good frequency could be the H2O maser
emission at 22 GHz. Around this frequency the sky
is pretty quiet except for a few sources. But it is not
enough to listen to those frequencies only, since they
are Doppler shifted due to the relative motion of the
transmitter and receiver. And if the transmitter and/or
receiver are on planets orbiting a star, the Doppler
shift will change periodically. Fortunately, current re-
ceivers are capable of following millions of frequencies
simultaneously.

Radio emission from natural sources can be steady
noise or vary in a periodic, quasiperiodic or chaotic
manner. If we want to send a signal to be recognised
as artificial, it should contain a pattern that cannot arise
naturally. It could e.g. contain an increasing number of
pulses representing the first few prime numbers.

Although most SETI research concentrates on ra-
dio frequencies, also optical wavelengths have recently
been considered seriously. Pulsed lasers pack a lot of
energy to a short pulse (lasting typically one nanosec-
ond) confined to a very narrow wavelength band and
a narrow beam. The flash can be even brighter than the
central star. If such a signal were pointed towards us, it
should be relatively easy to detect. Such optical SETI
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research, or OSETI, has already been started, but it is
still behind the radioastronomical SETI.

In 1974 Frank Drake used the Arecibo radio tele-
scope to send a message towards the globular cluster
M13 (which is not a good place for life). The message
contained 1679 pulses. This number has exactly two
factors, 23 and 73. Thus the receiver, who obviously
must understand some mathematics, could guess that
the message contains a two-dimensional picture. If we
ever detect such a message, we can be pretty certain of
its artificial origin, even if we were not able to interpret
the message.

The first serious SETI project (Search for ExtraTer-
restrial Civilizations) was carried out in 1960, also by
Frank Drake. This project Ozma observed two nearby
stars, τ Cet and ε Eri, at the 21 cm wavelength. Since
then radio technology has improved enormously, and
currently we are able to listen to a huge number of
channels at the same time.

There are two basic search strategies. In a targeted
search we listen to a few objects that are potential can-
didates for harbouring life. In a wide-sky survey large
areas of the sky are scanned. Most current projects
belong to the latter category.

Observing time with large telescopes is expensive,
and priority is given to projects that can be expected
to produce positive results. In some projects, like
SERENDIP, this problem is avoided by having the
receiver sit piggyback on some other instrument and
listen to whatever the telescope happens to be observ-
ing. Thus the SETI project does not need any dedicated
time of its own. The drawback is, of course, that many
of the target areas may not be interesting in the SETI
sense.

Detecting a potentially artificial signal among the
huge amount of data requires a lot of computing power.
The seti@home project has connected millions of com-
puters to an enormous virtual machine to analyze
the data. Anyone with a computer connected to the
Internet can load a screensaver program that will au-
tomatically fetch packets of data and send back the
results.

Thus far not a single message sent by another civ-
ilization has been confirmed. There have been some
interesting cases, but they have been single bursts of
unknown origin. They have not been detected later, not
even with more sensitive instruments.

20.11 Number of civilizations

Although no extraterrestrial civilization has been found,
we can try to estimate their number. The SETI pioneer
Frank Drake suggested a formula for calculating the
number of civilizations in the Milky Way capable of
communication at a given instant:

N = R × fp × fh × fl × fi × fc × L, (20.1)

where N is the total number of communicating civiliza-
tions in the Milky Way, R is the annual birth rate of
stars, fp is the fraction of stars possessing planets, fh is
the fraction of planets being habitable, fl is the fraction
of habitable planets having some kind of life, fi is the
fraction of these planets having intelligent life, fc is the
fraction of intelligent civilizations that have developed
means for interstellar communication, and finally L is
the time in years that such a civilization has been com-
municating. All the f -factors are probabilities that are
in the range [0, 1].

The astronomical factors (R, fp and fh) are the
only ones that are known with any accuracy. The bi-
ological factors, fl and fi, involve a lot of guesswork.
The last two factors, fc and L, are even harder, since
they are related to the sociological behaviour of the
exocivilization.

Actually, the formula was intended as the basis of the
agenda of an influential SETI meeting held in Green
Bank in 1961. It splits the problem nicely into smaller
subproblems that can be discussed separately. But using
the formula to find the actual number of civilizations is
not very meaningful, since so many of the factors are to-
tally unknown. In the most “optimistic” case we could
find out that the distance between neighbouring civiliza-
tions is just a few parsecs, but giving the probabilities
small (possibly more realistic) values, their product might
be so minute that we ought to be alone in the Milky Way.
At least the formula shows how little we know.

Even if favourable conditions and evolution of com-
municating civilizations were relatively common, the
last factor may turn out to be the limiting one. If the
lifetime of a civilization is short compared to the age
of the universe, the chances of hearing a message from
another star are poor.

Earlier many astronomers seemed to think that ex-
ocivilizations would not be that rare, while biologists
showed that the evolution of life had so many obsta-
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cles that we should not expect to find other civilizations
in our neighbourhood. Now we understand better both
the biochemistry of early life and the many prob-
lems in having a habitable planet. Although opinions
vary considerably, we might guess that very simple
microbe-like life is relatively common, but intelligent,
communicating beings might be extremely rare.

20.12 Exercises

Exercise 20.1 Calculate the limits of the habitable
zone of the Sun assuming the planet is a fast-rotating

blackbody with a Bond albedo of 0.3. What is the con-
tinuously habitable zone, if the luminosity of the Sun
was originally 0.7 times the current value?

Exercise 20.2 Assume there are n stars in a cubic
parsec and a fraction p of them have communicating
civilizations. What is the average distance between two
neighbouring civilizations? Apply the result to the solar
vicinity. The stellar density can be estimated from Ta-
ble C.17. What is the average distance between nearest
civilizations, if the probability of a star having a planet
with a civilization is a) 0.01, b) 0.00001 ?



Photograph on opposite page: Peculiar spiral galaxy
ESO 510-13 in the southern constellation Hydra (The
Water-snake). It resembles the famous “Sombrero”
galaxy, but its equatorial dust plane is pronouncedly
warped. The photo is credit ESO and was obtained with
VLT ANTU and FORS
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A. Mathematics

A.1 Geometry

Units of Angle and Solid Angle. Radian is the angular
unit most suitable for theoretical studies. One radian
is the angle subtended by a circular arc whose length
equals the radius. If r is the radius of a circle and s the
length of an arc, the arc subtends an angle

α= s/r .

Since the circumference of the circle is 2πr, we have

2π rad = 360◦ or 1 rad = 180◦/π .

In an analogous way we can define a steradian, a unit
of solid angle, as the solid angle subtended by a unit area
on the surface of a unit sphere as seen from the centre.
An area A on the surface of a sphere with radius r
subtends a solid angle

ω= A/r2 .

Since the area of the sphere is 4πr2, a full solid angle
equals 4π steradians.

Circle

Area A = πr2 .

Area of a sector As = 1

2
αr2 .

Sphere

Area A = 4πr2 .

Volume V = 4

3
πr3 .

Volume of a sector Vs = 2

3
πr2h = 2

3
πr3(1− cosα)

= Vsphere havα .

Area of a segment As = 2πrh = 2πr2(1− cosα)

= Asphere havα .

A.2 Conic Sections

As the name already says, conic sections are curves
obtained by intersecting circular cones with planes.
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Ellipse. Equation in rectangular coordinates

x2

a2
+ y2

b2
= 1 .

a = the semimajor axis,

b = the semiminor axis b = a
√

1− e2,

e = eccentricity 0 ≤ e< 1.

Distance of the foci from the centre c = ea.

Parameter (semilatus rectum) p = a(1− e2).

Area A = πab.

Equation in polar coordinates

r = p

1+ e cos f
,

where the distance r is measured from one focus, not
from the centre.

When e = 0, the curve becomes a circle.

Hyperbola. Equations in rectangular and polar
coordinates

x2

a2
− y2

b2
= 1 , r = p

1+ e cos f
.

Eccentricity e> 1.

Semi-minor axis b = a
√

e2 −1.

Parameter p = a(e2 −1).

Asymptotes y = ± b
a x.

Parabola. Parabola is a limiting case between the
previous ones; its eccentricity is e = 1.

Equations

x = −ay2 , r = p

1+ cos f
.

Distance of the focus from the apex h = 1/4 a.
Parameter p = 1/2 a.
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A.3 Taylor Series

Let us consider a differentiable real-valued function of
one variable f : R → R. The tangent to the graph of the
function at x0 is

y = f(x0)+ f ′(x0)(x − x0) ,

where f ′(x0) is the derivative of f at x0. Now, if x is
close to x0, the graph of the tangent at x will not be very
far from the graph of the function itself. Thus, we can
approximate the function by

f(x)≈ f(x0)+ f ′(x0)(x − x0) .

The approximation becomes worse, the more the deriva-
tive f ′ varies in the interval [x0, x]. The rate of change
of f ′ is described by the second derivative f ′′, and
so on. To improve accuracy, we have to also include
higher derivatives. It can be shown that the value of
the function f at x is (assuming that the derivatives
exist)

f(x)= f(x0)+ f ′(x0)(x − x0)

+ 1

2
f ′′(x0)(x − x0)

2 + . . .

+ 1

n! f (n)(x0)(x − x0)
n + . . . ,

where f (n)(x0) is the nth derivative at x0 and n! is the
n-factorial, n! = 1 ·2 ·3 · . . . ·n. This expansion is called
the Taylor series of the function at x0.

The following list gives some useful Taylor series (in
all these cases we have x0 = 0):

1

1+ x
= 1− x + x2 − x3 + . . .

converges if |x|< 1

1

1− x
= 1+ x + x2 + x3 + . . .

√
1+ x = 1+ 1

2
x − 1

8
x2 + 1

16
x3 − . . .

√
1− x = 1− 1

2
x − 1

8
x2 − 1

16
x3 − . . .

1√
1+ x

= 1− 1

2
x + 3

8
x2 − 5

16
x3 − . . .

1√
1− x

= 1+ 1

2
x + 3

8
x2 + 5

16
x3 + . . .

ex = 1+ x + 1

2! x2 + 1

3! x3 + . . .+ 1

n! xn + . . .
converges for all x

ln(1+ x)= x − 1

2
x2 + 1

3
x3 − 1

4
x4 + . . .

x ∈ (−1, 1]

sin x = x − 1

3! x3 + 1

5! x5 − . . . for all x

cos x = 1− 1

2! x2 + 1

4! x4 − . . . for all x

tan x = x + 1

3
x3 + 2

15
x5 + . . . |x|< π

2
.

Many problems involve small perturbations, in which
case it is usually possible to find expressions having very
rapidly converging Taylor expansions. The great advan-
tage of this is the reduction of complicated functions
to simple polynomials. Particularly useful are linear
approximations, such as

√
1+ x ≈ 1+ 1

2
x ,

1√
1+ x

≈ 1− 1

2
x , etc.

A.4 Vector Calculus

A vector is an entity with two essential properties: mag-
nitude and direction. Vectors are usually denoted by
boldface letters a, b, A, B etc. The sum of the vectors
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A and B can be determined graphically by moving the
origin of B to the tip of A and connecting the origin of
A to the tip of B. The vector −A has the same mag-
nitude as A, is parallel to A, but points in the opposite
direction. The difference A− B is defined as A+ (−B).

Addition of vectors satisfies the ordinary rules of
commutativity and associativity,

A+ B = B+ A ,

A+ (B+C)= (A+ B)+C .

A point in a coordinate frame can be specified by
giving its position or radius vector, which extends from
the origin of the frame to the point. The position vector r
can be expressed in terms of basis vectors, which are
usually unit vectors, i. e. have a length of one distance
unit. In a rectangular xyz-frame, we denote the basis
vectors parallel to the coordinate axes by î, ĵ and k̂. The
position vector corresponding to the point (x, y, z) is
then

r = x î + y ĵ + zk̂ .

The numbers x, y and z are the components of r. Vectors
can be added by adding their components. For example,
the sum of

A = ax î +ay ĵ +az k̂ ,

B = bx î +by ĵ +bz k̂ ,

is

A+ B = (ax +bx)î + (ay +by) ĵ + (az +bz)k̂ .

The magnitude of a vector r in terms of its
components is

r = |r| =
√

x2 + y2 + z2 .

The scalar product of two vectors A and B is a real
number (scalar)

A · B = axbx +ayby +azbz = |A||B| cos(A, B) ,

where (A, B) is the angle between the vectors A and B.
We can also think of the scalar product as the projec-
tion of, say, A in the direction of B multiplied by the
length of B. If A and B are perpendicular, their scalar
product vanishes. The magnitude of a vector expressed
as a scalar product is A = |A| = √

A · A.
The vector product of the vectors A and B is a vector

A× B = (aybz −azby)î + (azbx −axbz) ĵ

+ (axby −aybx)k̂

=

∣∣∣∣∣∣∣
î ĵ k̂

ax ay az

bx by bz

∣∣∣∣∣∣∣ .
This is perpendicular to both A and B. Its length gives
the area of the parallelogram spanned by A and B. The
vector product of parallel vectors is a null vector. The
vector product is anti-commutative:

A× B = −B× A .
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Scalar and vector products satisfy the laws of
distributivity:

A · (B+C)= A · B+ A ·C ,

A× (B+C)= A× B+ A×C ,

(A+ B) ·C = A ·C + B ·C ,

(A+ B)×C = A×C + B×C .

A scalar triple product is a scalar

A× B ·C =

∣∣∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣∣∣
.

Here the cross and dot can be interchanged and the
factors permuted cyclically without affecting the value
of the product. For example A× B ·C = B×C · A = B ·
C × A, but A× B ·C = −B× A ·C.

A vector triple product is a vector, which can be
evaluated using one of the expansions

A× (B×C)= B(A ·C)−C(A · B) ,

(A× B)×C = B(A ·C)− A(B ·C) .

In all these products, scalar factors can be moved
around without affecting the product:

A · kB = k(A · B) ,

A× (B× kC)= k(A× (B×C)) .

The position vector of a particle is usually a function
of time r = r(t)= x(t)î + y(t) ĵ + z(t)k̂. The velocity of
the particle is a vector, tangent to the trajectory, obtained
by taking the derivative of r with respect to time:

v = d

dt
r(t)= ṙ = ẋ î + ẏ ĵ + żk̂ .

The acceleration is the second derivative, r̈.
Derivatives of the various products obey the same

rules as derivatives of products of real-valued function:

d

dt
(A · B)= Ȧ · B+ A · Ḃ ,

d

dt
(A× B)= Ȧ× B+ A× Ḃ .

When computing a derivative of a vector product, one
must be careful to retain the order of the factors, since
the sign of the vector product changes if the factors are
interchanged.

A.5 Matrices

Assume we have a vector x with components (x, y, z).
We can calculate another vector x′ = (x′, y′, z′), the
components of which are linear combinations of the
original components:

x′ = a11x +a12 y +a13z ,

y′ = a21x +a22 y +a23z ,

z′ = a31x +a32 y +a33z .

This is a linear transform that maps the vector x to
a vector x′.

We can collect the coefficients to an array, called
a matrix A:

A =
⎛
⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠ .

A general matrix can consist of an arbitrary number of
rows and columns. In this book we need only matri-
ces operating on vectors of a three-dimensional space,
and they always have three rows and columns. Two sub-
scripts refer to the different elements of the matrix, the
first one giving the row and the second one the column.
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When using matrix formalism it is convenient to
write vectors in the form of column vectors:

A =
⎛
⎜⎝x

y

z

⎞
⎟⎠ .

We now define that the product of a matrix and
a column vector

x′ = Ax

or ⎛
⎜⎝x′

y′

z′

⎞
⎟⎠=

⎛
⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠
⎛
⎜⎝x

y

z

⎞
⎟⎠

means just

x′ = a11x +a12 y +a13z ,

y′ = a21x +a22 y +a23z ,

z′ = a31x +a32 y +a33z .

Comparing these equations we see, for example, that
the first component of x′ is obtained by taking the first
row of the matrix, multiplying the components of the
vector x by the corresponding components of that row,
and finally adding the products.

This definition can easily be generalised to the
product of two matrices. The elements of the matrix

C = AB

are

cij =
∑

k

aikbk j .

This is easy to remember by noting that we take the
row i of the first factor A and the column j of the
second factor B and evaluate the scalar product of the
two vectors. For example⎛
⎜⎝1 1 1

0 1 2

1 2 3

⎞
⎟⎠
⎛
⎜⎝1 2 0

2 1 1

1 3 2

⎞
⎟⎠

=
⎛
⎜⎝1+2+1 2+1+3 0+1+2

0+2+2 0+1+6 0+1+4

1+4+3 2+2+9 0+2+6

⎞
⎟⎠

=
⎛
⎜⎝4 6 3

4 7 5

8 13 8

⎞
⎟⎠ .

When multiplying matrices, we have to be careful
with the order of the factors, because usually AB �= BA.
If we multiply the matrices of the previous example in
the reverse order, we get quite a different result:⎛
⎜⎝1 2 0

2 1 1

1 3 2

⎞
⎟⎠
⎛
⎜⎝1 1 1

0 1 2

1 2 3

⎞
⎟⎠=

⎛
⎜⎝1 3 5

3 5 7

3 8 13

⎞
⎟⎠ .

A unit matrix I is a matrix, which has ones on its
diagonal and zeros elsewhere:

I =
⎛
⎜⎝1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

If a vector or a matrix is multiplied by a unit matrix, it
will remain unchanged.

If the product of two matrices is a unit matrix, the
two matrices are inverse matrices of each others. The
inverse matrix of A is denoted by A−1. It satisfies the
equations

A−1 A = AA−1 = I .

In spherical astronomy we need mainly rotation ma-
trices, describing the rotation of a coordinate frame. The
following matrices correspond to rotations around the
x, y and z axes, respectively:

Rx(α)=
⎛
⎜⎝1 0 0

0 cosα sinα

0 − sinα cosα

⎞
⎟⎠ ,

Ry(α)=
⎛
⎜⎝ cosα 0 sinα

0 1 0

− sinα 0 cosα

⎞
⎟⎠ ,

Rz(α)=
⎛
⎜⎝ cosα sinα 0

− sinα cosα 0

0 0 1

⎞
⎟⎠ .

If the angle is α= 0, only a unit matrix remains.
The elements of a rotation matrix can easily be de-

termined. For example, a rotation around the x axis will
leave the x coordinate unaffected, and thus the first row
and column must be zeroes, except for the diagonal ele-
ment, which must be one. This will leave four elements.
When the angle is zero, the matrix has to reduce to a unit
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matrix; thus the diagonal elements must be cosines and
the other ones sines. The only problem is to decide,
which of the sines will get the minus sign. This is most
easily done by testing the effect of the matrix on some
basis vector.

The inverse matrix of a rotation matrix corresponds
to a rotation in the opposite direction. Thus it is obtained
from the original matrix by replacing the angle α by −α.
The only change in the matrix is that the signs of the
sines are changed.

For example, the precession matrix is a product of
three rotation matrices. Since the matrix product is not
commutative, these rotations must be carried out in the
correct order.

A.6 Multiple Integrals

An integral of a function f over a surface A

I =
∫
A

f d A

can be evaluated as a double integral by expressing the
surface element d A in terms of coordinate differentials.
In rectangular coordinates,

d A = dx dy

and in polar coordinates

d A = r dr dϕ .

The integration limits of the innermost integral may
depend on the other integration variable. For example,
the function xey integrated over the shaded area is

I =
∫
A

xey d A =
1∫

x = 0

2x∫
y = 0

xey dx dy

=
1∫

0

[∣∣∣∣
2x

0
xey

]
dx =

1∫
0

(xe2x − x) dx

=
∣∣∣∣
1

0

1

2
xe2x − 1

4
e2x − 1

2
x2 = 1

4
(e2 −1) .

The surface need not be confined to a plane. For
example, the area of a sphere is

A =
∫
S

dS ,

where the integration is extended over the surface S of
the sphere. In this case the surface element is

dS = R2 cos θ dϕ dθ ,

and the area is

A =
2π∫

ϕ= 0

π/2∫
θ =−π/2

R2 cos θ dϕ dθ

=
2π∫

0

[∣∣∣∣
π /2

−π /2
R2 sin θ

]
dϕ

=
2π∫

0

2R2 dϕ = 4πR2 .
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Similarly, a volume integral

I =
∫
V

f dV

can be evaluated as a triple integral. In rectangular
coordinates, the volume element dV is

dV = dx dy dz ;
in cylindrical coordinates

dV = r dr dϕ dz ,

and in spherical coordinates

dV = r2 cos θ dr dϕ dθ

(θ measured from the xy plane)

or

dV = r2 sin θ dr dϕ dθ

(θ measured from the z axis) .

For example, the volume of a sphere with radius R is

V =
∫
V

dV

=
R∫

r = 0

2π∫
ϕ= 0

π /2∫
θ =−π /2

r2 cos θ dr dϕ dθ

=
R∫

0

2π∫
0

[∣∣∣∣
π/2

−π/2
r2 sin θ

]
dr dϕ

=
R∫

0

2π∫
0

2r2 dr dϕ

=
R∫

0

4πr2 dr =
∣∣∣∣

R

0

4πr3

3
= 4

3
πR3 .

A.7 Numerical Solution of an Equation

We frequently meet equations defying analytical so-
lutions. Kepler’s equation is a typical example. If we
cannot do anything else, we can always apply some nu-
merical method. Next we shall present two very simple
methods, the first of which is particularly suitable for
calculators.

Method 1: Direct Iteration. We shall write the equation
as f(x)= x. Next we have to find an initial value x0 for
the solution. This can be done, for example, graphically
or by just guessing. Then we compute a succession of
new iterates x1 = f(x0), x2 = f(x1), and so on, until
the difference of successive solutions becomes smaller
than some preset limit. The last iterate xi is the solution.
After computing a few xi’s, it is easy to see if they are
going to converge. If not, we rewrite the equation as
f −1(x)= x and try again. ( f −1 is the inverse function
of f .)

As an example, let us solve the equation x = − ln x.
We guess x0 = 0.5 and find

x1 = − ln 0.5 = 0.69 , x2 = 0.37 , x3 = 1.00 .
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This already shows that something is wrong. Therefore
we change our equation to x = e−x and start again:

x0 = 0.5 ,

x1 = e−0.5 = 0.61 ,

x2 = 0.55 ,

x3 = 0.58 ,

x4 = 0.56 ,

x5 = 0.57 ,

x6 = 0.57 .

Thus the solution, accurate to two decimal places, is
0.57.

Method 2. Interval Halving. In some pathological
cases the previous method may refuse to converge. In
such situations we can use the foolproof method of in-
terval halving. If the function is continuous (as most
functions of classical physics are) and we manage to find
two points x1 and x2 such that f(x1) > 0 and f(x2) < 0,
we know that somewhere between x1 and x2 there must
be a point x in which f(x)= 0. Now we find the sign

of f in the midpoint of the interval, and select the half
of the interval in which f changes sign. We repeat this
procedure until the interval containing the solution is
small enough.

We shall try also this method on our equation
x = − ln x, which is now written as f(x)= 0, where
f(x)= x + ln x. Because f(x)→ −∞, when x → 0 and
f(1) > 0, the solution must be in the range (0, 1). Since
f(0.5) < 0, we know that x ∈ (0.5, 1). We continue in
this way:

f(0.75) > 0 ⇒ x ∈ (0.5, 0.75) ,

f(0.625) > 0 ⇒ x ∈ (0.5, 0.625) ,

f(0.563) < 0 ⇒ x ∈ (0.563, 0.625) ,

f(0.594) > 0 ⇒ x ∈ (0.563, 0.594) .

The convergence is slow but certain. Each iteration
restricts the solution to an interval which is half as large
as the previous one, thus improving the solution by one
binary digit.
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B. Theory of Relativity

Albert Einstein published his special theory of relativ-
ity in 1905 and the general theory of relativity ten

years later. Especially the general theory, which is es-
sentially a gravitation theory, has turned out to be very
important for the theories of the evolution of the Uni-
verse. Therefore it is appropriate to consider here some
basic principles of relativity theory. A more detailed dis-
cussion would require sophisticated mathematics, and
is beyond the scope of this very elementary book.

B.1 Basic Concepts

Everyone knows the famous Pythagorean theorem

∆s2 =∆x2 +∆y2 ,

where∆s is the length of the hypotenuse of a right-angle
triangle, and∆x and∆y are the lengths of the other two
sides. (For brevity, we have denoted∆s2 = (∆s)2.) This
is easily generalized to three dimensions:

∆s2 =∆x2 +∆y2 +∆z2 .

This equation describes the metric of an ordinary rect-
angular frame in a Euclidean space, i. e. tells us how to
measure distances.

Generally the expression for the distance between
two points depends on the exact location of the points.
In such a case the metric must be expressed in terms
of infinitesimal distances in order to correctly take into
account the curvature of the coordinate curves. (A co-
ordinate curve is a curve along which one coordinate
changes while all the others remain constant.) An in-
finitesimal distance ds is called the line element. In
a rectangular frame of a Euclidean space it is

ds2 = dx2 +dy2 +dz2 ,

and in spherical coordinates

ds2 = dr2 +r2(dθ2 + cos2 θ dφ2) .

Generally ds2 can be expressed as

ds2 =
∑
i, j

gij dxi dx j ,

where the xi’s are arbitrary coordinates, and the co-
efficients gij are components of the metric tensor.
These can be functions of the coordinates, as in the
case of the spherical coordinates. The metric ten-
sor of an n-dimensional space can be expressed as
an n ×n matrix. Since dxi dx j = dx jdxi , the metric
tensor is symmetric, i. e. gij = g ji . If all coordinate
curves intersect perpendicularly, the coordinate frame
is orthogonal. In an orthogonal frame, gij = 0 for all
i �= j. For example, the spherical coordinates form an
orthogonal frame, the metric tensor of which is

(gij)=
⎛
⎜⎝1 0 0

0 r2 0

0 0 r2 cos2 θ

⎞
⎟⎠ .

If it is possible to find a frame in which all the
components of g are constant, the space is flat. In
the rectangular frame of a Euclidean space, we have
g11 = g22 = g33 = 1; hence the space is flat. The spher-
ical coordinates show that even in a flat space, we can
use frames in which the components of the metric tensor
are not constant. The line element of a two-dimensional
spherical surface is obtained from the metric of the
spherical coordinate frame by assigning to r some fixed
value R:

ds2 = R2(dθ2 + cos2 θ dφ2) .

The metric tensor is

(gij)=
(

1 0

0 cos2 φ

)
.

This cannot be transformed to a constant tensor. Thus
the surface of a sphere is a curved space.

If we know the metric tensor in some frame, we
can compute a fourth-order tensor, the curvature ten-
sor Rijkl , which tells us whether the space is curved
or flat. Unfortunately the calculations are slightly too
laborious to be presented here.

The metric tensor is needed for all computations in-
volving distances, magnitudes of vectors, areas, and so
on. Also, to evaluate a scalar product, we must know
the metric. In fact the components of the metric tensor
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can be expressed as scalar products of the basis vectors:

gij = êi · ê j .

If A and B are two arbitrary vectors

A =
∑

i

ai êi , B =
∑

i

bi êi ,

their scalar product is

A · B =
∑

i

∑
j

aib j êi · ê j =
∑

i

∑
j

gija
ib j .

B.2 Lorentz Transformation.
Minkowski Space

The special theory of relativity abandoned the absolute
Newtonian time, supposed to flow at the same rate for
every observer. Instead it required that the speed of light
must have the same value c in all coordinate frames. The
constancy of the speed of light follows immediately
from the basic assumptions of the special theory of
relativity. This is possible only if different observers
measure time intervals differently.

Let us send a beam of light from the origin. It travels
along a straight line at the speed c. Thus, at the moment t
its space and time coordinates satisfy the equation

x2 + y2 + z2 = c2t2 . (B.1)

Next we study what the situation looks like in another
frame, x′y′z′, moving at a velocity v with respect to
the xyz frame. Let us select the new frame so that it
coincides with the xyz frame at t = 0. Also, let the time
coordinate t ′ of the x′y′z′ frame be t ′ = 0 when t = 0.
And finally we assume that the x′y′z′ frame moves in
the direction of the positive x axis. Since the beam of
light must also travel at the speed c in the x′y′z′ frame,
we must have

x′2 + y′2 + z′2 = c2t ′2 .

If we require that the new (dashed) coordinates be ob-
tained from the old ones by a linear transformation, and
also that the inverse transformation be obtained simply
by replacing v by −v, we find that the transformation

must be

x′ = x −vt√
1−v2/c2

,

y′ = y ,

z′ = z ,

t ′ = t −vx/c2√
1−v2/c2

.

(B.2)

This transformation between frames moving at a con-
stant speed with respect to each other is called the
Lorentz transformation.

Because the Lorentz transformation is derived as-
suming the invariance of (B.1), it is obvious that the
interval

∆s2 = −c2∆t2 +∆x2 +∆y2 +∆z2

of any two events remains invariant in all Lorentz
transformations. This interval defines a metric in four-
dimensional spacetime. A space having such a metric
is called the Minkowski space or Lorentz space. The
components of the metric tensor g are

(gij)=

⎛
⎜⎜⎜⎝

−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ .

Since this is constant, the space is flat. But it is no
longer an ordinary Euclidean space, because the sign of
the time component differs from the sign of the space
components. In the older literature, a variable ict is
often used instead of time, i being the imaginary unit.
Then the metric looks Euclidean, which is misleading;
the properties of the space cannot be changed just by
changing notation.

In a Minkowski space position, velocity, momen-
tum and other vector quantities are described by
four-vectors, which have one time and three space com-
ponents. The components of a four-vector obey the
Lorentz transformation when we transform them from
one frame to another, both moving along a straight line
at a constant speed.

According to classical physics the distance of two
events depends on the motion of the observer, but the
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time interval between the events is the same for all
observers. The world of special relativity is more an-
archistic: even time intervals have different values for
different observers.

B.3 General Relativity

The Equivalence Principle. Newton’s laws relate the
acceleration, a, of a particle and the applied force F by

F = mia ,

where mi is the inertial mass of the particle, resisting
the force trying to move the particle. The gravitational
force felt by the particle is

F = mg f ,

where mg is the gravitational mass of the particle, and
f is a factor depending only on other masses. The
masses mi and mg appear as coefficients related to to-
tally different phenomena. There is no physical reason
to assume that the two masses should have anything in
common. However, already the experiments made by
Galilei showed that evidently mi = mg. This has been
verified later with very high accuracy.

The weak equivalence principle, which states that
mi = mg, can therefore be accepted as a physical axiom.
The strong equivalence principle generalises this: if we
restrict our observations to a sufficiently small region of
spacetime, there is no way to tell whether we are subject
to a gravitational field or are in uniformly accelerated
motion. The strong equivalence principle is one of the
fundamental postulates of general relativity.

Curvature of Space. General relativity describes grav-
itation as a geometric property of the spacetime. The
equivalence principle is an obvious consequence of this
idea. Particles moving through spacetime follow the
shortest possible paths, geodesics. The projection of
a geodesic onto a three-dimensional space need not be
the shortest way between the points.

The geometry of spacetime is determined by the mass
and energy distribution. If this distribution is known,
we can write the field equations, which are partial dif-
ferential equations connecting the metric to the mass
and energy distribution and describing the curvature of
spacetime.

In the case of a single-point mass, the field equa-
tions yield the Schwarzschild metric, the line element
of which is

ds2 = −
(

1− 2G M

c2r

)
c2 dt2 + dr2

1−2G M/c2r

+r2(dθ2 + cos2 θ dφ2) .

Here M is the mass of the point; r, θ and φ are or-
dinary spherical coordinates. It can be shown that the
components cannot be transformed to constants simul-
taneously: spacetime must be curved due to the mass.

If we study a very small region of spacetime, the
curvature has little effect. Locally the space is always
a Minkowski space where special relativity can be used.
Locality means not only a limited spatial volume but
also a limited interval in time.

Unlike in the Newtonian formalism in general rela-
tivity there are no equations of motion describing the
motion of a particle. It is possible to use the positions of
the bodies to compute the metric tensor of the space and
then the geodesics representing the orbits of the bodies.
When the bodies are moving, the metric of the space
keeps changing, and thus this method is very laborious.
The PPN (Parametrized Post-Newtonian) formalism
has been developed for practical calculations, yielding
approximate equations of motion. It contains ten con-
stants, the values of which are specific for Einstein’s the-
ory of gravity. Alternative theories give different values
for these constants. The formalism therefore provides
a framework for experimental tests of general relativity.

The PPN formalism is an approximation that can be
used if velocities are well below the speed of light and
the gravitational field is weak and hence the curvature
of the space is low.

B.4 Tests of General Relativity

General relativity gives predictions different from clas-
sical physics. Although the differences are usually very
small, there are some phenomena in which the deviation
can be measured and used to test the validity of general
relativity. At presents five different astronomical tests
have verified the theory.

First of all the orbit of a planet is no longer a closed
Keplerian eclipse. The effect is strongest for the inner-
most planets, whose perihelia should turn little by little.
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Most of the motion of the perihelion of Mercury is pre-
dicted by Newtonian mechanics; only a small excess of
43 arc seconds per century remains unexplained. And it
so happens that this is exactly the correction suggested
by general relativity.

Secondly a beam of light should bend when it trav-
els close to the Sun. For a beam grazing the surface,
the deviation should be about 1.75′′. Such effects have
been observed during total solar eclipses and also by
observing pointlike radio sources, just before and after
occultation by the Sun.

The third classical way of testing general relativ-
ity is to measure the redshift of a photon climbing in
a gravitational field. We can understand the redshift
as an energy loss while the photon does work against
the gravitational potential. Or we can think of the red-
shift as caused by the metric only: a distant observer
finds that near a mass, time runs slower, and the fre-
quency of the radiation is lower. The time dilation in
the Schwarzschild metric is described by the coefficient
of dt; thus it is not surprising that the radiation emitted

at a frequency ν from a distance r from a mass M has
the frequency

ν∞ = ν

√
1− 2G M

c2r
, (B.3)

if observed very far from the source. This grav-
itational redshift has been verified by laboratory
experiments.

The fourth test employs the slowing down of the
speed of light in a gravitational field near the Sun. This
has been verified by radar experiments.

The previous tests concern the solar system. Outside
the solar system binary pulsars have been used to test
general relativity. An asymmetric system in accelerated
motion (like a binary star) loses energy as it radiates
gravitational waves. It follows that the components ap-
proach each other, and the period decreases. Usually the
gravitational waves play a minor role, but in the case of
a compact source the effect may be strong enough to be
observed. The first source to show this predicted short-
ening of period was the binary pulsar PSR 1913+16.
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C. Tables
Table C.1. SI basic units

Quantity Symbol Unit Abbr. Definition

Length l, s, . . . Metre m The length of the path travelled by light in
vacuum during a time interval of 1/299,792,458
of a second.

Mass m, M Kilogram kg Equal to the mass of the international
prototype of the kilogram.

Time t Second s The duration of 9,192,631,770 periods of the
radiation corresponding to the transition
between two hyperfine levels of the ground
state of the caesium-133 atom.

Electric current I Ampere A That constant current which, if maintained in
two straight parallel conductors of infinite
length, of negligible circular cross section and
placed 1 metre apart in a vacuum, would
produce a force equal to 2×10−7 Newton per
metre of length between these conductors.

Temperature T Kelvin K The fraction 1/273.16 of the thermodynamic
temperature of the triple point of water.

Amount of substance n Mole mol The amount of substance of a system which
contains as many elementary entities as there.
are atoms in 0.012 kg of 12C

Luminous intensity I Candela cd The luminous intensity in a given direction of
a source which emits monochromatic radiation
of frequency 540×1012 Hz and of which the
radiant intensity in that direction is 1/683
Watt per steradian.

Table C.2. Prefixes for orders of ten

Prefix Symbol Multiple Prefix Symbol Multiple

yocto y 10−24 deca da 101

zepto z 10−21 hecto h 102

atto a 10−18 kilo k 103

femto f 10−15 Mega M 106

pico p 10−12 Giga G 109

nano n 10−9 Tera T 1012

micro µ 10−6 Peta P 1015

milli m 10−3 Exa E 1018

centi c 10−2 Zetta Z 1021

deci d 10−1 Yotta Y 1024
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Table C.3. Constants and units

Radian 1 rad = 180◦/π = 57.2957795◦
= 206,264.8′′

Degree 1◦ = 0.01745329 rad

Arc second 1′′ = 0.000004848 rad

Velocity of light c = 299,792,458 m s−1

Gravitational constant G = 6.673×10−11 m3 kg−1 s−2

= 4π2 AU3 M−1� a−2

= 3,986,005×108 m3 M−1⊕ s−2

Planck constant h = 6.6261×10−34 J s
� = h/2π = 1.0546×10−34 J s

Boltzmann constant k = 1.3807×10−23 J K−1

Radiation density constant a = 7.5659×10−16 J m−3 K−4

Stefan-Boltzmann constant σ = ac/4
= 5.6705×10−8 W m−2 K−4

Atomic mass unit amu = 1.6605×10−27 kg

Electron volt eV = 1.6022×10−19 J

Electron charge e = 1.6022×10−19 C

Mass of electron me = 9.1094×10−31 kg
= 0.511 MeV

Mass of proton mp = 1.6726×10−27 kg
= 938.3 MeV

Mass of neutron mn = 1.6749×10−27 kg
= 939.6 MeV

Mass of 1H atom mH = 1.6735×10−27 kg
= 1.0078 amu

Mass of 4
2He atom mHe = 6.6465×10−27 kg

= 4.0026 amu

Rydberg constant for 1H RH = 1.0968×107 m−1

Rydberg consnat for ∞ mass R∞ = 1.0974×107 m−1

Gas constant R = 8.3145 J K−1mol−1

Normal atmospheric pressure atm = 101,325 Pa = 1013 mbar
= 760 mmHg

Astronomical unit AU = 1.49597870×1011 m

Parsec pc = 3.0857×1016 m = 206,265 AU
= 3.26 ly

Light-year ly = 0.9461×1016 m = 0.3066 pc

Table C.5. The Greek alphabet

A, α B, β Γ, γ ∆, δ E, ε, ε Z, ζ H, η Θ, θ , ϑ
alpha beta gamma delta epsilon zeta eta theta

I, ι K, κ Λ, λ M, µ N, ν Ξ, ξ O, o Π, π, �
iota kappa lambda mu nu xi omicron pi

P, ρ Σ, σ, ς T, τ Υ, υ Φ, φ, ϕ X, χ Ψ, ψ Ω, ω
rho sigma tau upsilon phi chi psi omega

Table C.4. Units of time

Unit Equivalent to

Sidereal year 365.2564 d (with respect to fixed stars)

Tropical year 365.2422 d (equinox to equinox)

Anomalistic year 365.2596 d (perihelion to perihelion)

Gregorian calendar year 365.2425 d

Julian year 365.25 d

Julian century 36,525 d

Eclipse year 346.6200 d (with respect to the ascending node
of the Moon)

Lunar year 354.367 d = 12 synodical months

Synodical month 29.5306 d (newmoon to newmoon)

Sidereal month 27.3217 d (with respect to fixed stars)

Tropical month 27.3216 d (with respect to the vernal equinox)

Anomalistic month 27.5546 d (perigee to perigee)

Draconic month 27.2122 d (node to node)

Mean solar day 24 h mean solar time
= 24 h 03 min 56.56 s siderel time
= 1.00273791 sidereal days

Sidereal day 24 h sidereal time
= 23 h 56 min 04.09 s mean solar time
= 0.99726957 mean solar days

Rotation period of the 1.000000097 sidereal days
Earth (referred to = 23 h 56 min 04.10 s mean solar time
fixed stars)
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Table C.6. The Sun

Property Symbol Numerical value

Mass M� 1.989×1030 kg

Radius R� 6.960×108 m
= 0.00465 AU

Effective temperature Te 5785 K

Luminosity L� 3.9×1026 W

Apparent visual magnitude V −26.78

Colour indices B − V 0.62
U − B 0.10

Absolute visual magnitude MV 4.79

Absolute bolometric magnitude Mbol 4.72

Inclination of equator to ecliptic 7◦15′

Equatorial horizontal parallax π� 8.794′′

Motion: direction of apex α= 270◦
δ= 30◦

velocity in LSR 19.7 km s−1

Distance from galactic centre 8.5 kpc

Table C.7. The Earth

Property Symbol Numerical value

Mass M⊕ = M�/332,946
= 5.974×1024 kg

Mass, Earth+Moon M⊕ + M� = M�/328,900.5
= 6.048×1024 kg

Equatorial radius Re = 6,378,137 m

Polar radius Rp = 6,356,752 m

Flattening f = (Re − Rp)/Re

= 1/298.257

Surface gravity g = 9.81 m s−2

Table C.8. The Moon

Property Symbol Numerical value

Mass M� = M⊕/81.30
= 7.348×1022 kg

Radius R� = 1738 km

Surface gravity g� = 1.62 m s−2

= 0.17 g

Mean equatorial horizontal parallax π� = 57′

Semimajor axis of the orbit a = 384,400 km

Smallest distance from Earth rmin = 356,400 km

Greatest distance from Earth rmax = 406,700 km

Mean inclination of orbit to ecliptic ι = 5.145◦
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Table C.9. Planets. Re = equatorial radius, ρ = mean den-
sity, τsid = sidereal rotation period (R indicates retrograde
rotation), ε= inclination of the equator with respect to the
ecliptic (at the beginning of 2000), f = flattening, T = surface

temperature, p = geometric albedo, V0 = mean opposition
magnitude. The data are based mostly on the Astronomical
Almanac

Name Re Mass ρ Number of
known

planet planet + satellites satellites
[km] [kg] [M⊕] [M�] [g/cm3]

Mercury 2,440 3.30×1023 0.0553 1/6,023,600 5.4 –
Venus 6,052 4.87×1024 0.8150 1/408,523.5 5.2 –
Earth 6,378 5.97×1024 1.0123 1/328,900.5 5.5 1
Mars 3,397 6.42×1023 0.1074 1/3,098,710 3.9 2
Jupiter 71,492 1.90×1027 317.89 1/1,047.355 1.3 63
Saturn 60,268 5.69×1026 95.17 1/3,498.5 0.7 56
Uranus 25,559 8.66×1025 14.56 1/22,869 1.3 27
Neptune 24,764 1.03×1026 17.24 1/19,314 1.8 13

Name τsid ε f T p V0

[deg] [K]

Mercury 58.646 d 0.0 0 130–615 0.106 –
Venus 243.019 d R 177.4 0 750 0.65 –
Earth 23 h 56 min 04.1 s 23.4 0.003353 300 0.367 –
Mars 24 h 37 min 22.6 s 25.2 0.006476 220 0.150 − 2.01
Jupiter 9 h 55 min 30 s 3.1 0.06487 140 0.52 − 2.70
Saturn 10 h 39 min 22 s 26.7 0.09796 100 0.47 + 0.67
Uranus 17 h 14 min 24 s R 97.8 0.02293 65 0.51 + 5.52
Neptune 16 h 06 min 36 s 28.3 0.01708 55 0.41 + 7.84

Table C.10. Magnitudes of the planets. The table gives the
expressions used in the Astronomical Almanac. They give the
magnitudes as functions of the phase angle α. Interior planets
can be observed at relatively large phase angles, and thus
several terms are needed to describe their phase curves. Phase
angles of the exterior planets are always small, and thus very
simple expressions are sufficient. The magnitude of Saturn
means the magnitude of the planet only; the total magnitude
also depends on the orientation of the rings

V(1, 0) V(1, α)

Mercury −0.36 V(1, 0)+3.80(α/100◦)
−2.73(α/100◦)2 +2.00(α/100◦)3

Venus −4.29 V(1, 0)+0.09(α/100◦)
+2.39(α/100◦)2 −0.65(α/100◦)3

Mars −1.52 V(1, 0)+1.60(α/100◦)
Jupiter −9.25 V(1, 0)+0.5(α/100◦)
Saturn −8.88

Uranus −7.19 V(1, 0)+0.28(α/100◦)
Neptune −6.87 V(1, 0)
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Table C.11. Osculating elements of planetary orbits
on JD 2451600.5 (Feb 24, 2000). a = semimajor axis,
e = eccentricity i = inclination, Ω = longitude of ascend-

ing node, � = longitude of perihelion, L = men longitude,
Psid = mean sidereal orbital period (here 1 a means a Julian
year, or 365.25 days), Psyn = mean synodic period

a e i Ω � L Psid Psyn

[AU] [106 km] [◦] [◦] [◦] [◦] [a] [d] [d]

Mercury 0.387 57.9 0.2056 7.01 48.3 77.5 119.4 0.2408 87.97 115.9
Venus 0.723 108.2 0.0068 3.39 76.7 131.9 270.9 0.6152 224.7 583.9
Earth 1.000 149.6 0.0167 0.00 143.9 102.9 155.2 1.0000 365.3 –
Mars 1.524 228.0 0.0934 1.85 49.6 336.1 24.5 1.8807 686.9 779.9
Jupiter 5.204 778.6 0.0488 1.30 100.5 15.5 39.0 11.8565 4,330.6 398.9
Saturn 9.582 1433.4 0.0558 2.49 113.6 89.9 51.9 29.4235 10,747 378.1
Uranus 19.224 2875.8 0.0447 0.77 74.0 170.3 314.1 83.747 30,589 369.7
Neptune 30.092 4501.7 0.0112 1.77 131.8 39.5 305.5 163.723 59,800 367.5

Table C.12. Mean elements of planets with respect to the
equator and equinox of J2000.0. The variable t is the time in
days since J2000.0 and T is the same time in Julian centuries:
t = J −2451545.0, T = t/36525. L is the mean longitude,
L = M +� . The elements do not contain periodic terms,

and the accuracy of the positions computed from them is
of the order of a few minutes of arc. The values are from the
Explanatory Supplement to the Astronomical Almanac. The
elements of the Earth describe the orbit of the barycentre of
the Earth–Moon system

Mercury a = 0.38709893+0.00000066T e = 0.20563069+0.00002527T
i = 7.00487◦ −23.51′′T Ω = 48.33167◦ −446.30′′T
� = 77.45645◦ +573.57′′T L = 252.25084◦ +4.09233880◦t

Venus a = 0.72333199+0.00000092T e = 0.00677323−0.00004938T
i = 3.39471◦ −2.86′′T Ω = 76.68069◦ −996.89′′T
� = 131.53298◦ −108.80′′T L = 181.97973◦ +1.60213047◦t

Earth + Moon a = 1.00000011−0.00000005T e = 0.01671022−0.00003804T
i = 0.00005◦ −46.94′′T Ω = −11.26064◦ −18,228.25′′T
� = 102.94719◦ +1198.28′′T L = 100.46435◦ +0.98560910◦t

Mars a = 1.52366231−0.00007221T e = 0.09341233+0.00011902T
i = 1.85061◦ −25.47′′T Ω = 49.57854◦ −1020.19′′T
� = 336.04084◦ +1560.78′′T L = 355.45332◦ +0.52403304◦t

Jupiter a = 5.20336301+0.00060737T e = 0.04839266−0.00012880T
i = 1.30530◦ −4.15′′T Ω = 100.55615◦ +1217.17′′T
� = 14.75385◦ +839.93′′T L = 34.40438◦ +0.08308676◦t

Saturn a = 9.53707032−0.00301530T e = 0.05415060−0.00036762T
i = 2.48446◦ +6.11′′T Ω = 113.71504◦ −1591.05′′T
� = 92.43194◦ −1948.89′′T L = 49.94432◦ +0.03346063◦t

Uranus a = 19.19126393+0.00152025T e = 0.04716771−0.00019150T
i = 0.76986◦ −2.09′′T Ω = 74.22988◦ +1681.40′′T
� = 170.96424◦ +1312.56′′T L = 313.23218◦ +0.01173129◦t

Neptune a = 30.06896348−0.00125196T e = 0.00858587+0.00002514T
i = 1.76917◦ −3.64′′T Ω = 131.72169◦ −151.25′′T
� = 44.97135◦ −844.43′′T L = 304.88003◦ +0.00598106◦t
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Table C.14. Some well-known asteroids. a = semimajor axis,
e = eccentricity, i = incination, d = diameter, τsid = sidereal

period of rotation, p = geometric albedo, V0 = mean opposi-
tion magnitude

Asteroidi Discoverer Year of a e i d τsid p V0 Type
discovery [AU] [◦] [km] [h]

1 Ceres Piazzi 1801 2.77 0.08 10.6 946 9.08 0.07 7.9 C
2 Pallas Olbers 1802 2.77 0.23 34.8 583 7.88 0.09 8.5 U
3 Juno Harding 1804 2.67 0.26 13.0 249 7.21 0.16 9.8 S
4 Vesta Olbers 1807 2.36 0.09 7.1 555 5.34 0.26 6.8 U
5 Astraea Hencke 1845 2.58 0.19 5.3 116 16.81 0.13 11.2 S
6 Hebe Hencke 1847 2.42 0.20 14.8 206 7.27 0.16 9.7 S
7 Iris Hind 1847 2.39 0.23 5.5 222 7.14 0.20 9.4 S
8 Flora Hind 1847 2.20 0.16 5.9 160 13.60 0.13 9.8 S
9 Metis Graham 1848 2.39 0.12 5.6 168 5.06 0.12 10.4 S

10 Hygiea DeGasparis 1849 3.14 0.12 3.8 443 18.00 0.05 10.6 C
243 Ida Palisa 1884 2.86 0.04 1.1 32 4.63 0.16
433 Eros Witt 1898 1.46 0.22 10.8 20 5.27 0.18 11.5 S
588 Achilles Wolf 1906 5.18 0.15 10.3 70 ? ? 16.4 U
624 Hektor Kopff 1907 5.16 0.03 18.3 230 6.92 0.03 15.3 U
944 Hidalgo Baade 1920 5.85 0.66 42.4 30 10.06 ? 19.2 MEU
951 Gaspra Neujmin 1916 2.21 0.17 4.1 19 7.04 0.15

1221 Amor Delporte 1932 1.92 0.43 11.9 5 ? ? 20.4 ?
1566 Icarus Baade 1949 1.08 0.83 22.9 2 2.27 ? 12.3 U
1862 Apollo Reinmuth 1932 1.47 0.56 6.4 2 ? ? 16.3 ?
2060 Chiron Kowal 1977 13.64 0.38 6.9 320 ? ? 17.3 ?
5145 Pholus Rabinowitz 1992 20.46 0.58 24.7 190

Table C.15. Principal meteor showers

Shower Period of Maximum Radiant Meteors Comet
visibility per hour

α δ

Quadrantids Jan 1–5 Jan 3–4 15.5 h +50◦ 30–40
Lyrids Apr 19–25 Apr 22 18.2 h +34◦ 10 Thatcher
ηAquarids May 1–12 May 5 22.4 h − 1◦ 5–10 Halley
Perseids Jul 20–Aug 18 Aug 12 3.1 h +58◦ 40–50 Swift-Tuttle
κ Cygnids Aug 17–24 Aug 20 19.1 h +59◦ 5
Orionids Oct 17–26 Oct 21 6.3 h +16◦ 10–15 Halley
Taurids Oct 10–Dec 5 Nov 1 3.8 h +14◦, +22◦ 5 Encke
Leonids Nov 14–20 Nov 17 10.2 h +22◦ 10 Tempel-Tuttle
Geminids Dec 7–15 Dec 13–14 7.5 h +33◦ 40–50
Ursids Dec 17–24 Dec 22 13.5 h +78◦ 5
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Table C.16. Periodic comets with several perihelion pas-
sages observed. N = number of passages observed, τ = time
of perihelion passage, P = sidereal period, q = perihelion
distance, e = eccentricity, ω = argument of perihelion
(1950.0), Ω = longitude of ascending node (1950.0),
i = inclination, l = longitude of perihelion, defined here

as l =Ω+ arctan(tanω cos i), b = latitude of perihelion
(sin b = sinω sin i), Q = aphelion distance. The elements are
affected by planetary perturbations as well as reaction forces
due to evaporating material the amount of which is difficult to
predict

Comet N τ P q e ω Ω i l b Q
[a] [AU] [◦] [◦] [◦] [◦] [◦] [AU]

Encke 56 Feb 9, 1994 3.28 0.331 0.850 186.3 334.0 11.9 160.2 − 1.3 4.09
Grigg-Skjellerup 16 Jul 24, 1992 5.10 0.995 0.664 359.3 212.6 21.1 212.0 − 0.3 4.93
Honda-Mrkos-

Pajdušáková 8 Sep 12, 1990 5.30 0.541 0.822 325.8 88.6 4.2 54.5 − 2.4 5.54
Tuttle-Giacobini-

Kresák 8 Feb 8, 1990 5.46 1.068 0.656 61.6 140.9 9.2 202.1 8.1 5.14
Tempel 2 19 Mar 16, 1994 5.48 1.484 0.522 194.9 117.6 12.0 312.1 − 3.1 4.73
Wirtanen 8 Sep 21, 1991 5.50 1.083 0.652 356.2 81.6 11.7 77.9 − 0.8 5.15
Clark 8 Nov 28, 1989 5.51 1.556 0.501 208.9 59.1 9.5 267.7 − 4.6 4.68
Forbes 8 Mar 15, 1993 6.14 1.450 0.568 310.6 333.6 7.2 284.5 − 5.4 5.25
Pons-Winnecke 20 Aug 19, 1989 6.38 1.261 0.634 172.3 92.8 22.3 265.6 2.9 5.62
d’Arrest 15 Feb 4, 1989 6.39 1.292 0.625 177.1 138.8 19.4 316.0 1.0 5.59
Schwassmann-

Wachmann 2 11 Jan 24, 1994 6.39 2.070 0.399 358.2 125.6 3.8 123.8 − 0.1 4.82
Wolf-Harrington 8 Apr 4, 1991 6.51 1.608 0.539 187.0 254.2 18.5 80.8 − 2.2 5.37
Ciacobini-Zinner 12 Apr 14, 1992 6.61 1.034 0.707 172.5 194.7 31.8 8.3 3.9 6.01
Reinmuth 2 8 Jun 29, 1994 6.64 1.893 0.464 45.9 295.4 7.0 341.1 5.0 5.17
Perrine-Mrkos 8 Mar 1, 1989 6.78 1.298 0.638 166.6 239.4 17.8 46.6 4.1 5.87
Arend-Rigaux 7 Oct 3, 1991 6.82 1.438 0.600 329.1 121.4 17.9 91.7 − 9.1 5.75
Borrelly 11 Dec 18, 1987 6.86 1.357 0.624 353.3 74.8 30.3 69.0 − 3.4 5.86
Brooks 2 14 Sep 1, 1994 6.89 1.843 0.491 198.0 176.2 5.5 14.1 − 1.7 5.40
Finlay 11 Jun 5, 1988 6.95 1.094 0.700 322.2 41.7 3.6 4.0 − 2.2 6.19
Johnson 7 Nov 19, 1990 6.97 2.313 0.366 208.3 116.7 13.7 324.3 − 6.4 4.98
Daniel 8 Aug 31, 1992 7.06 1.650 0.552 11.0 68.4 20.1 78.7 3.8 5.71
Holmes 8 Apr 10, 1993 7.09 2.177 0.410 23.2 327.3 19.2 349.4 7.4 5.21
Reinmuth 1 8 May 10, 1988 7.29 1.869 0.503 13.0 119.2 8.1 132.0 1.8 5.65
Faye 19 Nov 15, 1991 7.34 1.593 0.578 204.0 198.9 9.1 42.6 − 3.7 5.96
Ashbrook-

Jackson 7 Jul 13, 1993 7.49 2.316 0.395 348.7 2.0 12.5 350.9 − 2.4 5.34
Schaumasse 10 Mar 5, 1993 8.22 1.202 0.705 57.5 80.4 11.8 137.3 10.0 6.94
Wolf 14 Aug 28, 1992 8.25 2.428 0.406 162.3 203.4 27.5 7.6 8.1 5.74
Whipple 9 Dec 22, 1994 8.53 3.094 0.259 201.9 181.8 9.9 23.4 − 3.7 5.25
Comas Solá 8 Aug 18, 1987 8.78 1.830 0.570 45.5 60.4 13.0 105.2 9.2 6.68
Väisälä 1 6 Apr 29, 1993 10.8 1.783 0.635 47.4 134.4 11.6 181.2 8.5 7.98
Tuttle 11 Jun 27, 1994 13.5 0.998 0.824 206.7 269.8 54.7 106.1 −21.5 10.3
Halley 30 Feb 9, 1986 76.0 0.587 0.967 111.8 58.1 162.2 305.3 16.4 35.3
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Table C.17. Nearest stars. V = apparent visual magnitude, B − V = colour index, r = distance, µ= proper motion, vr = radial
velocity, (positive for receding objects)

Name α2000 δ2000 V B − V Spectrum r µ vr

[h] [min] [◦] [′] [pc] [′′/a] [km/s]

Sun −26.8 0.6 G2V
αCen C (Proxima) 14 29.7 −62 41 11.0 2.0 M5eV 1.30 3.9 − 16
αCen A 14 39.6 −60 50 − 0.0 0.7 G2V 1.33 3.7 − 22
αCen B 14 39.6 −60 50 1.3 0.9 K1V 1.33 3.7 − 22
Barnard’s star 17 57.8 4 42 9.5 1.7 M5V 1.83 10.3 −108
Wolf 359 10 56.5 7 01 13.5 2.0 M6eV 2.39 4.7 + 13
BD+36◦2147 11 03.3 35 58 7.5 1.5 M2V 2.54 4.8 − 86
αCMa (Sirius) A 6 45.1 −16 43 − 1.5 0.0 A1V 2.66 1.3 − 8
αCMa (Sirius) B 6 45.1 −16 43 8.4 wdA 2.66 1.3 − 8
Luyten 726–8 A 1 39.0 −17 57 12.5 M6eV 2.66 3.3 + 29
Luyten 726–8 B 1 39.0 −17 57 13.0 M6eV 2.66 3.3 + 32

(UV Cet)
Ross 154 18 49.8 −23 50 10.4 M4eV 2.92 0.7 − 4
Ross 248 23 41.9 44 11 12.2 1.9 M5eV 3.13 1.6 − 81
εEri 3 32.9 − 9 27 3.7 0.9 K2V 3.26 1.0 + 16
Ross 128 11 47.7 0 48 11.1 1.8 M5V 3.31 1.4 − 13
Luyten 789–6 A 22 38.6 −15 17 12.8 2.0 M5eV 3.40 3.3 − 60
Luyten 789–6 B 22 38.6 −15 17 13.3 3.40 3.3 − 60
BD+43◦44 A 0 18.4 44 01 8.1 1.6 M3V 3.44 2.9 + 13
BD+43◦44 B 0 18.4 44 01 11.0 1.8 M6V 3.44 2.9 + 20
ε Ind 22 03.4 −56 47 4.7 1.1 K5V 3.45 4.7 − 40
BD+59◦1915 A 18 42.8 59 38 8.9 1.5 M4V 3.45 2.3 0
BD+59◦1915 B 18 42.8 59 38 9.7 1.6 M4V 3.45 2.3 + 10
61 Cyg A 21 06.9 38 45 5.2 1.2 K5V 3.46 5.2 − 64
61 Cyg B 21 06.9 38 45 6.0 1.4 K7V 3.46 5.2 − 64
τ Cet 1 43.1 −15 56 3.5 0.7 G8V 3.48 1.9 − 16
CD−36◦15693 23 05.9 −35 51 7.4 1.5 M2V 3.51 6.9 + 10
αCMi (Procyon) A 7 39.3 5 14 0.4 0.4 F5IV 3.51 1.3 − 3
αCMi (Procyon) B 7 39.3 5 14 10.7 wdF 3.51 1.3
G 51–15 8 29.8 26 47 14.8 M7V 3.62 1.3
BD+5◦1668 7 27.4 5 13 9.8 1.6 M4V 3.76 3.8 + 26
Luyten 725–32 1 12.6 −17 00 11.8 M6eV 3.77 1.4
Kapteyn’s star 5 11.7 −45 01 8.8 1.6 M1VI 3.85 8.8 +245
CD−39◦14192 21 17.2 −38 52 6.7 1.4 M0eV 3.85 3.5 + 21
Krüger 60 A 22 28.0 57 42 9.9 1.6 M3V 3.95 0.9 − 26
Krüger 60 B 22 28.0 57 42 11.5 1.8 M4eV 3.95 0.9 − 26
Ross 614 A 6 29.4 − 2 49 11.2 1.7 M4eV 4.13 1.0 + 24
Ross 614 B 6 29.4 − 2 49 14.8 4.13 1.0 + 24
BD−12◦4523 16 30.3 −12 40 10.2 1.6 M5V 4.15 1.2 − 13
Wolf 424 A 12 33.3 9 01 13.2 1.8 M6V 4.29 1.8 − 5
Wolf 424 B 12 33.3 9 01 13.2 4.29 1.8 − 5
van Maanen’s star 0 49.2 5 23 12.4 0.6 wdG 4.33 3.0 + 54
Luyten 1159–16 2 00.2 13 03 12.2 M5eV 4.48 2.1
CD−37◦15492 0 05.4 −37 21 8.6 1.5 M3V 4.48 6.1 + 23
Luyten 143–23 10 44.5 −61 12 13.9 dM 4.48 1.7
CD−46◦11540 17 28.7 −46 54 9.4 1.5 M3 4.52 1.1
LP 731–58 10 48.2 −11 20 15.6 M7V 4.55 1.6
Luyten 145–141 11 45.7 −64 50 11.4 0.2 wdA 4.57 2.7
BD+68◦946 17 36.4 68 20 9.1 1.5 M3V 4.63 1.3 − 22
CD−49◦13515 21 33.6 −49 01 8.7 1.5 M2V 4.63 0.8 + 8
BD+50◦1725 10 11.3 49 27 6.6 1.4 K2V 4.67 1.5 − 26
G 158–27 0 06.7 −07 32 13.7 M5V 4.67 2.1
BD−15◦6290 22 53.3 −14 18 10.2 1.6 M4V 4.69 1.1 + 9
CD−44◦11909 17 37.1 −44 19 11.0 M5V 4.72 1.1
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Table C.17 (continued)

Name α2000 δ2000 V B − V Spectrum r µ vr

[h] [min] [◦] [′] [pc] [′′/a] [km/s]

G 208–44/45 A 19 53.9 44 25 13.4 M6eV 4.72 0.7
G 208–44/45 B 19 53.9 44 25 14.3 dM 4.72 0.7
G 208–44/45 C 19 53.9 44 25 15.5 dM 4.72 0.7
o2 Eri A 4 15.3 − 7 39 4.4 0.8 K0V 4.76 4.0 − 43
o2 Eri B 4 15.3 − 7 39 9.5 0.0 wdA 4.76 4.0 − 21
o2 Eri C 4 15.3 − 7 39 11.2 1.7 M4eV 4.76 4.0 − 45
BD+20◦2465 10 19.6 19 52 9.4 1.5 M4V 4.88 0.5 + 11
70 Oph A 18 05.5 2 30 4.2 0.9 K0V 4.98 1.1 − 7
70 Oph B 18 05.5 2 30 6.0 K5V 4.98 1.1 − 10
BD+44◦2051 A 11 05.5 43 32 8.7 M2V 5.00 4.5 + 65
BD+44◦2051 B 11 05.5 43 32 14.4 M5eV 5.00 4.5 + 65
αAql (Altair) 19 50.8 8 52 0.8 0.2 A7V 5.08 0.7 − 26
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Table C.18. Brightest stars (V ≤ 2). V = apparent visual magnitude, B − V = colour index, r = distance. Remarks: b=binary,
sb=spectroscopic binary, v=variable

Name α2000 δ2000 V B − V Spectrum r Remarks
[h] [min] [◦] [′] [pc]

αCMa Sirius 6 45.2 −16 43 −1.5 0.0 A1V,wdA 2.7 b
αCar Canopus 6 24.0 −52 42 −0.7 0.2 A9II 60
αCen Rigil 14 39.6 −60 50 −0.3 0.7 G2V,K1V 1.3 b, Proxima

Kentaurus 2.2◦ apart
αBoo Arcturus 14 15.7 19 11 −0.0 1.2 K2IIIp 11
αLyr Vega 18 36.9 38 47 0.0 0.0 A0V 8
αAur Capella 5 16.7 46 00 0.1 0.8 G2III,G6III 14 b
βOri Rigel 5 14.5 − 8 12 0.1 −0.0 B8Ia 90 b
αCMi Procyon 7 39.3 5 14 0.4 0.4 F5IV,wdF 3.5 b
αEri Achernar 1 37.7 −57 14 0.5 −0.2 B3Vp 40
αOri Betelgeuze 5 55.2 7 24 0.5 1.9 M2I 200 v 0.4−1.3, sb
β Cen Hadar 14 03.8 −60 22 0.6 −0.2 B1III 60 b
αAql Altair 19 50.8 8 52 0.8 0.2 A7V 5.1
αCru Acrux 12 26.6 −63 06 0.8 −0.3 B0.5IV,B1V 120 b 1.6+2.1
αTau Aldebaran 4 35.9 16 31 0.9 1.5 K5III 20 b, v
αVir Spica 13 25.2 −11 10 1.0 −0.2 B1IV 50 sb, several comp.
α Sco Antares 16 29.4 −26 26 1.0 1.8 M1.5I,B2.5V 50 v 0.9−1.8
βGem Pollux 7 45.3 28 02 1.2 1.1 K0III 11
α PsA Fomalhaut 22 57.6 −29 37 1.2 0.1 A3V 7.0
αCyg Deneb 20 41.4 45 17 1.3 0.1 A2Ia 500
β Cru Mimosa 12 47.7 −59 41 1.3 −0.2 B0.5III 150 v, sb
αLeo Regulus 10 08.4 11 58 1.4 −0.1 B7V 26 b
εCMa Adhara 6 58.6 −28 58 1.5 −0.2 B2II 170 b
αGem Castor 7 34.6 31 53 1.6 0.0 A1V,A2V 14 b
γ Cru Gacrux 12 31.2 −57 07 1.6 1.6 M3.5III 40 v
λSco Shaula 17 33.6 −37 06 1.6 −0.2 B1.5IV v
γ Ori Bellatrix 5 25.1 6 21 1.6 −0.2 B2III 40
β Tau Elnath 5 26.3 28 36 1.7 −0.1 B7III 55
β Car Miaplacidus 9 13.2 −69 43 1.7 0.0 A1III 30
εOri Alnilam 5 36.2 − 1 12 1.7 −0.2 B0Ia
αGru Al Na’ir 22 08.2 −46 58 1.7 −0.1 B7IV 20
εUMa Alioth 12 54.0 55 58 1.8 −0.0 A0IVp 120 v
γ Vel Regor 8 09.5 −47 20 1.8 −0.2 WC8,B1IV b 1.8+4.3, each sb
α Per Mirfak 3 24.3 49 52 1.8 0.5 F5Ib 35
αUMa Dubhe 11 03.7 61 45 1.8 1.1 K0III 30 b
ε Sgr Kaus Australis 18 24.2 −34 23 1.9 −0.0 A0II 70
δCMa Wezen 7 08.4 −26 23 1.9 0.7 F8Ia
εCar Avior 8 22.5 −59 31 1.9 1.3 K3III,B2V 25 sb
ηUMa Alkaid 13 47.5 49 19 1.9 −0.2 B3V
θ Sco Girtab 17 37.3 −43 00 1.9 0.4 F0II 50
βAur Menkalinan 5 59.6 44 57 1.9 0.0 A1IV 30
ζ Ori Alnitak 5 40.8 − 1 57 1.9 −0.2 O9.5Ib, B0III 45 b 2.1+4.2
αTrA Atria 16 48.7 −69 02 1.9 1.4 K2II–III 40
γ Gem Alhena 6 37.7 16 24 1.9 0.0 A1IV 30
α Pav Peacock 20 25.7 −56 44 1.9 −0.2 B3V
δVel 8 44.7 −54 43 2.0 0.0 A1V 20
β CMa Mirzam 6 22.7 −17 57 2.0 −0.2 B1II–III 70 v
αHya Alphard 9 27.6 − 8 40 2.0 1.4 K3II–III 60
αAri Hamal 2 07.2 23 28 2.0 1.2 K2III 25
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Table C.19. Some double stars. Magnitudes of the components are m1 and m2, and the angular separation d; r is the distance
of the star

Name α2000 δ2000 m1 m2 Spectrum d r
[h] [min] [◦] [′] [′′] [pc]

ηCas Achird 0 49.1 57 49 3.7 7.5 G0V M0 12 6
γ Ari Mesarthim 1 53.5 19 18 4.8 4.9 A1p B9V 8 40
α Psc Alrescha 2 02.0 2 46 4.3 5.3 A0p A3m 2 60
γ And Alamak 2 03.9 42 20 2.4 5.1 K3IIb B8V,A0V 10 100
δOri Mintaka 5 32.0 − 0 18 2.5 7.0 B0III,O9V B2V 52 70
λOri Meissa 5 35.1 9 56 3.7 5.7 O8e B0.5V 4 140
ζ Ori Alnitak 5 40.8 − 1 56 2.1 4.2 O9.51be B0III 2 40
αGem Castor 7 34.6 31 53 2.0 3.0 A1V A5Vm 3 15
γ Leo Algieba 10 20.0 19 50 2.6 3.8 K1III G7III 4 80
ξ UMa Alula Australis 11 18.2 31 32 4.4 4.9 G0V G0V 1 7
αCru Acrux 12 26.6 −63 06 1.6 2.1 B0.5IV B1V 4 120
γ Vir Porrima 12 41.7 − 1 27 3.7 3.7 F0V F0V 3 10
αCVn Cor Caroli 12 56.1 38 18 2.9 5.5 A0p F0V 20 40
ζ UMa Mizar 13 23.9 54 56 2.4 4.1 A1Vp A1m 14 21
αCen Rigil Kentaurus 14 39.6 −60 50 0.0 1.3 G2V K1V 21 1.3
εBoo Izar 14 45.0 27 04 2.7 5.3 K0II-III A2V 3 60
δ Ser 15 34.8 10 32 4.2 5.3 F0IV F0IV 4 50
β Sco Graffias 16 05.4 −19 48 2.6 4.9 B1V B2V 14 110
αHer Rasalgethi 17 14.6 14 23 3.0–4.0 5.7 M5Ib-II G5III,F2V 5 120
ρHer 17 23.7 37 08 4.5 5.5 B9.5III A0V 4
70 Oph 18 05.5 2 30 4.3 6.1 K0V K5V 2 5
ε Lyr 18 44.3 39 40 4.8 4.4 A4V,F1V A8V,F0V 208 50
ε1 Lyr 18 44.3 39 40 5.1 6.2 A4V F1V 3 50
ε2 Lyr 18 44.4 39 37 5.1 5.3 A8V F0V 2 50
ζ Lyr 18 44.8 37 36 4.3 5.7 Am F0IV 44 30
θ Ser Alya 18 56.2 4 12 4.5 4.9 A5V A5V 22 30
γ Del 20 46.7 16 07 4.5 5.4 K1IV F7V 10 40
ζ Aqr 22 28.8 − 0 01 4.4 4.6 F3V F6IV 2 30
δCep 22 29.1 58 24 3.5–4.3 7.5 F5Ib–G2Ib B7IV 41 90

Table C.20. Milky Way Galaxy

Property Value

Mass > 2×1011 M�
Disc diameter 30 kpc

Disc thickness (stars) 1 kpc

Disc thickness (gas and dust) 200 pc

Halo diameter 50 kpc

Sun’s distance from the centre 8.5 kpc

Sun’s orbital velocity 220 km s−1

Sun’s period 240×106 a

Direction of the centre (2000.0) α= 17 h 45.7 min
δ= −29◦00′

Direction of the north pole (2000.0) α= 12 h 51.4 min
δ= +27◦08′

Galactic coordinates of the l = 123◦00′

celestial north pole b = +27◦08′
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Table C.21. Members of the Local Group of Galaxies. V = apparent visual magnitude, MV = absolute visual magnitude,
r = distance

α2000 δ2000 Type V MV r
[h] [min] [◦] [′] [kpc]

Milky Way 17 45.7 −29 00 Sbc −20.9 8
NGC 224 = M31 00 42.7 41 16 Sb 3.2 −21.2 760
NGC 598 = M33 01 33.8 30 30 Sc 5.6 −18.9 790
Large Magellanic Cloud 05 19.6 −69 27 Irr 0.0 −18.5 50
Small Magellanic Cloud 00 52.6 −72 48 Irr 1.8 −17.1 60
NGC 221 = M32 00 42.7 40 52 E2 7.9 −16.5 760
NGC 205 00 40.4 41 41 dE5 8.0 −16.4 760
IC 10 00 20.4 59 17 Irr 7.8 −16.3 660
NGC 6822 19 44.9 −14 48 Irr 7.5 −16.0 500
NGC 185 00 39.0 48 20 dE3 8.5 −15.6 660
IC 1613 01 04.8 02 08 Irr 9.0 −15.3 720
NGC 147 00 33.2 48 30 dE4 9.0 −15.1 660
WLM 00 02.0 −15 28 Irr 10.4 −14.4 930
Sagittarius 18 55.1 −30 29 dE7 3.1 −13.8 24
Fornax 02 39.9 −34 30 dE3 7.6 −13.1 140
Pegasus 23 28.6 14 45 Irr 12.1 −12.3 760
Leo I 10 08.4 12 18 dE3 10.1 −11.9 250
And II 01 16.5 33 26 dE3 12.4 −11.8 700
And I 00 45.7 38 00 dE0 12.7 −11.8 810
Leo A 09 59.4 30 45 Irr 12.7 −11.5 690
Aquarius 20 46.9 −12 51 Irr 13.7 −11.3 1020
SagDIG 19 30.0 −17 41 Irr 15.0 −10.7 1400
Pegasus II = And VI 23 51.7 24 36 dE 14.0 −10.6 830
Pisces = LGS 3 01 03.9 21 54 Irr 14.1 −10.4 810
And III 00 35.3 36 30 dE6 14.2 −10.2 760
And V 01 10.3 47 38 dE 14.3 −10.2 810
Leo II 11 13.5 22 10 dE0 11.5 −10.1 210
Cetus 00 26.1 −11 02 dE 14.3 −10.1 780
Sculptor 01 00.1 −33 43 dE3 10.0 − 9.8 90
Phoenix 01 51.1 −44 27 Irr 13.2 − 9.8 400
Tucana 22 41.8 −64 25 dE5 15.1 − 9.6 870
Sextans 10 13.0 −01 37 dE4 10.3 − 9.5 90
Cassiopeia = And VII 23 26.5 50 42 dE 14.7 − 9.5 690
Carina 06 41.6 −50 58 dE4 10.6 − 9.4 100
Ursa Minor 15 08.8 67 07 dE5 10.0 − 8.9 60
Draco 17 20.3 57 55 dE3 10.9 − 8.6 80
Ursa Major 158 43.2 51 55 dE 13.2 −6.8 100
Canes Venatici 13 28.0 33 33 dE 13.9 −7.9 220
Boötes 14 00.0 14 30 dE 13.3 −5.7 60
Ursa Major II 08 51.5 63 08 dE 14.3 −3.8 30
Coma Berenices 12 27.0 23 54 dE 14.5 −3.7 44
Canes Venatici II 12 57.2 34 19 dE 15.1 −4.8 150
Hercules 16 31.0 12 47.5 dE 14.7 −6.0 140
Leo IV 11 33.0 −0 32 dE 15.9 −5.1 160
And IX 00 52.9 43 12 dE 16.2 −8.3 760
And X 01 06.5 44 48 dE 16.1 −8.1 710
And XI 00 46.3 33 48 dE 17.2 −7.3 760
And XII 00 47.5 34 22 dE 18.1 −6.4 760
And XIII 00 51.8 33 00 dE 17.6 −6.9 760



C. Tables

459

Table C.22. Optically brightest galaxies. B = apparent blue magnitude, d = apparent diameter, r = distance

Name α2000 δ2000 Type B d r
[h] [min] [◦] [′] [′′] [Mpc]

NGC 55 0 15.1 −39 13 Sc/Irr 7.9 30×5 2.3
NGC 205 0 40.4 41 41 E6 8.9 12×6 0.7
NGC 221 = M32 0 42.7 40 52 E2 9.1 3.4×2.9 0.7
NGC 224 = M31 0 42.8 41 16 Sb 4.3 163×42 0.7
NGC 247 0 47.2 −20 46 S 9.5 21×8 2.3
NGC 253 0 47.6 −25 17 Sc 7.0 22×5 2.3
Small Magellanic Cloud 0 52.6 −72 48 Irr 2.9 216×216 0.06
NGC 300 0 54.9 −37 41 Sc 8.7 22×16 2.3
NGC 598 = M33 1 33.9 30 39 Sc 6.2 61×42 0.7
Fornax 2 39.9 −34 32 dE 9.1 50×35 0.2
Large Magellanic Cloud 5 23.6 −69 45 Irr/Sc 0.9 432×432 0.05
NGC 2403 7 36.9 65 36 Sc 8.8 22×12 2.0
NGC 2903 9 32.1 21 30 Sb 9.5 16×7 5.8
NGC 3031 = M81 9 55.6 69 04 Sb 7.8 25×12 2.0
NGC 3034 = M82 9 55.9 69 41 Sc 9.2 10×1.5 2.0
NGC 4258 = M106 12 19.0 47 18 Sb 8.9 19×7 4.3
NGC 4472 = M49 12 29.8 8 00 E4 9.3 10×7 11
NGC 4594 = M104 12 40.0 −11 37 Sb 9.2 8×5 11
NGC 4736 = M94 12 50.9 41 07 Sb 8.9 13×12 4.3
NGC 4826 = M64 12 56.8 21 41 9.3 10×4 3.7
NGC 4945 13 05.4 −49 28 Sb 8.0 20×4 3.9
NGC 5055 = M63 13 15.8 42 02 Sb 9.3 8×3 4.3
NGC 5128 = Cen A 13 25.5 −43 01 E0 7.9 23×20 3.9
NGC 5194 = M51 13 29.9 47 12 Sc 8.9 11×6 4.3
NGC 5236 = M83 13 37.0 −29 52 Sc 7.0 13×12 2.4
NGC 5457 = M101 14 03.2 54 21 Sc 8.2 23×21 4.3
NGC 6822 19 45.0 −14 48 Irr 9.2 20×10 0.7
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Table C.23. Constellations. The first column gives the abbreviation of the Latin name used to form star names

Abbreviation Latin name Genitive English name

And Andromeda Andromedae Andromeda
Ant Antlia Antliae Air Pump
Aps Apus Apodis Bird of Paradise
Aql Aquila Aquilae Eagle
Aqr Aquarius Aquarii Water-bearer
Ara Ara Arae Altar
Ari Aries Arietis Ram
Aur Auriga Aurigae Charioteer
Boo Boötes Boötis Herdsman
Cae Caelum Caeli Chisel
Cam Camelopardalis Camelopardalis Giraffe
Cnc Cancer Cancri Crab
CMa Canis Major Canis Majoris Great Dog
CMi Canis Minor Canis Minoris Little Dog
Cap Capricornus Capricorni Sea-goat
Car Carina Carinae Keel
Cas Cassiopeia Cassiopeiae Cassiopeia
Cen Centaurus Centauri Centaurus
Cep Cepheus Cephei Cepheus
Cet Cetus Ceti Whale
Cha Chamaeleon Chamaeleontis Chameleon
Cir Circinus Circini Compasses
Col Columba Columbae Dove
Com Coma Berenices Comae Berenices Berenice’s Hair
CrA Corona Austrina Coronae Austrinae Southern Crown
CrB Corona Borealis Coronae Borealis Northern Crown
Crv Corvus Corvi Crow
Crt Crater Crateris Cup
Cru Crux Crucis Southern Cross
CVn Canes Venatici Canum Venaticorum Hunting Dogs
Cyg Cygnus Cygni Swan
Del Delphinus Delphini Dolphin
Dor Dorado Doradus Swordfish
Dra Draco Draconis Dragon
Equ Equuleus Equulei Little Horse
Eri Eridanus Eridani Eridanus
For Fornax Fornacis Furnace
Gem Gemini Geminorum Twins
Gru Grus Gruis Crane
Her Hercules Herculis Hercules
Hor Horologium Horologii Clock
Hya Hydra Hydrae Water Serpent
Hyi Hydrus Hydri Water Snake
Ind Indus Indi Indian
Lac Lacerta Lacertae Lizard
Leo Leo Leonis Lion
Lep Lepus Leporis Hare
Lib Libra Librae Scales
LMi Leo Minor Leonis Minoris Little Lion
Lup Lupus Lupi Wolf
Lyn Lynx Lyncis Lynx
Lyr Lyra Lyrae Lyre
Men Mensa Mensae Table Mountain
Mic Microscopium Microscopii Microscpe
Mon Monoceros Monocerotis Unicorn
Mus Musca Muscae Fly
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Table C.23 (continued)

Abbreviation Latin name Genitive English name

Nor Norma Normae Square
Per Perseus Persei Perseus
Phe Phoenix Phoenicis Phoenix
Pic Pictor Pictoris Painter
PsA Piscis Austrinus Piscis Austrini Southern Fish
Psc Pisces Piscium Fishes
Pup Puppis Puppis Poop
Pyx Pyxis Pyxidis Compass
Ret Reticulum Reticuli Net
Scl Sculptor Sculptoris Sculptor
Sco Scorpius Scorpii Scorpion
Sct Scutum Scuti Sobieski’s Shield
Ser Serpens Serpentis Serpent
Sex Sextans Sextantis Sextant
Sge Sagitta Sagittae Arrow
Sgr Sagittarius Sagittarii Archer
Tau Taurus Tauri Bull
Tel Telescopium Telescopii Telescope
TrA Triangulum Australe Trianguli Australis Southern Triangle
Tri Triangulum Trianguli Triangle
Tuc Tucana Tucanae Toucan
UMa Ursa Major Ursae Majoris Great Bear
UMi Ursa Minor Ursae Minoris Little Bear
Vel Vela Velorum Sails
Vir Virgo Virginis Virgin
Vol Volans Volantis Flying Fish
Vul Vulpecula Vulpeculae Fox
Oct Octans Octantis Octant
Oph Ophiuchus Ophiuchi Serpent-bearer
Ori Orion Orionis Orion
Pav Pavo Pavonis Peacock
Peg Pegasus Pegasi Pegasus

Table C.24. Largest optical telescopes. D = diameter of the mirror

Telescope Location Completion D
year [m]

William M. Keck Telescope I Mauna Kea, Hawaii 1992 10
William M. Keck Telescope II Mauna Kea, Hawaii 1996 10
Southern African Large Telescope Sutherland, South Africa 2005 10
Subaru Telescope Mauna Kea, Hawaii 1999 8.3
Large Binocular Telescope 1 Mt. Graham, Arizona 2005 8.4
Kueyen Telescope (VLT 2) Cerro Paranal, Chile 1999 8.2
Melipal Telescope (VLT 3) Cerro Paranal, Chile 2000 8.2
Yepun Telescope (VLT 4) Cerro Paranal, Chile 2000 8.2
Gemini North Telescope Mauna Kea, Hawaii 1999 8.1
Gemini South Telescope Cerro Pachon, Chile 2000 8.1
Multi-Mirror Telescope Mt. Hopkins, Arizona 1999 6.5
Walter Baade (Magellan 1 Telescope) Las Campanas, Chile 2000 6.5
Landon Clay (Magellan 2 Telescope) Las Campanas, Chile 2002 6.5
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Table C.25. Largest parabolic radio telescopes. D = diameter of the antenna, λmin = shortest wavelength

Completion D λmin Remarks
year [m] [cm]

Arecibo Puerto Rico, USA 1963 305 5 Fixed disk; limited tracking
Green Bank West Virginia, USA 2001 100×110 0.3 The largest fully

steerable telescope
Effelsberg Bonn, Germany 1973 100 0.8
Jodrell Bank Macclesfield, Great Britain 1957 76.2 10–20 First large paraboloid antenna
Jevpatoria Crimea 1979 70 1.5
Parkes Australia 1961 64 2.5 Innermost 17 m of dish can

be used down to 3 mm
wavelengths

Goldstone California, USA 64 1.5 Belongs to NASA deep space network
Tidbinbilla Australia 64 1.3 NASA
Madrid Spain 64 1.3 NASA
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Table C.26. Millimetre and submillimetre telescopes and interferometers. h = altitude above sea level, D = diameter of the
antenna, λmin = shortest wavelength

Institute Location h D λmin Remarks;
[m] [m] [mm] operational since

NRAO, VLA New Mexico, USA 2124 25 7 27 antennas
dmax = 36.6 km
1976

NRAO, VLBA USA 16–3720 25 13 10 antennas
1988–1993

Max-Planck-lnstitut für Mt. Graham, USA 3250 10 0.3 1994
Radioastronomie&
University of Arizona

California Institute of Mauna Kea, Hawaii 4100 10.4 0.3 1986
Technology

Science Research Council Mauna Kea, Hawaii 4100 15.0 0.5 The James
England & Holland Clerk Maxwell

Telescope
1986

California Institute of Owens Valley, USA 1220 10.4 0.5 3 antenna
Technology interferometer

1980
Sweden-ESO Southern La Silla, Chile 2400 15.0 0.6 1987

Hemisphere Millimeter
Antenna (SEST)

Institut de Radioastronomie Plateau de Bure, 2550 15.0 0.6 3 antenna
Millimetrique (IRAM), France interferometer
France & Germany 1990;

fourth antenna
1993

IRAM Pico Veleta, Spain 2850 30.0 0.9 1984
National Radio Astronomy Kitt Peak, USA 1940 12.0 0.9 1983 (1969)

Observatory (NRAO)
University of Massachusetts New Salem, USA 300 13.7 1.9 radom

1978
University of California, Hat Creek Observatory 1040 6.1 2 3 antenna

Berkeley interferometer
1968

Purple Mountain Nanjing, China 3000 13.7 2 radom
Observatory 1987

Daeduk Radio Astronomy Söul, South-Korea 300 13.7 2 radom
Observatory 1987

University of Tokyo Nobeyama, Japan 1350 45.0 2.6 1982
University of Tokyo Nobeyama, Japan 1350 10.0 2.6 5 antenna

interferometer
1984

Chalmers University of Onsala, Sweden 10 20.0 2.6 radom
Technology 1976
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Table C.27. Some important astronomical satellites and space probes 1980–2002

Satellite Launch date Target

Solar Max USA Feb 14, 1980 Sun
Venera 13 SU Oct 30, 1981 Venus
Venera 14 SU Nov 4, 1981 Venus
IRAS USA Jan 25, 1983 infrared
Astron SU Mar 23, 1983 ultraviolet
Venera 15 SU Jun 2, 1983 Venus
Venera 16 SU Jun 7, 1983 Venus
Exosat ESA/USA May 26, 1983 X-ray
Vega 1 SU Dec 15 1984 Venus/Halley
Vega 2 SU Dec 21, 1984 Venus/Halley
Giotto ESA Jul 2, 1985 Halley
Suisei Japan Aug 18, 1985 Halley
Ginga Japan Feb 5, 1987 X-ray
Magellan USA May 4, 1989 Venus
Hipparcos ESA Aug 8, 1989 astrometry
COBE USA Nov 18, 1989 cosmic background radiation
Galileo USA Oct 18, 1989 Jupiter etc.
Granat SU Dec 1, 1989 gamma ray
Hubble USA/ESA Apr 24, 1990 UV, visible
Rosat Germany Jun 1, 1990 X-ray
Gamma SU Jul 11, 1990 gamma ray
Ulysses ESA Oct 6, 1990 Sun
Compton USA Apr 5, 1991 gamma ray
EUVE USA Jun 7, 1992 extreme UV
Asuka Japan Feb 20, 1993 X-ray
Clementine USA Jan 25, 1994 Moon
ISO ESA Nov 17, 1995 infrred
SOHO ESA Dec 2, 1995 Sun
Near-Shoemaker USA Feb 17, 1996 Mathilde, Eros
BeppoSAX Italy Apr 30, 1996 X-ray
Mars Global Surveyor USA Nov 7, 1996 Mars
Cassini/Huygens USA/ESA Oct 15, 1997 Saturn, Titan
Mars Pathfinder/Sojourner USA Dec 4, 1996 Mars
Lunar Prospector USA Jan 6, 1998 Moon
Nozomi Japan Jul 4, 1998 Mars
Deep Space 1 USA Oct 24, 1998 Braille, Borrelly
Stardust USA Feb 7, 1999 Wild 2
Chandra USA Jul 23, 1999 X-ray
XMM-Newton ESA Dec 10, 1999 X-ray
Hete 2 USA Oct 9, 2000 gamma ray
Mars Odyssey USA Apr 7, 2001 Mars
MAP USA Jun 30, 2001 cosmic background radiation
Genesis USA Aug 8, 2001 solar particles
RHESSI USA Feb 5, 2002 Sun
Grace Gemany-USA Mar 17, 2002 Earth’s gravity
Integral ESA Oct 17, 2002 gamma ray
Galex USA Apr 28, 2003 galaxies
Hayabusa Japan May 9, 2003 Itokawa
Mars Express ESA Jun 2, 2003 Mars
Spirit USA Jun 10, 2003 Mars
Opportunity USA Jul 8, 2003 Mars
Spitzer USA Jun 10, 2003 infrared
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Table C.27 (continued)

Satellite Launch date Target

Smart-1 ESA Sep 28, 2003 Moon
Rosetta ESA Mar 2, 2004 Churyumov-Gerasimenko
Gravity Probe B USA Apr 20, 2004 relativity
Messenger USA Aug 3, 2004 Mercury
Swift USA Nov 20, 2004 gamma ray bursts
Deep Impact USA Jan 12, 2005 Tempel 1
Mars Recon Orbiter USA Aug 12, 2005 Mars
Venus Express ESA Nov 9, 2005 Venus
New Horizons USA Jan 19, 2006 Pluto
Akari Japan Feb 22, 2006 infrared
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Chapter 2

2.1 The distance is ≈ 7640 km, the northernmost
point is 79◦N, 45◦W, in North Greenland, 1250 km from
the North Pole.

2.2 The star can culminate south or north of zenith.
In the former case we get δ= 65◦, φ = 70◦, and in the
latter δ= 70◦, φ = 65◦.

2.3 a) φ > 58◦7′. If refraction is taken into
account, the limit is 57◦24′. b) φ = δ = 7◦24′.
c) −59◦10′ ≤ φ ≤ −0◦50′.

2.4 Pretty bad.

2.5 λ� = 70◦22′, β� = 0◦0′, λ⊕ = 250◦22′, β⊕ =
0◦0′.

2.6 c) Θ0 = 18 h.

2.8 α= 6 h 45 min 9 s, δ= −16◦43′.

2.9 vt = 16.7 km s−1, v = 18.5 km s−1, after ≈
61,000 years. µ= 1.62′′ per year, parallax 0.42′′.

Chapter 3

3.1 a) The flux density in the focal plane as well
as the exposure time are proportional to (D/ f )2. Thus
the required exposure is 3.2 s. b) 1.35 cm and 1.80 cm.
c) 60 and 80.

3.2 a) 0.001′′ (note that the aperture is a line rather
than circular; therefore the coefficient 1.22 should not
be used). b) 140 m.

Chapter 4

4.1 0.9.

4.2 The absolute magnitude will be −17.5 and ap-
parent 6.7.

4.3 N(m +1)/N(m)= 103/5 = 3.98.

4.4 r = 2.1 kpc, EB−V = 0.7, and (B − V )0 = 0.9.

4.5 a) ∆m = 1.06 mag, m = 2.42. b) τ =
− ln 0.856 ≈ 0.98.

Chapter 5

5.2 n = 166, which corresponds to λ= 21.04 cm.
Such transitions would keep the population of the state
n = 166 very high, resulting in downward transitions
also from this state. Such transitions have not been
detected. Hence, the line is produced by some other
process.

5.3 If we express the intensity as something per unit
wavelength, we get λmax = 1.1 mm. If the intensity is
given per unit frequency, we have λmax = 1.9 mm. The
total intensity is 2.6×1013 W m−2 sterad−1. At 550 nm
the intensity is practically zero.

5.4 a) L = 1.35×1029 W. The flux in the given
interval can be found by integrating Planck’s law
numerically. Using the Wien approximation a rather
complicated expression can be derived. Both methods
give the result that 3.3% of the radiation is in the vi-
sual range, thus LV = 4.45×1027 W. b) At a distance
of 10 pc the observed flux density is 3.7×10−9 W m−2.
b) 10.3 km.

5.5 Mbol = 0.87, whence R = 2.0 R�.

5.6 T = 1380 K. There are several strong absorption
lines in this spectral region, reducing the brightness tem-
perature.

5.8 vrms ≈ 6700 km s−1.

Chapter 6

6.1 va/vp = (1 − e)/(1 + e). For the Earth this
is 0.97.
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6.2 a = 1.4581 AU, v≈ 23.6 km s−1.

6.3 The period must equal the sidereal rotation pe-
riod of the Earth. r = 42,339 km = 6.64 R⊕. Areas
within 8.6◦ from the poles cannot be seen from geo-
stationary satellites. The hidden area is 1.1% of the
total surface area.

6.4 ρ = 3π/(G P2(α/2)3)≈ 1400 kg m−3.

6.5 M = 90◦, E = 90.96◦, f = 91.91◦.

6.6 The orbit is hyperbolic, a = 3.55×107 AU,
e = 1+3.97×10−16, rp = 2.1 km. The comet will hit
the Sun.

6.7 The orbital elements of the Earth calculated from
Table C.12 are a = 1.0000, e = 0.0167, i = 0.0004◦,
Ω = −11.13◦, � = 102.9◦, L = 219.5◦. The geocen-
tric radius vector of the Sun in the ecliptic coordinates
is

r =
⎛
⎜⎝0.7583

0.6673

0.0

⎞
⎟⎠ .

The corresponding equatorial radius vector is

r =
⎛
⎜⎝0.7583

0.6089

0.2640

⎞
⎟⎠ ,

which gives α≈ 2 h 35 min 3 s, δ≈ 15.19◦. The exact
direction is α= 2 h 34 min 53 s, δ= 15.17◦.

Chapter 7

7.1 Assuming the orbits are circular, the greatest
elongation is arcsin(a/1 AU). For Mercury this is 23◦
and for Venus 46◦. The elongation of a superior planet
can be anything up to 180◦. The sky revolves about 15◦
per hour, and thus corresponding times for Mercury and
Venus are 1 h 30 min and 3 h 5 min, respectively. In op-
position Mars is visible the whole night. These values,
however, depend on the actual declinations of the plan-
ets.

7.2 a) 8.7◦. b) The Earth must be 90◦ from the as-
cending node of Venus, which is the situation about

13 days before vernal and autumnal equinoxes, around
March 8 and September 10.

7.3 Psid = 11.9 a, a = 5.20 AU, d = 144,000 km.
Obviously the planet is Jupiter.

7.4 a) Hint: If there is a synodic period P there must
be integers p and q such that (n2 −n1)P = 2πp and
(n3 −n1)P = 2πq. Sometimes one can see claims that
the configuration of the whole planetary system will re-
cur after a certain period. Such claims are obviously
nonsense. b) 7.06 d.

7.5 a) If the radii of the orbits are a1 and a2, the
angular velocity of the retrograde motion is

dλ

dt
=

√
G M√

a1a2(
√

a1 +√
a2)

.

b) In six days Pluto moves about 0.128◦ corresponding
to 4 mm. For a main belt asteroid the displacement is
almost 4 cm.

7.6 If the orbital velocity of the planet is v the
deviation in radians is

α= v

c
= 1

c

√
G M�

a
.

This is greatest for Mercury, α = 0.00016 rad = 33′′.
This planetary aberration must be taken into account
when computing accurate ephemerides. The deviation
is largest when the planet is in conjunction or oppo-
sition and moves almost perpendicularly to the line of
sight.

7.7 p = 0.11, q = 2, and A = 0.2. In reality the
Moon reflects most of the light directly backwards (op-
position effect), and thus q and A are much smaller.

7.8 ∆m = 0.9. The surface brightness remains con-
stant.

7.9 The absolute magnitude is V(1, 0) = 23.
a) m = 18.7. b) m = 14.2. At least a 15 cm telescope is
needed to detect the asteroid even one day before the
collision.
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7.10 Assuming the comet rotates slowly the distances
are 1.4 AU and 0.8 AU.

Chapter 8

8.1 c g a d f e b; the actual spectral classes from top
to bottom are A0, M5, O6, F2, K5, G2, B3.

Chapter 9

9.1 The period is P = 1/
√

2 years and the relative
velocity 42,100 m s−1. The maximum separation of the
lines is 0.061 nm.

9.3 Substituting the values to the equation of Ex-
ample 9.1 we get an equation for a. The solution is
a = 4.4 AU. The mass of the planet is 0.0015 M�.

Chapter 10

10.1 10.5.

10.2 a) 9.5×1037 s−1. b) The neutrino production
rate is 1.9×1038 s−1, and each second 9×1028 neutri-
nos hit the Earth.

10.3 The mean free path is 1/κρ ≈ 42,000 AU.

Chapter 11

11.1 tff = 6.7×105 a. Stars are born at the rate
0.75 M� per year.

11.2 tt ≈ 400,000 a, tn ≈ 3×108 a.

11.3 About 900 million years.

Chapter 12

12.1 a) 6.3×107 W m−2. b) 16 m2.

12.2 807 W m−2.

Chapter 13

13.1 dr/r = −0.46 dM = 0.14.

13.2 a) T = 3570 K. b) Rmin/Rmax = 0.63.

13.3 a) 1300 pc. b) 860 years ago; due to inaccuracies
a safe estimate would be 860±100 years. Actually, the
explosion was observed in 1054. c) −7.4.

Chapter 14

14.1 L = 2.3×1040 kg m2 s−1. dR = 45 m.

14.2 a) M = 0.5 M�, a = 0.49×109 m s−2 ≈
4×107g. b) A standing astronaut will be subject to
a stretching tidal force. The gravitational acceleration
felt by the feet is 3479 m s−2 ≈ 355 g larger than that
felt by the head. If the astronaut lies tangentially, (s)he
will experience a compressing force of 177 g.

14.3 ν = νe
(
1− G M/(Rc2)

)
. If ∆ν/ν is small, we

have also ∆λ= (G M/Rc2)λe. A photon emitted from
the Sun is reddened by 2.1×10−6λe. In yellow light
(550 nm) the change is 0.0012 nm.

Chapter 15

15.1 2.6 kpc and 0.9 kpc, a = 1.5 mag/kpc.

15.2 7 km s−1.

15.3 The velocity of the proton is v = 0.0462c =
1.38×107 m s−1. The radius of the orbit is
r = mv/qB = 0.01 AU.

Chapter 16

16.1 7.3.

16.2 The potential energy is approximately U =
−G(m2n2/(2R)), where m is the mass of one star, n the
number of stars (there are n(n −1)/2 ≈ n2/2 pairs),
and R the radius of the cluster. The average velocity is
≈ √

Gmn/(2R)= 0.5 km s−1.
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Chapter 17

17.1 µ= 0.0055′′ a−1.

17.2 a) 5.7 kpc. b) 11 kpc. Possible reasons for the
discrepancy include: 1) The distance is so large that the
approximations used for deriving Oort’s formulae are
not very good. 2) Taking into account the interstellar
extinction will reduce the distance in b). 3) The pecu-
liar velocity of the star was neglected.

17.3 a) 3 (and the Sun). b) The number is of the or-
der of 100,000. This is a typical selection effect: bright
stars are rare but they are visible overt long distances.

17.4 a) If the thickness of the disk is H , the light
has to to travel a distance s = min{r, (H/2)sec b} in
the interstellar medium. Thus the magnitude will be
m = M +5 lg(r/10 pc)+as. b) s = 200 pc, m = 10.2.

Chapter 18

18.1 a) 26, b) 25.

18.2 The diameter must be of the order one one light-
week ≈ 1200 AU. M = −23.5. If this is the bolometric
magnitude, the luminosity is L ≈ 2×1011 L�, corre-
sponding to 210 L�AU−3.

Chapter 19

19.1 r = v/H = 93 Mpc (if H = 75), diameter is
35 kpc, M = −20.4. Potential sources of error include:

1) inaccuracy of the Hubble constant, 2) peculiar ve-
locity of the galaxy, 3) intergalactic extinction, 4) only
2-dimensional projection is observed, and the edge de-
pends on the limiting magnitude used.

19.2 If H = 50 km s−1Mpc−1, r = 51 Mpc, or
74 times the distance of M31. If H is doubled, the
distance is reduced to half of that, but is still higher than
the value obtained in Exercise 18.1. A possible expla-
nation is the peculiar velocity of the galaxy.

19.3 mν = 1.5×10−35 kg, or 0.00002 times the mass
of the electron.

Chapter 20

20.1 If the greenhouse effect is neglected, the dis-
tances corresponding to temperatures 373 K and 273 K
are 0.47 AU and 0.87 AU, respectively. The effec-
tive temperature of the young Sun was T = 4

√
0.7×

5785 K = 5291 K. The corresponding limits then were
0.39 AU and 0.73 AU. Thus the continuously habitable
zone would extend from 0.47 to 0.73 AU.

20.2 If there are n stars in a volume V , the dis-
tance between the nearest neighbours is of the order
3
√

V/n. If binary and triple stars in Table C.17
are counted as single objects, there are 47 stars in
a volume of 520 cubic parsecs. a) If a fraction
0.01 of them is habited, the average distance be-
tween neighbouring civilizations is 10 parsecs; b) 100
parsecs.
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The following list of references is not intended as a com-
plete bibliography. It gives a number of intermediate
level or more advanced works, which can serve as start-
ing points for those who wish to learn about some
specific topic in more detail or depth.

General Reference Works
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Combes, Boissé, Mazure, Blanchard: Galaxies and

Cosmology, Springer 1995; 2nd ed. 2001.
Frank, King, Raine: Accretion Power in Astro-

physics, Cambridge Astrophysics series 21, 2nd ed.,
Cambridge University Press 1992.

Salaris, Cassisi: Evolution of Stars and Stellar
Populations, Wiley 2005.

Krolik: Active Galactic Nuclei, Princeton University
Press 1999.

Sandage: The Hubble Atlas of Galaxies, Carnegie
Institution 1961.

Sparke, Gallagher: Galaxies in the Universe, Cam-
bridge University Press 2000.

Chapter 19. Cosmology
Dodelson: Modern Cosmology, Academic Press 2003.
Harrison: Cosmology, Cambridge University Press

1981.
Kolb, Turner: The Early Universe, Perseus Books 1993.
Peacock: Cosmological Physics, Cambridge University

Press 1999.
Peebles: Physical Cosmology, Princeton University

Press 1971.
Peebles: Principles of Physical Cosmology, Princeton

University Press 1993.
Raine: The Isotropic Universe, Hilger 1981.
Roos: Introduction to Cosmology, Wiley 1994, 2nd ed.

1997.
Weinberg: Gravitation and Cosmology, Wiley 1972.

Chapter 20. Astrobiology
Cassen, Guillot, Quirrenbach: Extrasolar Planets,

Springer 2006.
Gargaud, Barbier, Martin, Reisse (Eds.): Lectures in

Astrobiology, Springer Vol I (2006), Vol II (2007)
Gilmour, Sephton: An Introduction to Astrobiology, The

Open University, Cambridge University Press 2004.
Rettberg, Horneck (eds.): Complete Course in Astro-

biology, Wiley-VCH 2007.
Webb: Where is everybody? Copernicus Books in

association with Praxis Publishing 2002.

Physics
Feynman, Leighton, Sands: The Feynman Lectures on

Physics I-III, Addison-Wesley 1963.
Shu: The Physics of Astrophysics I–II, University

Science Books 1991
Taylor, Wheeler: Spacetime Physics, Freeman 1963.
Misner, Thorne, Wheeler: Gravitation, Freeman

1970.



474

Further Reading

Maps and Catalogues
Burnham: Burnham’s Celestial Handbook I, II, III,

Dover 1966, 2nd ed. 1978.
de Vaucouleurs et al.: Reference Catalogue of Bright

Galaxies, University of Texas Press 1964, 2nd
catalogue 1976.

Hirshfeld, Sinnott: Sky Catalogue 2000.0, Sky Publish-
ing 1985.

Hoffleit: Bright Star Catalogue, Yale University
Observatory 1982.

Kholopov (ed.): Obshij katalog peremennyh zvezd,
Nauka, 4th edition 1985.

Luginbuhl, Skiff: Observing Handbook and Catalogue
of Deep-sky Objects, Cambridge University Press
1989.

Ridpath: Norton’s 2000.0, Longman 1989.
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see CNO cycle

carbonaceous chondrites 196
Carlsberg foundation 58
Carruthers, George R. 326
Carte du Ciel 27, 30
Cassini division 179
Cassini, G. 172
Cassiopeia A 334
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eyepiece 49

F

facula 274
Faraday rotation 97, 337, 377
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422
latitude 14, 137
– geodetic 15
– galactic 312
– geocentric 15
– geographic 15
– geographical 14
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Lexell, Anders 182
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Lin, Chia-Chiao 362
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line profile 99, 209
line spectrum 95
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Local Supercluster 383, 396
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Lowell, P. 168, 186
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luminosity class 212
luminosity function 351, 352, 373
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Luna 165
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Lyot, Bernard 158

M

M1 294, 331
M100 336
M13 7, 339, 427
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– canals 168
– composition 171
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– life 171
– magnetic field 171
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– structure 171
– temperature 156, 171
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241
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mean place 25, 39
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– length of day 156
– magnetic field 149, 158
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Messier, Charles 294, 339
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Mizar 223
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month 38, 446
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– asthenosphere 165
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– perigee 136
– phases 135
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morning star 133, 158
mosaic mirror 63
Moulton, F.R. 197
Mount Fowlkes 63
Mount Hopkins 64
Mount Lemon 79
Mount Palomar 32, 58
Mount Wilson 49
mounting
– azimuthal 57, 58
– Dobson 57
– equatorial 57, 58
Mrkos 192
Mt Paranal 4
MXB 1730–335 297

N

N galaxy 385
nadir 16
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nautical mile 15
nautical triangle 18
NEAR 190
near-Earth asteroids 186, 189
nebula
– dark 312, 313, 328
– emission 313, 323
– reflection 313, 314, 340
nebular hypothesis 197
nebular variable 283, 284
Neptune 131, 183
– discovery 183
– magnetic field 149, 183
– moons 185
– orbit 183
– rings 185
– rotation 183
– structure 184
neutrino 403
neutrino decoupling 405
neutrino detectors 80
neutrinos 80
– from pp chain 235
– from supernova 289
– from URCA process 293
– mass 265
– solar 257, 265
neutron 95, 446
neutron capture 237, 258
neutron star 5, 8, 252, 289–293
– radius 298
– rotation 293
New General Catalogue of Nebulae

and Clusters of Stars 339
new moon 135
Newton’s laws 126
Newton, Isaac 4, 54, 207
NGC 1265 386
NGC 1435 314, 315
NGC 1952 331
NGC 1976 325
NGC 2068 314
NGC 4565 380
NGC 5195 380
NGC 6523 325
NGC 6960 332
NGC 6992 332
NGC 7023 314
NGC 7293 330
Nix 187
noctilucent clouds 168

nodal line 136
North America nebula 3
North Polar Spur 336
nova 209, 283, 284, 286, 288
– dwarf 286
– ordinary 286
– recurrent 286
Nova Cygni 287
nova outburst 255
nova-like star 283, 284
nova-like variable 286
nucleosynthesis 404
nucleotide 416
numerical solution of an equation 439
nutation 22, 23, 33, 39, 134, 136

O

OAO 2 320
objective 49
objective prism 207, 209
obliquity of the ecliptic 21–23, 33,

39, 134
occultation 138, 139
Olbers paradox 393
Olbers, Heinrich 393
Olympus Mons 170
ωCentauri 341
Oort cloud 189, 191, 194, 201
Oort constant 357, 358
Oort limit 307
Oort’s formulas 355, 357, 365
Oort, Jan 194, 355
opacity 89, 233, 244, 282
open cluster 256, 307, 329
open star cluster 308
Ophiuchus 313
Oppenheimer–Volkoff mass 252, 254
opposition 133
opposition effect 153
optical depth 109, 216, 309
optical SETI 426
optical thickness 89, 93
optical window 47
orbit determination 121
orbital elements 114, 116, 117, 126
orbital resonance 176
orbital velocity 123, 126
Orion 316
Orion nebula 316, 323, 325, 327, 328

osculating elements 118, 449
OSETI 426
other planetary systems 424
oxygen burning 237, 250
oxygen flash 250
Ozma 427
ozone 47, 426
ozone layer 163

P

P waves 141, 161
p-process 259
PAH 422
pair formation 259
Palomar Sky Atlas 30, 32
pancake domes 160
Pandora 181
Pangaea 162
panspermia 422
parabola 116, 117, 433
parallax 23, 27
– annual 23
– diurnal 23
– of the Moon 23
– of the Sun 23
– photometric 351
– statistical 350
– trigonometric 27, 349, 351
parallel of latitude 14
parameter, of a conic section 117, 433
Parametrized Post-Newtonian 443
parsec 27, 446
Paschen series 99
Pauli exclusion principle 232, 293
P Cygni 250
P Cygni star 214
peculiar motion 350
peculiar velocity 396
Pelican Nebula 246
penumbra 270
Penzias, Arno 397
periastron 115
pericentre 115
perigee 115
perihelion 115, 116, 134
period
– pulsation 281
– sidereal 33, 133
– synodic 133
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period–luminosity relation 256, 282
permanent tide 138
Perseids 196
Perseus arm 354
perturbations 120
perturbograph 124
phase angle 134, 150, 152, 448
phase curve 153
phase function 150
phase integral 150
phase space 232
Phobos 171
Phosphorus 158
photocathode 65
photodissociation 237
photography 30, 50, 64
photometer 65, 66, 87
photometry 65
photomultiplier 65
photon 95
photonuclear reaction 237
photopolarimeter 66
photosphere 266, 274
photosynthesis 420
phylogenetic tree 421, 422
Piazzi, G. 188
Pico del Teide 79
Pico Veleta 72
Pillan Patera 142
Pioneer 11 181
Pioneer Venus 1 159
pixel 66
place 274
Planck constant 95, 97, 446
Planck’s law 103, 109
planetary nebula 209, 250, 252, 331
planetary surfaces 144
planetesimals 200
planets 131, 186
– extrasolar 224
– magnitudes 151, 448
– mean elements 449
– satellites 450
plasma 163, 244, 332
plate tectonics 144, 162
Pleiades 314, 315, 339, 340
Pluto 131, 186, 187
– atmosphere 187
– composition 187
– discovery 186
– mass 186

– orbit 187
– rotation 186
– size 187
Pogson, Norman R. 86
polar axis 57
polar variation 36
Polaris 17, 22
polarization 66, 96, 97, 154, 336,

337, 377
– interstellar 310
pole, of a spherical triangle 11
Pollack, Herbert 334
population 354
– I 282, 355
– II 282, 344, 355
– intermediate 355
population inversion 107
population numbers 102
population synthesis 381
positional astronomy 25
positron 235
power spectrum 407
Poynting, J.P. 201
Poynting–Robertson effect 201
pp chain 234, 235, 245, 247, 252, 263
ppI chain 236
ppIII 236, 257
PPM 32
PPN 443
Praesepe 339
precession 21, 22, 29, 33, 34, 39, 134
precession constants 22
pressure
– of degenerate electron gas 232
– of degenerate gas 239
– of gas 238
– of relativistic degenerate gas 233
– radiation 238
principal quantum number 97, 100
Prometheus 142, 181
prominence 267, 274, 275
– loop 270, 272, 275
proper frequency 281
proper motion 28, 29, 222, 339, 342,

357
proplyd 198
proportional counter 77
protein 416
proton 95, 411, 446
proton-proton chain see pp chain
protostar 244, 252, 329

Proxima Centauri 27, 131
PSR 1133+16 294
PSR 1642-03 294
PSR 1913+16 295, 444
Ptolemy 30
pulsar 294, 334
– binary 295
Purcell, Edward 321

Q

QSO 387
quantum efficiency 65–67
quantum numbers 100
quasar 7, 20, 387, 394

R

R Coronae Borealis star 283–285
r-process 259
radial velocity 28, 29
– interstellar clouds 358
radian 432
radiation 244, 249
– blackbody 109
– coherent 107
– non-thermal 107, 334
radiation constant 231, 239
radiation decoupling 406
radiation density constant 446
radiation era 405
radiation pressure 131, 232
radiative energy transport 230
radiative temperature gradient 230
radiative transfer 108, 231, 322
radio galaxy 385, 394
radio spectroscopy 327
radio telescope 69
radio window 48
radiometer 70
radius vector, of a planet 121
rainbow 167
random walk 241
Rayet, Georges 214
Rayleigh limit 51
Rayleigh scattering 309
Rayleigh, Lord 48
Rayleigh–Jeans approximation 105,

106, 322, 332
readout noise 68
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Reber, Grote 69
recombination 95, 96, 323
recurrent nova 286
red clump 249
red giant 215, 248, 249
red giant branch 216
red-edge 426
reddening 90, 309, 342
reddening curve 310
redshift 29, 387, 394, 401
– gravitational 292, 299, 397, 444
reduction of observations 90, 93
reflection nebula 314
reflector 49, 52
refraction 20, 24, 25, 47
refraction angle 24
refractor 49, 52
regolith 165
relativity theory 299, 441
– general 7, 292, 295, 443

tests of 443
resolving power 50, 51, 70, 72
retrograde motion 117, 133
retrograde rotation 33
right ascension 18, 20, 22, 27
Ring nebula 332
rising and setting times 20, 38
RNA 416, 419
Robertson, H.P. 201
Robertson–Walker line element 400
Roche surface 225, 254, 255, 286
rotation curve 359, 360, 374, 375,

379
rotation matrix 437
rotational transition 327
RR Lyrae star 249, 280–282, 343,

351, 355
Russell, Henry Norris 215
RV Tauri star 280, 281, 283
Rydberg constant 98, 446
Ryle, Sir Martin 74

S

S asteroids 191
S waves 141, 161
s-process 259
Sagittarius arm 354, 362
Sagittarius B2 328, 329
SAO 30

SAO catalogue 30
Saros 139
satellite 131, 464, 465
– Astron 78
– Beppo-SAX 296
– Chandra 76, 389
– COBE 79, 196, 361, 397, 408
– Compton Gamma Ray Observatory

76, 296
– Copernicus 321, 326, 335
– COS B 76
– Einstein 76, 77
– EUVE 77
– Gaia 32
– HEAO 1 and 3 76
– Hipparcos 32, 349, 351
– Integral 76, 77
– IRAS 79
– ISO 79
– IUE 78
– MAP 79
– OAO 78
– OSO 3 76
– SAS 1 76
– SAS 2 76
– SOHO 276
– Soho 77
– Spitzer 79
– Swift 296
– TD-1 78
– Uhuru 76
– WMAP 397, 408
– XMM 76, 78
– Yohkoh 276
saturation 65, 68
Saturn 131, 178
– density 142, 178
– differentiation 178
– flattening 140
– helium abundance 178
– magnetic field 149
– moons 181
– origin of rings 181
– rings 179
– rotation 178
– winds 179
scalar product 435
scalar triple product 436
scale factor 400, 402, 411
scale height 145
scale, of a telescope 50

scattering 48, 97, 308
scattering efficiency factor 309
Schönberg 293
Schechter’s luminosity function 373
Scheiner, Christoph 265
Schiaparelli, G. 168
Schmidt camera 55
Schmidt, Bernhard 55
Schmidt, Maarten 387
Schwabe, Samuel Heinrich 270
Schwarzschild metric 443
Schwarzschild radius 299
scintillation 47
scintillation detector 76
Scorpius 313
Sculptor Galaxy 371
second 34, 36
seeing 47, 50
seismic waves 141
selection effect 216
selection rules 101
semi-diurnal tide 138
semilatus rectum 433
semimajor axis 116, 117, 433
semiminor axis 433
semiregular variable 280, 281
SERENDIP 427
SETI 426
setiathome 427
Seyfert galaxy 385
Seyfert, Carl 385
Sgr A 363
Sgr A∗ 363
Shane, W. W. 361
Shapley, Harlow 347
shell star 214
Shoemaker–Levy 9 193, 194
short period comets 194
Shu, Frank H. 362
SI units 120, 445
sidereal month 135
sidereal period 133
sidereal year 134
Siding Spring 32
silicates 317
silicon burning 237, 250
sine formula 14
sine-cosine formula 14
Sirius 86, 222, 223
Sirius B 216, 222, 291, 292
Skylab 77
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slit spectrograph 207
small circle 11
Small Magellanic Cloud 282, 371,

383
Small Solar System Bodies 186, 188
Smithsonian Astrophysical

Observatory see SAO
SN 1987A 289
Snowball Earth 418
Socorro 75
sodium
– interstellar 318, 319
soft gamma repeaters 295
SOHO 273
Soho 276
solar activity 270
solar constant 92
solar eclipse 138, 268, 269
solar system 5
– origin 197
solar wind 131, 147, 197
solid angle 432
Sonoran desert 49
source function 108, 322
space
– elliptical 400
– Euclidean 400
– flat 400
– hyperbolic 400
– Minkowski 400
space, curved 441, 443
spectral class 209, 215
– early 210
– late 210
spectral classification
– Harvard 209
– Yerkes (MKK) 212
spectral line 103, 207
– natural width 99
spectrograph 68
– objective prism 68
– slit 68
spectrum 29
– absorption 95, 96
– blackbody 103
– continuous 102, 207
– emission 95, 96, 214, 268
– luminosity effects 212, 213
– molecular 102
– peculiar 214
– stellar 207

sphere 432
spherical aberration 55
spherical astronomy 7, 11
spherical excess 12
spherical triangle 11
spherical trigonometry 11
spicule 268
spin 100, 102
Spitzer Space Telescope 389
Spitzer, Lyman 335
spring tide 137
Spörer minimum 270
SS Cygni 286
standard models, of the Universe 402
star catalogue 30
star map 32
Stark effect 103, 212
starquake 294
stars
– binary see binary stars
– brightest 456
– central temperature 238
– chemical composition 218
– densities 218
– diameters 217
– distances 27, 282
– energy production 233
– evolution 243, 252
– luminosity 104, 218
– masses 217, 221, 226
– motion 354
– nearest 454
– number density 352
– populations 237
– radius 104, 216, 217
– rotation 218
– structure 229
– temperature 104, 218
– variable see variables
static limit 299
stationary points 133
Stefan-Boltzmann constant 104, 446
Stefan-Boltzmann law 104, 105, 155
stellar model 237
stellar statistics 351
– fundamental equation 352
stellar wind 246, 283
steradian 432
stone-iron meteorites 196
stony meteorites 196
stratosphere 163

stromatolite 421
Strömgren sphere 326
Strömgren’s four-colour system 87
subduction zone 162
subdwarf 216
subgiant 212, 216, 249
Sun 5, 131, 243, 263, 447
– activity 270
– at zenith 134
– atmosphere 266
– coordinates 33
– declination 134
– density 263
– energy production 263, 276
– evolution 256
– gravitational acceleration 240
– luminosity 263
– magnitude 263
– mass 263
– mean molecular weight 240
– motion 349, 350
– orbital period 358
– pressure 263
– radio emission 275
– radius 263
– rotation 263, 265
– spectral class 263
– temperature 240, 263
– UV radiation 276
– X-rays 276
Sundman, Karl F. 120, 124
sunspot number 270, 271
sunspots 265, 270–272
supercluster 7, 381, 383
supergiant 5, 212, 215, 216, 282,

283, 329
supergranulation 266
superior conjunction 133
superior planet 133
superluminal motion 387
supernova 198, 252, 255, 256, 259,

283, 284, 286, 336, 394, 396
– lighcurve 288
– type I 255, 288, 296, 403
– type II 288
supernova remnant 288, 332
surface brightness 85, 91, 106, 393
surface gravity 212
surface velocity 118
symbiotic stars 286
symmetry breaking 405
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synchronous rotation 135
synchrotron radiation 107, 332, 334,

377
synodic month 135
synodic period 133
synthetic aperture radar 159

T

T Tauri star 198, 201, 246, 256, 280,
284

TAI see time, atomic
tangential velocity 28, 29
Tautenburg 57
Taylor series 434
Taylor, Joseph 295
TDB see time, barycentric dynamical
TDT see time, terrestrial dynamical
technetium 258
telescope
– ALMA 72, 73
– Arecibo 70, 71
– Cambridge array 75
– Cassegrain 54, 79
– catadioptric 57
– Effelsberg 71
– Gemini 63
– Green Bank 71
– Hobby-Eberle 63
– infrared 79
– IRAM 72
– James Clerk Maxwell 72
– Jodrell Bank 71
– Keck 58, 63, 69
– Maksutov 57
– MERLIN 75
– MMT 64
– Newton 54
– Nobeyama 72
– NTT 58
– Ritchey–Chrétien 57
– Schmidt 55
– Schmidt–Cassegrain 57
– Subaru 63
– VLA 74, 75
– VLT 63, 64, 69
– Westerbork array 75
telescope mounting 57
telescopes
– millimetre and submillimetre 463

– optical 461
– radio 462
temperature 105
– antenna 106, 322
– brightness 105, 106, 322
– colour 106, 111
– effective 104, 105, 111, 212, 215
– excitation 102, 107, 322
– ionization 107
– kinetic 107, 126
– spin 323
temperature gradient in stars 230
terrestrial planets 131
– core 141
– mantle 141
Tethys 181
thermal equilibrium 155
thermal radiation 103, 155
thermodynamic equilibrium 107, 109
thermosphere 163
three-body problem 120, 188
threshold temperature 405
tidal force 299
tidal heating 424
tides 136
time
– apparent sidereal 33, 36
– atomic 36
– barycentric dynamical 37
– coordinated universal 37
– daylight saving 34, 35
– dynamical 36
– ephemeris 36
– Greenwich mean sidereal 36
– mean 34
– mean sidereal 33, 36
– mean solar 34
– SI unit 34, 36
– sidereal 18, 32, 34, 44
– solar 18, 33, 34
– terrestrial 36, 37
– terrestrial dynamical 36
– units 446
– universal 34, 36, 37
– zonal 34, 37
time of perihelion 116, 117
time scale
– dynamical 244, 250
– nuclear 243, 246
– thermal 243, 244
time zone 34, 35

Titan 131, 181, 424
Titania 184
Titius–Bode law 188, 197, 200
TM see time, mean solar
Tombaugh, C. 186
Trans-Neptunian Objects 131
Trans-Neptunian objects 188
transit 19, 33, 140
transit circle 25
transparency of the atmosphere

48
Trapezium 323, 328
triple alpha process 236, 249, 252
Triton 185
Trojan asteroids 121, 188
Tropic of Cancer 134
Tropic of Capricorn 134
tropical year 134
tropopause 163
troposphere 163
true anomaly 115, 116
Trumpler, Robert 307
TT see time, terrestrial
Tully–Fisher relation 373, 396
tunnelling 411
Tycho Brahe 4
Tycho Brahe’s supernova 279, 288
Tycho catalogue 32

U

UBV system 87
UBVRI passbands 87
UBVRI system 87
ultraviolet catastrophe 105
ultraviolet radiation 47, 77
umbra 270
Umbriel 184
unit matrix 437
unit vector 435
universal time see time, universal
Universe
– age 396, 397, 404
– expansion 394, 396
– flat 405
– future 410
– geometry 400
– homogeneous 398, 400, 405
– isotropic 398, 400, 405
– scale 400
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– static 401
– structures 406
upper conjunction 133
upper culmination 19
Uranometria 29
Uranometria Nova 32
Uranus 131, 181
– discovery 182
– magnetic field 149, 182
– rings 182, 183
– rotation 182
URCA process 293
Urey, Harold 419
USNO-B1.0 Catalog 32
UT see time, universal
UT0 36
UT1 36, 37
UTC see time, coordinated universal
UV Ceti stars 283
uvby system 87

V

V1057 Cygni 284
V1357 Cyg 300
V1500 Cygni 287
Valles Marineris 169, 170
van Allen’s belts 148
van de Hulst, Hendrik 321
van den Bergh, Sidney 316, 372
variable stars see variables
variables 5, 279
– classification 280
– eclipsing 280
– eruptive 280, 283, 284
– irregular 283
– names 280
– pulsating 280, 281
– rotating 281
– semiregular 283
vector 434
vector product 435
vector triple product 436
Vega 22, 87, 210, 348
Veil nebula 332, 334
Vela pulsar 295, 336

velocity
– radial 340
– tangential 340
velocity of light 446
Venera 159
Venus 131, 158
– atmosphere 158, 159
– atmospheric pressure 159
– clouds 159
– greenhouse effect 155
– impact craters 161
– lava flows 161
– phases 158
– rotation 158
– surface 161
– temperature 156, 158
– transit 140
– volcanoes 160
vernal equinox 17, 20, 22, 32, 33,

116, 134
vertical 16
vibrational transitions 327
Vidicon camera 66
Viking 171
Virgo Cluster 382, 383, 396
virial 124
virial theorem 124, 374
VLBI 75
Vogt–Russell theorem 232
Voigt profile 99
Voyager 1 181
Voyager 2 181
Väisälä, Yrjö 57

W

W UMa stars 225
W Virginis star 280, 282, 355
Warrawoona Group 421
wavelength 28, 400
Weber cylinder 80
Weizsäcker, Carl Friedrich von 234
Whipple, F. 194
white dwarf 5, 215, 216, 249, 250,

252, 291
– radius 292, 298

Wien approximation 105, 107
Wien displacement constant 105
Wien displacement law 104, 105, 110
Wilson, Robert 397
winter solstice 134
Wolf diagram 312
Wolf, Charles 214
Wolf–Rayet star 209, 214, 250,

255–257, 288

X

X-ray burster 297, 303
X-ray pulsar 297, 302
X-rays 76, 77, 383
– solar 275, 276
XUV 77

Y

year 38, 446
– anomalistic 134
– sidereal 34, 119, 134
– tropical 34, 134
Yerkes Observatory 52, 53

Z

ZAMS 237
Zeeman effect 100, 101, 214, 270,

337
zenith 16
zenith angle 137
zenith distance 16, 24, 90
zero age main sequence see ZAMS
zero-point energy 405
ζ Persei 339, 341
zodiacal light 196
zone catalogue 30
zone of avoidance 312
3C129 386
3C273 387, 388
3C295 394
51 Pegasi 424
61 Cygni 27



491

Colour Supplement



492

Colour Supplement

Photograph on previous page. NGC 6872 and IC 4970 are
a pair of interacting galaxies far south in the constellation
Pavo (the Peacock). NGC 6872 is one of the largest known
barred spiral galaxies; its diameter is over 7 arcmin corre-
sponding about 200,000 pc. It is accompanied by a smaller
galaxy IC 4970 of type S0 (just above the centre). Their dis-
tance is about 90 million pc. North is to the upper right.
(Photograph European Southern Observatory)

Chapter 2. Spherical Astronomy

Plate 1. A long exposure shows the apparent motion of the
celestial sphere. Pekka Parviainen has caught in his image
the star trails, a trail of the crescent moon, and a trail of
the rising Sun, taken through a 24 stop ND-filter. (Photo
www.polarimage.fi)

Plate 2. Atmospheric refraction has distorted and discoloured
the image of the setting Sun. A rare green segment can be seen
above the Sun. (Photo Pekka Parviainen)

Chapter 3. Observations and Instruments

Plate 3. Astronomical observatories are built in high, dry
places with a clear sky. The picture shows the summit of
Mauna Kea in Hawaii with the twin domes of the world’s
largest telescopes, the William M. Keck Telescopes. Each of
them has a mosaic mirror with a diameter of 10 meters. (Photo
W.M. Keck Observatory)

Plate 4. The next generation space telescope, James Webb,
is under construction in the U.S. It will be launched about
2013. It will have a 6.5 meter mirror made of 18 segments.
The telescope will be situated at the L2 point of the Sun-
Earth system, about 1.5 million kilometers from the Earth.
(Illustration NASA)

Chapter 7. The Solar System

Plate 5. The transits of Mercury over the disk of the Sun were
widely observed in 1999 and 2003. The planet is nearing the
limb of the Sun at the end of the latter transit. The photograph
was taken with the 1 meter Swedish solar telescope on La
Palma. (Photo Royal Swedish Academy of Sciences)

Plate 6. Eclipses are astronomical phenomena that tend to
attract the attention of the general public. A composite made
from five different exposures shows the extent of the Earth’s
shadow and the movement of the Moon from lower right
to upper left. The eclipse occurred in October 2004. (Photo
Pekka Parviainen)

Plate 7. The first and so far only colour pictures from the
surface of Venus were obtained in 1982. Panoramic views
from Venera 13 (above) and Venera 14 (below). At the edges,
the camera is looking at the horizon and in the centre, at the
ground around the base of the space probe. Parts of the base,
the protective covers of the camera and a colour map can be
seen. (Photo Soviet Academy of Science)

Plate 8. One of the largest impact craters on the surface
of the Earth, Lake Manicouagan in northern Canada. The
ancient impact structure is about 70 kilometers in diame-
ter. This natural-colour image of the crater was acquired
by Nasa’s Terra satellite in June 2001. The impact is
thought to have occurred about 212 million years ago. (Photo
NASA/JPL/MISR)

Plate 9. The last people to have walked on the Moon were
geologist Harrison Schmitt (in the picture) and Eugene Cer-
nan, who took the photo. Schmitt is studying a big boulder at
the Taurus-Littrow landing site of Apollo 17 spacecraft in De-
cember 1972, with the lunar rover in the foreground. (Photo
NASA)

Plate 10. The “Burns Cliff” in the “Endurance Crater” on
Mars. The photo was taken by the Opportunity Mars rover in
November 2004. Opportunity and its twin Spirit have studied
the surface of Mars in unprecedented detail since their landing
in early 2002. The mosaic spans about 180 degrees from side
to side. (Photo NASA)

Plate 11. Colour-enhanced picture of the surface of Europa.
The surface is criss-crossed by lineaments, and the colour
differences show that they are younger than the surrounding
areas. The surface is mainly water ice. (Photo Galileo/NASA)

Plate 12. A true colour mosaic of Jupiter was taken by Cassini
spacecraft in 2000, when Cassini made its closest approach
to Jupiter on its way to Saturn. The clouds of the giant planet
move in reddish-brown and white bands, with the Great Red
Spot and several smaller white ovals in view. The smallest
visible features are about 60 kilometers across. (Photo NASA)

Plate 13. A simulated image of the rings of Saturn, based
on radio occultation measurements by Cassini spacecraft in
May 2005. Green and blue shades indicate regions where
the particles are smaller than 5 centimeters and 1 centimeter
across. In purple regions, the particles are mostly larger than
5 centimeters. The white area is the thickest part of B-ring,
where radio signals were blocked. (Photo NASA)
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Plate 14. The first view from the surface of Titan, the largest
moon of Saturn, was obtained in January 2005, when the Eu-
ropean Huygens probe made a soft landing. The boulders are
made of water ice, and their size is mostly 10-20 centime-
ters. The surface itself is methane-filled mud and sand. (Photo
ESA/NASA)

Plate 15. Details of the icy surface of Triton, the largest satel-
lite of Neptune. The plain in the center is called Tuonela. The
albedo of Triton is very similar to that of Pluto, and thus this
kind of feature may be seen by the New Horizons spacecraft
in July 2015 when it flies by Pluto. (Photo Voyager 2/NASA)

Plate 16. Surface and jets of Comet Wild 2. The Stardust
spacraft flew by the head of comet Wild 2 in January 2004.
The best black-and-white photo of the comet´s surface has
been merged with a long-exposure photo showing the faint
dust jets emanating from the surface. The diameter of the
comet’s head is about 5 km. (Photo NASA)

Chapter 8. Stellar Spectra

Plate 17. Spectra of stars of different spectral classes. The
wavelength range is in the visual part, from 400 to 700
nanometers. The O stars at the top are hottest, and the M
stars at the bottom, the coolest. (Photo NOAO/AURA/NSF)

Chapter 12. The Sun

Plate 18. Three-colour composite of the solar surface, pho-
tographed by the Extreme Ultraviolet Imaging Telescope of
SOHO satellite in May 1998. Three ultraviolet images taken
at different wavelenths (17.1 nm, 19.5 nm and 28.4 nm) were
coded red, yellow and blue and merged into one picture. (Photo
SOHO/EIT/NASA/Goddard Space Flight Center)

Chapter 15. The Interstellar Medium

Plate 19. One of the most detailed visual-wavelength pictures
of the Orion Nebula was published in 2006. It was taken
by the Hubble Space Telescope, which used 105 orbits to
photograph the nebula. The original picture has 1000 million
pixels. Thousands of previously unknown stars were found in
the picture, and also many new brown dwarfs. Orion Nebula
is a large dust and gas region, giving rise to new stars. The
width of the picture is about half a degree (the same as full
Moon). (Photo NASA/ESA/M. Robberto)

Plate 20. Orion Nebula photographed by the Spitzer Telescope
in infrared light in 2006. While the Hubble picture (Plate 19)
shows bright gas, with dark dust lanes, Spitzer sees the dust

as bright regions. The wavelength of 8 micrometers has been
coded red, and 5.8 microns, orange. They represent dust heated
by the stars. Light of 4.5 microns (green) shows hot gas and
dust, and light of 3.6 microns (blue) is from starlight. (Photo
NASA)

Plate 21. The dark cloud Barnard 68 in the constellation of
Ophiuchus. B68 is a dense molecular cloud, which is just
starting to contract and later form new stars. The diameter
of the cloud is 7 light-months (0.2 parsecs), and its distance
is about 500 light-years. It was photographed by the Antu
(VLT 1) Telescope in 1999. (Photo ESO)

Plate 22. The star V838 Monocerotis brightened suddenly in
early 2002. The outburst lasted several weeks and sent a sphere
of light spreading into the surrounding interstellar medium.
The light-echo has illuminated the dust clouds around the star
and unveiled never-before-seen patterns. This photo was taken
by the Hubble Space Telescope at the end of 2004, nearly three
years after the outburst. (Photo NASA/ESA)

Plate 23. The Rosette Nebula in Monoceros belongs to the
same extensive dust and gas complex as the Orion Nebula.
Within the Rosette Nebula there is a young star cluster called
NGC 2244, which gives energy to the cloud. The ultraviolet
light from the stars makes the hydrogen glow red, and the
oxygen, greenish. The picture is about 1 degree wide, and it
was taken by the MegaPrime Camera at the Canada-France-
Hawaii Telescope on Mauna Kea in 2003. (Photo CFHT/J.-C.
Cuillandre)

Plate 24. The Helix Nebula is one of the nearest planetary
nebulae and also one of the apparently widest. Its diameter
is nearly one degree (two full Moons side by side), but its
surface brightness is so low it cannot be seen by the naked eye.
It is located in the constellation of Aquarius. This composite
photograph combines an ultra-sharp mosaic by the Hubble
Space Telescope with a wide view by the WIYN 0.9 meter
Telescope on Kitt Peak. (Photo NASA/NOAO/ESA)

Plate 25. Radio image of the Cassiopeia A supernova remnant.
Cas A is one of the brightest radio sources in the sky. This im-
age was made at three different frequencies: 1.4 GHz, 5.0 GHz
and 8.4 GHz, with the Very Large Array radio telescope in
New Mexico. The radiation comes mainly from relativistic
electrons. (Image NRAO/AUI)

Plate 26. The remnant of the Tycho supernova in X-rays.
The supernova exploded in 1572 and was observed by Tycho
Brahe. During the last years, the Chandra X-Ray Observatory
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has made observations of this object. The image shows an
expanding bubble of extremely hot gas (in green and red)
inside a shell of rapidly moving electrons (blue). (Image
NASA/Chandra)

Chapter 18. Galaxies

Plate 27. Part of the Andromeda Galaxy M31, photographed
with the Japanese Subaru 8.4 m telescope on Mauna Kea,
Hawaii. The nucleus of the galaxy is outside the picture on
the upper left. The stars with the vertical lines are foreground
stars in our Milky Way. M31 is a sister galaxy to our Milky
Way, with similar star clusters, dust and gas clouds and spiral
arms. (Photo Subaru Telescope, NOAJ)

Plate 28. The most detailed infrared view of the Andromeda
Galaxy so far was obtained by the Spitzer Telescope in 2004.
While the Subaru picture (Plate 27) shows the starlight from
the galaxy, the Spitzer picture records the infrared radiation
from the dust in the spiral arms at the wavelength of 24
micrometers. The spiral arms with their warm dust and star-
forming clouds can be seen much more clearly than at visual
wavelengths. (Photo Spitzer/NASA)

Plate 29. The central part of the active galaxy Centaurus A,
NGC 5128, seen by the Hubble Space Telescope. The whole
galaxy is crossed by a thick dust lane with intricate wisps of
warm dust and gas. At the centre of the galaxy, behind the
dust shroud, lies a black hole, which sends powerful jets in
two directions. The jets can be seen only in X-rays or at radio
wavelengths. For a wider view of Centaurus A see the next
Plate. (Photo NASA)

Plate 30. New pictures of the outer parts of Centaurus A have
revealed several ring-like features, which contain faint blue
stars. The rings may have been formed in interactions with
other, smaller galaxies, which have collided with Centaurus

A and lost part of their stars to this giant galaxy. (Photo Cerro
Tololo International Observatory, NOAO/NSF)

Plate 31. A well-kown galaxy-quasar pair: in the center the
galaxy NGC 4319, and on the upper right, the quasar Markar-
ian 215. Alhough the pair seems to belong together, in reality
this is a case of chance alignment. The distance to the quasar is
14 times larger than the distance to the galaxy. (Photo Hubble
Space Telescope/NASA)

Plate 32. A small group of interacting galaxies called Seyfert’s
Sextet. As the name implies, there seem to be six galaxies en-
gaging in a cosmic dance. The number of interacting galaxies
is however only four. The small well-defined spiral galaxy to
the right of the center, lies nearly five times further away than
the others. And the rightmost “galaxy” isn’t actually a galaxy
at all, but a long “tidal tail” of stars torn off from the other
galaxies. (Photo Hubble Space Telescope/NASA)

Chapter 19. Cosmology

Plate 33. The Hubble Space Telescope has photographed
several deep sky fields to get representative samples of the
Universe. This photograph is the Hubble Deep Field South in
the constellation Tucana, and it contains thousands of never-
before seen galaxies up to the distance of 12 Ga. The small red
dot in the middle of the photograph is a distant quasar, whose
light was studied with the Space Telescope Imaging Spectro-
graph, to map invisible clouds of hydrogen gas between us
and the quasar. (Photo NASA)

Plate 34. Temperature fluctuations in the cosmic microwave
background. The observations were made with the Wilkin-
son Microwave Anisotropy Probe (WMAP) in 2002. From
the scale dependence of the fluctuations we can estimate the
average density of the Universe (very near the critical den-
sity), and the age of the Universe (about 13.7 Ga). (Photo
WMAP/NASA)
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