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Preface to the Fifth Edition

As the title suggests, this book is about fundamental
things that one might expect to remain fairly the same.
Yet astronomy has evolved enormously over the last few
years, and only a few chapters of this book have been
left unmodified.

Cosmology has especially changed very rapidly
from speculations to an exact empirical science and
this process was happening when we were working
with the previous edition. Therefore it is understand-
able that many readers wanted us to expand the
chapters on extragalactic and cosmological matters.
We hope that the current edition is more in this
direction. There are also many revisions and addi-
tions to the chapters on the Milky Way, galaxies, and
cosmology.

While we were working on the new edition, the
International Astronomical Union decided on a precise
definition of a planet, which meant that the chapter on
the solar system had to be completely restructured and
partly rewritten.

Over the last decade, many new exoplanets have also
been discovered and this is one reason for the increasing
interest in a new branch of science — astrobiology, which
now has its own new chapter.

In addition, several other chapters contain smaller
revisions and many of the previous images have been
replaced with newer ones.

Helsinki
December 2006

The Editors
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Preface to the First Edition

The main purpose of this book is to serve as a university
textbook for a first course in astronomy. However, we
believe that the audience will also include many serious
amateurs, who often find the popular texts too trivial.
The lack of a good handbook for amateurs has become
a problem lately, as more and more people are buying
personal computers and need exact, but comprehensible,
mathematical formalism for their programs. The reader
of this book is assumed to have only a standard high-
school knowledge of mathematics and physics (as they
are taught in Finland); everything more advanced is usu-
ally derived step by step from simple basic principles.
The mathematical background needed includes plane
trigonometry, basic differential and integral calculus,
and (only in the chapter dealing with celestial mechan-
ics) some vector calculus. Some mathematical concepts
the reader may not be familiar with are briefly explained
in the appendices or can be understood by studying
the numerous exercises and examples. However, most
of the book can be read with very little knowledge of
mathematics, and even if the reader skips the mathemat-
ically more involved sections, (s)he should get a good
overview of the field of astronomy.

This book has evolved in the course of many years
and through the work of several authors and editors. The
first version consisted of lecture notes by one of the edi-
tors (Oja). These were later modified and augmented by
the other editors and authors. Hannu Karttunen wrote
the chapters on spherical astronomy and celestial me-
chanics; Vilppu Piirola added parts to the chapter on
observational instruments, and Goran Sandell wrote the
part about radio astronomy; chapters on magnitudes, ra-
diation mechanisms and temperature were rewritten by

the editors; Markku Poutanen wrote the chapter on the
solar system; Juhani Kyroldinen expanded the chapter
on stellar spectra; Timo Rahunen rewrote most of the
chapters on stellar structure and evolution; Ilkka Tuomi-
nen revised the chapter on the Sun; Kalevi Mattila wrote
the chapter on interstellar matter; Tapio Markkanen
wrote the chapters on star clusters and the Milky Way;
Karl Johan Donner wrote the major part of the chapter
on galaxies; Mauri Valtonen wrote parts of the galaxy
chapter, and, in collaboration with Pekka Teerikorpi, the
chapter on cosmology. Finally, the resulting, somewhat
inhomogeneous, material was made consistent by the
editors.

The English text was written by the editors, who
translated parts of the original Finnish text, and rewrote
other parts, updating the text and correcting errors found
in the original edition. The parts of text set in smaller
print are less important material that may still be of
interest to the reader.

For the illustrations, we received help from Veikko
Sinkkonen, Mirva Vuori and several observatories and
individuals mentioned in the figure captions. In the
practical work, we were assisted by Arja Kyroldinen
and Merja Karsma. A part of the translation was read
and corrected by Brian Skiff. We want to express our
warmest thanks to all of them.

Financial support was given by the Finnish Ministry
of Education and Suomalaisen kirjallisuuden edistamis-
varojen valtuuskunta (a foundation promoting Finnish
literature), to whom we express our gratitude.

Helsinki
June 1987

The Editors
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Hubble Space Telescope photo of a galaxy pair called NGC 3314.
Through a chance alignment, a face-on spiral galaxy lies precisely in front of another larger spiral.
(Photo NASA and the Hubble Heritage Team., STScl/AURA )



1. Introduction

1.1 The Role of Astronomy

On a dark, cloudless night, at a distant location far away
from the city lights, the starry sky can be seen in all
its splendour (Fig. 1.1). It is easy to understand how
these thousands of lights in the sky have affected peo-
ple throughout the ages. After the Sun, necessary to all
life, the Moon, governing the night sky and continuously
changing its phases, is the most conspicuous object in
the sky. The stars seem to stay fixed. Only some rela-

tively bright objects, the planets, move with respect to
the stars.

The phenomena of the sky aroused people’s inter-
est a long time ago. The Cro Magnon people made
bone engravings 30,000 years ago, which may depict
the phases of the Moon. These calendars are the old-
est astronomical documents, 25,000 years older than
writing.

Agriculture required a good knowledge of the sea-
sons. Religious rituals and prognostication were based

M. Poutanen and H. Virtanen)

Fig. 1.1. The North America nebula in the constellation of Cygnus. The brightest star on the right is o« Cygni or Deneb. (Photo
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on the locations of the celestial bodies. Thus time reck-
oning became more and more accurate, and people
learned to calculate the movements of celestial bodies
in advance.

During the rapid development of seafaring, when
voyages extended farther and farther from home ports,
position determination presented a problem for which
astronomy offered a practical solution. Solving these
problems of navigation were the most important tasks
of astronomy in the 17th and 18th centuries, when
the first precise tables on the movements of the plan-
ets and on other celestial phenomena were published.
The basis for these developments was the discov-
ery of the laws governing the motions of the planets
by Copernicus, Tycho Brahe, Kepler, Galilei and
Newton.

Fig.1.2. Although space
probes and satellites have
gathered remarkable new
information, a great ma-
jority of astronomical
observations is still Earth-
based. The most important
observatories are usually
located at high altitudes
far from densely populated
areas. One such observa-
tory is on Mt Paranal in
Chile, which houses the
European VLT telescopes.
(Photo ESO)

Astronomical research has changed man’s view of
the world from geocentric, anthropocentric conceptions
to the modern view of a vast universe where man and the
Earth play an insignificant role. Astronomy has taught
us the real scale of the nature surrounding us.

Modern astronomy is fundamental science, moti-
vated mainly by man’s curiosity, his wish to know more
about Nature and the Universe. Astronomy has a central
role in forming a scientific view of the world. “A scien-
tific view of the world” means a model of the universe
based on observations, thoroughly tested theories and
logical reasoning. Observations are always the ultimate
test of a model: if the model does not fit the observa-
tions, it has to be changed, and this process must not
be limited by any philosophical, political or religious
conceptions or beliefs.




1.2 Astronomical Objects of Research

1.2 Astronomical Objects of Research

Modern astronomy explores the whole Universe and its
different forms of matter and energy. Astronomers study
the contents of the Universe from the level of elementary
particles and molecules (with masses of 1073 kg) to
the largest superclusters of galaxies (with masses of
109 kg).

Astronomy can be divided into different branches in
several ways. The division can be made according to
either the methods or the objects of research.

The Earth (Fig. 1.3) is of interest to astronomy for
many reasons. Nearly all observations must be made
through the atmosphere, and the phenomena of the
upper atmosphere and magnetosphere reflect the state
of interplanetary space. The Earth is also the most
important object of comparison for planetologists.

The Moon is still studied by astronomical methods,
although spacecraft and astronauts have visited its sur-
face and brought samples back to the Earth. To amateur
astronomers, the Moon is an interesting and easy object
for observations.

In the study of the planets of the solar system,
the situation in the 1980’s was the same as in lunar
exploration 20 years earlier: the surfaces of the plan-
ets and their moons have been mapped by fly-bys of
spacecraft or by orbiters, and spacecraft have soft-
landed on Mars and Venus. This kind of exploration
has tremendously added to our knowledge of the con-
ditions on the planets. Continuous monitoring of the
planets, however, can still only be made from the Earth,
and many bodies in the solar system still await their
spacecraft.

The Solar System is governed by the Sun, which
produces energy in its centre by nuclear fusion. The
Sun is our nearest star, and its study lends insight into
conditions on other stars.

Some thousands of stars can be seen with the
naked eye, but even a small telescope reveals mil-
lions of them. Stars can be classified according to
their observed characteristics. A majority are like the
Sun; we call them main sequence stars. However,
some stars are much larger, giants or supergiants,
and some are much smaller, white dwarfs. Different
types of stars represent different stages of stellar evo-
lution. Most stars are components of binary or multiple

RN S e

Fig. 1.3. The Earth as seen from the Moon. The picture was
taken on the first Apollo flight around the Moon, Apollo 8 in
1968. (Photo NASA)

systems, many are variable: their brightness is not
constant.

Among the newest objects studied by astronomers
are the compact stars: neutron stars and black holes. In
them, matter has been so greatly compressed and the
gravitational field is so strong that Einstein’s general
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1.2 Astronomical Objects of Research

theory of relativity must be used to describe matter and
space.

Stars are points of light in an otherwise seemingly
empty space. Yet interstellar space is not empty, but
contains large clouds of atoms, molecules, elemen-
tary particles and dust. New matter is injected into
interstellar space by erupting and exploding stars; at
other places, new stars are formed from contracting
interstellar clouds.

Stars are not evenly distributed in space, but form
concentrations, clusters of stars. These consist of stars
born near each other, and in some cases, remaining
together for billions of years.

The largest concentration of stars in the sky is the
Milky Way. It is a massive stellar system, a galaxy,
consisting of over 200 billion stars. All the stars visible
to the naked eye belong to the Milky Way. Light travels
across our galaxy in 100,000 years.

The Milky Way is not the only galaxy, but one of
almost innumerable others. Galaxies often form clusters
of galaxies, and these clusters can be clumped together
into superclusters. Galaxies are seen at all distances as

far away as our observations reach. Still further out we
see quasars — the light of the most distant quasars we
see now was emitted when the Universe was one-tenth
of its present age.

The largest object studied by astronomers is the
whole Universe. Cosmology, once the domain of
theologicians and philosophers, has become the sub-
ject of physical theories and concrete astronomical
observations.

Among the different branches of research, spher-
ical, or positional, astronomy studies the coordinate
systems on the celestial sphere, their changes and the
apparent places of celestial bodies in the sky. Celes-
tial mechanics studies the movements of bodies in
the solar system, in stellar systems and among the
galaxies and clusters of galaxies. Astrophysics is con-
cerned with the physical properties of celestial objects;
it employs methods of modern physics. It thus has
a central position in almost all branches of astronomy
(Table 1.1).

Astronomy can be divided into different areas ac-
cording to the wavelength used in observations. We can

Fig. 1.5. The globular clus-
ter M13. There are over
a million stars in the
cluster. (Photo Palomar
Observatory)
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Table 1.1. The share of different branches of astronomy in
1980, 1998 and 2005. For the first two years, the percantage
of the number of publications was estimated from the printed
pages of Astronomy and Astrophysics Abstracts, published by
the Astronomische Rechen-Institut, Heidelberg. The publica-
tion of the series was discontinued in 2000, and for 2005, an
estimate was made from the Smithsonian/NASA Astrophysics
Data System (ADS) Abstract Service in the net. The differ-
ence between 1998 and 2005 may reflect different methods
of classification, rather than actual changes in the direction of
research.

Branch of Percentage of publications
Astronomy in the year

1980 1998 2005
Astronomical instruments and techniques 6 6 8
Positional astronomy, celestial mechanics 4 2 5
Space research 2 1 9
Theoretical astrophysics 10 13 6
Sun 8 8 8
Earth 5 4 3
Planetary system 16 9 11
Interstellar matter, nebulae 7 6 5
Radio sources, X-ray sources, cosmic rays 9 5 12
Stellar systems, Galaxy, extragalactic
objects, cosmology 14 29 22

Fig.1.6. The Large Mag-
ellanic Cloud, our nearest
neighbour galaxy. (Photo
National Optical Astron-
omy Observatories, Cerro
Tololo Inter-American
Observatory)

speak of radio, infrared, optical, ultraviolet, X-ray or
gamma astronomy, depending on which wavelengths
of the electromagnetic spectrum are used. In the fu-
ture, neutrinos and gravitational waves may also be ob-
served.

1.3 The Scale of the Universe

The masses and sizes of astronomical objects are
usually enormously large. But to understand their prop-
erties, the smallest parts of matter, molecules, atoms
and elementary particles, must be studied. The densi-
ties, temperatures and magnetic fields in the Universe
vary within much larger limits than can be reached in
laboratories on the Earth.

The greatest natural density met on the Earth is
22,500 kg m™3 (osmium), while in neutron stars den-
sities of the order of 10'"® kgm™3 are possible. The
density in the best vacuum achieved on the Earth is
only 10~ kgm™, but in interstellar space the density
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of the gas may be 1072! kgm~3 or even less. Modern
accelerators can give particles energies of the order of
10'2 electron volts (V). Cosmic rays coming from the
sky may have energies of over 102 V.

It has taken man a long time to grasp the vast di-
mensions of space. Already Hipparchos in the second
century B.C. obtained a reasonably correct value for
the distance of the Moon. The scale of the solar system
was established together with the heliocentric system in
the 17th century. The first measurements of stellar dis-
tances were made in the 1830’s, and the distances to the
galaxies were determined only in the 1920’s.

We can get some kind of picture of the distances in-
volved (Fig. 1.4) by considering the time required for
light to travel from a source to the retina of the human
eye. It takes 8 minutes for light to travel from the Sun,

5% hours from Pluto and 4 years from the nearest star.
We cannot see the centre of the Milky Way, but the many
globular clusters around the Milky Way are at approxi-
mately similar distances. It takes about 20,000 years for
the light from the globular cluster of Fig. 1.5 to reach
the Earth. It takes 150,000 years to travel the distance
from the nearest galaxy, the Magellanic Cloud seen on
the southern sky (Fig. 1.6). The photons that we see now
started their voyage when Neanderthal Man lived on the
Earth. The light coming from the Andromeda Galaxy in
the northern sky originated 2 million years ago. Around
the same time the first actual human using tools, Homo
habilis, appeared. The most distant objects known, the
quasars, are so far away that their radiation, seen on the
Earth now, was emitted long before the Sun or the Earth
were born.

9



2. Spherical Astronomy

pherical astronomy is a science studying astronomical

coordinate frames, directions and apparent motions
of celestial objects, determination of position from astro-
nomical observations, observational errors, etc. We shall
concentrate mainly on astronomical coordinates, appar-
ent motions of stars and time reckoning. Also, some of
the most important star catalogues will be introduced.

2.1 Spherical Trigonometry

For the coordinate transformations of spherical astron-
omy, we need some mathematical tools, which we
present now.

If a plane passes through the centre of a sphere, it will
split the sphere into two identical hemispheres along
a circle called a great circle (Fig.2.1). A line perpen-
dicular to the plane and passing through the centre of
the sphere intersects the sphere at the poles P and P’.
If a sphere is intersected by a plane not containing the
centre, the intersection curve is a small circle. There
is exactly one great circle passing through two given
points Q and Q’ on a sphere (unless these points are an-

Great circle

Fig.2.1. A great circle is the intersection of a sphere and
a plane passing through its centre. P and P’ are the poles of
the great circle. The shortest path from Q to Q' follows the
great circle

For simplicity we will assume that the observer is
always on the northern hemisphere. Although all def-
initions and equations are easily generalized for both
hemispheres, this might be unnecessarily confusing. In
spherical astronomy all angles are usually expressed
in degrees; we will also use degrees unless otherwise
mentioned.

tipodal, in which case all circles passing through both
of them are great circles). The arc QQ’ of this great
circle is the shortest path on the surface of the sphere
between these points.

A spherical triangle is not just any three-cornered
figure lying on a sphere; its sides must be arcs of great
circles. The spherical triangle ABC in Fig.2.2 has the
arcs AB, BC and AC as its sides. If the radius of the
sphere is r, the length of the arc AB is

|AB|=rc, [c]l=rad,

where c is the angle subtended by the arc AB as seen
from the centre. This angle is called the central angle
of the side AB. Because lengths of sides and central

Fig. 2.2. A spherical triangle is bounded by three arcs of great
circles, AB, BC and CA. The corresponding central angles
are ¢, a, and b

Hannu Karttunen et al. (Eds.), Spherical Astronomy.
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angles correspond to each other in a unique way, it is
customary to give the central angles instead of the sides.
In this way, the radius of the sphere does not enter into
the equations of spherical trigonometry. An angle of
a spherical triangle can be defined as the angle between
the tangents of the two sides meeting at a vertex, or as
the dihedral angle between the planes intersecting the
sphere along these two sides. We denote the angles of
a spherical triangle by capital letters (A, B, C) and the
opposing sides, or, more correctly, the corresponding
central angles, by lowercase letters (a, b, ¢).

The sum of the angles of a spherical triangle is always
greater than 180 degrees; the excess

E=A+B+C—180° 2.1)

is called the spherical excess. It is not a constant, but
depends on the triangle. Unlike in plane geometry, it is
not enough to know two of the angles to determine the
third one. The area of a spherical triangle is related to
the spherical excess in a very simple way:

Area= Er’, [E]=rad. (2.2)

This shows that the spherical excess equals the solid
angle in steradians (see Appendix A.1), subtended by
the triangle as seen from the centre.

Fig.2.3. If the sides of a spherical triangle are extended all
the way around the sphere, they form another triangle A’,
antipodal and equal to the original triangle A. The shaded
area is the slice S(A)

To prove (2.2), we extend all sides of the triangle A
to great circles (Fig. 2.3). These great circles will form
another triangle A’, congruent with A but antipodal to
it. If the angle A is expressed in radians, the area of the
slice S(A) bounded by the two sides of A (the shaded
area in Fig.2.3) is obviously 2A/2w = A/m times the
area of the sphere, 4712, Similarly, the slices S(B) and
S(C) cover fractions B/m and C/m of the whole sphere.

Together, the three slices cover the whole surface
of the sphere, the equal triangles A and A’ belonging
to every slice, and each point outside the triangles, to
exactly one slice. Thus the area of the slices S(A), S(B)
and S(C) equals the area of the sphere plus four times
the area of A, A(A):

A+B+C
+B+C,
b

712 = 4d7r’ + 4A(A) ,
whence

AA) =(A+B+C—mr*=Er.

As in the case of plane triangles, we can derive re-
lationships between the sides and angles of spherical
triangles. The easiest way to do this is by inspecting
certain coordinate transformations.

Fig.2.4. The location of a point P on the surface of a unit
sphere can be expressed by rectangular xyz coordinates or by
two angles, 1 and 6. The x’y’z’ frame is obtained by rotating
the xyz frame around its x axis by an angle x
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Fig. 2.5. The coordinates of the point P in the rotated frame
are X' =x,y = ycos x +zsinyx, 7 =zcos y —ysinx

Suppose we have two rectangular coordinate frames
Oxyz and Ox'y'7’ (Fig.2.4), such that the x"y'7’ frame
is obtained from the xyz frame by rotating it around the
x axis by an angle .

The position of a point P on a unit sphere is uniquely
determined by giving two angles. The angle v is mea-
sured counterclockwise from the positive x axis along
the xy plane; the other angle 6 tells the angular distance
from the xy plane. In an analogous way, we can de-
fine the angles v" and &', which give the position of the
point P in the x'y'z’ frame. The rectangular coordinates

of the point P as functions of these angles are:
X =cosyrcosf, x' =cos ' cost’,

y=sinycosf, vy =siny’ cosd’, (2.3)

7 =sinb, 7 =sin#’.

We also know that the dashed coordinates are obtained
from the undashed ones by a rotation in the yz plane
(Fig.2.5):

X'=x,

y =ycos x+zsiny, (2.4)

7 =—ysin x +zcos x .
By substituting the expressions of the rectangular
coordinates (2.3) into (2.4), we have

cos ¥’ cos @’ = cos yr cos @ ,

sin ' cos @’ = sin ¥ cos 0 cos x +sinfsin x , (2.5)

sin @’ = — sin Y cos @ sin x +sinf cos x .

. A2
c
B A b
a C
¥
/”’—— X - \\‘\
-y
v
A
e
vy Vv
x, X'

Fig. 2.6. To derive triangulation formulas for the spherical
triangle A BC, the spherical coordinates v/, 8, ¥’ and 6’ of the
vertex C are expressed in terms of the sides and angles of the
triangle

In fact, these equations are quite sufficient for all co-
ordinate transformations we may encounter. However,
we shall also derive the usual equations for spherical
triangles. To do this, we set up the coordinate frames in
a suitable way (Fig. 2.6). The z axis points towards the
vertex A and the 7’ axis, towards B. Now the vertex C
corresponds to the point P in Fig. 2.4. The angles v, 0,
Y¥’, 0 and x can be expressed in terms of the angles and
sides of the spherical triangle:

Y =A—90°,
Y =90°— B,

0=90°—-b,

2.6
0'=90°—a, 26)

X=c.
Substitution into (2.5) gives
c0s(90° — B) cos(90° — a)
= cos(A —90°) cos(90° —b) ,
sin(90° — B) cos(90° — a)
= sin(A —90°) cos(90° — b) cos ¢
+sin(90° —b) sinc
sin(90° — a)
= —sin(A —90°) cos(90° — b) sin ¢
+sin(90° — b) cos ¢,
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or

sin Bsina =sin Asinb ,
cos Bsina = —cos Asinbcosc+cosbsinc, (2.7)

cosa =cos Asinbsinc+cosbcosc.

Equations for other sides and angles are obtained by
cyclic permutations of the sides a, b, ¢ and the angles
A, B, C. For instance, the first equation also yields

sinCsinb =sin Bsinc,

sinAsinc =sinCsina .

All these variations of the sine formula can be written
in an easily remembered form:

sina  sinb  sinc
== . (2.8)
sinA sinB sinC
If we take the limit, letting the sides a, b and ¢ shrink
to zero, the spherical triangle becomes a plane trian-
gle. If all angles are expressed in radians, we have

approximately

2

sina~a, cosawl—ia .

Substituting these approximations into the sine formula,
we get the familiar sine formula of plane geometry:

a b c
sinA  sinB sinC’
The second equation in (2.7) is the sine-cosine for-

mula, and the corresponding plane formula is a trivial
one:

c=bcosA+acosB.

This is obtained by substituting the approximations of
sine and cosine into the sine-cosine formula and ignor-
ing all quadratic and higher-order terms. In the same
way we can use the third equation in (2.7), the cosine
formula, to derive the planar cosine formula:

a?=b*+c*—2bccos A .

2.2 The Earth

A position on the Earth is usually given by two spherical
coordinates (although in some calculations rectangular
or other coordinates may be more convenient). If neces-

sary, also a third coordinate, e. g. the distance from the
centre, can be used.

The reference plane is the equatorial plane, perpen-
dicular to the rotation axis and intersecting the surface of
the Earth along the equator. Small circles parallel to the
equator are called parallels of latitude. Semicircles from
pole to pole are meridians. The geographical longitude
is the angle between the meridian and the zero meridian
passing through Greenwich Observatory. We shall use
positive values for longitudes east of Greenwich and
negative values west of Greenwich. Sign convention,
however, varies, and negative longitudes are not used in
maps; so it is usually better to say explicitly whether the
longitude is east or west of Greenwich.

The latitude is usually supposed to mean the ge-
ographical latitude, which is the angle between the
plumb line and the equatorial plane. The latitude is
positive in the northern hemisphere and negative in
the southern one. The geographical latitude can be de-
termined by astronomical observations (Fig.2.7): the
altitude of the celestial pole measured from the hori-

Celestial pole

4-----

Fig.2.7. The latitude ¢ is obtained by measuring the altitude
of the celestial pole. The celestial pole can be imagined as
a point at an infinite distance in the direction of the Earth’s
rotation axis
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zon equals the geographical latitude. (The celestial pole
is the intersection of the rotation axis of the Earth and
the infinitely distant celestial sphere; we shall return to
these concepts a little later.)

Because the Earth is rotating, it is slightly flattened.
The exact shape is rather complicated, but for most pur-
poses it can by approximated by an oblate spheroid,
the short axis of which coincides with the rotation
axis (Sect.7.5). In 1979 the International Union of
Geodesy and Geophysics (IUGG) adopted the Geode-
tic Reference System 1980 (GRS-80), which is used
when global reference frames fixed to the Earth are de-
fined. The GRS-80 reference ellipsoid has the following
dimensions:

a=6,378,137m,

b =6,356,752 m,

f=(a—-b)/a
=1/298.25722210.

The shape defined by the surface of the oceans, called
the geoid, differs from this spheroid at most by about
100 m.

The angle between the equator and the normal to
the ellipsoid approximating the true Earth is called the
geodetic latitude. Because the surface of aliquid (like an
ocean) is perpendicular to the plumb line, the geodetic
and geographical latitudes are practically the same.

Because of the flattening, the plumb line does not
point to the centre of the Earth except at the poles and
on the equator. An angle corresponding to the ordinary
spherical coordinate (the angle between the equator and
the line from the centre to a point on the surface), the
geocentric latitude ¢' is therefore a little smaller than
the geographic latitude ¢ (Fig. 2.8).

We now derive an equation between the geographic
latitude ¢ and geocentric latitude ¢', assuming the Earth
is an oblate spheroid and the geographic and geodesic
latitudes are equal. The equation of the meridional
ellipse is

equatorial radius
polar radius
flattening

2 2
x__|_y_:1,
at  b?

The direction of the normal to the ellipse at a point (x, y)

is given by

d
tand):——x:a—X.
dy

4]
§
Q
&
$
<L

Fig. 2.8. Due to the flattening of the Earth, the geographic
latitude ¢ and geocentric latitude ¢ are different

The geocentric latitude is obtained from

tan¢’ = y/x .

Hence

2
tan ¢’ = f? tangp = (1 —e?) tan¢p , (2.9)

where

e=+/1—b2/a?

is the eccentricity of the ellipse. The difference A¢ =
¢ — ¢’ has a maximum 11.5” at the latitude 45°.

Since the coordinates of celestial bodies in astro-
nomical almanacs are given with respect to the centre
of the Earth, the coordinates of nearby objects must be
corrected for the difference in the position of the ob-
server, if high accuracy is required. This means that
one has to calculate the topocentric coordinates, cen-
tered at the observer. The easiest way to do this is to use
rectangular coordinates of the object and the observer
(Example 2.5).

One arc minute along a meridian is called a nautical
mile. Since the radius of curvature varies with latitude,
the length of the nautical mile so defined would depend
on the latitude. Therefore one nautical mile has been
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defined to be equal to one minute of arc at ¢ =45°,
whence 1 nautical mile = 1852 m.

2.3 The Celestial Sphere

The ancient universe was confined within a finite spher-
ical shell. The stars were fixed to this shell and thus
were all equidistant from the Earth, which was at the
centre of the spherical universe. This simple model is
still in many ways as useful as it was in antiquity: it
helps us to easily understand the diurnal and annual
motions of stars, and, more important, to predict these
motions in a relatively simple way. Therefore we will
assume for the time being that all the stars are located
on the surface of an enormous sphere and that we are at
its centre. Because the radius of this celestial sphere is
practically infinite, we can neglect the effects due to the
changing position of the observer, caused by the rota-
tion and orbital motion of the Earth. These effects will
be considered later in Sects. 2.9 and 2.10.

Since the distances of the stars are ignored, we need
only two coordinates to specify their directions. Each
coordinate frame has some fixed reference plane passing
through the centre of the celestial sphere and dividing
the sphere into two hemispheres along a great circle.
One of the coordinates indicates the angular distance
from this reference plane. There is exactly one great
circle going through the object and intersecting this
plane perpendicularly; the second coordinate gives the
angle between that point of intersection and some fixed
direction.

2.4 The Horizontal System

The most natural coordinate frame from the observer’s
point of view is the horizontal frame (Fig.2.9). Its ref-
erence plane is the tangent plane of the Earth passing
through the observer; this horizontal plane intersects
the celestial sphere along the horizon. The point just
above the observer is called the zenith and the antipodal
point below the observer is the nadir. (These two points
are the poles corresponding to the horizon.) Great cir-
cles through the zenith are called verticals. All verticals
intersect the horizon perpendicularly.

By observing the motion of a star over the course of
a night, an observer finds out that it follows a track
like one of those in Fig.2.9. Stars rise in the east,
reach their highest point, or culminate, on the verti-
cal NZS, and set in the west. The vertical NZS is called
the meridian. North and south directions are defined as
the intersections of the meridian and the horizon.

One of the horizontal coordinates is the altitude or
elevation, a, which is measured from the horizon along
the vertical passing through the object. The altitude lies
in the range [—90°, 490°]; it is positive for objects
above the horizon and negative for the objects below
the horizon. The zenith distance, or the angle between

Celestial
pole

a)
South
. S
Celestial
pole
N
North
w
b) West

Fig.2.9. (a) The apparent motions of stars during a night as
seen from latitude ¢ = 45°. (b) The same stars seen from
latitude ¢ = 10°
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the object and the zenith, is obviously

z2=90°—a. (2.10)

The second coordinate is the azimuth, A; it is the an-
gular distance of the vertical of the object from some
fixed direction. Unfortunately, in different contexts, dif-
ferent fixed directions are used; thus it is always advis-
able to check which definition is employed. The azimuth
is usually measured from the north or south, and though
clockwise is the preferred direction, counterclockwise
measurements are also occasionally made. In this book
we have adopted a fairly common astronomical conven-
tion, measuring the azimuth clockwise from the south.
Its values are usually normalized between 0° and 360°.

In Fig.2.9a we can see the altitude and azimuth of
a star B at some instant. As the star moves along its
daily track, both of its coordinates will change. Another
difficulty with this coordinate frame is its local charac-
ter. In Fig. 2.9b we have the same stars, but the observer
is now further south. We can see that the coordinates of
the same star at the same moment are different for dif-
ferent observers. Since the horizontal coordinates are
time and position dependent, they cannot be used, for
instance, in star catalogues.

2.5 The Equatorial System

The direction of the rotation axis of the Earth remains
almost constant and so does the equatorial plane per-
pendicular to this axis. Therefore the equatorial plane
is a suitable reference plane for a coordinate frame that
has to be independent of time and the position of the
observer.

The intersection of the celestial sphere and the equa-
torial plane is a great circle, which is called the equator
of the celestial sphere. The north pole of the celestial
sphere is one of the poles corresponding to this great
circle. It is also the point in the northern sky where the
extension of the Earth’s rotational axis meets the celes-
tial sphere. The celestial north pole is at a distance of
about one degree (which is equivalent to two full moons)
from the moderately bright star Polaris. The meridian
always passes through the north pole; it is divided by
the pole into north and south meridians.

Fig.2.10. At night, stars seem to revolve around the celestial
pole. The altitude of the pole from the horizon equals the
latitude of the observer. (Photo Pekka Parviainen)

The angular separation of a star from the equatorial
plane is not affected by the rotation of the Earth. This
angle is called the declination §.

Stars seem to revolve around the pole once every
day (Fig.2.10). To define the second coordinate, we
must again agree on a fixed direction, unaffected by the
Earth’s rotation. From a mathematical point of view, it
does not matter which point on the equator is selected.
However, for later purposes, it is more appropriate to
employ a certain point with some valuable properties,
which will be explained in the next section. This point
is called the vernal equinox. Because it used to be in the
constellation Aries (the Ram), it is also called the first
point of Aries ant denoted by the sign of Aries, V. Now
we can define the second coordinate as the angle from

17
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the vernal equinox measured along the equator. This
angle is the right ascension o (or R.A.) of the object,
measured counterclockwise from V.

Since declination and right ascension are indepen-
dent of the position of the observer and the motions of
the Earth, they can be used in star maps and catalogues.
As will be explained later, in many telescopes one of the
axes (the hour axis) is parallel to the rotation axis of the
Earth. The other axis (declination axis) is perpendicular
to the hour axis. Declinations can be read immediately
on the declination dial of the telescope. But the zero
point of the right ascension seems to move in the sky,
due to the diurnal rotation of the Earth. So we cannot
use the right ascension to find an object unless we know
the direction of the vernal equinox.

Since the south meridian is a well-defined line in
the sky, we use it to establish a local coordinate cor-
responding to the right ascension. The hour angle is
measured clockwise from the meridian. The hour angle
of an object is not a constant, but grows at a steady rate,
due to the Earth’s rotation. The hour angle of the ver-
nal equinox is called the sidereal time ©@. Figure 2.11

shows that for any object,
O=h+a, (2.11)

where h is the object’s hour angle and « its right
ascension.

Celestial pole

Fig. 2.11. The sidereal time ® (the hour angle of the vernal
equinox) equals the hour angle plus right ascension of any
object

Since hour angle and sidereal time change with time
at a constant rate, it is practical to express them in
units of time. Also the closely related right ascen-
sion is customarily given in time units. Thus 24 hours
equals 360 degrees, 1 hour = 15 degrees, 1 minute of
time = 15 minutes of arc, and so on. All these quantities
are in the range [0 h, 24 h).

In practice, the sidereal time can be readily de-
termined by pointing the telescope to an easily
recognisable star and reading its hour angle on the hour
angle dial of the telescope. The right ascension found
in a catalogue is then added to the hour angle, giving
the sidereal time at the moment of observation. For any
other time, the sidereal time can be evaluated by adding
the time elapsed since the observation. If we want to
be accurate, we have to use a sidereal clock to measure
time intervals. A sidereal clock runs 3 min 56.56 s fast
a day as compared with an ordinary solar time clock:

24 h solar time

. . . (2.12)
=24 h 3 min 56.56 s sidereal time .

The reason for this is the orbital motion of the Earth:
stars seem to move faster than the Sun across the sky;
hence, a sidereal clock must run faster. (This is further
discussed in Sect. 2.13.)

Transformations between the horizontal and equa-
torial frames are easily obtained from spherical

900 /¢ Z
1800 0
~q <

/
RS
0/0

Fig.2.12. The nautical triangle for deriving transformations
between the horizontal and equatorial frames
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trigonometry. Comparing Figs. 2.6 and 2.12, we find
that we must make the following substitutions into (2.5):

Y =90°—A,
W' =90°—h,

0=a,

2.13
o —s. (2.13)

x=90°—¢.

The angle ¢ in the last equation is the altitude of the
celestial pole, or the latitude of the observer. Making
the substitutions, we get

sinhcos§ =sin Acosa,
coshcos§=cos Acosasing+sinacos¢, (2.14)
Sind = —cos Acosacos¢+sinasing .

The inverse transformation is obtained by substitut-
ing

Y=90"~h, 6=39, (2.15)
Y'=90°-A, 0=a, x=-090°-¢),
whence

sin Acosa =sinhcosd ,

cos Acosa =coshcosdsing —sindcos¢p, (2.16)

sina = cos hcos §cos¢+sindsing .

Since the altitude and declination are in the range
[—90°, +90°], it suffices to know the sine of one of
these angles to determine the other angle unambigu-
ously. Azimuth and right ascension, however, can have
any value from 0° to 360° (or from Oh to 24 h), and
to solve for them, we have to know both the sine and
cosine to choose the correct quadrant.

The altitude of an object is greatest when it is on
the south meridian (the great circle arc between the
celestial poles containing the zenith). At that moment
(called upper culmination, or transit) its hour angle is
0 h. Atthe lower culmination the hour angleis h = 12 h.
When i = 0 h, we get from the last equation in (2.16)

sina = cos § cos ¢ + sin § sin ¢
= cos(¢p —§8) =sin(90° —p+6) .

Thus the altitude at the upper culmination is

90°— ¢+, if the object culminates
th of zenith ,
P south of zeni 2.17)
90°+¢ —§, if the object culminates

north of zenith .
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Fig. 2.13. The altitude of a circumpolar star at upper and lower
culmination

The altitude is positive for objects with § > ¢ —90°.
Objects with declinations less than ¢ — 90° can never be
seen at the latitude ¢. On the other hand, when 2 = 12 h
we have

sina = — cos § cos ¢ +sin § sin ¢
= —cos(§+¢) =sin(§+¢ —90°) ,
and the altitude at the lower culmination is

Amin = 8+ ¢ —90° . (2.18)

Stars with § > 90° — ¢ will never set. For example, in
Helsinki (¢ =~ 60°), all stars with a declination higher
than 30° are such circumpolar stars. And stars with
a declination less than —30° can never be observed
there.

We shall now study briefly how the («, §) frame can
be established by observations. Suppose we observe
a circumpolar star at its upper and lower culmination
(Fig.2.13). At the upper transit, its altitude iS amax =
90° — ¢ + § and at the lower transit, apyi, = § + ¢ —90°.
Eliminating the latitude, we get

1
= E(amin + Amax) - (2.19)

Thus we get the same value for the declination, inde-
pendent of the observer’s location. Therefore we can
use it as one of the absolute coordinates. From the same
observations, we can also determine the direction of the
celestial pole as well as the latitude of the observer. Af-
ter these preparations, we can find the declination of
any object by measuring its distance from the pole.
The equator can be now defined as the great circle
all of whose points are at a distance of 90° from the



2. Spherical Astronomy

20

pole. The zero point of the second coordinate (right
ascension) can then be defined as the point where the
Sun seems to cross the equator from south to north.

In practice the situation is more complicated, since
the direction of Earth’s rotation axis changes due to per-
turbations. Therefore the equatorial coordinate frame is
nowadays defined using certain standard objects the po-
sitions of which are known very accurately. The best
accuracy is achieved by using the most distant objects,
quasars (Sect. 18.7), which remain in the same direction
over very long intervals of time.

2.6 Rising and Setting Times

From the last equation (2.16), we find the hour angle A
of an object at the moment its altitude is a:

sina

cosh = —tandtan ¢ + (2.20)

cosdcos¢
This equation can be used for computing rising and
setting times. Then a =0 and the hour angles cor-
responding to rising and setting times are obtained
from

cosh=—tandtan¢ . (2.21)

If the right ascension « is known, we can use (2.11)
to compute the sidereal time @. (Later, in Sect.2.14,
we shall study how to transform the sidereal time to
ordinary time.)

If higher accuracy is needed, we have to correct for
the refraction of light caused by the atmosphere of the
Earth (see Sect. 2.9). In that case, we must use a small
negative value for a in (2.20). This value, the horizontal
refraction, is about —34’,

The rising and setting times of the Sun given in al-
manacs refer to the time when the upper edge of the
Solar disk just touches the horizon. To compute these
times, we must set a = —50' (= —34'—16).

Also for the Moon almanacs give rising and setting
times of the upper edge of the disk. Since the distance
of the Moon varies considerably, we cannot use any
constant value for the radius of the Moon, but it has to
be calculated separately each time. The Moon is also so
close that its direction with respect to the background
stars varies due to the rotation of the Earth. Thus the
rising and setting times of the Moon are defined as the

instants when the altitude of the Moon is —34' —s + 7,
where s is the apparent radius (15.5" on the average) and
7 the parallax (57" on the average). The latter quantity
is explained in Sect. 2.9.

Finding the rising and setting times of the Sun, plan-
ets and especially the Moon is complicated by their
motion with respect to the stars. We can use, for exam-
ple, the coordinates for the noon to calculate estimates
for the rising and setting times, which can then be used to
interpolate more accurate coordinates for the rising and
setting times. When these coordinates are used to com-
pute new times a pretty good accuracy can be obtained.
The iteration can be repeated if even higher precision is
required.

2.7 The Ecliptic System

The orbital plane of the Earth, the ecliptic, is the refer-
ence plane of another important coordinate frame. The
ecliptic can also be defined as the great circle on the
celestial sphere described by the Sun in the course of
one year. This frame is used mainly for planets and other
bodies of the solar system. The orientation of the Earth’s
equatorial plane remains invariant, unaffected by an-
nual motion. In spring, the Sun appears to move from
the southern hemisphere to the northern one (Fig. 2.14).
The time of this remarkable event as well as the direc-
tion to the Sun at that moment are called the vernal
equinox. At the vernal equinox, the Sun’s right ascen-
sion and declination are zero. The equatorial and ecliptic

y Autumnal equinox

Summer D
solstice !’
Winter
solstice

Vernal "=/ equinox Ecliptic

Fig.2.14. The ecliptic geocentric (A, 8) and heliocentric
(A, B)) coordinates are equal only if the object is very far
away. The geocentric coordinates depend also on the Earth’s
position in its orbit
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planes intersect along a straight line directed towards the
vernal equinox. Thus we can use this direction as the
zero point for both the equatorial and ecliptic coordi-
nate frames. The point opposite the vernal equinox is
the autumnal equinox, it is the point at which the Sun
crosses the equator from north to south.

The ecliptic latitude B is the angular distance from
the ecliptic; it is in the range [—90°, +90°]. The
other coordinate is the ecliptic longitude X, measured
counterclockwise from the vernal equinox.

Transformation equations between the equatorial and
ecliptic frames can be derived analogously to (2.14) and
(2.16):

sinA cos B =sindsine+cosdcosesina

cosAcos B =cosdcosa, (2.22)
sin 8 =sin§cose —cosdsinesing ,

sin@cos§ = —sin Bsine+cos fcosesinA ,

cosa cosd =cosAcosf, (2.23)

sind =sin S cose—+cos BsinesinA .

The angle ¢ appearing in these equations is the oblig-
uity of the ecliptic, or the angle between the equatorial
and ecliptic planes. Its value is roughly 23°26’ (a more
accurate value is given in *Reduction of Coordinates,
p- 398).

Depending on the problem to be solved, we may
encounter heliocentric (origin at the Sun), geocentric
(origin at the centre of the Earth) or topocentric (origin
at the observer) coordinates. For very distant objects the
differences are negligible, but not for bodies of the solar
system. To transform heliocentric coordinates to geo-
centric coordinates or vice versa, we must also know the
distance of the object. This transformation is most easily
accomplished by computing the rectangular coordinates
of the object and the new origin, then changing the ori-
gin and finally evaluating the new latitude and longitude
from the rectangular coordinates (see Examples 2.4 and
2.5).

2.8 The Galactic Coordinates

For studies of the Milky Way Galaxy, the most nat-
ural reference plane is the plane of the Milky Way
(Fig.2.15). Since the Sun lies very close to that plane,
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Celestial
pole
Galactic b

centre \/D/'q Sun

Fig. 2.15. The galactic coordinates / and b

we can put the origin at the Sun. The galactic longitude |
is measured counterclockwise (like right ascension)
from the direction of the centre of the Milky Way
(in Sagittarius, @ = 17 h 45.7 min, § = —29°00'). The
galactic latitude b is measured from the galactic plane,
positive northwards and negative southwards. This def-
inition was officially adopted only in 1959, when the
direction of the galactic centre was determined from
radio observations accurately enough. The old galactic
coordinates /! and b' had the intersection of the equator
and the galactic plane as their zero point.

The galactic coordinates can be obtained from the
equatorial ones with the transformation equations

sin(ly — 1) cos b = cos § sin(a — ap) ,
cos(Iy — 1) cos b = — cos 6 sin 8p cos(o — arp)

+siné cos p , (2.24)

sin b = cos § cos dp cos(a — ap)

+sindsindp ,

where the direction of the Galactic north pole is ap =
12'h 51.4 min, 8p =27°08', and the galactic longitude
of the celestial pole, Iy = 123.0°.

2.9 Perturbations of Coordinates

Even if a star remains fixed with respect to the Sun,
its coordinates can change, due to several disturbing
effects. Naturally its altitude and azimuth change con-
stantly because of the rotation of the Earth, but even its
right ascension and declination are not quite free from
perturbations.

Precession. Since most of the members of the solar
system orbit close to the ecliptic, they tend to pull the
equatorial bulge of the Earth towards it. Most of this
“flattening” torque is caused by the Moon and the Sun.
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Fig.2.16. Due to preces-
sion the rotation axis of
the Earth turns around the
ecliptic north pole. Nuta-
tion is the small wobble €
disturbing the smooth

precessional motion. In

this figure the magnitude

of the nutation is highly

exaggerated

Ecliptic north pole
Celestial

—a pole

But the Earth is rotating and therefore the torque can-
not change the inclination of the equator relative to the
ecliptic. Instead, the rotation axis turns in a direction
perpendicular to the axis and the torque, thus describing
a cone once in roughly 26,000 years. This slow turning
of the rotation axis is called precession (Fig.2.16). Be-
cause of precession, the vernal equinox moves along the
ecliptic clockwise about 50 seconds of arc every year,
thus increasing the ecliptic longitudes of all objects at
the same rate. At present the rotation axis points about
one degree away from Polaris, but after 12,000 years,
the celestial pole will be roughly in the direction of
Vega. The changing ecliptic longitudes also affect the
right ascension and declination. Thus we have to know
the instant of time, or epoch, for which the coordinates
are given.

Currently most maps and catalogues use the epoch
J2000.0, which means the beginning of the year 2000,
or, to be exact, the noon of January 1, 2000, or the Julian
date 2,451,545.0 (see Sect. 2.15).

Let us now derive expressions for the changes in
right ascension and declination. Taking the last trans-
formation equation in (2.23),

sin§ = cos e sin B+ sinecos BsinA ,
and differentiating, we get
cos§dS =sinecos BcosAdA .

Applying the second equation in (2.22) to the right-hand
side, we have, for the change in declination,

dé =dAsinecosa . (2.25)

By differentiating the equation

Cos @ cos § = cos BCOS A ,
we get

—sinawcosdda —cosasinddd = —cos fsinAdA ;
and, by substituting the previously obtained expression

for d§ and applying the first equation (2.22), we have

2

sin cos § do = dA(cos B sin A — sin € cos” & sin §)

= dA(sin§sin e+ cos §cos e sina

2

—sin & cos” a sin d) .

Simplifying this, we get
do =dA(sinasinetan§+cose) . (2.26)

If dA is the annual increment of the ecliptic longitude
(about 50”), the precessional changes in right ascension
and declination in one year are thus

dé =dAsingcosa,

] ] (2.27)
da =dA(singsinxtand+cose) .

These expressions are usually written in the form

dd=ncosa,
. (2.28)
da=m+nsinatand,
where
m=dAcose,
(2.29)

n=dAsineg

are the precession constants. Since the obliquity of the
ecliptic is not exactly a constant but changes with time,
m and n also vary slowly with time. However, this vari-
ation is so slow that usually we can regard m and n
as constants unless the time interval is very long. The
values of these constants for some epochs are given in

[Pt}

Table 2.1. Precession constants m and n. Here, “a” means

a tropical year

Epoch m n

1800 3.07048 s/a 1.33703 s/a =20.0554" /a
1850 3.07141 1.33674 20.0511
1900 3.07234 1.33646 20.0468
1950 3.07327 1.33617 20.0426
2000 3.07419 1.33589 20.0383
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Fig.2.17. The horizontal
parallax 7 of an object is
the angle subtended by the

IR

Table 2.1. For intervals longer than a few decades a more
rigorous method should be used. Its derivation exceeds
the level of this book, but the necessary formulas are
given in *Reduction of Coordinates (p. 38).

Nutation. The Moon’s orbit is inclined with respect to
the ecliptic, resulting in precession of its orbital plane.
One revolution takes 18.6 years, producing perturba-
tions with the same period in the precession of the Earth.
This effect, nutation, changes ecliptic longitudes as well
as the obliquity of the ecliptic (Fig. 2.16). Calculations
are now much more complicated, but fortunately nuta-
tional perturbations are relatively small, only fractions
of an arc minute.

Parallax. If we observe an object from different points,
we see it in different directions. The difference of the
observed directions is called the parallax. Since the
amount of parallax depends on the distance of the ob-
server from the object, we can utilize the parallax to
measure distances. Human stereoscopic vision is based
(at least to some extent) on this effect. For astronom-
ical purposes we need much longer baselines than the
distance between our eyes (about 7 cm). Appropriately
large and convenient baselines are the radius of the Earth
and the radius of its orbit.

Distances to the nearest stars can be determined from
the annual parallax, which is the angle subtended by
the radius of the Earth’s orbit (called the astronomical
unit, AU) as seen from the star. (We shall discuss this
further in Sect. 2.10.)

By diurnal parallax we mean the change of direc-
tion due to the daily rotation of the Earth. In addition to
the distance of the object, the diurnal parallax also de-
pends on the latitude of the observer. If we talk about
the parallax of a body in our solar system, we always
mean the angle subtended by the Earth’s equatorial ra-
dius (6378 km) as seen from the object (Fig. 2.17). This
equals the apparent shift of the object with respect to

Earth’s equatorial radius as
seen from the object

the background stars seen by an observer at the equa-
tor if (s)he observes the object moving from the horizon
to the zenith. The parallax of the Moon, for example, is
about 57’, and that of the Sun 8.79".

In astronomy parallax may also refer to distance in
general, even if it is not measured using the shift in the
observed direction.

Aberration. Because of the finite speed of light, an
observer in motion sees an object shifted in the direction
of her/his motion (Figs. 2.18 and 2.19). This change
of apparent direction is called aberration. To derive

Fig. 2.18a,b. The effect of aberration on the apparent direction
of an object. (a) Observer at rest. (b) Observer in motion
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Fig. 2.19. A telescope is pointed in the true direction of a star.
It takes a time ¢t =//c for the light to travel the length of the
telescope. The telescope is moving with velocity v, which has
a component v sin 6, perpendicular to the direction of the light
beam. The beam will hit the bottom of the telescope displaced
from the optical axis by a distance x = tvsin6 = [(v/c) sin 6.
Thus the change of direction inradiansisa = x /I = (v/c) sin 6

the exact value we have to use the special theory of
relativity, but for practical purposes it suffices to use the
approximate value
v .

a= - sinf, [a]=rad, (2.30)
where v is the velocity of the observer, c is the speed
of light and 6 is the angle between the true direction
of the object and the velocity vector of the observer.
The greatest possible value of the aberration due to the
orbital motion of the Earth, v/c, called the aberration
constant,is 21”. The maximal shift due to the Earth’s ro-
tation, the diurnal aberration constant, is much smaller,
about 0.3".

Refraction. Since light is refracted by the atmosphere,
the direction of an object differs from the true direction
by an amount depending on the atmospheric conditions
along the line of sight. Since this refraction varies with
atmospheric pressure and temperature, it is very diffi-
cult to predict it accurately. However, an approximation
good enough for most practical purposes is easily de-
rived. If the object is not too far from the zenith, the
atmosphere between the object and the observer can be
approximated by a stack of parallel planar layers, each
of which has a certain index of refraction n; (Fig. 2.20).
Outside the atmosphere, we have n = 1.

Fig. 2.20. Refraction of a light ray travelling through the
atmosphere

Let the true zenith distance be z and the apparent
one, ¢. Using the notations of Fig.2.20, we obtain the
following equations for the boundaries of the successive
layers:

sinz = ny sin zy ,

n,sinz, =nysinzy ,

nysinzy =npsing ,
or

sinz =npsing . (2.31)

When the refraction angle R =z —¢ is small and is
expressed in radians, we have

nosin¢ =sinz =sin(R+¢)
=sin Rcos ¢ 4-cos Rsin¢
~ Rcos¢+sin¢ .

Thus we get

R=(no—Dtan¢, [R]=rad. (2.32)

The index of refraction depends on the density of
the air, which further depends on the pressure and tem-
perature. When the altitude is over 15°, we can use an
approximate formula

R =

0.00452° tan(90° —a) , (2.33)

2734+T
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where a is the altitude in degrees, 7 temperature in
degrees Celsius, and P the atmospheric pressure in
hectopascals (or, equivalently, in millibars). At lower
altitudes the curvature of the atmosphere must be taken
into account. An approximate formula for the refraction
is then

P 0.1594+0.0196a + 0.000024>

T 2347 1+0.505a+0.084542

(2.34)

These formulas are widely used, although they are
against the rules of dimensional analysis. To get cor-
rect values, all quantities must be expressed in correct
units. Figure 2.21 shows the refraction under different
conditions evaluated from these formulas.

Altitude is always (except very close to zenith) in-
creased by refraction. On the horizon the change is about
34/, which is slightly more than the diameter of the Sun.
When the lower limb of the Sun just touches the horizon,
the Sun has in reality already set.

Light coming from the zenith is not refracted at all if
the boundaries between the layers are horizontal. Under
some climatic conditions, aboundary (e. g. between cold
and warm layers) can be slanted, and in this case, there
can be a small zenith refraction, which is of the order
of a few arc seconds.

Stellar positions given in star catalogues are mean
places, from which the effects of parallax, aberration
and nutation have been removed. The mean place of
the date (i.e. at the observing time) is obtained by cor-

50 ---- P=1050 hPa, T=--30°C

al —— P= 950 hPa, T=+30°C
P= 700 hPa, T=0°C

300N\
01
10

0° 1° 2° 3° 4° 5° 6 7° 8 9 a

Fig. 2.21. Refraction at different altitudes. The refraction an-
gle R tells how much higher the object seems to be compared
with its true altitude a. Refraction depends on the density and
thus on the pressure and temperature of the air. The upper
curves give the refraction at sea level during rather extreme
weather conditions. At the altitude of 2.5 kilometers the aver-
age pressure is only 700 hPa, and thus the effect of refraction
smaller (lowest curve)

recting the mean place for the proper motion of the
star (Sect.2.10) and precession. The apparent place is
obtained by correcting this place further for nutation,
parallax and aberration. There is a catalogue published
annually that gives the apparent places of certain refer-
ences stars at intervals of a few days. These positions
have been corrected for precession, nutation, parallax
and annual aberration. The effects of diurnal aberration
and refraction are not included because they depend on
the location of the observer.

2.10 Positional Astronomy

The position of a star can be measured either with
respect to some reference stars (relative astrometry)
or with respect to a fixed coordinate frame (absolute
astrometry).

Fig.2.22. Astronomers discussing observations with the
transit circle of Helsinki Observatory in 1904
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Absolute coordinates are usually determined using
ameridian circle, which is a telescope that can be turned
only in the meridional plane (Fig. 2.22). It has only one
axis, which is aligned exactly in the east-west direction.
Since all stars cross the meridian in the course of a day,
they all come to the field of the meridian circle at some
time or other. When a star culminates, its altitude and the
time of the transit are recorded. If the time is determined
with a sidereal clock, the sidereal time immediately
gives the right ascension of the star, since the hour angle
is h = 0h. The other coordinate, the declination §, is
obtained from the altitude:

§=a—090"—¢),

where a is the observed altitude and ¢ is the geographic
latitude of the observatory.

Relative coordinates are measured on photographic
plates (Fig.2.23) or CCD images containing some
known reference stars. The scale of the plate as well
as the orientation of the coordinate frame can be de-
termined from the reference stars. After this has been
done, the right ascension and declination of any object
in the image can be calculated if its coordinates in the
image are measured.

All stars in a small field are almost equally affected
by the dominant perturbations, precession, nutation, and
aberration. The much smaller effect of parallax, on the
other hand, changes the relative positions of the stars.

The shift in the direction of a star with respect to dis-
tant background stars due to the annual motion of the
Earth is called the trigonometric parallax of the star.
It gives the distance of the star: the smaller the paral-
lax, the farther away the star is. Trigonometric parallax
is, in fact, the only direct method we currently have of
measuring distances to stars. Later we shall be intro-
duced to some other, indirect methods, which require

Fig.2.23. (a) A plate photographed for the Carte du Ciel
project in Helsinki on November 21, 1902. The centre of the
field is at « = 18 h 40 min, § = 46°, and the area is 2° x 2°.
Distance between coordinate lines (exposed separately on the
plate) is 5 minutes of arc. (b) The framed region on the same
plate. (¢) The same area on a plate taken on November 7,
1948. The bright star in the lower right corner (SAO 47747)
has moved about 12 seconds of arc. The brighter, slightly
drop-shaped star to the left is a binary star (SAO 47767); the
separation between its components is 8"

1AU

Fig. 2.24. The trigonometric parallax 7 of a star S is the an-
gle subtended by the radius of the orbit of the Earth, or one
astronomical unit, as seen from the star

certain assumptions on the motions or structure of stars.
The same method of triangulation is employed to mea-
sure distances of earthly objects. To measure distances
to stars, we have to use the longest baseline available,
the diameter of the orbit of the Earth.

During the course of one year, a star will appear
to describe a circle if it is at the pole of the ecliptic,
a segment of line if it is in the ecliptic, or an ellipse
otherwise. The semimajor axis of this ellipse is called
the parallax of the star. It is usually denoted by . It
equals the angle subtended by the radius of the Earth’s
orbit as seen from the star (Fig. 2.24).

The unit of distance used in astronomy is parsec
(pc). At a distance of one parsec, one astronomical
unit subtends an angle of one arc second. Since one
radian is about 206,265”, 1pc equals 206,265 AU.
Furthermore, because 1 AU =1.496 x 10" m, 1 pc ~
3.086 x 10'® m. If the parallax is given in arc seconds,
the distance is simply

r=1/m, [rl=pc, v, (2.35)

In popular astronomical texts, distances are usually
given in light-years, one light-year being the distance
light travels in one year, or 9.5 x 10> m. Thus one
parsec is about 3.26 light-years.

The first parallax measurement was accomplished
by Friedrich Wilhelm Bessel (1784—1846) in 1838. He
found the parallax of 61 Cygni to be 0.3”. The nearest
star Proxima Centauri has a parallax of 0.762” and thus
a distance of 1.31 pc.
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a) b)

Fig. 2.25a—c. Proper motions of stars slowly change the ap-
pearance of constellations. (a) The Big Dipper during the last

In addition to the motion due to the annual parallax,
many stars seem to move slowly in a direction that does
not change with time. This effect is caused by the rela-
tive motion of the Sun and the stars through space; it is
called the proper motion. The appearance of the sky and
the shapes of the constellations are constantly, although
extremely slowly, changed by the proper motions of the
stars (Fig. 2.25).

The velocity of a star with respect to the Sun can be
divided into two components (Fig.2.26), one of which
is directed along the line of sight (the radial component
or the radial velocity), and the other perpendicular to it
(the tangential component). The tangential velocity re-
sults in the proper motion, which can be measured by
taking plates at intervals of several years or decades.
The proper motion p has two components, one giving
the change in declination s and the other, in right as-
cension, i, cos 8. The coefficient cos § is used to correct
the scale of right ascension: hour circles (the great cir-
cles with o« = constant) approach each other towards the
poles, so the coordinate difference must be multiplied
by cos § to obtain the true angular separation. The total

4

Fig. 2.26. The radial and tangential components, v, and v; of
the velocity v of a star. The latter component is observed as
proper motion

c)

ice age 30,000 years ago, (b) nowadays, and (c¢) after 30,000
years

proper motion is

=1/ 12 cos? 8+ pu3 .

The greatest known proper motion belongs to Barnard’s
Star, which moves across the sky at the enormous speed
of 10.3 arc seconds per year. It needs less than 200 years
to travel the diameter of a full moon.

In order to measure proper motions, we must ob-
serve stars for decades. The radial component, on the
other hand, is readily obtained from a single observa-
tion, thanks to the Doppler effect. By the Doppler effect
we mean the change in frequency and wavelength of ra-
diation due to the radial velocity of the radiation source.
The same effect can be observed, for example, in the
sound of an ambulance, the pitch being higher when the
ambulance is approaching and lower when it is receding.

The formula for the Doppler effect for small ve-
locities can be derived as in Fig.2.27. The source of
radiation transmits electromagnetic waves, the period of
one cycle being 7. In time 7', the radiation approaches
the observer by a distance s = ¢T, where c is the speed
of propagation. During the same time, the source moves
with respect to the observer a distance s’ = vT, where
v is the speed of the source, positive for a receding
source and negative for an approaching one. We find
that the length of one cycle, the wavelength A, equals

(2.36)

r=s+s =cT+T.

1)
I
o
H
"
S
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:

Fig.2.27. The wavelength of radiation increases if the source
is receding
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If the source were at rest, the wavelength of its radiation
would be Ay = c¢T. The motion of the source changes
the wavelength by an amount

AA=A—Xdo=cT +vT —cT =T,

and the relative change A of the wavelength is
AL v
" b (2.37)
This is valid only when v < c. For very high velocities,
we must use the relativistic formula

Ar [1+v/c 1
r  \1—v/c

In astronomy the Doppler effect can be seen in stellar
spectra, in which the spectral lines are often displaced
towards the blue (shorter wavelengths) or red (longer
wavelengths) end of the spectrum. A blueshift means
that the star is approaching, while a redshift indicates
that it is receding.

The displacements due to the Doppler effect are
usually very small. In order to measure them, a ref-
erence spectrum is exposed on the plate next to the
stellar spectrum. Now that CCD-cameras have replaced
photographic plates, separate calibration exposures of
reference spectra are taken to determine the wavelength
scale. The lines in the reference spectrum are produced
by alight source at rest in the laboratory. If the reference
spectrum contains some lines found also in the stellar
spectrum, the displacements can be measured.

Displacements of spectral lines give the radial ve-
locity v, of the star, and the proper motion x can be
measured from photographic plates or CCD images. To
find the tangential velocity v, we have to know the dis-
tance r, obtainable from e.g. parallax measurements.
Tangential velocity and proper motion are related by

(2.39)

(2.38)

V= ur.

If w is given in arc seconds per year and r in parsecs
we have to make the following unit transformations to
get vy in km/s:

1 rad = 206,265", 1year=3.156x10"s,

1 pc =3.086 x 10" km .

Hence
V= 4.”74 ur, [v]=km/s, (2.40)
(ul="/a, [r]=pc.

The total velocity v of the star is then
v=/v2+0}. (2.41)

2.11 Constellations

At any one time, about 1000—1500 stars can be seen in
the sky (above the horizon). Under ideal conditions, the
number of stars visible to the naked eye can be as high as
3000 on a hemisphere, or 6000 altogether. Some stars
seem to form figures vaguely resembling something;
they have been ascribed to various mythological and
other animals. This grouping of stars into constellations
is a product of human imagination without any physical
basis. Different cultures have different constellations,
depending on their mythology, history and environment.

About half of the shapes and names of the constella-
tions we are familiar with date back to Mediterranean
antiquity. But the names and boundaries were far from
unambiguous as late as the 19th century. Therefore
the International Astronomical Union (IAU) confirmed
fixed boundaries at its 1928 meeting.

The official boundaries of the constellations were es-
tablished along lines of constant right ascension and
declination for the epoch 1875. During the time elapsed
since then, precession has noticeably turned the equato-
rial frame. However, the boundaries remain fixed with
respect to the stars. So a star belonging to a constella-
tion will belong to it forever (unless it is moved across
the boundary by its proper motion).

The names of the 88 constellations confirmed by the
IAU are given in Table C.21 at the end of the book.
The table also gives the abbreviation of the Latin name,
its genitive (needed for names of stars) and the English
name.

In his star atlas Uranometria (1603) Johannes Bayer
started the current practice to denote the brightest stars
of each constellation by Greek letters. The brightest
star is usually « (alpha), e.g. Deneb in the constella-
tion Cygnus is o Cygni, which is abbreviated as « Cyg.
The second brightest star is 8 (beta), the next one y
(gamma) and so on. There are, however, several ex-
ceptions to this rule; for example, the stars of the Big
Dipper are named in the order they appear in the con-
stellation. After the Greek alphabet has been exhausted,
Latin letters can be employed. Another method is to use
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numbers, which are assigned in the order of increasing
right ascension; e.g. 30 Tau is a bright binary star in
the constellation Taurus. Moreover, variable stars have
their special identifiers (Sect. 13.1). About two hundred
bright stars have a proper name; e. g. the bright o Aur is
called also Capella.

As telescopes evolved, more and more stars were
seen and catalogued. It soon became impractical to con-
tinue this method of naming. Thus most of the stars are
known only by their catalogue index numbers. One star
may have many different numbers; e. g. the abovemen-
tioned Capella (« Aur) is number BD+45° 1077 in the
Bonner Durchmusterung and HD 34029 in the Henry
Draper catalogue.

2.12 Star Catalogues and Maps

The first actual star catalogue was published by Ptolemy
in the second century; this catalogue appeared in the
book to be known later as Almagest (which is a Latin
corruption of the name of the Arabic translation, Al-
mijisti). It had 1025 entries; the positions of these bright
stars had been measured by Hipparchos 250 years ear-
lier. Ptolemy’s catalogue was the only widely used one
prior to the 17th century.

The first catalogues still being used by astronomers
were prepared under the direction of Friedrich Wilhelm
August Argelander (1799—-1875). Argelander worked in
Turku and later served as professor of astronomy in
Helsinki, but he made his major contributions in Bonn.
Using a 72 mm telescope, he and his assistants measured
the positions and estimated the magnitudes of 320,000
stars. The catalogue, Bonner Durchmusterung, contains
nearly all stars brighter than magnitude 9.5 between the
north pole and declination —2°. (Magnitudes are further
discussed in Chap. 4.) Argelander’s work was later used
as a model for two other large catalogues covering the
whole sky. The total number of stars in these catalogues
is close to one million.

The purpose of these Durchmusterungen or general
catalogues was to systematically list a great number of
stars. In the zone catalogues, the main goal is to give
the positions of stars as exactly as possible. A typical
zone catalogue is the German Katalog der Astronomi-
schen Gesellschaft (AGK). Twelve observatories, each
measuring a certain region in the sky, contributed to

this catalogue. The work was begun in the 1870’s and
completed at the turn of the century.

General and zone catalogues were based on visual
observations with a telescope. The evolution of photog-
raphy made this kind of work unnecessary at the end
of the 19th century. Photographic plates could be stored
for future purposes, and measuring the positions of stars
became easier and faster, making it possible to measure
many more stars.

A great international program was started at the
end of the 19th century in order to photograph the
entire sky. Eighteen observatories participated in this
Carte du Ciel project, all using similar instruments
and plates. The positions of stars were first measured
with respect to a rectangular grid exposed on each plate
(Fig.2.23a). These coordinates could then be converted
into declination and right ascension.

Positions of stars in catalogues are measured with
respect to certain comparison stars, the coordinates of
which are known with high accuracy. The coordinates
of these reference stars are published in fundamental
catalogues. The first such catalogue was needed for the
AGK catalogue; it was published in Germany in 1879.
This Fundamental Katalog (FK 1) gives the positions
of over 500 stars.

The fundamental catalogues are usually revised every
few decades. The fifth edition, the FK 5, appeared in
1984. At the same time, a new system of astronomical
constants was adopted. The catalogue contains 1535
fundamental and 3117 additional stars.

A widely used catalogue is the SAO catalogue, pub-
lished by the Smithsonian Astrophysical Observatory in
the 1960’s. It contains the exact positions, magnitudes,
proper motions, spectral classifications, etc. of 258,997
stars brighter than magnitude 9. The catalogue was ac-
companied by a star map containing all the stars in the
catalogue.

Fig.2.28. The representations in four atlases of the Hyades
cluster in the constellation Taurus. (a) Heis: Atlas Coelestis,
published in 1872. (b) Bonner Durchmusterung. (¢) SAO,
(d) Palomar Sky Atlas, red plate. The big blob is the brightest
star of Taurus, or « Tauri alias Aldebaran. (e) All the stars in
the Tycho Catalog, numbering over one million, are marked
on an all-sky chart. The bright lane is the Milky Way. (Picture
David Seal, NASA/JPL/Caltech)
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In the 1990’s a large astrometric catalogue, PPM (Po-
sitions and Proper Motions), was published to replace
the AGK and SAO catalogues. It contained all stars
brighter than 7.5 magnitudes, and was almost complete
to magnitude 8.5. Altogether, the four volumes of the
catalogue contained information on 378,910 stars.

The PPM was effectively replaced by the Tycho cat-
alogue from Hipparcos satellite. Hipparcos was the first
astrometric satellite, and was launched by the Euro-
pean Space Agency (ESA)in 1989. Although Hipparcos
didn’t reach the planned geosynchronous orbit, it gave
exact positions of over a hundred thousand stars. The
Hipparcos catalogue, based on the measurements of the
satellite, contains astrometric and photometric data of
118,000 stars. The coordinates are precise to a couple
of milliarcseconds. The less precise Tycho catalogue
contains the data of about one million stars.

In 1999 and 2000, the sixth version of the Funda-
mental Katalog, the FK6, was published. It combined
the Hipparcos data and FKS5 for 4150 fundamental stars.
The typical mean error in proper motion was 0.35
milliarcseconds per year for the basic stars. With the
advance of the Internet, the printed versions of star cat-
alogues were discontinued in the first years of the new
millennium, and the catalogues were moved to compact
discs and the net.

With the new media, the size of the star catalogues
exploded. The first Hubble Guide Star Catalog from
the early 1990’s contained 18 million stars and the sec-
ond Guide Star Catalog from the year 2001, nearly 500
million stars. It was surpassed by the U.S. Naval Ob-
servatory USNO-B1.0 Catalog, which contains entries
for 1,024,618,261 stars and galaxies from digitized im-
ages of several photographic sky surveys. The catalogue
presents right ascension and declination, proper motion
and magnitude estimates.

The next step in the accuracy of astrometry will be
achieved in the 2010’s with a new European astrometric
satellite. The Gaia satellite, planned to be launched in
about 2014, is expected to improve the accurary to about
1073 seconds of arc.

Star maps have been published since ancient times,
but the earliest maps were globes showing the celestial
sphere as seen from the outside. At the beginning of the
17th century, a German, Johannes Bayer, published the
first map showing the stars as seen from inside the ce-
lestial sphere, as we see them in the sky. Constellations

were usually decorated with drawings of mythological
figures. The Uranometria Nova (1843) by Argelander
represents a transition towards modern maps: mytho-
logical figures are beginning to fade away. The map
accompanying the Bonner Durchmusterung carried this
evolution to its extreme. The sheets contain nothing but
stars and coordinate lines.

Most maps are based on star catalogues. Photogra-
phy made it possible to produce star maps without the
cataloguing stage. The most important of such maps
is a photographic atlas the full name of which is The
National Geographic Society — Palomar Observatory
Sky Atlas. The plates for this atlas were taken with the
1.2 m Schmidt camera on Mount Palomar. The Palo-
mar Sky Atlas was completed in the 1950’s. It consists
of 935 pairs of photographs: each region has been pho-
tographed in red and blue light. The size of each plate is
about 35 cm x 35 cm, covering an area of 6.6° x 6.6°.
The prints are negatives (black stars on a light back-
ground), because in this way, fainter objects are visible.
The limiting magnitude is about 19 in blue and 20 in red.

The Palomar atlas covers the sky down to —30°.
Work to map the rest of the sky was carried out later at
two observatories in the southern hemisphere, at Siding
Spring Observatory in Australia, and at the European
Southern Observatory (ESO) in Chile. The instruments
and the scale on the plates are similar to those used
earlier for the Palomar plates, but the atlas is distributed
on film transparencies instead of paper prints.

For amateurs there are several star maps of various
kinds. Some of them are mentioned in the references.

2.13 Sidereal and Solar Time

Time measurements can be based on the rotation of
the Earth, orbital motion around the Sun, or on atomic
clocks. The last-mentioned will be discussed in the next
section. Here we consider the sidereal and solar times
related to the rotation of the Earth.

We defined the sidereal time as the hour angle of
the vernal equinox. A good basic unit is a sidereal day,
which is the time between two successive upper culmi-
nations of the vernal equinox. After one sidereal day
the celestial sphere with all its stars has returned to its
original position with respect to the observer. The flow
of sidereal time is as constant as the rotation of the
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Earth. The rotation rate is slowly decreasing, and thus
the length of the sidereal day is increasing. In addition
to the smooth slowing down irregular variations of the
order of one millisecond have been observed.

Unfortunately, also the sidereal time comes in two va-
rieties, apparent and mean. The apparent sidereal time
is determined by the true vernal equinox, and so it is
obtained directly from observations.

Because of the precession the ecliptic longitude of
the vernal equinox increases by about 50" a year. This
motion is very smooth. Nutation causes more compli-
cated wobbling. The mean equinox is the point where
the vernal equinox would be if there were no nutation.
The mean sidereal time is the hour angle of this mean
equinox.

The difference of the apparent and mean sidereal time
is called the equation of equinoxes:

O, — Oy = AYrcose, (2.42)

where ¢ is the obliquity of the ecliptic at the instant of
the observation, and Ay, the nutation in longitude. This
value is tabulated for each day e. g. in the Astronomical
Almanac. It can also be computed from the formulae
given in *Reduction of Coordinates. It is at most about
one second, so it has to be taken into account only in
the most precise calculations.

Figure 2.29 shows the Sun and the Earth at vernal
equinox. When the Earth is at the point A, the Sun
culminates and, at the same time, a new sidereal day

Fig. 2.29. One sidereal day is the time between two successive
transits or upper culminations of the vernal equinox. By the
time the Earth has moved from A to B, one sidereal day has
elapsed. The angle A is greatly exaggerated; in reality, it is
slightly less than one degree

begins in the city with the huge black arrow standing
in its central square. After one sidereal day, the Earth
has moved along its orbit almost one degree of arc to
the point B. Therefore the Earth has to turn almost
a degree further before the Sun will culminate. The
solar or synodic day is therefore 3 min 56.56 s (sidereal
time) longer than the sidereal day. This means that the
beginning of the sidereal day will move around the clock
during the course of one year. After one year, sidereal
and solar time will again be in phase. The number of
sidereal days in one year is one higher than the number
of solar days.

When we talk about rotational periods of planets, we
usually mean sidereal periods. The length of day, on
the other hand, means the rotation period with respect
to the Sun. If the orbital period around the Sun is P,
sidereal rotation period 7, and synodic day t, we now
know that the number of sidereal days in time P, P/t,,
is one higher than the number of synodic days, P/t:

P P

— =1,

Ty T
or

TL TP (2.43)
This holds for a planet rotating in the direction of its
orbital motion (counterclockwise). If the sense of rota-
tion is opposite, or retrograde, the number of sidereal
days in one orbital period is one less than the number
of synodic days, and the equation becomes

! . 2.44

T T, + P’ (249

For the Earth, we have P =365.2564d,andt =14,
whence (2.43) gives 7, =0.99727d =23 h 56 min 4 s,
solar time.

Since our everyday life follows the alternation of day
and night, it is more convenient to base our timekeeping
on the apparent motion of the Sun rather than that of
the stars. Unfortunately, solar time does not flow at
a constant rate. There are two reasons for this. First, the
orbit of the Earth is not exactly circular, but an ellipse,
which means that the velocity of the Earth along its
orbit is not constant. Second, the Sun moves along the
ecliptic, not the equator. Thus its right ascension does
not increase at a constant rate. The change is fastest at
the end of December (4 min 27 s per day) and slowest in
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mid-September (3 min 35 s per day). As a consequence,
the hour angle of the Sun (which determines the solar
time) also grows at an uneven rate.

To find a solar time flowing at a constant rate, we
define a fictitious mean sun, which moves along the ce-
lestial equator with constant angular velocity, making
a complete revolution in one year. By year we mean
here the tropical year, which is the time it takes for
the Sun to move from one vernal equinox to the next.
In one tropical year, the right ascension of the Sun in-
creases exactly 24 hours. The length of the tropical year
is 365d 5h 48 min 46 s = 365.2422 d. Since the direc-
tion of the vernal equinox moves due to precession,
the tropical year differs from the sidereal year, during
which the Sun makes one revolution with respect to the
background stars. One sidereal year is 365.2564 d.

Using our artificial mean sun, we now define an
evenly flowing solar time, the mean solar time (or sim-
ply mean time) Tyr, which is equal to the hour angle /iy
of the centre of the mean sun plus 12 hours (so that the
date will change at midnight, to annoy astronomers):

Tv=hu+12h. (2.45)

The difference between the true solar time 7" and the
mean time Ty is called the equation of time:

ET.=T-Ty. (2.46)

(In spite of the identical abbreviation, this has nothing
to do with a certain species of little green men.) The
greatest positive value of E.T. is about 16 minutes and
the greatest negative value about — 14 minutes (see Fig.
2.30). This is also the difference between the true noon
(the meridian transit of the Sun) and the mean noon.

Both the true solar time and mean time are local
times, depending on the hour angle of the Sun, real or
artificial. If one observes the true solar time by direct
measurement and computes the mean time from (2.46),
a digital watch will probably be found to disagree with
both of them. The reason for this is that we do not use
local time in our everyday life; instead we use the zonal
time of the nearest time zone.

In the past, each city had its own local time. When
travelling became faster and more popular, the great va-
riety of local times became an inconvenience. At the end
of the 19th century, the Earth was divided into 24 zones,
the time of each zone differing from the neighboring
ones by one hour. On the surface of the Earth, one hour
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Fig. 2.30. Equation of time. A sundial always shows (if cor-
rectly installed) true local solar time. To find the local mean
time the equation of time must be subtracted from the local
solar time

in time corresponds to 15° in longitude; the time of each
zone is determined by the local mean time at one of the
longitudes 0°, 15°, ... , 345°.

The time of the zero meridian going through Green-
wich is used as an international reference, Universal
Time. In most European countries, time is one hour
ahead of this (Fig.2.31).

In summer, many countries switch to daylight saving
time, during which time is one hour ahead of the ordi-
nary time. The purpose of this is to make the time when
people are awake coincide with daytime in order to save
electricity, particularly in the evening, when people go
to bed one hour earlier. During daylight saving time, the
difference between the true solar time and the official
time can grow even larger.

In the EU countries the daylight saving time begins on
the last Sunday of March, at 1 o’clock UTC in the morn-
ing, when the clocks are moved forward to read 2 AM,
and ends on the last Sunday of October at 1 o’clock.

2.14 Astronomical Time Systems

Time can be defined using several different phenomena:

1. The solar and sidereal times are based on the rota-
tion of the Earth.

2. The standard unit of time in the current SI system,
the second, is based on quantum mechanical atom-
ary phenomena.

3. Equations of physics like the ones describing the
motions of celestial bodies involve a time variable
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Fig.2.31. The time
zones. The map gives
the difference of the
local zonal time from
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corresponding to an ideal time running at a con-
stant pace. The ephemeris time and dynamical time
discussed a little later are such times.

Observations give directly the apparent sidereal time
as the hour angle of the true vernal equinox. From the
apparent sidereal time the mean sidereal time can be
calculated.

The universal time UT is defined by the equation

GMST(0 UT) = 24,110.54841 s
+ 7T x 8,640,184.812866 s
+7T?% % 0.093104 s
— T3 % 0.0000062 s ,

47)

where GMST is the Greenwich mean sidereal time and
T the Julian century. The latter is obtained from the
Julian date J, which is a running number of the day
(Sect. 2.15 and *Julian date, p. 41):

_ J—2,451,545.0
o 36,525

This gives the time elapsed since January 1, 2000, in
Julian centuries.

Sidereal time and hence also UT are related to the
rotation of the Earth, and thus contain perturbations due
to the irregular variations, mainly slowing down, of the
rotation.

In (2.47) the constant 8,640,184.812866 s tells how
much sidereal time runs fast compared to the UT in
a Julian century. As the rotation of the Earth is slowing
down the solar day becomes longer. Since the Julian
century T contains a fixed number of days, it will also
become longer. This gives rise to the small correction
terms in (2.47).

Strictly speaking this universal time is the time de-
noted by UT1. Observations give UT0, which contains
a small perturbation due to the wandering of the geo-
graphical pole, or polar variation. The direction of the
axis with respect to the solid surface varies by about
0.1” (a few metres on the surface) with a period of
about 430 days (Chandler period). In addition to this,
the polar motion contains a slow nonperiodic part.

The z axis of the astronomical coordinates is aligned
with the angular momentum vector of the Earth, but
the terrestrial coordinates refer to the axis at the epoch
1903.5. In the most accurate calculations this has to be
taken into account.

(2.48)

Nowadays the SI unit of time, the second, is de-
fined in a way that has nothing to do with celestial
phenomena. Periods of quantum mechanical phenom-
ena remain more stable than the motions of celestial
bodies involving complicated perturbations.

In 1967, one second was defined as 9,192,631,770
times the period of the light emitted by cesium 133 iso-
tope in its ground state, transiting from hyperfine level
F =4 to F = 3. Later, this definition was revised to
include small relativistic effects produced by gravita-
tional fields. The relative accuracy of this atomic time
is about 10712,

The international atomic time, TAI, was adopted
as the basis of time signals in 1972. The time is main-
tained by the Bureau International des Poids et Mesures
in Paris, and it is the average of several accurate atomic
clocks.

Even before atomic clocks there was a need for an
ideal time proceeding at a perfectly constant rate, cor-
responding to the time variable in the equations of
Newtonian mechanics. The ephemeris time was such
a time. It was used e.g. for tabulating ephemerides.
The unit of ephemeris time was the ephemeris second,
which is the length of the tropical year 1900 divided
by 31,556,925.9747. Ephemeris time was not known in
advance. Only afterwards was it possible to determine
the difference of ET and UT from observational data.

In 1984 ephemeris time was replaced by dynamical
time. It comes in two varieties.

The terrestrial dynamical time (TDT) corresponds to
the proper time of an observer moving with the Earth.
The time scale is affected by the relativistic time dila-
tion due to the orbital speed of the Earth. The rotation
velocity depends on the latitude, and thus in TDT it is
assumed that the observer is not rotating with the Earth.
The zero point of TDT was chosen so that the old ET
changed without a jump to TDT.

In 1991 anew standard time, the terrestrial time (TT),
was adopted. Practically it is equivalent to TDT.

TT (or TDT) is the time currently used for tabulat-
ing ephemerides of planets and other celestial bodies.
For example, the Astronomical Almanac gives the
coordinates of the planets for each day at 0 TT.

The Astronomical Almanac also gives the difference

AT =TDT — UT (2.49)
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Fig. 2.32. The difference between the universal time UTI,
based on the rotation of the Earth, and the coordinated uni-
versal time UTC during 1972-2002. Because the rotation of
the Earth is slowing down, the UT1 will run slow of the UTC
by about 0.8 seconds a year. Leap seconds are added to the
UTC when necessary to keep the times approximately equal.
In the graph these leap seconds are seen as one second jumps
upward

for earlier years. For the present year and some future
years a prediction extrapolated from the earlier years is
given. Its accuracy is about 0.1 s. At the beginning of
1990 the difference was 56.7 s; it increases every year
by an amount that is usually a little less than one second.

The terrestrial time differs from the atomic time by
a constant offset

TT =TAI+32.184 5. (2.50)

TT is well suited for ephemerides of phenomena as
seen from the Earth. The equations of motion of the
solar system, however, are solved in a frame the ori-
gin of which is the centre of mass or barycentre of
the solar system. The coordinate time of this frame is
called the barycentric dynamical time, TDB. The unit
of TDB is defined so that, on the average, it runs at the
same rate as TT, the difference containing only periodic
terms depending on the orbital motion of the Earth. The
difference can usually be neglected, since it is at most
about 0.002 seconds.

Which of these many times should we use in our
alarm-clocks? None of them. Yet another time is needed
for that purpose. This official wall-clock time is called
the coordinated universal time, UTC. The zonal time
follows UTC but differs from it usually by an integral
number of hours.

UTC is defined so that it proceeds at the same rate
as TAI but differs from it by an integral number of
seconds. These leap seconds are used to adjust UTC so
that the difference from UT1 never exceeds 0.9 seconds.

A leap second is added either at the beginning of a year
or the night between June and July.
The difference

AAT = TAI — UTC 2.51)

is also tabulated in the Astronomical Almanac. Accord-
ing to the definition of UTC the difference in seconds
is always an integer. The difference cannot be predicted
very far to the future.

From (2.50) and (2.51) we get

TT =UTC+32.184 s+ AAT , (2.52)

which gives the terrestrial time TT corresponding to
a given UTC. Table 2.2 gives this correction. The table
is easy to extend to the future. When it is told in the
news that a leap second will be added the difference
will increase by one second. In case the number of leap
seconds is not known, it can be approximated that a leap
second will be added every 1.25 years.

The unit of the coordinated universal time UTC,
atomic time TAI and terrestrial time TT is the same

Table 2.2. Differences of the atomic time and UTC (AAT) and
the terrestrial time TT and UTC. The terrestrial time TT used
in ephemerides is obtained by adding AAT 4 32.184 s to the
ordinary time UTC

AAT TT-UTC
1.1.1972- 30.6.1972 10s 42.184s
1.7.1972-31.12.1972 I1s 43.184s
1.1.1973-31.12.1973 12s 44.184s
1.1.1974-31.12.1974 13s 45.184s
1.1.1975-31.12.1975 14s 46.184 s
1.1.1976-31.12.1976 15s 47.184s
1.1.1977-31.12.1977 16s 48.184 s
1.1.1978-31.12.1978 17s 49.184 s
1.1.1979-31.12.1979 18s 50.184 s
1.1.1980- 30.6.1981 19s 51.184s
1.7.1981- 30.6.1982 20s 52.184s
1.7.1982— 30.6.1983 21s 53.184s
1.7.1983- 30.6.1985 22s 54.184s
1.7.1985-31.12.1987 23s 55.184s
1.1.1988-31.12.1989 24s 56.184 s
1.1.1990-31.12.1990 25s 57.184s
1.1.1991- 30.6.1992 26's 58.184s
1.7.1992- 30.6.1993 27s 59.184s
1.7.1993— 30.6.1994 28's 60.184 s
1.7.1994-31.12.1995 29s 61.184s
1.1.1996- 31.6.1997 30s 62.184 s
1.7.1997-31.12.1998 31s 63.184 s
1.1.1999-31.12.2005 32s 64.184 s
1.1.2006— 33s 65.184 s
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second of the SI system. Hence all these times proceed
at the same rate, the only difference being in their zero
points. The difference of the TAI and TT is always the
same, but due to the leap seconds the UTC will fall
behind in a slightly irregular way.

Culminations and rising and setting times of celes-
tial bodies are related to the rotation of the Earth. Thus
the sidereal time and hence the UT of such an event can
be calculated precisely. The corresponding UTC cannot
differ from the UT by more than 0.9 seconds, but the
exact value is not known in advance. The future coor-
dinates of the Sun, Moon and planets can be calculated
as functions of the TT, but the corresponding UTC can
only be estimated.

2.15 Calendars

Our calendar is a result of long evolution. The main
problem it must contend with is the incommensurability
of the basic units, day, month and year: the numbers of
days and months in a year are not integers. This makes
it rather complicated to develop a calendar that takes
correctly into account the alternation of seasons, day
and night, and perhaps also the lunar phases.

Our calendar has its origin in the Roman calendar,
which, in its earliest form, was based on the phases of
the Moon. From around 700 B.C. on, the length of the
year has followed the apparent motion of the Sun; thus
originated the division of the year into twelve months.
One month, however, still had a length roughly equal
to the lunar cycle. Hence one year was only 354 days
long. To keep the year synchronised with the seasons,
a leap month had to be added to every other year.

Eventually the Roman calendar got mixed up. The
mess was cleared by Julius Caesar in about 46 B.C.,
when the Julian calendar was developed upon his or-
ders. The year had 365 days and a leap day was added
to every fourth year.

In the Julian calendar, the average length of one year
is 365 d 6 h, but the tropical year is 11 min 14 s shorter.
After 128 years, the Julian year begins almost one day
too late. The difference was already 10 days in 1582,
when a calendar reform was carried out by Pope Gre-
gory XIII. In the Gregorian calendar, every fourth year
is a leap year, the years divisible by 100 being excep-
tions. Of these, only the years divisible by 400 are leap

years. Thus 1900 was not a leap year, but 2000 was.
The Gregorian calendar was adopted slowly, at differ-
ent times in different countries. The transition period
did not end before the 20th century.

Even the Gregorian calendar is not perfect. The dif-
ferences from the tropical year will accumulate to one
day in about 3300 years.

Since years and months of variable length make it
difficult to compute time differences, especially as-
tronomers have employed various methods to give each
day a running number. The most widely used numbers
are the Julian dates. In spite of their name, they are not
related to the Julian calendar. The only connection is
the length of a Julian century of 36,525 days, a quantity
appearing in many formulas involving Julian dates. The
Julian day number 0 dawned about 4700 B.C. The day
number changes always at 12 : 00 UT. For example, the
Julian day 2,451,545 began at noon in January 1, 2000.
The Julian date can be computed using the formulas
given in *Julian Date (p. 41).

Julian dates are uncomfortably big numbers, and
therefore modified Julian dates are often used. The zero
point can be e.g. January 1, 2000. Sometimes 0.5 is
subtracted from the date to make it to coincide with the
date corresponding to the UTC. When using such dates,
the zero point should always be mentioned.

* Reduction of Coordinates

Star catalogues give coordinates for some standard
epoch. In the following we give the formulas needed
to reduce the coordinates to a given date and time.
The full reduction is rather laborious, but the follow-
ing simplified version is sufficient for most practical
purposes.

We assume that the coordinates are given for the
epoch J2000.0.

1. First correct the place for proper motion unless it is
negligible.

2. Precess the coordinates to the time of the observation.
First we use the coordinates of the standard epoch
(ap, 80) to find a unit vector pointing in the direction
of the star:

€0S 8¢ COS
Po=| cosdpsinag

sin 80
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Precession changes the ecliptic longitude of the ob-
ject. The effect on right ascension and declination can
be calculated as three rotations, given by three rota-
tion matrices. By multiplying these matrices we get
the combined precession matrix that maps the previ-
ous unit vector to its precessed equivalent. A similar
matrix can be derived for the nutation. The transfor-
mations and constants given here are based on the
system standardized by the IAU in 1976.

The precession and nutation matrices contain sev-
eral quantities depending on time. The time variables
appearing in their expressions are

t=J—-2,451,545.0,
_ J—2,451,545.0
N 36,525
Here J is the Julian date of the observation, ¢ the
number of days since the epoch J2000.0 (i.e. noon
of January 1, 2000), and T the same interval of time
in Julian centuries.

The following three angles are needed for the
precession matrix

¢ =12306.2181"T +0.30188"T% +0.017998" T3 ,
7=12306.2181"T +1.09468"T> +0.018203"T" ,
6 =2004.3109"T —0.42665"T* —0.041833" T3 .

The precession matrix is now

Py Py Pi3
Py Py Py
P31 Py P33

P =

The elements of this matrix in terms of the
abovementioned angles are

P =coszcosfcos¢ —sinzsing ,
P1; = —coszcos@sin¢ —sinzcos ¢ ,
Pi3 = —coszsinf ,

P>y =sinzcosfcos+coszsing
Py; = —sinzcosfsin¢ +coszcos ,
Py3 = —sinzsin6 ,

P31 =sinfcos¢,

Py, = —sinfsin¢ ,

P33 =cosf .

3.

The new coordinates are now obtained by multiply-
ing the coordinates of the standard epoch by the
precession matrix:

p1=Ppo.

This is the mean place at the given time and date.

If the standard epoch is not J2000.0, it is proba-
bly easiest to first transform the given coordinates to
the epoch J2000.0. This can be done by computing
the precession matrix for the given epoch and multi-
plying the coordinates by the inverse of this matrix.
Inverting the precession matrix is easy: we just trans-
pose it, i.e. interchange its rows and columns. Thus
coordinates given for some epoch can be precessed
to J2000.0 by multiplying them by

Py Py Py
Py, Py P
P13 Py; P33

In case the required accuracy is higher than about
one minute of arc, we have to do the following fur-
ther corrections.

The full nutation correction is rather complicated.
The nutation used in astronomical almanacs involves
series expansions containing over a hundred terms.
Very often, though, the following simple form is suf-
ficient. We begin by finding the mean obliquity of
the ecliptic at the observation time:

g0 = 23° 26/ 21.448" — 46.8150"T
—0.00059"7T2+0.001813"73 .

P! =

The mean obliquity means that periodic perturba-
tions have been omitted. The formula is valid a few
centuries before and after the year 2000.

The true obliquity of the ecliptic, €, is obtained by
adding the nutation correction to the mean obliquity:

e=¢gy+ Ae.

The effect of the nutation on the ecliptic longitude
(denoted usually by Avy) and the obliquity of the
ecliptic can be found from

C; =125°—-0.05295°¢ ,

C, =200.9°41.97129°¢ ,

Ay = —0.0048° sin C; — 0.0004° sin C5

Ag =0.0026° cos C +0.0002° cos C; .

39



2. Spherical Astronomy

40

Since Ay and Ae are very small angles, we have,
for example, sin Ay & Ay and cos Ay &~ 1, when
the angles are expressed in radians. Thus we get the
nutation matrix

1 —Ayrcose —Aysineg
N=| Ay cose 1 —Ag
Ayrsine Aeg 1

This is a linearized version of the full transformation.
The angles here must be in radians. The place in the
coordinate frame of the observing time is now

p>=Np; .

4. The annual aberration can affect the place about as
much as the nutation. Approximate corrections are
obtained from

Aacosd = —20.5" sinasin A

—18.8" cosacos i,
A8 =20.5" cosa sin § sin A
+18.8” sinasin§cos . —8.1” cos §cos A ,

where X is the ecliptic longitude of the Sun. Suf-
ficiently accurate value for this purpose is given
by

G =357.528° 40.985600°¢ ,

A =280.460° 4+ 0.985647°¢

+1.915° sin G 4+ 0.020° sin 2G .

These reductions give the apparent place of the date

with an accuracy of a few seconds of arc. The effects
of parallax and diurnal aberration are even smaller.

Example. The coordinates of Regulus (« Leo) for the
epoch J2000.0 are

a=10h 8min22.2s=10.139500h,
§=11°58 02" =11.967222° .

Find the apparent place of Regulus on March 12, 1995.
We start by finding the unit vector corresponding to
the catalogued place:

—0.86449829
0.45787318
0.20735204

Po =

The Julian date is J =2,449,789.0, and thus
t=—1756 and T = —0.04807666. The angles
of the precession matrix are ¢ = —0.03079849°,
7= —0.03079798° and 6 = —0.02676709°. The pre-
cession matrix is then

P=
0.99999931  0.00107506  0.00046717
—0.00107506 0.99999942 —0.00000025
—0.00046717 —0.00000025 0.99999989
The precessed unit vector is

—0.86390858
0.45880225
0.20775577

The angles needed for the nutation are Ay =
0.00309516°, Ae = —0.00186227°, ¢ =23.43805403°,
which give the nutation matrix

p1=

N =
1 —0.00004956 —0.00002149
0.00004956 1 0.00003250
0.00002149 —0.00003250 1
The place in the frame of the date is
—0.86393578
p>=1] 0.45876618 )
0.20772230
whence

a=10.135390h,

8 =11.988906° .

To correct for the aberration we first find the longi-
tude of the Sun: G = —1373.2° = 66.8°, A = — 8.6°.
The correction terms are then

Aa = 18.25" = 0.0050°

AS = —5.46" = —0.0015° .

Adding these to the previously obtained coordinates we
get the apparent place of Regulus on March 12, 1995:

a=10.1357h=10h 8§ min 8.5,

§=11.9874°=11°59"15".

Comparison with the places given in the catalogue Ap-
parent Places of Fundamental Stars shows that we

are within about 3” of the correct place, which is
a satisfactory result.
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*Julian Date

There are several methods for finding the Julian date.
The following one, developed by Fliegel and Van Flan-
dern in 1968, is well adapted for computer programs.
Let y be the year (with all four digits), m the month and
d the day. The Julian date J at noon is then
J =367y —{7[y+m+9)/12]}/4
— (3{ly+(m —9)/71/100+1}) /4
+275m/9+d+ 1721029 .

The division here means an integer division, the decimal
part being truncated: e.g. 7/3 =2 and —7/3 = —2.

Example. Find the Julian date on January 1, 1990.

Now y=1990,m =1andd = 1.

J =367x1990—-7 x[1990+ (1+9)/12]/4
—3x{[1990+4+ (1 -9)/71/100+1}/4
+275%x1/9+141,721,029

= 730,330 —3482—- 15430+ 1+ 1,721,029
=2,447,893.
Astronomical tables usually give the Julian date at 0 UT.
In this case that would be 2,447,892.5.

The inverse procedure is a little more complicated.
In the following J is the Julian date at noon (so that it
will be an integer):

a=J+68,569,

b= (4a)/146,097 ,

c=a—(146,097b+3)/4,

d =[4000(c+1)]/1,461,001,

e=c—(1461d)/4+31,

f =(80e)/2447 ,

day = e — (2447 £)/80,

g=f/11,

month = f4+2—12g¢,

year = 100(b —49)+d+g.

Example. In the previous example we got J =
2,447,893. Let’s check this by calculating the
corresponding calendar date:

a=2,447,893 468,569 =2,516,462 ,

b= (4x%x2,516,462)/146,097 = 68 ,
¢=12,516,462 — (146,097 x 68 +-3) /4 = 32,813,
d =1[4000(32,813+1)]/1,461,001 =89,

e =32,813— (1461 x 89)/4+31 =337,
f=(80x337)/2447 =11,

day =337 - (2447 x 11)/80=1,
g=11/11=1,

month=114+2—-12x1=1,

year = 100(68 —49) +89+1 =1990.

Thus we arrived back to the original date.

Since the days of the week repeat in seven day cy-
cles, the remainder of the division J/7 unambiguously
determines the day of the week. If J is the Julian date
at noon, the remainder of J/7 tells the day of the week
in the following way:

0 =Monday ,

5 = Saturday
6 = Sunday .

Example. The Julian date corresponding to January 1,
1990 was 2,447,893. Since 2,447,893 =7 x 349,699,
the remainder is zero, and the day was Monday.

2.16 Examples

Example 2.1 Trigonometric Functions in a Rectan-
gular Spherical Triangle

Let the angle A be a right angle. When the figure
is a plane triangle, the trigonometric functions of the
angle B would be:

sinB=b/a, cosB=c/a, tanB=0b/c.
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For the spherical triangle we have to use the equations
in (2.7), which are now simply:
sin Bsina =sinb
cos Bsina
=cosbsinc,

cosa =coshcosc.

The first equation gives the sine of B:
sin B=sinb/sina .

Dividing the second equation by the third one, we get
the cosine of B:

cos B =tanc/tana .

And the tangent is obtained by dividing the first equation
by the second one:

tan B =tanb/sinc.

The third equation is the equivalent of the Pythagorean
theorem for rectangular triangles.

Example 2.2 The Coordinates of New York City

The geographic coordinates are 41° north and 74° west
of Greenwich, or ¢ = +41°, A = —74°. In time units,
the longitude would be 74/15h =4h 56 min west of
Greenwich. The geocentric latitude is obtained from

ang b2t o 6,356,752 Zt "
an =—tanYg=\ —— an
a? 6,378,137

=0.86347 = ¢ =40°4834".

The geocentric latitude is 11" 26” less than the
geographic latitude.

Example 2.3 The angular separation of two objects
in the sky is quite different from their coordinate differ-
ence.

Suppose the coordinates of a star A are 1 = 10h, §; =
70° and those of another star B, «p = 11h, §, = 80°.

Using the Pythagorean theorem for plane triangles,
we would get

d=+/(15°)2+(10°)2 = 18°.

But if we use the third equation in (2.7), we get
cosd = cos(a; — o)

% sin(90° — §,) sin(90° — 8,) \ B

+¢0s(90° — §;) cos(90° — §5) A
= cos(; —ap) cos §; cos &,
+ sin §; sin 8, g

= cos 15° cos 70° cos 80°
NP>

+ sin 70° sin 80°
=0.983,
which yields d = 10.6°. The figure shows why the result
obtained from the Pythagorean theorem is so far from
being correct: hour circles (circles with o = constant)
approach each other towards the poles and their angu-
lar separation becomes smaller, though the coordinate
difference remains the same.

Example 2.4 Find the altitude and azimuth of the
Moon in Helsinki at midnight at the beginning of 1996.

The right ascension is « =2h 55min 75 =2.9186h
and declination § = 14° 42" = 14.70°, the sidereal
time is ® =6h 19min 26 s =6.3239h and latitude
¢ =60.16°.

The hour angle is 4 = ® —a = 3.4053 h = 51.08°.
Next we apply the equations in (2.16):

sin A cosa = sin 51.08° cos 14.70° = 0.7526 ,
cos A cosa = cos 51.08° cos 14.70° sin 60.16°
—sin 14.70° cos 60.16°
= 0.4008 ,
sina = cos 51.08° cos 14.70° cos 60.16°
+ sin 14.70° sin 60.16°
=0.5225.

Thus the altitude is @ = 31.5°. To find the azimuth we
have to compute its sine and cosine:

sinA =0.8827, cosA=0.4701.

Hence the azimuth is A = 62.0°. The Moon is in the
southwest, 31.5 degrees above the horizon. Actually,
this would be the direction if the Moon were infinitely
distant.
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Example 2.5 Find the topocentric place of the Moon
in the case of the previous example.

The geocentric distance of the Moon at that time is
R = 62.58 equatorial radii of the Earth. For simplicity,
we can assume that the Earth is spherical.

We set up a rectangular coordinate frame in such
a way that the z axis points towards the celestial pole
and the observing site is in the xz plane. When the radius
of the Earth is used as the unit of distance, the radius
vector of the observing site is

cos ¢ 0.4976
rp = 0 = 0
sin ¢ 0.8674

The radius vector of the Moon is

cosdcosh 0.6077
r=R| —cosdsinh | =62.58| —0.7526
sin § 0.2538

The topocentric place of the Moon is

37.53
—47.10
15.02

F=r—ry=

We divide this vector by its length 62.07 to get the unit
vector e pointing to the direction of the Moon. This can
be expressed in terms of the topocentric coordinates
8 and h':

0.6047 cos &' cos h’
e=] —0.7588| =| —cosédsinh’ | ,
0.2420 sin §’

which gives §' = 14.00° and 4’ = 51.45°. Next we can
calculate the altitude and azimuth as in the previous
example, and we get a =30.7°, A =61.9°.

Another way to find the altitude is to take the scalar
product of the vectors e and ry, which gives the cosine
of the zenith distance:

cosz =e-ry =0.6047 x 0.4976 4 0.2420 x 0.8674
=0.5108 ,

whence z = 59.3° and a = 90° — z = 30.7°. We see that
this is 0.8° less than the geocentric altitude; i.e. the
difference is more than the apparent diameter of the
Moon.

Example 2.6 The coordinates of Arcturus are o =

14 h 15.7 min, § = 19° 1’1’. Find the sidereal time at the

moment Arcturus rises or sets in Boston (¢ = 42° 19').
Neglecting refraction, we get

cosh=—tan 19° 11’ tan42° 19’
= —0.348 x 0910 = —0.317.

Hence, h = £108.47° =7 h 14 min. The more accurate
result is

cosh = —tan19° 11’ tan42° 19
sin 35’
 cos 19° 117 cos 4219’
= —0.331,

whence i = £109.35° =7 h 17 min. The plus and mi-
nus signs correspond to setting ant rising, respectively.
When Arcturus rises, the sidereal time is
®=a+h=14h 16 min—7h 17 min
= 6h 59 min

and when it sets, the sidereal time is

® =14h 16 min+7h 17 min
=21h 33 min.

Note that the result is independent of the date: a star
rises and sets at the same sidereal time every day.

Example 2.7 The proper motion of Aldebaran is u =
0.20”/a and parallax = = 0.048". The spectral line of
iron at A = 440.5 nm is displaced 0.079 nm towards the
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red. What are the radial and tangential velocities and
the total velocity?
The radial velocity is found from

Al U
A,
0.079
U= ——3x108m/s = 5.4 x 10* m/s
440.5
=54km/s.

The tangential velocity is now given by (2.40), since
@ and 7 are in correct units:

4.74 x0.20

vw=474pur =4.74u/m = 0.043

=20km/s.

The total velocity is

v=/v2+0v? =+/542+202 km/s = 58 km/s .

Example 2.8 Find the local time in Paris (longitude
A =2°)at 12:00.

Local time coincides with the zonal time along the
meridian 15° east of Greenwich. Longitude difference
15° —2°=13° equals (13°/15°) x 60 min = 52 min-
utes. The local time is 52 minutes less than the official
time, or 11:08. This is mean solar time. To find the
true solar time, we must add the equation of time. In
early February, E.T. = —14 min and the true solar time
is 11:08 — 14 min = 10:54. At the beginning of Novem-
ber, ET = +16 min and the solar time would be 11:24.
Since —14 min and 416 min are the extreme values of
E.T., the true solar time is in the range 10:54—11:24,
the exact time depending on the day of the year. Dur-
ing daylight saving time, we must still subtract one hour
from these times.

Example 2.9 Estimating Sidereal Time

Since the sidereal time is the hour angle of the vernal
equinox V, it is O h when V culminates or transits the
south meridian. At the moment of the vernal equinox,
the Sun is in the direction of V' and thus culminates at
the same time as V. So the sidereal time at 12:00 local
solar time is 0:00, and at the time of the vernal equinox,
we have

®=T+12h,

where T is the local solar time. This is accurate within
a couple of minutes. Since the sidereal time runs about
4 minutes fast a day, the sidereal time, n days after the
vernal equinox, is

O~T+12h+nx4min.

At autumnal equinox V culminates at 0:00 local time,
and sidereal and solar times are equal.

Let us try to find the sidereal time in Paris on April
15 at 22:00, Central European standard time (= 23:00
daylight saving time). The vernal equinox occurs on the
average on March 21; thus the time elapsed since the
equinox is 10+ 15 = 25 days. Neglecting the equation
of time, the local time 7 is 52 minutes less than the
zonal time. Hence

O =T+12h+n x4 min
=21h8min+ 12h+25 x 4 min
=34h48 min=10h 48 min .

The time of the vernal equinox can vary about one
day in either direction from the average. Therefore the
accuracy of the result is roughly 5 min.

Example 2.10 Find the rising time of Arcturus in
Boston on January 10.

In Example 2.6 we found the sidereal time of this event,
® = 6h 59 min. Since we do not know the year, we
use the rough method of Example 2.9. The time be-
tween January 1 and vernal equinox (March 21) is about
70 days. Thus the sidereal time on January 1 is

O~T+12h—70x4min=7T+7h 20 min
from which

T=6—-7h20min =6h 59 min — 7 h 20 min
=30h59min—7h20min=23h 39 min .

The longitude of Boston is 71° W, and the Eastern stan-
dard time is (4°/15°) x 60 min = 16 minutes less, or
23:23.

Example 2.11 Find the sidereal time in Helsinki on
April 15, 1982 at 20:00 UT.
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The Julian date is J = 2,445,074.5 and
T 2,445,074.5 —2,451,545.0
N 36,525
= —0.1771526 .

Next, we use (2.47) to find the sidereal time at O UT:

©y= —1,506,521.0s = —418 h 28 min 41 s
=13h31min 19s.

Since the sidereal time runs 3 min 57 s fast a day as
compared to the solar time, the difference in 20 hours
will be

20 3 min 57 s =3 min 17
5 X 3min 57s=3min17s,

and the sidereal time at 20 UT willbe 13 h 31 min 19 s+
20h3min 17s =33h 34 min 36 s =9 h 34 min 36s.

At the same time (at 22:00 Finnish time, 23:00 day-
light saving time) in Helsinki the sidereal time is ahead
of this by the amount corresponding to the longitude
of Helsinki, 25°,i.e. 1 h 40 min 00 s. Thus the sidereal
time is 11 h 14 min 36s.

2.17 Exercises

Exercise 2.1 Find the distance between Helsinki and
Seattle along the shortest route. Where is the northern-
most point of the route, and what is its distance from the
North Pole? The longitude of Helsinki is 25°E and lati-
tude 60°; the longitude of Seattle is 122°W and latitude
48°. Assume that the radius of the Earth is 6370 km.

Exercise 2.2 A star crosses the south meridian at an
altitude of 85°, and the north meridian at 45°. Find the
declination of the star and the latitude of the observer.

Exercise2.3 Where are the following statements true?

a) Castor (¢ Gem, declination § = 31°53’) is circumpo-
lar.

b) Betelgeuze (« Ori, § = 7° 24’) culminates at zenith.

¢) aCen (8§ = —60° 50') rises to an altitude of 30°.

Exercise 2.4 In his Old Man and the Sea Hemingway

wrote:
It was dark now as it becomes dark quickly after
the Sun sets in September. He lay against the
worn wood of the bow and rested all that he
could. The first stars were out. He did not know
the name of Rigel but he saw it and knew soon
they would all be out and he would have all his
distant friends.

How was Hemingway’s astronomy?

Exercise 2.5 The right ascension of the Sun on June 1,
1983, was 4 h 35 min and declination 22° 00'. Find the
ecliptic longitude and latitude of the Sun and the Earth.

Exercise 2.6 Show that on the Arctic Circle the Sun

a) rises at the same sidereal time &, between Decem-
ber 22 and June 22,

b) sets at the same sidereal time ®, between June 22
and December 22.

What is ®y?

Exercise 2.7 Derive the equations (2.24), which give
the galactic coordinates as functions of the ecliptic
coordinates.

Exercise 2.8 The coordinates of Sirius for the epoch
1900.0 were o« =6h 40min 45s, § = —16° 35,
and the components of its proper motion were
e = —0.037s/a, s = — 1.12"a~". Find the coordi-
nates of Sirius for 2000.0. The precession must also be
taken into account.

Exercise 2.9 The parallax of Sirius is 0.375” and
radial velocity —8 km/s.

a) What are the tangential and total velocities of Sirius?
(See also the previous exercise.)

b) When will Sirius be closest to the Sun?

¢) What will its proper motion and parallax be then?



3. Observations and Instruments

p to the end of the Middle Ages, the most impor-

tant means of observation in astronomy was the
human eye. It was aided by various mechanical devices
to measure the positions of celestial bodies in the sky.
The telescope was invented in Holland at the beginning
of the 17th century, and in 1609 Galileo Galilei made
his first astronomical observations with this new instru-

3.1 Observing
Through the Atmosphere

With satellites and spacecraft, observations can be made
outside the atmosphere. Yet, the great majority of astro-
nomical observations are carried out from the surface of
the Earth. In the preceding chapter, we discussed refrac-
tion, which changes the apparent altitudes of objects.
The atmosphere affects observations in many other ways
as well. The air is never quite steady, and there are lay-
ers with different temperatures and densities; this causes
convection and turbulence. When the light from a star
passes through the unsteady air, rapid changes in re-
fraction in different directions result. Thus, the amount
of light reaching a detector, e.g. the human eye, con-
stantly varies; the star is said to scintillate (Fig.3.1).
Planets shine more steadily, since they are not point
sources like the stars.

A telescope collects light over a larger area, which
evens out rapid changes and diminishes scintillation.
Instead, differences in refraction along different paths of
light through the atmosphere smear the image and point
sources are seen in telescopes as vibrating speckles. This

ment. Astronomical photography was introduced at the
end of the 19th century, and during the last few decades
many kinds of electronic detectors have been adopted for
the study of electromagnetic radiation from space. The
electromagnetic spectrum from the shortest gamma rays
to long radio waves can now be used for astronomical
observations.

phenomenon is called seeing, and the size of the seeing
disc may vary from less than an arc second to several
tens of arc seconds. If the size of the seeing disc is small,
we speak of good seeing. Seeing and scintillation both
tend to blot out small details when one looks through
a telescope, for example, at a planet.

Some wavelength regions in the electromagnetic
spectrum are strongly absorbed by the atmosphere. The
most important transparent interval is the optical win-
dow from about 300 to 800 nm. This interval coincides
with the region of sensitivity of the human eye (about
400-700 nm).

At wavelengths under 300 nm absorption by atmo-
spheric ozone prevents radiation from reaching the
ground. The ozone is concentrated in a thin layer
at a height of about 20-30km, and this layer pro-
tects the Earth from harmful ultraviolet radiation. At
still shorter wavelengths, the main absorbers are O,
N, and free atoms. Nearly all of the radiation un-
der 300 nm is absorbed by the upper parts of the
atmosphere.

At wavelengths longer than visible light, in the near-
infrared region, the atmosphere is fairly transparent up

Fig.3.1. Scintillation of
Sirius during four passes
across the field of view. The
star was very low on the
horizon. (Photo by Pekka
Parviainen)
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Fig. 3.2. The transparency of the atmosphere at different wave-
lengths. 100% transmission means that all radiation reaches
the surface of the Earth. The radiation is also absorbed by inter-

to 1.3 um. There are some absorption belts caused by
water and molecular oxygen, but the atmosphere gets
more opaque only at wavelengths of longer than 1.3 pm.
At these wavelengths, radiation reaches the lower parts
of the atmosphere only in a few narrow windows. All
wavelengths between 20 um and 1 mm are totally ab-
sorbed. At wavelengths longer than 1 mm, there is the
radio window extending up to about 20 m. At still longer
wavelengths, the ionosphere in the upper parts of the
atmosphere reflects all radiation (Fig.3.2). The exact
upper limit of the radio window depends on the strength
of the ionosphere, which varies during the day. (The
structure of the atmosphere is described in Chap. 7.)

stellar gas, as shown in the lowermost very schematic figure.
The interstellar absorption also varies very much depending
on the direction (Chap. 15)

At optical wavelengths (300—800 nm), light is scat-
tered by the molecules and dust in the atmosphere,
and the radiation is attenuated. Scattering and absorp-
tion together are called extinction. Extinction must be
taken into account when one measures the brightness of
celestial bodies (Chap. 4).

In the 19th century Lord Rayleigh succeeded in ex-
plaining why the sky is blue. Scattering caused by the
molecules in the atmosphere is inversely proportional
to the fourth power of the wavelength. Thus, blue light
is scattered more than red light. The blue light we see
all over the sky is scattered sunlight. The same phe-
nomenon colours the setting sun red, because owing to
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the long, oblique path through the atmosphere, all the
blue light has been scattered away.

In astronomy one often has to observe very faint
objects. Thus, it is important that the background sky be
as dark as possible, and the atmosphere as transparent
as possible. That is why the large observatories have
been built on mountain tops far from the cities. The air
above an observatory site must be very dry, the number
of cloudy nights few, and the seeing good.

Astronomers have looked all over the Earth for opti-
mal conditions and have found some exceptional sites.
In the 1970’s, several new major observatories were
founded at these sites. Among the best sites in the world
are: the extinguished volcano Mauna Kea on Hawaii, ris-
ing more than 4000 m above the sea; the dry mountains
in northern Chile; the Sonoran desert in the U.S., near
the border of Mexico; and the mountains on La Palma,
in the Canary Islands. Many older observatories are
severely plagued by the lights of nearby cities (Fig. 3.3).

In radio astronomy atmospheric conditions are not
very critical except when observing at the shortest wave-

Fig. 3.3. Night views from the top of Mount Wilson. The
upper photo was taken in 1908, the lower one in 1988. The
lights of Los Angeles, Pasadena, Hollywood and more than 40
other towns are reflected in the sky, causing considerable dis-
turbance to astronomical observations. (Photos by Ferdinand
Ellerman and International Dark-Sky Association)

lengths. Constructors of radio telescopes have much
greater freedom in choosing their sites than optical
astronomers. Still, radio telescopes are also often con-
structed in uninhabited places to isolate them from
disturbing radio and television broadcasts.

3.2 Optical Telescopes

The telescope fulfills three major tasks in astronomical
observations:

1. It collects light from a large area, making it possible
to study very faint sources.

2. It increases the apparent angular diameter of the ob-
ject and thus improves resolution.

3. It is used to measure the positions of objects.

The light-collecting surface in a telescope is either
a lens or a mirror. Thus, optical telescopes are divided
into two types, lens telescopes or refractors and mirror
telescopes or reflectors (Fig.3.4).

Geometrical Optics. Refractors have two lenses, the
objective which collects the incoming light and forms
an image in the focal plane, and the eyepiece which
is a small magnifying glass for looking at the image
(Fig.3.5). The lenses are at the opposite ends of a tube
which can be directed towards any desired point. The
distance between the eyepiece and the focal plane can be
adjusted to get the image into focus. The image formed

Objective

Focal plane  Eyepiece

Secondary
mirror

_ V' _ Focal plane

Eyepiece

v

Fig. 3.4. A lens telescope or refractor and a mirror telescope
or reflector
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Fig. 3.5. The scale and magnification of a refractor. The object
subtends an angle u. The objective forms an image of the
object in the focal plane. When the image is viewed through
the eyepiece, it is seen at an angle u’

by the objective lens can also be registered, e.g. on
a photographic film, as in an ordinary camera.

The diameter of the objective, D, is called the aper-
ture of the telescope. The ratio of the aperture D to the
focal length f, F = D/ f, is called the aperture ratio.
This quantity is used to characterize the light-gathering
power of the telescope. If the aperture ratio is large,
near unity, one has a powerful, “fast” telescope; this
means that one can take photographs using short expo-
sures, since the image is bright. A small aperture ratio
(the focal length much greater than the aperture) means
a “slow” telescope.

In astronomy, as in photography, the aperture ratio
is often denoted by f/n (e.g. f/8), where n is the fo-
cal length divided by the aperture. For fast telescopes
this ratio can be f/1... f/3, but usually it is smaller,
f/8... f/15.

The scale of the image formed in the focal plane
of a refractor can be geometrically determined from
Fig. 3.5. When the object is seen at the angle u, it forms
an image of height s,

s= ftanu =~ fu, 3.1

since u is a very small angle. If the telescope has a fo-
cal length of, for instance, 343 cm, one arc minute
corresponds to

s=343cmx 1’
=343 cm x (1/60) x (r/180)

=1mm.

The magnification w is (from Fig. 3.5)
w=u'/uxf/f,

where we have used the equation s = fu. Here, f is the
focal length of the objective and f” that of the eyepiece.
For example, if f =100cm and we use an eyepiece
with f” = 2 cm, the magnification is 50-fold. The mag-
nification is not an essential feature of a telescope, since
it can be changed simply by changing the eyepiece.

A more important characteristic, which depends on
the aperture of the telescope, is the resolving power,
which determines, for example, the minimum angular
separation of the components of a binary star that can
be seen as two separate stars. The theoretical limit for
the resolution is set by the diffraction of light: The tele-
scope does not form a point image of a star, but rather
a small disc, since light “bends around the corner” like
all radiation (Fig. 3.6).

The theoretical resolution of a telescope is of-
ten given in the form introduced by Rayleigh (see
*Diffraction by a Circular Aperture, p. 81)

(3.2)

sinf~0=1.221x/D, [f]=rad. 3.3)

As a practical rule, we can say that two objects are seen
as separate if the angular distance between them is

021/D, [0]l=rad. (3.4)

This formula can be applied to optical as well as ra-
dio telescopes. For example, if one makes observations
at a typical yellow wavelength (A =550 nm), the re-
solving power of a reflector with an aperture of 1 m is
about 0.2”. However, seeing spreads out the image to
a diameter of typically one arc second. Thus, the the-
oretical diffraction limit cannot usually be reached on
the surface of the Earth.

In photography the image is further spread in the pho-
tographic plate, decreasing the resolution as compared
with visual observations. The grain size of photographic
emulsions is about 0.01-0.03 mm, which is also the
minimum size of the image. For afocal length of 1 m, the
scale is 1 mm = 206", and thus 0.01 mm corresponds to
about 2 arc seconds. This is similar to the theoretical
resolution of a telescope with an aperture of 7 cm in
visual observations.

In practice, the resolution of visual observations is
determined by the ability of the eye to see details.
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Fig. 3.6a—e. Diffraction and resolving power. The image of
a single star (a) consists of concentric diffraction rings, which
can be displayed as a mountain diagram (b). Wide pairs
of stars can be easily resolved (c¢). For resolving close bi-

In night vision (when the eye is perfectly adapted to
darkness) the resolving capability of the human eye is
about 2'.

The maximum magnification wy,y is the largest mag-
nification that is worth using in telescopic observations.
Its value is obtained from the ratio of the resolving
capability of the eye, e~ 2 =5.8 x 10~*rad, to the
resolving power of the telescope, 6,

5.8x107*D

O = €/0N DI = S S0 Tm

(3.5)
~ D/l mm.

If we use, for example, an objective with a diameter of
100 mm, the maximum magnification is about 100. The
eye has no use for larger magnifications.

The minimum magnification @, is the smallest
magnification that is useful in visual observations. Its
value is obtained from the condition that the diameter
of the exit pupil L of the telescope must be smaller than
or equal to the pupil of the eye.

The exit pupil is the image of the objective lens,
formed by the eyepiece, through which the light from

€)

: (TN \
il
/
il

naries, different criteria can be used. One is the Rayleigh
limit 1.22A/D (d). In practice, the resolution can be writ-
ten A/D, which is near the Dawes limit (e). (Photo (a) Sky
and Telescope)

the objective goes behind the eyepiece. From Fig. 3.7
we obtain

f D
L="D=—_. 3.6)
S ®
Thus the condition L < d means that
w>DJd. (3.7)

In the night, the diameter of the pupil of the human eye
is about 6 mm, and thus the minimum magnification of
a 100 mm telescope is about 17.

f f

- -

Fig.3.7. The exit pupil L is the image of the objective lens
formed by the eyepiece
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Refractors. In the first refractors, which had a sim-
ple objective lens, the observations were hampered by
the chromatic aberration. Since glass refracts differ-
ent colours by different amounts, all colours do not
meet at the same focal point (Fig.3.8), but the fo-
cal length increases with increasing wavelength. To
remove this aberration, achromatic lenses consisting
of two parts were developed in the 18th century. The
colour dependence of the focal length is much smaller
than in single lenses, and at some wavelength, X,
the focal length has an extremum (usually a min-
imum). Near this point the change of focal length
with wavelength is very small (Fig.3.9). If the tele-
scope is intended for visual observations, we choose
Ao = 550 nm, corresponding to the maximum sensitiv-
ity of the eye. Objectives for photographic refractors
are usually constructed with 1y ~ 425 nm, since normal
photographic plates are most sensitive to the blue part
of the spectrum.

By combining three or even more lenses of different
glasses in the objective, the chromatic aberration can
be corrected still better (as in apochromatic objectives).
Also, special glasses have been developed where the
wavelength dependences of the refractive index cancel
out so well that two lenses already give a very good cor-
rection of the chromatic aberration. They have, however,
hardly been used in astronomy so far.

The largest refractors in the world have an aperture
of about one metre (102 cm in the Yerkes Observatory
telescope (Fig. 3.10), finished in 1897, and 91 cm in the
Lick Observatory telescope (1888)). The aperture ratio
is typically f/10... f/20.

The use of refractors is limited by their small field
of view and awkwardly long structure. Refractors are

Fig. 3.8. Chromatic aberration. Light rays of different colours
are refracted to different focal points (left). The aberration can
be corrected with an achromatic lens consisting of two parts
(right)

1.003
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1.001 -

1.000 1 1 1 1 1
400 500 600 700 800 A [nm]

Fig. 3.9. The wavelength dependence of the focal length of
a typical achromatic objective for visual observations. The
focal length has a minimum near A = 550 nm, where the eye
is most sensitive. In bluer light (A =450 nm) or in redder
light (A = 800 nm), the focal length increases by a factor of
about 1.002

used, e. g. for visual observations of binary stars and in
various meridian telescopes for measuring the positions
of stars. In photography they can be used for accurate
position measurements, for example, to find parallaxes.

A wider field of view is obtained by using more
complex lens systems, and telescopes of this kind
are called astrographs. Astrographs have an objective
made up of typically 3-5 lenses and an aperture of
less than 60 cm. The aperture ratio is f/5... f/7 and
the field of view about 5°. Astrographs are used to
photograph large areas of the sky, e.g. for proper mo-
tion studies and for statistical brightness studies of the
stars.

Reflectors. The most common telescope type in astro-
physical research is the mirror telescope or reflector.
As a light-collecting surface, it employs a mirror
coated with a thin layer of aluminium. The form of
the mirror is usually parabolic. A parabolic mirror
reflects all light rays entering the telescope parallel
to the main axis into the same focal point. The im-
age formed at this point can be observed through an
eyepiece or registered with a detector. One of the
advantages of reflectors is the absence of chromatic
aberration, since all wavelengths are reflected to the
same point.

In the very largest telescopes, the observer can sit
with his instruments in a special cage at the primary
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Fig. 3.10. The largest refractor in the world is at the Yerkes Observatory, University of Chicago. It has an objective lens with
a diameter of 102 cm. (Photo by Yerkes Observatory)
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Primary focus

Newton
focus

Cassegrain

Fig. 3.11. Different locations of the focus in reflectors: pri-
mary focus, Newton focus, Cassegrain focus and coudé
focus. The coudé system in this figure cannot be used for

focus (Fig.3.11) without eclipsing too much of the in-
coming light. In smaller telescopes, this is not possible,
and the image must be inspected from outside the tele-
scope. In modern telescopes instruments are remotely
controlled, and the observer must stay away from the
telescope to reduce thermal turbulence.

In 1663 James Gregory (1638—1675) described a re-
flector. The first practical reflector, however, was built
by Isaac Newton. He guided the light perpendicularly
out from the telescope with a small flat mirror. There-
fore the focus of the image in such a system is called the
Newton focus. A typical aperture ratio of a Newtonian
telescope is f/3... f/10. Another possibility is to bore
a hole at the centre of the primary mirror and reflect
the rays through it with a small hyperbolic secondary
mirror in the front end of the telescope. In such a de-
sign, the rays meet in the Cassegrain focus. Cassegrain
systems have aperture ratios of f/8... f/15.

The effective focal length (f.) of a Cassegrain tele-
scope is determined by the position and convexity of
the secondary mirror. Using the notations of Fig. 3.12,
we get

f e = éf p- (3-8)

a
If we choose a < b, we have f. > f,. In this way one
can construct short telescopes with long focal lengths.
Cassegrain systems are especially well suited for spec-
trographic, photometric and other instruments, which
can be mounted in the secondary focus, easily accessible
to the observers.

Coudé

observations near the celestial pole. More complex coudé sys-
tems usually have three flat mirrors after the primary and
secondary mirrors

S ‘
o B/'\/ﬂ )
i‘—Pl i

Fig. 3.12. The principle of a Cassegrain reflector. A concave
(paraboloid) primary mirror M reflects the light rays parallel
to the main axis towards the primary focus Sj. A convex sec-
ondary mirror M, (hyperboloid) reflects the rays back through
a small hole at the centre of the main mirror to the secondary
focus S outside the telescope

More complicated arrangements use several mirrors
to guide the light through the declination axis of the
telescope to a fixed coudé focus (from the French word
couder, to bend), which can even be situated in a sepa-
rate room near the telescope (Fig. 3.13). The focal length
is thus very long and the aperture ratio f/30... f/40.
The coudé focus is used mainly for accurate spec-
troscopy, since the large spectrographs can be stationary
and their temperature can be held accurately constant.
A drawback is that much light is lost in the reflections in
the several mirrors of the coudé system. An aluminized
mirror reflects about 80% of the light falling on it, and
thus in a coudé system of, e.g. five mirrors (including
the primary and secondary mirrors), only 0.8% ~ 30%
of the light reaches the detector.



3.2 Optical Telescopes

Shutter

Insulated
spectrograph Slit at f/31.2
enclosure Coudé focus

g

84-inch mirror

=33
Casse-
grain
platform

Coudé optical system
84-inch telescope

Fig. 3.13. The coude system of the Kitt Peak 2.1 m reflector. (Drawing National Optical Astronomy Observatories, Kitt Peak

National Observatory)

The reflector has its own aberration, coma. It affects
images displaced from the optical axis. Light rays do
not converge at one point, but form a figure like a comet.
Due to the coma, the classical reflector with a paraboloid
mirror has a very small correct field of view. The coma
limits the diameter of the useful field to 2—20 minutes of
arc, depending on the aperture ratio of the telescope. The
5 m Palomar telescope, for instance, has a useful field
of view of about 4, corresponding to about one-eighth
of the diameter of the Moon. In practice, the small field
of view can be enlarged by various correcting lenses.

If the primary mirror were spherical, there would
be no coma. However, this kind of mirror has its own
error, spherical aberration: light rays from the cen-
tre and edges converge at different points. To remove
the spherical aberration, the Estonian astronomer Bern-
hard Schmidt developed a thin correcting lens that is
placed in the way of the incoming light. Schmidt cam-
eras (Figs. 3.14 and 3.15) have a very wide (about 7°),
nearly faultless field of view, and the correcting lens is

Corrector lens at the
centre of curvature
of the main mirror

Curved

focal surface

Fig. 3.14. The principle of the Schmidt camera. A correcting
glass at the centre of curvature of a concave spherical mirror
deviates parallel rays of light and compensates for the spheri-
cal aberration of the spherical mirror. (In the figure, the form
of the correcting glass and the change of direction of the light
rays have been greatly exaggerated.) Since the correcting glass
lies at the centre of curvature, the image is practically inde-
pendent of the incoming angle of the light rays. Thus there is
no coma or astigmatism, and the images of stars are points on
a spherical surface at a distance of R/2, where R is the radius
of curvature of the spherical mirror. In photography, the plate
must be bent into the form of the focal surface, or the field
rectified with a corrector lens
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so thin that it absorbs very little light. The images of the
stars are very sharp.

In Schmidt telescopes the diaphragm with the cor-
recting lens is positioned at the centre of the radius
of curvature of the mirror (this radius equals twice the
focal length). To collect all the light from the edges
of the field of view, the diameter of the mirror must
be larger than that of the correcting glass. The Palomar
Schmidt camera, for example, has an aperture of 122 cm
(correcting lens)/183 cm (mirror) and a focal length of
300 cm. The largest Schmidt telescope in the world is
in Tautenburg, Germany, and its corresponding values
are 134/203/400 cm.

A disadvantage of the Schmidt telescope is the curved
focal plane, consisting of a part of a sphere. When the
telescope is used for photography, the plate must be
bent along the curved focal plane. Another possibility
of correcting the curvature of the field of view is to
use an extra correcting lens near the focal plane. Such
a solution was developed by the Finnish astronomer
Yrjo Viisdld in the 1930’s, independently of Schmidt.
Schmidt cameras have proved to be very effective in
mapping the sky. They have been used to photograph
the Palomar Sky Atlas mentioned in the previous chapter
and its continuation, the ESO/SRC Southern Sky Atlas.

The Schmidt camera is an example of a catadiop-
tric telescope, which has both lenses and mirrors.
Schmidt—Cassegrain telescopes used by many amateurs
are modifications of the Schmidt camera. They have
a secondary mirror mounted at the centre of the correct-
ing lens; the mirror reflects the image through a hole in
the primary mirror. Thus the effective focal length can
be rather long, although the telescope itself is very short.
Another common catadioptric telescope is the Maksu-
tov telescope. Both surfaces of the correcting lens as
well as the primary mirror of a Maksutov telescope are
concentric spheres.

Another way of removing the coma of the classical
reflectors is to use more complicated mirror surfaces.
The Ritchey—Chrétien system has hyperboloidal pri-
mary and secondary mirrors, providing a fairly wide
useful field of view. Ritchey—Chrétien optics are used
in many large telescopes.

Fig. 3.15. The large Schmidt telescope of the European South-
ern Observatory. The diameter of the mirror is 1.62 m and of
the free aperture 1 m. (Photo ESO)

Mountings of Telescopes. A telescope has to be
mounted on a steady support to prevent its shaking,
and it must be smoothly rotated during observations.
There are two principal types of mounting, equatorial
and azimuthal (Fig.3.16).

In the equatorial mounting, one of the axes is directed
towards the celestial pole. It is called the polar axis
or hour axis. The other one, the declination axis, is
perpendicular to it. Since the hour axis is parallel to the
axis of the Earth, the apparent rotation of the sky can
be compensated for by turning the telescope around this
axis at a constant rate.

The declination axis is the main technical problem of
the equatorial mounting. When the telescope is pointing
to the south its weight causes a force perpendicular to
the axis. When the telescope is tracking an object and
turns westward, the bearings must take an increasing
load parallel with the declination axis.

In the azimuthal mounting, one of the axes is ver-
tical, the other one horizontal. This mounting is easier
to construct than the equatorial mounting and is more
stable for very large telescopes. In order to follow
the rotation of the sky, the telescope must be turned
around both of the axes with changing velocities.
The field of view will also rotate; this rotation must
be compensated for when the telescope is used for
photography.

If an object goes close to the zenith, its azimuth will
change 180° in a very short time. Therefore, around the
zenith there is a small region where observations with
an azimuthal telescope are not possible.

The largest telescopes in the world were equato-
rially mounted until the development of computers
made possible the more complicated guidance needed
for azimuthal mountings. Most of the recently built
large telescopes are already azimuthally mounted. Az-
imuthally mounted telescopes have two additional
obvious places for foci, the Nasmyth foci at both ends
of the horizontal axis.

The Dobson mounting, used in many amateur
telescopes, is azimuthal. The magnification of the New-
tonian telescope is usually small, and the telescope rests
on pieces of teflon, which make it very easy to move.
Thus the object can easily be tracked manually.

Another type of mounting is the coelostat, where ro-
tating mirrors guide the light into a stationary telescope.
This system is used especially in solar telescopes.
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Fig. 3.16. The equatorial mounting (/eft) and the azimuthal mounting (right)

To measure absolute positions of stars and accurate
time, telescopes aligned with the north—south direction
are used. They can be rotated around one axis only, the
east—west horizontal axis. Meridian circles or transit
instruments with this kind of mounting were widely
constructed for different observatories during the 19th
century. A few are still used for astrometry, but they
are now highly automatic like the meridian circle on La
Palma funded by the Carlsberg foundation.

New Techniques. Detectors are already approaching
the theoretical limit of efficiency, where all incident
photons are registered. Ultimately, to detect even fainter
objects the only solution is to increase the light gath-
ering area, but also the mirrors are getting close to the
practical maximum size. Thus, new technical solutions
are needed.

One new feature is active optics, used e. g. in the ESO
3.5 metre NTT telescope (New Technology Telescope)
at La Silla, Chile. The mirror is very thin, but its shape
is kept exactly correct by a computer controlled support
mechanism. The weight and production cost of such
amirror are much smaller compared with a conventional

thick mirror. Because of the smaller weight also the
supporting structure can be made lighter.

Developing the support mechanism further leads to
adaptive optics. A reference star (or an artificial beam)
is monitored constantly in order to obtain the shape
of the seeing disk. The shape of the main mirror or
a smaller auxiliary mirror is adjusted up to hundreds
of times a second to keep the image as concentrated
as possible. Adaptive optics has been taken into use in
the largest telescopes of the world from about the year
2000 on.

Fig. 3.17a—c. The largest telescopes in the world in 1947—
2000. (a) For nearly 30 years, the 5.1 m Hale telescope on
Mount Palomar, California, USA, was the largest telescope
in the world. (b) The BTA, Big Azimuthal Telescope, is situ-
ated in the Caucasus in the southern Soviet Union. Its mirror
has a diameter of 6 m. It was set in operation at the end of
1975. (¢) The William M. Keck Telescope on the summit of
Mauna Kea, Hawaii, was completed in 1992. The 10 m mirror
consists of 36 hexagonal segments. (Photos Palomar Ob-
servatory, Spetsialnaya Astrofizitsheskaya Observatorya, and
Roger Ressmeyer — Starlight for the California Association
for Research in Astronomy)
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<« Fig.3.18a—c. Some new large telescopes. (a) The 8.1 m
Gemini North telescope on Mauna Kea, Hawaii, was set in
operation in 1999. Its twin, Gemini South, was dedicated in
2000. (b) The European Southern Observatory (ESO) was
founded by Belgium, France, the Netherlands, Sweden and
West Germany in 1962. Other European countries have joined
them later. The VLT (Very Large Telescope) on Cerro Paranal
in Northern Chile, was inaugurated in 1998-2000. (¢) The
first big Japanese telescope, the 8.3 m Subaru on Mauna Kea,
Hawaii, started observations in 1999. (Photos National Optical
Astronomy Observatories, European Southern Observatory
and Subaru Observatory)

The mirrors of large telescopes need not be mono-
lithic, but can be made of smaller pieces that are, e. g.
hexagonal. These mosaic mirrors are very light and can
be used to build up mirrors with diameters of several tens

: . el ) of metres (Fig. 3.19). Using active optics, the hexagons
4+l ‘ij ﬂ ll:' ' can be accurately focussed. The California Association
,I‘/, - = for Research in Astronomy has constructed the William
i =0 M. Keck telescope with a 10 m mosaic mirror. It is

Ty | "’ | T . located on Mauna Kea, and the last segment was in-

stalled in 1992. A second, similar telescope Keck II was
completed in 1996, the pair forming a huge binocular
telescope.

The reflecting surface does not have to be continu-
ous, but can consist of several separate mirrors. Such

Fig.3.19. The mirror of
a telescope can be made
up of several smaller seg-
ments, which are much
easier to manufacture, as
in the Hobby—Eberle Tele-
scope on Mount Fowlkes,
Texas. The effective diam-
eter of the mirror is 9.1 m.
A similar telescope is being
built in South Africa. (Photo
MacDonald Observatory)
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a telescope was operating on Mount Hopkins, Arizona,
in 1979-1999. It was the Multiple-Mirror Telescope
(MMT) with six 1.8 m mirrors together correspond-
ing to a single mirror having a diameter of 4.5 m.
In 2000 the six mirrors were replaced by one 6.5 m
mirror.

The European Southern Observatory has constructed
its own multi-mirror telescope. ESO’s Very Large Tele-
scope (VLT) has four closely located mirrors (Fig. 3.18).
The diameter of each mirror is eight metres, and the to-
tal area corresponds to one telescope with a 16 m mirror.
The resolution is even better, since the “aperture”, i.e.
the maximum distance between the mirrors, is several
tens of meters.

An important astronomical instruments of the 20th
century is the Hubble Space Telescope,launched in 1990
(Fig. 3.20). It has a mirror with a diameter of 2.4 m. The
resolution of the telescope (after the faulty optics was
corrected) is near the theoretical diffraction limit, since
there is no disturbing atmosphere. A second generation
Space Telescope, now called the James Webb Space
Telescope, with a mirror of about 6.5 m is planned to be
launched in about 2011.

The Hubble Space Telescope was the first large opti-
cal telescope in Earth orbit. In the future, satellites will
continue to be mainly used for those wavelength regions
where the radiation is absorbed by the atmosphere. Due
to budgetary reasons, the majority of astronomical ob-

Fig.3.20. The Hubble
Space Telescope after the
latest service flight in 2002.
The telescope got new so-
lar panels and several other
upgrades. (Photo NASA)

servations will still be carried out on the Earth, and
great attention will be given to improving ground-based
observatories and detectors.

3.3 Detectors and Instruments

Only a limited amount of information can be obtained
by looking through a telescope with the unaided eye.
Until the end of the 19th century this was the only way
to make observations. The invention of photography in
the middle of the 19th century brought a revolution in
astronomy. The next important step forward in optical
astronomy was the development of photoelectric pho-
tometry in the 1940’s and 1950’s. A new revolution,
comparable to that caused by the invention of photog-
raphy, took place in the middle of the 1970’s with the
introduction of different semiconductor detectors. The
sensitivity of detectors has grown so much that today,
a 60 cm telescope can be used for observations similar
to those made with the Palomar 5 m telescope when it
was set in operation in the 1940’s.

The Photographic Plate. Photography has long been
one of the most common methods of observation in
astronomy. In astronomical photography glass plates
were used, rather than film, since they keep their shape
better, but nowadays they are no more manufactured,
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and CCD-cameras have largely replaced photography.
The sensitive layer on the surface of the film or plate
is made up of a silver halide, usually silver bromide,
AgBr. A photon absorbed by the halide excites an elec-
tron that can move from one atom to another. A silver
ion, Ag™, can catch the electron, becoming a neutral
atom. When the necessary amount of silver atoms have
been accumulated at one place, they form a latent image.
The latent image can be made into a permanent nega-
tive by treating the plate after exposure with various
chemicals, which transform the silver bromide crystals
enclosing the latent image into silver (“development”),
and remove the unexposed crystals (“fixing”).

The photographic plate has many advantages over
the human eye. The plate can register up to millions of
stars (picture elements) at one time, while the eye can
observe at most one or two objects at a time. The image
on a plate is practically permanent — the picture can be
studied at any time. In addition, the photographic plate
is cheap and easy to use, as compared to many other
detectors. The most important feature of a plate is its
capability to collect light over an extended time: the
longer exposures are used, the more silver atoms are
formed on the plate (the plate darkens). By increasing
the exposure times, fainter objects can be photographed.
The eye has no such capacity: if a faint object does not
show through a telescope, it cannot been seen, no matter
how long one stares.

One disadvantage of the photographic plate is its low
sensitivity. Only one photon in a thousand causes a re-
action leading to the formation of a silver grain. Thus
the quantum efficiency of the plate is only 0.1%. Several
chemical treatments can be used to sensitize the plate
before exposure. This brings the quantum efficiency
up to a few percent. Another disadvantage is the fact
that a silver bromide crystal that has been exposed once
does not register anything more, i. e. a saturation point is
reached. On the other hand, a certain number of photons
are needed to produce an image. Doubling the number
of photons does not necessarily double the density (the
‘blackness’ of the image): the density of the plate de-
pends nonlinearly on the amount of incoming light. The
sensitivity of the plate is also strongly dependent on
the wavelength of the light. For the reasons mentioned
above the accuracy with which brightness can be mea-
sured on a photographic plate is usually worse than
about 5%. Thus the photographic plate makes a poor

photometer, but it can be excellently used, e. g. for mea-
suring the positions of stars (positional astronomy) and
for mapping the sky.

Photocathodes, Photomultipliers. A photocathode is
a more effective detector than the photographic plate.
It is based on the photoelectric effect. A light quantum,
or photon, hits the photocathode and loosens an elec-
tron. The electron moves to the positive electrode, or
anode, and gives rise to an electric current that can be
measured. The quantum efficiency of a photocathode is
about 10-20 times better than that of a photographic
plate; optimally, an efficiency of 30% can be reached.
A photocathode is also a linear detector: if the number
of electrons is doubled, the outcoming current is also
doubled.

The photomultiplier is one of the most important
applications of the photocathode. In this device, the
electrons leaving the photocathode hit a dynode. For
each electron hitting the dynode, several others are re-
leased. When there are several dynodes in a row, the
original weak current can be intensified a millionfold.
The photomultiplier measures all the light entering it,
but does not form an image. Photomultipliers are mostly
used in photometry, and an accuracy of 0.1-1% can be
attained.

Photometers, Polarimeters. A detector measuring
brightness, a photometer, is usually located behind the
telescope in the Cassegrain focus. In the focal plane
there is a small hole, the diaphragm, which lets through
light from the object under observation. In this way,
light from other stars in the field of view can be pre-
vented from entering the photometer. A field lens behind
the diaphragm refracts the light rays onto a photocath-
ode. The outcoming current is intensified further in
a preamplifier. The photomultiplier needs a voltage of
1000—-1500 volts.

Observations are often made in a certain wavelength
interval, instead of measuring all the radiation enter-
ing the detector. In this case a filter is used to prevent
other wavelengths from reaching the photomultiplier.
A photometer can also consist of several photomultipli-
ers (Fig. 3.21), which measure simultaneously different
wavelength bands. In such an instrument beam splitters
or semitransparent mirrors split the light beam through
fixed filters to the photomultipliers.
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Fig.3.21. The principle of a photoelectric multicolour pho-
tometer. Light collected by the telescope arrives from the left.
The light enters the photometer through a small hole in the
focal plane, the diaphragm. A lens collimates the light into
a parallel beam. Semitransparent mirrors divide the beam to
several photomultipliers. A field lens guides the light through
a filter onto the photocathode of the photomultiplier. The
quanta of light, photons, release electrons from the cathodes.
The electrons are accelerated towards the dynodes with a volt-
age of about 1500 V. The electrons hitting the dynodes release
still more electrons, and the current is greatly enhanced. Ev-
ery electron emitted from the cathode gives rise to a pulse of
up to 108 electrons at the anode; the pulse is amplified and
registered by a pulse counter. In this way, the photons from
the star are counted

Photo-
multiplier

In a device called the photopolarimeter, a polarizing
filter is used, either alone or in combination with other
filters. The degree and direction of polarization can be
found by measuring the intensity of the radiation with
different orientations of the polarizers.

In practice, the diaphragm of a photometer will al-
ways also let through part of the background sky around
the observed object. The measured brightness is in re-
ality the combined brightness of the object and the sky.
In order to find the brightness of the object, the back-
ground brightness must be measured separately and
subtracted from the combined brightness. The accuracy
of the measurements is decreased if long observation
times are used and the background brightness undergoes
fast changes. The problem can be solved by observing
the brightness of the background sky and the object
simultaneously.

Photometric observations are often relative. If one is
observing, e.g. a variable star, a reference star close to

the actual target is observed at regular intervals. Using
the observations of this reference star it is possible to
derive a model for the slow changes in the atmospheric
extinction (see Chap. 4) and remove their effect. The in-
strument can be calibrated by observing some standard
stars, whose brightness is known very accurately.

Image Intensifiers. Different image intensifiers based
on the photocathode have been used since the 1960’s. In
the intensifier the information about the starting point
of the electron on the photocathode is preserved and the
intensified image is formed on a fluorescent screen. The
image can then be registered, e. g. with a CCD camera.
One of the advantages of the image intensifier is that
even faint objects can be imaged using relatively short
exposures, and observations can be made at wavelengths
where the detector is insensitive.

Another common type of detector is based on the
TV camera (Vidicon camera). The electrons released
from the photocathode are accelerated with a voltage of
a few kilovolts before they hit the electrode where they
form an image in the form of an electric charge dis-
tribution. After exposure, the charge at different points
of the electrode is read by scanning its surface with an
electron beam row by row. This produces a video sig-
nal, which can be transformed into a visible image on
a TV tube. The information can also be saved in digital
form. In the most advanced systems, the scintillations
caused by single electrons on the fluorescent screen of
the image intensifier can be registered and stored in the
memory of a computer. For each point in the image
there is a memory location, called a picture element or
pixel.

Since the middle of the 1970’s, detectors using
semiconductor techniques began to be used in increas-
ing numbers. With semiconductor detectors a quantum
efficiency of about 70—80% can be attained; thus, sensi-
tivity cannot be improved much more. The wavelength
regions suitable for these new detectors are much wider
than in the case of the photographic plate. The detec-
tors are also linear. Computers are used for collecting,
saving and analyzing the output data available in digital
form.

CCD Camera. The most important new detector is the
CCD camera (Charge Coupled Device). The detector
consists of a surface made up of light sensitive silicon
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Fig. 3.22a—e. The principle of reading a CCD camera. (a) Dur-
ing an exposure electrons are trapped in potential wells
corresponding to pixels of the camera. The number at each
pixel shows the number of electrons. (b) After the expo-
sure each horizontal line is moved one pixel to the right;
the rightmost row moves to the readout buffer. (¢) The con-

diodes, arranged in a rectangular array of image ele-
ments or pixels. The largest cameras can have as many
as 4096 x 4096 pixels, although most are considerably
smaller.

A photon hitting the detector can release an elec-
tron, which will remain trapped inside a pixel. After
the exposure varying potential differences are used to
move the accumulated charges row by row to a read-
out buffer. In the buffer the charges are moved pixel by
pixel to an analogy/digital converter, which transmits
the digital value to a computer. Reading an image also
clears the detector (Fig. 3.22). If the exposures are very
short the readout times may take a substantial part of
the observing time.

The CCD camera is nearly linear: the number of
electrons is directly proportional to the number of pho-
tons. Calibration of the data is much easier than with
photographic plates.

The quantum efficiency, i.e. the number of electrons
per incident photon, is high, and the CCD camera is

tents of the buffer is moved down by one pixel. The lowermost
charge moves to the A/D converter, which sends the number
of electrons to the computer. (d) After moving the buffer down
several times one vertical row has been read. (e) The image
is again shifted right by one pixel. This procedure is repeated
till the whole image is read

much more sensitive than a photographic plate. The
sensitivity is highest in the red wavelength range, about
600—-800 nm, where the quantum efficiency can be
80-90% or even higher.

The range of the camera extends far to the infrared. In
the ultraviolet the sensitivity drops due to the absorption
of the silicon very rapidly below about 500 nm. Two
methods have been used to avoid this problem. One is
to use a coating that absorbs the ultraviolet photons and
emits light of longer wavelength. Another possibility is
to turn the chip upside down and make it very thin to
reduce the absorption.

The thermal noise of the camera generates dark cur-
rent even if the camera is in total darkness. To reduce
the noise the camera must be cooled. Astronomical CCD
cameras are usually cooled with liquid nitrogen, which
efficiently removes most of the dark current. How-
ever, the sensitivity is also reduced when the camera
is cooled; so too cold is not good either. The tempera-
ture must be kept constant in order to obtain consistent
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data. For amateurs there are already moderately priced
CCD cameras, which are electrically cooled. Many of
them are good enough also for scientific work, if very
high sensitivity is not required.

The dark current can easily be measured by taking
exposures with the shutter closed. Subtracting this from
the observed image gives the real number of electrons
due to incident light.

The sensitivity of individual pixels may be slightly
different. This can be corrected for by taking an im-
age of an evenly illuminated field, like a twilight sky.
This image is called a flat-field. When observations are
divided by the flat-field, the error caused by different
pixels is removed.

The CCD camera is very stable. Therefore it is
not necessary to repeat the dark current and flat-field
observations very frequently. Typically these calibra-
tion exposures are taken during evening and morning
twilights, just before and after actual observations.

Cosmic rays are charged particles that can produce
extraneous bright dots in CCD images. They are usually
limited to one or two pixels, and are easily identified.
Typically a short exposure of a few minutes contains
a few traces of cosmic rays. Instead of a single long
exposure it is usually better to take several short ones,
clean the images from cosmic rays, and finally add the
images on a computer.

A more serious problem is the readout noise of the
electronics. In the first cameras it could be hundreds
of electrons per pixel. In modern cameras it is a few
electrons. This gives a limit to the faintest detectable
signal: if the signal is weaker than the readout noise, it
is indistinguishable from the noise.

Although the CCD camera is a very sensitive
detector, even bright light cannot damage it. A pho-
tomultiplier, on the other hand, can be easily destroyed
by letting in too much light. However, one pixel can
only store a certain number of electrons, after which
it becomes saturated. Excessive saturation can make
the charge to overflow also to the neighboring pixels.
If the camera becomes badly saturated it may have
to be read several times to completely remove the
charges.

The largest CCD cameras are quite expensive, and
even they are still rather small compared with photo-
graphic plates and films. Therefore photography still
has some use in recording extended objects.

Spectrographs. The simplest spectrograph is a prism
that is placed in front of a telescope. This kind of de-
vice is called the objective prism spectrograph. The
prism spreads out the different wavelengths of light
into a spectrum which can be registered. During the
exposure, the telescope is usually slightly moved per-
pendicularly to the spectrum, in order to increase the
width of the spectrum. With an objective prism spectro-
graph, large numbers of spectra can be photographed,
e. g. for spectral classification.

For more accurate information the slit spectrograph
must be used (Fig. 3.23). It has a narrow slit in the fo-
cal plane of the telescope. The light is guided through
the slit to a collimator that reflects or refracts all the
light rays into a parallel beam. After this, the light is
dispersed into a spectrum by a prism and focused with
a camera onto a detector, which nowadays is usually
a CCD camera. A comparison spectrum is exposed next
to the stellar spectrum to determine the precise wave-
lengths. In modern spectrographs using CCD cameras,
the comparison spectrum is usually exposed as a sepa-
rate image. A big slit spectrograph is often placed at the
coudé or Nasmyth focus of the telescope.

Instead of the prism a diffraction grating can be used
to form the spectrum. A grating has narrow grooves,
side by side, typically several hundred per millimetre.
When light is reflected by the walls of the grooves, the
adjoining rays interfere with each other and give rise
to spectra of different orders. There are two kinds of
gratings: reflection and transmission gratings. In a re-
flection grating no light is absorbed by the glass as in
the prism or transmission grating. A grating usually
has higher dispersion, or ability to spread the spectrum,

Prism

Collimator

Red
Green

Detector Vielet

Fig. 3.23. The principle of the slit spectrograph. Light rays
entering through a slit are collimated (made parallel to each
other), dispersed into a spectrum by a prism and projected
onto a photographic plate or a CCD
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than a prism. The dispersion can be increased by in-
creasing the density of the grooves of the grating. In slit
spectrographs the reflection grating is most commonly
used.

Interferometers. The resolution of a big telescope is
in practice limited by seeing, and thus increasing the
aperture does not necessarily improve the resolution.
To get nearer to the theoretical resolution limit set by
diffraction (Fig.3.6), different interferometers can be
used.

There are two types of optical interferometers. One
kind uses an existing large telescope; the other a system
of two or more separate telescopes. In both cases the
light rays are allowed to interfere. By analyzing the
outcoming interference pattern, the structures of close
binaries can be studied, apparent angular diameters of
the stars can be measured, etc.

One of the earliest interferometers was the Michelson
interferometer that was built shortly before 1920 for the
largest telescope of that time. In front of the telescope,
at the ends of a six metre long beam, there were flat
mirrors reflecting the light into the telescope. The form
of the interference pattern changed when the separation
of the mirrors was varied. In practice, the interference
pattern was disturbed by seeing, and only a few positive
results were obtained with this instrument.

The diameters of over 30 of the brightest stars have
been measured using intensity interferometers. Such
a device consists of two separate telescopes that can be
moved in relation to each other. This method is suitable
for the brightest objects only.

In 1970 the Frenchman Anfoine Labeyrie introduced
the principle of speckle interferometry. In traditional
imaging the pictures from long exposures consist of
alarge number of instantaneous images, “speckles”, that
together form the seeing disc. In speckle interferometry
very short exposures and large magnifications are used
and hundreds of pictures are taken. When these pictures
are combined and analyzed (usually in digital form),
the actual resolution of the telescope can nearly be
reached.

The accuracy of interferometric techniques was im-
proved at the beginning of 00’s. The first experiments
to use the two 10 m Keck telescopes as one interfero-
meter, were made in 2001. Similarly, the ESO VLT will
be used as an interferometer.

3.4 Radio Telescopes

Radio astronomy represents a relatively new branch
of astronomy. It covers a frequency range from a few
megahertz (100 m) up to frequencies of about 300 GHz
(1 mm), thereby extending the observable electromag-
netic spectrum by many orders of magnitude. The
low-frequency limit of the radio band is determined by
the opacity of the ionosphere, while the high-frequency
limit is due to the strong absorption from oxygen and
water bands in the lower atmosphere. Neither of these
limits is very strict, and under favourable conditions ra-
dio astronomers can work into the submillimetre region
or through ionospheric holes during sunspot minima.

At the beginning of the 20th century attempts were
made to observe radio emission from the Sun. These
experiments, however, failed because of the low sensi-
tivity of the antenna-receiver systems, and because of
the opaqueness of the ionosphere at the low frequen-
cies at which most of the experiments were carried out.
The first observations of cosmic radio emission were
later made by the American engineer Karl G. Jansky in
1932, while studying thunderstorm radio disturbances
at a frequency of 20.5 MHz (14.6 m). He discovered
radio emission of unknown origin, which varied within
a24 hour period. Somewhat later he identified the source
of this radiation to be in the direction of the centre of
our Galaxy.

The real birth of radio astronomy may perhaps be
dated to the late 1930’s, when Grote Reber started
systematic observations with his homemade 9.5 m
paraboloid antenna. Thereafter radio astronomy de-
veloped quite rapidly and has greatly improved our
knowledge of the Universe.

Observations are made both in the continuum (broad
band) and in spectral lines (radio spectroscopy). Much
of our knowledge about the structure of our Milky Way
comes from radio observations of the 21 cm line of neu-
tral hydrogen and, more recently, from the 2.6 mm line
of the carbon monoxide molecule. Radio astronomy has
resulted in many important discoveries; e.g. both pul-
sars and quasars were first found by radio astronomical
observations. The importance of the field can also be
seen from the fact that the Nobel prize in physics has
recently been awarded twice to radio astronomers.

A radio telescope collects radiation in an aperture
or antenna, from which it is transformed to an electric
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signal by a receiver, called a radiometer. This signal is
then amplified, detected and integrated, and the output
is registered on some recording device, nowadays usu-
ally by a computer. Because the received signal is very
weak, one has to use sensitive receivers. These are of-
ten cooled to minimize the noise, which could otherwise
mask the signal from the source. Because radio waves
are electromagnetic radiation, they are reflected and re-
fracted like ordinary light waves. In radio astronomy,
however, mostly reflecting telescopes are used.

At low frequencies the antennas are usually dipoles
(similar to those used for radio or TV), but in order to
increase the collecting area and improve the resolution,
one uses dipole arrays, where all dipole elements are
connected to each other.

The most common antenna type, however, is
a parabolic reflector, which works exactly as an opti-
cal mirror telescope. At long wavelengths the reflecting
surface does not need to be solid, because the long
wavelength photons cannot see the holes in the reflec-
tor, and the antenna is therefore usually made in the

form of a metal mesh. At high frequencies the surface
has to be smooth, and in the millimetre-submillimetre
range, radio astronomers even use large optical tele-
scopes, which they equip with their own radiometers.
To ensure a coherent amplification of the signal, the sur-
face irregularities should be less than one-tenth of the
wavelength used.

The main difference between a radio telescope and
an optical telescope is in the recording of the signal.
Radio telescopes are not imaging telescopes (except
for synthesis telescopes, which will be described later);
instead, a feed horn, which is located at the antenna
focus, transfers the signal to a receiver. The wavelength
and phase information is, however, preserved.

The resolving power of a radio telescope, 6, can
be deduced from the same formula (3.4) as for opti-
cal telescopes, i.e. A/D, where A is the wavelength
used and D is the diameter of the aperture. Since the
wavelength ratio between radio and visible light is of
the order of 10,000, radio antennas with diameters of
several kilometres are needed in order to achieve the

Fig.3.24. The largest radio telescope in the world is the
Arecibo dish in Puerto Rico. It has been constructed over

a natural bowl and is 300 m in diameter. (Photo Arecibo
Observatory)
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Fig. 3.25. The largest fully steerable radio telescope is in Green Bank, Virginia. Its diameter is 100 x 110 m. (Photo NRAO)

same resolution as for optical telescopes. In the early
days of radio astronomy poor resolution was the biggest
drawback for the development and recognition of radio
astronomy. For example, the antenna used by Jansky
had a fan beam with a resolution of about 30° in the
narrower direction. Therefore radio observations could
not be compared with optical observations. Neither was
it possible to identify the radio sources with optical
counterparts.

The world’s biggest radio telescope is the Arecibo an-
tenna in Puerto Rico, whose main reflector is fixed and
built into a 305 m diameter, natural round valley cov-
ered by a metal mesh (Fig. 3.24). In the late 1970’s the
antenna surface and receivers were upgraded, enabling
the antenna to be used down to wavelengths of 5 cm.
The mirror of the Arecibo telescope is not parabolic but
spherical, and the antenna is equipped with a movable
feed system, which makes observations possible within
a 20° radius around the zenith.

The biggest completely steerable radio telescope is
the Green Bank telescope in Virginia, U.S.A., dedicated
at the end of 2000. It is slightly asymmetric with a di-

ameter of 100 x 110 m (Fig. 3.25). Before the Green
Bank telescope, for over two decades the largest tele-
scope was the Effelsberg telescope in Germany. This
antenna has a parabolic main reflector with a diameter
of 100 m. The inner 80 m of the dish is made of solid
aluminium panels, while the outmost portion of the disk
is a metal mesh structure. By using only the inner por-
tion of the telescope, it has been possible to observe
down to wavelengths of 4 mm. The oldest and perhaps
best-known big radio telescope is the 76 m antenna at
Jodrell Bank in Britain, which was completed in the end
of the 1950’s.

The biggest telescopes are usually incapable of op-
erating below wavelengths of 1 cm, because the surface
cannot be made accurate enough. However, the millime-
tre range has become more and more important. In this
wavelength range there are many transitions of interstel-
lar molecules, and one can achieve quite high angular
resolution even with a single dish telescope. At present,
the typical size of a mirror of a millimetre telescope is
about 15 m. The development of this field is rapid, and
at present several big millimetre telescopes are in opera-
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Fig.3.26. The 15 metre
Maxwell submillimetre
telescope on Mauna Kea,
Hawaii, is located in a dry
climate at an altitude
of 4100 m. Observations
can be made down to
wavelengths of 0.5 mm.
(Photo Royal Observatory,
Edinburgh)

tion (Table C.24). Among them are the 40 m Nobeyama
telescope in Japan, which can be used down to 3 mm,
the 30 m IRAM telescope at Pico Veleta in Spain, which
is usable down to 1 mm, and the 15 m UK James Clerk
Maxwell Telescope on Mauna Kea, Hawaii, operating
down to 0.5 mm (Fig. 3.26). The largest project in the
first decade of the 21st century is ALMA (Atacama
Large Millimetre Array), which comprises of 50 tele-
scopes with a diameter of 12 m (Fig.3.27). It will be
built as an international project by the United States,
Europe and Japan.

As already mentioned, the resolving power of a radio
telescope is far poorer than that of an optical telescope.
The biggest radio telescopes can at present reach a reso-
lution of 5 arc seconds, and that only at the very highest

frequencies. To improve the resolution by increasing
the size is difficult, because the present telescopes are
already close to the practical upper limit. However,
by combining radio telescopes and interferometers, it
is possible to achieve even better resolution than with
optical telescopes.

As early as 1891 Michelson used an interferometer
for astronomical purposes. While the use of interfer-
ometers has proved to be quite difficult in the optical
wavelength regime, interferometers are extremely use-
ful in the radio region. To form an interferometer, one
needs at least two antennas coupled together. The spac-
ing between the antennas, D, is called the baseline. Let
us first assume that the baseline is perpendicular to the
line of sight (Fig.3.28). Then the radiation arrives at
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Fig. 3.27. The Atacama Large Millimetre Array (ALMA) will
be built in cooperation by Europe, U.S.A. and Japan. The

both antennas with the same phase, and the summed
signal shows a maximum. However, due to the rotation
of the Earth, the direction of the baseline changes, pro-
ducing a phase difference between the two signals. The
result is a sinusoidal interference pattern, in which min-
ima occur when the phase difference is 180 degrees.
The distance between the peaks is given by

0D =A,

where 0 is the angle the baseline has turned and A is the
wavelength of the received signal. The resolution of the
interferometer is thus equal to that of an antenna with
a linear size equal to D.

If the source is not a point source, the radiation emit-
ted from different parts of the source will have phase
differences when it enters the antennas. In this case the
minima of the interference pattern will not be zero, but
will have some positive value Pp,. If we denote the
maximum value of the interference pattern by Pp,x, the

original plan was to have 64 antennas, but for financial reasons
the number has been reduced to 50. (Drawing ESO/NOAJ)

ratio
P, max — P, min
P max T P min

gives a measure of the source size (fringe visibility).

Fig. 3.28. The principle of an interferometer. If the radiation
reaches the radio telescopes in the same phase, the waves am-
plify each other and a maximum is obtained in the combined
radiation (cases / and 3). If the incoming waves are in opposite
phase, they cancel each other (case 2)
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More accurate information about the source structure
can be obtained by changing the spacing between the
antennas, i.e. by moving the antennas with respect to
each other. If this is done, interferometry is transformed
into a technique called aperture synthesis.

The theory and techniques of aperture synthesis were
developed by the British astronomer Sir Martin Ryle.
In Fig.3.29 the principle of aperture synthesis is il-
lustrated. If the telescopes are located on an east—west
track, the spacing between them, projected onto the sky,
will describe a circle or an ellipse, depending on the
position of the source as the the Earth rotates around
its axis. If one varies the distance between the tele-
scopes, one will get a series of circles or ellipses on
the sky during a 12 hour interval. As we can see from
Fig. 3.29, one does not have to cover all the spacings be-
tween the telescopes, because any antenna combination
which has the same relative distance will describe the
same path on the sky. In this way one can synthesize an
antenna, a filled aperture, with a size equal to the max-
imum spacing between the telescopes. Interferometers
working according to this principle are called aperture
synthesis telescopes. If one covers all the spacings up
to the maximum baseline, the result will be an accurate
map of the source over the primary beam of an indi-
vidual antenna element. Aperture synthesis telescopes
therefore produce an image of the sky, i.e. a “radio
photograph”.

A typical aperture synthesis telescope consists of one
fixed telescope and a number of movable telescopes,
usually located on an east—west track, although T or
Y configurations are also quite common. The number
of telescopes used determines how fast one can syn-
thesize a larger disk, because the number of possible
antenna combinations increases as n(n — 1), where n is
the number of telescopes. It is also possible to syn-
thesize a large telescope with only one fixed and one
movable telescope by changing the spacing between
the telescopes every 12 hours, but then a full aperture
synthesis can require several months of observing time.
In order for this technique to work, the source must be
constant, i.e. the signal cannot be time variable during
the observing session.

The most efficient aperture synthesis telescope at
present is the VLA (Very Large Array) in New Mexico,
USA (Fig.3.30). It consists of 27 paraboloid anten-
nas, each with a diameter of 25 m, which are located

a) b) AC
AB BC
% T T T T T T T T T T T T %
A = B A C B
c) AD & CD

rEZX X

A D C B

Fig. 3.29a—c. To illustrate the principle of aperture synthesis,
let us consider an east—west oriented interferometer pointed
towards the celestial north. Each antenna is identical, has
a diameter D and operates at a wavelength A. The minimum
spacing between each antenna element is a, and the maximum
spacing is 6a. In (a) there are only two antennas, A and B,
displaced by the maximum spacing 6a. When the earth ro-
tates, antennas A and B will, in the course of 12 hours, track
a circle on the plane of the sky with a diameter A/(6a), the
maximum resolution that can be achieved with this interfer-
ometer. In (b) the antenna C is added to the interferometer,
thus providing two more baselines, which track the circles AC
and BC with radii of 1/(2a) and A/(4a), respectively. In (c)
there is still another antenna D added to the interferometer.
In this case two of the baselines are equal, AD and CD, and
therefore only two new circles are covered on the plane of the
sky. By adding more interferometer elements, one can fill in
the missing parts within the primary beam, i.e. the beam of
one single dish, and thus obtain a full coverage of the beam.
It is also evident from (¢), that not all of the antenna positions
are needed to provide all the different spacings; some antenna
spacings will in such a case be equal and therefore provide
no additional information. Obtaining a full aperture synthesis
with an east—west interferometer always takes 12 hours, if all
spacings are available. Usually, however, several antenna el-
ements are movable, in which case a full aperture synthesis
can take a long time before all spacings are filled in

on a Y-shaped track. The Y-formation was chosen be-
cause it provides a full aperture synthesis in 8 hours.
Each antenna can be moved by a specially built carrier,
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Fig. 3.30. The VLA at Socorro, New Mexico, is a synthesis telescope consisting of 27 movable antennas

and the locations of the telescopes are chosen to give
optimal spacings for each configuration. In the largest
configuration each arm is about 21 km long, thereby
resulting in an antenna with an effective diameter of
35 km. If the VLA is used in its largest configuration and
at its highest frequency, 23 GHz (1.3 cm), the resolution
achieved is 0.1 arc second, clearly superior to any optical
telescope. Similar resolution can also be obtained with
the British MERLIN telescope, where already existing
telescopes have been coupled together by radio links.
Other well-known synthesis telescopes are the Cam-
bridge 5 km array in Britain and the Westerbork array in
the Netherlands, both located on east—west tracks.

Even higher resolution can be obtained with an ex-
tension of the aperture synthesis technique, called VLBI
(Very Long Baseline Interferometry). With the VLBI
technique the spacing between the antennas is restricted
only by the size of the Earth. VLBI uses existing an-
tennas (often on different continents), which are all
pointed towards the same source. In this case the signal
is recorded together with accurate timing signals from
atomic clocks. The data files are correlated against each

other, resulting in maps similar to those obtained with
a normal aperture synthesis telescope. With VLBI tech-
niques it is possible to achieve resolutions of 0.0001".
Because interferometry is very sensitive to the distance
between the telescopes, the VLBI technique also pro-
vides one of the most accurate methods to measure
distances. Currently one can measure distances with
an accuracy of a few centimetres on intercontinental
baselines. This is utilized in geodetic VLBI experi-
ments, which study continental drift and polar motion
as a function of time.

In radio astronomy the maximum size of single an-
tennas has also been reached. The trend is to build
synthesis antennas, similar to the VLA in New Mex-
ico. In the 1990’s The United States built a chain of
antennas extending across the whole continent, and the
Australians have constructed a similar, but north—south
antenna chain across their country.

More and more observations are being made in the
submillimetre region. The disturbing effect of atmo-
spheric water vapour becomes more serious at shorter
wavelengths; thus, submillimetre telescopes must be lo-
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cated on mountain tops, like optical telescopes. All parts
of the mirror are actively controlled in order to accu-
rately maintain the proper form like in the new optical
telescopes. Several new submillimetre telescopes are
under construction.

3.5 Other Wavelength Regions

All wavelengths of the electromagnetic spectrum en-
ter the Earth from the sky. However, as mentioned
in Sect. 3.1, not all radiation reaches the ground. The
wavelength regions absorbed by the atmosphere have
been studied more extensively since the 1970’s, using
Earth-orbiting satellites. Besides the optical and radio
regions, there are only some narrow wavelength ranges
in the infrared that can be observed from high mountain
tops.

The first observations in each new wavelength region
were usually carried out from balloons, but not until
rockets came into use could observations be made from
outside the atmosphere. The first actual observations of
an X-ray source, for instance, were made on a rocket
flight in June 1962, when the detector rose above the
atmosphere for about 6 minutes. Satellites have made it
possible to map the whole sky in the wavelength regions
invisible from the ground.

Gamma Radiation. Gamma ray astronomy stud-
ies radiation quanta with energies of 10°-10'%eV.
The boundary between gamma and X-ray astron-
omy, 10° eV, corresponds to a wavelength of 10~ m.
The boundary is not fixed; the regions of hard
(=high-energy) X-rays and soft gamma rays partly
overlap.

While ultraviolet, visible and infrared radiation are
all produced by changes in the energy states of the
electron envelopes of atoms, gamma and hard X-rays
are produced by transitions in atomic nuclei or in
mutual interactions of elementary particles. Thus ob-
servations of the shortest wavelengths give information
on processes different from those giving rise to longer
wavelengths.

The first observations of gamma sources were ob-
tained at the end of the 1960’s, when a device in
the OSO 3 satellite (Orbiting Solar Observatory) de-
tected gamma rays from the Milky Way. Later on, some

satellites were especially designed for gamma astron-
omy, notably SAS 2, COS B, HEAO 1 and 3, and the
Compton Gamma Ray Observatory. The most effective
satellite at present is the European Integral, launched in
2002.

The quanta of gamma radiation have energies a mil-
lion times greater than those of visible light, but they
cannot be observed with the same detectors. These
observations are made with various scintillation de-
tectors, usually composed of several layers of detector
plates, where gamma radiation is transformed by the
photoelectric effect into visible light, detectable by
photomultipliers.

The energy of a gamma quantum can be determined
from the depth to which it penetrates the detector. An-
alyzing the trails left by the quanta gives information
on their approximate direction. The field of view is lim-
ited by the grating. The directional accuracy is low, and
in gamma astronomy the resolution is far below that in
other wavelength regions.

X-rays. The observational domain of X-ray astronomy
includes the energies between 10 and 10° eV, or the
wavelengths 10—0.01 nm. The regions 10—0.1 nm and
0.1-0.01 nm are called soft and hard X-rays, respec-
tively. X-rays were discovered in the late 19th century.
Systematic studies of the sky at X-ray wavelengths only
became possible in the 1970’°s with the advent of satellite
technology.

The first all-sky mapping was made in the early
1970’s by SAS 1 (Small Astronomical Satellite), also
called Uhuru. At the end of the 1970’s, two High-
Energy Astronomy Observatories, HEAO 1 and 2 (the
latter called Einstein), mapped the sky with much higher
sensitivity than Uhuru.

The Einstein Observatory was able to detect sources
about a thousand times fainter than earlier X-ray tele-
scopes. In optical astronomy, this would correspond to
a jump from a 15 cm reflector to a 5 m telescope. Thus
X-ray astronomy has developed in 20 years as much as
optical astronomy in 300 years.

The latest X-ray satellites have been the Ameri-
can Chandra and the European XMM-Newton, both
launched in 1999.

Besides satellites mapping the whole sky, there have
been several satellites observing the X-ray radiation of
the Sun. The first effective telescopes were installed in
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Hyperboloid
Paraboloid

Focal plane
a) b)

Fig. 3.31. (a) X-rays are not reflected by an ordinary mirror,
and the principle of grazing reflection must be used for col-
lecting them. Radiation meets the paraboloid mirror at a very
small angle, is reflected onto a hyperboloid mirror and further

the Skylab space station, and they were used to study
the Sun in 1973-74. In the 1990’s, the European Soho
started making regular X-ray observations of the Sun.

The first X-ray telescopes used detectors similar to
those in gamma astronomy. Their directional accuracy
was never better than a few arc minutes. The more pre-
cise X-ray telescopes utilize the principle of grazing
reflection (Fig.3.31). An X-ray hitting a surface per-
pendicularly is not reflected, but absorbed. If, however,
X-rays meet the mirror nearly parallel to its surface, just
grazing it, a high quality surface can reflect the ray.

The mirror of an X-ray reflector is on the inner sur-
face of a slowly narrowing cone. The outer part of the
surface is a paraboloid and the inner part a hyperboloid.
The rays are reflected by both surfaces and meet at a fo-
cal plane. In practice, several tubes are installed one
within another. For instance, the four cones of the Ein-
stein Observatory had as much polished optical surface
as a normal telescope with a diameter of 2.5 m. The res-
olution in X-ray telescopes is of the order of a few arc
seconds and the field of view about 1 deg.

The detectors in X-ray astronomy are usually
Geiger—Miiller counters, proportional counters or scin-
tillation detectors. Geiger—Miiller and proportional
counters are boxes filled with gas. The walls form a cath-
ode, and an anode wire runs through the middle of the
box; in more accurate counters, there are several anode
wires. An X-ray quantum entering the box ionizes the
gas, and the potential difference between the anode and
cathode gives rise to a current of electrons and positive
ions.

to a focal point. In practice, several mirrors are placed one in-
side another, collecting radiation in a common focus (b) The
European Integral gamma ray observatory was launched in
2002. (Picture ESA)

Ultraviolet Radiation. Between X-rays and the opti-
cal region lies the domain of ultraviolet radiation, with
wavelengths between 10 and 400 nm. Most ultraviolet
observations have been carried out in the soft UV re-
gion, at wavelengths near those of optical light, since
most of the UV radiation is absorbed by the atmosphere.
The wavelengths below 300 nm are completely blocked
out. The short wavelength region from 10 to 91.2 nm is
called the extreme ultraviolet (EUV, XUV).

Extreme ultraviolet was one of the last regions of
the electromagnetic radiation to be observed system-
atically. The reason for this is that the absorption of
interstellar hydrogen makes the sky practically opaque
at these wavelengths. The visibility in most directions
is limited to some hundred light years in the vicinity
of the Sun. In some directions, however, the density of
the interstellar gas is so low that even extragalactic ob-
jects can be seen. The first dedicated EUV satellite was
the Extreme Ultraviolet Explorer (EUVE), operating in
1992-2000. It observed about a thousand EUV sources.
In EUV grazing reflection telescopes similar to those
used in X-ray astronomy are employed.

In nearly all branches of astronomy important in-
formation is obtained by observations of ultraviolet
radiation. Many emission lines from stellar chromo-
spheres or coronas, the Lyman lines of atomic hydrogen,
and most of the radiation from hot stars are found in the
UV domain. In the near-ultraviolet, telescopes can be
made similar to optical telescopes and, equipped with
a photometer or spectrometer, installed in a satellite
orbiting the Earth.
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Fig. 3.32. (a) The European
X-ray satellite XMM-
Newton was launched in
1999. (Drawing D. Ducros,
XMM Team, ESA)

(b) FUSE satellite has
photographed far ultravi-
olet objects from Earth
orbit since 1999. (Graph-
ics NASA/JHU Applied
Physics Laboratory)

The most effective satellites in the UV have been the
European TD-1, the American Orbiting Astronomical
Observatories OAO 2 and 3 (Copernicus), the Interna-
tional Ultraviolet Explorer IUE and the Soviet Astron.
The instruments of the TD-1 satellite included both
aphotometer and a spectrometer. The satellite measured
the magnitudes of over 30,000 stars in four different
spectral regions between 135 and 274 nm, and registered
UV spectra from over 1000 stars. The OAO satellites
were also used to measure magnitudes and spectra, and
OAO 3 worked for over eight years.

The IUE satellite, launched in 1978, was one of
the most successful astronomical satellites. IUE had
a 45 cm Ritchey-Chrétien telescope with an aperture
ratio of f/15 and a field of view of 16 arc minutes.
The satellite had two spectrographs to measure spec-
tra of higher or lower resolution in wavelength intervals
of 115-200 nm or 190-320 nm. For registration of the
spectra, a Vidicon camera was used. IUE worked on the
orbit for 20 years.

Infrared Radiation. Radiation with longer wave-
lengths than visible light is called infrared radiation.
This region extends from about 1 micrometre to
1 millimetre, where the radio region begins. Some-
times the near-infrared, at wavelengths below 5m,
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Fig. 3.33. Refractors are
not suitable for infrared
telescopes, because in-
frared radiation cannot
penetrate glass. The
Cassegrain reflectors in-
tended especially for
infrared observations
have secondary mirrors
nodding rapidly back and
forth between the ob-
ject and the background
near the object. By sub-
tracting the brightness of
the background from the
brightness of the object,
the background can be
eliminated

and the submillimetre domain, at wavelengths between
0.1 and 1 mm, are considered separate wavelength
regions.

In infrared observations radiation is collected by
a telescope, as in the optical region. The incoming
radiation consists of radiation from the object, from
the background and from the telescope itself. Both
the source and the background must be continually
measured, the difference giving the radiation from the
object. The background measurements are usually made
with a Cassegrain secondary mirror oscillating be-
tween the source and the background at a rate of, say,
100 oscillations per second, and thus the changing back-
ground can be eliminated. To register the measurements,
semiconductor detectors are used. The detector must al-
ways be cooled to minimize its own thermal radiation.
Sometimes the whole telescope is cooled.

Infrared observatories have been built on high moun-
tain tops, where most of the atmospheric water vapour
remains below. Some favourable sites are, e.g. Mauna
Kea on Hawaii, Mount Lemon in Arizona and Pico del
Teide on Tenerife. For observations in the far-infrared
these mountains are not high enough; these observations
are carried out, e.g. on aeroplanes. One of the best-
equipped planes is the Kuiper Airborne Observatory,
named after the well-known planetary scientist Gerard
Kuiper.

Fig. 3.34. The most effective infrared satellite at present is the
American Spitzer, launched in 2003. (Drawing NASA)

Balloons and satellites are also used for infrared
observations. The most successful infrared observato-
ries so far have been the InfraRed Astronomy Satellite
IRAS, the European Infrared Space Observatory 1SO,
and the present-day Spitzer (originally SIRTF, Space
InfraRed Telescope Facility). A very succesful satellite
was the 1989 launched COBE (Cosmic Background
Explorer), which mapped the background radiation
in submillimetre and infrared wavelengths. The Mi-
crowave Anisotropy Probe (MAP) has continued the
work of COBE, starting in 2001.

3.6 Other Forms of Energy

Besides electromagnetic radiation, energy arrives from
space in other forms: particles (cosmic rays, neutrinos)
and gravitational radiation.
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Fig.3.35. The LIGO Livingston Observatory seen from the
air. (Photo LIGO/Caltech)

Cosmic Rays. Cosmic rays, consisting of electrons and
totally ionized nuclei of atoms, are received in equal
amounts from all directions. Their incoming directions
do not reveal their origin, since cosmic rays are electri-
cally charged; thus their paths are continually changed
when they move through the magnetic fields of the
Milky Way. The high energies of cosmic rays mean
that they have to be produced by high-energy phenom-
ena like supernova explosions. The majority of cosmic
rays are protons (nearly 90%) and helium nuclei (10%),
but some are heavier nuclei; their energies lie between
10 and 10%° eV.

The most energetic cosmic rays give rise to sec-
ondary radiation when they hit molecules of the
atmosphere. This secondary radiation can be observed
from the ground, but primary cosmic rays can only be
directly observed outside the atmosphere. The detectors
used to observe cosmic rays are similar to those used in
particle physics. Since Earth-based accelerators reach
energies of only about 10'? eV, cosmic rays offer an ex-
cellent “natural” laboratory for particle physics. Many
satellites and spacecraft have detectors for cosmic rays.

Neutrinos. Neutrinos are elementary particles with no
electric charge and a mass equal to zero or, at any rate,
less than 1/10,000 of the mass of the electron. Most
neutrinos are produced in nuclear reactions within stars;

since they react very weakly with other matter, they
escape directly from the stellar interior.

Neutrinos are very difficult to observe; the first
method of detection was the radiochemical method. As
a reactive agent, e. g. tetrachloroethene (C,Cly) can be
used. When a neutrino hits a chlorine atom, the chlorine
is transformed into argon, and an electron is freed:

ICl+v— TAr+e.

The argon atom is radioactive and can be observed.
Instead of chlorine, lithium and gallium might be used
to detect neutrinos. The first gallium detectors have been
running in Italy and Russia from the end of the 1980’s.

Another observation method is based on the
Cerenkov radiation produced by neutrinos in extremely
pure water. The flashes of light are registered with pho-
tomultipliers, and thus it is possible to find out the
direction of the radiation. This method is used e.g. in
the Japanese Kamiokande detector.

Neutrino detectors must be located deep under the
ground to protect them from the secondary radiation
caused by cosmic rays.

The detectors have observed neutrinos from the Sun,
and the Supernova 1987A in the Large Magellanic
Cloud was also observed in 1987.

Gravitational Radiation. Gravitational astronomy is
as young as neutrino astronomy. The first attempts
to measure gravitational waves were made in the
1960’s. Gravitational radiation is emitted by accelerat-
ing masses, just as electromagnetic radiation is emitted
by electric charges in accelerated motion. Detection of
gravitational waves is very difficult, and they have yet
to be directly observed.

The first type of gravitational wave antenna was the
Weber cylinder. It is an aluminium cylinder which starts
vibrating at its proper frequency when hit by a gravi-
tational pulse. The distance between the ends of the
cylinder changes by about 10~!7 m, and the changes in
the length are studied by strain sensors welded to the
side of the cylinder.

Another type of modern gravity radiation detectors
measures “spatial strain” induced by gravity waves and
consists of two sets of mirrors in directions perpendic-
ular to each other (Michelson interferometer), or one
set of parallel mirrors (Fabry—Perot interferometer).
The relative distances between the mirrors are moni-



3.6 Other Forms of Energy

tored by laser interferometers. If a gravity pulse passes
the detector, the distances change and the changes can
be measured. The longest baseline between the mir-
rors is in the American LIGO (Laser Interferometer
Gravitational-wave Observatory) system, about 25 km
(Fig. 3.35). LIGO made the first scientific observations
in 2002.

* Diffraction by a Circular Aperture

Consider a circular hole of radius R in the xy plane.
Coherent light enters the hole from the direction of
the negative z axis (see figure). We consider light rays
leaving the hole parallel to the xz plane forming an
angle 6 with the z axis. The light waves interfere on
a screen far away. The phase difference between a wave
through a point (x, y) and a wave going through the
centre of the hole can be calculated from the different
path lengths s = x sin 6:

s 27 sin @
8:— —
A

x=kx.

Thus, the phase difference § depends on the x co-
ordinate only. The sum of the amplitudes of the waves
from a small surface element is proportional to the area
of the element dx dy. Let the amplitude coming through

the centre of the hole be dag = dx dyi. The amplitude
coming from the point (x, y) is then

da =dxdy (cos8f+sin8f) .

da

0
da()

We sum up the amplitudes coming from different
points of the hole:

a:/da

Aperture
R /R2—x2
= f / (cos kxi 4 sinkx j) dydx
xszyzi R2_2

R
:2/ Vv R? — x2(cos kxi +sinkx f) dx .
“R

Since sine is an odd function (sin(—kx) = — sin(kx)),
we get zero when we integrate the second term. Cosine
is an even function, and so

R
a(x/\/Rz—xzcoskxdx.
0

We substitute x = Rt and define

(2nr sin6) /A, thus getting

1
aa/\/l—tzcosptdt.
0

The zero points of the intensity observed on the
screen are obtained from the zero points of the
amplitude,

1
J(p):f\/l—tzcosptdtzo.
0
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Inspecting the function J(p), we see that the first zero
is at p =3.8317, or

2R sin 6
SESY 38317,

The radius of the diffraction disc in angular units can
be estimated from the condition

3.8317x
2R

where D = 2R is the diameter of the hole.

In mirror telescopes diffraction is caused also by the
support structure of the secondary mirror. If the aper-
ture is more complex and only elementary mathematics
is used calculations may become rather cumbersome.
However, it can be shown that the diffraction pattern can
be obtained as the Fourier transform of the aperture.

. A
sinf = ~1.22 —,
D

3.7 Examples

Example 3.1 The distance between the components
of the binary star ¢ Herculis is 1.38”. What should
the diameter of a telescope be to resolve the binary?
If the focal length of the objective is 80 cm, what
should the focal length of the eyepiece be to resolve
the components, when the resolution of the eye is 2'?

In the optical region, we can use the wavelength value
of A &~ 550 nm. The diameter of the objective is obtained
from the equation for the resolution (3.4),

A 550 x 10~°
D~ — = m
6 (1.38/3600) x (;r/180)
=0.08m=38cm.
The required magnification is
2/
W= =
1.38”
The magnification is given by
_7
f
and, thus, the focal length of the eyepiece should be
80
p=L Z80M  oem.
w 87

Example 3.2 A telescope has an objective with
a diameter of 90 mm and focal length of 1200 mm.

a) What is the focal length of an eyepiece, the exit pupil
of which is 6 mm (about the size of the pupil of the
eye)?

b) What is the magnification of such an eyepiece?

c) What is the angular diameter of the Moon seen
through this telescope and eyepiece?

a) From Fig. 3.7 we get

L= LD,
f
whence
£ =& Z 1200 mm 20
D 90 mm
=80 mm.

b) The magnification is w = f/f" = 1200 mm/80 mm
=15.

c) Assuming the angular diameter of the Moon is
o =31"=0.52°, its diameter through the telescope
is wa =7.8°.

3.8 Exercises

Exercise 3.1 The Moon was photographed with a tele-
scope, the objective of which had a diameter of 20 cm
and focal length of 150 cm. The exposure time was 0.1 s.

a) What should the exposure time be, if the diameter of
the objective were 15 cm and focal length 200 cm?

b) What is the size of the image of the Moon in both
cases?

c¢) Both telescopes are used to look at the Moon with an
eyepiece the focal length of which is 25 mm. What
are the magnifications?

Exercise 3.2 The radio telescopes at Amherst, Mas-
sachusetts, and Onsala, Sweden, are used as an
interferometer, the baseline being 2900 km.

a) What is the resolution at 22 GHz in the direction of
the baseline?

b) What should be the size of an optical telescope with
the same resolution?



4. Photometric Concepts and Magnitudes

Most astronomical observations utilize electromag-
netic radiation in one way or another. We can
obtain information on the physical nature of a radia-
tion source by studying the energy distribution of its
radiation. We shall now introduce some basic concepts
that characterize electromagnetic radiation.

4.1 Intensity, Flux Density

and Luminosity

Let us assume we have some radiation passing through
a surface element dA (Fig.4.1). Some of the radiation
will leave d A within a solid angle dw; the angle between
dw and the normal to the surface is denoted by 6. The
amount of energy with frequency in the range [v, v+ dv]
entering this solid angle in time dz is

dE,=1,cosfdAdvdwdr. “.1)

Here, the coefficient I, is the specific intensity of the
radiation at the frequency v in the direction of the solid
angle dw. Its dimension is W m~2 Hz~! sterad .

Fig.4.1. The intensity /, of radiation is related to the energy
passing through a surface element dA into a solid angle dw,
in a direction 6

The projection of the surface element dA as seen
from the direction 6 is dA,, = d A cos 6, which explains
the factor cos@. If the intensity does not depend on
direction, the energy d E), is directly proportional to the
surface element perpendicular to the direction of the
radiation.

The intensity including all possible frequencies is
called the fotal intensity I, and is obtained by integrating
I, over all frequencies:

o0

Iz/ludv.

0

More important quantities from the observational
point of view are the energy flux (L,, L) or, briefly, the
flux and the flux density (F,, F). The flux density gives
the power of radiation per unit area; hence its dimension
isWm~2Hz~! or W m~2, depending on whether we are
talking about the flux density at a certain frequency or
about the total flux density.

Observed flux densities are usually rather small, and
W m~2 would be an inconveniently large unit. There-
fore, especially in radio astronomy, flux densities are
often expressed in Janskys; one Jansky (Jy) equals
1072 Wm—2Hz .

When we are observing a radiation source, we in
fact measure the energy collected by the detector dur-
ing some period of time, which equals the flux density
integrated over the radiation-collecting area of the
instrument and the time interval.

The flux density F, at a frequency v can be expressed
in terms of the intensity as

1
sz—/dEv
dAdvdt

S

:/I,,cos@da),
s

4.2)

where the integration is extended over all possible
directions. Analogously, the total flux density is

F=/Icoseda).
S
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For example, if the radiation is isotropic, i.e. if I is
independent of the direction, we get

F=/Icos@dw=1/cos9da). “4.3)
s s

The solid angle element dw is equal to a surface element

on a unit sphere. In spherical coordinates it is (Fig. 4.2;

also c.f. Appendix A.5):
dw =sin6dod¢ .
Substitution into (4.3) gives

T 27
F=1 / cosfsinfddfd¢ =0,
6=0$=0

so there is no net flux of radiation. This means that there
are equal amounts of radiation entering and leaving the
surface. If we want to know the amount of radiation
passing through the surface, we can find, for example,
the radiation leaving the surface. For isotropic radiation
this is

m/2 2r;

Fl=1/ /cos@sin@d@dqﬁ:nl.

0=0¢=0

4.4)

Fig.4.2. An infinitesimal solid angle dw is equal to
the corresponding surface element on a unit sphere:
dw =sin6 d0 d¢

In the astronomical literature, terms such as intensity
and brightness are used rather vaguely. Flux density is
hardly ever called flux density but intensity or (with
luck) flux. Therefore the reader should always carefully
check the meaning of these terms.

Flux means the power going through some surface,
expressed in watts. The flux emitted by a star into
asolid angle wis L = wr?F, where F is the flux density
observed at a distance r. Total flux is the flux pass-
ing through a closed surface encompassing the source.
Astronomers usually call the total flux of a star the lu-
minosity L. We can also talk about the luminosity L, at
afrequency v ([L,] =W Hz~"). (This must not be con-
fused with the luminous flux used in physics; the latter
takes into account the sensitivity of the eye.)

If the source (like a typical star) radiates isotropically,
its radiation at a distance r is distributed evenly on
a spherical surface whose area is 472 (Fig. 4.3). If the
flux density of the radiation passing through this surface
is F, the total flux is

L =477’ F . 4.5)

Fig.4.3. An energy flux which at a distance r from a point
source is distributed over an area A is spread over an area 4A
at a distance 2r. Thus the flux density decreases inversely
proportional to the distance squared
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Fig.4.4. An observer sees
radiation coming from
a constant solid angle w.
The area giving off ra-
diation into this solid
angle increases when the
source moves further away
(A «r?). Therefore the
surface brightness or the
observed flux density per
unit solid angle remains
constant

If we are outside the source, where radiation is not
created or destroyed, the luminosity does not depend on
distance. The flux density, on the other hand, falls off
proportional to 1/r2.

For extended objects (as opposed to objects such as
stars visible only as points) we can define the surface
brightness as the flux density per unit solid angle (Fig.
4.4). Now the observer is at the apex of the solid angle.
The surface brightness is independent of distance, which
can be understood in the following way. The flux density
arriving from an area A is inversely proportional to the
distance squared. But also the solid angle subtended by
the area A is proportional to 1/r* (w = A/r?*). Thus the
surface brightness B = F/w remains constant.

The energy density u of radiation is the amount of
energy per unit volume (Jm=3):

1
u:—/[da). 4.6)
C
N

cdt
-

dv dA - do
-

Fig. 4.5. In time dt, the radiation fills a volume dV = cdr d A,
where dA is the surface element perpendicular to the
propagation direction of the radiation

This can be seen as follows. Suppose we have radiation
with intensity / arriving from a solid angle dw per-
pendicular to the surface dA (Fig.4.5). In the time d¢,
the radiation travels a distance ¢ d¢ and fills a volume
dV =cdtdA. Thus the energy in the volume dV is
(now cosf =1)

1
dE=1dAdwdt =-IdwdV .
c

Hence the energy density du of the radiation arriving
from the solid angle dw is
de 1
=—=-Idw,
dv ¢ @
and the total energy density is obtained by integrating
this over all directions. For isotropic radiation we get
4

u=—I.
c

du

“4.7)

4.2 Apparent Magnitudes

As early as the second century B. C., Hipparchos di-
vided the visible stars into six classes according to their
apparent brightness. The first class contained the bright-
est stars and the sixth the faintest ones still visible to the
naked eye.

The response of the human eye to the brightness of
light is not linear. If the flux densities of three stars are in
the proportion 1:10:100, the brightness difference of the
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first and second star seems to be equal to the difference
of the second and third star. Equal brightness ratios
correspond to equal apparent brightness differences: the
human perception of brightness is logarithmic.

The rather vague classification of Hipparchos was re-
placed in 1856 by Norman R. Pogson. The new, more
accurate classification followed the old one as closely
as possible, resulting in another of those illogical defini-
tions typical of astronomy. Since a star of the first class
is about one hundred times brighter than a star of the
sixth class, Pogson defined the ratio of the brightnesses
of classes n and n + 1 as v/100 = 2.512.

The brightness class or magnitude can be defined
accurately in terms of the observed flux density F
([F]=Wm2). We decide that the magnitude O cor-
responds to some preselected flux density Fy. All other
magnitudes are then defined by the equation

2.51 F
m=-—251g o
Note that the coefficient is exactly 2.5, not 2.512! Mag-
nitudes are dimensionless quantities, but to remind us
that a certain value is a magnitude, we can write it, for
example, as 5 mag or 5™.

It is easy to see that (4.8) is equivalent to Pog-
son’s definition. If the magnitudes of two stars are m
and m+1 and their flux densities F,, and Fy4i,
respectively, we have

(4.8)

Fm+l

Fm
m—(m+1)=—-25lg " 425Ig
Fo 0

F,
=-25lg—",
m-1
whence
F,
" = J100.
Fm+1

In the same way we can show that the magnitudes m
and m; of two stars and the corresponding flux densities
Fi and F, are related by

my—my = —2.51g Fl . (4.9)

2

Magnitudes extend both ways from the original six
values. The magnitude of the brightest star, Sirius, is in
fact negative — 1.5. The magnitude of the Sunis —26.8
and that of a full moon — 12.5. The magnitude of the
faintest objects observed depends on the size of the tele-

scope, the sensitivity of the detector and the exposure
time. The limit keeps being pushed towards fainter ob-
jects; currently the magnitudes of the faintest observed
objects are over 30.

4.3 Magnitude Systems

The apparent magnitude m, which we have just de-
fined, depends on the instrument we use to measure it.
The sensitivity of the detector is different at different
wavelengths. Also, different instruments detect different
wavelength ranges. Thus the flux measured by the instru-
ment equals not the total flux, but only a fraction of it.
Depending on the method of observation, we can define
various magnitude systems. Different magnitudes have
different zero points, i. e. they have different flux densi-
ties Fy corresponding to the magnitude 0. The zero points
are usually defined by a few selected standard stars.

In daylight the human eye is most sensitive to
radiation with a wavelength of about 550 nm, the sen-
sitivity decreasing towards red (longer wavelengths)
and violet (shorter wavelengths). The magnitude cor-
responding to the sensitivity of the eye is called the
visual magnitude m..

Photographic plates are usually most sensitive at blue
and violet wavelengths, but they are also able to register
radiation not visible to the human eye. Thus the photo-
graphic magnitude mp, usually differs from the visual
magnitude. The sensitivity of the eye can be simulated
by using a yellow filter and plates sensitised to yellow
and green light. Magnitudes thus observed are called
photovisual magnitudes m.y .

If, inideal case, we were able to measure the radiation
at all wavelengths, we would get the bolometric magni-
tude my,. In practice this is very difficult, since part of
the radiation is absorbed by the atmosphere; also, dif-
ferent wavelengths require different detectors. (In fact
there is a gadget called the bolometer, which, however,
is not a real bolometer but an infrared detector.) The
bolometric magnitude can be derived from the visual
magnitude if we know the bolometric correction BC:

Mpo] = Ny — BC. (4.10)

By definition, the bolometric correction is zero for radi-
ation of solar type stars (or, more precisely, stars of the
spectral class F5). Although the visual and bolometric
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magnitudes can be equal, the flux density corresponding
to the bolometric magnitude must always be higher. The
reason of this apparent contradiction is in the different
values of Fj.

The more the radiation distribution differs from that
of the Sun, the higher the bolometric correction is. The
correction is positive for stars both cooler or hotter than
the Sun. Sometimes the correction is defined as mpy =
my+BC in which case BC <0 always. The chance
for errors is, however, very small, since we must have
Mpol = My.

The most accurate magnitude measurements are
made using photoelectric photometers. Usually filters
are used to allow only a certain wavelength band to
enter the detector. One of the multicolour magnitude
systems used widely in photoeletric photometry is the
UBYV system developed in the early 1950’s by Harold
L. Johnson and William W. Morgan. Magnitudes are
measured through three filters, U = ultraviolet, B = blue
and V = visual. Figure 4.6 and Table 4.1 give the wave-
length bands of these filters. The magnitudes observed
through these filters are called U, B and V magnitudes,
respectively.

The UBV system was later augmented by adding
more bands. One commonly used system is the five
colour UBVRI system, which includes R =red and
I =infrared filters.

There are also other broad band systems, but they
are not as well standardised as the UBYV, which has
been defined moderately well using a great number of

UB VR 1
1.0~
0.8
0.6~
0.4r-
0.2
I N AN N L
200 400 600 800 A[nm]

Fig. 4.6. Relative transmission profiles of filters used in the
UBVRI magnitude system. The maxima of the bands are nor-
malized to unity. The R and I bands are based on the system
of Johnson, Cousins and Glass, which includes also infrared
bands J, H, K, L and M. Previously used R and I bands differ
considerably from these

Table 4.1. Wavelength bands of the UBVRI and uvby filters
and their effective (= average) wavelengths

Magnitude Band width Effective
[nm] wavelength [nm]
U  ultraviolet 66 367
B  blue 94 436
V  visual 88 545
R red 138 638
I infrared 149 797
u ultraviolet 30 349
v violet 19 411
b blue 18 467
y yellow 23 547

standard stars all over the sky. The magnitude of an
object is obtained by comparing it to the magnitudes of
standard stars.

In Stromgren’s four-colour or uvby system, the bands
passed by the filters are much narrower than in the UBV
system. The uvby system is also well standardized, but
it is not quite as common as the UBV. Other narrow
band systems exist as well. By adding more filters,
more information on the radiation distribution can be
obtained.

In any multicolour system, we can define colour
indices; a colour index is the difference of two mag-
nitudes. By subtracting the B magnitude from U we get
the colour index U — B, and so on. If the UBV system
is used, it is common to give only the V magnitude and
the colour indices U — B and B—V.

The constants Fj in (4.8) for U, B and V magnitudes
have been selected in such a way that the colour indices
B —V and U — B are zero for stars of spectral type A0
(for spectral types, see Chap. 8). The surface tempera-
ture of such a star is about 10,000 K. For example, Vega
(o Lyr, spectral class AOV) has V =0.03, B—V =U —
B =0.00. The Sunhas V= —26.8, B—V =0.62 and
U—-B=0.10.

Before the UBV system was developed, a colour
index C.I., defined as

Cl=mps—my,

was used. Since mp, gives the magnitude in blue and
m, in visual, this index is related to B — V. In fact,

ClL=(B—V)—0.11.
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4.4 Absolute Magnitudes

Thus far we have discussed only apparent magnitudes.
They do not tell us anything about the true brightness of
stars, since the distances differ. A quantity measuring
the intrinsic brightness of a star is the absolute magni-
tude. It is defined as the apparent magnitude at a distance
of 10 parsecs from the star (Fig. 4.7).

We shall now derive an equation which relates the
apparent magnitude m, the absolute magnitude M and
the distance r. Because the flux emanating from a star
into a solid angle w has, at a distance r, spread over an
area wr, the flux density is inversely proportional to the
distance squared. Therefore the ratio of the flux density
at a distance r, F(r), to the flux density at a distance of
10 parsecs, F(10), is

Thus the difference of magnitudes at r and 10 pc, or the
distance modulus m — M, is

F(r) 10 pc\2
m—M:—Z.Slgm=—2.51g< ; )
or
lg — 4.1
m—M=5lg o @.11)

Fig.4.7. The flux density at a distance of 10 parsecs from the
star defines its absolute magnitude

For historical reasons, this equation is almost always
written as

m—M=51gr-5, 4.12)

which is valid only if the distance is expressed in par-
secs. (The logarithm of a dimensional quantity is, in
fact, physically absurd.) Sometimes the distance is given
in kiloparsecs or megaparsecs, which require different
constant terms in (4.12). To avoid confusion, we highly
recommend the form (4.11).

Absolute magnitudes are usually denoted by capital
letters. Note, however, that the U, B and V magnitudes
are apparent magnitudes. The corresponding absolute
magnitudes are My, My and My.

The absolute bolometric magnitude can be expressed
in terms of the luminosity. Let the total flux density at
a distance r = 10 pc be F and let F be the equivalent
quantity for the Sun. Since the luminosity is L = 477> F,
we get

Mgy — My = —2.51g — = —2.51g Ljpm”
’ F@ L@/47[r2
or
L
Mbol — Mbol,@ =-25 lg L_ . (413)

©

The absolute bolometric magnitude My, =0 corre-
sponds to a luminosity Lo = 3.0 x 10> W.

4.5 Extinction and Optical Thickness

Equation (4.11) shows how the apparent magnitude
increases (and brightness decreases!) with increasing
distance. If the space between the radiation source and
the observer is not completely empty, but contains some
interstellar medium, (4.11) no longer holds, because part
of the radiation is absorbed by the medium (and usu-
ally re-emitted at a different wavelength, which may be
outside the band defining the magnitude), or scattered
away from the line of sight. All these radiation losses
are called the extinction.

Now we want to find out how the extinction de-
pends on the distance. Assume we have a star radiating
aflux L into a solid angle @ in some wavelength range.
Since the medium absorbs and scatters radiation, the
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flux L will now decrease with increasing distance r
(Fig. 4.8). In a short distance interval [r, r +dr], the ex-
tinction d L is proportional to the flux L and the distance
travelled in the medium:

dL = —aLdr. 4.14)

The factor « tells how effectively the medium can ob-
scure radiation. It is called the opacity. From (4.14) we
see that its dimension is [e] = m~!. The opacity is zero
for a perfect vacuum and approaches infinity when the
substance becomes really murky. We can now define
a dimensionless quantity, the optical thickness T by

dt =adr. (4.15)

Substituting this into (4.14) we get
dL=—-Ldr.

Next we integrate this from the source (where L = L
and r = 0) to the observer:
L d T
L
U far,
L
Lo 0

which gives

L=1Lye". (4.16)

Here, 7 is the optical thickness of the material between
the source and the observer and L, the observed flux.
Now, the flux L falls off exponentially with increasing

optical thickness. Empty space is perfectly transpar-
ent, i.e. its opacity is « = 0; thus the optical thickness
does not increase in empty space, and the flux remains
constant.

Let Fy be the flux density on the surface of a star and
F(r), the flux density at a distance . We can express the
fluxes as

L=wr’F(r), Lo=wR*F,,

where R is the radius of the star. Substitution into (4.16)
gives
R2
F(r)= Fo—ze_’ .
r
For the absolute magnitude we need the flux density at
a distance of 10 parsecs, F(10), which is still evaluated
without extinction:
2
F(10) = Fy

(10pc)?
The distance modulus m — M is now
F(r)
m—M=-25Ig
F(10)
—5lg—— —25lge"
o g1Opc e
r
=51lg—+(2.51
glopc+( ge)r
or
m—M=5lg——+A, “.17)
10 pc
/dC/
L+dL

Fig. 4.8. The interstellar medium absorbs and scatters radiation; this usually reduces the energy flux L in the solid angle w

(dL <0)
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where A > 0 is the extinction in magnitudes due to the
entire medium between the star and the observer. If the
opacity is constant along the line of sight, we have

r

r:a/dr:o{r,

0
and (4.17) becomes

m—M:Slglor?Jrar, (4.18)

where the constant a = 2.5« 1g e gives the extinction in
magnitudes per unit distance.

Colour Excess. Another effect caused by the interstellar
medium is the reddening of light: blue light is scattered
and absorbed more than red. Therefore the colour index
B — V increases. The visual magnitude of a star is, from
(4.17),

V=My+5lg——+ Ay, (4.19)
10 pc

where My is the absolute visual magnitude and Ay is
the extinction in the V passband. Similarly, we get for
the blue magnitudes

B=Mg+5lg—— + Ag.
10 pc
The observed colour index is now

B—V=Ms—My+Ag—Ay,
or

B—-V=(B-V)+Ep_v, (4.20)

where (B — V) = Mg — My is the intrinsic colour of
the star and Eg_y = (B—V) — (B — V) is the colour
excess. Studies of the interstellar medium show that the
ratio of the visual extinction Ay to the colour excess
Eg_v is almost constant for all stars:
Ay
Eg_v

This makes it possible to find the visual extinction if the
colour excess is known:

Ay ~30Eg_v.

R = ~3.0.

421

When Ay is obtained, the distance can be solved directly
from (4.19), when V and My are known.

We shall study interstellar extinction in more detail
in Sect. 15.1 (“Interstellar Dust”).

Atmospheric Extinction. As we mentioned in Sect.
3.1, the Earth’s atmosphere also causes extinction.
The observed magnitude m depends on the location
of the observer and the zenith distance of the ob-
ject, since these factors determine the distance the
light has to travel in the atmosphere. To compare dif-
ferent observations, we must first reduce them, i.e.
remove the atmospheric effects somehow. The magni-
tude m thus obtained can then be compared with other
observations.

If the zenith distance z is not too large, we can ap-
proximate the atmosphere by a plane layer of constant
thickness (Fig.4.9). If the thickness of the atmosphere
is used as a unit, the light must travel a distance

X=1/cosz=secz 4.22)

in the atmosphere. The quantity X is the air mass. Ac-
cording to (4.18), the magnitude increases linearly with
the distance X:

m=my+kX, 4.23)

where k is the extinction coefficient.

The extinction coefficient can be determined by ob-
serving the same source several times during a night
with as wide a zenith distance range as possible. The
observed magnitudes are plotted in a diagram as a func-
tion of the air mass X. The points lie on a straight line the
slope of which gives the extinction coefficient k. When

Fig. 4.9. If the zenith distance of a star is z, the light of the star
travels a distance H/ cos z in the atmosphere; H is the height
of the atmosphere
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this line is extrapolated to X =0, we get the magni-
tude mq, which is the apparent magnitude outside the
atmosphere.

In practice, observations with zenith distances higher
than 70° (or altitudes less than 20°) are not used to
determine k and my, since at low altitudes the curva-
ture of the atmosphere begins to complicate matters.
The value of the extinction coefficient £ depends on
the observation site and time and also on the wave-
length, since extinction increases strongly towards short
wavelengths.

4.6 Examples

Example 4.1 Show that intensity is independent of
distance.

Suppose we have some radiation leaving the surface
element dA in the direction 6. The energy entering the
solid angle dw in time d¢ is

dE =1cosfdAdwdt,

where [ is the intensity. If we have another surface dA’
at a distance r receiving this radiation from direction ¢’,
we have

dw=dA cosd'/r?.
The definition of the intensity gives
dE =1 'cos®' dA' do' dt ,

where I’ is the intensity at dA” and

do' =dAcos6/r*.

91

Substitution of dw and dw’ into the expressions of dE
gives
dA’ cost’
Icosfd0dA———dr
r
dAcos6

=1'cosd dA'———dt

I'=1.
2

Thus the intensity remains constant in empty space.

Example 4.2  Surface Brightness of the Sun

Assume that the Sun radiates isotropically. Let R be the
radius of the Sun, F the flux density on the surface of
the Sun and F the flux density at a distance r. Since the
luminosity is constant,

L =47R*Fy = 4nr’F

the flux density equals

R2
F == F@r_2 .
At a distance r >> R, the Sun subtends a solid angle
A  nR?
w = r_2 = _r2 s

where A = R? is the cross section of the Sun. The
surface brightness B is

F F
B=—=-2
0w 7
Applying (4.4) we get
B == I@ .

Thus the surface brightness is independent of dis-
tance and equals the intensity. We have found a simple
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interpretation for the somewhat abstract concept of
intensity.

The flux density of the Sun on the Earth, the solar
constant,is So ~ 1370 W m~2. The angular diameter of
the Sun is @ = 32/, whence

R 1 32
o 3 T 000465 rad .
F 272760 " 180

The solid angle subtended by the Sun is

R 2
o= (-) = 7 x 0.00465>

r

=6.81 x 107 sterad .

and the surface brightness

S
B="2—-201x10"Wm Zsterad ™" .
I3)

Example 4.3 Magnitude of a Binary Star

Since magnitudes are logarithmic quantities, they can
be a little awkward for some purposes. For example, we
cannot add magnitudes like flux densities. If the mag-
nitudes of the components of a binary star are 1 and 2,
the total magnitude is certainly not 3. To find the total
magnitude, we must first solve the flux densities from

1:—2.51gi , 2= —2.51g§,
Fy Fo
which give
Fi=Fyx107%, F=Fx107°%,
Thus the total flux density is
F=F+F,=F(10 % +107°%)
and the total magnitude,

Fo(107°4 4107%%)
Fy

=—-2.51g0.5566 = 0.64 .

m=—-25lg

Example 4.4 The distance of a star is » = 100 pc
and its apparent magnitude m = 6. What is its absolute
magnitude?

Substitution into (4.11)

—M=5]1
" glOpc
gives
100
M=6-5lg—=1.
£70

Example 4.5 The absolute magnitude of a staris M =
—2 and the apparent magnitude m = 8. What is the
distance of the star?

We can solve the distance r from (4.11):

r=10pc x 10 =M/5 = 10 x 10'%pc
= 1000 pc = 1 kpc .
Example 4.6 Although the amount of interstellar ex-
tinction varies considerably from place to place, we
can use an average value of 2 mag/kpc near the galac-
tic plane. Find the distance of the star in Example 4.5,

assuming such extinction.
Now the distance must be solved from (4.18):

8—(=2) =51g1r—0+0.002r,

where r is in parsecs. This equation cannot be solved
analytically, but we can always use a numerical method.
We try a simple iteration (Appendix A.7), rewriting the
equation as

F— 10 x ]02—0-0004r

The value » = 1000 pc found previously is a good initial
guess:

ro = 1000
r = 10 X 10270.0004 x 1000 — 398

ry =693

rip =ri3 2584

The distance is r ~ 580 pc, which is much less than
our earlier value 1000 pc. This should be quite obvious,
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since due to extinction, radiation is now reduced much
faster than in empty space.

Example 4.7 What is the optical thickness of a layer
of fog, if the Sun seen through the fog seems as bright
as a full moon in a cloudless sky?

The apparent magnitudes of the Sun and the Moon
are —26.8 and —12.5, respectively. Thus the total
extinction in the cloud must be A = 14.3. Since

A=Q2S5l1ge)r,
we get
T=A/(2.51ge) =14.3/1.086 =13.2.

The optical thickness of the fog is 13.2. In reality, a frac-
tion of the light scatters several times, and a few of the
multiply scattered photons leave the cloud along the
line of sight, reducing the total extinction. Therefore
the optical thickness must be slightly higher than our
value.

Example 4.8 Reduction of Observations

The altitude and magnitude of a star were measured
several times during a night. The results are given in the
following table.

Altitude Zenith distance  Air mass Magnitude
50° 40° 1.31 0.90
35° 55° 1.74 0.98
25° 65° 2.37 1.07
20° 70° 2.92 1.17

By plotting the observations as in the following fig-
ure, we can determine the extinction coefficient £ and
the magnitude m( outside the atmosphere. This can
be done graphically (as here) or using a least-squares
fit.

Extrapolation to the air mass X = 0 gives my = 0.68.
The slope of the line gives k =0.17.

m
() I
mol_ .
1 — -\‘\0\‘\‘\
2 ! | ! | ! | !
0 1 2 3 X
4.7 Exercises

Exercise4.1 The total magnitude of a triple star is 0.0.
Two of its components have magnitudes 1.0 and 2.0.
What is the magnitude of the third component?

Exercise 4.2 The absolute magnitude of a star in the
Andromeda galaxy (distance 690 kpc) is M = 5. It ex-
plodes as a supernova, becoming one billion (10°) times
brighter. What is its apparent magnitude?

Exercise 4.3 Assume that all stars have the same ab-
solute magnitude and stars are evenly distributed in
space. Let N(m) be the number of stars brighter than
m magnitudes. Find the ratio N(m + 1)/ N(m).

Exercise 4.4 The V magnitude of a star is 15.1,
B—V = 1.6, and absolute magnitude My = 1.3. The
extinction in the direction of the star in the visual band
is ay = 1 magkpc~!. What is the intrinsic colour of the
star?

Exercise 4.5 Stars are observed through a triple win-
dow. Each surface reflects away 15% of the incident
light.

a) What is the magnitude of Regulus (My = 1.36) seen
through the window?
b) What is the optical thickness of the window?
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5. Radiation Mechanisms

I n the previous chapters we have studied the physical
properties and detection of electromagnetic radiation.
Next we shall briefly discuss concepts related to emis-
sion and absorption of radiation. Since we can give here
only a summary of some essential results without delv-
ing into quantum mechanical explanations, the reader
interested in the details is advised to consult any good
physics textbook.

5.1 Radiation of Atoms and Molecules

Electromagnetic radiation is emitted or absorbed when
an atom or a molecule moves from one energy level
to another. If the energy of the atom decreases by an
amount AFE, the atom emits or radiates a quantum
of electromagnetic radiation, called a photon, whose
frequency v is given by the equation

AE =hv, .1)

where £ is the Planck constant, h = 6.6256 x 1073 J s.
Similarly, if the atom receives or absorbs a photon of
a frequency v, its energy increases by AE = hv.

The classical model describes an atom as a nucleus
surrounded by a swarm of electrons. The nucleus con-
sists of Z protons, each having a charge +e¢ and N
electrically neutral neutrons; Z is the charge number of
the atom and A = Z + N is its mass number. A neutral
atom has as many electrons (charge —e) as protons.

Anenergy level of an atom usually refers to an energy
level of its electrons. The energy E of an electron cannot
take arbitrary values; only certain energies are allowed:
the energy levels are quantized. An atom can emit or
absorb radiation only at certain frequencies vj; corre-
sponding to energy differences between some initial
and final states i and f: | E; — E¢| = hvjs. This gives rise
to the line spectrum, specific for each element (Fig. 5.1).
Hot gas under low pressure produces an emission spec-
trum consisting of such discrete lines. If the same gas
is cooled down and observed against a source of white
light (which has a continuous spectrum), the same lines
are seen as dark absorption lines.

At low temperatures most atoms are in their lowest
energy state, the ground state. Higher energy levels are
excitation states; a transition from lower to higher state
is called excitation. Usually the excited atom will re-
turn to the lower state very rapidly, radiating a photon
(spontaneous emission); a typical lifetime of an excited
state might be 10~8 seconds. The frequency of the emit-
ted photon is given by (5.1). The atom may return to the
lower state directly or through some intermediate states,
emitting one photon in each transition.

Downward transitions can also be induced by radi-
ation. Suppose our atom has swallowed a photon and
become excited. Another photon, whose frequency v
corresponds to some possible downward transition from
the excited state, can now irritate the atom, causing it
to jump to a lower state, emitting a photon with the
same frequency v. This is called induced or stimu-
lated emission. Photons emitted spontaneously leave
the atom randomly in all directions with random phases:
the radiation is isotropic and incoherent. Induced radi-
ation, on the other hand, is coherent; it propagates in
the same direction as and in phase with the inducing
radiation.

The zero level of the energy states is usually chosen
so that a bound electron has negative energy and a free
electron positive energy (cf. the energy integral of plan-
etary orbits, Chap. 6). If an electron with energy E < 0
receives more energy than |E]|, it will leave the atom,
which becomes an ion. In astrophysics ionization is of-
ten called a bound-free transition (Fig.5.2). Unlike in
excitation all values of energy (E > 0) are now possi-
ble. The extraneous part of the absorbed energy goes to
the kinetic energy of the liberated electron. The inverse
process, in which an atom captures a free electron, is
the recombination or free—bound transition.

When an electron scatters from a nucleus or an ion
without being captured, the electromagnetic interaction
can change the kinetic energy of the electron produc-
ing free—free radiation. In a very hot gas (7> 10° K)
hydrogen is fully ionized, and the free—free radiation is
the most important source of emission. It is then usu-
ally called thermal bremsstrahlung. The latter part of
the name derives from the fact that decelerating elec-
trons hitting the anode of an X-ray tube emit similar
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Fig.5.1a,b. Origin of line spectra. (a) Emission spectrum.
Atoms of glowing gas returning from excited states to lower
states emit photons with frequencies corresponding to the
energy difference of the states. Each element emits its own
characteristic wavelengths, which can be measured by spread-
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Absorbtion Emission Ionization Recombination Free—free

Fig. 5.2. Different kinds of transitions between energy levels.
Absorption and emission occur between two bound states,
whereas ionization and recombination occur between a bound
and a free state. Interaction of an atom with an free electron
can result in a free—free transition

ing the light into a spectrum with a prism or diffraction
grating. (b) Absorption spectrum. When white light con-
taining all wavelengths travels through gas, the wavelengths
characteristic of the gas are absorbed

radiation. In an analogous way the absorption process
can be called a bound—bound transition.

Electromagnetic radiation is transverse wave motion;
the electric and magnetic fields oscillate perpendicular
to each other and also perpendicular to the direction
of propagation. The light of an ordinary incandescent
lamp has a random distribution of electric fields vi-
brating in all directions. If the directions of electric
fields in the plane perpendicular to the direction of
propagation are not evenly distributed, the radiation is
polarized (Fig. 5.3). The direction of polarization of lin-
early polarized light means the plane determined by
the electric vector and the direction of the light ray.
If the electric vector describes a circle, the radiation
is circularly polarized. If the amplitude of the elec-
tric field varies at the same time, the polarization is
elliptic.
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Fig. 5.3. Polarization of light. The light of an incandescent
bulb contains all possible directions of vibration and is there-
fore unpolarized. Some crystals, for example, pass electric
fields oscillating only in certain directions, and the transmit-
ted part of the light becomes linearly polarized. E is the electric
field and B the magnetic field

If polarized radiation travels through a magnetic
field, the direction of the polarization will rotate. The
amount of such Faraday rotation is proportional to the
component of the magnetic field parallel to the line of
sight, number of electrons along the line of sight, dis-
tance travelled, and square of the wavelength of the
radiation.

Scattering is an absorption followed by an instan-
taneous emission at the same wavelength but usually
in a new direction. On the macroscopic scale, radia-
tion seems to be reflected by the medium. The light
coming from the sky is sunlight scattered from atmo-
spheric molecules. Scattered light is always polarized,
the degree of polarization being highest in the direction
perpendicular to the direction of the original radiation.

5.2 The Hydrogen Atom

The hydrogen atom is the simplest atom, consisting of
a proton and an electron. According to the Bohr model
the electron orbits the proton in a circular orbit. (In
spite of the fact that this model has very little to do
with reality, it can be successfully used to predict some
properties of the hydrogen atom.) Bohr’s first postulate
says that the angular momentum of the electron must be
a multiple of A:

mvr =nh, 5.2)
where

m = mass of the electron ,
v = speed of the electron ,

r = radius of the orbit ,

n = the principal quantum number ,
n=1,2,3,...,

h=h/2m,

h = the Planck constant .

The quantum mechanical interpretation of Bohr’s
first postulate is obvious: the electron is represented
as a standing wave, and the “length of the orbit”
must be a multiple of the de Broglie wavelength,
A=h/p="Hh/mv.

A charged particle in a circular orbit (and thus in
accelerated motion) should emit electromagnetic radia-
tion, losing energy, were it to obey the rules of classical
electrodynamics. Therefore our electron should spiral
down towards the nucleus. But obviously, Nature does
not behave this way, and we have to accept Bohr’s sec-
ond postulate, which says that an electron moving in
an allowed orbit around a nucleus does not radiate. Ra-
diation is emitted only when the electron jumps from
a higher energy state to a lower one. The emitted quan-
tum has an energy hv, equal to the energy difference of
these states:

hv = E,, — E,, . (5.3)

We shall now try to find the energy of an electron in
the state E,,. Coulomb’s law gives the force pulling the
electron towards the proton:
1 2
-2 (5.4)
4 (SR

where

€o = the vacuum permittivity
=8.85x 107> N"1m™2C?,
e = the charge of the electron = 1.6 x e ,

r, = the distance between the electron
and the proton .

The acceleration of a particle moving in a circular
orbit of radius r,, is

a=-"=",
rn

and applying Newton’s second law (F' = ma), we get

2

2
mv, 1 e

= . 5.5
n dreg r2 (53
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From (5.2) and (5.5) it follows that

_ 2 1
" dmeghn’

2
_dmeoh” ,
n

me?

Un

The total energy of an electron in the orbit n is now

1, 1 &
E,=T+V=— -
2 dmeg ry,
5.6)
_ me* I 1
- 32m2enin . n?’

where C is a constant. For the ground state (n = 1), we
get from (5.6)

Ei=—2.18x1078)= —13.66V.

E[eV
[eO]

From (5.3) and (5.6) we get the energy of the quantum
emitted in the transition E,, — E,,:

1 1

ny ny <n% ng)

5.7)

In terms of the wavelength A this can be expressed as
1 v

_c<1 1) R<1 1) 58)
nioom npomy)

A "~ he B
where R is the Rydberg constant, R = 1.097 x 10’ m~'.

Equation (5.8) was derived experimentally forn; =2
by Johann Jakob Balmer as early as 1885. That is why
we call the set of lines produced by transitions E, — E»
the Balmer series. These lines are in the visible part of
the spectrum. For historical reasons the Balmer lines are
often denoted by symbols Hy, Hg, H, etc. If the electron
returns to its ground state (E, — E|), we get the Lyman
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Fig. 5.4. Transitions of a hy-
drogen atom. The lower
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5.3 Line Profiles

series, which is in the ultraviolet. The other series with
specific names are the Paschen series (n; = 3), Bracket
series (n] = 4) and Pfund series (n; = 5) (see Fig.5.4).

5.3 Line Profiles

The previous discussion suggests that spectral lines
would be infinitely narrow and sharp. In reality, how-
ever, they are somewhat broadened. We will now
consider briefly the factors affecting the shape of a spec-
tral line, called a line profile. An exact treatment would
take us too deep into quantum mechanics, so we cannot
go into the details here.

According to quantum mechanics everything cannot
be measured accurately at the same time. For example,
even in principle, there is no way to determine the x co-
ordinate and the momentum p, in the direction of the
x axis with arbitrary precision simultaneously. These
quantities have small uncertainties Ax and Ap,, such
that

AxAp, ~h.

A similar relation holds for other directions, too.
Time and energy are also connected by an uncertainty
relation,

AEAt =~ k.

The natural width of spectral lines is a consequence of
this Heisenberg uncertainty principle.

If the average lifetime of an excitation state is 7', the
energy corresponding to the transition can only be de-
termined with an accuracy of AE =h/T =h/(2aT).
From (5.1) it follows that Av = AE/h. In fact, the un-
certainty of the energy depends on the lifetimes of both
the initial and final states. The natural width of a line is
defined as
AE;+ AE¢ 1 1

3 =7 + T (5.9)
It can be shown that the corresponding line profile is

A

T 2m(v—w)? +y2/4
where vy is the frequency at the centre of the line and
Iy the total intensity of the line. At the centre of the line
the intensity per frequency unit is
2

IUO = EIO 5

)/:

(5.10)

and at the frequency v = vy + y/2,

1 1

Lygtyp = n_ylo = Elvo .

Thus the width y is the width of the line profile at

a depth where the intensity is half of the maximum.
This is called the full width at half maximum (FWHM).

Doppler Broadening. Atoms of a gas are moving the
faster the higher the temperature of the gas. Thus spec-
tral lines arising from individual atoms are shifted by
the Doppler effect. The observed line consists of a col-
lection of lines with different Doppler shifts, and the
shape of the line depends on the number of atoms with
different velocities.

Each Doppler shifted line has its characteristic natu-
ral width. The resulting line profile is obtained by giving
each Doppler shifted line a weight proportional to the
number of atoms given by the velocity distribution and
integrating over all velocities. This gives rise to the Voigt
profile (Fig. 5.5), which already describes most spectral
lines quite well. The shapes of different profiles don’t

Fig. 5.5. Each spectral line has its characteristic natural width
(solid line). Motions of particles broaden the line further due
to the Doppler effect, resulting in the Voigt profile (dashed
line). Both profiles have the same area
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Fig. 5.6. The full width at half maximum (FWHM) of a spec-
tral line is the width at the depth where the intensity is half of
the maximum. The equivalent width W is defined so that the
line and the shaded rectangle have the same area in the pic-
ture. The two measures are not generally the same, although
they usually are close to each other

seem very different; the most obvious consequence of
the broadening is that the maximum depth decreases.

One way to describe the width of a line is to give its
full width at half maximum (Fig. 5.6). Due to Doppler
broadening this is usually greater than the natural width.
The equivalent width is another measure of a line
strength. It is the area of a rectangular line that has
the same area as the line profile and that emits no light
at all. The equivalent width can be used to describe
the energy corresponding to a line independently of the
shape of the line profile.

5.4 Quantum Numbers, Selection
Rules, Population Numbers

Quantum Numbers. The Bohr model needs only one
quantum number, n, to describe all the energy levels of
the electron. This can explain only the coarse features
of an atom with a single electron.

Quantum mechanics describes the electron as a three
dimensional wave, which only gives the probability of
finding the electron in a certain place. Quantum me-
chanics has accurately predicted all the energy levels
of hydrogen atoms. The energy levels of heavier atoms
and molecules can also be computed; however, such
calculations are very complicated. Also the existence of

quantum numbers can be understood from the quantum
mechanical point of view.

The quantum mechanical description involves four
quantum numbers, one of which is our n, the principal
quantum number. The principal quantum number de-
scribes the quantized energy levels of the electron. The
classical interpretation of discrete energy levels allows
only certain orbits given by (5.6). The orbital angular
momentum of the electron is also quantized. This is de-
scribed by the angular momentum quantum number 1.
The angular momentum corresponding to a quantum
number / is

L=Il+Dh.

The classical analogy would be to allow some elliptic
orbits. The quantum number / can take only the values

[=0,1,...,n—1.

For historical reasons, these are often denoted by the
letters s, p,d, f, g, h, i, j.

Although / determines the magnitude of the angular
momentum, it does not give its direction. In a mag-
netic field this direction is important, since the orbiting
electron also generates a tiny magnetic field. In any
experiment, only one component of the angular momen-
tum can be measured at a time. In a given direction z
(e.g. in the direction of the applied magnetic field), the
projection of the angular momentum can have only the
values

LZ = m,h .
where m; is the magnetic quantum number
my=0,£1,£2,... &£l

The magnetic quantum number is responsible for
the splitting of spectral lines in strong magnetic fields,
known as the Zeeman effect. For example, if [ =1, m;
can have 2/ + 1 = 3 different values. Thus, the line aris-
ing from the transition/ = 1 — [ = 0 will split into three
components in a magnetic field (Fig. 5.7).

The fourth quantum number is the spin describing
the intrinsic angular momentum of the electron. The
spin of the electron is

S=s(s+Dn,
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Fig.5.7. The Zeeman effect. In strong magnetic fields each
energy level of a hydrogen atom splits into (2/ 4-1) separate
levels, which correspond to different values of the magnetic
quantumnumberm; =1,/ —1, ..., —[. The energy differences
of the successive levels have the same constant value AE. For
example the p state (/ = 1) splits into three and the d state
(I =2) into five sublevels. The selection rules require that
in electric dipole transitions Am; equals O or £1, and only
nine different transitions between p and d states are possible.
Moreover, the transitions with the same Am; have the same
energy difference. Thus the spectrum has only three separate
lines

where the spin quantum number is s = % In a given
direction z, the spin is

S, =mih,

Z

where m; can have one of the two values:

" 1

ms =tz

All particles have a spin quantum number. Parti-
cles with an integral spin are called bosons (photon,
mesons); particles with a half-integral spin are fermions
(proton, neutron, electron, neutrino etc.).

Classically, spin can be interpreted as the rotation of
a particle; this analogy, however, should not be taken
too literally.

The total angular momentum J of an electron is the
sum of its orbital and spin angular momentum:

J=L+S.

Depending on the mutual orientation of the vectors L
and S the quantum number ; of total angular momentum
can have one of two possible values,

=1+ :

J=E5
(except if [ =0, when j = %). The z component of the
total angular momentum can have the values

m;=0,4+1,42,...+].

Spin also gives rise to the fine structure of spectral
lines. Lines appear as close pairs or doublets.

Selection Rules. The state of an electron cannot change
arbitrarily; transitions are restricted by selection rules,
which follow from certain conservation laws. The se-
lection rules express how the quantum numbers must
change in a transition. Most probable are the electric
dipole transitions, which make the atom behave like an
oscillating dipole. The conservation laws require that in
a transition we have

Al ==£1,
Am;=0,£1.

In terms of the total angular momentum the selection
rules are

Al ==l
Aj =0,=+1,

The probabilities of all other transitions are much
smaller, and they are called forbidden transitions; exam-
ples are magnetic dipole transitions and all quadrupole
and higher multipole transitions.

Spectral lines originating in forbidden transitions are
called forbidden lines. The probability of such a tran-
sition is so low that under normal circumstances, the
transition cannot take place before collisions force the
electron to change state. Forbidden lines are possible
only if the gas is extremely rarified (like in auroras and
planetary nebulae).
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Fig.5.8. The origin of the hydrogen 21 cm line. The spins of
the electron and the proton may be either parallel or opposite.
The energy of the former state is slightly larger. The wave-
length of a photon corresponding to a transition between these
states is 21 cm

The spins of an electron and nucleus of a hydrogen
atom can be either parallel or antiparallel (Fig. 5.8). The
energy of the former state is 0.0000059 eV higher. But
the selection rules make an electric dipole transition be-
tween these states impossible. The transition, which is
a magnetic dipole transition, has a very low probability,
A =2.8x 10715 57!, This means that the average life-
time of the higher state is 7= 1/A = 11 x 10° years.
Usually collisions change the state of the electron well
before this period of time has elapsed. But in interstel-
lar space the density of hydrogen is so low and the total
amount of hydrogen so great that a considerable number
of these transitions can take place.

The wavelength of the radiation emitted by this
transition is 21 cm, which is in the radio band of the
spectrum. Extinction at radio wavelengths is very small,
and we can observe more distant objects than by using
optical wavelengths. The 21 cm radiation has been of
crucial importance for surveys of interstellar hydrogen.

Population Numbers. The population number n; of an
energy state i means the number of atoms in that state
per unit volume. In thermal equilibrium, the population

450

Fig.5.9. Spectrum of carbon monoxide CO from 430 nm to
670 nm. The various bands correspond to different vibrational
transitions. Each band is composed of numerous rotational
lines. Near the right edge of each band the lines are so closely
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numbers obey the Boltzmann distribution:

M _ 8i o —aE/GT)
no 8o ’
where T is the temperature, k is the Boltzmann constant,
AE = E; — Ey = hv is the energy difference between
the excited and ground state, and g; is the statistical
weight of the level i (it is the number of different states
with the same energy E;). The subscript O always refers
to the ground state. Often the population numbers differ
from the values given by (5.11), but still we can define
an excitation temperature Ty in such a way that (5.11)
gives correct population numbers, when T is replaced
by Texc. The excitation temperature may be different for
different energy levels.

(5.11)

5.5 Molecular Spectra

The energy levels of an atom are determined by its elec-
trons. In the case of a molecule, there are many more
possibilities: atoms can vibrate around their equilibria
and the molecule can rotate around some axis. Both vi-
brational and rotational states are quantized. Transitions
between successive vibrational states typically involve
photons in the infrared band, while transitions between
rotational states involve photons in the microwave band.
These combined with transitions of electrons produce
a band spectrum, characteristic for molecules (Fig. 5.9).
The spectrum has several narrow bands composed of
a great number of lines.

5.6 Continuous Spectra

We have already mentioned some processes that pro-
duce continuous spectra. Continuous emission spectra
can originate in recombinations and free—free tran-
sitions. In recombination, an atom captures a free

650 [nm]

packed that they overlap and at this resolution, the spectrum
looks continuous. (R.W.B. Pearse, A.G. Gaydon: The Identi-
fication of Molecular Spectra (Chapman & Hall Ltd., London
1976) p. 394)
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electron whose energy is not quantized; in free—free
transitions, both initial and final states are unquan-
tized. Thus the emission line can have any frequency
whatsoever. Similarly, ionizations and free—free tran-
sitions can give rise to a continuous absorption
spectrum.

Each spectrum contains a continuous component, or
continuum, and spectral lines. Sometimes, however, the
lines are so closely packed and so broad that they seem
to form a nearly continuous spectrum.

When the pressure of hot gas is increased, the spec-
tral lines begin to broaden. At high pressure, atoms
bump into each other more frequently, and the close
neighbors disturb the energy levels. When the pres-
sure is high enough, the lines begin to overlap. Thus
the spectrum of hot gas at high pressure is continu-
ous. Electric fields also broaden spectral lines (the Stark
effect).

In liquids and solids the atoms are more densely
packed than in gaseous substances. Their mutual
perturbations broaden the energy levels, producing
a continuous spectrum.

5.7 Blackbody Radiation

A blackbody is defined as an object that does not reflect
or scatter radiation shining upon it, but absorbs and re-
emits the radiation completely. A blackbody is a kind of
an ideal radiator, which cannot exist in the real world.
Yet many objects behave very much as if they were
blackbodies.

The radiation of a blackbody depends only on its
temperature, being perfectly independent of its shape,
material and internal constitution. The wavelength dis-
tribution of the radiation follows Planck’s law, which
is a function of temperature only. The intensity at
a frequency v of a blackbody at temperature 7 is

2h? 1

B,(T)=B(v;T)= T2 ik 1

(5.12)

where

h = the Planck constant = 6.63 x 107>*J s ,
¢ = the speed of light ~ 3 x 108 ms™!
k = the Boltzmann constant = 1.38 x 1072 JK~! .

By definition of the intensity, the dimension of B, is
Wm~2Hz ! sterad ™.

Blackbody radiation can be produced in a closed
cavity whose walls absorb all radiation incident upon
them (and coming from inside the cavity). The walls
and the radiation in the cavity are in equilibrium; both
are at the same temperature, and the walls emit all the
energy they receive. Since radiation energy is constantly
transformed into thermal energy of the atoms of the
walls and back to radiation, the blackbody radiation is
also called thermal radiation.

The spectrum of a blackbody given by Planck’s law
(5.12) is continuous. This is true if the size of the radiator
is very large compared with the dominant wavelengths.
In the case of the cavity, this can be understood by con-
sidering the radiation as standing waves trapped in the
cavity. The number of different wavelengths is larger,
the shorter the wavelengths are compared with the size
of the cavity. We already mentioned that spectra of solid
bodies are continuous; very often such spectra can be
quite well approximated by Planck’s law.

We can also write Planck’s law as a function of
the wavelength. We require that B, dv = —B; dX. The
wavelength decreases with increasing frequency; hence
the minus sign. Since v = ¢/A, we have

dv c
i — ~3 (5.13)
whence
dv c
B, = — ”aszﬁ’ (5.14)
or
BT 2hc? 1
W) =5 Fomm —1 (5.15)

[B;] = Wm2m !sterad™" .
The functions B, and B, are defined in such a way that
the total intensity can be obtained in the same way using

either of them:

o0 o0
B(T):/BvdvszAdA.
0 0

Let us now try to find the total intensity using the
first of these integrals:

o0 o0
h 3dv
B(T):/BU(T)dv_—zf /T
0 0
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We now change the integration variable to x = hv/(kT),
whence dv = (kT/h)dx:

x3dx

oo
T4/
et —1"

0

2h k*

B(T) = a2

The definite integral in this expression is just a real
number, independent of the temperature. Thus we find
that

B(T) = AT*, (5.16)
where the constant A has the value
_ 2k* 7t .17
VAR E ‘

(In order to get the value of A we have to evaluate the
integral. There is no elementary way to do that. We can
tell those who are familiar with all the exotic functions
so beloved by theoretical physicists, that the integral can
rather easily be expressed as I(4)¢(4), where ¢ is the
Riemann zeta function and I" is the gamma function.
For integral values, I'(n) is simply the factorial (n — 1)!.
The difficult part is showing that £(4) = #/90. This can
be done by expanding x* — x? as a Fourier-series and
evaluating the series at x = 7.)

The flux density F for isotropic radiation of intensity
B is (Sect.4.1):

F=nB
or

F=oT*. (5.18)

This is the Stefan-Boltzmann law, and the constant o
(=mA) is the Stefan-Boltzmann constant,

0=567Tx10Wm2K™.

From the Stefan-Boltzmann law we get a relation
between the luminosity and temperature of a star. If the
radius of the star is R, its surface area is 47 R2, and if
the flux density on the surface is F, we have

L =47R’F .

If the star is assumed to radiate like a blackbody, we
have F = oT*, which gives

L =470R*T* . (5.19)

In fact this defines the effective temperature of the star,
discussed in more detail in the next section.

The luminosity, radius and temperature of a star are
interdependent quantities, as we can see from (5.19).
They are also related to the absolute bolometric magni-
tude of the star. Equation (4.13) gives the difference of
the absolute bolometric magnitude of the star and the
Sun:

L
Mbol - Mbo],@ =-25 lg —_— . (520)
Lo
But we can now use (5.19) to express the luminosities
in terms of the radii and temperatures:

R T
M1 — Myo,o = —51g R 101g T
o) o}

(5.21)

As we can see in Fig.5.10, the wavelength of the
maximum intensity decreases with increasing total in-
tensity (equal to the area below the curve). We can find
the wavelength A,.x corresponding to the maximum in-
tensity by differentiating Planck’s function B, (T") with

12,000 K

Intensity

9,000 K

6,000 K
T ‘ T T

500 nm

I
1,000 nm A

Fig. 5.10. Intensity distributions of blackbodies at temperature
12,000 K, 9000 K and 6000 K. Since the ratios of the temper-
atures are 4:3:2, the wavelengths of intensity maxima given
by the Wien displacement law are in the proportions 1:4, 1:3
and 1:2, or 3, 4 and 6. The actual wavelengths of the maxima
are 241.5 nm, 322 nm and 483 nm. The total intensities or the
areas below the curves are proportional to 44, 3* and 2*
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respect to A and finding zero of the derivative. The result
is the Wien displacement law:

Amax] = b = const , (5.22)

where the Wien displacement constant b is
b=0.0028978 Km .

We can use the same procedure to find the maximum
of B,. But the frequency vy, thus obtained is different
from vpax = ¢/Amax given by (5.22). The reason for this
is the fact that the intensities are given per unit frequency
or unit wavelength, and the dependence of frequency on
wavelength is nonlinear.

When the wavelength is near the maximum or much
longer than An.x Planck’s function can be approx-
imated by simpler expressions. When A & Ap.x (or
he/(AkT) > 1), we have

he/OKT) 5 1

In this case we get the Wien approximation

2hc? .
B,(T) ~ Tge—hc/ GAT) (5.23)
When hc/(AkT) < 1 (A > Amax), We have
/T 2 1 4 he/(AKT) ,
which gives the Rayleigh—Jeans approximation
2hc® MKT  2ckT
By(T) ~ =< == (5.24)

M he A

This is particularly useful in radio astronomy.
Classical physics predicted only the Rayleigh—Jeans

approximation. Were (5.24) true for all wavelengths, the

intensity would grow beyond all limits when the wave-

length approaches zero, contrary to observations. This

contradiction was known as the ultraviolet catastrophe.

5.8 Temperatures

Temperatures of astronomical objects range from al-
most absolute zero to millions of degrees. Temperature
can be defined in a variety of ways, and its numerical
value depends on the specific definition used. All these
different temperatures are needed to describe different

physical phenomena, and often there is no unique ‘true’
temperature.

Often the temperature is determined by comparing
the object, a star for instance, with a blackbody. Al-
though real stars do not radiate exactly like blackbodies,
their spectra can usually be approximated by blackbody
spectra after the effect of spectral lines has been elim-
inated. The resulting temperature depends on the exact
criterion used to fit Planck’s function to observations.

The most important quantity describing the surface
temperature of a star is the effective temperature T,.
It is defined as the temperature of a blackbody which
radiates with the same total flux density as the star.
Since the effective temperature depends only on the
total radiation power integrated over all frequencies, it
is well defined for all energy distributions even if they
deviate far from Planck’s law.

In the previous section we derived the Stefan-
Boltzmann law, which gives the total flux density as
a function of the temperature. If we now find a value T,
of the temperature such that the Stefan-Boltzmann law
gives the correct flux density F on the surface of the
star, we have found the effective temperature. The flux
density on the surface is

F=oT!. (5.25)
The total flux is L = 47 R2F, where R is the radius of
the star, and the flux density at a distance r is

, L R a\2
F —F:(—)oTe,

= — = .2
4ar? 2 2 (5.26)

where o = 2R/r is the observed angular diameter of the
star. For direct determination of the effective tempera-
ture, we have to measure the total flux density and the
angular diameter of the star. This is possible only in
the few cases in which the diameter has been found by
interferometry.

If we assume that at some wavelength A the flux
density F; on the surface of the star is obtained from
Planck’s law, we get the brightness temperature Ty. In
the isotropic case we have then F) = wB;(Tp). If the
radius of the star is R and distance from the Earth r, the
observed flux density is

F/=R—2F
Py 2 A
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Again F; can be determined only if the angular diame-
ter « is known. The brightness temperature 7 can then
be solved from

o2

Fl = (5) TB(Ty) .
Since the star does not radiate like a blackbody,
its brightness temperature depends on the particular
wavelength used in (5.27).

In radio astronomy, brightness temperature is used
to express the intensity (or surface brightness) of the
source. If the intensity at frequency v is 1, the brightness
temperature is obtained from

Iv = Bv(Tb) .

(5.27)

Ty, gives the temperature of a blackbody with the same
surface brightness as the observed source.

Since radio wavelengths are very long, the condition
hv < kT of the Rayleigh—Jeans approximation is usu-
ally satisfied (except for millimetre and submillimetre
bands), and we can write Planck’s law as

Bv(Tb) — &US;
2 ehv/(&Ty) _ |
2hv3 1
T2 1+hv/kTy) +...—1
N 2kv2T
~ Ty

Thus we get the following expression for the radio
astronomical brightness temperature:
c? e

=Tl

A measure of the signal registered by a radio
telescope is the antenna temperature Ty. After the an-
tenna temperature is measured, we get the brightness
temperature from

Ta=nTy,

Ty (5.28)

(5.29)

where 7 is the beam efficiency of the antenna (typically
0.4 < n < 0.8). Equation (5.29) holds if the source is
wide enough to cover the whole beam, i.e. the solid
angle 24 from which the antenna receives radiation. If
the solid angle subtended by the source, §2s, is smaller
than £2,, the observed antenna temperature is

Q
Ta=ng To. (25 <92). (5.30)
A

The colour temperature T, can be determined even
if the angular diameter of the source is unknown
(Fig.5.11). We only have to know the relative energy
distribution in some wavelength range [A;, A,]; the ab-
solute value of the flux is not needed. The observed flux
density as a function of wavelength is compared with
Planck’s function at different temperatures. The tem-
perature giving the best fit is the colour temperature in
the interval [A;, A,]. The colour temperature is usually
different for different wavelength intervals, since the
shape of the observed energy distribution may be quite
different from the blackbody spectrum.

A simple method for finding a colour temperature is
the following. We measure the flux density F, at two
wavelengths A; and A,. If we assume that the intensity
distribution follows Planck’s law, the ratio of these flux
densities must be the same as the ratio obtained from
Planck’s law:

F,() B (T) A3 ehe/02kT) _q
F)/»z(T) - B)\z(T) - )\? ehc/(Mk]‘) ] .

(5.31)

The temperature T solved from this equation is a colour
temperature.

The observed flux densities correspond to certain
magnitudes m;, and m;,. The definition of magnitudes
gives

!/
my, —n, =—2.51g # ~+ const ,
A2
where the constant term is a consequence of the different
zero points of the magnitude scales. If the temperature

Blackbody radiation

Observed flux

Y

M A2

Fig. 5.11. Determination of the colour temperature. The ratio
of the flux densities at wavelengths A; and A, gives the tem-
perature of a blackbody with the same ratio. In general the
result depends on the wavelengths chosen
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is not too high, we can use the Wien approximation in
the optical part of the spectrum:

B;,
my, —my, =—2.51g — +const
%)

w\°
=-25lg| —
g(?w)

+25m (L2 1Y gt const
D— | — — — c const .
AV A

This can be written as

my, —my, =a+b/T., (5.32)

where a and b are constants. This shows that there
is a simple relationship between the difference of two
magnitudes and the colour temperature.

Strictly speaking, the magnitudes in (5.32) are
monochromatic, but the same relation can be also used
with broadband magnitudes like B and V. In that case,
the two wavelengths are essentially the effective wave-
lengths of the B and V bands. The constant is chosen
so that B—V =0 for stars of the spectral type AO
(see Chap. 8). Thus the colour index B —V also gives
a colour temperature.

The kinetic temperature T, is related to the average
speed of gas molecules. The kinetic energy of an ideal
gas molecule as a function of temperature follows from
the kinetic gas theory:

1
Kinetic energy = zmv2 = Eka .

Solving for Ty we get

mv2

3k’
where m is the mass of the molecule, v its average ve-
locity (or rather its r.m.s velocity, which means that
v? is the average of the squared velocities), and &, the
Boltzmann constant. For ideal gases the pressure is di-
rectly proportional to the kinetic temperature (c.f. *Gas
Pressure and Radiation Pressure, p. 238):

Ik = (5.33)

P =nkTy (5.34)

where n is the number density of the molecules
(molecules per unit volume). We previously defined the
excitation temperature Ty as a temperature which, if
substituted into the Boltzmann distribution (5.11), gives

the observed population numbers. If the distribution of
atoms in different levels is a result of mutual collisions
of the atoms only, the excitation temperature equals the
kinetic temperature, Tex. = Tx.

The ionization temperature T; is found by compar-
ing the number of atoms in different states of ionization.
Since stars are not exactly blackbodies, the values of
excitation and ionization temperatures usually vary, de-
pending on the element whose spectral lines were used
for temperature determination.

In thermodynamic equilibrium all these various
temperatures are equal.

5.9 Other Radiation Mechanisms

The radiation of a gas in thermodynamic equilib-
rium depends on the temperature and density only. In
astrophysical objects deviations from thermodynamic
equilibrium are, however, quite common. Some ex-
amples of non-thermal radiation arising under such
conditions are mentioned in the following.

Maser and Laser (Fig.5.12). The Boltzmann distri-
bution (5.11) shows that usually there are fewer atoms
in excited states than in the ground state. There are,
however, means to produce a population inversion, an
excited state containing more atoms than the ground
state. This inversion is essential for both the maser and
the laser (Microwave/Light Amplification by Stimu-
lated Emission of Radiation). If the excited atoms are
now illuminated with photons having energies equal to
the excitation energy, the radiation will induce down-
ward transitions. The number of photons emitted greatly
exceeds the number of absorbed photons, and radiation
is amplified. Typically the excited state is a metastable
state, a state with a very long average lifetime, which
means that the contribution of spontaneous emission is
negligible. Therefore the resulting radiation is coher-
ent and monochromatic. Several maser sources have
been found in interstellar molecular clouds and dust
envelopes around stars.

Synchrotron Radiation. A free charge in accelerated
motion will emit electromagnetic radiation. Charged
particles moving in a magnetic field follow helices
around the field lines. As seen from the direction of
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Fig. 5.12. The operational principle of the maser and the laser.
A metastable state (a state with a relatively long average life-
time) stores atoms where they accumulate; there are more
atoms in the metastable state than in the ground state. This pop-
ulation inversion is maintained by radiatively exciting atoms
to a higher excitation state (“pumping”), from which they
spontaneously jump down to the metastable state. When the
atoms are illuminated by photons with energies equal to the
excitation energy of the metastable state, the photons will in-
duce more radiation of the same wavelength, and the radiation
is amplified in geometric progression

the field, the motion is circular and therefore acceler-
ated. The moving charge will radiate in the direction of
its velocity vector. Such radiation is called synchrotron
radiation. It will be further discussed in Chap. 15.

5.10 Radiative Transfer

Propagation of radiation in a medium, also called
radiative transfer, is one of the basic problems of astro-
physics. The subject is too complicated to be discussed
here in any detail. The fundamental equation of radiative
transfer is, however, easily derived.

Assume we have a small cylinder, the bottom of
which has an area dA and the length of which is dr.
Let I, be the intensity of radiation perpendicular
to the bottom surface going into a solid angle dw
([1,] = Wm~2Hz ! sterad™"). If the intensity changes
by an amount d,, in the distance dr, the energy changes

by
dE =dI,dA dvdwd?

in the cylinder in time d¢. This equals the emission
minus absorption in the cylinder. The absorbed energy
is (c.f. (4.14))

dEpns =y, drdAdvdwdt, (5.35)

where «, is the opacity of the medium at frequency v.
Let the amount of energy emitted per hertz at fre-
quency v into unit solid angle from unit volume and
per unit time be j, ([j,] = Wm™ Hz"! sterad™"). This
is called the emission coefficient of the medium. The
energy emitted into solid angle dew from the cylinder is
then

dEem = jydrdAdvdwd? . (5.36)
The equation

dE = —dEps+dEen
gives then

dl, = —o, 1, dr + j,dr
or

a‘igr - I+ ;— . (5.37)

We shall denote the ratio of the emission coefficient j,
to the absorption coefficient or opacity «,, by S,:

_i

Sy .
oy

(5.38)
Sy is called the source function. Because «, dr =dr,,
where 7, is the optical thickness at frequency v, (5.37)
can be written as

dr,
dt,

Equation (5.39) is the basic equation of radiative
transfer. Without solving the equation, we see that if
I, < Sy, thendl,/dt, > 0, and the intensity tends to in-
crease in the direction of propagation. And, if I, > S,
then d/,/dt, <0, and I, will decrease. In an equilib-
rium the emitted and absorbed energies are equal, in
which case we find from (5.35) and (5.36)

=—I,+S,.

(5.39)

I=j,Joy =S, . (5.40)
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Substituting this into (5.39), we see thatd/,/dz, =0.1In
thermodynamic equilibrium the radiation of the medium
is blackbody radiation, and the source function is given
by Planck’s law:

2hv3 1

Sv=8.(T)= 2 /(T _1°

Even if the system is not in thermodynamic equilibrium,
it may be possible to find an excitation temperature Texc
such that B, (Texc) = S,. This temperature may depend
on frequency.

A formal solution of (5.39) is

Ty

1(5) = L,(0)e ™™ + / w05, (1 dr .
0

(5.41)

Here 1,(0) is the intensity of the background radiation,
coming through the medium (e. g. an interstellar cloud)
and decaying exponentially in the medium. The second
term gives the emission in the medium. The solution
is only formal, since in general, the source function S,
is unknown and must be solved simultaneously with
the intensity. If S, (t,) is constant in the cloud and the
background radiation is ignored, we get

Ty
I(t,) =S, f e ™ Ddr=8,(1—e" ™). (542
0
If the cloud is optically thick (7, >> 1), we have

I,=S,, (5.43)

i.e. the intensity equals the source function, and the
emission and absorption processes are in equilibrium.

An important field of application of the theory of
radiative transfer is in the study of planetary and stellar
atmospheres. In this case, to a good approximation, the
properties of the medium only vary in one direction, say
along the z axis. The intensity will then depend only on z
and 6, where 6 is the angle between the z axis and the
direction of propagation of the radiation.

In applications to atmospheres it is customary to
define the optical depth 7, in the vertical direction as

dt, = —«,dz.

Conventionally z increases upwards and the optical
depth inwards in the atmosphere. The vertical line el-

ement dz is related to that along the light ray, dr,
according to

dz =drcos6.

With these notational conventions, (5.39) now yields
050 dl,(z, 0)
Ty
This is the form of the equation of radiative transfer
usually encountered in the study of stellar and planetary
atmospheres.

A formal expression for the intensity emerging
from an atmosphere can be obtained by integrating
(5.44) from 1, = 00 (we assume that the bottom of
the atmosphere is at infinite optical depth) to 7, =0
(corresponding to the top of the atmosphere). This yields

=1,-S,. (5.44)

o0

1,(0,0) = / S, e % gecodr, .
0

(5.45)

This expression will be used later in Chap.8 on the
interpretation of stellar spectra.

5.11 Examples

Example 5.1 Find the wavelength of the photon emit-
ted in the transition of a hydrogen atom from n, = 110
ton; = 109.

Equation (5.8) gives

1 _ R( 1 1 >
A n% n%
7 1 1 1
=1.097 x 10’ m —_
1092 1102
=16.71m™!,
whence

A=0.060m .

This is in the radio band. Such radiation was observed
for the first time in 1965 by an NRAO radio telescope.

Example 5.2 The effective temperature of a star is
12,000 K and the absolute bolometric magnitude 0.0.
Find the radius of the star, when the effective tempera-
ture of the Sun is 5000 K and the absolute bolometric
magnitude 4.7.
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We can apply (5.21):

M, M, =-51 R 101 d
bol bol,® = g Ro g Ts
2
= R - To 10~02(—Mpol,0)
RO Te
2
— 5800 10~0-2(0.0-4.7)
12000
=2.0.

Thus the radius is twice the Solar radius.

Example 5.3 Derive the Wien displacement laws.
Let us denote x = hc/(AkT). Planck’s law then
becomes

26T X°

43 ex—1"

For a given temperature, the first factor is constant.
Thus, it is sufficient to find the maximum of the function

f) =2/~ 1).

First we must evaluate the derivative of f:

Sx*(e* — 1) —xoe*

B,(T) =

ro =T
xtet .
= m (5 —5e - )C) .

By definition, x is always strictly positive. Hence
f/(x) can be zero only if the factor 5—5e™ —x is
zero. This equation cannot be solved analytically. In-
stead we write the equation as x =5 —5e™ and solve
it by iteration:

xo=>5, (thisis justa guess)

x; =5-5e"" =4.96631,

x5 =4.96511.

Thus the result is x = 4.965. The Wien displacement

law is then

h
T = S = b=2.898 x 1073 Km.
xk

In terms of frequency Planck’s law is
2hv3 1

B.(T) = 2 /KTy _ 1"

Substituting x = hv/(kT) we get

28873 X3

R e -1

Now we study the function f(x) = x3/(e* — 1):

3x2(e* — 1) — x3e*

B,(T) =

flx) =

(e —1)?
2.x
- —(ef_el)z (3—3e " —x).

This vanishes, when 3 —3e™ — x = 0. The solution of
this equation is x = 2.821. Hence

T h
O =5100x102Km
Vmax  kx

or

T

=1.701 x 107" K.

Vmax
Note that the wavelength corresponding to v,y is dif-
ferent from Ap.x. The reason is that we have used
two different forms of Planck’s function, one giving
the intensity per unit wavelength, the other per unit
frequency.

Example 5.4 a) Find the fraction of radiation that
a blackbody emits in the range [1;, X,], where A; and
A2 3> Amax- b) How much energy does a 100 W in-
candescent light bulb radiate in the radio wavelengths,
A > 1 cm? Assume the temperature is 2500 K.

Since the wavelengths are much longer than A«
we can use the Rayleigh—Jeans approximation B, (T) ~
2ckT/A*. Then

Ao Ao
, di
* A
_ 2ckT ( 1 1 )
3\ 37
and hence

B 53h1 (1 1
B Kr* T3\ a3)

Now the temperature is 7 = 2500 K and the wavelength
range [0.01 m, 00), and so

1
25003 0.013

B =100W x 1.529 x 1077
=98x10710wW.
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It is quite difficult to listen to the radio emission of
a light bulb with an ordinary radio receiver.

Example 5.5 Determination of Effective Temperature

The observed flux density of Arcturus is
F'=45x10°*Wm™.

Interferometric measurements give an angular diameter
of @ = 0.020". Thus, /2 = 4.85 x 10~ radians. From
(5.26) we get

4.5x%1078 1/4
T, = - ~) K
(4.85x 1052 x 5.669 x 10

=4300K.

Example 5.6 Flux densities at the wavelengths
440nm and 550nm are 1.30 and 1.00Wm 2m!,
respectively. Find the colour temperature.

If the flux densities at the wavelengths 1| and A, are
F) and F,, respectively, the colour temperature can be
solved from the equation

Fi By (T (h) ehe/02kTo
Fy By, (T.) \Ar) ehe/ikl) 1~

If we denote

Fi ()
A=—L(2) .
F, \ A2
_hc
TNk
_hc
Mok

we get the equation

’

eBZ/TC —1
- eB 1/Te — l
for the colour temperature 7. This equation must be

solved numerically.
In our example the constants have the following

values:
5
_ L0 (S0 e
1.30 \ 440
B, =32,700K, B, =26,160K.

By substituting different values for 7¢, we find that 7, =
7545 K satisfies our equation.

5.12 Exercises

Exercise 5.1 Show that in the Wien approximation
the relative error of By is

AB,
B,

_e—lzc/(AkT) )

Exercise 5.2 If the transition of the hydrogen atom
n+1—n were to correspond to the wavelength
21.05 cm, what would the quantum number n be? The
interstellar medium emits strong radiation at this wave-
length. Can this radiation be due to such transitions?

Exercise 5.3 The space is filled with background radi-
ation, remnant of the early age of the universe. Currently
the distribution of this radiation is similar to the ra-
diation of a blackbody at the temperature of 2.7 K.
What is Ap,x corresponding to this radiation? What is
its total intensity? Compare the intensity of the back-
ground radiation to the intensity of the Sun at the visual
wavelengths.

Exercise 5.4 The temperature of a red giant is 7 =
2500 K and radius 100 times the solar radius.

a) Find the total luminosity of the star, and the luminos-
ity in the visual band 400 nm < A < 700 nm.

b) Compare the star with a 100 W lamp that radiates 5%
of its energy in the visual band. What is the distance
of the lamp if it looks as bright as the star?

Exercise 5.5 The effective temperature of Sirius is
10,000 K, apparent visual magnitude —1.5, distance
2.67 kpc and bolometric correction 0.5. What is the
radius of Sirius?

Exercise 5.6 The observed flux density of the Sun at
A =300nm is 0.5 Wm~2nm~'. Find the brightness
temperature of the Sun at this wavelength.

Exercise 5.7 The colour temperature can be deter-
mined from two magnitudes corresponding to two
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different wavelengths. Show that
7000 K
Ii=——7—.
(B—=V)+0.47

The wavelengths of the B and V bands are 440 nm and
548 nm, respectively, and we assume that B =V for

stars of the spectral class A0, the colour temperature of
which is about 15,000 K.

Exercise 5.8 The kinetic temperature of the plasma
in the solar corona can reach 10° K. Find the average
speed of the electrons in such a plasma.



6. Celestial Mechanics

Celestial mechanics, the study of motions of celes-
tial bodies, together with spherical astronomy, was
the main branch of astronomy until the end of the
19th century, when astrophysics began to evolve rapidly.
The primary task of classical celestial mechanics was to
explain and predict the motions of planets and their
satellites. Several empirical models, like epicycles and Ke-
pler’s laws, were employed to describe these motions.
But none of these models explained why the planets
moved the way they did. It was only in the 1680’s
that a simple explanation was found for all these mo-

6.1 Equations of Motion

We shall concentrate on the systems of only two bodies.
In fact, this is the most complicated case that allows
a neat analytical solution. For simplicity, let us call the
bodies the Sun and a planet, although they could quite
as well be a planet and its moon, or the two components
of a binary star.

Let the masses of the two bodies be m| and m, and the
radius vectors in some fixed inertial coordinate frame
r; and r, (Fig.6.1). The position of the planet relative
to the Sun is denoted by r = r, — r;. According to New-
ton’s law of gravitation the planet feels a gravitational
pull proportional to the masses m | and m, and inversely
proportional to the square of the distance r. Since the
force is directed towards the Sun, it can be expressed as

Gmymy —r

F= = —Gmmy— 6.1)
r

2 r
where G is the gravitational constant. (More about this
in Sect.6.5.)

Newton’s second law tells us that the acceleration #,
of the planet is proportional to the applied force:

F = mzfz . (62)

Combining (6.1) and (6.2), we get the equation of
motion of the planet

Moy = —Gmymy— 6.3)

r3

tions — Newton’s law of universal gravitation. In this
chapter, we will derive some properties of orbital mo-
tion. The physics we need for this is simple indeed,
just Newton’s laws. (For a review, see *Newton’s Laws,
p. 126)

This chapter is mathematically slightly more involved
than the rest of the book. We shall use some vector cal-
culus to derive our results, which, however, can be easily
understood with very elementary mathematics. A sum-
mary of the basic facts of vector calculus is given in
Appendix A.4.

0

Fig. 6.1. The radius vectors of the Sun and a planet in an
arbitrary inertial frame are r; and ry, and r =r, —ry is the
position of the planet relative to the Sun

Since the Sun feels the same gravitational pull, but
in the opposite direction, we can immediately write the
equation of motion of the Sun:

. r

miry = +Gm1m2—3 . (6.4)
r

We are mainly interested in the relative motion of

the planet with respect to the Sun. To find the equation

of the relative orbit, we cancel the masses appearing on

both sides of (6.3) and (6.4), and subtract (6.4) from

(6.3) to get
.. r
=i 65)
r
where we have denoted
uw=G(@m;+my). (6.6)
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The solution of (6.5) now gives the relative orbit
of the planet. The equation involves the radius vector
and its second time derivative. In principle, the solu-
tion should yield the radius vector as a function of time,
r = r(¢). Unfortunately things are not this simple in
practice; in fact, there is no way to express the radius
vector as a function of time in a closed form (i.e. as
a finite expression involving familiar elementary func-
tions). Although there are several ways to solve the
equation of motion, we must resort to mathematical
manipulation in one form or another to figure out the
essential properties of the orbit. Next we shall study one
possible method.

6.2 Solution of the Equation of Motion

The equation of motion (6.5) is a second-order (i.e.
contains second derivatives) vector valued differential
equation. Therefore we need six integration constants
or integrals for the complete solution. The solution is
an infinite family of orbits with different sizes, shapes
and orientations. A particular solution (e.g. the orbit
of Jupiter) is selected by fixing the values of the six
integrals. The fate of a planet is unambiguously deter-
mined by its position and velocity at any given moment;
thus we could take the position and velocity vectors at
some moment as our integrals. Although they do not
tell us anything about the geometry of the orbit, they
can be used as initial values when integrating the orbit
numerically with a computer. Another set of integrals,
the orbital elements, contains geometric quantities de-
scribing the orbit in a very clear and concrete way. We
shall return to these later. A third possible set involves
certain physical quantities, which we shall derive next.

We begin by showing that the angular momentum
remains constant. The angular momentum of the planet
in the heliocentric frame is

6.7)

L=mrxr.

Celestial mechanicians usually prefer to use the angular
momentum divided by the planet’s mass

k=rxr. (6.8)

Let us find the time derivative of this:

k=rxv+rxr.

The latter term vanishes as a vector product of two
parallel vectors. The former term contains #, which is
given by the equation of motion:

k=rx(—ur/r)=—u/rHrxr=0.

Thus k is a constant vector independent of time (as is L,
of course).

Since the angular momentum vector is always per-
pendicular to the motion (this follows from (6.8)), the
motion is at all times restricted to the invariable plane
perpendicular to k (Fig. 6.2).

To find another constant vector, we compute the
vector product k X i

kx¥=(rxr)x (—ur/rS)
——Eie-mi-a-hr.
r

The time derivative of the distance r is equal to the
projection of 7 in the direction of r (Fig. 6.3); thus, using
the properties of the scalar product, we get 7 =r-7/r,
which gives

rer=rr. (6.9)
Hence,

kx¥=—p@/r—ri/r’) = %(—,u,r/r) .

The vector product can also be expressed as

d
kxFe <(kxr).
X ¥ dt( X F)

.

Fig. 6.2. The angular momentum vector k is perpendicular
to the radius and velocity vectors of the planet. Since k is
a constant vector, the motion of the planet is restricted to the
plane perpendicular to k



6.2 Solution of the Equation of Motion

Fig. 6.3. The radial velocity 7 is the projection of the velocity
vector 7 in the direction of the radius vector r

since k is a constant vector. Combining this with the
previous equation, we have

;;(kx F4+pur/r)=0
and

k X 7+ ur/r =const = —pue . (6.10)

Since k is perpendicular to the orbital plane, k x 7
must lie in that plane. Thus, e is a linear combination
of two vectors in the orbital plane; so e itself must be
in the orbital plane (Fig. 6.4). Later we shall see that it
points to the direction where the planet is closest to the
Sun in its orbit. This point is called the perihelion.

One more constant is found by computing 7 - i

FoF=—pbor/r’ = —pri/r’

= —pi/r’ = ;;j;(u/r) :

Since we also have

1
-sz—u/rzconstzh.

Here v is the speed of the planet relative to the Sun. The
constant 4 is called the energy integral; the total energy
of the planet is myh. We must not forget that energy

6.11)

Fig. 6.4. The orbit of an object in the gravitational field of an-
other object is a conic section: ellipse, parabola or hyperbola.
Vector e points to the direction of the pericentre, where the or-
biting object is closest to central body. If the central body is
the Sun, this direction is called the perihelion; if some other
star, periastron; if the Earth, perigee, etc. The true anomaly f
is measured from the pericentre

and angular momentum depend on the coordinate frame
used. Here we have used a heliocentric frame, which in
fact is in accelerated motion.

So far, we have found two constant vectors and one
constant scalar. It looks as though we already have seven
integrals, i.e. one too many. But not all of these con-
stants are independent; specifically, the following two
relations hold:

ke=0, 6.12)

w?(e* —1) =2hk*, (6.13)

where e and k are the lengths of e and k. The first
equation is obvious from the definitions of e and k. To
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prove (6.13), we square both sides of (6.10) to get
W = (kx i) (kx P+’ = +20ex i) - 2
r r

Since k is perpendicular to 7, the length of k x 7 is
|k||7| = kv and (k x 7) - (k x ) = k*v?. Thus, we have

2
we? =k2v2+,u2+—'u(kxi‘~r).
r

The last term contains a scalar triple product, where we
can exchange the dot and cross to get k- 7 x r. Next we
reverse the order of the two last factors. Because the
vector product is anticommutative, we have to change
the sign of the product:

2

2
2@ =1 =12 — Berx iy =122 = g2
r r

1
=22 (Evz - ﬁ) —2%h |
r

This completes the proof of (6.13).

The relations (6.12) and (6.13) reduce the number
of independent integrals by two, so we still need one
more. The constants we have describe the size, shape
and orientation of the orbit completely, but we do not
yet know where the planet is! To fix its position in the
orbit, we have to determine where the planet is at some
given instant of time ¢ = #(, or alternatively, at what time
it is in some given direction. We use the latter method
by specifying the time of perihelion passage, the time
of perihelion t.

6.3 Equation of the Orbit

and Kepler’s First Law

In order to find the geometric shape of the orbit, we
now derive the equation of the orbit. Since e is a con-
stant vector lying in the orbital plane, we choose it as
the reference direction. We denote the angle between
the radius vector r and e by f. The angle f is called
the true anomaly. (There is nothing false or anomalous
in this and other anomalies we shall meet later. Angles
measured from the perihelion point are called anoma-
lies to distinguish them from longitudes measured from
some other reference point, usually the vernal equinox.)
Using the properties of the scalar product we get

r-e=recos f .

But the product r-e can also be evaluated using the
definition of e:

1
r-e=——r-kxr+pur-r/r)
"

1 1
=——(k-Fxr+ur)=——(—k>+pur)
% %

k2
=——r.
I
Equating the two expressions of r-e we get
k2
po Mmoo (6.14)
1+ecos f

This is the general equation of a conic section in polar
coordinates (Fig. 6.4; see Appendix A.2 for a brief sum-
mary of conic sections). The magnitude of e gives the
eccentricity of the conic:

e=0 circle ,
0<e<1 ellipse,
e=1 parabola,
e>1 hyperbola .

Inspecting (6.14), we find that r attains its minimum
when f =0, i.e. in the direction of the vector e. Thus,
e indeed points to the direction of the perihelion.

Starting with Newton’s laws, we have thus managed
to prove Kepler’s first law:

The orbit of a planet is an ellipse, one focus of
which is in the Sun.

Without any extra effort, we have shown that also
other conic sections, the parabola and hyperbola, are
possible orbits.

6.4 Orbital Elements

We have derived a set of integrals convenient for study-
ing the dynamics of orbital motion. We now turn to
another collection of constants more appropriate for de-
scribing the geometry of the orbit. The following six
quantities are called the orbital elements (Fig. 6.5):

— semimajor axis 4,
— eccentricity e,
— inclination i (or ¢),



6.4 Orbital Elements

b) k

Ecliptic

Perihelion

Ascending
node

Fig. 6.5a—c. Six integration constants are needed to describe
a planet’s orbit. These constants can be chosen in various
ways. (a) If the orbit is to be computed numerically, the sim-
plest choice is to use the initial values of the radius and velocity
vectors. (b) Another possibility is to use the angular momen-
tum k, the direction of the perihelion e (the length of which

— longitude of the ascending node £2,
— argument of the perihelion w,
— time of the perihelion 7.

The eccentricity is obtained readily as the length of
the vector e. From the equation of the orbit (6.14), we
see that the parameter (or semilatus rectum) of the orbit
is p=k?/u. But the parameter of a conic section is
always a|l —e?|, which gives the semimajor axis, if
e and k are known:

2/

a= e
By applying (6.13), we get an important relation
between the size of the orbit and the energy integral /:

(6.15)

—u/2h , if the orbit is an ellipse,
w/2h,

For a bound system (elliptical orbit), the total energy
and the energy integral are negative. For a hyperbolic
orbit & is positive; the kinetic energy is so high that
the particle can escape the system (or more correctly,
recede without any limit). The parabola, with & = 0, is
a limiting case between elliptical and hyperbolic orbits.
In reality parabolic orbits do not exist, since hardly
any object can have an energy integral exactly zero.

(6.16)

a—=
if the orbit is a hyperbola .

gives the eccentricity), and the perihelion time t. (¢) The
third method best describes the geometry of the orbit. The
constants are the longitude of the ascending node 2, the argu-
ment of perihelion w, the inclination i, the semimajor axis a,
the eccentricity e and the time of perihelion t

However, if the eccentricity is very close to one (as with
many comets), the orbit is usually considered parabolic
to simplify calculations.

The orientation of the orbit is determined by the di-
rections of the two vectors k (perpendicular to the orbital
plane) and e (pointing towards the perihelion). The three
angles 7, £2 and w contain the same information.

The inclination i gives the obliquity of the orbital
plane relative to some fixed reference plane. For bod-
ies in the solar system, the reference plane is usually
the ecliptic. For objects moving in the usual fashion,
i.e. counterclockwise, the inclination is in the interval
[0°, 90°]; for retrograde orbits (clockwise motion), the
inclination is in the range (90°, 180°]. For example, the
inclination of Halley’s comet is 162°, which means that
the motion is retrograde and the angle between its orbital
plane and the ecliptic is 180° — 162° = 18°.

The longitude of the ascending node, £2, indicates
where the object crosses the ecliptic from south to
north. It is measured counterclockwise from the vernal
equinox. The orbital elements i and 2 together de-
termine the orientation of the orbital plane, and they
correspond to the direction of k, i.e. the ratios of its
components.

The argument of the perihelion w gives the direction
of the perihelion, measured from the ascending node
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in the direction of motion. The same information is
contained in the direction of e. Very often another angle,
the longitude of the perihelion @ (pronounced as pi), is
used instead of w. It is defined as

o =2+w. 6.17)

This is a rather peculiar angle, as it is measured partly
along the ecliptic, partly along the orbital plane. How-
ever, it is often more practical than the argument of
perihelion, since it is well defined even when the incli-
nation is close to zero in which case the direction of the
ascending node becomes indeterminate.

We have assumed up to this point that each planet
forms a separate two-body system with the Sun. In
reality planets interfere with each other by disturb-
ing each other’s orbits. Still their motions do not
deviate very far from the shape of conic sections,
and we can use orbital elements to describe the or-
bits. But the elements are no longer constant; they
vary slowly with time. Moreover, their geometric in-
terpretation is no longer quite as obvious as before.
Such elements are osculating elements that would de-
scribe the orbit if all perturbations were to suddenly
disappear. They can be used to find the positions
and velocities of the planets exactly as if the ele-
ments were constants. The only difference is that we
have to use different elements for each moment of
time.

Table C.12 (at the end of the book) gives the mean or-
bital elements for the nine planets for the epoch J2000.0
as well as their first time derivatives. In addition to these
secular variations the orbital elements suffer from peri-
odic disturbations, which are not included in the table.
Thus only approximate positions can be calculated with
these elements. Instead of the time of perihelion the
table gives the mean longitude

L=M+w+$, (6.18)

which gives directly the mean anomaly M (which will
be defined in Sect. 6.7).

6.5 Kepler's Second and Third Law

The radius vector of a planet in polar coordinates is
simply

r=ré,, (6.19)

where €, is a unit vector parallel with r (Fig. 6.6). If the
planet moves with angular velocity f, the direction of
this unit vector also changes at the same rate:

é = fey, (6.20)
where &; is a unit vector perpendicular to &,. The veloc-
ity of the planet is found by taking the time derivative
of (6.19):

F= e, +ré, =ié,+rfés . 6.21)
The angular momentum k can now be evaluated using
(6.19) and (6.21):

k=rxr=rfe,, (6.22)
where €, is a unit vector perpendicular to the orbital
plane. The magnitude of k is

k=rf. (6.23)

The surface velocity of a planet means the area swept
by the radius vector per unit of time. This is obviously
the time derivative of some area, so let us call it A. In
terms of the distance r and true anomaly f, the surface
velocity is

. 1,.
Azil"zf.

(6.24)

Fig. 6.6. Unit vectors &, and € ; of the polar coordinate frame.
The directions of these change while the planet moves along
its orbit



6.5 Kepler’s Second and Third Law

By comparing this with the length of k (6.23), we find
that

A |
A=—k. (6.25)
2
Since k is constant, so is the surface velocity. Hence we
have Kepler’s second law:

The radius vector of a planet sweeps equal areas
in equal amounts of time.

Since the Sun—planet distance varies, the orbital ve-
locity must also vary (Fig. 6.7). From Kepler’s second
law it follows that a planet must move fastest when it is
closest to the Sun (near perihelion). Motion is slowest
when the planet is farthest from the Sun at aphelion.

We can write (6.25) in the form

1
dA = Ek dr, (6.26)
and integrate over one complete period:
. P
/ dA = Ek/dt’ 6.27)
orbital ellipse 0

where P is the orbital period. Since the area of the
ellipse is

wab = ma*y/1—e?,

(6.28)

13
F

Fig.6.7. The areas of the shaded sectors of the ellipse are
equal. According to Kepler’s second law, it takes equal times
to travel distances AB, CD and EF

where a and b are the semimajor and semiminor axes
and e the eccentricity, we get

1
ma*y/1—e? = EkP )

To find the length of k, we substitute the energy inte-
gral & as a function of semimajor axis (6.16) into (6.13)
to get

(6.29)

k=+/G(m+maa (1—e?). (6.30)
When this is substituted into (6.29) we have
4 2
S LA 6.31)
G(my +my)

This is the exact form of Kepler’s third law as derived
from Newton’s laws. The original version was

The ratio of the cubes of the semimajor axes of
the orbits of two planets is equal to the ratio of
the squares of their orbital periods.

In this form the law is not exactly valid, even for
planets of the solar system, since their own masses in-
fluence their periods. The errors due to ignoring this
effect are very small, however.

Kepler’s third law becomes remarkably simple if
we express distances in astronomical units (AU), times
in sidereal years (the abbreviation is unfortunately a,
not to be confused with the semimajor axis, denoted
by a somewhat similar symbol a) and masses in solar
masses (Mg). Then G = 47? and

a® = (my +my)P? . (6.32)

The masses of objects orbiting around the Sun can safely
be ignored (except for the largest planets), and we have
the original law P2 = a®. This is very useful for deter-
mining distances of various objects whose periods have
been observed. For absolute distances we have to mea-
sure at least one distance in metres to find the length
of one AU. Earlier, triangulation was used to measure
the parallax of the Sun or a minor planet, such as Eros,
that comes very close to the Earth. Nowadays, radiote-
lescopes are used as radar to very accurately measure,
for example, the distance to Venus. Since changes in
the value of one AU also change all other distances, the
International Astronomical Union decided in 1968 to
adopt the value 1 AU = 1.496000 x 10! m. The semi-
major axis of Earth’s orbit is then slightly over one AU.
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But constants tend to change. And so, after 1984, the
astronomical unit has a new value,

1 AU = 1.49597870 x 10" m .

Another important application of Kepler’s third law
is the determination of masses. By observing the period
of a natural or artificial satellite, the mass of the central
body can be obtained immediately. The same method
is used to determine masses of binary stars (more about
this subject in Chap. 9).

Although the values of the AU and year are accu-
rately known in Sl-units, the gravitational constant is
known only approximately. Astronomical observations
give the product G (m 4+ m,), but there is no way to dis-
tinguish between the contributions of the gravitational
constant and those of the masses. The gravitational con-
stant must be measured in the laboratory; this is very
difficult because of the weakness of gravitation. There-
fore, if a precision higher than 2—3 significant digits is
required, the SI-units cannot be used. Instead we have
to use the solar mass as a unit of mass (or, for example,
the Earth’s mass after Gmg has been determined from
observations of satellite orbits).

6.6 Systems of Several Bodies

This far we have discussed systems consisting of only
two bodies. In fact it is the most complex system for
which a complete solution is known. The equations of
motion are easily generalized, though. As in (6.5) we

get the equation of motion for the body k, k=1, ... ,n:
= r—r
Bo= Y Gmi——— (6.33)
i=1i%k Iri —nef?

where m; is the mass of the ith body and 7; its radius
vector. On the right hand side of the equation we now
have the total gravitational force due to all other objects,
instead of the force of just one body. If there are more
than two bodies, these equations cannot be solved ana-
Iytically in a closed form. The only integrals that can be
easily derived in the general case are the total energy,
total momentum, and total angular momentum.

If the radius and velocity vectors of all bodies are
known for a certain instant of time, the positions at
some other time can easily be calculated numerically

from the equations of motion. For example, the plan-
etary positions needed for astronomical yearbooks are
computed by integrating the equations numerically.

Another method can be applied if the gravity of
one body dominates like in the solar system. Plan-
etary orbits can then be calculated as in a two-body
system, and the effects of other planets taken into ac-
count as small perturbations. For these perturbations
several series expansions have been derived.

The restricted three-body problem is an extensively
studied special case. It consists of two massive bodies or
primaries, moving on circular orbits around each other,
and a third, massless body, moving in the same plane
with the primaries. This small object does in no way
disturb the motion of the primaries. Thus the orbits of
the massive bodies are as simple as possible, and their
positions are easily computed for all times. The problem
is to find the orbit of the third body. It turns out that there
is no finite expression for this orbit.

The Finnish astronomer Karl Frithiof Sundman
(1873-1949) managed to show that a solution exists
and derive a series expansion for the orbit. The series
converges so slowly that it has no practical use, but as
a mathematical result it was remarkable, since many
mathematicians had for a long time tried to attack the
problem without success.

Ly

L3 Ly L>

Ls

Fig. 6.8. The Lagrangian points of the restricted three-body
problem. The points L, Ly and L3 are on the same line with
the primaries, but the numbering may vary. The points Ly
and L5 form equilateral triangles with the primaries



6.8 Position in the Orbit

The three-body problem has some interesting special
solutions. It can be shown that in certain points the third
body can remain at rest with respect to the primaries.
There are five such points, known as the Lagrangian
points Ly, ..., Ls (Fig. 6.8). Three of them are on the
straight line determined by the primaries. These points
are unstable: if a body in any of these points is disturbed,
it will escape. The two other points, on the other hand,
are stable. These points together with the primaries form
equilateral triangles. For example, some asteroids have
been found around the Lagrangian points L4 and Ls of
Jupiter and Mars. The first of them were named after
heroes of the Trojan war, and so they are called Trojan
asteroids. They move around the Lagrangian points and
can actually travel quite far from them, but they can-
not escape. Fig.7.56 shows two distinct condensations
around the Lagrangian points of Jupiter.

6.7 Orbit Determination

Celestial mechanics has two very practical tasks:
to determine orbital elements from observations and
to predict positions of celestial bodies with known
elements. Planetary orbits are already known very ac-
curately, but new comets and minor planets are found
frequently, requiring orbit determination.

The first practical methods for orbit determination
were developed by Johann Karl Friedrich Gauss (1777-
1855) at the beginning of the 19th century. By that time
the first minor planets had been discovered, and thanks
to Gauss’s orbit determinations, they could be found
and observed at any time.

At least three observations are needed for computing
the orbital elements. The directions are usually mea-
sured from pictures taken a few nights apart. Using
these directions, it is possible to find the corresponding
absolute positions (the rectangular components of the
radius vector). To be able to do this, we need some
additional constraints on the orbit; we must assume
that the object moves along a conic section lying in
a plane that passes through the Sun. When the three ra-
dius vectors are known, the ellipse (or some other conic
section) going through these three points can be de-
termined. In practice, more observations are used. The
elements determined are more accurate if there are more
observations and if they cover the orbit more completely.

Although the calculations for orbit determination are
not too involved mathematically, they are relatively
long and laborious. Several methods can be found in
textbooks of celestial mechanics.

6.8 Position in the Orbit

Although we already know everything about the geom-
etry of the orbit, we still cannot find the planet at a given
time, since we do not know the radius vector r as a func-
tion of time. The variable in the equation of the orbit is
an angle, the true anomaly f, measured from the perihe-
lion. From Kepler’s second law it follows that f cannot
increase at a constant rate with time. Therefore we need
some preparations before we can find the radius vector
at a given instant.

The radius vector can be expressed as

r=a(cos E —e)i +bsinEjf , (6.34)
where i and f are unit vectors parallel with the major and
minor axes, respectively. The angle E is the eccentric
anomaly; its slightly eccentric definition is shown in
Fig.6.9. Many formulas of elliptical motion become
very simple if either time or true anomaly is replaced

A

Fig. 6.9. Definition of the eccentric anomaly E. The planet is
at P, and r is its radius vector
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by the eccentric anomaly. As an example, we take the
square of (6.34) to find the distance from the Sun:

rr=r-r
=a’(cos E —e)> 4+ b*sin’ E
= a%[(cos E —e)2 + (1 — e*) (1 —cos? E)]

= a2[1 —2ecos E + ¢ cos? E],
whence

r=a(l—ecoskE). (6.35)

Our next problem is to find how to calculate E for
a given moment of time. According to Kepler’s second
law, the surface velocity is constant. Thus the area of
the shaded sector in Fig. 6.10 is

I—1
A = mab ,
P

(6.36)

where ¢ — 7 is the time elapsed since the perihelion, and
P is the orbital period. But the area of a part of an
ellipse is obtained by reducing the area of the corre-
sponding part of the circumscribed circle by the axial
ratio b/a. (As the mathematicians say, an ellipse is an

asin E

Fig. 6.10. The area of the shaded sector equals b/a times the
area SP’'X. S =the Sun, P =the planet, X = the perihelion

affine transformation of a circle.) Hence the area of SPX
is

b
A = - (areaof SP'X)
a

b
= - (area of the sector CP'X
a

— area of the triangle CP’S)

b (1 1 .
=-\|-a-aFE—-ae-asinE
a \2 2

1
:-Zab(E—esinE).

By equating these two expressions for the area A, we
get the famous Kepler’s equation,

E—esine=M, (6.37)
where
2
M = -i)-(t —17) (6.38)

is the mean anomaly of the planet at time ¢. The
mean anomaly increases at a constant rate with time.
It indicates where the planet would be if it moved in
a circular orbit of radius a. For circular orbits all three
anomalies f, E, and M are always equal.

If we know the period and the time elapsed after the
perihelion, we can use (6.38) to find the mean anomaly.
Next we must solve for the eccentric anomaly from
Kepler’s equation (6.37). Finally the radius vector is
given by (6.35). Since the components of r expressed
in terms of the true anomaly are r cos f and r sin f, we
find

a(cos E—e) cosE—e
COS | =m=--=-=-=-=----~- = -1 ------ E-'
r —ecos
. (6.39)
. bsin E ----  sinE
sin f = ------ =V1-e2-- -2
l—ecos E

These determine the true anomaly, should it be of
interest.

Now we know the position in the orbital plane.
This must usually be transformed to some other pre-
viously selected reference frame. For example, we may
want to know the ecliptic longitude and latitude, which
can later be used to find the right ascension and dec-
lination. These transformations belong to the realm
of spherical astronomy and are briefly discussed in
Examples 6.5-6.7.



6.9 Escape Velocity

6.9 Escape Velocity

If an object moves fast enough, it can escape from the
gravitational field of the central body (to be precise:
the field extends to infinity, so the object never re-
ally escapes, but is able to recede without any limit).
If the escaping object has the minimum velocity allow-
ing escape, it will have lost all its velocity at infinity
(Fig. 6.11). There its kinetic energy is zero, since v = 0,
and the potential energy is also zero, since the distance r
is infinite. At infinite distance the total energy as well as
the energy integral i are zero. The law of conservation
of energy gives, then:

(6.40)

where R is the initial distance at which the object is
moving with velocity v. From this we can solve the
escape velocity:

o 2_,u_ 2G(m; +my)
VRN R '

For example on the surface of the Earth, v, is about
11 km/s (if my K mg).

The escape velocity can also be expressed using the
orbital velocity of a circular orbit. The orbital period P
as a function of the radius R of the orbit and the orbital
velocity v, is

(6.41)

2R
P= .

Uc

Fig.6.11. A projectile is
shot horizontally from

a mountain on an atmo-
sphereless planet. If the
initial velocity is small, the
orbit is an ellipse whose
pericentre is inside the
planet, and the projectile
will hit the surface of the
planet. When the velocity
is increased, the pericentre
moves outside the planet.
When the initial velocity
is v, the orbit is circular. If
the velocity is increased fur-
ther, the eccentricity of the
orbit grows again and the
pericentre is at the height
of the cannon. The apocen-
tre moves further away until
the orbit becomes parabolic
when the initial velocity
is ve. With even higher ve-
locities, the orbit becomes
hyperbolic
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Substitution into Kepler’s third law yields
4n’R? _ 47’ R3
v Glmitm)

From this we can solve the velocity v, in a circular orbit
of radius R:

G(my+m3)
vcz,/T.

Comparing this with the expression (6.41) of the escape
velocity, we see that

ve:\/zvc.

(6.42)

(6.43)

6.10 Virial Theorem

If a system consists of more than two objects, the equa-
tions of motion cannot in general be solved analytically
(Fig. 6.12). Given some initial values, the orbits can, of
course, be found by numerical integration, but this does
not tell us anything about the general properties of all
possible orbits. The only integration constants available
for an arbitrary system are the total momentum, angular
momentum and energy. In addition to these, it is pos-
sible to derive certain statistical results, like the virial
theorem. It concerns time averages only, but does not
say anything about the actual state of the system at some
specified moment.

Suppose we have a system of n point masses m; with
radius vectors r; and velocities ;. We define a quantity A
(the ““virial” of the system) as follows:

n
A= E mii',"r,'.

i=1

(6.44)

The time derivative of this is

A= Z(mii“i FiHmif;er) .

i=1

(6.45)

The first term equals twice the kinetic energy of the
ith particle, and the second term contains a factor m;#;
which, according to Newton’s laws, equals the force
applied to the ith particle. Thus we have

A=2T+ZF}-ri, (6.46)

i=1

st

Fig. 6.12. When a system consists of more than two bodies, the
equations of motion cannot be solved analytically. In the solar
system the mutual disturbances of the planets are usually small
and can be taken into account as small perturbations in the or-
bital elements. K.F. Sundman designed a machine to carry out
the tedious integration of the perturbation equations. This ma-
chine, called the perturbograph, is one of the earliest analogue
computers; unfortunately it was never built. Shown is a design
for one component that evaluates a certain integral occurring in
the equations. (The picture appeared in K.F. Sundman’s paper
in Festskrift tillegnad Anders Donner in 1915.)

where T is the total kinetic energy of the system. If (x)
denotes the time average of x in the time interval [0, 7],
we have

. [ "
(A):;/Adt=<2T>+<ZFi'ri> . (6.47)

0 i=1



6.11 The Jeans Limit

If the system remains bounded, i. e. none of the particles
escapes, all r;’s as well as all velocities will remain
bounded. In such a case, A does not grow without limit,
and the integral of the previous equation remains finite.
When the time interval becomes longer (1 — 00), (A)
approaches zero, and we get

(ﬂ»+<§i£}n>=o.

i=1

(6.48)

This is the general form of the virial theorem. If the
forces are due to mutual gravitation only, they have the
expressions

n
ri—rj
Fi=—-Gm; E mj—s—,
j=tj#i T

(6.49)

where r;; = |r; — r;|. The latter term in the virial theorem
is now

n n n
ri—r;
E E'Y‘,’:—G E E m;nm; 3 - b

i=1 i=1 j=1,j#i Fij
n n
r,-—rj
=—G§ E mimjr—3'(ri—rj),
i=1 j=i+1 ij

where the latter form is obtained by rearranging the
double sum, combining the terms

r,-—rj
m;m ; 3 4
ri
and
Fi—7 o
J ! — e L o(—p.
mjm;———-rj =mm;——s (=rj) .
Vi ij

: 2
Since (r; —rj)-(r; —rj) = ri; the sum reduces to
n n
m;m;
-G E E —=U,
o
i=1 j=i+1 Y

where U is the potential energy of the system. Thus, the
virial theorem becomes simply

(6.50)

6.11 The Jeans Limit

We shall later study the birth of stars and galaxies. The
initial stage is, roughly speaking, a gas cloud that begins
to collapse due to its own gravitation. If the mass of the
cloud is high enough, its potential energy exceeds the
kinetic energy and the cloud collapses. From the virial
theorem we can deduce that the potential energy must be
atleast twice the kinetic energy. This provides a criterion
for the critical mass necessary for the cloud of collapse.
This criterion was first suggested by Sir James Jeans in
1902.

The critical mass will obviously depend on the
pressure P and density p. Since gravitation is the
compressing force, the gravitational constant G will
probably also enter our expression. Thus the critical
mass is of the form

M = CPGbp° (6.51)

where C is a dimensionless constant, and the constants
a, b and c are determined so that the right-hand side
has the dimension of mass. The dimension of pressure
iskgm~! s72, of gravitational constant kg~' m*s=2 and
of density kg m~>. Thus the dimension of the right-hand
side is

kg(a7b+c) m(—at3b-3¢) ((~2a-2b)

Since this must be kilograms ultimately, we get the
following set of equations:

a—b+c=1, —a+3b—3c=0

—2a—-2b=0.

The solution of this is a =3/2, b= —3/2 and ¢ = —2.
Hence the critical mass is
p3/2

MJ:CGTW

(6.52)
This is called the Jeans mass. In order to determine the
constant C, we naturally must calculate both kinetic and
potential energy. Another method based on the propa-
gation of waves determines the diameter of the cloud,
the Jeans length Ay, by requiring that a disturbance of
size Aj grow unbounded. The value of the constant C
depends on the exact form of the perturbation, but its
typical values are in the range [1/m, 2]. We can take
C =1 as well, in which case (6.52) gives a correct or-
der of magnitude for the critical mass. If the mass of
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a cloud is much higher than Mj, it will collapse by its
own gravitation.

In (6.52) the pressure can be replaced by the kinetic
temperature T of the gas (see Sect. 5.8 for a definition).
According to the kinetic gas theory, the pressure is

P =nkTy (6.53)

where n is the number density (particles per unit vol-
ume) and k is Boltzmann’s constant. The number density
is obtained by dividing the density of the gas p by the
average molecular weight p:

n=p/uL,
whence
P = pkTx/ 1k .

By substituting this into (6.52) we get
KT \Y? 1
My=C|— —.
uG P

* Newton’s Laws

(6.54)

1. In the absence of external forces, a particle will
remain at rest or move along a straight line with
constant speed.

2. The rate of change of the momentum of a particle is
equal to the applied force F:

) d( )=F
= —(mv) = .
4 dr

3. If particle A exerts a force F on another particle B,
B will exert an equal but opposite force —F on A.

If several forces F, F», ... are applied on a particle,
the effect is equal to that caused by one force F which
is the vector sum of the individual forces (F = F; + F,
+...).

Law of gravitation: If the masses of particles A and B
are m, and mp and their mutual distance r, the force
exerted on A by B is directed towards B and has the mag-
nitude Gm 4 mp/r?, where G is a constant depending
on the units chosen.

Newton denoted the derivative of a function f by f
and the integral function by f’. The corresponding no-
tations used by Leibniz were df/dr and [ fdx. Of

Newton’s notations, only the dot is still used, always
signifying the time derivative: f = d f/dz. For example,
the velocity 7 is the time derivative of r, the acceleration
¥ its second derivative, etc.

6.12 Examples

Example 6.1 Find the orbital elements of Jupiter on
August 23, 1996.

The Julian date is 2,450,319, hence from (6.17), T =
—0.0336. By substituting this into the expressions of
Table C.12, we get

a=>5.2033,

e =0.0484,

i =1.3053°,

2 =100.5448°,

w = 14.7460° ,

L = —67.460° =292.540° .

From these we can compute the argument of perihelion
and mean anomaly:

w=w — 2= —85.7988° =274.201°,
M=L—-w = —822060° =277.794° .

Example 6.2 Orbital Velocity

a) Comet Austin (1982g) moves in a parabolic orbit.
Find its velocity on October 8, 1982, when the distance
from the Sun was 1.10 AU.

The energy integral for a parabola is & = 0. Thus
(6.11) gives the velocity v:

2G M,

r r

2x4n?x1
=\ =g = 847122AU/a

847722 x 1496 x 10! m
T 365.2564 x 24 x 3600 s

~40km/s .

b) The semimajor axis of the minor planet 1982 RA is
1.568 AU and the distance from the Sun on October 8§,
1982, was 1.17 AU. Find its velocity.
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The energy integral (6.16) is now

h=—un/2a.
Hence

1

Lo m__ 1

2 r 2a

which gives

2 1

= [4n? | — — ——
1.17 1.568

— 6.5044 AU/a~ 31 km/s .

Example 6.3 In an otherwise empty universe, two
rocks of 5 kg each orbit each other at a distance of 1 m.
What is the orbital period?

The period is obtained from Kepler’s third law:

) 4%’
= G(mi+my)
47?1 2
T 667Tx10 (545
=59x10""¢2,
whence

P =243,000s =2.8d.

Example 6.4 The period of the Martian moon Phobos
is 0.3189 d and the radius of the orbit 9370 km. What is
the mass of Mars?

First we change to more appropriate units:

P =0.3189d =0.0008731 sidereal years ,
a=9370km = 6.2634 x 107> AU .

Equation (6.32) gives (it is safe to assume that mppopos <<
MMars)

Mytars = @° / P? = 0.000000322 M,
(~0.107 Mg) .

Example 6.5 Derive formulas for a planet’s heliocen-
tric longitude and latitude, given its orbital elements and
true anomaly.

We apply the sine formula to the spherical triangle
of the figure:

sin 8 . sin(w+ f)
sin(7/2)

sini
or
sin B = sini sin(w+ f) .
The sine-cosine formula gives
cos(r/2) sin B
= —cosisin(w+ f)cos(A —£2)
+cos(w+ f)sin(A — £2) ,

whence

tan(A — £2) = cositan(w+ f) .

Example 6.6 Find the radius vector and heliocentric
longitude and latitude of Jupiter on August 23, 1996.
The orbital elements were computed in Example 6.1:

a=>5.2033 AU,
e =0.0484,
i =1.3053°,
£2 =100.5448°,
w=274.2012°,

M =277.7940° = 4.8484 rad .
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Since the mean anomaly was obtained directly, we need
not compute the time elapsed since perihelion.

Now we have to solve Kepler’s equation. It cannot be
solved analytically, and we are obliged to take the brute
force approach (also called numerical analysis) in the
form of iteration. For iteration, we write the equation
as

E,.1=M+esinE,,

where E, is the value found in the nth iteration.
The mean anomaly is a reasonable initial guess, Ej.
(N.B.: Here, all angles must be in radians; other-
wise, nonsense results!) The iteration proceeds as
follows:

Eo=M =4.8484

E1 = M +esin EO = 4.8004 s

E2 = M +esin El = 4.8002 s

E3 = M +esin E2 = 4.8002 s
after which successive approximations no longer

change, which means that the solution, accurate to four
decimal places, is

E =4.8002 =275.0°.
The radius vector is

r:a(cosE—e)f—l—a\/l—ezsinEf

=0.2045{ —5.1772 f
and the distance from the Sun,
r=a(l—ecos E) =5.1813 AU .

The signs of the components of the radius vector show
that the planet is in the fourth quadrant. The true
anomaly is

1772

_s.
— arctan —>—"= _ 27030 .
f = arctan =57 0s

Applying the results of the previous example, we find
the latitude and longitude:

sin B = sini sin(w+ f)
=sin 1.3°sin(274.2° +272.3°)
= —0.0026

= B=—0.15°,

tan(A — £2) = cosi tan(w+ f)
=cos 1.3° tan(274.2° +272.3°)
=0.1139
= A=02+186.5°
=100.5° +186.5°
=287.0°.
(We must be careful here; the equation for tan(A — £2)

allows two solutions. If necessary, a figure can be drawn
to decide which is the correct one.)

Example 6.7 Find Jupiter’s right ascension and
declination on August 23, 1996.

In Example 6.6, we found the longitude and lat-
itude, A =287.0°, = —0.15°. The corresponding
rectangular (heliocentric) coordinates are:

x=rcosicosB=1.5154 AU,

y=rsinicos f = —4.9547 AU,
z=rsinf=—0.0133 AU.

Jupiter’s ecliptic coordinates must be transformed to
equatorial ones by rotating them around the x-axis by
an angle ¢, the obliquity of the ecliptic (see *Reduction
of Coordinates, p. 38):

X;=x=1.5154 AU,
Yy=ycose—zsine = —4.5405 AU,
Zy=ysing+zcose= —1.9831 AU.

To find the direction relative to the Earth, we have
to find where the Earth is. In principle, we could repeat
the previous procedure with the orbital elements of the
Earth. Or, if we are lazy, we could pick up the near-
est Astronomical Almanac, which lists the equatorial
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coordinates of the Earth:

Xg = 0.8815 AU,
Yo = —0.4543 AU,
Zgy = —0.1970 AU .

Then the position relative to the Earth is

Xo=X;— Xo = 0.6339 AU,
Yo=Y — Yy = —4.0862 AU,
Zo=2Z)—Ze = —1.7861 AU.

And finally, the right ascension and declination are

a = arctan(Yy/Xo) = 278.82° = 18 h 35 min

Zy
2, 2
JX247?

If the values given by the Astronomical Almanac are
rounded to the same accuracy, the same result is ob-
tained. We should not expect a very precise position
since we have neglected all short-period perturbations
in Jupiter’s orbital elements.

8§ = arctan = —234°.

Example 6.8 Which is easier, to send a probe to the
Sun or away from the Solar system?

The orbital velocity of the Earth is about 30 km/s.
Thus the escape velocity from the Solar system is
V2 x 30 ~ 42 km/s. A probe that is sent from the Earth
already has a velocity equal to the orbital velocity of
the Earth. Hence an extra velocity of only 12 km/s is
needed. In addition, the probe has to escape from the
Earth, which requires 11 km/s. Thus the total velocity
changes are about 23 km/s.

If the probe has to fall to the Sun it has to get rid of the
orbital velocity of the Earth 30 km/s. In this case, too,
the probe has first to be lifted from the Earth. Thus the
total velocity change needed is 41 km/s. This is nearly
impossible with current technology. Therefore a probe
to be sent to the Sun is first directed close to some
planet, and the gravitational field of the planet is used
to accelerate the probe towards its final destination.

Example 6.9 An interstellar hydrogen cloud contains
10 atoms per cm®. How big must the cloud be to collapse
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due to its own gravitation? The temperature of the cloud
is 100 K.

The mass of one hydrogen atom is 1.67 x 107 kg,
which gives a density

p=nu=10"m>x1.67x10"% kg

=1.67x 10" kg/m>.
The critical mass is

M 1.38 x 1072 J/K x 100K 3
T 1.67x 1077 kg x 6.67 x 10~ Nm? kg2

1
X

V1.67 x 1072 kg/m’

~ 1 x 10** kg ~ 5000 M, .

The radius of the cloud is

M
R=" 41—%5x1017m%20pc.
T p

6.13 Exercises

Exercise 6.1 Find the ratio of the orbital velocities at
aphelion and perihelion v, /v,. What is this ratio for the
Earth?

Exercise 6.2 The perihelion and aphelion of the orbit
of Eros are 1.1084 and 1.8078 astronomical units from
the Sun. What is the velocity of Eros when its distance
from the Sun equals the mean distance of Mars?

Exercise 6.3 Find the radius of the orbit of a geosta-
tionary satellite; such a satellite remains always over the
same point of the equator of the Earth. Are there areas
on the surface of the Earth that cannot be seen from any
geostationary satellite? If so, what fraction of the total
surface area?

Exercise 6.4 From the angular diameter of the Sun
and the length of the year, derive the mean density of
the Sun.
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Exercise 6.5 Find the mean, eccentric and true anoma-
lies of the Earth one quarter of a year after the
perihelion.

Exercise 6.6 The velocity of a comet is 5 m/s, when
it is very far from the Sun. If it moved along a straight
line, it would pass the Sun at a distance of 1 AU. Find

the eccentricity, semimajor axis and perihelion distance
of the orbit. What will happen to the comet?

Exercise 6.7 a) Find the ecliptic geocentric radius
vector of the Sun on May 1, 1997 (J = 2450570).

b) What are the declination and right ascension of the
Sun then?



7. The Solar System

he solar system consists of a central star, called the Sun,

eight planets, several dwarf planets, dozens of moons
or satellites, millions of asteroids and Trans-Neptunian
Objects (TNOs), and myriads of comets and meteoroids.

Borders between the categories are not clear. Discov-
eries of new Solar System bodies caused that in 2006
the International Astronomical Union (IAU) in its General
Assembly defined three distinct categories to clarify the
situation:

(1) A planet s a celestial body that: (a) is in orbit around
the Sun, (b) has sufficient mass for its self-gravity to over-
come rigid body forces so that it assumes a hydrostatic
equilibrium (nearly round) shape, and (c) has cleared the
neighbourhood around its orbit.

(2) A dwarf planet or a planetoid is a celestial body
that: (a) is in orbit around the Sun, (b) has sufficient mass
for its self-gravity to overcome rigid body forces so that it
assumes a hydrostatic equilibrium (nearly round) shape,
(c) has not cleared the neighbourhood around its orbit,
and (d) is not a satellite.

(3) All other objects orbiting the Sun shall be referred
to collectively as Small Solar System Bodies. These include
most of the asteroids, Trans-Neptunian Objects, comets,
and other small bodies.

A satellite is a body which orbits the primary body so
that the centre of mass (barycentre) is inside the primary.
If this is not the case, then the system is called a binary
system. For example, in the case of the Earth and Moon
the barycentre of the system is inside the Earth, and the
Moon is Earth’s satellite. In the Pluto-Charon system the
centre of mass is outside Pluto, and therefore they are
called a binary system.

The planets in order from the Sun are: Mercury, Venus,
Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

According to the IAU 2006 definition, Pluto is
a dwarf planet and the prototype of a new category of
Trans-Neptunian objects.

The planets from Mercury to Saturn are bright and well
visible with a naked eye. Uranus and Neptune can be seen
with a pair of binoculars. In addition to the bright planets,
only the brightest comets are visible with a naked eye.

Distances in the solar system are often measured in
astronomical units (AU), the mean distance of the Sun
and Earth. The semimajor axis of the orbit of Mercury is

0.39 AU, and the distance of Neptune is 30 AU. Beyond the
orbit of Neptune there is a huge population of small icy
bodies extending out to tens of thousands AUs. The Solar
System has no obvious outer edge. The distance to the
nearest star, Proxima Centauri is over 270,000 AU.

Gravitation controls the motion of the solar system
bodies. The planetary orbits around the Sun (Fig.7.1) are
almost coplanar ellipses which deviate only slightly from
circles. The orbital planes of asteroids, minor bodies that
circle the Sun mainly between the orbits of Mars and
Jupiter, are often more tilted than the planes of the plane-
tary orbits. Asteroids and distant Trans-Neptunian Objects
revolve inthe same direction as the major planets; comets,
however, may move in the opposite direction. Cometary
orbits can be very elongated, even hyperbolic. Most of the
satellites circle their parent planets in the same direction
as the planet moves around the Sun. Only the motions
of the smallest particles, gas and dust are affected by the
solar wind, radiation pressure and magnetic fields.

The planets can be divided into physically different
groups (see Fig. Fig. 7.2). Mercury, Venus, Earth, and Mars
are called terrestrial (Earth-like) planets; they have a solid
surface, are of almost equal size (diameters from 5000
to 12,000km), and have quite a high mean density
(4000—5000 kg m~3; the density of wateris 1000 kg m—3).
The planets from Jupiter to Neptune are called Jovian
(Jupiter-like) or giant planets. The densities of the giant
planets are about 1000—2000 kg m—3, and most of their
volume is liquid. Diameters are ten times greater than
those of the terrestrial planets.

Dwarf planet Pluto is falling outside this classification.
Pluto is the prototype to the family of icy bodies orbiting
the Sun at the outer edges of the solar system. The dis-
covery of large objects since early 1990’s beyond the orbit
of Neptune raised the question of the status of Pluto. The
discussion culminated in the General Assembly of the IAU
in 2006 when a new planetary definition was accepted.
This reduced the number of major planets to eight.

Mostand mostaccurate solarsystem dataaretoday col-
lected by spacecraft. Many methods used in geosciences
are nowadays applied in planetary studies. Landers have
beensenttoMoon, Venus, Mars,and Saturnian moon Titan
and all major planets, their satellites, and many asteroids
and comets have been studied with spacecraft.

Hannu Karttunen et al. (Eds.), The Solar System.
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Fig.7.1. (a) Planetary orbits from Mercury to Mars. The  Neptune and the dwarf planet Pluto. The arrows indicate the

dashed line represents the part of the orbit below the ecliptic;  distances travelled by the planets during the 10 year interval
the arrows show the distances travelled by the planets dur- ~ 2000-2010.

ing one month (January 2000). (b) Planets from Jupiter to
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Fig. 7.2. Major planets from Mercury to Neptune. Four inner- ~ Relative size of the Sun is shown at left. Planetary distances
most planets are called terrestrial planets and four outermost  to the Sun are not in scale. (The International Astronomical
ones are giant planets. Three dwarf planets are also shown.  Union/Martin Kornmesser)
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7.1 Planetary Configurations

The apparent motions of the planets are quite com-
plicated, partly because they reflect the motion of the
Earth around the Sun (Fig. 7.3). Normally the planets
move eastward (direct motion, counterclockwise as seen
from the Northern hemisphere) when compared with the
stars. Sometimes the motion reverses to the opposite or
retrograde direction. After a few weeks of retrograde
motion, the direction is changed again, and the planet
continues in the original direction. It is quite understand-
able that the ancient astronomers had great difficulties
in explaining and modelling such complicated turns and
loops.

Figure 7.4 explains some basic planetary configura-
tions. A superior planet (planet outside the orbit of the
Earth) is said to be in opposition when it is exactly op-
posite the Sun, i.e. when the Earth is between the planet
and the Sun. When the planet is behind the Sun, it is
in conjunction. In practise, the planet may not be ex-
actly opposite or behind the Sun because the orbits of
the planet and the Earth are not in the same plane. In as-
tronomical almanacs oppositions and conjunctions are
defined in terms of ecliptic longitudes. The longitudes
of a body and the Sun differ by 180° at the moment
of opposition; in conjunction the longitudes are equal.
However, the right ascension is used if the other body is

b)

Fig.7.3. (a) Apparent motion of Mars during the 1995 op-
position. (b) Relative positions of the Earth and Mars. The
projection of the Earth—Mars direction on the infinitely distant
celestial sphere results in (a)

Conjunction

Upper conjunction

Greatest
eastern
elongation

Opposition

Fig. 7.4. Planetary configurations. The angle o (Sun—object—
Earth) is the phase angle and & (Sun—Earth—object) is the
elongation

not the Sun. Those points at which the apparent motion
of a planet turns toward the opposite direction are called
stationary points. Opposition occurs in the middle of the
retrograde loop.

Inferior planets (Mercury and Venus) are never in
opposition. The configuration occurring when either of
these planets is between the Earth and the Sun is called
inferior conjunction. The conjunction corresponding to
that of a superior planet is called upper conjunction or
superior conjunction. The maximum (eastern or west-
ern) elongation, i.e. the angular distance of the planet
from the Sun is 28° for Mercury and 47° for Venus.
Elongations are called eastern or western, depending on
which side of the Sun the planet is seen. The planet is
an “evening star” and sets after the Sun when it is in
eastern elongation; in western elongation the planet is
seen in the morning sky as a “morning star”.

The synodic period is the time interval between two
successive events (e. g. oppositions). The period which
we used in the previous chapters is the sidereal pe-
riod, the true time of revolution around the Sun, unique

133



7. The Solar System

134

for each object. The synodic period depends on the
difference of the sidereal periods of two bodies.

Let the sidereal periods of two planets be P; and P,
(assume that P; < P). Their mean angular velocities
(mean motions) are 2/ P; and 27/ P,. After one syn-
odic period P, the inner planet has made one full
revolution more than the outer planet:

p 2 2wt P 2
— = LTl —_—,
1275 1275
or

1 1 1

Py P P

The angle Sun—planet—Earth is called the phase an-
gle, often denoted by the Greek letter «. The phase
angle is between 0° and 180° in the case of Mercury
and Venus. This means that we can see “full Venus”,
“half Venus”, and so on, exactly as in the phases of the
Moon. The phase angle range for the superior planets is
more limited. For Mars the maximum phase is 41°, for
Jupiter 11°, and for Neptune only 2°.

(7.1)

7.2 Orbit of the Earth
and Visibility of the Sun

The sidereal year is the real orbital period of the Earth
around the Sun. After one sidereal year, the Sun is seen
at the same position relative to the stars. The length
of the sidereal year is 365.256363051 days of 86,400
SI seconds at the epoch J2000.0 = 2000 January 1
12:00:00 TT.

We noted earlier that, owing to precession, the direc-
tion of the vernal equinox moves along the ecliptic at
about 50" per year. This means that the Sun returns to
the vernal equinox before one complete sidereal year
has elapsed. This time interval, called the tropical year,
is 365.24218967 days.

A third definition of the year is based on the perihe-
lion passages of the Earth. Planetary perturbations cause
a gradual change in the direction of the Earth’s perihe-
lion. The time interval between two perihelion passages
is called the anomalistic year, the length of which is
365.259635864 days, a little longer than the sidereal
year. It takes about 21,000 years for the perihelion to
revolve 360° relative to the vernal equinox.

The equator of the Earth is tilted about 23.5° with
respect to the ecliptic. Owing to perturbations, this angle

changes with time. If periodic terms are neglected, the
obliquity of the ecliptic € can be expressed as:

£ =23°26/21.448" —46.8150"T
—0.00059"72 +0.001813"77 ,

where T is the time elapsed since the epoch 2000.0 in
Julian centuries (see Sect. 2.14). The expression is valid
for a few centuries before and after the year 2000. The
obliquity varies between 22.1° and 24.5° with a 41,000
year periodicity. At present the tilt is decreasing. There
are also small short term variations, the nutation.

The declination of the Sun varies between —¢ and +¢
during the year. At any given time, the Sun is seen
at zenith from one point on the surface of the Earth.
The latitude of this point is the same as the declination
of the Sun. At the latitudes —e (the Tropic of Capri-
corn) and +¢ (the Tropic of Cancer), the Sun is seen
at zenith once every year, and between these latitudes
twice a year. In the Northern hemisphere the Sun will
not set if the latitude is greater than 90° — §, where § is
the declination of the Sun.

The southernmost latitude where the midnight Sun
can be seen is thus 90° — & = 66.55°. This is called
the Arctic Circle. (The same holds true in the South-
ern hemisphere.) The Arctic Circle is the southernmost
place where the Sun is (in theory) below the horizon
during the whole day at the winter solstice. The sunless
time lasts longer and longer when one goes north (south
in the Southern hemisphere). At the poles, day and night
last half a year each. In practise, refraction and location
of the observing site will have a large influence on the
visibility of the midnight Sun and the number of sun-
less days. Because refraction raises objects seen at the
horizon, the midnight Sun can be seen a little further
south than at the Arctic Circle. For the same reason the
Sun can be seen simultaneously at both poles around
the time of vernal and autumnal equinox.

The eccentricity of the Earth’s orbit is about 0.0167.
The distance from the Sun varies between 147-152
million km. The flux density of solar radiation varies
somewhat at different parts of the Earth’s orbit, but this
has practically no effect on the seasons. In fact the Earth
is at perihelion in the beginning of January, in the middle
of the northern hemisphere’s winter. The seasons are due
to the obliquity of the ecliptic.

The energy received from the Sun depends on three
factors. First the flux per unit area is proportional to

(7.2)
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sin a, where a is the altitude of the Sun. In summer the
altitude can have greater values than in winter, giving
more energy per unit area. Another effect is due to
the atmosphere: When the Sun is near the horizon, the
radiation must penetrate thick atmospheric layers. This
means large extinction and less radiation at the surface.
The third factor is the length of the time the Sun is above
the horizon. This is important at high latitudes, where
the low altitude of the Sun is compensated by the long
daylight time in summer. These effects are discussed in
detail in Example 7.2.

There are also long-term variations in the annual
Solar flux. Serbian geophysicist Milutin Milankovié
(1879-1958) published in the 1930’s and 1940’s his the-
ory of ice ages. During last 2-3 million years, large ice
ages have been repeated approximately every 100,000
years. He proposed that variations of the Earth’s orbit
cause long-term periodic climate change, now known as
Milankovic cycles. Milankovi¢ claimed that the cycles in
eccentricity, direction of the perigee, obliquity, and pre-
cession result in 100,000 year ice age cycle. The cycle
of precession is 26,000 years, direction of the perigee
relative to the equinoxes is 22,000 years, and the oblig-
uity of the ecliptic has a 41,000 year cycle. Changes in
orbital eccentricity are not fully periodic but some peri-
ods above 100,000 years can be found. The eccentricity
varies between 0.005-0.058 and is currently 0.0167.

The annual incoming Solar flux varies with these
orbital changes and the effect is largest at high lati-
tudes. If, for example, the eccentricity is high, and the
Earth is near the apogee during the hemisphere’s win-
ter, then winters are long and cold and summers are
short. However, the theory is controversial, orbital forc-
ing on the climate change is not well understood, and
probably not enough to trigger glaciation. There ex-
ist also positive feedback loops, like the effect of low
albedo of snow and ice. It means that ice reflects more
radiation back into space, thus cooling the climate. The
system is highly chaotic so that even minor changes in
the primary conditions will result in large differences
in the outcome. There are also other effects causing
climate change, including emerging gases from large
lava flows and eruptions of volcanos and, nowadays,
anthropogenic reasons.

The future is also uncertain. Some theories predict
that the warm period will continue next 50,000 years,
whereas others conclude that the climate is already

cooling. Anthropogenic reasons, like ever increasing
fraction of green house gases, e.g. carbon dioxide, will
change the short-term predictions.

7.3 The Orbit of the Moon

The Earth’s satellite, the Moon, circles the Earth coun-
terclockwise. One revolution, the sidereal month, takes
about 27.322 days. In practise, a more important period
is the synodic month, the duration of the Lunar phases
(e. g. from full moon to full moon). In the course of one
sidereal month the Earth has travelled almost 1/12 of
its orbit around the Sun. The Moon still has about 1,/12
of its orbit to go before the Earth-Moon—Sun configu-
ration is again the same. This takes about 2 days, so the
phases of the Moon are repeated every 29 days. More
exactly, the length of the synodic month is 29.531 days.

The new moon is that instant when the Moon is in
conjunction with the Sun. Almanacs define the phases of
the Moon in terms of ecliptic longitudes; the longitudes
of the new moon and the Sun are equal. Usually the new
moon is slightly north or south of the Sun because the
lunar orbit is tilted 5° with respect to the ecliptic.

About 2 days after the new moon, the waxing crescent
moon can be seen in the western evening sky. About
1 week after the new moon, the first quarter follows,
when the longitudes of the Moon and the Sun differ
by 90°. The right half of the Moon is seen lit (left
half when seen from the Southern hemisphere). The
Jfull moon appears a fortnight after the new moon, and
1 week after this the last quarter. Finally the waning
crescent moon disappears in the glory of the morning
sky.

The orbit of the Moon is approximately elliptic. The
length of the semimajor axis is 384,400 km and the ec-
centricity 0.055. Owing to perturbations caused mainly
by the Sun, the orbital elements vary with time. The
minimum distance of the Moon from the centre of
the Earth is 356,400 km, and the maximum distance
406,700 km. This range is larger than the one calcu-
lated from the semimajor axis and the eccentricity. The
apparent angular diameter is in the range 29.4'-33.5'.

The rotation time of the Moon is equal to the sidereal
month, so the same side of the Moon always faces the
Earth. Such synchronous rotation is common among
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Fig. 7.5. Librations of the Moon can be seen in this pair of photographs taken when the Moon was close to the perigee and the
apogee, respectively. (Helsinki University Observatory)

the satellites of the solar system: almost all large moons
rotate synchronously.

The orbital speed of the Moon varies according to
Kepler’s second law. The rotation period, however, re-
mains constant. This means that, at different phases of
the lunar orbit, we can see slightly different parts of
the surface. When the Moon is close to its perigee, its
speed is greater than average (and thus greater than
the mean rotation rate), and we can see more of the
right-hand edge of the Moon’s limb (as seen from the
Northern hemisphere). Correspondingly, at the apogee
we see “behind” the left edge. Owing to the libration,
a total of 59% of the surface area can be seen from the
Earth (Fig. 7.5). The libration is quite easy to see if one
follows some detail at the edge of the lunar limb.

The orbital plane of the Moon is tilted only about 5° to
the ecliptic. However, the orbital plane changes gradu-
ally with time, owing mainly to the perturbations caused
by the Earth and the Sun. These perturbations cause the
nodal line (the intersection of the plane of the ecliptic

and the orbital plane of the Moon) to make one full rev-
olution in 18.6 years. We have already encountered the
same period in the nutation. When the ascending node
of the lunar orbit is close to the vernal equinox, the
Moon can be 23.5° 4 5° = 28.5° north or south of the
equator. When the descending node is close to the vernal
equinox, the zone where the Moon can be found extends
only 23.5° — 5° = 18.5° north or south of the equator.

The nodical or draconic month is the time in which
the Moon moves from one ascending node back to the
next one. Because the line of nodes is rotating, the nod-
ical month is 3 hours shorter than the sidereal month,
i.e. 27.212 days. The orbital ellipse itself also precesses
slowly. The orbital period from perigee to perigee, the
anomalistic month, is 5.5h longer than the sidereal
month, or about 27.555 days.

Gravitational differences caused by the Moon and
the Sun on different parts of the Earth’s surface give
rise to the tides. Gravitation is greatest at the sub-lunar
point and smallest at the opposite side of the Earth. At
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these points, the surface of the seas is highest (high tide,
flood). About 6 h after flood, the surface is lowest (low
tide, ebb). The tide generated by the Sun is less than half
of the lunar tide. When the Sun and the Moon are in the
same direction with respect to the Earth (new moon) or
opposite each other (full moon), the tidal effect reaches
its maximum,; this is called spring tide.

The sealevel typically varies 1 m, but in some narrow
straits, the difference can be as great as 15 m. Due to
the irregular shape of the oceans, the true pattern of the
oceanic tide is very complicated. The solid surface of
the Earth also suffers tidal effects, but the amplitude is
much smaller, about 30 cm.

Tides generate friction, which dissipates the rota-
tional and orbital kinetic energy of the Earth-Moon
system. This energy loss induces some changes in the
system. First, the rotation of the Earth slows down until
the Earth also rotates synchronously, i.e. the same side
of Earth will always face the Moon. Secondly, the semi-
major axis of the orbit of the Moon increases, and the
Moon drifts away about 3 cm per year.

* Tides

Let the tide generating body, the mass of which is M to
be at point Q at a distance d from the centre of the Earth.
The potential V at the point A caused by the body Q is

GM

V(A) = - (7.3)

where s is the distance of the point A from the body Q.

Applying the cosine law in the triangle OAQ, the
distance s can be expressed in terms of the other sides
and the angle z = AOQ

s> =d*+r*—2drcosz,

where r is the distance of the point A from the centre of
the Earth. We can now rewrite (7.3)
GM

VA2 +rT—2drcosz

V(A) = (7.4)

When the denominator is expanded into a Taylor series

1 1 3
1 2] —— “x2—
(1+x) 2x+8x
where
1’2 r
x = d—2—2—cosz

and ignoring all terms higher than or equal to 1/d* one
obtains

GM GM
V(A) = 4 + ?r cos z

GMr* 1
d—;§(30052Z—1) .

(7.5)

The gradient of the potential V(A) gives a force vec-
tor per mass unit. The first term of (7.5) vanishes, and
the second term is a constant and independent of r.
It represents the central motion. The third term of the
force vector, however, depends on r. It is the main term
of the tidal force. As one can see, it depends inversely
on the third power of the distance d. The tidal forces
are diminished very rapidly when the distance of a body
increases. Therefore the tidal force caused by the Sun
is less than half of that of the Moon in spite of much
greater mass of the Sun.

We may rewrite the third term of (7.5) as

1
Vo =2D (cos2 z— 3) , (7.6)
where
3 r?
D=-GM—
4 a3

is called Doodson’s tidal constant. It’s value for the
Moon is 2.628 m? s~2 and for the Sun 1.208 m” s~2. We
can approximate that z is the zenith angle of the body.
The zenith angle z can be expressed in terms of the hour
angle / and declination ¢ of the body and the latitude ¢
of the observer

cosz =coshcos§cos¢p+sindsing .
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Inserting this into (7.6) we obtain after a lengthy
algebraic operation

Vo= D(COS2 ¢ cos> 8 cos 2h

+sin 2¢ cos 28 cos h

+(3ﬂn2¢—l)(mn2&—§>>

=D(S+T+2).

(7.7)

Equation (7.7) is the traditional basic equation of the
tidal potential, the Laplace’s tidal equation.

In (7.7) one can directly see several characteristics of
tides. The term S causes the semi-diurnal tide because it
depends on cos 2. It has two daily maxima and minima,
separated by 12 hours, exactly as one can obtain in
following the ebb and flood. It reaches its maximum at
the equator and is zero at the poles (cos? ¢).

The term T expresses the diurnal tides (cosh). It
has its maximum at the latitude £45° and is zero at the
equator and at the poles (sin2¢). The third term Z is
independent of the rotation of the Earth. It causes the
long period tides, the period of which is half the or-
bital period of the body (about 14 days in the case of the
Moon and 6 months for the Sun). It is zero at the latitude
+35.27° and has its maximum at the poles. Moreover,
the time average of Z is non-zero, causing a permanent
deformation of the Earth. This is called the permanent
tide. 1t slightly increases the flattening of the Earth and
it is inseparable from the flattening due to the rotation.

The total value of the tidal potential can be computed
simply adding the potentials caused by the Moon and
the Sun. Due to the tidal forces, the whole body of the
Earth is deformed. The vertical motion Ar of the crust
can be computed from

Va
Ar = h? ~0.06 V, [m], (7.8)
where g is the mean free fall acceleration,
g~9.81ms~? and & is a dimensionless number, the
Love number, h ~ 0.6, which describes the elastic-
ity of the Earth. In the picture below, one can see
the vertical motion of the crust in Helsinki, Finland

(¢ =60°, 1 = 25°) in January 1995. The non-zero value
of the temporal mean can already be seen in this picture.
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The tides have other consequences, too. Because the
Earth rotates faster than the Moon orbits the Earth, the
tidal bulge does not lie on the Moon—Earth line but is
slightly ahead (in the direction of Earth’s rotation), see
below.

Due to the drag, the rotation of the Earth slows
down by about 1-2 ms per century. The same reason
has caused the Moon’s period of rotation to slow down
to its orbital period and the Moon faces the same side to-
wards the Earth. The misaligned bulge pulls the Moon
forward. The acceleration causes the increase in the
semimajor axis of the Moon, about 3 cm per year.

7.4 Eclipses and Occultations
An eclipse is an event in which a body goes through
the shadow of another body. The most frequently ob-
served eclipses are the lunar eclipses and the eclipses
of the large satellites of Jupiter. An occultation takes
place when an occulting body goes in front of another
object; typical examples are stellar occultations caused
by the Moon. Generally, occultations can be seen only
in a narrow strip; an eclipse is visible wherever the body
is above the horizon.

Solar and lunar eclipses are the most spectacular
events in the sky. A solar eclipse occurs when the Moon
is between the Earth and the Sun (Fig. 7.6). (According
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a) Total solar eclipse

Penumbra

b) Annular solar eclipse

———EN )

¢) Lunar eclipse

Penumbra

Fig.7.6. (a) A total solar eclipse can be seen only inside
anarrow strip; outside the zone of totality the eclipse is partial.
(b) An eclipse is annular if the Moon is at apogee from where
the shadow of the Moon does not reach the Earth. (¢) A lunar
eclipse is visible everywhere where the Moon is above the
horizon

Fig.7.7. The total eclipse of the Sun occurred in 1990 over
Finland. (Photo Matti Martikainen)

to the definition, a solar eclipse is not an eclipse but
an occultation!) If the whole disk of the Sun is behind
the Moon, the eclipse is total (Fig.7.7); otherwise, it is
partial. If the Moon is close to its apogee, the apparent
diameter of the Moon is smaller than that of the Sun,
and the eclipse is annular.

A lunar eclipse is total if the Moon is entirely inside
the umbral shadow of the Earth; otherwise the eclipse is
partial. A partial eclipse is difficult to see with the un-
aided eye because the lunar magnitude remains almost
unchanged. During the total phase the Moon is coloured
deep red because some red light is refracted through the
Earth’s atmosphere.

If the orbital plane of the Moon coincided with the
plane of the ecliptic, one solar and one lunar eclipse
would occur every synodic month. However, the plane
is tilted about 5°; therefore, at full moon, the Moon
must be close to the nodes for an eclipse to occur. The
angular distance of the Moon from the node must be
smaller than 4.6° for a total lunar eclipse, and 10.3° for
a total solar eclipse.

Two to seven eclipses occur annually. Usually
eclipses take place in a set of 1-3 eclipses, separated
by an interval of 173 days. In one set there can be just
one solar eclipse or a succession of solar, lunar and an-
other solar eclipse. In one year, eclipses belonging to
2 or 3 such sets can take place.

The Sun and the (ascending or descending)
node of the lunar orbit are in the same direc-
tion once every 346.62 days. Nineteen such periods
(= 6585.78 days = 18 years 11 days) are very close to
the length of 223 synodic months. This means that the
Sun—-Moon configuration and the eclipses are repeated
in the same order after this period. This Saros period
was already known to the ancient Babylonians.

During a solar eclipse the shadow of the Moon on
Earth’s surface is always less than 270 km wide. The
shadow moves at least 34 km/min; thus the maximum
duration of an eclipse is 7% minutes. The maximum
duration of a lunar eclipse is 3.8 h, and the duration of
the total phase is always shorter than 1.7 h.

Observations of the stellar occultations caused by
the Moon formerly served as an accurate method for
determining the lunar orbit. Because the Moon has no
atmosphere, the star disappears abruptly in less than
1/50s. If a fast photometer is used for recording the
event, the typical diffraction pattern can be seen. The
shape of the diffraction is different for a binary star.
In the first decades of radio astronomy the occultations
of some radio sources were used for determining their
exact positions.

The Moon moves eastwards, and stars are occulted
by the dark edge of the Moon during the first quarter.
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Therefore occultation is easier to observe, and photo-
metric measurements are possible; at the same time it
is much more difficult to observe the appearance of
an object. There are some bright stars and planets in-
side the 11° wide zone where the Moon moves, but the
occultation of a bright, naked-eye object is quite rare.

Occultations are also caused by planets and asteroids.
Accurate predictions are complicated because such an
event is visible only in a very narrow path. The Uranian
rings were found during an occultation in 1977, and the
shapes of some asteroids have been studied during some
favourable events, timed exactly by several observers
located along the predicted path.

A transit is an event in which Mercury or Venus
moves across the Solar disk as seen from the Earth.
A transit can occur only when the planet is close to its
orbital node at the time of inferior conjunction. Transits
of Mercury occur about 13 times per century; transits
of Venus only twice. The next transits of Mercury are:
May 9, 2016; Nov 11, 2019; Nov 13, 2032 and Nov 7,
2039. The next transits of Venus are: Jun 6, 2012;
Dec 11, 2117; Dec 8, 2125 and Jun 11, 2247. In the
18th century the two transits of Venus (1761 and 1769)
were used for determining the value of the astronomical
unit.

7.5 The Structure and Surfaces
of Planets

Since the 1960’s a vast amount of data have been col-
lected using spacecraft, either during a flyby, orbiting
a body, or directly landing on the surface. This gives
a great advantage compared to other astronomical ob-
servations. We may even speak of revolution: the solar
system bodies have turned from astronomical objects
to geophysical ones. Many methods traditionally used
in various sibling branches of geophysics can now be
applied to planetary studies.

The shape and irregularities of the gravitation field
generated by a planet reflects its shape, internal structure
and mass distribution. Also the surface gives certain
indications on internal structure and processes.

The perturbations in the orbit of a satellite or space-
craft can be used in studying the internal structure of
a planet. Any deviation from spherical symmetry is
visible in the external gravitational field.

The IAU planet definition states that planets are bod-
ies in hydrostatic equilibrium. Gravity of a body will
pull its material inwards, but the body resist the pull
if the strength of the material is greater than the pres-
sure exerted by the overlying layers. If the diameter is
larger than about 800—1000 km, gravity is able to de-
form rocky bodies into spherical shape. Smaller bodies
than this have irregular shapes. On the other hand, e.g.
icy moons of Saturn are spherical because ice is more
easily deformed than rock.

Hydrostatic equilibrium means that the surface of
the body approximately follows an equipotential sur-
face of gravity. This is true e.g. on the Earth, where the
sea surface very closely follows the equipotential sur-
face called the geoid. Due to internal strength of rocks,
continents can deviate from the geoid surface by a few
kilometers but compared to the diameter of the Earth
the surface topography is negligible.

A rotating planet is always flattened. The amount of
flattening depends on the rotation rate and the strength
of the material; a liquid drop is more easily deformed
than a rock. The shape of a rotating body in hydrostatic
equilibrium can be derived from the equations of mo-
tion. If the rotation rate is moderate, the equilibrium
shape of a liquid body is an ellipsoid of revolution. The
shortest axis is the axis of rotation.

If R. and R, are the equatorial and polar radii, re-
spectively, the shape of the planet can be expressed as

2 2 2
X y Z
St st =1.
R RR

The dynamical flattening, denoted by f is defined as

R.—R,

f= R

(7.9)
Because R. > R, the flattening f is always positive.
The giant planets are in practise close to hydrostatic
equilibrium, and their shape is determined by the rota-
tion. The rotation period of Saturn is only 10.5 h, and
its dynamical flattening is 1/10 which is easily visible.
Asteroids and other minor bodies are so small that
they are not flattened by rotation. However, there is an
upper limit for a rotation rate of an asteroid before it
breaks apart due to centrifugal forces. If we assume
that the body is held together only by gravity, we can
approximate the the maximum rotation rate by setting
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the centrifugal force equal to the gravitational force:

GMm mv?
G

where m is a small test mass on the surface at a dis-

tance of R from the center of the body. Substituting the
rotation period P,

: (7.10)

2R
P=—1,
v
we get
GM  4n’R
R~ P2
or

| R3 | 3 |31
P=2n,/ — =2n = [—. (7.11)
GM 47Gp Gp
If we substitute the density p with the mean density
of terrestrial rocks, i.e. 2700 kg m~3, we get for the
minimum rotation period P & 2 hours.

The structure of the terrestrial planets (Fig.7.8) can
also be studied with seismic waves. The waves formed in
an earthquake are reflected and refracted inside a planet
like any other wave at the boundary of two different
layers. The waves are longitudinal or transversal (P and
S waves, respectively). Both can propagate in solid ma-
terials such as rock. However, only the longitudinal

Fig.7.8. Internal structure and relative sizes of the terrestrial
planets. The percentage shows the volume of the core relative
to the total volume of the planet. In the case of the Earth, the
percentage includes both the outer and the inner core

wave can penetrate liquids. One can determine whether
a part of the interior material is in the liquid state and
where the boundaries of the layers are by studying the
recordings of seismometers placed on the surface of
a planet. Naturally the Earth is the best-known body,
but quakes of the Moon, Venus, and Mars have also
been observed.

The terrestrial planets have an iron-nickel core. Mer-
cury has the relatively largest core; Mars the smallest.
The core of the Earth can be divided into an inner and
an outer core. The outer core (2900-5150 km) is lig-
uid but the inner core (from 5150 km to the centre) is
solid.

Around the Fe—Ni core is a mantle, composed of
silicates (compounds of silicon). The density of the out-
ermost layers is about 3000 kg m~3. The mean density
of the terrestrial planets is 3500-5500 kg m~—>.

The internal structure of the giant planets (Fig.7.9)
cannot be observed with seismic waves since the planets
do not have a solid surface. An alternative is to study the
shape of the gravitational field by observing the orbit of
a spacecraft when it passes (or orbits) the planet. This
will give some information on the internal structure, but
the details depend on the mathematical and physical
models used for interpretation.

Jupiter

Atmosphere
Molecular hydrogen
Metallic hydrogen
Ices

umpes

Snuei()

Fig. 7.9. Internal structure and relative sizes of the giant plan-
ets. Differences in size and distance from the Sun cause
differences in the chemical composition and internal struc-
ture. Due to smaller size, Uranus and Neptune do not have
any layer of metallic hydrogen. The Earth is shown in
scale
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Fig. 7.10. Ages of the surfaces of Mercury, the Earth, the Moon
and Mars. The curve represents the fraction of the surface
which existed at a certain time. Most of the surface of the
Moon, Mercury and Mars are more than 3500 million years
old, whereas the surface of the Earth is mostly younger than
200 million years

Fig.7.11. An example of
resurfacing. Two volcanic
plumes on Jupiter’s moon Io
observed by Galileo space-
craft in 1997. One plume
was captured on the bright
limb or edge of the moon
(inset at upper right), erupt-
ing over a caldera named
Pillan Patera. The plume is
140 kilometers high. The
second plume, seen near
the terminator, is called
Prometheus. The shadow
of the 75 km high airborne
plume can be seen ex-
tending to the right of the
eruption vent. (NASA/JPL)

The mean densities of the giant planets are quite low;
the density of Saturn, for example, is only 700 kg m~3.
(If Saturn were put in a gigantic bathtub, it would float
on the water!) Most of the volume of a giant planet is
a mixture of hydrogen and helium. In the centre, there is
possibly a silicate core, the mass of which is a few Earth
masses. The core is surrounded by a layer of metallic
hydrogen. Due to the extreme pressure, hydrogen is not
in its normal molecular form H,, but dissociated into
atoms. In this state, hydrogen is electrically conducting.
The magnetic fields of the giant planets may originate
in the layer of metallic hydrogen.

Closer to the surface, the pressure is lower and hy-
drogen is in molecular form. The relative thickness of
the layers of metallic and molecular hydrogen vary from
planet to planet. Uranus and Neptune may not have any
layer of metallic hydrogen because their internal pres-
sure is too low for dissociation of the hydrogen. Instead,
a layer of “ices” surround the core. This is a layer of
a water-dominant mixture of water, methane and am-
monia. Under the high pressure and temperature the
mixture is partly dissolved into its components and it
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Fig. 7.12. The number of meteorite impact craters is an indi-
cator of the age of the surface and the shapes of the craters
give information on the strength of the material. The upper
row shows Mercury (left) and the Moon, and the second row,
the Jovian moons Europa (left), Ganymede (centre) and Cal-
listo. The pictures of the Jovian moons were taken by the
Galileo orbiter with a resolution of 150 metres/pixel. Europa
has only a few craters, there are areas of different ages on the
surface Ganymede and the surface of Callisto is the oldest.

Note the grooves and ridges that indicate different geologi-
cal processes. IN the bottom there are two volcanic plumes on
Jupiter’s moon lo observed by Galileo spacecraftin 1997. One
plume was captured on the bright limb or edge of the moon
(inset at upper right), erupting over a caldera named Pillan
Patera. The plume is 140 kilometers high. The second plume,
seen near the terminator, is called Prometheus. The shadow of
the 75 km high airborne plume can be seen extending to the
right of the eruption vent.(NASA/JPL and DLR)
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behaves more like a molten salt and it is also electrically
conductive like the metallic hydrogen.

On top of everything is a gaseous atmosphere, only
a few hundred kilometres thick. The clouds at the top of
the atmosphere form the visible “surface” of the giant
planets.

The interior temperatures of the planets are con-
siderably larger than the surface temperatures. For
example, the temperature in the Earth’s core is
about 4500-5000 K, and in the core of Jupiter about
30,000 K.

A part of that heat is the remnant of the released po-
tential energy from the gravitational contraction during
the formation of planets. Decay of radioactive isotopes
alsoreleases heat. Soon after the formation of planets in-
tense meteorite bombardment was an important source
of heat. Together with heat from short-lived radioactive
isotopes this caused melting of terrestrial planets. The
planets were differentiated: the originally relatively ho-
mogeneous material became segregated into layers of
different chemical composition. The heaviest elements
sank into centre thus forming the Fe—Ni core.

The material of the giant planets is differentiated as
well. In Saturn the differentiation may still be going on.
Saturn is radiating about 2.8 times the heat it gets from
the Sun, more than any other planet. This heat is sus-
pected to originate from the separation of hydrogen and
helium, where the heavier helium is gradually sinking
toward the centre of the planet.

Planetary surfaces are modified by several ge-
ological processes. These include continental drift,
volcanism, meteorite impacts and climate. The Earth
is an example of a body whose surface has been re-
newed many times during past acons. The age of the
surface depends on the processes and thus implies the
geological evolutionary history of the planet Figs. 7.10,
7.11,7.12).

Continental drift gives rise, for example, to mountain
formation. The Earth is the only planet where plate
tectonics is active today. On other terrestrial planets
the process has either ceased long ago or has never
occurred.

Volcanism is a minor factor on the Earth (at least
now), but the surface of the Jovian moon Io is changing
rapidly due to violent volcanic eruptions (Fig.7.11).
Volcanoes have been observed on Mars and Venus, but
not on the Moon.

Lunar craters are meteorite impact craters, common
on almost every body with a solid surface. Meteorites
are bombarding the planets continuously, but the rate
has been diminishing since the beginnings of the solar
system. The number of impact craters reflects the age
of the surface (Fig.7.12).

The Jovian moon Callisto is an example of a body
with an ancient surface which is not fully inactive. Lack
of small craters indicates some resurfacing process fill-
ing and degrading the minor surface features. The Earth
is an example of a body, whose atmosphere both pro-
tects the surface and destroys the traces of impacts. All
smaller meteorites are burned to ashes in the atmosphere
(one need only note the number of shooting stars), and
some larger bodies are bounced back to outer space. The
traces on the surface are destroyed very quickly by ero-
sion in less than a few million years. Venus is an even
more extreme case where all small craters are missing
due to a thick protective atmosphere.

Climate has the greatest influence on the Earth and
Venus. Both planets have a thick atmosphere. On Mars,
powerful dust storms deform the landscape, too, often
covering the planet with yellowish dust clouds.

7.6 Atmospheres and Magnetospheres

Excluding Mercury, all major planets have an at-
mosphere. The composition, thickness, density and
structure of the atmosphere vary from planet to planet,
but some common features can be found (see, e.g.,
Figs. 7.13,7.14).

Let us first study the dependence of the tempera-
ture 7, pressure P, and density p on the height /. Let us
consider a cylinder with a length di. The change in the
pressure d P from the height /4 to 4 4 dh is proportional
to the mass of the gas in the cylinder:

dP =—gpdh, (7.12)

where g is the acceleration of gravity. Equation (7.12) is
the equation of hydrostatic equilibrium. (It is discussed
in detail in Chap. 10.)

As a first approximation, we may assume that g does
not depend on height. In the case of the Earth, the error
is only about 3% if g is considered constant from the
surface to a height of 100 km.
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Fig. 7.13. (a) Temperature as a function of height in the atmo-
spheres of Venus, Earth, and Mars. (b) Temperature profiles of
the atmospheres of Jupiter and Saturn. The zero height is cho-
sen to be the point where the pressure is 100 mbar. Numbers
along the curves are pressures in millibars

The equation of state of the ideal gas

PV = NkT (7.13)
gives the expression for the pressure P
kT
p="L (7.14)
n

N, (3.5%) Ar (0.9%)

CO, (96%) N, (77%)

90 1

Venus Earth
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where N is the number of atoms or molecules, k is
the Boltzmann constant, y is the mass of one atom or
molecule and

_ MN
v
By using the equation of hydrostatic equilibrium (7.12)
and the equation of state (7.14), we obtain

dpP 7
S P,
P %kr

Integration yields P as a function of height:

o (7.15)

h

HE
P=P — | —dh
oo 2
0
i (7.16)
/dh
= Pyexp | — T
0

The variable H, which has the dimension of length, is
called the scale height:

kT
H="—

ng
The scale height defines the height at which the pressure
has decreased by a factor e. H is a function of height,
but here we may assume that it is constant. With this

approximation, we obtain
h P
. —1n—
H Py

or, using (7.14),

(7.17)

pT(h) — o /H
poTo '

(7.18)

N, (2.7%) ! Ar (1.6%) Fig.7.14. Relative abun-
dances of the most
abundant gases in the at-
mospheres of Venus, Earth,
and Mars. The number at
the bottom of each cir-
cle denotes the surface

pressure in atms
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Table 7.1. Scale heights of some gases in the atmospheres of
Venus, Earth, and Mars

Gas Molecular Earth Venus Mars
weight [amu] H [km] H [km] H [km]

Hy 2 120 360 290

0y 32 7 23 18

H,O 18 13 40 32

CO, 44 5 16 13

Ny 28 8 26 20

Temperature [K] 275 750 260

Acceleration of

gravity [m/sz] 9.81 8.61 3.77

The scale height is an important parameter in many
formulas describing the structure of the atmosphere
(Table 7.1). For example, if the change of the pressure
or the density is known as a function of height, the mean
molecular weight of the atmosphere can be computed.
The scale height of the Jovian atmosphere was deter-
mined in 1952 when Jupiter occulted a star. With these
observations, the scale height was calculated to be 8 km,
and the mean molecular weight 3—5 amu (atomic mass
unit, 1/12 of the mass of '>C). Thus the main compo-
nents are hydrogen and helium, a result later confirmed
by spacecraft data.

In terrestrial observations, infrared data are limited
by water vapour and carbon dioxide. The scale height
of CO, is 5km, which means that the partial pres-
sure is already halved at a height of 3.5km. Thus
infrared observations can be made on top of high moun-
tains (like Mauna Kea in Hawaii). The scale height
of water vapour is 13 km, but the relative humidity
and hence the actual water content is very site- and
time-dependent.

The scale height and the temperature of the atmo-
sphere define the permanence of the atmosphere. If the
speed of a molecule is greater than the escape veloc-
ity, the molecule will escape into space. The whole
atmosphere could disappear in a relatively short time.

According to the kinetic gas theory, the mean ve-
locity v of a molecule depends both on the kinetic
temperature 7y of the gas and the mass m of the
molecule:

_ [3kT
V=, —.
m

If the mass of a planet is M and its radius R, the escape
velocity is

[2GM
Ve =4/ —— .
R

Even if the mean velocity is smaller than the escape ve-
locity, the atmosphere can evaporate into space if there
is enough time, since some molecules will always have
velocities exceeding v.. Assuming a velocity distribu-
tion, one can calculate the probability for v > v, Hence
it is possible to estimate what fraction of the atmosphere
will disappear in, say, 10° years. As a rule of thumb, it
can be said that at least half of the atmosphere will
remain over 1000 million years if the mean velocity
v < 0.2v,.

The probability that a molecule close to the surface
will escape is insignificantly small. The free mean path
of a molecule is very small when the gas density is
high (Fig.7.15). Thus the escaping molecule is most
probably leaving from the uppermost layers. The crit-
ical layer is defined as a height at which a molecule,

Fig.7.15. Close to the surface, the mean free path of
a molecule is smaller than higher in the atmosphere where
the gas density is smaller. The escaping molecules originate
close to the critical layer
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Magnetotail

Fig. 7.16. Structure of the magnetosphere of the Earth. (A. Nurmi/Tiede 2000)

moving upward, has a probability 1/e of hitting another
molecule. The part of the atmosphere above the criti-
cal layer is called the exosphere. The exosphere of the
Earth begins at a height of 500 km, where the kinetic
temperature of the gas is 1500—-2000 K and the pressure
is lower than in the best terrestrial vacuums.

The magnetosphere is the “outer boundary” of
a planet. Size and shape depend on the strength of the
magnetic field of the planet and on the solar wind. The
solar wind is a flux of charged particles, mostly elec-
trons and protons, outflowing from the Sun. The speed
of the wind at the distance of the Earth is about 400 km/s
and the density 10 particles/cm? but both values can
change considerably depending on the solar activity.

On the solar side there is a bow shock (Fig.7.16),
typically at a distance of a few tens of planetary radii
(Table 7.2). At the bow shock, particles of the solar
wind first hit the magnetosphere. The magnetosphere
is limited by the magnetopause, flattened on the so-
lar side and extended to a long tail on the opposite
side. Charged particles inside the magnetopause are
captured by the magnetic field and some particles are
accelerated to great velocities. If the velocities are in-
terpreted according to the kinetic gas theory, these
velocities even correspond to millions of kelvins. How-
ever, the density, and thus the total energy, is very
small. The “hottest” places found are around Jupiter
and Saturn.
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Table 7.2. Planetary magnetic fields

Dipole moment Field strength
(Earth = 1) (gauss)!
Mercury 0.0007 0.003
Venus < 0.0004 < 0.00003
Earth 1.0 0.305
Mars < 0.0002 < 0.0003
Jupiter 20,000. 4.28
Saturn 600. 0.22
Uranus 50. 0.23
Neptune 25. 0.14

I at equator (1 gauss equals 10~4 T);

2 4 same as the Earth, |} opposite;

3 angle between magnetic and rotational axes;

4 average magnetopause distance in the direction of the Sun in planetary radii

The region of space containing trapped charged par-
ticles, the radiation belts around the Earth, are named
van Allen’s belts (Fig.7.17). These radiation zones were
discovered by the first US satellite, Explorer 1, in 1958.

Fig.7.17. A glow of hot plasma trapped inside the Earth’s
magnetosphere. The picture was taken by NASA’s Imager
for Magnetopause to Aurora Global Exploration (IMAGE)
spacecraft on August 11,2000 at 18:00 UT. The Sun is outside
the picture area toward the top right corner. (NASA and the
IMAGE science team)

Polarity2 Angle3 Magneto-
pause®

T 14° 1.5

T 11° 10

U 10° 80

U < 1° 20

U 59° 20

U 47° 25

The number of charged particles increases after strong
solar bursts. Some of these particles “leak” to the atmo-
sphere, resulting in auroras. Similar effects have also
been detected in Jupiter, Saturn and Uranus.

The solar magnetic field arises from the turbulent
motions of the electrically conductive matter. The en-
ergy driving the convection in the layer is coming from
the nuclear fusion in the core. This, however, cannot
explain planetary magnetism. Neither can the remanent
primordial magnetic field explain it because the inter-
nal temperature of planets is well above the Curie point
(about 850 K for magnetite). If the temperature is above
the Curie point, ferromagnetic materials will lose their
remanent magnetism.

The planetary dynamo generating the magnetic field
requires that the planet is rotating and has a convec-
tive layer of electrically conductive material. Terrestrial
planets have a liquid Fe-Ni core, or a liquid layer in the
core, Jupiter and Saturn have a layer of liquid metallic
hydrogen and Uranus and Neptune have a mixture of
water, ammonia and methane. In all cases the tempera-
ture gradient between the bottom and top of the layer is
large enough to cause the convection.

The strength of the magnetic field varies a lot
from planet to planet. It can be characterised by
the dipole magnetic moment. The magnetic moment
of Jupiter is about 100 million times that of Mer-
cury. The magnetic moment of the Earth is about
7.9 x 10% gauss cm? that can be compared to the typical
strong electromagnetic fields achieved in the laborato-
ries, about 100,000 gauss cm?®. Inducing such a strong
field requires currents that are of the order of 10° Am-
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Fig. 7.18. Planetary magnetic fields

peres. When divided by the cube of planetary radii,
one gets an estimate of the field strength on the
equator.

The alignment of the magnetic field with respect to
the rotation axis of a planet differs from planet to planet
(Fig. 7.18). Saturn’s magnetic field is close to the ideal
case where rotational axis and magnetic axis coincide.
Also the Earth and Jupiter show reasonably good point
dipole field with a tilt of about 10°. However, fields
of Uranus and Neptune are both offset from the centre
of the planet and tilted by about 50° from the rotation
axis. This may indicate a different mechanism for the
dynamo.

The magnetic fields of Mercury and the Earth have
an opposite polarity than the fields of other planets. It
is known that the polarity of the Earth’s magnetic field
has reversed several times over geologic time scales,
previously about 750,000 years ago. There are some
indications that the reversal of the polarity is begin-
ning now because the field strength is declining about
one percent per decade, magnetic poles are moving
more rapidly and the field asymmetry is increasing. The
whole process will take several thousand years during
which the Earth’s surface is more open to the cosmic
rays.

The Galileo mission also revealed that the Jovian
moon Ganymede has a magnetic field. The field is weak
and too small to have a magnetotail or trapped particles
around the moon. Callisto, which is of the same size,
does not show any magnetosphere. Neither does our
Moon have any global magnetic field.
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Rotation and
magnetic

Uranus Neptune

7.7 Albedos

The planets and all other bodies of the solar system only
reflect the radiation of the Sun (we may neglect here
the thermal and radio wave radiation and concentrate
mainly on the visual wavelengths). The brightness of
a body depends on its distance from the Sun and the
Earth, and on the albedo of its surface. The term albedo
defines the ability of a body to reflect light.

If the luminosity of the Sun is L, the flux density at
the distance r is (Fig.7.19)

Lo

=0 (7.19)

If the radius of the planet is R, the area of its cross
section is 7w R2, and the total flux incident on the surface

Object Sun

Earth

Fig.7.19. Symbols used in the photometric formulas
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of the planet is
Lo LoR?
drr? 42
Only a part of the incident flux is reflected back. The
other part is absorbed and converted into heat which
is then emitted as a thermal emission from the planet.
The Bond albedo A (or spherical albedo) is defined
as the ratio of the emergent flux to the incident flux
(0 < A <1). The flux reflected by the planet is thus
ALoR?
4r2
The planet is observed at a distance A. If radiation is

reflected isotropically, the observed flux density should
be

Li, = 7R?

(7.20)

Loww=ALj, = (7.21)

F — LOllt .
4 A2

In reality, however, radiation is reflected anisotropically.
If we assume that the reflecting object is a homoge-
neous sphere, the distribution of the reflected radiation
depends on the phase angle o only. Thus we can express
the flux density observed at a distance A as
Lout
AT A2’
The function @ giving the phase angle dependence
is called the phase function. It is normalised so that
P(a=0°)=1.

Since all the radiation reflected from the planet is
found somewhere on the surface of the sphere, we must
have

(7.22)

F=CP(a) (7.23)

out

L
/ CO@ %5 dS = Lou (7.24)
S
or
(0] =1 7.2
o | @ds=1. (7.25)

S
where the integration is extended over the surface of the
sphere of radius A. The surface element of such a sphere
is dS = A? da sin @ d¢, and we have

T 27

/(D(a)dS:A2/ /(D(a)sinadadqﬁ
S

®=0¢=0 (7.26)

b

=A22n/¢>(oz) sina do .
0

The normalisation constant C is

_ 47 A? _ 2 (7.27)
[s@@)dS [ P()sinada ‘
The quantity
T
q= 2/ (o) sinada (7.28)

0

is the phase integral. In terms of the phase integral the
normalisation constant is

4
C=-.

q
Remembering that Lo, = ALj,, the equation (7.23) can

be written in the form

F—CAcp( ) L,
T4t

(7.29)

(7.30)

The first factor is intrinsic for each object, the second
gives the phase angle dependence, the third the distance
dependence and the fourth, the incident radiation power.
The first factor is often denoted by
CA
r=—.
47
When we substitute here the expression of C (7.29), and
solve for the Bond albedo, we get
A 4n " r 4 r
= =n C_n q = pq -
Here p = n I is called the geometric albedo and q is the
previously introduced phase integral. These quantities
are related by

(7.31)

(7.32)

A=pq. (7.33)

The geometric albedo seems to have appeared as an
arbitrary factor with no obvious physical interpretation.
We’ll now try to explain this quantity using a Lam-
bertian surface. A Lambertian surface is defined as an
absolutely white, diffuse surface which reflects all radia-
tion, i.e. its Bond albedo is A = 1. Moreover, its surface
brightness is the same for all viewing directions, which
means that the phase function is

cosa, if0<a<m/2,

(7.34)
0, otherwise .
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In reality, no such surface exists but there are some ma-
terials which behave almost like a Lambertian surface.
A wall with a mat white finish is a good approxima-
tion; although it doesn’t reflect all incident light, the
distribution of the reflected light is about right, and its
brightness looks the same from all directions.

For a Lambertian surface the constant C is

2
C=F7—"—"—
Jo @) sina da
2
=7 (7.35)
Jo“cosasina da
2
= —_—= 4
1/2
Thus the geometric albedo of a Lambertian surface is
r CA 4xl1 1 (7.36)
=TT = ——— = — = .
p 4 4

At the phase angle zero @(¢=0°) =1 and the
reflected flux density is
_CA 'l
T4 o A2
If we replace the object with a Lambertian surface of
the same size, we get

F

4 1
= HEL“' .
The ratio of these flux densities is
F CA

Now we have found a physical interpretation for p:
the geometric albedo is the ratio of the flux densi-
ties at phase angle o = 0° reflected by a planet and
a Lambertian surface of the same cross section.

The geometric albedo depends on the reflectance of
the surface but also on the phase function @. Many
rough surfaces reflect most of the incident radiation di-
rectly backward. In such a case the geometric albedo p
is greater than in the case of an isotropically reflect-
ing surface. On some surfaces p > 1, and in the most
extreme case, the specular reflection, p = co. The ge-
ometric albedo of solar system bodies vary between
0.03—1. The geometric albedo of the Moon is p =0.12
and the greatest value, p = 1.0, has been measured for
the Saturnian moon Enceladus.

It turns out that p can be derived from the observa-
tions, but the Bond albedo A can be determined only if
the phase integral g is also known. That will be discussed
in the next section.

7.8 Photometry, Polarimetry
and Spectroscopy

Having defined the phase function and albedos we are
ready to derive a formula for planetary magnitudes. The
flux density of the reflected light is

P CA o 1
= E (a)ﬁLin .
We now substitute the incident flux
LoR?
e
and the constant factor expressed in terms of the
geometric albedo

Ly, =

CA
L
47 b4
Thus we get
p 1 LoR?

The observed solar flux density at a distance of a =
1 AU from the Sun is

L
Fo= 47122 (7.39)
The ratio of these is
F ® (o) R%a?
£ _pP@Ra (7.40)

Fo A2
If the apparent solar magnitude at a distance of 1 AU
is mg and the apparent magnitude of the planet m we
have

m—mg=—2.5Ig =
©
pP(a)R>a?
A2r2

pR? a*

a2 A2
2 4

R a

=-25lg

=-251g

() (7.41)

R? Ar
=-251gp—+5lg— —-251gP() .
a a
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If we denote

2

R
V(1,0) = me —2.51g p— . (7.42)
a

then the magnitude of a planet can be expressed as

m= V(1,0)+51gra—?—2.5 lgP(a) . (7.43)
The first term V(1, 0) depends only on the size of the
planet and its reflection properties. So it is a quantity
intrinsic to the planet, and it is called the absolute mag-
nitude (not to be confused with the absolute magnitude
in stellar astronomy!). The second term contains the dis-
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Fig. 7.20. The phase curves and polarization of different types
of asteroids. The asteroid characteristics are discussed in more
detail in Sect.7.14. (From Muinonen et al., Asteroid pho-

tance dependence and the third one the dependence on
the phase angle.

If the phase angle is zero, and we set r = A =a,
(7.43) becomes simply m = V(1, 0). The absolute mag-
nitude can be interpreted as the magnitude of a body if
it is at a distance of 1 AU from the Earth and the Sun
at a phase angle o = 0°. As will be immediately no-
ticed, this is physically impossible because the observer
would be in the very centre of the Sun. Thus V(1, 0) can
never be observed.

The last term in (7.43) is the most problematic one.
For many objects the phase function is not known very
well. This means that from the observations, one can
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tometric and polarimetric phase effects, in Bottke, Binzel,
Cellino, Paolizhi (Eds.) Asteroids I1I, University of Arizona
Press, Tucson.)
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calculate only

V(1,0) = V(1,0)—2.51g ®(a) , (7.44)

which is the absolute magnitude at phase angle «.
V(1, ), plotted as a function of the phase angle, is
called the phase curve (Fig.7.20). The phase curve
extrapolated to o = 0° gives V(1, 0).

By using (7.41) at o« = 0°, the geometric albedo can
be solved for in terms of observed values:

2
p — E 10—0,4(171() — m@)
aR ’

where my = m(a = 0°). As can easily be seen, p can be
greater than unity but in the real world, it is normally
well below that. A typical value for p is 0.1-0.5.

The Bond albedo can be determined only if the phase
function @ is known. Superior planets (and other bodies
orbiting outside the orbit of the Earth) can be observed
only in a limited phase angle range, and therefore @ is
poorly known. The situation is somewhat better for the
inferior planets. Especially in popular texts the Bond
albedo is given instead of p (naturally without men-
tioning the exact names!). A good excuse for this is the
obvious physical meaning of the former, and also the
fact that the Bond albedo is normalised to [0, 1].

(7.45)

Opposition Effect. The brightness of an atmosphere-
less body increases rapidly when the phase angle
approaches zero. When the phase is larger than
about 10°, the changes are smaller. This rapid brighten-
ing close to the opposition is called the opposition effect.
The full explanation is still in dispute. A qualitative
(but only partial) explanation is that close to the oppo-
sition, no shadows are visible. When the phase angle
increases, the shadows become visible and the bright-
ness drops. An atmosphere destroys the opposition
effect.

The shape of the phase curve depends on the geo-
metric albedo. It is possible to estimate the geometric
albedo if the phase curve is known. This requires at
least a few observations at different phase angles. Most
critical is the range 0°-~10°. A known phase curve can
be used to determine the diameter of the body, e.g.
the size of an asteroid. Apparent diameters of asteroids
are so small that for ground based observations one
has to use indirect methods, like polarimetric or radio-
metric (thermal radiation) observations. Beginning from

the 1990’s, imaging made during spacecraft fly-bys and
with the Hubble Space Telescope have given also direct
measures of the diameter and shape of asteroids.

Magnitudes of Asteroids. When the phase angle is
greater than a few degrees, the magnitude of an aster-
oid depends almost linearly on the phase angle. Earlier
this linear part was extrapolated to o = 0° to estimate
the opposition magnitude of an asteroid. Due to the op-
position effect the actual opposition magnitude can be
considerably brighter.

In 1985 the IAU adopted the semi-empirical HG sys-
tem where the magnitude of an asteroid is described by
two constants H and G. Let

ar=(1—-G)x107%4H

(7.46)
a =G x 10704
The phase curve can be approximated by
Vv, a) =-2.5
an 063
x log |:a1 exp (- 333 (tan 5) ) (7.47)
an 122
+ay exp (— 1.87 (tan E) )] .
When the phase angle is o = 0° (7.47) becomes
V(1,0) = =2.5log(a; +a2)
(7.48)

=-25log107%" = H .

The constant H is thus the absolute magnitude and G de-
scribes the shape of the phase curve. If G is great, the
phase curve is steeper and the brightness is decreasing
rapidly with the phase angle. For very gentle slopes G
can be negative. H and G can be determined with a least
squares fit to the phase observations.

Polarimetric Observations. The light reflected by the
bodies of the solar system is usually polarized. The
amount of polarization depends on the reflecting mate-
rial and also on the geometry: polarization is a function
of the phase angle. The degree of polarization P is
defined as

. FL—F”
Fi+F) ’

P (7.49)
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where F is the flux density of radiation, perpendicular
to a fixed plane, and Fj is the flux density parallel to the
plane. In solar system studies, polarization is usually
referred to the plane defined by the Earth, the Sun,
and the object. According to (7.49), P can be positive
or negative; thus the terms “positive” and “negative”
polarization are used.

The degree of polarization as a function of the phase
angle depends on the surface structure and the atmo-
sphere. The degree of polarization of the light reflected
by the surface of an atmosphereless body is positive
when the phase angle is greater than about 20°. Closer
to opposition, polarization is negative. When light is re-
flected from an atmosphere, the degree of polarization

as a function of the phase angle is more complicated.
By combining observations with a theory of radiative
transfer, one can compute atmosphere models. For ex-
ample, the composition of Venus’ atmosphere could be
studied before any probes were sent to the planet.

Planetary Spectroscopy. The photometric and polari-
metric observations discussed above were monochro-
matic. However, the studies of the atmosphere of
Venus also used spectral information. Broadband UBV
photometry or polarimetry is the simplest example
of spectrophotometry (spectropolarimetry). The term
spectrophotometry usually means observations made
with several narrowband filters. Naturally, solar sys-

Wavelength [nm]
560

480

680 720

Moon

Jupiter

Saturn

Uranus

Neptune

Fig.7.21. Spectra of the Moon and the giant planets. Strong absorption bands can be seen in the spectra of Uranus and Neptune.

(Lowell Observatory Bulletin 42 (1909))
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tem objects are also observed by means of “classical”
spectroscopy.

Spectrophotometry and polarimetry give information
at discrete wavelengths only. In practise, the number of
points of the spectrum (or the number of filters available)
is often limited to 20-30. This means that no details
can be seen in the spectra. On the other hand, in or-
dinary spectroscopy, the limiting magnitude is smaller,
although the situation is rapidly improving with the new
generation detectors, such as the CCD camera.

The spectrum observed is the spectrum of the Sun.
Generally, the planetary contribution is relatively small,
and these differences can be seen when the solar spec-
trum is subtracted. The Uranian spectrum is a typical
example (Fig.7.21). There are strong absorption bands
in the near-infrared. Laboratory measurements have
shown that these are due to methane. A portion of the
red light is also absorbed, causing the greenish colour of
the planet. The general techniques of spectral observa-
tions are discussed in the context of stellar spectroscopy
in Chap. 8.

7.9 Thermal Radiation of the Planets

Thermal radiation of the solar system bodies depends
on the albedo and the distance from the Sun, i.e. on the
amount of absorbed radiation. Internal heat is important
in Jupiter and Saturn, but we may neglect it at this point.

By using the Stefan-Boltzmann law, the flux on the
surface of the Sun can be expressed as

L =4nR%oTS .

If the Bond albedo of the body is A, the fraction of the
radiation absorbed by the planet is (1 — A). This is later
emitted as heat. If the body is at a distance r from the
Sun, the absorbed flux is

R2oTinR?

(-4, (7.50)

Lyps =

There are good reasons to assume that the body is in
thermal equilibrium, i.e. the emitted and the absorbed
fluxes are equal. If not, the body will warm up or cool
down until equilibrium is reached.

Let us first assume that the body is rotating slowly.
The dark side has had time to cool down, and the thermal
radiation is emitted mainly from one hemisphere. The

flux emitted is

Lem =27 R*6T*, (7.51)

where 7 is the temperature of the body and 27 R is the
area of one hemisphere. In thermal equilibrium, (7.50)
and (7.51) are equal:

RZT?
%(1—/{):2#,

whence
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A body rotating quickly emits an approximately equal
flux from all parts of its surface. The emitted flux is then

(7.52)

Loym = 47 R*0T?

and the temperature

1— AN /4 Ro 1/2
T=To(—~ —=)

The theoretical temperatures obtained above are not
valid for most of the major planets. The main “culprits”
responsible here are the atmosphere and the internal
heat. Measured and theoretical temperatures of some
major planets are compared in Table 7.3. Venus is an
extreme example of the disagreement between theoret-
ical and actual figures. The reason is the greenhouse
effect: radiation is allowed to enter, but not to exit. The
same effect is at work in the Earth’s atmosphere. With-
out the greenhouse effect, the mean temperature could
be well below the freezing point and the whole Earth
would be ice-covered.

(7.53)

7.10 Mercury

Mercury is the innermost planet of the solar system.
Its diameter is 4800 km and its mean distance from
the Sun 0.39 AU. The eccentricity of the orbit is 0.21,
which means that the distance varies between 0.31 and
0.47 AU. Because of the high eccentricity, the surface
temperature of the subsolar point varies substantially:
at the perihelion, the temperature is about 700 K; at
the aphelion, it is 100 K lower. Temperature variations
on Mercury are the most extreme in the solar system
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Table 7.3. Theoretical and observed temperatures of some planets

Albedo Distance from
the Sun [AU]
Mercury 0.06 0.39
Venus 0.76 0.72
Earth 0.36 1.00
Mars 0.16 1.52
Jupiter 0.73 5.20

because in the night side the temperature drops below
100 K.

The precession of the perihelion of Mercury is more
than 0.15° per century. When the Newtonian perturba-
tions are subtracted, there remains an excess of 43”.
This is fully explained by the general theory of rela-
tivity. The explanation of the perihelion precession was
one of the first tests of the general theory of relativity.

Mercury is always found in the vicinity of the Sun;
its maximum elongation is only 28°. Observations are
difficult because Mercury is always seen in a bright sky
and close to the horizon. Moreover, when closest to the
Earth in the inferior conjunction, the dark side of the
planet is toward us.

The first maps of Mercury were drawn at the end of
the 19th century but the reality of the details was not
confirmed. As late as in the beginning of the 1960’s, it
was believed that Mercury always turns the same side
toward the Sun. However, measurements of the thermal
radio emission showed that the temperature of the night
side is too high, about 100 K, instead of almost absolute
zero. Finally, the rotation period was established by
radar. One revolution around the Sun takes 88 days. The
rotation period is two-thirds of this, 59 days. This means
that every second time the planet is in, say, perihelion,
the same hemisphere faces the Sun (Fig.7.22). This
kind of spin—orbit coupling can result from tidal forces
exerted by a central body on an object moving in a fairly
eccentric orbit.

Re-examination of old observations revealed why
Mercury had been presumed to rotate synchronously.
Owing to its geometry, Mercury is easiest to observe in
spring and autumn. In six months, Mercury orbits twice
around the Sun, rotating exactly three times around its
own axis. Consequently, during observations, the same
side was always facing the Sun! The details visible
on the surface are very obscure and the few excep-

Theoretical Observed maximum
temperature [K] temperature [K]
(7.52) (7.53)

525 440 700

270 230 750

290 250 310

260 215 290

110 90 130

tional observations were interpreted as observational
errors.

The best (and thus far unique) data were received in
1974 and 1975, when the US space craft Mariner 10
passed Mercury three times. The orbital period of
Mariner 10 around the Sun was exactly twice the period
of Mercury. The two-thirds-factor meant that the same
side of the planet was illuminated during every fly-by!
The other side is still unknown.

The Mariner 10 data revealed a moon-like landscape
(Fig.7.23). Mercury’s surface is marked by craters
and larger circular areas, caused by impacts of minor
planets. The craters are 3000—4000 million years old,
indicating that the surface is old and undisturbed by

Fig. 7.22. Length of day in Mercury. The positions of Mercury
during the first revolution are shown outside the ellipse. Upon
returning to the aphelion, the planet has turned 540° (1'2
revolutions). After two full cycles the planet has rotated three
times around its axis and the same side points toward the Sun.
The length of the day is 176 d, longer than on any other planet
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Fig.7.23. (Left) A mosaic picture of Mercury. (NASA)
(Right) Surface details on Mercury. One of the most prominent
scarps photographed by Mariner 10 during it’s first encounter
with Mercury in 1974. The scarp is about 350 kilometres long

continental drift or volcanic eruptions. Most of Mer-
cury’s surface is covered by old and heavily cratered
plains but there are some areas that are less saturated
and the craters are less than 15 kilometres in diameter.
These areas were probably formed as lava flows buried
the older terrain.

The largest lava-filled circular area is the 1300 km
wide Caloris Basin. The shock wave produced by the
Caloris impact was focused to the antipodal point,
breaking the crust into complex blocks in a large area,
the diameter of which is about 100 km. There are also
faults that were possibly produced by compression of
the crust. The volume change probably was due to the
cooling of the planet.

and transects two craters 35 and 55 kilometres in diameter. Itis
up to 2 km high in some places and it appears to be a fault pro-
duced by compression of the crust. (NASA/JPL/Northwestern
University)

Mercury’s relatively small size and proximity to the
Sun, resulting in low gravity and high temperature, are
the reasons for its lack of atmosphere. There is a layer
made up of atoms blasted off the surface by the solar
wind. The tenuous “atmosphere” is composed mainly of
oxygen, sodium, and helium. The atoms quickly escape
into space and are constantly replenished.

Due to the absence of an atmosphere, the temperature
on Mercury drops very rapidly after sunset. The rota-
tional axis is almost perpendicular to the orbital plane;
therefore it is possible that, close to the poles, there are
areas where the temperature is permanently below the
freezing point. Radar echos from the surface of Mercury
show several anomalously reflective and highly depo-
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larized features at the north and south poles. Some of
these areas can be addressed to the craters, the bottoms
of which are permanently in shadow. One candidate of
the radar-bright features is water ice that has survived
in the permanent shadow.

The only relevant data concerning the interior of Mer-
cury were obtained during the Mariner 10 fly-by when
the gravity field was measured. Since Mercury has no
satellites, the mass (and mass distribution) and density
could not be determined before the force exerted by the
gravitational field on a spacecraft was measured.

It has been said that Mercury looks like the Moon
from the outside but is terrestrial from the inside. Ac-
cording to theoretical models, the internal structure is
similar to that of the Earth but the core is substantially
larger. The density of the planet is about the same as
that of the Earth, indicating that the size of the Fe—Ni
core is roughly about 75% of the planet’s radius.

Due to the vicinity of the Sun, the temperature of
the primeval nebula at the distance of Mercury was
quite high during planetary formation. Thus the relative
abundances of the volatile elements are smaller than on
any other terrestrial planet.

Mercury has a weak magnetic field, about 1% as
strong as that of the Earth. The presence of the magnetic
field is unexpected because Mercury is much smaller
than the Earth and it rotates slowly. According to the
dynamo theory, a magnetic field is generated by flows
in a liquid, electrically conducting core. The magnetic
field cannot be a remnant from ancient times, since the
internal temperature of the planet must have exceeded
the critical Curie point. Therefore, it must be assumed
that a part of the core is molten.

7.11 Venus

Venus is the brightest object in the sky, after the Sun
and the Moon. Like Mercury, Venus can be seen only
in the morning or in the evening sky. (It is sometimes
possible to see Venus even if the Sun is above the hori-
zon, if its exact position is known.) In antiquity, Venus
was thought to be two different planets, Hesperos and
Phosphorus, evening star and morning star.

The maximum elongation of Venus is about 47°.
Venus is a remarkable object when shining in the dark
sky at its brightest, 35 days before or after the inferior
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Fig.7.24. The phases of Venus were discovered by Galileo
Galilei in 1610. This drawing illustrates how the apparent size
of Venus changes with phase. The planet is far behind the Sun
when the illuminated side faces the Earth

conjunction, when one-third of the surface is seen lit
(Fig. 7.24). At the inferior conjunction, the Earth—Venus
distance is only 42 million km. The diameter of Venus is
about 12,000 km, which means that the apparent diam-
eter can be as large as one arc minute. Under favourable
conditions it is even possible to see the shape of the cres-
cent Venus with binoculars. At the superior conjunction,
the apparent diameter is only 10 arc seconds.

Venus is covered by clouds. Its surface is nowhere
visible; only featureless yellowish cloud tops can be
seen (Fig. 7.25). The rotation period was long unknown,
and the measured 4-day period was the rotation time
of the clouds. Finally, in 1962, radar measurements re-
vealed that the rotation period is 243 days in aretrograde
direction, i.e. opposite to the rotation of other planets.
The axis of rotation is almost perpendicular to the orbital
plane; the inclination is 177°.

The temperature at the cloud tops is about 250 K.
Because the Bond albedo is as high as 75%, the surface
temperature was believed to be moderate, even suitable
for life. Opinions changed dramatically when thermal
radio emission was measured at the end of the 1950’s.
This emission originates on the surface of the planet
and can penetrate the clouds. The surface temperature
turned out to be 750 K, well above the melting point of
lead. The reason for this is the greenhouse effect. The
outgoing infrared radiation is blocked by atmospheric
carbon dioxide, the main component of the atmosphere.

The chemical composition of the Venusian atmo-
sphere was known prior to the space age. Spectroscopic
observations revealed CO,, and some clues to the cloud
composition were obtained from polarimetric observa-
tions. The famous French planetary astronomer Bernard
Lyot made polarimetric observations in the 1920’s, but
not until decades later was it realised that his obser-
vations could be explained by assuming that light was
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Fig.7.25. Left: Venus in visible light imaged by the Galileo
orbiter in February 1990. The cloud features are caused by
winds that blow from east to west at about 100 m/s. Right:
The northern hemisphere of Venus in a computer-generated

scattered by liquid spherical particles whose index of
refraction is 1.44. This is significantly higher than the
index of refraction of water, 1.33. Moreover, water is
not liquid at that temperature. A good candidate was
sulphuric acid H,SOj,. Later, spacecraft confirmed this
interpretation.

Venus’ atmosphere is very dry: the amount of water
vapour present is only 1/1,000,000 of that in the Earth’s
atmosphere. One possible explanation is that, due to so-
lar UV radiation, the water has dissociated to hydrogen
and oxygen in the upper layers of the atmosphere, the
former escaping into interplanetary space.

About 1% of the incident light reaches the surface
of Venus; this light is deep red after travelling through
clouds and the thick atmosphere. Most of the incident
light, about 75%, is reflected back from the upper layers
of clouds. The absorbed light is emitted back in in-
frared. The carbon dioxide atmosphere very effectively
prevents the infrared radiation from escaping, and the
temperature had not reached the equilibrium until at
750 K.

The pressure of the atmosphere at the surface is
90 atm. The visibility is several kilometres, and even

picture of the radar observations. The north pole is at the centre
of the image of the Magellan synthetic aperture radar mosaic.
(NASA/IPL)

in the clouds, a few hundred metres. The densest clouds
are at a height of 50km, but their thickness is only
2-3 km. Above this, there are haze-like layers which
form the visible “surface” of the planet. The uppermost
clouds move rapidly; they rotate around the planet in
about 4 days, pushed by strong winds powered by the
Sun. The sulphuric acid droplets do not rain on the Venu-
sian surface but they evaporate in the lower atmosphere
before reaching the surface.

Mariner 2 (1962) was the first spacecraft to encounter
the planet. Five years later, the Soviet Venera 4 sent
the first data from below the clouds, and the first pic-
tures of the surface were sent by Venera 9 and 10 in
1975. The first radar map was completed in 1980, after
18 months of mapping by the US Pioneer Venus 1. The
best and the most complete maps (about 98% of the
planet’s surface) were made using the synthetic aper-
ture radar observations of the Magellan spacecraft in
1990-1994. The resolution of the maps is as high as
100 m and the elevation was measured with a resolution
of 30 metres.

Radar mapping revealed canyons, mountains, craters,
volcanoes and other volcanic formations (Fig.7.26).
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Fig.7.26. Surface features of Venus. (Top left): A Magel-
lan image of a 50 km peak-ring crater Barton at 27.4° N and
337.5°E. (Top right): A Magellan radar image of a region
300 km across, located in a vast plain to the south of Aphrodite
Terra. The large circular structure near the centre of the im-
age is a corona, approximately 200 km in diameter. North of

The surface of Venus is covered by about 20% of low-
land plains, 70% of gently rolling uplands and lava
flows, and 10% of highlands. There are only two major
highland areas. The largest continent, Aphrodite Terra,
is close to the equator of Venus; its size is similar to
South America. Another large continent at the latitude
70° N is called Ishtar Terra, where the highest mountain
on Venus, the 12km high Maxwell Montes is situ-
ated. (IAU has decided that the Venusian nomenclature
has to be feminine. Maxwell Montes, after the famous
physicist James Clerk Maxwell, is an exception.)
Unlike the Earth, volcanic features are quite evenly
distributed all over the surface of Venus. There is no
evidence of massive tectonic movement although local
deformations can exist. Almost all volcanism on Venus
seems to involve fluid lava flows without any explosive
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the corona is a 35 km flat-topped volcanic construct known as
a pancake dome. Complex fracture patterns like in the upper
right of the image are often observed in association with coro-
nas and various volcanic features. (NASA/JPL). (Bottom):
The surface of Venus photographed by the Venera 14 lander
in March 1982

eruptions. Due to the high air pressure, Venusian lavas
need a much higher gas content than the Earth lavas
to erupt explosively. The main gas driving lava explo-
sions on the Earth is water, which does not exist on
Venus.

Venus has more volcanoes than any other planet in
the solar system. Over 1500 major volcanoes or vol-
canic features are known, and there may even be one
million smaller ones. Most are shield volcanoes, but
there are also many complex features. None are known
to be active at present, although large variations of sul-
phur dioxide in the atmosphere may indicate that some
volcanoes are active.

Flat-topped volcanic constructs known as pancake
domes are probably formed by the eruption of an ex-
tremely viscous lava. A corona is a circular trench
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surrounding an elevated plain, the diameter of which
can be as big as several hundreds of kilometres. They
are possibly examples of local hot spots, mantle up-
wellings that have expanded and formed bulges. When
the flow has stopped, the bulge has sunk and formed
a set of ring mountains.

In other places fluid lava flows have produced long,
sinuous channels extending for hundreds of kilometres.

Most of the Venusian impact craters are undeformed.
This indicates that the Venusian surface must be young
because erosion, volcanism and tectonic forces should
affect the craters, too. Resurfacing processes may fre-
quently cover the old craters, and all craters visible
are therefore young, presumably less than 500 million
years. There are no impact crates smaller than about
1.5-2 km because smaller meteoroids are burned in the
thick atmosphere.

The Earth and Venus are almost equal in size, and
their interiors are assumed to be similar. Venus has an
iron core about 3000 km in radius and a molten rocky
mantle covering the majority of the planet. Probably due
to its slow rotation, however, Venus has no magnetic
field. The analyses made by the Venera landers have
shown that the surface material of Venus is similar to
terrestrial granite and basalt (Fig. 7.26).

Venus has no satellites.

7.12 The Earth and the Moon

The third planet from the Sun, the Earth, and its satellite,
the Moon, form almost a double planet. The relative size
of the Moon is larger than that of any other satellite,
excluding the moon of Pluto. Usually satellites are much
smaller than their parent planets.

The Earth is a unique body, since a considerable
amount of free water is found on its surface. This is pos-
sible only because the temperature is above the freezing
point and below the boiling point of water and the atmo-
sphere is thick enough. The Earth is also the only planet
where life is known to exist. (Whether it is intelligent or
not is yet to be resolved. . . ). The moderate temperature
and the water are essential for terrestrial life, although
some life forms can be found in extreme conditions.

The diameter of the Earth is 12,000 km. At the centre,
there is an iron—nickel core where the temperature is

Upper
mantle
Crust
Litho-
sphere
Astheno
sphere " "
K] _Tempe'rature '

4,000

1,000
2,000
3,000
4,000
5,000

Inner core

Lower mantle
Outer core

2,000

[10''N/m* 1| Pressure
3t
2k
1k

[kg/m?]
15,000 -

Density

10,000

5,000

Velocity of seismic waves

[km/s]
151

P (longitudinal

5 L
1 1 1 1 1 S 1
0 1,000 2,000 3,000 4,000 5,000 6,000
Depth [km]

S (transverse)

Fig.7.27. Internal structure of the Earth. The speed of the
seismic waves, density, pressure, and temperature are shown
as a function of depth

5000 K, the pressure 3 x 10!' Nm~2 and the density
12,000 kgm~* (Fig. 7.27).

The core is divided into two layers, inner and outer
core. The inner core, below 5150 km comprises only of
1.7% of the mass of the Earth. It is solid because of
high pressure. The nonexistence of the seismic trans-
verse S waves below a depth of 2890 km indicates that
the outer core is molten. However, the speed of the lon-
gitudinal P waves change rapidly at a depth of 5150 km
showing an obvious phase transition. It has been dis-
covered that the solid inner core rotates with respect to
the outer core and mantle.
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The outer core comprises about 31% of the mass of
the Earth. It is a hot, electrically conducting layer of
liquid Fe—Ni where the convective motions take place.
There are strong currents in the conductive layer that
are responsible for the magnetic field.

Between the outer core and the lower mantle there is
a 200 km thick transition layer. Although this D" layer
is often included as a part of the lower mantle, seismic
discontinuities suggest that it might differ chemically
from the lower mantle.

A silicate mantle extends from 2890 km upward up
to a depth of few tens of kilometres. The part below
650 km is often identified as the lower mantle. It con-
tains about 49% of the mass and is composed mainly of
silicon, magnesium, and oxygen but some iron, calcium,
and aluminium may also exist. The major minerals
are olivine (Mg, Fe),Si04 and pyroxene (Mg, Fe)SiOs.
Under pressure the material behaves like a viscous lig-
uid or an amorphous medium, resulting in slow vertical
flows.

Between the lower and upper mantle there is
a 250km thick transition region or mesosphere. It
is the source of basaltic magmas and is rich in cal-
cium and aluminium. The upper mantle, between
some tens of kilometres down to 400 km contains
about 10% of the mass. Part of the upper man-
tle, called the asthenosphere, might be partially
molten.

A thin crust floats on the mantle. The thickness of
the crust is only 10-70 km; it is thickest below high
mountain ranges such as the Himalayas and thinnest
below the mid-ocean basins. The seismic discontinu-
ity showing the border between the crust and mantle
was discovered in 1909 by the Croatian scientist An-
drija Mohorovici¢, and it is now known as the Moho
discontinuity.

The basaltic oceanic crust is very young, mostly
less than 100 million years and nowhere more than
200 Ma. It is made through tectonic activity at the
mid-ocean ridges. The continental crust is mainly com-
posed of crystalline rocks that are dominated by quartz
(Si0,) and feldspars (metal-poor silicates). Because the
continental crust is lighter than the oceanic crust (aver-
age densities are about 2700 kg m—> and 3000 kg m—3,
respectively), the continents are floating on top of
other layers, and currently they are neither created nor
destroyed.

The lithosphere is the rigid outer part of the Earth
(crust and the topmost part of the upper mantle). Below
that is the partially molten asthenosphere where the
damping of seismic waves is stronger than in the rigid
lithosphere.

The lithosphere is not a single rigid and seamless
layer; instead it is divided into more than 20 individual
plates. The plate tectonics (“continental drift”) is pow-
ered by the motion of the material in the mantle. New
material is flowing up at the mid-ocean ridges, pushing
the tectonic plates apart. New oceanic crust is gener-
ated at the rate of 17 km? per year. The Earth is the
only planet that shows any large-scale tectonic activ-
ity. The history of the motion can be studied by using
e. g. the paleomagnetic data of magnetic orientation of
crystallised rocks.

At the end of the Precambrian era, about 700 million
years ago, more than half of the continents were together
forming the continent known as Gondwana, contain-
ing Africa, South America, Australia and Antarctica.
About 350 million years ago Gondwana was on the
South Pole but it moved toward the equator before the
final breakup. Mutual collisions formed new mountains
and finally in the beginning of the Mesozoic era, about
200 million years ago, all the continents were joined
into one supercontinent, Pangaea.

Quite soon the flow pattern in the mantle changed and
the Pangaea broke up. The Atlantic Ocean is still grow-
ing and new material is flowing up at the mid-Atlantic
ridge. North America is drifting away from Europe at
the rate of a few centimetres per year (your fingernails
are growing at the same speed). At the same time, parts
of the Pacific oceanic plate are disappearing below other
plates. When an oceanic crust is pushed below a conti-
nental crust, a zone of active volcanoes is created. The
earthquakes in the subduction zones can even originate
600 km below the surface. In the mid-ocean ridges, the
depth is only tens of kilometres (Fig. 7.28).

Mountains are formed when two plates collide.
The push of the African plate toward the Eurasian
plate formed the Alps about 45 million years ago.
The collision of the Indian plate created the Hi-
malayas some 40 million years ago, and they are still
growing.

Most of the surface is covered with water which
condensed from the water vapour released in volcanic
eruptions. The primordial atmosphere of the Earth was
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Fig.7.28. The tectonic plates. The dots on the map indicate
the location of earthquakes with magnitudes greater than 5
in the years 1980-1989. Arrows show the velocities observed

very different from the modern one; there was, for ex-
ample, no oxygen. When organic chemical processes
started in the oceans more than 2 x 10° years ago, the
amount of oxygen rapidly increased (and was poison
to the first forms of life!). The original carbon dioxide
is now mainly concentrated in carbonate rocks, such
as limestone, and the methane was dissociated by solar
UV radiation.

The Earth’s main atmospheric constituents are nitro-
gen (77% by volume) and oxygen (21%). Other gases,
such as argon, carbon dioxide, and water vapour are
present in minor amounts. The chemical composition is
unchanged in the lower part of the atmosphere, called
the troposphere. Most of the climatic phenomena occur
in the troposphere, which reaches up to 8—10 km. The
height of the layer is variable, being lowest at the poles,
and highest at the equator, where it can extend up to
18 km.

The layer above the troposphere is the stratosphere,
extending up to 60 km. The boundary between the tropo-
sphere and the stratosphere is called the tropopause. In
the troposphere, the temperature decreases 5—7 K/km,

with permanent GPS (Global Positioning System) tracking
stations. The velocity scale is shown at lower left

but in the stratosphere it begins to rise, due to the ab-
sorption of solar radiation by carbon dioxide, water
vapour and ozone. The ozone layer, which shields the
Earth from the solar UV radiation, is at a height of
20-25 km.

A total of 99% of air is in the troposphere and
stratosphere. The stratopause at a height of 50—-60 km
separates the stratosphere from the mesosphere.

The mesosphere extends up to 85 km. In this layer,
the temperature decreases again, reaching the mini-
mum of about —90 °C at the height of 80—90 km in the
mesopause. Chemicals in the mesosphere are mostly in
an excited state, as they absorb energy from the Sun.

Above the mesopause is the thermosphere that ex-
tends up to 500 kilometres. The temperatures increases
with altitude and can be above 1200 °C at the height of
500 km. The gas is in the form of a fully ionised plasma.
Therefore, the layer above the mesopause is also called
the ionosphere.

The density of air below a height of 150 km is high
enough to cause colliding meteoroids to burn into ashes
due to friction. It also plays an important role in radio
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Fig.7.29. Hurricane Katrina in the Gulf of Mexico, before
devastating the city of New Orleans. It was photographed from

communications, since radio waves are reflected by the
ionosphere. Auroras are phenomena of the upper part
of the ionosphere.

The thermosphere goes over into the exosphere at
about 500 km. There the air pressure is much lower
than in the best laboratory vacuums.

The magnetic field of the Earth is generated by flows
in its core. The field is almost a dipole but there are
considerable local and temporal variations. The mean
field strength close to the equator is 3.1 x 107> Tesla
(0.31 Gauss). The dipole is tilted 11° with respect to the
Earth’s axis, but the direction gradually changes with
time. Moreover, the magnetic north and south poles
have exchanged places several times during the past

the GOES-12 weather satellite on August 28, 2005. Compare
this to the Great Red Spot of Jupiter in Fig. 7.57. (NOAA)

million years. More details are explained in Sect. 7.6
and in Figs. 7.16, 7.17, 7.18, and in Table 7.2.

The Moon. Our nearest neighbour in space is the
Moon. Dark and light areas are visible even with the
naked eye. For historical reasons, the former are called
seas or maria (from Latin, mare, sea, pl. maria). The
lighter areas are uplands but the maria have noth-
ing in common with terrestrial seas, since there is
no water on the Moon. Numerous craters, all mete-
orite impacts, can be seen, even with binoculars or
a small telescope (Fig.7.30). The lack of atmosphere,
volcanism, and tectonic activity help to preserve these
formations.
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Fig.7.30. A map of the Lunar surface, composed of images
taken by the Clementine space probe in 1994. Note the large
areas of maria in the Lunar near side, at the centre of the figure,

The Moon is the best-known body after the Earth.
The first man landed on the Moon in 1969 during the
Apollo 11 flight. A total of over 2000 samples, weigh-
ing 382 kg, were collected during the six Apollo flights
(Fig. 7.31). Moreover, the unmanned Soviet Luna space-
craft collected and returned about 310 grams of Lunar
soil. Instruments placed on the Moon by the Apollo
astronauts operated as long as eight years. These in-
cluded seismometers, which detected moonquakes and
meteorite impacts, and passive laser reflectors which
made exact Earth—-Moon distance measurements possi-
ble. The reflectors are still used for Lunar laser ranging
(LLR) measurements.

Seismometric and gravimetric measurements have
supplied basic information on the internal structure
of the Moon. Moonquakes take place at a depth of
800-1000 km, considerably deeper than earthquakes,
and they are also much weaker than on the Earth. Most
of the quakes occur at the boundary of the solid mantle,
the lithosphere, and the asthenosphere (Fig.7.32). The
transversal S waves cannot penetrate the asthenosphere,
indicating that it is at least partially molten. Tidal forces
may generate at least some of the moonquakes because
most of them occur close to perigee or apogee.

as compared to the almost complete absence of the maria at
the Lunar far side. (US Naval Observatory)

Lunar orbiters have observed local mass concen-
trations, mascons, beneath the maria. These are large
basaltic blocks, formed after the huge impacts which
produced the maria. The craters were filled by lava flows
during the next billion years or so in several phases. This
can be seen, e.g. in the area of Mare Imbrium. Large
maria were formed about 4 x 10° years ago when me-
teorite bombardment was much heavier than today. The
last 3 x 10° years have been quite peaceful, without any
major events.

The centre of mass is not at the geometric centre of
the Moon but about 2.5 km away due to the 20—30 km
thick basaltic plates below the large maria. Moreover,
the thickness of the crust varies, being the thickest at the
far side of the Moon, about 100 km. On the near side
the thickness of the crust is about 60 km.

The mean density of the Moon is 3400 kg m~3, which
is comparable to that of basaltic lavas on the Earth. The
Moon is covered with a layer of soil with scattered rocks,
regolith. It consists of the debris blasted out by meteorite
impacts. The original surface is nowhere visible. The
thickness of the regolith is estimated to be at least tens
of metres. A special type of rock, breccia, which is
a fragment of different rocks compacted and welded
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Fig.7.31. Apollo 17 astronaut Harrison Schmitt on the Moon in 1972. (NASA)

together by meteor impacts, is found everywhere on the
Moon.

The maria are mostly composed of dark basalts,
which form from rapid cooling of massive lava flows.
The highlands are largely composed of anorthosite, an
igneous rock that forms when lava cools more slowly
than in the case of basalts. This implies that the rocks
of the maria and highlands cooled at different rates
from the molten state and were formed under different
conditions.

Data returned by the Lunar Prospector and Clemen-
tine spacecraft indicated that water ice is present at both

the north and south lunar poles. Data indicates that there
may be nearly pure water ice buried beneath the dry re-
golith. The ice is concentrated at the bottoms of deep
valleys and craters that are in a permanent shadow where
the temperature is below 100 K.

The Moon has no global magnetic field. Some
of the rocks have remanent magnetism indicating
a possible global magnetic field early in the Moon’s
history. Without the atmosphere and magnetic field,
the solar wind can reach the Moon’s surface di-
rectly. The ions from the solar wind have embedded
in the regolith. Thus samples returned by the Apollo
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Fig. 7.32. Structure of the Moon. The height differences of the
surface are strongly exaggerated

missions proved valuable in studies of the solar
wind.

The origin of the Moon is still uncertain; it has,
however, not been torn off from the Earth at the Pa-
cific Ocean, as is sometimes believed. The Pacific is
less than 200 million years old and formed as a re-
sult of continental drift. Also, the chemical composition
of the lunar soil is different from that of terrestrial
material.

Left: A typical halo; Right: Auroras (Photos P. Parviainen)

Recently it was suggested that the Moon was formed
in the early stages of the formation of the Earth, when
a lot of protoplanet embryos were orbiting the Sun.
An off-axis collision of a Mars-size body resulted in
ejection of a large amount of debris, a part of which
then accreted to form the Moon. Differences in chemical
compositions of the modern Earth and the Moon can be
explained with the theory, as well as the orientation and
evolution of the Moon’s orbit and the Earth’s relatively
fast spin rate.

* Atmospheric Phenomena

The best-known atmospheric phenomenon is the rain-
bow, which is due to the refraction of light from
water droplets. The radius of the arc of the rainbow
is about 41° and the width, 1.7°. The centre of the arc
is opposite the Sun (or any other source of light). When
the light is refracted inside a water droplet, it is di-
vided into a spectrum, where the red colour is at the
outer edge and blue, at the inner edge. Light can be re-
flected twice inside the droplet, resulting in a secondary
rainbow outside the primary one. The colours of the
secondary rainbow are in reversed order and its radius
is 52°. A rainbow caused by the Moon is usually very
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weak and colourless, since the human eye is incapable
of resolving colours of a dim object.

A halo results when the solar or lunar light is reflected
from atmospheric ice crystals. The most common halo
is a 22° arc or circle around the Sun or the Moon.
Usually the halo is white, but occasionally even bright
colours can be seen. Another common form is the side
lobes which are at the same height as the Sun but at
a distance of 22° from it. All other forms of halo are
less common. The best “weather” for halos is when
there are cirrostratus or cirrus clouds or an icy fog in
the sky.

Noctilucent clouds are thin formations of cloud, at
a height of approximately 80 km. The clouds contain
particles, which are less than one micron in diameter,
and become visible only when the Sun (which is below
the horizon) illuminates the clouds. Most favourable
conditions are at the northern latitudes during the sum-
mer nights when the Sun is only a few degrees below
the horizon.

The night sky is never absolutely dark. One reason
(in addition to light pollution) is the airglow or light
emitted by excited atmospheric molecules. Most of the
radiation is in the infrared domain, bute. g. the forbidden
line of oxygen at 558 nm, has also been detected.

The same greenish oxygen line is clearly seen in
auroras, which are formed at a height of 80—-300 km.
Auroras can be seen mainly from relatively high north-
ern or southern latitudes because the Earth’s magnetic
field forces charged particles, coming from the Sun,
close toward the magnetic poles. Alaska and northern
Scandinavia are the best places to observe auroras. Oc-
casionally, auroras can be seen as far south as 40°. They
are usually greenish or yellow-green, but red auroras
have been observed, too. They most commonly appear
as arcs, which are often dim and motionless, or as belts,
which are more active and may contain rapidly varying
vertical rays.

Meteors (also called shooting stars although they
have nothing to do with stars) are small grains of sand,
a few micrograms or grams in weight, which hit the
Earth’s atmosphere. Due to friction, the body heats
up and starts to glow at a height of 100 km. Some
20-40 km lower, the whole grain has burnt to ashes.
The duration of a typical meteor is less than a second.
The brightest meteors are called bolides (magnitude
smaller than about —2). Even larger particles may sur-

vive down to the Earth. Meteors are further discussed in
Sect.7.18.

7.13 Mars

Mars is the outermost of the terrestrial planets. Its di-
ameter is only half of that of the Earth. Seen through
a telescope, Mars seems to be a reddish disk with dark
spots and white polar caps. The polar caps wax and
wane with the Martian seasons, indicating that they are
composed of ice. Darker areas were suspected to be
vegetation. At the end of the 19th century, an Italian as-
tronomer, Giovanni Schiaparelli claimed that there are
canals on Mars.

In the United States, the famous planetary as-
tronomer Percival Lowell studied the canals and even
published books on the topic. Martians were also very
popular in science fiction literature. Now the canals are
known to be nonexistent, an optical illusion when the
obscure details at the limit of visibility seem to form
straight lines, canals. Finally, the first clear pictures by
Mariner 4 in 1965 buried even the most optimistic hopes
concerning life on Mars. Later spacecraft revealed more
details of the planet.

Mars is a superior planet, which means that it is most
easily observable when it is closest to the Earth, i.e.
during opposition, when the planet is above the horizon
all night long.

The rotation axis of Mars is tilted 25° to the ecliptic,
about the same amount as the Earth’s axis. A Martian
day is only half an hour longer than a terrestrial day.
Mars’ orbit is significantly elliptical, resulting in tem-
perature variations of about 30 °C at the subsolar point
between the aphelion and perihelion. This has a major
influence on the climate. Huge dust storms are occa-
sionally seen on Mars (Fig.7.33). Usually the storms
begin when Mars is at the perihelion. Heating of the
surface gives rise to large temperature differences that
in turn cause strong winds. The wind-driven dust ab-
sorbs more heat and finally the whole planet is covered
by a dust storm where the wind speeds exceed 100 m/s.

The atmosphere of Mars is mainly composed of car-
bon dioxide (95%). It contains only 2% nitrogen and
0.1-0.4% oxygen. The atmosphere is very dry: if all
the moisture were condensed on the surface, the wa-
ter layer would be thinner than 0.1 mm. Even the minor
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June 10, 2001 July 31,

Fig.7.33. Two pictures of Mars, taken by the Mars Global  late winter south polar cap. The view from July shows the same
Surveyor in June and July 2001. The view from June (left)  regions, but most of the details are hidden by dust storms and
shows the Tharsis volcanic region, Valles Marineris and the  haze. (NASA/JPL/Malin Space Science Systems)

Fig.7.34. A topographic shade map of Mars made from the  and the Valles Marineris canyon system that is more than
Mars Global Surveyor data. The most prominent features 3000 km long and up to 8km deep. (MOLA Science
are the large shield volcanoes in the northern hemisphere = Team/NASA)
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amount of water vapour is sufficient to occasionally
form some thin clouds or haze.

The air pressure is only 5—8 mbar. A part of the at-
mosphere has escaped but it is probable that Mars never
had a thick atmosphere. The primordial atmosphere of
Mars was, however, somewhat similar to that of the
Earth. Almost all of its carbon dioxide was used up to
form carbonate rocks. Because there are no plate tec-
tonics on Mars, the carbon dioxide was not recycled
back into the atmosphere as on the Earth. Therefore, the
greenhouse effect on Mars is significantly smaller than
on the Earth.

Craters were already found in the first pictures. The
southern hemisphere is especially marked by craters, in-
dicating that the original surface is still visible there. The
largest impacts, Hellas and Argyre are about 2000 km in
diameter. On the other hand, the northern hemisphere
has an abundance of large lava basins and volcanoes
(Fig. 7.34). The surface is younger than in the south-

Fig.7.35a—c. Volcanoes, impact craters and rivers. (a) Mars
Global Surveyor wide-angle view of Olympus Mons in
April 1998. (b) Small impact craters and sand dunes
wuth a resolution of 1.5m per pixel. The picture covers
a 1.5km wide portion of Isidis Planitia. (¢) Three ma-
jor valley systems east of the Hellas plains. These valleys

ern hemisphere. The largest volcano, Olympus Mons
(Fig.7.35), protrudes more than 20 km above the sur-
rounding terrain. The diameter at the bottom is about
600 km.

There are no active volcanoes on Mars. The mare-
like plains on Mars are of the same age as the Lunar
maria, about 3 x 10° years old. Volcanism in the high-
land and mare-like plains stopped at that time, but
the giant shield volcanoes are much younger, pos-
sibly 1-2 x 10° years. The youngest lava flows on
Olympus Mons are possibly less than 100 million
years old. Mars shows no sign of plate tectonics. It
has no mountain chains, nor any global patterns of
volcanism.

There are also several canyons, the largest of which
is Valles Marineris (Fig.7.34). Its length is 5000 km,
width 200 km, and depth about 6 km. Compared with
Valles Marineris, the Grand Canyon is merely a scratch
on the surface.

have probably been formed by large outbursts of liquid
water but the age of the valleys is unknown. The valleys
are all roughly 1km deep and 10-40km wide. The pic-
ture covers an area approximately 800 km across. (Mars
Global Surveyor, 2000) (NASA/JPL/Malin Space Science
Systems)
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Fig.7.36. The 360 degree panorama was taken by the Mars Pathfinder Lander in 1997. The Sojourner rover is visible near the
centre of the panorama, in front of the ramp. (NASA/JPL)

Ancient riverbeds (Fig.7.35), too small to be seen
from the Earth, were also discovered by spacecraft.
Rivers were probably formed soon after the formation
of Mars itself, when there was a great deal of water and
the atmospheric pressure and temperature were higher.
At present, the temperature and air pressure on Mars are
too low for free water to exist, although there have been
speculations on warm weather cycles in the more re-
cent history of the planet. The mean temperature is now
below —50°C and, on a warm summer day, the tem-
perature can rise close to zero near the equator. Most
of the water is contained in kilometres deep permafrost
below the surface and in the polar caps. The theory
was confirmed in 2002, when the Mars Odyssey space-
craft detected a large supply of subsurface water ice of
a wide area near the south pole. The ice is mixed into
the soil a meter below the surface. Two rovers, Spirit
and Opportunity, operating on the Mars discovered in
2004 minerals like hematite and goethite which proved
the existence of liquid water on the surface of Mars. The
period when the liquid water existed is unknown.

The polar caps are composed both of water and car-
bon dioxide ice. The northern cap is almost season-
independent, extending down to latitude 70°. On the
other hand, the southern cap, which reaches to the lati-
tude —60° in the southern winter, disappears almost
totally during the summer. The southern cap consists
mostly of CO, ice. The permanent parts are of ordinary
water ice, since the temperature, —73 °C, is too high for
COs; ice. The water ice layers can be hundreds of metres
thick.

The dark areas are not vegetation, but loose dust,
moved around by strong winds. These winds raise the
dust high into the atmosphere, colouring the Martian
sky red. The Mars landers have revealed a reddish re-
golithic surface, scattered with boulders (Fig. 7.36). The

red colour is caused mainly by iron oxide, rust; already
in the 1950’s, the existence of limonite (2 FeO3 3 H,0)
was deduced from polarization measurements. The on-
site analysis showed that the soil consists of 13% iron
and 21% silicon. The abundance of sulphur was found
to be ten times that found on the Earth.

The interior of Mars is not well known. Mars has
probably a dense core approximately 1700 km in radius,
a molten rocky mantle which is denser than the Earth’s
mantle and a thin crust. The crust is 80 km thick in
the southern hemisphere but only about 35 km thick in
the northern one. The low mean density compared with
other terrestrial planets may indicate that in addition
to iron the core contains a relatively large fraction of
sulphur .

The Mars Global Surveyor confirmed in 1997 a weak
magnetic field. It is probably a remnant of an ear-
lier global field that has since disappeared. This has
important implications for the structure of Mars’ inte-
rior. There are no electric currents creating a magnetic
field and therefore the core may be (at least partially)
solid.

Three biological experiments of the Viking landers in
1976 searched for signs of life. No organic compounds
were found —however, the biological tests did give some
unexpected results. A closer look at the results indicated
no life, but some uncommon chemical reactions.

Mars has two moons, Phobos and Deimos (Fig.7.37).
The size of Phobos is roughly 27 km x 21 km x 19 km,
and the orbital period around Mars is only 7 h 39 min.
In the Martian sky, Phobos rises in the west and
sets in the east. Deimos is smaller. Its diameter is
15km x 12km x 11 km. There are craters on both
moons. Polarimetric and photometric results show that
they are composed of material resembling carbonaceous
chondrite meteorites.
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Fig. 7.37. Phobos (left) and Deimos, the two moons of Mars. They can be captured asteroids. (NASA)

7.14 Jupiter

The realm of terrestrial planets ends at the asteroid belt.
Outside this, the relative abundance of volatile elements
is higher and the original composition of the solar nebula
is still preserved in the giant planets. The first and largest
is Jupiter. Its mass is 2.5 times the total mass of all
other planets, almost 1/1000 of the solar mass. The
bulk of Jupiter is mainly hydrogen and helium. The
relative abundance of these elements are approximately
the same as in the Sun, and the density is of the same
order of magnitude, namely 1330 kg m~3.

During oppositions, the angular diameter of Jupiter
is as large as 50”. The dark belts and lighter zones are
visible even with a small telescope. These are cloud for-
mations, parallel to the equator (Fig. 7.38). The most fa-
mous detail is the Great Red Spot, a huge cyclone, rotat-
ing counterclockwise once every six days. The spot was
discovered by Giovanni Cassini in 1655; it has survived
for centuries, but its true age is unknown (Fig. 7.39).

The rotation of Jupiter is rapid; one revolution takes
9h 55 min 29.7 s. This is the period determined from
the variation of the magnetic field, and it reflects the
speed of Jupiter’s interiors where the magnetic field is
born. As might be expected, Jupiter does not behave
like a rigid body. The rotation period of the clouds is
about five minutes longer in the polar region than at the
equator. Due to its rapid rotation, Jupiter is nonspherical;
flattening is as large as 1/15.

There is possibly an iron-nickel core in the centre
of Jupiter. The mass of the core is probably equal to
a few tens of Earth masses. The core is surrounded by
a layer of metallic liquid hydrogen, where the temper-
ature is over 10,000 K and the pressure, three million
atm. Owing to this huge pressure, the hydrogen is dis-
sociated into single atoms, a state unknown in ordinary
laboratory environments. In this exotic state, hydro-
gen has many features typical of metals. This layer
is electrically conductive, giving rise to a strong mag-
netic field. Closer to the surface where the pressure
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Fig.7.38. A composed image of Jupiter taken by the
Cassini spacecraft in December 2000. The resolution is

is lower, the hydrogen is present as normal molecu-
lar hydrogen, H,. At the top there is a 1000 km thick
atmosphere.

The atmospheric state and composition of Jupiter has
been accurately measured by the spacecraft. In situ ob-
servations were obtained in 1995, when the probe of
the Galileo spacecraft was dropped into Jupiter’s atmo-
sphere. It survived nearly an hour before crushing under
the pressure, collecting the first direct measurements of
Jupiter’s atmosphere.

Belts and zones are stable cloud formations (Fig.
7.38). Their width and colour may vary with time, but
the semi-regular pattern can be seen up to the latitude
50°. The colour of the polar areas is close to that of the
belts. The belts are reddish or brownish, and the motion
of the gas inside a belt is downward. The gas flows
upward in the white zones. The clouds in the zones are
slightly higher and have a lower temperature than those
in the belts. Strong winds or jet streams blow along the
zones and belts. The speed of the wind reaches 150 m/s
at some places in the upper atmosphere. According to
the measurements of the Galileo probe, the wind speeds

114 km/pixel. The dark dot is the shadow of the moon Europa.
(NASA/JPL/University of Arizona)

in the lower cloud layers can reach up to 500 m/s. This
indicates that the winds in deeper atmospheric layers
are driven by the outflowing flux of the internal heat,
not the solar heating.

The colour of the Great Red Spot (GRS) resembles
the colour of the belts (Fig. 7.39). Sometimes it is almost
colourless, but shows no signs of decrepitude. The GRS
is 14,000 km wide and 30,000—40,000 km long. Some
smaller red and white spots can also be observed on
Jupiter, but their lifetime is generally much less than
a few years.

The ratio of helium to hydrogen in the deep atmo-
sphere is about the same as in the Sun. The results of
the Galileo spacecraft gave considerably higher abun-
dance than previous estimates. It means that there are no
significant differentiation of helium, i.e. helium is not
sinking to the interior of the planet as was expected ac-
cording to the earlier results. Other compounds found in
the atmosphere include methane, ethane and ammonia.
The temperature in the cloud tops is about 130 K.

Jupiter radiates twice the amount of heat that it re-
ceives from the Sun. This heat is a remnant of the
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Fig.7.39. Jupiter’s Great Red Spot and its surroundings with several smaller ovals as seen by Voyager 1 in 1979. Cloud details
of 160 kilometres are visible. (NASA)

energy released in the gravitational contraction during
the formation of the planet. Thus Jupiter is still grad-
ually cooling. The internal heat is transferred outward
by convection; this gives rise to flows in the metallic
hydrogen, causing the strong magnetic field (Fig. 7.41).

The ring of Jupiter (Fig.7.40) was discovered in
1979. The innermost toroid-shaped halo is between
92,000-122,500 km from Jupiter’s centre. It consists of

dust falling from the main ring toward the planet. The
main ring extends from the halo boundary out to about
128,940 km, just inside the orbit of the moon Adrastea.
The ring particles are small, a few microns only, and
they scatter light forward much more effectively than
backward. Therefore, they were not discovered prior
the Voyager flyby. A ring consisting of such small
particles cannot be stable, and new material must en-
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Fig. 7.40. Mosaic of Jupiter’s ring system taken by the Galileo  an innermost doughnut-shaped halo. These rings are made
spacecraft when the spacecraft was in Jupiter’s shadow look-  up of dust-sized particles that originate from lo, or are
ing back toward the Sun. Jupiter’s ring system is composed  blasted off from the nearby inner satellites by small impacts.
of three parts: a thin outermost ring, a flat main ring, and  (NASA/University of Arizona)

e *’O

Jupiter Aurora
Hubble Space Telescope » STIS

Fig.7.41. Left: NASA Hubble Space Telescope close-up view =~ NASA’s Cassini spacecraft shows the bubble of charged
of an aurora on Jupiter. The image shows the main oval of the  particles trapped in the magnetosphere. The magnetic field
aurora, centred over the magnetic north pole, and diffuse emis-  and the torus of the ionised material from the volcanoes
sions inside the polar cap. (NASA, John Clarke/University  of Io are drawn over the image. (NASA/JPL/Johns Hopkins
of Michigan) Right: The image taken on January 2001 by  University)
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ter the ring continuously. The most probable source is
To.

The two faint outermost rings are fairly uniform in
nature. The inner of them extends from the orbit of
Adrastea out to the orbit of Amalthea at 181,000 km.
The fainter outermost ring extends out to Thebe’s orbit
at 221,000 km.

Jupiter’s rings and moons exist within an intense
radiation belt of Jupiter’s magnetic field. The magne-
tosphere extends 3—7 million kilometres toward the
Sun, depending on the strength of the solar wind. In
the opposite direction it stretches to a distance of at
least 750 million kilometres, behind Saturn’s orbit.

Jupiter is an intense radio source. Its radio emission
can be divided into three components, namely thermal
millimetre and centimetre radiation, nonthermal deci-
metric radiation and burstal-decametric radiation. The
nonthermal emission is most interesting; it is partly syn-
chrotron radiation, generated by relativistic electrons in
the Jovian magnetosphere. Its intensity varies in phase
with Jupiter’s rotation; thus the radio emission can be
used for determining the exact rotation rate. The deca-
metric bursts are related to the position of the innermost
large moon, lo, and are possibly generated by the mil-
lion Ampere electric current observed between Jupiter
and the plasma torus at the orbit of Io.

In the beginning of year 2006 there were 63 known
moons of Jupiter. The four largest, lo, Europa,
Ganymede and Callisto are called the Galilean satellites

(Fig.7.42), in honour of Galileo Galilei, who discov-
ered them in 1610. The Galilean satellites can already
be seen with ordinary binoculars. They are the size of
the Moon or even planet Mercury. The other moons are
small, most of them only a few kilometres in diameter.

Owing to tidal forces, the orbits of Io, Europa and
Ganymede have been locked into a resonance, so that
their longitudes A strictly satisfy the equation

Ao — 3)\Europa + 2)\Ganymede =180°. (7.54)
Hence the moons can never be in the same direction
when seen from Jupiter.

Io is the innermost Galilean satellite. It is a little
larger than the Moon. Its surface is spotted by numer-
ous calderas, volcanoes without a mountain. The molten
material is ejected up to a height of 250 km, and a part
of the gas gets into Io’s orbit. The volcanic activity on
Io is much stronger than on the Earth. There is a 100 m
bulk of the permanent tide raised by Jupiter. Due to the
orbital perturbations caused by Europa and Ganymede
the orbit of Io is slightly elliptical and therefore the or-
bital speed varies. The tidal bulk is forced to move with
respect to the surface. This generates friction, which is
transformed to heat. This heat keeps the sulphur com-
pounds molten beneath the colourful surface of lo. No
traces of impact craters are visible. The whole surface
is new, being renewed continuously by eruptions. There
is no water on lo.

Fig.7.42. (Top) The Galilean satellites of Jupiter. From left
to right: lo, Europa, Ganymede, and Callisto (NASA/DLR).
(Right page top) Surface details of Io and Europa. (Right

page bottom) Surface details of Ganymede and Callisto
(NASA/Brown University, NASA/JPL)
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Europa is the smallest of the Galilean satellites, a lit-
tle smaller than the Moon. The surface is ice-covered
and the geometric albedo is as high as 0.6. The surface
is smooth with only a few features more than a hundred
metres high. Most of the markings seem to be albedo
features with very low relief. Only a few impact craters

have been found indicating that the surface is young.
The surface is renewed by fresh water, trickling from
the internal ocean. Galileo spacecraft has found a very
weak magnetic field. The field varies periodically as
it passes through Jupiter’s magnetic field. This shows
that there is a conducting material beneath Europa’s sur-
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face, most likely a salty ocean that could even be 100 km
deep. At the centre, there is a solid silicate core.

Ganymede is the largest moon in the solar system. Its
diameter is 5300 km; it is larger than the planet Mercury.
The density of craters on the surface varies, indicat-
ing that there are areas of different ages. Ganymede’s
surface is partly very old, highly cratered dark re-
gions, and somewhat younger but still ancient lighter
regions marked with an extensive array of grooves
and ridges. They have a tectonic origin, but the de-
tails of the formations are unknown. About 50% of the
mass of the moon is water or ice, the other half be-
ing silicates (rocks). Contrary to Callisto, Ganymede
is differentiated: a small iron or iron/sulphur core sur-
rounded by a rocky silicate mantle with an icy (or liquid
water) shell on top. Ganymede has a weak magnetic
field.

Callisto is the outermost of the large moons. It is
dark; its geometric albedo is less than 0.2. Callisto
seems to be undifferentiated, with only a slight increase
of rock toward the centre. About 40% of Callisto is ice
and 60% rock/iron. The ancient surface is peppered by
meteorite craters; no signs of tectonic activity are vis-
ible. However, there have been some later processes,
because small craters have mostly been obliterated and
ancient craters have collapsed.

The currently known moons can be divided into
two wide groups: regular moons containing the small
moons inside the orbits of the Galilean satellites, and
the Galilean satellites, and irregular moons outside the
orbit of the Galilean satellites. The orbits of the inner
group are inclined less than one degree to the equator
of Jupiter. Most of the outermost moons are in eccen-
tric and/or retrograde orbits. It is possible that many of
these are small asteroids captured by Jupiter.

7.15 Saturn

Saturn is the second largest planet. Its diameter is about
120,000 km, ten times the diameter of the Earth, and the
mass, 95 Earth masses. The density is only 700 kgm~3,
less than the density of water. The rotation axis is tilted
about 27° with respect to the orbital plane, so every
15 years, the northern or the southern pole is well
observable.

Fig. 7.43. Saturn and its rings. Three satellites (Tethys, Dione,
and Rhea) are seen to the left of Saturn, and the shadows
of Mimas and Tethys are visible on Saturn’s cloud tops.
(NASA/JPL)

The rotation period is 10h 39.4 min, determined
from the periodic variation of the magnetic field by the
Voyager spacecraft in 1981. However, Cassini space-
craft observed in 2004 the period of 10h 45 min. The
reason for the change is unknown. Due to the rapid ro-
tation, Saturn is flattened; the flattening is 1/10, which
can be easily seen even with a small telescope.

The internal structure of Saturn resembles that of
Jupiter. Due to its smaller size, the metallic hydrogen
layer is not so thick as on Jupiter. The thermal radia-
tion of Saturn is 2.8 times that of the incoming solar
flux. The heat excess originates from the differentia-
tion of helium. The helium atoms are gradually sinking
inward and the released potential energy is radiated
out as a thermal radiation. The abundance of helium
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in Saturn’s atmosphere is only about half of that on
Jupiter.

The winds, or jet streams, are similar to those of
Jupiter but Saturn’s appearance is less colourful. Viewed
from the Earth, Saturn is a yellowish disk without
any conspicuous details. The clouds have fewer fea-
tures than those on Jupiter, because a haze, composed
of hydrogen, ammonium and methane floats above
the cloud tops. Furthermore, Saturn is farther from
the Sun than Jupiter and thus has a different energy
budget.

The temperature at the cloud tops is about 94 K.
Close to the equator the wind speeds exceed 400 m/s
and the zone in which the direction of the wind re-
mains the same extends 40° from the equator. Such high
speeds cannot be explained with external solar heat, but
the reason for the winds is the internal flux of heat.

Saturn’s most remarkable feature is a thin ring system
(Fig.7.44, 7.45), lying in the planet’s equatorial plane.
The Saturnian rings can be seen even with a small tele-
scope. The rings were discovered by Galileo Galilei in
1610; only 45 years later did Christian Huygens estab-
lish that the formation observed was actually a ring,
and not two oddly behaving bulbs, as they appeared
to Galileo. In 1857 James Clerk Maxwell showed the-
oretically that the rings cannot be solid but must be
composed of small particles.

The rings are made of normal water ice. The size
of the ring particles ranges from microns to truck-size
chunks. Most of the particles are in range of centime-
tres to metres. The width of the ring system is more
than 60,000 km (about the radius of Saturn) and the

Mimas

Enc ivision
Cassini division

Fig.7.44. A schematic drawing of the structure of the
Saturnian rings

Fig.7.45. At a close distance, the rings can be seen to be
divided into thousands of narrow ringlets. (JPL/NASA)

thickness, at most 100 m, and possibly only a few
metres. Cassini spacecraft discovered also molecular
oxygen around the rings, probably as a product of the
disintegration of water ice from the rings.

According to Earth-based observations, the rings are
divided into three parts, called simply A, B, and C. The
innermost C ring is 17,000 km wide and consists of
very thin material. There is some material even inside
this (referred to as the D ring), and a haze of particles
may extend down to the clouds of Saturn.

The B ring is the brightest ring. Its total width is
26,000 km, but the ring is divided into thousands of
narrow ringlets, seen only by the spacecraft (Fig. 7.45).
From the Earth, the ring seems more or less uniform.
Between B and A, there is a 3000 km wide gap, the
Cassini division. It is not totally void, as was previously
believed; some material and even narrow ringlets have
been found in the division by the Voyager space probes.

The A ring is not divided into narrow ringlets as
clearly as the B ring. There is one narrow but obvious
gap, Encke’s division, close to the outer edge of the
ring. The outer edge is very sharp, due to the “shepherd”
moon, some 800 km outside the ring. The moon prevents
the ring particles from spreading out to larger orbits.
It is possible that the appearance of B is due to yet-
undiscovered moonlets inside the ring.
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The Fring, discovered in 1979, is about 3000 km out-
side A. The ring is only a few hundred kilometres wide.
On both sides there is a small moon; these shepherds
prevent the ring from spreading. An interior moon pass-
ing a ring particle causes the particle to move to a larger
orbit. Similarly, at the outer edge of the ring, a second

moon forces the particles inward. The net result is that
the ring is kept narrow.

Outside the F ring, there are some zones of
very sparse material, sometimes referred to as the
G and E rings. These are merely collections of small
particles.
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The Saturnian rings were possibly formed together
with Saturn and are not debris from some cosmic catas-

trophe, like remnants of a broken moon. The total mass
of the rings is 10~ of the mass of Saturn. If all ring par-
ticles were collected together, they would form an ice
ball, 600 km in diameter.

A total of 56 moons (late 2006) of Saturn are known.
Many of the large Saturnian moons (Fig.7.46) were
observed by Pioneer 11 and Voyager 1 and 2 spacecrafts.
Large moons (excluding Titan) are composed mainly
of ice. The temperature of the primeval nebula at the
distance of Saturn was so low that bodies of pure ice
could form and survive.

Some moons are dynamically interesting; some have
an exotic geological past. Outside the F ring, there
are two moonlets, Epimetheus and Janus, almost in
the same orbit; the difference of the semimajor axes
is about 50 km, less than the radii of the moons. The
inner moon is gaining on the outer one. The moons
will not collide, since the speed of the trailing moon
increases and the moon moves outward. The speed of
the leading moon decreases and it drops inward. The
moons exchange their roles roughly every four years.
There are also several shepherding satellites, like Az-
las, Prometheus and Pandora that keep rings in their
place. Their gravitational pull prevents ring particles
from drifting away.

The innermost of the “old” moons is Mimas. There
is a huge crater on Mimas’ surface with a diameter of
100 km and a depth of 9 km (Fig. 7.46). Bigger craters
exist in the solar system, but relative to the size of the
parent body, this is almost the biggest crater there could
be room for (otherwise the crater would be bigger than

Fig.7.46a—e. Saturnian
moons photographed by
the Cassini spacecraft in
2005-2006 (a) Hyperion,
(b) Enceladus, (c¢) Iapetus
and (d) Tethys. (e) A radar
picture of the northern lat-
itudes of Titan, taken by
Cassini in summer 2006.
The black patches are prob-
ably methane lakes. The
width of the picture is about
450 km. (Photo NASA)

Mimas itself). On the opposite side, some grooves can
be seen, possibly signifying that impact has almost torn
the moon apart.

The surface of the next moon, Enceladus, consists of
almost pure ice, and one side is nearly craterless. Craters
and grooves can be found on the other hemisphere. Tidal
forces result in volcanic activity where water (not lava
or other “hot” material) is discharged to the surface.

Titan is the largest of the Saturnian moons. Its di-
ameter is 5150 km, so it is only slightly smaller than
Jupiter’s moon Ganymede. Titan is the only moon with
a dense atmosphere. The atmosphere is mainly nitrogen
(98.4%) and methane, and the pressure at the surface
is 1.5-2 bar. The temperature is about 90 K. Reddish
clouds form the visible surface some 200 km above
the solid body. Measurements and images of Huy-
gens probe landing on Titan in 2005 did not reveal
liquid methane lakes. However, Cassini orbiter radar
data in 2006 strongly indicate the presence of the lakes
(Fig. 7.44). An independent proof of liquids in the re-
cent past can be seen in several surface features which
possibly have been formed by flowing fluids.

7.16 Uranus and Neptune

The planets from Mercury to Saturn were already known
in antiquity. Uranus and Neptune can only be observed
with a telescope. Uranus and Neptune are giants, similar
to Jupiter and Saturn.

Uranus. The famous German-English amateur as-
tronomer William Herschel discovered Uranus in 1781.
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Herschel himself first thought that the new object was
a comet. However, the extremely slow motion revealed
that the body was far beyond the orbit of Saturn. Based
on the first observations, the Finnish astronomer Anders
Lexell calculated a circular orbit. He was one of the first
to propose that the newly discovered object was a planet.
Johann Bode of the Berlin Observatory suggested the
name Uranus but more than five decades passed before
the name was unanimously accepted.

The mean distance of Uranus is 19 AU, and the or-
bital period 84 years. The inclination of the rotation
axis is 98°, which is totally different from the other
planets. Due to this uncommon geometry, the poles are
either lit or in darkness for decades. The rotation period,
confirmed by the Voyager 2 magnetometric measure-
ments in 1986, is 17.3 hours; the exact period had been
uncertain prior to the fly-by.

Uranus is greenish, as viewed through a telescope.
Its colour is due to the strong methane absorption bands
in the near-infrared. A part of the red light is also
absorbed, leaving the green and blue part of the spec-
trum untouched. Uranus is almost featureless (Fig. 7.47)
because its clouds are below a thick haze or smog.

The strong limb darkening makes the terrestrial de-
termination of the Uranus’ size difficult. Therefore, the

Fig.7.47. Two views of Uranus. The left picture shows Uranus
as it would appear to the naked eye. (NASA). At the right there
is a Hubble Space Telescope view of Uranus surrounded by

radius was not accurately determined until 1977 dur-
ing a stellar occultation caused by Uranus. The rings of
Uranus were discovered at the same time.

The internal structure of Uranus is thought to be
slightly different from that of other giant planets. Above
the innermost rocky core, there is a layer of water,
which, in turn, is surrounded by a mantle of hydrogen
and helium. The mixture of water and ammonia and
methane therein are dissociated to ions under the heavy
pressure. This mixture behaves more like a molten salt
than water. The convection flows in this electrically con-
ductive “sea” give rise to the Uranian magnetic field.
The strength of the magnetic field at the cloud tops
is comparable to the terrestrial field. However, Uranus
is much larger then the Earth, so the true strength of
the field is 50 times greater than that of the Earth. The
Uranian magnetic field is tilted 60° with respect to the
rotation axis. No other planet has such a highly inclined
magnetic field.

The Uranian rings (Fig.7.48) were discovered in
1977, during a stellar occultation. Secondary occulta-
tions were observed before and after the main event.
A total of 13 rings are known, nine of which were dis-
covered in the occultation. The innermost ring is broad
and diffuse. All other rings are dark and very narrow,

its rings. Also 10 satellites are visible in the original picture.
(Seidelmann, U.S. Naval Observatory, and NASA)
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Fig.7.48. Left: The rings of Uranus are very narrow and com-
posed of a dark material. Nine rings are visible in the picture
of Voyager in 1986. Right: Rings seen in the light scattered

only a few hundred metres or a few kilometres wide.
The Voyager 2 results showed that the rings contain
very little dust, unlike those of Jupiter and Saturn. The
mean size of the ring particles is more than 1 metre. The
ring particles are darker than practically any known ma-
terial in the solar system; the cause of this dark colour
is unknown.

There are 27 moons (2006 number) orbiting around
Uranus, ten of which were discovered by Voyager 2. The
geological history of some moons is puzzling, and many
features reminiscent of an active past can be found.

The innermost of the large moons, Miranda, is one of
the most peculiar objects discovered (Fig. 7.49). It has
several geological formations also found elsewhere (but
here they are all mixed together), in addition to the quite
unique V-shaped formations. It is possible that Miran-
da’s present appearance is the result of a vast collision
that broke the moon apart; some pieces may have later
settled down, inside out. Another peculiar object is Um-
briel. It belongs to the ever increasing family of unusual
dark bodies (such as the Uranian rings, one side of Ia-
petus and Halley’s comet). The dark surface of Umbriel
is covered by craters without any traces of geological
activity.

forward when the Voyager spacecraft was in the shadow of
the planet. (NASA)

Neptune. The orbit of Uranus was already well known
in the beginning of the 19th century. However, some
unknown perturbations displaced Uranus from its pre-
dicted orbit. Based on these perturbations, John Couch
Adams, of Cambridge, and Urbain Jean-Joseph Le Ver-
rier, of Paris, independently predicted the position of
the unknown perturbing planet.

The new planet was discovered in 1846 by Johann
Gottfried Galle at the Berlin Observatory; Le Verrier’s
prediction was found to be only 1° off. The discov-
ery gave rise to a heated controversy as to who should
be given the honour of the discovery, since Adams’
calculations were not published outside the Cambridge
Observatory. When the quarrel was settled years later,
both men were equally honoured. The discovery of Nep-
tune was also a great triumph of the Newtonian theory
of gravitation.

The semimajor axis of the orbit of Neptune is 30 AU
and the orbital period around the Sun 165 years. The in-
ternal rotation period, confirmed by Voyager 2 in 1989,
is 16 hours 7 minutes and the rotation period of the outer
layers of the clouds is about 17 hours. The obliquity of
the rotation axis is 29° but the magnetic field is tilted
some 50° with respect to the rotation axis. The mag-
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Fig. 7.49. Four Uranian moons (from top left to lower right): Miranda, Ariel, Titania and Umbriel. (NASA)

netic field is tilted like in Uranus, but the field strength
is much smaller.

The density of Neptune is 1660 kgm™3, and the
diameter 48,600 km. Thus the density of Neptune is
higher than that of other giant planets. The inter-
nal structure is quite simple: The core, composed

of silicates (rocks) is about 16000 km in diame-
ter. This is surrounded by a layer of water and
liquid methane and the outermost gaseous layer, at-
mosphere, is mainly composed of hydrogen and
helium, methane and ethane being a minor com-
ponents.



7.16 Uranus and Neptune

Fig.7.50. (Left) Neptune shows more features than Uranus.
In the picture of Voyager 2 the Great Dark Spot, ac-
companied by bright, white clouds is well visible. Their
appearance is changing rapidly. To the south of the Great
Dark Spot is a bright feature and still farther south is an-
other dark spot. Each feature moves eastward at a different

Cloud structures are more complicated than on
Uranus, and some dark spots, like in Jupiter, were visi-
ble during the Voyager fly-by (Fig. 7.50). The speed of
the winds are high, up to 400 m/s.

Like other giants, Neptune also has rings (Fig. 7.51).
The rings were discovered by Voyager 2, although their
existence was already expected prior the fly-by. Two
relatively bright but very narrow rings are at a distance
of 53,000 and 62,000 km from the centre of the planet.
Moreover, there are some faint areas of fine dust.

There are 13 known moons, six of which were dis-
covered by Voyager 2. The largest of the moons, Triton,
is 2700 km in diameter, and it has a thin atmosphere,
mainly composed of nitrogen. The albedo is high: Tri-
ton reflects 60—80% of the incident light. The surface
is relatively young, without any considerable impact
craters (Fig.7.52). There are some active “geysers” of
liquid nitrogen, which partly explains the high albedo

Fig.7.51. The rings of Neptune. Ring particles are small and
best visible in the forward scattered light. There are several
brightenings in the outermost ring. One of the rings appears
to have a twisted structure. Neptune at left is overexposed.
(NASA/JPL)

I

velocity. (Right) Details of the Southern Dark Spot. The

V-shaped structure near the right edge of the bright area
indicates that the spot rotates clockwise. Unlike the Great
Red Spot on Jupiter, which rotates counterclockwise, the
material in the Neptune’s dark oval will be descending.
(NASA/IPL)
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Fig.7.52. The southern hemisphere of Triton, Neptune’s
largest satellite in a picture taken in 1989 by Voyager 2. The
dark spots may indicate eruptions of “icy volcanoes”. Voy-
ager 2 images showed active geyser-like eruptions spewing
nitrogen gas and dark dust particles several kilometres into
the atmosphere. (NASA)

and the lack of the craters. The low surface tempera-
ture of Triton, 37 K, means that the nitrogen is solid
and covers the surface like snow. It is the lowest surface
temperature known in the solar system.

7.17 Minor Bodies of the Solar System

So far we have considered only planets and planetary
satellites. There is a great number of other bodies in
the solar system, like dwarf planets, asteroids, comets,
meteoroids and interplanetary dust. However, there are
no distinct borders between different types of objects.
Some asteroids have similar features or origin as the
comets, and some near-Earth asteroids are possibly
cometary remnants where all volatile elements have
disappeared. Thus our classification has been based
more on the visual appearance and tradition than on
real physical differences.

In 2006 the International Astronomical Union (IAU)
in its General Assembly defined three distinct cate-
gories, namely planets, dwarf planets, and Small Solar
System Bodies which include the rest of the Solar Sys-
tem bodies, like asteroids, Trans-Neptunian Objects,
comets and meteoroids.

Dwarf planets. According to the IAU definition a dwarf
planet is a celestial body that: (a) is in orbit around
the Sun, (b) has sufficient mass for its self-gravity to
overcome rigid body forces so that it assumes a hy-
drostatic equilibrium (nearly round) shape, (c) has not
cleared the neighbourhood around its orbit, and (d) is
not a satellite.

The upper and lower limits to the size and mass of
dwarf planets are not strictly specified. The lower limit,
however, is determined by the hydrostatic equilibrium
shape, but the size at which this happens may vary
according to the composition and history of the object.
It is estimated that up to 40-50 dwarf planets will be
discovered in coming years.

Currently, there are three dwarf planets in the Solar
System, namely Ceres, Pluto and Eris. Ceres was for-
merly counted as an asteroid, Pluto was a planet and
Eris (2003 UB 313, known also by the nickname Xena)
was the first Trans-Neptunian object which turned out
to be larger than Pluto.

Pluto was discovered in 1930 at the Lowell Obser-
vatory, Arizona, after an extensive photographic search
(Fig. 7.53). This search had already been initiated in the
beginning of the century by Percival Lowell, on the ba-
sis of the perturbations observed in the orbits of Uranus
and Neptune. Finally, Clyde Tombaugh discovered Pluto
less than 6° off the predicted position. However, Pluto
turned out to be far too small to cause any perturba-
tions on Uranus or Neptune. Thus the discovery was
purely accidental, and the perturbations observed were
not real, but caused by minor errors of old observations.

Pluto has no visible disk as seen with terrestrial
telescopes; instead, it resembles a point, like a star
(Fig.7.54). This fact gave an upper limit for the di-
ameter of Pluto, which turned out to be about 3000 km.
The exact mass was unknown until the discovery of the
Plutonian moon, Charon, in 1978. The mass of Pluto
is only 0.2% of the mass of the Earth. The orbital pe-
riod of Charon is 6.39 days, and this is also the period
of rotation of both bodies. Pluto and Charon rotate syn-
chronously, each turning the same side towards the other
body. The rotation axis of Pluto is close to the orbital
plane: the tilt is 122°.

Mutual occultations of Pluto and Charon in 1985-
1987 gave accurate diameters of each body: The
diameter of Pluto is 2300 km and that of Charon,
1200 km. The density of Pluto turned out to be about
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Fig.7.53. A small portion of the pair of pictures where Pluto was discovered in 1930. The planet is marked with an arrow.

(Lowell Observatory)

2100 kg m~3. Thus Pluto is not a huge iceball but about
2/3 of its mass is composed of rocks. The relatively
small abundance of ices is possibly due to the low tem-
perature during the planetary accretion when most of the
free oxygen was combined with carbon forming carbon
monoxide. The computed lower limit for water ice is
about 30% which is fairly close to the value observed
in Pluto.

Pluto has a thin methane atmosphere and there is
possibly a thin haze over the surface. The surface pres-
sure is 107°—107% atm. It has been speculated that when

Pluto is far from perihelion, the whole atmosphere will
become frozen and fall on the surface.

Pluto has three satellites. Two of them were discov-
ered by the Hubble Space Telescope in 2005 (Fig. 7.54).
They orbit Pluto counterclockwise twice the distance of
Charon.

The orbit of Pluto is different from planetary orbits.
The eccentricity is 0.25 and the inclination is 17°. Dur-
ing its 250 year orbit, Pluto is closer to the Sun than
Neptune for 20 years; one such period lasted from 1979
to 1999. There is no danger of Pluto and Neptune col-

Fig.7.54. Even with large terrestrial telescopes Pluto is seen
only as a point of light. The best views have been ob-
tained from the Hubble Space Telescope showing some
albedo differences on the surface. (Alan Stern/Southwest
Research Institute, Marc Buie/Lowell Observatory, NASA
and ESA). (right) The Hubble Space Telescope pho-

tographed Pluto and its three known moons in February

2006. The smaller moons were found in 2005, and
were later named Nix and Hydra. Their diameter is es-
timated as 40-160km. (M. Mutchler (STScl), A. Stern
(SwRI), and the HST Pluto Companion Search Team, ESA,
NASA)
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liding, since Pluto is high above the ecliptic when at the
distance of Neptune. Pluto’s orbital period is in a 3:2
resonance with Neptune.

Since 1990’s a number of distant Trans-Neptunian
objects (TNOs) have been discovered. In the Kuiper
belt, a vast collection of icy bodies beyond the orbit of
Neptune, there are objects even larger than Pluto. One of
them is Eris which is now classified as a dwarf planet. It
was discovered in 2003, and it was for some time known
by an unofficial name Xena. Eris is slightly larger than
Pluto; the diameter is estimated to be about 2400 km.
The semimajor axis of the orbit is 97 AU, orbital period
560 years and inclination 45°.

The third dwarf planet Ceres was the first asteroid
discovered in 1801 by Giuseppe Piazzi. The diameter
of Ceres is about 1000 km, thus exceeding the limit to
be in the hydrostatic equilibrium. Contrary to Pluto and
Eris, Ceres is a more close object. It orbits the Sun in the
main asteroid belt between Mars and Jupiter. We will
discuss asteroids and other Small Solar System Bodies
below.

Asteroids. Asteroids form a large and scattered group of
Sun-orbiting bodies. The oldest and best-known group
form the main asteroid belt between Mars and Jupiter,
with distances of 2.2-3.3 AU from the Sun (Fig. 7.56).
The most distant asteroids are far beyond the orbit of
Pluto, and there are a number of asteroids that come
closer to the Sun than the Earth. Diameters of asteroids
vary from hundreds of meters to hundreds of kilometers.
The largest asteroid (1) Ceres is classified as a dwarf
planet and the border between smallest asteroids and
meteoroids is not specified. Structure and composition
of asteroids range from comet-like icy and loose clumps
of material to iron-nickel or stony hard and solid bodies.
An asteroid observer needs a telescope, since even the
brightest asteroids are too faint to be seen with the naked
eye. Asteroids are points of light like a star, even if seen
through a large telescope; only their slow motion against
the stellar background reveals that they are members
of the solar system. The rotation of an asteroid gives
rise to a regular light variation. The amplitude of light
variation is in most cases well below 1 magnitude and
typical rotation periods range from 4 to 15 hours.
Atthe end of year 2006 there were more than 140,000
numbered asteroids. The number of catalogued aster-
oids increases currently by thousands every month. It

has been estimated that more than one million asteroids
larger than 1 km exist in the Solar System.

The characteristics of the main belt asteroids are best
known. Total mass of the main belt asteroids is less than
1/1000 of the mass of the Earth. The centre of the as-
teroid belt is at a distance of approximately 2.8 AU,
as predicted by the Titius—Bode law (Sect.7.19). Ac-
cording to a formerly popular theory, asteroids were
thought to be debris from the explosion of a planet.
This theory, like catastrophe theories in general, has
been abandoned.

The currently accepted theory assumes that asteroids
were formed simultaneously with the major planets. The
primeval asteroids were large chunks, most of them or-
biting between the orbits of Mars and Jupiter. Due to
mutual collisions and fragmentation, the present aster-
oids are debris of those primordial bodies which were
never able to form a large planet. Some of the biggest
asteroids may be those original bodies. The orbital el-
ements of some asteroids are very similar. These are
called the Hirayama families. They are probably rem-
nants of a single, large body that was broken into a group
of smaller asteroids. There are tens of identified Hi-
rayama families, the largest ones including Hungarias,
Floras, Eos, Themis, and Hildas (named after the main
asteroid in the group).

The distribution of asteroids inside the asteroid belt
is uneven (Fig.7.56); they seem to avoid some areas
known as the Kirkwood gaps. The most prominent void
areas are at distances where the orbital period of an
asteroid around the Sun (given by Kepler’s third law)
is in the ratio 1:3, 2:5, 3:7, or 1:2 to the orbital period
of Jupiter. The motion of an asteroid orbiting in such
a gap would be in resonance with Jupiter, and even small
perturbations would tend to grow with time. The body
would eventually be moved to another orbit. However,
the resonance effects are not so simple: sometimes an
orbit is “locked” to a resonance, e.g. the Trojans move
along the same orbit as Jupiter (1:1 resonance), and the
Hilda group is in the 2:3 resonance.

Many groups of asteroids orbit the Sun outside the
main belt. These include the above-mentioned Trojans,
which orbit 60° behind and ahead of Jupiter. The Tro-
jans, which are close to the special points L4 and Ls
of the solution of the restricted three-body problem. At
these Lagrangian points, a massless body can remain
stationary with respect to the massive primaries (in this



7.17 Minor Bodies of the Solar System

Fig.7.55. Left: Asteroid (951) Gaspra was photographed by
the Galileo spacecraft in October 1991. The illuminated part
of the asteroid is about 16 x 12 km. The smallest craters in

this view are about 300 m across. Right: A mosaic of asteroid

case, Jupiter and the Sun). In fact, the asteroids are oscil-
lating around the stationary points, but the mean orbits
can be shown to be stable against perturbations.

Another large family is the Apollo-Amor asteroids.
The perihelia of Apollo and Amor are inside the Earth’s
orbit and between the orbits of the Earth and Mars, re-
spectively. These asteroids are all small, less than 30 km
in diameter. The most famous is 433 Eros (Fig.7.55),
which was used in the early 20th century for determin-
ing the length of the astronomical unit. When closest to
the Earth, Eros is at a distance of only 20 million km
and the distance can be directly measured using the
trigonometric parallax. Some of the Apollo-Amor as-
teroids could be remnants of short-period comets that
have lost all their volatile elements.

There is a marginal probability that some Earth-
crossing asteroids will collide with the Earth. It has been
estimated that, on the average, a collision of a large aster-
oid causing a global catastrophe may take place once in
one million years. Collisions of smaller bodies, causing
damage similar to a nuclear bomb, may happen once per
century. It has been estimated that there are 500—1000

(433) Eros was taken by the NEAR spacecraft from a distance
of 200 km. The crater on top is about 5 km in diameter. The
NEAR spacecraft orbited Eros for one year and finally landed
on it in 2001. (JPL/NASA)

near-Earth asteroids larger than one kilometre in di-
ameter but possibly tens of thousands smaller objects.
Programs have been started to detect and catalogue all
near-Earth asteroids and to predict the probabilities of
hazardous collisions.

Distant asteroids form the third large group out-
side the main asteroid belt. The first asteroid belonging
to this group (2060) Chiron, was discovered in 1977.
Chiron’s aphelion is close to the orbit of Uranus and
the perihelion is slightly inside the orbit of Saturn.
Distant asteroids are very faint and thus difficult to
find.

Already in the 1950°s Gerard Kuiper suggested that
comet-like debris from the formation of the solar system
can exist beyond the orbit of Neptune as an additional
source of comets to the more distant Oort cloud. Later,
computer simulations of the solar system’s formation
showed that a disk of debris should form at the outer
edge of the solar system. The disk is now known as the
Kuiper belt (Fig.7.58).

The first Trans-Neptunian asteroid (1992 QB1) was
discovered in 1992, and in the beginning of year 2006
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a)

Fig. 7.56. (a) Most of the asteroids orbit the Sun in the asteroid
belt between Mars and Jupiter. The figure shows the positions
of about 96,000 catalogued asteroids on January 1, 2000, and
the orbits and the positions of some major planets. The orbital
elements of the asteroids are from the Lowell Observatory data

there were about 1000 known members. The total num-
ber of Kuiper belt objects larger than 100 km in diameter
is estimated to be over 70,000. Some of them may
be even larger than Pluto. The Kuiper belt objects are
remnants from the early accretion phases of the solar
system. Several of the Trans-Neptunian objects are in
or near a 3:2 orbital period resonance with Neptune, the
same resonance as Pluto.

The exact sizes of asteroids were long unknown. Ed-
ward E. Barnard of the Lick Observatory determined
visually the diameters of (1) Ceres, (2) Vesta, (3) Juno,
and (4) Pallas in the 1890’s (Fig.7.57). Practically no
other reliable results existed prior to the 1960’s, when
indirect methods applying photometry and spectroscopy
were adopted. Moreover, several stellar occultations
caused by asteroids have been observed since 1980’s.

The first images of asteroids were obtained in the
early 1990’s. In 1991 the Galileo spacecraft passed as-
teroid (951) Gaspra, and in 1993 asteroid (243) Ida, on
its long way to Jupiter (see Sect. 7.15). Finally, in 2001,
the NEAR spacecraft landed on asteroid (433) Eros after
orbiting it for one year.

<
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base. (b) The total number of asteroids as a function of the
distance from the Sun. Each bin corresponds to 0.1 AU. The
empty areas, the Kirkwood gaps, are at those points, where the
orbital period of an asteroid is in a simple ratio to the orbital
period of Jupiter

1 Ceres

Fig.7.57. Sizes of some asteroids compared with the Moon.
(Moon image, NASA)
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drawing adapted from
Donald K. Yeomaris
illustration (NASA, JPL)

The images of asteroids (Fig.7.55) show irregular,
crater-filled bodies with regolith and pulverised rock on
their surface. Some asteroids may once have been two
separate objects that merged into one. In 1992 aster-
oid (4179) Toutatis passed the Earth only by 4 million
kilometres. Radar images revealed a two-body system,
where the components were touching each other. Dou-
ble asteroids may be quite common, and there exist light
curves of some asteroids which have been interpreted
as results of twin bodies. Another example of a twin
asteroid is 243 Ida that has a “moon”, a smaller body
gravitationally bound to it.

The composition of main belt asteroids is similar
to that of iron, stone and iron-stone meteorites. Most
asteroids can be divided into three groups, according to
their photometric and polarimetric properties. 95% of
the classified asteroids belong to the types C and S types.
Metal-rich M type asteroids are rarer.

Fig.7.58. The Kuiper Belt
is a disk-shaped cloud of
distant icy bodies inside the
halo of the Oort cloud. The
short-period comets orig-
inate in the Kuiper belt,
whereas a huge amount of
icy bodies that form a source
of long period comets re-
sides in the Oort cloud (see
Sect. 7.18). JPL/NASA)

About 75 percent of asteroids belong to the type
C type. The C asteroids are dark due to radiation dark-
ening (geometric albedo p = 0.06 or less), and they
contain a considerable amount of carbon (mnemonic
C for carbon). They resemble stony meteorites. The
material is undifferentiated and thus they belong to the
most primordial bodies of the solar system. The re-
flectivity of silicate-rich S asteroids is higher and their
spectra are close to those of stone-iron meteorites. Their
spectra show signs of silicates, such as olivine, e. g. fos-
terite Mg,SiOy4 or fayalite Fe;SiO4. M type asteroids
have more metals, mostly nickel and iron; they have
undergone at least a partial differentiation.

The compositions and even sizes of the Trans-
Neptunian objects are difficult to determine. They are
dim, and due to their low temperature, the black-body
radiation maximum is around 60 pxm. This wavelength
is almost impossible to observe on the Earth. Even the
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Fig.7.59. Top: Comet Mrkos in 1957. (Palomar Observatory).
Lower left: The impactor of the Deep Impact spacecraft col-
lided with the nucleus of comet Tempel 1 in July 2005. In this
picture, the collision point is between the two sharp craters
in the lower part of the body. The diameter of the nucleus is

about 5 km. (Photo NASA) Lower right: A composite im-
age of the nucleus of comet P/Halley taken by ESA Giotto
spacecraft in 1986. The size of the nucleus is approximately
13 x 7 km. Dust jets are originating from two regions on the
nucleus. (ESA/Max Planck Institut fiir Aeronomie)
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estimations of the albedos, and therefore the diameter
are very uncertain.

Colors of TNOs range from blue-grey to red and the
distribution appears to be uniform. However, popula-
tion of the low-inclination objects seem to be red and
high-inclination objects blue. The unperturbed orbits of
the low-inclination objects suggest that they represent
a relic of the original population of the Kuiper belt.

Interpretations of the spectra are ambiguous and
spectra may not describe the composition of the whole

Jupiter

Fig. 7.60. Orbits of short period comets projected to the plane
of the ecliptic

object. The surface is altered by intense radiation, solar
wind and micrometeorites and it can be quite different
from the regolith and deeper layers underneath.

Small TNOs are probably mixtures of rock and
ice with some organic surface material. The com-
position is similar to the comets. High density
(2000-3000 kg m~) of some large objects suggests
a high non-ice content, similar to Pluto.

Comets. Comets are agglomerates of ice, snow, and
dust; a typical diameter is of the order of 10 km or less.
The nucleus contains icy chunks and frozen gases with
embedded rock and dust. At its centre, there can be
a small, rocky core.

A comet is invisible when far from the Sun; when it
gets closer than about 2 AU, the heat of the Sun starts to
melt the ice and snow. The outflowing gas and dust form
an envelope, the coma around the nucleus. Radiation
pressure and the solar wind push ionised gas and dust
away from the Sun, resulting in the typical long-tailed
shape of a comet (Fig. 7.59).

The tail is always pointing away from the Sun, a fact
which was noticed in the 16th century. Usually, there are
two tails, an ion tail (gas tail) and a dust tail. The partly
ionised gas and very fine dust in the ion tail are driven by
the solar wind. Some of the light is reflected solar light,
but the brightness of the ion tail is mostly due to emis-
sion by the excited atoms. The dust tail is caused by the

Fig.7.61. Comet Shoemaker—Levy 9 five months before its collision to Jupiter as seen by the Hubble Space Telescope.
(JPL/NASA)
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Fig. 7.62. A schematic diagram of the distribution of the semi-
major axes of long-period comets. The abscissa is the inverse
of the semimajor axis, 1/a [AU]~L. The Oort cloud is visi-
ble as a strong peak at the very small positive values of 1/a.
The orbits shown here are the “original orbits”, i.e. computed
backward in time to remove all known perturbations

radiation pressure. Because the velocities of the parti-
cles of the dust tail are lower than the velocities in the ion
tail, the dust tail is often more curved than the ion tail.

Fred Whipple introduced in 1950°s a “dirty snow-
ball” theory to describe the cometary structure.
According to this model, cometary nuclei are composed
of ice mixed with gravel and dust. The observations have
revealed that the classical dirty snowball model is not
quite accurate; at least the surface is more dirt than snow,
also containing organic compounds. Several chemical
compounds have been observed, including water ice,
which probably makes up 75-80% of the volatile ma-
terial. Other common compounds are carbon monoxide
(CO), carbon dioxide (CO,), methane (CH4), ammonia
(NH3), and formaldehyde (H,CO).

The most famous (and also best known) periodic
comet is Halley’s comet. Its orbital period is about
76 years; it was last in perihelion in 1986. During the
last apparition, the comet was also observed by space-
craft, revealing the solid cometary body itself for the
first time. Halley is a 13 x 7 km, peanut-shaped chunk
whose surface is covered by an extremely black layer
of a possibly tar-like organic or other similar material.
Violent outbursts of gas and dust make an exact pre-
diction of its brightness impossible, as often noticed

when cometary magnitudes have been predicted. Near
the perihelion, several tons of gas and dust burst out
every second.

Cometary material is very loose. Ablation of gas
and dust, large temperature variations and tidal forces
sometimes cause the whole comet to break apart. Comet
Shoemaker—Levy 9 which impacted into Jupiter in 1994
was torn apart two years earlier when it passed Jupiter
at a distance of 21,000 km (Fig.7.63). The impact of
Shoemaker-Levy 9 showed that there can be density
variation (and perhaps variation in composition, too)
inside the original cometary body.

Comets are rather ephemeral things, surviving only
a few thousand revolutions around the Sun or less. The
short-period comets are all newcomers and can survive
only a short time here, in the central part of the solar
system.

Since comets in the central solar system are rapidly
destroyed, there has to be some source of new short-
period comets. In 1950 Jan Oort discovered a strong
peak for aphelia of long period comets at a distance
of about 50,000 AU, and that there is no preferential
direction from which comets come (Fig. 7.62). He pro-
posed that there is a vast cloud of comets at the outer
reaches of the solar system, now know as the Oort cloud
(Fig.7.60). The total mass of the Oort cloud is esti-
mated to be tens of Earth masses, containing more than
10'? comets.

A year later Gerard Kuiper showed that there is a sep-
arate population of comets. Many of the short period
comets, with periods less than 200 years, have the or-
bital inclination less than 40°, and they orbit the Sun in
the same direction as the Earth. The orbital inclination
of long period comets are not peaked around the plane
of the ecliptic but they are more random. Kuiper argued
that the short period comets originate from a separate
population of comets that resides in a disk-like cloud
beyond the orbit of Neptune. The area is now known as
the Kuiper belt (Fig. 7.60).

Occasionally perturbations from passing stars send
some of the comets in the Oort cloud into orbits, which
bring them into the central parts of the solar system,
where they are seen as long-period comets. Around
adozen “new” comets are discovered each year. Most of
these are visible only with a telescope, and only a cou-
ple of times per decade one can see a bright naked-eye
comet.
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Fig. 7.63. Meteors are easy to capture on film: one just leaves
a camera loaded with a sensitive film on a tripod with the

Some of the long period comets are put into short
period orbits by the perturbations of Jupiter and Sat-
urn, whereas some others can be ejected from the solar
system. However, there are no comets that have been
proven to come from interstellar space, and the relative
abundances of several isotopes in the cometary matter
are the same as in other bodies of our solar system.

The origin of the Oort cloud and Kuiper belt is differ-
ent. The Oort cloud objects were formed near the giant
planets and have been ejected to the outer edge of the
solar system by gravitational perturbations soon after
the formation of the solar system. Small objects beyond
the orbit of Neptune had no such interactions and they
remained near the accretion disk.

Meteoroids. Solid bodies smaller than asteroids are
called meteoroids. The boundary between asteroids and

shutter open for an hour or so. Stars make curved trails on the
film. (L. Hidkkinen)

meteoroids, however, is diffuse; it is a matter of taste
whether a ten metre body is called an asteroid or a me-
teoroid. We could say that it is an asteroid if it has been
observed so often that its orbital elements are known.

When a meteoroid hits the atmosphere, an optical
phenomenon, called a meteor (“shooting star”) is seen
(Fig. 7.63). The smallest bodies causing meteors have
a mass of about 1 gram; the (micro)meteoroids smaller
than this do not result in optical phenomena. However,
even these can be observed with radar which is able
to detect the column of ionised air. Micrometeoroids
can also be studied with particle detectors installed in
satellites and space crafts. Bright meteors are called
bolides.

The number of meteoroids increases rapidly as their
size diminishes. It has been estimated that at least 10° kg
of meteoritic material falls on the Earth each day. Most
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of this material is micrometeoroids and causes no visible
phenomena.

Due to perspective, all meteors coming from the same
direction seem to radiate from the same point. Such
meteor streams (meteor showers) are, e. g. the Perseids
in August and the Geminides in December; the names
are given according to the constellation in which the
radiation point seems to be. On the average, one can
see a few sporadic meteors per hour. During a strong
meteor shower one can see even tens of meteors per
minute, although a normal rate is some tens per hour.

Most of the meteoroids are small and burn to ashes at
a height of 100 km. However, larger bodies may come
through and fall to the Earth. These are called mete-
orites. The relative speed of a typical meteoroid varies
in the range 10—70 km/s. The speed of the largest bod-
ies does not diminish in the atmosphere; thus, they hit
the Earth at their cosmic speeds, resulting in large im-
pact craters. Smaller bodies slow down and drop like
stones but impacts of large bodies (diameter meters or
more) may cause large-scale disaster.

Iron meteorites or irons, composed of almost pure
nickel-iron, comprise about one quarter of all mete-
orites. Actually the irons are in a minority among

meteoroids, but they survive their violent voyage
through the atmosphere more easily than weaker bod-
ies. Three-quarters are stony meteorites, or stone-iron
meteorites.

Meteoroids themselves can be divided into three
groups of roughly equal size. One-third is ordinary
stones, chondrites. The second class contains weaker
carbonaceous chondrites and the third class includes
cometary material, loose bodies of ice and snow which
are unable to survive down to the Earth.

Many meteor streams are in the same orbit as a known
comet, so at least some meteoroids are of cometary
origin. Near a perihelion passage, every second sev-
eral tons of gravel is left on the orbit of a comet.
There are several examples of meteorites that have
their origin in the Moon or Mars. Debris of large im-
pacts may have been ejected into space and finally
ended up on the Earth. Some meteoroids are debris of
asteroids.

Interplanetary Dust. Two faint light phenomena,
namely zodiacal light and gegenschein (counterglow)
make it possible to observe interplanetary dust, small
dust particles reflecting the light of the Sun (Fig. 7.64).

Fig.7.64. A projection of the entire infrared sky created from
observations of the COBE satellite. The bright horizontal band
is the Milky Way. The dust of the solar system, visible on the

Earth as zodiacal light is an S-shaped glow across the image.
(G. Greaney and NASA)
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This weak glow can be seen above the rising or setting
Sun (zodiacal light) or exactly opposite the Sun (gegen-
schein). The interplanetary dust is concentrated near the
plane of the ecliptic. The typical sizes of the particles
are in the range of 10-100 pm.

Solar Wind. Elementary particles hitting the Earth orig-
inate both in the Sun and outside the solar system.
Charged particles, mainly protons, electrons and alpha
particles (helium nuclei) flow continuously out of the
Sun. At the distance of the Earth, the speed of this so-
lar wind is 300-500 km/s. The particles interact with
the solar magnetic field. The strength of the solar mag-
netic field at the Earth’s distance is about 1/1000 of that
of the Earth. Particles coming from outside the solar
system are called cosmic rays (Sect. 15.8).

7.18 Origin of the Solar System

Cosmogony is a branch of astronomy which studies the
origin of the solar system. The first steps of the plan-
etary formation processes are closely connected to star
formation.

The solar system has some very distinct features
which have to be explained by any serious cosmogonical
theory. These include:

— planetary orbits are almost coplanar and also paral-
lel to the solar equator;

— orbits are almost circular;

— planets orbit the Sun counterclockwise, which is also
the direction of solar rotation;

— planets also rotate around their axes counterclock-
wise (excluding Venus, Uranus and Pluto);

— planetary distances approximately obey the empiri-
cal Titius-Bode law, i.e.

a=044+03x2",

7.55
n=-00,0,1,2,--- ( )

where the semimajor axis a is expressed in AU;

— planets have 98% of the angular momentum of the
solar system but only 0.15% of the total mass;

— terrestrial and giant planets exhibit physical and
chemical differences;

— the structure of planetary satellite systems resembles
miniature solar systems.

The first modern cosmogonical theories were intro-
duced in the 18th century. One of the first cosmogonists
was Immanuel Kant, who in 1755 presented his nebular
hypothesis. According to this theory, the solar system
condensed from a large rotating nebula. Kant’s nebu-
lar hypothesis is surprisingly close to the basic ideas of
modern cosmogonical models. In a similar vein, Pierre
Simon de Laplace suggested in 1796 that the planets
have formed from gas rings ejected from the equator of
the collapsing Sun.

The main difficulty of the nebular hypothesis was its
inability to explain the distribution of angular momen-
tum in the solar system. Although the planets represent
less than 1% of the total mass, they possess 98% of the
angular momentum. There appeared to be no way of
achieving such an unequal distribution. A second ob-
jection to the nebular hypothesis was that it provided
no mechanism to form planets from the postulated gas
rings.

Already in 1745, Georges Louis Leclerc de Buffon
had proposed that the planets were formed from a vast
outflow of solar material, ejected upon the impact of
a large comet. Various catastrophe theories were pop-
ular in the 19th century and in the first decades of the
20th century when the cometary impact was replaced
by a close encounter with another star. The theory was
developed, e. g. by Forest R. Moulton (1905) and James
Jeans (1917).

Strong tidal forces during the closest approach would
tear some gas out of the Sun; this material would later
accrete into planets. Such a close encounter would be
an extremely rare event. Assuming a typical star density
of 0.15 stars per cubic parsec and an average relative
velocity of 20 km/s, only a few encounters would have
taken place in the whole Galaxy during the last 5 x 10°
years. The solar system could be a unique specimen.

The main objection to the collision theory is that
most of the hot material torn off the Sun would be
captured by the passing star, rather than remaining in
orbit around the Sun. There also was no obvious way
how the material could form a planetary system.

In the face of the dynamical and statistical difficul-
ties of the collision theory, the nebular hypothesis was
revised and modified in the 1940’s. In particular, it be-
came clear that magnetic forces and gas outflow could
efficiently transfer angular momentum from the Sun
to the planetary nebula. The main principles of plane-
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Fig.7.65. Hubble Space
Telescope images of four
protoplanetary disks, “pro-
plyds”, around young stars
in the Orion nebula. The
disk diameters are two
to eight times the diam-
eter of our solar system.
There is a T Tauri star in
the centre of each disk.
(Mark McCaughrean/Max-
Planck-Institute for Astron-
omy, C. Robert O’Dell/Rice
University, and NASA)

tary formation are now thought to be reasonably well
understood.

The oldest rocks found on the Earth are about
3.9 x 10? years old; some lunar and meteorite samples
are somewhat older. When all the facts are put together,
it can be estimated that the Earth and other planets were
formed about 4.6 x 10° years ago. On the other hand,
the age of the Galaxy is at least twice as high, so the
overall conditions have not changed significantly dur-
ing the lifetime of the solar system. Moreover, there is
even direct evidence nowadays, such as other planetary
systems and protoplanetary disks, proplyds (Fig.7.65).

The Sun and practically the whole solar system
simultaneously condensed from a rotating collapsing
cloud of dust and gas, the density of which was some
10,000 atoms or molecules per cm® and the temper-

ature 10-50K (Fig.7.66). The elements heavier than
helium were formed in the interiors of stars of preced-
ing generations, as will be explained in Sect. 11.8. The
collapse of the cloud was initiated perhaps by a shock
wave emanating from a nearby supernova explosion.

The original mass of the cloud must be thousands of
Solar masses to exceed the Jeans mass. When the cloud
contract the Jeans mass decrease. Cloud fragments and
each fragment contract independently as explained in
later chapters of star formation. One of the fragments
became the Sun.

When the fragment continued its collapse, parti-
cles inside the cloud collided with each other. Rotation
of the cloud allowed the particles to sink toward the
same plane, perpendicular to the rotation axis of the
cloud, but prevented them from moving toward the axis.
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Fig. 7.66a—g. A schematic plot on the forma-
tion of the solar system. (a) A large rotating
cloud, the mass of which was 3—4 solar

masses, began to condense. (b) The inner-
most part condensed most rapidly and a disk
of gas and dust formed around the proto-

sun. (c¢) Dust particles in the disk collided
with each other forming larger particles and
sinking rapidly to a single plane. (d) Par-

ticles clumped together into planetesimals
which were of the size of present asteroids.
(e) These clumps drifted together, forming
planet-size bodies which began (f) to col-
lect gas and dust from the surrounding cloud.
(g) The strong solar wind “blew” away ex-
tra gas and dust; the planet formation was
finished
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Fig.7.67. Temperature distribution in the solar system dur-
ing planet formation. The present chemical composition of
the planets reflects this temperature distribution. The approxi-
mate condensing temperatures of some compounds have been
indicated

This explains why the planetary orbits are in the same
plane.

The mass of the proto-Sun was larger than the mass of
the modern Sun. The flat disk in the plane of the ecliptic
contained perhaps 1/10 of the total mass. Moreover, far
outside, the remnants of the outer edges of the original
cloud were still moving toward the centre. The Sun was
losing its angular momentum to the surrounding gas by
means of the magnetic field. When nuclear reactions
were ignited, a strong solar wind carried away more
angular momentum from the Sun. The final result was
the modern, slowly rotating Sun.

The small particles in the disk were accreting to larger
clumps by means of continuous mutual collisions, re-
sulting finally in asteroid-size bodies, planetesimals.
The gravitation of the clumps pulled them together,
forming ever growing seeds of planets. When these
protoplanets were large enough, they started to ac-
crete gas and dust from the surrounding cloud. Some
minor clumps were orbiting planets; these became
moons. Mutual perturbations may have prevented plan-
etesimals in the current asteroid belt from ever being
able to become “grown-up” planets. Moreover, reso-
nances could explain the Titius-Bode law: the planets
were able to accrete in very limited zones only
(Table 7.4).

The temperature distribution of the primordial cloud
explains the differences of the chemical composition of
the planets (Fig.7.67). The volatile elements (such as

Table 7.4. True distances of the planets from the Sun and
distances according to the Titius—Bode law (7.55)

Planet n Calculated True
distance distance
[AU] [AU]
Mercury —00 0.4 0.4
Venus 0 0.7 0.7
Earth 1 1.0 1.0
Mars 2 1.6 1.5
Ceres 3 2.8 2.8
Jupiter 4 52 52
Saturn 5 10.0 9.2
Uranus 6 19.6 19.2
Neptune 7 38.8 30.1
Pluto 8 772 39.5

hydrogen and helium, and ices) are almost totally ab-
sent in the innermost planets. The planets from Mercury
to Mars are composed of “rocks”, relatively heavy ma-
terial which condenses above 500 K or so. The relative
abundance of this material in the primeval nebula was
only 0.4%. Thus the masses of terrestrial planets are rel-
atively small. More than 99% of the material was left
over.

At the distance of Mercury, the temperature was
about 1400 K. At this temperature, iron and nickel com-
pounds begin to condense. The relative abundance of
these compounds is greatest on Mercury and smallest
on Mars, where the temperature was only 450 K. Thus
the amount of iron(IT)oxide, FeO, is relatively high on
Mars, whereas there is practically no FeO on Mercury.

At the distance of Saturn, the temperature was so low
that bodies of ice could form; e. g. some moons of Saturn
are almost pure water ice. Because 98.2% of the primor-
dial material was hydrogen and helium, the abundance
of hydrogen and helium in Jupiter and Saturn is close to
those values. However, the relative importance of ices
became more prominent at the distance of Uranus and
Neptune. A considerable amount of the mass of these
planets can be water.

Meteorite bombardment, contraction and radioactive
decay produced a great deal of heat after the planetary
formation. This gave rise to the partial melting of some
terrestrial planets, resulting in differentiation of mate-
rial: the heavy elements sank to the centre and the light
dross was left to float on the surface.

The left over material wandered among the planets.
Planetary perturbations caused bodies in unstable or-
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bits to collide with planets or to be slung outer edges
of the solar system, as happened to the bodies now in
the Oort cloud. Asteroids remained in their stable or-
bits. On the outskirts of the solar system, bodies of ice
and dust, such as the Kuiper belt objects, could also
survive.

The beginning of the solar nuclear reactions meant
the end of planetary formation. The Sun was in the
T Tauri phase losing mass to a strong solar wind. The
mass loss was as high as 1077 M /a. However, this
phase was relatively short and the total mass loss did
not exceed 0.1 M. The solar wind “blew” away the
interplanetary gas and dust, and the gas accretion to the
planets was over.

The solar wind or radiation pressure has no effect
on millimetre- and centimetre-sized particles. However,
they will drift into the Sun because of the Poynting—
Robertson effect, first introduced by John P. Poynting in
1903. Later H.P. Robertson derived the effect by using
the theory of relativity. When a small body absorbs and
emits radiation, it loses its orbital angular momentum
and the body spirals to the Sun. At the distance of the as-
teroid belt, this process takes only a million years or so.

7.19 Examples

Example 7.1 Sidereal and Synodic Period

The time interval between two successive oppositions of
Mars is 779.9 d. Calculate the semimajor axis of Mars’
orbit.
The synodic period is 779.9d =2.14 years. We
obtain from (7.1)
1 1 1

— =———— =053

_ Py —188a.
-1 214 = n a

By using Kepler’s third law, (m < M), the semimajor
axis is found to be

a= P =188/ =152AU.
Example 7.2  Solar Energy Flux on the Earth

Calculate the diurnal solar energy flux per unit area at
the distance of the Earth.
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The solar flux density outside the Earth’s atmosphere
(the solar constant) is Sy = 1370 W/m?. Consider a sit-
uation at latitude ¢, when the solar declination is &. If
the atmospheric extinction is neglected, the flux density
on the surface is

S =Sysina,

where a is the elevation of the Sun. We can write sina
as a function of latitude, declination, and hour angle /:

sina =sin§sin¢g +cosdcos¢cosh .

On a cloudless day, the energy is received between sun-
rise and sunset. The corresponding hour angles can be
obtained from the equation above, when a = O:

coshyp=—tandtan¢ .

In the course of one day, the energy received on a unit
area is

ho
W:det.

—ho

The hour angle % is expressed in radians, so the time ¢
is

h
t=—~P,
2

where P = 1d = 24 h. The total energy is thus
ho
P
W= f So(sin 8 sin ¢ 4- cos § cos ¢ cos h)z— dh
b4
—ho
So P . . .
= ——(hg sin é sin ¢ + cos § cos ¢ sin hy) ,
b4
where
ho = arccos(— tan § tan ¢) .

For example near the equator (¢ = 0°) cos iy =0 and
SoP
W(p=0) = 22" coss.
b4

At those latitudes where the Sun will not set, hy =
and

Weire = SoP sindsin¢ .



7. The Solar System

202

Near the poles, the Sun is always circumpolar when
above the horizon, and so

W(¢ =90°) = SoP siné .

Interestingly enough, during the summer when the dec-
lination of the Sun is large, the polar areas receive more
energy than the areas close to the equator. This is true
when

W(g =90°) > W(¢ =0°)
< SoPsind > SyP cosd/m
& tand > 1/m

& 5> 17.7°.

The declination of the Sun is greater than this about two
months every summer.

However, atmospheric extinction diminishes these
values, and the loss is at its greatest at the poles, where
the elevation of the Sun is always relatively small. Ra-
diation must penetrate thick layers of the atmosphere
and the path length is comparable to 1/ sina. If it is as-
sumed that the fraction & of the flux density reaches the
surface when the Sun is at zenith, the flux density when
the Sun is at the elevation a is

S’ = Sysina k'/sne

15 WIkWh/n?] Without extinction (k=1)  _|
| Extinction k = 0.8 i
I @ =90° 1
L @=0° 4
10 |- -
L =0° ¢ =60° _
5k Q .
&
L 2 N ]
.S S 1
/
L S ]
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The total energy received during one day is thus

ho ho
W= / S'dr = f So sina k'/sneqr .
—hy —hg

This cannot be solved in a closed form and numerical
methods must be used.

The figure on next page shows the daily received
energy W [kWh/m?] during a year at latitudes ¢ =
0°, 60°, and 90° without extinction, and when k = 0.8,
which is close to the real value.

Example 7.3 Magnitude of a Planet

The apparent magnitude of Mars during the 1975 op-
position was m; = — 1.6 and the distance to the Sun,
r1 = 1.55 AU. During the 1982 opposition, the distance
was rp = 1.64 AU. Calculate the apparent magnitude in
the 1982 opposition.

At opposition, the distance of Mars from the Earth
is A =r — 1. The observed flux density depends on the
distances to the Earth and the Sun,

X ——= .
r2 A2

Using the magnitude formula (4.9) we obtain

2 _12
ml—m2=—2.51g%
ri(ri—1)
—1
:>m2=m1+51gM
ri(ri—1)
1.64 x 0.64
=—-16+5lg—~ —1.1.
87555055

The same result is obtained if (7.43) is separately written
for both oppositions.

Example 7.4 The Brightness of Venus

Find the instant when Venus is brightest if the brightness
is proportional to the projected size of the illuminated
surface. The orbits are assumed to be circular.
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The size of the illuminated surface is the area of the
semicircle ACE= half the area of the ellipse ABCD.
The semiaxes of the ellipse are R and R cos . If the
radius of the planet is R, the illuminated area is

2 i
JT7 + an X Rcosa = ERZ(I +cosa) ,

where « is the phase angle. The flux density is inversely
proportional to the square of the distance A. Thus

1+cosa

F « a2

The cosine formula yields
Mé =r’4+ A’ —2Arcosa.

When cos « is solved and inserted in the flux density we
obtain
2Ar +r*+ A% — M2,
2rA3

The minimum of the equation yields the distance where
Venus is brightest:

OF  4rA+3rr =3 M3+ A? 0
A 2rat B

= A=-2r+,/r24+3M}.

If r =0.723 AU and Rg = 1 AU, the distance is A =
0.43 AU and the corresponding phase angleis o = 118°.

Thus Venus is brightest shortly after the largest
eastern elongation and before the largest western

Illuminated surface
seen by the observer

elongation. From the sine formula we obtain

sing sina

r M, ) '
The corresponding elongation is ¢ = 40°, and

1+4+cosa
—— x 100% =27%

of the surface is seen lit.

Example 7.5  Size of an Asteroid

The apparent visual magnitude V of a minor planet at
the moment of opposition was observed to be Vy = 10.0.
Give an estimate of the asteroid’s size when the geo-
metric albedo is assumed to be p = 0.15. Give an error
estimate if the geometric albedo is wrong by a factor of
two. The visual magnitude of the Sun is Vo = —26.8,
and the distance of the asteroid from the Earth was
A=3AU.

At opposition the distance of a body from the Sun is
r = A+ 1. Assuming that rg = 1 AU, the radius R can
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be solved from (7.45)

rA [10-04Vo—Vo)
R=— | —M
e p

3.4 [10-04(10+26.8)
-1 0.15

x 1.5 x 10® km

=200km .

If p =0.075, the size of the asteroid is R = 290 km and
if p = 0.3, the radius will be R = 140 km.

Example 7.6 The Roche Limit

A French mathematician Edouard Roche computed in
1848 a limit where a moon will be torn apart due to
the tidal forces if it approaches its parent planet. Roche
proposed that the Saturnian rings were formed in that
way.

We can compute the Roche limit for a body at
a distance R of a planet the mass of which is M ap-
proximating the body with two small spheres of radius
and mass m. The difference of gravitation affecting the
small spheres by the planet is

AF =GMm |: ! — ! :|
(R—r)? (R+r)?

The gravitational force between the small spheres is

Gm?
472

4

If AF > F’, the small spheres will be pulled apart. The
forces are equal at the Roche limit:

4r _ Gm?
R3 ™~ 42
Thus the distance of the Roche limit R is

3 16r3M
R=}/ .
m

Inserting the masses of the planet and the spheres in
terms of the radii of the planet S and spheres r, and
assuming that the densities p are equal, m = %m’3p,

M= %nS3p, we obtain

R~25xS.

GMm

Our result is valid only for a body without any internal
strength. Smaller bodies with internal strength can sur-
vive inside the Roche limit. You, dear reader, act as an
excellent example of this, because you read this exam-
ple well inside the Roche limit of the Earth. A 100 km
stony asteroid will survive even if it orbits the Earth just
above the atmosphere but a sphere of water of the same
size would break apart.

7.20 Exercises

Exercise 7.1 What is the greatest possible elongation
of Mercury, Venus and Mars? How long before sunrise
or after sunset is the planet visible? Assume that the
declination of the planet and the Sun is § = 0°.

Exercise 7.2 a) What is the greatest possible geocen-
tric latitude of Venus, i.e. how far from the Sun can the
planet be at the inferior conjunction? Assume the or-
bits are circular. b) When is the situation possible? The
longitude of the ascending node of Venus is 77°.

Exercise 7.3 The interval between two oppositions of
a planet was 398.9 d. The angular diameter of the planet
at the opposition was 47.2”. Find the sidereal period,
semimajor axis, and the true diameter (in kilometres) of
the planet. Which planet was it?

Exercise 7.4 a) Assume that three bodies move along
circular orbits with angular velocities (mean motions)
ni, ny and n3. Show that these bodies have a common
synodic period if and only if there are nonzero integers
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k1, k» and k3 such that
king +kny+ksns =0, ki+kr+k3=0.

b) The resonance of the Galilean satellites can be
expressed in terms of their mean motions as

Nio — 3nEuropa + 2”Ganyrnede =0.

Find the synodic period of these three moons.

Exercise 7.5 a) Find the daily retrograde apparent mo-
tion of an exterior planet at its opposition. Assume that
the planet and the Earth have circular orbits. b) Pluto
was found in 1930 from two plates, exposed 6 days apart
during the opposition of the planet. On those plates one
degree corresponded to 3 cm. How much (in cm) had
Pluto moved between the exposures? How much does
a typical main belt asteroid move in the same time?

Exercise 7.6 A planet is observed at the opposition
or inferior conjunction. Due to the finite speed of light
the apparent direction of the planet differs from the true
place. Find this difference as a function of the radius of
the orbit. You can assume the orbits are circular. Which
planet has the largest deviation?

Exercise 7.7 The angular diameter of the Moon
is 0.5°. The full moon has an apparent magnitude
of —12.5 and the Sun —26.7. Find the geometric and
Bond albedos of the Moon, assuming that the reflected
light is isotropic (into a solid angle 27 sterad).

Exercise 7.8 The eccentricity of the orbit of Mercury
is 0.206. How much does the apparent magnitude of the
Sun vary as seen from Mercury? How does the surface
brightness of the Sun vary?

Exercise 7.9 An asteroid with a diameter of 100 m
approaches the Earth at a velocity of 30 kms~!. Find
the apparent magnitude of the asteroid a) one week,
b) one day before the collision. Assume that the phase
angle is « = 0° and the geometric albedo of the asteroid
is p =0.1. What do you think about the chances of
finding the asteroid well in advance the crash?

Exercise 7.10 Find the distance of a comet from the
Sun when its temperature reaches 0°C and 100 °C.
Assume the Bond albedo of the comet is 0.05.

205



8. Stellar Spectra

Il our information about the physical properties of

stars comes more or less directly from studies of their
spectra. In particular, by studying the strength of various
absorption lines, stellar masses, temperatures and com-
positions can be deduced. The line shapes contain detailed
information about atmospheric processes.

As we have seen in Chap. 3, the light of a star can be dis-
persed intoaspectrum by means of a prism or a diffraction
grating. The distribution of the energy flux density over
frequency can then be derived. The spectra of stars con-
sist of a continuous spectrum or continuum with narrow
spectral lines superimposed (Fig.8.1). The lines in stel-
lar spectra are mostly dark absorption lines, but in some
objects bright emission lines also occur.

In a very simplified way the continuous spectrum can
be thought of as coming from the hot surface of the star.
Atoms in the atmosphere above the surface absorb cer-
tain characteristic wavelengths of this radiation, leaving

8.1 Measuring Spectra

The most important methods of forming a spectrum are
by means of an objective prism or a slit spectrograph. In
the former case one obtains a photograph, where each

dark “gaps” at the corresponding points in the spec-
trum. In reality there is no such sharp separation between
surface and atmosphere. All layers emit and absorb ra-
diation, but the net result of these processes is that less
energy is radiated at the wavelengths of the absorption
lines.

The spectra of stars are classified on the basis of the
strengths of the spectral lines. Isaac Newton observed
the solar spectrum in 1666, but, properly speaking, spec-
troscopy began in 1814 when Joseph Fraunhofer observed
the dark lines in the spectrum of the Sun. He assigned
capital letters, like D, G, H and K, to some of the stronger
dark lines without knowing the elements responsible for
the origin of the lines (Sect. 8.2). The absorption lines are
also known as Fraunhofer lines. In 1860, Gustav Robert
Kirchhoff and Robert Bunsen identified the lines as the
characteristic lines produced by various elements in an
incandescent gas.

stellar image has been spread into a spectrum. Up to sev-
eral hundred spectra can be photographed on a single
plate and used for spectral classification. The amount of
detail that can be seen in a spectrum depends on its dis-
persion, the range of wavelengths per millimetre on the

o et
e e e s —————————

Fig. 8.1a—g. Typical stellar spectra. The spectrum of 1 Pegasi
(f) is very similar to that of the Sun. The continuous spectrum
is brightest at about 550 nm and gets fainter towards smaller

and larger wavelengths. Dark absorption lines are superim-
posed on the continuum. See also Exercise 8.1. (Mt. Wilson
Observatory)

Hannu Karttunen et al. (Eds.), Stellar Spectra.
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plate (or per pixel on a CCD). The dispersion of an ob-
jective prism is a few tens of nanometres per millimetre.
More detailed observations require a slit spectrograph,
which can reach a dispersion 1-0.01 nm/mm. The de-
tailed shape of individual spectral lines can then be
studied.

The photograph of the spectrum is converted to an
intensity tracing showing the flux density as a function
of wavelength. This is done by means of a microden-
sitometer, measuring the amount of light transmitted by
the recorded spectrum. Since the blackening of a pho-
tographic plate is not linearly related to the amount
of energy it has received, the measured blackening
has to be calibrated by comparison with known ex-

posures. In modern CCD spectrographs the intensity
curve is determined directly without the intervening
step of a photographic plate. For measurements of line
strengths the spectrum is usually rectified by dividing
by the continuum intensity.

Figure 8.2 shows a photograph of the spectrum of
a star and the intensity curve obtained from a calibrated
and rectified microdensitometer tracing. The second
pair of pictures shows the intensity curve before and
after the normalisation. The absorption lines appear as
troughs of various sizes in the curve. In addition to
the clear and deep lines, there are large numbers of
weaker lines that can barely be discerned. The graini-
ness of the photographic emulsion is a source of noise
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Fig.8.2. (a) A section of a photograph of a stellar spectrum
and the corresponding rectified microdensitometer intensity
tracing. The original spectrum was taken at the Crimean Ob-
servatory. (b) A more extensive part of the spectrum. (c¢) The
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picture the intensity curve of the first picture has been rec-
tified by normalizing the value of the continuum intensity
to one. (Pictures by J. Kyroldinen and H. Virtanen, Helsinki
Observatory)
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which appears as irregular fluctuations of the intensity
curve. Some lines are so close together that they appear
blended at this dispersion.

The detailed shape of a spectral line is called the
line profile (Sect.5.3). The true shape of the line re-
flects the properties of the stellar atmosphere, but the
observed profile is also spread out by the measuring
instrument. However, the total absorption in the line,
usually expressed in terms of the equivalent width, is
less sensitive to observational effects (see Fig. 5.6).

The equivalent width of a spectral line depends on
how many atoms in the atmosphere are in a state in
which they can absorb the wavelength in question. The
more atoms there are, the stronger and broader the spec-
tral line is. For example, a typical equivalent width
of a metal line (Fe) in the solar spectrum is about
10 pm. Line widths are often expressed in angstroms
(1A=10"""m=0.1 nm).

Only in weak lines the equivalent width depends lin-
early on the number of absorbing atoms. The equivalent
width as a function of the amount of absorbing atoms
is known as the curve of growth. It is, however, beyond
the scope of this book.

Line profiles are also broadened by the Doppler ef-
fect. In stellar atmospheres there are motions of small
and large scale, like thermal motion of the atoms and
convective flows.

The chemical composition of the atmosphere can be
determined from the strengths of the spectral lines. With
the introduction of large computers it has become fea-
sible to construct quite detailed models of the structure
of stellar atmospheres, and to compute the emergent
spectrum for a given model. The computed synthetic
spectrum can be compared with the observations and
the theoretical model modified until a good fit is ob-
tained. The theoretical models then give the number of
absorbing atoms, and hence the element abundances, in
the atmosphere. The construction of model atmospheres
will be discussed in Sect. 8.6.

8.2 The Harvard Spectral Classification

The spectral classification scheme in present use was
developed at Harvard Observatory in the United States
in the early 20th century. The work was begun by Henry
Draper who in 1872 took the first photograph of the

spectrum of Vega. Later Draper’s widow donated the
observing equipment and a sum of money to Harvard
Observatory to continue the work of classification.

The main part of the classification was done by Annie
Jump Cannon using objective prism spectra. The Henry
Draper Catalogue (HD) was published in 1918—1924. It
contains 225,000 stars extending down to 9 magnitudes.
Altogether more than 390,000 stars were classified at
Harvard.

The Harvard classification is based on lines that are
mainly sensitive to the stellar temperature, rather than
to gravity or luminosity. Important lines are the hydro-
gen Balmer lines, the lines of neutral helium, the iron
lines, the H and K doublet of ionized calcium at 396.8
and 393.3 nm, the G band due to the CH molecule and
some metals around 431 nm, the neutral calcium line at
422.7 nm and the lines of titanium oxide (TiO).

The main types in the Harvard classification are de-
noted by capital letters. They were initially ordered in
alphabetical sequence, but subsequently it was noticed
that they could be ordered according to temperature.
With the temperature decreasing towards the right the

sequence is

C

O-B-A-F-G—-K-M-L-T.

S
Additional notations are Q for novae, P for planetary
nebulae and W for Wolf-Rayet stars. The class C con-
sists of the earlier types R and N. The spectral classes C
and S represent parallel branches to types G-M, dif-
fering in their surface chemical composition. The most
recent addition are the spectral classes L and T con-
tinuing the sequence beyond M, representing brown
dwarfs. There is a well-known mnemonic for the spec-
tral classes, but due to its chauvinistic tone we refuse to
tell it.

The spectral classes are divided into subclasses de-
noted by the numbers 0. ..9; sometimes decimals are
used, e.g. B0.5 (Figs. 8.3 and 8.4). Spectra of brown
dwarfs are shown in Fig. 8.4a compared with those of
M dwarfs.

The main characteristics of the different classes are:

O Blue stars, surface temperature 20,000-35,000 K.
Spectrum with lines from multiply ionized atoms,
e.g. Hell, CIII, NIII, OIII, SiV. Hel visible, HI
lines weak.
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b) 1Ml

Fig. 8.3a,b. Spectra of early and late spectral type stars be-
tween 375 and 390 nm. (a) The upper star is Vega, of spectral
type A0, and (b) the lower one is Aldebaran, of spectral type

B Blue-white stars, surface temperature about
15,000K. Hell lines have disappeared, Hel
(403 nm) lines are strongest at B2, then get weaker
and have disappeared at type B9. The K line of Call
becomes visible at type B3. H I lines getting stronger.
OII, Sill and Mgl lines visible.

A White stars, surface temperature about 9000 K. The
HI lines are very strong at AQ and dominate the
whole spectrum, then get weaker. H and K lines of
Call getting stronger. He I no longer visible. Neutral
metal lines begin to appear.

F Yellow-white stars, surface temperature about
7000 K. HI lines getting weaker, H and K of Call
getting stronger. Many other metal lines, e.g. Fel,
Fell, CrII, TiIl, clear and getting stronger.

G Yellow stars like the Sun, surface temperature about
5500 K. The HI lines still getting weaker, H and
K lines very strong, strongest at GO. Metal lines get-
ting stronger. G band clearly visible. CN lines seen
in giant stars.

K Orange-yellow stars, surface temperature about
4000 K. Spectrum dominated by metal lines. H I lines
insignificant. Cal 422.7 nm clearly visible. Strong H
and K lines and G band. TiO bands become visible
at KS.

M Red stars, surface temperature about 3000 K. TiO
bands getting stronger. Cal 422.7 nm very strong.
Many neutral metal lines.

L Brown (actually dark red) stars, surface temperature
about 2000 K. The TiO and VO bands disappear for
early L class. Very strong and broad lines of NaI and
KL

T Brown dwarfs, surface temperature about 1000 K.
Very strong molecular absorption bands of CH4 and
H,O0.

KS5. The hydrogen Balmer lines are strong in the spectrum of
Vega; in that of Aldebaran, there are many metal lines. (Lick
Observatory)

C Carbon stars, previously R and N. Very red stars,
surface temperature about 3000 K. Strong molecu-
lar bands, e.g. C,, CN and CH. No TiO bands. Line
spectrum like in the types K and M.

S Redlow-temperature stars (about 3000 K). Very clear
ZrO bands. Also other molecular bands, e.g. YO,
LaO and TiO.

The main characteristics of the classification scheme
can be seen in Fig. 8.5 showing the variations of some
typical absorption lines in the different spectral classes.
Different spectral features are mainly due to different ef-
fective temparatures. Different pressures and chemical
compositions of stellar atmospheres are not very impor-
tant factors in the spectral classification, execpt in some
peculiar stars. The early, i.e. hot, spectral classes are
characterised by the lines of ionized atoms, whereas the
cool, or late, spectral types have lines of neutral atoms.
In hot stars molecules dissociate into atoms; thus the ab-
sorption bands of molecules appear only in the spectra
of cool stars of late spectral types.

To see how the strengths of the spectral lines are
determined by the temperature, we consider, for exam-
ple, the neutral helium lines at 402.6 nm and 447.2 nm.
These are only seen in the spectra of hot stars. The rea-
son for this is that the lines are due to absorption by
excited atoms, and that a high temperature is required
to produce any appreciable excitation. As the stellar
temperature increases, more atoms are in the required
excited state, and the strength of the helium lines in-
creases. When the temperature becomes even higher,
helium begins to be ionized, and the strength of the
neutral helium lines begins to decrease. In a similar
way one can understand the variation with temperature
of other important lines, such as the calcium H and K
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classes showing charac-
teristic spectral features.

its spectral and luminos-

are identified. (Drawing
by J. Dufay) (b) Optical
spectra of M stars and
brown dwarfs. In an ap-

from the earlier spectral
types. (J.D. Kirkpatrick
2005, ARAA 43, 205)
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curves for various spectral
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ity class are given next to
each curve, and the most
important spectral features

proximate sense, the brown
dwarfs continue the spec-
tral sequence towards lower
temperatures, although in
many respects they differ
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Fig. 8.5. Equivalent widths
of some important spec-

Temperature

tral lines in the various 25;000 IO,IUOO
spectral classes. [Struve, O.
(1959): Elementary Astron-
omy (Oxford University

Press, New York) p. 259]

Equivalent width

lines. These lines are due to singly ionized calcium,
and the temperature must be just right to remove one
electron but no more.

The hydrogen Balmer lines Hg, H, and Hj are
stongest in the spectral class A2. These lines corre-
spond to transitions to the level the principal quantum
number of which is n = 2. If the temprature is too high
the hydrogen is ionized and such transitions are not
possible.

8.3 The Yerkes Spectral Classification

The Harvard classification only takes into account the
effect of the temperature on the spectrum. For a more
precise classification, one also has to take into ac-
count the luminosity of the star, since two stars with
the same effective temperature may have widely differ-
ent luminosities. A two-dimensional system of spectral
classification was introduced by William W. Morgan,
Philip C. Keenan and Edith Kellman of Yerkes Obser-
vatory. This system is known as the MKK or Yerkes
classification. (The MK classification is a modified,
later version.) The MKK classification is based on
the visual scrutiny of slit spectra with a dispersion of
11.5 nm/mm. It is carefully defined on the basis of stan-
dard stars and the specification of luminosity criteria.
Six different luminosity classes are distinguished:

— Ia most luminous supergiants,
— Ib less luminous supergiants,

Spectral class

— II' luminous giants,

III normal giants,

IV subgiants,

— V main sequence stars (dwarfs).

The luminosity class is determined from spectral
lines that depend strongly on the stellar surface gravity,
which is closely related to the luminosity. The masses
of giants and dwarfs are roughly similar, but the radii of
giants are much larger than those of dwarfs. Therefore
the gravitational acceleration g = G M/ R? at the surface
of a giant is much smaller than for a dwarf. In conse-
quence, the gas density and pressure in the atmosphere
of a giant is much smaller. This gives rise to luminos-
ity effects in the stellar spectrum, which can be used to
distinguish between stars of different luminosities.

1. For spectral types B-F, the lines of neutral hydrogen
are deeper and narrower for stars of higher lumi-
nosities. The reason for this is that the metal ions
give rise to a fluctuating electric field near the hydro-
gen atoms. This field leads to shifts in the hydrogen
energy levels (the Stark effect), appearing as a broad-
ening of the lines. The effect becomes stronger as the
density increases. Thus the hydrogen lines are nar-
row in absolutely bright stars, and become broader
in main sequence stars and even more so in white
dwarfs (Fig. 8.6).

2. The lines from ionized elements are relatively
stronger in high-luminosity stars. This is because the
higher density makes it easier for electrons and ions
to recombine to neutral atoms. On the other hand, the
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Fig. 8.6. Luminosity effects in
the hydrogen Hy, line in A stars.
The vertical axis gives the nor-
malized intensity. HD 223385

(upper left) is an A2 supergiant,
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where the line is very weak,
0 Aurigae A is a giant star and
«? Geminorum is a main se-
quence star, where the line is
very broad. [Aller, L.H. (1953):
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rate of ionization is essentially determined by the ra-
diation field, and is not appreciably affected by the
gas density. Thus a given radiation field can main-
tain a higher degree of ionization in stars with more
extended atmospheres. For example, in the spectral
classes F-G, the relative strengths of the ionized
strontium (Sr1I) and neutral iron (FeI) lines can be
used as a luminosity indicator. Both lines depend on
the temperature in roughly the same way, but the Sr 11
lines become relatively much stronger as the lumi-
nosity increases.

3. Giant stars are redder than dwarfs of the same spec-

tral type. The spectral type is determined from the
strengths of spectral lines, including ion lines. Since
these are stronger in giants, a giant will be cooler,
and thus also redder, than a dwarf of the same spec-
tral type.

4. There is a strong cyanogen (CN) absorption band

in the spectra of giant stars, which is almost totally
absent in dwarfs. This is partly a temperature ef-
fect, since the cooler atmospheres of giants are more
suitable for the formation of cyanogen.
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8.4 Peculiar Spectra

The spectra of some stars differ from what one would
expect on the basis of their temperature and luminos-
ity (see, e.g., Fig. 8.7). Such stars are celled peculiar.
The most common peculiar spectral types will now be
considered.

The Wolf-Rayet stars are very hot stars; the first ex-
amples were discovered by Charles Wolf and Georges
Rayet in 1867. The spectra of Wolf—Rayet stars have
broad emission lines of hydrogen and ionized helium,
carbon, nitrogen and oxygen. There are hardly any ab-
sorption lines. The Wolf-Rayet stars are thought to be
very massive stars that have lost their outer layers in
a strong stellar wind. This has exposed the stellar in-
terior, which gives rise to a different spectrum than
the normal outer layers. Many Wolf—Rayet stars are
members of binary systems.

In some O and B stars the hydrogen absorption lines
have weak emission components either at the line centre
or in its wings. These stars are called Be and shell stars
(the letter e after the spectral type indicates that there are
emission lines in the spectrum). The emission lines are
formed in a rotationally flattened gas shell around the
star. The shell and Be stars show irregular variations,
apparently related to structural changes in the shell.

b)

Fig.8.7a,b. Peculiar spectra. (a) R Geminorum (above) is
an emission line star, with bright emission lines, indicated
by arrows, in its spectrum; (b) the spectrum of a normal

About 15% of all O and B stars have emission lines in
their spectra.

The strongest emission lines are those of the P Cygni
stars, which have one or more sharp absorption lines
on the short wavelength side of the emission line. It
is thought that the lines are formed in a thick expand-
ing envelope. The P Cygni stars are often variable. For
example, P Cygni itself has varied between three and
six magnitudes during the past centuries. At present its
magnitude is about 5.

The peculiar A stars or Ap stars (p =peculiar) are
usually strongly magnetic stars, where the lines are
split into several components by the Zeeman effect. The
lines of certain elements, such as magnesium, silicon,
europium, chromium and strontium, are exceptionally
strong in the Ap stars. Lines of rarer elements such as
mercury, gallium or krypton may also be present. Other-
wise, the Ap stars are like normal main sequence stars.

The Am stars (m = metallic) also have anomalous
element abundances, but not to the same extent as the
Ap stars. The lines of e. g. the rare earths and the heaviest
elements are strong in their spectra; those of calcium and
scandium are weak.

We have already mentioned the S and C stars, which
are special classes of K and M giants with anoma-
lous element abundances. In the S stars, the normal

star is compared with one in which the zirconium lines
are unusually strong. (Mt. Wilson Observatory and Helsinki
Observatory)
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lines of titanium, scandium and vanadium oxide are
replaced with oxides of heavier elements, zirconium,
yttrium and barium. A large fraction of the S stars
are irregular variables. The name of the C stars refers
to carbon. The metal oxide lines are almost com-
pletely absent in their spectra; instead, various carbon
compounds (CN, C,, CH) are strong. The abundance
of carbon relative to oxygen is 4-5 times greater in
the C stars than in normal stars. The C sta