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Preface

In this book we examine modal and temporal logics for processes. First, we in-
troduce concurrent processes as terms of an algebraic language comprising a few
basic operators. Their behaviours are described using transitions. Families of tran-
sitions can be arranged as labelled graphs, concrete summaries of the behaviour
of processes. Various combinations of processes and their resulting behaviour, as
determined by the transition rules, are reviewed. Next, simple modal logics are
introduced for describing the capabilities of processes.

An important discussion point occurs when two processes may be deemed
to have the same behaviour. Such an abstraction can be presented by defining an
appropriate behavioural equivalence between processes. A more abstract approach
is to consider equivalence in terms of having the same pertinent properties. There
is special emphasis with bisimulation equivalence, since the discriminating power
of modal logic is tied to it.

More generally, practitioners have found it useful to be able to express tem-
poral properties of concurrent systems, especially liveness and safety properties.
A safety property amounts to “nothing bad ever happens,” whereas a liveness
property expresses “something good does eventually happen.” The crucial safety
property of a mutual exclusion algorithm is that no two processes are ever in their
critical sections concurrently. And an important liveness property is that, whenever
a process requests execution of its critical section, then eventually it is granted.
Cyclic properties of systems are also salient: for instance, part of a specification
of a scheduler is that it must continually perform a particular sequence of ac-
tions. A logic expressing temporal notions provides a framework for the precise
formalisation of such specifications.

Formulas of the modal logic are not rich enough to express such temporal
properties, so an extra, fixed point operator, is added. The resultis a very expressive
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temporal logic, modal mu-calculus. However, it is also very important to be able
to verify that an agent has or does not have a particular property.

The text aims to be reasonably introductory, so that parts of the book could be
used at undergraduate level, as well as at more advanced levels. I have used the
material in this way at Edinburgh. The extensive use of games for both equivalence
and model checking is partly pedagogical, since they are so conceptually clear.

Parts of the book have been presented previously at various summerschools
over the years, and I wish to thank all the organisers for allowing me to present this
material. I should also like to thank current and previous colleagues at Edinburgh
for building such an intellectually stimulating environment to work in. In particular,
I wish to thank Julian Bradfield (a pioneer of infinite state model checking and
who allowed me to use his TeX tree constructor for building derivation trees), Olaf
Burkart, Kim Larsen (who introduced me to modal mu-calculus), Robin Milner
(from whom I learnt about process calculus and bisimulation equivalence), Perdita
Stevens and David Walker.

Colin Stirling
Edinburgh, United Kingdom
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Processes

1.1

1.1 Firstexamples . . . ... ... . ... 1
1.2 Concurrentinteraction . . . . . . . . . .. ... 8
1.3 Observable transitions . . . . . . ... . ... ... ......... 17
1.4 Renamingandlinking . . ....................... 21
1.5 More combinations of processes . . . . . . .. ... ... ... ... 25
1.6 Setsofprocesses . . . . . . . . . ... 28

In this chapter, processes are introduced as expressions of a simple language built
from a few basic operators. The behaviour of a process E is characterised by tran-
sitions of the form E — F, that E may become F by performing the action a.
Structural rules prescribe behaviour, since the transitions of a compound process
are determined by those of its components. Concrete pictorial summaries of be-
haviour are presented as labelled graphs, which are collections of transitions. We
review various combinations of processes and their resulting behaviour.

First examples

A simple process is a clock that perpetually ticks.

c1 ¥ tick.c1

Names of actions such as tick are in lower case, whereas names of processes such
as C1 have an initial capital letter. A process definition ties a process name to a

C. Stirling, Modal and Temporal Properties of Processes
© Springer Science+Business Media New York 2001
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process expression. In this case, C1 is attached to tick.C1, where both occurrences
of C1 name the same process. The defining expression for C1 invokes a prefix
operator . that builds the process a.E from the action a and the process E.

Behaviour of processes is captured by transitions E —> F, that E may evolve
to F by performing or accepting the action a. The behaviour of C1 is elementary,
since it can only perform tick and in so doing becomes C1 again. This is a
consequence of the rules for deriving transitions. First is the axiom for the prefix
operator.

R() a.E-E

A process a.E performs the action a and becomes E. An instance of this axiom is

. ick .
the transition tick.Cl —> C1. The next transition rule refers to the operator déf,
and is presented with the desired conclusion uppermost.

&f —P'a—)FPdéfE

R( -
F— F

If the transition E —» F is derivableand P & E ,then P %> Fisalsoderivable.
Goal-directed transition rules are used because we are interested in discovering

the available transitions of a process. There is a single transition for the clock,

c1 2% e Suppose our goal is to derive a transition C1 -2 E.Because the only

applicable rule is R(dg), the goal reduces to the subgoal tick.Cl —> E, and the
only possibility for deriving this subgoal is an application of R(.), in which case a
is tick and E is C1.

The behaviour of C1 is represented graphically in Figure 1.1. Ingredients of
this behaviour graph (known as a “transition system”) are process expressions and
binary transition relations between them. Each vertex is a process expression, and
one of the vertices is the initial vertex C1. Each derivable transition of a vertex is
depicted. Transition systems abstract from the derivations of transitions.

An unsophisticated vending machine Ven is defined in Figure 1.2. The
definition of Ven employs the binary choice operator + (which has wider scope
than the prefix operator) from Milner’s CCS, Calculus of Communicating Systems
[42, 44]. Initially Ven may accept a 2p or 1p coin, and then abuttonbigorlittle
may be depressed depending on the coin deposited, and finally after an item is

Cl

tick

FIGURE 1.1. The transition graph for C1



1.1. First examples

Ven = 2p.Ven, + 1p.Vem
Ven, & big.collecty.Ven
Ven; déf little.collect;.Ven

FIGURE 1.2. A vending machine

collected the process reverts to its initial state. There are two transition rules for +.

E\+E,-5>F E+E-5F

R(+)

E - F E, -5 F

. .. 2 .
The derivation of the transition Ven —> Ven,, is as follows.

2p
Ven — Ven,

2
2p.Ven, + 1p.Vemy =N Ven,

2p
2p.Ven, — Ven,

The goal reduces to the subgoal beneath it as a result of an application of R(déf),
which in turn reduces to the axiom instance via an application of the first of the R(+)
rules. When presenting proofs of transitions, side conditions in the application of a
rule, such as R(déf), are omitted. Figure 1.3 pictures the transition system for Ven.

A transition E — F is an assertion derivable from the rules for transitions.
To discover the transitions of E, it suffices to examine its main combinator and
the transitions of its components. There is an analogy with rules for expression
evaluation. To evaluate (3 x 2) + 4 it suffices to evaluate the components 3 x 2
and 4, and then sum their values. Such families of rules give rise to a structural

collectb / \\ collectl

Ven
b
/ \ll\ttle
collectb .Ven collectl .Ven

FIGURE 1.3. The transition graph for Ven
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Cto = up.Cty; +round.Cty

Ctit1 = up.Ctj;, +down.Ct;

FIGURE 1.4. A family of counters

operational semantics, as pioneered by Plotkin [49]. However, whereas the essence
of an expression is to be evaluated, the essence of a process is to act.

Families of processes can be defined using indexing. A simple case is the set
of counters {Ct; : i € N} of Figure 1.4. The counter Ctz can increase to Ct,
by performing up or decrease to Ct, by performing down. The derivation of the

transition Ct3 5 Ct4 is as follows.

Cts -u—p) Ct,

up.Ct4 + down.Ct, -& Ctay

up.Ct4 -—12) Ct4

The rule R(d.i_f) is here applied to the instance Ct3 & up.Cty + down.Ct,. Each
member Ct; determines the same transition graph of Figure 1.5 which contains an
infinite number of vertices. This graph is “infinite state” because the behaviour of
Ct; may progress through any of the processes Ct;, in contrast to the finite state
graphs of Figures 1.1 and 1.3.

The operator + can be extended to indexed families > {E; : i € I} where I
is a set of indices. E| + E, abbreviates Y {E; : i € {1, 2}}. Indexed sum may
be coupled with indexing of actions. An example is a register storing numbers,
represented as a family {Reg; : i € N}.

Reg; (i_(:,—_f readi.Reg'i + Z{writej'Reg/j : J € N}

The act of reading the content of the register when i is stored is read;, whereas
write; is the action that updates its value to j. The single transition rule for >
generalises the rules for +.

RYD) LB e SF

a

E; — F
up up up up
( ct, cty e cty
round down down down down

FIGURE 1.5. The transition graph for Ct;
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Consequently, Reg}, is able to carry out any write; (and thereby changes to Regﬁ)
as wellas read; (and then remains unchanged). A special case is when the indexing
set I is empty. By the rule R(}"), this process has no transitions, since the subgoal
can never be fulfilled. In CCS the nil process Y {E; : i € @} is abbreviated to 0
(and to STOP in Hoare’s CSP, Communicating Sequential Processes [31]).

Actions can be viewed as ports or channels, means by which processes can
interact. It is then also important to consider the passage of data between processes
along these channels, or through these ports. In CCS, input of data at a port named
a is represented by the prefix a(x).E, where a(x) binds free occurrences of x in
E. (In CSP a(x) is written a?x.) The port label a no longer names a single action,
instead it represents the set {a(v) : v € D} where D is the appropriate family of
data values. The transition axiom for this prefix input form is

R(in) a(x).E “3 E{v/x) if ve D

where E{v/x} is the process term that results from replacing all free occurrences
of x in E with v!. Output at a port named a is represented in CCS by the prefix
a(e).E where e is a data expression. The overbar ~ symbolises output at the named
port. (In CSP a(e) is written a'e.) The transition rule for output depends on extra
machinery for expression evaluation. Assume that Val(e) is the data value in D (if
there is one) to which e evaluates.

a(v)

R(out) a(e).E — E if Val(e) = v

The asymmetry between input and output is illustrated by the following process
that copies a value from in and then sends it through out.

Cop et in(x).out(x).Cop
Below is a derivation of the transition Cop ety out(v).Cop for v € D.

Cop al out(v).Cop

in(x).out(x).Cop =2 Gut(v).Cop
The subgoal is an instance of R(in), as (out(x).Cop){v/x} is out(v).Cop?, and so
the goal follows by an application of R(Q_-ef). The process out(v).Cop has only one

transition out(v).Cop o) Cop that is an instance of R(out), since we assume
that Val(v) is v. Whenever Cop inputs a value at in, it immediately disgorges it
through out. The size of the transition graph for Cop depends on the size of the
data domain D, and is finite when D is a finite set.

!The process a(x).E can be viewed as an abbreviation of the process Y {a,.E{v/x} : v € D}, writing a,
instead of a(v).

2Cop contains no free variables because in(x) binds x, and so (out(x).Cop){v/x} equals out(v).(Cop{v/x})
because x is free in out(x), and (Cop{v/x}) is Cop.
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Example 1

Example 2

Cop; f in(x).in(x).out(x).Cop; is a different copier. It takes in two data values
at in, discarding the first but sending out the second. Cop; has initial transition

Cop; ) in(x).out(x).Cop, for v € D.

Input actions and indexing can be mingled, as in the following redescription
of the family of registers, where both i and x have type N.

Reg; &f read(i).Reg; + write(x).Reg,

Reg; can output the value i at the port read, or instead it can be updated by being
. . . . . write(3)
written to at write. Below is the derivation of Regs — " Regs.

(3)
Regs “rﬁ» Regs

read(5).Regs + write(x).Reg, Fritel) Regs

3
write(x).Reg, —> i) Regs

The variable x in write(x) binds the free occurrence of x in Reg,. An index can
also be presented explicitly as a parameter.

The multiple copier Cop’ uses the parameterised subprocess Cop(n, x), where n
ranges over N and x over texts.

Cop’ & no(n).in(x).Cop(n, x)
Cop(0, x) & Sut(x).Cop/
Cop(i + 1, x) -4 out(x).Cop(i, x)

The initial transition of Cop determines the number of extra copies of a manuscript,
for instance Cop —> in(x).Cop(4, x). The next transition settles on the text,

in(x).Cop(4, x) e Cop(4, v). Then before reverting to the initial state, five
copies of v are transmitted through the port out.

Data expressions may involve operations on values, as in the following
example, where x and y range over a space of messages.

App & in(x).in(y).out(x"y).App

App receives two messages m and n on in and transmits their concatenation m”n
on out. We shall assume different expression types, such as boolean expressions.
An example is that Val(even(i)) = true if i is an even integer and is false otherwise.
This allows us to use conditionals in the definition of a process as exemplified by
S that sieves odd and even numbers.

S % in(x).if even(x) then oute(x).S else outo(x).S
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Below are the transition rules for the conditional.
if b th ! % E'
RGE 1) i en E,; ease E, — E Val(b) =
E1 — E7
. if bthen E; else E; — E’
R(if2) — L2 T B val(h) = false
E2 —> F’
in(55)

S initially receives a numerical value through the port in. For instance, S —>
if even(55) then oute(55).S else out,(55).S. It then outputs through out,

if the received value is even, or through out, otherwise. In this example,

if even(55) then ouE,(55).S else ouE,(55).8 " =5” 5.

Consider the following family of processes fori > 1.

(i) % if even(i) then out(i).T(i/2) else out(i).T((3i -+ 1)/2)
So T(5) performs the sequence of transitions

out(5) out(S) out(4)

T(5) — T@8) — T(4) — T(?)

out(2) out( 1)

and then cycles through the transitions T(2) — T(1) — T(2).

1. Draw the transition graphs for the following clocks.

a. C1; % tick.tock.Cl,

b. Cl, ¥ tick.tick.Cl,

c. Cls ¥ tick.c1

d. tick.0
2. Show that there are two derivations of the transition Cl, haded Cls when
Cl, &l tick. Cly + tick.Cl,. Draw the transition graph for C1,.
3. Contrast the behaviour of C15 f tick. Cls + tick.0 with that of C1 by
drawing their transition graphs.

4. Define a more rational vending machine than Ven that allows the big button
to be pressed if two 1p coins are entered, and the little button to be depressed
twice after a 2p coin is deposited.

5. Assume that the space of values consists of two elements, 0 and 1. Draw
transition graphs for the following three copiers Cop, Cop; and Cop, where

Cops def in(x).out(x).out(x).Cops.
6. Draw transition graphs of T(31) and T(17), where T(i) is defined in Example 3.
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7. For any processes E, F and G, show that the transition graphs for £ + F
and F + E are isomorphic, and that the transition graph for (E + F) + G is
isomorphic to that of E + (F + G).

8. From Walker [60]. Define a process Change that describes a change-making
machine with one input port and one output port, that is capable initially of
accepting either a 20p or a 10p coin, and that can then dispense any sequence
of 1p, 2p, 5p and 10p coins, the sum of whose values is equal to that of the
coin accepted, before returning to its initial state.

1.2 Concurrent interaction

A compelling feature of process theory is modelling of concurrent interaction.
A prevalent approach is to appeal to handshake communication as primitive. At
any one time, only two processes may communicate at a port or along a chan-
nel. In CCS, the resultant communication is a completed internal action. Each
incomplete, or observable, action a has a partner a, its co-action. Moreover, the
action @ is a, which means that a is also the co-action of @. The partner of a pa-
rameterised action in(v) is in(v). Simultaneously performing an action and its
co-action produces the internal action t, which is a complete action that does not
have a partner.

Concurrent composition of E and F is expressed as E | F. Below is the crucial
transition rule for | that conveys communication.

E|\F - E'|F

R(} com) - =
E—E F—F'

If E can carry out an action and become E’, and F can carry out its co-action and
become F’ then E | F can perform the completed internal action 7 and become
E'| F'. Consider a potential user of the copier Cop of the previous section, who
first writes a file before sending it through the port in.

vser write(x).User,

User, = 1in(v).User

As soon as User has written the file v, it becomes the process User, that can
communicate with Cop at the port in. Rule R(| com) is used in the following



1.2. Concurrent interaction

derivation® of the transition Cop | User, —> out(v).Cop | User.

Cop | User, —> out(v).Cop | User

P =
Cop it out(v).Cop Usery At User

in(x).out(x).Cop i out(v).Cop in(v).User = User

The goal transition is the resultant communication at in. Through this communi-
cation, the value v is sent from the user to the copier because User, performs the
output in(v) and Cop performs the input in(v), where they agree on the value v.
Data is thereby passed from one process to another. When the actions a and @ do
not involve values, the resulting communication is a synchronization.

Several users can share the copying resource. Cop | (Usery; | Usery,) involves
two users, but only one at a time is allowed to employ it. So, other transition rules
for | are needed, permitting components to proceed without communicating.

E|F-5 E'|F E|F-5 E|F

E-S F F-5 F

R(])

In the first of these rules, the process F does not contribute to the action a that E
performs. Below is a sample derivation.

Cop | (Usery | Userysy) -5 Gut(v1).Cop | (User | Usery,)

Cop pale out(v1).Cop Usery; | Usery: 20D User | Usery,
p— in(v]) — In
in(x).out(x).Cop pal out(vl).Cop Useryy 20D User
in(vl)

in(v1).User — User

The goal transition reflects a communication between Cop and Usery;, meaning
Usery, is not a contributor. Cop | (User, | Usery,) is not forced to engage in
communication. Instead, it may carry out an input action in(v), or an output action
in(v1) or in(v2).

Cop | (Usery; | Useryy) il out(v).Cop | (Usery; | Usery,)

In(vl
Cop | (Usery, | Useryy) i) Cop | (User | Userys)

In(v2
Cop | (Usery; | Userys) mi)) Cop | (Usery; | User)

3We assume that | has greater scope than other process operators. The process out(v).Cop | User is therefore
the parallel composition of out(v).Cop and User.
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The second of these transitions is derived using two applications of R(]).

In(vl
Cop | (Usery; | Userys) i) Cop | (User | Userys)

Tn(vl)
Usery; | Useryy; —> User | Usery,

In(vl)
User,; —> User

— In(vl ’
in(vl).User el User

The behaviour of the users sharing the copier is not impaired by the order
of parallel subcomponents, or by placement of brackets. Both processes (Cop |
User,;) | User,, and User,,; | (Cop | User,) have the same capabilities as Cop |
(User,, | User,,). These three process expressions have isomorphic transition
graphs, and therefore in the sequel we omit brackets between multiple concurrent
processes*.

The parallel operator is expressively powerful. It can be used to describe infinite
state systems without invoking infinite indices or value spaces. A simple example
is the following counter Cnt.

Cot & up.(Cnt | down.0)

Cnt can perform up and become Cnt | down.O that can perform down, or a further
up and become Cnt | down.0 | down.0, and so on.

Figure 1.6 offers an alternative pictorial representation of the copier Cop and
user User. Such diagrams are called “flow graphs” by Milner [44] (and should
be distinguished from transition graphs). A flow graph summarizes the potential
movement of information flowing into and out of ports, and also exhibits the ports
through which a process is, in principle, willing to communicate. In the case of
User, the incoming arrow to the port labelled write represents input, whereas the
outgoing arrow from in symbolises output. Figure 1.7 shows the flow graph for
Cop | User with the crucial feature that there is a potential linkage between the
output port in of User and its input in Cop, permitting information to circulate from
User to Cop when communication takes place. However, this port is still available
for other users. Both users in Cop | User | User are able to communicate at
different times with Cop, as illustrated in Figure 1.8

write in out
I User I I Cop —>

FIGURE 1.6. Flow graphs of User and Cop

4Equivalences between processes is discussed in Chapter 3.
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write out
User

FIGURE 1.7. Flow graph of Cop | User

write in
—_— User
out
write ///////21
—_—> User

FIGURE 1.8. Flow graph of Cop | User | User

write out
User

write out
—_— (Cop |User) \K E——

FIGURE 1.9. Flow graph of (Cop | User)\K

The situation in which a user has private access to a copier is modelled using
an abstraction or encapsulation operator that conceals ports. CCS has a restriction
operator \ J, where J ranges over families of incomplete actions (thereby excluding
the complete action 7). If K is {in(v) : v € D} when D contains the values that
can flow through in, then the port in within (Cop | User)\K is inaccessible to
other users. The flow graph of (Cop | User)\K is pictured in Figure 1.9, where the
linkage without names at the ports represents their concealment from other users,
so it can be simplified as in the second diagram of the figure.

The visual effect of \K on the flow graph in Figure 1.9 is justified by the
transition rule for restriction, which is as follows where J is {@ : a € J}.

E\J -5 F\J

LN

R(\) agJuJ
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Example 1

The behaviour of E\J is part of that of E, as any action that E\J may carry out
can also be performed by E, but not necessarily the other way round. For instance,
Cop | User is able to perform an in input action, whereas an attempt to derive an in
transition from (Cop | User)\ K is precluded because of the side condition on the
rule for R(\). The presence of \ K in (Cop | User)\ K prevents Cop from ever doing
an in transition, except in the context of a communication with User. Restriction

can therefore be used to enforce communication between parallel components.
write(v)

After the initial write transition (Cop | User)\K —> * (Cop | Usery)\K, the
next transition must be a communication.

(Cop | User,)\K —> (out(v).Cop | User)\K

Cop | User, = out(v).Cop | User

Cop = out(v).Cop User, 2 yser

in(x).out(x).Cop et out(v).Cop 1in(v).User =9 User

A port a is concealed by restricting all the actions {a(v) : v € D}, and therefore
we shall usually abbreviate such a subset within a restriction to {a}.

Process descriptions can become quite large, especially when they consist
of multiple components in parallel. We shall therefore employ abbreviations of
process expressions using the relation =, where P = F means that P abbreviates
F, which is typically a large expression.

The mesh of abstraction and concurrency is further revealed in the finite state
example without data of a level crossing in Figure 1.10 from Bradfield and the
author [10], consisting of three components Road, Rail and Signal. The actions
car and train represent the approach of a car and a train, up opens the gates for
the car, Tcross is the car crossing, down closes the gates, green is the receipt of a
green signal by the train, tcross is the train crossing, and red automatically sets
the light red. Unlike most crossings, it keeps the barriers down except when a car
actually approaches and tries to cross. The flow graphs of the components, and of
the overall system are depicted in Figure 1.11. The transition graph is pictured in
Figure 1.12. Both Road and Rail are simple cyclers that can only perform a
determinate sequence of actions repeatedly.

Road = car.up.ccross.down.Road

Rail &' traingreentcross.red.Rail

Signal &f green.red.Signal + up.down.Signal
Crossing = (Road |Rail | Signal)\({green, red, up, down}

FIGURE 1.10. A level crossing
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l car l green Tgreen
down up train tcross up down
- Road -— — —_— -— -
l cCross l red T red
J car
L 4
train tcross
_— Crossing —_—
L 4

ccross

FIGURE 1.11. Flow graphs of the crossing and its components

An important arena for process descriptions is provided by modelling proto-
cols. An example is the process Protocol of Figure 1.13 taken from Walker [60],
which models an extremely simple communications protocol that allows a mes-
sage to be lost during transmission. Its flow graph is the same as that of Cop, and
the size of its transition graph depends on the space of messages. The sender trans-
mits any message it receives at the port in to the medium. In turn, the medium may
transmit the message to the receiver, or instead the message may be lost, an action
modelled as the silent  action, in which case the medium sends a timeout signal to
the sender and the message is retransmitted. On receiving a message, the receiver
transmits it at the port out and then sends an acknowledgement directly to the
sender (which we assume can not be lost). Having received the acknowledgement,
the sender may again receive a message at port in.

Although the flow graphs for Protocol and Cop are the same, their levels of
detail are very different. The process Cop is a one-place buffer that takes in a value
and later expels it. Similarly, the protocol takes in a message and later may output
it. The transition graph associated with this process when there is just one message
is pictured in Figure 1.14. It turns out that Protocol and Cop are observationally
equivalent, as defined in Chapter 3. As process descriptions, however, they are very
different. Cop is close to a specification, as its desired behaviour is given merely
in terms of what it does. In contrast, Protocol is closer to an implementation,
because it is defined in terms of how it is built from simpler components.
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ccy
E

4

A rrain 3\t car/ ‘\ tcross
. \ \
8 traiyza E, 75
ccross tcms\S\«
En

Crossing

1 _train }\
NPZAN

K = {green, red, up, down}

E, = (up.ccross.down.Road |Rail | Signal)\K

E; = (Road|greentcross.red.Rail | Signal)\K

Ey = (up.ccross.down.Road | green.tcross.red.Rail | Signal)\K
E;, = (ccross.down.Road |Rail | down.Signal)\K

Es = (Road|tcross.redRail | red.Signal)\K

Es = (ccross.down.Road | green.tcross.red.Rail | down.Signal)\K
E; = (up.ccross.down.Road | tcross.red.Rail | red.Signal)\K
Egs = (down.Road | Rail | down.Signal)\K

Ey = (Road|red.Rail | red.Signal)\K

Eyw = (down.Road |green.tcross.red.Rail | down.Signal)\K

Eyn = (up.ccross.down.Road | red.Rail | red.Signal)\K

FIGURE 1.12. Transition graph of Crossing

Sender
Send1(x)
Medium
Medi(y)

Receiver

Protocol

.
def

in(x).sm(x).Send1(x)
ms.sm(x).Send1(x) + ok.Sender
sm(y).Med1(y)

mr(y).Medium + r.mS.Medium

nr(x).out(x).ok.Receiver

(Sender | Medium | Receiver)\{sm, ms, mr, ok}

FIGURE 1.13. A simple protocol
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0
B, &
p ¥
SM, =
Example 2
Exercises

Protocol

in(m)

(sm(m) .Sendl (m) |[Medium|Receiver)\J

T

(Sendl (m) |Medl (m) |Receiver)\J
T T

(Sendl (m) |Medium [out (m) .ok.Receiver)\J (Send1 (m) | ms.Medium|Receiver)\J

j out (m)

(Sendl(m)IMediumfgi.Receiveth
J = {sm, ms, mr, ok}

FIGURE 1.14. Protocol transition graph when there is one message m.

slot.bank.(lost.loss.I0 + release(y).win(y).I0)
bank.max(n + 1).1eft(y).B,

max(z).(Tost.left(z).D + ) _{release(y).left(z—y)D : 1 <y <z})

(10| B, | D)\{bank, lost, max, left, release}

loss
slot D —
—_— SM
e

FIGURE 1.15. A slot machine

An example of an infinite state system from Bradfield and the author [10] is the
slot machine SM, defined in Figure 1.15. Its flow graph is also depicted there. A
coin is input (the action slot) and then, after some silent activity, either a loss or
a winning sum of money is output. The system consists of three components: I0,
which handles the taking and paying out of money; By, a bank holding n pounds;

and D, the wheel-spinning decision component.

1. Give a derivation of the following transition.

Cop | (Usery; | Useryy) SLIN out(v2).Cop | (Usery, | User)



16 1. Processes

10.

. Show that the following three processes

a. (Cop | Useryy) | Usery,
b. Usery, | (Cop | Userys)
c. Cop | (Usery, | Userys)
have isomorphic transition graphs (and flow graphs).

. Sem & get.put.Sem is a semaphore. Draw the transition graph for Sem |

Sem | Sem | Sem.

. How does the transition graph for Cnt differ from that for the counter Ctq of

Figure 1.4?

. Draw the transition graph for Bag -4 in(x).(out(x).0 | Bag) when the space

of values contains just two elements, 0 and 1.

. Let L; be the set of actions {1p, 1little} and let L, be {1p, 1ittle, 2p}.

Also let Usey def 1p.1ittle.Use;. Draw flow graphs and transition graphs

for the processes
a. Ven | Usey
b. Ven | (Use; | Use))
. (Ven | Usey)\L;
d. (Ven | Usey)\L; | Use;
e. (Ven | Usey | Usey)\L;
wheni =landi = 2.
Let G(E) be the transition graph for E. Define prefixing (.), +, | and \J
operators directly on transition graphs so that each of the following pairs is
isomorphic.
. a.G(E)and G(a.E)
b. G(E + F) and G(E) + G(F)
¢. G(E | F)and G(E) | G(F)
d. G(E)\J and G(E\J)

(]

1

. Consider the definition of the following process from Hennessy and
Ingolfsdottir [27].
Fac & iny(y).ina(z).if y = 0 then out(z).0

else (iny(y — 1).1ny(z * y).0 | Fac)

Draw the transition graph of (in;(3).1n2(1).0 | Fac)\{iny, inp}.

. Draw the transition graph for Road | Rail | Signal, and compare it with that

for Crossing.
Draw flow and transition graphs for the components of Protocol.
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11. Refine the description of Protocol so that acknowledgements may also be
lost.

1.3 Observable transitions

Actions a on the transition relations —> between processes can be extended to
finite length sequences w, which are also called “traces.” The extended transition
E —> F states that E may perform the trace w and become F. There are two
transition rules for traces, where ¢ is the empty sequence of actions.

aw

E— F
w

R(tr) E - E -
F—E E —F

First is the axiom that any process may carry out the empty sequence and remain
unchanged. The second rule allows traces to be extended. If E -2 E and E'
can perform the trace w and become F then E 2% F. No distinction is made
between carrying out the action a and carrying out the trace a (understood as an

action sequence of length one). Below is the derivation of the extended transition
bigcollect . . . .
Veny BI0%™ Ven when Ven, is part of the vending machine of Section 1.1.

bigcollecty
Ven, —> Ven

big collect:
Ven, — collecty.Ven collecty,.Ven —> ® Ven

>
big.collect,.Ven . 3 collecty.Ven

Internal 7 actions have a different status from incomplete actions. An incom-
plete action is “observable” because it is susceptible of interaction in a parallel
context. Suppose that E may at some time perform the action ok, and that
Resource is a resource. In the context (E | ok.Resource)\{ok} access to Re-
source is only triggered with an execution of ok by E. Observation of ok is the
same as the release of Resource. The silent action T cannot be observed in this
way. Consequently, an important abstraction of process behaviour derives from
silent activity.

Consider the following copier C and the user U.

def

c in(x).out(x).ok.C

def

U write(x).in(x).ok.U

U writes a file before sending it through in and then waits for an acknowledgement.
(C | U)\{in, ok} has similar behaviour to Ucop.

Ucop &f write(x).out(x).Ucop
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The only difference in their abilities is internal activity. Both are initially able only
to carry out a write action

Ucop Frive(v) out(v).Ucop

write(u)

(C | W\{in, ok} —>  (C| in(v).ok.U)\{in, ok}.

Process out(v).Ucop outputs immediately, whereas the other process must first
perform a communication before it outputs, and then t again before a second
write can happen. By abstracting from silent behaviour, this difference disappears.
Outwardly, both processes repeatedly write and output.

A trace w is a sequence of actions. The trace w | J is the subsequence of w
when actions that do not belong to J are erased.

el]J = ¢

awlJ) ifaeld
aw [ J = .
wlJ otherwise

Below are three simple examples.

(traint tcrosst) | {tcross} = tcross
(rccrosst) | {tcross) = ¢
(write(v) T out(v)7) [ {write,out} = write(v)out(v)

Associated with any trace w is the observable trace w | O, where O is a universal
set of observable actions containing at least all actions mentioned in this work
apart from 7. The effect of | O on w is to erase all occurrences of the silent action
7, as illustrated by the following examples.

(in(m)T tout(m)t) [O = in(m)out(m)
(in(m)zztTr)[O = in(m)
(trrtrTt)[O = g

To capture observable behaviour, another family of transition relations between

processes is introduced. E =% F expresses that E may carry out the observable
trace u and become F. The transition rule for observable traces is as follows.

R(Tr) E—ﬂ u=wlO

E-SF

An example is Protocol tnlm)ogrm) Protocol, whose derivation utilises the

extended transition Protocol tn(m)? T gye(m) ¥ Protocol.
Observable traces can also be built from their component observable actions.

The extended transition Crossing sratnrgress Crossing is the result of gluing

tcross

together Crossing 228 Fand E "= Crossi ing when the intermediate state E
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Example 1

is E; or Es of Figure 1.12. Observable behaviour is constructed from transitions
E = F or E == F when a € O, whose rules are as follows.

E==F
E-SE E5SF

R(=) E=SE

E=F
E=E E-5SF F=F

R(=>)

E == F if E cansilently evolve to F and E == F if E can silently evolve to a
process that carries out a and then silently becomes F.

The derivation of Protocol =% F3, where F; abbreviates (Send1(m) | Medium |
out(m).ok.Receiver)\{sm, ms, mr, ok}, uses the following two intermediate
states (see Figure 1.14).

Fi = (sm(m).Send1(m) | Medium | Receiver)\{sm, ms, mr, ok}
F (Send1(m) | Med1(m) | Receiver)\{sm, ms, mr, ok}

Below is part of the derivation.

in(m)

Protocol = F3

Protocol = Protocol Protocol l—nﬁ) Fi F = F
Part of the derivation of F; = F; is as follows.

F1=€>F3

Fi —> F, h=F

FE-5>F F=F8F

Observable behaviour of a process can also be visually encapsulated as a tran-
sition graph. As in Section 1.1, ingredients of this graph are process terms related
by transitions. Each edge has the form == or == when a € O. Assuming a value
space with just one element v, the observable transition graphs for (C | U)\{in, ok}
and Ucop are pictured in Figure 1.16 (where thick arrows are used instead of =).

There are two behaviour graphs associated with any process. Although both
graphs contain the same vertices, they differ in their labelled edges. Observable
graphs are more complex, since they contain more transitions. However, this abun-
dance of transitions may result in redundant vertices. Figure 1.16 exemplifies this
condition in the case of (C | U)\{in, ok}. The states labelled 1 and 4 have identical
capabilities, as do the states labelled 2 and 3. When minimized with respect to ob-
servable equivalences, as defined in Chapter 3, these graphs may be dramatically
simplified as their vertices are fused.
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out (v)

write(v)

1: (c|u)\{in,ok}, —————=> 2: (C|in(v).ok.U)\{in, ok}

out (v)

write(v) . _
€ 4: (0k.C|ok.U)\{in,ok}——3» 3: (out(v).ok.C|ok.U)\{in,ok}
w €
write(v)
e €
o \_/m(‘,).ucop
out(v)

FIGURE 1.16. Observable transition graphs for (C | U)\{in, ok} and Ucop

Exercises 1. Derive the extended transition SM, —> SMyp.+1 wWhen w is the following trace
slot t T T T loss and SM; is the slot machine.

2. Provide a full derivation of Protocol —> Protocol when s is the trace
in(m) t T out(m) t.

3. List the members of the following sets:

traintcross
——1

{E : Crossing E}

{E : Protocol M E}

4. Show that E == F is derivable via the rules R(tr) and R(Tr) iff it is derivable
using the rules R(==) and R(==).

5. Draw the observable transition graphs for the processes: Cl, Ven and
Crossing.

6. Although observable traces abstract from silent activity, this does not mean
that internal actions can not contribute to differences in observable capability.
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Let Ven' be a vending machine very similar to Ven of Figure 1.2, except that the
initial 2p action is prefaced by the silent action, Ven’ f 7.2p.Ven, + 1p.Ven;
a. Show that Ven and Ven’ have the same observable traces.

b. Let Use; be the user Use; &f 1p.1ittle.Use;, who is only inter-
ested in inserting the smaller coin. Show that the process (Ven' |
Use;)\{1p, 2p, 1little} may deadlock before an observable action is
carried out unlike (Ven | Use;)\{1p, 2p, 1ittle}.

¢. Draw both kinds of transition graphs for each of the processes in part (b).

7. Assuming just one datum value, draw the observable graphs for processes
(Cop | User)\{in} and Protocol. What states of these graphs can be fused
together?

8. Let G(E) be the transition graph for E, and let G°(E) be its observable
transition graph. Define the graph transformation ¢ that maps G(E) into G°(E).

9. A process is said to be “divergent” if it can perform the t action forever.
a. Draw both kinds of transition graph for the following pair of processes,
7.0 and Div’ & .0iv’ + 7.0.

b. Do you think that the processes Protocol and Cop have the same
observable behaviour? Give reasons for and against.

1.4 Renaming and linking

Cop, User and Ucop of previous sections are essentially one-place buffers, taking
in a value and later expelling it. Assume that B is the following canonical buffer.

B i(x).5(x).B

For instance, Cop is the process B when port i is in and port o is out. Relabelling
of ports can be made explicit by introducing an operator which renames actions.

The crux of renaming is a function mapping actions into actions. To ensure
pleasant properties, a renaming function f is subject to a few restrictions. First, it
should respect complements. For any observable a, the actions f(a) and f(a) are
co-actions, that is (@) = f(a). Second, it should conserve the silent action, f(t)
= 1. Associated with any function f obeying these conditions is the renaming
operator [ f], which, when applied to process E, is written as E[ f]; this is the
process E whose actions are relabelled according to f.

A renaming function f can be abbreviated to its essential part. If each g;
is a distinct observable action, then b, /ay, ..., b,/a, represents the function f
that renames a; to b; (and @; to b;), and leaves any other action ¢ unchanged.
For instance, Cop abbreviates the process B[in/i, out/o]: here we maintain the
convention that in stands for the family {in(v) : v € D}andi for {i(v) : v € D},
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so in/i symbolises the function that also preserves values by mapping i(v) to
in(v) for each v. The transition rule for renaming is set forth below.

rep A o2 po)

E— F

This rule is used in derivations of the following pair of transitions.

B[in/1i, out/o0] =% (5(v).B)[in/1, out/o] =% B[in/i, out/o]

Below is the derivation of the initial transition.

B[in/i, out/o] 2% (5(v).B)[in/1, out/o]

B 2 5(v).B

i(x).5(x).B - 5(v).B

A virtue of process modelling is that it allows building systems from simpler
components. Consider how to model an n-place buffer when n > 1, following
Milner [44], by linking together n instances of B in parallel. The flow graph of n
copies of B is pictured in Figure 1.17. For this to become an n-place buffer we need
to “link,” and then internalise, the contiguous ¢ and i ports. Renaming permits
linking, as the following variants of B show.

By = Bfo1/0]

Bjs1 = Bloj/i,0j41/0] 1 <j<n—1

B, = Blo-1/i]
The flow graph of By | ... | B, is also shown in Figure 1.17, and contains the
intended links. The n-place buffer is the result of internalizing these contiguous
links, (By | ... | Bo\{o1, ..., 0n-1}.

i ° i ° i °
— Gy ey Gy
i o, o, o, o, o
—_— — —_— ¢ e —_— ——

FIGURE 1.17. Flow graph of n instances of B,and B; | ... | B,.
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Part of the behaviour of a two-place buffer is illustrated by the following cycle.

(B[o1/0] | Blo1 /i])\{o1} 2% ((a(v).B)[o1/0] | Blor /iD\{o1}
It
(B(w).B)[o1 /0] | B() B)lor /iD\for} &2 (Blo1/0] | (B(v).B)[o1/i])\fo1}
1 5(v)
(G(w).B)[or/0]|Blor/iD\{o1} ~ —>  (Blo1/o]| (B(w).B)o1/iD\{o1}

 o(w)
(B[o1/0]|B[o1/i])\{o1}
Below is the derivation of the second transition.
((8(v).B)[01/0] | B[o1/i)\{o1} —> (Blo1/0] | (5(v).B)[01/i])\{o1}
(8(v).B)[01/0] | B[o1/1] —> B[o1/0] | (5(v).B)[01 /1]
(@(v).B)[01/0] =3 Blo1/0] B[o1/i] 23 (6(v).B)[o1 /1]
5(v)B % B B % 5()B

i(x).5(x).B -2 5(v).B

A more involved example from Milner [44] refers to the construction of a
scheduler from small cycling components. Assume n tasks when n > 1, and that
action g; initiates the ith task, whereas b; signals its completion. The scheduler
plans the order of task initiation, ensuring that the sequence of actions a; ... . @, is
carried out cyclically starting with a;. The tasks may terminate in any order, but a
task can not be restarted until its previous operation has finished. So, the scheduler

must guarantee that the actions a; and b; happen alternately for each i.

Let Cy’ be a cycler of length four, Cy’ & a.c.b.d.Cy’, whose flow graph is

illustrated in Figure 1.18. In this case, the flow graph is very close to its transition
graph, so we have circled the a label to indicate that it is initially active. As soon as a
happens, control passes to the active action ¢. The clockwise movement of activity

y
ﬁ@f—“

FIGURE 1.18. The flow graph of Cy’
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FIGURE 1.19. Flow graph of Cy, | Cy} | Cy; | Cy,

around this flowgraph is its transition graph. A first attempt at building the required
scheduler is as a ring of n cyclers, where the a action is task initiation, the b action
is task termination, and the other actions ¢ and 4 are used for synchronization.

Cy'lai/a, c1/c, bi/b, Ty /d]
d.cydlai/a,ci/c,bi/b,ci1/d] 1 <i <n

]

Cy,
Cy;

Cy), carries out the cycle Cy) acbye Cy} and Cy;, fori > 1 carries out the different

, CGi1aiGibi
cycleCy; "—  Cyj.

The flow graph of the process Cy; | Cy, | Cy; | Cy, with initial active
transitions marked is pictured in Figure 1.19. Next, the ¢; actions are internalised.
Assume that Sched, = (Cy] | Cy; | Cy; | Cy,)\{c1, ..., cq}. Imagine that the
¢; actions are concealed in Figure 1.19, and notice then how the tasks must be
initiated cyclically. For example, a3 can only happen once ai, and then a,, have
both happened. Moreover, no task can be reinitiated until its previous execution has
terminated. For example, a3 can not recur until b3 has happened. However, Sched;
does not permit all possible acceptable behaviour. Put simply, action b4 cannot
happen before b; because of the synchronization between c4 and ¢4, meaning task
four cannot terminate before the initial task.

Milner’s solution in [44] to this problem is to redefine the cycler

Cy &f a.c(b.d.Cy+d.b.Cy)
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and to use the same renaming functions. Let Cy; for 1 < i < n be the process
(d-Cy)lai/a,ci/c,bi/b,ci—1/d]

and let Cy, be Cy[a;/a, ci/c, b1 /b, C,/d]. The required scheduler is Sched,, the
process (Cy; | ... | Cy,\lc1, ..., cn}

Exercises 1. Redefine Road and Rail from Section 1.2 as abbreviations of Cy’ plus
renaming.

2. Assuming that the space of values consists of one element, draw both kinds
of transition graph for the three-place buffer

(B1 | B2 | B3)\{o1, 02}.

3. What extra condition on a renaming function f is necessary to ensure that the
transition graphs of (E | F)[f] and E[f] | F[f] be isomorphic? Do either
of the buffer and scheduler examples fulfil this condition?

4. a. Draw bothkinds of transition graph for the processes Scheds and Sched,.

b. Prove that Sched permits all, and only the acceptable, behaviour of a
scheduler (as described earlier).

5. From Milner [44]. Construct a sorting machine from simple components for
each n > 1 capable of sorting n-length sequences of natural numbers greater
than 0. It accepts exactly n numbers, one by one at in, then delivers them up
one by one in descending order at out, terminated by a 0. Thereafter, it returns
to its initial state.

1.5 More combinations of processes

In previous sections we have emphasised the process combinators of CCS. There
is a variety of process calculi dedicated to precise modelling of systems. Besides
CCS and CSP, there is ACP, due to Bergstra and Klop [5, 3], Hennessy’s EPL
[26], MELJE defined by Austry, Boudol and Simone [2, 51], Milner’s SCCS [43],
and Winskel’s general process algebra [62]. Although the behavioural meaning
of all the operators of these calculi can be presented using inference rules, their
conception reflects different concerns. ACP is primarily algebraic, highlighting
equations>. CSP was devised with a distinguished model in mind, the failures
model®, and MEIJE was introduced as a very expressive calculus, initiating general
results about families of transition rules that can be used to define process operators;
see Groote and Vaandrager [25]. The general process algebra in [62] has roots

3See Section 3.6.
6See Section 2.2 for the notion of failure.
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in category theory. Moreover, users of process notation can introduce their own
operators according to the application at hand.

Numerous parallel operators are proposed within the calculi mentioned
above. Their transition rules are of two kinds. First, where X is parallel, is a
synchronization rule.

ExF- ExF

E-SE F5F
Here, ab is the concurrent product of the component actions a@ and b, and ...
may be filled in with a side condition. In the case of the parallel of Section 1.2,

the actions a and b must be co-actions, and their concurrent product is the silent
action. Other rules permit components to act alone.

ExF-2ExF ExF-ExF
E-SE FSF
In the case of the parallel | there are no side conditions when applying these rules.
This general format covers a variety of parallel operators. At one extreme is the
case when x is a synchronous parallel (as in SCCS), when only the synchronization
rule applies, thereby forcing maximal concurrent interaction. At the other extreme
is a pure interleaving operator when the synchronization rule never applies. In
between are the parallel operators of ACP, CCS and CSP.

A different conception of synchronization underlies the parallel operator of
CSP (when data is not passed). Synchronization is “sharing” the same action. Ac-
tions now do not have partner co-actions because multiple parallel processes may
synchronize. Each process instance in CSP has an associated alphabet consisting
of the actions that it is willing to engage in. Two processes must synchronize on
common actions belonging to both component alphabets. An alternative presenta-
tion, which does not require alphabets, consists of introducing a family of binary
parallel operators || ¢ indexed by a set K of actions that have to be shared. Rules
for || ¢ are as follows.

E|lxkF = E'|F'

r - ackK

E—E F—F
F % E'|gF E|xF -5 E||xF’

Ellk —a'* llx adK lx —a> llx adK
E— E' F— F’

The first rule requires that both components of E||x F must share any action in
K. The other pair allows components to proceed independently, so long as they
perform actions outside of K.

Assume that Ven is the vending machine of Section 1.1, and let Use &f
1p.little.collect;.Use be a user. The transition graph for Ven||xUse when

K is the set {1p, little, collect,} is isomorphic to that of Ven. The following
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Example 2

initial transitions are allowed.

1
Ven| ¢ Use =N Ven, |[g¢little.collect;.Use

2
Ven| xUse 2 Veny || xUse

Adding another user does not change the possible behaviour. The process
Ven| g Use| ¢ Use also has an isomorphic transition graph to that of Ven|| ¢ Use,
as all components must synchronize on K actions. If instead K is the set
{1p, little, collect,, 2p}, then the graph of Ven| xUse is isomorphic to Use,
as the initial 2p transition is blocked.

The operator || x enforces synchronization of actions in K. In CCS, all synchro-
nization is silent. In CSP, silent activity is achieved using an abstraction or hiding
operator, which we represent as \\ K, and whose transition rules are as follows.

E\\K—a>F\\Ka¢K E\\K—a>F\\Ka€K
E— F E—F

Hiding is also useful for abstracting from observable behaviour of processes that
do not contain the sharing parallel operator.

The scheduler of the previous section has to ensure that the sequence of actions
a) .. .a, happens cyclically. The observable behaviour of Sched,\\{bi, ..., b,}

and of Sched \\{b;, . . ., b,} is the infinite repetition of the sequence a; . . . a,. For
example Sched;\\{b1, ..., bs} carries out the following cycle.
Sched,\\{b1, ..., bs} “"EB% Sched,\\{b1, . .., bs}

In CCS, values can be passed between ports. A more general idea is to al-
low ports themselves to be passed between processes. For example, the process
in(x).x.E receives a port at in, which it may then use to synchronize on. This kind
of general mechanism permits process mobility, since links may be dynamically
altered as a system evolves. This facility is basic to the w-calculus, as developed
by Milner, Parrow and Walker [45].

There is a variety of extensions to basic process calculi for modelling real-
time phenomena, such as timeouts expressed using either action duration or delay
intervals between actions, priorities among actions or among processes, spatially
distributed systems using locations, and the description of stochastic behaviour
using probabilistic, instead of nondeterministic, choice. Some of these extensions
are useful for modelling hybrid systems that involve a mixture of discrete and con-
tinuous, and can be found in control systems for manufacturing (such as chemical
plants).
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1. In ACP, sequential composition of processes E; F is a primitive operator. The
idea is that the behaviour of E; F is that of E followed by that of F. Define
transition rules for sequential composition. To what extent can sequential
composition be simulated within CCS using parallel composition?

2. Draw both kinds of transition graph for the following processes.
a. Sched;\\{by, ..., bs}
b. Scheds\\{by, ..., bs}
¢. Schedj\\{ay, ..., a4}
d. Scheds\\{a, ..., a4}
3. Show how the operator \\K can be defined in CCS.
4. A process E is determinate provided that, for any trace w if E —~> E; and
E 2> E,, then E; = E,. Assume that E and F are determinate, and that

K is the set of actions common to (that is, occurring in) both E and F. Show
that E || ¢ F is also determinate, but that E| F need not be.

1.6 Sets of processes

Processes can also be used to capture foundational models of computation, such
as Turing machines, counter machines and parallel random-access machines. This
remains true for the following restricted process language, where P ranges over
process names, a over actions, and I over finite sets of indices.

E:=P| Z{a,-.E,- ciel}|E | Ey| E\{a}

A process expression is either a name, a finite sum of process expressions, a parallel
composition of process expressions, or a restricted process expression. A (closed)
process is given as a finite family {P; - E; : 1 <i < n} of definitions, where
all the process names in each E; belong to the set { P\, ..., P,}. For instance, see
the example Count, below. Although process expressions such as the counter Cto
(Figure 1.4) the register Regy (Section 1.1) and the slot machine SM, (Figure 1.15)
are excluded because their definitions appeal to value passing or infinite sets of
indices, their observable behaviour can be “simulated” by processes belonging to
this restricted process language.

As an example, consider the following finite reformulation of the counter Cty,
due to Taubner [57].

(=9
e

Count round.Count + up.(Count, | a.Count)\{a}
Count; = down.a.0+ up.(Count, | b.Count;)\{b}

Count, ¥ downb.0+ up.(Count; | a.Count,)\{a}
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The reader is invited to draw the observable transition graph for Count and compare
it with Figure 1.4.

In the remaining chapters, we shall abstract from the behaviour of processes.
However, in some cases this requires us to define families of processes that en-
capsulate the behaviour of some initial processes. This naturally leads to sets of
processes that are “transition closed.” A set of processes E is transition closed if;,
for any process E in E, and for any action a, and for any transition £ -5 F, then
F also belongs to E. For instance, the set of processes appearing in a transition
graph is transition closed. In later chapters we use P to range over non-empty
transition closed sets, and we use P(E) to range over transition closed sets that
contain E.

There is a smallest transition closed set containing E, given by the set {F :
E - F for some trace w}. However, it may be computationally difficult, and
in some cases undecidable, to determine this set. Instead, we can define larger
transition closed sets containing E inductively on the structure of E. The resultant
set is only an “estimate” of a smallest transition closed set. Consider the following
definition of the set of subprocesses Sub(E) of an initial CCS process E that does
not involve value passing or parameterisation.

Sub(@.E) = {a.E}USub(E)
Sub(E + F) = {E + F}USub(E)U Sub(F)

Sub(E|F) = (E|FYU{E'|F :E e Sub(E)and F’ € Sub(F)}
Sub(E\K) = {E'\K:E e Sub(E)}

Sub(E[f]) = {E'[f]:E’ e Sub(E))

Sub(P) = {PJUSUbE) ifPEE

The set Sub(Crossing), where Crossing is defined in Figure 1.10, contains 125
elements including the following, where K is the set {green, red, up, down}.

(Road | Rail | up.down.Signal)\K
(Road | tcross.red.Rail | Signal)\K
(down.Road | Rail | red.Signal)\ K

Only 12 of these elements belong to the smallest transition closed set containing
Crossing; see Figure 1.12.

The above definition of Sub(E) is transition closed (as the reader can check). As
an estimate of a smallest transition closed set, it may be very generous as illustrated
in example 1. A more refined definition is possible which, for instance, would
have the consequence that Sub((a.E)\{a}) always has size one. The definition of
Sub can also be extended to processes defined using parameters, or to processes
containing value passing. One method is to instantiate the parameters immediately.
For example, the following would capture the case for the input prefix.

Sub(a(x).E) = {a(x).E}U| J{Sub(E{v/x}): v € D}
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Another method is to first define the set of process “shapes,” processes with free
parameters, then to define instances of these shapes using substitution. The defi-
nition of the input prefix would now be as follows, provided that x does not also
occur bound within E. We leave details to the reader.

Sub(a(x).E) = {a(x).E}U Sub(E)

Exercises 1. Draw the observable transition graph for Count. How does it compare with
the graph for Cty?

2. From Taubner [57]. Using two copies of Count, show how a two-counter

machine can be modelled within the restricted process language of this section.

3. Aprocess E can carry out the “completed observable trace” w if E == F and
F is deadlocked, or has terminated. Assume that CT(E) is the set of completed
observable traces that E can carry out.

a. Prove that, for any process E defined in the restricted process language
of this section, the set CT(E) is recursively enumerable.

b. Let L be arecursively enumerable language over a finite set of observable
actions (which, therefore, excludes 7). Prove that there is a process E of
the restricted process language with the property CT(E) = L.

4. Answer the following open-ended questions.

a. What criteria should be used for assessing the expressive power of a
process language?

b. Should there be a “‘canonical” process calculus?
c. Is there a concurrent version of the Church-Turing thesis for sequential
programs?
5. Consider any process E without parameters or value passing.
a. Show that Sub(E) as defined above is transition closed.

b. List all members of Sub(Crossing) and compare that listing with the
smallest transition closed set P(Crossing).
¢. Refine the definition of Sub(E). What size does Sub(Crossing) have
with your refined definition?
6. Extend the definition of Sub to processes containing parameters and value
passing in both ways suggested in the text.
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Various examples of processes have been presented so far from a simple clock to a
scheduler. In each case, a process is an expression constructed from a few process
operators. Behaviour is determined by the transition rules for process combinators.
These rules may involve side conditions relying on extra information. For instance,
when data are involved, a partial evaluation function is used. Consequently, the
ingredients of a process description are combinators, predicates and transition rules

that allow us to deduce behaviour.

In this chapter, some abstractions from the overall behaviour of a process are
considered. Already we have contrasted finite state from infinite state processes.
The size of a process is determined by its transition graph, although under some
circumstances an estimate is provided instead using Sub. Also, observable transi-
tions marked by the thicker transition arrows == have been distinguished from
their thinner counterparts —> . We examine simple properties of processes as given
by modal logics, whose formulas express process capabilities and necessities, and

which can be used to focus on part of the behaviour of a process.

C. Stirling, Modal and Temporal Properties of Processes
© Springer Science+Business Media New York 2001
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2.1

Hennessy-Milner logic |

A modal logic M is introduced for describing local capabilities of processes. For-
mulas of M are built from boolean connectives and the modal operators [ K] (“box
K”) and (K) (“diamond K”) for any set of actions K. The following abstract
syntax definition specifies formulas of M.

O u=tt | ff | DIAD, | Dy vd, | [K]D | (K)

A formula can be the constant true formula tt, the constant false formula ££, a
conjunction of formulas ®; A ®;, a disjunction of formulas ®; v &, or a formula
[K]® or (K )® prefaced with a modal operator.

Formulas of M are ascribed to processes. Each process either has a modal
property, or fails to have it. When process E has property ®, we write E = ® and
when it fails to have ®, we write E [~ . If E has ® we often say “F satisfies ®”
or “E realises ®.” The binary satisfaction relation between processes and formulas
is defined inductively on the structure of formulas.

EEtt

E - £f

EE®AVY iff EEd®andEEV

EEoVvVY iff EEQorEEV

EE[K]® iff VFelE :E-S FandacK}.FE=®
EE=(K)® iff IFe{E :E-> EandacK}.FE®

Every process has the property tt, whereas no process has the property f£f. A
process has the property & A W when it has the property ¢ and the property ¥,
and it satisfies ® v W if it satisfies one of the disjuncts. The definition of satisfaction
between processes and formulas prefaced by a modal operator appeals to behaviour
of processes as given by the rules for transitions. A process E has the property
[K]® if every process which E evolves to after carrying out any action in K has
the property ®. And E satisfies (K)® if E can become a process that satisfies P
by carrying out an action in K. To reduce the number of brackets in modalities, we
write [ay, ...,a,] and {ay, ..., a,) instead of [{ay, ..., a,}] and {{ay, ..., a,}).
The modal logic M slightly generalises Hennessy-Milner logic, due to Hennessy
and Milner [29], because sets of actions, instead of single actions, occur in the
modalities.

The simple formula (tick)tt expresses an ability to carry out the action tick.
Process E has this property provided that there is a transition E B F. The
clock C1 from Section 1.1 has this property, whereas the vending machine Ven
of Figure 1.2 does not. In contrast, the formula [tick]ff expresses an inability
to carry out the action tick, because process E satisfies [tick]ff if E does

not have a transition E =5 F. These basic properties can be embedded within
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modal operators and between boolean connectives. An example is the formula
[tick]((tick)tt A [tock]ff)!, which expresses that, after any tick action, it is
possible to perform tick again, but not possible to perform tock.

Example 1  C1 has the property [tick]({tick)tt A [tock]ff). Applying the definition of
satisfaction C1 has this property:
iff VFe{E:ClES E). F = (tick)tt A [tock]ff
iff Cl k= (tick)tt A [tock]ff
iff Cl = (tick)tt and Cl = [tock]ff

tick

iff 3F € {E : C1 —> E}and Cl1 = [tock]ff
iff 3F € {Cl}and Cl |= [tock]ff
iff Cl1 [ [tock]ff

tock

iff {E:ClL—E}=90
iff 0=0

On the other hand, C1 j [tick]({tock)tt V [tick]ff).

The formula (K )tt expresses a capability for carrying out some action in K,
whereas [K ][££ expresses an inability to initially perform any action in K. In the
case of the vending machine Ven, a button cannot be depressed before money is
deposited, so Ven |= [big, 1little]ff. Other interesting properties of Ven are as
follows.

o Ven & [2p]([1ittle]ff A (big)tt): after 2p is deposited the little button

cannot be depressed whereas the big one can

e Ven = [1p, 2p][ip, 2plf£: after a coin is entrusted no other coin (2p or 1p)
may be deposited

e Ven k= [1p,2p][big, little](collecty, collect,)tt: after a coin is
deposited and a button is depressed, an item can be collected

Verifying that Ven has these properties is undemanding. A proof merely appeals
to the inductive definition of the satisfaction relation between a process and a
formula, which may rely on the rules for transitions. Similarly, establishing that a
process lacks a property is equally routine.

1We assume that A and Vv have wider scope than the modalities [K ], (K'), and that brackets are introduced
to resolve any further ambiguities as to the structure of a formula. Therefore, A is the main connective of the
subformula (tick)tt A [tock]ff.
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Example 2 Ven [~ (1p)(1p, big)tt

Example 3

iff not@F € {E : Ven —5 E}. F k= (1p, big)tt)
iff Ven; j (1p, big)tt

iff not(3F € {E : Ven; —> E and a € {1p, big}})
iff {E :Ven; —> E anda € {1p, big}} = @

iff 6=0

Again, this demonstration appeals to the inductive definition of satisfaction
between a process and a formula.

When showing that a process has, or fails to have, a property we do not need
to build its transition graph, as the following example illustrates.

Consider the following features of the crossing of Section 1.2.
Crossing = [train]({(t)tt A (car)[t][t]ff)
Crossing = [car][train][t]({tcross)tt V (ccross)tt)

Crossing [~ [car][train][t]({tcross)tt A (ccross)tt)

Proofs of these depend only on part of the behaviour of the crossing. For instance,
the first relies only on the processes E», E3, Es, E¢ and E7 of Figure 1.12.

Actions in the modalities may contain values. For instance, the register Regg
from Section 1.1 can only transmit the value 5, whereas it can be overwritten by
any value k > 0.

Regs = (read(5))tt A [{read(n) : n # 5}]ff
Regs = (write(k))tt

Assume that A is a universal set of actions including 7. Hence, A is the set
O U {t}, where O is the general set of observable actions described in Section 1.3.
A little notation is now introduced for sets of actions within modalities. The set — K
abbreviates A— K, and —ay, . .., a, abbreviates —{aj, . .., a,}. Also, assume that
— abbreviates the set —@, which is therefore the set A. A process E has the property
[—]® when each member of the set {E’ : E -5 E'and a € A} satisfies ®. The
modal formula [—]££ therefore expresses deadlock or termination, an inability to
carry out any action whatever.

Within M, one can express immediate “necessity” or “inevitability.” The prop-
erty “a must happen next” is given by the formula (—)tt A [—a]f£f. The conjunct
(—)tt affirms that an action is possible, whereas [—a]ff states that every ac-
tion except a is impossible. After 2p is deposited, Ven must perform big, and so
Ven = [2p]({(—)tt A [—big]ff). Ven also has the following property, that the
third action it performs must be a collect.

(—)tt A[=]({=)tt A [-]({(—)tt A [—collect;, collecty]ff))
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Exercises 1. Show the following

a. Ven |= [2p, 1p](big, little)tt

b. Ven [~ [2p, 1p]({big)tt A (little)tt)

¢. Ven = [2p]([—big]ff A (—1little, 2p)tt).

d. Cnt |= [up](down)[{down]ff

e. Crossing |= [train]({r)tt A (car)[t][r]ff)

f. Crossing |= [car][train][r]({tcross)tt V (cCToss)tt)
g. Crossing [~ [car][train][t]((tcToss)tt A (CCTOSS)tt)

where Cnt and Crossing are defined in Section 1.2.

2. Show Ct3 = (down)(up)(down){down)tt, but that Ct, fails to have this prop-
erty when Ct; is from Figure 1.4. Using induction, show that, for any i and
Jj» Cti |= [up)/ (down)’tt, that whatever goes up may come down in equal
proportions, where [a]°® = ® and [a]**!® = [a][a]"® (and similarly for
{(a)" ).

3. Using induction on i show
Cop’ k= [no(i)][in(v)](out(v))*'tt
where Cop’ is defined in Section 1.1.
4. Consider the following three vending machines.

def

Ven; = 1p.ip.(tea.Ven, + coffee.Ven,)
Ven, e 1p.(1p.tea.Ven, + 1p.coffee.Veny)
Veny &f 1p.1p.tea.Vens + 1p.1p.coffee.Vens

Give modal formulas that distinguish between them: that is, find formulas @,
1 < j < 3,suchthat Ven; |= ®; but Ven; [~ ®; wheni # j.

5. LetC1 % tick.Cl and Cl, def tick.tick.Cl,. Show that no modal formula
distinguishes between these clocks. That is, prove that C1 = @ iff C1, &= @
for all modal formulas ®.

6. A modal formula & distinguishes between two processes E and F if either
EE®and F = ®,or E [~ ® and F = . Provide a modal formula that
distinguishes between Sched, and Sched;, of Section 1.4.

7. Express as a modal formula the property “the second action must be a
(parameterised) out action,” and show that Cop of Section 1.1 has this property.

8. Express as a modal formula the property “the fourth action must be z,” and
show that the slot machine SM, of Figure 1.15 has this property.
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2.2 Hennessy-Milner logic Il

Proposition 1

The modal logic M, as presented in the previous section, does not contain a negation
operator —. The semantic clause for negation is as follows.

EE-® iff EE o

However, for any formula ¢ of M, there is the formula ¢ that expresses the
negation of ®. The complementation operator ¢ is defined inductively as follows.

tt€ = ff f£¢ = tt
(PLAD) = P{VP (P1Vvd) = OfAPS
((K1®)° = (K)o° (K)®) = [K]®*

®° is the result of replacing each operator in ¢ with its “dual,” where tt and
ff, A and Vv, and [K] and (K) are duals. For instance, the complement of
[tick]((tick)tt A [tock]ff) is the formula (tick)([tick]ff V (tock)tt). The
following result shows that ®¢ expresses —®.

El=®° iff E ¥ ®.

Proof. By induction on the structure of ®, we show that, for any process F,
F = ®€iff F [~ ®. The base cases are when & = tt and & = ff. Clearly,
F = ffiff F [£ tt and F |= tt iff F [~ ££. For the induction step, assume the
result for formulas &, and ®,. If we can show that it also holds for ®; AD,, &1V P,
[K]®) and (K )P, then the result is proved. Let ® = &1 A $3. F = (P A P2)°

iff F = ®fv o (by definition of )

iff FE®f or FE @ (by clause for v)

iff F & ®; or F [~ $, (by induction hypothesis)

iff F = @) A Dy (byclause for A).

The case ® = &, v D, is very similar. Let ® = [K]P;. F = ([K]P1)°
iff F E (K)®S (by definition of )
iff 3G.3aecK.F -5 GandG @S (by clause for (K))
iff 3G.3ae K.F - G and G [£ @, (by induction hypothesis)
iff F [ [K]P; (by clause for [K]).
The final case ® = (K )P is similar. a

To show that a process fails to have a property is therefore equivalent to showing
that it has the complement property. Notice that the complement of a complement
of a formula is the formula itself, (®€)° = .

In Section 1.6 we defined the set of subprocesses Sub(E) of a process E.
This set may have infinite size. We now inductively define the set of subformulas,
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Sub(®), of a formula ®.
Sub(tt) = {tt}
Sub(ff) = (ff}

Sub(d>1 A q)z)

{®| A D2} U Sub(P;) U Sub(P,)

Sub(®; v ;) = {&)V Dy} USub(®) U Sub(Py)
Sub([K]®) = {[K]®}U Sub(®P)
Sub({K) @) = {{K)®}U Sub(P)

For any formula &, Sub(®) is a finite set of formulas. For instance, if ® is the
formula ([tick]({tick)tt A [tock]ff)), then Sub(®) is the following set.

{D, (tick)tt A [tock]ff, (tick)tt, [tock]ff, tt, ff}

The size of a modal formula W, denoted by |¥|, is the number of occurrences of
tt, £f, A, V, [K] and (K) within it. Clearly, the number of formulas in the set
Sub(®) is no more than |P]|.

A modal formula is “realizable” (or “satisfiable”) if there is a process that
satisfies it. [tick]({tick)tt A [tock]ff) is realizable because C1 satisfies it. On
the other hand, (tick)({tick)tt A [tick]ff) is not realizable because a process
cannot tick, and then be able to both tick again and fail to tick. There is a
simple technique for determining whether a formula is realizable, provided it does
not contain modalities with values. First, realizability is extended to finite sets of
formulas: the finite set I is realizable if there is a process satisfying every @ in I".
The method for deciding realizability of a set of formulas consists of reducing it to
realizability of smaller sized sets, by stripping away connectives. The size of a set
is the sum of the sizes of its formulas. An example reduction is that I' U {® A W}
becomes the smaller set I' U {®, W}. The details are left as an exercise for the
reader.

The presence of values in modal operators suggests that a more extensive
modal logic is appropriate to property expression that permits generality of value.
One extension is to include first-order quantification over values. For instance
Regy has the property Vn. (write(n))tt where n in the modal operator is bound
by the universal quantifier: here it is implicit that n ranges over N. Quanti-
fiers allow value dependence to be directly expressible. Cop has the property
vd. [in(d)]({out(d))tt A[—out(d)]ff), where d ranges over the appropriate value
space D. Semantic clauses for the quantifiers are as follows:

EEVx.® iff Vde D.E | ®{d/x}

EE3x.® iff 3de D.E = o{d/x},
where {d /x} is substitution of d for all free occurrences of x. Predicates over values
can also be included (for example, expressing evenness of an integer). This leads

to very rich first-order modal logics. We leave the reader to spell out some of the
possibilities here.
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Exercises

An alternative to using quantifiers over values consists of using infinite con-
junction and disjunction. Infinitary modal logic M, where I ranges over arbitrary
finite and infinite indexing families, is defined as follows.

®u= N\{® :iel} | \/(®:iel}|[K]®](K)D

The satisfaction relation between processes and A\ and \/ formulas is defined
below.

EEN\® :icl} if Eo;foreveryjel
EE\/{® :iel} if E ®;forsomejel

tt abbreviates A\{®; : i € @} and £f abbreviates \/{®; : i € @}. Quantified
formulas can be interpreted in M. For instance,

Vd. [in(d)]({(out(d))tt A [—out(d)]ff)
can be expressed as

/\([in(@)]({out(@))tt A [—out(d)}ff) : d € D}.

1. For each of the following formulas, determine its complement.

. {a1){@x)(a3)tt

. {a1){az)(a3)[-]££

. [train]({z)tt A {car)[r][r]ff)

. (read(5))tt A [{read(n) : n # 55}1ff

. (=)t A[=)((=)tt A[=]({(—)tt A [—collect;, collect,]ff))
2. Prove that (®°)° = P.

3. For each of the following, determine whether it is realizable, and when it is,
exhibit a realizer.

(tick)[tock]({tick)tt A [tick]ff)

(tick)[tock]((tick)tt A [tick]ff) A [—](tock)tt

. (tick)[tock]({tick)tt A [tick]ff) A [—](—)tt

d. [-]([—]({(—)tt A [—collect;, collecty]ff) A (—)tt) A (—)tt

. [1n(5)1({out(5))tt A (out(7))tt)

4. Design an algorithm that decides whether a modal formula of M is realisable.

o & T

o TP

o

5. A modal formula is valid if every process satisfies it. Show that & is valid iff
®° is not realizable. Let — be the implies connective whose definition is

o> v ¥ ooy

Which of the following are valid when ® and W are arbitrary modal formulas?
a. (tick)(® Vv ¥) - ({(tick)® Vv (tick)V)
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b. ((tick)® A (tick)W¥) — (tick}(P A V)
¢ [tick](® — ¥) — ([tick]®P — [tick]¥)
d. ([tick]® — [tick]¥) — [tick](P — V)
6. Two modal formulas & and ¥ are “equivalent” if, for all processes E, E = ®

iff E = W. Which of the following pairs are equivalent when &, and P, are
arbitrary modal formulas?

a. (tick)(P; A Dy), (tick)P; A (tick)P,
b. (tick)(®; v @;), (tick)d; V (tick)d;
[tick](®; A D), [tick]P; A [tick]D;
d. [tick](®; Vv D,), [tick]d; Vv [tick]D,
e. [tick]®;, (tick)d,

7. Define first-order modal logic for value-passing processes, where the
quantifiers range over values.

e

2.3 Algebraic structure and modal properties

Proposition 1

Process behaviour is chronicled through transitions. Processes also have structure,
defined as they are from combinators. An interesting issue is the extent to which
properties of processes are definable from this structure, without appealing to
transitional behaviour. The ascription of boolean combinations of properties to
processes does not immediately depend on their behaviour. For instance, E satisfies
® v W if and only if E satisfies one of the disjuncts. Therefore, it is the modal
operators that we need to concern ourselves with, and how algebraic structure
relates to them. A variety of cases is covered in the following proposition.

1. Ifa ¢ K then a.E = [K]® and a.E = (K)®

2. Ifae Kthen aEE[K|® if EE®

3. Ifac K then aEE(K)® iff EE®

4. Y {E; :iel} |=[K iff forall j el Ej=[K]P
5. {E; : i e I} = (K)® iff forsome jel. E; = (K)®
6.

IfP“ifEandE|=q> then P = @

Proof. For 1,ifa ¢ K, then the set {F : a.E —>> Fand b € K} = @, and
soa.E = [K]®,buta.E [ (K)®. Cases 2 and 3 follow from the observation if

a € K, thentheset {F : a.E LN Fand b € K} = {E}. 4 and 5 depend on the
following equality, {F : Y {E; : i € I} —%> F and a € K} is the same set as
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Proposition 2

(F : E; 2 Fandae K and j € I}. For 6, observe that the behaviour of P
when P & E is that of E. m]

Using Proposition 1 and the semantic clauses for boolean combinations of prop-
erties, we can now show that the vending machine Ven of Figure 1.2 has the
property [2p]({—)tt A [—big]ff) without appealing to transitional behaviour.
Using Proposition 1.6, this is established if

2p.Veny, + 1p.Ven; = [2p]({(—)tt A [—big]ff),
which reduces by 1.4 to demonstrating
2p.Ven,, = [2p]({—)tt A [-big]ff) and
ip.Ven; = [2p]({(—)tt A [-Dig]ff).

The second follows from Proposition 1.1 because 1p ¢ {2p}. Using Proposi-
tion 1.2, the first reduces to showing

Ven, = (—)tt A [-big]ff.
By Proposition 1.6, this is established if
big.collecty.Ven = (—)tt A [—big]ff.
That is, if the following pair hold

big.collecty.Ven |= (—)tt and
big.collecty.Ven = [—big]ff.

The second of these is true by Proposition 1.1, and the first is established using
Proposition 1.2 because collecty.Ven = tt.

The effect of removing the restriction \J from a process can be captured by
inductively defining an operator on modal formulas, ®\J. The intention is that
E\J = @ iff E |= ®\J. In the following, let J* be the set J U J.

tt\J = tt ££\J = ff
(@AVNS = S\JAW\J (@VIYNS = P\JVW\J
(K1®\NJ = [K—=J(@\)) (K)YPNJ = (K—-J")(P\J))

The operator \J removes actions from modalities, as the following example
illustrates.

[tick, tock]({(—)tt A [tock]ff)\{tick} = [tock]({(—tick)tt A [tock]ff)

The operator \J on formulas is an inverse of its application to processes, as the
next result shows.

E\JE® iff E = ®\J.

Proof. By induction on ®. If ® is tt or ££, then the result is clear. Suppose P
is ®; A ®;3. So, E\J = @ iff E\J = ®; and E\J | @, iff by the induction
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hypothesis E = ®\J and E = ®,\J, and now by the inductive definition above
iff E &= ®\J. The case when ® is ®; v &, is similar. Assume & is [K]¥ and
E\J = [K]¥,but E }& [K — J*](W\J). Therefore, E —=> F witha € K — J*
and F = W\ J.By the induction hypothesis it follows that F\J = ¥, and because
a € K — J* we also know that E\J — F\J. But then we have a contradiction
because this shows that E\J = [K]W. For the other direction, suppose that
E &= [K — JTI(W\J), but E\J } [K]V. Therefore, E\J = F\J for some
a € K and F\J & V. But this a must belong to K — J* by the transition rule for
\J, and by the induction hypothesis F = W\J. Therefore, E = ([K]¥)\J. The
final case when @ is (K )W is similar. a

There are similar inverse operations on formulas for renaming [ /] of Sec-
tion 1.4 and for hiding \\J of Section 1.5. We leave their exact definition as an
exercise.

Much more troublesome is coping with parallel composition. One idea, which
is not entirely satisfactory, is to define an “inverse” of parallel on formulas. For
each process F, and for each formula ®, one defines the new formula ®/F with
the intention that forany E, E | F = @ iff E = ®/F. Instead of presenting an
inductive definition of this “slicing operator,” &/ F, we illustrate a particular use
of it.

Let Ven be the vending machine and consider the following.

def

Use; = 1p.little.Use;
K = {ip,2p,little, big}
Kt = KUK

We show that (Ven | Use;)\K = [-][—){collect;)tt. Proposition 2 is applied
first.

Ven [Use; [k ([—][—]){collect;)tt)\K iff
Ven |Use; [ [-KT][—K*]{collect;)tt iff
Ven E ([—KT][-KT]{collect;)tt)/Use;

We need to understand the formula ([— K +][— K *]{collect;)tt)/Use;. It is the
same as ([—K*+][—K*](collect;)tt)/Ip.little.Use;. We want to distribute
the process through the formula. The action 1p can not directly contribute to
the modality [—K*] because 1p € K*. However, it can contribute as part of
a communication if Ven has 1p transitions. Therefore, either Ven contributes a
transition, or there is a communication between Ven and the user. Therefore, we
need to show the following pair.

Ven = [-K1T]([—K*](collect,)tt/Ip.little.Use;)
Ven k= [1p]([—K T]{collect;)tt/little.Use,)
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The first of these is derivable using Proposition 1. By the same Proposition, the
second is quivalent to the following.

Ven; = ((—K*](collect;)tt)/Iittle.Use;

There is now a similar argument. The process 1ittle.Use; can only contribute to
an action in [— K "] if it is part of a communication. Therefore, one needs to show
the following pair.

Ven; = [—-K']({collect;)tt/1ittle.Use;)

Ven; = [little]({collect;)tt/Use;)

The first is derivable using Proposition 1, and by the same Proposition the second
is equivalent to the following.

collect;.Ven = ({collect,)tt)/Use;

This clearly holds because collect;.Ven is able to perform collect;,and tt/F
for any process F is just the formula tt.

1. Using Proposition 1 and the semantic clauses for boolean connectives, show
the following.

a. Cl = [tick, tock]({tick)tt A [tock]ff)
b. Ven = [2p, 1p](big, 1little)tt
¢. Ctg = [up][down, up]([down]ff Vv [round]ff)
2. Let K = {a, b, c}. What are the following formulas?
a. ((v)[al(b)tt A [-][-e)tE)\K
b. ([a, b, c,d]{d)[c,d]1tf Vv [-J][-KIfE\K
3. Define operators [ f] and \\J on modal formulas so that the following hold.
a. E[f]E Qiff E F @[f]
b. E\\J = Qiff E E ®\J

4. Define the slicing operator / F on modal formulas. Use your definition to prove
the following without appealing to transitional behaviour.

a. Crossing = [train]({t)tt A (car)[t][t]ff)
b. Crossing = [car][train][t]((tcross)tt V (Ccross)tt)
¢. Crossing j [car][train][z]({tcross)tt A (Ccross)tt)

2.4 Observable modal logic

Process activity is delineated by the two kinds of transition relation distinguished
by the thickness of their arrows, —> and =. The latter captures the operation
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of observable transitions because == permits silent activity before and after a
happens. The relation == (see Section 1.3) was defined in terms of -5 and the
relation = indicating zero or more silent actions.

The modal logic M does not express observable capabilities of processes be-
cause silent actions are not accorded a special status. To overcome this, it suffices
to introduce new modalities [[ ]] and ({ )) as follows.

EE[]® iff VFe(E : E=E}.FE®
EE()® iff IFe{E E=E}FE®

A process has the property [ ]| @ provided that it satisfies ® and, after evolving
through any amount of silent activity, ® remains true. To satisfy ( )) P, a process
has to be able to evolve in zero or more T transitions to a process realizing ®.

Neither [ ] nor  )) is definable within the modal logic M. A technique for
showing non-definability employs equivalence of formulas: two formulas ¢ and
W are equivalent if, for every process E, E = @ iff E = W. For instance,
(tick, tock)® is equivalent to (tick)®P Vv (tock)P, for any &. Two formulas
are not equivalent if there is a process that realises one, but not the other, formula.
If [ ] is definable in M, then for any formula @ in M there is also a formula in M
equivalent to [[ ]} @ (and similarly for definability of ( ))). Non-definability of [ ]
is established if there is a @ in M and [ ]} ® is not equivalent to any formula of M.
A simple choice of ®, namely [a]ff, suffices. A process realises [ ] [a]ff if it is
unable to perform a after any amount of silent activity. We show that [ ] [a]f£ is
not equivalent to any formula of M. For this purpose, consider the two families of
similar processes {Div; : i € N}and {Div} : i € N}

o def . def _ .
Divy = 1.0 Diviy; = 7.Divy;
. g def . def _ .
Divd = a.0 Divé,, = T.Div¢
whose transition graphs are as follows.

T . T . T . T . T
...—> Div;;; — Div;... — Divy —> Divyg — 0

... = Div%,; — Div#... —> Div{ —» Div§ —> 0

Div, = [1[alff for each n. On the other hand, Div4 (= [ J[a]ff for each n
because of the transition DivZ = Div§. For each formula ¥ of M, there is a
k > 0 with the feature that Divy |= W iff Div§ = W, and therefore [ ] [a]£f is
not equivalent to any M formula. The crucial step here in a strengthened form is
demonstrated in Proposition 1, below. Recall from Section 2.2 that the size of |¥|
is the number of occurrences of tt, £f, A, Vv, [K] and (K} within it.

If V e Mand |V| =k, thenfor allm > k,Div, =WV iff Div] = W.
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Proof. By induction on k. The base case is k = 1, so W is tt or ££, and clearly
the property holds. For the induction step, assume the result for all ¥ < n. Suppose
|¥| = n+ 1. Four cases need to be dealt with. If ¥ is ¥; A W, or ¥; v W,, then as
each component ¥;, i € {1, 2}, has size less than n + 1 the induction hypothesis
applies to it. It follows that Div,, = ¥; iff Div} = W; forallm > n + 1. Now
the result follows. Otherwise, ¥ is [K]W; or {K)W¥,. We just consider the first of
these cases and leave the second as an exercise for the reader. If T ¢ K, then for
allm > 1,Div, = ¥ and Div4 = W. So, assume 7 € K. As |¥;| = n, by the
induction hypothesis for all m > n, Div,, = V¥, iff Div}, = W¥,. And therefore
forallm > n,Divpy1 = [K]W iff Divy, | = [K]Y. o

Using the new modal operators, supplementary modalities [K ] and {K)) are
definable as follows, when K is a subset of observable actions O.

def

[kK1® =[1KI[1® (K)e = (K)o

Their meanings appeal to observable transition relations == in the same way
that the meanings of [K] and {K) appeal to the relations —%> . Process E has the
property [K] &

iff EE[IKIL]

iff VFe(E :E=E}.FE[K][]®

iff VFelE :E=E —>EandacK}.FE[]®
iff VFe(E :E=E ~> E,= FE' andacK}.FE®
iff VFe{E':E=>F andacK).FE®,

and E = (K)® iff 3F ¢ {E/ : E = E’'anda € K}. F = ®. As with
the modalities of Section 2.1, we write [[ay, ..., a,] and {ay, ..., a,)) instead of
[ai,...,a.}] and ({a1, ..., an}).

The simple modal formula {tick))tt expresses the observable ability to carry

out the action tick, whereas [tick] £f expresses an inability to tick after any

amount of internal activity. Both clocks C1 and C1s from Section 1.1, where C15 %ef

tick.C1ls + 7.0, have the property {(tick))tt, but the clock C1s may at any time
silently stop ticking, and therefore also has the property {(tick)) [tick] ££.

The crossing of Section 1.2 has the property that, after a car and a train approach,
one of them may cross.

[car] [train]} ({tcross)tt Vv ((CCTosSs)tt)
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In the following the processes, E; are from Figure 1.12.

Crossing = [car] [train] ({tcross)tt Vv ((CCross)tt)
iff E; = [train]]({Tcross)tt v (ccross)tt) and

E4 = [train] ({tcross)tt Vv ((ccross))tt)
iff E; k= (tcross)tt Vv {ccross)tt and

Es |= (tcross)tt v ((ccross)tt and

E; |= {tcross)tt Vv ((Ccross))tt

Both E; and E; have observable tcross transitions, and E¢ has an observable
CCToss transition.

The set O, introduced in Section 1.3, is a universal set of observable actions
(which does not contain 7). We assume the following abbreviations.

-xk1® & [o-k1

(-kye £ (0-K)
Therefore, [—]] and {—)) are abbreviations of [O] and {(O)}. The modal formula
[—] ££f hence expresses an inability to carry out an observable action, so the

process Div & ¢ Div realises it.

Modal formulas can be used to express notions that are basic to the theory of
CSP [31]. A process can carry out the observable trace a; .. .a, provided it has
the property ((a;)) ... {a,))tt. A process is stable if it has no r-transitions (and,
therefore, if it has the property [t]£f). The formula [K] £f expresses that the
observable set of actions K is a “refusal,” since a realizing process is unable to
perform observable actions belonging to K. The pair (a; . . . a,, K) is an observable
failure for a process provided it satisfies {(a;)) . . . {@,))([t]££ A[K] ££): a process
realises this formula if it can carry out the observable trace a; . . . a, and become
a stable process that is unable to carry out observable actions belonging to K.

The processes Cop and Protocol have the same observable failures, as given by
the following sequence of formulas.

{ M([zl££f A [—{in(m) : m € D}]££)

(in(m))([t1££ A [—out(m)]] ££)

{in(m))) (out(m))([t]£f A [—{in(n) : n € D} ££)

For instance, Protocol satisfies the second formula because of the following
transition.

in(m)

Protocol == (Send1(m) | Medium | out(m).ok.Receiver)\J,

where J = {sm, ms, mr, ok}.
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There are two transition graphs asssociated with any process, as described in
Section 1.3, one built from thin transitions —> and —», and the other from the
observable transitions == and ==. The modal logic M is associated with the
first kind of graph. For the second kind, we introduce observable modal logic M?,
whose formulas are defined inductively below.

Qu=tt | £f | QAP | &V D, | [KIDP [ [P | (KNP | ()P

K ranges over subsets of O. The logic M? is closed under complement, as the
reader can ascertain (for instance ([ K] ®)° is { K ) ®° and ({{ ) )° is [ ] P°).

1. Show that both [ ] and ({ )) are definable within infinitary modal logic M, of
Section 2.2.

2. Show that ({ )) is not definable in M by employing a similar argument to that
used in Proposition 1, but with respect to the dual formula {( )){a)tt.

3. The modal depth of a formula W, written md(¥), is defined inductively as

follows.
md(tt) = 0 = md(ff)
md(®; A D) = max{md(P;), md(P;)} = md(P; Vv by)
md([K]®P) = 1 + md(®P) = md((K)®)

Show that Proposition 1 remains true if || is replaced with md(¥).

4. Let M~ represent the family of modal formulas of M that do not contain
occurrences of box modalities, [J] for any J. Show that, for any non-empty
J, the modality [J] is not definable in M™.

5. Prove the following pair.
a. Crossing [~ [[car] [train] ({(Tcross)tt A ((CCross)tt)
b. Protocol = [in(m)] ({out(m))tt A [{in(m) : m € D}] ££f)
6. Consider the following three vending machines.

Ven; = 1p.1p.(tea.Ven; + coffee.Ven)
Ven, = 1p.(1p.tea.Ven; + 1p.coffee.Ven;)
Ven, &f 1p.1p.tea.Ven; + 1p.1p.coffee.Veny
Show that Ven, and Vens have the same set of observable failures, but that

Ven, and Ven, have different observable failures.

7. Show that (C | U)\{in, ok} and Ucop from Section 1.3 have the same M°’
modal properties, but not the same M properties.

8. Show that for all ® € M?, Cop = & iff Protocol = &.

9. An M formula is realisable if there is a process that satisfies it. Which of the
following formulas are realisable?
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a. {(car)){{train))({tcross)tt V {(Ccross)tt)

b. [1£ff

{car)){train))({tcross)tt A {(ccross)tt)

d. {car){(train))({ )){ccross)tt A { )) [ccross] £f)
e. ((car))(train))({ )){ccross)tt A [ccross] ff)

]

2.5 Observable necessity and divergence

Example 1

Within the modal logics M and M?, capabilities and observable capabilities of
processes are expressible. M also permits expression of immediate necessity (or
inevitability). The formula (—)tt A [—a]ff expresses that a must be the very next
action because {(—)tt asserts that some action is possible, whereas [—a]ff states
that only a is a possible next action. In this section we examine how to express
immediate observable necessity.

A first attempt at expressing in M the property that a must be the next ob-
servable action is ((—))tt A [—a] ££, which states that some observable action is
possible and that all observable actions except a are initially impossible. However,
it leaves open the possibility that a may become excluded through silent activity.
Both clocks C1 and C1; satisfy {—))tt A [—tick] ££f, as mentioned in the previ-
ous section. C1s is able to carry out an observable tick transition, Cl1s 2 Cls,
and also is unable to perform any other observable action. However, this clock may
also silently break down, C1s == 0, and become unable to tick. This shortcoming
can be surmounted by strengthening the initial conjunct (—)tt to [ ] {—)tt,
requiring that an observable action be possible after any amount of silent activity.
Cls [~ [ ] {—))tt because of the silent transition Cls ==5 0, whereas C1 has this
property.

A second attempt at expressing necessity of a is [ ]| {—))tt A [—a] ££. Cer-
tainly, this formula expresses that the initial observable action must be a. However,
it does not guarantee that a first observable action will happen. Clg is another

clock, Clg & tick.Clg + 7.Clg, which satisfies [ ] {(—)tt A [—tick] ff. It
realizes both conjuncts because its only observable transitions are Clg L Cle
and Cl¢ == Clg. Interpreting this formula as an inevitability that tick happens
next fails to take into account the possibility that C1¢ avoids ticking by perpetually

engaging in silent activity.

Cop and Protocol both have the property that, after an input, an output must
happen next, that is, for any m

[in(m)] ([ 1 {-)tt A [-out(m)] £1).
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In the case of Protocol, the message m may also be continually lost during
transmission, and therefore may never be transmitted. This is not possible for Cop.

A process diverges if it is able to perform internal actions forever. Cl¢ diverges
because of the following endless sequence of 7-transitions.

Clg —> Clg —> ... —> Clg —> ...

In contrast, C15 does not diverge, and so is said to converge. Following Hennessy
[26], let E 1 abbreviate that E diverges, and E | abbreviate that E converges.
Neither convergence nor divergence is definable in the modal logics M and M°.
There is no formula @ in these logics such that, for every process E, E &= ¢
iff E 4. Consequently, we introduce another pair of modalities [|] and (1)),
analogous to [ ] and { )), except that they contain information about divergence
and convergence.

EE[]® iff E| andVFe{E : E=SE}FE®
EE(t)® iff Ef or3Fe(E :E==E}FE®

A process satisfies [ ] ® if it converges and realises [ J] ®. Dually, a process
realises (1)@ if it diverges or satisfies {{ ))®. Divergence and convergence are
expressible by means of these new modalities: [| ] tt expresses convergence and
its dual ((1))f£f expresses divergence.

Let M be observable modal logic together with the two new modalities:

® = tt | ff | AP | OV e | [KIP|[1® | [I]P |
(KNP 1 {(h® | (1o

Within M°¥, the strong observable inevitability that a must (and will) happen next
is expressible as

[LD{—Ntt A [—al ££.

The initial conjunct precludes the possibility that T could occur forever.
Consequently, Clg = [{] {(—)tt A [—tick] ££.

The difference between Cop and Protocol as described in Example 1 is expressed
as [in(m)([I] (=NttA [[—Hff(m)]] £f) for any m. Protocol fails to have this
property because the message m may be continually lost during transmission, and
therefore may never be output.

Ancillary modalities can be defined in M°* as follows.

[y K1 [VIIKT @
ki1 = [KILI®
L Kil® = [IIKILD®

[=%
s,
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Features of processes dealing with divergence, appealed to in definitions of be-
havioural refinement [26], can also be expressed as modal formulas in this extended
modal logic. For instance, that E cannot diverge throughout the observable trace

a .

1.
2.

A N A W

..apiscapturedas £ = [l a1 J]... [} a- {1 tt.

Show that the modalities [[| ]| and (1)) are not definable in M°.
Show that Cop realises the property

Lin(m)] ([41 (-Ntt A [—out(m)] ££)
and Protocol fails to have this property.

. Prove that, M°" is closed under complement.

. Prove that, for all ® in M?, 0 = ® iff Div = .

. Prove that for all ® in M°!, Cty = @ iff Count = ®.
. Which of the following M formulas are realisable?

a. [KD(LT (tickhtt A (1) (tick)tt)
b. [K |T(t) [tick]£f

c. [KT((Mh{tickhtt A [ I[tick]£f)
d. [K J1((th{tickhtt A [D[tick]£f)
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Example processes were defined in Chapter 1, and in Chapter 2 modal logics were
introduced for expressing their capabilities. An important issue arises when two
processes may be deemed to have the same behaviour. Such an abstraction can
be presented by defining an appropriate equivalence relation between processes.
In this chapter, we focus on equivalences for CCS processes defined in terms
of bisimulation relations. However, we present them using games that provide a
powerful metaphor for understanding interaction. There is also an intimate relation
between modal properties and these equivalences.

3.1 Process equivalences

Process expressions are intended to be used for describing interacting systems. So
far, the discussion has omitted criteria applicable to when two expressions may be
said for all intents and purposes to describe the same system. Alternatively, we can
consider grounds for differentiating process descriptions. Undoubtedly, the clock
C1 and the vending machine Ven of Section 1.1 are different. They are intended as

C. Stirling, Modal and Temporal Properties of Processes
© Springer Science+Business Media New York 2001
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Example 1

models of distinct kinds of objects. At all levels of description they differ: in their
algebraic expressions, their action names, their flow graphs and their transition
graphs. A concrete manifestation of their difference is their initial capabilities.
The clock C1 can perform the (observable) action tick, whereas Ven can not.
Syntactic differences alone should not be sufficient grounds for distinguishing
processes. It is important to allow the possibility that two process descriptions may
be equivalent, even though they may differ markedly in their level of detail. An
example is that of two descriptions of a counter Ct, of Figure 1.4 and Count of
Section 1.6. An account of process equivalence has practical significance when
one views process expressions both as specifications and as descriptions of imple-
mentations. Ct is a specification (even the requirement specification) of a counter,
whereas the finite description Count with its very different structure can be seen
as a description of a possible implementation. Similarly, the buffer Cop can be
seen as a specification of the process Protocol of Section 1.2. In this context,
an account of process equivalence could tell us when an implementation meets its

specification'.

A stark description of the slot machine SM, of Figure 1.15 is the process SM,

SM; def slot.(r.1oss.SM;,, + Z{t.m(y).SMZiH)_y s l<y<i+1),
which carries no assumptions as to how the slot machine is to be built from separate
but interacting concurrent components.

The two counters Cto and Count have the same flow graph. Not only do they
have the same initial observable capabilities, but this feature is also preserved as
observable actions are performed. There is a similarity between their observable
transition graphs, a resemblance not immediately easy to define. A much simpler
case is that of the two clocks, C1 f tick.Cl and Cl, f tick.tick.Cl; pictured
in Figure 3.1. Although they have different transition graphs, whatever transitions
one of these clocks makes can be matched by the other, and the resulting processes
also retain this property. An alternative basis for suggesting that these two clocks
are equivalent starts with the observation that C1 and tick.Cl should count as
equivalent expressions because C1 is defined as tick.Cl. An important principle

ci c1,
tick ( tick

tick tick.Cl2

FIGURE 3.1. Two clocks

1Similar comments could be made about refinement, where we would expect an ordering on processes.
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is that, if two expressions are equivalent, then replacing one with the other in some
other expression should preserve equivalence. Replacing C1 with tick.C1 in the
expression E should result in a process expression equivalent to E. In particular, if
E istick.C1 then tick.tick.Cl and tick.C1 should count as equivalent. Because
particular names of processes are unimportant, this should imply that C1 and C1,
are also equivalent.

The extensionality principle here is that an equivalence should also be a con-
gruence. That is, the equivalence should be preserved by the various process
combinators. For instance, if E and F are equivalent, then £ | G should be
equivalent to F | G and E\J should be equivalent to F\J, and so on for all
the combinators introduced in Chapter 1. If the decision component D of the slot
machine SM, breaks down, then replacing it with an equivalent component should
not affect the overall behaviour of the system (up to equivalence).

Clearly, if two processes have different initial capabilities, then they should not
be deemed equivalent. Distinguishability of processes can be extended to many
other features, such as their initial necessities, their (observable) traces, or their
completed traces?. A simple technique to guarantee that an equivalence is a congru-
ence is as follows. First, choose some simple properties as the basic distinguishable
features. Second, count two processes as equivalent if, whenever they are placed in
aprocess context, the resulting processes have the same basic properties. A process
context is a process expression “with a hole in it,” such as (E | [ ])\J, where [ ]
is the “hole.” This approach is sensitive to three important considerations. First is
the choice of what counts as a basic distinguishable property, and whether it refers
to observable behaviour as determined by the == and == transitions, or with be-
haviour as presented by the single arrow transitions. Second is the choice of process
operators that are permitted in the definition of a process context. Lastly, there is
the question whether the resulting congruence can be characterized independently
of its definition as the equivalence preserved by all process contexts.

Interesting work has been done on this topic, mostly, however, with respect to
the behaviour of processes as determined by the single thin transitions -5 Candi-
dates for basic distinguishable features include traces and completed traces (given,
respectively, by formulas of the form (@) . . . {(a,)tt and (a1) . . . {(@,)[—]££). There
are elegant results by Bloom et al, Groote and Vaandrager [7, 25, 24] that isolate
congruencies for traces and completed traces. These cover very general families
of process operators whose behavioural meaning is governed by the permissible
format of their transition rules. The resulting conguencies are independently de-
finable as equivalences’. Results for observable behaviour include those for the
failures model of CSP, [31] which takes the notion of observable failure as basic.

2A trace w for E is completed if there is an F such that E —> F and F is unable to perform any action.

3They include failures equivalence (expressed in terms of formulas of the form (a;) ... {a,)[K]££), two-
thirds bisimulation, two-nested simulation equivalence, and bisimulaton equivalence. Bisimulation equivalence
is discussed at length in later sections.
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Example 2

VenL Venz
1p 1p
Y
tea o coffee tea @ Ccoffee
1p 1p \p
[ Ve o o
1/ \3
tea Y Y coffee
1p 1p
o o
Ven, &f 1p.1p.(tea.Ven; + coffee.Ven;)
Ven, &f ip.(1p.tea.Ven; + 1p.coffee.Veny)
Veng f 1p.1p.tea.Venz + 1p.1p.coffee.Ven;

FIGURE 3.2. Three vending machines

Related results are contained in the testing framework of De Nicola and Hennessy
[16, 26], where processes are tested for what they may and must do.

Consider the three similar vending machines in Figure 3.2 (where we have left out
the names of the intermediate processes). These machines have the same
(observable) traces. Assume a user

Use & 1p.1p.tea.ok.0,

who only wishes to drink a single tea by offering coins and, having done so, ex-
presses visible satisfaction as the action ok. For each of the three vending machines,
we can build the process (Ven; | Use)\K, where K is the set {1p, tea, coffee}.
If i = 1 then, there is a single completed trace T 7 7 ok.

TTTOK

(Ven; | Use)\K —> (Ven; | O)\K

The user must then express satisfaction after some silent activity. In the other two
cases, there is another completed trace 7 7.

(Ven; | Use)\K —> (coffee.Ven; | Tea.ok.0)\K

The user is then precluded from expressing satisfaction.
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With respect to the failures model of CSP [31] and the testing framework of
[16,26], Ven, and Veng are equivalent. These two processes obey the same failure
formulas. Finer equivalences distinguish them on the basis that, once a coin has
been inserted in Vens, any possible successful collection of tea is already decided.
Imagine that, after a single coin has been inserted, the resulting process is copied
for a number of users. In the case of Vens, all these users must express satisfaction,
or all of them must be precluded from doing so. Let Rep be a process operator
that replicates successor processes. There is a single transition rule for Rep.

Rep(E) > E' | E’
E-SE
The two processes (Rep(Ven, | Use)) \K and (Rep(Vens | Use)) \K have dif-

ferent completed traces. The first can perform t 7 T T ok as follows, where E
abbreviates 1p.tea.Ven; + 1p.coffee.Ven,.

(Rep(Ven, | Use)) \K

It
(E | 1p.tea.ok.0 | E | 1p.tea.ok.0)\K

It

(tea.Ven, | £6a.0K.0 | E | Tp.tea.ok.0\K
It .

(tea.Ven, | tea.ok.0 | coffee.Ven, | tea.ok.0)\K

It

(Ven, | ok.0 | coffee.Ven, | tea.ok.0)\K
! ok

(Veny | O | coffee.Ven, | tea.ok.0)\K

(Rep(Vens | Use)) \K is unable to perform this completed trace, as can be seen
from its two possible initial transitions. First is the transition
(Rep(Vens | Use)) \K
J T

(1p.tea.Ven; | Ip.tea.ok.0 | 1p.tea.Vens | Ip.tea.ok.0)\K,
which must continue with two ok transitions in any completed trace. The second
is

(Rep(Ven; | Use)) \K
N 4
(1p.coffee.Vens | 1p.tea.ok.0 | 1p.coffee.Vens | Ip.tea.ok.0)\K,

which will not include ok transitions in any completed trace.
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Exercises 1. a. Foreachi :1 <i < 3, draw the transition graph of the following process
(Rep(Ven; |Usex))\K.

b. Show the following

i. (Rep(Ven, |Use)\K =[] (-
ii. (Rep(Veny |Use)\K [ 11—
iii. (Rep(Ven; | Use))\K k= ((ok

iv. (Rep(Vens | Use))\K & ((ok

/\

Net A[[ —ok ]| ££

Net A [ —ok ]| ££

) [[ok]]ff

) [ ok ]| ££

c. Let I be the set of M failure formulas (a;) ... {(a,)[K]ff, n > 0. Show
that for all ® € I', Ven, = & iff Vens = &.

2. Let Tr(E) be the set of traces of E (that is, the set of words w € A* such that
E - E’ for some E’). Let E =y, F iff Te(E) = Tr(F).

vv/\

a. Show that =r; is a congruence for CCS processes.

b. A deadlock potential for E is a trace w such that E —5 E'and E’ is
unable to perform an action (so w is a completed trace). Let DP(E) be
the set of deadlock potentials of E. Give examples of processes E and F
such that E =1, F and DP(E) # DP(F).

¢. Let E =pp F iff DP(E) = DP(F). Show that =pp is not a congruence
for CCS processes.

d. Define a process operator for which =r; is not a congruence.

3. Designa process context that distinguishes between the two vending machines
V and U, below (by having different completed traces).

& 1p.(1p.(tea.V + coffee.V) + 1p.coffee.V)

U ¥ 1p.(ip.(teaU+ coffee.l) + ip.coffee.U) + 1p.U;

def

Uy ip.(tea.U + coffee.U)

3.2 Interactive games

Equivalences for CCS processes begin with the idea that an observer can repeatedly
interact with a process by choosing one of its available transitions. Equivalence
of processes is then defined in terms of the ability of observers to match their
selections so that they can proceed with additional corresponding choices. The
crucial difference with the approach of the previous section is that an observer
can choose a particular transition. Such choices cannot be directly simulated in
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terms of process activity*. These equivalences are defined in terms of bisimulation
relations that capture precisely what it is for observers to match their selections.
However, we first proceed with an alternative exposition using games that offer a
powerful image for interaction.

The equivalence game G(Ey, Fy), where Ej and F; are processes, is an in-
teractive game played by two participants, players R (the refuter) and V (the
verifier), who are the observers who make choices of transitions. A play of
the game G(Ey, Fp) is a finite or infinite length sequence of pairs of proceses,
(Eo, Fp)...(E;, F;).... The refuter attempts to show that the initial pair (Eo, Fp)
can be distinguished, whereas the verifier wishes to establish that they are equiv-
alent. Suppose an initial part of a play is the finite sequence (Eo, Fy)...(E;, F;).
The next pair (Ej 41, Fj+1) is determined by one of the following two moves.

e Player R chooses a transition E ; S E j+1, then player V chooses a transition
with the same label F; —> Fj1

o Player R chooses a transition F; 5 F 'i+1, then player V chooses a transition
with the same label E; — E; ;.

The play continues with more moves. The refuter always chooses first, then the
verifier, with full knowledge of the refuter’s selection, chooses a transition with
the same label from the other process.

A play of a game continues until one of the players wins. As discussed in the
previous section, if two processes have different initial capabilities, then they are
clearly distinguishable. Consequently, any position (E,, F,) where one of these
processes is able to carry out an initial action that the other cannot counts as a win
for the refuter: that is, if there is an action a € A and

(E, & (a)tt and F, = [alff) or (E, k= [a]ff and F, = (a)tt).

Player R can then choose a transition, and player V will be unable to match it. We
call such positions “R-wins.” A play is won by the refuter if it reaches an R-win
position. Any other play counts as a win for player V. Consequently, the verifier
wins if the play is infinite, or if the play reaches a position (E,, F,) and neither
process has an available transition. In both these circumstances, the refuter has
been unable to find a difference between the starting processes.

Example 1  The verifier wins any play of G(C1, C1,). A play proceeds
(C1, C1,)(C1, tick.C1ly) (C1,Cly) ...

forever irrespective of the component the refuter chooses to make her move from.

4For instance, if E has two transitions E -2, E, and E = E,, then the observer is able to choose either
of them, but there is not a “testing” process @. F that can guarantee this choice in the context (@.F | E)\{a}: the
two results (F | E1)\{a} and (F | E;)\{a} are equally likely after synchronization on a.
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Example 2

|

tick tick

c —=cl Cly—=
Q player R to move
@ R-win

‘:I player Viomove

FIGURE 3.3. Game graph for G(C1, Cl1s)

In the case of G(C1, Cls), when Clg gef tick.Cls+tick.0, there are plays that the

refuter wins and plays that the verifier wins. If player R initially moves C1g u 0,
then, after her opponent makes the move C1 by C1, the resulting position (C1, 0)

is an R-win. If player R always chooses the transitions Clg u ClsorCl ue C1,

then player V can avoid defeat. Figure 3.3 depicts the game graph for
G(C1, C15). Round vertices are positions from which the refuter moves, and rect-
angular vertices are positions from which the verifier moves. Edges of a vertex are
the possible moves that a player can make from that vertex. A V-vertex is labelled
with the transition player R has chosen®. This information constrains the choice of
move that player V can make, since she must respond with a corresponding tran-
sition from the other component. Vertices encircled twice are R-wins. The game
graph represents all possible plays of the game. It begins with a token on the initial
vertex (C1, Cls). A play is the movement of the token around the graph. If the
token is at an R-vertex, the refuter moves it, and if it is at a V-vertex the verifier
moves it. If the token reaches an R-win vertex, the game stops and the refuter wins.

SWe suppress the position in which this transition has been chosen, as can be easily seen from the graph.
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Example 3

Example 4

Example 2 shows that different plays of a game can have different winners.
Nevertheless, for each game one of the players is able to win any play irrespective
of what moves her opponent makes. To make this precise, we introduce the notion
of a strategy. A strategy for a player is a family of rules that tell the player how to
move. For the refuter, a rule has the form “if the play so far is (Ey, Fy). .. (E;, F;),
then choose transition ¢, where ¢ is either E; N E; . orF; LN F;;1.” Because
the verifier responds to the refuter’s choice of transition, a rule for player V has the
form “if the play so far is (Eo, Fy) .. . (E;, F;), and player R has chosen transition
t, then choose transition ¢’,” where ¢’ is a corresponding transition of the other
process. However, it turns out that we only need to consider history-free strategies
whose rules do not depend upon previous positions in the play. For player R, a rule
is therefore of the form

at position (E, F) choose transition #,
where ¢ is either E — E’ or F —> F'. A rule for player V is

at position (E, F) when playerRhaschosen # choose ¢,

where ¢ is either E — E’ or F —> F’ and ¢’ is a corresponding transition of
the other process. A player uses a strategy in a play if all her moves obey the rules
in it. A strategy is a winning one if the player wins every play in which she uses
it. If a player has a winning strategy for a game, we say that the player “wins the
game.”

Player R’s winning strategy for the game G(C1, C15) consists of the single rule “at

(C1, C1s) choose Clg B 0. This has the effect of reducing the game graph of
Figure 3.3 to the smaller subgraph in Figure 3.4, as redundant player R choices
are removed.

The game graph for G(Ven,, Vens), two of the vending machines of Figure 3.2, is
pictured in Figure 3.5. A winning strategy for the refuter consists of the following
two rules (where E, G and H are from Figure 3.5).

at (Veny, Vens) choose Vens 26
at (E, G) choose E —5> H

The reader is invited to find another winning strategy.

tick

_— Cly — —

FIGURE 3.4. Reduced game graph for G(C1, C1;)
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E = 1p.tea.Ven, + 1p.coffee.Ven,
F = 1p.coffee.Ven; G = 1p.tea.Ven;
H = coffee.Ven, J = tea.Ven,
K = coffee.Ven; L = tea.Ven;

FIGURE 3.5. Game graph for (Ven,, Vens)

For each game, one of the players has a winning strategy. This we shall prove

below. The strategy relies on defining sets of pairs of processes iteratively using
ordinals as indices. Ordinals are ordered in increasing size, as follows.

0,1,...

,w,o+1,...,0+0,0ot+to+1,...

The initial limit ordinal (that is, one without an immediate predecessor) is w and
w + 1 is its successor. The next limit ordinal is @ + .
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Theorem 1 For any game G(E, F), either player R or player V has a history-free winning
strategy.

Proof. Consider the game G(E, F). The set of possible player R positions P is
the set

P ={E,F):3weA* E—> E and F - F'},

where —> is the extended transition relation defined in Section 1.3. P contains all
possible positions of the game G(E, F) in which player R moves next. Let W € P
be the subset of positions that are R-wins. We now define the subset of positions
from which player R can force a win by eventually entering W. This set Force is
defined iteratively, starting with 1 and using ordinals, where A is a limit ordinal.

Force! = W
Force®*! = Force® U {(G,H) € P :

3G'.G -% G’ and VH'. if H = H’ then (G', H') € Force®
or 3H'.H > H' and VG'. if G - G’ then (G’, H') € Force®}
Force* = U{Force“ D < A}

Lastly we define® Force as the following subset of positions.
Force = U {Force® : a > 0}

If (G, H) € Force, then the rank of (G, H) is the least ordinal & such that (G, H) €
Force”. For each (G, H) € Force, player R has a history-free winning strategy for
the game G(G, H). The strategy consists of rules of the form, “if (E’, F’) has rank
a > 1, then choose transition ¢ such that, whatever choice of transition player
V makes, the resulting pair of processes has lower rank.” The definition of Force
guarantees that there is a choice of transition with this property.

If (G, H) ¢ Force, then player V has a history-free winning strategy, which
is to avoid the set Force. It consists of rules of the form, “if (E’, F') ¢ Force and
player R chooses #, then choose ¢’ such that the resulting pair of processes does
not belong to Force.” The initial pair of processes (E, F) either belongs to Force
or belongs to P — Force, meaning one of the players has a history-free winning
strategy for the game G(E, F). a

If player V wins the game G(E, F), then we say that process E is “game equiv-
alent” to process F, in which case player R cannot detect a difference in behaviour
between the processes E and F. Game equivalence is indeed an equivalence
relation.

The processes considered in this work have countable transition graphs, so the set P of positions is countable;
therefore, we need only consider ordinals whose cardinality is at most that of N.
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Proposition 1

Exercises

Game equivalence between processes is an equivalence relation.

Proof. We show that game equivalence is an equivalence relation: that is, we
show it is reflexive ( E is equivalent to E), symmetric (if E is equivalent to F, then
F is equivalent to E) and transitive (if E is equivalent to F and F is equivalent to
G, then E is equivalent to G).

Player V’s winning strategy for G(E, E) is the “copy-cat strategy” consisting of
the rules “at (F, F), when player R has chosen ¢, choose ¢.” For symmetry, suppose
that 77 is a history-free winning strategy for player V for the game G(E, F). Let
7’ be the symmetric strategy that changes each rule “at (G, H) ...” in & to “at
(H, G)...”. Clearly, 7’ is a history-free winning strategy for player V for the game
G(F, E). Next, assume o is a winning strategy for player V for G(E, F), and 7 is
a winning strategy for player V for G(F, G). The composition of these strategies,
7 o 0, is a winning strategy for player V for G(E, G). Composition is defined by
the following two closure conditions.

1. If“at (E’, F’), when player R has chosen E' — E”, choose ¢’ is in o', and
“at (F’, G’), when player R has chosen ¢’, choose ¢” is in 7, then “at (E’, G’),
when player R has chosen E’ —2> E”, choose " is in 7 o &

2. If“at (F’, G’), when player R has chosen G’ -2 G”, choose t" is in 7, and
“at (E’, F'), when player R has chosen ¢’, choose ¢” is in o, then “at (E’, G'),
when player R has chosen G’ —> G”, choose t” is in 7 o &

We leave as an exercise that 7 o o is a winning strategy for player V for the game
G(E, G). m]

If E and F are finite state processes, then the proof of Theorem 1 provides a
straightforward algorithm for deciding whether E is game equivalentto F. Assume
that the number of processes in the transition graphs for both E and F are at most
n. One first computes the set P of possible player R positions, {(E’, F') : E =
E’and F —> F’}. The size of this set is therefore bounded by n2. One then picks
out Force!, the subset W € P of R-wins. Next, one defines iteratively the sets
Force!*! for i > 1, by adding pairs from P — Force' obeying the requirement.
The algorithm stops as soon as the set Force’ is the same set as Force’ ~!. This set
is then the set Force. It is clear that there can be at most n? iterations before this
happens. If (E, F) ¢ Force, then E is game equivalent to F, otherwise, they are
not game equivalent.

1. Draw the game graphs for G(Ven,, Ven,) and G(Ven,, Venz) where the
vending machines are defined in Figure 3.2.
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2. Show that the pair of vending machines V and U, below, are not game
equivalent.

= 1p.(1p.(tea.V+ coffee.V) + 1p.coffee.V)
U = 1p.(1p.(tea.U+ coffee.U)+ 1p.coffee.U)+ 1p.Us
U, ¥ 1p.(teaU+ coffee.l)
3. Show that Player V has a winning strategy for the game
G((C | W\{in, ok}, Ucop'),

where these processes are

c ' in(x).out(x).ok.C
U e urite(x).In(x).ok.U
Ucop’ &f write(x).t.out(x).z.Ucop’.

4. Consider adding the following winning condition for player V: If a position
is repeated (occurs earlier in a play), then player V wins the play.

a. Show that this extra winning condition does not affect which player wins
a game G(E, F).

b. Find out what it means for a problem to be P-complete. For example, see
Papadimitriou [48].

c. Show that game equivalence between finite state processes E and F is
P-complete.

5. A process F is immediately image-finite if, for each a € A, the set {G :
F -%> G} is finite. F is image-finite if each F’ is immediately image-finite
whenever F —> F’ for w € A*.

a. Show that, if the starting processes E and F of Theorem 1 are image-finite,
then for the proof of the result it suffices to define Force as follows.

Force = U{Forcei 1 i eN}

b. Give anexample ofapairof processes (E, F) thatare not game equivalent,
but that fail to have rank i forany i € N.

6. A pair of processes (Ep, Fp) is an S-game if, in any play, player R must
always choose a transition from the left process, meaning only the first move
is allowed. An R-win is any position (E,, F,) such that E, LN E,.1, but
F, has no available a transition. Player V wins if the play does not reach an
R-win.

a. Show that, for each S-game, one of the players has a history-free winning
strategy.
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b. List all the pairs of vending machines from Ven;, Ven,, and Vens of
the previous section for which player V has a winning strategy for the
S-game.

c. E is S-equivalent to F if player V has a winning strategy for the two
S-games (E, F) and (F, E). Prove that S-equivalence is an equivalence
relation. Give an example of two processes that are S-equivalent, but not
game equivalent.

3.3 Bisimulation relations

Definition 1

Example 1

When E and F are game equivalent, player V can match player R’s choice of
transition: if E —> E’, then there is a transition F —25 F’ such that E’ and
F’ are also game equivalent, and if F 25 F’, then again there is a transition
E —5> E’suchthat E’ and F’ are game equivalent. The ability to match transitions
is defining for a bisimulation relation. Bisimulations were introduced’ by Park
[47] as a refinement of the iteratively defined equivalence of Hennessy and Milner
[29, 42].

A binary relation B between processes is a bisimulation provided that, whenever
(E,F)e Banda € A,

o if E —%> E'then F - F’ for some F’ such that (E', F') € B, and

o if F —%> F'then E —%> E’ for some E’ such that (E’, F') € B

A binary relation between processes is a bisimulation provided that it obeys the
two hereditary conditions in the definition. Simple examples of bisimulations are
the identity relation and the empty relation.

Assume C1, C1, and Cls are the clocks of the previous section. The relation B
= {(C1, C1y), (C1, tick.C1,)} is a bisimulation. For example, if C1 B ¢l then
Cl, = tick.Cl, and the resulting pair of processes belongs to B. The relation
{(C1, Cl1g)} is not a bisimulation because of the transition Clg B o, Adding

(C1, 0) does not rectify this because the transition C1 ¥ €1 cannot then be
matched by a transition of the process 0.

Two processes E and F are bisimulation equivalent (or bisimilar) if there is a
bisimulation relation B such that (E, F) € B. We write E ~ F if E and F are
bisimilar.

"They also occur in a slightly different form in the theory of modal logic as zig-zag relations; see Benthem

[6].
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Example 2 The following processes are not bisimilar, a.(b.0 + ¢.0) and a.b.0 + a.c.0. There

Proposition 1

Proposition 2

cannot be a bisimulation relating the pair because it would have to include either
.0+ ¢.0,b.0) or (b.0 + ¢.0, c.0).

If {B; : i € I}is afamily of bisimulations, then their union | J{B; : i € I}isa
bisimulation.

Proof. Let Bbetherelation| J{B; : i € I},andsuppose (E, F) € B. Therefore,
(E,F) € Bj forsome j € I.IfE 25 E', then F - F’ for some F’ and
(E', F') € Bj, and similarly if F -5 F’, then E — E’ for some E’ and
(E', F') € Bj. Therefore, in both cases (E’, F') € B. m]

A corollary of Proposition 1 is that the binary relation ~ is itself a bisimulation
because itis definedas | J{B : B is a bisimulation}. Consequently, ~ is the largest
bisimulation (with respect to subset inclusion).

Bisimulation equivalence and game equivalence coincide.

E is game equivalentto F iff E ~ F.

Proof. Assume that E is game equivalent to F. We show that E ~ F by es-
tablishing that the relation B = {(E’, F') : E’' and F' are game equivalent} is
a bisimulation. Suppose E' —> E”, and because this is a possible move by
player R, we know that player V can respond with F’ ——> F” in such a way that
(E", F") € B, and similarly for a player R move F' —— F”. For the other direc-
tion, suppose E ~ F, so there is a bisimulation relation B such that (E, F) € B.
We construct a winning strategy for player V for the game G(E, F). The idea is that
in any play, whatever move player R makes, player V responds with a move ensur-
ing that the resulting pair of processes remains in the relation B. So, the winning
strategy for the verifier consists of rules of the form “if (E’, F') € B when R has
chosen E' —> E”,then choose F/ —> F” suchthat (E”, F”) € B” and similarly
for the case when the refuter chooses transitions from the other component. O

The parallel operator | and the sum operator + are both commutative and
associative with respect to bisimulation equivalence. This means that the following
hold for arbitrary processes E, F and G.

E|F ~ F|E (EIF)|IG ~ E|(F|G)
E+F ~ F+E (E+F)+G ~ E+(F+0G)

This is further justification for dropping brackets in the case of a process description
having multiple parallel components, or multiple sum components, such as the
description of Crossing in Section 1.2.

To show that two processes are bisimilar, it is sufficient to exhibit a bisimu-
lation that contains them. This offers a very straightforward proof technique for
bisimilarity.
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Example 3 The two processes Cnt and Ct are bisimilar where

Example 4

Proposition 3

Cnt def up.(Cnt | down.0)

Ct, & upct)

Ct; et up.Ct;,, + down.Ct; i >0.
A bisimulation that contains the pair (Cnt, Ct;) has infinite size because the pro-
cesses are infinite state. Let P; be the following families of processes fori > 0
(when brackets are dropped between parallel components)

P, = f{Cnt]|0/: >0}

Pyi = {E|0/|down0|0*: E e Piand j > 0andk > 0},
where F | 0° = F and F | 0'*! = F | 0’ | 0. The following relation

B = {(E,Ct)) :i>0and E € P}

is a bisimulation that contains the pair (Cnt, Ct;). The proof that it is a bisimulation
proceeds by case analysis. If i = 0, then (Cnt | 0/,Ct) € B for any j > 0.

Because Cnt —> Cnt | down.0, it follows that Cnt | 0/ —> Cnt | down.O | O/.

This transition is matched by Ct; =2, Ct! because Cnt | down.O | 0/ € P,. The
other case when i > 0 is left as an exercise for the reader.

Assume that C and U are as follows.

= in(x).out(x).ok.C

U write(x).in(x).ok.U

The proof that (C | U)\{in, ok} ~ (C | C | U)\{in, ok} is given by the following
bisimulation relation B.

{((C | U)\{in, ok}, (C | C | U)\{in, ok})}U

{((C | in(v).ok.U)\{in, ok}, (C | C | in(v).ok.U)\{in, ok}) : v € D}U
{((out(v).ok.C | ok.U)\{in, ok}, (out(v).ok.C | C | ok.U)\{in, ok}) : v € D}U
{((out(v).ok.C | ok.U)\{in, ok}, (C | out(v).ok.C | ok.U)\{in, ok}) : v € D}U
{((ok.C | ok.U)\{in, ok}, (ok.C | C | ok.U)\{in, ok}) : v € D}U

{((ok.C | ok.U)\{in, ok}, (C | ok.C | ok.U)\{in, ok}) : v € D}

We leave the reader to check that B is indeed a bisimulation.

Bisimulation equivalence is also a congruence with respect to all the process
combinators introduced in previous sections (including the operator Rep).

If E ~ F, then for any process G, for any set of actions K, for any action a and
for any renaming function f,



3.3. Bisimulation relations 67

l.a.E~a.F 2E+G~F+G 3.3E|IG~F|G

4. E[f1~F[fl 5 E\K~F\K 6. E\K ~ F\K

7.E||xkG ~ F||kG 8. Rep(E) ~ Rep(F).
Proof. We show case 3 and leave the other cases for the reader to prove. The
relation B = {(E | G, F | G) : E ~ F} is a bisimulation. Assume that ((E |
G),(F | G)) e Band E | G —= E' | G'. There are three possibilities. First,
E - E’'and G = G'. Because E ~ F, we know that F — F’ and E' ~ F’
for some F’. Therefore F | G —> F’ | G, and so by definition (E' | G), (F' |
G)) € B. Next, suppose G —> G'and E' = E.So F | G 2> F| G, and by
definition ((E | G'), (F | G')) € B. The last case is that E | G - E | G’ and
E -5 E'and G -5 G'. However, F —> F’ for some F’ such that E/ ~ F’,
so F | G —> F'| G', and therefore (E' | G'), (F' | G')) € B. The argument is
symmetric for a transition F | G — F' | G'. m]

Bisimulation equivalence is a very fine equivalence between processes, reflect-
ing the fact that, in the presence of concurrency, a more intensional description of
process behaviour is needed than, for instance its set of traces. For full CCS, the
question whether two processes are bisimilar is undecidable. As was mentioned in
Section 1.6 Turing machines can be “coded” in CCS. Let TM, be this coding of the
nth Turing machine when all observable actions are hidden (using \\, which can be
defined in CCS). The undecidable Turing machine halting problem is equivalent to

whether TM,, ~ Div, where Div & o Div. However, an interesting question is for
what subclasses of processes it is decidable? Clearly, this is the case for finite state
processes, since there are only finitely many candidates for being a bisimulation.
Surprisingly, it is also decidable for families of infinite state processes including
“context-free processes”8 for which other equivalences are undecidable; see the
survey by Hirshfeld and Moller [30]. One can also show decidability of bisimilar-
ity for various classes of value passing processes whose data may be drawn from
an infinite value space; see Hennessy and Lin [28].

Exercises Complete the proof that the relation B in example 3 is a bisimulation.
Show that the relation B of example 4 is a bisimulation.

Prove directly that ~ is an equivalence relation.

oo

. Assume that processes C and U are as in example 4. Show the following
(C 1 W\{in, ok} ~ (C" | U)\{in, ok}

foralln > 1, where C! = Cand Cit! = ¢ | C.

5. Suppose that B and S are bisimulations. For each of the following, either prove
that it is true, or provide a counterexample.

8These are the family of processes given by context-free grammars.
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B! is a bisimulation
B N S is a bisimulation
B U § is a bisimulation

e Fop

—B is a bisimulation
e. B o S is abisimulation
where
B '={(F,E) : (E,F) € B}
—B={(E,F) : (E,F) ¢ B}
BoS={(E,G) : thereisan F. (E, F) € B and (F, G) € S}

. Prove the remaining cases of Proposition 3. ‘
. Define a process operator for which bisimulation equivalence is not a

congruence.

. A relation B between processes is a simulation (half of a bisimulation) pro-

vided that, whenever (E, F) € B anda € A, if E - E’,then F —> F’
and (E’, F') € B for some F’'. E and F are simulation equivalent provided
that there are simulations B and S such that (E, F) € B and (F, E) € S.
a. List all the pairs (E, F) of vending machines from Ven;, Ven;, and Venj
of Figure 3.2 for which there is a simulation B containing (E, F).
b. Give an example of two processes which are simulation equivalent but,
not bisimilar.

¢. Show that E and F are simulation equivalent if, and only if, they are
S-equivalent (defined in the exercises of the previous section).

. For each ordinal «, the notion of a-equivalence, ~,, is defined as follows.

First, the base case, E ~( F for all E and F. Next, for a successor ordinal,
E ~44 Fiffforanya € A,

if E -2 E’ then for some F'. F —~> F'and E' ~, F’
if F -2 F’ then for some E'. E —> E'and E' ~, F'.
Lastly, for a limit ordinal A, E ~; F if,and only if, E ~, F foralla < A.

a. Give an example of a pair of processes E, F such that E ~3; F but
E +#4 F.

b. Consider the game G(E, F) as defined in the previous section. Show that,
for any possible player R position, (G, H) of this game, G %, H iff
(G, H) € Force®.

¢. Provethat E ~ Fiff E ~, F forall a.

d. E is image-finite if for every word w the set {E’ : E —> E’} has finite
size. Show that, if E and F are image-finite, then E ~ F iff E ~, F for
alln > 0.
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e. Give an example of a pair of processes for which E # F,but E ~, F
foralln > 0.

10. Suppose E and F are finite state processes. Using the notion of ¢-equivalence
of the previous exercise, design efficient algorithms
a. for determining whether £ ~ F. (Hint: define a least function f : N x
N — Nsuchthat E ~ Fiff £ ~ f(E|,IFl) F))
b. which also present a bisimulation relation containing (E, F) when E ~
F.

How do your algorithms compare with those presented in Kannellakis and
.Smolka [33]?

3.4 Modal properties and equivalences

Proposition 1

An alternative approach to defining equivalence between processes uses properties.
Two processes are equivalent if they share the same properties. To understand this
further, we need an accounting of properties. In Chapter 2, we introduced a variety
of modal logics for describing properties of processes. Therefore, we can use
modal formulas as properties. If T is a set of modal formulas, then the equivalence
=r between processes, meaning “sharing the same I' properties,” is defined as
follows®.

E=rFiff (el EE®} = (VeI : F =V}

One extreme case is when I is the empty set, and then =r relates all pairs of
processes. Families of formulas provide the basis for defining various equiva-
lences. For instance, if I' consists of all formulas of the form {(a;) ... (a,)tt for
n > 0, the relation =r is trace equivalence. Similarly, if I' consists of formu-
las (a1) ... {a,)[—]£f, for all n > O the induced equivalence is completed trace
equivalence. To capture observable equivalences, one uses subsets of M° formulas.

As remarked above, =y relates all processes. The other extreme is when I'
consists of all modal formulas defined in Chapter 2. More generally, let I" be the
set of formulas built from the constants tt and £, the boolean connectives A and
v and modal operators [K], (K), [, {(—), [{] and ((1)). I' encompasses all
the modal logics defined in Chapter 2. It turns out that bisimilar processes have
the same modal properties.

IfE'\’F,thenEEr F.

Proof. By induction on modal formulas ®, we show that, for any G and H,
if G ~ H,then G = @ iff H = &. The base case when & is tt or £f is

9Similarly a “refinement” preorder Cr is definable as follows: E Cr F iff forall ® € I'. if E = ® then

FE®.
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Proposition 2

clear. For the inductive step, the proof proceeds by case analysis. First, let ¢ be
W, A ¥y and assume that the result holds for ¥; and W¥,. By the definition of
the satisfaction relation G = @ iff G = ¥, and G W, iff by the induction
hypothesis H |= ¥, and H = V;, and therefore iff H = ®. A similar argument
applies to ¥; v ;. Next, assume that ® is [K]¥ and G |= ®. Therefore, for any
G’ such that G —%> G’ and a € K, it follows that G’ |= W. To show that H = ®,
let H 2> H’ (witha € K ). However, we know that for some G’ there is the
transition G — G’ and G’ ~ H’, so by the induction hypothesis H' = ¥, and
therefore H |= ®. The other modal cases are left as an exercise forthereader. O

This result tells us that two bisimilar processes have the same capabilities, the
same necessities and the same divergence potentials. Although the converse of
Proposition 1 does not hold in general (see Example 1, below), it does hold in the
case of a restricted set of processes. A process E is immediately image-finite if, for
eacha € A, theset {F : E 5 F } is finite. For each a € A, E has only finitely
many a-transitions. E is image-finite ifeverymemberof {F : 3w € A*. E - F)
is immediately image-finite. That is, a process is image-finite if all processes in its
transition graph are immediately image-finite. With this restriction to image-finite
processes, the converse of Proposition 1 holds.

If E and F are image-finite and E =r F,then E ~ F.

Proof. It suffices to prove the result for the case when I' is the set of modal
formulas M of Section 2.1. We show that the following relation is a bisimulation.

{(E,F) : E =y F and E, F are image — finite}

But suppose not. Therefore, without loss of generality G =v H for some G
and H, and G - G’ for some a and G, but G’ #y H’ for all H' such that
H %> H'. There are two possibilities. First, the set {H' : H -5 H'} is empty.
But G = (a)tt because G 2> G'and H ¥ (a)tt, which contradicts that
G =y H. Next, the set {H' : H — H'} is non-empty. However it is finite
because of image finiteness, and therefore assume it is {H), ..., H,}. Assume
G’ #m H; foreachi : 1 < i < n, meaning there are formulas ®¢, ..., ®,
such that G’ = ®; and H; & ;. (Here we use the fact that M is closed under
complement; see Section 2.2.) Let ¥ be the formula ®; A ... A ®,. Clearly
G’ = V¥ and H; ¥ WV for each i, as it fails the ith component of the conjunction.
Therefore, G |= {(a)V because G - G',and H ¥ (a)W¥ because each H; fails
to have property W. But this contradicts that G =y H. Therefore, the relation =y
between image-finite processes is a bisimulation. O

Clearlyif E =r Fand A C I" then E =, F.Therefore, Proposition 1 remains
true when I' is any subset of modal formulas, including the set M. Proposition 2 as
illustrated in its proof holds when I is also the set M. Under this restriction, these
two results are known as the “modal characterization of bisimulation equivalence”
due to Hennessy and Milner [29].
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Example 1

Proposition 3

Exercises

The need for image finiteness in Proposition 2 is illustrated by the following
example. Consider the following family of clocks, C1‘ fori > 0,

L

C1i+l

tick.0
def . i .

= tick.Cl' i>1

and the clock C1 from Section 1.1. Let E be the process Y {C1’ : i > 1}, and let
F be E + C1. The processes E and F are not bisimilar. The transition F Fa

cannot be matched by any transition E 2% v ,Jj = 1because C1 % C1/. On the
other hand E =) F. This follows from the observation that, for any ®, C1 = ¢
iff 3j > 0.Vk > j.C1¥ = ® (which is proved later in Section 4.1).

There is an unrestricted characterization of bisimulation equivalence in the
case of infinitary modal logic, M, of Section 2.2. The proof is left as an exercise
for the reader.

E~F iff E=y,F.

A variety of the process equivalences in the linear and branching time spec-
trum as summarized by Glabbeek in [22] can be presented in terms of having the
same modal properties drawn from sublogics of M (when restricted to image-finite
processes). Also, these equivalences can often be presented game theoretically by
imposing restrictions on possible next moves in a play.

1. Recall the definition of @-equivalence from the exercise of the previous section.
Consider the restricted case when & € N. First, is the base case, E ~¢ F for
all E and F. Next, for a successor, E ~;, F iff foranya € A,

if E —%> E’ then for some F'. F —> F' and E' ~; F'
if F %> F’ then for some E'. E —> E' and E' ~; F.
Another idea is that of modal depth (defined in the exercises of Section 2.4).

The modal depth of an M formula is the maximum embedding of modal
operators within it. We let md(®) be the modal depth of ® defined as follows:

md(tt) = 0 = md(ff)
md(® AV¥) = max{md(P),md(¥)}] = md(dV V¥)
md([K]®) = 1 + md(®P) = md((K)®)

Let M, be the set of modal M formulas & such that md(®) < n.
a. Provethat E ~, Fiff E =y, F.

b. Let E and F be arbitrary image-finite processes, and assume that E ¢ F.
Present a method that constructs a formula ® € M and distinguishing
between E and F, that is, for which E (= ® and F [~ .
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2. Prove Proposition 3.

3. Give a formula ® of My, such that £ = ® and F [~ ® when F and F are
the processes from example 1.

4. Let I be the subset of M formulas that do not contain any occurrence of a [K]
modality. If E and F are image-finite, prove that E =r F iff E and F are
simulation equivalent (defined in an exercise of the previous section).

5. A relation B between processes is a 2/3-bisimulation (see Larsen and Skou
[37]) provided that, whenever (E, F) € Banda € A,

if E -2 E’ then for some F'. F —> F’ and (E', F') € B

if F —%> F’ then for some E'. E — E’.

Let I' be the subset of M formulas with the restriction that, for any subformula
[K]¥, the formula W is ££f. Prove the following for image-finite E and F:
E =r F iffthereare 2/3-bisimulations B and S with(E, F) € Band (F, E) €
S.

6. Let " be the subset of M formulas that do not contain an occurrence of a
[K] modality within the scope of a (J) modality. Provide a definition of an
interactive game G'(E, F) such that player V wins G'(E, F) if E =r F'
assuming that E and F are image-finite.

3.5 Observable bisimulations

Game equivalence and bisimulation equivalence, as we have seen, coincide. More-
over, two equivalent processes have the same modal properties. Conversely, if they
are image-finite and have the same M modal properties, then they are bisimilar.
There are three different notions here: games, bisimulations and M properties.
Not one of this trio abstracts from the silent action 7 because each appeals to the
family of transition relations {-% : a € A}. By consistently replacing this set
with the family of observable transitions, as defined in Section 1.3, these notions
uniformly abstract from 7. Observable modal logic M° was defined in Section 2.4
with modalities [K T, [ ], { X)) and { )). Observable games and observable bisim-
ulation relations that appeal to the thicker transition relations =5, a € OU (g},
are defined below.

A play of the observable game G°(Ey, Fp) is a finite or infinite length sequence
of pairs (Eg, Fy) ... (E;, F}) ... played by the refuter R and the verifier V. After an
initial part of a play (Eo, Fo) ... (Ej, F;), the next pair of processes is determined
by one of the following two moves, where a € O U {e}.

e Player R chooses a transition E ; = E j+1, then player V chooses a transition
with the same label F; == Fj4,
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Example 1

Definition 1

Proposition 1

o PlayerR chooses a transition F = F +1, then player V chooses a transition
with the same label E; == E |

The play continues with additional moves.

A position (E,, F,) in which one of the processes is able to perform an initial
observable action that the other can not is an R-win. A play is won by player R
if the play reaches an R-win. Any play that fails to reach such a position counts
as a win for player V: this is equivalent to the play having infinite length because
player R can always make a move, given that the empty transition E; = E j or
F; == F; is available.

As in Section 3.2, a history-free strategy for a player is a set of rules independent
of previous moves, and that tell the player how to move. For the refuter, a rule has
the form “at position (E, F) choose transition ¢,” where ¢ is either E == E' or
F == F’. For the verifier, a rule has the form “at position (E, F) when player R
has chosen ¢ choose #’,” where ¢’ is corresponding transition of the other process
from that of z. A player uses a strategy in a play if all her moves obey the rules in it.
A strategy is winning if the player wins every play in which she uses it. For every
game G°(E, F), one of the players has a history-free winning strategy (whose
proof is the same as that of Theorem 1 of Section 3.2, except for the use of the
thicker transitions). Two processes E and F are “observationally game equivalent”
if player V has a winning strategy for G°(E, F).

The processes (C | U)\{in, ok} and Ucop from Section 1.3 are observationally
game equivalent. An example play is in Figure 3.6, where the refuter moves from
the round vertices and the verifier from the rectangular vertices. The reader is
invited to explore other possible plays.

Underpinning observational game equivalence is the existence of an observable
bisimulation relation whose definition is as in Section 3.3, except with respect to

observable transitions ==>.

A binary relation B between processes is an observable bisimulation provided that,
whenever (E, F) € Banda € OU {g},

e if E == E’ then F == F’ for some F’ such that (E’, F') € B, and
e if F == F’ then E == E’ for some E’ such that (E’, F') € B

E and F are observably bisimilar, writtenas E & F, if there is an observable bisim-
ulation B with (E, F) € B. Therelation & has many properties in common with ~.
It is an equivalence relation. The union of a family of observable bisimulations is
also an observable bisimulation (compare Proposition 1 of Section 3.3) and there-
fore ~ is itself an observable bisimulation. Observable bisimulation equivalence
and observable game equivalence also coincide.

E is observable game equivalent to F iff E =~ F.
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Proposition 2

E = (C|U)\{in, ok}

F = Ucop

; E wriéaév) E’'

E' = (C|1in(v).ok.U)\{in, ok}
F' = out(v).Ucop

t E’' W=t(g) E

FIGURE 3.6. Game play

The proof of this result is the same as for Proposition 2 of Section 3.3 except,
with respect to observable transitions. If processes are bisimilar, then they are also
observably bisimilar, as the next result shows.

If E~ F,thenE=~F.

Proof. It suffices to show that the relation ~ is an observable bisimulation. The
details are left to the reader. 0

A direct proof that two processes are observably bisimilar consists of exhibiting
an observable bisimulation relation containing them.
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Example 2

Proposition 3

Proposition 4

Example 3

We show that Protocol =X Cop by exhibiting an observable bisimulation which
contains them. Let B be the following relation.

{(Protocol, Cop)} U

{((Send1(m) | Medium | ok.Receiver)\J, Cop) : m € D}U
{((sm(m).Send1(m) | Medium | Receiver)\J, out(m).Cop) : m € D}U
{((Send1(m) | Med1(m) | Receiver)\J, out(m).Cop) : m € D}U
{((Send1(m) | Medium | out(m).ok.Receiver)\J, out(m).Cop) : m € D}U
{((Send1(m) | ms.Medium { Receiver)\J, out(m).Cop) : m € D}

The reader is invited to establish that B is an observable bisimulation.

There is also an intimate relationship between observable bisimulation equiva-
lence, and having the same properties of observable modal logic M of Section 2.4.
The following result is the observable correlate of Proposition 1 of Section 3.4. Its
proof, which is left as an exercise, is by induction on M° formulas.

IfE=x F, then E =\ F.

This result is not true if we include the modalities [ K] and (K}, or the divergence
sensitive modalities of Section 2.5. The converse of Proposition 1 holds for observ-
ably image-finite processes. A process E is immediately observably image-finite
if, for each a € O U {¢}, the set {F : E == F} is finite, and E is observably
image-finite if each member of the following set {F : Jw € (OU{e})*. E = F}
is immediately image-finite.

If E and F are observationally image-finite and E =y F,then E ~ F.
The proof of this result is very similar to the proof of Proposition 2 of Section 3.4,
except that one appeals to observable transitions.

So far there is a smooth passage from results based on transitions —> tosimilar
results which use observable transitions ==. There is one important exception,
Proposition 3, case 2 of Section 3.3. Observable bisimilarity is not a congruence
with respect to the + operator because of the initial preemptive power of 7. The
two processes E and 1.E are observably bisimilar, but for many instances of F
the processes E + F and t.E + F are not equivalent.

The two processes 7.2p.0 and 2p.0 are observably bisimilar, but 7.2p.0 + 1p.0 is
not equivalent to 2p.0 + 1p.0. For instance, the first process in this pair has the
property { )) [[1p]] ££, which the second fails.

In CCS [29, 44], observable equivalence ~¢ is defined as the largest subset
of ~ that is also a congruence'®. Observable bisimilarity is a congruence for all

0For instance, E ~¢ F implies E ~ F and forall G, E+ G ~ F + G.
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Proposition 5

Exercises

the operators!! of CCS, except sum. It therefore turns out that the equivalence ¢
can be described independently of process contexts in terms of transitions; for it
is only the initial preemptive T transition that causes problems.

E~Fif

1. Ex F and

2. if E—> E',then F —> F| = F’ and E' ~ F' for some F, and F', and
3.ifF > F',thenE —> E, = E'and E' ~ F’ for some E,| and E'.

This Proposition can be viewed as the criterion for when E ~¢ F holds. If F and
F are initially unable to perform a silent action (as is the case with Protocol and
Cop of example 2), E =~ F implies £ =° F.

There is also a finer observable bisimulation equivalence called “branching
bisimulation equivalence” which is due to Glabbeek and Weijland [23]. Observable
bisimilarity and its congruence are not sensitive to divergence. So, they do not
preserve the strong necessity properties discussed in Section 2.5. However it is
possible to define equivalences that take divergence into account [26, 31, 61].

1. Prove that ~ is an equivalence relation.
2. Let Cross be the following simple crossing

Cross &f train.tcross.Cross + car.ccross.Cross
and let Crossing be as in Figure 1.10. Using games, show that these two
crossings are not observably game equivalent.

3. Using games, show that SM, ~ SM, where SM, is defined in Section 3.1 and
SN, is as in Figure 1.15.

4. Show that (User | Cop)\{in} is not observably game equivalent to Ucop,
where User and Cop are as in Sections 1.1 and 1.2.

5. Prove Propositions 2 and 3 above.

6. Prove the following result. If E &~ F, then for any process G, and set of
observable actions K, action a, and renaming function f, the following all
hold.

a.ExaF E|G~F|G
E[f]1= F[f] E\K ~ F\K
E\K ~ F\K E|xG = F|xG
Rep(E) ~ Rep(F)

7. Prove Proposition 4.

8. Show thatif E ~ F,then E =° F.

"More generally, only case 2 of Proposition 3 of Section 3.3 fails for ~.
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9. Prove Proposition 5

10. ShowthatScheds # Sched), where these processes are defined in Section 1.4.
However, show that

Scheds\\{b1, ..., by} ~ Sched,’,\\{bl ,...,bs}.

11. Fora € Aleta bea ifa # t, and let T be s. A binary relation B between
processes is an ob bisimulation just in case whenever (E, F) € Banda € A,

a. if E -2 E' then F == F’ for some F' such that (E’, F’) € B, and

b. if F -2 F’ then E =% E' for some E’ such that (E’, F’) € B.

Two processes are ob equivalent, denoted by R/, if they are related by an ob
bisimulation relation. Prove that ~ = ~'.

12. Prove that Cty ~° Count, where these processes are given in Figure 1.4 and
Section 1.6.

13. Extend the modal logic M° so that two image-finite processes have the same
modal properties if, and only if, they are observably congruent.

3.6 Equivalence checking

A direct proof that two processes are bisimilar, or observably equivalent, is to
exhibit the appropriate bisimulation relation that contains them. Examples in Sec-
tions 3.3 and 3.5 show the proof technique. In the case that processes are finite
state, this can be done automatically. There is a variety of tools that include this
capability including the Edinburgh Concurrency Workbench [14].

Alternatively, equivalence proofs can utilize conditional equational reasoning.
There is an assortment of algebraic, and semi-algebraic, theories of processes
depending on the equivalence and the process combinators. For details, see the
references [26, 31, 3, 44]. It is essential that the equivalence be a congruence.
To give a flavour of equational reasoning, we present a proof in the equational
theory for CCS that a simplified slot machine without data values is equivalent to a
streamlined process description. The equivalence involved is 2, the observational
congruence defined in the previous section.

The following important CCS laws are used in the proof. The variables x and
y stand for arbitrary CCS process expressions.

a.t.x = a.x

xX+1T.X = T.X

(x+yN\K = x\K+y\K

(a.x)\K = a.(x\K) ifag KUK
(a.x)\K = 0 ifae KUK

x40 = X
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The last four are clear from the behavioural meanings of the operators. The first two
are t-laws and show that we are dealing with an observable equivalence. We shall
also appeal to a rule schema called an “‘expansion law” by Milner [44], relating
concurrency and choice.

if xi=) layxy: 1<j<m)fori:1<i<m,
then x1|...|x,,,=Z{a,-j.y,-j:lsismandlsjsn,-}
+ Z{T.ykﬁj 11 <k <i <manday =aj},
where y;; = x| .. X [ X [ Xig1 | -0 | Xm
and Yaij = X1 | X | Xk | L X X L X [ eee | Xime

For example, if

X1 = axy+bxo+tax;
X, = a.xy +c.x»,
then
xilx2 = a.(xnlx) + b.(x12x2) + a.(x13lx2) + a@.(x1|x21)+

c.(x1lx22) + T.0c111x21) + T.(x131x21).

The expansion rule is justified by the transition rules for the parallel operator.

Proof rules for recursion (d def ) are also needed. If E does not contain any occur-
rences of the parallel operator |, then P is said to be “guarded” in E, provided that
all occurrences of P in E are within the scope of a prefix a. and a is an observable
action (that is, not 7). Assume that P is the only process constant in E. The guard-
edness condition guarantees that the equation P = E has a unique solution up to
~¢. A solution to the equation P = F is a process F such that F =~¢ E{F/P}.
Uniqueness of solution is that, if both F and G are solutions, then F =¢ G.

The clock C1 is a solution to the equation P = tick.P because C1 ~¢ tick.Cl.
Moreover, any other solution E (such as Cl1,) has the property that C1 ¢ E.
In contrast, the equation P = t.P where P is not guarded has as solutions any
process T.E because 1.E =€ 1.T.E.

The specific recursion proof rules used are the following.

e if P EthenP = E

e if P = E and P is guarded in E, and Q = F and Q is guarded in F, and
E{Q/P}=F,thenP = F
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I0
104
10,

By

Dy

SM

s

slot.I0y
bank.I0,

= lost.loss.I0 + release.win.IO

= bank.B1

= max.left.B

= max.01

= lost.left.D + release.left.D

(10 | B| D)\K where K = {bank, max, left, lost, release}

= slot.(r.loss.SM + t.win.SM))

FIGURE 3.7. A simplified slot machine

Example 2 The recursion rules can be used to prove that C1 =€ C1, (where these processes
are pictured in Figure 3.1) as follows.

SM

Cl = tick.Cl by definition of C1

tick.Cl = tick.tick.Cl by congruence

Cl = tick.tick.Cl by transitivity of =

Cl, = tick.tick.Cl, by definition of C1,
(tick.tick.C1){C1l,/C1l} = tick.tick.Cl, by equality

Cl =C1, by the second recursion rule

The slot machine SM without data values, and its succinct description SM/,
appear in Figure 3.7. We prove that SM = SM'. The idea behind the proof is to first
simplify SM by showing that it is equal to an expression E that does not contain
the parallel operator. The proof proceeds on SM using the expansion law, and the
laws earlier for \ K, O and 7 (and the first recursion rule).

(I0 | B D)\K

(slot.I0, | bank.B; | max.D;)\K

(slot.(I0; | B | D)+ bank.(I0 | B | D) + max.(I0 | B | Dy))\K
(slot.(I0 | B | D))\K + (bank.(I0 | B; | D))\K + (max.(I0 | B | Dy))\K
slot.(I0; | B|D)\K +0+0

slot.(104 | B| D)\K
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Let SM; = (10, | B | D)\K. By similar reasoning to the above, we obtain
SM; = t.7.(I0; | 1left.B | Dy)\K.
Assume SM; = (I0; | 1left.B | D;)\K. By similar reasoning,

SMy = 1.SM3 + 7.SMy where
SMz = (loss.I0 | left.B | left.D)\K
SM; = (win.I0 | left.B | left.D)\K.

The t-laws are used in the following chain of reasoning.

SM; = (loss.I0|1left.B|left.D)\K
= Joss.(I0 | left.B | Ieft.D)\K + t.(10ss.I0 | B | D)\K
= 1oss.(z.SM+ slot.(I0; | left.B | Ieft.D)\K) + r.10ss.SM
= 1oss.(z.SM+ slot.7.(I0; | B | D)\K) + 1.10ss.SM
= Toss.(1.SM+ slot.(I0; | B| D)\K) + 7.1oss.SM
= 10ss.(7.SM + SM) + t.10ss.SM
= I0ss.7.M+ t.1oss.SM
= 1o0ss.SM+ 1.10ss.SM
7.10ss.SM

By similar reasoning, SMy = 7.win.SM. Backtracking and substituting equals for
equals, and then applying 7 laws gives the following.

SM = slot.SM;
= slot.t.t.SMp
= slot.r.7.(r.SM3 + 7.SMy)
= slot.r.7.(r.t.10ss.SM + 7.7.win.SM)
= slot.(r.1oss.SM+ 1.win.SM)
We have now shown that SM = E, where E does not contain the paral-
lel operator, and where SM is guarded in E. The expression E is very close to
the definition of SM’' (and SM is also guarded within it). Clearly, E{SM'/SM} =

slot.(r.1oss.SM + t.win.SM), so by the second recursion rule SM = SM’, which
completes the proof.

Exercises 1. For each of the following cases of x;, x; and x3, define x; | x2 | x3 using the
expansion theorem.

a.
xy =ax; +bxp+axp
X2 = a.xa1 + c.x2

X3 =da.x3; +¢.x3
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b.

X =T.X)1] + T.X12

X3 =a.xy +b.xn

X3 =a.x31 +a.x3 + 1.x33
c.

X1 =axy+bxp+taxp+ax;

Xy =a.x2 + b.xy + a.xx

X3 =a.x3 +b.xp +a.xy

. Refine the expansion law to take account of the restriction operator. That is,

assume that each x; has the form ) {a;;.x;; : 1 < j < n;} and the parallel
formis (x; | ... | x»)\K.

. Letcl’ ¥ tick tick.tick.Cl'. Use the recursion proof rules to prove that
Cl' = Cl,.

. Assume that there is just one datum value in the set D. Using equational
reasoning only, prove that Protocol ~¢ Cop (where these processes are
defined in Chapter 1).

. Compare the different methods for proving equivalence, by showing that SM ~
SM":

a. directly using games

b. directly by exhibiting an observable bisimulation

c. directly by showing that they obey the same modal properties in M°

. Extend the proof rules of the equational system to take into account value
passing, and then prove equationally that SM, = SM,.

. Extend the second recursion rule so that the expressions E and F can contain
occurrences of parallel. (To do this we need to refine the definition of being
guarded.)
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Modal logics as introduced in Chapter 2 can express local capabilities and neces-
sities of processes such as “tick is a possible next action” or “tick must happen
next.” However, they cannot express enduring capabilities such as “tick is always
a possible next action” or long term inevitabilities such as “tick eventually hap-
pens.” These features, especially in the guise of safety or liveness properties, have
been found to be very useful when analysing the behaviour of concurrent systems.
Another abstraction from behaviour is a run of a process that is a finite or infinite
length sequence of transitions. Runs provide a basis for understanding longer term
capabilities. Logics where properties are primarily ascribed to runs of systems are
called “temporal” logics. An alternative foundation for temporal logic is to view
enduring features as extremal solutions to recursive modal equations.

4.1 Modal properties revisited

A property partitions a family of processes into two disjoint sets, the subset of
processes that have the property and the subset that does not have the property. For

C. Stirling, Modal and Temporal Properties of Processes
© Springer Science+Business Media New York 2001
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Proposition 1

example, the formula (tick)tt divides {C1;, tock.Cl;} into two subsets {C1,}
and {tock.C1;}. Given a formula ® and a set of processes E, we define || ® || be
the subset of processes in E having the modal property ®.

def

I®® {(E€E: E E )

Therefore, each modal formula & partitions E into || ® || and E — || & ||E.

There are many different notations for describing properties of processes.
Modal logic is one such formalism. Other notations are also logical and include
first-order and second-order logic over transition graphs. Another kind of formal-
ism is automata, which recognises words, trees or graphs. The expressive power
of different notations can be compared by examining the properties of processes
they are able to define. Whatever the notation, a property of a set of processes can
be identified with the subset that has it. Consider the following family of clocks
E = {C1',C1 : i > 1}, where C1’ is defined in example 1 of Section 3.4. For
instance, the transition graph for C1,4 is as follows.

c1* B 013 B 012 B o1t B

C1 is distinguishable from other members of E because of its long term capability
for ticking endlessly. Each clock C1' ticks exactly i times before stopping. The
property “can tick forever” partitions E into two subsets {C1} and E — {C1}. How-
ever, this partition cannot be captured by a single modal formula, as the following
result shows.

For any modal ® € M UM, if C1 |= ®, then there is a j > | such that, for all
k>j,Cl* = &.

Proof. By induction on the structure of ®. The base case when & is tt or £f is
clear. The induction step divides into subcases. Let ® = W; A W, and assume that
Cl = @. Therefore, C1 = ¥ and C1 = W,. By the induction hypothesis, there
isa jl > landa j2 > 1 such that C1¥! = ¥, forallkl > jl and C1%? = W,
for all k2 > j2. Let j be the maximum of {j1, j2}, and so C1* = & for all
k > j.Next, assume that ® = ¥y v W, andCl = ¢.S0Cl = V¥, orCl = V,.
Suppose it is the first of these two. By the induction hypothesis, there isa j > 1
such that C1* |= W, for all k > j, and therefore also C1* |= ® for each k > j.
Let ® = [K]¥ and assume that C1 = &. If tick ¢ K, then C1’ = & for all
i > 1. Otherwise tick € K, and since C1 Bk 01 it follows that C1 E V. By
the induction hypothesis, there is a j > 1 such that C1¥* = W for all k > j.
However, since CLi+! %5 C1 it follows that C1* |= ® forallk > j + 1. The case
& = (K)W is similar. The other modal cases when ® is { )V, [ 1V, [{] ¥, or
{1V are more straightforward and are left as an exercise. [m]

Proposition 1 shows that no modal formula partitions the set E into the pair {C1}
and E — {C1}, and therefore the enduring capability of being able to tick forever is
not expressible in the modal logics introduced in Chapter 2. A similar argument
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establishes that the property “tick eventually happens” is also not definable within
these modal logics.

Exercises 1. a. Define || ®|® directly by induction on the structure of ®. What
assumptions do you make about the set E?

b. Let E be the the set {Ct; : i > 0} of counters from Figure 1.4. Work out
the following sets using your inductive definition.

i. || (down)tt A (up)tt |E
ii. || [down]({down)tt A (round)tt)|E
jii. || [up]££ |I®

¢. Assume instead that E is the subset {Cty; : i > 0}. What sets are now
determined by the formulas above, according to your inductive definition?

2. An important feature of modal logic is that its basic modal operators are
monotonic with respect to subset inclusion. Prove the following, assuming

that # € {[K], (K), [ 1. ), [{1, 1)} in part c.
a. IfE;CEthen | PIENE, C||®|EN E;
b. IfE; CEythen |[PEUE C|®|FU E;
c. If[| @[5 C || W then || #D |IF C || #¥ |F
3. We can view the meaning of a modal operator # as a process transformer || # || &

mapping subsets of E to subsets of E. For example, || [K]]|E is the function
which for any E; C E is defined as follows.

I[K]IEE; = {Fe€E:if F-> Eanda € K then E € E;}

a. Define the transformers || (K) |5, || (X)) || and || [{] |IE.

b. Anindexed family of subsets {E; C E : i > 0} of Eisachainif E; C E;
wheni < j. A modal operator # is U-continuous if for any such chain the
set| #|E\U(E; : i > O}isthesameas | J{|| #|BE; : i > 0}.Provethat,if
each member of E is finitely branching (thatis {F : E 2> Fwitha € A}
is finite for each E € E), then [K] is U-continuous. Give an example
process which fails U-continuity.

4. Prove that the property “tick eventually happens” is not definable within M
UM,

4.2 Processes and their runs

Proposition 1 of the previous section shows that modal logic is not very expressive.
Although able to describe local or immediate capabilities and necessities, modal
formulas cannot capture global or long term features of processes. Consider the
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Example 1

Proposition 1

contrast between the local capability for ticking and the enduring capability for
ticking forever, and the contrast between the urgent inevitability that tick must
happen next with the lingering inevitability that tick eventually happens.

Another abstraction from behaviour is a run of a process. A run of Ej is a finite
or infinite length sequence of transitions

Eo % B, % . E, %4
with “maximal” length. This means that, if a run has finite length, then its final
process is unable to perform a transition because, otherwise, the sequence can be
extended. A deadlocked process E only has the zero length run E. A run of a
process carves out a path through its transition graph.
c, 25 tock.Cly 2% ey Z5 s the only run from the clock C1; and it
has infinite length. C15! has infinitely many finite length runs, each of the form

Clg i U Clg 2°% 0 and the single infinite length run Cls bl Cls e

.... An infinite length cyclic run of Crossing is

. car T CcCross T . car
Crossing — E, — E4 — Eg — Crossing — ...,

where E,, E4, and Eg are as in Figure 1.12.

Runs provide a means for distinguishing between local and long term features
of processes. For instance, a process has the capability for ticking forever provided
that it has a perpetual run of tick transitions. The property of a process that tick
eventually happens is the requirement that, within every run of it, there is at least one
tick transition. The clock C1; of Example 1 has the property that tock eventually
happens. However, the other clock C1s fails to have this trait because of its sole
infinite length run, which does not contain the action tock.

Bisimulation equivalence “preserves” runs in the sense that, if two processes
are bisimilar then for any run of one of the processes there is a corresponding run
of the other process.

Assume that Ey ~ Fy.
1. If Ey = E, =2 ... 25 E, is afinite length run, then there is a run
Fo =5 Fy 2 .2 F,suchthat E; ~ F; foralli : 0 <i <n; and
2. If Ey 2 E S lisan infinite length run, then there is an infinite length
run Fy 25 F 2> ... suchthat E; ~ F; foralli > 0.

Because bisimulation equivalence is symmetric?, Proposition 1 also implies that
every run from Fj has to be matched with a corresponding run from E,. We leave
the proof of this result as an exercise for the reader.

1c1s & tick.Clg + tock.0.
2If E¢ ~ Fy, then also Fy ~ Ej.
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Example 2

Example 3

Example 4

Many significant properties of systems can be understood as features of their
runs. Especially important is a classification of properties into “safety” and “live-
ness,” originally due to Lamport [35]. A safety property states “nothing bad ever
happens,” whereas a liveness property expresses “something good eventually hap-
pens.” A process has a safety property if none of its runs has the bad feature, and
it has a liveness property if all of its runs have the good feature. That is, we can
informally express them as follows.

Safety(®) for all runs 7z, @ is never true in 7
Liveness(®) for all runs 7, ® istrue in 7

A property that distinguishes each clock C1¢ of the previous section from C1 is
eventual termination. The good feature is expressed by the formula [—]f£, and
the property is given as Liveness([—]ff). On the other hand, termination can also
be viewed as defective, as exhaustion of the clock. In this case, C1 has the safety
property of absence of deadlock, expressed as Safety({(—)tt), which each C1' fails
to have.

Liveness and safety properties of a process pertain to all of its runs. Weaker
properties relate to some runs of a process. A “weak” safety property states “in
some run nothing bad ever happens,” and a “weak” liveness property asserts “in
some run something good eventually happens.”

WSafety(®) for some run 7, ® is never true in 77
WLiveness(®) for some run 7, & is true in 7w

Notice that a weak safety property is the “dual” of a liveness property (and a weak
liveness property is the “dual” of a safety property).

WSafety(P) iff not(Liveness(not®))
WLiveness(®) iff not(Safety(notd))

A weak liveness property of SM, of Figure 1.15 is that it may eventually pay out a
windfall of a million pounds. The good feature is (win(10°))tt, and so the property
is given by WLiveness({(win(10%))tt).

There are also intermediate cases between all and some runs when liveness
or safety properties pertain to special families of runs which obey some general
constraints.

A desirable property of Crossing is that, whenever a car approaches, eventually
it crosses. This requirement is that any run containing the action car also contains
ccross as a later action.

Sometimes, the relevant constraints are complex and depend on assumptions out-
with the possible behaviour of the process itself. For example, Protocol of
Figure 1.13 fails to have the property “whenever a message is input eventually
it is output” because of runs where a message is forever retransmitted. However,
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Exercises

we may assume that the medium does eventually pass to the receiver a repeatedly
retransmitted message, meaning these deficient runs are thereby precluded.

. Enumerate the runs of Ven and Crossing.
. Prove Proposition 1.

. For each of the following, state whether it is a liveness or a safety property,

and identify the good or bad feature.

. At most five messages are in the buffer at any time.
The cost of living never decreases.

The temperature never rises.

B o T

All good things must come to an end.
e. If an interrupt occurs, then a message is printed within one second.

. Prove the following dualities.

WSafety(®) iff not(Liveness(not®))
WLiveness(®) iff not(Safety(notd))

. Observable bisimulation equivalence, =, does not “preserve” runs in the sense

of Proposition 1. For instance, 7.0 does not have a corresponding infinite length
run to the following run of Div (where Div &f 7.Div)

. T . T
Div — Div — ...

even though Div ~ 7.0. We may try to weaken the matching requirement by
stipulating that, for any run from one process, there is a corresponding run
from the other process such that there is a finite or an infinite partition across
these runs containing equivalent processes.

a. Spell out a definition of equivalence = based on this partitioning
requirement.

b. Provea.(E + t.F)+ a.E = a.(E + ©.F) for any E and F. Is this still
true if you replace &~ with =?

c. What is the relation between = and branching bisimulation, as defined
by Glabbeek and Weijland [23]?

. Prove that the following properties are not definable within modal logic M U

MeY,
a. “in some run tick does not happen”
b. “in some run eventually tick happens”
c. “the sequence of actions a; . . . a4 happens cyclically forever starting with

”»

a
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4.3 The temporal logic CTL

Modal logic expresses properties of processes in terms of their transitions. Tempo-
ral logic, on the other hand, ascribes properties to processes by expressing features
of their runs. In fact, there is not a clear demarcation between modal and temporal
logic because modal operators can also be viewed as temporal operators as follows.

Eo=[K]® iff foranyrun Eg —> E;... ifa, € K thenE, = ®
Eo = (K)® iff thereisarun Eg —> E;... anda; € K and E, = ®

The operator [—] expresses “next” over all runs and its dual (—) expresses weak
“next.”

A useful temporal operator is the binary until operator U. A finite or infinite
length run E, Ny 1 -2, ... satisfies the formula ® U v, “P is true until ¥,”
provided there is an i > 0 such that E; = W, and foreach j : 0 < j < i the
intermediate process E; has property ®.

E,2 =5 E 5 .. E 25
= = . E
® ® v

The index i can be 0 (in which case ® does not have to be true at any point of the
run). If the run has zero length? then the index i must be zero. A special instance
of U is when the first formula & is tt. The formula tt U ¥ expresses “eventually
W.” which we abbreviate to FW.

A finite or infinite length run Eg 2y B 25 L satisfies —(tt U-¥)* that
is =F—W, if every process E; within the run has the property V.

B S B 5 R %
= = . E
v v v

This, therefore, expresses “always W,” which we abbreviate to GW. Notice that F
and G are duals of each other.

Modal logic can be enriched by adding temporal operators to it. For each
temporal operator (such as F) there are two variants, the strong variant ranging
over all runs of a process, and the weak variant ranging over some run of the
process. We preface the strong variant with A “for all runs” and the weak variant
with E “for some run.” Liveness and safety as described in the previous section

3The length of a run is the number of transitions within it.
“Here — is the negation operator.
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Example 2

can now be properly defined.

Safety(®) = AG-®
Liveness(®P) = AF®
WSafety(d) = EG-9®
WLiveness(®) = EF®

If modal logic is extended with the two kinds of U operator the resulting
temporal logic is a slight variant of computation tree temporal logic, CTL, due to
Clarke, Emerson and Sistla {12]. We present the logic with an explicit negation
operator.

d =ttt | =0 | O AD, | [K]D | A(P UD,) | E(® Ud,)

The definition of satisfaction between a process Ey and a formula proceeds by
induction on the formula. The only new clauses are for the two U operators that
appeal to runs of Ey.

Eo = A(@UW) iff forall runs Eg —> E, — ... thereisi > 0
with E; = Wandforall j: 0<j <i, Ej =&
Ey EE(@UVY) iff for some run Eg —> E; —2> ... thereisi > 0
with E; = Wandforall j: 0< j <i, E; = ®

The two variants of “eventually” and “always” are definable as follows.

A(ttU @) EF¢ ¥ ExtUO®)

—~EF-® EG® ¥ -AF-0

AFo

AG

The level crossing has the crucial safety property that it is never possible for a train
and a car to cross at the same time. In terms of runs, this means that no run of
Crossing passes through a process that can perform both tcross and TCross as
next actions, so the bad feature is (tcross)tt A {(ccross)tt. The safety property
is therefore expressed by the CTL formula AG([tcross]ff Vv [CCTosS]EE).

def

The weak liveness property of the slot machine SM, that it may eventually pay out
a windfall is expressed as EF (win(10%))tt.

As with modal operators, temporal operators may be embedded within each
other to express complex process features. An example is “eventually, action a is
possible until b is always impossible,” AF({a)tt U AG[b]f£).

In Section 4.1 it was shown that the ability to tick forever is not expressible in
modal logic. It is also not directly expressible in CTL as defined here. For instance,
the formula EG(tick)tt states that action tick is possible throughout some run,

and process C1’ &l tock.Cl/ + tick.O satisfies it. The problem is that the CTL
temporal operators are not relativised to actions. A variant “always” operator is
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Exercises

Gk, which includes action information. A run satisfies Gg & if every transition in
the run belongs to K and @ is true throughout. The ability to tick forever is then
directly expressible with the formula EGjyicx) (—)tt, (Where (—)tt ensures that
the run is infinite).

In this work, we do not found temporal logic on runs. Partly this is because we
wish to integrate action capabilities with temporal properties more elegantly than
suggested above, partly because we wish to suppress the notion of a run. Instead
we shall define appropriate closure conditions on sets of processes that express
long term capabilities by appealing to inductive definitions built from modal logic.
The idea is that a long term capability is just a particular closure of an immediate
capability.

1. Show the following
a. Ven = AF(collecty, collect,)tt
b. Ven = EF(collecty)tt
¢. Ven [~ AF(collecty)tt
2. Show that Crossing = AG([tcross]ff V [ccross]ff).

3. a. Show that CTL properties are preserved by bisimulation equivalence.
That is, prove that if E ~ F, then forall ® € CTL, E = @ iff F = .

b. Let WCTL be CTL, except that the modal operators [K] and (K) are re-
placed with the modalities of M? of Section 2.4. Notice that the temporal
operators of WCTL are still interpreted over runs involving thin tran-
sitions. Are WCTL properties preserved by observational equivalence

~?

4. Arun Ey A F 1 2, ... satisfies FG® provided there is an i > 0 such that
forall j > i, E; = ®.
a. Contrast the different meanings of the operators AFG and AFAG.

b. Give an example of a process E and a modal formula & such that E |=
AFG® but E = AFAG®.

5. The clock C1, &f tick.tock.Cl; has the property that (tick)tt is true
at every even point of its single run. Prove that the property “for every run
(tick)tt is true at every even point” is not definable in CTL.

4.4 Modal formulas with variables

The modal logic M of Section 2.1 is extended with propositional variables which
are ranged over by Z, as follows.

O =Z |ttt | ff | D1AD | DV, | [K]D | (K)D
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Modal formulas may contain propositional variables, and therefore the satisfaction
relation = between a process and a formula needs to be refined. The important
case is when a process has the property Z. Think of a propositional variable as a
colour that can be ascribed to processes. A particular process may have a variety of
different colours. Processes can be “coloured” arbitrarily. A particular colouring
is defined by a “valuation” function V that assigns to each colour Z a subset of
processes V(Z) having this colour. If there are two colours X, red, and Z, blue,
then V(X) is the set of red coloured processes and V(Z) is the set of blue coloured
processes.

The satisfaction relation between a process and a formula is relativised to a
valuation. We write E =y ® when E has the property ¢ relative to the valuation
V, and E £y ® when E fails to have the property @ relative to V. First is the
semantic clause for a variable.

ElEy Ziff EeV(Z)

Process E has colour Z relative to V iff E belongs to V(Z). The remaining semantic
clauses are as in Section 2.1 for the logic M, except for the relativization to the
colouring V. For example, the semantic clause for A is as follows.

EF:Vq)l/\q)z iff E|=v¢1andEl=v<Dz

The notation for the subset of E processes with property @, || @ ||E, is also
refined by an additional colouring component, || @ ||E.

oI5 & (EcE: EEy @)

The set E in || @ || is invariably a transition closed set P or P(E), as defined in
Section 1.6, and for each Z it is expected that the set of coloured processes V(Z)
is a subset of E.

Valuations may be revised, so a colouring is then updated. A useful notation
is V[E/Z], which represents the valuation similar to V, except that E is the set of
processes coloured Z.

E ifY=2

(VIE/ZD(Y) ={ V(Y) otherwise

There are many uses for revised valuations. Assume that Z does not occur in ®.
Whether E =y ® is independent of the colour Z. It follows that, for any colouring
V and for any setE, E =y @ iff E =yig/z) . In particular, if @ does not contain
any variables (and is therefore also a formula of M), then whether E satisfies ®
is completely independent of colourings: in this special case we write E |= @, as
before.

A valuation V' extends the valuation V, which is written V C V', if V(Z) C
V/(Z) for all variables Z. The colouring V' is uniformily more generous than V, so
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Example 1

for any variable Z it follows that || Z ||§} is a subset of || Z ||f,',. This feature extends
to all formulas of M with variables.

If V' extends V, then | ® |I§ C || @ 15

Proof. The proof proceeds by induction on ®. We drop the index P. The
base cases are when @ is a variable Z, tt or £f. The first of these cases fol-
lows directly from the definition of C on valuations. Clearly, it also holds for
tt and for £f. The general case divides into the various subcases. First, sup-
pose ® is U; A U, and assume that V C V. By definition || ® ||v is the set
(E : E =y W A Wy}, which is just the set || ¥ ||y N || ¥, |lv. By the induction
hypothesis || ¥; |ly € || ¥; |lv fori = 1 and i = 2. Therefore, || ® |lv C || @ v
The case when ® is ¥, v ¥, is similar. Next, assume that & is [K]¥. The set
[| @ ||v is therefore equal to {E : if E —%> Fanda € K then F =y W}, which is
{E : if E —%5> Fanda € K then F € | ¥ ||v}. By the induction hypothesis this
is a subset of {E : if E —> Fanda € K then F € || ¥ ||y}, which is the def-
inition of || ® ||v.. The other modal case, ® is (K) WV, is similar and is left as an
exercise. a

2P denotes the set of all subsets of P. For instance, if P is {C1;, tock.C1,},
then 2P is {@, {C1,}, {tock.C1,}, P}. A function g : 2° — 2P maps elements of
2P subsets of P, into elements of 2P. For any E C P, the element g(E) is also
a subset of P. With respect to a colour Z and valuation V, a modal formula ®
determines the function f[®, Z] : 2° — 2P, which when applied to the set E C P
is as follows.

f19,216) € 1015, = (E€P:Ebvgz o)

For any valuation V, the function f[(tick)Z, Z] maps E into the set of processes
that has a tick transition into E.

fl(tick)Z, Z)E) = (E€P : E vz (tick)Z)

= (EeP: HF.E%FandFF:V[E/Z]Z}

tick

= (EeP:3Fe€E.EZSF)

Changing colour also changes the function. Forany V,and Y # Z, f[(tick)Z, Y]
is a constant function.

FlticK)Z,YIE) = {E€P : E Fygy (tick)Z)
= {(EcP:3F.EZS Fand F vy Z)

tick

= (EeP:3FeV(Z).E— F)
A second example is that the function f{[tick]Z, Z] maps theset Eto {E € P :

tick

VF.if E—> F then F € E}.
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Example 2

Corollary 1

Proposition 2

Assume that @ is a formula that does not contain the variable Z. For any V, the
function f[® Vv (—)Z, Z] maps E into the set of processes that have property &,
or can do a transition into E.

fIOV(-)Z,Z)E) = {E€P:E gz ®V(-)Z)
= {E€P: EFvgz PorE Fvg/z1 (-)Z}
= {(E€P:Ely®or3FcEJa.E -5 F}

Because ¢ does not contain Z, E =yg/z) P if E v ©.

With respect to P and V the set f[®, Z](E) can also be defined directly by
induction on ®. For example, the following covers the case when the formula is a
conjunction.

(@1 A @2, Z)E) = f[P1, ZIE) N f[P2, Z)(E)

A function g : 2° — 2P is “monotonic” with respect to the subset ordering,
G, if it obeys the following condition.

if E C F then g(E) € g(F)

Proposition 1, above, has the consequence that, for any formula & and variable Z,
the function f[®, Z] is monotonic with respect to any P and V.

For any P and V, the function f[®, Z] is monotonic.

Proof. IfE C F, then by definition V[E/Z] C V[F/Z]. It follows from Propo-
sition 1 that || ]IS[E/Z] c|o ||C[F/Z]. However, || ¢ ||C[E/Z] is f[®, Z}E) and
|| ® H\F,’[F/Z] is f[®, Z](F), and therefore for any P and V, the function f[®, Z] is
monotonic. m|

Because V may be an arbitrary colouring, itis not in general true that, if E ~ F,
then for any formula ®, E =y ® iff F =y ®. For instance, if V(Z) is the singleton
set (E}and E ~ F,then E =y Z but F [y Z. However, if the colouring respects
bisimulation equivalence, that is, if each set V(Z) of processes is bisimulation
closed®, then bisimilar processes will agree on properties. We extend the notion of
bisimulation closure to colourings. The valuation V is bisimulation closed if, for
each variable Z, the set V(Z) is bisimulation closed.

If V is bisimulation closed and E ~ F, then for all modal formulas ® possibly
containing variables, E =y ® iff F =y ©.

The proof of this result is a minor elaboration of the proof of Proposition 1 of
Section 3.4, and is left as an exercise for the reader.

SE is bisimulation closed if E € Eand F € P, and E ~ F implies F € E.
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Exercises 1. Prove by induction on & that, for any set E if Z does not occur in ®, then
E =y Qiff E vz .

2. Show that, if for any variable Z, V'(Z) = V(Z) NE, then the following is true:
Ieg=1leIl.

3. Relative to P and V, define the function f[®, Z] directly by induction on the
structure of .

4. If negation, —, is added to modal logic with variables, then show that Propo-
sition 1 fails to hold, and that therefore there are functions f[®, Z] that are
not monotonic.

5. Consider the extended modal logic with variables and the CTL temporal op-
erators A(®UW) and E(®UW). Show that Proposition 1 still holds for this
extended logic.

6. Assume that ® and ¥ do not contain the variable Z. For any V and P, work
out the following functions.

a. f[PA[-1Z,Z]
b. f[®A(-)Z, Z]
- FIY V(@ A((-)tt A [-12)), Z]
d. f[YV(®A(-)Z),Z]
. fllal((b)et v Y) A Z), Z]
f. fllal((b)tt VY)A Z),Y]
7. Prove Proposition 2.

[d]

[«

4.5 Modal equations and fixed points

Definitional equality, déf, is essential for describing perpetual processes, as in the
simplest case of the uncluttered clock C1. Modal logic can be extended with this

facility, following Larsen [36]. A modal equation has the form Z &f ®, stipulating

that Z expresses the same property as the formula ®. The effect of this equation is

to constrain the colour Z to processes having the property ®. For instance, Z &ef

(tick)tt stipulates that only processes that may immediately tick are coloured Z.

In the recursive modal equation Z of (tick)Z, both occurrences of Z select
the same trait. What property is thereby expressed by Z? Recall from the previous
section that f[(tick)Z, Z]is amonotonic function that, when applied to argument
ECP,is

fl(tick)Z, Z)(E)

I (tick)Z ez
= ({E€P: EEvgz (tick)Z}

tick

{EeP:3F eE.E— F}.
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Consequently, the recursive modal equation Z &f {(tick)Z constrains Z to be any
set which obeys the following equality.

E = f[{tick)Z, Z](E)
= [EeP:3IFecEEZS F)
There may be many different subsets of P that are solutions. One example is the

empty set

tick

) = {(EeP:3IFe€@.E — F}

because the right hand set must be empty. When P is the set {C1}, then P is also a

. .. ick
solution because of the transition C1 == C1.
tick

{Cl} = {Ee{Cl}:3F € {C1l}.E — F}

A function g : 27 — 2P transforms subsets into subsets. E C P is said to be
a “fixed point” of g if the transformation leaves E unchanged, g(E) = E. Further
applications of g also leave E fixed, g(g(E)) = E, g(g(g(E))) = E, and so on.
Every subset of P is a fixed point of the identity function. If g maps every subset
into @, then it is the only fixed point. On the other hand, if g maps every set to a
different set, so g(E) # E for all E, then g does not have a fixed point. The fixed
point constraint, g(E) = E, can be dissected.

E is a “prefixed point” of g, if g(E) C E

E is a “postfixed point” of g, if E C g(E)
A fixed point has to be both a prefixed and a postfixed point. P is always a prefixed
point, and @ is always a postfixed point.

A solution to the recursive modal equation Z &f (tick)Z is therefore a fixed
point of the function f[{tick)Z, Z]. The definitions of prefixed and postfixed
points can be viewed as “closure” conditions on putative solution sets E.

PRE  f[(tick)Z,Z)JE)C E
tick

(E€cP:IF€E EZS F)CE

ifEcPand FcE and E =S Fthen E € E
POST E C f[(tick)Z, Z](E)

EC{EcP:3F cE.EZS F)

ifEeEthenEic-lfFforsomeFeE

A fixed point must obey both closure conditions.

If P is {C1}, then both candidate sets @ and P obey the closure conditions PRE
and POST, and are therefore fixed points of f[{tick)Z, Z]. The solutions can be
ordered by subset inclusion, @ C {C1}, offering a least and a greatest solution. In
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the case of the more sonorous clock C1;, which alternately ticks and tocks, there
are more candidates for solutions, the sets @, {C11}, {tock.C1;}, {C1;, tock.C1,}.
Let f abbreviate f[(tick)Z, Z].

f©@) = 0
fdcuh = 0
f({tock.C14}) = {Cl4}

f({C1y, tock.Cly})

{C14}

The prefixed points of f are @ and {C1,, tock.C1;}, and @ is the only postfixed
point. Therefore, there is just a single fixed point in this example.

With respect to any set of processes P, the equation Z &f {(tick)Z has both
a least and a greatest solution (which may coincide) with respect to the subset
ordering. The general result guaranteeing these extremal solutions is due to Tarski
and Knaster. It shows that the least solution is the intersection of all prefixed points,
of all those subsets obeying PRE, and that the greatest solution is the union of all
postfixed points, of all those subsets fulfilling POST. The result applies to arbitrary
monotonic functions from subsets of P to subsets of P.

Ifg : 2% — 2P is a monotonic function with respect to C, then g

1. has a least fixed point given as the set (\{{E € P : g(E) C E},
2. has a greatest fixed point given as the set | J{E C P : E C g(E)}.

Proof. We show 1, leaving 2, which is proved by dual reasoning, as an exercise.
Let E’ be the set [[{E € P : g(E) C E}. First, we establish that E’ is indeed
a fixed point, which means that g(E") = E'. Suppose E € g(E’). By definition
E € g(E) for every E C P such that g(E) C E. Consequently, E € E for every
such set E, so E belongs to their intersection too. This means that g(E') € E'.
Next, assume that £ € E' but E ¢ g(E'). Let E; = E' — {E}. By monotonicity
of g, g(E;) C g(E'). But we have just shown g(E’) € E’ and, since E & g(E'), it
follows that g(E’) C E;. Therefore, g(E;) € E;, which means that E’ C E, by the
definition of E’, which is a contradiction. We have now shown that E’ is a fixed
point of g. Consider any other fixed point F. Because g(F) = F, it follows that
g(F) C F, and by the definition of E’ we know that E' C F, which means E’ is the
least fixed point. |

.. . . £
Proposition 1 guarantees that any recursive modal equation Z &' @ has ex-

tremal solutions, which are least and greatest fixed points of the monotonic function
f[®, Z].Relinquishing the equational format, let 4 Z. ¢ express the property given
by the least fixed point of f[®, Z] and let vZ. ® express the property determined
by its greatest fixed point.

What properties are expressed by the extremal solutions of the modal equation

z¥ (tick)Z?Theleastcase, uZ. (tick)Z,is of little import because it expresses
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the same property as ££6. More interesting is vZ. (tick)Z, which expresses the
longstanding ability to tick forever. This property is not expressible in modal logic,
as was shown in Section 4.1. To see this, let E C P consist of all those processes
Ey that have an infinite length run of the form, E, 2% E 1 B% . Each process
E; mentioned in this run also belongs to E, so E obeys the closure condition POST

earlier (that if E € E, then E B% F for some F € E). The set determined by
vZ. (tick)Z must therefore include E. Assume that there is a larger set E' D E
that also satisfies POST, and that F; belongs to the set E' — E. By the requirement

POST, Fy He F; for some F; in E'. The process F) also belongs to E' — E
because, if it belonged to E, then Fy would also be in E. The POST requirement

can now be applied to Fj, so Fy has a transition F) e Fyand F, in E' — E.

Repeated application of this construction produces a perpetual run from Fj of the

tick tick .. . . .
form Fy —> F; —> ..., where each F; € E' —E, but this is a contradiction, since

each F; can tick forever and therefore belongs to E. The ability to tick forever is
therefore given as a simple closure condition of the immediate ability to tick.

Generalizing slightly the formula vZ. (K) Z expresses an ability to perform K
actions forever. There are two special cases: vZ. (—)Z expresses a capacity for
never ending behaviour, and vZ. (1) Z captures divergence, 1 of Section 2.5, the
ability to engage in infinite internal chatter.

A more composite recursive equation is Z Eov (—)Z. Assume that ¢ does
not contain Z. For P and V, the monotonic function f[® Vv (—)Z, Z] applied to E
is|®v(=)Z ilC[E/Z], which is

(E€P:EEy®JU{EcP :JacAIFcEE - F)

Because @ does not contain Z, valuation V can be used instead of V[E/Z] in the
first subset. A fixed point E of this function is subject to the following closure
conditions.

PRE ifEcPand(Efy ®ordacAIFcE E - F)thenE cE
POST ifEcEthenE =y dordacA.IFcE.E- F

A subset E satisfying the condition PRE has to contain those processes with the
property ®. But then it also has to include processes F, that fail to satisfy ®, but
have a transition F —> E, where E =y ®. And so on. It turns out that a process
Ey has the property uZ. ® v (—)Z if there is a run Ey 2 E, 2, . .andan
i > 0and E; =y ®. That is, if Ey has the weak eventually property EF® of
CTL. The largest solution also includes the extra possibility of performing actions
forever without ® ever becoming true, as the reader can check. A slight variant is
to consider uZ. ® Vv (K)Z, where K is a family of actions. This expresses that
a process is able to perform K actions until ® holds. When K is the singleton

6Because @ is always a fixed point of f[(tick)Z, Z].
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set {t}, this formula expresses that, after some silent activity, & is true, expressed
modally as { )) P.

Another example is the recursive equation Z Eyv (® A{—)Z), where neither
® nor V¥ contains Z. The function f[V Vv (® A (—)Z), Z] applied to E is the set

{(E:EEyYJU{E : El=y ®and3F €cEJda € A.E -5 F}.

Its least fixed point with respect to P and V is the smallest set E that obeys the
closure condition

({E : EleyVJU{E : Eley®and3F cEda € A.E - F}) CE.

IfE e Pand E =y V¥, then E € E. Also, if E =y ® and E has a transition
E-S Fwith F € E, then E € E. Therefore, we can build up this least set E in
stages as follows.

E! = (E:EpEyV¥)
E2 = E'U{E:Eky®and3FcE'.dacA.E-S F)
E+!l — EU{E:Eky®and3iFcE . dacA E-5S F)

The least set E will be the union of the sets E'. Pictorially, the stages are as follows.

1 2 i+1

E E 5 E E % E..5 E

Ev Ev Ev = Ev Ev
v o v o o v

The formula uZ. ¥ v (® A (—)Z) captures the weak until of CTL, E(®UW), as
described in Section 4.3. Later, we shall describe the idea of computing stages
more formally using approximants. The strong until A(@UW) of CTL is defined
as wZ. W v (® A ((—)tt A [—]Z)), where Z does not occur in ¥ or ®. Later, we
shall see that we can also define properties that are not expressible in CTL.

1. Show thatif g : 27 — 2P maps all arguments to different sets (thatis, g(E) # E
for all E), then g is not monotonic.

2. Assume 4 : 27 — 2% is monotonic with respect to C. Prove the following.

a. if E; and E; are prefixed points of /, then E; N E; is also a prefixed point
of h

b. if E; and E; are postfixed points of 4, then E; U E; is also a postfixed
point of 4
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3. Prove Proposition 1, part 2.

4. Assume g : 27 — 2P is an arbitrary function. The function g is inflationary
if E C g(E) for any set E C P. Show that if g is inflationary, then g has fixed
points.

5. What properties are expressed by the following formulas?
a. vZ.[tick]Z
b. uZ.[tick]Z
c. vZ.{tick)(—)Z
d. vZ.(tick)Z A (tock)Z

6. Show that vZ.® v (—)Z, when & does not contain Z, expresses the CTL
property EF® v EG(—)tt.

7. Contrast the properties expressed by the formulas uZ. ® A[t]Z and vZ. P A
[t]1Z when ® does not contain Z.

8. Assume that ® and ¥ do not contain Z.
a. What property does vZ. W v (® A (—)Z) express?

b. Show that uZ. ¥ v (® A ((—)tt A [—]Z)) captures the strong until
A(®UVY) of CTL.

¢. Whatdoes vZ. W v (P A ({(—=)tt A [—]Z)) express?
9. Prove that vZ. ® A [—]Z expresses AG® (when Z does not occur in ).

10. What property does vZ. ® A [—][—]Z express, assuming that ¢ does not
contain Z? Prove that it is not expressible in CTL.

11. What property is expressed by the formula Y. ® v ((K)Y A (J)Y) when ®
does not contain Y'?

4.6 Duality

The expressive power of modal logic is increased when extended with least and

greatest solutions of recursive modal equations. For instance, the least solution to

z%ov (—)Z (when @ does not contain Z) expresses the weak liveness property

EF®. The complement of weak liveness is safety. A process E does not satisfy
WZ.® v (—)Z if ® never becomes true in any run of E.

Complements are directly expressible when negation is freely admitted into
formulas as with CTL. The reason for avoiding negation in modal formulas is to

preserve monotonicity. A simple example is the equation Z %l _Z. The function
fI—Z, Z] is not monotonic because f[—Z, Z](E) = P — E. A fixed point E of
this function must obey E = P — E, which is impossible because P is non-empty.

Another example is Z &ef (tock)tt A [tick]—Z. The function f[(tock)tt A
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[tick]—Z, Z] applied to E is the set

tock tick

{EeP:3F.E— F}N{Ee€P :VF.if E— F then F ¢ E}.

In general, this function is not monotonic, and whether it has fixed points depends
on the structure of the set P.
Negation can be admitted into modal formulas provided the following restric-

tion is placed on the form of a recursive modal equation Z & o every free
occurrence of Z in ® lies within the scope of an even number of negations. This
guarantees the function f[®, Z] is monotonic. The two examples above do not
comply with this condition.

The complement of a formula is also in the logic without the explicit presence
of negation. This was shown for modal formulas of M in Section 2.2 where $¢,
the complement of @, is defined inductively as follows.

tt€ = ff f£° = tt
(PAY)Y = vV (VY)Y = @AV
([(K]1®) = (K)o° (K)®) = [K]®°

It also turns out that the fixed point operators are duals of each other.

VA = Z

WwZ.®)F = uzZ o

WZ.®F = vZ.9°
Assume that V(Z) C P for all Z. The complement valuation V¢ with respect to P
is given as V¢(Z) = P — V(Z) for all Z. The following result shows that ®¢ is the
complement of ® modulo complementation of V.
E v © iff E Peve O°.

Proof. This result generalises Proposition 1 of Section 2.2 and is proved by
structural induction on ®. The base cases are when ® is tt, £f, or Z. The first
two are clear. E =y Ziff E € V(Z) iff E ¢ V°(Z) iff E }~ve Z. For the inductive
step, the boolean and modal cases are as in Proposition 1 of Section 2.2. The new
cases are those involving fixed points.

EEvvZ.@ iff Ec| JIECP:EC|® gy
iff E¢P—|JEECP:EC® gz
iff E¢()(P-E:EC|®Ifezh
which by the induction hypothesis is as follows.

iff E¢()(P—E: |9 fpgzSP—E)
iff E¢ ﬂ{E CP:|®° ”\F;C[E/Z] CE}
iff E v puZ o°
iff E Py (VZ. )
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The other case E =y uZ. @ is similar and is left as an exercise. ]

If a property is an extremal solution to the equation Z et ®, then its comple-

ment is the dual solution to the equation Z &f ®c. Consider convergence, E |,
which holds if E is unable to perform silent actions for ever. The formulavZ. (t) Z
expresses its complement, divergence. Hence, convergence is defined as the least
solution to the equation Z f ({(r)Z2)°, whichis uZ.[7]Z.

Safety is the complement of weak liveness. The formula uZ. ®v(—) Z captures

EF®. Its complement is the largest solution to Z &f (P Vv (—)Z)°, which is
vZ. ®¢ A [—]Z. This formula expresses “® is never true,” AGP*.

The level crossing of Figure 1.10 has the crucial safety property that it is never
possible for a train and a car to cross at the same time. The feature to be avoided is
(tcross)tt A (Ccross)tt, so the safety property is given by vZ. ([tcross}ff v

[ccTossltf) A [—]Z.

The slot machine eventually produces winnings or an indication of loss. A
slightly better description is “whenever a coin is input, eventually either a loss or
a winning sum of money is output.” This property is expressed using both fixed
point operators. Embedding fixed point operators within each other goes beyond
the simple equational format here described.

1. Let f be the function f[(tock)tt A [tick]—-Z, Z].
a. Give a set P such that f does not have fixed points
b. Give a set P such that f has both least and greatest fixed points

2. Assume that formulas may contain occurrences of —. Prove that, if every
occurrence of Z within ® lies within the scope of an even number of negations,

then the recursive equation Z &' & has both a least and a greatest solution.
3. When - is freely admitted into formulas, show the following (where two
formulas ® and W are equivalent if for all processes E, E = ® iff E = ).
a. uZ.d isequivalentto ~vZ.~®{—~Z/Z}
b. vZ. ® is equivalent to ~uZ. ~d{—~Z/Z}
4. What property of processes does uZ.[—]Z express?
5. Prove that [[ ] ® is expressed as the formula vZ. ® A [7]Z.
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In the previous chapter we saw that modal formulas are not very expressive. They
can not capture enduring traits of processes, the properties definable within tempo-
ral logic. However, these longer term properties can be viewed as closure conditions
on immediate capabilities and necessities that modal logic captures. By permitting
recursive modal equations, these temporal properties are expressible as extremal
solutions of such equations. The property “whenever a coin is inserted, eventually
an item is collected” is expressed using two recursive modal equations with dif-
ferent solutions. In the previous chapter, least and greatest solutions to recursive
modal equations were represented using the fixed point quantifiers ©Z and vZ.
In this chapter we shall explicitly add these connectives to modal logic, thereby
providing a very rich temporal logic.

C. Stirling, Modal and Temporal Properties of Processes

© Springer Science+Business Media New York 2001
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5.1

Modal logic with fixed points

Modal logic with the extremal fixed point operators vZ and  Z is known as “modal
mu-calculus,” uM. Formulas of uM are built from variables, boolean connectives,
modal operators and the fixed point operators.

d = tt |ff | Z | P ADy | Py VD, | [K]D |
(KYD | vZ.® | uZ.®

In the sequel, we let o range over the set {i, v}. Formulas of uM may contain
multiple occurrences of fixed point operators. An occurrence of a variable Z is
“free” within a formula if it is not within the scope of an occurrence of o Z. The
operator o Z in the formula o Z.® is a quantifier that binds free occurrences of Z
in ®. We assume that o Z has wider scope than other operators. The scope of uZ
is the rest of the formula in

RZADY v ((B)Z A uY.vZ.([b]Y A[K1Z))

and it binds the occurrence of Z in the subformula (b)Z, but does not bind the
occurrence of Z in [K]Z, which is bound by the occurrence of vZ. There is just
one free variable occurrence in this formula, that of Y in (J}Y. An occurrence of
o Z may bind more than one occurrence of Z, as in vZ. (tick)Z A (tock)Z.

The satisfaction relation =y between processes and formulas (relative to the
valuation V) is defined inductively on the structure of formulas. First, are the cases
that have been presented previously.

E By tt

E (v £f

EkyZ iff EeV(Z)

EEy @AV iff Ely®andE =y W
Eby®ovV iff EpEy®orEEy V¥

EEv[K]® iff YFe{E :E-5 EandacK}).FEy®
Ebv(K)® iff 3Fe{E : E- E andacK). F =y @

The remaining cases are the fixed point operators, and we appeal to sets of
processes, | ||\F,’,as definedin Section4.4, {E € P : E =y @}, intheir definition.
It is assumed in both cases that E belongs to P.

EkyvZ. @ iff EGU{E§P2E§||¢||5[E/Z]}
EkyuzZ & iff Eeﬂ{EgP:II'i)IIC[E/z]EE}

These clauses are instances of Proposition 1 of Section 4.5. A greatest fixed point
is the union of postfixed points, and a least fixed point is the intersection of prefixed
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Proposition 1

points. To justify their use here we need to show that, for any variable Z and uM
formula &, the function f[®, Z] is monotonic'. The formula ® may contain fixed
points, and therefore we need to extend Proposition 1 of Section 4.4 from modal
formulas to uM formulas. Recall that the valuation V' extends V, written V C V/,
if for each variable Z, V(Z) C V'(Z).

If V' extends V, then | @ |5, C || @ |5,

Proof. We show by induction on & that, if V C V', then | @ ||] € || @ ||f,. We
now drop the index P. The base cases, boolean cases and modal cases are exactly
as expressed in the proof of Proposition 1 of Section 4.4. This just leaves the fixed
point cases. Let @ be the formula vY. ¥. Suppose E € || & ||v. By the semantic
clause for vY, there is a set E containing E with the property thatE C || W |lvig/r)-
Because V C V/, it follows that V[E/Y] C V'[E/Y] and therefore by the induc-
tion hypothesis || W ”V[E/Y] C v ”V’[E/Y]- Consequently, E C || W ”V’[E/Y], and
therefore E € || @ ||y too. The other case when @ is Y. W is similar and is left
as an exercise. a

A straightforward corollary of Proposition 1 is that, for any uM formula ¢ and
valuation VifE C F, then || @ [|{g/z; < || @ I, z)> and that therefore the function
fI[®, Z] is monotonic.

A slightly different presentation of the clauses for the fixed points dispenses
with explicit use of sets || @ ||5.

ElyvZ.® iff JECP.EcEandVF cE.F [=ygz ©
ElypuZ ® iff VECP.ifEgEthen3F € P.F [=yg/z) Pand F ¢E

The first is a simple reformulation of the clause above, and the second follows by
routine calculation:

Elyuz ® iff Ec[){ECSP: || ®lyez SE)
iff VECP.if||®|lvgz CEthenE € E
iff VECP.ifE gEthen| ®|lvig/z) ZE
iff VECP.ffE ¢gEthen3F € P.F |=yg/z) P and F ¢ E.

An “unfolding” of a fixed point formula o Z. ® is the formula ®{oc Z.®/Z}:
the fixed point formula is substituted for all free occurrences of Z in the “body”
®. For instance, the unfolding of vZ. (—)Z is (—)(vZ. (—)Z). The meaning of a
fixed point formula is the same as its unfolding.

Proposition2 E =y 0Z. Q@ iff E |y ${oZ.9/Z}.

'Relative to P and V, for any E C P, f[®, Z](E) is the set | @ IIC[E/Z].
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Example 1

Proposition 3

Exercises

Modal mu-calculus was originally proposed by Kozen [34] (and see also Pratt
[50]) as an extension of propositional dynamic logic?. Its roots lie in more general
program logics with extremal fixed points, originally developed by Park, De Bakker
and De Roever. Larsen suggested that Hennessy-Milner logic with fixed points is
useful for describing properties of processes [36]. Previously, Clarke and Emerson
used extremal fixed points on top of a temporal logic for expressing properties of
concurrent systems [18].

The vending machine Ven of Section 1.1 has the property “whenever a coin is
inserted, eventually an item is collected,” expressed as vZ.[2p, 1p]¥ A [-]Z,
when W is uY. (—)tt A [—{collect;, collect;}]Y. The appropriate set P is

{Ven, Veny, Ven,, collect,.Ven, collect;.Ven}.

Let V be any valuation. First we show that || W || is the full set P. Clearly, P is a
prefixed point.

| (—=)tt A [—{collecty, collect,}]Y II\F,'[p/Z] cCP

It is in fact the smallest prefixed point. Any proper subset E of P fails the associated
closure condition, where A’ is the set A — {collecty, collect:}.

If 3F.3a.E % F andVF.¥a € A.E -5 F implies F € E), then E ¢ E

For example, if E is the subset P — {Ven;}, then Ven, satisfies the antecedent of
this closure condition, and therefore E is not a prefixed point. Similarly, @ fails
to be a prefixed point because collect,.Ven satisfies the antecedent. Given that
| W ||¥ is P, it follows that || vZ.[2p, 1p]¥ A [—1Z ||F} is also P.

As with modal formulas, a formula @ is said to be realizable (or satisfiable) if
there is a process that satisfies it. For example, the clock C1 realizes vZ. (tick)Z.In
contrast 4 Z. (tick)Z is not satisfiable. There is a technique for deciding whether
aformula is realizable, due to Streett and Emerson [56]. An important consequence
of their proof is that modal mu-calculus has the “finite model property:” if a formula
holds of a process then there is a finite state process satisfying it.

If E =y O, then there is a finite state process F and valuation V' such that
F v .

1. Show the following
a. Cl EvZ.(tick)Z Vv [tick]ff
b. tick.0 = vZ. (tick)Z Vv [tick]ff

2The modalities of M slightly extend those of Kozen’s logic because sets of labels may appear within them
instead of single labels, and on the other hand Kozen has explicit negation. Kozen calls the logic “propositional
mu-calculus,” which would be more appropriate to boolean logic with fixed points.
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c. ClEpuZ. (tick)Z v [tick]ff
d. tick.0 = uZ.{tick)Z v [tick]ff

2. Let P = P(Ven). Determine the sets || @ ||§; when @ is each of the following
formulas.

a. uZ.(2p,1p)tt v [-]Z
b. uZ.(little)tt v [-]Z
¢ uZ.{little)tt v [-]Z
d. vZ.[2p](nY. {collectp)tt V [-]Y) A [-]Z
3. Assume that D and D’ are the following two processes D e D andy &
b.0 + a.D. Show the following.
a. DEvZ. uY. [al(({(b)tt AZ) VYY)
b. D' =vZ. uY. [al(({b)tt AZ)VY)
c. DEUY vZ. [al(((b)tt VYY) A Z)
d. 0 = uY vZ.[a)((b)tt VY)A Z)
4. Show that, if Z is not free in ®, then E =y ® iff E =yig/z) .
5. a. Carefully define the substitution operation ®{¥/Z} by induction on ®.
b. Prove Proposition 2, above.
6. In propositional dynamic logic there is some structure on actions.

EXSF iff E-2S E, - F for some E|

EXF iff E=ForE-S E ... E, > F for some
n>0and E,, ..., E,

Show the following, assuming that & does not contain Z as a free variable.
a. E =y [a;b] iff E =y [a][b]D
b. E Ey [a*]Piff E Ey vZ. D A[alZ

7. What properties are expressed by the following formulas?

a. uY.[bIff A [al(uZ.[alff A [B]Y A [—b]Z) A [—alY
b. vY.[b]ff A [al(uZ. [alff A [B]Y A [—D]Z) A[—alY
c. uX.vY.[a]lX A[—alY
d. vZ.[al(uY. (—)tt A[-DIY) A [-]1Z
e. vZ.(uX.[p]J(vY.[c](vY1. X A[—alX)) A [—alY) A [-]2Z)

5.2 Macros and normal formulas

A common complaint about uM is that formulas can be difficult to understand,
and that it can be hard to find the right formula to express a particular property.
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Definition 1

Of course, this is also true of almost any notation involving binding or embedded
operators. For example, it is not immediately clear what property the following
CTL formula AG(EF{tick)tt A AF[tock]ff) expresses. However, the problem
is more acute in the case of uM because of fixed points.

Because M is very expressive, we can introduce a variety of macros. For
example, as we saw in Chapter 4, the temporal operators of CTL are definable as
fixed points in a straightforward fashion (where ® and ¥ do not contain Z).

A@UY) = pZ.Wv(® A=)ttt A[=]2)
E@UY) = uZ WV (®A(-)2Z)

Macros can also be introduced for the starring operator of propositional dynamic
logic (where again ® does not contain Z).

[K*]® = vZ.®A[K]Z

Formulas of M exhibit a duality. A formula & that does not contain oc-
currences of free variables has a straightforward complement &€, as defined in
Section 4.6. The following is an example.

WZ. uY vX. [al(((bYX A Z) Vv [KIY)) = nZ.vY. uX. (a)([([b]X V Z) A (K)Y)

Because CTL has explicit negation, we can also introduce macros for negations of
the two kinds of until formulas as follows (where again Z does not occur in ¢ or
w).

SA(QPUY) = vZ. Y A@V(-IfVv(-)Z)
—E(@UV¥) = vZ.V° A(P°VI[-]2)

The fixed point versions of these formulas are arguably easier to understand than
their CTL versions. For instance, the second formula expresses “¥¢ unless ¢ AW*
is true.”

A formula that contains free occurrences of variables does not have an explicit
complement. For example, Z does not have a complement in uM. However, the
semantics of free formulas require valuations. Therefore, we can appeal to the
complement valuation V¢, as in Section 4.6. Consequently, E =y @ iff E by ©°.

Bound variables can be changed in formulas without affecting their meaning. If
Y does not occur atallin o Z. ®, then this formula can be rewritten o' Y. (®{Y /Z}).
It is useful to write formulas in such a way that bound variables be unique. This
supports the following definition.

A formula ® is “normal” provided that

1. if 01 Z, and 0, Z, are two different occurrences of binders in ¢ then Z; # Z,;
and

2. no occurrence of a free variable Z is also used in a binder 0 Z in ®.
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Definition 2

Example 1

Definition 3

Every formula can be easily converted into a normal formula of the same size and
shape by renaming bound variables.

UZAIVY V({DYZ AuY vZ.([b]Y A[K]Z))
can be rewritten as
UZAIVY V(BYZ A uX. vU.([b]X A [K]U)).

This helps us to understand which occurrences of variables are free, and which
occurrences are bound. In the sequel, we shall exclusively make use of normal
formulas.

In later applications, we shall need to know the set of subformulas of a formula
®. This set Sub(®) is finite and extends the definition provided in Section 2.2 for
modal formulas.

Sub(®) is defined inductively by case analysis on ¢

Sub(tt) = {tt}

Sub(££) = {ff)

Sub(X) = {X}

Sub(®; A P;) = {D; A Dy} U Sub(P)) U Sub(dy)
Sub(®; v d,;) = {®;V Py} U Sub(P) U Sub(®;)
Sub([K|®) = {[K]®}U Sub(®)

Sub((K)®) = {{K)®}U Sub(d)

Sub(vZ. ®) = {vZ.®P}U Sub(P)

Sub(uZ. P) = {uZ. ®}U Sub(d)

Sub(uX. vY.([p]1X A [K]Y)) is the set
{uX.vY.([b]X A[K]Y), vY.[b]X A [K]Y, [b1X A [K]Y, [b]1X, [K]Y, X, Y},

which contains seven subformulas.

If ® is normal and o Z. ¥ belongs to Sub(®), then the binding variable Z can be
used to uniquely identify this subformula.

Later we shall need to understand when one fixed point formula is more
“outermost” than another. For this we introduce the notion of subsumption.

Assume @ is normal and that o1 X.¥,0,Z. W' € Sub(®). The variable X
“subsumes” Z if 5, Z. W' € Sub(o X. V).

For instance, in the case of the formula of Example 1, X subsumes Y but not vice
versa, since vY. ([b]X A [K]Y) € Sub(uX.vY.([b]X A [K]Y)). The following
are some simple but useful properties of subsumption whose proofs are left as an
exercise for the reader.
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i

Proposition 1 . X subsumes X.
2. If X subsumes Z and Z subsumes Y, then X subsumes Y.

3. If X subsumes Y and X # Y, then not Y subsumes X.

Exercises 1. Introduce the following operators of CTL as macros by defining them as fixed
points AF, EF, AG and EG.

2. Put the following formulas into normal form
a. uY.[K]Y AvY.(a)Y
b. [J]Y A (K)}Y
c. vX.uY(ZvuZ vX. (b}(X AZ)V [alY)
3. A normal uM formula is “singular” if each occurrence of a binder o Z
binds exactly one occurrence of Z. Prove that every formula can be re-

written as a singular formula. (Hint: show that 0 Z.®(Z, Z) is equivalent
t00Z,.02,.9(Z,, Z,).)

4. Work out the following.
a. Sub(tt A (tt V (a)ff))
b. Sub(wX. uY.[K1X vV ((—=)X A [-K][-]Y))
c. Sub(uX. (@)X A {(a){a)X)
d. Sub(uY.[b]ff A [al(LZ.[alff A [B]Y A [—D]Z) A [—alY)
e. Sub(vZ.[al(uY. (=)tt A[-DIY)A[-]12)
5. For each of the following, determine whether X subsumes Y.
a. vX. uY. [K]1X v ()X A[-K]TY)
b. uY. vX.{(a)X A (a)(a)X
c. vZ.(vX.{(a)X) v (uY.[bIY) A [-]1Z
d. uX.vY.[a]X A [—a]Y

6. Prove Proposition 1.

5.3 Observable modal logic with fixed points

In Sections 2.4 and 2.5, the observable modal logics M° and M} are described.
Their modal operators such as { )), [ 1, [{] and (1)) are not definable in the
modal logic M. However, they are definable in M, as follows (where as usual it
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Exercises

is assumed that Z is not free in P).

(e € uz.ovz
[1¢ % vz.on[r)z
e ¥ vzeovz
1o & pz o[z

The contrast in meaning between [ ] and [[| ] is the difference in their fixed point.
The formula [ ] @ is just [z*]®, since P has to hold throughout any amount of
silent activity. A divergent process may have the property [ ] @, but it cannot
satisfy [/ ]] . Hence, the change in fixed point. The set

(MECP : |®A[TIZIgz S E)

at least contains stable processes (those unable to perform a silent action) with the
property ®. Therefore, the set also contains any process that satisfies ® and that
eventually stabilizes after some amount of silent activity, provided that & continues
to be true.

The modal logics M® and M are therefore special sublogics of uM. The
derived operators [K] and [{ K] are defined using embedded fixed points, as
follows (where ® does not contain Z or Y).

def

[K1® = [IKI[]®
= VvZ.[KI[1®A[r]Z
VZ.[K](wY. @ A[T]Y) A [T]Z
LLIkirne
= wuZ [KI[I®PA[r)Z
LZ. [KJwY. ® A[T]Y) A [T]Z

def

[l kK]

Observable modal logic M can be extended with fixed points. The formulas
of observable mu-calculus, uM?, are as follows.
S = Z|tt|ff| DIAD | D v, | [KIDP | (KNP |
(1P| (NP | vZ.® | nZ.®

Here K ranges over sets of observable actions (which exclude 7). This sublogic is
suitable for describing properties of observable transition systems.

We can also define the sublogic . M?¥, which contains the additional modalities
[41 and {1)). Unlike uM?°, this logic is sensitive to divergence.

1. Show that the fixed point definitions of { )), [ T, (1)) and [}] are indeed
correct.
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2. Provide fixed point definitions for the following modalities [K |1, [{ K {1,
(K),and (1 K 1).

3. Show that divergence is not definable in uM?. That is, prove that there is not
a formula ® € uM? with the feature that E 1 iff E = & for any E.

4. Show that Protocol and Cop have the same uM? properties, but not the same
uM®¥ properties.

5.4 Preservation of bisimulation equivalence

Proposition 1

Example 1

The modal logic M characterizes strong bisimulation equivalence, as shown in
Section 3.4. There are two parts to characterisation.

1. Two bisimilar processes have the same modal properties

2. Two image-finite processes having the same modal properties are bisimilar.
Because M is a sublogic of uM, 2 is also true for uM (and in fact for any exten-
sion of modal logic). Let " be the set of formulas of M which do not contain
free variables. Recall that E = F abbreviates that E and F share the same I'
properties.

If E and F are image-finite, and E =r F,then E ~ F.

The proof of Proposition 1 does not rely on the extra expressive power of uM
over and above M. However, one may ask whether the restriction to image-finite
processes is still essential to this result given that fixed points are expressible
using infinitary conjunction and disjunction, and that infinitary modal logic M
characterizes bisimulation equivalence exactly. In Section 3.4 two examples of
clocks showed that image finiteness is essential in the case of modal formulas.
However, although these clocks have the same modal properties, they do not have
the same uM properties. One of the clocks has an infinite tick capability, expressed
by the formula vZ. (tick), that the other fails to satisfy. The following example,
due to Roope Kaivola, shows that image finiteness (or a weakened version of it)
is still necessary.

Let {Q; : i € I} be the set of all finite state processes whose actions belong to
{a, b}, and assuming n € N, consider the following processes.

P) ¥ "bP(n+1)
R Yag:iel
P ' p1)+R

The behaviour of P(1) is as follows.

aab aaab a™*'b

P(1) 25 PQ2) 25 p(3) X% . LB pn+ 1)L ..
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Proposition 2

Lemma 1

The processes P and R are not bisimilar because no finite state process can be
bisimulation equivalent to b.P(2) (via the pumping lemma for regular languages).
However, P and R have the same uM properties, when expressed by formulas with-
out free variables. To see this, suppose that there is a formula & that distinguishes
between P and R: it follows that there is a formula ¥ such that b.P(2) = ¥ and
Q; = W for all i € I. By the finite model theorem, Proposition 3 of Section 5.1,
there is a finite state process E such that E = W. A small argument shows that £
can be built from the actions a and b. Consequently, E is Q; for some j € I. But
this contradicts that every process Q; fails to have the property V.

Not only do bisimilar processes have the same modal properties, but they also
have the same M properties.

If E~F,thenE = F.

An indirect proof of this Proposition uses the facts that it holds for the logic M,
and that uM is a sublogic of M, as we shall see in the next section. However,
we shall prove this result directly; for we wish to expose some of the inductive
structure of modal mu-calculus.

A subset E of P is bisimulation closed if, whenever E € E and F € P and
E ~ F,then F is also in E. The desired result, Proposition 2, is equivalent to the
claim that, for any formula & without free variables and set of processes P, the set
| ® || is bisimulation closed. If this is true, then it is not possible that there can be
a uM formula @ and a pair of bisimilar processes E and F such that E = ® and
F }= ®. Conversely, if || @ ||P is bisimulation closed, then any pair of processes E
and F such that E = ® and F [~ ® can not be bisimilar. The next lemma states
some straightforward features of bisimulation closure.

IfE and F are bisimulation closed subsets of P, then

1. ENF and E'UF are bisimulation closed,
2. {E€P :if E-2 Fanda € K then F € E} is bisimulation closed,

3. {EeP :3F €E.3a € K. E -5 F} is bisimulation closed.

Proof. Assume that the subsets E and F of P are bisimulation closed. If E € ENF,
then E € E and E € F. Consequently, if E ~ F and F € P, then F € E and
F eF,andso F € ENF. Assume E € EUF. Therefore E € Eor E € F. If
E ~ Fand F € P,then F € E or F € F because these sets are bisimulation
closed, and therefore E U F is also bisimulation closed. For 2, suppose E belongs
t0G={GeP:ifG-2> Handa € K then H € E}and E ~ F with F € P.
To show that F is also in G, it suffices to demonstrate that, if F %5 F’ when
a € K, then F' € E. Because P is transition closed, F’ € P. Moreover, because
E ~ F it follows that E —> E’ and E' ~ F’, for some E’ € E. And therefore
F’ € E because E is bisimulation closed. Part 3 has a similar proof. |
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Lemma 2

Proposition 3

Associated with any subset E of P are the following two subsets.

E? = (E€E: ifE~Fand FecPthenF €E}
E* = {(EeP:3FcE. E~F)}

The set E¢ is the /argest bisimulation closed subset of E, and E is the smallest
bisimulation closed superset of E (both with respect to P).

For any subsets E and F of P
1. E¢ and E* are bisimulation closed,
2. B CECEY,
3. ifE is bisimulation closed, then E¢ = E*,
4. ifE CF, then E® C F? and E* C F*.

Proof. These are straightforward consequences of the definitions of E¢ and
E*. a

A valuation V is bisimulation closed if, for each variable Z, the set V(Z) is
bisimulation closed. Therefore, we can associate the bisimulation closed valuations
V¢ and V* with any valuation V: for any variable Z, the set V¥(Z) = (V(Z))? and
V¥(Z) = (V(Z))*. Proposition 2 is a corollary of the following result, in which
® is an arbitrary formula of modal mu-calculus and therefore may contain free
variables.

IfV is bisimulation closed, then || ® ||Y) is bisimulation closed.

Proof. The proof proceeds by simultaneous induction on the structure of ® with
the following three propositions.

1. IfV is bisimulation closed, then || & || is bisimulation closed

2. If || @ || S E, then || @ ||f, < E

3. fEC || @, thenE* C || ® £,
We now drop the index P. The base cases are when ® is tt, £ or a variable Z. The
first two are clear. Suppose ® is Z. Because V is bisimulation closed, it follows
that || Z |jv is also bisimulation closed. For 2, suppose V(Z) C E. By Lemma 2
part 4, it follows that V¢(Z) C E“. Similarly for 3, if E C V(Z), then E* C V¥*(Z).
The induction step divides into the various subcases. Suppose ® = ®; A ;.
For 1, since || ® |lv = || @1 llv N || P2 |lv and by the induction hypothesis both
|| ®; |lv are bisimulation closed, it follows from Lemma 1 part 1 that || & ||y is also
bisimulation closed. A similar argument establishes that || ® |}y« is bisimulation
closed. By monotonicity, || ® {ly« € || ® |lv and so | ®|ly¢« € E, and therefore
|| ®|lve € E¢ as required for 2. For 3, assume that E € E¥. By the definition of
E¥, there is an F € E such that F ~ E. But then F € | ® ||y and therefore, by
monotonicity, F € || ® |ly«. The same argument as in case 1 shows that || ® ||y«
is bisimulation closed, and therefore E € || ® ||v.. The case of ® = ®; v ®,
is similar. Suppose ® = [K]W¥. For 1, by the induction hypothesis || ¥ ||y is
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bisimulation closed, and therefore by Lemma 1 part 2 the set || @ ||y is as well.
The arguments for 2 and 3 follow those for the case of A, above: both sets || P ||ye,
|| @ ||y« are bisimulation closed. So, if E € || ® ||y¢, then E € | ® |y and also
E € E4. And if E € E¥, then there is some F € E such that F ~ E, meaning
F € || @ ||y and therefore F € || ® ||y«. The other modal case when ® = (K)W¥
is similar, using Lemma 1 part 3.

The interesting cases are when @ is a fixed point formula. Suppose first that ® is
wZ. V. Toshow 1, we need to establish that the least E such that || W ||yig;z; € Eis
bisimulation closed. By assumption, V is bisimulation closed, and so V = V¢ from
Lemma 2 parts 2 and 3. Therefore, by the induction hypothesis on 2, we know that
| llvige/z) € E“. Because E¢ C E and E is the least set obeying || ¥ lviesz1 € E,
it follows that E = E4 and is therefore bisimulation closed. Cases 2 and 3 follow
the same pattern as before. The final case is & = vZ. V. The argument is similar
to that just employed for the least fixed point, except that to establish 1 we use
the induction hypothesis on 3: we need to show that the largest set E such that
E C || ¥ llvig/z) is bisimulation closed. Because V is bisimulation closed V = V¥,
so E* C || W |lvie«/z; by the induction hypothesis on 3, and therefore E = E*.
Cases 2 and 3 follow as before. a

This result tells us more than that bisimilar processes have the same proper-
ties when expressed as a formula without free variables. They also have the same
properties when expressed by formulas with free variables, provided the meanings
of the free variables are bisimulation closed. The proof of this result also estab-
lishes that formulas of £M?, observable modal mu-calculus, which do not contain
free variables, are preserved by observable bisimulation equivalence. The earlier
lemmas and Proposition 3 all hold for observable bisimulation equivalence, and
uM?.

.

Exercises . Prove Lemma 1 part 3.

2. Show that if E is a bisimulation closed subset of P, then its complement P — E
is also bisimulation closed.

3. Let {E; : i € I} be an indexed family of bisimulation closed subsets of P.
Show that (\{E; : i € I} and | J{E; : i € I} are bisimulation closed.

4. Prove Lemma 2.

5. Extend modal mu-calculus so that there is a formula @ that does not contain
free variables such that || @ || is not bisimulation closed.

5.5 Approximants

At first sight, there is a chasm between the meaning of an extremal fixed point and
techniques (other than exhaustive analysis) for actually finding it. However, there
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is a more mechanical method, an iterative technique, due to Tarski and others,
for discovering least and greatest fixed points. Let ug be the least fixed point,
and vg the greatest fixed point, of the monotonic function g : 2 — 27, From
Proposition 1 of Section 4.5 the following hold.

ug = [JECP:gE)CE}
vg = |JECP:ECgE)

Suppose we wish to determine the set vg. Let vi g fori > 0be defined iteratively
as follows.

g = P vitlg = ()
Because P is the largest subset of itself, v!lg C v%g and, by monotonicity of
g, this implies that g(v'g) € g(1%%), that is v2g C v!g. Applying g again to
both sides, 13g C v?g, and consequently for all i, vit!'g C vig. Moreover, the
required fixed point set vg is a subset of every v'g. First, vg C 1% and so by
monotonicity g(vg) € v'g. Because vg is a fixed point of g, g(vg) = vg, and
therefore vg C v!g. Using montonicity of g once more we obtain vg C v’g.
Consequently, with repeated application of g it follows that vg C vig for any i.
Therefore, we have the following situation.

wWg 2 wlg 2 ... 2 Vg 2
U U U
vg vg vg

If vig = vitlg, then the fixed point vg is v'g. Why is this? Because v'g is then a
fixed point of g, and vg C v'g and vg is the greatest fixed point.

These observations suggest a strategy for discovering vg. Iteratively construct
the sets Vg starting with i = 0, until v’ g is the same set as v/*!g. If P is a finite
set containing n processes, then this iterative construction terminates at, or before,
the case i = n, and therefore vg is equal to v"g.

Let P be {C1, tick.0, 0}, and let g be the following function f[(tick)Z, Z].

g = P = {Cl,tick.0,0}
vig = [ (#icK)Zf0, 77 = {C1,tick0)
Vg = I(ticRZ Iy, = (€1
Vg = I1(t1cRZ ey, = {C1)

Stabilization occurs at the stage v?g because this set coincides with v?g. The fixed
point vg, the set of processes || vZ. (tick)Z IIC, is therefore the singleton set {C1}.

IfPis not afinite set of processes, then we can still guarantee that vg is reachable
iteratively by invoking ordinals as indices. Recall that ordinals are ordered as
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follows.
0,1,...,0v,04+1,...,0t+tw,0o+w+1,...

The ordinal w is the initial limit ordinal (which has no immediate predecessor),
whereas w + 1 is its successor. Assume that o and A range over ordinals. We
define v¥ g, for any ordinal ¢ > 0, with the base case and successor case as before,
g = Pand v**tlg = g(v*g). The case when A is a limit ordinal is defined as
follows.

Ve = ﬂ{v"g o< A}

By the same arguments as above there is the following possibly decreasing

sequence”.
g 2 ... 2 g 2 vl 2
U U U
vg ... vg vg

The fixed point set vg appears somewhere in the sequence, at the first point when
pe g= va+l 8.

Example 2 Let P be the set {C,B; : i > 0} when C is the cell

C &f in(x).B, wherex : N

Bt &f down.B, forn >0

Let g be the function f[(—)Z, Z]. The fixed point vg is the empty set.

g = P = {C,B; :i>0}
vig = 1)ZWugyz = (CB:ix1
vVtle = 1(9)ZIpigz = CBi:izj+1)

The set v°g is () {v'g : i < w}, which is {C} because each B; is excluded from
/1. The very next iterate is the fixed point, v**!g is || (—)Z ||\P,[Uw ¢/z) = 9. So,
stabilization occurs at v*!g. This example can be further extended.

def . def def
¢' = in(x).B, B,,, =down.B,,, B]=down.C

3Notice that vg C v*g when A is a limit ordinal because vg C v®g foralla < A.
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Consider the following iterates.

v'g = (C,B,,C,Bj: k>1landj > i)
vt = (C,B, i k>1}

vt = (C)

l)w+w+1g = @

The fixed point vg therefore stabilizes at stage w + w + 1.

The situation for a least fixed point ug is dual. Let u%g be the smallest subset
of P, that is @, and let u**!g = g(u®g). The following defines a limit ordinal A.

we = Jwg:a<a}

There is the following possibly increasing sequence of sets.

g . /g ug
U U U
weg < ... € ug < wutlg ¢

The fixed point g is a superset of each of the iterates u®g. First, u’g C ug, and
so by monotonicity of g (and limit considerations) u*g C ug for any . The first
point that g is equal to its successor u®*!g is the required fixed point ug. An
iterative method for finding ug is to construct the sets 1 g starting with 4°g until
it is the same as its successor.

Let g be be the function f[[tick]ff Vv (—)Z, Z]. Assume P is the set of processes
in example 1 above.

weg = 0

ple = [[tickIEE V(-)Z gy = (0}

u’e = |([ticklffV(=)Z {7 = {tick.0,0}
Wg = |[ticklffV(=)ZI2,7 = (£ickO0,0}

Stabilization occurs at u2g, which is the required fixed point. Notice that if we
consider vg instead, then we obtain the following different set.

We — p = {C1,tick.0,0}
vig = |[[ticklffV(-)Z {0,z = P

This stabilizes at the initial point.
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Example 4 Consider the following family of clocks, C1, i > 0.

cl! ¥ ticko

cit! © gickel i1

Let Ebe Y {C1’ : i > 1}. E models an arbitrary new clock, which will eventually
break down. Let P be the set {E,0,C1’ : i > 1}. Because all behaviour is
finite, each process in P has the property uZ.[tick]Z. Let g be the function
flltick]Z, Z].

we = 0
ple = ILCKIZ g0,z = (0}
witle = | [tick]Z [|C[“;g/z] = {0,C1 :j<i+1}

The initial limit point u“g is the following set.
Utwe :i<w} = {0,017 : j>0)

At the next stage, the required fixed point is reached.
utlg = || [ticKIZ [guegz) = P

Therefore, foralla > w + 1, u*g = P.

Each set 0®g is an approximation to the set o g. Increasing the index « provides
a closer approximation. Each v* g approximates vg from above, whereas each 1* g
approximates ug from below. Consequently, an extremal fixed point is the limit
of a sequence of approximants.

There is a more syntactic characterization of the extremal fixed points using the
extended modal logic M, of Section 2.2 (which contains infinitary conjunction
/\ and disjunction \/). If g is the function f[®, Z], then with respect to P and V
the element vg is || vZ. @ ||§ and ug is || wZ. @ ||§). The initial approximant vg
is the set P, which is just || tt |5, and the initial approximant ug is @, which is

|| ££ ||5. The element v'g is g(1°g), which is || @ ||f;[” w12 thatis || ®{tt/Z} |I}.

Similarly u'g is || ®{££/Z} ||5. For each ordinal &, we define o Z*.® as a formula
of the extended modal logic. As before, let A be a limit ordinal.

vZ°.®d = tt pZ’® = ff
vZetl e = oz ®/Z) pZt e = o{uz*. ®/7Z)
vZh® = APz ®:a<i) pzhe® = \[{uZ*.®:a<))

Proposition 1 Fix P and V and let g be the function f[®, Z]. Then the approximant c*g =
loz*. @ | for any ordinal «.

Proof. By induction on «. We drop the index P. The base cases are straight-
forward. Suppose the result holds for all @ < §. If § is a successor ordinal,
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say a + 1, then 0%*lg is g(0%g), which by the induction hypothesis is
| @ llvijj oz /2], Which in turn is equal to || ®{o Z*.®/Z} ||y. The result follows
because ®{0 Z*.®/Z} is 0 Z%+1.®. If § is a limit ordinal, then v%g is () {1°%g :
a < 8}. By the induction hypothesis, this setis (| {|| v*Z.® |lv : « < &}, which
is | A(v*Z.® : a < 8}|lv, and is therefore || V¥ Z.® ||y. A similar argument
establishes the least fixed point case. O

A simple consequence of Proposition 1 is amore direct definition of satisfaction
E v © when ® is a fixed point formula.

EEvvZ. ® iff E EvZ* @ forall ordinals o
EE=yuZ ® iff E B uZ* & for some ordinal o

The quantification over ordinals in these clauses is bounded by the size of P(E).
The following is a corollary of the discussion in this section. It will turn out to be
very useful later, since it provides “least approximants” for when a process has a
least fixed point property, and when a process fails to have a greatest fixed point

property.

1. If E =v uZ. O, then there is a least ordinal o such that E =y nZ%. ® and
forall B < a, E Wy nZP. ®.

2. If E Wy vZ. D, then there is a least ordinal o such that E W=y vZ*. ® and
forall B <a, E =y vZP. .

Proof. Notice that for any E, E Wy uZ°. ®. Therefore, if E =y nZ*. @, then
for all B > « it follows by monotonicity that E =y uZ?. ®. Consequently, there
is a least ordinal « for which E =y wZ®. ® when E has the property uZ. <I>
relative to V. Case 2 is dual.

In Section 5.3, the definitions of [ ] ® and [ | ] ® in uM were contrasted. LetvZ. ¥
be the formula vZ. ® A [t]Z (expressing [ ] ®)and let uZ. W be uZ. ¢ A [t]Z
(expressing [[| ] ®)*. These formulas generate different approximants.

vZ0. U = tt pwZ’ v = ff
vZIW = DAttt = ® uZ' ¥ = O A[r]ff
VZ2 W = D A[T]® wZ: W = @ A[T)(P A[r]ES)

41t is assumed that Z is not free in ®.
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vZi W PA[TNPA[TI(DP A ... [1]D..))
uZ'W = OA[TNRA[TIP A ... [t)(D A [T]£)...)

The approximant uZ:. W carries the extra demand that there cannot be a sequence
of silent actions of length i. Hence, [|] ® requires all immediate ¥ behaviour to
eventually peter out.

Exercises 1. Let P be the set of processes P(Ven). Using approximants, determine the sets
| @ || when @ is each of the following.

a. uZ.(2p, 1p)tt v[-1Z

b. uZ.(little)tt v[—]Z

c. uZ. (little)tt v [—]Z

d. vZ.[2p](uY. (collecty)tt VvV [-]Y) A [-]Z

2. Let P be the set of processes P(Crossing). Using approximants, determine
the sets || @ || when @ is each of the following.

a. vZ.([tcross]ff v [ccross|ff) A [-]Z
b. uY.(—)tt A [—ccross]Y
3. If |P| = n prove that for any E € P
a. EEyvZ. QiffE =y vZ".®
b. Ely nZ Qiff E =y 2.
4. Work out the approximants o Z*.® for the following formulas fori < 4.
rZ.[-1Z
vZ.[-){tick)Z
rZ.[-1Z A[-1[-1Z
vZ.(tick)Z A (tock)Z
UZ. WV (D A{=)tt A[-]2))
VZ. W V(D A=)ttt A[-]2))
g nZ.vY.[alZ A[—alY
5. Prove Proposition 2 part 2.

- e o T

5.6 Embedded approximants

Fixed point sets can be calculated iteratively using approximants. The examples
in the previous section involved a single fixed point. In this section, we examine
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the iterative technique in the presence of multiple fixed points, and comment on
entanglement of approximants.

Ven has the property vZ. [2p, 1p]¥ A [—]Z, when W is the formula Y. (—)tt A
[—{collecty, collect;}]Y; see example 1 of Section 5.1. Let P be the set
{Ven, Veny, Ven,;, collecty.Ven, collect;.Ven}. First, the subset of P is calcu-
lated for the embedded fixed point W, as follows. Its ith approximant is represented
as ;Y? (where we drop the index P).

ut? = @
pY' = |[{(=)tt A[—{collects, collect1}]Y llviuro/¥]
= {collecty.Ven, collect,.Ven}
p¥? = | (=)tt A [—{collects, collecti}]Y [lvpuri/v]
= {Venp, Veny, collecty.Ven, collect;.Ven}
uY® = |[{(=)tt A[—{collects, collect1}]Y llviurz/y
P

Therefore, || ¥ ||v is P. Next, the outermost fixed point is evaluated, given that
every process in P has the property W. Its ith approximant is vZ'.

vZ? = P
vZ!' = |I[2p, 1pI¥ A [-1Z llvpzeyz) = P

In this example, the embedded fixed point can be evaluated independently of the
outermost fixed point.

Example 1 illustrates how the iterative technique works for formulas with mul-
tiple fixed points that are independent of each other. The formula of example 1
has the form vZ. ®(Z, uY. ¥(Y)) where the notation makes explicit what vari-
ables can be free in subformulas. Z does not occur free within the subformula
wY. W(Y), but may occur within the subformula ®(Z, uY. ¥(Y)). Consequently,
when evaluating the outermost fixed point, we have that:

vZ® = P
vZ! = [ @Z, uY. ¥(Y)) llvyzosz)
vZth = 1 9(Z, nY. W(Y)) vizisz)

Throughout these approximants, the subset of processes with the property
wY. W(Y) is invariant. This is because the subformula does not contain Z free.
Therefore, || uY. W(Y) llvjyze/z is the same set as || uY. W(Y) |lvjyz¢/z) for any
ordinals « and 8.
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Example 2

The subset of formulas of uM, written ;£MI, which has the property that all
its fixed points are independent of each other, is characterised as follows.

P euMl iff ifoY. ¥ € Sub(®)and 0, Z. ¥, € Sub(®)and Y # Z,
then Y is not free in ¥, and Z is not free in ¥;.

CTL formulas, when understood as fixed point formulas, belong to this subclass
of uM formulas.

CTL formulas belong to uML.

Proof. This follows from the fixed point definitions of until formulas (and their
negations) presented in Section 5.2. For example, A(® U V) is definedas uZ. ¥ v
(® A ((—)tt A[—]Z)) where Z does not occur in ® or V. Therefore, any further
fixed points introduced into these subformulas do not contain Z. O

Consider the simple processes in Figure 5.1. Let P be the set {D, D’, D"} and let ¥
be the formula

U = uYvZ.[al((b)tt Vv Y) A 2Z).

This formula does not belong to «MI because its innermost fixed point subfor-
mula vZ ... contains Y free. The calculation of the outer fixed point depends on
calculating the inner fixed point at each index. We use vZ/! to represent the ith
approximant of the subformula prefaced with vZ when any free occurrence of Y

D"

FIGURE 5.1. A simple process
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is understood as the approximant ;Y /. Again, we drop the index P.

u® = @
puY' = vZ. [al(((B)tt V Y) A Z) llvure v
vZ® = p

vZ% = | [al((b)tt V ¥) A Z) [l viuros viiwzo/z)
— {D//,D}

vZ? = || [al(((B)tt V ¥) A Z) llviuys vpiwze/z)
= {0}
vZ%® = |[[al((B)tt V ) A Z) vy vz z)
= {D)
Sou¥Y! = {0}
uY? = vZ.[al((B)tt V Y) A Z) llviuriyn
vZ0 = p

vZ'" = [[[al((b)tt V Y) A 2) llviur/ypwzio )
— {D//’ D}

vZ'2 = | [al((b)tt V V) A Z) iviur vz z)
= {0}
vZB = [[[al((b)tt V V) A 2) llviur/¥pwziz/z)
= {0}
Sou¥? = {D")

The innermost fixed point is evaluated with respect to more than one outermost
approximant.

Example 2 illustrates dependence of fixed points. The formula has the form
wY. ®(Y,vZ.¥(Y, Z)), where Y is free in the innermost fixed point. The inter-
pretation of the subformula vZ. ¥ (Y, Z) may vary according to the interpretation
of Y.

A simple measure of how much work has to be done when calculating the
subset of P with a fixed point property is the number of approximants that must
be calculated. For a simple formula o Z. ®, when ® does not contain fixed points
and when |P| = n, the maximum number of approximants is n. If & € uMI and
contains k fixed points, then the maximum calculation needed is k X n. In the
case of the formula of example 2 with two fixed points, it appears that n? is the
upper bound. For each outermost approximant, we may have to calculate n inner
approximants. There are at most n outer approximants, and therefore the upper
bound is n?.

The initial approximants for fixed points are vZ° = P and #Z° = ¢. Initial
approximations that are closer to the required fixed point will, in general, mean that
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less work has to be done in the calculation. For instance, if we know that E has the
property P 2 E 2 || vZ. ® ||y, then we can set vZ° to E. This observation can be
used when evaluating the embedded fixed point formula vZ. ®(Z, vY. ¥(Z, Y)).

vz = P
vZ! = | ®(Z,vY. Y(Z,Y)) lvpzoz
Y® = p
vY = | W(Z,Y) llvpwzoszpre, v

vZ? = | ®(Z,vY.W(Z, V) vpzyz

To evaluate vZ? one needs to calculate || vY. ¥(Z,Y) llviyzi/z)- However, by
monotonicity we know that

IvY. W(Z, Y)llvpziyz1 € 1vY. W(Z, Y)llvpzesz) € P.

Therefore, wecanuse || vY. W(Z, Y) |lvjyz0,z) as the initial approximant vY 10 and
so on as follows.

vZ? = | ®(Z,vY.¥(Z,Y))llvpzyz
v = WY U(Z, V) lvpzyz)
v = | W(Z,Y) lwwzyzpwros
vZH = | ®(Z,vY. W(Z, V) llvpzi/z)

v = | vY. W(Z, V) llvpziz)
vY' = | W(Z, V) vz zpmros

Consequently, instead of requiring at most n? approximants, the upper bound is
2 x n, for in total the maximum number of approximants for the inner fixed point is
n. This technique can be extended to long sequences of embedded maximal fixed
points

UZ]. 4)1(21, UZz. ¢2(Zl, Zz, ey UZk. <l>k(Zl, ey Zk). . ))

when at most k X n approximants need to be calculated.

The situation is dual for least fixed points. If d C E C || uZ. ® ||v, then we can
set the initial set £ Z° to be E. In the case of the formula uZ. ®(Z, uY. ¥(Z, Y)),
by monotonicity

DC |\ uY. W(Z,Y)lviuzijzn € | Y. Y(Z, Y) lviuzi+r/z),
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sotheset || Y. W(Z, Y) |lviuzi,z) is a better initial approximation than @ for Y i0,
Again, we need only calculate 2 x n approximants instead of n2. This can be
extended to multiple occurrences of embedded least fixed points.

LLZl. <I>1(Zl, ,LLZ2. q)z(Zl, Zz, . .},LZk. q)k(Zl, ey Zk) ‘e ))

More complex are formulas, as in example 2, that contain multiple oc-
currences of dependent but different fixed points. In the case of a formula
vZ.®(Z, uY. W(Z,Y)), we cannot use || Y. W(Z, Y) |lvjyzo/z) as an initial ap-
proximant ;Y'° because the ordering is the wrong way around to be of help,
since vZ° D vZ!. Least fixed points are approximated from below and not from
above. Similar comments apply to the calculation of uZ. ®(Z, vY. ¥(Z, Y)). In
both these cases, a best worst case estimate of the number of approximants is n2.

However, when we consider three fixed points
rY. @1(Y,vZ. 01(Y, Z, uX. 93(Y, Z, X)),

the maximum number of calculations needed is less than n3. As the reader can
verify montonicity can be used on the innermost fixed point because puX/* C
wX?'7* when i < i’. Roughly speaking, the number of calculations required for &
dependent alternating fixed points is n k“Jf‘l, as was proved by Long et al [38].

The general issue of how many approximants are needed to calculate an em-
bedded fixed point remains an open problem. The observations here suggest that
the more alternating dependent fixed points there are, the more calculations are
needed, and that the number of calculations is exponential in this alternation. In-
deed, we may wonder if somehow the expressive power of uM grows as more
dependent alternating fixed points are permitted. The answer is “yes,” as was
proved by Bradfield [9].

A more generous subset of uM than uMI is the alternation-free fragment,
UMA defined as follows.

® c uMA iff if uY. ¥; € Sub(®) and vZ. ¥, € Sub(P),
then Y is not free in ¥, and Z is not free in ;.

This subset permits dependence of fixed points, provided they are of the same kind.
For instance, a formula of the following form is permitted.

VZ1. ®1(Z1,vZ,. ®2(Z1, Zy, uY1. V1(Y1, uY2. ¥ (Y1, 12))))

An example of a formula that does not belong to uMA is ¥ from example 2, since
Y is free in the subformula vZ . . .. From the analysis above, any formula of uMA
with k fixed point operators requires the calculation of at most k X n approximants.

1. Show precisely that, if |P| = n, then for both formulas

l)Zl. <I>1(Zl, VZZ. <I>2(Zl, Zz, ey UZk. <I>k(Zl, ey Zk). . ))
RZy. D1(Z1, nWZy. PAZy, Zs, .. . 02y Ok(Z1, ..., Z1) .. ))
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at most k x n approximants need to be calculated.

2. For the following formulas, work out their approximants and embedded
approximants up to stage 4.

a. uY.[bIff A [al(uwZ.[alff A [B]Y A [—D]Z) A [—alY

VY. [bIff A [al(uZ.[alff A [B]Y A[—=D]Z) A [—alY

uX. [al(uY.[al(vZ. [altf A[=]1Z)A{=)tt A[—alY) A (=)tt A[—alX
uX.vY. [a]X A [—alY

vZ.[al(uY.{=)tt A[=BIY) A [-]Z
vZ.(VV(WAVY.OA[-IY)A[-]Z

g vZ.(uX.[b](vY. [c](vY1. X A [—al¥1) A[—alY) A [-]2)

3. Give an exact upper bound on the number of approximants that need to be
calculated in the case of the following formula with respect to |P| = n.

- o & o T

wY. @ (Y, vZ. ®2(Y, Z, uX. ®3(Y, Z, X))
What upper bound is there for a formula with k dependent alternating fixed
points?
4. Prove Proposition 1 in full. Show using approximants that there is a linear

time algorithm for checking whether E |= ®, when E is finite state and ® is
a CTL formula.

5. Show that, for any ® € uMA with k fixed point operators, at most k£ x n
approximants need to be calculated to work out which subset of P has property
® when |P| = n.
6. The following is a technical definition of the full alternation hierarchy from
Niwinski and Bradfield [46, 9].
a. If ® contains no fixed point operators, then & € Xy and & € Iy
b. f®e X, Ull,,then® € X, and ® € I1,,4
c. Ifd, ¥ e X,(I1,), then [K]P, (K)D, DAY, PV V¥ e T,(I1,)
d IfdeX,, thenuZ. ®e X,
e. If® ell,, thenvZ. ® eII,.
f Ifd, ¥ e X,(I1,), then ®{¥/Z} € L,(I1,)

Let AD, be {® : ® € T,y NIt}

a. Prove that AD, = uMA.

b. Give an example of a property that is definable in AD,;1, but not definable
in AD,. (See Bradfield [9].)

c. Provide an upper bound for the number of approximants that need to be
calculated for any ® € AD,, containing k fixed points, when |P| = n.
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5.7 Expressing properties

Example 1

Modal mu-calculus is a very powerful temporal logic that permits expression of a
very rich class of properties. In this section, we examine how to express a range
of liveness and safety properties.

A safety property, as described in the previous chapter, has the form “nothing
bad ever happens.” Safety can either be ascribed to “states” (or “processes”), that
bad states can never be reached, or to “actions,” that bad actions never happen. In
the former case, if the formula &°¢ captures the bad states, then the CTL formula
AG® orits uM equivalent vZ. ® A [—]Z expresses safety. As mentioned before,
the safety property for the crossing of Figure 1.10 is that it is never possible to
reach a state such that a train and a car are both able to cross, AG([tcross]ff v
[ccross]ff).

It is useful to allow the full freedom of M notation by allowing open formulas
with free variables and appropriate valuations that capture their intended meaning.
In the case of a safety property, let E be the family of bad states. The formula
vZ. Q A[—]Z expresses safety relative to the valuation V that assigns P —E to Q.
The idea is that the free variable Q has a definite intended meaning captured by
the particular valuation V.

The slot machine of Figure 1.15 never has a negative amount of money. A simple
way of expressing this feature is the open formula vZ.Q A [—]Z relative to the
valuation V that assigns to the free variable Q the set P — {SM; : j < 0}.

This device can be used to express properties succinctly. If the particular valuation
V is bisimulation closed with respect to the free variables of ®, we say that the
property expressed by ® relative to V is extensional. In this case || ® ||y is also
bisimulation closed by Proposition 3 of Section 5.4. The formula of example 1 is
extensional when P is the set of processes of the transition graph for SM, forn > 0.
If & relative to V is not extensional, then it is intensional. Examples of intensional
properties of a process include “has two tick-transitions” and “consists of three
parallel components.”

Safety can also be ascribed to actions, “no bad action belonging to K ever
happens.” It is expressed by the uM formula vZ. [K]££ A [—]Z (or the equivalent
CTL formula AG[K ]££). Really, there is no distinction between safety in terms of
bad states and safety in terms of bad actions. In the action case, safety is equivalent
to “the bad state (K )tt is never reached.”

A liveness property has the form “something good eventually happens.” Again,
the good feature can be ascribed either to states or to actions. If ® is true at the good
states, then the CTL formula AF® or its uM equivalent uZ. ® v ((—)tt A[—12)
expresses liveness.

In contrast, that eventually some action in K happens means that all possible
runs contain a transition whose action belongs to K. This liveness property is
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expressed by the following formula.
wZ.(=)tt A[-K]Z

To satisfy it, a process must not be able to perform actions from the set A — K
forever. Consider the syntactic approximations (as described in Section 5.5) this
formula generates. We abbreviate the ith approximant to uZ*.

wz’ = ff

pZ' = (Dt A[-KnZ® = (—)tt A[-K]EE

nZ* = (St A[-KZ' = (-)tt A[-K](-)tt A [-K]EE)
pZ*t = (D)t A[-K]uZ

(=)t A [—KI((=)tt AL [—KI(—) et A [-K1EE) . )

The approximant uZ' expresses that a K action must happen next. wZ? states
that a K action must happen within two transitions, that is, for any sequence of

transitions 2, either a € K or b € K. Moreover, the formula requires that,
if there is a run with just one transition, then it is a K transition. Generalising,
wZ' states that any sequence of transitions of length i contains a K action (and
any run whose transition length is less than i contains a K transition). Therefore,
wZe*t' = \/{uwZ' : i > 0} guarantees the liveness property that in every run
there is a K action.

Liveness with respect to actions does not appear to be expressible in terms of
liveness with respect to state, that is, as a formula of the form uZ. ® v ((—)tt A
[—1Z) where ® does not contain fixed points (or Z). For instance, neither of the
following formulas captures liveness.

O = pZ (K)ttv(—-)ttA[-]2)
O, = pZ.((5)ttA[=KIED) Vv ((-)tt A[-]Z)

&, is too weak, since it merely states that eventually some action in K is possible
without any guarantee that it happens. In contrast, ¥ is too strong, since it states
that eventually only K actions are possible (and therefore must happen).

Example 2 Consider the following definitions of processes.
Ay def a.Z{A,- i >0}
Ay = ba i20
B ¥ @ (B :i01+b.y (B :i>0)
Bi,i = bB i>0
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Example 3

For any i > 0, process 4y can perform the cycle Ay LLA Ay, whereas By can

perform the cycles By LA By and By LLA Bo. When j > 0, Aj | A; has the
property “eventually a happens,” which is not shared by B; | B;. In every run of
A; | A;,theactiona occurs. There are runs fromB; | B; consisting only of b actions.
Therefore, Aj | Aj = nZ.(—)tt A[—a)Z and B; | B; & uZ.(—)tt A [—a]Z.
On the other hand, both these processes have the property ®;, above, when K is
the singleton set {a}. Process B; | B; eventually reaches By | By or B | By, and
both satisfy (a)tt. Moreover, both fail to have the property ®,, above, when K is
the set {a}. For instance, in the case of A; | A;, there is no guarantee that in every
run A | Ay is reached because this is the only process of the form A; | A; satisfying
(—)tt A [—alff.

Liveness and safety may relate to subsets of runs. For instance, they may be
triggered by particular actions or states. A simple case is “if action a ever happens,
then eventually b happens,” any run with an a action has a later b action. This is
expressed by the following formula.

vZ. [al(uY. (—)tt A[-D]Y) A [-]Z

An example of a conditional safety property is “whenever ¥ holds, ®¢ will never
become true,” which is expressed as follows.

VZ. (W V(W AVY.DA[-IY)A[-]Z

In both these examples, the formulas belong to «MI (as defined in the previous
section).

More involved is the expression of liveness properties under fairness. An ex-
ample is “in any run, if b and ¢ happen infinitely often, then so does a,” expressed
as follows.

VZ.(uX.[BIWY. [c)vYi. X A [—a]Y1) A [—alY) A [=]2Z)

There is an essential fixed point dependence, as described in the previous section,
because X occurs free within the fixed point subformula prefaced with vY.

The desirable liveness property for the crossing “whenever a car approaches the
crossing, eventually it crosses” is captured by the following formula.

vZ.[car](uY.(—)tt A[—ccToss|Y)A[-]Z

However, this only holds if we assume that the signal is fair. Let Q and R be
variables, and V a valuation, such that Q is true when the crossing is in any state
where Rail has the form green.tcross.red.Rail (the states E,, E3, Eg, and
E\p of figure 1.12) and R holds when it is in any state where Road has the form
up.ccross.down.Road (the states E1, E3, E7 and E11). The liveness property now
becomes “for any run, if Q€ is true infinitely often and R is also true infinitely
often, then whenever a car approaches the crossing, eventually it crosses,” which
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is expressed by the open formula relative to V,

vY.[car](uX.vY;.(Q Vv [—ccross](¥ A [—ccross] 1)) A [-]Y,

where W is vY;.(R v X) A [—{ccross}]Y,. The property expressed here is
extensional.

Another class of properties is until properties, as in CTL. The formula
A(® U V) expresses “for any run, ® holds until ¥ becomes true,” which in uM
is the formula uZ. ¥ v (® A (=)tt A [—=]Z), where Z does not occur in ® or
W. This property does require that W eventually become true. This commitment
can be removed by changing fixed points. The property “in every run, ¢ holds
unless W becomes true” does not imply that ¥ does eventually hold, and therefore
is expressed as vY. W v (® A [—]Y). Until properties may concern actions instead
of states. For example, “in any run, K actions happen until a J action happens”
is expressed as uY.[—(K U J)]ff A (—)tt A [—J]Y, with the implication that
eventually a J action occurs. This implication can be removed, as in the property
“in any run, K actions happen unless a J action occurs,” by changing fixed points
vY.[—(K U J)Jff A[—J]Y. The reader is invited to formulate weaker versions of
these properties with respect to some runs.

Cyclic properties can also be described in uM. A simple example is that tock
recurs ateach even point: if E 2L E | =25 .. .isafinite orinfinite length run, then
each ay; is tock. The formulavZ. [—]([—tock]ff A[—]Z) expresses this property,
and C1, satisfies it. The clock C1, in fact has an even more regular cyclic property,
that every run is a repeating cycle of tick and tock actions, vZ.[—tick]ff A
[tick]([—tock]ff A [—]Z)’. These properties can also be weakened to some
family of runs. Cyclic properties that allow other actions to intervene within a
cycle can also be expressed.

Example 4 Recall the scheduler from Section 1.4 that schedules a sequence of tasks, and must
ensure that a task cannot be restarted until its previous operation has finished.
Suppose that initiation of one of the tasks is given by the action a and its termination
by b. The scheduler therefore has to guarantee the cyclic behaviour a b when other
actions may occur before and after each occurrence of a and each occurrence of
b. This property can be defined inductively as follows.

Cycle(ab) & [b1££f A [a]Cycle(ba) A [—a]Cycle(ab)

Cycle(ba) % [alff A [bICycle(ab) A [—b]Cycle(ba)

Here we have left open the possibility that runs have finite length. Appropriate oc-
currences of (—)tt within the definition preclude it. An important issue is whether
these recursive definitions are to be interpreted with least or greatest fixed points,

SThis formula leaves open the possibility that a run has finite length. To preclude it, we add (—)tt at the
outer and inner levels.
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Exercises

or a mixture of the two. This depends upon whether intervening actions are al-
lowed to continue forever without the next a or b happening. If we prohibit this,
the cyclic property is expressed using least fixed points.

nY. [bIEf A [al(wZ.[alff A [B]Y A[—=D]Z) A [—a]Y
If we permit other actions to intervene forever, but insist that whenever a happens
b happens later, a mixture of fixed points is required.

VY. [bIff A [al(WZ. [a]f££ A [D]Y A [=D]Z) A [—alY
The length of the cycle can be extended. As an exercise the reader is invited to
define the formula for Cycle(abcd).

Another class of properties involves counting. An instance is that, in each run
there are exactly two a actions, given as follows.
uX. [al(uY. [a](vZ.[alff A [—]Z) A (=)tt A [—alY) A (=)tt A[—alX

Another property is that, in every run, there are at least two a actions. Even more
general is the property “in each run, a can only happen finitely often,” which
is expressed by uX.vY.[a]X A [—a]Y. However, there are also many counting
properties that are not expressible in the logic. A notable case is the following
property of a buffer, “the number of out actions never exceeds the number of in
actions.”

1. Define in uM the following properties
a. Eventually either tick happens or ® becomes true
b. In some run & is always true
¢. tick happens until ¢
d. tick happens until tock
e. tick happens unless tock happens
2. Prove that liveness with respect to actions cannot be expressed in terms of
liveness with respect to state, that is, as a formula of the form uZ. ®v ((—)ttA
[<]Z), where ® is a modal formula that does not contain fixed points, or the
free variable Z.
3. Define in uM the following properties.
a. In any run, a and b happen finitely often
b. If a, b and ¢ happen infinitely often, then ® is true infinitely often
¢. In any run, ® is true twice and W is true twice

4. Define fixed point formulas for the properties Cycle(abcd), which depend on
assumptions about intervening actions.

5. Prove that “the number of out actions never exceeds the number of in actions”
is not expressible in uM (see Sistla et al. [52] for a proof technique).
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A very rich temporal logic, modal mu-calculus, has been described. Formulas of
the logic can express liveness, safety, cyclic and other properties of processes. The
next step is to provide techniques for verification, for showing when processes
have, or fail to have, these features. In this chapter, we show that game theoretic
ideas provide a general framework for verification.

Techniques for verification

To show that a process has, or fails to have, a modal property we can appeal
to the inductive definition of satisfaction between a process and a formula. A
simple approach is goal directed. We start with the goal, E = ®7?, that is, “does
E satisfy ®?” and then continue reducing goals to subgoals until we reach either
“obviously true” or “obviously false” subgoals. The reduction of goals to subgoals
can proceed via rules that depend on the main connective of the formula in the
goal. For example, the goal

Goal: E E[K]®?

C. Stirling, Modal and Temporal Properties of Processes
© Springer Science+Business Media New York 2001
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reduces to the subgoals
Subgoal: FE=®?
for each F such that E —> F anda € K. Similarly, the next goal
Goal: EE®;VvD,?
reduces to
Subgoal : E = @, ?
or to
Subgoal : E =P, ?

This technique has the merit that the formula ¥ in any subgoal is a proper sub-
formula of the goal formula &, that is ¥ € Sub(®). The method thereby supports
the general principle that a proof of a property “follows from” subproofs of
subproperties.

Checking whether a process satisfies a M formula is not as straightforward.
The problem is what to do with fixed point formulas, for instance with the following
goal.

Goal: EEvvZ.®?

According to the semantic clause for vZ in Section 5.1 the goal reduces to the
subgoals

Subgoal : F =vig/z1 € ?

for each F € E when E is a subset of P(E). This requires us first to identify the
set P(E), and then to choose an appropriate subset E.

We can avoid calculating P(E) and choosing subsets of it by appealing to
approximants, as presented in Sections 5.5 and 5.6. The goal now reduces to the
subgoals

Subgoal : E =y vZ*. 9 ?

for each ordinal @. At this point we may use induction over ordinals. However,
we need to be careful with limit ordinals. If the formula contains embedded fixed
points, we may need to use simultaneous induction over ordinals. However, if E
is a finite state process, then the goal reduces to the single subgoal

Subgoal: E =y vZ". 9 ?

where n is the number of processes in the transition graph for E (or an overestimate
of its size). This allows one to reduce verification of a M property to an M property.
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However, it has the disadvantage that a proof of a property no longer follows from
subproofs of subproperties.

Discovering a fixed point set in general is not easy, and is therefore prone to
error. We therefore prefer simpler, and consequently safer, methods for checking
whether temporal properties hold. Towards this end, we first provide a different
characterisation of the satisfaction relation between a process and a formula in
terms of game playing.

Exercises 1. a. Develop a set of goal directed rules for checking M properties of finite
state processes. This can be viewed as a “top down” approach to property
checking.

b. Develop a “bottom up” approach to property checking of finite state pro-
cesses. That is, develop a method that when given processes that have
subformula properties, constructs the processes having the property itself.

¢. Give advantages and disadvantages of these two approaches, top down
and bottom up. Is there a way of combining their advantages?

2. a. Develop aset of goal directed rules for checking CTL properties of finite
state systems. Use your rules to show the following.

i. Ven = AG([tick]ff v AF(collect;)tt)
ii. C1 = AG({—)tt A [—tick]ff)
iii. Crossing |= EF(ccross)tt
iv. C1; = A(({(—)tt A [—tick]ff) U (tock)tt)

b. Develop a bottom up approach to CTL property checking of finite state
processes. That is, develop a method that when given processes that have
subformula properties, constructs the processes having the property itself.
Illustrate your technique on the examples above.

3. Present an inductive technique for showing when E =y vZ. ® that uses
induction on ordinals c.

6.2 Property checking games

We now present a game theoretic account of when a process E has a uM property
&, relative to a valuation V. We assume that the formula & is normal, as defined
in Section 5.2. Our intention is to present a game for property checking as we do
for bisimulation checking in Chapter 3, so that a process has a property whenever
player V has a winning strategy for the corresponding game.
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e if ®; = W; A Iy, then player R chooses a conjunct ¥; where i € {1, 2}: the
process Ej 1 is E; and @, is W;

e if ®; = W, v ,, then player V chooses a disjunct ¥; where i € {1, 2}: the
process Ej ;1 is E; and ®; is ¥;

e if ®; = [K]V, then player R chooses a transition E; = Ejy1witha e K
and d>j+1 is W

o if ®; = (K)W, then player V chooses a transition E; LN Ejy witha € K
and ¢j+1 is ¥
L] ifq)j =0Z.V,then d>j+1 is Z and Ej+1 is Ej

¢ if ®; = Z and the subformula of @, identified by Z is 0 Z. ¥, then ®,, is
W and Ej+1 is Ej

FIGURE 6.1. Rules for the next move in a game play

The “property checking game” Gy(E, ®), when V is a valuation, E is a process
and ® is a normal formula, is played by two participants, players R (the refuter)
and V (the verifier). Player R attempts to refute that E =y ®, whereas player V
wishes to establish that it is true.

A play of the game Gy(Ey, ®y) is a finite or infinite length sequence of the
form

(Eg, @) ...(Ey, ®p)...,

where each formula ®; is a subformula of @, that is ®; € Sub(Py), and each
process E; belongs to P(Ey). If part of aplay is (Eg, ®¢) . .. (E;, @), then the next
move, and which player makes it, depends on the main connective of the formula
@ ;. All the possibilities are presented in Figure 6.1. Players do not necessarily
take turns, as in the bisimulation game'. There is a duality between the rules for A
and Vv, and [K] and (K). Player R makes the move when the main connective is A
or [K], whereas player V makes a similar move when it is v or {(K'). The rules for
fixed point formulas use the fact that the starting formula ®; is normal, so each
fixed point subformula is uniquely identified by its bound variable. Each time the
current positionis (E, o Z. W), the next positionis (E, Z), and each time itis (F, Z)
the next position is (F, ¥), meaning the fixed point subformula Z identifies is, in
effect, unfolded once. Because there are no choices, neither player is responsible
for these moves.

'It would be straightforward, but somewhat artificial, to make players take turn, by adding extra null moves.
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Example 1  Consider the game G(C1, vZ. [tock]ff A (tick)Z)?. The positions are as follows.
(C1, vZ.[tock]ff A (tick)Z)
\
(€1, 2)
\:
(C1, [tock]ff A (tick)Z) R
v N
(C1, [tock]ff) (C1, (tick)Z) V

\:
(C1, Z)

The arrows indicate which of the positions can lead to a subsequent position, and
the label at a position indicates what player is responsible for the move. The position
(C1, Z) is repeated. Hence, this game has only finitely many different positions.
The “game graph” is the graphical presentation of the positions as above. A play
of the game can be viewed as the sequence of positions that a token passes through
as the players move it around the game graph. For instance, the single infinite play
repeatedly cycles through (C1, Z).

Example 2  Consider the counter Ct of Figure 1.4, which is a simple infinite state system and
the game G(Cto, 1w Z. [up]Z). The positions are very straightforward.
(Cty, uZ.[uplZ)
\
(Cto, 2)
1
(Cto, [up]Z) R
\
(Cty, 2)
1

(Cti’ Z)

2If a game does not depend on a valuation, we drop this index.
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Player R wins
1. The play is (Ey, ®¢)...(E,, ®,) and
o &, =ff or
e &, = Z and Z is free in ¥y and E, & V(Z), or
e &, =(K)Vand{F : E, —> Fandac K} =0
2. The play (Ep, ®¢)...(E,, ¥,)... has infinite length and the unique vari-

able X, which occurs infinitely often and which subsumes all other variables
occurring infinitely often, identifies a least fixed point subformula uX. W

Player V wins
1. The play is (Eo, ®¢)...(E,, ®,) and
o &, =tt,or
e &, = Zand Z is free in &g and E, € V(Z), or
e &, =[K|Wand{F : E, —> Fandac K} =0
2. The play (Ep, ®¢)...(E,, P,)... has infinite length and the unique vari-

able X, which occurs infinitely often and which subsumes all other variables
occurring infinitely often, identifies a greatest fixed point subformula vX. ¥

FIGURE 6.2. Winning conditions

The result is a game with an infinite number of different positions.

Next, we define when a player is said to win a play of a game. The winning
conditions are presented in Figure 6.2. The refuter wins if a blatantly false position
isreached, such as (E,, Z), where Z is free in ¢ and E,, [~y Z. The verifier wins
if a blatantly true position is reached. For instance, if the play reaches the position
(C1, [tock]ff) in example 1 because C1 has no tock transitions.

The second winning condition in Figure 6.2 identifies the winning player in an
infinite length play. The winner depends on the “outermost fixed point” subformula
that is unfolded infinitely often: if it is a least fixed point subformula, player R
wins and if it is a greatest fixed point subformula, player V wins. Because there is
only one fixed point subformula in the only infinite play of example 1, and itis a
greatest fixed point, player V wins that play. Similarly, player R wins the only play
of example 2 because the single fixed point variable Z identifies a least fixed point
subformula. If there is more than one fixed point variable occurring infinitely often,
then we need to know which of them is outermost. The definition in condition 2 is
in terms of subsumption, as defined in definition 3 of Section 5.2. If X identifies
01X. ¥ and Z identifies 0, Z. ¥’, then X subsumes Z if 0, Z. W’ € Sub(o; X. V). In
the case of a game involving a formula o1 X1. 02 X>. ... 0, X,.®(X1, ..., X,),any
X; may occur infinitely often in an infinite length play. However, there is just one
X ; that occurs infinitely often and that subsumes any other X; occurring infinitely
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Proposition 1

Theorem 1

often. This X ; is the outermost fixed point subformula and it decides which player
wins the play. Proposition 1 makes precise this observation.

If (Ey, ®¢)...(E,, ®,)...Iis an infinite length play of the game Gy(Ey, ®y), then
there is a unique variable X that

1. occurs infinitely often, that is for infinitely many j, X = ®;, and

2. if Y also occurs infinitely often, then X subsumes Y .

Proof. Leto X;.Vy,...,0X,. ¥, beallthe fixed point subformulas in Sub(Py) in
decreasing order of size®. Therefore ifi < j,then X ; cannot subsume X;. Consider
the next position (E 41, ® ;1) after (E;, ®;) inaplay: if ®; is not a variable, then
|®;+1] < |®;|. Because each subformula has finite size, an infinite length play
must proceed infinitely often through variables belonging to { X, . . ., X, }. Hence,
there is at least one variable occurring infinitely often. If a subpart of the play has
the form

(En, Xi)...(Ex, Xj)...(Em, Xi) ... (E1, Xj)

and X; # X, then either X; subsumes X; or X; subsumes X;, but not both; see
Proposition 1 of Section 5.2. Consequently, by transitivity of subsumption, there
is exactly one variable X; occurring infinitely often and subsuming any other X ;,
which also occurs infinitely often. O

A strategy for a player is a family of rules telling the player how to move.
It suffices (as with the bisimulation game of Chapter 3) to consider history-free
strategies, whose rules do not depend upon previous positions in the play. For
player R, rules have the following form.
e at position (E, ®; A ®,) choose (E, ;) wherei = 1lori =2

e at position (E, [K]®P) choose (F, ¢) where E 2> FandaeK
For the verifier rules have a similar form.

e at position (E, ®; vV ®,) choose (E, ®;) wherei = 1ori =2

e at position (E, (K)®) choose (F, ®) where E 2> Fandae K
A player uses the strategy 7 in a play provided all her moves in the play obey
the rules in 7. The strategy 7 is winning if the player wins every play in which
she uses 7. The following result provides an alternative account of the satisfaction
relation between processes and formulas.

1. E |=v © iff player V has a history-free winning strategy for Gy(E, ®).
2. E -y @ iff player R has a history-free winning strategy for Gy(E, ®).

The proof of Theorem 1 is deferred until the next section.

3The size of a formula ®, written |®/, is the number of connectives within it.
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FIGURE 6.3. A simple process

Property checking games can be presented graphically, as in examples 1 and
2, where all the possible positions (those that are reachable in some play) are
represented, together with which player is responsible for moving from a position,
and where she is able to move to. Player V has a winning strategy for the game
in example 1 and player R has a winning strategy for the game in example 2. In
both cases the strategy consists of the empty set of rules (since the winning players
have no choices).

Consider the simple process D in Figure 6.3, and the following formula .

W = pY.vZ. [al((b)tt V V) A Z)

D fails to have the property W; see example 2 of Section 5.6. The refuter has
a winning strategy for the game G(D, ¥). The full game graph is pictured in
Figure 6.4. The node labelled 16, (D, {b)tt), is a winning position for the refuter
and node 9, (D”, tt), is a winning position for the verifier. Player R’s winning
strategy consists of the following two rules.

at 14, (D, ({b)tt VY) A Z), choose 15, (D, (b)tt vV Y)
at 6, (D, ({b)tt vV Y) A Z), choose 12, (D', Z)

Play will proceed from node 6 to node 12, and from node 14 tonode 15. Atnode 15,
player V either loses immediately by moving to 16 or returns to node 2. If player
V always chooses node 2 when she is at 15, the play will be infinite. Although the
two variables Z and Y occur infinitely often in this play (at nodes 2, 4 and 12), the
refuter wins because Y subsumes Z and Y abbreviates a least fixed point formula.

In this graphical account, the positions represent the board of the game, and a
token at a position represents the current position. A play is then a movement of
the token around the board, with the responsible player at a position choosing the
next position. An alternative presentation is to keep the process separate from the
formula. Figure 6.5 is a picture of the above formula . Now we can think of
a position as a pair of tokens, one that moves around the transition graph of the
process, and the other that moves around the graph of the formula that is always
finite. For example, the position (D, ({(b)tt V Y) A Z) would be represented with a
token over D in Figure 6.3 and a token over 6 of Figure 6.5. It is the formula that
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O, uY.vZ.[al(((b)tt VY)A 2)) 9:
D,Y) 10:
(D, vZ.[al(((b)tt VY) A Z)) 11:

D, Z2) 12:
O, [al(((b)tt vV Y) A Z)) 13:
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