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Preface

This book is the outcome of a decade’s research into a specific architecture
and associated learning mechanism for an artificial neural network: the ar-
chitecture involves negative feedback and the learning mechanism is simple
Hebbian learning. The research began with my own thesis at the University of
Strathclyde, Scotland, under Professor Douglas McGregor which culminated
with me being awarded a PhD in 1995 [52], the title of which was “Negative
Feedback as an Organising Principle for Artificial Neural Networks”.

Naturally enough, having established this theme, when I began to super-
vise PhD students of my own, we continued to develop this concept and this
book owes much to the research and theses of these students at the Applied
Computational Intelligence Research Unit in the University of Paisley. Thus
we discuss work from

• Dr. Darryl Charles [24] in Chapter 5.
• Dr. Stephen McGlinchey [127] in Chapter 7.
• Dr. Donald MacDonald [121] in Chapters 6 and 8.
• Dr. Emilio Corchado [29] in Chapter 8.

We briefly discuss one simulation from the thesis of Dr. Mark Girolami [58]
in Chapter 6 but do not discuss any of the rest of his thesis since it has
already appeared in book form [59]. We also must credit Cesar Garcia Osorio,
a current PhD student, for the comparative study of the two Exploratory
Projection Pursuit networks in Chapter 8. All of Chapters 3 to 8 deal with
single stream artificial neural networks.

Chapters 9-14 discuss research into dual stream artificial neural networks
at the Applied Computational Intelligence Research Unit in the University
of Paisley. This work has resulted in four PhDs [60, 67, 108, 113]. I must
therefore acknowledge the work done by:

• Dr. Pei Ling Lai [113] in Chapters 9, 10 and 11.
• Dr. Jos Koetsier [108] in Chapters 12 and 14.
• Dr. Zhenkun Gou [60] in Chapters 9, 11 and 13.
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• Dr. Ying Han [67] in Chapters 12, 13 and 14.

Without their assistance this book could not have been written. We must also
credit current PhD student, Emilio Corchado (yes, his second PhD) with some
of the results in Chapter 14. We must also acknowledge other research students
whose work does not form part of this book, but whose overall contribution
to the life of the group was invaluable: these include Dr. Shang-Jen Chuang,
Dr. Tzai-Der Wang, Dr. Juan Corchado, Dr. Danny Livingstone and Dr. Lina
Petrakieva.

This book also has sections which were used for undergraduate teaching at
the University of Paisley and I must credit these undergraduates with inspiring
me to write more clearly.

Needless to say, we cannot cover all the work in these theses in a single
book and so the interested reader is invited to consult the originals for more
detailed description of any work which commands his or her interest.

Colin Fyfe
Paisley, 2004.



1

Introduction

We report, in this book, on the last decade’s research into a single architec-
ture of artificial neural networks. The research first identified the fact that
a negative feedback artificial neural network using simple Hebbian learning
had important statistical properties in that it could self-organise in order to
identify the principal component filters of a data set. For readers unfamiliar
with these terms, we will discuss them in more detail in Chapter 2. By adding
bells and whistles to the basic architecture, we have discovered quite a bit
about this very powerful architecture and have brought much of our research
together in this single book. Since the book brings together the work of vari-
ous PhD theses, it cannot give all the details which appear in these theses but
seeks to emphasise the common theme underlying the research - the negative
feedback network.

In order to make the book readable as a single entity, some of the nomen-
clature has been changed from the original so that a uniform notation is used
throughout the book; for example, in Chapter 4, we use inputs x, outputs y
and residuals e, not inputs x, outputs z and residuals y which is how the work
first appeared in [51] and [52]. However, these are presentation changes which
do not affect the substance of the research. More important is the develop-
ment of concepts which takes place throughout the book and the chapters are
deliberately organised in such a way as to reflect our growing understanding
of the capabilities of the negative feedback network.

Similarly, we first became aware of negative feedback networks from the
PhD thesis of Mark Plumbley [153] whose work is briefly discussed in Ap-
pendix A. Plumbley used the biological term “interneuron”; we initially
adopted this term and early papers continued to use it for some years, but
we now, in this book, consistently use “output neuron” for these neurons. We
remain interested in them as models of biological information processing but
prefer now to discuss their relevance to engineering problems rather than their
biological inspirations.
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1.1 Artificial Neural Networks

An artificial neural network is typically a software simulation of the hardware
on which we run. It is difficult to equate the simple machines which we have so-
far been able to create with the sophisticated machines between our ears, yet,
nevertheless, we are making advances in understanding what such machines
can do and what are the essential features of such machines. An artificial
neuron receives a number of floating point values either from the environment
or from other neurons. These floating point values compose a vector of inputs
which are modulated by being filtered by a set of weights. The weights model
synaptic efficiencies, the synapse being the connection between one neuron and
the next. Thus typically in this book, we will have a set of inputs, x, which
will reach the ith neuron through a set of weights, wi to give an activation,
yi, at the ith neuron.

yi = wi.x =
N∑

j=1

wijxj (1.1)

where we have assumed there are N inputs. Even allowing for the fact that
we often use nonlinear functions of the activations, we see that a single neu-
ron is a very simple processor. The power of artificial neural networks comes
from using very many neurons acting in concert so as to produce powerful
information processors.

It should be clear that the weight values, wij are crucial in that they
determine the magnitude of the effect of the signal in the jth input stream
reaching the ith output neuron. The most interesting aspect of neural networks
is how to find the best values of wij so that the most relevant information is
passed on. In my opinion, the most interesting aspect of this most interesting
aspect is finding rules so that an artificial neural network can self-organise so
that the most relevant information can be determined automatically. As will
become clear throughout this book, different decisions as to what constitutes
relevance leads to different learning rules in artificial neural networks. However
throughout this book we will use unsupervised learning - learning which does
not use a teacher signal to learn from a data set. We know that such learning
is both possible and powerful since each of us uses it every day.

Therefore, most of the models which we will discuss in this book will be
models which retain biological plausibility - we will attempt to keep within
the sphere of models which could correspond to a model possible in vivo.
Such models will attempt to use only local information to self-organise; there
will be no globally collected information available throughout the network.
There will be no very tight dependencies or constraints on time or space in
the models. In fact, all models will be based on variations of what is known
as Hebbian learning (Chapter 2), which is believed to underpin much of our
learning.

Having said that, as noted in the Preface, this work is the outcome of
several PhD theses which were undertaken in departments of Computer Sci-
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ence and therefore have to model the concerns of that discipline. Thus, there
is an on-going need to make models of artificial neural networks which have
valuable engineering applications. Many of the networks we develop are pow-
erful data analysis machines capable of data/text mining, revealing hidden
structure, identifying outliers, clustering data sets and finding interesting low
dimensional projections of high dimensional data sets.

Often in artificial neural network research, we create artificial data and run
our networks on them before attempting experiments with real world data.
The advantages of artificial data are

1. We have more control over our data. Real world data is often noisy with
outliers and, in addition, we are also relying on the efficacy of our sampling
methods.

2. We can more easily understand our results. We will create data with the
specific aim of aiding our understanding of the network.

3. We know the answers we hope to get from our network. Our data has
been specifically created to help test a particular hypothesis.

4. We can control the magnitude of our data set. We will use a limited
number of representative samples.

While we cannot have our simulations prove our theories using artificial data,
we can certainly use the artificial data to prove that a theoretical argument
is incorrect [154]. Perhaps a more mundane argument is also often used: if
we cannot have our networks converge to the correct values on nice, clean
artificial data, what chance is there on real, noisy data sets with missing
values, outliers, etc. However, clearly there is an inherent danger in this in
that each researcher is liable to use data sets in which his/her own algorithm
is seen in the best light. Therefore, both real and artificial data sets have their
place in data analysis.

1.2 The Organisation of this Book

This work is in two parts: the first part deals with methods which extract
information from a single stream of data using negative feedback and Hebbian
learning while the second part deals with methods for extracting information
which is shared over two data streams simultaneously.

Chapter 2 sets the scene for the remainder of the book. It provides a short
review of Hebbian learning, Information Theory and Principal Components
Analysis, three of the pillars on which the book is based. We also discuss four
artificial neural networks which perform Principal Component Analysis. Fi-
nally, we introduce Independent Component Analysis and discuss one seminal
artificial neural network which performs ICA.

Chapter 3 introduces the negative feedback network, illustrates its capa-
bilities on some simple data sets and investigates a number of variations of
the network which perform a Principal Component Analysis of the data. We
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also change the learning rules of the network so that it now performs a Minor
Component Analysis and use this on two simple problems. We have opted to
put the more theoretical aspects of this chapter into a separate section since
much of this is also standard fare in many textbooks and we wish to keep the
exposition of the basic network clear.

Chapter 4 investigates under what conditions lateral connections which
also use Hebbian learning to self-organise can be used to force convergence
to the Principal Component filters. Two main methods introduce asymmetry
into the network but it is shown that we require specific asymmetries to force
convergence to the actual principal components.

Chapter 5 introduces a constraint to the basic network introduced in Chap-
ter 3: the constraint involves either keeping the weights non-negative or keep-
ing the outputs non-negative. We discuss the work in this Chapter both in
terms of a constrained Principal Component Analysis and in terms of Factor
Analysis. We illustrate the network’s convergence on a standard problem in-
volving the extraction of a single cause from a data set composed of a number
of interfering causes before using the network on real data sets.

Chapter 6 introduces a variation of the network which performs Ex-
ploratory Projection Pursuit, a technique for finding structure in high dimen-
sional data sets. We derive several functions which seek for specific types of
structure in data sets and illustrate the network’s properties on both artificial
and real data.

Chapter 7 introduces several variations on the basic network which perform
a topology-preserving quantisation of data sets. We show that these methods
find quite different quantisations from Kohonen’s Self-organising Map (SOM)
[111].

Chapter 8 introduces another Exploratory Projection Pursuit network
from a different perspective to that discussed in Chapter 6. The change to
the basic network is first discussed in terms of its connection to Principal
Component Analysis before we discuss its application to Exploratory Projec-
tion Pursuit. We compare the algorithm in this Chapter with that of Chapter
6 and then combine them in an algorithm which seems to get the best of all
worlds.

The second part of this book deals with dual stream architectures.
Chapter 9 introduces two artificial neural networks which perform Canon-

ical Correlation Analysis (CCA), a statistical method for extracting informa-
tion from two data streams. Simulations on real and artificial data sets sets
the scene for the remainder of the book. In Chapter 10, we digress slightly to
investigate alternative derivations of similar learning rules for artificial neural
networks from a variety of perspectives: we show how a probabilistic formu-
lation of the problem enables us to derive a robust form of the learning rules
and how a previous researcher’s algorithm can be modified so that it too can
be seen to be a member of the same family of algorithms.

Yet such networks are perhaps no more than interesting oddities: we have
after all several existing methods of performing CCA. Therefore in Chapter 11,
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we introduce nonlinearities in several ways to the existing networks and show
that the resulting networks can do more than simple linear CCA. In particular,
we use the resulting networks for the “blind separation of sources”. In Chapter
13, we consider the problems associated with multicollinearity which occurs
when there exist internal correlations within a data stream. Several algorithms
for solving this are formed and the best used to extract meaningful structure
from a functional data set.

In Chapter 12, we extend a single stream method which looks for higher
order structure in a single data set so that the resulting method, Exploratory
Correlation Analysis, can find higher order structure shared between two data
streams. We repeat the process with the other exploratory single stream
method from Chapter 8. A comparison of the two methods of this chapter
gives a revealing insight into a family of algorithms which vary in their re-
sponses to twinned information and higher order information.

Readers familiar with the background can skip Chapter 2, however we
recommend that all readers at least skim Chapter 3 in Part I and Chapter
9 in Part II. The other Chapters are designed to be mainly self-contained
though towards the end of Chapter 8, a knowledge of Chapter 6 is necessary
and both of these chapters are precursors to Chapter 12.

In Chapter 14, we discuss the single stream method of Principal Curves.
By twinning the Principal Curves method we create matching curves in two
data spaces simultaneously each of which has something to say about the
information in the other. The curves are used in a forecasting role and various
extensions of the original algorithm are given.

Chapter 15 speculates on what the future might hold for this negative
feedback architecture and where new research in this area might lead.

We have five appendices:

1. Appendix A discusses other negative feedback models.
2. Appendix B discusses other models which deal with multiple cause data

(Chapter 5).
3. Appendix C discusses other models which deal with independent compo-

nent analysis.
4. Appendix D discusses other models of dual stream approaches.
5. Appendix E collects together the various data sets which have been used

throughout the book.

Finally a word on notation. We have used a boldface font with lowercase
symbols for vectors e.g. x,w etc., and uppercase symbols such as W for ma-
trices. Sometimes we wish to identify a particular column of a matrix and to
do this we have used the convention that the ith column of W is called wi; if
we go on to identify particular elements of this column vector, we use wij .
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Single Stream Networks
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—————————————————————————————————

Chapters 2 to 8 develop artificial neural networks which self-organise on
a stream of data which is dealt with as an holistic entity i.e.even though we
may be seeking independent factors (Chapter 5) or independent components
(Chapters 6 or 8), we treat all the input data at any one time as a single
entity. This is in strict contrast to every network of Chapters 9 to 14 in which
we specifically consider two or more distinct streams of data at each instant
in time. Single stream artificial neural networks are by far the most common
in the literature.

We set the scene in Chapter 2 by introducing a number of topics which
are used throughout the book, particularly Principal Component Analysis
and Artificial Neural Networks which find principal components, Information
Theory and Independent Components Analysis. In this Chapter, we discuss
feedforward neural networks which have a feedback element in their learning
rules while in subsequent chapters, all networks have a specific feedforward
stage followed by a feedback stage followed by a phase during which weights
are updated using simple Hebbian learning.

We have a very gentle progression of ideas throughout these chapters:

• In Chapter 3, we introduce the basic negative feedback network and show
analytically and experimentally that it self-organises to find the principal
components of input data. Any residual left at the inputs contains the
minimum squared error with which it is possible to be left, after using a
linear network to compress the data. We show various extensions of the
basic network, perhaps the most interesting of which is that having differ-
ent feedforward weights than feedback weights. Subsequently, in Chapter
4, we use trainable lateral connections to ensure convergence to the actual
principal components (rather than to the subspace spanned by the prin-
cipal components). In Chapters 5 onwards, we tend mostly to ignore the
fact that we may have different feedforward and feedback rules to make
the exposition simpler; nevertheless, most of the networks described in this
part will function very well with such separate trainable weights.

• We use the networks developed in Chapters 5, 6 and 8 to search for inde-
pendence. The first of these chapters develops a network which we relate to
the statistical technique of Factor Analysis. The second and third chapters
develop networks which we link to the statistical technique of Exploratory
Projection Pursuit. The networks in Chapter 5 find underlying causes in a
data stream when such causes have been OR-ed together. One of the most
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interesting findings in that chapter is the fact that noise may be used to
determine the number of underlying factors in a data set in an entirely
automatic manner. Since the PhD theses upon which this discussion was
based were Computer Science rather than neurology, the relevance to bio-
logical information processing which is inherently noisy is not stressed yet
it is nevertheless obvious. The Exploratory Projection Pursuit network in
Chapter 6 predates that of Chapter 8 and recent experiments have tended
to demonstrate that it is somewhat superior. However, it is interesting that
these two techniques can be easily merged so that at the end of Chapter
8 a combined algorithm is developed. The networks in Chapters 6 and 8
are both used for Independent Component Analysis.

• In Chapter 7, we develop three negative feedback networks which self-
organise in order to preserve some aspects of the topology of the data.
The idea of topology preservation is somewhat ubiquitous in early sensory
information processing but again, since the algorithms were developed in a
Computer Science environment rather than a Neurology department, the
connection with biological neural networks is merely mentioned and not
stressed.

While we have written this book as though these topics were independent
of one another, in practice various researchers have combined two or more
of these techniques though, again to make the exposition clearer, we have
not discussed many such combinations in this book. However, later PhD the-
ses have inevitably built on those which have predated them and interested
readers may consult the later theses for examples of such combinations.

To make clear the distinction between these chapters and those of Part II,
in this Part we are dealing with a single stream of input data whereas in Part
II, we deal with two sets of inputs simultaneously at each instant of time.
We will see later that many of the methods and analyses developed in Part I
can also be usefully deployed in the context of dual stream networks but we
strictly adhere to the single stream of data at all times in Part I.



2

Background

In this chapter, we introduce

• Hebbian learning and discuss its ability to perform statistical operations;
• Information Theory and the Gaussian distribution very briefly;
• Principal Component Analysis (PCA);
• a brief survey of the major most-popular Artificial Neural Networks(ANNs)

which perform a PCA.

We will not, in this chapter, provide proofs of convergence of the various nets
discussed since such proofs are very similar to those we use in Chapter 3 to
prove convergence of the negative feedback network and are available in any
case in many other good textbooks (e.g.[71, 73]). We begin by outlining the
simplest possible ANNs and review a very simple unsupervised learning rule.

2.1 Hebbian Learning

The aim of unsupervised learning is to present a neural net with raw data and
allow the net to make its own representation of the data - hopefully retaining
all information which we humans find important. Unsupervised learning in
neural nets is generally realised by using a form of Hebbian learning which is
based on a proposal by Donald Hebb [72] who wrote:

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

Neural nets which use Hebbian learning are characterised by making the
activation of a unit depend on the sum of the weighted activations which feed
into the unit. They use a learning rule for these weights which depends on the
strength of the simultaneous activation of the sending and receiving neurons.
These conditions are usually written as
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yi =
∑

j

wijxj (2.1)

and ∆wij = ηxjyi (2.2)

the latter being the learning mechanism. Here yi is the output from neuron
i, xj is the jth input, and wij is the weight from xj to yi. η is known as the
learning rate and is usually a small scalar which may change with time. Note
that the learning mechanism says that if xj and yi fire simultaneously, then
the weight of the connection between them will be strengthened in proportion
to their strengths of firing. However, we will not, as does Kosko [112], rename
the Hebbian learning rule when an activation function is used. i.e.when

yi = g

⎛
⎝∑

j

wijxj

⎞
⎠ (2.3)

and ∆wij = ηxjyi (2.4)

for some function, g(), we will still call this Hebbian learning.
Substituting (2.1) into (2.2), we can write the Hebb learning rule as

∆wij = ηxj

∑
k

wikxk = η
∑

k

wikxkxj (2.5)

which is equivalent to
d

dt
W (t) ∝ CW (t) (2.6)

where Cij is the correlation coefficient calculated over all input patterns
between the ith and jth terms of the inputs and W (t) is the matrix of
weights at time t. In moving from the stochastic equation (2.5) to the av-
eraged differential equation (2.6), we must place certain constraints on the
process, particularly on the learning rate η. These are usually taken to be
ηk ≥ 0,

∑
η2

k < ∞,
∑

ηk = ∞ (see e.g.[129]). The advantage of this formula-
tion is that it emphasises the fact that the resulting weights depend on the
second order statistical properties of the input data. A review of the impor-
tance of this aspect of the Hebbian learning rule is given in Section 2.3.

Because of these statistics-based properties, Hebbian learning has found
applications in a number of early associative-type memories e.g.Steinbuch’s
Learning Matrix [173], Anderson’s linear associative memory [2], Kohonen’s
Adaptive Associative Memory [109] and the model of Willshaw et al [184].

However, a major difficulty with this learning rule is that unless there is
some limit on the growth of the weights, they tend to grow without bound:
we have a positive feedback loop - a large weight will produce a large value of
y (2.1) which will produce a large increase in the weight (2.2). It is instructive
to follow e.g.[73], in examining the Hebb rule’s stability:

Recall first that a matrix A has an eigenvector x with a corresponding
eigenvalue λ if
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Ax = λx

In other words, multiplying the vector x or any of its multiples by A is
equivalent to multiplying the whole vector by a scalar λ. Thus the direction
of x is unchanged — only its magnitude is affected.

Consider a one output neuron network and assume that the Hebbian learn-
ing process does cause convergence to a stable direction, w∗; then if wk is the
weight value linking xk to y,

0 = E(∆w∗
i ) = E(yxi) = E

⎛
⎝∑

j

wjxjxi

⎞
⎠ =

∑
j

Rijwj

where E() indicate the expected value taken over the distribution and R is the
correlation matrix of the distribution. Now this happens for all i, so Rw = 0.
The correlation matrix, R, is a symmetric, positive semidefinite matrix and so
all its eigenvalues are non-negative. But the above formulation shows that w∗

must have eigenvalue 0. Now consider a small disturbance, ε, in the weights
in a direction with a nonzero (i.e. positive) eigenvalue. Then

E(∆w∗) = R(w∗ + ε) = Rε = λε > 0

i.e. the weights will grow in any direction with nonzero eigenvalue (and such
directions must exist). Thus there exists a fixed point at W = 0, but this is
an unstable fixed point. In fact, it is well known that, in time, the weights of
nets which use simple Hebbian learning tend to be dominated by the direction
corresponding to the largest eigenvalue of the correlation matrix. We will often
implicitly discuss zero mean data in this book (it is simple to make this a valid
assumption for any data set) and so we will equate the correlation matrix of
a data set with its covariance matrix.

We will later discuss in detail one of the major ways of limiting this growth
of weights while using Hebbian learning and review its important side effects.
However, we begin with short reviews of three subjects which will be important
in the development of this book: Information Theory, Principal Component
Analysis and Independent Component Analysis.

2.2 Quantification of Information

Shannon [168] devised a measure of the information content of an event in
terms of the probability of the event happening. He wished to parameterise
the intuitive concept that the occurrence of an unlikely event tells you more
than that of a likely event. He defined the information in an event i, to be
− log pi where pi is the probability that the event labelled i occurs.

Using this, we define the entropy (or uncertainty or information content)
of a set of N events to be
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H = −
N∑

i=1

pi log pi

That is, the entropy is the information we would expect to get from one
event happening where this expectation is taken over the ensemble of possible
outcomes.

For a pair of random variables X and Y , if p(i, j) is the joint probability
of X taking on the ith value and Y taking on the jth value, we define the
entropy of the joint distribution as

H(X, Y ) = −
∑
i,j

p(i, j) log p(i, j)

Similarly, we can define the conditional entropy (or equivocation or re-
maining uncertainty in X if we are given Y ) as:

H(X|Y ) = −
∑
i,j

p(i, j) log p(i|j)

Shannon also showed that if X is a transmitted signal and Y is the received
signal, then the information which receiving Y gives about X is

I(X;Y ) = H(X) − H(X|Y ) (2.7)
or I(X;Y ) = H(Y ) − H(Y |X) (2.8)
or I(X;Y ) = H(X) + H(Y ) − H(X, Y ) (2.9)

Because of the symmetry of the above equations, this term is known as the
mutual information between X and Y .

The channel capacity is defined to be the maximum value over all possible
values of X and Y of this mutual information.

The basic facts in which we will take an interest are the following:

• Because the occurrence of an unlikely event has more information than
that of a likely event, it has a higher information content.

• Hence, a data set with high variance is liable to contain more information
than one with small variance.

• A channel of maximum capacity is defined by 100% mutual information
i.e. I(X; Y ) = H(X)

2.2.1 Entropy and the Gaussian Distribution

Let us attempt to find the distribution which has the greatest entropy. This
task means little in this form since we can merely keep adding points to the
distribution to increase the uncertainty/entropy in the distribution. We must
constrain the problem in some way before it is soluble.

Haykin [71] puts it this way:
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With the differential entropy of a random variable X defined by

h(X) = −
∫ ∞

−∞
f(x) log f(x)dx (2.10)

find the probability density function f(x) for which h(X) is a maxi-
mum, subject to the two constraints,∫ ∞

−∞
f(x)dx = 1 (2.11)

and ∫ ∞

−∞
(x − µ)2f(x)dx = σ2 = a constant. (2.12)

where µ is the mean of the distribution and σ2 is its variance.

The first constraint simply ensures that the function f() is a proper probability
density function; the second constrains the variance of the distribution. We
will show that the distribution with greatest entropy for a given variance is the
Gaussian distribution: there is more uncertainty/information in a Gaussian
distribution than in any other comparable distribution.

So we have an optimisation problem (maximise the entropy) under certain
constraints. We incorporate the constraints into the optimisation problem
using Lagrange multipliers so that we wish to find the maximum of

−
∫ ∞

−∞
f(x) log f(x)dx + λ1

∫ ∞

−∞
f(x)dx + λ2

∫ ∞

−∞
(x − µ)2f(x)dx

= −
∫ ∞

−∞
{f(x) log f(x) − λ1f(x) − λ2(x − µ)2f(x)}dx

where λ1 and λ2 are the Lagrange multipliers. This maximum is achieved
when the derivative of the integrand with respect to the function f(x) is zero.
i.e. when

0 = −1 − log f(x) + λ1 + λ2(x − µ)2

log f(x) = −1 + λ1 + λ2(x − µ)2 (2.13)
f(x) = exp(−1 + λ1 + λ2(x − µ)2)

Substituting this into (2.11) and (2.12) gives∫ ∞

−∞
exp(−1 + λ1 + λ2(x − µ)2)dx = 1∫ ∞

−∞
(x − µ)2 exp(−1 + λ1 + λ2(x − µ)2)dx = σ2

which gives us two equations in the two unknowns λ1 and λ2 which can be
solved to give



16 Hebbian Learning and Negative Feedback Networks

λ1 = 1 − log(
√

2πσ2)

λ2 = − 1
2σ2

which can be inserted in (2.13) to give

f(x) =
1√
2πσ

exp
(
− (x − µ)2

2σ2

)
(2.14)

the probability density function of a Gaussian distribution. When we use this
to calculate the entropy of the Gaussian distribution we get

h(X) =
1
2
{1 + log(2πσ2)} (2.15)

In summary, we have shown the following

1. The Gaussian distribution is the distribution with the greatest entropy
for a given variance: if X and Y are both random variables with a given
variance σ2 and if X is a Gaussian random variable, then

h(X) ≥ h(Y ) (2.16)

2. The entropy of a Gaussian random variable is totally determined by its
variance. We will later see that this is not true for other distributions.

2.3 Principal Component Analysis

Inputs to a neural net generally exhibit high dimensionality i.e.the N input
lines can each be viewed as one dimension so that each pattern will be repre-
sented as a coordinate in N -dimensional space.

A major problem in analysing data of high dimensionality is identifying
patterns which exist across dimensional boundaries. Such patterns may be-
come visible when a change of basis of the space is made, however an a priori
decision as to which basis will reveal most patterns requires fore-knowledge
of the unknown patterns.

A potential solution to this impasse is found in Principal Component Anal-
ysis (PCA) which aims to find the orthogonal basis which maximises the vari-
ance of the projection of the data onto the basis for a given dimensionality
of basis. The usual tactic is to find the filter which accounts for most of the
data’s variance; this becomes the first basis vector. One then finds the direc-
tion which accounts for most of the remaining variance; this is the second basis
vector and so on. If one then projects data onto the Principal Component di-
rections, we perform a dimensionality reduction which will be accompanied
by the retention of as much variance in the data as possible.

In general, it can be shown [93] that the kth basis vector from this process
is the same as the kth eigenvector of the covariance matrix, C, where
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cij = E[(xi − E(xi))(xj − E(xj))]

For zero-mean data, the covariance matrix is equivalent to a simple correlation
matrix. Of course, it is difficult to show high-dimensional data on these pages
but a two-dimensional example is shown in Fig. 2.1.

Fig. 2.1. The first principal component direction of a two-dimensional data cloud.

Now, if we have a set of weights which are the eigenvectors of the input
data’s covariance matrix, C, then these weights will transmit the largest values
to the outputs when an item of input data lies on those eigenvectors with the
largest eigenvalues. Thus, if we can create a situation in an artificial neural
network where one set of weights (into a particular output neuron) converges
to the first eigenvector (corresponding to the largest eigenvalue), the next set
of weights converges to the second eigenvector, and so on, we will be in a
position to maximally recreate at the outputs the projections with the largest
variance in the input data.

Note that representing data as coordinates using the basis found by a
PCA means that the data will have greatest variance along the first principal
component, the next greatest variance along the second, and so on. While it
is strictly only true to say that information and variance may be equated in
Gaussian distributions, it is a good rule-of-thumb that a direction with more
variance contains more information than one with less variance. Thus, PCA
provides a means of compressing the data whilst retaining as much information
within the data as possible. It can be shown that if a set of Gaussian data
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has eigenvalues {λ1, λ2, ..., λn} and if we represent the data in coordinates on
a basis spanned by the first m eigenvectors, the loss of information due to the
compression is

E =
n∑

i=m+1

λi (2.17)

Artificial neural networks and PCA come together in two ways:

1. There are some networks which use Principal Components as an aid to
learning e.g.[82],

2. Some networks have been explicitly designed to (and in fact, do) calculate
Principal Components.

It is the latter in which we are most interested.

2.4 Weight Decay in Hebbian Learning

As noted in Section 2.1, if there are no constraints placed on the growth of
weights under Hebbian learning, there is a tendency for the weights to grow
without bounds. It is possible to renormalise weights after each learning epoch;
however, this adds an additional operation to the network’s processing.

Another possibility is to allow the weights to grow until each reaches some
limit [119] e.g. have an upper limit of w+ and a lower limit of w− and clip the
weights when they reach either of these limits. Clearly a major disadvantage
of this is that if all weights end up at one or other of these limits1 the amount
of information which can be retained in the weights is very limited.

A third possibility is to prune weights which do not seem to have impor-
tance for the network’s operation. However, this is an operation which must
be performed using nonlocal knowledge: typically which weights are of much
smaller magnitude than their peers.

Hence, interest has grown in the use of decay terms embedded in the
learning rule itself (e.g. [126], Chapter 17). Ideally such a rule should ensure
that no single weight should grow too large while keeping the total weights
on connections into a particular output neuron fairly constant. One of the
simplest forms of weight decay was developed as early as 1968 by Grossberg[61]
and was of the form

dwij

dt
= ηyixj − wij (2.18)

It is clear that the weights will be stable (when dwij

dt = 0) at the points
where wij = ηE(yjxi) where E(.) indicates an ensemble average. Using a
similar type of argument to that employed for simple Hebbian learning, we
see that at convergence we must have ηCw = w. Thus w would have to be
1 This will certainly happen if simple Hebbian learning is used
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an eigenvector of the correlation matrix of the input data with corresponding
eigenvalue 1

η . We shall be interested in a somewhat more general result.
Grossberg went on to develop more sophisticated learning equations which

use weight decay e.g. for his instar coding, [63] he has used

dwij

dt
= η{yi − wij}xj (2.19)

where the decay term is gated by the input term xj and for outstar coding

dwij

dt
= η{xj − wij}yi (2.20)

where the decay term is gated by the output term yi. These rules, while still
falling short of the decay in which we will be interested, show that researchers
of this era were beginning to think of both differentially weighted decay terms
and allowing the rate of decay to depend on the statistics of the data presented
to the network.

2.4.1 Principal Components and Weight Decay

Miller and MacKay [132] have provided a definitive study of the results of a
decay term on Hebbian learning. They suggest an initial distinction between
Multiplicative Constraints and Subtractive Constraints. They define Multi-
plicative Constraints as those satisfying

d

dt
w(t) = Cw(t) − γ(w)w(t)

where the decay in the weights is governed by the product of a function of
the weights, γ(w), and the weights, w(t), themselves. The decay term can
be viewed as a feedback term which limits the rate of growth of each weight
in proportion to the size of the weight itself while the first term defines the
Hebbian learning itself.

Subtractive Constraints are satisfied by equations of the form

d

dt
w(t) = Cw(t) − ε(w)n

where the decay in the weights is governed by the product of a function of the
weights , ε(w), and a constant vector, n, (which is often {1, 1, ..., 1}T ). They
prove that

• Hebbian rules whose decay is governed by Multiplicative Constraints will,
in cases typical of Hebbian learning, ensure that the weights will converge
to a stable point.

• This stable point is a multiple of the principal eigenvector of the covariance
matrix of the input data.
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• Hebbian rules governed by Subtractive Constraints will tend to lead to
saturation of the weights at their extreme permissible values2.

• Under Subtractive Constraints, there is actually a fixed point within the
permitted hypercube of values, but this is unstable and is only of interest
in anti-Hebbian learning (see below).

• If specific limits (w+ and w−) do not exist, weights under Subtractive
Constraints will tend to increase without bound.

In summary then, Subtractive Constraints offer little that cannot be had
from simple clipping of the weights at preset upper and lower bounds. Mul-
tiplicative Constraints, however, seem to give us not just weights which are
conveniently small, but also weights which are potentially useful since

yi =
∑

j

wijxj = wi.x

where wi is the vector of weights into neuron yi and x is the vector of inputs.
But

wi.x = |wi||x| cos θ

where |d| is the length of d and θ is the angle between the two vectors.
This is maximised when the angle between the vectors is 0. Thus, if w1 is

the weight into the first neuron which converges to the first Principal Compo-
nent, the first neuron will maximally transmit information along the direction
of greatest correlation, the second along the next largest, etc. In Section 2.3,
we noted that these directions were those of greatest variance which from Sec-
tion 2.2, we are equating with those of maximal information transfer through
the system.

Given that there are statistical packages which find Principal Components,
we should ask why it is necessary to reinvent the wheel using artificial neural
networks. There are two major advantages to PCA using ANNs:

1. Traditional statistical packages require us to have available, prior to the
calculation, a batch of examples from the distribution being investigated.
While it is possible to run the ANN models with this method (“batch
mode”) ANNs are capable of performing PCA in real-time i.e. as informa-
tion from the environment becomes available we use it for learning in the
network. We are, however, really calculating the Principal Components of
a sample, but since these estimators can be shown to be unbiased and to
have variance which tends to zero as the number of samples increases, we
are justified in equating the sample PCA with the PCA of the distribu-
tion. The adaptive/recursive methodology used in ANNs is particularly
important if storage constraints are important.

2 Such values may be partially determined by the eigenvalues of the covariance
matrix but are not, in general, multiples of the eigenvectors.
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2. Strictly, PCA is only defined for stationary distributions. However, in re-
alistic situations, it is often the case that we are interested in compressing
data from distributions which are a function of time; in this situation,
the sample PCA outlined above is the solution in that it tracks the mov-
ing statistics of the distribution and provides as close to a local PCA as
possible in the circumstances. However, most proofs of PCA ANNs conver-
gences require the learning rate to converge to 0 in time and, in practice,
it is the case that convergence is often more accurate when the learning
rate tends to decrease in time. This would preclude an ANN following a
distribution’s statistics, which is an example of the well-known trade-off
between tracking capability and accuracy of convergence.

We now look at several ANN models which use weight decay with the aim of
capturing Principal Components. We will make no attempt to be exhaustive
since that would in itself require a book; we do, however, attempt to give the
most important examples of current network types and, in particular, four
main models which illustrate the historical development of PCA models in
unsupervised Artificial Neural Networks.

2.5 ANNs and PCA

The importance of the work of Oja cannot be overstated in this context. Thus
we begin with his one-neuron model [137], followed by his subspace model
[138] and his weighted subspace model [142, 143] before introducing Sanger’s
deflationary network [160]. We include no proofs in this section since these
models are well known in the literature.

2.5.1 Oja’s One Neuron Model

Oja [137] proposed a model which extracts the largest principal component
from the input data. He suggested a single-output neuron which sums the
inputs in the usual fashion

y =
m∑

i=1

wixi

His variation on the Hebb rule contains a decay term

∆wi = η(xiy − y2wi)

Note that this is a rule defined by Multiplicative Constraints (y2 = γ(w))
and so will converge to the principal eigenvector of the input covariance ma-
trix. The weight decay term has the simultaneous effect of making

∑
w2

i tend
towards 1 i.e. the weights are normalised.

However, this rule will find only the first eigenvector (that direction cor-
responding to the largest eigenvalue) of the data. It is not sufficient to simply
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throw clusters of neurons at the data since all will find the same (first) Prin-
cipal Component; in order to find other PCs, there must be some interaction
between the neurons.

2.5.2 Oja’s Subspace Algorithm

Oja’s Subspace Algorithm [138] provided a major step forward. The network
has N output neurons, each of which learns using a Hebb-type rule with
weight decay. Note, however, that it does not guarantee finding the actual
directions of the Principal Components; the weights do however converge to
an orthonormal basis of the Principal Component Space. We will call the
space spanned by this basis the Principal Subspace. The learning rule is

∆wij = η

(
xjyi − yi

∑
k

wkjyk

)
(2.21)

which has been shown to force the weights to converge to a basis of the
Principal Subspace3.

One advantage of this model compared with some other networks (e.g.
[160]) is that it is completely homogeneous i.e. the operations carried out at
each neuron are identical. This is essential if we are to take full advantage of
parallel processing.

The major disadvantage of this algorithm is that it finds only the Principal
Subspace of the eigenvectors, not the actual eigenvectors themselves.

2.5.3 Oja’s Weighted Subspace Algorithm

The final stage is the creation of algorithms which find the actual Principal
Components of the input data. In 1992, Oja et al [142, 143] recognised the
importance of introducing asymmetry into the weight decay process in order
to force weights to converge to the Principal Components. The algorithm is
defined by the equations

yi =
n∑

i=1

wijxj

where a Hebb-type rule with weight decay modifies the weights according to

∆wij = ηyi

(
xj − θi

N∑
k=1

ykwkj

)

3 In this case γ(wij) = y2
i . However, the additional weight decay constraints from

the other outputs yi

∑
k �=i wkjyk force decay in the directions of other eigen-

vectors. Therefore, the total of the decay parameters only forces weight conver-
gence to the subspace.
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Ensuring that θ1 < θ2 < θ3 < · · · allows the neuron whose weight de-
cays proportional to θ1 (i.e. whose weight decays least quickly) to learn the
principal values of the correlation in the input data. That is, this neuron will
respond maximally to directions parallel to the principal eigenvector, i.e. to
patterns closest to the main correlations within the data. The neuron whose
weight decays proportional to θ2 cannot compete with the first, but it is in a
better position than all of the others and so can learn the next largest chunk
of the correlation, and so on. Empirically, it has been found that it is essential
that the values of θi do not stray too far from 1: values of 0.9, 1.0 and 1.1
give convergence but 0.1, 0.2 and 0.3 do not.

It can be shown that the weight vectors will converge to the principal
eigenvectors in the order of their eigenvalues. The algorithm clearly satisfies
Miller and Mackay’s definition of Multiplicative Constraints with γ(wi) =
θi

∑
k ykwkjxj .

2.5.4 Sanger’s Generalized Hebbian Algorithm

Sanger [160] has developed a different algorithm (which he calls the “General-
ized Hebbian Algorithm”) which also finds the actual Principal Components.
He also introduces asymmetry in the decay term of his learning rule:

∆wij = η

(
xjyi − yi

i∑
k=1

wkjyk

)
(2.22)

Note that the crucial difference between this rule and Oja’s Subspace Algo-
rithm is that the decay term for the weights into the ith neuron is a weighted
sum of the first i neurons’ activations. Sanger’s algorithm can be viewed as a
repeated application of Oja’s One Neuron Algorithm by writing it as

∆wij = η

(
[xjyi − yi

i−1∑
k=1

wkjyk] − y2
i wij

)
(2.23)

We see that the central term comprises the residuals after the first i − 1
Principal Components have been found, and therefore the rule is performing
the equivalent of One Neuron learning on subsequent residual spaces. However,
note that the asymmetry which is necessary to ensure convergence to the
actual Principal Components, is bought at the expense of requiring the ith

neuron to “know” that it is the ith neuron by subtracting only i terms in its
decay. It is Sanger’s contention that all true PCA rules are based on some
measure of deflation such as shown in this rule. We will discuss deflationary
networks in other contexts later in this book.

2.6 Anti-Hebbian Learning

All the ANNs we have so far met have been feedforward networks in that
activation has been propagated only in one direction. However, many real
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biological networks are characterised by a plethora of recurrent connections.
This has led to increasing interest in networks which, while still strongly
directional, allow activation to be transmitted in more than one direction i.e.
either laterally or in the reverse direction from the usual flow of activation. One
interesting idea is to associate this change in direction of motion of activation
with a minor modification to the usual Hebbian learning rule called anti-
Hebbian learning (a definitive analysis of anti-Hebbian learning is given in
[150]).

If inputs to a neural net are correlated, then each contains information
about the other. In information theoretical terms, there is redundancy in the
inputs (I(x; y) > 0 ).

Anti-Hebbian learning (Fig. 2.2) is designed to decorrelate neurons’ out-
puts. The intuitive idea behind the process is that more information can be
passed through a network when the nodes of the network are all dealing with
different data. The less correlated the neurons’ responses, the less redundancy
is in the data transfer. Thus, the aim is to produce neurons which respond to
different signals. If two neurons respond to the same signal, there is a measure
of correlation between them and this is used to affect their responses to future
similar data. Anti-Hebbian learning is sometimes known as lateral inhibition
as this type of learning is generally used between members of the same layer
and not between members of different layers. The basic model is defined by

∆wij = −ηyiyj

Feedforward
weights

Anti-Hebb
weights

Inputs

Outputs

Fig. 2.2. Anti-Hebbian weights. Negative decorrelating weights between neurons
in the same layer are learned using an “anti-Hebbian” learning rule.

Therefore, if initially, yi and yj are highly correlated then the weights
between them will grow to a large negative value and each will tend to turn
the other off.
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It is clear that there is no need for weight decay terms or limits on anti-
Hebbian weights as they are automatically self-limiting, provided decorrela-
tion can be attained:

(E(yi.yj) → 0) =⇒ (∆wij → 0) (2.24)

i.e. weight change stops when the outputs are decorrelated. Success in decor-
relating the outputs results in weights being stabilised.

It has been shown [159] that not only does anti-Hebbian learning force
convergence in the particular case of a deflationary algorithm but that the
lateral connections do indeed vanish.

The method is valid for all deflationary networks.
Several authors have developed Principal Component models using a mix-

ture of one of the above PCA methods (often Oja’s One Neuron Rule) and
Anti-Hebbian weights between the output neurons e.g. [17, 18, 149, 158, 182].

We first note a similarity between the aims of PCA and anti-Hebbian
learning: the aim of anti-Hebbian learning is to decorrelate neurons’ responses.
If a set of neurons performs a Principal Component Analysis, their weights
form an orthogonal basis of the space of principal eigenvectors. Thus, both
methods perform a decorrelation of the neurons’ responses.

Further, in information-theoretic terms, decorrelation ensures that the
maximal amount of information possible for a particular number of output
neurons is transferred through the system. We will consider only noise-free
information-transfer since if there is some noise in the system, some duplica-
tion of information may be beneficial to optimal information transfer [118].

2.7 Independent Component Analysis

There is however a more recent strand of research using artificial neural net-
works on the problem of separating out a single signal from a mixture of
signals. This second strand deals mainly with continuous signals and has its
roots in the world of signal processing. The problem is generally known as the
“blind separation of sources” or sometimes “the cocktail party problem”. The
latter name is a reference to the human ability to extract a single voice from
a mixture of voices: there is no simple algorithmic solution to this problem
yet people have no difficulty following a conversation even when the conver-
sation is embedded in multiple other conversations. The former name is in
more general use: we wish to separate out a single source signal from a mix-
ture of sources and/or noise. The problem is known as “blind” since we make
(almost) no assumptions about the signals. A good reference is [85]. We have
included some examples of methods for performing ICA in Appendix C.

We will consider only linear mixtures of signals.
The problem may be set up as follows: let there be N independent non-

Gaussian signals (s1, s2, · · · , sN ) which are mixed using a (square) mixing
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matrix A to get N samples, xi, each of which is an unknown mixture of the
independent signals,

x = As (2.25)

There may in addition be noise added to the mixing process, but we shall
ignore that for the time being. Then the aim is to use an artificial neural
network to retrieve the original input signals when the only information pre-
sented to the network is the unknown mixture of the signals. The weights in
the network will be W such that

y = Wx (2.26)

where the elements of y are the elements of the original signal in some order,
i.e. we are not insisting that the first output of our neural network is equal to
the first signal, the second equal to the second signal, and so on. We merely
insist that neuron i’s output is one of the N signals uncontaminated by any
of the other signals. Neural and quasineural methods of performing this task
are known as Independent Component Analysis networks (ICA) and are often
thought of as extensions of PCA networks.

However, we did make one assumption when we defined the problem, which
was that the signals should be non-Gaussian. The reason for this is that if we
add together two Gaussian signals we simply get a third Gaussian signal.
Therefore if two or more of our signals (or noise sources) are Gaussian dis-
tributed there is no way to disentangle them. This is less an assumption than
an incontrovertible fact which cannot be side-stepped.

A final limit to our capabilities is with respect to scale. If we multiply one
column of the mixing matrix by a and divide the amplitude of the correspond-
ing signal by a, we get the same vector, x. Thus, since the problem is truly
blind (we are only given x), we always have a scale ambiguity with which to
contend.

2.7.1 A Restatement of the Problem

Let us take another look at the problem. In Fig. 2.3, we show two-dimensional
data points, each of which were drawn independently from the uniform distri-
bution within the parallelogram. The first Principal Component is the direc-
tion with greatest spread, the long axis of the parallelogram. The second PC
is of necessity perpendicular to that; we have no choice with two dimensional
data; the second PC must be perpendicular to the first and so in a plane (with
2D data) we must draw the second PC as shown. Now we are in a situation
where knowledge of the value of the first Principal Component gives some
information about the second: if the projection on the first principal compo-
nent is near the origin, the second principal component can take a wide range
of values, whereas if the first principal component is far from the origin, the
second projection is tightly constrained.
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First Principal 
Component

Second Principal Component
DirectionSecond Independent

Component Direction

Direction

    Direction

First Independent Component

Fig. 2.3. The data were points drawn independently from the uniform paral-
lelogram distribution shown. The first Principal Component is the direction with
greatest spread, the long axis of the parallelogram. The second is of necessity per-
pendicular to that. The independent component directions, however, are parallel to
the sides of the parallelogram.

The independent component directions, however, are parallel to the sides
of the parallelogram. Knowing the first Independent Component of a data
point gives us no information about the second; they truly are independent.
Each, however, finds the underlying causes of the distribution in that each
finds the independent directions of the uniform two-dimensional distribution.

There are two major methods used to solve this problem: one uses infor-
mation theory while the other uses the higher-order moments of the data. We
have already used the first two moments of a set of data:

1. The first moment is the mean. The mean can be calculated from

µ = E(X) =
∫

p(x)xdx (2.27)

2. The second moment is the variance. The variance can be calculated from

σ2 = E((X − µ)2) =
∫

p(x)(x − µ)2dx (2.28)

For a Gaussian distribution, that is all there is to know about the distribu-
tion. For other distributions, you may well be interested in higher moments:

• The third moment measures skewness (see Figure 2.4) in a distribution:

E((X − µ)3) =
∫

p(x)(x − µ)3dx (2.29)

If a distribution is perfectly symmetrical, this will evaluate to 0.
• The fourth moment measures the kurtosis of a distribution. This is a mea-

sure of the proportion of the distribution which is in the tails of the dis-
tribution compared with the proportion in the centre of the distribution:
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E((X − µ)4) − 3 =
∫

p(x)(x − µ)4dx − 3 (2.30)

The term “– 3” is added to ensure that a Gaussian distribution has 0
kurtosis.

A Skew 

Distribution

A Kurtotic 
Distribution

Fig. 2.4. Deviations from Gaussian distributions: the dotted line on the left rep-
resents a negatively skewed distribution; that on the right represents a positively
kurtotic distribution; in each case, the solid line represents a Gaussian distribution

It can be shown that if two distributions are independent, then their higher
moments satisfy the same constraint that we saw with the second-order statis-
tics when we decorrelate the distributions:

E((XY )p) = E(Xp).E(Y p),∀p (2.31)

This fact is used in some algorithms for ICA.

2.7.2 A Neural Model for ICA

Just as Oja was pivotal in the creation of neural models for PCA, so Jutten
and Herault [97] have been instrumental in initiating interest in neural models
for ICA. Jutten and Herault proposed a neural network architecture (Fig. 2.5)
in which feedforward of activation and the lateral inhibition are defined by

x

x

y

y

1

2

1

2

Inputs Outputs
w12

w21

Fig. 2.5. Jutten and Herault’s model.

yi = xi −
n∑

j=1

wijyj
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The learning rules are

∆wij = −ηf(yi)g(yj), for i 	= j (2.32)

which is clearly an extension of anti-Hebbian learning.
This model and a few of the most important other ICA models are dis-

cussed in Appendix C. We specifically mention Jutten and Herault’s model
since it has been so influential and also since it incorporates negative feedback,
the subject of this book.

2.8 Conclusion

In this chapter, we have set the scene for the remainder of the book. We have
discussed Hebbian learning and Principal Component Analysis and the con-
junction of these two will form one of the themes of the early part of this
book. We will see that the negative feedback neural network can be used with
simple Hebbian learning to perform PCA. We have also discussed Informa-
tion Theory and Independent Component Analysis. In Chapters 6 and 8, in
particular, we will be interested in creating artificial neural networks (all of
which use negative feedback) which approximate the search for independence.

In discussing these topics, we have, of necessity, been brief. While favorite
textbooks are a subjective opinion, it is the author’s belief that the following
books provide good references to these topics:

• For Principal Component Analysis, see [93].
• For Information Theory, see [31].
• For Independent Component Analysis, see [85].
• For Artificial Neural Networks, see [71].
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The Negative Feedback Network

3.1 Introduction

In this chapter, we will develop and investigate the negative feedback network.
We will, in fact, develop an extremely simple and effective Principal Compo-
nent network which needs no weight decay in its learning rule: because of the
negative feedback of activation, we can use simple Hebbian learning which will
not cause instability in the weight growth process and which moreover causes
the weights to converge to the Principal Components of the input data. We
will show that the network can be used to extract both principal and minor
components.

We will note that the basic network is biologically plausible and we will
investigate several modifications to the basic network while still attempting to
remain within the space of models which seem possible for real neurons. Other
negative feedback artificial neural networks are discussed in Appendix A; one
of these is the original network of Plumbley [153] which provided the first
insight into the strength of the combination of Hebbian learning and negative
feedback networks.

3.1.1 Equivalence to Oja’s Subspace Algorithm

Many contemporary artificial neural network models are unidirectional: an
input pattern is presented to the network; the activation is propagated “for-
ward” through the network until all neurons have had an opportunity to
respond to the input pattern; finally, the weights are updated according to a
learning rule. It is well known, however, that in real biological systems, activa-
tion is passed forward, backward and laterally (between neurons in the same
layer). We will, in this chapter, consider a simple network composed of one
layer of neurons to which the input pattern will be presented – the input layer
– and one layer of neurons which we will describe as the output layer. There is
therefore only a single layer of weights between input and output values but
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crucially, before the weights are updated we allow activation to pass forward
and backward within the neural network.

We have, over the last few years, investigated a negative feedback imple-
mentation of PCA defined by (3.1) – (3.3). Let us have an N -dimensional
input vector, x, and an M -dimensional output vector, y, with Wij being the
weight linking the jth input to the ith output. The learning rate, η, is a small
value which will be annealed to zero over the course of training the network.
The activation passing from input to output through the weights is described
by (3.1). The activation is then fed back though the weights from the outputs
and the residual, e, calculated for each input dimension. Finally, the weights
are updated using simple Hebbian learning.

yi =
N∑
j=1

wijxj ,∀i (3.1)

ej = xj −
M∑
i=1

wijyi (3.2)

∆wij = ηejyi (3.3)

There is no explicit weight decay, normalisation or clipping of weights in
the model. The subtraction of the weighted sum of the output values acts
like anti-Hebbian learning. We will consider the network as a transformation
from inputs x to outputs y; substituting (3.2) into (3.3), we see that the
resultant network is equivalent to Oja’s Subspace Algorithm (Chapter 2) and
thus causes convergence to the principal component filters of the data. We
have

∆wij = ηejyi = η

(
xj −

M∑
k=1

wkjyk

)
yi (3.4)

This last formulation of the learning rule (3.4) is exactly the learning rule
for the Subspace Algorithm [138], (2.21). A more formal analysis is given in
Section 3.1.5

In an earlier formulation, (3.2) was discussed as

xj(t+ 1) = xj(t)−
M∑
i=1

wijyi (3.5)

while (3.3) was
∆wij = ηxj(t+ 1)yi (3.6)

Thus we envisage activation passing forward from inputs (x-values) to outputs
(y-values) and subsequent (negative) feedback to the input neurons. This is
a more usual convention in which to discuss Hebbian learning but (3.1)-(3.3)
is also very convenient to emphasise the properties of the residual. We will
mainly use the convention (3.1) to (3.3) in this book but will allude to the
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convention (3.5) and (3.6) when we wish to emphasise the Hebbian nature of
the learning.

In order to compare this network with Oja’s Subspace Algorithm, simula-
tions were carried out on similar data1to that which Oja et al [141] used to
compare the Subspace and Weighted Subspace Algorithms. The results shown
in Table 3.1 are from a network with five inputs each of zero mean random
Gaussians, where x1’s variance is largest, x2’s variance is next largest, etc..

Therefore, the largest eigenvalue of the input data’s covariance matrix
comes from the first input, x1, the second largest comes from x2 and so on.
The advantage of using such data is that it is easy to identify the principal
eigenvectors (and hence the principal subspace). There are three outputs in
the network and it can be seen that the three-dimensional subspace corre-
sponding to the first three principal components has been identified by the
weights. There is very little of each vector outside the principal subspace i.e.
in directions 4 and 5. The left matrix represents the results from the negative
feedback network, the right shows Oja’s results.

Table 3.1. Results from the simulated network and the reported results from Oja
et al. The left matrix represents the results from the negative feedback network, the
right from Oja’s Subspace Algorithm. Note that the weights are very small outside
the principal subspace and that the weights form an orthonormal basis of this space.
Weights above 0.1 are shown in bold font.

W W

0.249 0.789 0.561 0.207 −0.830 0.517
0.967 −0.234 −0.100 −0.122 0.503 0.856
−0.052 −0.568 0.821 0.970 0.241 −0.003
0.001 0.002 0.016 -0.001 0.001 0.001
−0.001 0.009 0.005 0.000 0.000 −0.001

WTW WTW

1.001 0.000 0.000 1.000 0.000 0.000
0.000 1.000 0.000 0.000 1.000 0.000
0.000 0.000 1.000 0.000 0.000 1.000

The lower (WTW ) section shows that the weights form an orthonormal
basis of the space and the upper (W ) section shows that this space is almost
entirely defined by the first three eigenvectors. The negative feedback network
also maintains the advantages of homogeneity and locality of computation
(indeed, it is difficult to imagine a computationally simpler model). Note that
while we report, in general, on simulations run on this very special type of
input data, all the networks developed in this book perform excellently on all
types of data.
1 I did not have the value of the variances Oja used and therefore used variances

of 5, 4, 3, 2 and 1.



34 Hebbian Learning and Negative Feedback Networks

3.1.2 Algorithm for PCA

While the above networks may be adequate for biological information pro-
cessors, a more precise engineering requirement is that of finding the actual
Principal Components.

Recall that Oja et al [141] amended the Subspace Algorithm by proposing
the following modification to the learning rule

∆wij = ηyi

(
xj − θi

N∑
k=1

ykwkj

)

Ensuring that θ1 < θ2 < θ3 < · · · allows the neuron whose weight decays
proportional to θ1 (i.e. whose weight decays least quickly) to capture the
principal component of the variance. The second captures the next largest
component, and so on. The crucial point is the introduction of asymmetry
into the learning algorithm.

This algorithm is local and homogeneous in that each neuron knows only
its own value of θi. Analysis of the negative feedback learning rule shows that,
to simply insert a parameter, θi, would require computation at the level of the
synapse. While this may be biologically feasible and algorithmically simple to
implement, a different algorithm is developed here which uses the fact that
the proposed network already incorporates subtraction of values.

We propose a very simple algorithm in this section, partly to keep our
attention on the negative feedback network in all its simplicity and partly to
introduce the concept of deflation in finding subsequent filters. The algorithm
is: the system is created with one output; this output finds the first principal
component using the above learning rule. It then loses its plasticity i.e. its
weights will not subsequently change. We then create a second output neuron.
Since the first neuron has found and subtracted the first principal component,
the second neuron will find the largest remaining principal component. It,
too, now loses its plasticity. Then the third output neuron is created, etc..
Therefore, we have introduced our asymmetry in the time dimension; note that
whereas to do so with e.g. Oja’s single neuron network, would have required
the introduction of an extra mechanism – that of subtracting the projection
of the data onto the subspace already found – we do not require this here as
the network automatically finds and subtracts this subspace.

To compare the results with Oja’s Weighted Subspace Algorithm, we re-
peated the above experiment with the algorithm. Oja’s simulation was carried
out for 40 000 iterations. The simulation allowed each output to learn in 13
000 iterations. The first output learned during the first 13 000 iterations, the
second learned during the next 13 000 and the third learned during the last
13 000 iterations. The results are shown in Table 3.2; the left set is from the
negative feedback network, the right from Oja et al [141]. Clearly both meth-
ods find the principal eigenvectors. We note that the negative feedback results
have the advantage of equally weighting each eigenvector, which all therefore
have length one.
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Table 3.2. Results from the negative feedback network (left) and from Oja (right).
Both methods find the principal eigenvectors of the input data covariance matrix.
The negative feedback algorithm has the advantage that each vector is equally
weighted.

W W

1.000 − 0.036 −0.008 1.054 − 0.002 − 0.002
0.036 0.999 −0.018 0.002 1.000 0.001
0.010 0.018 1.000 0.003 −0.002 0.954
− 0.002 − 0.002 0.016 − 0.001 0.001 − 0.002

0.010 0.003 0.010 0.001 −0.001 0.000

WTW WTW

1.001 0.000 0.000 1.111 0.000 0.000
0.000 1.000 0.000 0.000 1.000 0.000
0.000 0.000 1.000 0.000 0.000 0.909

The algorithm retains the advantages of homogeneity and locality of com-
putation. A more analytical proof of the convergence of the algorithm is de-
veloped in Section 3.1.5.

3.1.3 Plasticity and Continuity

In this section, we investigate empirically some of the emergent properties of
the negative feedback network. We view these properties as emergent prop-
erties as we do not believe that they could be expected a priori to exist, i.e.
without a detailed investigation of the network.

The results reported in the last section were based on a model which
suggested that only a new output could learn. The underlying assumptions
are:

• an output neuron can only learn during a special period of its existence;
• only one output neuron can learn at any instant in time.

These are clearly not good properties for biological learners to have; we do not
wish to have new learning remove the hard-won gains already achieved from
previous learning; but equally, we do not wish to have to specify in advance
how much time each neuron will have to learn. Further, in setting a specific
time period during which learning will take place, we are providing the system
with a form of meta information.

To test the effects of allowing neurons to continue to learn even after other
new neurons were created, two more simulations were carried out. In the first,
the neurons lost their plasticity gradually and there was an overlap in the
times when two or more neurons were learning; in the second, neurons kept
their plasticity throughout.

Thus, in this last model, the first neuron learns from its creation until the
end of the simulation; the second neuron learns from its creation at iteration
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Table 3.3. Results from the negative feedback network in which each output neuron
stopped learning as a new one was created (left) and from the network in which each
output neuron continued to learn (right).

Disjoint Learner Model Contin. Learner Model

W W

1.000 −0.036 −0.008 1.000 −0.015 −0.014
0.036 0.999 −0.018 0.014 0.999 0.045
0.010 0.018 1.000 −0.015 −0.046 0.999
−0.002 −0.002 0.016 −0.015 0.006 −0.021
0.010 0.003 0.010 0.003 −0.007 0.010

WTW WTW

1.001 0.000 0.000 1.000 0.000 0.000
0.000 1.000 0.000 0.000 1.000 0.000
0.000 0.000 1.000 0.000 0.000 1.000

13 000 until the end of the simulation; and the last neuron learns from iteration
26 000 till the end of simulation.

Only the results of the last model are reported, as the conclusions are iden-
tical: we do not have to postulate that neuron weights lose their plasticity.
The left matrix of Table 3.3 repeats the results from the negative feedback
model described in the previous section; the results from neurons which con-
tinue learning are shown on the right. The table shows that the neurons can
retain their plasticity without there being a major loss of precision in finding
the actual principal components.

We suggest that this model then represents a more plausible model of the
form of learning which takes place in biological learners and further, that in
most cases of unsupervised learning, the continuing learning model is pre-
ferred.

3.1.4 Speed of Learning and Information Content

One of the most interesting aspects of the proposed model is its reaction to
statistical data which have inherently differing amounts of information. One
might hope that a model would react to data which has more information
more quickly than it does to data with less. This, in fact, happens.

We showed in Chapter 2 that the entropy [168] of a Gaussian random
variable X with variance σ2 is given by

h(X) =
1
2
{1 + log(2πσ2)} (3.7)

which is a mathematical formulation of the fact that there is more information
in random variables with large variance than in random variables with small
variance. It would seem plausible to argue that an organism which can quickly
identify data-sources with large information content would have an advantage
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over an organism which does not have this ability. This is, in fact, an emergent
property of the model.

Therefore, in the current set of experiments, there is more information in
x1 than in x2 and so on. That is h(x1) > h(x2) > h(x3) > h(x4) > h(x5).
We find that, in the above experiment, x1 is learned quickest, x2 next most
quickly and so on. Additional experiments to ensure that this rate was not
merely a function of the order of the neuron’s learning confirm that data with
larger variances is learned more quickly. That this is not a necessary property
of PCA networks is shown in ([41], Figure 2.7) where the network takes longest
to converge to the first eigenvector.

3.1.5 Analysis of Convergence

This section provides an analytical investigation of the algorithm which causes
the negative feedback network’s weights to converge to the principal compo-
nents of the input data’s covariance matrix.

The proof of the algorithm follows closely the methods developed by Oja
and Karhunen (e.g. [139]) over the last decade; the proof is in three parts each
of which refers to the negative feedback learning rules. In the first section we
show that the weights of a single output will converge to an eigenvector of the
co-variance matrix; in the second, we show that these weights in fact converge
to the principal eigenvector; in the third, we show that the algorithm ensures
that the ith output’s weights converge to the ith eigenvector.

Theorem 3.1 The weights, W, of a single output with the above learning
rules converges to an eigenvector of the input data covariance matrix.

Let wi be the weight of the connection between xi and y.
If the weights of a single output converges to a limit, the expected weight

change over a sufficiently long time will tend to zero. Given some assump-
tions2, particularly regarding the learning rate η and the nature of the distri-
bution of x, and using E(x) to indicate the expected value of x with respect
to the distribution from which it is drawn,

E(∆wi) = 0⇐⇒ E(ηeiy) = 0
⇐⇒ E(eiy) = 0
⇐⇒ E [(xi − wiy) y] = 0

⇐⇒ E

[(
xi − wi

∑
k

wkxk

)∑
l

wlxl

]
= 0

⇐⇒ E

(∑
l

wlxlxi − wi
∑
kl

wkxkxlwl

)
= 0 (3.8)

⇐⇒
∑
l

wlCli − wi
∑
kl

wkCklwl = 0 (3.9)

2 This will be discussed later.
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where Cij is that element of the covariance matrix showing the covariance
between the ith and jth elements of the input data x. If the weights of the
network are to converge, then the above must be true for all values of wi.
Therefore the above may be written in matrix notation as

E(∆w) = 0⇐⇒ Cw − (wT
Cw)w = 0

⇐⇒ Cw = (wT
Cw)w

Now it is a standard result that the covariance matrix C is positive-semidefinite;
and hence

wTCw = λ ≥ 0

where λ is a non-negative real number. Hence,

Cw = λw

Therefore, w converges to an eigenvector of C.

Theorem 3.2 The weights,W, of a single output with the above learning rules
converge to the eigenvector with the largest eigenvalue of the input data co-
variance matrix.

Proof
The proof is by contradiction. Assume that w converges to an eigenvector

c∗ of C with corresponding eigenvalue λ∗. Then, we will show that if there
exists an eigenvector c1 of C with corresponding eigenvalue λ1 > λ∗ a small
perturbation in the direction of c1 will cause w to be unstable i.e. convergence
will not take place.
Let w have converged to a direction close to c∗ but to have a component ε in
the direction of c1. Then,

E(∆w) = Cw − (wT
Cw)w

= C(c∗ + ε)− ((c∗T + εT )C(c∗ + ε))(c∗ + ε)

= Cc∗ + Cε− (c∗TCc∗)c∗ − (c∗TCc∗)ε− (c∗TCε)c∗ − (εTCc∗)c∗ + O(ε2)

= λ∗c∗ + λ1ε− λ∗c∗ − λ∗ε− c∗TC(εc∗)− C(ε)T c∗c∗ +O(ε2)
= λ1ε− λ∗ε− (λ1εT c∗)c∗ +O(ε2)
= λ1ε− λ∗ε+O(ε2)

where we have used the facts that CT = C and that its eigenvectors are
mutually orthogonal.

So, ignoring terms of O(ε2), if λ1 > λ∗, a perturbation in the direction of
c1 will always be unstable. Therefore, c∗ is the principal eigenvector corre-
sponding to the largest eigenvalue of the covariance matrix.

Theorem 3.3 If output i is installed in the network at time ti, where t1 <
t2 < t3 < · · ·, and if the weights into the first i − 1 outputs have already
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converged to the first i − 1 eigenvectors, the weights of the ith output will
converge approximately to the ith eigenvector of the input data’s covariance
matrix, where such eigenvectors are ordered such that the eigenvalue of vector
1 is the largest, that of vector 2 is next largest and so on.

Proof
Let outputs 1,...,M − 1 be already connected to the network. We assume

that their weights have already converged to the subspace of the first M -1
eigenvectors, and show that the weights of output M (where M > 1) will
converge approximately3 to the M th eigenvector of the covariance matrix C.

In this proof, let wp be the weight vector associated with the pth output.
Then,

E(∆wM )/η = E(eyM )
= E [(x−Wy) yM ]

= E

[(
x−

M∑
k=1

ykwk

)
yM

]

= E

[(
x−

M−1∑
k=1

ykwk − yMwM

)
yM

]

= E

[(
x−

M−1∑
k=1

(wT
k x)wk − yMwM

)
yM

]

= E
[(

x⊥M−1 − yMwM

)
yM

]
where x⊥M−1 is the projection of x onto the subspace of possible values or-
thogonal to the first M − 1 eigenvectors.

Consider the application of this equivalence to the ith component of wM ,
i.e. wMi, the weight on the connection between ei and yM . Then, denoting
the ith component of x⊥M−1 by pi,

E(∆wMi) = 0⇐⇒ E[(pi − yMwMi)yM ] = 0

⇐⇒ E

[(
pi − wMi

∑
k

wMkxk

)∑
l

wMlxl

]
= 0

⇐⇒ E

[∑
l

wMlxlpi − wMi

∑
kl

wMkxkxlwMl

]
= 0(3.10)

We note the similarity between this equation and equation (3.8) in Theorem
3.1. For values of xl within the subspace x⊥M−1, the first term of equation (3.10)
acts exactly like plpi and so the remainder of Theorems 1 and 2 hold for values
3 Approximately, since the proof really requires an infinite convergence time for

each weight vector. For a stationary source, x, the finite time intervals used are
close to perfect, but we can only claim “approximately” here.
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of x restricted to this subspace. For values of x outside this subspace, the first
term is 0 (xl is in the subspace whose basis is the first M − 1 eigenvectors, pi
is in the orthogonal projection of this space) and the second term causes the
weights to decrease to zero (recall that wTCw = λ is a scalar).

Therefore we can apply Theorems 1 and 2 to this subspace to show that the
M th output’s weights will converge to the eigenvector corresponding to the
largest eigenvalue of this subspace. This eigenvector has eigenvalue smaller
than those of the M − 1 eigenvectors already allocated to weight vectors
w1, · · · , wM−1, but is larger than any other. Hence this eigenvalue is the M th

largest eigenvalue of the covariance matrix of the original input vector, x.
Therefore, if the result is true for M − 1 outputs, it is true for M outputs.

We know (Theorem 1) that it is true for one output. Therefore, the algorithm
will force the weights to converge as required.

Assumptions in the Proofs of Convergence

The proof given above is based on a proof developed by Oja and Karhunen
[139] and by Oja et al. [141, 142] for their feedforward networks. The major
difficulty with the proof is the step from the stochastic equations (3.8) which
are used in an empirical algorithm to the ordinary differential equations (3.9)
which are solvable as seen above. Denoting by Ck the covariance matrix of
the input data after k presentations of input vectors from the distribution,
the proof given in [139] makes four critical assumptions:

1. Each Ck is almost surely bounded and symmetric and the Ck are mutually
statistically independent with E(Ck) = C for all k.

2. The eigenvalues of C have unit multiplicity.
3. ηk ≥ 0,

∑
η2
k <∞,

∑
ηk =∞.

4. Each Ck has a probability density which is bounded away from zero uni-
formly in k in some neighbourhood of C in Rn∗m.

The first constraint is easiest to satisfy since by taking k large enough we
can sample the distribution sufficiently often so that the condition is almost
surely satisfied.

The second assumption cannot be guaranteed for every distribution, how-
ever not satisfying it will only result in (a pair of) neurons converging to the
subspace spanned by the eigenvectors with equal eigenvalues.

The third assumption is the difficult one to satisfy in any particular
stochastic realisation of the algorithm: we are constraining the learning rate
in a way that will not be practicable to sustain in any actual simulation; not
only must the learning rate converge to zero (which is easy to manage), but it
must do so sufficiently slowly that

∑
j ηj is infinite. This leads to a long simu-

lation! In practice, it has been found that slow annealing of the learning rate
will, under a wide range of annealing schedules, cause the weights to converge
to the principal components.



3.2 The VW Model 41

Another way to regard the problem is to say that we have not proved
convergence; we have only proved that if the weights converge, they do so in a
specific direction. We know also that if the weights reach this direction, they
will be stable there but we have not proved that, in any single simulation,
they must reach this direction. The proof that they would so converge with
probability one uses the fact that each point in the neighbourhood of the
attractor is sampled infinitely often.

3.2 The VW Model

The models discussed until now have one major drawback when considered as
a model of biological systems: the weights of the connections from the output
neuron, y, to the input neuron, x, are assumed to be identical to those from
the input neuron, x, to the output neuron, y. This is biologically implausible:
information flow in the neuron is unidirectional. This leads us to propose a
model where these weights are initially different:

y = Wx (3.11)
e = x− V Ty (3.12)

∆W = αweyT (3.13)
∆V = αveyT (3.14)

where the initial values of both V and W are small random numbers not
correlated in any way with each other. Note that both learning rules for W
and V are identical up to the learning rate and use only simple Hebbian
learning.

The convention we will use here is that wij is the weight of the connection
from xj to yi; similarly, vij is the weight of the connection from yi to xj .
Unless specifically stated otherwise, we shall be interested in the vectors to
and from the output neurons. Therefore we take the vectors vi to be the
weight vector from the ith output neuron, i.e. to be the vector of form {vik}
for all k; similarly we take the vector wi to be the vector of weights into the
ith output neuron i.e. to be the vector {wik} for all k; we note here that vi

corresponds to a column of the matrix V of weights while wi is a row of W .
Both are vectors of length n where n is the number of input neurons.

It is shown in Section 3.2.2, that, for a single output network, v and w
converge to an eigenvector and that, at equilibrium, the weights v and w
converge to the eigenvector, c1 with the largest eigenvalue such that

v =
1
|w|2 w (3.15)

We then show that it is possible to apply the further analysis developed for
the WW network and hence show that the ith output neuron converges to the
ith eigenvector of the covariance matrix.
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Table 3.4. Results from the negative feedback network (left) with symmetric
weights,W and for the V and W vectors from the VW model (see text).

WW model VW Model

W W V

1.000 −0.036 −0.008 0.985 −0.041 −0.003 1.013 −0.017 −0.024
0.036 0.999 −0.018 −0.019 1.033 0.031 −0.027 0.965 0.032
0.010 0.018 1.000 0.022 −0.032 1.028 0.020 −0.017 0.969
−0.002 −0.002 0.016 −0.024 −0.041 0.038 −0.007 −0.034 0.037
0.010 0.003 0.010 0.098 −0.007 −0.011 0.010 0.000 0.002

Experimental results, shown in Table 3.4 confirm this. It can be seen that
both v and w converge to the same eigenvector, although the results are
slightly less accurate than in the previous algorithm. However, given the sim-
plicity of this biologically inspired model, the results are extremely clear: any
entity which used such a method would be able to extract the greatest amount
of information from its environment with a minimal number of output neurons
using a very simple learning rule.

3.2.1 Properties of the VW Network

The motivation for the introduction of the VW model is that it removes a
constraint from the network builder: in the WW model, the weights into and
out of each neuron must be the same and so must be known in a meta-sense
i.e. outwith the learning space. One feature of symmetry still remaining in the
network is the equivalence of the learning rates in the V and W weights.

Experimental results show that, when v and w learn with different rates,
the angle between v and w converges as quickly as before but the weight, v
or w, with the larger learning rate acquires a larger length than the other.
Indeed the result of the last theorem still applies.

While most of the emergent properties of the symmetric (WW ) network
still are found with the VW network, there is one property which this network
does not have: the neurons cannot retain their plasticity when new neurons
are created.

There always remains a slight angle between v and w; although this can
be made arbitrarily small, it is sufficient to destabilise the output neurons’
weights. It is not possible for the weights v and w to be both exactly orthog-
onal to any new neuron’s weights; therefore the new neuron will destabilise
the weights of existing neurons. The interaction between v and w will further
move the weights away from the eigenvector and so the weights will be rotated
in the principal subspace. This is also an empirical finding.

Therefore, for VW neurons, each neuron’s weights must be allowed to
converge to the eigenvector but must then lose their plasticity. This is algo-
rithmically easy to implement, but the need to take this action has led to a
search for other algorithms.
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3.2.2 Theoretical Discussion

Lemma 1
If the weights, w, of a single output neuron with the above learning rules con-
verge to an eigenvector of the input data covariance matrix, then the weights
w and the weights v converge to the same eigenvector.

Proof
Let wi be the weight of the connections from xi to y and and vi be that

from y to xi.
If the weights of a single output neuron converge to a limit, the expected

weight change over a sufficiently long time will tend to zero. Given the usual
approximations, particularly regarding the learning rate η, and using E(x) to
indicate the average value of x over the time period,

E(∆wi) = 0⇐⇒ E(ηxiy) = 0
⇐⇒ E(xiy) = 0
⇐⇒ E((xi − viy)y) = 0

⇐⇒ E

[(
xi − vi

∑
k

wkxk

)∑
l

wlxl

]
= 0

⇐⇒ E

⎡
⎣∑

l

wlxlxi − vi
∑
k,l

wkxkxlwl

⎤
⎦ = 0

⇐⇒
∑
l

wlCli − vi
∑
k,l

wkCklwl = 0

where Cij is that element of the covariance matrix of the input data, x,
showing the covariance between the ith and jth elements. We note that the
same criterion may be deduced from E(∆vi) = 0. If the weights of the output
neurons are to converge, then the above must be true for all values of wi.
Therefore it may be written in matrix notation as

E(∆w) = 0⇐⇒ Cw − (wT
Cw)v = 0

⇐⇒ Cw = (wT
Cw)v

Now it is a standard result that the covariance matrix C is positive-semidefinite;
and hence

wTCw = γ ≥ 0 (3.16)

where γ is a non-negative real number. Hence,

Cw = γv (3.17)

Therefore, if w converges to an eigenvector of C (see below), then Cw = λw
for some real number, λ, and so v = αw, where α is a scalar; that is, v and w
converge to the same eigenvector. Therefore, it is possible to apply the further
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analysis developed for the WW network and hence show that the ith output
neuron converges to the ith eigenvector of the covariance matrix.

However there remains the possibility that the weight w will not converge
to an eigenvector.

Theorem 3.4 If the weights, w, of a single output neuron with the above
learning rules converge, then the weights w and the weights v converge to the
same eigenvector of the input data’s covariance matrix.

From the lemma, we know that the weights converge as stated if they converge
to an eigenvector. Therefore, we must prove that if w converges, it does so to
an eigenvector of C. We use a contradiction argument.

Assume that there is a solution of

Cw = γv (3.18)

where w is not an eigenvector nor the degenerate solution, w = 0.
Let the eigenvectors of C be c1, c2, ..., cn. Then

w =
n∑
i=1

wici

Since w 	= 0, there exists a direction cb, such that wb 	= 0. Since w is not
an eigenvector, there exists one other direction ca with a nonzero component,
which we denote as wa.

Then
w = waca + wbcb +

∑
i �=a,b

wici

where 1 ≤ a, b ≤ n, a 	= b, and

v = vaca + vbcb +
∑
i �=a,b

vici

and from Equation (3.18),
λbwb = γvb

λawa = γva

Consider a disturbance of magnitude ε > 0 in the direction of ca i.e. a
disturbance of εa. Then if w is a stable point of convergence of the weights,
the expected change in the weights over time is zero. Therefore,

E(∆w) = 0

⇐⇒ Cw − (wT
Cw)v = 0

⇐⇒ C

⎛
⎝waca + wbcb + εa +

∑
i �=a,b

wici

⎞
⎠− γ′

⎛
⎝vaca + vbcb +

∑
i �=a,b

vici

⎞
⎠ = 0
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⇐⇒ λawaca + λbwbcb + λaεa +
∑
i �=a,b

λiwici − γ′vaca

−γ′vbcb − γ′
∑
i�=a,b

vici = 0

where γ
′

= (w + εa)TC(w + εa) ≥ 0 since C is a positive semidefinite matrix.
Now, considering the components of the transformation in the direction of

cb,
λbwb − γ′vb = 0

Then, γvb − γ′vb = 0

Therefore, γ = γ
′

since vb 	= 0. Now, considering the components of the
transformation in the direction of ca,

λawa + λaε− γ′va = 0

γva − γva + λaε = 0

λaε = 0

which is a contradiction. Hence there does not exist a nonzero, noneigenvector
solution to equation (3.18).

Theorem 3.5 At equilibrium, the weights v and w converge to the same
eigenvector, ca with

v =
1
|w|2 w (3.19)

Proof
At equilibrium,

Cw = (wT
Cw)v = γv

and, by Theorem 4, w is an eigenvector of C, ca. Therefore,

Cw = λaw

where λa is the eigenvalue corresponding to eigenvector ca.

Therefore, λaw = γv

Therefore, v =
λa
γ

w =
λa

wTCw
w

Now, wTCw is a scalar; hence,

wTCw = |wT
Cw| = |w||Cw| = |w||λaw| = λa|w|2

Therefore,

v =
1
|w|2 w
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.
Note: The theorems in this section imply that the further analysis of this

negative feedback network is identical to that performed previously for the
WW network. In other words, a negative feedback network with asymmetric
weights, wi and vi, will calculate the principal components if the output
neurons are created in the network as in the previous section.

3.3 Using Distance Differences

Another possible model is suggested by the innate asymmetry in real biological
neural networks in terms of the distances between neurons. This will manifest
itself as different times to respond to a signal depending on the distance which
the signal must travel (assuming that there is some uniformity in the speed
of information transfer).

This differential is used in a new model where different output neurons take
different lengths of times to respond to the input signal x. Therefore while
the activation from the input neurons is transmitted to all output neurons at
the same time, each output neuron’s response takes a different length of time
to feedback to the input neurons. Thus, the negative feedback is felt and used
in a phased manner, and learning takes place immediately when the returned
signal is received. Therefore, we embed the learning process in the feedback
loop, so that we now postulate a learning and activation-transmission process
which takes place in the order in which the following equations are given:

Initial value of e(0) = x (3.20)
y = Wx (3.21)

For each output in turn e(i) = e(i− 1)− viyi (3.22)
∆wi = ηyieT (i) (3.23)
∆vi = ηyieT (i) (3.24)

Other than the first two steps,(the acceptance of the initial activation x and its
forward transmission to the output neurons), the process [defined by (3.22),
(3.23) and (3.24)] is repeated for each output neuron in turn. This corre-
sponds to the feedback from the output neurons being received at different
times (perhaps depending on the physical distance which the activation must
traverse, perhaps depending on the efficiency of transmission of the output
neuron). This process results in the weights of the first (fastest) output neu-
ron learning the first Principal Component; the second fastest output neuron
learns the second Principal Component, and so on. Experimental results from
a network with five inputs and three output neurons are given in Table 3.5.
In order to demonstrate the effect of the network, we have carried out our
simulations on the same type of data as previously. Clearly the first three
principal components have been found by the three output neurons.



3.3 Using Distance Differences 47

Table 3.5. Results of the differential distance model; each column shows the con-
verged weights between one output neuron and the input neurons after learning on
data from independent zero mean Gaussians with descending variances.

V W

1.000 0.006 −0.010 1.000 0.006 −0.010
−0.000 −1.000 0.013 −0.000 −1.000 0.013
0.012 0.023 1.000 0.012 0.023 1.000
0.000 −0.003 0.004 0.000 −0.002 0.004
−0.002 −0.004 −0.001 −0.002 −0.004 −0.001

Note that the crucial difference between this model and previous models
is the embedding of the learning process in the activation reception process.
When this is done, the resulting network is more similar to a Sanger-type [160]
network rather than an Oja-type network. The kth output neuron is learning
to extract the maximum amount of information which is left after the previous
(k − 1) output neurons have extracted their information.

3.3.1 Equivalence to Sanger’s Algorithm

Sanger’s algorithm has, as a learning rule,

∆wij = ηyi

(
xj −

i∑
k=1

ykwkj

)

in a totally feedforward architecture, where the outputs at y are given by

yi =
∑
j

wijxj

We can show that the output neuron network using the rules determined by
(3.20) to (3.24) is equivalent to Sanger’s algorithm when we use the WW
model in which the feedforward and feedback weights are identical.

Let the e values be indexed with the time of feedback from the output
neurons. Then,

• ej(0) is the initial value of ej at time 0 i.e. ej(0) = xj .
• ej(1) is the value of ej after receiving the feedback activation from the first

(and hence closest) output neuron i.e. ej(1) = ej(0)−v1jy1. Note that the
time values are only ordinal indices; they do not imply equal intervals
between feedback activations.

Similarly, if ej(2) is the value of ej after receiving feedback from the first two
output neurons, then

ej(2) = ej(1)− v2jy2 = ej(0)−
2∑
k=1

vkjyk (3.25)
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In general, if ej(i) is the value of ej after receiving feedback from the first i
output neurons,

ej(i) = ej(0)−
i∑

k=1

vkjyk = xj −
i∑

k=1

vkjyk (3.26)

Therefore,

∆vij = ∆wij = ηej(i)yi

= η

(
ej(0)−

i∑
k=1

vkjyk

)
yi

= ηyi

(
xj −

i∑
k=1

vkjyk

)

which is exactly Sanger’s formulation (see Chapter 2).

3.4 Minor Components Analysis

Whereas a Principal Component Analysis finds the eigenvectors of the covari-
ance matrix with greatest eigenvalues, a Minor Component Analysis (MCA)
finds those eigenvectors with smallest eigenvalues. We will perform MCA with
the same network as before but reverse the learing rule so that ∆wi = −αyie.

We showed above that all eigenvectors are stationary points of the learning
rule, ∆wi = αyie i.e. where E(∆wi) = 0, and similarly we may show that
eigenvectors are also solutions to ∆wi = −αyie = 0. We must still prove that
only the eigenvector with the minimum eigenvalue can be stable.

Assume that w converges to an eigenvector c∗ of C with corresponding
eigenvalue λ∗. Then, we will show that if there exists an eigenvector c1 of C
with corresponding eigenvalue λ1 < λ∗ a small perturbation in the direction
of c1 will cause w to be unstable i.e. convergence will not take place.

Let w have converged to a direction close to c∗ but to have a component
ε in the direction of c1. Then,

E(∆w) = −Cw − (wT
Cw)w

= −{C(c∗ + ε)− ((c∗T + εT )C(c∗ + ε))(c∗ + ε)}
= −{Cc∗ + Cε− (c∗TCc∗)c∗ − (c∗TCc∗)ε− (c∗TCε)c∗ − (εTCc∗)c∗ + O(ε2)}
= −{λ∗c∗ + λ1ε− λ∗c∗ − λ∗ε− c∗TC(εc∗)− C(ε)T c∗c∗ +O(ε2)}
= −{λ1ε− λ∗ε− (λ1εT c∗)c∗ +O(ε2)}
= −λ1ε+ λ∗ε+O(ε2)

where we have used the facts that CT = C and that its eigenvectors are
mutually orthogonal.
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So, ignoring terms of O(ε2), if λ1 < λ∗, a perturbation in the direction of
c1 will always be unstable. Therefore, directions other than the eigenvector
corresponding to the smallest eigenvalue of the covariance matrix are unstable.

Note that if the covariance matrix is not of full rank, i.e. ∃ci : λi = 0, then
the weights converge to the projection of the initial values of the weights onto
the subspace with zero eigenvalue.

Xu et al. [186] have shown that the Total Least Squares (TLS) fitting prob-
lem can be solved by performing a Minor Component Analysis of the data:
i.e. finding those projections which instead of containing maximum variance
of the data contain minimum variance. In the next section, we first review re-
gression and the TLS solution and then show how Minor Component analysis
can be used to solve it.

3.4.1 Regression

Regression comprises finding the best estimate of a dependent variable, y,
given a vector of predictor variables, x. Typically, we must make some as-
sumptions about the form of the predictor surface e.g. that the surface is lin-
ear or quadratic, smooth or disjoint, etc.. The accuracy of the results achieved
will test the validity of our assumptions.

This can be more formally stated as: let (X,Y ) be a pair of random vari-
ables such that X ∈ Rn, Y ∈ R. Standard regression aims to estimate the
response surface

f(x) = E(Y |X = x) (3.27)

from a set of p observations, xi, yi, i = 1, ..., p.
The usual method of forming the optimal surface is the Least (Sum of)

Squares Method which minimises the Euclidean distance between the actual
value of y and the estimate of y based on the current input vector, x). Formally,
if we have a function, f(), which is an estimator of the predictor surface, and
an input vector, x, then our best estimator of y is given by minimising

E = min
f

N∑
i

(yi − f(xi))2 (3.28)

i.e. the aim of the regression process is to find that function f() which most
closely matches y with the estimate of y based on using f() on the predictor,
x, for all values (y,x).

For a linear function of a scalar x, we have y = mx+ c, and so the search
for the best estimator, f(), is the search for those values of m and c which
minimise

E1 = min
m,c

∑
i

(yi −mxi − c)2

For each sample point in Fig. 3.1, this corresponds to finding that line which
minimises the sum of the vertical lengths such as PR from all actual y-values
to the best-fitting line, y = mx+ c.



50 Hebbian Learning and Negative Feedback Networks

.

.

.
.

.

..

.

..

.

.

.

.

.

.

.P
.A

.B

X

Y

.

.

.
.

.

.

.
.

.

.

..

.

. .

.. .

. .

.

.

.

. .

Q

R

r

Fig. 3.1. The vertical lines will be minimised by the Least Squares method. The
shortest distances, ri, will be minimised by the Total Least Squares method.

However, in minimising this distance, we are making an assumption that
only the y-values contain errors while the x-values are known accurately. This
is often not true in practical situations in which, for example, which variable
constitutes the response variable and which the predictor variables is often a
matter of choice rather than being a necessary feature of the problem. There-
fore, the optimal line will be that which minimises the distance, PQ=r, i.e.
which minimises the shortest distance from each point, (xi, yi) to the best
fitting line. Obviously, if we know the relative magnitude of the errors in x
and y, we will incorporate that into the model; however here we assume no
fore-knowledge of the magnitudes of errors. Thus, we are seeking those values
of m and c which minimise

E2 = min
m,c

∑
i

r2
i = min

m,c

∑
i

(yi −mxi − c)2

1 +m2

This is the so-called Total Least Squares method. Because of the additional
computational burden introduced by the nonlinearity in calculating E2, TLS
is less widely used than LS although the basic idea has been known for ap-
proximately a centuary.

3.4.2 Use of Minor Components Analysis

We will solve the TLS fitting problem by performing a Minor Component
Analysis of the data. The basic idea is that the noise in the data will typically
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contain less variance than the spread along the regression line. Therefore, the
regression line must be orthogonal to the minor component of the data so we
select the line in this direction which goes through the centre of the data. Since
there may be errors in both y and x we do not differentiate between them
and indeed incorporate y into the input vector x. Therefore we reformulate
the problem as: find the direction w such that we minimise E2 i.e.

E2 = min
w

(w.x + c)2

w2
over all inputs x

= min
w

N∑
i=1

(w.xi + c)2

w2

= N min
w

wTRw + 2cwTE(x) + c2

wTw

where R = 1
N

∑N
i=1 xixTi , the autocorrelation matrix of the data set and

E(x) = 1
N

∑N
i=1 xi, the mean vector of the data set. Since, at convergence,

dE2
dw = 0, we must have

Rw + cE(x)− λw = 0 (3.29)

where λ = wTRw+2cwTE(x)+c2

wTw
. Now we wish to find a hyperplane of the form

w.x + c = 0

So, taking expectations of this equation we have c = −w.E(x) which we can
substitute

Cw − λw = 0 (3.30)

where now λ = wTCw
wTw

where C is the covariance matrix. From this we can
see that every eigenvector is a solution of the minimisation of E2.

We apply the method of Xu et al. [186]4 to the negative feedback network,
to get the learning rule

∆wi = −αyix (3.31)

which causes convergence to the eigenvector with the smallest eigenvalue,
provided such eigenvalue is strictly smaller than all other eigenvalues.

As an example of the network in operation, we show in the first line of
Table 3.6 the converged values of the weights of an MCA network when sample
points are drawn from the line and both x and y coordinates are subject to
noise. Clearly the algorithm has been successful. However, the robustness of
regression solutions has generated a distinct area of research in the statistics
literature. In the next section, we review some of this and consider the effect
of noise on TLS solutions.
4 Xu et al. derived the algorithm with a feedforward network using Hebbian learning

with weight decay.
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3.4.3 Robustness of Regession Solutions

We consider firstly the effect of white noise on all measurements and then
consider the effect of substantial outliers on the convergence of the algorithm.

Table 3.6. Directions converged to when the points from the distribution were
disturbed by noise drawn from N(0,0.05).

Actual Distribution Direction Found Outliers

3x+ 2y = 10 0.300x + 0.200y = 1 None
3x+ 2y = 1 2.970x + 2.018y = 1 None

3x+ 2y = 0.1 24.3x + 23.7y =1 None
3x+ 2y = 1 3.424x + 1.714y = 1 1% in y direction
3x+ 2y = 1 2.459x + 2.360y = 1 1% in x direction

For the lines shown in Table 3.6, points were drawn uniformly from only
the first (both x and y positive) quadrant of the distribution determined by the
line in each case. The first three lines show the direction to which the network
converged when the distribution was affected by only white noise in both x
and y direction drawn from N(0,0.05). Clearly the degree of accuracy of the
convergence depends very greatly on the relative proportion of the amount of
variance due to the length of the distribution from which points were drawn
and the white noise. In the third case, the noise was of the same order as
the variance due to the spread of points on the line and the convergence was
severely disrupted.

As an example of the effect of outliers, we repeated the experiment with
MCA regression to the line 2x + 3y = 1 with 1% outliers (100 points out of
10000). The error in each outlier was O(1). The results are shown in the last
two lines of Table 3.6. Clearly the effect, even at this level of intensity, is much
more severe when outliers occur in the x than the y direction.

Xu et al. suggest amending (3.31) to (our notation)

∆wi = −αβyix (3.32)

where β = 1
|x2−y2

i | , to give a robust regression procedure. Clearly, for an
outlier, β will be very small provided the weights w have already converged
towards the direction indicated by the cloud of data. However, a network
which meets a so-called leverage point early in learning will be just as liable
to converge to a false direction and will treat the “good” points as before
as outliers. Thus we see that in line 4 of Table 3.6, there is some disruption
caused by 1% of the sample being disturbed by noise in the y-direction; but
there is virtually total loss of regression parameters when the noise is in the
x-direction (line 5).
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Our overall conclusion, therefore, is that the method of MCA provides a
valid method of calculating the Total Least Squares Minimum Error of a data
set, but it is not correct to say that the method is robust to outliers.

3.4.4 Application to ICA

An example of blind source separation is the cocktail party problem, where a
number of people at a party all talk simultaneously. A set of microphones are
then placed throughout the room to receive the sound of everyone talking si-
multaneously. Because the microphones are placed in different positions, each
microphone picks up slightly different mixtures. Using the different mixtures
from the microphones we then try to isolate the individual speaker’s speech
signals.

Table 3.7. The relative power of each signal in each of the three mixes. Signal 3
is very much the weakest yet is readily recovered.

Signal 1 Signal 2 Signal 3

Mixture 1 2.8 ∗ 1011 0.3 ∗ 1011 1
Mixture 2 1.1 ∗ 1011 0.2 ∗ 1011 1
Mixture 3 2.5 ∗ 1011 1.1 ∗ 1011 1

Fig. 3.2. Left: The original signal. Right: The recovered signal using Minor Com-
ponent Analysis.

We can use MCA to extract a signal from a mixture of signals: we use three
speech signals (each speaker said “perhaps the most frequent use of ICA is
in the extraction of independent causes”) and mix them so that the power
of the weakest signal constitutes a small fraction of the total power in the
mixes. Table 3.7 gives an example of the relative power of each of the signals
in each of the three mixtures. Fig. 3.2 (left) shows the weakest power signal
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while Fig. 3.2 (right) shows the recovered output: the low power signal has
been recovered.

We emphasise that we are using a linear network (and hence the second-
order statistics of the data set) to extract the low-power voice. The mixture
is such that humans cannot hear the third voice at all in any of the three
mixtures and yet the MCA method reliably finds that signal with least power.

We note that a limitation of this method as a biological model might seem
to be that the signal to be recovered must be swamped by the noise: if there
is a component of the noise which is lower power than the signal, it will be
recovered. However there is one situation (and perhaps a frequent one given
the symmetry of our ears and surroundings) in which MCA may be useful: if
the mixing matrix is ill-conditioned. Consider the mixing matrix

A =
(

0.8 0.4
0.9 0.4

)
(3.33)

whose determinant is −0.04. Its eigenvalues are 1.2325 and −0.0325. The ma-
jor principal component will be the term which is constant across the two
signals and so the smaller component will be the residual when this has been
removed. Two voice signals were mixed using this matrix and one recovered by
the MCA method is shown in Fig. 3.3 which should be compared with the orig-
inal signal shown in Fig. 3.2. Most interesting is that the more ill-conditioned
the mixing matrix, the better is the recovery of the lesser-amplitude voice.
Given the closeness of our ears compared with the area from which signals are
liable to be emitted, this suggests that this model might be extremely possible
in a biological implementation: the fact that the data is ill-conditioned might
actually be of help in disentangling different signals.

3.5 Conclusion

We have, in this Chapter, discussed a negative feedback implementation of a
network which has been shown to be capable of performing Principal Compo-
nent Analysis. We have extended the basic algorithm in several ways which
may be of biological interest. Specifically:

• We have shown that we may have different weights feeding back from those
feeding forward.

• We may feed back the outputs and have the subsequent weight change in a
specific order in order to perform an actual Principal Component Analysis.

• If we reverse the direction of the weight change, we create a network which
performs Minor Component Analysis.

This last method is mentioned for completeness but it should be mentioned
that there are serious questions to be raised with respect to the convergence
and stability of Minor Component Analysis methods. There is also the ques-
tion of the magnitude of the weights from online algorithms which perform
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Fig. 3.3. The signal recovered from ill-conditioned mixing. Compare with Fig. 3.2 .

Minor Components Analysis which is not discussed herein. A good recent re-
view of MCA algorithms and a discussion of these problems is given in [133].

In this chapter, we have seen that the algorithm may be approximately
derived from maximisation of variance. In Chapter 5, we show how the equiv-
alent nonlinear algorithm may be derived from minimisation of the mean
square error of the low-dimensional representation; the network of this chap-
ter is a special case of that algorithm and so we may equivalently show that
this network performs the best linear compression of a data set where “best”
is defined in terms of minimum mean squared error.

However, since we have shown that the network is algorithmically equiva-
lent to Oja’s or Sanger’s algorithms, we must ask if we are gaining anything by
phrasing the operation as a negative feedback operation rather than as a sim-
ple feedforward network with weight decay in the Hebbian learning rule. We
believe that phrasing the operation as a three phase operation – feedforward,
feedback and then weight change – gives us a mental model which permits
changes which would not have been possible with a two-phase network with
weight decay. We have already met one of these – the VW network; others
which will be met in this book are the introduction of competition at the
outputs before feedback (Chapter 7) or optimising the network learning with
respect to the probability density functions of the residuals after feedback
(Chapter 8). Such innovations would simply not be possible if we use a totally
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feedforward artificial neural network with negative feedback only within the
learning rule.

Before we investigate these issues, we show in the next chapter how lateral
weights may be used (before the feedback operation) to force convergence to
the Principal Component directions. That chapter and the subsequent ones in
Part 1 can be read almost in any order though it is necessary that the reader
at least skims Chapter 6 before reading Chapter 8.



4

Peer-Inhibitory Neurons

At the start of the previous chapter, we discussed how, in biological systems,
activation was passed forward, backward and also laterally through networks
of neurons. The properties of the system which used the first two of these di-
rections for information passing were discussed fully in that chapter; however,
we did not consider any lateral interactions between the neurons. We take this
approach in the current chapter.

Four factors make the negative feedback network especially exciting as a
PCA network:

Simplicity: There are no logistic or hyperbolic functions to be calculated;
there is no additional computation within the learning rule; there is no
sequential passing back of errors or decay terms.

Homogeneity: Every output neuron is performing exactly the same calculation
as its neighbours.

Locality of Information: Each output neuron uses only the information which
it receives from its own connections; similarly with the input neurons
which calculate the residuals.

Parallelism: Each operation at each output neuron is independent of what is
happening at any other output neuron; similarly with the input neurons.

However, the phased creation of neurons described in the previous chapter
does not utilise the inherent potential of this network for parallel information
processing. We now develop learning algorithms which do this while retaining
as much as possible of the other features.

Thus, in this chapter, we create the entire network at one instant in time
and train all weights simultaneously. We investigate lateral trainable connec-
tions which learn using simple Hebbian learning to self-organise. We analyse
these connections to find under what conditions they may be used to force a
totally parallel network to learn the actual Principal Components themselves.
We amend the basic network by allowing the inhibitory effect of each output
neuron to act on the other output neurons as well as the input neurons. Two
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methods will be used with this amended network in order to create the neces-
sary asymmetry: in the first, we will allow the network weights to be upgraded
at different rates; in the second, we will use different activation functions to
force convergence to the Principal Components.

The first type of network will be characterised by

Feedforward: y′ = Wx (4.1)
Lateral action: y = y′ − Uy′ (4.2)

Feedback: e = x − V T y (4.3)
Weight change: ∆W = ηwyeT (4.4)
Weight change: ∆V = ηvyeT (4.5)
Weight change: ∆U = γyyT (4.6)

where y′ is the initial activation of the output neuron before receiving the
lateral inhibition from other output neurons, and U is the matrix of weights
between the output neurons.We do not, however, allow self-connections from
output neurons to themselves.

We note that we have now a 3-phase operation:

1. The activation is fed forward from the input neurons to the output neurons
2. The output neurons feed their activation to their peers and recalculate

their activations
3. The activation is fed back to the input neurons from the output neurons

While this is more computationally complex than before, we only require
O(m2) additional calculations, where m is the number of output neurons.
Further, all learning processes continue to use simple Hebbian learning.

We will introduce a matrix G(x) = (I − U)W (x),1 which represents the
forward function from x to y. G is an integral part of the mathematical
model which we will use for understanding the network, but it makes no overt
contribution to the development of the network in the real, stochastic world.
The actual learning in the network, i.e. the weight updates, is accomplished
by updating the actual weights U, V and W although we will discuss dG

dt as
though it were being performed in the same sense that, e.g. dW

dt is performed.
We can prove (an obvious special case of Theorem 4.2) that the learning

rules detailed above are equivalent to

dV

dt
=

dW

dt
= (I − U)WC − (I − U)WCWT (I − U)T V (4.7)

dU

dt
= (I − U)WCWT (I − U)T (4.8)

dG

dt
= (I − U)

dW

dt
− dU

dt
W (4.9)

1 I being the identity matrix.
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where G is the forward function relating x and y and C is the covariance
matrix of the input data.

We will show, as with other models with lateral inhibition, that U = 0 is
a stable stationary point of the system.

Now, G = (I − U)W

and so
dG

dt
= (I − U)

dW

dt
− dU

dt
W

= (I − U){(I − U)WC − (I − U)WCWT (I − U)T V }
−(I − U)WCWT (I − U)T W

= (I − U){GC − GCGT V } − GCGT W

→ GC − GCGT V − GCGT W

as U → 0

Now G → W as U → 0 and so dG
dt → WC − 2WCWT W using the fact that

V = W .
It can be seen that the necessary asymmetry between the Hebbian learning

term and the weight decay term has not been achieved; however, the important
point to note is that part of the weight decay term comes from the dU

dt term
which we can manipulate independently of the dW

dt term in order to create the
necessary asymmetry.

In summary, this chapter will show how it is possible to manage the lateral
connections to force the weights to converge to Principal Component filters
(rather than just to identify the Principal Subspace). We can do this by having
the lateral weights learn at different rates or by having different weights of
activation functions in certain models. We discuss the type of models in which
this method does not work.

4.1 Analysis of Differential Learning Rates

Let us consider the system of equations:

y′ = Wx (4.10)
y = y′ − Uy′ (4.11)
e = x − V T y (4.12)

∆W = ηW yeT (4.13)
∆V = ηV yeT (4.14)
∆U = ΓyyT (4.15)

Let us review our naming conventions: the convention we will use is that wij

is the weight of the connection from xj to yi; similarly, vji is the weight of
the connection from yi to ej ; uij is the weight of the connection from yj to
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yi. Unless specifically stated otherwise, we shall be interested in the vectors
to and from the output neurons. Therefore, we take the vectors vi to be the
weight vector into the ith output neuron, i.e. to be the vector of form {vki} for
all k; similarly we take the vector wi to be the vector of weights from the ith

output neuron i.e. to be the vector {wik} for all k. Both are vectors of length
n where n is the number of input neurons. Note that the learning rates of U
values are different for different output neurons as we wish to force the first
output neuron to learn the first principal component, the second the next and
so on. Thus we have a diagonal matrix, Γ .

Since we ensure that there are no self-connections, the main diagonal of
U is composed of zeros. Also note that Γ is the matrix diag{γ1, γ2, · · · , γm}
where m is the number of output neurons and γi is the learning rate for the
U weights of the ith output neuron such that γ1 < γ2 < ... < γm. We allow
all learning rates to decrement to zero as time tends to infinity.

As introduced in the previous section, G(x) = (I −U)W (x) is the forward
function from x to y. We will assume that, if γi(t) is the value of γi during
time interval t, limt→0

γi(t)
ηw(t) exists and is positive. This assumption will be

discussed in Section 4.1.1.

Theorem 4.1 vi converges if and only if wi converges, where vi is the weight
vector from the ith output neuron and wi is the weight vector into the ith

output neuron. Further,
vi = awi + p

where a = limt→0
ηV (t)
ηW (t) ,

ηV (t) is the value of ηV during time interval t,
and p is a vector depending on the initial conditions of vi and wi.

Proof
At time B, we have

wij(B) = wij(B − 1) + ηij(B)ej(B)yi(B)

If we start from time 0, we can equate the continuous time point T with the
sum of the discrete intervals ηij :

T =
B∑

p=0

ηij(p)

Thus, we are breaking up continuous time into discrete time steps ηij . Now
the convergence, if it exists, must be taking place simultaneously over all
weights. Therefore, we must ensure that ηij = η for all values of i, j. In order
to have no limit on continuous time, we must have

∞∑
p=0

η(p) = ∞
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If we further assume that η(p) > 0 for all p, then we have

∆wij = ηejyi

= η

(
xj −

∑
s

vsjys

)
yi

= η

(
xj −

∑
s

vsj

(∑
l

wslxl −
∑

p

usp

∑
l

wplxl

))
×

(∑
t

witxt −
∑

q

uiq

∑
r

wqrxr

)

Or, in matrix terms,

W (B) − W (B − 1)
η(B)

= (I − U(B))W (B)x(B)x(B)T

−(I − U(B))W (B)x(B)x(B)T W (B)T (I − U(B))T V (B)
(4.16)

If we also assume that
lim

p→∞ η(p) = 0

then the sequence of wji(T ) asymptotically approaches a continuous-time
function and the left-hand side of (4.16) approaches its derivative. Then we
can replace (4.16) with the corresponding averaged differential equation

dW

dt
= (I − U)WC − (I − U)WCWT (I − U)T V (4.17)

where C is the covariance matrix of the stationary distribution producing
the xk values. Now, under the same assumptions as in the previous chapter
about the rate η it can be shown that the solution of the stochastic algorithm
approaches the solution of the differential equation (4.17) with probability 1.

Now consider v’s learning.

vij(B) = vij(B − 1) + ηV (B)ej(B)yi(B)

Therefore,

vij(B) − vij(B − 1)
η(B)

=
ηV (B)
η(B)

[
∑

l

wli(B)xl(B)xj(B)

(
1 −

∑
q

uiq

)

−
∑

k

vkj(B)

(
1 −

∑
q

uiq

)∑
p,l

wpk(B)xp(B)xl(B)wli(B)

(
1 −

∑
p

usp

)
]
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Given the same assumptions as before and making the additional assump-
tion that

lim
p→0

ηV (p)
η(p)

= a > 0 i.e. the limit exists and is positive.

we have the corresponding differential equation,

dV

dt
= a((I − U)WC − (I − U)WCWT (I − U)T V ) (4.18)

Therefore,
dV

dt
= a

dW

dt

Therefore, W converges to a solution (where dW
dt = 0) if and only if V con-

verges to a solution.

Now,
dW

dt
= (I − U)WC − (I − U)WCWT (I − U)T V = f(W, V )

Let F (W, V ) =
∫ ∞

0

f(W, V )dt

Then, V = aF (W, V ) + aK and W = F (W, V ) + K

where K is a function of the initial values of V and W .
Thus, vi = wi+p, where p is a vector depending only on the initial values

of the system.
Thus if vi and wi converge, they do so simultaneously and close to the

same vector.

Note 1 For the remainder of this section we will assume that a=1. i.e. the
learning rates for V and W are equal.

Note 2 We note that the vectors vi and wi may be made arbitrarily close by
limiting the original size of vectors vi(0) and wi(0). i.e. p may be made
arbitrarily small by appropriate initial choice of v and w. Hence we are
able to assume that vi ≈ wi.

Theorem 4.2 The learning rules detailed above are equivalent to

dV

dt
=

dW

dt
= (I − U)WC − (I − U)WCWT (I − U)T V (4.19)

dU

dt
= A(I − U)WCWT (I − U)T (4.20)

dG

dt
= (I − U)

dW

dt
− dU

dt
W (4.21)

where G is the forward function relating x and y and A is the matrix
diag{a1, a2, ..., am} with ai = limt→0

γi(t)
ηW (t) with γi(t) being the value of γi

during the time interval t.
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Proof
With the same assumptions as before, we can write

W (B) − W (B − 1)
η(B)

= (I − U(B))W (B)x(B)x(B)T

−(I − U(B))W (B)x(B)x(B)T W (B)T (I − U(B))T V (B)
(4.22)

If we also assume that
lim

p→∞ η(p) = 0

then the sequence of wij(T ) asymptotically approaches a continuous-time
function and the left-hand side of (4.22) approaches its derivative. Then we
can replace (4.22) with the corresponding averaged differential equation

dW

dt
= (I − U)WC − (I − U)WCWT (I − U)T V (4.23)

where C is the covariance matrix of the stationary distribution producing the
xk values. Now, under certain assumptions about the rate η it can be shown
that the solution of the stochastic algorithm approaches the solution of the
differential equation (4.23) with probability 1.

Similarly, for the weight updates of the U weights,

uij(B) = uij(B − 1) + γi(B)yi(B)yj(B)

Therefore,
U(B) − U(B − 1)

η(B)
=

γi(B)
η(B)

yiyj

If we make the further assumption that limB→0
γi(B)
η(B) exists, we can take the

limit of the above stochastic equation giving

dU

dt
= AQ

where A= diag {a1, a2, ..., am} with ai = limt→0
γi(t)
η(t) > 0, and Q the m ∗ m

matrix with elements qij = E(yiyj), i 	= j, and qii = 0 for all i, j. E() indicate
an ensemble average. We will, for the time being, assume that the ai values
are constant during the learning process. We will return to this assumption
in Section 4.1.1 Now,

Q = E(yyT ) (4.24)
= E((I − U)WxxT WT (I − U)T ) (4.25)
= (I − U)WCWT (I − U)T (4.26)

where Cij is E(xixj) for all i, j. Hence,
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dU

dt
= A(I − U)WCWT (I − U)T

The transform from x to y is G where G(t) = (I − U(t))W (t) where U(t) is
the value of U at time t, etc. Then,

dG

dt
= (I − U(t))

dW (t)
dt

− dU(t)
dt

W (t) (4.27)

= (I − U)
dW

dt
− dU

dt
W (4.28)

Theorem 4.3 U= 0, the m ∗ m zero matrix, is a solution of dG
dt = 0 , and

gi = wi = 1√
1+ai

ci is the corresponding solution for G and W where ci are
the eigenvectors of the covariance matrix of the input data in order. i.e. if
γu1 < γu2 < · · · < γum

, then wi = 1√
1+ai

ci where ci is that eigenvector
with corresponding eigenvalue λi where λ1 > λ2 > · · · > λm and, as before,
ai = limt→0

γi(t)
ηW (t)

Proof

dG

dt
= (I − U)

dW

dt
− dU

dt
W

First we note that as U → 0,

dG

dt
=

dW

dt
− dU

dt
W

= (I − U)WC − (I − U)WCWT (I − U)T V − A(I − U)WCWT (I − U)T W

= GC − GCGT V − AGCGT W

→ WC − (I + A)WCWT W

at the point of convergence of V and W .
Note the similarity between these equations and those required for Oja’s

Weighted Subspace Theorem [142, 143]; therefore, we conjecture that a solu-
tion of dG

dt = 0 at U = 0 is gi = wi = 1√
1+ai

ci the ith eigenvector of C in
normal order. Here we show that the stated values are solutions; stability will
be proved later.

dG

dt
= (I − U)

dW

dt
− dU

dt
W

= (I − U)((I − U)WC − (I − U)WCWT (I − U)T V )
−A(I − U)WCWT (I − U)T W

→ WC − WCWT V − AWCWT W

= ΛW − KV − AKW

where K is the diagonal matrix whose (i, i)th element is λi|wi|2 with λi the
ith eigenvalue and Λ is the diagonal matrix whose (i, i)th element is λi.
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Then taking gi as the ith vector of G i.e. going into the ith output neuron
and using the fact that wi = vi, we have

dgi

dt
= λiwi − kiwi − aikiwi

=
(

λi√
1 + ai

− λi

1 + ai

1√
1 + ai

− aiλi

1 + ai

1√
1 + ai

)
ci

=
(

λi(1 + ai) − λi − aiλi√
1 + ai(1 + ai)

)
ci = 0

So the stated values are stationary points of the system.
Note: We can in fact go further, in that if U = 0 then

dgi

dt
= λiwi − kiwi − aikiwi

= (λi − λi|wi|2 − aiλi|wi|2)wi

= λi(1 − |wi|2 − ai|wi|2)wi

so if dgi

dt = 0 then |wi|2(1 + ai) = 1 i.e. |wi| = ± 1√
1+ai

.

Theorem 4.4 At the solutions U = 0, wi = 1√
1+ai

ci of dG
dt = 0, then

duij

dt
= 0 for all i,j

if λi 	= 0 i.e. the ith eigenvalue is not zero.

Proof

dU

dt
= A(I − U)WCWT (I − U)T

= AWCW T

Now wiCwT
j = 0 for all i 	= j and wiCwT

i = λi|wi|2. Therefore, WCWT is a
diagonal matrix of the form diag{k1, k2, · · · , km} where ki = λi|wi|2, λi being
the ith eigenvalue. Then

dU

dt
= AK = diag{a1k1, a2k2, · · · , amkm}

Therefore, duij

dt = 0 for all i 	= j.

Theorem 4.5 The solutions uij = 0, wi = 1√
1+ai

ci for all i, j of dG
dt = 0

ensure all variables are stationary at this point.

Proof
At the stated points of solution of dG

dt = 0 then dU
dt = 0. But
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dG

dt
= (I − U)

dW

dt
− dU

dt
W

=
dW

dt

So dG
dt = dU

dt = dW
dt = dV

dt = 0.

Theorem 4.6 If ci are the unit length eigenvectors of C, the solutions

vi = wi =
1√

1 + ai
ci

ui = 0, where 0 is the m*1 zero vector

of the equations governing the dynamics of this network, are asymptotically
stable for all i.

Proof
First consider the ui. We have already shown that U = 0 =⇒ dU

dt = 0.
Consider a disturbance of ε in U = 0. We have

dU

dt
= A(I − (0 + ε))WCWT (I − (0 + ε))T

= AK − AεWCWT − AWCWT ε + O(ε2)
= −AεWCWT − AWCW T ε + O(ε2) (off diagonal)
= −AεK − AKε + O(ε2)

Since A and K are both diagonal matrices with entries ≥ 0, if ε > 0, the rate
of change of U is negative i.e. U must decrease. If ε < 0, the rate of change of
U is positive i.e. U will increase.

Now consider the W weights. We have proved that the stated values are
solutions; we must still prove asymptotic stability. Note that at the stated
points of convergence,

G = (I − U)W = W

dG

dt
= (I − U)

dW

dt
− dU

dt
W

Now since G = W at the points stated, any instantaneous disturbance in W
will have an equal instantaneous effect on G. Therefore, we will investigate the
effect of a disturbance in W on G in order to derive the asymptotic stability
of W . We do this through investigating the effects of the disturbance on U
and W . Let there be a disturbance of E in the converged weights W . Then,

dU

dt
= A(W + E)C(W + E)T

= AWCWT + AECWT + AWCET + AECET

≈ (AWCWT ) + AECWT + AWCET
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ignoring terms of O(E2). Thus,

dU

dt
(W + E) = (AWCWT + AECWT + AWCET )(W + E)

≈ AWCWT W + AECWT W + AWCET W + AWCWT E

= (AWCWT W ) + AECWT W + AWCET W + AKE

Similarly,

dW

dt
= (W + E)C − (W + E)C(W + E)T V

≈ WC + EC − WCWT V − ECWT V − WCET V

= (WC − WCWT V ) + EC − ECWT V − WCET V

So still ignoring terms of O(E2),

dG

dt
=

dW

dt
− dU

dt
W

= (WC − WCWT V + AWCWT W ) + EC − ECWT V − WCET V

−AECWT W − AWCET W − AWCWT E

= EC − ECWT V − WCET V − AECWT W − AWCET W − AKE

= EC − AKE − (I + A)(ECWT + WCET )W

Now, considering a disturbance of ε in the direction of cj of the weight wi,(i.e.
a disturbance of εj) we note first that the matrix(I + A)(ECWT + WCET )is
a diagonal matrix with its jth element (1+ aj)

2λjε√
1+aj

. So considering the rate

of change of gi in the direction of cj ,

dgi

dt
= λjεj − ajkjεj − (1 + aj)

2λjε√
1 + aj

wj

=

(
λjε − aj

λj

1 + aj
ε − (1 + aj)

2λjε√
1 + aj

1√
1 + aj

)
cj

= −λj

(
1 +

aj

1 + aj

)
εcj (4.29)

Since C is symmetric, λj > 0 . Further, the learning rates γj were such that
aj > 0 . Then, equation (4.29) shows that if ε > 0, which would cause G to
grow, the system will self-organise to cause G to shrink; if ε < 0 the system
will self-organise to cause G to grow. Since we have shown that U = 0 is a
stable solution, then the solutions of the W vectors must also be stable.

Now consider the vi. The proof that the stated values are solutions is
implicit in the section above. To show asymptotic stability, let there be a
disturbance of ε > 0 in V . Then
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dV

dt
= (I − U)WC − (I − U)WCWT (I − U)T (V + ε)

= WC − WCWT (V + ε)
= WC − WCWT V − WCWT ε

= −WCWT ε

= −Kε < 0

since every element of K is greater than 0. Similarly, if ε < 0, we have dV
dt > 0.

Thus all the stated values are stable points of the system.

4.1.1 The GW Anomaly

There is an apparent anomaly in the above equations. The solution of dG
dt = 0

is gi = wi = 1√
1+ai

ci whereas the solution of dW
dt = 0 occurs at wi =

ci. Further, as U → 0, G → W . This suggests a less stable system than
before, and this is indeed the case. Thus, in order to minimise instability, it is
necessary to ensure that the ai values are low. Experimental results suggest a
value of 0.1 is sufficient to ensure stable convergence to Principal Components.
However, we note that, at wi = 1√

1+ai
ci, U = 0 and so

dW

dt
= (I − U)WC − (I − U)WCWT (I − U)T WT V

→ WC − WCWT V

and so
dwi

dt
=

λi√
1 + ai

ci − λi

1 + ai

1√
1 + ai

ci

=
λi√

1 + ai

ai

1 + ai
ci

Therefore, for any ai 	= 0 , there will be a tendancy for the weights to grow
away from the global optimum. However, as seen in the equations governing
dG
dt , this cause instantaneous change in U , which will drive the W weights in
the opposite direction. In order to produce a damped system, the values of
ai should be small. One possible response to this anomaly is to insist that as
we are taking a limit to infinity, the ai values can only be ≥ 0 i.e. to allow
equality. However, this is not the experimental situation where a strict ratio is
maintained as the terms decrease to 0 nor does it help the analysis as we then
have a diagonal matrix which is not of full rank and would not then provide
the differential decay necessary for convergence to the Principal Components.

The approach chosen here is to choose the values of ai appropriately small
so that the term 1√

1+ai
≈ 1. Under this constraint the system has been found

experimentally to be stable.
The final point to note is that in this system the decay of the learning rate

to 0 may be essential to the fixed stability of the system; if the learning rates
are not allowed to decay to zero, the very dynamical nature of the convergence
will continue.



4.1 Analysis of Differential Learning Rates 69

4.1.2 Simulations

The results of a typical experiment on the same type of data as in the previous
chapters are indicated in Table 4.1. Here, the first output neuron has the
smallest learning rate i.e. αu1 < αu2 < αu3 . Further, while the initial values
of the w and v weights were O(0.0001) those of the u weights were O(0.00001).

In order to show that it is the different learning rate which causes the
convergence to Principal Components, the same experiment was rerun with
all the U weights having the same learning rate; the results of this are shown
in Table 4.2. While there may appear to be a soft PCA taking place, this
effect vanishes in larger networks. This effect – that increased size removes
the tendency to perform a “soft” PCA – has been found in other models in
this section, and therefore slightly larger networks have been used in obtaining
other corroborative empirical results.

Table 4.1. Results show the weights of a typical set of V and W weights from
the parallel learning algorithm with the angle in radians between the v and w vec-
tors. No. of iterations=40 000. Initially, αw = αv = 0.0001; αu1 = 0.000005; αu2 =
0.00001; αu3 = 0.000015.

V W

1.000 0.012 0.000 1.000 0.012 −0.000
0.030 1.000 0.008 0.030 1.000 0.009
0.005 −0.003 0.994 0.004 −0.003 0.994
0.004 0.007 −0.023 0.004 0.007 −0.023
−0.002 0.000 −0.000 −0.002 0.000 0.000

Output Neuron No.: 1 2 3

Angle (radians) 0.0011 0.0006 0.0004

Table 4.2. Results of the same network as before with homogeneous U learning
rates.

V W

0.651 0.188 1.0312 0.650 0.188 1.031
−0.151 0.984 −0.092 −0.150 0.984 −0.092
0.824 0.049 −0.305 0.842 0.049 −0.305
−0.019 0.006 0.006 −0.018 0.006 0.006
−0.001 −0.001 −0.001 −0.001 −0.001 −0.002
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4.2 Differential Activation Functions

In this section we investigate three models of peer inhibitory output neurons
which use activation functions instead of learning rate to break the symmetry
of the system. We will not repeat the explicit derivations of the last section
for each of the three models as the mathematics is usually very similar; how-
ever specific points of interest will be identified and analysed. First each of
the three models is introduced and experimental results are given; points of
interest in each are identified. Then a comparison of the models is made and
additional models which have similar properties are outlined. Unless stated
otherwise, the empirical data is obtained from a network with 12 inputs, 7
output neurons and input data with variance of x1 > variance of x2 > · · ·.
A is a diagonal matrix with A11 > A22 > · · ·. The simulated network in this
section is slightly larger than in previous sections in order to highlight various
interesting empirical results which are not so obvious in smaller networks.

Restricting ourselves to models where only the output neurons use ac-
tivation functions and restricting such activation functions to multiplicative
factors (so that we still have a linear system), there are several possible models;
we will identify three separate classes of models by determining the charac-
teristics of three of these models. We will use the same conventions in naming
vectors as before. Note, in particular, that there are still no self-connections
for the output neurons i.e. the main diagonal of U is composed of zeros. In
this section, all u weights will learn at the same rate, ηU , but there will be dif-
ferential activation functions (multiplicative factors) on the output neurons.
For simplicity, we assume that ηW = ηV = ηU = η. (This does not affect our
results and provides a simpler mathematical model).

4.2.1 Model 1: Lateral Activation Functions

The first model is governed by the system of equations:

y′ = Wx (4.30)
y = y′ − AUy′ (4.31)
e = x − V T y (4.32)

∆W = ηyeT (4.33)
∆V = ηyeT (4.34)
∆U = ηyyT (4.35)

Then, omitting details, we have G = (I − AU)W and

dW

dt
= (I − AU)WC − (I − AU)WCWT (I − AU)T V (4.36)

dU

dt
= (I − AU)WCWT (I − AU)T (4.37)

dG

dt
= (I − AU)

dW

dt
− A

dU

dt
W (4.38)
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Then if U converges to 0 at which point G = W = V ,

dG

dt
= (I − AU){(I − AU)WC − (I − AU)WCWT (I − AU)T V }

−A{(I − AU)WCWT (I − AU)T }W
= (I − AU){GC − GCGT V − AGCGT W}
→ GC − (I + A)GCGT W as U →0

at convergence, which should be compared with the equations in the previous
section.

However, the dynamics of the two models should not be assumed to be
the same; note, for example, the different format of the equations governing
the behaviour of the U values. This will be shown to be important in the
investigation below. The wi weights (almost) converge to the eigenvectors of
the input data’s covariance matrix. The underlying rationale for this network
is that each output neuron has different susceptibility to the inhibition from
its peers. The results shown in Table 4.3 are from a 12-input, 7 output-neuron

Table 4.3. Model 1 results. The results are from a network with 12 input neurons
and 7 output neurons; each column is the vector of weights into each output neuron.
In most cases the actual Principal Components have been identified.

1 2 3 4 5 6 7

1 −0.005 −0.001 0.004 0.006 −0.023 −0.025 0.999
2 0.001 0.005 0.012 0.008 −0.014 0.999 0.029
3 −0.011 0.011 0.022 −0.045 −0.998 −0.023 −0.031
4 −0.003 0.021 0.058 −0.999 0.024 0.010 −0.003
5 0.001 0.146 −0.996 −0.031 0.019 −0.002 0.009
6 0.040 0.998 0.119 −0.004 −0.012 −0.019 −0.002
7 0.998 0.029 0.023 0.004 −0.016 0.013 0.014

8 −0.016 −0.013 0.004 0.004 0.003 0.011 −0.007
9 0.004 0.006 −0.003 0.004 −0.003 −0.001 −0.20
10 0.013 0.005 −0.001 0.002 −0.001 0.003 −0.005
11 −0.001 −0.004 −0.001 −0.001 −0.003 0.001 0.004
12 0.001 −0.001 −0.003 −0.003 −0.004 −0.002 0.001

network, with ai = 1.58−0.2∗(i−1) for i = 1,...,7. We note that while almost
all the Principal Components have been certainly identified, the second and
third output neurons have not identified precisely their respective Principal
Components. The vectors seem to be almost correct and to satisfy w2.w3 = 0
(the vectors are mutually normal) yet are not in the direction of the eigenvec-
tors themselves. In fact by appropriate choice of the parameters ai, this effect
can be eliminated; however:

1. We wish to develop a network which will not require any fine tuning as it
is used in different situations.
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2. The analysis of this fault provides insight into the network behaviour.

The reason for this fault lies in the convergence of the U values. In the
model of the last section the learning rule for the U values was shown to be

dU

dt
= A(I − U)WCWT (I − U)T

Notice that as U → 0, this learning rule continues to be dominated by the A
matrix whereas, in Model 1, the effect of the A matrix vanishes as U → 0 (see
(4.37)).

The importance of dU
dt is due to the fact that the value of dU

dt is a major
component in the decay term in dG

dt . Thus, as U tends to zero and hence
dU
dt → 0, the decay term tends to zero. In the previous model this decay
term maintained its differential effect as it decreased, but in Model 1, as
U → 0, the decay loses its directional impact – it becomes homogeneous.
More formally, consider the convergence to a solution of the system which is
not an eigenvector. Let wi have converged to aci + bcj , a, b 	= 0 and let wj

have converged to cci + dcj , c, d 	= 0. Both c and d are necessarily not zero
as wi.wj = 0. Then we can show that the (i, j)th element of WCWT can be
shown to be

wiCwT
j = (λiaci + λjbcj).(cci + dcj)

= λiac + λjbd

Similarly, wiCwT
i = λia

2 + λjb
2

wjCwT
i = λiac + λjbd

wjCwT
j = λic

2 + λjd
2

Now the ith row of (I −AU) is [ −aiui1 · · · 1 · · ·−aiuij · · ·−aiuim ] where the
1 is in the ith position. Similarly with the jth row. Then,

duij

dt
= (I − AU)iWCWT (I − AU)T

j

= u2
ij(aiaj(λiac + λjbd)) − uij(aj(λia

2 + λjb
2)

+ai(λic
2 + λjd

2)) + (λiac + λjbd)

Thus duij

dt at uij = 0 is equal to (λiac + λjbd) which is exactly zero for
b = c = 0, i.e. the eigenvectors.

But, as uij → 0, a situation arises where there is no particular impulse for
the change of uij in any particular direction provided the constraint ac+bd = 0
is satisfied. The symmetry of the formula shows that duij

dt = duji

dt ; thus the
differential term in dgi

dt also vanishes at this point and so the weights, having
approached the eigenvectors, need not converge precisely to any eigenvector
– the driving force of differential weight decay has vanished.

For the system analysed in the previous section, we have
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duij

dt
= aiu

2
ij(λiac+λjbd)−uij(ai(λia

2+λjb
2)+aj(λic

2+λjd
2))+ai(λiac+λjbd)

Note the asymmetry in this rule in that even as uij → 0 ,duij

dt 	= duji

dt . Therefore
this system will maintain a preferred degree of slope no matter how small
U becomes. As noted earlier, the value of duij

dt is precisely the value of the
decay term in dgi

dt and so W will continue to converge, taking account of the
network’s asymmetry, no matter how small U becomes.

It is possible to somewhat circumvent this problem by choosing values of
ai which are sufficiently different to make the term containing uij significant
until U is closer to zero; however, this is an heuristic and an a priori decision
on the size of the ai cannot be made.

A further difficulty with this model is that we now have the activations fed
to the output neurons being processed differently depending on their origins:
all output neurons are responding equally to the fed-forward activations from
the input neurons but are responding differentially to the activations from
their peers. This seems unrealistic for a biological model and requires an
engineered model to have meta-information (as to whether to use an activation
function or not). Model 2 is designed to rectify this.

4.2.2 Model 2: Lateral and Feedforward Activation Functions

Our equations are almost the same as in the last section, but note that ev-
ery input to Z carries an activation function times the weighted inputs. The
rationale behind this model is a belief that all inputs to an output neuron
should be treated equally.

y′ = AWx (4.39)
y = y′ − AUy′ (4.40)
e = x − V T y (4.41)

∆W = ηyeT (4.42)
∆V = ηyeT (4.43)
∆U = ηyyT (4.44)

Then we have

y = (I − AU)y′ = (I − AU)AWx

Therefore

G = (I − AU)AW

dG

dt
= (I − AU)A

dW

dt
− A

dU

dt
AW

As before, we can show that
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dW

dt
= (I − AU)AWC − (I − AU)AWC((I − AU)AW )T V (4.45)

dU

dt
= (I − AU)AWC((I − AU)AW )T (4.46)

and so that
dG

dt
= (I − AU)A(I − AU)AWC

−(I − AU)A(I − AU)AWC((I − AU)AW )T V

−A(I − AU)AWC((I − AU)AW )T AW

→ A2WC − A2WC(AW )T V − A2WC(AW )T AWas U → 0
= A{(AW )C − (AW )C(AW )T V − (AW )C(AW )T AW} (4.47)

The factor A, which multiplies the whole of the right side of (4.47) acts on
the whole of that side equally i.e. does not have the differential decay effect
necessary to force convergence to Principal Components. It does however have
the effect that the first vector w1 has the highest learning rate and so will
tend to adapt to those directions which contain the greatest variance before
the others do. This results in a “fuzzy” PCA. The first and last terms are
precisely those of the Subspace Algorithm [138] i.e. will cause (AW ), and
hence W , to converge to the Principal Subspace though not to the Principal
Components themselves. The results of a simulation based on the usual set of
data are shown in Table 4.4.

Table 4.4. Model 2 results. Results from a network with 12 input neurons and 7
output neurons. Each vector into each output neuron (the columns above) has almost
all of its weight into the first seven directions. The actual Principal Components have
not, in general, been identified.

1 2 3 4 5 6 7

1 0.438 −0.359 0.763 0.001 −0.039 −0.013 0.004
2 0.661 0.199 −0.418 −0.176 −0.070 0.017 0.008
3 0.022 0.709 0.275 0.478 0.112 −0.012 −0.001
4 0.076 −0.266 −0.182 0.852 0.273 0.006 0.047
5 0.007 0.010 0.023 −0.206 1.063 0.394 0.010
6 −0.027 0.009 0.016 0.060 −0.248 1.248 0.101
7 0.009 0.006 0.010 −0.007 −0.007 −0.062 1.611

8 0.003 0.006 −0.010 −0.006 0.002 −0.009 0.006
9 −0.011 0.010 −0.013 −0.002 0.001 −0.006 0.010
10 −0.003 0.004 −0.004 0.005 −0.002 0.002 0.013
11 0.003 0.001 0.003 0.002 0.001 −0.005 −0.002
12 0.000 0.001 0.002 0.002 0.001 0.002 0.002

A second drawback of this model is that the activation function in (4.40)
is applied only to the effect of the other inhibitory output neurons. i.e. the
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output neurons are calculating their final output values after the activation
function has been applied. This may not be appropriate in a biological mode.

4.2.3 Model 3: Feedforward Activation Functions

Now we only have an activation function on the first calculation of the z
values:

y′ = AWx (4.48)
y = y′ − Uy′ (4.49)
e = x − V T y (4.50)

∆W = ηyeT (4.51)
∆V = ηyeT (4.52)
∆U = ηyyT (4.53)

Then we have
y = (I − U)y′ = (I − U)AWx

Therefore

G = (I − U)AW

dG

dt
= (I − U)A

dW

dt
− dU

dt
AW

As before, we can show that

dW

dt
= (I − U)AWC − (I − U)AWC((I − U)AW )T V (4.54)

dU

dt
= (I − U)AWC((I − U)AW )T (4.55)

and thus

dG

dt
= (I − U)A(I − U)AWC − (I − U)A(I − U)AWC((I − U)AW )T V

−(I − U)AWC((I − U)AW )T AW

→ A2WC − A2WC(AW )T V − AWC(AW )T AW as U → 0
= A{(AW )C − (AW )C(AW )T V } − (AW )C(AW )T (AW )

= A{(AW )C − AWC(AW )T AW

A
− A−1(AW )C(AW )T (AW )} (4.56)

The rationale behind this model is that each output neuron has an equal
inhibitory effect on the others but has a differential response to inputs.

The central term causes convergence to the Principal Subspace but within
that subspace causes no convergence to the Principal Components themselves.
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The last term is the one which causes convergence to the actual Principal
Components.

In more detail, consider the system as governed by

dG

dt
= (I − U)A(GC − GCGT V − ((I − U)A)−1GCGT AW )

→ A(GC − GCGT V − A−1GCGT G) as U → 0

We note that as A is diagonal and of full rank, it has an inverse, which is also
diagonal, and each element of the inverse, (A−1)ii = a−1

i .

Table 4.5. Model 3: the results are from a network with 12 input neurons and 7
output neurons; each column is the vector of weights into each output neuron. In
all cases the actual Principal Components have been identified. Note the different
direction of “slope” of the bold figures (see text).

1 2 3 4 5 6 7

1 0.794 −0.024 0.014 −0.009 −0.004 −0.002 0.001
2 0.020 0.849 0.003 −0.007 0.014 0.013 0.005
3 −0.027 −0.012 0.918 0.047 0.028 −0.008 −0.010
4 −0.005 0.010 −0.021 1.007 −0.015 0.018 −0.001
5 0.002 −0.002 −0.017 −0.004 1.129 0.016 0.013
6 −0.005 −0.018 0.011 0.000 −0.007 1.308 −0.040
7 0.009 0.013 0.014 −0.001 −0.025 0.021 1.613
8 −0.007 0.010 −0.002 −0.004 −0.001 −0.010 0.006
9 −0.017 −0.001 0.002 −0.004 −0.004 0.006 −0.013
10 −0.003 0.001 0.002 −0.003 0.001 0.006 0.003
11 0.003 −0.002 0.003 0.001 −0.003 −0.003 0.002
12 0.001 0.001 0.004 0.003 0.001 0.002 0.001

Then, as before, the central term will have no effect on convergence once
the weights have converged to the Principal Subspace. Within that subspace
convergence of the weights is governed by the equation

dG

dt
= A(GC − A−1GCGT G)

This causes gi to converge to 1√
A−1

ii

ck =
√

aick where k = m− i. Note that if

ai > aj then a−1
i < a−1

j and so this model causes convergence in the “opposite
direction” to that normally associated with the A values. See Table 4.5. Now,
gi = (I − U)Awi → aiwi; therefore,

aiwi =
√

aici

i.e. wi =
1√
ai

ci
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Now G is simply a mathematical construct to help us understand the
model; the actual learning processes take place in the modification of the W
and U weights; in particular, the values of the W weights are determined by
the convergence of dW

dt . At wi = 1√
ai

ci

dwi

dt
= aiwiC − aiwiC(aiwi)T vi

= aiλia
− 1

2
i ci − ai(a

− 1
2

i ci)C(aia
− 1

2
i ci)T (a− 1

2
i ci)

= λia
1
2
i ci − λia

1
2
i ci.a

1
2
i ci(λia

− 1
2

i ci)

= λia
1
2
i ci − λiaia

− 1
2

i ci

= 0.

In other words, that solution of the overall system dynamics, dG
dt = 0, is also

a solution of dW
dt = 0. The system will converge in harmony.

4.2.4 Summary

We present a summary comparison of the models using the rate of change of
the various weights to guide the comparison.

Change in W , dW
dt

Note first that in all three models, dW
dt will cause convergence to the Principal

Subspace but not to the actual Principal Components themselves. We repeat
the equations here for convenience:

Model 1: dW
dt = (I − AU)WC − (I − AU)WCWT (I − AU)T V

Model 2: dW
dt = (I − AU)AWC − (I − AU)AWC((I − AU)AW )T V

Model 3: dW
dt = (I − U)AWC − (I − U)AWC((I − U)AW )T V

All three equations are of the form

dW

dt
→ GC − GCGT V as U → 0

and as before it can be shown that V = KG for some diagonal matrix K.
Therefore, all of these equations will cause the G vectors to converge to the
Principal Subspace but not to the Principal Components themselves. We note
that if aiwi has converged to an eigenvector, then wi has converged to the
same eigenvector. Further, these equations will determine the size of the W
vectors; since each vector, gi, is of length 1, we have, noting that limt→∞ uij =
0 :

Model 1: |wi| = 1.

Model 2: |wi| = a
− 1

2
i .
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Table 4.6. Experimental values of Ai and corresponding values of f(Ai) for the
functions shown.

A1 A2 A3 A4 A5 A6 A7

x 1.58 1.38 1.18 0.98 0.78 0.58 0.38√
x 1.26 1.17 1.09 0.99 0.88 0.76 0.62

1√
x

0.79 0.85 0.92 1.01 1.14 1.31 1.62

Table 4.7. Lengths of the relevant vectors from the three models.

w1 w2 w3 w4 w5 w6 w7

Model 1 0.998 1.000 0.998 0.999 0.999 0.999 1.000
Model 2 0.792 0.861 0.930 1.013 1.130 1.309 1.614
Model 3 0.795 0.849 0.919 1.008 1.130 1.308 1.614

Model 3: |wi| = a
− 1

2
i .

This analysis is corroborated by Tables 4.6 and 4.7. We will demonstrate
that the stated solution is correct for Model 2; the other models can be simi-
larly2 analysed. We have

dW

dt
= (I − AU)AWC − (I − AU)AWC((I − AU)AW )T V

→ AWC − AWC(AW )T V as U → 0

Now let wi = a
− 1

2
i bi where bi =

∑
j bjci, i.e. bi is a unit length combina-

tion of the vectors ci, with ci the eigenvectors of C as usual. Then,

dW

dt
= AWC − AWC(AW )T V

dwi

dt
= ai(a

− 1
2

i

∑
j

bjcj)C − ai(a
− 1

2
i

∑
j

bjcj)Cai(a
− 1

2
i

∑
j

bjcj)T (a− 1
2

i

∑
j

bjcj)

= a
1
2
i

∑
j

λjbjcj − a
1
2
i

∑
j

λjbjcj

⎛
⎝a

1
2
i

∑
j

bjcj

⎞
⎠

⎛
⎝a

− 1
2

i

∑
j

bjcj

⎞
⎠

= a
1
2
i

∑
j

λjbjcj − a
1
2
i

∑
j

λjbjcj

⎛
⎝∑

j

bjcj

⎞
⎠

2

= 0

since bj is a unit length vector and so (
∑

j bjcj)2 = 1;

2 Indeed, more simply since we can use the fact that these models cause convergence
to the eigenvectors.
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Change in U , dU
dt

Neither will dU
dt cause convergence to the actual eigenvectors.

Model 1: dU
dt = (I − AU)WCWT (I − AU)T

Model 2: dU
dt = (I − AU)AWC((I − AU)AW )T

Model 3: dU
dt = (I − U)AWC((I − U)AW )T

Note that all equations have the general form dU
dt = GCGT . We consider

only the case U = 0, since it can be shown that, at U = 0 in all models,
dU
dt = 03. Then since A is a diagonal matrix, convergence to nonzero diagonal
elements is achieved whenever the rows and columns of W are orthogonal. (If

aiwi ⊥ ajwj then wi ⊥ wj). Consider Model 3, at U = 0, wi = a
− 1

2
i ci ; then

duij

dt
= (I − U)AwiC((I − U)Awj)T

→ AwiC(Awj)T as U →0
= aiλiwi.ajwj

= λiaiajwi.wj

= λiaiajδija
− 1

2
i a

− 1
2

j

= λiδija
1
2
i a

1
2
j

where δij is the Kronecker delta. Therefore, off the main diagonal, duij

dt = 0.
So the equations governing the growth of U and W merely ensure that the
columns of W form an orthogonal basis of the Principal Subspace of the
covariance matrix of the input data.

Change in G, dG
dt

dG
dt is the equation which causes convergence to the Principal Components.
dG
dt is the manifestation of the interaction between the dynamical development
of U and that of W . Recall that G is defined as

Model 1: G = (I − AU)W
Model 2: G = (I − AU)AW
Model 3: G = (I − U)AW

If we assume convergence at U=0, then we have

Model 1:
dG

dt
= (I − AU){GC − GCGT V } − AGCGT W

→ GC − (I + A)GCGT W

≈ GC − (I + A)GCGT G

3 This is not to be taken that we assume that dU
dt

= 0 =⇒ U = 0.
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This causes convergence of gi to 1√
1+ai

ci; however, note the caveats made
in Section 4.2.1.

Model 2:

dG

dt
= (I − AU)A{GC − GCGT V } − AGCGT (AW )

→ A{GC − GCGT V − GCGT (AW )}
There is no specific parameter which will force the weights to the actual
Principal Components themselves; both decay terms cause convergence to
the Principal Subspace but within that subspace are nondirectional.

Model 3

dG

dt
= (I − U)A{GC − GCGT V } − GCGT AW

→ A{GC − GCGT V − A−1GCGT AW}
≈ A{GC − GCGT (A−1G) − A−1GCGT G}

This causes convergence to 1√
a−1

i

cm−i. The essential point to note is that

the vector associated with the smallest value of A corresponds to the
vector with the largest eigenvalue.

4.2.5 Other Models

Clearly the models identified above are not the only possible models; however,
all models investigated have been found to be of one of the three classes defined
by the above three models e.g.

Model 4: Our equations are almost the same as in Model 2, but note that the
second outputs of the output neuron are calculated after the subtraction
of the inputs from their peers :

y′ = AWx (4.57)
y = A(y′ − Uy′) (4.58)
e = x − V T y (4.59)

∆W = ηyeT (4.60)
∆V = ηyeT (4.61)
∆U = ηyyT (4.62)

Then we have
y = A(I − U)y′ = A(I − U)AWx

Therefore

G = A(I − U)AW

dG

dt
= A(I − U)A

dW

dt
− A

dU

dt
AW
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As before, we can show that
dW

dt
= A(I − U)AWC − A(I − U)AWC(A(I − U)AW )T V (4.63)

dU

dt
= A(I − U)AWC(A(I − U)AW )T (4.64)

and so that
dG

dt
= A(I − U)AA(I − U)AWC

−A(I − U)AA(I − U)AWC(A(I − U)AW )T V

−AA(I − U)AWC(A(I − U)AW )T AW

= A(I − U)A(GC − GCGT V − (A(I − U))−1GCGT (AW )
→ A2{(A2W )C − (A2W )C(A2W )T V − A−1(A2W )C(A2W )T AW}

This model acts similarly to Model 3 in that the A−1 causes convergence.
All effects, however, are even more pronounced: the differential learning
rates of the feedforward functions gi are even more exaggerated, and the
differences in the size of vectors are larger. The rationale behind this model
is that each output neuron will calculate its activation at all times based
on the sum of the inputs at that time. This is possibly the most realistic
biological model; it requires no meta knowledge and is local, simple and
parallel.

Model 5:

y′ = Wx (4.65)
y = A(y′ − Uy′) (4.66)
e = x − V T y (4.67)

∆W = ηyeT (4.68)
∆V = ηyeT (4.69)
∆U = ηyyT (4.70)

Then we have
y = A(I − U)y′ = A(I − U)Wx

Therefore

G = A(I − U)W
dG

dt
= A(I − U)

dW

dt
− A

dU

dt
W

As before, we can show that
dW

dt
= A(I − U)WC − A(I − U)WC(A(I − U)W )T V (4.71)

dU

dt
= A(I − U)WC(A(I − U)W )T (4.72)

dG

dt
→ A{GC − GCGT V − GCGT W} (4.73)
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This model acts like Model 2. It finds the Principal Subspace but not the
Principal Components themselves as there is no differential decay in the
model.

Model 6:

y′ = AWx (4.74)
y = A(y′ − AUy′) (4.75)
e = x − V T y (4.76)

∆W = ηyeT (4.77)
∆V = ηyeT (4.78)
∆U = ηyyT (4.79)

Then we have

y = A(I − AU)y′ = A(I − AU)AWx

Therefore

G = A(I − AU)AW

dG

dt
= A(I − AU)A

dW

dt
− AA

dU

dt
AW

As before, we can show that

dW

dt
= A(I − AU)AWC − A(I − AU)AWC(A(I − AU)AW )T V

dU

dt
= A(I − AU)AWC(A(I − AU)AW )T (4.80)

dG

dt
→ A2{GC − GCGT V − GCGT AW} (4.81)

Again there is no asymmetry in the learning process and so the model will
act like Model 2 – it finds the Principal Subspace but not the Principal
Components.

4.3 Emergent Properties of the Peer-Inhibition Network

A possible criticism of envisaging biological neural nets as performing a Prin-
cipal Component Analysis is that it leads to a situation whereby one neuron
is in charge of all information passing in a particular direction; therefore, if
it is in any way damaged, the information in that direction which should be
passed on will be lost.

An interesting property of large Peer-inhibitory networks is that such so-
called “grandmother” cells take a very long while to form: the network quickly
self-organises until each output neuron’s weights are maximally sensitive to
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four or five directions, but it then takes a very long while to converge to a single
Principal Component. A typical set of weights is shown in Tables 4.9 to 4.12.
It should be seen that each weight is gradually converging to a particular
Principal Component; what is more difficult to show is that the direction
of each Principal Component is maximally associated with the weights of
approximately four or five output neurons after 50 000 iterations and the
weights only gradually thereafter converge to a single Principal Component.
The full matrix would appear as a “fuzzy” diagonal of bold-faced type.

4.4 Conclusion

In this chapter, we have used the negative feedback effect of each output neu-
ron on the other output neurons in an attempt to ensure that the weights into
each output neuron converge to the actual Principal Components themselves.
We have shown that it is not enough to simply feed back the activations of
the output neurons as they are calculated – some measure of asymmetry must
be introduced into the network.

Two main methods of introducing such asymmetry have been shown to be
successful: output neurons using different learning rates and output neurons
using different activation functions. While both of these methods have been
shown to be successful, the results of the analysis and experiments with dif-
ferent activation functions show that simply to introduce an asymmetry into
the network without a theoretical understanding of the consequences could
lead to unpredictable consequences: in the case of activation functions, it has
been shown that the same activation function can have the desired effect, no
effect or the opposite effect to that which might be predicted depending on
where it is introduced.

Nevertheless, several models have been shown to be extremely successful
at finding Principal Components of input data and hence of transmitting the
maximum amount of information with the least possible amount of hardware.
The inherent parallelism of the network should make possible a very fast
implementation of the network on parallel hardware.
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Table 4.8. Each row represents the first 7 components of the first 5 output neuron
weights in a network of 100 inputs and 50 output neurons after 50 000 iterations;
all weights not shown are less than 0.1, most considerably less...

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7

Output neuron 1 0.737 0.405 0.464 0.063 0.154 0.114 −0.079
Output neuron 2 0.072 0.323 −0.637 0.360 0.557 −0.030 −0.021
Output neuron 3 0.046 0.638 −0.375 −0.461 −0.429 −0.045 0.297
Output neuron 4 0.340 −0.259 −0.255 0.533 −0.475 −0.015 −0.440
Output neuron 5 0.506 −0.466 −0.366 −0.443 0.123 0.322 0.170

Table 4.9. The same network as above after 100000 iterations...

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7

Output neuron 1 0.898 0.325 0.256 −0.021 0.081 −0.025 −0.048
Output neuron 2 0.021 0.361 −0.690 0.379 0.466 −0.032 0.059
Output neuron 3 −0.095 0.626 −0.319 −0.496 −0.471 0.043 −0.091
Output neuron 4 0.266 −0.289 −0.378 0.490 −0.653 −0.086 −0.226
Output neuron 5 0.329 −0.525 −0.488 −0.525 0.101 0.190 0.209

Table 4.10. The same network as above after 200000 iterations...

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7

Output neuron 1 0.922 0.022 0.162 −0.130 −0.032 −0.015 0.023
Output neuron 2 0.207 0.191 −0.850 0.339 0.248 0.083 −0.053
Output neuron 3 −0.082 0.845 −0.082 −0.457 −0.273 0.004 0.060
Output neuron 4 0.034 −0.184 −0.257 0.180 −0.914 −0.121 −0.016
Output neuron 5 −0.010 −0.479 −0.398 −0.737 0.005 0.237 0.131

Table 4.11. The same network as above after 300000 iterations...

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7

Output neuron 1 0.961 −0.133 0.139 −0.167 −0.037 −0.002 0.041
Output neuron 2 0.218 0.164 −0.902 0.308 0.091 0.035 −0.015
Output neuron 3 0.063 0.949 0.078 −0.265 −0.101 0.056 0.016
Output neuron 4 −0.032 −0.063 −0.102 0.034 −0.971 −0.157 0.067
Output neuron 5 −0.137 −0.219 −0.367 −0.860 0.011 0.190 0.103

Table 4.12. At the other end of the matrix/table, the output neurons’ weights are
converging only slightly more slowly.

Input 50 Input 49 Input 48 Input 47 Input 46 Input 45 Input 44

Output neuron 45 0.013 0.273 −0.061 0.123 −0.717 −0.077 0.297
Output neuron 46 0.129 −0.172 0.122 0.271 −0.017 −0.868 0.039
Output neuron 47 0.065 0.317 −0.072 −0.859 −0.090 −0.313 0.018
Output neuron 48 −0.088 0.058 0.963 −0.114 −0.105 0.121 −0.093
Output neuron 49 0.731 0.558 0.080 0.223 0.270 0.108 0.002
Output neuron 50 0.617 −0.654 0.007 −0.237 −0.297 0.170 −0.015
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Multiple Cause Data

Barlow [5] has developed a theory of learning based on the neuron as a “sus-
picious coincidence detector”: if input A is regularly met in conjunction with
input B this represents a suspicious coincidence; there is something in the
neuron’s environment which is worth investigating. A crude example might
be the coincidence of mother’s face and food and warmth for a young ani-
mal. Field [45] has made an important distinction between compact codes
and sparse distributed codes (Fig. 5.1). These types of codes are sometimes
known as “factorial codes”: we have lots of different symbols representing the
different parts of the environment and the occurrence of a particular input
is simply the product of probabilities of the individual code symbols. So if
neuron 1 says that it has identified a sheep and neuron 2 states that it has
identified blackness, then presenting a black sheep to the network will cause
neurons 1 and 2 to both fire. Also such a coding should be invertible: if we
know the code we should be able to go to the environment and identify pre-
cisely the input which caused the code reaction from the network. So when
we see neurons 1 and 2 firing we know that it is due to a black sheep.

compact coder sparse distributed coder

Fig. 5.1. The coder on the left is transforming the data by reducing its dimen-
sionality. That on the right retains the dimensionality of the data but sparsifies its
representation
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A compact code is a code such as that formed by projecting the data onto
the first few Principal Components of the data. In other words, such a code
will reduce the dimensionality of the representation while, if it is to be a good
code, retaining as much of the information in the data as possible. A sparse
distributed code, on the other hand, retains (or perhaps even increases) the
dimensionality of the representation, but in such a way that any individual
code uses only a few dimensions of the channel.

However, in a sparse distributed code, while overall each individual cell
may have the same probability of firing, the chances of two cells firing together
are very much reduced. Thus, the chances of false “suspicious coincidences”
are very much reduced. The statistics of such a code are strongly kurtotic –
each code has a great number of low firing cells corresponding to the random
occasional firing of neurons, while at the same time there are a few cells, those
which correspond to the signal, firing very strongly.

Hertz et al. [73] point out that simple competitive learning leads to the
creation of grandmother cells, the proverbial neuron which would fire if
and only if your grandmother hove in sight. The major difficulty with such
neurons is their lack of robustness: if you lose your grandmother cell, will you
never again recognise your grannie. In addition, we should note that with N
grandmother cells we can only recognise N categories, whereas if we are using
a binary code, we could distinguish between 2N categories.

So simple competitive learning leads to a single neuron firing in response
to an input pattern. At the other extreme, when a large number of neurons
are firing for each input pattern, subsequent layers have to work much harder
to identify the information being presented by that layer.

Földiák [46] has suggested that an appropriate compromise between these
competing constraints would be to have the neurons in a layer forming a
sparse coding of the input data. i.e. each pattern is represented by a set of m
firing neurons where m > 1 but m << n, the number of neurons in the layer.
He believes that such a representation potentially trades off the benefits of
increased representational capacity to be had with a distributed representation
with the simplicity to be had with a completely local representation. It is this
balance between cooperation (so that a set of output neurons can represent
the input pattern which is currently being presented) and competition (so
that not all outputs are used to represent all patterns) that seems necessary
for the extraction of salient features of the problem. Other networks which
are designed to tackle the same problem are discussed in Appendix B.

We will maintain a close connection with psychological principles which
should suggest that we are using a biologically plausible rule such as the
Hebbian rule. We have seen that the Hebbian rule will extract information
from the environment. What we need to do is modify the Hebbian rule so that
each neuron responds to a particular set of inputs which is unique to itself.
One way to do this is with competitive learning; we will be more interested in a
second way which uses an implicit competition. This will involve a rectification
of the negative feedback PCA network (we will ensure that all outputs or
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weights remain positive) which we will discuss initially in terms of constrained
PCA and then subsequently in terms of Factor Analysis (FA).

5.0.1 A Typical Experiment

Sample
input
patterns

Output
Patterns

Fig. 5.2. The top line shows sample data (input values) presented to the network.
The second layer shows the independent sources which we hope will also be the
network’s response. If this is so, it has clearly identified the suspicious coincidences
of lines (several squares regularly being nonzero simultaneously).

A standard data set, which we will use in this chapter, consists of a square
grid of input values where xi = 1 if the ith square is black and 0 otherwise (see
Fig. 5.2). However the patterns are not random patterns: each input consists
of a number of randomly chosen horizontal or vertical lines. The network
must identify the existence of these lines. The important thing to note is that
each line can be considered as an independent source of blackening a pixel on
the grid: it may be that a particular pixel will be twice blackened by both a
horizontal and a vertical line at the same time, but we need to identify both
of these sources.

Typically, on an 8*8 grid, each of the 16 possible lines are drawn with a
fixed probability of 1

8 independently from each of the others. The data set then
is highly redundant in that there exists 264 possible patterns and we are only
using at most 216 of these. We will typically have 16 output neurons whose
aim is to identify (or respond optimally to) one of the input lines. Thus from
any pattern composed of some of the set of 16 lines, we can identify exactly
which of the 16 lines were used to create the pattern. Note the factorial nature
of the coding we are looking for: neurons 1, 3 and 10 will fire if and only if
the input is composed of a pattern from sources 1, 3 and 10. Note also the
code’s reversibility: given that neurons 1, 3 and 10 are firing we can recreate
the input data exactly.

If we use a principal component net on this data, our first principal com-
ponent will be a small magnitude uniform vector over all 64 positions. i.e. we
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get a global smearing of the patterns which does not reveal how each pat-
tern came to be formed. Subsequent principal components will not identify a
unique bar.

5.1 Non-negative Weights

There is one obvious asymmetry used in nature which we have not used as
yet: it is believed that signals from neurons may be excitatory or inhibitory
but not both i.e. a neuron’s output can excite (positively) other neurons or it
can inhibit (negatively) other neurons; what cannot happen is that it switches
between excitation and inhibition. The results reported in previous chapters
were based on a model where the weights were allowed to take any value,
positive or negative, and so every neuron could switch between excitatory
and inhibitory values. If we allow only non-negative weights i.e. ensure that if
a weight, while learning, never takes a negative value, we have the following
interesting situation.

Assume that two weights of our converged network have values aci+bcj and
cci + dcj, with the same notation as before. Then, since the weights converge
to an orthogonal basis of the space, ac + bd = 0. Now if none of the terms
a, b, c or d can be negative, then at least two must be zero (one from each term
ac and bd). In other words, this constraint swings the weight vectors through
the weight space to the actual Principal Components themselves. Since we are
not directing the process, situations where several sets of weights converge to
the same Principal Component tend to appear. An extreme example is shown
in Table 5.1 in which we report the results of a simulation on the same type
of data as previously but where the basic V W negative feedback network was
set up and the weights allowed to learn concurrently but with the constraint
of non-negativity.

Table 5.1. The weights of a five input, four output neuron network with the same
type of input data as previously.

Input 1 Input 2 Input 3 Input 4 Input 5

Neuron 1 0.552 0 0.004 0.000 0.001
Neuron 2 0.700 0 0.005 0.000 0.001
Neuron 3 0.035 0.991 0.004 0.000 0.000
Neuron 4 0.450 0 0.003 0.000 0.001

Clearly, the weights of output neurons 1, 2 and 4 have all converged to
the same Principal Component. Note that, at the end of the simulation, the
weights marked only “0” have been stopped from becoming negative.
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5.1.1 Other Data Sets

However, there is one clear difficulty with this program – if we are calculating
Principal Components from a general data set, there must be a negative term
in at least one of the Principal Components’ coordinates. (In order to have
orthogonal directions, the inner product of the components must be zero and
hence there must be at least one negative component).

Table 5.2. Sample Principal Components of the data calculated using a standard
statistical package.

Direction 1 2 3 4 5 Value

First PC 0.584 0.811 0.000 −0.002 −0.002 59.3
Second PC −0.006 0.001 −0.469 −0.617 −0.632 33.7
Third PC −0.811 0.584 −0.010 0.005 0.011 7.1
Fourth PC 0.012 −0.008 −0.876 0.235 0.421 2.4
Fifth PC 0.002 −0.001 0.111 −0.751 0.650 0.5

To further investigate the network’s potential, data from a distribution
whose Principal Components are shown in Table 5.2 was used as input to the
network: it should be clear that there is a sharp division in the data between
the first two directions and the last three.

It might seem to be possible for the network to converge to a mixture of the
above weights e.g. the filters {0.584,0,0.469,0,0} and {0,0.811,0,0.617,0.632}
span the subspace of the first two Principal Components. This does not hap-
pen; the network converges to the first two Principal Components themselves
(see analysis in the next section).

It is impossible for the network using the positive weight constraint to
converge to any filter containing a negative component i.e. from the third
onwards. To find out how the network would respond to a situation where
there were more degrees of freedom than possible directions to be found, we
used the network with these five inputs and four output neurons (with the
constraint that no weights are allowed to become negative). The results are
shown in Table 5.3.

Table 5.3. The weights of a five input, four output negative feedback network
operating on the data of the previous table.

Output neuron 1 0.005 0.000 0.465 0.616 0.635
Output neuron 2 0.391 0.518 0.001 0.000 0.000
Output neuron 3 0.324 0.467 0.001 0.000 0.000
Output neuron 4 0.296 0.409 0.001 0.000 0.000
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It is clear that the first output neuron has found the second Principal
Component while the second, third and fourth output neurons have found
the first Principal Component. This is a general finding with this type of
network with the non-negative weight constraints.

This form of information extraction may be important if the data has been
preprocessed in order to isolate the “texture” data from the “colour” data from
the “smell” data, etc.. This type of distributed data-processing is known to
happen in biological neural networks. However, this type of data-processing
cannot be an initial data-processing function. The information must first be
differentiated into disjoint dimensions: if there is any overlap between the
dimensions in which the data exists, no more than one Principal Component
per data set is possible.

We note that the length of the total vector of weights into output neu-
rons 2, 3 and 4 is one unit. This is convenient in that it dispels the end of
“grandmother cells”– that elusive neuron which would recognise only your
grandmother. If such recognition is spread over a group of neurons such as is
shown here, this provides a robustness in the network which has been missing
up till now.

Restricting ourselves to our specialised data, we can show that the princi-
pal component directions are found: in Table 5.4, we show the weights from a
network with 100 inputs of the same specialised form as before and 50 output
neurons. All weights not shown were under 0.015 after 100 000 iterations. We

Table 5.4. Results from a negative feedback neuron network with 100 inputs la-
belled 0–99, and 50 output neurons labelled 0–49, e.g. the weights into output neuron
0 have converged to (input) direction 9 and the weight in that direction was 1.000

Neuron Input Weight Neuron Input Weight Neuron Input Weight

0 9 1.000 17 23 0.999 34 10 0.374
1 19 1.000 18 3 0.308 35 20 0.999
2 33 0.998 19 4 0.455 36 16 0.999
3 8 0.554 20 28 0.998 37 25 0.999
4 12 1.000 21 5 1.000 38 6 0.999
5 1 0.370 22 27 0.998 39 0 0.641
6 1 0.490 23 35 0.993 40 18 0.999
7 0 0.611 24 26 0.998 41 31 0.998
8 2 0.999 25 30 0.999 42 22 1.000
9 32 0.997 26 14 0.999 43 7 0.674
10 15 0.999 27 3 0.951 44 0 0.142
11 8 0.481 28 10 0.870 45 10 0.320
12 29 0.998 29 11 0.797 46 21 0.999
13 34 0.995 30 17 0.999 47 7 0.738
14 0 0.441 31 8 0.679 48 11 0.602
15 13 1.000 32 1 0.451 49 1 0.648
16 4 0.890 33 24 0.999
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note that

• The weights into each output neuron converged to a single Principal Com-
ponent.

• Some of the directions with largest eigenvalues, (those of the first 12 Prin-
cipal Components) were covered by more than one output neuron. Max-
imally, directions 0 and 1 were covered by the weights of four output
neurons.

• The weights in each direction still (approximately) had length 1.
• There is no half-way house with this network’s converged weights – the

weights into different output neurons are either totally orthogonal or in
completely the same direction.

The last two points are potentially important in considering a negative
feedback network as a possible explanation of biological networks’ information
management processes. If such recognition is spread over a group of neurons
such as is shown here, this provides a robustness in the network which has
been missing up until now. Further, since the total weight in any direction still
has length 1, then directions which are represented by more than one output
neuron are not over emphasised in any data processing.

Experiments with larger sizes of networks have shown that the above ef-
fects increases with size.

5.1.2 Theoretical Analysis

Consider a network with four inputs and two output neurons. Let the eigen-
vector of the input data with the largest eigenvalue be a = {a1, a2, 0, 0} and
the second eigenvector be b = {0, 0, b3, b4}. Then, in the situation described
in the last section, if wi is the vector of weights into output neuron i, then
w1 converges to a and w2 to b, or vice versa. We show that this is a stable
solution.

The expected input is

E(x) = kaa + kbb = {kaa1, kaa2, kbb3, kbb4} (5.1)
E(y1) = ka(a2

1 + a2
2) (5.2)

E(e1) = kaa1 − kaa1(a2
1 + a2

2) (5.3)

So, the expected change in the weight between x1 and y1 is

E(∆w11) = ηE(e1y1)
= η{(a1(1 − (a2

1 + a2
2))k

2
a(a2

1 + a2
2)} (5.4)

So, since ai 	= 0,∀i and ka > 0, E(∆w11) = 0 ⇐⇒ a2
1 + a2

2 = 1. Since the
eigenvector a has length 1, the converged weights are stable.

Now consider a network whose weights have converged to values incorpor-
tating both eigenvectors e.g. let w1 have converged to {a1, 0, b3, 0} and w2
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have converged to {0, a2, 0, b4}. Then a similar argument to the above leads
to

E(∆w11) = (kaa2
1 + kbb

2
3)a1(ka − (kaa2

1 + kbb
2
3))

So E(∆w11) = 0 ⇐⇒ ka = kb
b23

1−a2
1

= kb
b23
a2
2
. This equation imposes constraints

on the input data relating the internal proportion of each eigenvector in each
direction to the relative size of each eigenvalue.

Thus, while it is possible to construct data to satisfy these criteria, it is
not generally the case that data sets will comply with the constraints.

Further, note that this equation is only one of four derivable from the
system. We can show that the system requires ka

kb
= b23

a2
2

= b24
a2
1

for stability.
This will not generally be true.

5.1.3 Conclusion

We have shown that the constraint of not allowing the weights to become
negative has an interesting effect on our artificial data sets: the actual Prin-
cipal Components (rather than the Principal Subspace) is found in a totally
parallel network with no lateral connections. The experiment with the data
whose Principal Components, of necessity, contained a negative weight value
showed one limitation of this network and so it cannot be used with general
data sets to find all principal components. However, the experiments do sug-
gest that the network can extract interesting factors which underlie a data
set. It is from this perspective that we now examine this network.

5.2 Factor Analysis

A standard method of finding independent sources in a data set is the statis-
tical technique of Factor Analysis (FA). It is in the nature of human existence
that we find raw data far less interesting than data which has been defined in
some structured model: we may have raw crime statistics showing criminals
ages, history, background, family circumstances, employment and so on, but
it is only when we structure the data that we gain information. We need not
necessarily be stating that a specific factor causes the criminality, merely that
it helps to explain the data. In doing so we are performing an elementary
factor analysis. Various early neural network models which approach Factor
Analysis are discussed in Appendix B.

PCA and FA are closely related statistical techniques both of which achieve
an efficient compression of the data but in a different manner. They can both
be described as methods to explain the data set in a smaller number of di-
mensions, but FA is based on assumptions about the nature of the underlying
data whereas PCA is model free.
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We can also view PCA as an attempt to find a transformation from the
data set to a compressed code, whereas in FA we try to find the linear trans-
formation which takes us from a set of hidden factors to the data set. Since
PCA is model free, we make no assumptions about the form of the data’s
covariance matrix. However, FA begins with a specific model which is usually
constrained by our prior knowledge or assumptions about the data set. The
general FA model can be described by the following relationship:

x = Λf + u (5.5)

where x is a vector representative of the data set, f is the vector of factors,
Λ is the matrix of factor loadings, and u is the vector of specific (unique)
factors.

The usual assumptions built into the model are that:

• E(f) = 0, Var(f) =I i.e. the factors are zero mean, of the same power and
uncorrelated with each other.

• E(u) = 0, Cov(ui,uj ) = 0, ∀i, j, i.e the specific factors are also zero mean
and uncorrelated with each other.

• Cov(f ,u) = 0 i.e. the factors and specific factors are uncorrelated.

Let Σ = E(xxT ) be the covariance matrix of x (again assuming zero mean
data). Then Σ = ΛΛT + Φ where Φ is the covariance matrix of the specific
factors, u, and so Φ is a diagonal matrix, diag{Φ11, Φ22, , ΦMM}. Now whereas
PCA attempts to explain Σ without a specific model, FA attempts to find
parameters Λ and Φ which explain Σ and only if such models can be found
will a Factor Analysis be successful.

Estimations of the Factor loading is usually done by means of one of
two methods – Maximum Likelihood Estimation or Principal Factor Analysis
[125]. Since Principal Factor Analysis is a method which uses the covariance
matrix of the input data, this is the method in which we shall be interested
in this chapter.

5.2.1 Principal Factor Analysis

We can expand the main diagonal of Σ = E(xxT ) as

σ2
ii =

∑
j

λ2
ij + Φ2

ii = h2
i + Φ2

ii (5.6)

i.e. the variance of the data set can be broken into two parts, the first of which
is known as the communality and is the variance of xi which is shared via the
factor loadings with the other variables. The second is the specific or unique
variance associated with the ith input.

In Principal Factor Analysis (PFA), an initial estimate of the communal-
ities is made. This is inserted into the main diagonal of the data covariance
matrix and then a PCA is performed on the “reduced correlation matrix”. A
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commonly used estimate of the communalities is the maximum of the square
of the multiple correlation coefficient of the ith variable with every other vari-
able. Then PCA is used to give the eigenvector–eigenvalue decomposition of
the matrix Σ − Φ̂ =

∑M
i=1 αicicT

i where Φ̂ is the estimated specific variances
and αi is the ith eigenvalue corresponding to the ith eigenvector ci. The esti-
mated factor loadings are given by λ̂i = α

1
2
i ci, where λ̂i is the column vector

associated with the ith factor. Now estimates of the specific variances can be
calculated using

Φ̂2
ii = σ2

ii −
M∑

j=1

λ̂2
ij (5.7)

Note, however, that this method will only provide a feasible factor analysis if
all of the Φ̂2

ii = σ2
ii−

∑M
j=1 λ̂2

ij are non-negative since these values represent the
specific variances. This fact can be used to determine the number of factors
which the model permits.

5.2.2 The Varimax Rotation

In PCA the orthogonal components are arranged in descending order of im-
portance and a unique solution is always possible. The factor loadings in FA
are not unique and there are likely to be substantial loadings on more than
one factor that may be negative or positive. This often means that the results
in standard FA are difficult to interpret. To overcome these problems it is pos-
sible to perform a rigid rotation of the axes of the factor space and so identify
a more simplified structure in the data that is more easily interpretable. One
well-known method of achieving this is the Varimax rotation [125]. This has
as its rationale that factors should be formed with a few large loadings and as
many near-zero loadings as possible, normally achieved by an iterative max-
imization of a quadratic function of the factor loadings. It is worth noting
that the Varimax rotation aims for a sparse response to the data and this was
acknowledged as an efficient form coding.

5.2.3 Relation to Non-negativity

We consider the output vector y to be a vector of factors and the weight
matrix, W , to be the factor loadings. In constraining the weight vectors, we
are making an assumption about the form of the model. The learning rules for
the Principal Subspace network have been shown [101] to be an approximation
to the learning rules necessary to minimise F (W,x) = ||(x − WWT x)||2. By
adding the constraint that all weights must be non-negative, we are creating
a constrained optimisation problem which can be solved by the method of
Lagrange multipliers:
Minimise L(W,x) = ||(x − WWT x)||2 + Λg(W ) where Λ is the matrix of
Lagrange multipliers and g(W ) = W in this case. Now at the optimal point,
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the weights, W , and the Lagrange multiplier matrix, Λ , are known to satisfy
the Kuhn–Tucker equations:

∂F

∂w∗
ij

+ λ∗
ij

∂g(W ∗)
∂w∗

ij

= 0

g(W ∗) ≥ 0
λ∗

ij ≤ 0
λ∗

ijg(W ∗) = 0

which, in the special case g(W ) = W gives

∂F

∂w∗
ij

+ λ∗
ij = 0

w∗
ij ≥ 0

λ∗
ij ≤ 0

λ∗
ijw

∗
ij = 0

where we have used the asterisk to identify the optimal point.
Now this last equation λ∗

ijw
∗
ij = 0 means that this additional constraint

is removed for any nonzero weight i.e. if w∗
ij 	= 0 then λ∗

ij must be 0. So for
positive weights, a standard PCA is being performed i.e. the first condition
becomes ∂F

∂w∗
ij

= 0. The additional constraint only applies to those weights
which have gone to zero through rectification. Thus a (depleted) PCA is being
formed – each neuron is attempting to extract the maximum variance from
the depleted input vector. So this method is similar to PFA in that the model
is constrained before performing a PCA. This method has been shown to be
effective in finding the factors which underlie a data set.

5.2.4 The Bars Data

In this section, we illustrate the network’s performance with the benchmark
“bars data”. The networks are trained over 50 000 presentations of the data
with a learning rate of 0.05 which is annealed linearly to zero over the train-
ing period. The squares in the following figures are individual weight vectors
each connected to one output, arranged 2-dimensionally for convenience when
viewing the results. The diameter of circles within the squares represent the
individual weight values where black is a positive weight and white is a neg-
ative weight.

We use the more difficult form of this data in that horizontal and vertical
bars may appear together. Each bar (horizontal or vertical) may appear at
the input to the network with a probability of 1/8 as described previously.

The converged weights of our network when using the straightforward
rectification of the outputs are shown in Figure 5.3.
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Fig. 5.3. Converged weights of the nonlinear PCA network with the straightforword
rectification [y]+ with 16 outputs. Each square represents the weights into a single
output neuron and these weights have been arranged so that horizontal and vertical
bars are identifiable by eye.

5.2.5 Continuous Data

As an extension to the factor analysis on discrete data, we use five mixtures
of sine waves as input data to our network so that

x0 = sin(t) + sin(2t)

x1 = sin
(
t +

π

8

)
+ sin

(
2t +

π

4

)
x2 = sin

(
3t +

3π

7

)

x3 = sin
(

4t +
4π

3

)
+ sin(5t)

x4 = 2 sin(5t)

The first two mixtures, x0 and x1, are identical but slightly out of phase,
the third is a totally independent sine wave and the last two contain the same
sine wave, however, one has another sine wave mixed with it. Therefore the
relationship between the outputs of the sources is straightforward in the case
of x3 and x4 but time-varying in the case of x0 and x1 where the underlying
source is emitting different phase signals (Figure 5.4 might give a clearer
idea of the relationships). Results are shown in Table 5.5: the first neuron is
identifying x3 and x4 while the second identifies x0 and x1; both ignore x3.
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Fig. 5.4. The five dimensional data set: the first two are the same signal but with
slightly diffferent phases; the last two both contain a signal of frequency sin(5t).

Table 5.5. The converged weights of the network showing that the underlying
sources have been found.

Output 1 Output 2

Input 1 0.000755 0.708634
Input 2 0.001283 0.705238
Input 3 0.021043 0.021338
Input 4 0.708208 0.002265
Input 5 0.705604 0.001692

5.2.6 Generalised PCA

Not unnaturally, the topic of “nonlinear PCA” receives a great deal of atten-
tion from the neural net community e.g. [169, 32, 144, 100, 103, 140, 101, 99].
The impetus for such a development is the recognition that neural networks
are ideally suited to nonlinear adaptation because of their incremental meth-
ods of learning: while closed-form solutions may exist for linear processes such
as PCA, such methods are simply not possible for non-linear algorithms.

Karhunen and Joutsensalo [101] derived from Oja’s Subspace Algorithm
[138]

∆W (t) = η(t)[I − W (t)WT (t)]x(t)xT (t)W (t)
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three nonlinear equations by introducing a nonlinear function f() in one of
three ways:

∆W (t) = η(t)[x(t)xT (t)W (t) − W (t)f(WT (t)x(t))xT (t)W (t)] (5.8)
∆W (t) = η(t)[I − W (t)WT (t)]x(t)f(xT (t)W (t)) (5.9)
∆W (t) = η(t)[x(t)f(xT (t)W (t)) − W (t)f(WT (t)x(t))f(xT (t)W )](5.10)

(5.8) has a first term identical to the PCA rule; it can be shown to converge to
the Principal Components and, it is claimed in [101], does so more robustly
than the totally linear algorithm. (5.9) was derived in from a constrained
optimisation criterion and will be used in Exploratory Projection Pursuit in
Chapter 6. We now follow [101] in deriving (5.10).

First consider a negative feedback network which calculates a (nonlinear)
function, f(), of the weighted activations passed to it and then returns (via
the same weights) and subtracts this function from the input neurons. i.e.

yi = f(ai) = f

⎛
⎝ N∑

j=1

wijxj

⎞
⎠ (5.11)

ej = xj −
M∑

k=1

wkjyk (5.12)

∆wij = ηtyiej (5.13)

= ηtf

(
N∑

k=1

wikxk

){
xj −

M∑
l=1

wljf

(
N∑

k=1

wlkxk

)}
(5.14)

Consider the optimisation criterion that the reconstruction error, e, of the
N -dimensional input vector x is made as small as possible after activation is
returned from M output neurons. i.e. we wish to minimise

J(W ) =
1
2
1T E(e2|W ) =

1
2
1T E[(x − Wf(WT x))2|W ] (5.15)

where 1 is the vector of 1s. We note that Karhunen and Joutsensalo have
suggested that, instead of the mean-square error which we have used, we
may use any even, monotonic, nonconstant, nonnegative, continuously differ-
entiable cost function which has a minimum at e = 0. They also note that
the function f() must be an odd function in order that the feedback process
stabilises.

Now consider the reconstruction error ej at the jth input neuron.

ej = xj −
M∑
i=1

wijf(wi.x) (5.16)

where, as before, wi is the vector of weights into the ith output neuron. Then
we wish to find stationary point(s) of the derivative of J(W ) i.e. where
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∂J(W )
∂wm

=
M∑

j=1

ej
∂ej

∂wm
= 0 (5.17)

Now,
δej

δwm
= −wmjf

′(wm.x) − f(wm.x)[0, 0, ..., 1, 0, ..0]T (5.18)

where f ′() denotes the derivative of f() w.r.t wm and the last vector has a 1
in only the jth position. Then,

∂J(W )
∂wm

= −
M∑

j=1

(
xj −

M∑
i=1

wijf(wi.x)

)
.

(wmjf
′(wm.x)x + f(wm.x)[0, 0, .., 1, 0.., 0])

= −(x − WT f(Wx))Wf ′(Wx)x − (x − WT f(Wx))f(Wx)
(5.19)

This can be used in the usual way in the gradient ascent algorithm

∆W ∝ ∂J(W )
∂W

to give a learning rule

∆wm = (x − WT f(Wx))Wf ′(Wx)x + (x − WT f(Wx))f(Wx) (5.20)

Now the first term affects the weight update on an element–by–element basis
while the second term affects each element uniformly; so the driving force of
weight convergence comes from the second term.

Therefore the algorithm given by (5.10) may be thought of as an approxi-
mation of an algorithm to minimise the reconstruction error at the summing
neurons. We note that the linear case as developed in previous chapters is a
special case of this algorithm with f(y) = y and Xu [185] has shown in this
case that the direction of the rate of change of weights using the subspace
learning algorithm is on average the same as the derived direction found by
the derived algorithm (5.20).

5.2.7 Non-negative Outputs

A constraint which has the same effect of enforcing non-negativity on the
weights is to only allow the outputs to be non-negative: this can be shown
to have the same effect of forcing the weights to learn the individual factors
underlying a data set. Thus we are using a simple nonlinear function in (5.11)
of

yi = f(ai) =
{

ai, if ai > 0
0, if ai ≤ 0 (5.21)
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Though this works perfectly well in identifying underlying causes, it has the
disadvantage from a theoretical perspective that it is a discontinuous (and
hence nondifferentiable) function. However, we can smooth the effect rather
than have a strict cut-off by creating a function of the activation which gives
a very small value when the weights are negative. This allows us to use all the
theory associated with nonlinear Principal Component networks [101, 102].
The algorithm then becomes

∆wij = η{yixj − yi

∑
k

wkjyk}

where e.g. yi = exp

⎛
⎝∑

j

wijxj

⎞
⎠

or yi =
1

1 + exp({−∑
j wijxj} + a)

The last of these we will call the soft threshold function since the value of a
can be chosen to vary the response of the function to different data sets.

All of these methods used with the negative feedback rule in parallel, cause
convergence of the weights to find the individual bars. Figure 5.5 shows the
converged weights when using the threshold implementation of the network.
We use the soft threshold function with the artificial data here as it is very
flexible to work with and forgiving of nonoptimal network parameters. The
other threshold functions from this family once optimised, however, yield re-
sults that are virtually indentical.

Fig. 5.5. Trained threshold network – 16 outputs.

5.2.8 Additive Noise

However, the outputs of the network as described up until now will learn
partial bars when there are more outputs than causes, i.e. the bars are shared
between the outputs. If there are sixteen causes in the input space then only
sixteen outputs should be used to code these individual causes regardless of
the dimensionality of the output space. We do not wish to require to have this
prior knowledge of the number of sources hidden in the signals; we wish the
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network to tell us in some way how many signals there are in the mixture and
stop learning when only these signals have been learned. We will show that,
by adding noise to the network after the application of the nonlinearity, we
can ensure that only as many outputs respond to the data as there are causes.
An added bonus is that this may be interesting from a biological perspective
as real neurons tend to operate in a noisy environment. There are already
a number of a biologically plausible aspects to the network such as Hebbian
learning, local learning, sparse coding, as well as thresholding and, as we shall
see, the possibility of topographical mapping.

First we discuss a basis in which solely non-negative coordinates can de-
termine the position of every point.

5.2.9 Dimensionality of the Output Space

By enforcing positive–only output values it may be said that we are searching
for positive–only codes on the outputs of the network that will represent the
data. Another way that this may be expressed is that we are looking for a
set of positive only coordinates that will describe each data point. It is now
shown that the following is true: for every n−dimensional Euclidean space,
there exists an (n+1) basis in which every point in the space may be expressed
with nonnegative coordinates. We first illustrate this for a two–dimensional
space and then discuss the general case.

Let e1, e2, be a basis of a two–dimensional space. Then every point, P ,
may be expressed as P = (p1, p2) which is equivalent to �OP = p1e1 + p2e2

where O is the origin.
Let ε = −(e1 + e2). Then we will show that every point P (p1, p2) can be

expressed as P ′ = (p′1, p
′
2, p

′) in the basis (e1, e2, ε) where p′1, p
′
2, p

′ ≥ 0.
This is trivially true if p1, p2 > 0 since P ′ = (p1, p2, 0) in the basis

(e1, e2, ε).
Let p1 < 0, p2 > 0, then P (p1, p2) = P ′(0, p2 − p1,−p1), since

�OP ′ = 0e1 + (p2 − p1)e2 + p1(e1 + e2)

= p1e1 + p2e2 = �OP

Finally, each of 0, p2 − p1,−p1 ≥ 0, since p1 < 0 and p2 > 0. Similarly if
p2 < 0.

If both p1, p2 < 0, P ′(−p2,−p1,−(p1 + p2)) has positive coordinates and

�OP ′ = −p2e1 − p1e2 − (p1 + p2)(−(e1 + e2))

= p1e1 + p2e2 = �OP

Thus the assertion is true for every two–dimensional space.
Now let e1, ..., en, be a basis for an n-dimensional space. Let εn =

−∑n
i=1 ei; then we must prove that every point P (p1, .., pn) in the e1, ..., en
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basis can be represented as P ′(p′1, ..., p
′
n) in the e1, ..., en, εn basis with non-

negative coordinates.
Let A be the subset of indices in U = {1, ..., n} which are such that pi < 0.

Then

�OP =
n∑

i=1

piei =
∑

i∈(U−A)

piei +
∑
i∈A

piei

=
∑

i∈(U−A)

piei −
∑

i∈(U−A)

⎛
⎝∑

j∈A

pj

⎞
⎠ ei −

∑
i∈A

⎛
⎝ ∑

j∈A,j �=i

pj

⎞
⎠ ei −

∑
j∈A

pjεn

=
∑

i∈(U−A)

⎛
⎝pi −

∑
j∈A

pj

⎞
⎠ ei −

∑
i∈A

⎛
⎝ ∑

j∈A,j �=i

pj

⎞
⎠ ei −

∑
j∈A

pjεn

where we have used U − A to denote the complement of A in U . Now each
coordinate is non-negative in the new basis.

This result merely shows that is possible to code an n−dimensional space
with nonnegative-only coordinates in an (n+1)–basis. However it is also pos-
sible to code this space with nonnegative coordinates in any basis with more
than (n + 1) elements. We will derive a method for automatically finding a
basis with the least number of basis vectors in which the data set can be
expressed with nonnegative coordinates. If the data set has inherent dimen-
sionality n, this basis will have n + 1 elements. It will be overcomplete but
minimally so.

5.2.10 The Minimum Overcomplete Basis

It is well known [13] that additive noise may be used to introduce a regular-
ization term into a neural network. The addition of noise into the negative
feedback network acts in a different manner, as will become clear in the next
Sections.

Additive Noise

Nonlinear PCA was derived as an approximation to the minimisation [101] of
J = Ex(||x−Wy||2) = Ex(||x−W f(a)||2). Now we add noise to the outputs
so y = f(a) + µ where µ is a vector of independently drawn noise from a zero
mean distribution and define f = f(a) so that,

J ′ = Ex,µ(||x − Wy||2)
= Ex,µ(||x − W (f + µ)||2)
= Ex,µ(xT x − (f + µ)T WT x − xT W (f + µ) + (f + µ)T WT W (f + µ))
= Ex(xT x − fT WT x − xT W f + fT WT W f) + Eµ(µT WT Wµ)
= J + Eµ(µT WT Wµ)
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We have removed terms containing single expectations of µ with respect
to µ from the equation as they are drawn from zero mean noise.

Now the Subspace Algorithm (Chapter 2) results in an orthogonal matrix
as does the nonlinear PCA algorithm under certain constraints and so J ′ may
be written as

J ′ = J +
∑

i

||wi||2σ2
i (5.22)

Intuitively, it can be seen that when the added noise has low magnitude
then the first term of (5.22) dominates and so (nonlinear) PCA is performed
in the normal manner. If the noise variance is increased, then the learning
is moderated by this additional weighted noise term, which has the effect of
forcing some weight vectors to have only zero weight values (the degenerate
solution).

So the addition of noise to the outputs has the effect of introducing a
second pressure into the learning rule of the nonlinear PCA algorithm. This
is a natural way in which to introduce a sparsification term on to the weights.
Also as the noise is simply added on to the outputs after the application of the
nonlinearity there is less computational expense than adding a specific weight
decay term. Additionally, it is interesting to note that real neurons operate in
a noisy environment.

The Minimum Overcomplete Basis

In Section 5.2.9, we discussed how, if any data space may be represented in n
dimensions, then it may also be represented by nonnegative-only coordinates
in a basis with n + 1 basis vectors. It is desirable to predict the minimum
number of outputs that are required to represent the causes in the data so
that we may form a more efficient coding of the data. This is difficult as
any nonnegatively constrained coordinates determined by more than n basis
vectors will adequately account for the data.

The addition of noise on the outputs enables the network to find this
minimum overcomplete basis (MOB) that will account for the data, as was
illustrated in the previous section. In the standard bars example, this is a
network in which only 16 outputs respond to the data regardless of how many
outputs there are in the network in total. Each output then identifies an
individual bar or is zero, and partial bars are not shared across the outputs.
This happens because the coding cost in the network increases if the network
learns partial bars. For example, if one bar is learned by two outputs, each
output learning half a bar each, then more noise is carried back on the feedback
weights, thus creating a larger reconstruction error. Each weight vector in the
network must have a vector length of 1 so the weighted noise error fed back

through the network when a bar is learned in two halves is 2∗4∗
√

1
4 ∗noise =

4 ∗noise . The weighted noise error fed back through the network when a bar
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is learned as a whole is 8 ∗
√

1
8 ∗ noise ≈ 2.8 ∗ noise , which is a considerably

lower coding cost.
The major advantage of additive noise is that it reduces the number of

basis terms used to code an input: we are finding the minimum overcomplete
basis.

Additive noise has a further advantage in that it can be added in a number
of ways. For example, if it is added uniformly on to all outputs, then all of the
weight vectors are penalised equally and only features that are strong enough
to dominate the noise are learned. So for the standard bar data, if we have
20 outputs in the network trying to learn 16 individual bars, then only 16
outputs will respond, the weight vectors connected to the other 4 all having
zero weight values.

5.2.11 Simulations

Random Mixes of Horizontal and Vertical Bars

In this section a variety of aspects of the network are illustrated with the
benchmark “bars data”[46]. Unless otherwise stated, the networks are trained
over 50 000 presentations of the data with a learning rate of 0.05 which is
annealed linearly to zero over the training period. The squares in the following
figures are individual weight vectors each connecting to one output, arranged
two-dimensionally so that we can conveniently view the results. The diameter
of circles within the squares represent the individual weight values where black
is a positive weight and white is a negative weight.

With the standard bars data set, but with a network with 24 outputs,
all of the bars are found but some of the bars are shared by two or three
outputs. The threshold implementation of the network is more successful at
identifying the bars in this case: Fig. 5.6 shows the converged weights when
using this implementation of the network on the data. Therefore, when more
outputs than bars are used in the network, then all of the individual bars are
identified, and redundant weight vectors simply contain noisy values. We use
the soft threshold function with the artificial data here as it is very flexible
to work with and forgiving of nonoptimal network parameters. The other
threshold functions from this family once optimised, however, yield results
that are virtually identical.

We have found that the soft threshold nonlinearity is more effective than
the plain rectification of the outputs. With exactly as many outputs as bars
then both networks identify all of the bars easily, whereas when there are
more outputs in the network than bars that make up the data set, then all of
the bars are identified, but in the case of the rectified network some bars are
identified more than once, and junctions of of bars or combinations of bars
are also found.
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Fig. 5.6. Trained threshold network – 24 outputs.

Additive Noise

Additive noise, as can be seen from the results presented below (zero mean,
Gaussian noise, of standard deviation 0.01, is added to every output) is bene-
ficial in all of these networks when added to the outputs after the application
of the nonlinearity. Fig. 5.7 shows that the additive noise enables each of these
networks to identify all of the individual bars. That is, only as many outputs
are used as are required in the coding; the weights connected to the other
outputs each learn values that are close to zero.

As stated earlier we can add noise in a graduated way across the outputs
so that the first output has zero mean Gaussian noise of standard deviation
0.001 added to it and every subsequent output having double the amount of
noise as the previous output. In a network with 20 outputs this has the effect
of forcing the first 16 outputs to learn all of the bars, but the last four to learn
nothing. In this way we can control the location on the outputs where factors
may be learned.

Illusory Causes

The human ability to find structure out of combinations of local and global
information is illustrated in Figure 5.8. It is difficult to avoid seeing the white
triangle, yet it is not there. If you are asked to give a compact description
of the image, you would invariably mention this triangle. We illustrate the
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Fig. 5.7. Trained soft threshold network with additive noise – 24 outputs. Note
that some weight vectors have no significant weight values.

Fig. 5.8. The Kanizsa triangle illustrates the human ability to identify patterns
which do not exist.
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negative feedback network performing in the same way in this section. In
the situation where bar patterns are nonsparse (the bars appear with a ran-
dom probability of 7/8 each) then networks with built–in sparse priors (see
Appendix B) cannot be expected to identify the individual bars. With the
threshold network the results (Figure 5.9) confirm that the network converges
to a very sparse representation, i.e. the illusory bars between the actual bars
patterns. As the network operates so as to find a sparse response with the
minimum descriptive length and because the individual bars are appearing in
dense patterns together, then the network cannot learn the individual bars.
Instead the network learns the spaces between bars patterns, which is the ap-
propriate sparse response (illusory bars). Note that, in this experiment that
the horizontal and vertical bars are not mixed so as to allow the weights to
learn a more visually interesting response.

Although most of the weight vectors have prominent negative values, one of
the weight vectors has small positive values on all of its weights. This weight
vector is used to ensure that the output values respond with a significant
positive value (normally a magnitude of over 3) to the illusory bars.

Fig. 5.9. The noisy soft threshold network discovers illusory bars – 24 outputs.

Using Noise to Modularise the Network Response

If the bars appear as part of horizontally or vertically moving sequences (each
sequence beginning with a probability of 1/6), then by adding lateral con-
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nections on to the outputs of the network to include temporal context and
adding modular noise to the network, it is possible to order the outputs so that
temporally close features are coded spatially close at the output neurons. For
example, this form of the network can be used to force vertical and horizontal
bars to be learned in different modules of the output space.

The lateral connections come into play after the feedforward stage of the
algorithm to give a but before the application of the nonlinearity y = f(a) (see
[26] for details). If the bars appear as part of horizontally or vertically moving
sequences, then this network now can order the outputs so that temporally
close features are coded at the output neurons in a manner that is spatially
close.

Values are given to the lateral weights proportional to the distance between
any particular pair of outputs and so an output’s activation is increased in
proportion to the previous values of the other outputs weighted by the lateral
connections, as shown above. The method of setting the lateral connections
here is simply to fix values of the weights to an output’s four nearest neigh-
bours i.e. an output is only connected to its nearest two neighbours on either
side. An asymmetry can be put into these lateral weight values to encourage
the outputs to learn the temporal sequence of the bars from left to right. Al-
though symmetrical lateral weight values also work well, sometimes the bars
are not exactly coded in sequence. Lateral weight values to the right of an
output are −0.2 and −0.7 (nearest) and to the left 0.2 and 0.7 (nearest).

We create two “wells of attraction” at the outputs of the lateral connected
network by adding local zero mean Gaussian noise after the application of
the nonlinearity proportional to | cos 2∗π∗i

M |, where i is the identifier of the
output, i = 1, ..., M . This has the effect of encouraging one set of features
to be coded around the output that is one–third from the left and one set
of features to be coded around the output that is one–third from the right
of Fig. 5.10. This happens because the noise is of lower magnitude at these
points and so the error minimisation term of (5.22) dominates.

5.3 Conclusion

We have shown how the basic PCA network can be amended by having a
simple rectification on either the weights or the outputs which results in a
network which can self-organise in order to identify individual causes from a
mixture of causes. We have related the resulting network to both (nonlinear)
Principal Component Analysis and to Factor Analysis and shown its capa-
bilities mainly on artificial data sets. Experiments with other data sets and
extensions of the basic network can be found in the theses of Darryl Charles
[24] and Donald MacDonald [121]. Also in [66], we have shown that the non-
negativity constraints may be applied to both the bigradient algorithm [180]
and a class of algorithms derived from the generalised eigenproblem [188] in
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Fig. 5.10. Trained weights of noisy soft threshold network using noise to modularize
the response of the network.

order to create a network which also identifies independent factors in a data
set.



6

Exploratory Data Analysis

Cross-fertilisation between the fields of artificial neural networks and statis-
tics has recently proved fruitful. In unsupervised learning, the realisation that
simple neural network architectures are capable of performing classical statis-
tical analysis has allowed insight into the operation of simple Hebbian neural
networks and allowed the results of neural networks to be related to human
psychophysical performance. Principal Component networks have been the
major outcomes of this research. Here we use the same neural network archi-
tecture as in previous Chapters and show that it has other important statis-
tical properties.
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Fig. 6.1. Two distributions where Principal Component Analysis does not find
the structure in the data: in the first distribution, the first PC would be an almost
horizontal chord of the arc; in the second, it would lie on the diagonal of the rectangle.
So projecting onto either principal component axis would hide the structure in the
data.

Principal Component Analysis (PCA) has proved to be a powerful tool for
the investigation and analysis of large data sets. However, some structure in
data sets is not identifiable by means of the linear associations (correlations)
among the variables; such effects as clustering or definition of edges of data
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sets are easily identified using the human eye on low–dimension projections
of data but are not achievable by using the tools of classical multivariate
analysis. For example, Fig. 6.1 (right) shows two ellipsoids representing the
shapes of two data clusters; the first Principal Component is diagonal (either
from top left to bottom right or bottom left to top right, depending on the
actual samples used) yet the structure in the data – the two clusters – is not
visible in the projection onto this direction. This problem increases in severity
as the dimensionality of the data increases. The success of PCA has, in part,
been because those directions which contain most of the variance in a data
set will tend to contain most of the structure in the data set. However, this
relationship is not logically necessary.

Exploratory Projection Pursuit (EPP) defines a recent form of exploratory
data analysis methods which attempt to find “interesting” directions in high
dimensional data (for reviews see [84, 94]). We introduce a nonlinearity to our
PCA network and show that it is capable of performing an EPP.

6.1 Exploratory Projection Pursuit

The group of methods based on Projection Pursuit is based on one central
idea: rather than solving the difficult problem of identifying structure in high–
dimensional data, project the data onto a low–dimensional subspace and look
for structure in the projection. However not all projections will reveal the
data’s structure equally well. Therefore we define an index that measures how
“interesting” a given projection is, and then represent the data in terms of
the projections that maximise the index and are therefore maximally “inter-
esting”. We will initially restrict our attention to one–dimensional subspaces
i.e. we will identify an index for each line in the space and attempt to max-
imise the index in order to make projections of the raw data onto the line as
interesting as possible.

Clearly the choice of index is the crucial factor in Projection Pursuit, and
the index is specified by our desire to identify interesting directions. Therefore
we must define what we mean by “interesting directions”.

6.1.1 Interesting Directions

Friedman [50] notes that what constitutes an interesting direction is more
difficult to define than what constitutes an uninteresting direction. The idea
of “interestingness” is usually defined in relation to the oft-quoted observation
of Diaconis and Freedman [39] that most projections of high-dimensional data
onto arbitrary lines through most multidimensional data give almost Gaussian
distributions. This would suggest that if we wish to identify “interesting”
features in data, we should look for those directions w, projections onto which
are as non-Gaussian as possible. Thus, we will look for an I(w), an index
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function of the direction w, which is maximum when the projection of the
distribution onto w is furthest from Gaussian.

Two common measures of deviation from a Gaussian distribution are based
on the higher–order moments of the distribution (see Fig. 2.4). Skewness is
based on the normalised third moment of the distribution and basically mea-
sures if the distribution is symmetrical. Kurtosis is based on the normalised
fourth moment of the distribution and measures the heaviness of the tails of
a distribution. A bimodal distribution will often also have a negative kur-
tosis and therefore kurtosis can signal that a particular distribution shows
evidence of clustering. Whilst these measures have there drawbacks as mea-
sures of deviation from normality (particularly their sensitivity to outliers),
their simplicity makes them ideal for explanatory purposes.

In passing, we note that if we know what type of interesting structure we
expect to find in the data set, instead of moving away from the uninteresting
Gaussian distribution, we could move towards the interesting direction.

6.2 The Data and Sphering

Because a Gaussian distribution with mean a and variance x is no more or
less interesting than a Gaussian distribution with mean b and variance y –
indeed this second–order structure can obscure higher–order and more inter-
esting structure – we remove such information from the data. This is known
as “sphering”. That is, the raw data is zeroed, projected onto the principal
component directions and multiplied by the inverse of the square root of its
eigenvalue to give data in all directions which has mean zero and is of unit
variance. This removes all potential differences due to first– and second–order
statistics from the data. To do this, the eigenvalue–eigenvector decomposi-
tion of the covariance matrix1 is performed i.e. for input data X, we find the
covariance matrix

Σ = E(X − E(X))(X − E(X))T = UDUT (6.1)

where U is the eigenvector matrix, D is the diagonal matrix of eigenvalues
and the T denotes the transpose of the matrix. New samples drawn from the
distribution are then transformed to the principal component axes to give
variables y where

yi =
1√
Di

n∑
j=1

Uij(Xi − E(Xi)), for 1 ≤ i ≤ m, (6.2)

where n is the dimensionality of the input data and m(≤ n) is the dimen-
sionality of the sphered data. Typically m << n and so this operation makes
1 In practise, we make no distinction between statistics generated by samples from

the distribution and those of the distribution itself.
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high-dimensional data more manageable. It is important to note that any lin-
ear combinations of the y-values also retains these properties of the mean and
variance e.g. see [125], Corollary 3.2.1.3.

This is the data in which we wish to find interesting directions.

6.3 The Projection Pursuit Network

The network is the same negative feedback network which we have used
throughout the book. The sole difference is that a function of the output acti-
vations is calculated after the feedback stage but before the stage of changing
the weights, and this function is used in the simple Hebbian learning proce-
dure. We have for N−dimensional input data and M output neurons

si =
N∑

j=1

wijxj (6.3)

ej = xj −
M∑

k=1

wkjsk (6.4)

ri = f(si) = f

⎛
⎝ N∑

j=1

wijxj

⎞
⎠ (6.5)

∆wij = ηtriej (6.6)

= ηtf

(
N∑

k=1

wikxk

){
xj −

M∑
l=1

wlj

N∑
p=1

wlpxp

}
(6.7)

where ri is the value of the function f() on the ith output neuron. Thus (6.7)
may be written in matrix form as

∆W (t) = η(t)[I − W (t)WT (t)]x(t)f(xT (t)W (t)) (6.8)

where t is an index of time and I is the identity matrix.
The set of network rules described above is a generalisation of those for

the negative feedback network which performs PCA. Note also the difference
between this network and the nonlinear generalisation of PCA discussed in
Chapter 5: in that chapter, the nonlinear function was calculated before the
feedback and was derived as an error minimisation; in this chapter, the non-
linear function is calculated after the (linear) feedback and will be derived as
a constrained maximisation in the next section.

6.3.1 Extending PCA

Following [101], we can derive (6.8) as an approximation to the maximisation
of a function, J , of the weights J(W ) =

∑M
i=1 E(g[xT wi]|wi).
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We must ensure that the optimal solution is kept bounded; otherwise there
is nothing to stop the weights from growing without bound. Formally,

Let J(W ) =
M∑
i=1

E(g[xT wi]|wi) +
1
2

M∑
i=1

M∑
j=1

λij [wT
i wj − aij ] (6.9)

where the last term enforces the constraints wT
i wj − aij using the Lagrange

multipliers λij . As usual, we differentiate this equation with respect to the
weights and with respect to the Lagrange multipliers. This yields respectively,
at a stationary point,

∂J(W )
∂W

= E(xg′(xT W )|W ) + WΛ = 0 (6.10)

and WT W = A (6.11)

where g′(xT W ) is the elementwise derivative of g(xT W ), A is the matrix of
parameters aij (often the identity matrix) and Λ is the matrix of Lagrange
multipliers. Equations (6.10) and (6.11) define the optimal points of the pro-
cess. Premultiplying (6.10) by WT and inserting (6.11), we get

Λ = −A−1WT E(xg′(xT W )|W )

and using this value and reinserting this optimal value of Λ into (6.10) yields
the equation,

∂J(W )
∂W

= [I − WA−1WT ]E(xg′(xT W )|W ) (6.12)

We will use an instantaneous version of this in a gradient ascent algorithm

∆W ∝ ∂J(W )
∂W

to yield

∆W = µ[I − WA−1WT ]xg′(xT W ) (6.13)

We will be interested in the special case where the W values form an
orthonormal basis of the data space and so A = I, the identity matrix. There-
fore, we can equate (6.13) with (6.8).

Karhunen and Joutsensalo point out that the algorithm is approximative
since the expression for Λ is derived from the optimum solution and used
from the beginning of the algorithm. As we shall see in Section 6.3.4, the
implications of the approximation are profound: to be used in a gradient ascent
algorithm, ∂J

∂W must be continuous and with positive slope in the iteration
intervals. We shall see that these constraints can only be justified, in general,
on the set of points where the second constraint in (6.9) is satisfied a priori.



116 Hebbian Learning and Negative Feedback Networks

6.3.2 The Projection Pursuit Indices

Now for projection pursuit, we wish to maximise a specific index. But note that
from the derivation in the last section, when we wish to maximise an index
function we must use its derivative in the learning algorithm: the function
f() in (6.7) is equivalent to the function g′() in (6.13). Thus to maximise a
projection pursuit index e.g. for skewness, we could use a learning process like
that described in (6.13) noting that to maximise the skewness index we must
use the derivative of the index in the learning process.

We wish to emphasise the properties of the negative feedback network
rather than those of specific indices. Thus we choose to report on the net-
work’s self-organisation with the simplest possible indices. The indices which
we investigate in this section are either directly based on the higher moments
of the input data or are functions of them (see Fig. 2.4):

• To measure skewness in a Normal distribution, N(µ, σ) we use

g(s) =
E{(s − µ)3}

σ3

where s is a random variable drawn from the distribution with mean µ and
standard deviation σ. Now our data distributions have all been sphered
i.e. E(x) = 0; E[(x−E(x))2] = 1 and our weights, wi, are normalised and
therefore every direction si has the same first and second moments. Thus
g(s) = s3 is a measure of the skewness of the distribution. Thus, in the
algorithm (6.8), we use

f(s) = k ∗ s2 ∝ d

ds
s3

Now in all Normal directions, this measure will be zero, but in a direction
with a skewed distribution, there will be a nonzero skew value.

• Similarly, kurtosis2 is measured by

g(s) =
E{(s − µ)4}

σ4

Therefore as above, to measure a kurtotic deviation, we could use

f(s) = k ∗ s3 ∝ d

ds
s4

• We can also use functions (see Section 6.3.6) whose expansions are domi-
nated by either odd or even powers of s to measure kurtosis or skewness
respectively.

2 Typically, 3 is subtracted from this measure in order to make the kurtosis of a
truly Normal distribution 0. However, since we use its derivative, we have simply
used the stated measure.
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The first two are the simplest possible measures of departure from Gaus-
sianity yet are generally not used because of their susceptibility to outliers.
Thus we have derived the third set of measures. We will use the naive sample-
based versions of the measures making no adjustments for any potential differ-
ences between sample and distribution moments (see e.g. [125] for a discussion
of such differences). We further treat each test as measuring only one facet,
although we are aware that tests for skewness and kurtosis are distributionally
dependent (see e.g. the discussion in [80]).

Traditional statistical methods require a computationally intensive recal-
culation of the distribution’s moments from a reasonable sample of data points
from the distribution each time a measure must be recalculated. However, it
will be shown that a Hebbian learning rule for neural networks based on
a measure of the instantaneous moments does in fact find that direction of
maximum interest in the sense of Section 6.1.1.

6.3.3 Principal Component Analysis

The negative feedback network introduced here is identical to that used previ-
ously as a Principal Component network. The transfer of activation is exactly
the same as described in this chapter; however, there was previously no nonlin-
ear activation function at the output neurons. This is equivalent to a network
with f(x) = x, the identity transformation. Now since f is the derivative of the
function we wish to maximise, we can see that the PCA network is maximising
the second moment of the distribution i.e. as we know, PCA is finding that
direction with greatest variance. In fact, in the simulations described below,
we use the above network twice – the first time to project the data onto the
eigenvectors corresponding to the Principal Components and the second time
to carry out Exploratory Projection Pursuit. The fact that the same network
structure is capable of performing a PCA as well as EPP is unsurprising since
Huber [84] has shown that PCA may be viewed as a particular case of Projec-
tion Puruit. Thus, for the PCA network, we are choosing f(x) = x ∝ d

dx (x2)
and so the original network is seen to be maximising the second–order statis-
tics of the distribution i.e. finding the eigenvectors corresponding to maximal
eigenvalues.

This suggests that Oja’s Subspace Algorithm can be derived in terms of
a gradient ascent procedure. However, Baldi and Hornik [4] have shown that
this algorithm is not derivable from such a procedure. The reason for this
apparent contradiction is found in the approximation assumptions used in
the derivation of the algorithm and will be discussed in the next section.

6.3.4 Convergence of the Algorithm

The derivation of the algorithm was based on gradient ascent using (6.9).
Therefore, this equation must define a function of W which is twice differen-
tiable with respect to W .



118 Hebbian Learning and Negative Feedback Networks

Consider first the convergence of the algorithm on the set of points re-
stricted to the surface ‖w‖ = c, where ‖.‖ denotes the Euclidean norm and c
is a constant. On this set, the second term of the equation,

1
2

M∑
i=1

M∑
j=1

λij [wT
i wj − δij ], (6.14)

is a constant and we may then return to the original maximisation, which we
will denote J ′(W ) =

∑M
i=1 E(g[xT wi]|wi) on this set. Note first that each of

the functions used in this chapter is twice differentiable.
Used as an instantaneous algorithm, we have, for the presentation of a

single pattern x:

• For kurtosis, J ′(W ) =
∑M

i=1(x
T wi)4. Then ∂2J ′

∂w2
ij

= 12(wi.x)2x2
j ≥ 0.

Thus the function f(s) = ks3, k > 0 will converge to that direction with
maximum kurtosis when the convergence takes place on the set of all
points which satisfy ‖w‖ = c. Similarly the function, f(s) = ks3, k < 0
will always cause convergence to those directions with minimum kurtosis.
Therefore to test kurtosis in a situation where the form of the data is
unknown, we can (in parallel) test for both positive and negative kurtotic
distributions e.g. with f(s) = k1s

3, k1 > 0 and f(s) = k2s
3, k2 < 0.

• For skewness, J ′(W ) =
∑M

i=1(x
T wi)3. Now ∂2J′

∂w2
ij

= 6(wi.x)x2
j . Thus if

∆W ∝ δJ ′(W )
δW , we have a gradient ascent rule if E(wi.x) is greater than 0,

i.e. we will ascend till we converge to the direction with greatest positive
skewness. If E(wi.x) is less than 0, we will descend till we converge to
the direction with most negative skewness. Thus one function can be used
to test for both positive and negative skewness. It is important to recall
that this is an exploratory data investigation tool: we do not care if the
structure has positive or negative skewness – only that it is deviating from
a Gaussian distribution.
However, this does leave open the possibility that there exists a stage in
the convergence when skewness in two directions reaches a stable point
of convergence which is a mixture of two optimal states, though we have
never seen this situation experimentally.

Therefore the algorithm may be viewed as gradient ascent on the hyper-
sphere satisfying ‖w‖ = c. Now we must consider the convergence of the
algorithm in general; consider (6.10) with respect to a particular vector of
weights into output neuron, i, for a function g(s) = sk. Then we have

∂J

∂wi
= kx(wi.x)k−1 + Wλi (6.15)

∂2J

∂w2
i

= k(k − 1)Diag{xxT }(wi.x)k−2 + λiiI (6.16)
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where Diag{.} is an operator which sets all off-diagonal entries to 0 and λi is
the vector of Lagrange coefficients for the direction wi. Now since the data is
sphered, E(x2

j ) = 1. Thus we only have a positive gradient in those directions,
wi, which satisfy

(wi.x)k−2 >
−λii

k(k − 1)
(6.17)

Recalling that λij determines the relative weight accorded to the function
J ′ and the constraint [wT

i wj − δij ] and we can see that the use of the final
converged value of λij in the converging algorithm causes a more serious prob-
lem than merely being an approximation. The algorithm is not guaranteed to
converge.

In practice, this has not been found to be a problem. One possible heuristic
would be to start the weights normalised and then converge across the surface.
However there is the possibility that the convergence process will be slower
using this. Empically, little difference has been found between starting with
small (near 0) random weights and starting with normalised vectors.

6.3.5 Experimental Results

We have shown that this algorithm causes the weights to converge to identify
the higher–order structure in a data set. Since we later wish to compare various
algorithms, we create artificial data sets in which we know the nature of the
structure in the data set and for which we know where the structure lies. Thus
we can measure how quickly the networks converge to the correct solutions.

We therefore create five dimensional data such that four dimensions con-
tain data drawn independently and identically distributed from zero mean,
Gaussian distributions while the fifth dimension contains kurtotic data: we
draw this also from a Gaussian distribution but randomly (in 20% of cases)
substitute the sample with a small random number drawn from a uniform
distribution between −0.005 and +0.005. We use the above algorithm with
f(y) = y3 and repeat the experiment 100 times. The cubic nature of this
function makes learning inherently unstable and in 23 cases we found over-
flow. The convergence of the other 77 cases are shown in the left part of Fig.
6.2 in which we show the mean value of the cosine of the angle between the
network weights and the optimal value at each iteration (central line). We
also show in this figure one standard deviation above and below the mean.
In three experiments, the network did not approach convergence after 80 000
iterations. The results of the remaining 74 cases are shown in the right part
of Fig. 6.2.

More Than One Interesting Direction

Since the projection pursuit method is designed to find interesting directions
worthy of human investigation, and since humans can visually investigate
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Fig. 6.2. Left: convergence of 77 experiments towards the optimal (kurtotic) direc-
tion with f(y) = y3. The graph shows the mean value of the cosine of the angle
between the network weights and the optimal weight at each iteration and one
standard deviation on either side of the mean. Right: convergence of the best 74
experiments.

functions over a plane, we are often interested in finding two independent
directions in a data set which contain interest. We first consider the situation
when each interesting direction has the same type of interest. Experiments
have shown that, in such situations, the network usually finds one direction
more interesting than the others; the weights will converge to that direction on
which the projection of the data has the largest deviation from the statistics of
a normal distribution, e.g. when the kurtosis index is 3.67 in dimension 4 and
3.66 in dimension 7, the kurtosis index function invariably causes convergence
to dimension 4.

However, it may be appropriate to find all interesting filters. This situation
sometimes [50] is dealt with by “structure removal” using a transformation of
the interesting filter to create a Normal distribution in that filter. This method
has the disadvantage that such transformations may affect the Normality of
other solution projections. However we note that the learning process used
here not only finds but removes the interesting projections i.e. the residuals
at the inputs consist of the original data minus the projections onto the learned
interesting filters. Thus we suggest running the network until one interesting
projection is found; then set these weights and restart learning with a new
output neuron. This has been found to be very effective.

When the data contains projections which are interesting in different ways,
we can investigate the data in different ways simultaneously. We can, for
example, construct a network as before but with M output neurons each of
which is searching for different characteristics in the sphered input data. So
our final algorithm is:

1. Sphere the input data.
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2. Create a set of output neurons with M different indices and train this
network. For example, for the indices we have so far considered we may
simply have two output neurons which use skew and kurtosis indices,
respectively.

3. Visually examine (either individually, as lines, or in pairs, as planes) the
projections found in order to identify humanly interesting projections.

4. Remove those neurons whose weights have not converged to interesting
projections.

5. Repeat Steps 3–5 training the new neurons on the residuals after all cur-
rent neurons have removed their projections.

6.3.6 Using Hyperbolic Functions

As an example of using hyperbolic functions we perform an experiment sim-
ilar to the last one but report the convergence of f(s) = tanh(s). Since
f(s) = tanh(s) has an expansion of s − s3

3 + 2s5

15 − · · ·, it is an odd func-
tion. It can then be used to measure the kurtotic deviation from the normal
distribution. In detail, using tanh(s) as the learning function, f(), in (6.8)
maximises the integral of that function; thus, using f(s) = tanh(s) in the
stochastic algorithm maximises

E

(∫
tanh(s)ds

)
= E

(∫ (
s − s3

3
+

2s5

15
− · · ·

)
ds

)
(6.18)

= E

(
s2 − s4

12
+

2s6

90
− · · ·

)
(6.19)

= E(s2) − E

(
s4

12

)
+ E

(
2s6

90

)
− · · · (6.20)

= 1 − E

(
s4

12

)
+ E

(
2s6

90

)
− · · · (6.21)

since s is a linear combination of sphered data.
Now for small s, the most important parts of the series are the first few

terms; also, subsequent terms alternate between reinforcing the effect of the
second term (being negative) and detracting from its effect. s4

12 > 2s6

90 in
the interval (−1.93, 1.93) which contains almost exactly 95% of the sphered
data in Normal directions. This proportion will be slightly different for a non-
normal direction, but the major conclusion must be that for the overwhelming
majority of the data points the driving force of the learning is the cubed term
in the expansion of tanh(s). Therefore if we use tanh(s) in our algorithm, we
are minimising s4 i.e. finding projections with least kurtosis.

Similarly we can use f(s) = sech2(s) which is the derivative of tanh(s)
and is an even function, to find deviations in skewness from the normal dis-
tribution. We can, of course, search for both types of structure in parallel. In
fact, not only does the convergence of the two indices not interfere with each
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other, the convergence of each may actually help the other if we use as input
data for the second output neuron the residuals at x after the first neuron
has subtracted its projection (a deflationary network, c.f. [160]). This has the
effect of decreasing the dimension of the space of input data in which the
second neuron must search for interesting projections. Note also that these
are by no means the only functions which can be used. For example, tan−1(s)
can also be used for searching for kurtotic distributions as its expansion is
also odd.

6.3.7 Simulations

In Fig. 6.3, we show the convergence of 100 simulations on the same type of
data as before (left figure) and then the results of the best 90 experiments
in the right figure when we use f(y) = y − tanh(y), a function which we
will discuss in Section 6.6. We see that we not only improve stability but also
improve the speed of convergence with this function. (Compare with Fig. 6.2).
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Fig. 6.3. Left: convergence of 100 experiments towards the optimal (kurtotic) di-
rection. The graph shows the mean value of the cosine of the angle between the
network weights and the optimal weight at each iteration and one standard devi-
ation on either side of the mean. Right: convergence of the best 90 experiments.
These graphs show results when using f(y) = y − tanh(y).

Similarly, we may create data which has one platykurtotic dimension by
sampling from a zero mean Gaussian distribution and then randomly adding
5 to the sample or subtracting 5 from the sample. This gives a bimodal dis-
tribution which the function f(y) = tanh(y) can be used to find. Thus in Fig.
6.4, we show the results of 100 experiments searching for this dimension in
the left figure and the best 99 (only one had not converged by iteration 80
000) in the right of the figure.



6.4 Other Indices 123

0 1 2 3 4 5 6 7 8

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6.4. Left: convergence of 100 experiments to optimal bimodal dimension when
using tanh() in the learning rule. Right: convergence of the best 99 simulations.

6.4 Other Indices

With the method and network for Projection Pursuit now established, we
can investigate other possible indices. We will investigate indices based on
Information Theory and two specific indices: Friedman’s index and Intrator’s
index. These have aroused a great deal of interest in their respective commu-
nities and are thought to be substantially the best currently available (though
we must add the caveat that such assessments are usually made with respect
to specific data sets). The most frequently referenced indices from the statis-
tics community are those from Friedman [50] and Hall [65]. Both indices use
polynomial approximations to analytically deduced indices of interestingness;
such polynomials are usually introduced for reasons of computational effi-
ciency. We chose to investigate Friedman’s rather than Hall’s since the former
index is thought to be more generally effective than the latter (e.g. see [175]
for a recent comparison).

In the neural network community, the series of articles written by Intrator
(e.g. [87, 89, 90]) are given as example implementations of the Projection
Pursuit methodologies. Other articles (e.g. [77]) do not specifically mention
Projection Pursuit though often appearing to use a PP methodology. An
interesting implementation of PP methodologies using radial basis function
nets is given in [189].

6.4.1 Indices Based on Information Theory

As noted by Marriot (in Discussion of [94]), “ a moment criterion, or any
criterion dominated by third and fourth cumulants, will miss clustered pro-
jections that happen to be roughly symmetrical and nearly mesokurtic”; this
has led to a search for alternative measures of non-normality.
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Since the data is sphered, we may use the fact that for a constant variance,
the distribution which exhibits maximum entropy is the Gaussian. Thus we
may hope that the distribution which is furthest from a Gaussian has least
entropy. Thus the entropy

H =
∫

p(x) log p(x)dx (6.22)

could be used as a measure of departure from normality. However, it is not
possible to make an instantaneous calculation of p(x) given the single input x.
A measure using entropy would require to have a memory of previous inputs
in order to calculate the relative frequency approximation to the entropy.

An alternative is to use the difference between the normal distribution
and the actual distribution which can be quantified using the relative entropy
(or Kullback–Leibler divergence [31], page 18). Thus we can measure the dis-
tance between our current distribution, defined by the probability distribution
function p(x), and the normal distribution with function φ(x), as

D(p||φ) =
∑

x

p(x) log
p(x)
φ(x)

(6.23)

This gives a measure of the error involved in assuming the distribution of the
x values is determined by φ(x) when, in fact, the x values are drawn from a
distribution with pdf p(x).

It is interesting in this case to begin with the information measure which
we will use for f(x) and derive the function which we will be maximising.

Consider a neuron which is expecting inputs from a normal N(0, 1) distri-
bution. In each uninteresting projection, the actual probability distribution
which it sees will accord with its expectation that it is receiving data from
the N(0, 1) distribution; however, in an interesting projection, it will quan-
tify its inputs’ values based on the prior belief that these inputs are coming
from a Normal distribution when in fact they are coming from a non-Normal
distribution.

Thus we consider the measure f(x) = − log φ(x), where φ(x) is the prob-
ability that it would have received input x had input x come from a Normal
distribution. Thus the expected information which it believes that it is receiv-
ing from N samples of input data from the distribution is

D =
1
N

N∑
n=1

f(xn)

≈
M∑

m=1

p(xm)f(xm)

= −
M∑

m=1

p(xm) log φ(xm)
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where the input data has been binned into M boxes and the mean value of x
in the mth box is xm. The value p(xm) is the relative frequency of the sample
in box m and is taken as an estimate of the probability of having an input x
in box m. Now

D = −
M∑

m=1

p(xm) log φ(xm)

=
M∑

m=1

p(xm) log
p(xm)
φ(xm)

−
M∑

m=1

p(xm) log p(xm)

= D(p(x)||φ(x)) − Hp (6.24)

where D(a||b) is the relative entropy between the distributions a and b and
Ha is the Shannon entropy of the distribution a. Note that since we are using
a discrete (binned) version of p(x), we may assume that Hp ≥ 0.

Therefore, using the index g(x) = − log φ(x), we are finding the distribu-
tion which maximises the difference between the distance from the Gaussian
distribution and its own entropy. Note the double effect – a distribution which
is furthest from Gaussian will have the least information in it.

6.4.2 Friedman’s Index

Friedman [50] has developed an index which has attracted wide interest within
the community of statistics users. Sun [175] has performed a useful and in-
formative comparison of Friedman’s and Hall’s indices and has concluded
that Friedman’s is generally better. Hall [65] agrees. Briefly, Friedman’s in-
dex is based on the transformation of the projection of the sphered data,
xT w → R = 2Φ(xT w) − 1 where Φ(X) is the standard normal cumulative
density function

Φ(X) =
1√
2π

∫ X

−∞
exp

(
− 1

2t2

)
dt (6.25)

If X follows a standard normal distribution, then R will be uniformly dis-
tributed in the interval [−1,1]. Therefore we take as a measure of the distance
of xT w from the Normal distribution, the integral squared distance of the
variable R from the uniform distribution,

∫ +1

−1

[
p(R) − 1

2

]2

dR =
∫ +1

−1

p2(R)dR − 1
2

(6.26)

Friedman expands R in Legendre polynomials so that

∫ +1

−1

p2(R)dR − 1
2

=
∫ +1

−1

⎡
⎣ ∞∑

j=0

ajPj(R)

⎤
⎦ p(R)dR − 1

2
(6.27)
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where the Legendre polynomials are

P0(R) = 1
P1(R) = R

Pj(R) =
(2j − 1)RPj−1(R) − (j − 1)Pj−2(R)

j
,∀j > 1

The coefficients aj are given by

aj =
2j + 1

2

∫ +1

−1

Pj(R)p(R)dR =
2j + 1

2
E[Pj(R)] (6.28)

From this, we have an easily calculated projection index

g(w) =
1
2

J∑
j=1

(2j + 1)(E[Pj(R)])2 (6.29)

for any direction w, which is applied as

ĝ(w) =
1
2

J∑
j=1

(2j + 1)

[
1
N

N∑
i=0

Pj(2Φ(xT w) − 1)

]2

(6.30)

to give the sample version of the index. Note that this must be maximised
under the constraint that WWT = 1 to ensure a finite solution.

However, we require the derivative of g(w) for our instantaneous measure,
f(s), and so we use

f(s) ∝
J∑

j=1

(2j + 1)E[Pj(R)]E
[
P

′
j (R) exp−(xT w)2

]

Now P
′
j (R) is also easily calculated via the recursion relation

P
′
1(R) = 1

P
′
j (R) = RP

′
j−1(R) + jPj−1(R)

Thus the instantaneous version of Friedman’s index used in a neural network
implementation is

f(s) =
D∑

j=1

(2j + 1)PjP
′
j exp(−(xT w)2)

Simulations on data such as used to test the polynomial indices have shown
that such an index finds projections with either skew or kurtotic deviations
from Normality with great reliability and accuracy.
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6.4.3 Intrator’s Index

Intrator [86, 87, 88, 89, 90, 91] has constructed a model for Exploratory Projec-
tion Pursuit derived from the Bienenstock, Cooper, Monro [12](BCM) model
of cortical plasticity. This model has a learning function of

dw

dt
= µ(t)(x.w)

(
x.w − 4

3
θw

)
x (6.31)

where θw = E[(x.w)2] provides a moving threshold which yields the dynamic
flexibility necessary for stability. While this is not immediately transferable
into the format (6.8), an approximate version of the index function

g(w) = −µ

{
1
3
E[(w.x)3] − 1

4
E[(w.x)2]2

}
(6.32)

yields a function f(s) = a ∗ (w.x)2 + b ∗ (w.x) which has been found (unsur-
prisingly) to have almost identical convergence properties to the simple index
for skewness since E(w.x) = 0.

A comparative study [53] of the network of this chapter and the BCM
neuron found that the negative feedback model of this chapter performed
better. To be fair, however, the comparative study was performed by the
current author who may be thought to favor this model a priori.

6.5 Using Exploratory Projection Pursuit

To illustrate the use of EPP, is it demonstrated on a small database of bank
customers, containing 1000 records, with 12 fields. (A few records are shown in
Fig. 6.7). Information stored in the database includes a unique identifier, age,
sex, salary, type of area in which they live, whether married or not, number of
children and then several fields of financial information such as type of bank
account, whether they own a Personal Equity Plan, etc.

Fig. 6.5 shows that the network has clearly identified 4 clusters in the data
set using EPP with a tanh() non-linearity i.e. we are searching for negative
kurtosis, an indicator of clusters. Manual investigation of the clusters readily
reveals that the clusters are forming on the place of residence field – each
cluster is specific to one of RURAL, TOWN, INNER CITY and URBAN
sites.

Within each cluster, there is a smooth transition within the cluster with
clearly identifiable types of customers in each group. For example, the projec-
tion of each cluster onto the first EPP direction also shows structure: in each
case, the male customers are in the left strip while the female customers are
in the right strip. In addition, the second projection may be crudely associ-
ated with a gradual change from young poor customers to old rich customers.
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Fig. 6.5. The EPP network with a tanh() projection index finds four distinct
clusters. The projection of each cluster onto the first EPP direction also shows
structure: in each case, the male customers are in a left strip while the female
customers are in a right strip. In addition, the second projection may be crudely
associated with a gradual change from young poor customers to old rich customers.

Thus, for example, zooming in on the top left hand corner of Fig. 6.5 gives
Fig. 6.6, the records in the square of which are shown in Fig. 6.7.

Not only are the records all from a rural district, but they also represent
young, low–income customers. Looking at the records at the bottom end of
the left cluster, gives very different records (see Fig. 6.8) from those at the
top where we show older and richer customers.

6.5.1 Hierarchical Exploratory Projection Pursuit

EPP can only provide a linear projection of the data set. There may well be
cases in which the structure of the data is not captured by a single linear
projection of the data. In such cases, a hierarchical scheme may be beneficial.
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Fig. 6.6. Records found by zooming in on the top left-hand corner of Fig. 6.5. This
is a enlarged image of Fig. 6.5, centering on the boxed area in the top left corner of
Fig. 6.5. Some records in the square box are shown in Fig. 6.7.

Fig. 6.7. Records corresponding to those in the square in Fig. 6.6. They are from
a rural area, with low income, and predominately of a young age.

Fig. 6.8. Records corresponding to the other end of the same cluster from those
records in Fig. 6.7. Here the customers are older, with a higher income, but still
from a rural area.
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Thus we have developed software which allows the user to interactively inves-
tigate data sets: the user performs an EPP on the whole data set and then
dynamically selects (by pointing and clicking a mouse) a subset of the data
on which to perform a second EPP. Typically a user will choose to search for
clusters in the data and then subsequently select one or more clusters in which
to search for subsequent structure. This may be done for as many levels as
seems suitable to the user for the current data set.

Note that we are doing more than zooming in when we use this hierar-
chical investigation. When the user selects a cluster, we perform an EPP on
the records of that cluster which results in a reprojection of the cluster which
is optimal for finding structure in the subset of records which make up the
cluster. Fig. 6.9 shows an example. Again manual inspection revealed that
the EPP has found a second cluster inside the first which contains the peo-
ple without a current account. This shows that the Hierarchical Exploratory
Projection Pursuit (HEPP) network will extract more information from the
data set than is possible with an EPP network. The HEPP network can also
be used to look for different characteristics in the second level of its explo-
ration by changing the nonlinear function used, thus changing the projection
of interest for which the network is looking.

Fig. 6.9. HEPP projection of the left cluster of Fig. 6.5. This shows there are
outliers in the left cluster. It transpires that records 89 and 95 are of people younger
than the people in the rest of the leftmost cluster.
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6.5.2 World Bank Data

The world bank data set consists of entries for 124 countries, with fields for
the countries’ name, gross national product (GNP), percentage growth, GNP
per capita plus the percentage growth and finally GNP PPP (productivity per
person) and percentage growth of GNP PPP. We first used the EPP network
on the data set, and plot the results in Fig. 6.10.

Fig. 6.10. Projections of the world bank data clearly separate the first world
countries from the remainder of the countries.

These results cluster third world countries in the upper right half of Fig.
6.10, second world countries are left and lower; in the far bottom left lies the
richest country in the world, the USA, with Switzerland, and Japan close by.
The countries are shown based on their ranking in the three areas GNP, GNP
per capita and GNP PPP in Table 6.1.

Fig. 6.11 shows the results from the HEPP network using tanh() to find
clusters, when we use it on the cluster of countries in the upper right hand
corner of Fig. 6.10. The second world countries have been separated from the
third. The hierarchical use of the HEPP network has found more structure in
the second cluster.
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Table 6.1. The data of the countries selected as outliers by the EPP network.

Country GNP GNP per captia GNP PPP
USA 1 8 1
Japan 2 2 5

Switzerland 17 1 3
Germany 3 6 12
France 4 10 10

Fig. 6.11. A second level clustering of countries from the non-first world countries.

As can be seen from Fig. 6.11, the third world countries have clustered
together, and the second world countries have moved out and towards the top
right. Greece and Portugal are shown to be quite a distance from third world
countries such as the Philippines, the Dominican Republic and Senegal. This
is a good visual example of the power of HEPP to find higher–order structure
in a data set: the second projection shows information that it is not possible
to show with a single projection alone.
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6.6 Independent Component Analysis

Girolami [58] has developed a slightly different form of the negative feedback
EPP network described above and used it to perform ICA.
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Fig. 6.12. The extended exploratory projection pursuit network. The first layer
of weights, U , decorrelates the inputs; the interaction between the second layer of
weights, W and the third, V eliminates statistical dependencies from the z values.

The first layer of weights which spheres the data is based on Foldiak’s
second model [46]; the equations are

zi = xi +
n∑

j=1

uijzj

with learning rule
∆uij = −α(1 − zizj)

The net result is that the outputs, the components of z, are decorrelated with
about equal variance. Note that since, if the signals (such as voice signals)
are not Gaussian, this does not lead to separation of the independent sources.
The net result is the removal of the second-order statistics from the data –
the covariance matrix of the z values should be diagonal.

Now z is fed forward through the W weights to the output neurons where
there is a second layer of lateral inhibition. However, before the activation
is passed through this layer it is passed back to the originating z values as
inhibition and then a nonlinear function of the inputs is calculated:

yi =
∑

j

wijzj

ej ← zj − wijyi

si = yi − tanh(yi)

Now we pass this output through the lateral inhibition to get the final output
y values
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yi = si +
∑

j

vijsj (6.33)

and then the new weights are calculated

∆wij = βejyi

∆vij = γyiyj

The net result is the removal of any dependence from the output signals.
The differences then from the network described above on artificial data are
the following:

1. The method of sphering is rather different. There is some evidence that a
sphering method which also equalises variance provides a better starting
point for the exploratory investigation [9] known as ICA.

2. The index is yi − tanh(yi). Therefore, whereas previously we relied on
the fact that E(tanh(yi)) was zero, this index is explicitly removing the
first–order term each time. Thus, whereas previously our argument was
true only in the expectation of the weight update, now the argument is
true for each and every data presentation.

A Simulation Example

Five samples of five seconds of natural speech were recorded using the standard
telecom sampling rate of 8 kHz. Two adult male and female voices were used
along with that of a female child. The speakers each spoke their name and a
six digit number. The samples were then linearly mixed using the 5 × 5 mixing
matrix shown in Table 6.2 which is well conditioned with a determinant value
of 1.42. The fourth–order statistics of the original signals are shown in Table
6.3.

Table 6.2. The mixing matrix used to create a babble of voices.

0.65 0.20 −0.43 0.60 0.467
−0.3 −0.49 0.7 −0.3 0.57
0.68 1.5 −0.8 0.41 1.34

−0.234 0.38 0.35 0.45 −0.76
0.85 −0.43 0.6 −0.7 0.4

The output signals played back are clear with no residual of the mixture
as shown in Fig. 6.13. When we look at the converged weight matrices, we see
that both U and V are diagonal and symmetric as would be expected. The
magnitudes of the values in U indicate the large correlations in the incom-
ing raw data, with the off-diagonal terms being typically within an order of
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Table 6.3. Fourth-order cumulants of the individual voices.

Male 1 0.011347
Male 2 0.001373

Female 1 0.000288
Female 2 0.000368
Female 3 0.000191

Fig. 6.13. Left column: the original signals. Centre: the mixture presented to the
network. Right: the retrieved signals recovered by the network.
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magnitude less than the diagonal terms. Compare this with the V weight ma-
trix where the off-diagonal terms are all three orders of magnitude less than
the diagonal terms, which is indicative of the whitened input to the layer of
neurons.

6.7 Conclusion

We have introduced a neural network architecture which, using an extremely
simple architecture and learning rule, has been shown to be capable of per-
forming sophisticated statistical functions. The fact that the same network
structure is capable of performing a PCA as well as EPP is unsurprising since
Huber [84] has shown that PCA may be viewed as a particular case of Projec-
tion Pursuit. Thus, for the standard negative feedback network of Chapter 3,
in performing a PCA we are choosing g(x) = x ∝ d

dxx2 and so the original net-
work is seen to be maximising the second–order statistics of the distribution,
i.e. finding the eigenvectors corresponding to maximal eigenvalues.

The initial PP indices discussed in this chapter are the simplest possi-
ble indices for the finding of non-Normal interesting directions; however, the
method was shown to be equally valuable with Information Theory indices or
with more sophisticated indices such as an instantaneous version of Friedman’s
index [50] or Intrator’s index [90]. The important point to note, however, is
that the method may be used with any function denoting a criterion which
we wish to optimise. Long term it may be that information indices may prove
to be the most effective indices in analysing a variety of distributions: we en-
visage further research into indices which maximise mutual information [7],
which we will discuss in chapter 12, or maximise the effects of contextual
information subject to externally imposed conditions e.g. [104].

The advantage of using Projection Pursuit concepts is that they provide a
framework for understanding and integrating previous neural network models
which have tended to introduce nonlinearity in an ad hoc fashion. However,
we note that the format reviewed in this chapter required the function to
be optimised to be differentiable; this need not be the case for the general
neural network model. For example, Shapiro and Prügel-Bennet [169] have
introduced a nonlinearity – a power law – into Oja’s Subspace Algorithm but
also used a threshold below which the neuron will not fire. Since they set the
threshold to be zero, the analysis of convergence of a second–order network is
understandable in PP terms, yet the fact that the threshold may be changed
suggests a direction for future research of PP indices.

Koetsier [108] has twinned EPP networks so that a pair of networks jointly
extract common or shared higher–order structure over a pair of data sets. This
work will be discussed in Chapter 12.
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Topology Preserving Maps

This chapter introduces three negative feedback artificial neural network ar-
chitectures which perform a vector quantization. Vector quantization is used
in signal processing applications to encode a high–dimensional signal in order
to minimise processing/transmission costs. The basic aim is to associate with
each group of vectors of the raw data a code which uniquely identifies that
group. If the vectors of the group are sufficiently alike and the decoded code is
sufficiently representative of the group, then the error when the code is used
to represent a vector in the group can be made acceptably small. One further
feature of the mapping which we desire is that it should retain an accurate
representation of the topology of the data space. This is a rather complex
feature to specify absolutely accurately so we shall initially content ourselves
with a mapping in which nearby points in the data space are mapped to
the same or nearby neurons in the coding space while ensuring that nearby
neurons in the coding space are decoded to nearby points in data space.

7.1 Background

The most common type of artificial neural networks used to perform a topol-
ogy preserving vector quantization is that developed by Kohonen. In the Ko-
honen network, when a data point is presented to the network, a competition
takes place between the neurons and one neuron is declared the winner; its
weights and those of its neighbours are moved towards the input pattern’s
values while those of the other neurons are moved further away. The net re-
sult is that if the same input pattern or one similar to it is presented again,
the same neuron is most likely to win again. It has been shown that, after a
suitable training period, the neurons of the second layer form a map of the
inputs which preserves some aspect of the topology of the input data. Such
nets are known as self-organising nets as there is no teacher input to the net.
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We will develop two negative feedback networks which quantise the data
in a topology preserving manner but first we review competitive learning and
Kohonen’s algorithm.

7.1.1 Competitive Learning

The basic mechanism of simple competitive learning is to find a winning unit
and update its weights to make it more likely to win in the future should
a similar input be given to the network. We first have the activity transfer
equation

yi =
∑

j

wijxj ,∀i (7.1)

which is followed by a competition between the output neurons and then

∆wij = η(xj − wij) (7.2)

for the winning neuron i. Note that the change in weights is a function of the
difference between the weights and the input. This rule will move the weights
of the winning neuron directly towards the input. If used over a distribution,
the weights will tend to the mean value of the distribution since ∆wij →
0 ⇐⇒ wij → E(xj).

7.1.2 The Kohonen Feature Map

The interest in feature maps stems directly from their biological importance.
A feature map uses the “physical layout” of the output neurons to model
some feature of the input space. In particular, if two inputs x1 and x2 are
close together with respect to some distance measure in the input space, then
if they cause output neurons ya and yb to fire respectively, ya and yb must
be close together in some layout of the output neurons. Further, we can state
that the opposite should hold: if ya and yb are close together in the output
layer, then those inputs which cause ya and yb to fire should be close together
in the input space. When these two conditions hold, we have a feature map.
Such maps are also called topology preserving maps.

Examples of such maps in biology include

• the retinotopic map, which takes input from the retina (at the eye) and
maps it onto the visual cortex (back of the brain) in a two–dimensional
map.

• the somatosensory map, which maps our touch centres on the skin to the
somatosensory cortex.

• the tonotopic map, which maps the responses of our ears to the auditory
cortex.
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Each of these maps is believed to be determined genetically but refined
by usage. e.g. the retinotopic map is very different if one eye is excluded from
seeing during particular periods of development.

Hertz et al [73] distinguish between

• those maps which map continuous inputs from single (such as one ear)
inputs or a small number of inputs to a map in which similar inputs cause
firings on neighbouring outputs (left half of Fig. 7.1)

• with those maps which take in a broad array of inputs and map onto a
second array of outputs (right half of Fig. 7.1).

The feature
map layer

Fig. 7.1. Two types of feature maps: (a) a map from a small number of continuous
inputs; (b) a map from one layer spatially arranged to another

Kohonen’s algorithm [111] is exceedingly simple - the network is a simple
2-layer network and competition takes place between the output neurons;
however, now not only are the weights into the winning neuron updated,
but also the weights into its neighbours. Kohonen defined a neighbourhood
function f(i, i∗) of the winning neuron i∗. The neighbourhood function is a
function of the distance between i and i∗. A typical function is the difference
of Gaussians function (Figure 7.2); thus, if unit i is at point ri in the output
layer then

f(i, i∗) = a exp
(−|ri − ri∗ |2

2σ2

)
− b exp

(−|ri − ri∗ |2
2σ2

1

)
(7.3)

Notice that a winning neurons’ chums – those neurons which are “close” to
the winning neuron in the output space – are also dragged out to the input
data while neurons further away are pushed slightly in the opposite direction.

The algorithm is:

1. Select at random an input data point.
2. There is a competition among the output neurons. That neuron whose

weights are closest to the input data point wins the competition:
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Fig. 7.2. The difference of Gaussian function.

winning neuron, i∗ = arg min(‖ x − wi ‖) (7.4)

3. Now update all neurons’ weights using

∆wij = α(xj − wij) ∗ f(i, i∗) (7.5)

where

f(i, i∗) = a exp
(−|ri − ri∗ |2

2σ2

)
− b exp

(−|ri − ri∗ |2
2σ2

1

)
(7.6)

4. If not converged, go back to the start.

Kohonen typically keeps the learning rate constant for the first 1000 iter-
ations or so and then slowly decreases it to zero over the remainder of the
experiment (a simulation can take 100 000 iterations for self-organising maps).
Two–dimensional maps can be created by imagining the output neurons laid
out on a rectangular grid (we then require a two-dimensional neighbourhood
function) or sometimes a hexagonal grid.

7.2 The Classification Network

Before we introduce a negative feedback topology-preserving mapping, we
discuss the following very simple negative feedback competitive network based
on nonlinear PCA discussed in Chapter 5:

si =
N∑

j=1

wijxj (7.7)
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yi = f(si) = f

⎛
⎝ N∑

j=1

wijxj

⎞
⎠ (7.8)

ej = xj −
M∑

k=1

wkjyk (7.9)

∆wij = ηtyiej (7.10)

= ηtf

(
N∑

k=1

wikxk

){
xj −

M∑
l=1

wlj

N∑
p=1

wlpxp

}
(7.11)

We noted that Karhunen and Joutsensalo [101] (in the context of feedforward
networks) have shown that (7.11) is an approximation to the rule required to
minimise the residuals at the inputs after the negative feedback is returned.

We will use the network described above to classify by using a function
f() defined by

f(si) = 1 if i = arg max
j

sj (7.12)

f(si) = 0 otherwise. (7.13)

Therefore we have an extremely simple network, which nevertheless will be
shown to be capable of hierarchical classification. Clearly the learning rule is
now equivalent to ∆wij = η(xj − wij), the standard competive learning rule
for the winning neuron, so that

∆wij → 0 ⇐⇒ wij → Ei(x) (7.14)

where Ei(x) is the average x for which neuron i is firing. Thus we can see that
the weights will converge to the mean of the data to which the weight responds.
Further, we can show that this network is stable, requiring no renormalisation
or otherwise bounding of the network weights. As usual the–winner–take–all
network can be modeled as a lateral inhibition network (c.f. Chapter 4) of the
form used for the PCA network.

However, the most important property of this network is its ability to per-
form hierarchical decomposition of classification. Since the neuron’s weights
are converging to the mean of the distribution to which it is responding and
subtracting this mean what remains is the difference between the mean and the
distribution to which it is responding. This allows subsequent neurons which
use exactly the same network learning to converge to subpatterns within the
data.

7.2.1 Results

We describe an experiment using the network on artificial data. The data
which we use is two dimensional and is shown diagrammatically in Fig. 7.3;
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it comprises randomly chosen points from one of five equally probable two
dimensional distributions. The distributions have centres (2,2), (2,−2), (−2,2),
(−2,−2) and (−3,−3). The horizontal and vertical distances of individual
samples from their respective distribution centres are independent and are
drawn from a Gaussian distribution of standard deviation 1.

We use an initial network with two inputs – the x and y coordinates – and
10 outputs. Since we only have five classes, this gives us far more power than
we need; however, we wish to simulate the situation in which the number of
clusters is not known a priori. This task comprises for the network a simple
problem – differentiating between the data clusters in the four quadrants –
and a more difficult problem – that of differentiating between the two clusters
in the 3rd (all negative) quadrant.

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

1000 samples of the input distribution

Fig. 7.3. The diagram represents the input data schematically: the
data was taken from five independent Gaussian distributions with centres
(2,2),(2,−2),(−2,2),(−2,−2) and (−3,−3), each distribution having a standard de-
viation of 1.

The weights for each neuron after convergence and its number of successes
thereafter on 10 000 trials are shown in Table 7.1. These weights were learned
in 1000 presentations of the input data (i.e. the network saw approximately
200 samples from each distribution); we have, however, trained the network
on 200 000 iterations and found that the weights are stable at these points.
The learning rate is annealed from 1 to 0 during the experiment.

Notice that during learning, neuron 9 has clearly been competing for the
stewardship of the (x1 > 0, x2 > 0) quadrant but has lost out to neuron 6. It
is easy in such cases to monitor the success of such a neuron and delete it on
testing the rate of success after learning.
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Table 7.1. The filters to which the weights of the output neurons converged and
the number of successes in 10 000 trials (after convergence).

Neuron 1 2 3 4 5 6 7 8 9 10

x1-weight 0.00 -2.44 0.00 2.11 0.00 1.94 -1.86 0.00 1.60 0.00
x2-weight 0.00 -2.47 0.00 -1.98 0.00 1.85 2.16 0.00 0.81 0.00
Successes 0 3992 0 2006 0 2043 1959 0 0 0

Clearly the network is very adept at differentiating between four groups,
but, unsurprisingly, the two groups in the (x1 < 0, x2 < 0) quadrant are
treated as one.

Now the negative feedback network is not only finding the centres of each
group, it is also subtracting out these centres because of the negative feedback.
We can use this fact in finding subclasses of the sets which our network has
already found by continuing the simulation with a second layer of output
neurons which will learn on the distribution remaining after the first layer of
output neurons has subtracted their activations. We could, in this situation,
perform a top-down dichotomy of the data by creating layers containing only
two output neurons each.

7.2.2 Stochastic Neurons

A network with similar properties can be created using stochastic neurons. We
define a winner–take–all network using a roulette-wheel selection procedure:
each neuron’s probaility of firing is dependent on the sum of its weighted
inputs by

P (neuronj fires) =
exp (sj)∑
k exp (sk)

(7.15)

where initially the weights are small (≈ 10−5) random numbers. Experiments
have confirmed that this network also self-organises in a manner identical to
that above to find increasingly refined hierarchies.

7.3 The Scale Invariant Map

We now extend this network to enable it to perform feature mapping by
a method similar to that used by Kohonen to change simple competitive
networks to feature maps.

Thus, in the learning rule above, we change not only the winning neuron’s
weights but also the weights of those neurons closest to it. We use a Gaussian
mask1 to model a differential effect: the weights of those closest to the winning
1 A difference of Gaussian gives the Mexican hat field but was found to be unnec-

essary in this simulation and indeed more difficult to stabilise.
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neuron are updated most highly. We decrease the diameter of the Gaussian
during the simulation run. This, as usual [111], focuses the activation on a
narrow set of neurons.

Consider a network with N dimensional input data and having M output
neurons. Then the activation of the ith output neuron is given by

yi =
N∑

j=1

wijxj (7.16)

Now we invoke a competition between the output neurons. We will investigate
networks using one of two possible criteria:

Type A: The neuron with greatest activation wins:

winner = arg max
i

yi (7.17)

Type B: The neuron closest to the input vector wins:

winner = arg min
i

||x − wi|| (7.18)

In both cases, the winning neuron, the pth, is deemed to be maximally firing
(=1) and all other output neurons are suppressed. Its firing is then fed back
through the same weights to the input neurons as inhibition,

ej = xj − wpj .1 for all j (7.19)

where p is the winning neuron. Now the winning neuron excites those neu-
rons close to it i.e. we have a neighbourhood function Λ(p, j) which satisfies
Λ(p, j) ≤ Λ(p, k) for all j, k :‖ p − j ‖≥‖ p − k ‖ where ‖ . ‖ is the Euclidean
norm. In the simulations described in this chapter, we use a Gaussian whose
radius is decreased during the course of the simulation. Then simple Hebbian
learning gives

∆wij = ηtΛ(p, i).ej (7.20)
= ηtΛ(p, i).(xj − wpj) (7.21)

For the pth winning neuron, the network is performing simple competitive
learning but note the direct effect the pth output neuron’s weight has on the
learning of other neurons.

7.3.1 An Example

To illustrate convergence we use, as input data, a two–dimensional vector
drawn randomly from the square {(x, y) : −1 < x ≤ 1,−1 < y ≤ 1}. With
the rules used above we get results such as those shown in Fig. 7.4. The 25
output neurons’ weights have organised in such a way that similar (and only
similar) input values are mapped onto similar output neurons which is the
usual definition of topographic mappings (e.g. [111]). The scale-invariance of
the resultant mapping can be seen most clearly in Fig. 7.6 in which we have
shown the points which were mapped onto three specific output neurons.
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Fig. 7.4. The converged weights from the feature mapping network when the input
data is drawn from {(x, y) : −1 < x ≤ 1,−1 < y ≤ 1}.

7.3.2 Comparison with Kohonen Feature Maps

It is well known (e.g. [111]) that, given similar input data to that used above, a
one-dimensional Self-Organising Map (SOM) will self-organise to spread itself
over the square to minimise the expected distance between the code points and
the points of the square. We have called the current mapping a scale-invariant
feature map since it ignores the magnitude of each input vector and responds
solely to the relative proportion of the magnitude of the elements of the input
vectors. The Kohonen feature map may be criticised on grounds of biological
implausibility in that a single neuron takes responsibility for representing a
set of inputs (the “grandmother” cell). However, if we increase the learning
rate with the Scale Invariant feature map, an interesting effect comes into
play: the mapping winds round upon itself so that each outer neuron (which
is currently winning competitions) is backed up by a set of support neurons.
The results of such an experiment are shown in Fig. 7.5.

The network learning rules can be extended to use a higher–dimensional
neighbourhood function, though in dimensions higher than two, the resulting
map is difficult to view. We have found that higher dimensional maps are more
prone to twists such as those well known in the Kohonen SOM [73]. Such twists
can take a very long time to untwist. Kohonen’s strategy of beginning with a
wide neighbourhood function and decreasing its width gradually is the most
successful with this problem.

7.3.3 Discussion

As with the Kohonen SOM ([111], page VII), a full analysis of the current
mapping is remarkably difficult. Our discussion here is descriptive rather than
fully analytical.
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Fig. 7.5. The results when the learning rate is increased 100–fold. Notice that
those weights which continue to occupy space within the outer ring of neurons, do
not win any competitions. They can be thought of as backups for those neurons
which are winning competitions: if one of the winners should fail, there exists a
substitute which will step into its shoes.
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Fig. 7.6. Some points showing the winning areas for specific neurons in 10 000 trials
of the fast learning network.



7.3 The Scale Invariant Map 147

Consider an input distribution which is spherically symmetric and let us
use a very simple (though still symmetric) mask in which the neighbourhood
function in the weight update rule is given by

G(i1) = 1 where i1 is the winning neuron
G(i1 + 1) = G(i1 − 1) = g, for some g >0

G(j) = 0, when j 	= i1 − 1, i1, i1 + 1.

Consider three consecutively numbered neurons labelled A,B and C.
Now when neuron A wins the competition, neuron B’s weights will also

be changed according to:

∆wB = ηt.g.(x − wA) (7.22)

Note the crucial difference here between this form of learning and the usual
competitive learning rules: here B’s weights are being directly affected by the
centre of gravity of the inputs to the winning neuron next to B. Thus, if the
process is to converge,∑

x∈SetA

g.(x − wA) +
∑

x∈SetB

(x − wB) +
∑

x∈SetC

g.(x − wC) = 0 (7.23)

where SetL is the set of points sampled in sector L and wL is the weight
vector of the neuron winning in sector L, L = A,B, C. If we are drawing
points randomly from the data set the limit of the above as the number of
points tends to infinity is∫

SetA

g(x − wA)p(SetA)dx +
∫

SetB

(x − wB)p(SetB)dx

+
∫

SetC

g(x − wC)p(SetC)dx = 0

where p(SetL) is the probability that a point drawn at random from the input
distribution will be in sector L. A solution of this equation is the set of weights
which converge to the centre of gravity of each sector where each sector is of
equal probability (i.e. of equal angular spread) in each dimension. In this case
the mapping created is a maximum entropy mapping. It should be noted that
while this is found empirically to be true when the learning rate is small, a
high learning rate (Fig. 7.6) disrupts this feature.

Notice also that, while individual input data points within slice A may
have the effect of moving B’s weights away from A, the mean effect of A’s
points on the weights into B will be to move them towards A’s centre. Points
in sector C will be having the opposite effect: if slices A and C are of equal
width on either side of B, the effect of each will cancel out the other.



148 Hebbian Learning and Negative Feedback Networks

7.3.4 Self-Organisation on Voice Data

We illustrate the converged mapping of the Scale Invariant network on speech
data. Typically such networks are trained on data which has been preprocessed
by, for example, Fourier transforming the data to the frequency domain and
often using the more computationally expensive cepstral coefficients (see e.g.
[111]). We, however, wish to test the nework by using as crude voice data as
possible as inputs.

The input data to the network then is raw voice data sampled at 8 kHz
and subjected to no preprocessing. The network has been tested with 20, 32,
64 and 128 inputs where e.g. 64 inputs represents 64 consecutive inputs from
the data stream (equal to 8 ms of data). Each presentation of the data consists
of a randomly chosen starting point and the following 63 consecutive inputs.
The results have been qualitatively similar for each size of network. We use
25 output neurons with a one–dimensional neighbourhood function and the
maximum activation criterion to identify the winning neuron. Consider first
one network which is trained on 8 speakers saying the word “far”. The trained
weights are shown in Fig. 7.7. The top diagram shows the weights into the
first three neurons: we can see that:

• the neurons are extracting the frequency information from the input data
• the weights into the first neuron differ very little from those into the second

and this in turn differs very slightly from those into the third neuron. This
is a prerequisite for any network which is claiming to retain neighbourhood
relations.

The second half of the diagram shows the weights into three neurons which
are not neighbours. Clearly each neuron is extracting the same frequency
information from the raw data but has learned to respond to different phases
of this data. A full diagram with all 25 output neurons would show a complete
coverage of all phases at this frequency.

7.3.5 Vowel Classification

In Fig. 7.8, we show the weights from converged networks which have been
trained on different vowel sounds – “far”, “pit” and “put”. The fact that these
are very different can be used to classify vowel sounds into their respective
classes.

We now propose a network which will identify any vowel from its raw data
samples. We use a network such as shown in Fig. 7.9. During the learning
phase, each set of output neurons (Net A, Net B, ...) is trained on a different
set of vowel data. Each learns the frequency information associated with that
vowel, and individual neurons within that set will respond maximally at any
particular time depending on the correspondence between the phase of the
signal and the weights into the neuron. However during the vowel identification
phase the network is fully connected – each input is connected to all output
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Fig. 7.7. Top diagram: the weights of the first three neurons trained on the vowel
sound of “far”. Bottom diagram: the weights of the first, eleventh and twenty first
neurons on the same data.

neurons in all networks, Net A, Net B, .... When any vowel is presented to the
network, the vowel can be identified by noting which of the output networks
responds optimally since there is a ripple of activation across that network as
particular neurons respond maximally to the particular phase of the inputs.
Such a coherent ripple cannot be seen in the other output nets.

7.4 The Subspace Map

Recognition of patterns subject to transformations such as translation, ro-
tation and scaling has been a difficult problem in artificial perception. The
projection of objects on the retina is variable in position, size, orientation,
luminance, etc., yet we are still able to recognise objects with great ease, re-
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Fig. 7.8. A comparison of network weights when three different vowels are used
for input data.
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Fig. 7.9. Each group of output neurons comprises a single network trained on
examples of a single vowel. Each output neuron responds maximally to a single type
of input data.
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gardless of such variations. A neural network solution to this problem has been
proposed by Kohonen et al. [111] called the Adaptive Subspace Self-Organising
Map (ASSOM). The motivation for the ASSOM is that if different samples
can be derived from each other by means of a linear transformation, then
they span a common linear subspace of the input space and projecting them
onto this subspace can then filter out their differences. Using common linear
subspaces as filters also motivates the method presented in this Section.

By constructing a SOM where each module defines a subspace, we can
observe the organisation of clusters of different subspaces that each provides
a different invariant filter. The neighbourhood relations in the map cause
neighbouring modules to represent similar subspaces.

The map consists of an array of modules, normally in one or two dimen-
sions, although higher-dimensional maps may be used. Each module of the
map consists of the same arbitrary number of nodes which defines the dimen-
sionality of the subspace represented by the module and a single output which
is a quadratic function of the outputs of these nodes. (See Fig. 7.10).

Within each module, weights are updated using the Subspace Algorithm
(either Oja’s feedforward version (Chapter 2) or the negative feedback imple-
mentation (Chapter 3)), and each module learns the principal subspace of a
subset of the data set. All of the nodes capture a local linear subspace but,
collectively, they represent a nonlinear manifold. There is also a single output
for each module which is quadratic sum of the activations of other nodes. The
learning process requires the use of “episodes” of inputs, meaning that input
vectors are presented to the network in batches and the weights are updated
after a complete batch of inputs have been fed forward.

7.4.1 Summary of the Training Algorithm

The orthogonal projection of an input vector x, onto a subspace L(i) gives a
projection x̂(i) and a residual x̃(i) where x = x̂(i) + x̃(i). Therefore, when data
is fed forward in the network, each module, i, encodes the data as a vector
y(i) which is a lower–dimensional representation of the projected vector x̂(i).
In order to select a module whose subspace most closely approximates a local
part of the data set, it is necessary to consider several data points, and this
leads to the use of episodes of data.

An episode S consists of a set of consecutive time instants and the set of
inputs x(tp) is taken from these sampling instants tp ∈ S. These vectors are
projected onto the subspaces represented by the modules. For each episode of
inputs, a representative winning node, cr, is chosen and this is held constant
for the duration of the episode. Since each node of the map represents a
subspace L(i) of the input space, the selection of the winning module, cr, can
be based on how closely the orientation of its subspace L(c) approximates the
orientation of the data in the episode. The representative winner is chosen
to be the module with the maximum squared projections (7.24) which is
equivalent to minimising the residuals since ‖x‖2 = ‖x̃‖2 + ‖x̂‖2:
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Fig. 7.10. The Subspace Map. Each module of the map (enclosed in dotted boxes)
performs principal component analysis on a subset of data from the training set.
There is also a single quadratic output in each module that is activated by the sum
of squared outputs of the PCA nodes.

cr = arg max
i

⎧⎨
⎩

∑
tp∈S

‖ x̂(i)(tp) ‖2

⎫⎬
⎭ (7.24)

If the input space and subspaces have N and M dimensions, respectively, then
an orthogonal projection onto a subspace gives a vector y of dimensionality M .
The jth output of L(i) is denoted by y

(i)
j and is calculated by a weighted sum

of its inputs (7.25). The activation of the quadratic output is then calculated
by (7.26):

y
(i)
j =

N∑
k=1

w
(i)
kj xk (7.25)

Q(i) =
∑

j

= 1My
(i)2

j (7.26)

The weights of the winning module and its neighbouring modules are then
updated using the Subspace Algorithm (7.27) with a radially decaying neigh-
bourhood function to ensure that nodes that are close to the winner will be
trained with a higher learning rate than those further away. The neighbour-
hood of a winning module is the set N (cr ) of modules whose weights are
updated. This set may include every module in the map; however, significant
savings in computing time can be achieved if a threshold is added to the
neighbourhood function such that modules are changed only if they are close
to the winner. Those that are further away will have very low learning rates
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due to the neighbourhood function and it is acceptable to exclude them from
training:

∆w
(i)
jk = hci(t)α(t)

(
xky

(i)
j − y

(i)
j

∑
l

w
(i)
kl y

(i)
l

)
(7.27)

Therefore, for every module, i ∈ N (cr ), the weights are updated to shift to-
wards a principal subspace of x(tp ∈ S). This shift most strongly affects the
winning module and the neighbourhood function determines the effect on
its neighbouring modules. Competitive learning ensures that each module is
trained on a subset of the training data and therefore, the weight vectors of
each module form a principal subspace of a different class of input patterns
(local PCA).

The neighbourhood function that we used hci(t) is a Gaussian or difference
of Gaussians (Mexican hat) with a width that is decreased in time; however,
there are other neighbourhood functions that may be equally suitable. This
function may be used with a narrowing threshold so that the number of mod-
ules in the neighbourhood of the winner, N (cr) is reduced.

7.4.2 Training and Results

We discuss two examples of using the map to create filters on data which may
be of biological significance – sound data and artificial video data emulating
moving objects.

Formation of Wavelet Filters from Raw Sound Data

The network was trained on raw speech data and formation of a mapping
was observed that extracted phase and frequency information from voiced
phonemes. In the experiments of Kohonen et al. [111], the ASSOM was used
to generate wavelet filters from raw speech data and we now show that the
subspace map presented will also form filters that are phase invariant.

To demonstrate the behaviour of this network, it has been trained on
artificial sound data containing a range of frequencies between 200 Hz and
10000 Hz. This data was high-pass filtered by taking the differences between
successive samples. The training vector, consisted of 64 consecutive samples
of sound recorded at 8kHz giving an input window duration of 8.75 ms. The
one-dimensional map consisted of 24 modules, each of which had a subspace
dimensionality of two. Eight sets of inputs that were adjacent in time formed
a single episode. Representative winners were selected using the maximum
energy criterion.

Each input window was multiplied by a Gaussian weighting function with
a full width half maximum, FWHM(t), of eight samples and this was increased
to 20 during training. The initial learning rate was 0.008 and was reduced by
0.0005 after every 20 episodes.



154 Hebbian Learning and Negative Feedback Networks

Fig. 7.11 shows the weights of the converged map after 300 training
episodes. At one end of the map the low frequencies have been learned and
there is a smooth progression to the high frequencies at the opposite end,
therefore the frequency of an input pattern corresponds to the position of the
winning module. Each module has orthonormal basis vectors as a result of the
principal subspace learning algorithm. Since the vectors are always orthogo-
nal to the vectors, one can be considered to be a sine wavelet and the other a
cosine wavelet. Sinusoidal oscillation is therefore eliminated from the square
of the wavelet amplitude transform (A),

A2 = F 2
c (t, ω) + F 2

s (t, ω) (7.28)

and the organised subspaces are therefore approximately invariant to time
shifts. When using the ASSOM, this property has to be forced by periodically
re-orthonormalising the vectors.

Fig. 7.11. The weights of the converged subspace map trained on sound data.
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Invariant Image Filters

The network was trained on the bars data set (Chapter 5) but with two
differences:

1. There is only a single bar in each image.
2. Eight different bar orientations were used (oriented at regular intervals

between 0 and 7π
8 radians from the vertical orientation.) In each episode,

the orientation of the bar was held constant while its position was varied.
A Gaussian weighting function was used at the inputs with a full width
half maximum (FWHM) of sixteen pixels. This was to ensure that the
orientation filters were centred on the sampling lattice.

A trained map is shown in Fig. 7.12. The diagram shows that each weight
vector has positive and negative values in areas close to the centre of the sam-
pling lattice and that weights of similar magnitudes are arranged along one
direction. Pairs of weight vectors in the same module share the same direc-
tion. It is interesting to note that these vectors look similar to Gabor–type
wavelets since they are localised and they exhibit orientation preferences. The
Subspace Algorithm guarantees that trained weight vectors are orthogonal
and therefore, within each module, the subspaces defined by the orthogonal
Gabor–type wavelet pairs eliminate sinusoidal oscillations and are approxi-
mately invariant to translations. This is further discussed in the following
section.

It is also important to point out that modules that are close together in
the map have captured similar orientations and therefore the map has been
smoothly ordered by the training process.

After training, the network was tested on the same data used for training
but using only a single image in each feed-forward operation i.e. without
using episodes of input vectors. The node with the highest activation in the
quadratic output node was then selected as the winner (7.29) and the position
of this node in the map shows the detected orientation of the bar in the inputs:

cr = arg max
i

Q(i) = arg max
i

⎧⎨
⎩
∑

j

y
(i)2

j

⎫⎬
⎭ (7.29)

Fig. 7.13 shows the results from orientation selection using the trained
network. In this example, the same module has the highest activation for ev-
ery bar with the exception of two. These two correspond to lines that are far
from the centre of the filter and reliability of the classification is therefore
lower. (See Section 7.4.3.) No module has been activated significantly more
than any other for these bars and they can be regarded as unclassified data
rather than misclassified. The other bars clearly activated one group of mod-
ules significantly more than others and their orientations have therefore been
successfully classified.
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Fig. 7.12. The weights of a trained map. White pixels indicate positive weights
and black pixels indicate negative. The weight vectors within each module show the
same orientation and neighbouring modules have similar orientations. The vectors
showing the sum of squared weights are approximately Gaussian and this confirms
that the sinusoidal oscillations in the individual weight vectors can be eliminated
(see Section 7.4.3).

Fig. 7.13. Module activations plotted against the module number for several bars
with the same orientation but with different positions. The winning module is in
position 19 for every bar position except the outermost two.
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7.4.3 Discussion

Assuming that the trained weight matrices are close approximations to or-
thogonal wavelet pairs, then we can simplify the analysis by considering one-
dimensional cosine and sine wavelets respectively defined by:

ψc(t, ω) = e−
ω2t2

2σ2 cos(ωt), ψs(t, ω) = e−
ω2t2

2σ2 sin(ωt) (7.30)

where t is time, ω is the angular frequency and σ is the variance of the Gaussian
weighting component. An input signal, x, is used and the output, Q, is given
by :

Q =
∑

i

(xiψc(i, ω))2 + (xiψs(i, ω))2 (7.31)

=
∑

i

(
xie

−ω2i2

2σ2 cos(ωi)
)2

+
(
xie

−ω2i2

2σ2 sin(ωi)
)2

(7.32)

=
∑

i

x2
i e

−ω2i2

σ2
(
sin2(ωi) + cos2(ωi)

)
(7.33)

=
∑

i

x2
i e

−ω2i2

σ2 (7.34)

Therefore, sinusoidal oscillations are eliminated from (7.33) leaving only the
Gaussian component, and the subspace defined by the orthogonal wavelets
gives time–shift invariance. In the case of two dimensional complex Gabor
wavelets, using x and y in place of the time variable t, Q is given by:

Q =
∑

x

∑
y

e−
ω2(x2+y2)

σ2 (7.35)

Consider a bar in the input data to be a plane, v, perpendicular to the x − y
plane with orientation θ1. When this plane coincides with a Gabor function
with orientation θ2, the result is a curve. The integral of this curve indicates
the difference between the orientations of the plane and the Gabor filter. This
is effectively the same as calculating the weighted sum of an input vector
where the input is a straight line in visual data and the weight matrix is
similar to a complex Gabor function. The integral is described by (7.36):∫

e
−ω2v2

2σ2 cos(v sin(θ1 − θ2))dv (7.36)

This integral is always at its highest absolute value when θ1 = θ2. For straight
lines with orientation θ2, some positions may give a zero value for the integral
in (7.36) since the wavelet amplitude can be zero along that line. However,
an orthogonal wavelet will coincide with a maximum absolute value along the
same straight line and the sum of squares of these products eliminates any
sinusoidal oscillations, as previously explained. Therefore, a pair of orthogo-
nal Gabor wavelet filters will give the highest response to straight lines with
orientation similar to that of the wavelet, regardless of the line position.
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7.5 The Negative Feedback Coding Network

The various algorithms describing learning within the negative feedback net-
work in previous chapters have been shown to extract the maximum informa-
tion from sets of stochastic data. The next obvious question is to decide what
a network should do with such information when it has been extracted. Some
form of coding would be helpful in classifying such data.

The negative feedback coding network was developed in appreciation of
the way in which Carlson [21] amended the basic network of Rubner and
Schulten [158], a PCA network, in order to create a coding network.

While we have wished to emulate his success, we have the continuing design
ethos based on the retention of as many of the attractive features of the
basic negative feedback network as possible – those of simplicity, homogeneity,
locality of information use and parallelism.

Our aim is to create a network which will take a set of raw data and
code it so that different sections of the data are coded differently and such
that data which have the greatest similarity are most alike in codes i.e. a
topology-preserving network. A binary code is easiest to implement with a
simple threshold. Since we require several bits for each codeword, we suggest
that each input be connected to a set of coding output neurons. Raw data
at the x input is converted to a binary coded vector y at the coding output
neurons. There is only one major difference between this network and those
investigated previously: each output neuron has a threshold above which its
weighted inputs must sum in order to force a positive firing; if the threshold
is not reached, the negative feedback will have a negative activation. For
simplicity in exposition, we will consider only a scalar input, x. In detail the
algorithm is:

• Set the residual at time 0 to be equal to the input, i.e. e(0) = x.
• For each output neuron,

1. Calculate wie(i) and set

yi = 1 if wie > 0
= −1 if wie < 0

2. Calculate the new residual

e(i + 1) = e(i) − viyi

3. Update weights wi and vi according to the same rule as previously, i.e.
a simple Hebbian learning rule.

wi = wi + ηeyi

vi = vi + ηeyi

Note that the yi values are either 1 or −1; changing the weights is the sole
method of learning in the system to ensure that appropriate codes are found.
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Each output neuron, in turn, receives a weighted sum (in this case of only 1)
of the e values; however, each output neuron has a threshold above which its
activation will have a positive value and below which the activation will be
negative. We choose the threshold for all output neurons to be 0.

We wish to emphasise that we have not programmed a threshold nor any
specific function which monitors the variance of the data and adjusts the net-
work’s response appropriately. We have retained an extremely simple network
with only a single modification to the previous network.

7.5.1 Results

A typical set of results is shown in Table 7.2. These results are for a 6–
output–neuron network which is learning from a set of x–values generated
from a uniform distribution2 between 2 and 4. The network used a learning
rate of 0.01 and ran for 10 000 iterations.

Table 7.2. A section of coding for vectors produced by a 1–input 6–output neuron
network for input data from a uniform distribution between 2 and 4. Learning rate
= 0.01, number of trials = 10 000. We have replaced −1 with 0 to highlight the
binary nature of the code.

Decimal Decimal

2.0 1 0 0 0 0 0 3.0 1 0 1 1 1 1
2.1 1 0 0 0 0 1 3.1 1 1 0 0 0 1
2.2 1 0 0 0 1 1 3.2 1 1 0 0 1 1
2.3 1 0 0 1 0 0 3.3 1 1 0 1 0 0
2.4 1 0 0 1 1 0 3.4 1 1 0 1 1 0
2.5 1 0 1 0 0 0 3.5 1 1 0 1 1 1
2.6 1 0 1 0 0 1 3.6 1 1 1 0 0 1
2.7 1 0 1 0 1 1 3.7 1 1 1 0 1 0
2.8 1 0 1 1 0 0 3.8 1 1 1 1 0 0
2.9 1 0 1 1 1 0 3.9 1 1 1 1 1 0

Table 7.3. The weights which the above network learned using only simple Hebbian
learning

output neuron 1 2 3 4 5 6

Weight (w) 3.005 0.505 0.254 0.123 0.063 0.031

Several points are worth noting:

• First the coding seems fairly inefficient in that the first figure is always 1.
This is due to our insistence that all means are zero. Thus the first code
element is always 1 for inputs > 0 (see Section 7.5.2).

2 We use a uniform distribution here to make it clear why each weight has converged
to the actual value to which it has converged.
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• If we wish a code where the first output neuron performs maximum dis-
crimination, (i.e. in the above example, all inputs less than 3 would be
coded as −1, all inputs > 3 would be coded as +1) we would use a thresh-
old which will also learn; a rule such as

θj = θj + αyj

where θj is the threshold for the jth output neuron is an entirely local rule
and easy to implement; however, in keeping with our design philosophy of
maintaining simplicity, we have not implemented that here.

• The code is topology preserving – similar inputs have similar outputs (see
Section 7.5.4).

• Experiments have shown that larger networks have no difficulty in provid-
ing more detailed codes and require only a slight increase in time as each
element of the coding is done on the error remaining after the previous
output neurons have performed their coding.

• A topological feature map using the negative feedback network has one
major advantage over e.g. a Kohonen feature map: it can easily be re-
implemented to show a hierarchy of subfeatures (see Section 7.5.6) by
adding a new level of coding output neuron.

• Lower–valued digits are automatically coded more slowly and hence are
less prone to an unusual input, an outlier, creating large changes.

7.5.2 Statistics and Weights

We will investigate what the weights are actually learning by considering their
values at convergence. In general, we are using simple Hebbian learning, so

∆wi = ηe(i)yi

where the subscript denote the ith output neuron and e(i) denotes the value
of e at time i. The proof that vi = wi is similar to that shown in Chapter
3 and will not be repeated here. We investigate two interesting cases before
looking at the general case:

1. A zero mean symmetric distribution.
• Consider w1, the weight to the first output neuron. Then,

∆w1 = ηe(1)y1

= η(x − w1y1)y1

= η(xy1 − w1) (7.37)

since y2
1 = 1. So at convergence

E(∆w1) = 0 ⇐⇒ E(w1) = E(xy1) (7.38)
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With a zero mean symmetric distribution, y1 = −1 when x is negative
and y1 = +1 when x is positive; therefore y1x = |x| and so

w1 = |x|
at convergence i.e. wi converges to the expected value of the absolute
value of the input data, i.e. the mean absolute value. This has the effect
of mapping the two halves of the distribution to a tighter (bipolar)
distribution which is mostly contained within the interval [−|x|, |x|].

2. A positive, compact distribution.
By compact, we mean a distribution which contains no holes.
• Consider w1; as before, we can show that, at convergence,

E(∆w1) = 0 ⇐⇒ E(w1) = E(xy1) (7.39)

With this distribution, y1 = +1 for all input values of x. So

w1 = x

i.e. the mean value of the input data
• Now consider w2, the weight to the second output neuron. Then,

∆w2 = ηe(2)y2

= η(e(1) − w2y2)y2

= η(e(1)y2 − w2) (7.40)

since y2
2 = 1. But

e(1) = x − w1y1

= x − x

Now if x > x, i.e. x > w1, then y2 = 1 while if x < x, i.e. x < w1, then
y2 = −1 Thus w2 at convergence equals |x − x|. Therefore, at conver-
gence, w2 is bisecting the residual area of the distribution after w1 has
subtracted out the mean. So w2 for this distribution is performing the
task which w1 performed for the symmetric distribution.

3. In general, for values of x drawn from any distribution

∆wi = ηe(i)yi

= η(e(i − 1) − wiyi)yi

= η(e(i − 1)yi − wi)
Therefore, wi → E(e(i − 1)yi) at convergence

and if e(i − 1) > 0 then yi = 1
while if e(i − 1) < 0 then yi = −1.
Therefore, at convergence, wi = |e(i − 1)|
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In general, the y values correspond to the coding taking place while the e
values represent the error after the coding has taken place.

The coding of a uniform distribution is shown in Figure 7.2. We use a
uniform distribution this time to make it easy to corroborate that the network
is performing an efficient coding; note from Table 7.3 that w1 = |x| = x and
w2 = |x − x|, etc..

7.5.3 Reconstruction Error

We show that, if we use the vectors produced by this method to reconstruct
the original vectors, we can make the expected absolute reconstruction error
from a final code (sometimes called the mean quantization error) arbitrarily
small by simply adding new coding output neurons. We will devote a chapter
(Chapter 8) to discussing optimising the learning rules of the negative feedback
network with respect to the probability density functions of reconstruction
errors or residuals. Let us assume that we cannot i.e that there exists an ε > 0
such that all mean absolute reconstruction errors are greater than ε. We note
from the above that this is equivalent to showing that the value of wi > ε for
all i.

Note that for a finite distribution, the maximum possible error after the
first coding is

EMax = max(|xMax − |x||, |xMin − |x||, |x|)
where xMax, xMin is the largest (resp. smallest) possible member of the dis-
tribution. Thus EMax is finite.

Consider a particular input x. From the results in the last section, because
the system is creating the coding at y and subtracting the weighted coding
at e, the value e(i) is simply the error between the code found by the first
i coding output neurons and the input x after i codings have taken place.
Therefore |e(i)| is the mean absolute error after i codings of the input. Now,

e(i) = e(i − 1) − wiyi

= e(i − 1) − |e(i − 1)|yi

If e(i − 1) < 0, yi = −1 and

e(i) = e(i − 1) + |e(i − 1)|
= −|e(i − 1)| + |e(i − 1)|

while if e(i − 1) > 0, yi = +1 and

e(i) = e(i − 1) − |e(i − 1)|
= |e(i − 1)| − |e(i − 1)|

Therefore the amplitude of e(i) is the difference between the absolute value
of e(i − 1) and the mean absolute value of e(i − 1).
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Thus

|e(i)| = |{|e(i − 1)| − |e(i − 1)|}|
= |{|e(i − 1)| − wi}|
< ||e(i − 1)| − ε|

since all terms are positive. Therefore the absolute error at each stage is
decreasing by more than ε. Therefore the mean absolute error is also decreasing
by at least ε at each stage. Now the initial maximum error is EMax which is
finite and the absolute error is decreasing by a finite amount each time and
so cannot remain above ε for all time.

Therefore, we can make the quantization error arbitrarily small by contin-
uing the coding for a sufficient number of output neurons.

7.5.4 Topology Preservation

In stating that we have a topology preserving coding, we mean that similar
inputs should be projected onto similar outputs and similar outputs should
be the representations of similar inputs. This is only approximately true, in
general, of feature maps using neural nets e.g. a Kohonen [110] map attempts
to project the input space onto a network in such a way that the most essential
neighbourhood relationships between data in the input space are preserved.
Yet input data can be constructed which do not permit a 2-D (or 3-D) mapping
to adequately represent all topological equivalences in the data. We give an
intuitive notion of topology preservation here; a more formal proof is given in
the next section.

Consider an n-unit coding of a set of input values. Let a particular point
x be represented by yi where yi = {yi1, yi2, ..., yin}. The subscript i denotes
an ordering of the y values (i.e. of the coding) such that yi < yj for all i < j.

Then any input x + ∆x is represented by the vector yi or by yi−1 or yi+1

for all ∆x such that |∆x| < wn, the nth weight. i.e. similar inputs are repre-
sented by similar outputs.

Now consider two distinct input values, x and u, which are represented by
the same yj . Then

x =
n∑

i=1

wiyji + ∆x

u =
n∑

i=1

wiyji + ∆u

where ∆x and ∆u are the errors in the representations after the first n codings
have taken place. Therefore,

x − u = ∆x − ∆u

≤ 2wn
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From the previous section, we know that the value of wn can be made ar-
bitrarily small and so a single code can be made to represent only similar
values. Clearly a similar argument will show that if the values, x and u, are
represented by contiguous codes, the values x and u can only be at most 3wn

apart. Thus, similar codes represent similar values.

7.5.5 Approximate Topological Equivalence

We will use the results from Section 7.5.3 in this proof: recall that for every
ε > 0, there exists an n such that wn < ε.

Let M be the metric space defined by that (sub)set of the real numbers
defined by the probability distribution of the raw data and the metric, d,
defined by the usual Euclidean distance metric.

Let M1 be the metric space defined by the set of codes (of the real numbers
in M) and the metric, d1, defined by the usual Euclidean distance metric (now
calculating in binary).

It is not possible to prove that there is a topology-preserving function
which maps M to a particular value of M1; however, it is possible to prove
that there exists a mapping from the set M to a member of the family
{M1

1 , M2
1 ,M3

1 , ..., Mn
1 , ...} where Mn

1 is the coding which has length n (i.e.
formed by using n coding output neurons). In other words, we can make our
mapping as close to a topology preserving mapping as possible by choosing n
appropriately.

We shall create an ordering, {Ci} of the codes in Mn
1 based on the size

of their binary values. Thus Ci < Cj for i < j. Note that for this coding on
Mn

1 , if f(x) is the function which codes the inputs i.e. f : M → M1, then
f−1(Ci) − f−1(Ci−1) = wn, the weight of the nth level of the coding. Note
also that the greatest distance between values coded by the same code is also
wn.

• First consider the mapping f : M → M1.
Then take any point c ∈ M . ∀ε > 0, we require to prove that ∃ a δ > 0
such that

d1(f(c), f(x)) < ε

∀x ∈ M : d(c, x) < δ. Choose the coding Mn
1 such that wn < 1

2ε. Let
δ = wn. Let f map c to class Ci, the ith class of Mn

1 . Then for all x such
that d(c, x) < δ = wn, f(x) is either in class Ci or in one of its neighbours
Ci−1 or Ci+1. So f(x) is within 2wn of f(c) i.e. f(x) ∈ (f(c)− ε, f(c) + ε),
when d(x, c) < 2wn, i.e.

d1(f(c), f(x)) < ε when d(c, x) < δ

• Now consider the mapping f : M1 → M .
Then take any point Ci ∈ M1 . Given any ε > 0, we must prove that

∃δ > 0 : d(f(Ci), f(x)) < ε,∀x ∈ M : d1(Ci, x) < δ
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Choose n such that wn < 1
2ε; this defines the actual representative of M1

as Mn
1 . We chose δ to be equal to 1. Then ∀x ∈ (Ci−δ, Ci+δ) is equivalent

to x ∈ Ci−1, Ci or Ci+1.
Now the maximum distance between the values which code to Ci−1 or
Ci+1 and those which map to Ci is 2wn i.e. two times the remaining error
after the nth coding. i.e. d(f(x), f(c1)) ≤ 2wn < ε for all x in the declared
interval.

Now any particular negative feedback coding network is not truly topol-
ogy preserving; however, it can be made arbitrarily close to such a network
by increasing the length of the coding. Therefore any particular coding is
performing an approximate topology-preserving mapping.

We define an ε0-topology preserving network as a negative feedback network
in which for all points c ∈ M , ∀ε > ε0,∃δ > 0 : d1(f(c), f(x)) < ε,∀x ∈ M :
d(c, x) < δ where f(x), f(c) are the binary codes.

Note that this is equivalent to defining wn = 1
2ε0 . Then each network in

the sequence of negative feedback networks of increasing discrimination is an
ε0-topology preserving network with the value of ε0 defined as 2wn for the
specific mapping Mn

1 .

7.5.6 A Hierarchical Feature Map

We now propose the complete network composed of two separate negative
feedback networks, rather like the EPP network in Chapter 6. The first half
of the network is the basic negative feedback network described in Section
3.3 which will perform PCA; the right half of the network is the negative
feedback coding network described in Section 7.5. The first section will extract
the maximum information from the raw input data i.e. data will be projected
onto those directions which contain maximum information; the second section
will code the data along each dimension independently. All parts of the system
use unsupervised learning. Our learning rule continues to be simple Hebbian
learning with no weight decay or clipping of weights.

Since the network is topology preserving in each direction, it can be shown
to be topology preserving in the space spanned by these directions. Therefore
the construction can be viewed as forming a feature map which is topology
preserving in the major information directions of the data. While it is possible
to create continuous multidimensional maps which are topologically different
from their projection onto this subspace, each such anomaly will tend to swing
the principal components in the direction of the anomaly suggesting that such
anomalies can at most be a minor part of the input data. Further, as will be
shown, augmenting this type of feature map to take account of such features
is a simple process.

The inherently modular nature of the network allows us to consider the
effects of augmenting the network as a purely local process. This modular
nature is a direct consequence of the Principal Component Analysis performed
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by the first section which leads to orthogonal input vectors for the second
section.

Augmenting a Map

The desire to augment a map may be brought about by two circumstances:

1. The map is too crude since too little information has been extracted from
the original input data.
To extract more information from the raw data, we must find a new Prin-
cipal component along which to project the data. Therefore, we must
create a new data extraction output neuron i.e. in the central layer of the
network. Now, by adding our new output neuron at the end of the learn-
ing process described in (3.22), (3.23) and (3.24), we are not disturbing
the learning in any of the other directions which have already been found.
Therefore the new direction can be found without disturbing the principal
components already found; therefore the existing codes are not disturbed
and the coding of the new dimension can be done independently of the
existing codes.

2. The map is too crude since too little discrimination has taken place in a
particular direction
Note again that the modular nature of the map allows the discrimina-
tion in each direction to be modified independently of that in the other
directions. Further in the coding within a particular direction, we may
simply add a new coding output neuron into the network and, provided it
learns after all the others have learned, it will simply learn to bisect the
remaining information after the others have subtracted their activations.
In other words, a new coding output neuron will simply provide increased
discrimination within that direction and will affect neither the coding in
other directions nor the existing coding in its direction.

Experimental results have confirmed this analysis.
Note that the potential for improving a map after it has been constructed

is an improvement on the Kohonen map whose parameters must be specified
in advance.

7.5.7 A Biological Implementation

It is well known that biological neurons are not accurately modelled by either
simple linear summation neurons or by neurons which have step functions
as activation functions. Instead a degree of nonlinearity of response has been
found which is usually modeled by a sigmoidal function.

Using tanh() as an activation function for the output neurons allows a
unified model of the above two types of output neurons to be created:
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• tanh() is approximately linear in its middle section. We may adjust the
range of middle section over which it is linear by using the parameter λ in
yi = tanh(λ

∑
j wijxj). To get a large linear section requires a small value

of λ. Experimental results have confirmed that λ = 0.1 is sufficiently small
to approximate a linear function with which Principal Components can be
found as before.

• tanh() may be made more dichotomous by adjusting the parameter, λ,
upwards. A value of O(10) is sufficient to create an output neuron which
performs a smoothed coding of the input data (but see below). The larger
the value of λ, the more step–like the function becomes.

Therefore a single type of output neuron with different λ parameters
can perform both the information extraction and the information coding de-
scribed above. Both sets of output neurons will have an activation function,
tanh(λ

∑
j wijxj). The sole difference is that output neurons in the first layer

have the parameter λ = 0.1, while those in the second have the parameter
λ = 10. The first value is, of course, dependent on the distribution of the
input data and is based on distributions with single figure standard deviation
and mean; the second depends on the amount of discrimination (length of the
code) required.

Using such an activation function with the information extracting output
neurons has several implications:

1. The output values, y, at these output neurons are all in the range (−1,1)
2. Thus the weights in the first part of the network will grow much larger

than previously
3. The learning rate in this network can be made much larger than before as

the y values are constrained to this small range. Previous networks used
a learning rate of O(0.0001); with a tanh() activation function a learning
rate of O(0.1) is possible.

However, there is a drawback to the use of this activation function in the
coding layer: with the values stated, codes for the first three coding output
neurons in each direction agree with those found with the step function net-
work. However, for the later coding output neurons a lack of discrimination
develops leading to very imprecise codes. By the 6th coding output neuron,
we have lost the precision necessary for a topology-preserving network.

7.6 Conclusion

Three methods of creating topology-preserving feature maps have been pre-
sented: the first depends on an introduction of competition to the existing
negative feedback network; the second used subspaces of clusters of the data;
the third is a two stage process involving projection of the input data onto
the directions of maximum information followed by a discrimination process
within each direction.
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The Scale Invariant network ignores the magnitude of the input vectors
and quantises only on the directional information. This is a useful quantisation
when only the relative proportion of each of several input data streams in im-
portant not the actual magnitude of the signal. Our original experiments with
speech data were because humans can decode speech at a range of different
volumes.

The Subspace map envisages a stream of data and was motivated by Ko-
honen’s ASSOM. In this type of mapping, we wish to be able to decode a
mapping while ignoring transformations which are not material to the map-
ping. Thus we may build in translation or rotation invariance into a code.
The conjecture for both the ASSOM and the Subspace map of this chapter
is that certain typical transformations of a data set define a low–dimensional
manifold in which a coded object may be found. With these type of maps, we
often find filters which perform wavelet–like operations.

In the coding network, the simple negative feedback network performs the
projection while the negative feedback coding network performs the discrimi-
nation. Both use only simple Hebbian learning with no normalisation, weight
decay or clipping of weights. The sole difference between the two sets of out-
put neurons is that the coding output neurons have a threshold which must
be achieved before their activation becomes positive. An attempt to produce
a biologically feasible unification of the two types of output neurons was par-
tially successful in that a single type of output neuron with different values of
a parameter in its activation function has been shown to be capable of per-
forming both tasks necessary to produce the feature map; the single addition
of an activation function tanh(λx) allowed us to dispense with the threshold
in the coding output neurons.

We have, in other contexts [123], made a comparison of different types
of topology-preserving networks and found, unsurprisingly, that the value of
different coding networks depends on the use that will be made of the coding.
Thus it is not possible to say that e.g. the Scale Invariant map is better than
the Subspace map in a general sense. One can only be compared with another
with respect to the specific use which will be made of the coding.
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Maximum Likelihood Hebbian Learning

Throughout previous chapters, we have used the residuals after feedback as a
means of enabling self-organisation to filters of the data sets which have been
optimal for the particular effect for which we were striving. In this chapter,
the focus is on the residuals themselves in that we consider how the network
will learn in response to various types of residuals with different probability
density functions (pdfs). We are, in effect, attempting to find optimal learning
rules which will enable us to create residuals whose pdfs match pdfs which we
state we will find interesting a priori. This use of the word “interesting” may
evoke a memory of our use of the term in Chapter 6, and so it should. We will,
in the second half of this chapter, sphere the data and then, by deciding in
advance that it will be interesting to leave particular residuals after feedback,
create filters which are rather similar to those which we created using the
Exploratory Projection Pursuit network of Chapter 6. We will compare these
two sets of rules and then combine them in a joint learning rule which attempts
to get the best effects from both.

We begin the chapter, though, with a comparison of a specific rule which
we relate to robust Principal Component Analysis (we will not sphere the
data at this stage) and show that it is more robust than the standard rules
in the presence of shot noise; because it is so important, we give this specific
learning rule a specific name, ε-insensitive Hebbian learning, and go on to
illustrate the effectiveness of the method in an anti-Hebbian rule and in a
topology preserving network.

8.1 The Negative Feedback Network and Cost Functions

Throughout this book, we have used the residuals after feedback in the Heb-
bian learning rules

∆wij = ηtyiej = ηtf(yi)

{
xj −

M∑
l=1

wljyl

}
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We can use the residuals after feedback to define a general cost function
associated with this network as

J = f1(e) = f1(x − Wy) (8.1)

where previously f1 = ||.||2, the (squared) Euclidean norm. It is well known
(e.g. [13, 172]) that, with this choice of f1(), the cost function is minimised
with respect to any set of samples from the data set on the assumption of
i.i.d. Gaussian noise on the samples.

It can be shown that, in general (e.g. [172]), the mimimisation of J is
equivalent to minimising the negative log probability of the error or residual,
e, which may be thought of as the noise in the data set. Thus, if we know the
probability density function of the residuals, we may use this knowledge to
determine the optimal cost function.

We will shortly discuss data sets whose inherent noise is rather more kur-
totic than Gaussian (Table 8.6 gives an example). An approximation to these
density functions is the (one-dimensional) function

p(e) =
1

2 + ε
exp(−|e|ε) (8.2)

where

|e|ε =
{

0, ∀|e| < ε,
|e − ε|, otherwise , (8.3)

with ε being a small scalar ≥ 0. Using this model of the noise, the optimal
f1() function is the ε-insensitive cost function

f1(e) = |e|ε (8.4)

Therefore when we use this function in the (nonlinear) negative feedback
network we get the learning rule

∆W ∝ − ∂J

∂W
= −∂f1(e)

∂e

∂e

∂W

which gives us the learning rules

∆wij =
{

0 if |xj −
∑

k wkjyk| < ε
ηyisign(xj −

∑
k wkjyk) = ηysign(e) otherwise (8.5)

We see that this is a simplification of the usual Hebbian rule using only the
sign of the residual rather than the residual itself in the learning rule. We will
find that in the linear case allowing ε to be zero gives generally as accurate
results as nonzero values, but the special data sets in subsequent sections
require nonzero ε because of the nature of their innate noise.
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8.1.1 Is This a Hebbian Rule?

The immediate question to be answered is “does this learning rule qualify
as a Hebbian learning rule given that the term has a specific connotation in
the Artificial Neural Networks literature?”. We may consider e.g. covariance
learning [119] to be a different form of Hebbian learning but at least it still
has the familiar product of inputs and outputs as a central learning term. The
first answer to the question is to compare what Hebb wrote with the equations
above. We see that Hebb is quite open about whether the presynaptic or the
postsynaptic neuron would change (or both) and how the mechanism would
work. Indeed it appears that Hebb considered it unlikely that his conjecture
could ever be verified (or falsified) since it was so indefinite [47]. Secondly,
it is not intended that this method ousts traditional Hebbian learning but
that it coexists as a second form of Hebbian learning. This is biologically
plausible –“Just as there are many ways of implementing a Hebbian learn-
ing algorithm theoretically, nature may have more than one way of designing
a Hebbian synapse”[20]. Indeed the suggestion that long term potentiation
“seems to involve a heterogeneous family of synaptic changes with dissociable
time courses” seems to favour the coexistance of multiple Hebbian learning
mechanisms which learn at different speeds.

We now demonstrate that this new simplified Hebbian rule performs an
approximation to Principal Component Analysis in the linear case and finds
independent components when we have nonlinear activation functions.

8.2 ε-Insensitive Hebbian Learning

The ε-insensitive Hebbian learning rule is defined by

yi =
N∑

j=1

wijxj

ej = xj −
M∑

k=1

wkjyk

∆wij =
{

0, if |ej | < ε,
η.ysign(ej), otherwise , (8.6)

We show that the network converges to the same values to which the more
common PCA rules [138, 160] converge.

8.2.1 Principal Component Analysis

To demonstrate PCA, we use the ε-insensitive rules on artificial data. When we
use the basic learning rules (8.6) on Gaussian data, we find an approximation
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to a PCA being performed. The weights shown in Table 8.1 are from an
experiment in which the input data was, as before, chosen from zero mean
Gaussians in which the first input has the smallest variance, the second the
next smallest and so on. Therefore, the first Principal Component direction
is a vector with zeros everywhere except in the last position which will be a
1 thus identifying the filter which minimises the mean square error. In this
experiment, we have three outputs and five inputs; the weight vector has
converged to an orthonormal basis of the principal subspace spanned by the
first three principal components: all weights to the inputs with least variance
are an order of magnitude smaller than those to the three inputs with most
variance. This experiment used 5 000 presentations of samples from the data
set, ε = 0.1 and the learning rate was initially 0.01 and was annealed to 0
during these 5 000 iterations.

Table 8.1. The subspace spanned by the first three principal components is cap-
tured after only 5 000 iterations, with ε = 0.1.

0.002 0.061 −0.399 0.368 −0.839
0.028 0.008 0.855 0.477 −0.195
0.005 −0.025 0.327 −0.798 −0.507

We have seen in Chapter 2 that Oja’s Subspace Rule may be transformed
into a PCA rule by using deflationary techniques [160].

ej(k) = ej(k − 1) − wkjyk ∀j

∆wkj = ηtykej(k) ∀j (8.7)

for k = 1, 2.... Thus the feedforward rule is as before, but feedback and learn-
ing occur for each output neuron in turn. Similarly, we may find the actual
Principal Components by using a deflationary rule with ε-insensitive Hebbian
learning.

∆wkj = ηtyk.sign(ej(k)) ∀j (8.8)

for k = 1, 2....

Table 8.2. The actual principal components are captured after only 5 000 itera-
tions, with ε = 0.5.

−0.018 0.033 0.026 0.049 1.006
−0.018 −0.020 0.021 −1.003 0.007
−0.004 0.036 −0.991 −0.036 0.066

Table 8.2 shows the results when five-dimensional data of the same type as
before was used as input data; the learning rate was 0.1 decreasing to 0 and ε
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was 0.1. These results were taken after only 5 000 iterations. The convergence
is very fast: a typical set of results from the same data are shown in Table 8.3
where the simulation was run over only 1 000 presentations of the data (ε =
0 in this case).

Table 8.3. The actual principal components are almost found after only 1 000
iterations, with ε = 0.

−0.005 0.045 −0.002 0.013 1.001
−0.036 0.010 −0.133 0.991 0.002
−0.011 −0.008 0.990 0.141 −0.001

We may expect that since the learning rule is insensitive to the magnitude
of the input vectors x, the rule is less sensitive to outliers than the usual rule
based on mean square error. We can show [55] that the PCA properties of the
deflationary ε-insensitive network (8.8) are relatively unaffected by the addi-
tion of noise from a uniform distribution in [−10,10] to the last input in 30%
of the presentations of the input data (Fig. 8.4). In comparison, the standard
deflationary network (8.7) responds to this noise (as one would expect, Fig.
8.5).

We note that this need not be a good thing, however in the context of
real biological neurons we may wish each individual neuron to ignore high
magnitude shot noise and so the ε-insensitive rule may be optimal. Finally
the insertion of a differentiated θi term in the calculation of the residual (as
in Oja’s Weighted Subspace Algorithm [141] which was discussed in Chapter
2) also causes convergence to the actual Principal Components but was found
to be two orders of magnitude slower than the deflationary technique described
above.

Table 8.4. The 30% outliers are ignored by the ε-insensitive rule.

0.025 −0.040 0.047 0.033 0.995
0.015 0.014 0.010 −1.001 0.033
−0.048 −0.065 0.997 0.022 −0.045

Table 8.5. The standard Sanger rule finds the noise irresistable.

0.065 −0.043 −0.035 0.060 −0.997
0.069 −0.015 0.018 −0.996 −0.071

−0.959 −0.002 −0.216 −0.095 −0.118
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8.2.2 Anti-Hebbian Learning

Now the ε-insensitive rule was derived in the context of the minimisation of
a specific function of the residual. It is perhaps of interest to enquire whether
similar rules may be used in other forms of Hebbian learning. We investigate
this using anti-Hebbian learning. Földiák [46] has suggested a neural net model
which has anti-Hebbian connections between the output neurons.

The equations which define its dynamical behaviour are

yi = xi +
N∑

j=1

wijyj

In matrix terms, we have

y = x + Wy

and so, y = (I − W )−1x

He shows that, with the familiar anti–Hebbian rule,

∆wij = −αyiyj , for i 	= j

the outputs, y, are decorrelated.
Now the matrix W must be symmetric and has only nonzero nondiagonal

terms i.e. if we consider only a two input, two output net,

W =
(

0 w
w 0

)
(8.9)

However the ε-insensitive anti-Hebbian rule is nonsymmetrical and so if
wij is the weight from yi to yj , we have

∆wij = −ηyjsign(yi), if |yi| > ε,

∆wij = 0, otherwise. (8.10)

To test the method, we generated two-dimensional input vectors, x, where
each element is drawn independently from N(0, 1) and then added another
independently drawn sample from N(0, 1) to both elements. This gives a data
set with sample covariance matrix (10 000 samples) of(

1.9747 0.9948
0.9948 1.9806

)
(8.11)

The covariance matrix of the outputs, y, (over the 10 000 samples) from the
network trained using the ε-insensitive learning rule is(

1.8881 -0.0795
-0.0795 1.1798

)
(8.12)

We see that the outputs are almost decorrelated. It is interesting to note that
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• the asymmetrical learning rules have resulted in nonequal variances on the
outputs,

• but the covariance (off-diagonal) terms are equal, as one would expect.

It is our finding that the outputs are always decorrelated, but the final values
on the diagonals (the variances) are impossible to predict and seem to depend
on the actual values seen in training, the initial conditions, etc..

A feedforward decorrelating network, y = (I + W )x, may also be created
with the ε-insensitive anti-Hebbian rule with similar results.

8.2.3 Other Negative Feedback Networks

The Scale Invariant Map

We may now report that if we use the ε-insensitive learning rule within the
Scale Invariant Map of Chapter 7, we get the learning rules

∆wij =
{

0, if |ej | < ε,
ηyΛ(p, i)sign(ej), otherwise.

and convergence to the same type of mapping is also achieved. As before,
the resultant mapping is found more quickly and is more robust against shot
noise.

The Factor Analysis Network

In the bars data set, noise is innate, caused by the presence of other bars.
Consider a single horizontal bar composed of 8 pixels. If it is not present and
a vertical bar is present, the pixel in the horizontal bar corresponding to the
vertical bar will be blackened. Thus, there is a nonzero probability (Table 8.6)
that some activation will be passed forward through the weights to the neuron
responding to the horizontal bar even when the horizontal bar is not present.

Table 8.6. Approximate probabilities that the given number of pixels will be firing
in a given bar. Probabilities for 4–7 pixels not shown are less than 0.05.

Number of pixels 0 1 2 3 8

Probability 0.3 0.34 0.17 0.05 0.125

We see from Table 8.6 that there is a significant probability that one or
two pixels from a bar will be activated even when the bar is not present. This
indeed was the problem which motivated ε-insensitive Hebbian learning: the
probability density function
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p(e) =
1

2 + ε
exp(−|e|ε) (8.13)

is an approximation to the above densities. We showed in Chapter 5 that
imposing a constraint of non-negativity on the weights (or outputs) of the
negative feedback network with standard Hebbian learning changes the PCA
network to a Principal Factor Analysis network capable of identifying the
individual bars (something the PCA network cannot do). The rectification on
the outputs is a special case of the nonlinear activation passing rule (5.10); we
have similar results to those reported herein when we use continuous functions
which approximate the rectification.

Now we consider the ε-insensitive learning rule with the non-negative
weight constraint: whenever the rule has the effect of making a particular
weight negative we set that weight to zero. This does not necessarily constrain
its future growth. We have also used a network which rectifies the outputs i.e.
in (5.10), f(t) = t if t > 0, f(t) = 0, t ≤ 0 with similar results.

The weights in a trained network on an 8*8 grid (i.e. 16 bars) are shown
in Fig. 8.1. The bars have clearly been identified. The learning rate was 0.01,
decreasing to 0 over the course of the simulation which took 50 000 iterations.
The value of ε should be greater than 0 and best results are obtained with ε
between 0.1 and 0.5.

Fig. 8.1. Each row represents the weights into one output neuron. The eight
horizontal and eight vertical lines have been found.

Similarly, we have [55] used the ε-insensitive rule with nonlinear PCA rules.
However we wish to emphasise that this rule is one of a family which can be
used as an exploratory data tool. We thus extend the method in the next
section so that different types of structure can be identified.

8.3 The Maximum Likelihood EPP Algorithm

Let us now consider the residual after the feedback to have probability density
function
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p(e) =
1
Z

exp(−|e|p) (8.14)

Then we can denote a general cost function associated with this network as

J = − log p(e) = (e)p + K (8.15)

where K is a constant, Therefore performing gradient descent on J we have

∆W ∝ − δJ

δW
= −δJ

δe
δe
δW

≈ y(p(|e|p−1sign(e))T (8.16)

We would expect that for leptokurtotic residuals (i.e. more kurtotic than
a Gaussian distribution), values of p < 2 would be appropriate, while for
platykurtotic residuals (i.e. less kurtotic than a Gaussian), values of p > 2
would be appropriate. It is well known in the ICA community [85] that it is
less important to get exactly the correct distribution when searching for a
specific source than it is to get an approximately correct distribution i.e. all
supergaussian signals can be retrieved using a generic leptokurtotic distribu-
tion and all subgaussian signals can be retrieved using a generic platykurtotic
distribution.

Therefore the network operation is:
Feed forward: yi =

∑N
j=1 wijxj ,∀i

Feedback: ej = xj −
∑M

i=1 wijyi

Weight change: ∆wij = ηyisign(ej)|ej |p
Now the nature and quantification of the “interestingness” (Chapter 6) is in
terms of how likely the residuals are under a particular model of the proba-
bility density function of the residual. As with standard EPP, we also sphere
the data before applying the learning method to the sphered data.

8.3.1 Minimum Likelihood Hebbian Learning

Now, it is equally possible to perform gradient ascent on J . In this case we
find a rule which is the opposite of the above rules in that it is attempting to
minimise the likelihood of the residual under the current assumptions about
the residual’s pdf. The operation of the network is as before, but this time we
have
Weight change: ∆wij = −ηyisign(ej)|ej |p
This corresponds to the anti-Hebbian learning rule. One advantage of this
formulation compared with the Maximum Likelihood Hebbian rule is that,
in making the residuals as unlikely as possible, we are having the weights
learn the structure corresponding to the pdf determined by the parameter
p. With the Maximum rule, the weights learn to remove the projections of
the data which are furthest from that determined by p. Thus, if we wish to
search for clusters in our data (typified by a pdf with p > 2), we can use
Maximum Likelihood learning with p < 2 [30], which would result in weights
which remove any projections that make these residuals unlikely. Therefore
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the clusters would be found by projecting onto these weights. Alternatively
we may use Minimum Likelihood learning with p > 2, which would perform
the same job: the residuals have to be unlikely under this value of p, and so
the weights converge to remove those projections of the data which exhibit
clustering.

8.3.2 Experimental Results

Let us call the EPP algorithm of Chapter 6 the Output Functions algorithm
and that of this chapter the Maximum Likelihood algorithm. Then we might
reasonably wish to compare their properties.

We therefore create five-dimensional data as in Chapter 6 so that four
dimensions contain data drawn independently and identically distributed from
zero mean, Gaussian distributions, while the fifth dimension contains kurtotic
data: we draw this also from a Gaussian distribution but randomly (in 20%
of cases) substitute the sample with a small random number drawn from a
uniform distribution between −0.005 and +0.005. We now use the Maximum
Likelihood rules with p = 3 to search for leptokurtosis and p = 1 for the
platykurtotic bimodal data set. We again performed 100 simulations and used
the same values for the learning rate as before.

0 1 2 3 4 5 6 7 8

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

x 10
4

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Fig. 8.2. The convergence of the Maximum Likelihood Learning rules. Left: using
p = 3 on leptokurtotic data. Right: using p = 1 on the bimodal platykurtotic data.

Fig. 8.2 should be compared with Fig. 6.2 and Fig. 6.3. We see in this
figure that convergence is not quite as accurate with the Maximum Likelihood
method but that it seems more sure: we have no failures to report on this data
set with this method. Also the initial convergence is much faster than before.
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The Cetin Data Set

We first use a data set derived by H. Cetin [23] which consists of 16 sets of
spectra in which each set contains 32×32 samples arranged in a chequer-board
grid. It was used for comparative study of a variety of algorithms. The spectra
themselves are samples taken from a spectral library.

Fig. 8.3. Projection of the Cetin data set on the first two filters found by the
Maximum Likelihood method with p = 1.

The projections of this data set onto the first two filters found by the Max-
imum Likelihood Hebbian rule with p = 1 is shown in Fig. 8.3. A comparison
of this with that achieved by PCA reveals that the clusters are very much
more compact and rather more isolated from one another in the Maximum
Likelihood case. This result has been repeated with different initial conditions,
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learning rates, etc., and is rather close to the projections obtained when using
the Exploratory Projection Pursuit of Chapter 6.

8.3.3 Skewness

Until now, we have discussed the maximum likelihood algorithm in terms
of kurtosis: outliers are often signalled by positive kurtosis and clusters by
negative kurtosis. However, this is not the only structure to be found in data
sets: we showed that skewness could be found with the algorithm of Chapter
6 [54] with f(y) = y2. More recently it has been suggested [122] that we can
use f(y) = cos(y) in this algorithm to search for skewness. We first compare
these methods on an artificial data set exhibiting skewness. The two output
functions are compared in Fig. 8.4. One interesting conclusion we can draw
from this study is that the cos() function, while perhaps more stable than
simple squaring, does not converge so quickly or reliably.
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Fig. 8.4. The left diagram shows convergence of 81 out of 100 simulations on
skewed data using y2 as the output function; 18 simulations were unstable and 1
did not converge after 80 000 iterations. The right diagram shows convergence of
94 simulations which used the cos() function; 1 was unstable and another 5 did not
converge after 80 000 iterations.

Skewness can also be identified by the Maximum Likelihood Algorithms.
Consider a skewed (centred) distribution: it will typically have a large prob-
ability mass close to zero for positive (negative) values and much longer tails
but no great lump of probability mass for negative (respectively positive)
values. Therefore we suggest an algorithm so that

∆wij = ηyisign(ej), if ej < 0,

∆wij = ηyisign(ej)|ej |2 , if ej > 0.
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Thus we are modelling a skewed distribution with values of p = 1 on one side
of the origin and p = 3 on the other. Of course, the skewness may be the other
way round, in which case we reverse the equations. Results are shown in Fig.
8.5. We see that this algorithm is only partly successful: although, we achieve
very fast convergence in all cases, we do not achieve more than 80% accuracy
on this skewed data set.

As before, we attempted to combine the two algorithms; however, we were
unable with the same learning rate to get convergence on this data set with
a combined algorithm.
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Fig. 8.5. Convergence of the algorithm using the new skew Maximum Likelihood
method in 100 simulations.

8.4 A Combined Algorithm

The two EPP algorithms were derived from different perspectives and each
used modifications to a Principal Component Analysis neural network in dif-
ferent parts of the weight change algorithm. This might suggest that we can
get the best of both worlds by combining these algorithms. Fig. 8.6 shows the
convergence of an algorithm which uses
Feed forward: yi =

∑N
j=1 wijxj ,∀i

Feedback: ej = xj −
∑M

i=1 wijyi

Weight change: ∆wij = ηf(yi)sign(ej)|ej |p
where

• f(.) is the tanh() function and p = 1 for the bimodal data.
• f(y) = y − tanh(y) and p = 3 for the leptokurtotic data.

We see (Fig. 8.6) that convergence in both cases was extremely reliable
and extremely fast.
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Fig. 8.6. Convergence of the algorithm using the combined learning rule. Left:
bimodal data. Right: leptokurtotic data.

8.4.1 Astronomical Data

We now use a remote sensing data set, the 65-colour spectra of 115 asteroids
used by [130]. The data set is composed of a mixture of the 52-colour survey
by Bell et al. [11] together with the 8-colour survey conducted by Zellner
et al. [187] providing a set of asteroid spectra spanning 0.3–2.5 µm. A more
detailed description of the data set is given in [130]. When this extended data
set was compared by [130] to the results of Tholen [176] it was found that the
additional refinement to the spectra leads to more classes than the taxonomy
produced by Tholen. The results of applying the higher-order EPP algorithm
with the tanh() nonlinearity on this data set are shown in Fig. 8.7 (left); the
results from the Maximum Likelihood EPP algorithm with p = 1 are shown
in the right of this figure. Both projections have spread out the data well; we
will leave it to the reader to decide if one is better than the other in some
way.

Perhaps more interesting is the projection which we get when we use both
nonlinearities in the learning rule. This is shown in Fig. 8.8.

8.4.2 Wine

A data set which may be retrieved from the UCI repository of machine learning
databases is based on wine: it is a 13-dimensional data set of 178 samples from
three different classes of wine. Fig. 8.9 shows the two-dimensional projections
of the three EPP methods and (in the top left) the projection of the wine
data onto the first two principal components. We see that there is very little
difference between the three EPP projections and that all three are better
than the PCA projection.
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Fig. 8.7. The left figure shows the two dimensional projection onto the axes found
by the original EPP algorithm while the right figure shows the projection onto the
axes found by the Maximum Likelihood EPP algorithm.
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Fig. 8.8. The left figure shows the projection found by using both nonlinearities
in the learning rule. The right figure shows how quickly convergence is achieved.

8.4.3 Independent Component Analysis

In Chapter 6, ICA was discussed and the connection to EPP was explained.
As the maximum likelihood method is able to perform EPP, we can expect
that it is also capable of performing ICA. We will show how to extract in-
dividual signals from mixtures of either supergaussian signals or mixtures of
subgaussian signals, using the Maximum Likelihood network in a different way
to that described in the previous sections. We do this by taking advantage
of the central limit theorem, which states that mixtures of independent sig-
nals result in signals which are more Gaussian than the original signals. The
more statistically independent signals we mix, the more Gaussian the result-
ing mixture becomes. This means that if we consider a mixture of kurtotic
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Fig. 8.9. The figure shows the projection on the first two filters found by (a)
PCA, (b) Max. Likelihood EPP, (c) Output Functions EPP, (d) the combined EPP
method, on the 13-dimensional inputs of the wine classification problem.

signals, the total kurtosis value of the residuals will be at a local minimum
when there are as few kurtotic signals in the residuals as possible, i.e. if one
of the signals has been completely eliminated from the mixture. If we have
a mixture of supergaussian signals, completely removing one of these signals
gives a residual which is more kurtotic than removing a little of each of the
signals. Therefore, maximising the kurtosis of the residuals will identify one
separate signal from a mixture of supergaussian sources and minimising the
kurtosis of the residuals will pull out a signal from a mixture consisting of
only subgaussian signals.

Extraction of a Signal from a Mixture

We begin with three mixed speech signals which we linearly mixed using
mixing matrix A:
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A =

⎛
⎝−0.3 0.4 0.2

0.6 −0.9 0.4
−0.5 0.5 −0.3

⎞
⎠ (8.17)

Each of the signals comprised 40 000 samples of a speaker stating “Perhaps
the most frequent use of ICA is in the extraction of independent voices from a
mixture”. The kurtosis of the individual signals is 6.8444, 7.7582 and 3.6833,
respectively. We use a learning rate of 0.0001 and 100 000 iterations (randomly
sampling with replacement from the 40 000 samples) to extract each signal
in a deflationary manner. We use maximum likelihood learning with a value
of p = 1 (a Laplacian distribution) which extracts one signal completely (see
below) and then repeat the experiment with the residual mixture of the other
two signals. The learning rule is

∆wi = ηyi ∗ sign(e) (8.18)

where the sign() function acts on an elementwise basis. As with all the higher-
order methods, we sphere the data, by multiplying by matrix Q = Σ− 1

2 , where
Σ is again the covariance matrix of the data.

As a measure of success, we use W ∗Q ∗A i.e. the weights learned by the
method times the sphering matrix times the mixing matrix:

W ∗ Q ∗ A =

⎛
⎝ 0.0170 −0.0050 −1.0000

1.0008 −0.0093 0.0162
0.0122 0.9995 −0.0021

⎞
⎠ (8.19)

We see that the product matrix is very close to a permutation matrix showing
that the signals have been extracted correctly.

Similarly, we have experimented with five sub Gaussian artificially gener-
ated signals randomly mixed. Their kurtosis values were −0.9845, −0.9638,
−0.9769, −0.9795 and −0.9673, respectively. Notice that all sample kurtosis
values are approximately equal. Again we used 40,000 samples, a learning rate
of 0.0001 and no annealing of the learning rate. This time we used the rule

∆wi = ηyi ∗ sign(e) ⊗ |e|3 (8.20)

where again |e|3 is performed on an elementwise basis.
This somewhat more difficult problem required 500 000 iterations for each

signal and the product matrix WV A is

W ∗ Q ∗ A =

⎛
⎜⎜⎜⎜⎝

−0.033 0.021 1.001 −0.045 0.013
−0.021 −0.035 0.055 0.997 −0.028

0.038 0.022 −0.001 −0.012 −0.971
−0.006 −0.996 0.027 −0.039 −0.099
−0.998 0.012 −0.036 −0.004 −0.021

⎞
⎟⎟⎟⎟⎠ (8.21)

Again we have almost a permutation matrix indicating that the sources have
been recovered. Now the reason we needed to use 500 000 iterations is that
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the last signal is much the most difficult to extract (and we see that in the
last column its accuracy is much worse). The reason for that lies in the fact
that there is only one signal left in the “mixture” at this time: the network is
attempting to structure the residuals to model the probability density function
but if it is successful, there will be no residuals to model. This is somewhat
of a conundrum. Of course, we can obviate this conundrum by simply noting
that the fourth residual contains only the last signal, but this is somewhat
unsatisfactory since we do not (in a truly blind problem) know a priori how
many signals are in the mixture.

8.5 Conclusion

We have derived a slightly different form of Hebbian learning which we have
shown capable of performing PCA-type learning in a linear network. However,
more importantly in situations in which the noise is more kurtotic, we have
shown that the network readily identifies the independent components of the
signal.

We have also related the method of this chapter to Exploratory Projec-
tion Pursuit. We have therefore sphered the input data and shown that the
resulting network can successfully search for structure of various types in the
sphered data. We have applied the method to independent component anal-
ysis and shown that we can identify independent components from a mixture
of signals.

Finally, we compared the method of Chapter 6, the Output Functions
method, with that of this chapter, the Maximum Likelihood method, and
showed that the former was more accurate, though the latter was faster and
somewhat more reliable. Since each rule is a modification to the basic PCA
rule at a different point in the learning rule, we are able to combine these
modifications to achieve a rule which seems to be fast, reliable and accurate.



Part II

Dual Stream Networks
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—————————————————————————————————

We now turn our attention to dual stream networks. Whereas in preceding
chapters, we have considered the input data at each time instant as being a
single-input vector, in experiments in subsequent chapters we will explicitly
create two or more data streams and consider the input data at any one time
as coming from these separate data streams. It is, perhaps, surprising that a
technology such as artificial neural networks, which is based on an emulation
of living organisms, has tended to neglect what seems to be one of the major
features of sensory perception – the plurality of experience at each instant in
time: not only do we have two each of our main sensors, but these sensors
can simultaneously provide us with information. Thus, each of us is presented
with the problem of integrating diverse information from different sensory
modalities; it should be said that this is a problem which provides almost all
of us with little or no problem, yet that fact disguises the inherent complexity
of the task. As we have said, the study of artificial neural networks has been
dominated by single stream networks but we hope that the work in Chapters
9 – 14 will excite interest in the field of dual stream networks.

Thus, typically we will have two sets of data presented at any one time;
each of x1 and x2 can be considered as sensory inputs to our networks which
arise because of some external events in the world. There is an implicit as-
sumption that such external events are caused by a single underlying cause
so that there is a relation between x1 and x2 which the dual stream artifi-
cial neural networks will be required to reveal. Typically we will have weights
w1 and w2 through which the separate activations will be expected to pass
independently of each other i.e. y1 = wT

1 x1 and y2 = wT
2 x2 are calculated

separately1 with no interaction taking place at this stage. However, under our
implicit assumption that events which happen at the same time have a single
underlying cause which we wish to uncover, we must let the learning of the
weights w1 and w2 use information from the other data stream. Therefore
typically

∆w1 = ηf1(x1,x2, y1, y2)
∆w2 = ηf2(x1,x2, y1, y2)

where the functions f1() and f2() are determined by the type of information
which we believe is held in the two data streams.

Of course, events which appear at the same time are not the only type
of events which are related: a single underlying cause may manifest itself at
different times and so we must consider sets of events which are related in
some way not necessarily temporally. Perhaps a concrete example which we
will use later as a data set will clarify our approach: we discuss a data set
1 Though we are considering a scalar output in this exposition, we can and do apply

these methods to vector output neural networks.
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of exam marks. Each of 88 students sit five exams. Two exams are given as
closed-book exams while three exams are given as open-book exams. We make
the implicit assumption that some students are better than others (at least
at passing exams) and thus there is a single underlying cause for all five exam
marks which is a measure of how good each student is at passing exams. Thus
our x1 data stream is two-dimensional and consists of the closed-book exams
while our x2 data stream is three-dimensional and consists of the open-book
exams. We have 88 samples and at any one time we are presenting the same
student’s marks to both data streams simultaneously. We might subsequently
hope to predict a new student’s performance on the open-book exams given
his closed-book results, or vice versa.

Therefore, in subsequent chapters, we discuss several methods that are able
to find relationships between data sets. This is a useful approach for many
engineering applications where multiple measurements are necessary in order
to find a certain underlying signal. A process can be measured using different
types of sensors and the information these sensors provide can be combined in
order to get a clearer and more accurate measurement. Another approach is
to use the same sensor, but at different times or at slightly different positions.
For example, in feature analysis of images, neighbouring image patches can
be used as input streams.

The development of ideas in these chapters is as follows:

• In Chapters 9 and 10, we develop several neural implementations of the
statistical technique of Canonical Correlation Analysis which is designed
to find projections which maximise the correlations between two data
streams. The resulting networks are all shown to have negative feedback
but, while, as with those of Part I, the feedback in each network comes from
the associated output neuron, what directs learning is a positive Hebbian
rule linking each input with the opposite output. We show in the summary
of Chapter 10 that this seems to be a very general rule and we conjecture
about its biological usefulness.

• We then consider extensions to canonical correlation analysis:
1. We introduce nonlinearity into the process in two ways and find we can

identify greater correlations than is possible with linear machines.
2. We add penalty terms to the basic machines and show that these both

make the convergence more robust and make the converged results
more comprehensible.

3. We search for shared higher-order stucture in two data streams simul-
taneously by twinning the methods developed in Chapters 6 and 8.

• Finally, we move away from neural methods by twinning the method of
Principal Curves – we are searching for two curves which move through
two data spaces searching for the greatest local correlations.

In Appendix D, we list some other dual stream approaches from the liter-
ature, though this is an emerging area and we do not claim to be exhaustive.



9

Two Neural Networks for Canonical
Correlation Analysis

In this chapter, we derive two new methods for performing Canonical Cor-
relation Analysis with Artificial Neural Networks. For the first network, we
demonstrate the network’s capabilities on artificial data and then compare
its effectiveness with that of a standard statistical method on real data. We
demonstrate the capabilities of the network in certain situations where stan-
dard statistical techniques are not effective, for example where we have cor-
relations stretching over three data sets and where the maximum nonlinear
correlation is greater than any linear correlation (see Chapter 11). The net-
work is also applied to Becker’s [8] random dot stereogram data and shown
to be extremely effective at detecting shift information. We then derive the
second network mathematically before comparing it to the first.

9.1 Statistical Canonical Correlation Analysis

Canonical Correlation Analysis [125] is used when we have two data sets
which we believe have some underlying correlation. Consider two sets of input
data, from which we draw iid samples to form a pair of input vectors, x1 and
x2. Then in classical CCA, we attempt to find the linear combination of the
variables which gives us maximum correlation between the combinations. Let

y1 = wT
1 x1 =

∑
j

w1jx1j (9.1)

y2 = wT
2 x2 =

∑
j

w2jx2j (9.2)

We wish to find those values of w1 and w2 which maximise the correlation
between y1 and y2. Whereas Principal Components Analysis and Factor Anal-
ysis deals with the interrelationships within a set of variables, CCA deals with
the relationships between two sets of variables. If the relation between y1 and
y2 is believed to be causal, we may view the process as one of finding the
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best predictor of the set x2 by the set x1 and similarly of finding the most
predictable criterion in the set x2 from the x1 data set. Thus, we later review
a data set in which a set of exam results are split into those achieved by stu-
dents when they had access to their books and those marks obtained when
the students were denied their books during the exam. We might wish to use a
student’s open book exams to predict how well he/she might do in the closed
book exams. One way to view canonical correlation analysis is as an extension
of multiple regression (see [125], page 281). Recall that in multiple regression
analysis the variables are partitioned into an x1-set containing q variables and
a x2-set containing p = 1 variable. The regression solution involves finding
the linear combination of x1 which is most highly correlated with x2.

Let x1 have mean µ1 and x2 have mean µ2. Then the standard statistical
method (see [125]) lies in defining

Σ11 = E{(x1 − µ1)(x1 − µ1)T } (9.3)
Σ22 = E{(x2 − µ2)(x2 − µ2)T } (9.4)
Σ12 = E{(x1 − µ1)(x2 − µ2)T } (9.5)

and K = Σ
− 1

2
11 Σ12Σ

− 1
2

22 (9.6)

where T denotes the transpose of a vector. We then perform a singular value
decomposition of K to get

K = (α1, α2, ..., αk)D(β1, β2, ..., βk)T (9.7)

where αi and βi are the standardised eigenvectors of KKT and KTK, respec-
tively, and D is the diagonal matrix of eigenvalues.

Then the first canonical correlation vectors (those which give greatest cor-
relation) are given by

w1 = Σ
− 1

2
11 α1 (9.8)

w2 = Σ
− 1

2
22 β1 (9.9)

with subsequent canonical correlation vectors defined in terms of the subse-
quent eigenvectors, αi and βi.

In most of the remainder of this book, we will make the simplifying as-
sumption that the data has been centered so that µi = 0. This makes the
exposition simpler and is easily performed for any algorithm developed.

9.2 The First Canonical Correlation Network

The input data comprises two vectors x1 and x2. Activation is fed forward
from each input to the corresponding output through the respective weights,
w1 and w2 (see Fig. 9.1 and (9.1) and (9.2)) to give outputs y1 and y2.
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w2w1

y1 y2

Maximise
Correlation

x1 x2

Fig. 9.1. The CCA network. By adjusting weights, w1 and w2, we maximise cor-
relation between y1 and y2.

We wish to maximise the correlation E(y1y2) where E() denotes the ex-
pectation which will be taken over the joint distribution of x1 and x2.

We may regard this problem as that of maximising the function g1(w1|w2)
= E(y1y2) which is defined to be a function of the weights, w1, given the other
set of parameters, w2. This is an unconstrained maximisation problem which
has no finite solution, and so we must constrain the maximisation.

Typically in CCA, we add the constraint that E(y2
1 = 1) and similarly

with y2 when we maximise g2(w2|w1).
Using the method of Lagrange multipliers, this yields the constrained op-

timisation functions,

J1 = E

{
(y1y2) +

1
2
λ1(1− y2

1)
}

and

J2 = E

{
(y1y2) +

1
2
λ2(1− y2

2)
}

We may equivalently use

J = E

{
(y1y2) +

1
2
λ1(1− y2

1) +
1
2
λ2(1− y2

2)
}

but it will be more convenient in the following sections to regard these as
separate criteria which can be optimised independently by implicitly assuming
that w1 is constant when we are changing w2, and vice versa. We wish to find
the optimal solution using gradient ascent and so we find the derivative of
the instantaneous version of each of these functions with respect to both the
weights, w1 and w2, and the Lagrange multipliers, λ1 and λ2. By changing the
Lagrange multipliers in proportion to the derivates of J we are changing the
relative strength of the constraint compared to the function we are optimising;
this allows us to smoothly maximise that function in the region in which we
are satisfying the constraint.
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Noting that

∂g1(w1|w2)
∂w1

=
∂(y1y2)
∂w1

=
∂(wT

1 x1y2)
∂w1

= x1y2 (9.10)

these yield, respectively,

∂J1

∂w1
= x1y2 − λ1y1x1 = x1(y2 − λ1y1)

∂J1

∂λ1
∝ (1− y2

1)

Similarly with the J2 function, w2 and λ2. This gives us a method of changing
the weights and the Lagrange multipliers on an online basis. We use the joint
learning rules

∆w1j = ηx1j(y2 − λ1y1)
∆λ1 = −η0(1− y2

1)
∆w2j = ηx2j(y1 − λ2y2)
∆λ2 = −η0(1− y2

2) (9.11)

where w1j is the jth element of weight vector, w1, etc. The actual weight
update, wij = wij +∆wij , follows.

It has been found empirically that best results are achieved when η0 >> η.
However, just as a neural implementation of Principal Component Analysis
may be very interesting but not a generally useful method of finding Principal
Components, so a neural implementation of CCA may be only a curiosity.
However, it has been shown that nonlinear extensions of PCA networks are
able to search for the independent components of a data set (Chapters 5, 6 and
8) and that such extensions are therefore justifiable as engineering tools for
investigating data sets. We therefore later extend our neural implementation
of CCA by maximising the correlation between outputs when such outputs
are a nonlinear function of the inputs. We investigate a particular case of
maximisation of E(y1y2) when the values yi are a nonlinear function of the
inputs, xi.

9.3 Experimental Results

We report simulations on both real and artificial data sets of increasing com-
plexity. We begin with data sets in which there is a linear correlation and
we demonstrate the effectiveness of the network on Becker’s [8] random dot
stereogram data. We then extend the method in two ways not possible with
standard statistical techniques:

1. We maximise correlations between more than two input data sets.
2. We consider maximising correlations where such correlations may be on

nonlinear projections of the data.
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9.3.1 Artificial Data

Our first experiment uses an artificial data set: x1 is a 4-dimensional vector,
each of whose elements is drawn from the zero-mean Gaussian distribution,
N(0, 1) ; x2 is a 3-dimensional vector, each of whose elements is also drawn
from N(0, 1). In order to introduce correlations between the two vectors, x1

and x2, we generate an additional sample from N(0, 1) and add it to the first
elements of each vector. In order to ensure that we are not simply responding
to variance the data is then normalised so that the variance in each input
is identical. Thus there is no correlation between the two vectors other than
that existing between the first element of each.

Using an initial learning rate of 0.0001 which is decreased linearly to 0 over
50 000 iterations, the weights converge to the vectors (0.679, 0.023, −0.051,
−0.006) and (0.681, 0.004, 0.005 ). This clearly illustrates the high correlation
between the first elements of each of the vectors and also the fact that this
is the only correlation between the vectors. We may compare the reported
results with the optimal values of (

√
0.5,0,0,0) and (

√
0.5,0,0).

The effect of the constraint on the variance of the outputs is clearly seen
when we change the distribution from which all samples are drawn to N(0, 5).
The weight vectors converge to (0.141, 0.002, 0.003, 0.002) and (0.141, 0.002,
−0.001) – the optimal results are (

√
0.02,0,0,0) and (

√
0.02,0,0). The differ-

ences in magnitude are due to the constraint, E(y2
i ) = 1 since

E(y2
i ) = 1⇐⇒ E(wT

i xxTwi) = wT
i Σxxwi = 1 (9.12)

where Σxx is the covariance matrix of the input data.

9.3.2 Real Data

Our second experiment uses a data set reported in [125], page 290; it comprises
88 students’ marks on five module exams. The exam results can be partitioned
into two data sets: two exams were given as close-book exams (C) while the
other three were open-book exams (O). The exams were on the subjects of
Mechanics(C), Vectors(C), Algebra(O), Analysis(O), and Statistics(O). We
thus split the five variables (exam marks) into two sets – the closed-book
exams (x11, x12) and the open-book exams (x21, x22, x23). One possible quan-
tity of interest here is how highly a student’s ability on closed-book exams
is correlated with his ability on open-book exams. Alternatively, one might
try to use the open-book exam results to predict the closed-book results (or
vice versa). The results shown in Table 9.1 were found using a learning rate
of 0.0001 and 50 000 iterations. We have reported our results to four decimal
places in this section to facilitate comparison with those reported in [125]
which were found by standard statistical batch methods [125]. The w1 vector
consists of the weights from the closed-book exam data to y1, while the w2

vector consists of the weights from the open-book exam data to y2. We note
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the excellent agreement between the methods. The highest correlations are
given by a weighted average of x11 and x12 with the former receiving half the
weight of the latter (since w11 ≈ 1

2w12) and the average of x21, x22 and x23

heavily weighted on x21 (since w21 >> w22,w23).

Table 9.1. The converged weights from the neural network are compared with the
values reported from a standard statistical technique [125].

Standard statistics maximum correlation 0.6630
w1 0.0260 0.0518
w2 0.0824 0.0081 0.0035

Neural network maximum correlation 0.6962
w1 0.0264 0.0526
w2 0.0829 0.0098 0.0041

9.3.3 Random Dot Stereograms

It has been suggested [8] that one of the goals of sensory information process-
ing may be the extraction of common information between different sensors
or across sensory modalities. One reason that this is possible is because of
the coherence which exists in time and place in sensory input data. We may
view the above network as a means of merging two different data streams, x1

and x2, which may be either representatives of two different modalities or as
different representatives of the same modality where such representatives may
be different in either time or place.

Becker [8] has developed this idea and experimented on a data set which
is an abstraction of random dot stereograms: an example is shown graphically
in Fig. 9.2. In Appendix D, we briefly discuss Becker’s methods.

The central idea behind this is that two different neural units or neural
network modules should learn to extract features that are coherent across
their inputs.

If there is any feature in common across the two inputs, it should be
discovered, while features which are independent across the two inputs will
be ignored.

Each input vector consists of a one-dimensional random strip which cor-
responds to the left image and a shifted version of this which corresponds to
the right image. The left image has components drawn with equal probability
from the set {−1, 1} and the right image is generated by choosing a randomly
chosen global shift – either one pixel left or one pixel right – and applying it
to the left image. We wish to find the maximum linear correlation between y1

and y2, which are themselves linear combinations of x1 and x2. Because the
shifts are chosen with equal probability, there are two equal sets of correlations
corresponding to left-shift and right-shift.
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-1 1 1 -1 1-1 1-1

right shift

y1 3y y42
y

Maximise Correlations pairwise

Fig. 9.2. The random dot stereogram data and network. The x2 set is either a
left-shifted or a right-shifted (as shown) version of the x1 set. We find that w1 and
w2 reliably find the left-shift and w3 and w4 the right-shift or vice versa.

In order to find these, we require two pairs of outputs and the correspond-
ing pairs of weights (w1, w2) and (w3, w4). The learning rules for w3 and w4

in this experiment are analagous to those for w1 and w2; at each presentation
of a sample of input data, a simple competition between the products y1y2

and y3y4 determines which weights will learn on the current input samples: if
y1y2 > y3y4, then w1, w2 are updated, else w3, w4 are updated.

Using a learning rate of 0.001 and 100 000 iterations, the weights converge
to the vectors shown in Table 9.2.

Table 9.2. The converged weights clearly show that the first pair of neurons has
learned a right shift while the second pair has learned a left shift.

w1 −0.002 1.110 0.007 −0.009
w2 0.002 0.025 0.973 0.020
w3 −0.014 0.026 1.111 −0.002
w4 0.013 0.984 0.003 −0.007

The first pair of weights, w1 and w2, have identified the second element
of x1 and the third element of x2 as having maximum correlation while other
inputs are ignored (the weights from these are approximately 0). This corre-
sponds to a right shift. This first pair of outputs has a (sample) correlation of
0.512. Similarly the second pair of weights has idenfied the third element of
x1 and the second element of x2 as having maximum correlation while other
inputs are ignored. The second pair has a (sample) correlation of 0.530 and
corresponds to an identification of left shift.
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Now, for some patterns there will be ambiguity since it is possible that by
chance a right-shifted pattern will happen to match the weights w3,w4 and
therefore a bank of pairs of pairs of neurons is required to perform as well
as Becker’s IMAX network [8] and Appendix D. For best results, each set of
four neurons as above should see as input a slightly different part of the input
data (though with a global left or right shift). We have shown [128] that a
Factor Analysis network (Chapter 5) which takes as input the output of such
a network can identify left and right shifts from this data set.

The table thus demonstrates that these high correlations come from one
pair learning the shift-left transformation while the other learns the shift-right.

It should be noted at this point that [8] only uses a subset of 12 of the
16 possible patterns. Those which are ambiguous (such as (−1,1,−1,1)) are
removed, whereas we are drawing our data from all 16 possible patterns. In
addition, the method in [8] uses computationally expensive backpropagation
of the derivatives of mutual information. We are able to find both correlations
with a very simple network.

In Appendix D, we also review Kay and Phillips’ [105] neural network
method for integrating contextual and input data. We might consider e.g. from
the first data set, x1 as the input data to the network and x2 as the contextual
input. The results from the CCA network and the Kay and Phillips network
are similar too, though Kay and Phillips use a probabilistic network with
an nonlinear activation function designed to manage the effect of contextual
information on the response of the network to input data.

Finally, the CCA network presented here may be criticised as a model of
biological information processing in that it appears as a nonlocal implemen-
tation of Hebbian learning i.e. the w1 weights use the magnitude of y2 as well
as y1 to self-organise. One possibility is to postulate non-learning connections
which join y2 to y1, thus providing the information that w1 requires for learn-
ing. Alternatively we may describe the λ1 parameter as a lateral weight from
y2 to y1 and so the learning rules become

∆w1j = (ηλ1)x1j

(
y2

λ1
− y1

)
∆λ1 = −η0(1− y2

1)

where we have had to incorporate a λ1 term into the learning rate. Perhaps the
second of these suggestions is more plausible than the first as a solution to the
nonlocal feature of the previous learning rules since nonlearning connections
hardwires some activation passing into the cortex.

9.3.4 Equal Correlations

We now create artificial data which contains two independent correlations
of equal magnitude. We repeat the first experiment with the same artificial
data but this time create correlations between x11 and x21 and correlations of
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equal magnitude between x12 and x22 by drawing two independent samples
from N(0, 1) and adding one to x11 and x21 and the other to x12 and x22.
The above network failed to converge to either of the correlations presumably
because the correlations were of equal magnitude but independent of each
other. However, by introducing asymmetry to the network (a tactic [51] often
useful in neural networks, Chapter 4) in our constraints – we allow the outputs
to have different power originally –

J1 = E

{
(y1y2) +

1
2
λ1(k1 − y2

1)
}

and

J2 = E

{
(y1y2) +

1
2
λ2(k2 − y2

2)
}

our weights converge to the CCA directions. We found that it is not necessary
that k1 	= k2 for all time, but merely ensure that during the first phase of
convergence there is an inequality between these values. We also now report
that the most accurate results (such as those reported in the first section
on artificial data) are achieved when there is some asymmetry between the
parameters k1 and k2 even when there is only one correlation between the
data sets.

We will return to the significance of this feature when we develop specific
neural networks from Becker’s [7] models in Chapter 10.

9.3.5 More Than Two Data Sets

In integrating information from different sensory modalities, the cortex may
be presented with the problem of integrating from more than two data sets
simultaneously. Therefore, we extend the algorithm without introducing un-
necessarily complex activation passing, which would become biologially im-
plausible. We create an artificial data set which comprises three vectors each
of whose first elements have correlations of equal magnitude: x1, x2 and x3 are
each 3-dimensional vectors, each of whose elements is initially independently
drawn from N(0, 1). We now draw a sample from N(0, 1) and add it to the
first element of each of x1, x2 and x3 and attempt to maximise the correla-
tion between y1, y2 and y3. We opt to maximise three separate constrained
objective functions:

J1 = E

{
(y1y2) +

1
2
λ1(1− y2

1)
}

and

J2 = E

{
(y2y3) +

1
2
λ2(1− y2

2)
}

and

J3 = E

{
(y3y1) +

1
2
λ3(1− y2

3)
}

We use gradient ascent on the instantaneous version of each of these func-
tions with respect to both the weights, w1, w2 and w3, and the Lagrange
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multipliers, λ1, λ2 and λ3. This gives us the learning rules

∆w1 ∝ ∂J1

∂w1
= x1y2 − λ1y1x1 = x1(y2 − λ1y1)

∆w2 ∝ ∂J2

∂w2
= x2y3 − λ2y2x2 = x2(y3 − λ2y2)

∆w3 ∝ ∂J3

∂w3
= x3y1 − λ3y3x3 = x3(y1 − λ3y3)

The derivates with respect to the Lagrange multipliers are similar to the
previous rules (9.11) though we have found empirically that the best result
are achieved when the λ’s learning rate is again very greatly increased (now
η0 ≈ 200η to 1000η).

Using η = 0.0001, η0 = 0.05 and 100 000 iterations, the weights converge
to the values shown in Table 9.3. The three way correlation derived by this
method is equal to three pairwise correlations.

Table 9.3. The weights of the converged three input vectors network. The network
has clearly identified the correlation between the first element in each vector.

w1 0.812 0.013 0.027
w2 0.777 −0.014 0.030
w3 0.637 0.007 0.012

9.3.6 Many Correlations

However, the preceeding method only enables us to find one correlation in a
data set. We can find more by deflationary methods [160], however, a better
method is to create an objective function which contains the necessary criteria
for finding more than one correlation. One obvious basis for this would be to
insist that yiyT

i = I where I is the m ∗m identity matrix, with the yi, i =
1,2 vector of first (resp. second) outputs.

Thus, the criterion becomes to maximise

J = E{(yT1 y2) + Λ1(y1yT1 − I) + Λ2(y2yT2 − I)} (9.13)

with Λi, i = 1, 2 now a matrix of Lagrange multipliers. This gives us the
learning rules

∆W1 = ηx1(y2 − Λ1y1)T

∆Λ1 = η0(y1yT1 − I)

where
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y1 = WT
1 x1 (9.14)

with W1 the m ∗ n matrix of weights connecting x1 to y1. Similarly with
W2, Λ2.

With this formulation we find a rotation of the canonical correlations. e.g.
with artificial data in which x1 and x2 are both six-dimensional data vectors
each of whose elements are randomly drawn from the zero mean Gaussian
distribution N(0, 1) before an additional three samples are drawn from the
same distribution and added to the first three elements of x1 and x2 , we
find the results in Table 9.4 (left). The fact that there are correlations in the
first three elements has clearly been found and we see that there is only a
very small magnitude in the other three positions of W2. The weights, W1 are
similar.

Table 9.4. One set of weights, W2. Each column represents the weights into one
output. The weights from the last three outputs are approximately 0 in both cases.
The right table shows the results when rectification of the weights is used.

−0.3848 0.2048 −0.1304
−0.0647 −0.5468 −0.2438
−0.1333 −0.0326 0.5218

0.0052 0.0065 0.0099
0.0025 −0.0063 −0.0009
0.0047 0.0002 −0.0013

0.2764 0 0
0 0.2914 0
0 0 0.3692

0.0005 0.0032 0.0001
0.0001 0.0005 0.0006
0.0007 0.0009 0.0076

However, the above network only finds the correlations spread out over the
subspace spanned by the major correlations. We are constraining the expected
value of y1yT1 = I which means that

E(WT
1 x1xT1 W1) = I

i.e. WT
1 Σ11W1 = I

or WT
1 W1 = I if Σ1 = I

where we have used Σ11 as the covariance matrix of the input vector x1.
Now for our artificial data set this last condition holds and so any orthogonal
matrix satisfies the constraints. The Λ1 matrix learns the diagonal elements
to ensure that E(y2

1i) = 1, but there is no interaction between the elements
in x1 so that we do not ensure that E(y1iy1j) = 0, i 	= j, since (Λ1)ij = 0.
The elements of the Λ matrix tend to be very heavily weighted on the main
diagonal.

The trick ([25] and Chapter 5) which turns a PCA network into a Factor
Analysis network was to insist that the weights remain positive. Recognising
that the correlations we wish to find are positive, we may insist that the
weights remain positive i.e. should the weight change mean that the weights
become negative, we simply set that weight to 0. It subsequently has the
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opportunity to grow positive again. This is not too restrictive a practice since
we may insist that another output neuron has all negative weights if we suspect
an anticorrelation between x1 and x2. This change is also motivated by Dale’s
Law which states that a neuron may be inhibitory or excitatory but may not
switch from one effect to the other. With this additional constraint we have
the results shown in Table 9.4 (right): the actual correlation filters have been
found. Of note, perhaps, is the fact that the off-diagonal elements of Λi, i = 1, 2
are very much larger, showing that we are now forcing interaction between
the individual elements of the outputs.

We may use this method with the random dot stereogram method. With
the above network the competition (between y1y2 and y3y4) is not necessary:
one pair of neurons will learn a left shift while one pair learns a right shift.

9.4 A Second Neural Implementation of CCA

In Chapter 2, we discussed how Principal Component Analysis (PCA) can be
performed by solving for w the eigenproblem

Σw = λw (9.15)

where Σ is the covariance matrix of the data. Now any square matrix can have
eigenvectors and eigenvalues and so the eigen problem for a general matrix A
can be written

Aw = λw (9.16)

We can consider a generalisation of this, which is to find eigenvectors w and
eigenvalues λ solving the equation

Aw = λBw (9.17)

which will be used in this section. This is equivalent to solving

B−1Aw = λw (9.18)

if B−1 exists. i.e. the eigenvector solution of (9.17) is the standard eigenvector
solution of (9.18).

Now it may be shown [155] that an alternative method of finding the
canonical correlation directions is to solve the generalised eigenvalue problem[

0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
Σ11 0

0 Σ22

] [
w1

w2

]
(9.19)

where ρ is the correlation coefficient. Intuitively, since Σij = E(xixj) we
are stating that w2 times the correlation between x1 and x2 is equal to the
correlation coefficient times the weighted (by w1) variance of x1. Now this has
multiple solutions since we are not constraining the variance of the outputs
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to be 1. If w∗1 and w∗2 are solutions to (9.19), then so are aw∗1 and aw∗2 for
all real a. Thus this method will find the correct correlation vectors but not
with a unique magnitude.

It has recently been shown [188] that solutions of the generalised eigenvalue
problem

Aw = λBw (9.20)

can be found using gradient ascent of the form

dw
dt

= Aw − f(w)Bw (9.21)

where the function f(w) : Rn − {0} → R satisfies

1. f(w) is locally Lipschitz continuous.
2. ∃M1 > M2 > 0 : f(w) > λ1,∀w :‖ w ‖≥ M1 andf(w) < λn,∀w : 0 <‖

w ‖≤M2.
3. ∀w ∈ Rn − {0},∃N1 > N2 > 0 : f(θw) > λ1,∀θ : θ ≥ N1 andf(θw) <
λn,∀θ : 0 ≤ θ ≤ N2 and f(θw) is a strictly monotonically increasing
function of θ in [N1, N2].

where λ1 is the greatest generalised eigenvalue and λn is the least eigenvalue.
Intuitively, what these criteria mean are the following:

1. The function is rather smooth.
2. It is always possible to find values of wi, i = 1, 2 large enough so that the

functions of the weights exceed the greatest eigenvalue.
3. It is always possible to find values of wi, i = 1, 2 small enough so that the

functions of the weights are smaller than the least eigenvalue.
4. For any particular value of wi, i = 1, 2, it is possible to multiply wi, i = 1, 2

by a scalar and apply the function to the result to get a value greater than
the greatest eigenvalue.

5. Similarly, we can find another scalar so that, multiplying the wi, i = 1, 2,
by this scalar and taking the function of the result gives us a value less
than the smallest eigenvalue.

6. The function of this product is monotonically increasing between the
scalars defined in 4 and 5.

Taking w = [wT
1 wT

2 ]T , we find the canonical correlation directions w1 and
w2 using

dw1

dt
= Σ12w2 − f(w1)Σ11w1

dw2

dt
= Σ21w1 − f(w2)Σ22w2

Using the facts that Σij = E(xixTj ), i, j = 1, 2, and that yi = wi.xi, we may
propose the instantaneous rules
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∆w1 = η(x1y2 − f(w1)x1y1)
∆w2 = η(x2y1 − f(w2)x2y2)

For example, if we choose f(w) = ln(wT (t)w(t)),we have:

∆w1j = ηx1j(y2 − ln(wT
1 w1)y1)

∆w2j = ηx2j(y1 − ln(wT
2 w2)y2) (9.22)

This algorithm is simpler than that used previously, in that we don’t need to
adjust the parameter λ any more. In a similar manner, we can use:

∆w1j = ηxj(y2 − ln
(∑

j
| w1j |)y1

)
(9.23)

∆w1j = ηxj(y2 − ln(max1≤j≤n | w1j |)y1) (9.24)
∆w1j = ηxj(y2 − (wT

1 w1 − φ)y1) (9.25)

∆w1j = ηxj(y2 −
(∑

j
| w1j | −φ)y1

)
(9.26)

∆w1j = ηxj(y2 − (max1≤j≤n | w1j | −φ)y1) (9.27)

and similarly with the corresponding updates of w2. The functions (9.22)-
(9.27) will be known as f1(), · · · , f6() in the following. These new algorithms
only have a one-phase operation; there is no additional λ parameter to update.

It may appear that the rule (9.25) is equivalent to the update of the
λ parameter in the previous section. This is only superficially true: firstly,
the derivations are quite different; secondly, the φ parameter in (9.25) must
satisfy the constraint [188] that it is greater than the greatest eigenvalue of
the covariance matrix of the input data, whereas the previous rule (9.11)
used the equivalent parameter to ensure that the variances of the outputs
were bounded. The need for a larger value of φ in (9.25) has been verified
experimentally.

9.5 Simulations

9.5.1 Artificial Data

To compare this new family of algorithms with the first neural algorithm, we
use the artificial data discussed above. We generated an artificial data set to
give two vectors x1 and x2. The vector x1 is a four-dimensional vector, each of
whose elements is drawn from the zero-mean Gaussian distribution, N(0, 1);
x2 is a three-dimensional vector, each of whose elements is also drawn from
N(0, 1). In order to introduce correlations between the two vectors, x1 and x2,
we generate an additional sample from N(0, 1) and add it to the first elements
of each vector and then normalise the variances. Thus there is no correlation
between the two vectors other than that existing between the first elements
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Fig. 9.3. Left: Convergence on artificial data using the first algorithm. Right:
Convergence on artificial data using the second algorithm with f1().

of each. All simulations have used an initial learning rate of 0.001, which is
decreased linearly to 0 over 100 000 iterations.

The left diagram in Fig. 9.3 shows the convergence of the weights with the
first algorithm, while the right of Fig. 9.3 shows the convergence of the weights
using the second method with function f1(). The convergence is given as the
angle between the weights at each iteration in our simulation and that of the
optimal set of weights i.e.(1,0,0,0) for x1 and (1,0,0) for x2. In each figure,
we graph two lines to express the convergence of w1 and w2. Comparing the
diagrams in Figure 9.3, we can see the second algorithm converges much faster
than the first algorithm and is very stable. All of the learning algorithms of
this class have the same order of convergence speed and so the convergence
speed does not depend on the specific form of f(w). The learning algorithms
are robust to implementation error on f(w). The simple f(w) reduces the
implementation complexity.

9.5.2 Real Data

Again, in order to compare our family of methods with those reported above,
we use the 88 students’ marks on five module exams. Thus we have a two-
dimensional x1 and a three-dimensional x2. One set of results is shown in
Table 9.5. In our experiment, the learning rate was 0.0001 and the number of
iterations was 50 000.

In Table 9.5, w1 vector consists of the weights from the closed-book exam
data to y1, while the w2 vector consists of the weights from the open-book
exam data to y2. We note the excellent agreement between the methods.

We will not repeat with the second neural CCA method the other experi-
ments which we discussed with the first neural method, but simply state that
the second method can be extended in exactly the same way as the first and
will perform as well as the first in all cases [60].
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Table 9.5. Correlation and weight values on the examination data.

Standard statistics: max. correlation 0.6630
w1 0.0260 0.0518
w2 0.0824 0.0008 0.0035

Second algorithm: max. correlation 0.6790
w1 0.0270 0.0512
w2 0.0810 0.0090 0.0040

9.6 Linear Discriminant Analysis

As a slight diversion from the main theme of this book, we note that we may
use the above method to perform Linear Discriminate Analysis. Fisher’s Lin-
ear Discriminant Analysis (LDA) is a method for seeking a direction or filter
of a high-dimensional data set which is optimum for discrimination between
two data sets. This may be compared with Principal Component Analysis
which finds components useful for representing the data with minimal loss,
but which need not find directions useful for discrimination.

Formally, let us have n1 samples from a data set D1 and n2 samples from a
data set D2. Then LDA finds those vectors w which best differentiate between
the samples from D1 and D2 when the samples are projected onto w. If x1 is
a sample from D1 and x2 is a sample from D2, then ideally y1 = w.x1 and
y2 = w.x2 should be clearly differentiable for all x1 and x2. It can be shown
(e.g. [42]) that this best line can be found by optimising the criterion function

J(w) =
wTSBw
wTSWw

(9.28)

where SB = (µ1 − µ2)(µ1 − µ2)T is the between class covariance matrix and
SW =

∑
x∈Di(x− µi)(x− µi)T is the within class covariance matrix. This is

known as the generalised Rayleigh Quotient and can be maximised by find-
ing the eigenvector with maximum eigenvalue of the generalised eigenvalue
problem

SBw = λSWw (9.29)

We thus create an artificial neural network which has a feedforward stage:

y1 =
∑
i

wix1i

y2 =
∑
i

wix2i

after which learning takes place

∆wi = η(ti − f(w)(y1x1i + y2x2i)) (9.30)
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where ti =
∑
j Aijwj , with Aij = (µ1i − µ2i) ∗ (µ1j − µ2j) being the between

sets covariance matrix. Exemplar results are shown in Fig. 9.4: the left di-
agram shows two uniform clusters which are linearly separable and the line
which is found; it is optimal for the separation; the right diagram shows two
Gaussian clusters which, though they are not separable, are best differentiated
by projecting onto the line shown.
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Fig. 9.4. Left: The two uniform distributions will be linearly separable by projecting
onto the line found. Right: The two Gaussian clusters are most separated if projected
onto the line.

9.7 Discussion

In this chapter, we have illustrated the performance of two linear canonical
correlation neural networks on a variety of data sets, both real and artificial.
We have been able to extend the CCA methods to deal with the case where
the correlation extends to more than two input data sets, something which is
not possible using the standard statistical methods of Canonical Correlation
Analysis. The networks were also successfully operated on a data set designed
to abstract the essential concepts of random dot stereograms and was shown
to be capable of finding whether a particular pair of inputs exhibited a left or
a right shift. The actual data set used contained all possible pairs of inputs,
whether ambiguous or not, and identified the appropriate shift extremely re-
liably.

In Chapter 11, we will extend these methods so that they respond to non-
linear correlations. Since there is no simple closed-form solution to the max-
imisation of such correlations, an iterative method such as a neural network
weight learning method is necessary for such problems.

We close this chapter by noting that the two methods are very similar
in structure: both contain a Hebb-type learning term between each input
and the opposite output and an anti-Hebb term between the input and the
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corresponding output. We again have negative feedback of activation though
we have continued to use it specifically in the learning rule. Yet they were
derived from very different starting points. We will see, in the next chapter,
that similar rules can be derived from a variety of perspectives.



10

Alternative Derivations of CCA Networks

In the previous chapter, we discussed two new methods of performing Canoni-
cal Correlation Analysis (CCA) with artificial neural networks. In this chapter,
we re-derive learning rules from a probabilistic perspective which then enables
us, by use of a specific prior on the weights, to simplify the algorithm. We
then derive CCA-type rules from Becker’s models (see Appendix D), though
with a very different methodology from that used in [7]. We finally derive a
robust version of the above rules from probability theory and compare the
convergence of all the various rules on artificial data sets.

10.1 A Probabilistic Perspective

We may also derive these learning rules from a probabilistic perspective. Let
us assume that we have discovered the best linear combination of the elements
of x2 which will match with greatest correlation a linear combination of x1.
Then y2 has the target distribution which we wish y1 to match as closely as
possible. Now if the distributions match exactly, there is a linear relationship
between y1 and y2 i.e.

y2 = λ1y1 + θ

For simplicity in the following, we will take θ = 0. Now let us assume that
the actual value of y2 is Gaussian distributed with mean proportional to y1.
Then the probability of the output y2 given the model and its parameters is

P (y2|w1,x1,H) =
1

Zn
exp{−β(λ1y1 − y2)2}

where Zn is a normalising factor, H is the current model and β determines
the spread of the distribution. We wish to find the most probable value of y2.
Then we may define J1 to be the negative log of this probability to give an
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objective function which we can minimise with respect to the parameters w1

to get the learning rules

∆w1 ∝ − ∂J1

∂w1
= βx1(y2 − λ1y1)λ1 (10.1)

The learning rule for w1 is identical to that of the previous chapter with βλ1 =
η. This perspective also allows us to perform error descent on the unknown
parameter λ1 (ignoring for the moment difficulties with joint optimisations) or
we may set λ1 to a particular value determined by our prior beliefs about the
data set, x1 and x2 and the parameters. We may consider the more general
situation where

y1 = f1(wT
1 x1)

for some nonlinear function f1(). Then

∆w1 = − ∂J1

∂w1
= βf ′

1x1(y2 − λ1y1)λ1 (10.2)

where f ′
1 is the derivative of f1(t) with respect to t. We will see in the next

chapter that this is a very similar rule to that derived from a constrained
optimisation perspective. However it now allows us to experiment with rules
optimal for different probabilities.

10.1.1 Putting Priors on the Probabilities

Let us now consider our prior beliefs about the weights w1. It is our prior belief
that we require a nonzero value for y1; in other words, we wish to ensure that
our learning algorithm does not find values of w1 and w2 that give us the
trivial solution y1 = y2 = 0. For reasons which will become obvious later, we
will use the prior

P (w1|x1,H) =
1

Zw
exp

(
1
2
γy2

1

)
(10.3)

where Zw is a normalising constant. We may equally express this as a prior on
y1 since the relationship between w1 and y1 is deterministic. Note that this
implies that our prior belief in the joint magnitude of all weights into output
y1 is an exponential distribution. Now 1

Zw
exp(1

2γy2
1) = 1

Zw
exp( 1

2γf2
1 (wT

1 x1))
and so with binary x1, we are at, or close to, the corners of a hypercube. Since
most of the volume of a high-dimensional hypercube is near the corners, this
prior displays our belief that some weights will have large values. Then the
joint probability of weights and data can be written

P (y2,w1|x1,H) = P (y2|w1,x1,H).P (w1|x1,H)

and so taking
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J2 = − log(P (y2|w1,x1,H).P (w1|x1,H)) (10.4)

we have

∆w1 = y2x1βλ1f
′
1 − x1y1(βλ2

1 − γ)f ′
1

If we use y1 = tanh(wT
1 x1)

∆w1 = y2x1βλ1(1 − y2
1) − x1y1(1 − y2

1)(βλ2
1 − γ)

We now set γ = βλ2
1 to get a much simplified equation,

∆w1 = y2x1βλ1(1 − y2
1)

which we use in the remainder of this chapter.
The prior above is an improper prior (

∫
P (w1|x1,H) = ∞), but this prior

may be made proper if we bound the region over which the weights have
non-zero prior probability,

P (w1|x1, H) =
{

1
Zw

exp( 1
2γy2

1), if |w1i| < a,∀i,

0, otherwise.
(10.5)

Note that the value of a must be sufficiently large that the nonzero part of the
posterior distribution lies within the prior’s support. If a is fixed, the width
of the posterior of y2 is proportional to the width of the least probable region
round the origin for the prior on y1.

However, we see that this method will not be successful in the linear case
since the probability density function increases so strongly towards a that all
weights will tend to a uniform vector all of whose elements are equal to a.

Finally, we note that using y2 as the target density in this way is equivalent
to the M step in the EM algorithm, while the adaption of the weights, w2

is equivalent to the E step. From the perspective of the y2 neuron, these are
reversed.

10.2 Robust CCA

We use a similar argument in this section to that used in Chapter 8. We use
as a cost function for this network

J1 = f1(e) = f1(y1 − λ2y2) (10.6)

where, previously, f1 = ||.||2, the (squared) Euclidean norm. It is well known
(e.g. [172, 13]) that with this definition of f1() the cost function is minimised
with respect to any set of samples from the data set on the assumption of
Gaussian noise on the samples.

In Chapter 8, we discussed how the mimimisation of J1 is equivalent to
minimising the negative log probability of the error, e, which is equivalent to
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the noise which y1 assumes is on its data set. Thus we may determine the
optimal cost function based on our knowledge of the noise in a data set.

If, for example, we were to believe that the noise followed a different dis-
tribution e.g. if e ∼ 1

Z exp(−|y1 −λ2y2|) then we may derive optimal learning
rules from

∂J1

∂w1
= x1.sign(y1 − λ2y2)

where sign(t) =
{−1, if t < 0,

+1, if t > 0.

In Chapter 8, we showed the importance of the (one-dimensional) probability
density function

p(e) =
1

2 + ε
exp(−|e|ε) (10.7)

where

|e|ε =
{

0, ∀|e| < ε,
|e − ε|, otherwise .

(10.8)

Using this model of the noise, the optimal f1() function is the ε-insensitive
cost function

f1(e) = |e|ε (10.9)

Therefore when we use this function in the twinned network we get the learn-
ing rule

∆w1i = ηx1isign(y1 − λ1y2) , if |y1 − λ1y2| > ε,

∆w1i = 0, otherwise. (10.10)

which is a simplification of the standard rule.

10.3 A Model Derived from Becker’s Model 1

Perhaps the most influential researcher in the neural network field investi-
gation problems such as understanding random dot stereograms has been
Susanna Becker; a slightly more detailed discussion of her methods is given
in Appendix D. For continuous distributions, Becker ([7], page 58) has three
main models, two of which are used in practice. The first assumes that y1 and
y2 are both zero mean Gaussian scalars. Then from y1’s perspective, y1 is try-
ing to predict y2 which it assumes is telling the truth. i.e. y1 is assuming that
it is noisy version of the signal which y2 gives perfectly. Then the information
(Chapter 2) that y2 provides about y1 is

Iy1y2 = h(y1) − h(y1|y2)

=
1
2
(log σ2

y1
− log σ2

(y1|y2)
) (10.11)
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Becker actually maximises the average of h(y1)−h(y1|y2) and h(y2)−h(y2|y1)
even though both are equal to Iy1y2 . (This is done “for symmetry” [7], page
58). Now Becker uses backpropagation of the derivatives of I with respect to
the weights. We shall simplify the process by making two additional assump-
tions:

1. The relationship between E(y1) and E(y2) is linear. i.e. ∃λ2 : E(y1) =
λ2E(y2) + d. Under the assumption that both are zero mean, d = 0.

2. We assume that σ2
y1

= 1, which accords with the standard CCA assump-
tions.

Under these assumptions, (10.11) becomes

Iy1y2 = −1
2

log{variance of (y1 − λ2y2)} (10.12)

Using the assumptions of Gaussianity, maximising Iy1y2 is then equivalent to
maximising E(y1−λ2y2)2. If we opt for online learning, the best instantaneous
estimator of this is (y1 − λ2y2)2 and its derivative with respect to w1 gives
the previous online learning rule. So we are now changing the weights to give
a residual with minimum variance; we may formulate this as

J1 =
1
2
(y1 − λ2y2)2

∆w1 ∝ − ∂J1

∂w1
= −x1(y1 − λ2y2)

∆λ2 ∝ −∂J1

∂λ2
= y2(y1 − λ2y2) (10.13)

Thus our learning rule for λi is very different from that in the previous section
but we should ask “Is it necessary?”. Under our assumptions, σ2

y1
= σ2

y2
= 1

and so we do not require the λi parameters which leads to

J1 =
1
2
(y1 − y2)2

∆w1 ∝ − ∂J1

∂w1
= −x1(y1 − y2) (10.14)

In the comparison section of Lai’s thesis [113], she calls (10.13) “BM1”,
and (10.14) “BM1, no Lambda” since they have been derived from starting
points developted by Becker. We do, however, recognise that Becker’s derived
models are very different.

10.3.1 Who Is Telling the Truth?

Now, Becker points out that there is a contradition in her method: y1 believes
that it is adapting its weights to match the information given by y2 i.e. y2

is the signal and currently y1 is a noisy version of this signal. Therefore,
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y1 should expect its variance to be greater than y2’s variance. Meanwhile y2

believes just the opposite. “However, in practice this is not a problem, because
each module is minimising V (ya − yb), so our model becomes more accurate
as learning proceeds.” However we are introducing a new degree of freedom
which can also be changed online so that we are managing the contradiction
inherent in the weight update rules by allowing our belief in the correctness of
yi’s assumptions to change in time. Similarly in the previous chapter, by using
k1, k2 parameters with k1 > k2 we are actually making the prior assumption
that y1 is correct in its belief that it should have more variance than y2

initially, and as the two sets of weights converge to maximise the correlations,
we are changing our belief to one that gives equal confidence in both neurons’
assumptions.

10.3.2 A Model Derived from Becker’s Second Model

Becker also derives a second model based on the belief that both y1 and y2

are noisy versions of some underlying true signal. She suggests that a good
approximation to the required mutual information is the mutual information
between the average of y1 and y2 and the underlying signal. Therefore yi =
sig + ni, i = 1, 2 where sig is the underlying signal and ni is the noise on the
ith output. Thus

I∗ = I

(
y1 + y2

2
; sig

)
= 0.5 log

V (sig + 0.5 ∗ (n1 + n2))
V (0.5 ∗ (n1 + n2))

= 0.5 log
V (sig + 0.5 ∗ (n1 + n2))

V (0.5 ∗ (n1 − n2))

= 0.5 ∗ log
V (0.5 ∗ (y1 + y2))
V (0.5 ∗ (y1 − y2))

where V (t) is the variance of t. Now we are interested in an instantaneous
version of the algorithm and so we approximate this expectation by its in-
stantaneous version (we may ignore the monotonic function 0.5*log()) to get

J2 =
y2
1 + 2y1y2 + y2

2

y2
1 − 2y1y2 + y2

2

=
1 + y1y2

1 − y1y2
(10.15)

assuming that the variances equal 1. This allows us to calculate the derivative
of J2 with respect to the weights, w1 and w2 to get

∆w1 =
ηx1y2

(1 − y1y2)2
(10.16)

In practice we use
∆w1 =

ηx1y2

(1 − y1y2)2 + k
(10.17)

to avoid problems with division by 0. Similarly for w2. A final model may be
similarly derived as
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∆w1 =
ηλ1x1λ2y2

(1 − λ1y1λ2y2)2 + k
(10.18)

where now the λi parameters may be adapted according to

∆λ1 =
η0y1λ2y2

(1 − λ1y1λ2y2)2 + k
(10.19)

In the comparison section of [113], (10.17) is termed “BM2b” while (10.18)
and (10.19) is termed “BM2”. We should recognise that Becker derived very
different models from the same starting point.

10.4 Discussion

In the thesis of Lai [113], in particular, there is an extensive investigation of
the performance of the various algorithms (though not the second algorithm
from the previous chapter) on a variety of artificial data sets; the point is very
soundly made that it is “horses for courses”: the nature of the data set and
the noise within it interact to make one or another learning rule optimal for
finding correlations in that particular data set. The theory and the simulations
match very well. We will not discuss the experimental findings at all in this
book, but merely point the interested reader to the thesis.

We wish to highlight the common theme underlying all of the above rules,
regardless of their derivation: consider

1. The first CCA algorithm of Chapter 9:

∆w1j = ηx1j(y2 − λ1y1)
∆λ1 = η0(1 − y2

1) (10.20)

2. The second set of CCA algorithms of Chapter 9:

∆w1 = η(x1y2 − f(w1)x1y1)
∆w2 = η(x2y1 − f(w2)x2y2)

3. The probabilistic rule:

∆w1 ∝ − ∂J1

∂w1
= x1(y2 − λ1y1)λ1 (10.21)

4. The rule derived from Becker’s first model, BM1:

∆λ2 ∝ −∂J1

∂λ2
= y2(y1 − λ2y2) (10.22)

5. The same rule but omitting λ :

∆w1 ∝ − ∂J1

∂w1
= βx1(y2 − λ1y1)λ1 (10.23)
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6. The rule derived from Becker’s second model, BM2:

∆w1 =
ηλ1x1λ2y2

(1 − λ1y1λ2y2)2 + k
(10.24)

∆λ1 =
η0y1λ2y2

(1 − λ1y1λ2y2)2 + k
(10.25)

7. The same rule but omitting λ:

∆w1 =
ηx1y2

(1 − y1y2)2 + k
(10.26)

We see that each weight change rule begins with a Hebbian learning term and
is often then followed by an anti-Hebbian weight change rule. In Appendix
D, we discuss Stone’s weight change rule [174] which also has Hebbian and
anti-Hebbian elements in it, though it again was derived from very different
principles. We conjecture that such an arrangement may have been very pow-
erful in an evolving system which attempts to find the greatest correlations
in elements of its environment.
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Kernel and Nonlinear Correlations

In this chapter we consider three extensions to Canonical Correlation Analysis
networks

• We derive a nonlinear CCA network for use where the highest correlations
are found from nonlinear projections.

• Using the idea of kernel operations derived from Support Vector Machines,
we derive two kernel CCA method and show that one is much to be pre-
ferred over the other.

• We show that a mixture of CCA networks can be used where a locally
linear set of correlations varies in time or space.

11.1 Nonlinear Correlations

Now while the data set in Chapter 9 provides us with an abstraction of random
dot stereograms, it cannot be a complete and accurate abstraction of how the
cortex extracts depth information from surfaces: at any one time, we view
not just single points but segments of a surface. Consider Fig. 11.1. We see
that the relationship between the projection of the surface on the retinas is
a function of the angle between the plane of the surface and the plane of the
retinas. We do not wish to determine the precise relationship in any specific
case since we wish to create a general-purpose depth analyser which does not
depend on, e.g. both the retinas and the surface being flat, the pupils having
a precise relationship with the limits of the viewed surfaces etc.

Therefore, first we investigate the general problem of maximising corre-
lations between two data sets when there may be an underlying nonlinear
relationship between the data sets.

11.1.1 Experiment Results

We generate data according to the prescription:
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A B A’

B’

S U T’T S’ U’

L R L R

M M’

Fig. 11.1. The left figure represents visual information from a surface AB which
is passed through pupils R and L to flat “retinas” MS and TU. The right figure
represents the same scene when the external surface A’B’ is not parallel to the plane
of the retinas.

x11 = 1 − sin θ + µ1 (11.1)
x12 = cos θ + µ2 (11.2)
x21 = θ − π + µ3 (11.3)
x22 = θ − π + µ4 (11.4)

where θ is drawn from a uniform distribution in [0, 2π] and µi, i = 1, ..., 4 are
drawn from the zero mean Gaussian distribution N(0, 0.1). Equations (11.1)
and (11.2) define a circular manifold in the two-dimensional input space while
(11.3) and (11.4) define a linear manifold within the input space, where each
manifold is only approximate due to the presence of noise (µi, i = 1, ..., 4).
The subtraction of π in the linear manifold equations is merely to centre the
data.

Thus x1 = {x11, x12} lies on or near the circular manifold while x2 =
{x21, x22} lies on or near the line.

We wish to test whether the network can find nonlinear correlations be-
tween the two data sets, x1 and x2, and test whether such correlations are
greater than the maximum linear correlations. To do this we train the first
network of Chapter 9 (9.11) on this data set but this time calculate y3 and y4

using

y3 =
∑

j w3j tanh(v3jx1j) = w3f3 and
y4 =

∑
j w4j tanh(v4jx2j) = w4f4

The correlation between y1 and y2 neurons was maximised using the previous
linear operation while that between y3 and y4 used the functions

J3 = E

{
(y3y4) +

1
2
λ3(1 − y2

3)
}

and

J4 = E

{
(y3y4) +

1
2
λ4(1 − y2

4)
}
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whose derivatives give us

∂J3

∂w3
= f3y4 − λ3y3f3 = f3(y4 − λ3y3)

∂J3

∂v3
= w3y4(1 − f2

3 )x1 − λ3w3(1 − f2
3 )x1y3

= w3(1 − f2
3 )x1(y4 − λ3y3)

Similarly with the J4 function, w4, v4, and λ4. This gives us a method
of changing the weights and the Lagrange multipliers on an online basis. We
therefore have the joint learning rules

∆w3 = ηf3(y4 − λ3y3)
∆w4 = ηf4(y3 − λ4y4)
∆v3i = ηx1iw3i(y4 − λ3y3)(1 − f2

3 )
∆v4i = ηx2iw4i(y3 − λ4y4)(1 − f2

4 ) (11.5)

For the first method we use a learning rate of 0.001 for all weights and
learn over 100 000 iterations. The learning rates are decreased to 0 during the
course of the simulation.

The trained network finds a linear correlation between the data sets of
0.623 (equal to the correlation between y1 and y2) while the nonlinear neu-
rons, y3 and y4, have a correlation of 0.865. Clearly by putting the data sets
through the nonlinear tanh() function we have created a relationship whose
correlations are greater than the linear correlations of the original data set.
We show a test of the outputs from both the linear and nonlinear networks
in Fig. 11.2 in which we graph the output values of the trained network from
each pair of neurons against inputs where the θ values in (11.1)– (11.4) range
from −3 to 3 and, of course, we do not add noise. We see that the linear
network is aligning the outputs as well as may be expected but the nonlinear
network’s outputs are very closely aligned with each other over much more of
the data set. The linear network does not have enough degrees of freedom to
make the line bend toward the curves. We have similar results matching data
from a noisy surface of a sphere with data from a noisy plane. We can compare
these results with the nonlinear version of the second CCA algorithm on the
same problem. We noted the similarity between the two types of CCA net-
work in Chapter 9 but qualified that by observing that they were derived from
very different criteria. Nevertheless, based on this obvious similarity, we have
experimented with the functions f1(), ..., f6() in the nonlinear case equivalent
to (11.5)

y3 =
∑

j
w3jtanh(v3jx1j) = w3g3 (11.6)

y4 =
∑

j
w4jtanh(v4jx4j) = w4g4 (11.7)

to get the nonlinear update equations w3 and w4 using
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Fig. 11.2. The left diagram shows the outputs, y1 and y2, of the linear network,
while the right diagram shows the outputs, y3 and y4, of the nonlinear network.
Visual inspection would suggest that the outputs from the nonlinear network are
more correlated. The actual sample correlation values achieved were 0.623 (linear)
and 0.865 (nonlinear).

∆w3 = ηg3(y4 − f(w3)y3)
∆v3i = ηx1iw3i(y4 − f(w3)y3)(1 − g2

3)
∆w4 = ηg4(y3 − f(w4)y4)
∆v4i = ηx2iw4i(y3 − f(w4)y4)(1 − g2

4) (11.8)

• we train one pair of weights w1 and w2 using rules (9.22);
• we train a second pair of weights, w3 and w4 using (11.8).

We use a learning rate of 0.001 for all weights and learn over 100 000 iterations.
We did not attempt to optimize any parameters for either algorithm. In the
nonlinear case, the second family of networks find a greater correlation (see
Table 11.1). Note that the homogeneity of the family of functions has been
broken in the nonlinear case.

Table 11.1. Nonlinear correlations on the artificial data set from the second CCA
network of Chapter 9.

Function Correlation

f1() 0.859
f2() 0.859
f3() 0.859
f4() 0.863
f5() 0.831
f6() 0.814
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11.2 The Search for Independence

The objective of this section is to present neural networks for separation of
mixed independent source signals. Let there be N independent non-Gaussian
signals (s1, s2, ..., sN ) which are mixed using a (square) mixing matrix A to
get N vectors, xi, each of which is an unknown mixture of the independent
signals,

x = As (11.9)

Then the aim is to use an artificial neural network to retrieve the original
input signals when the only information presented to the network is the un-
known mixture of the signals. Note that the outputs, y, are to be the elements
of the original signal in some order i.e. we are not insisting that the first out-
put of our neural network is equal to the first signal, the second equal to the
second signal and so on. We merely insist that neuron i’s output is solely one
of the N original signals and is not mixed with any of the other signals.

There are two possibilities that we have considered:

1. We may attempt to extract pairs of maximal correlations and ensure that
all pairs are orthogonal to each other. Thus we may use our linear or non-
linear CCA methods to maximise correlations between the two different
input vectors.

2. We may alternatively attempt to extract one signal from the mixture
and minimise correlation between this output and the other output, thus
hoping to extract another signal (implicitly uncorrelated with the first)
from the mixture.

If we begin with the first of these possibilities, the criterion we use is to
maximise

J = E

{
(yT

1 y2) +
1
2
Λ1(I − y1yT

1 ) +
1
2
Λ2(I − y2yT

2 )
}

(11.10)

with Λi, i = 1, 2 now a matrix of Lagrange multipliers. This gives us the
learning rules

∆w1 = ηf1(y2 − Λ1y1)T

∆v1 = ηw1(y2 − Λ1y1)x1(1 − f2
1 )

∆Λ1 = η0(I − y1yT
1 )

where
y1 = wT

1 f(v1.x1) (11.11)

with w1 the m ∗ n matrix of weights connecting x1 to y1. Similarly with w2,
Λ2.

This model may be viewed as an abstraction of two data streams (e.g.
sight and sound) identifying an entity in the environment by identifying the
maximal correlations between the data streams. An alternative use of CCA is
to attempt to identify independent components of data streams by minimising
the correlations between data sets.
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11.2.1 Using Minimum Correlation to Extract Independent
Sources

Just as a Principal Component Analysis network can be changed into a Minor
Component Analysis network by changing the sign of the learning rate, we
can change our CCA network into a network which searches for the linear
combination of the data set which has the minimum mutual correlation by
changing the sign of the learning. However, one difficulty with this is that,
performing descent on the correlations, it is possible to create negative corre-
lations. We therefore wish to add an additional constraint that ensures that
E(y1y2) ≥ 0. For the nonlinear neurons, this gives us the learning rule

J = E

{
(yT

1 y2) +
1
2
Λ1(I − y1yT

1 ) +
1
2
Λ2(I − y2yT

2 ) + Λ3(y1yT
2 )

}
∆w1 = −ηf1((I + Λ3)(y2 − Λ1y1))
∆v1 = −ηw1(I + Λ3)(y2 − Λ1y1)x1(1 − f2

1 )
∆Λ1 = −η0(I − y1yT

1 )
∆Λ3 = η2y2 ∗ yT

1

where we have used the Λi to denote matrices of parameters. Similarly with
w2,v2 and Λ2. This method then ensures that we do not find weight pairs
which give a negative nonlinear correlation.

We wish to emulate biological information processing in that e.g. auditory
information cannot choose which pathway it uses. All early processing is done
by the same neurons. In other words, these neurons see the information at
each time instant. Denoting the signals at time t by s(t) = {s1(t), s2(t)}, we
create mixtures at time t by

m1(t) = f1(s(t))
m2(t) = f2(s(t))

for some functions f1() and f2(). The data set presented to the network is
then

x1 = {m1,1(t),m1,2(t), · · · , m1,1(t + 1), · · · ,m1,2(t + P1)}
x2 = {m2,1(t),m2,2(t), · · · , m2,1(t + 1), · · · ,m2,2(t + P2)}

Good extraction of single sinusoids from a mixture of sinusoids (e.g. for 2×2
square mixes m1,m2) have been obtained using only

x1 = {m1,1(t), m1,2(t),m1,1(t + P1),m1,2(t + P1)}
x2 = {m2,1(t), m2,2(t),m2,1(t + P2),m2,2(t + P2)}

where P1 and P2 are the time delays which need not be equal.
Both methods have been successfully used on extraction of sinusoids; we

report some experimental work in the next section.
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11.2.2 Experiments

We have embedded two sine waves on the surface of a sphere and on the
plane (recall that we previously were able to maximise correlations when we
selected random, but corresponding, points on the surface of the sphere and
on the plane). We generate artificial data according to the prescription (see
Fig. 11.3):

x11 = sin(s1) ∗ cos(s2) (11.12)
x12 = sin(s1) ∗ sin(s2) (11.13)
x13 = cos(s1) (11.14)
x21 = s1 (11.15)
x22 = s2 (11.16)

where e.g. s1(t) = sin(t/8) ∗ π, s2(t) = sin{(t/5 + 3) ∗ π} for each of t =
1, 2, ..., 500. The results from the nonlinear mixture, x1, and x2 are shown in
Fig. 11.4 . We see that the sine wave has been recovered. Similar results have
been achieved when

x21 = s1 + s2

x22 = s1 − s2

though the quality of the recovered signal deteriorates when both x1 and x2

are nonlinear mixtures.

11.2.3 Forcasting

In this section, we wish to compare the forecasting ability of a first linear
CCA network and the first nonlinear CCA network.

Power loading is strongly related to the maximum and minimum daily
temperatures and there also exits a strong relationship between the power
generated one day and the power generated one, two and seven days before[27].
All of these factors are taken into account when codifying the data used to
train the network. Table 11.2 shows the 12 values which are used as input to
the neural network with one neuron as the output for the supervised methods:
load forecasting is essentially a signal-processing problem. Examining and
extrapolating past load behavior, taking account of other influencing factors
such as weather information, time of day, season of year and holidays, will
enable reasonably accurate forecasting.

However, to make an accurate forecast, the effects of all the influencing
parameters need to be considered simultaneously, yet, in general, the inter-
relationships between these factors are varying, complex and nonlinear.

In this experiment, we use a data set from the Taiwan Power Company;
for the supervised networks two years (1992 and 1993) were used to train the
neural network, the 1994 data was used for validating, and the 1995 data has
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Fig. 11.3. The top line shows the underlying sines which we wish to recover. The
second line shows the signals when they are embedded on the surface of a sphere,
x1. The third line shows the signals as coordinates on the plane, x2.

Table 11.2. The output of the network is the expected power load peak Pi for day
i. The inputs are shown below.

Neuron Description

i1 Peak of energy on the previous day

i2 Max. temperature of the previous day

i3 Min. temperature of the previous day

i4 Peak of energy generated two days previously

i5 Max. temperature of two days previously

i6 Min. temperature of the day previously

i7 Peak of energy for seven days previously

i8 Max. temperature of seven days previously

i9 Min. temperature of seven days previously

i10 Max. forecast temperature

i11 Min. forecast temperature

i12 Day-of-the-week code
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Fig. 11.4. One sine wave has been recovered from the nonlinear mixtures of the
sines. The top line shows a pair of y1 neurons, the bottom line the corresponding
pair of y2 neurons.

been used for the practical test. The results shown in Table 11.3 were found
using a learning rate of 0.001 and 100 000 iterations (linear) and 500 000
iterations (nonlinear) for the CCA networks.

Table 11.3. The mean absolute percentage error(MAPE) from a linear and a non-
linear CCA network.

Maximum correlation MAPE

Linear correlation 0.960947 3.473950

Nonlinear correlation 0.963584 3.328755

11.3 Kernel Canonical Correlation Analysis

In this section, we extend nonlinear CCA by nonlinearly transforming the data
to a feature space and then performing linear CCA in this feature space. We
give comparative results on both artificial and real data sets. We also apply
the method to Independent Component Analysis (ICA) to extract information
from two data sets, each of which contains a mixture of signals.
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11.3.1 Kernel Principal Correlation Analysis

Unsupervised kernel methods are a recent innovation based on the meth-
ods developed for Support Vector Machines [178]. Support vector regression
for example, performs a nonlinear mapping of the data set into some high-
dimensional feature space in which we may then perform linear operations.
Since the original mapping was nonlinear, any linear operation in this feature
space corresponds to a nonlinear operation in data space. This section is based
very much on the analysis in [165, 166].

The Linear Kernel

To introduce the use of kernel methods, we review Kernel Principal Compo-
nent Analysis [131, 157, 164, 165, 166, 167, 170, 171] which has been the most
frequently reported linear operation involving unsupervised learning in feature
space and is also a method which will underlie our Kernel Canonical Corre-
lation Analysis (KCCA). We will review PCA and then show that it may be
calculated in a somewhat different manner to that used normally. PCA finds
the eigenvectors and corresponding eigenvalues of the covariance matrix of a
data set. Let χ = x1, ...,xM be independent, identically distributed samples
drawn from a data source. If each xi is n-dimensional, ∃ at most n eigenval-
ues/eigenvectors. Let C be the covariance matrix of the data set; then C is
n ∗n. Then the eigenvectors, ei are n-dimensional vectors which are found by
solving

Cei = λei (11.17)

where λi is the eigenvalue corresponding to ei. We will assume that the eigen-
values and eigenvectors are arranged in nondecreasing order of eigenvalues
and each eigenvector is of length 1. We will use the sample covariance matrix
as though it was the true covariance matrix and so

C
.=

1
M

M∑
j=1

xjxT
j (11.18)

Now each eigenvector lies in the span of χ; i.e. the set χ = {x1, ...,xM} forms
a basis set (normally overcomplete since M > n) for the eigenvectors. So each
ei can be expressed as

ei =
∑

j

αijxj (11.19)

Now if we wish to find the principal components of a new data point, x, we
project it on the eigenvectors previously found: the first principal component is
x.e1, the second is x.e2, etc. These are the coordinates of x in the eigenvector
basis. There are only n eigenvectors (at most) and so there can only be n
coordinates in the new system: we have merely rotated the data set. Now
consider projecting one of the data points from χ on the eigenvector e1:
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xk.e1 = xk.
∑

j

α1jxj =
∑

j

α1jxk.xj (11.20)

Now let K be the matrix of dot products. Then Kij = xi.xj . Multiplying
both sides of (11.17) by xk we get

xT
k Ce1 = xT

k λe1 (11.21)

and using the expansion for e1 and the definition of the sample covariance
matrix, C, gives

1
M

K2α1 = λ1Kα1 (11.22)

Now it may be shown [166] that all interesting solutions of this equation are
also solutions of

Kα1 = Mλ1α1 (11.23)

whose solution is that α1 is the principal eigenvector of K and so we may find
the eigenvectors ei of C using (11.19).

Nonlinear Kernels

Now we preprocess the data using Φ : χ → F . So F is now the space spanned
by Φ(x1), ..., Φ(xM ). The above arguments all hold and the eigenvectors of the
dot product matrix Kij = Φ(xi).Φ(xj) may be found similarly. But now the
kernel trick: provided we can calculate K, we don’t need the individual terms
Φ(xi).

And the above argument shows that any operation which can be defined
in terms of dot products can be kernelised. We thus kernelise CCA.

11.3.2 Kernel Canonical Correlation Analysis

Consider mapping the input data to a high-dimensional (perhaps infinite-
dimensional) feature space, F . Now,

Σ11 = E{(Φ(x1) − µ1)(Φ(x1) − µ1)T }
Σ22 = E{(Φ(x2) − µ2)(Φ(x2) − µ2)T }
Σ12 = E{(Φ(x1) − µ1)(Φ(x2) − µ2)T }

where now µi = E(Φ(xi)) for i = 1, 2. Let us assume for the moment that
the data has been centred in feature space (we actually use the same trick as
[163] to centre the data later (see [114] for details)). Then we define

Σ11 = E{Φ(x1)Φ(x1)T }
Σ22 = E{Φ(x2)Φ(x2)T }
Σ12 = E{Φ(x1)Φ(x2)T }
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and we wish to find those values w1 and w2 which will maximise wT
1 Σ12w2

subject to the constraints wT
1 Σ11w1 = 1 and wT

2 Σ22w2 = 1.
In practice, we will approximate Σ12 with 1

M

∑
i Φ(x1i)ΦT (x2i), the sample

average. At this stage we can see the similarity with our nonlinear CCA: if we
consider an instantaneous hill-climbing algorithm, we would derive precisely
our NLCCA algorithm for the particular nonlinearity involved.

Now w1 and w2 exist in the feature space which is spanned by

{Φ(x11), Φ(x12), ..., Φ(x1M ), Φ(x21), ..., Φ(x2M )}

and therefore can be expressed as

w1 =
M∑
i=1

α1iΦ(x1i) +
M∑
i=1

α2iΦ(x2i)

w2 =
M∑
i=1

β1iΦ(x1i) +
M∑
i=1

β2iΦ(x2i)

With some abuse of the notation we will use xi to be the ith instance from
the set of data i.e. from either the set of values of x1 or from those of x2 and
write

w1 =
2M∑
i=1

αiΦ(xi)

w2 =
2M∑
i=1

βiΦ(xi)

Therefore substituting this in the criteria we wish to optimise, we get

(wT
1 Σ12w2) =

1
M

∑
k,i

αk.ΦT (xk)Φ(x1i)
∑

l

βlΦ
T (x2i)Φ(xl) (11.24)

where the sums over i are to find the sample means over the data set. Similarly
with the constraints, and so

wT
1 Σ11w1 =

1
M

∑
k,i

αk.ΦT (xk)Φ(x1i).
∑

l

αlΦ
T (x1i)Φ(xl)

wT
2 Σ22w2 =

1
M

∑
k,i

βk.ΦT (xk)Φ(x2i).
∑

l

βlΦ
T (x2i)Φ(xl)

Using (K1)ij = ΦT (xi)Φ(x1j) and (K2)ij = ΦT (xi)Φ(x2j) we then have that
we require to maximise αT K1K

T
2 β subject to the constraints αT K1K

T
1 α = 1

and βT K2K
T
2 β = 1. Therefore if we define Γ11 = K1K

T
1 , Γ22 = K2K

T
2 and

Γ12 = K1K
T
2 we solve the problem in the usual way: by forming matrix
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K = Γ
− 1

2
11 Γ12Γ

− 1
2

22 and performing a singular value decomposition on it as
before to get

K = (γ1, γ2, ..., γk)D(θ1, θ2, ..., θk)T (11.25)

where γi and θi are again the standardised eigenvectors of KKT and KT K,
respectively, and D is the diagonal matrix of eigenvalues1.

Then the first canonical correlation vectors in feature space are given by

α1 = Γ
− 1

2
11 γ1 (11.26)

β1 = Γ
− 1

2
22 θ1 (11.27)

with subsequent canonical correlation vectors defined in terms of the subse-
quent eigenvectors, γi and θi.

Now for any new values x1, we may calculate

w1.Φ(x1) =
∑

i

αiΦ(xi)Φ(x1) =
∑

i

αiK1(xi,x1) (11.28)

which then requires to be centered as before. We see that we are again per-
forming a dot product in feature space (it is actually calculated in the subspace
formed from projections of xi).

There are three particular aspects of the above algorithm which should be
pointed out:

1. The optimal weight vectors are vectors in a feature space which we may
never determine. We simply calculate the appropriate matrices using the
kernel trick, e.g. we may use Gaussian kernels so that

K1(x1i,x1j) = exp(−|x1i − x1j |2) (11.29)

which gives us a means of calculating K11 without ever having to calculate
Φ(x1i) or Φ(x1j) explicitly.

2. The method requires a dot product between members of the data set x1

and x2, and therefore the vectors must be of the same length. Therefore,
for example, for the exam data, we must discard one set of exam marks.

3. The method requires a matrix inversion and the data sets may be such
that one data point may be repeated (or almost) leading to a singularity
or badly conditioned matrices. One solution is to add noise to the data
set; this is effective in the exam data set, and is a nice solution if we were
to consider biological information processors but need not always work.
An alternative is to add µI, where I is the identity matrix to Γ11 and Γ22

– a method which was also used in [131]. This gives robust and reliable
solutions.

1 This optimisation is applicable for all symmetric matrices (Theorem A.9.2, [125]).
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11.3.3 Simulations

Artificial Data

We repeat the experiment on the data set from Section 11.1.1 (the noisy
circular manifold and line), which allows us compare the linear CCA network,
the nonlinear CCA network and the Kernel CCA method.

The results from a Kernel CCA with radial basis function (RBF) Gaussian
kernels on the same data is shown in Fig. 11.5: the solid contours are contours
of equal correlation (with points on the line) in the space defined by points
on (or near) the circle; the dotted lines are contours of equal correlation (with
points on the circle) in the space defined by points on or near the line. While
the results are not so easily interpreted as before, we see that areas of high
correlation tend to be local areas in each space.

Fig. 11.5. The first six directions of principal correlation are shown here; all points
on each contour have equal correlation with the points on the line. The solid lines
show lines of equal correlation with the second data set; the dashed lines have points
of equal correlation with the first data set.

Real Data

Our second experiment uses the data set comprising the 88 students’ marks
on five module exams discussed in Chapter 9. The correlations found by the
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kernel method are shown in Fig. 11.6; again we see that radial kernels give
us larger maximal correlations within the data set than found with the linear
CCA network. However, we have to add the caveat that it is entirely possible
to achieve a correlation of 1 if we use radial kernels of infinite width. The
nature of the correlations found here and the optimal kernel function are
matters of ongoing research.

Fig. 11.6. The kernel canonical correlation directions found using radial kernels.
The contour lines are lines of equal correlation. Each pair of diagrams shows the
equal correlation contours from the perspective of one of the data sets.

11.3.4 ICA using KCCA

As we previously showed in Section 11.2, we may use nonlinear CCA to extract
a single signal from a mixture of signals. We now use Kernel CCA for the same
purpose.

Simulations

We repeat the ICA simulation in Section 11.2 in which a mixture of two sines
is separated. The data set we use comprises three sinusoids in noise mixed
linearly with a random mixing matrix; we keep the number of mixtures to
two so that we do not stray too far from biological plausibility and so the
second line of Fig. 11.7 has only two images. We use 80 samples and linear



232 Hebbian Learning and Negative Feedback Networks

kernels. Each sample contains the mixture at time t and the mixture at times
t − 1, ..., t − 9 so that a vector of 10 samples from the mixture is used at
any one time. The underlying signals are shown in the top line of Fig. 11.7
and the correlation filtered data in the bottom line of that figure. The mixing
matrix is shown at the top of the figure. We see that the three sinusoids
have been separated with great accuracy. Similar results have been achieved
with Gaussian and sigmoid kernels. There is a little beating in the higher
frequency sinusoids which is not apparent when we separate two signals from
two mixtures. This particular mixture was chosen since there is very little of
the signal s2 in the first mixture. This case is very readily treated with the
technique of Minor Component Analysis (Chapter 3) but is much the most
difficult case for KCCA.
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Fig. 11.7. The top line shows the three underlying sinusoids. The second line shows
the two linear mixtures of these sinusoids presented to the algorithm. The bottom
line shows three of the filters produced.

Nonlinear and Time-Varying Mixtures

We now consider one nonlinear mixture and one linear mixture of two sinusoids
such as:
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Let m1 = s1 + s2

m2 = (s1 − s2) ∗ s2

The results of linear KCCA are shown in Fig. 11.8. Again the signals are in
the top line, the mixtures in the second line and the filtered data from the
correlation process in the bottom line. We see that the two sinusoids have
been found, but we have to sound a note of caution: the projections shown
are on the second and seventh CCA directions. Each sinusoid appears in two
filters (one π radians out of phase with the other), but even so, the second
signal was not found until the seventh and eighth correlation directions. This
finding of the signals in the lower-order filters is even more pronounced when
we use Gaussian kernels; Fig. 11.9 shows the filtered data found by the nineth
and tenth canonical correlation filters when we use Gaussian kernels.

The extraction of the individual sines becomes progressively harder the
more nonlinear both mixtures become.
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Fig. 11.8. The top line shows the underlying signals, the second line the data and
the third line three kernel correlation projections when linear kernels are used.

Nonstationary mixtures are shown in Fig. 11.10. Now we create mixtures,
m1 and m2, using

m1 = 0.95 sin(t/17)s1 + 0.61 sin(t/17)s2
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Fig. 11.9. The top line shows the underlying signals, the second line the data and
the third line three kernel correlation projections when rbf kernels are used.

m2 = 0.23 sin(t/17)s1 + 0.49 sin(t/17)s2

where t is a parameter denoting time. The underlying frequencies are extracted
by linear kernels (Fig. 11.10).

The rbf kernel, however, is also able to extract (Fig. 11.11) the mixing
frequency in its 7th filter. This also happens when we use alternate sines
and cosines (and with different frequencies) in our mixing matrix. The linear
kernels also find the individual sines but do not find the mixing frequencies.

11.4 Relevance Vector Regression

The concept of Relevance Vectors was introduced by Tipping [177] in acknowl-
edgement of McKay and Neal’s contribution to the concept of Automatic
Relevance Detection. The vectors found by the RVM method are prototyp-
ical vectors of the class types, which is a very different concept from the
Support Vectors whose positions are always at the edges of clusters, thereby
helping to delimit one cluster from another. In this chapter, we first review
Relevance Vector Regression and then apply the concepts from this to un-
supervised techniques which perform clustering. Relevance Vector Regression
uses a dataset of input-target pairs{xi, ti}N

i=1. It assumes that the machine



11.4 Relevance Vector Regression 235

0 20 40 60 80 100
−2

−1

0

1

2

0 20 40 60 80 100
−2

−1

0

1

2

0 20 40 60 80 100
−4

−2

0

2

4

0 20 40 60 80 100
−1

−0.5

0

0.5

1

0 20 40 60 80
−0.2

−0.1

0

0.1

0.2

Corr=1.000

0 20 40 60 80
−0.2

−0.1

0

0.1

0.2

Corr=1.000

Mixtures  are all varying as sin(i/17) 

Linear kernels 

Fig. 11.10. The mixtures are time varying, (see text) but nevertheless the linear
kernel method extracts the underlying frequencies. Each figure in the bottom line
shows the amplitude of the signals varying as they do in the mixtures.

can form an output y from

y(x) =
N∑

i=1

wiK(x,xi) + w0 (11.30)

and p(t|x) is Gaussian N(y(x), σ2). The likelihood of the model is given by

p(t|w, σ) =
1

(2πσ2)−
N
2

exp
{
− 1

2σ2
||t − Kw||2

}
(11.31)

where t = {t1, t2, ..., tN},w = {w0, w1, ..., wN}, and K is the N ∗ (N + 1)
design matrix. To prevent overfitting, an ARD prior is set over the weights

p(w|α) =
N∏

i=0

N(0, α−1) (11.32)

To find the maximum likelihood of the data set with respect to α and σ2, we
iterate between finding the mean and variance of the weight vector and then
calculating new values for α and σ2 using these statistics. We find that many
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Fig. 11.11. The Gaussian kernel also finds the signals but also finds the underlying
slowly changing mixing process in its seventh projection.

of the αi tend to infinity, which means that the corresponding weights tend
to 0. In detail, we have that the posterior of the weights is given by

p(w|t, α,σ2) ∝ |Σ|− 1
2 exp

{
−1

2
(w − µ)T Σ−1(w − µ)

}
(11.33)

where

Σ = (KT BK + A)−1

µ = ΣKT Bt (11.34)

with A = diag(α0, α1, ..., αN ) and B = σ−2IN .
If we integrate out the weights, we obtain the marginal likelihood

p(t|α, σ2) ∝ |B−1 + KA−1KT |− 1
2 exp

{
−1

2
tT (B−1 + KA−1KT )−1t

}
(11.35)

which can be differentiated to give at the optimum,

αnew
i =

γi

µ2
i

(11.36)

(σ2)new =
||t − Kµ||2
N −∑

i γi
(11.37)

where γi = 1 − αiΣii.
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11.4.1 Application to CCA

We must first describe CCA in probabilistic terms. Consider two data sets
Θ1 = {xi

1, i ∈ 1, · · · , N} and Θ2 = {xi
2, i ∈ 1, · · · , N} defined by probability

density functions p1(x1) and p2(x2). Let there be some underlying relationship
so that y1 = wT

1 x1 + ε1 is the canonical correlate corresponding to y2 =
wT

2 x2 + ε2. Then y1 can be used to predict the value of y2, and vice versa.
Let y1 = ρy2 + e1, where ρ is the correlation coefficient.

Then from the perspective of x1, the targets, t1 is given by the other input
x2. i.e.

t1 = w2K2 (11.38)

So we are using the current value of w2 to determine the target for updating
the posterior probabilities for w1. Similarly, we create a target for updating the
probabilities for w2 using the current value of w1. We then simply alternate
between the two Relevance Vector Machines in a way which is reminiscent
of the EM algorithm: from x1’s perspective, calculation of the new values of
w2 corresponds to the E-step, while the calculation of the new values of w1

corresponds to the M-step and vice versa from x2’s perspective.
We have carried out experiment on the artificial data sets which have

been used in Section 11.1.1. Thus, x1 = {x11, x12} lies on or near the circular
manifold while x2 = {x21, x22} lies on or near the line. [115] have shown that
the kernel method can find greater than linear correlations in such a data
set. We now report that the current Relevance Vector Kernel method also
finds greater than linear correlations but with a very sparse representation
generally. Typically the resulting vectors will have zeros in all but one position
with the single nonzero value being very strong. Occasionally, one vector,
e.g. w1 will have a single nonzero value whose correlation with all the other
points will be seen in its vector w2. However, in all cases we find a very strong
correlation. Fig. 11.12 shows the outputs of a trained CCA-RVM network; the
high correlation between y1 and y2 is clear. We may also use the CCA-RVM
network to find stereo correspondences as before [114]; however, this task is
relatively easy and does not use the full power of the CCA-RVM network.

11.5 Appearance-Based Object Recognition

For recognition of three-dimensional objects in two-dimensional gray-level im-
ages there exist two main approaches in computer vision: based on the result
of a segmentation process or directly on the object’s appearance. The seg-
mentation approaches suffer from two disadvantages: segmentation errors and
loss of information contained in the image caused by the segmentation.

Appearance-based approaches, in contrast, avoid these disadvantages.
They use the image data, i.e. the pixel intensities, directly without a pre-
vious segmentation process. The simplest method is correlation of an image
with an object template.
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Fig. 11.12. The figure shows a graph of y1 (horizontal axis) against y2 (vertical
axis) for a Relevance Vector CCA network trained on the negative distance kernel.
The high correlation is obvious.

The aim of the present object-recognition system is pose estimation and
classification of a rigid three-dimensional object from a two-dimensional gray-
level image. Generally for this task, there are three degrees of freedom for the
rotation φ = (φx, φy, φz)T and three for the translation t = (tx, ty, tz)T , and
the transformation can be split into the internal transformation inside the
image plane with tint = (tx, ty)T and φint = φz and the external transforma-
tions orthogonal to the image plane with text = tz and φext = (φx, φy). In the
internal transformations, the object only changes its position in the image,
whereas for the external transformations, the object varies its appearance. In
this work, the objects were put on a turntable and the camera was fixed, so
the distance of the object to the camera was fixed, i.e. tz = 0, and we only
have one external rotation φy, i.e. φx = 0.

Columbia Object Image Library (COIL-20) is a database of gray-scale im-
age of 20 objects (see Fig. 11.13). The objects were placed on a motorized
turntable (see Fig. 11.14) against a black background. The turntable was ro-
tated through 360 degrees to vary object pose with respect to a fixed camera.
Images of the objects were taken at pose intervals of 5 degrees. This corre-
sponds to 72 images per object. The images used have been size normalised.
The object is clipped out from the black background using a rectangular
bounding box. The bounding box is resized to 128 x 128 using interpolation
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decimation filters to minimise aliasing [136]. When resizing, the aspect ratio
is preserved.

Fig. 11.13. Twenty objects in the Columbia Object Image Library(COIL-20).
Reprinted with permission from COIL.

In this experiment, we used one set of 128 x 128 gray-scale images of toy
objects. Each image set contained 72 images formed by rotating the object
through 72 poses in 5 degrees steps; an example is shown in Fig. 11.15. Let
X = xi, 1 ≤ i ≤ 72 denote the set of images and Y = yi, yi ∈ [0, 355] be the
corresponding pose parameters (the camera position in degrees).

We performed kernel-CCA on the original image set and scalar output
parameters using a RBF-kernel with σ = 2. Fig. 11.16 shows projections of all
images onto the first canonical vector. The experiment indicates that kernel-
CCA can be used to find optimal basis functions automatically.

Why did we not report results from the Relevance Vector Method on the
real data? We found that the level of sparsity found by the relevance vector
method on the real data was such that it precluded finding any useful canonical
correlations in this data set.

Tipping [177] does state that one advantage of his method is that it gives
a much sparser representation than even Support Vector Machines do. We
have to report that this is a useful trait on our artificial data (in which we can
always generate more data points) but one which is an encumbrance on the
real data set: typically, in our Relevance vector implementation of CCA, we
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Fig. 11.14. The objects were placed at the center of a motorized turntable. The
turntable was rotated through 360 degrees. An image was acquired with a fixed
camera at every 5 degrees of rotation. Reprinted with permission from COIL.

found that the CCA directions were typically a function of only a single data
point, which may be useful in specific instances but is less useful in general
on the wider data set.

Thus, our overall conclusion is that Kernel CCA is a useful method on
general data sets and provides sufficient sparsity (but not too much) of itself
to be useful for the task for which it was developed.

11.6 Mixtures of Linear Correlations

We now go on to demonstrate a locally linear version of the CCA network,
using a lateral matrix of connections to order the linear correlations.

11.6.1 Many Locally Linear Correlations

In Section 9.3.6, we maximised

J = E{(yT
1 y2) + Λ1(y1yT

1 − I) + Λ2(y2yT
2 − I)} (11.39)

with Λi, i = 1, 2 a matrix of Lagrange multipliers, to get the learning rules
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Fig. 11.15. The turning object image. Reprinted with permission from COIL.

∆W1 = ηx1(y2 − Λ1y1)T (11.40)
∆Λ1 = η0(y1yT

1 − k1I) (11.41)

with W1 the m × n matrix of weights connecting x1 to y1. Similarly with
W2, Λ2. Now we will be interested to find a set of correlations which show
gradual change over the set. We use ideas from Kohonen’s [111] Self Organising
Maps to create a topology-preserving mapping from the input data to the
correlation finding output neurons. We do this by substituting

∆Λ1 = η0(y1yT
1 − A) (11.42)

for (11.41) where A is a matrix whose largest values are round its main diag-
onal and which tends to zero away from that diagonal. Typically we use

Ai,j = exp(−(i − j)2/σ) (11.43)

Equation (11.42) may be derived from maximisation of

J = E{(yT
1 y2) + Λ1(y1yT

1 − A) + Λ2(y2yT
2 − A)} (11.44)

11.6.2 Stone’s Data

In the following experiments, we have used an artificial data set previously
used by James Stone [174]; a description of Stone’s method is found in Ap-
pendix B. This data simulates a moving surface with a slowly varying depth.



242 Hebbian Learning and Negative Feedback Networks

0 10 20 30 40 50 60 70 80
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 11.16. The first canonical vector using the kernel method of Section 11.3.2.

The disparity between the left and right images of a stereo pair was generated
by convolving a circular array of 1000 uniformly distributed random numbers
with a Gaussian function, and then normalising these values to lie between
±1. For example, consider an array, r of 1000 random numbers, and a 1000
× 1000 matrix G with values given by:

Ga,b =
1
σ

e
−(min(|a−b|,1000−|a−b|))2

2σ2 (11.45)

The min( ) function in (11.45) ensures that the Gaussian wraps around the
r array, which effectively makes it circular. Then, the un-normalised array of
disparity values, d, is given by the product in (11.46). Fig. 11.17 shows an
example of an array of 1000 disparity values generated using this method.

d = Gr (11.46)

One of the arrays of pixels (e.g. the left) is generated by randomising an array,
b, of 10 000 boolean values, each of which has a probability of 1

6 of being 1.
For each pixel, the mean of ten Boolean values in each group is then used as
the magnitude of the pixel value. Subsequent pixels are given by the average
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Fig. 11.17. Example of an array of 1000 disparity values generated using the
method described above.

of nonoverlapping groups of Boolean values (11.47). To generate the other set
of pixels (i.e. the right set), the same procedure is repeated, but this time, the
positions of the mean values taken from the b array depend on the array of
disparity values, d. The disparity values determine the shift along the b array
that is different from the positions for the corresponding left pixels (11.48).
For example, for a disparity value of 0.5, the right pixel would be taken over
an average of ten random bits, five of which are also used to generate the left
pixel.

x
(1)
i =

1
10

10i+9∑
j=10i

bj (11.47)

x
(2)
i =

1
10

10i+di+9∑
j=10i+10d

bj (11.48)

This procedure is illustrated in Fig. 11.18, which shows how the pairs of pixels
are generated from the single array of random bits.

The locally linear CCA network was trained using this data set of 1000
pairs of pixels, with three left inputs and three right inputs. In each training
iteration, a random position in the data set was chosen and both sets of inputs
were taken from the same position in the left and right arrays. There is no
reason to choose three-dimensional inputs over any other dimensionality since
each input receives data with the same statistics. We therefore expect that
all weights from a single output node should be similar (11.49), regardless of
which input node it is connected to since all inputs receive the same data set,
and therefore they have the same statistics:
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Fig. 11.18. Generation of Stone’s data. The left pixels are taken from the average
of sequential blocks of 10 random bits. The right pixels are generated in a similar
way, but with disparity shifts implemented by shifts along the array of random bits.

wi
11 ≈ wi

12 ≈ wi
13 ≈ wi

14, · · · (11.49)

Instead, the network should find relationships between the two data sets and
therefore weights connecting a single output to two different modules will not
necessarily be similar, for example, wi

11 and wi
21. This expectation was con-

firmed experimentally, as can be seen from the results in Fig. 11.19. This figure
shows a plot of the weights of the network after 100 000 training iterations.

Fig. 11.19. The weights of the network after 100 000 training iterations. The
horizontal axis shows the module number and the vertical axis shows the weight
magnitude. The solid lines show the weights connected to the yi

1 outputs and the
dotted lines indicate those connected to the yi

2 outputs.

The lateral matrix included wrap-around i.e. the modules of the network
were considered to be in a ring, and node 1 was adjacent to nodes 2 and 16:
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Aa,b = e
min(a−b,N−(a−b))2

−2σ2 (11.50)

Perhaps the most important finding to point out is that there is a smooth
ordering of the modules i.e. the weights of neighbouring modules are similar,
and we have successfully used the lateral weights to order the responses from
the network. This smooth ordering has taken the form of two wave patterns:
one formed by the y1 vector and the other formed by y2. Fig. 11.20 shows

Fig. 11.20. Scatter-plots of each of the 16 pairs of outputs. After feeding forward to
all modules, the responses of each module have similar orientation, which indicates
the correlation found. The correlations found by the network are smoothly ordered
as a result of using the lateral connections.

scatter-plots of the outputs of each of the modules, where the y1-values are
plotted on the horizontal axis and y2 is plotted vertically. Each of the plots
clearly shows an orientation, which indicates the correlation found by that
particular module. The smooth ordering can clearly be seen as neighbouring
modules show similar orientations to each other. Occasionally we get twists
in the mapping so that, for example, the orientation may change gradually in
an anticlockwise direction, but then it swings back into a clockwise rotation.
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This may cause separate parts of a mapping to overlap, and this is a common
(though undesirable) finding in topology-preserving maps such as the SOM
[111] and the GTM [14].

The random dot stereogram data set has only positive values and there-
fore, only positive correlations can exist in the data. However, some modules
of the network show anticorrelation between their outputs (see Fig. 11.20)
which is clearly the opposite of what the objective function should achieve.
This is an advantage of using wrap around in the lateral matrix, since the
network has found a ”ring” of local correlations and anti-correlations. If some
anticorrelated data (i.e. positive and negative inputs simultaneously) were to
be fed forward, the outputs of these modules would be correlated, satisfying
our objective of causing module outputs to become correlated for local subsets
of the entire data space.

11.6.3 Discussion

In this chapter, we have introduced a nonlinearity to our neural implemen-
tations of CCA. The nonlinear CCA rules were shown to find correlations
greater in magnitude than could be found by linear CCA. We have also intro-
duced kernel CCA and shown that again it can find correlations greater than
linear correlations.

However, we should add the caveat that it is entirely possible to create
correlations using these methods, and any use of such methods should be
accompanied with a strong dose of common sense.

There is a case to be made that Kernel CCA and NLCCA are the same
type of operation in that a kernel can be created out of many real-valued
(nonlinear) functions; we have, for example, shown that both can be used
for Independent Component Analysis. However the kernel approach seems to
offer a new means of finding such nonlinear correlations and one which is very
promising for future researchers. We also derived a new method for doing this
based on relevance vectors. We have illustrated both methods on artificial
data and the original kernel method on a real problem involving estimating
pose from a set of images. The method based on relevance vectors seems to
create too sparse a representation in many cases and we therefore find that
the original kernel method is to be preferred on real data analysis tasks.

Finally, we note that local kernels may be developed which will find local
correlations. This again suggests a strong tie-up between the mixture of linear
CCA networks and the kernel CCA.
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Exploratory Correlation Analysis

In this chapter, we present a neural method capable of extracting features
from different data sources and combining these to form a jointly sparse cod-
ing. The difference between this and the statistically based dual stream neural
architectures discussed in previous chapters is that the method that we pro-
pose is capable of searching for shared higher-order structure between data
streams.

The group of methods which we derive in this chapter are all biologically
plausible in that they are extensions of simple Hebbian learning and if used in
the negative feedback framework, can all be implemented with locally learning
connections. Nevertheless, they will go beyond the second-order methods of
earlier chapters in that they will identify structure which is shared between
two data streams and do so in a way which ignores the same (or, as we shall
see, similar in type but even more pronounced) structure in a single data
stream. This is a useful feature for biological information processing since

1. the most interesting structure in e.g. visual data tends to be identifiable
with higher-order statistics, while

2. noise is typically “shot noise” which is very kurtotic, but due to this is
unlikely to be present in more than one data stream at a time.

We will show that on real data our networks find sparsely firing filters of the
data which are also found in biological networks.

12.1 Exploratory Correlation Analysis

The model we discuss here is an extension of the neural EPP algorithm (Chap-
ter 6). We assume two data streams from which we wish to extract the common
interesting features, i.e. both streams are assumed to have a set of common
underlying factors, which are characterised by being non-Gaussian. Mathe-
matically we can write this model as
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y1 = WT x1

y2 = V T x2

The input streams are denoted by x1 and x2, the projected data by y1 and
y2 and the basis vectors are the rows of the matrices W and V . Each input
stream can be analysed separately by performing EPP and finding common
statistical features that have maximum non-Gaussianity. However, if we know
that the features we are looking for in both data sets have the same statistical
structure, we can add another constraint which maximises the dependence
between the outputs. This is depicted schematically in Fig. 12.1.

1x 2x

1y 2y

W V

Fig. 12.1. The Exploratory Correlation Analysis network.

The simplest way to express this formally is by maximising E(g(y1)T g(y2)).
Additionally, we need to ensure the weights do not grow without bound, which
we can achieve by adding weight constraints WT W = A and V T V = B.
Writing this as an energy function with Lagrange parameters λi,j and µi,j we
obtain

J(W, V ) = E(g(WT x1)T g(V T x2)) +
1
2

N∑
i=1

N∑
j=1

λij(wT
i wj − aij)

+
1
2

N∑
i=1

N∑
j=1

µij(vT
i vj − bij) (12.1)

where vi and wi are column vectors taken from the columns of matrices V
and W , respectively.

The energy function (12.1) can be differentiated with respect to the weights
vij and wij and Lagrange parameters, λij and µij . Setting the derivatives of
(12.1) to 0, we obtain:

∂(J(W,V ))
∂W

= E(x1(g(y2) ⊗ g′(y1))T ) + WΛ = 0 (12.2)

∂(J(W,V ))
∂V

= E(x2(g(y1) ⊗ g′(y2))T ) + V M = 0 (12.3)
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∂(J(W,V ))
∂Λ

= WT W − A = 0 (12.4)

∂(J(W,V ))
∂M

= V T V − B = 0 (12.5)

where Λ is a matrix consisting of the Lagrangian parameters λij , M contains
the Lagrangians µij and A and B contain parameters, aij and bij , respec-
tively. The ⊗ operator is defined as the elementwise multiplication of two
vectors. The Lagrange multipliers can be calculated by premultiplying (12.2)
and (12.3) by WT and V T , respectively. Inserting (12.4) and (12.5) results in:

Λ = −A−1WT E((g(y2) ⊗ g′(y1))xT
1 )

M = −B−1V T E((g(y1) ⊗ g′(y2))xT
2 )

Reinserting these optimal Lagrange parameters into (12.2) and (12.3) yields:

∂(J(W, V ))
∂W

= E(x1(g(y2) ⊗ g′(y1))T ) − WT A−1WE(x1(g(y2) ⊗ g′(y1))T )

∂(J(W, V ))
∂V

= E(x2(g(y1) ⊗ g′(y2))T ) − V T B−1V E(x2(g(y1) ⊗ g′(y2))T )

We typically set the A and B matrices to the identity matrix, which causes the
weights W and V to converge to orthonormal weight matrices. By taking the
instantaneous gradient of this and implementing a stochastic gradient descent
we may derive the following weight update rules:

∆W = η[(x1 − Wy1)(g(y2) ⊗ g′(y1))T ] (12.6)
∆V = η[(x2 − V y2)(g(y1) ⊗ g′(y2))T ] (12.7)

Equations (12.6) and (12.7) may be implemented in a negative feedback
framework. In both equations, the input is fed forward, the outputs are fed
back and subtracted from the input to form a residual. The weight update
consists of multiplying the residual with functions of the values of both output
streams.

Because of its origins in Exploratory Projection Pursuit and the simulta-
neous effect of searching for correlations in datastreams, we call this method
Exploratory Correlation Analysis (ECA). The ECA network uses the third
or fourth moments of the data sets to search for the shared higher order
structure.

As with the neural EPP algorithm, it is convenient to replace the output
functions with stable versions for the ECA algorithm. In contrast to the neu-
ral EPP algorithm, we not only require the derivative of the function to be
maximised, but also the function itself. For kurtosis, we therefore need an ad-
ditional stable function, whose truncated Taylor expansion is g(y) = y4. The
function we chose for the experiments in this chapter is g(y) = µ−µ exp(− 1

µy4)
(see Fig. 12.2).
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The parameter µ controls how accurately this expression approximates
y4. The greater µ is, the more accurately does the function represent the
analytically derived y4, but the greater the maximum of the function and thus
the more unstable the ECA algorithm becomes. To examine the behaviour of
the function in more detail we can expand g(y) around 0:

g(y) = µ − µ exp
(
− 1

µ
y4

)
= y4 − y8

2!µ
+

y12

3!µ2
− . . . (12.8)

Around y = 0, the dominant term after y4 is 1
2!µy8 and therefore we can state

that g(y) approximates y4 sufficiently, when y4 > 1
2!µy8. This also makes

it clear that as µ increases 1
2!µy8 decreases and that g(y) approximates y4

more accurately. It might appear at first sight that we are discussing the
approximation wrongly: it is more usual to be approximating a more complex
function with a simpler function (often by discarding the higher-order terms
of a Taylor series). However in this case our theoretically derived function is
a very simple function, y4, which unfortunately is not robust to outlier terms.
Thus, we are, in effect, adding in the higher-order terms to tame the simple
but fragile function.

To choose a good value of µ, it is important that the approximation is
valid for most of the data used. As our data is sphered, 95% of the data lies
between −1.93 and 1.93 and therefore, y4 > 1

2!µy8 must hold for these values,
which is true for µ = 6.94.
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Fig. 12.2. Approximation of y4 (solid line) with µ−µ exp(− 1
µ
y4) for µ = 1 (dashed

line), µ = 3 (dotted line) and µ = 7 (dot-dashed line)
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12.2 Experiments

We begin with a simple experiment on artificial data to test the network.
The artificial data set was generated from a mixture of kurtotic and normal
data sources. We then go on to use the network for Indpendent Component
Analysis.

12.2.1 Artificial Data

The inputs to the network are two three-dimensional input vectors as shown in
Table 12.1. We used three types of data source, each with a different kurtosis
value. Sources S1 and S2 were independently generated from a kurtotic source
with kurtosis = 20 and source S3 was generated from a kurtotic source with
kurtosis = 3. Thus, the common data source S3 is much less kurtotic than
source S1 or S2. The last data source we used is S4, which was taken from a
normal distribution and is also shared by the two inputs. The variances of all
sources were normalised to 1. In order to show the robustness of the network
we added zero mean Gaussian noise with variance 0.25 to each of the inputs
independently, which causes the correlations which exist between x1 and x2

to decrease.

Table 12.1. Artificial data set. S1 and S2 are more kurtotic than the common
source S3. S4 is a common normal data source.

Input 1 Input 2 Kurtosis

x11 = S1 + N(0, 0.25) x21 = S2 + N(0, 0.25) 20
x12 = S3 + N(0, 0.25) x22 = S3 + N(0, 0.25) 3
x13 = S4 + N(0, 0.25) x23 = S4 + N(0, 0.25) 0

The network was trained for 50 000 iterations with a learning rate of
η = 0.003, which was annealed to 0. The weights converged to the values shown
in Table 12.2. The network has clearly identified the common kurtotic data
source and has ignored the common normal input and the independent input
sources S1 and S2, although they are more kurtotic than S3, thus identifying
the shared higher-order structure in the data. A single stream EPP network
is drawn to the more kurtotic sources S1 and S2.

Table 12.2. Weight vectors after training the ECA network on the artificial data
of Table 12.1.

w 0.0029 1.0000 0.0028

v 0.0043 1.0000 -0.0182
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12.2.2 Dual Stream Blind Source Separation

In this section, we describe an experiment which is an adaption of the blind
source separation problem [97]. Using recordings from multiple microphones
throughout a room, we try to isolate the voices of the individual speakers.

We assume that we can model the set of observed signals x as a mixture of
unknown sources s. These sources are mixed by an unknown mixing matrix A
so that x = As. The goal is to find the unmixing matrix W , so that we can
recover the unknown sources, so that s = Wx. Neural EPP has been used to
find the unmixing matrix (Chapter 6).

Our adaptation of the original blind source separation problem uses two
sets of inputs instead of one, which are both different linear mixtures of the
same source signals. We used mixtures of three source signals, which were
created artificially by randomly taking samples from a kurtotic source, with
kurtosis = 3.

The mixing matrices, A and B, were randomly chosen; examples are:

A =

⎛
⎝ 2 5 1

5 2 9
9 2 3

⎞
⎠ , B =

⎛
⎝ 3 6 1

9 4 7
1 5 3

⎞
⎠

The two sets of input signals were obtained by multiplying the source signals
by A and B. The input data sets were subsequently sphered with sphering
matrices Q1 = Σ

− 1
2

1 and Q2 = Σ
− 1

2
2 , where Σ1 and Σ2 are the covariance ma-

trices of the input streams. We trained the ECA network using a deflationary
version of the neural ECA network, similar to Sanger’s Generalised Hebbian
Architecture (Chapter 2).

y1j =
∑

i

wijx1i,∀j (12.9)

∆wij = ηg′(y1j)g(y2j)

(
x1i −

j∑
k=1

wiky1k

)
(12.10)

y2j =
∑

i

vijx2i,∀j (12.11)

∆vij = ηg′(y2j)g(y1j)

(
x2i −

j∑
k=1

viky2k

)
(12.12)

The network was trained for 150 000 iterations, using a learning rate of
η = 0.003. To show the unmixing properties of the network, we examine the
combined effect of the mixing, sphering and unmixing operations and therefore
we display the product of the matrices WQ1A and V Q2B. In the ideal case,
the combined effect of these matrices should be a permutation matrix:

WQ1A =

⎛
⎝−0.0013 −1.0006 −0.0006

1.0002 0.0311 −0.0038
−0.0021 −0.0036 1.0000

⎞
⎠
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V Q2B =

⎛
⎝−0.0021 −1.0006 −0.0017

1.0002 0.0313 −0.0031
−0.0021 −0.0036 1.0000

⎞
⎠

As we can see, each row of these matrices contains one value close to one or
negative one and the rest of the values are close to zero. We can also see that
the positions of the ones (or negative ones) are the same for both matrices,
indicating that the sources have been unmixed pairwise.

12.3 Connection to CCA

The one unit linear version of the ECA network is closely related to classical
CCA, i.e. when the function g(y) = y is used in the weight update rules (12.6)
and (12.7). This can be made more clear when we consider the situation
where the network is fully converged so that the expected change in weights
is zero [73]. Consider a single pair of output neurons, y1 and y2:

E(∆w) = E(η(x1 − wy1)y2)
= ηE(x1xT

2 v − wy1y2) = 0 (12.13)
E(∆v) = E(η(x2 − vy2)y1)

= ηE(x2xT
1 w − vy1y2) = 0 (12.14)

Writing E(y1y2) as λ, E(x1xT
2 ) as Σ1,2 and E(x2xT

1 ) as Σ2,1 we obtain

Σ1,2v = λw (12.15)
Σ2,1w = λv (12.16)

Substituting (12.15) in (12.16) and vice versa:

Σ1,2Σ2,1w = λ2w (12.17)
Σ2,1Σ1,2v = λ2v (12.18)

When the network is stable, the weight vectors will therefore be eigenvectors
of Σ1,2Σ2,1 and Σ2,1Σ1,2. Classical CCA, however, requires the solutions to
be eigenvectors of Σ−1

1,1Σ1,2Σ
−1
2,2Σ2,1 and Σ−1

2,2Σ2,1Σ
−1
1,1Σ1,2, which means that

the ECA network is capable of performing CCA, if the data sources x1 and x2

are sphered prior to training the network. If we premultiply the data streams
by Σ

−1/2
1,1 and Σ

−1/2
2,2 , respectively, the matrices Σ1,1 and Σ2,2 will be identity

matrices, and therefore their inverses will be identity matrices as well. Thus
when the data is sphered, the eigenvectors of Σ−1

1,1Σ1,2Σ
−1
2,2Σ2,1 will be equal

to those of Σ1,2Σ2,1 and the eigenvectors of Σ−1
2,2Σ2,1Σ

−1
1,1Σ1,2 will be equal to

those of Σ2,1Σ1,2 and the resulting CCA weight vectors will be Σ
−1/2
1,1 w and

Σ
−1/2
2,2 v.
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We use the students’ marks dataset (with which the reader will, by now,
be very familiar) to show that linear ECA is capable of performing CCA. We
sphere the dataset by multiplying it with the sphering matrices Σ

−1/2
1,1 and

Σ
−1/2
2,2 . The ECA network was trained on this sphered dataset using 50,000

iterations with a learning-rate of 0.0005. We have displayed both the “true”
results as well as the results obtained using the ECA-network in Table 12.3,
where we display the vectors Σ

−1/2
1,1 w1 and Σ

−1/2
2,2 w2. We can see that the

results are very close to the results obtained by statistical CCA, which demon-
strates that linear ECA performed on sphered data performs CCA.

Table 12.3. Comparison between statistical CCA and linear ECA on the student
exams dataset. Linear ECA needs to be sphered before it performs CCA and there-
fore we show the sphering and weight vectors combined. The values obtained by
performing statistical CCA and those obtained by performing linear ECA are very
similar.

Standard statistical CCA results

w1 0.0260 0.0518
w2 0.0824 0.0081 0.0035

Linear ECA network

Σ
−1/2
1,1 w1 0.0258 0.0515

Σ
−1/2
2,2 w2 0.0826 0.0076 0.0032

12.4 FastECA

In the previous sections, we maximised the objective function E(g(y1)T g(y2))
by gradient ascent. In this section, we explore a different maximisation tech-
nique, based on Newton’s method of root finding. Our derivation is similar to
the derivation used for the FastICA method [85], in which Newton’s method
is used for ICA. We shall initially describe the FastECA method in terms of
a single unit. Later we show how this algorithm may be extended to many
units, using either a symmetrical or a deflationary method. Newton’s method
is a fixed-point method for finding roots of nonlinear functions numerically. If
the function to be minimised is given by f(x), then Newton’s method to find
the root of f(x) = 0 is given by iterating:

xt+1 = xt − F (xt)−1f(xt) t ≥ 0 (12.19)

where F (x) denotes the Jacobian of f(x).
For one-unit ECA, we have to maximise

E(g(wT x1)g(vT x2)) + λ(wT w − 1) + µ(vT v − 1) (12.20)
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where λ and µ are Lagrange parameters that constrain the magnitudes of the
weights. In the following, we only consider maximisation with respect to w;
maximisation with respect to v can be done in the same way. (12.20) is at a
local extremum when

E(x1g
′(wT x1)g(vT x2)) + 2λw = 0 (12.21)

The Jacobian of the left-hand side of (12.21), which we denote by F (w) is

F (w) = E(x1xT
1 g′′(wT x1)g(vT x2)) + 2λ (12.22)

As the data is sphered, following the argument used by Hyvärinen [85], we
approximate the first term in (12.22):

E(x1xT
1 g′′(wT x1)g(vT x2)) ≈ E(x1xT

1 )E(g′′(wT x1)g(vT x2))
= E(g′′(wT x1)g(vT x2))I

Thus the Jacobian matrix becomes diagonal and can be easily inverted. For
the Newton-iteration, we now get

w+ = w − E(x1g
′(wT x1)g(vT x2)) + 2λw

E(g′′(wT x1)g(vT x2)) + 2λ
(12.23)

where w+ is the new estimate. We may simplify this algorithm by multiplying
both sides of (12.23) by (2λ + E(g′′(wT x1)g(vT x2))), which is a scalar. In a
second step we then normalise the size of the vector w+ to be unit-size. The
FastECA algorithm then becomes:

1. Choose initial random weight vectors w and v.
2. Calculate w+ = x1E(g′(wT x1)g(vT x2)) − wE(g′′(wT x1)g(vT x2))

and v+ = x2E(g(wT x1)g′(vT x2)) − vE(g(wT x1)g′′(vT x2)).
3. w = w+/‖w+‖ and v = v+/‖v+‖.
4. If not converged go to step 2.

It should be noted that a common assessment of convergence is when the
old and new values of w and v point in the same direction.

12.4.1 FastECA for Several Units

The single unit FastECA method proposed in the previous section can be ex-
tended to multiple outputs. We can do this by running a single unit FastECA
method using several units with weight vectors w1, . . . ,wn and v1, . . . ,vn. To
prevent each unit from converging to the same maxima we must decorrelate
the outputs wT

1 x1, ...,wT
nx1 and vT

1 x2, ...,vT
nx2 after each iteration.

One well-known technique to achieve this decorrelation is to use defla-
tionary learning. To do this, we estimate the common signals individually,
subtracting the projections of the estimates of each of the previous vectors
in turn from the estimated projection before calculating the next. We then
explicitly renormalise.
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1. w1,n+1 = w1,n+1 −
∑n

j=1 wT
1,n+1w1,jw1,j .

2. w1,n+1 = w1,n+1

wT
1,n+1w1,n+1

.

We could also estimate each of the weights in parallel and perform a symmetric
decorrelation after each iteration, using Wn+1 = (WT

n Wn)−
1
2 Wn [85].

12.4.2 Comparison of ECA and FastECA

We have compared the speed of convergence of ECA and FastECA using a
simple artificial 10-dimensional dataset. The first nine dimensions were taken
from a Gaussian distribution, and the tenth dimension was taken from a
kurtotic source, with a kurtosis value of 8. This dataset was duplicated, and
to each copy independent Gaussian noise was added. To compare the errors,
we calculate the angular error of the weight vectors, given by

Error = arccos
(

wT r
‖ w ‖‖ r ‖

)
(12.24)

where w =
(

w1

w2

)
is calculated with the relevant method and r =

(
r1

r2

)
is

the “right” answer.
To make a fair comparison, both networks were trained for on 200 samples

at a time. The neural ECA method did 200 gradient ascent updates of the
weights during each of these epochs, while the FastECA method only did one
update, after calculating the averages of equation (12.23) over 200 samples.
In order to improve the stability of the FastECA algorithm, we used a step-
size in the update-rule, similar to the stabilised form of FastICA [85], where
wn+1 = wn + 0.25wcalc, where wcalc is the estimate of the weights.

Fig. 12.3 and Fig. 12.4 show the rates of convergence of the neural ECA
network and the FastECA method, trained on the artificial data. The er-
rors displayed are the angles between the theoretical solution and the weight
obtained using ECA or FastECA. It can be clearly seen that the FastECA
algorithm converges faster than the neural ECA method.

12.5 Local Filter Formation From Natural Stereo Images

This section will have a more biological focus. In particular, the statistical
structures of images and ways the brain is thought to encode visual informa-
tion is discussed. This area of research has recently received much interest from
both the vision science community and the neural computation community.

12.5.1 Biological Vision

The brain is extremely effective in solving complex vision problems. In gen-
eral, people easily outperform computers in tasks such as face recognition or
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Fig. 12.3. Convergence of the neural ECA method.

reading hand-written text. We can therefore ask ourselves how the brain per-
forms these complex tasks. In this section we will limit ourselves to the early
processing stages of biological vision and in particular, how the brain encodes
raw visual information.

When light hits the eye it is converted into electrical signals by a layer
of photosensitive cells that cover the retina of the eye. This raw information
undergoes some initial preprocessing by a small layer of cells in the eye, in-
cluding the horizontal, bipolar, amacrine and ganglion cells and is then sent
to a region of the brain called the striate cortex, which is considered vital in
early visual processing [148]. The striate cortex is an approximately 2 mm
thick sheet of neurons with a surface area of a few square inches containing
about 200 million cells.

Insight into how this region works was gained in the late 1950s when
Hubel and Wiesel [83] were able to measure the responses of the individual
cells in the striate cortex. It was found that each individual cell fires most
strongly when stimuli are presented in a small part of the field of vision,
the so-called receptive field of that particular cell. Furthermore, it was found
that each cell was tuned specifically to respond to a certain type of stimuli.
In this regard, three different types of cells were distinguished. The simple
cells respond most strongly to edges or lines of light at a certain position and
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Fig. 12.4. Convergence of the FastECA method.

orientation. In Fig. 12.5, some examples of these types of receptive fields are
shown. The receptive fields of the other two types of cells, the complex and
hypercomplex cells, were much more difficult to determine as these cells have
a highly nonlinear response and can be sensitive to motion.

Fig. 12.5. Examples of the characteristics of simple cells in the striate cortex. The
leftmost example is a light-dark-light line detector; the middle example responds
most strongly to a light-dark edge and the right example is a dark-light-dark line
detector. Each cell is tuned to respond to stimuli of a specific orientation.

After determining the responses of the cells in the visual cortex, a wide
variety of theories were devised to explain why the striate cortex encodes visual
information the way it does. One way to gain more insight into this problem
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is to investigate the local statistical structure of natural images. Olshausen
and Field [145] wrote a seminal paper in this area in which experiments with
natural images were used to show a possible link between the coding strategies
of the striate cortex and sparse codes. In the following section we describe
these experiments in more detail.

12.5.2 Sparse Coding of Natural Images

Natural images are images depicting landscapes, trees, people, etc., which
constitutes the type of visual information the brain typically has to deal with.
It is therefore assumed that the brain has evolved a coding scheme that fa-
cilitates processing this type of visual input. As the second order correlation
between neighbouring pixels of natural images is high, one of the obvious
first approaches is to investigate PCA as a possible coding scheme for natural
images.

In order to reduce complexity, the images are typically divided into
patches taken from random positions, and PCA is performed on these patches.
Fig. 12.6 shows the results of this experiment, using 12×12 pixels image
patches taken from nine grayscale images. Examining the results we see that
some of the vectors display structure as found in the striate cortex, but only
in the first few PCA vectors and none of them have local responses.

Olshausen and Field [145] therefore considered another coding scheme.
They supposed that the simple cells in the striate cortex form a sparse coding
of the visual input, which has been shown to have many advantages for an
organism in coding its environment. They developed a method that can form
sparse codes (i.e. search for transformations yielding outputs that have prob-
ability density functions with high kurtosis) and used that on patches taken
from natural images [45]. Since then, more efficient and faster algorithms have
been devised, and techniques such as ICA [85], have been able to obtain results
similar to those presented by Olshausen and Field.

We have repeated this experiment using ICA to obtain a sparse coding.
In these type of experiments, the visual data is first mean centred and then
preprocessed, using a filter with frequency response R(f) = f exp(−(f/f0)4).
This is a widely used whitening/low-pass filter that ensures the Fourier am-
plitude spectrum of the images is flattened and which also decreases the effect
of noise by eliminating the highest frequencies. This preprocessing step is bi-
ologically plausible, as a similar preprocessing is thought to be performed by
the ganglion cells in the retina.

We randomly sampled the preprocessed images by taking 12 × 12 pixel
patches, on which FastICA with 100 outputs was used. Fig. 12.7 shows the
weight vectors. Most of the features are very localised and have an oriented
and wavelike structure, which is strikingly similar to the responses of the
simple cells found in the striate cortex.
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Fig. 12.6. PCA performed on image patches taken from natural images. The first
100 vectors are displayed in the figure in order. The weight vectors do not show a
local structure, and only the first few weight vectors show a wavelike structure.

12.5.3 Stereo Experiments

We have extended the experiment in Section 12.5.2 to stereo images. Stereo
images consist of two images: one part as seen through the left eye and another
as seen through the right. Because both images are different views of the same
scene, they share a number of features, which can be extracted with the ECA
network.

Artificial Stereo Shift Experiments

In the first set of experiments, we introduce artificial stereo disparity in the
images, by slightly shifting the position of the image patches. We used a
set of 14 nonstereo natural images that were preprocessed as described in
Section 12.5.2. Two sets of 12 × 12 image patches were extracted, where each
patch from one set is a horizontally shifted version of the corresponding patch
from the other set.

We used 14 x 5 000 pairs of patches, where the patches in one stream are
sampled from the same vertical position as the other stream, but horizontally
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Fig. 12.7. Sparse coding of images patches taken from natural images. Each of the
100 patches represents a weight vector.

we sample the patch four pixels shifted to the right. The patches were sphered
by projecting them onto the first 64 eigenvectors and each component was
divided by the variance, thereby removing the second-order correlations from
the data and reducing the dimensionality. The nonstabilised FastECA method
was used to find the common higher-order structure, using the nonlinearities
g(x) = − exp(−x4), g′(x) = −4 tanh(x) and g′′(x) = −12 exp(−x2). After
350 iterations the network converged to the results displayed in Fig. 12.8.

In this figure we see that the features resemble the localised wavelike struc-
tures that are typically obtained from sparse coding experiments using nat-
ural images. In order to make the comparison between the features from the
left and right view clearer, six features are enlarged and shown pairwise in
Fig. 12.9. We can see that the patches from the left view are mostly shifted
versions of those found in the right view. However, there are exceptions in
which features are formed on the opposite sides of the patches, which can be
attributed to the orthogonality constraint we imposed on the network. The
amount of interesting-looking codes1 that can be obtained using this data
1 Using more outputs causes the additional features to become blurred and without

visible structure.
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Fig. 12.8. Results of the sparse coding experiment using pairs of patches, shifted by
four pixels. Most features are shifted by four pixels, although sometimes the features
appear on the opposite side of a patch, which can be attributed to the orthogonality
constraint. Some of the features are inverted, which is due to the positive objective
function.

Fig. 12.9. Closer view of six pairs of weight vectors from Fig. 12.8. The features
have a localised wavelike response, similar to that found in the single stream sparse-
coding experiment. The features are generally shifted, but due to the orthogonality
constraint are sometimes found on the opposite sides of the patch. They are some-
times inverted and it is only possible to obtain a smaller number of features; in this
case 64 as opposed to 100 for the single stream experiment.

set is less than for single stream sparse coding experiments, which is due to
the fact that the amount of shared information, i.e. the overlapping area, is
smaller than one patch. The features are also sometimes inverted, which can
be attributed to the positive-only objective function.

To examine whether this method allows the network to identify shift, we
use the trained network on differently shifted image patches and we calcu-
late the activation of the network at each shift. For these experiments, three
trained networks were used, one where the network was trained on patches
that were shifted two pixels, one where the patches were shifted four pixels
and the last one where the network was trained on patches that were shifted
six pixels. A training set was generated consisting of patches shifted from zero
to eight pixels. For each shift 1000 patches were used and the average acti-
vation of the network, computed by E(g(WT x1)T g(V T x2)), was plotted in
three graphs (Fig. 12.10).
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Fig. 12.10. Activation of the FastECA network trained on differently shifted image
patches. Each maximum activation coincides with the shift the network was trained
on, thereby allowing the network to identify the magnitude of the shift.
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In each graph, we see a spike in the activation that coincides with the shift
in the patches the network was trained on. This experiment therefore shows
that a network trained in this manner, becomes specifically tuned to detect a
specific amount of shift in image patches. This makes it theoretically possible
to use sets of networks, each trained on a specific amount of shift to detect
local stereo disparity in images.

Real Stereo Images

In this experiment, we use real stereo images for a two stream sparse coding
experiment. We selected 14 natural stereo images, which were preprocessed
as described in Section 12.5.2. An example of an unpreprocessed stereo image
pair used is displayed in Fig. 12.11. The images were sampled by randomly
taking 5000 12 × 12 patches from each image, which were used pairwise as
input to the FastECA network. We again used the nonstabilised version of
the FastECA method and the nonlinearities g(x) = − exp(−x4), g′(x) =
−4 tanh(x) and g′′(x) = −12 exp(−x2). The resulting weight vectors of the
trained network after 350 iterations are displayed in Fig. 12.12.

Fig. 12.11. Example of an unpreprocessed natural stereo image pair. Reprinted
with permission from Mark Blum; see http://www.undersea3d.com/.

Examining the results, we find a number of interesting differences between
the filters obtained from standard images and those obtained from stereo
images. For better comparison, a closeup of eight pairs of weight vectors is
displayed in Fig. 12.13. The first difference is that there are significantly fewer
shared codes for stereo images. This can be explained by the fact that stereo
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Fig. 12.12. Converged weight vectors when training the ECA network on natural
stereo images. The left figure represents the 64 weight vectors of the ECA network
that were trained on the left stereo image and the right figure respresents the cor-
responding weight vectors that were trained on the right stereo image.

Fig. 12.13. Closer view of five pairs of weight vectors from Fig. 12.12. The features
have a localised wavelike response, similar to that found in the single stream sparse
coding experiment. The features are generally larger, are sometimes inverted and it
is only possible to obtain a smaller number of features, in this case 64 as opposed
to 100 for the single stream experiment.

images are not only views of a scene at slightly different angles, but also
slightly shifted. This makes the “overlap” between two patches smaller and
the amount of shared information less. For two input streams of both 12 × 12
pixels, we extracted 64 components, which was experimentally determined to
give the most interesting results. Another difference is that the features found
by the ECA network tend to have a wider variety of frequencies. Additionally,
the features themselves tend to be larger.

When comparing the codes from both data streams, we can see many
similarities in the codes, but there are also a number of interesting differences.
A number of features are inverted versions of each other. This is a result of
the positive-only kurtotic objective function g(y) = y4. Also, a number of
features are shifted, which can be attributed to the stereo disparity between
the left and the right images.
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Stereo images have been analysed before using sparse coding methods [81].
Usually, two patches from each image are taken and both patches are used
simultaneously as input to the sparse coder. The results in this chapter show
that the network used here creates different types of filters when real stereo
images as opposed to artificially generated stereo images are used. We take
this also as a criticism of some of our own earlier work on stereo images,
particularly that on the abstraction of random dot stereograms (Chapter 9).

12.6 Twinned Maximum Likelihood Learning

In this section, we find structure shared between two data streams using adap-
tions of the Maximum Likelihood network (Chapter 8). We will compare the
results obtained with the twinned Maximum Likelihood method to results
obtained with the ECA network above.

Method I

In this section we will extend the Maximum Likelihood learning algorithm to
allow it to extract kurtotic sources that exist across two sets of signals. Since
EPP and ECA use a function of the outputs to search for higher-order struc-
ture and the Maximum Likelihood method uses a function of the residuals, a
first obvious idea is simply to join these two together. Although EPP as well
as Maximum Likelihood both have strong theoretical backgrounds, combining
these methods in a single rule can be considered to be somewhat ad hoc as it
cannot be derived from a single objective function. We will combine Maximum
Likelihood learning and ECA, to form a single learning rule and investigate
its properties.

∆W = η[p|e1|p−1 ⊗ sign(e1)(g(y2) ⊗ g′(y1))T ] (12.25)
∆V = η[p|e2|p−1 ⊗ sign(e2)(g(y1) ⊗ g′(y2))T ] (12.26)

where e1 = x1 − Wy1 and e2 = x2 − V y2.
To test this method, we consider a situation in which we have an underlying

kurtotic signal which has been corrupted by sensor noise. The signal can be
monitored with two sensors simultaneously. Some sensor noise will simply be
white noise independent from any other noise source or signal, while some of
the noise may be correlated across the two sensors. We wish to identify the
common kurtotic signal as cleanly as possible. We have modeled this situation
with two 10-dimensional data sets.

• The first dimension of both streams contains the common kurtotic signal
(with a normalised kurtosis of 1) that we wish to extract.

• The second dimension contains two separate kurtotic signals, both with a
normalised kurtosis of 5, that are uncorrelated between the two streams.
Both of these signals are more kurtotic than the shared signal in the first
dimension.
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• The third dimension contains correlated Gaussian noise.
• The fourth to tenth dimensions contain independent white Gaussian noise.

We wish to extract the common kurtotic source, which is contained in the
first dimension of the dataset, ignoring both the independent kurtotic source
of dimension two and the normally distributed source of dimension three.
Using a learning rate of 0.0005 and training for 50 000 iterations the results
displayed in Table 12.4 were obtained. Examining these results, we can see that

Table 12.4. Converged weight vectors when using the combined ECA-Maximum
Likelihood to extract a common kurtotic source.

w v

−0.9772 0.9812
−0.1979 0.1543

0.0480 −0.0505
0.0178 0.0297
0.0418 0.0154
0.0076 0.0395
0.0201 −0.0611
0.0138 0.0035

−0.0260 0.0208
−0.0100 −0.0616

this method indeed extracts the common kurtotic source, but not as accurately
as ECA on its own. Adding the extra Maximum Likelihood function to the
original ECA network causes the network to place more emphasis on finding
kurtosis and so the independent kurtotic sources are also identified, although
the values of these weights are much smaller. We can therefore conclude that
combining ECA and Maximum Likelihood does find common kurtotic sources,
but is not very accurate as too much emphasis is placed on the kurtosis finding
element of the algorithm.

Method II

As another approach to Twinned Maximum Likelihood, we can postulate
that the outputs should be the same in each case and thus we may use each
output as a target for the other. Considering the one output case, we postulate
that y1 is a noisy version of y2 corrupted by Gaussian noise, which means
that p(y1|y2) ∝ exp(−(y1 − y2)2). Now we wish to maximise this conditional
likelihood and so, as with the Maximum Likelihood rules (Chapter 8), we
define an objective function

K1 = − log(p(y1|y2)) ∝ (y1 − y2)2 (12.27)
K2 = − log(p(y2|y1)) ∝ (y1 − y2)2 (12.28)
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on which we perform gradient descent. Thus we have the joint rules

∆w ∝ −
(

∂J

∂w
+

∂K1

∂w

)
=

ηy1(sign(e1) ⊗ |e1|p−1) + γ(y1 − y2) ∗ x1 (12.29)

∆v ∝ −
(

∂J

∂v
+

∂K2

∂v

)
=

ηy2(sign(e2) ⊗ |e2|p−1) + γ(y2 − y1) ∗ x2 (12.30)

where η and γ are constant learning parameters. Unfortunately the second
term in each rule causes the network to become unstable as the weights are
allowed to grow without bound. We can solve this problem by introducing
Lagrangian parameters in equation (12.27) similar to the derivation of EPP
and ECA:

K1 ∝ (y2 − y1)2 + λ(1 − wT w) (12.31)
K2 ∝ (y2 − y1)2 + µ(1 − vT v) (12.32)

At the minima of K1 and K2 we obtain:

∂K1

∂w
∝ −2(y2 − y1)x1 − 2λw = 0 (12.33)

∂K2

∂v
∝ 2(y2 − y1)x2 − 2µv = 0 (12.34)

Premultiplying (12.33) and (12.34) by wT and vT respectively results in

λ = −(y2 − y1)y1 (12.35)
µ = (y2 − y1)y2 (12.36)

Inserting (12.35) and (12.36) into (12.33) and (12.34), we obtain the final
gradient descent rules, which fit the negative feedback model:

∆w ∝ −
(

∂J

∂w
+

∂K1

∂w

)
= ηy1(sign(e1) ⊗ |e1|p−1) + γ(y1 − y2) ∗ e1 (12.37)

∆v ∝ −
(

∂J

∂v
+

∂K2

∂v

)
= ηy2(sign(e2) ⊗ |e2|p−1) + γ(y2 − y1) ∗ e2 (12.38)

These rules consist of two terms, the first term searching for non-Gaussianity
and the second term ensuring that there is a relationship between the two
sources. The learning parameters η and γ control the relative strengths of
these objectives.

We test this method using the ten-dimensional data set from the previous
section. We have extracted the common kurtotic source using three different
methods: ECA, Twinned Maximum Likelihood and Twinned Minimum Like-
lihood. The results for ECA are displayed in Table 12.5 and the results for
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Twinned Minimum and Maximum are displayed in Table 12.6. We can see that
the first dimension, which was the common kurtotic source, has been identi-
fied by ECA and the Twinned Maximum and Minimum Likelihood method.
All these methods also ignore the correlated Gaussian source and the uncor-
related kurtotic sources and the methods are almost equally accurate in this
set of experiments. In the following sections, when we discuss Twinned Max-
imum Likelihood Methods, we are referring to the method of this section, i.e.
method II.

Table 12.5. Converged weight vectors when using ECA to extract a common kur-
totic source.

w v

0.9974 0.9983
0.0094 −0.0070
0.0490 0.0480
0.0048 0.0114

−0.0176 −0.0100
−0.0136 0.0200

0.0353 0.0086
0.0069 0.0177
0.0239 0.0087
0.0252 0.0124

Table 12.6. Converged weight vectors when using Maximum Likelihood (left) and
Minimum Likelihood (right) to extract a common kurtotic source.

w v

−0.9987 0.9974
−0.0230 −0.0967

0.0045 −0.0069
−0.0066 0.0248
−0.0189 −0.0180
−0.0255 0.0222

0.0465 −0.0418
0.0326 0.0376

−0.0014 0.0427
0.0565 0.0201

w v

0.9991 0.9981
−0.0037 0.0077

0.0412 0.0579
0.0029 −0.0065
0.0013 −0.0065
0.0125 −0.0163

−0.0052 −0.0054
0.0021 0.0018

−0.0074 −0.0056
−0.0102 −0.0011
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12.7 Unmixing of Sound Signals

We will now use both the twinned maximum likelihood method as well as ECA
on an adaption of the blind source separation problem. In this experiment we
will use the same three sound signals as we used in Section 8.4.3. Additionally,
we generate another two separate, independent signals of equal length as the
voice signals, consisting of extremely kurtotic noise (kurtosis = 2600). We
now create two mixtures; one mixture is created by mixing the three voice
signals together with one of the noise signals using a mixing matrix A1, and
for the second mixture, we mix the same three voice signals with the other
noise signal using mixing matrix A2:

A1 =

⎛
⎜⎜⎝

0.3 −0.3 0.4 −0.015
0.7 0.3 −0.5 0.01

−0.3 −0.7 0.2 −0.02
−0.2 0.4 −0.3 0.01

⎞
⎟⎟⎠

A2 =

⎛
⎜⎜⎝

0.8 0.5 −0.3 0.006
0.3 0.5 1.0 −0.007

−0.2 −0.1 0.7 0.005
0.9 −0.4 0.4 −0.005

⎞
⎟⎟⎠

We have deliberately kept the values of the last row small, to simulate kurtotic
noise with low variance. Before applying any of the methods described in this
section, we first sphere the data, with sphering matrices Q1 and Q2.

First we will examine the performance of single stream deflationary EPP
on this set of signals. In order to examine the unmixing results we will look at
W ∗Q1 ∗A1 and V ∗Q2 ∗A2, i.e. the weights learnt by the method times the
sphering matrix times the mixture matrix. The results for EPP are shown in
(12.39) and (12.40):

W ∗ Q1 ∗ A1 =

⎛
⎜⎜⎝

0.002 0.999 −0.003 −0.004
−0.018 −0.013 −0.001 0.999
−0.004 −0.005 −1.000 −0.002
−1.000 0.005 0.007 −0.006

⎞
⎟⎟⎠ (12.39)

V ∗ Q2 ∗ A2 =

⎛
⎜⎜⎝

−0.002 −1.000 0.011 −0.004
0.003 0.010 1.000 0.001
0.007 0.006 0.003 −1.000

−1.000 −0.005 −0.001 −0.012

⎞
⎟⎟⎠ (12.40)

We used a learning rate of 0.0001 and 500 000 iterations (randomly sam-
pling with replacement from the 40 000 samples) to extract each signal in a
deflationary manner. We can see that EPP first extracts the fourth dimen-
sion in both mixtures, which represents the two most kurtotic signals, i.e. the
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noise signals, even though the the variance of these signals is quite low. Af-
ter this signal has been identified and subtracted from the mixture, the two
simulations extract the remaining signals in random order.

We now repeat the same experiment using deflationary ECA to unmix
the signals. We use the same parameters as for the previous experiment. The
results are shown in (12.41) and (12.42):

W ∗ Q1 ∗ A1 =

⎛
⎜⎜⎝

−0.004 0.999 0.029 0.0826
0.999 0.006 −0.029 −0.186
−0.027 0.026 −0.999 0.118
−0.010 0.005 −0.003 −0.036

⎞
⎟⎟⎠ (12.41)

V ∗ Q2 ∗ A2 =

⎛
⎜⎜⎝

−0.004 0.997 −0.029 0.063
0.999 0.006 0.029 −0.169
−0.027 0.026 0.999 0.010

0.003 0.006 −0.013 −0.135

⎞
⎟⎟⎠ (12.42)

In these results we see that the independent kurtotic noise signals have been
completely ignored and the three correlated, much less kurtotic, voice sig-
nals have all been extracted successfully. The last column shows no structure,
indicating that there are no common kurtotic sources left in the mixtures.
The ECA method therefore successfully removed the independent noise sig-
nals from the mixtures and unmixed the sound signals correctly. In the last
experiment we use Maximum Likelihood Learning to solve the same twinned
ICA problem. We use a value of p = 1 (a Laplacian distribution). The results
are displayed in (12.43) and (12.44)

W ∗ Q1 ∗ A1 =

⎛
⎜⎜⎝

−0.012 −1.000 −0.022 −0.001
−0.060 0.004 −0.987 −0.063
1.001 −0.009 −0.073 −0.013
−0.014 0.003 0.055 −0.997

⎞
⎟⎟⎠ (12.43)

V ∗ Q2 ∗ A2 =

⎛
⎜⎜⎝

0.007 1.000 0.008 0.001
0.050 −0.007 0.999 0.001

−1.005 0.002 0.052 −0.006
0.001 −0.011 0.006 1.001

⎞
⎟⎟⎠ (12.44)

Again, the method has extracted the voice signals in the first three columns.
Unlike the ECA method, however, the independent noise signal has now been
extracted in the last column. This method extracts common kurtotic signals
first, but when no common kurtotic signals are present in the mixture, it will
continue to extract independent kurtotic signals.

12.8 Conclusion

In this chapter, we have developed a novel approach to uncover underlying
signals between data sets. We have derived a neural algorithm, based on neural
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EPP capable of uncovering higher-order shared structure between data sets,
based on either the third or fourth moment. The method is closely related
to CCA and therefore we called the first method Exploratory Correlation
Analysis. We showed that ECA using linear outputs performs CCA, when
applied to sphered data.

We have shown the validity of this network in a set of experiments, in
which it was able to extract a common kurtotic source, even though there were
unrelated kurtotic sources and normally distributed related sources present in
the data sets. The network was also able to perform a dual stream blind source
separation.

The basic method was improved by using a Newton iteration to minimise
our objective function and we showed experimentally that this method con-
verges more quickly than the neural method.

One of the applications for ECA is in the coding of natural stereo images.
Our first investigation was performed using artificially shifted natural images.
We developed filters for this data set and showed how a trained ECA network
can detect shift. We proceeded to use real natural stereo images for our exper-
iments and we were able to extract codes using the ECA algorithm that are
similar to those found in single stream experiments, but we also found some
interesting differences. On real image data, the wavelet-like filters were found
to be not so localised as those obtained by the artificially generated shifted
image data, and they vary far more in frequency.

One conclusion which we could draw from this set of experiments is that
we must be very careful to qualify conclusions made from abstractions of real
data sets. Thus the results from e.g. [7, 113, 174] on pulling structure from
abstraction of random dot stereograms must be qualified by the statement
that the same networks must be trained on real random dot stereograms to
validate their conclusions. The results which researchers report when using
ICA on single stream visual data must be similarly qualified.

The Maximum Likelihood method was also extended to a dual stream
method that has similar properties to the ECA method. We showed how this
new method can search for higher order structure shared by two sets of signals.
Using an adaption of the normal blind source separation problem, we showed
how these methods can be used to filter out unwanted, highly kurtotic noise
from related sets of mixtures. Normal single-stream EPP networks find these
unwanted signals first, resulting in uninformative projections.

The properties of the Twinned Maximum Likelihood method were com-
pared to the properties of ECA. The major difference is that Twinned Max-
imum Likelihood extracts common kurtotic sources first, but when there are
none left in the mixture, it will extract kurtotic sources that are not neces-
sarily shared. On the other hand, ECA will simply not converge when there
are no shared signals left in the mixtures.

We now have a range of tools for a variety of different situations.
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1. At one extreme we have EPP which will look for structure (e.g. kurtosis)
in a single data stream.

2. Slightly further along the correlation road we find Twinned Maximum
Likelihood, which finds shared higher-order structure, but will identify
individual higher-order structure in a single data stream when shared
structure is exhausted.

3. Then we have ECA, which will identify shared higher-order structure
in two data streams, but ignore higher-order structure in a single data
stream.

4. Finally, we have CCA (and linear ECA) which identifies shared correla-
tions alone.

Which tool to use in any particular situation will depend on the type of
structure for which an investigator is searching.
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Multicollinearity and Partial Least Squares

Multicollinearity is the effect of having too high correlation between variables.
At its extreme, there may be perfect correlation which results in a singular
(determinant equal to zero) correlation matrix. However, even when we do
not reach this extreme, multicollinearity causes problems: because of the re-
dundancy in the variables, we may have an ill-conditioned correlation matrix
which is very prone to large variances which may be due to noise in the data
set.

In this chapter we discuss the problems caused by internal dependencies
within a data set. The neural network methods described in this book do
not use explicit matrix inversions, but they do often involve implicit matrix
inversions. Thus, the effects of such dependencies will be felt when we use
these methods.

In Chapter 9, we showed that the canonical correlation directions w1 and
w2 may be found using

dw1

dt
= Σ12w2 − f(w)Σ11w1

dw2

dt
= Σ21w1 − f(w)Σ22w2

Using the fact that Σij = E(xixT
j ), i, j = 1, 2, we derived the instantaneous

versions

∆w1 = η(x1y2 − f(w)x1y1)
∆w2 = η(x2y1 − f(w)x2y2)

which was shown to provide a family of networks capable of performing CCA.
In this chapter, we extend the method using ideas suggested by Ridge Re-

gression. The resulting network is shown to operate on data sets which exhibit
multicollinearity. We develop a second model which not only performs as well
on multicollinear data but also on general data sets. This model allows us to
vary a single parameter so that the network is capable of performing Partial
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Least Squares Regression (at one extreme) to Canonical Correlation Analysis
(at the other) and every intermediate operation between the two. Finally, we
develop a second penalty term which acts on such data as a smoother in that
the resulting weight vectors are much smoother and more interpretable than
the weights without the robustification term.

13.1 The Ridge Model

The problem of multicollinearity arises in a regression problem whenever
there is a linear dependency among the independent variables. That is, let
X = (x0,x1,x2, ...,xp−1) where xi is the n × 1 vector of responses for the
ith variable. The independent variables are said to have linear dependence
whenever

p−1∑
j=0

tjxj = 0 (13.1)

for tj 	= 0. To solve Xβ = y, the standard method is to multiply both sides
of this equation by XT and then solve for β to give β = (XT X)−1XT y. If
condition (13.1) holds then (XT X)−1 does not exist. Seldom does the above
linear dependency actually hold; rather, one nearly has linear dependency
which implies that (XT X)−1 is ill-conditioned, hence any estimates using
(XT X)−1 are “poor”.

Ridge regression is a popular method for dealing with multicollinearity
within a regression model [125]. The idea is fairly simple. Since the matrix
XT X is ill-conditioned or nearly singular one can add positive constants to
the diagonal of the matrix and ensure that the resulting matrix is not ill-
conditioned. That is, consider the biased normal equations given by

[XT X + kI]β = XT y (13.2)

where I is the identity matrix. This results in a biased estimate for β given by

β̃ = [XT X + kI]−1XT y (13.3)

where k is called the shrinkage parameter. This has been shown to make the
regression robust.

13.2 Application to CCA

The Canonical correlation coefficient is given by:

ρ =
wT

1 Σ12w2

[wT
1 Σ11w1]1/2[wT

2 Σ22w2]1/2
(13.4)
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which will clearly be difficult to calculate if the within class covariance ma-
trices are singular or nearly so. Similarly, since the generalised eigenvectors
found by solving [

0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
Σ11 0
0 Σ22

] [
w1

w2

]
(13.5)

may be equally well defined as the eigenvectors found by solving[
Σ11 0
0 Σ22

]−1 [ 0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
w1

w2

]
(13.6)

we again will be in some difficulty if either Σ11 or Σ22 is singular or nearly
so. In [179], Vinod used the canonical ridge model to deal with data which
is nearly collinear. Just as in the multiple regression model, Vinod used
(Σ11+k1I) and (Σ22+k2I) instead of Σ11 and Σ22 in CCA. Vinod [179] shows
that the coefficients estimated from the usual canonical correlation analysis
can be very unstable when the data are nonorthogonal, but after adding small
constants to the diagonal of the correlation matrix of all variables before the
usual canonical correlation analysis, a considerable improvement in the stabil-
ity and reliability of regression coefficients is achieved. We can also consider
this as a kind of smoothing for the data; in [116], a similar approach has been
used to deal with functional data (see later). Thus, from the above, we have
good reasons to believe that the penalty term kI can make CCA more robust.

Now if we use Σ11 + k1I and Σ22 + k2I instead of Σ11 and Σ22 in our
neural implementation, we get[

0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
Σ11 + k1I 0

0 Σ22 + k2I

] [
w1

w2

]
(13.7)

Taking w = [wT
1 wT

2 ]T , we find the canonical correlation directions w1 and
w2 using

dw1

dt
= Σ12w2 − f(w1)(Σ11 + k1I)w1

dw2

dt
= Σ21w1 − f(w2)(Σ22 + k2I)w2

Using the facts that Σij = E(xixT
j ), i, j = 1, 2, and that yi = wT

i xi, we may
propose the instantaneous rules

∆w1 = η(x1y2 − f(w1)x1y1 − f(w1)k1w1)
∆w2 = η(x2y1 − f(w2)x2y2 − f(w2)k2w2)

For example, if we choose f(w) = ln(wT w), we have:

∆w1j = η(x1jy2 − ln(wT
1 w1)x1jy1 − ln(wT

1 w1)k1w1j)
∆w2j = η(x2jy1 − ln(wT

2 w2)x2jy2 − ln(wT
2 w2)k2w2j) (13.8)
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This algorithm, in fact, does perform an approximation to CCA (see below)
but we have found experimentally that it does slow learning. The ki parame-
ters are optimal when rather large, but note that this has a detrimental effect
in that it affects both the second term (which it was designed to do) and also
the first term which causes growth towards the canonical correlation vectors.
To restrict this effect, we restructure (13.7) to get[

0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
(1 − k1)Σ11 + k1I 0

0 (1 − k2)Σ22 + k2I

] [
w1

w2

]
(13.9)

Thus the update rule for the weights is

∆w1 = η(x1y2 − f(w1)(1 − k1)x1y1 − f(w1)k1w1)
∆w2 = η(x2y1 − f(w2)(1 − k2)x2y2 − f(w2)k2w2) (13.10)

This method of weight change is the first innovation in this chapter. We may,
however, consider generalising this method by using different bias-inducing
terms. For example, we may wish to produce smoothly changing CCA param-
eters (an example of such a dataset will be given later) and so we may wish
to introduce a term which penalises roughness in the CCA weights.

Functional data analysis (FDA) has been developed for analyzing func-
tional (or curve) data. In FDA, we treat the data as consisting of func-
tions not of vectors. We take samples at time points t1, t2, ... and regard
{x(tj), j = 1, 2, ...} as multivariate observations. In this sense the original
functional x(t) can be regarded as the limit of {x(tj)} as the sampling in-
terval tends to zero and the dimension of multivariate observations tends to
infinity. A central idea in performing FDA is to use a roughness penalty to
incorporate smoothing. The most popular measure of roughness is the second
derivative of the function which is a measure of the rapidity of the variability
of the function f ,

R(f) =
∫

(f
′′
(x))2d(x) (13.11)

Since we do not care about the sign of the roughness, only its magnitude, we
may define a penalty for roughness by

PEN2(f) =‖ D2f ‖2=
∫

f(t)D4f(t)dt (13.12)

where D2 is the second derivative operator and D4 is the fourth derivative
operator. So our penalised CCA uses the same driving force but a weighted
version of this penalty in the learning rule.

Thus, we may use a fourth derivative operator D4 instead of I in (13.9)
to get:
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0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
(1 − k1)Σ11 + k1D

4 0
0 (1 − k2)Σ22 + k2D

4

] [
w1

w2

]
(13.13)

The terms k1D
4 and k2D

4 are the roughness penalties. For more details about
the roughness penalty and functional data analysis please see [155].

We can replace the operator D4 by a finite difference approximation, for
example, a multiple of FT F where F is a circulant second difference matrix.
Then we get a learning rule which can smooth the operation for functional
data; the learning rule updates the ith weight value using:

∆w1[i] = η(x1[i]y2 − f(w1)(1 − k1)x1[i]y1 − f(w1)k1D
4
[i]w1)

∆w2[i] = η(x2[i]y1 − f(w2)(1 − k2)x2[i]y2 − f(w2)k2D
4
[i]w2) (13.14)

where the D4
[i] denote the ith row in the matrix D4.

13.2.1 Relation to Partial Least Squares

The phrasing of the parameters in this way (13.9) allows us to consider a
family of solutions found by varying the magnitude of the ki parameters. For
example, if k1 = k2 = 1 in (13.9), we revert to

Aw = λBw

which, with

B =
[

I 0
0 I

]
(13.15)

gives us the solution for Partial Least Square(PLS):[
0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
I 0
0 I

] [
w1

w2

]
(13.16)

The Partial Least Squares (PLS) regression method has been used extensively,
especially for calibration tasks in chemometrics [57].

It may be helpful to compare PLS with canonical correlation analysis
(CCA), which is a maximisation of the correlation between a similar pair of
scores. PLS maximises covariance, not correlation. Interpreting the coefficients
of canonical variates requires the usual stringent assumptions underlying mul-
tiple regression of either canonical variate upon the variables of the other
block. Such assumptions are unlikely to obtain when predictors or outcomes
are intentionally redundant. In contrast, by maximizing covariance between
the latent variable scores, PLS optimizes the usefulness of the analysis for
subsequent studies of intervention. Unlike the coefficients of a canonical cor-
relations analysis, the saliences that PLS computes have meaning individually
even when (indeed, especially when) the predictor block or the outcome block
is intentionally multicollinear.
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The new algorithm has other advantages: first, when we choose the ridge
parameter k, we are able to choose a small number which is much more ef-
fective for smoothing the data. Further, by having this single parameter for
adjusting the playoff between the two factors we can choose k appropriately
so that we may vary any potential solution between the extremes of PLS and
CCA dependent on the needs of any particular data set.

Finally, when the ridge parameter is close to the PLS value, then the new
algorithm has a strong ability to deal with functional data and multicollinear
data, because we can always use a small number for the ridge parameter (or
the PLS parameter) and do not need any prior knowledge about the data set.

13.3 Extracting Multiple Canonical Correlations

For functional data, an algorithm which can extract multiple correlations is
also very important. In order to extract multiple canonical correlations, we
will employ a deflationary transformation. Instead of using explicit deflation,
we will use an implicit deflationary approach, using lateral inhibition. There-
fore, we just need to simply apply lateral inhibition to outputs y, noting that
lateral inhibition is a more natural in-network method of deflation and has
computational advantages over, e.g. Gram–Schmidt orthogonalisation. For ex-
ample, if we want to extract the pth canonical correlation assuming that the
previous p − 1 have already been extracted, then the learning rule for second
canonical correlation becomes

∆w1p[i] = η(x1[i]y
′
2p − f(w1p)(1 − k1)x1[i]y

′
1p − f(w1p)k1D

4
[i]w1p)

∆w2p[i] = η(x2[i]y
′
1p − f(w2p)(1 − k2)x2[i]y

′
2p − f(w2p)k2D

4
[i]w2p)

(13.17)

where y
′
1p and y

′
2p are defined as:

y
′
1p = y1p −

∑
n<p

c1[pn]y1n

y
′
2p = y2p −

∑
n<p

c2[pn]y2n (13.18)

We use Local Orthogonalization rule [40] to learn the lateral weights:

∆ci[pn] = η(yipyin − ci[np]y
2
in) (13.19)

to update the weight strengths c which are local to the lateral synaptic con-
nection. We use this algorithm to extract the second canonical correlation
direction for the children’s gait data, which is discussed in Section 13.4.3.
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13.4 Experiments on Multicollinear Data

13.4.1 Artificial Data

We generate two artifical data sets x1 and x2,

x1 = (x11, x12, x13, ..., x1n) (13.20)
x2 = (x21, x22, x23, ..., x2n) (13.21)

in which we take n = 20; each x1n is a linear combination of b1 and each x2n

is a linear combination of b2 where

b1 = (b11, b12, ..., b1p) (13.22)
b2 = (b21, b22, ..., b2p) (13.23)

with p = 4. Now, we have two data sets, each of which has very high internal
correlations: the rank of both Σ11 and Σ22 is 4. Now we create a strong
correlation between the two data sets by defining

c =
x11 + x21

2
(13.24)

and then set x11 = x21 = c. Now, the first elements in both data sets are
exactly same, and each of these new first elements has a high correlation with
other internal elements and also has a correlation with elements of the other
data set. These provide the major correlations between the two data sets. We
use two algorithms on this data set: one is our new algorithm (13.10) with
the smoothing parameter, the other is the first algorithm in Chapter 9. The
experimental result is shown in Table 13.1: we see that the existing neural
algorithm [114] has had a great deal of difficulty with this data set while the
new algorithm (13.10) has identified the major correlations very effectively.

13.4.2 Examination Data

Our second experiment uses the data set which was introduced in Chapter
9, the students’ marks on five module exams. In Table 13.2, we see the
correlations found by the CCA network for different values of k. There is
rather little difference in the results, but a small trend towards increasing
correlation as the value of k decreases can be seen. Also, the result from a
standard statistical method (reported in [125]) was 0.660. We see that the
neural methods tend to find slightly larger correlations though not as large as
0.692 which was reported in [114] with a previous neural method.

13.4.3 Children’s Gait Data

The children’s gait data has been used in [116] and was collected by the Motion
Analysis Laboratory at the Children’s Hospital, San Diego, California, (full
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Table 13.1. The weights found on the artificial multicollinear Data. The left two
columns are the results using the first neural algorithm from Chapter 9; the right
two are those from (13.10).

Existing algorithm New algorithm
w1 w2 w1 w2

1 −0.6918 −0.5765 −1.6644 −1.6222

2 −0.0453 0.5527 0.0022 −0.0235

3 −0.8561 0.946 −0.0045 0.0048

4 0.4852 −0.2000 0.0031 −0.0290

5 −0.5817 −0.1928 0.0016 −0.0112

6 0.5947 −0.0139 0.0001 0.0239

7 −0.0364 0.6404 −0.0039 0.0117

8 −0.0373 −0.1642 −0.0006 −0.0059

9 0.1009 −0.7506 −0.0022 0.0037

10 0.4595 −0.2232 −0.0037 0.0057

11 −0.0454 0.0366 0.0042 0.0169

12 −0.2113 −0.1909 0.0001 −0.0071

13 0.0907 0.1842 0.0022 0.0051

14 −0.0137 0.3383 −0.0015 0.0007

15 −0.2990 0.4471 0.0038 −0.0059

16 −0.0754 −0.1469 −0.0034 −0.0073

17 −0.2422 −0.6754 0.0039 −0.0086

18 0.4185 0.7203 0.0000 0.0110

19 1.8872 −0.1287 −0.0040 −0.0052

20 −0.8019 0.6190 0.0037 0.0178

Table 13.2. The correlations found by the algorithm with different values of k.
Standard statistical CCA yields 0.663.

k 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Corr 0.659 0.660 0.662 0.665 0.668 0.671 0.675 0.679 0.684 0.688 0.690

details in [146]). The data set consist of the angular rotations in the sagittal
plane of the hip and knee of 39 normal five-year-old children. The observations
are taken over a gait cycle consisting of one double step taken by each child,
and time is measured in terms of the cycle which has been discretized to a
regular grid of 20 points; the data are illustrated in Fig. 13.1.

Fig. 13.2 (right) shows the results of the simulation in terms of the weight
parameters with k = 0.9, while Fig. 13.2 (left) shows the results using the
previous neural algorithm from Chapter 9. It is clear that Fig. 13.2 (left) is
rather difficult to interpret while Fig. 13.2 (right) is much more interpretable.
Also the smoothness of Fig. 13.2 (right) gives us somewhat greater confidence
in the predictive power of this result since Fig. 13.2 (left) appears to be a noisy
solution. Because we are not interested in this specific data, we do not analyse
the experiment’s results, but from Fig. 13.2, we can see the hip curve in the
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Fig. 13.1. Left: Angular rotations of the hip over one gait cycle in each of 39
subjects. Right: Angular rotations of the knee.
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Fig. 13.2. Left: Canonical variate weights using the standard learning rule (Chapter
9), the solid line for hip, dashed line for knee. Right: Canonical variate weights using
the new learning rule, the solid line for hip, dashed line for knee.

middle of the cycle occurs a little later than that in the knee curve, which
concurs with the interpretation in [116]. Fig. 13.3 show the first and second
weights value from the algorithm with the roughness penalty smoothing term
(13.14) and (13.17). Both the first and second weights’ values could be trans-
formed roughly to being identical for the hip and the knee by speeding up the
hip cycle relative to the knee cycle in the first half of the cycle and slowing it
down in the second. Since the main interest is in comparing the curves, all of
the weights value shown in Fig. 13.3 have been normalized so that the integral
of their squares is equal to 1.

We also found experimentally that, if we use the simple ridge solution
(13.8), we need to use a large k, (20 to 50), which has an adverse effect on
the growth part of the algorithm and causes decay away from the optimal
directions. The final result is that the estimate of canonical correlation is very
poor. If we use the hybrid solution (13.10), we just need a number between 0
and 1.



284 Hebbian Learning and Negative Feedback Networks

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 13.3. Left: First pair of smoothed canonical weights, the solid line for hip,
dashed line for knee. Right: Second pair of smoothed canonical weights, the solid
line for hip, dashed line for knee.

13.5 A Neural Implementation of Partial Least Squares

The twinned network of the previous chapter contains the constraint (the or-
thonormalisation of the weights) which we require for PLS, and so we now
assume two data streams from which we wish to extract the common interest-
ing features, i.e. both streams are assumed to have a set of common underlying
factors. We can write this model as

y1 = WT
1 x1

y2 = WT
2 x2

The input streams are denoted by x1 and x2, the projected data by y1 and
y2 and the basis vectors are the rows of the matrices W1 and W2.

In the same way as the previous chapter, we may derive the following
weight update rules:

∆W1 = η[(x1 − W1y1)yT
2 ] (13.25)

∆W2 = η[(x2 − W2y2)yT
1 ] (13.26)

Equations (13.25) and (13.26) may be implemented in a negative feedback
framework. In both equations, the input is fed forward, and the outputs are
fed back and subtracted from the input to form a residual. The weight update
consists of multiplying the residual with functions of the values of both output
streams. The sole difference between this network and that of the previous
chapter is that we have removed the need for sphering.

13.5.1 Introducing Nonlinear Correlations

A neural implementation of PLS (or for that matter PCA, CCA or any other
statistical technique) may be no more than a curiosity, engineeringwise 1 since
1 Though, of course, it may be very interesting to neuroscientists.
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efficient statistical techniques for these operations already exist. But when we
introduce nonlinearities to such operations, no closed-form solutions may exist
and so some iterative method such as an artificial neural network learning
method becomes necessary.

As noted in [15], nonlinear projections are notoriously difficult to concep-
tualise and so, in practice, the nonlinearities which we use will have to be very
circumscribed in order to maintain a tight control over the correlations found.
In [67], we also wished to compare neural and kernel implementations of PLS
and so we opted to maximise the function

J(W1, W2) = E((WT
1 g(x1))

T WT
2 g(x2)) +

1
2

N∑
i=1

N∑
j=1

λij(wT
1iw1j − aij)

+
1
2

N∑
i=1

N∑
j=1

µij(wT
2iw2j − bij) (13.27)

where typically the vector-valued function g() will be a radial basis function
such as the Gaussian.

13.5.2 Simulations

Since the neural algorithms are novel, we illustrate the neural PLS methods
on artificial data sets before discussing results on our financial data sets.

13.5.3 Linear Neural PLS

We draw 100 sample predictors from a uniform distribution in [−2.5, 2.5] ×
[−2.5, 2.5] and create target values from X2 = X1 ∗ A + µ where A = [3, 2]T

and µ is a vector of samples from zero mean Gaussian noise of variance 0.1. We
initialise the learning rate to 0.001 and decrease this to zero during the course
of the simulation. Each simulation was composed of 100 presentations of the
training data in a random order. These parameters are somewhat ad hoc and
the simulation results are robust to major changes in them. The learning rules
are

∆w1 = η(x1 − w1y1)y2 (13.28)
∆w2 = η(x2 − w2y2)y1 (13.29)

Clearly the facts that the learning rule causes orthonormalisation of the
weights and the second data set is one-dimensional means that w2 = 1 or −1
and this duly happens. Typical values of wT

1 were [0.82 0.56] which is approx-
imately in the ratio 3:2 whilst remaining of length 1.

We can also, from the training data, get an estimate of the correlation
coefficient ρ̂, which we use in creating our estimate on test data with the
standard least squares estimate
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ŷ2 = (w2 ∗ wT
2 )−1 ∗ w2 ∗ (wT

1 ∗ x1 ∗ ρ̂) (13.30)

Fig. 13.4 graphs the actual output (horizontal axis) on noise-free test data
against the estimated values (vertical axis). We see that the correlation is
extremely high.
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Fig. 13.4. Graph of the actual output (horizontal axis) against the estimated values
on noise-free test data.

However standard statistics can perform this equally well and so we seek
to go beyond this result. We first consider a scheme for creating mixtures of
linear PLS regressors.

13.5.4 Mixtures of Linear Neural PLS
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Fig. 13.5. The left diagram shows the training data, the horizontal axis being the
predictors, the vertical axis being the targets. The right diagram shows the predicted
outputs (vertical axis) against the actual (horizontal axis).
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We begin with a very simple experiment: we draw predictors iid from a
uniform distribution on [−2.5,2.5], and calculate targets from X2 = X2

1 + µ
where µ is drawn from zero mean Gaussian noise of variance 0.2. Examples of
one set of training data are shown in Fig. 13.5. We trained the network with
exactly the same rules as in the previous section but with two enhancements:
firstly, we had two pairs of outputs seeing the data and after the feedforward
stage tested whether y1y2 > y3y4. If so, we updated w1 and w2 using (13.28)
and (13.29). If not, we updated w3 and w4 using

∆w3 = η(x1 − w3y3)y4 (13.31)
∆w4 = η(x2 − w4y4)y3 (13.32)

where we have left the bold font to cater for the possibility that the input
data might be more than unidimensional.

The second enhancement was necessitated by the requirement during test-
ing that the new data must be allocated to either the y1 − y2 channel or the
y3 − y4 channel. Thus we create two centres (one for each pair of channels)
which determine which channel the current input should use. Thus, after each
competition (as to whether y1y2 > y3y4) we also update the appropriate cen-
tre: if y1y2 > y3y4, c1 = c1 +η(x1−c1), else c2 = c2 +η(x1−c2). When a test
point is presented to the network, we use the test: if ||x1 − c1|| < ||x1 − c2||,
estimate using (13.30), else use

ŷ2 = (w4 ∗ wT
4 )−1 ∗ w4 ∗ (wT

3 ∗ x1 ∗ ρ̂2) (13.33)

with ρ̂2, the estimate of the correlation between y3 and y4. This method is
clearly generalisable to any number of pairs of outputs in which while learning
we simply choose the pair with greatest product and in testing select the
channel whose centre is closest to the current input.

The right half of Fig. 13.5 shows the actual output (horizontal axis) against
the estimated (vertical output). Clearly the major correlations are being cap-
tured but the quadratic nature of the mapping is clearly seen. We may state
that the gross structure of the mapping is being captured as well as possible
by a linear machine yet to go further we require a nonlinear machine.

13.5.5 Nonlinear Neural PLS Regression

We noted that radial kernels on the X1 data set and linear kernels on the
X2 data set were the most successful kernels for forecasting. In the light of
this, we use a specific radial nonlinearity in the experiments reported herein.
We have also experimented with sigmoids but achieved no better results than
those reported here.

We begin with the same type of data as in the last section - a noisy
quadratic. The data was 100 samples from exactly the same distribution.
However now the model is X2 = φ(X1).w+µ. We take φ(t) = {φ1(t), φ2(t), ...,
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φM (t)} where φi(t) = exp(−||t − ci||2/σ), a Gaussian with centre ci and
width parameter, σ. In the first experiment, we used M = 5 and positioned
the centres evenly at −2.5, −1.25, 0, 1.25 and 2.5. σ = 1 though the results
were robust to substantial changes in this. Results are shown in Fig. 13.6.
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Fig. 13.6. The plot of actual value from the quadratic map (horizontal axis) against
the estimated value (vertical axis).

We see that the two wings of the quadratic mapping are dealt with sepa-
rately and that each has approximately found the optimal correlation. Further,
while not all of the nonlinearity has been captured, Fig. 13.6 shows a much
more linear relationship than does Fig. 13.5.

It must be pointed out that, in [67], a comparison between the linear
and nonlinear PLS methods was performed on financial data sets and the
nonlinear version was not able to perform better than the linear method on
simple forecasting problems with the S&P 500 and on exchange rates. Also a
method equivalent to FastECA was shown to exhibit very fast and accurate
convergence.

13.6 Conclusion

In this chapter, we have used a basic idea from ridge regression to create
an algorithm which is robust with respect to multicollinear data. We have
shown the effectiveness of the algorithm on artificial data which was designed
to be multicollinear and on a real data set which has a limited number of
samples in relation to its dimensionality. With a second real data set – one
which does not exhibit multicollinearity – we have shown that the addition of
a robustification parameter does not materially affect the results for a wide
range of parameter values.

We have introduced a penalty term which penalises roughness in the canon-
ical correlation directions and shown that the resulting vectors are much more
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interpretable than the original. The resulting canonical correlation vectors are
more suited to prediction than those achieved without the penalty term.

We have also used the network of the previous chapter but without spher-
ing to perform PLS regression. The nonlinear version was shown to extract
relationships exhibiting higher correlations than the linear version.



14

Twinned Principal Curves

In this chapter, we develop methods for combining information from two data
sources which have some underlying correlation or dependency where this
dependency may not be best viewed as a linear dependency. Our inspiration is
biological information processing: sensory information from a single organism
is sent to our brains via different sensory channels; however, at some stage we
are able to integrate this information so that we can re-create much of the
original sensory information from memory when we have a new input from a
single sensory stream. We can view this as a form of forecasting – before we
taste the orange we can visualise how it will taste. However, our main aim is
to develop an engineering application in which extracting structure from two
data sets simultaneously is, in some way, easier than extracting information
from the individual data sets separately. Traditional statistics has thoroughly
investigated linear correlations between two data sets (CCA); however, it is
our aim to develop methods which do not rely on the underlying relationship
between the data sets being linear.

In this chapter, we will develop an extension of Principal Curves which
performs a type of nonparametric CCA and illustrate its use on artificial data
and as a method for forecasting on a financial data set which we have previ-
ously [69] used to test other forecasting methods. We discuss which criterion
is optimal for terminating the algorithm and investigate two alternative ex-
tensions of the basic algorithm which are shown to improve the ability of the
algorithm to forecast.

14.1 Twinned Principal Curves

Principal Component Analysis (PCA) is a standard statistical technique for
finding a lower-dimensional linear projection of high-dimensional data which
gives minimum mean square error over all projections of this dimensionality.
Principal Curves [36, 70, 106] is an extension of this method in which a nonlin-
ear manifold can be used instead of the linear subspace determined by PCA.
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However there is clearly a difficulty with this in that it is always possible to
fit a finite training set with no error. There are several definitions of Prin-
cipal Curves which constrain the curves in one way or another to overcome
the problem of overfitting. In [70], every point, P , on the curve is the mean
of the points that project onto P , which is known as self-consistency. The
self-consistent curve with unit-speed – one whose derivative has norm 1 – is
the Principal Curve. In [106], the Principal Curve is defined as the curve of a
specific length which minimises the mean squared distance from the data.

We may extend the Principal Curve method so that we now find a non-
linear manifold in each of two data sets simultaneously. A forward look at
Fig. 14.1 may clarify our intentions: in this figure, we illustrate two data
sets (left and right halves of the figure, respectively) which have an under-
lying non-linear relationship. Both data sets are inherently one-dimensional
(though corrupted by noise) and as we move along the curve using the un-
derlying one-dimensional parameter, we also move round the circle using the
same parameter.

We use a nonparametric method to determine the two manifolds. Since we
are drawing data iid from two data sets simultaneously, our method creates
manifolds which exhibit a correlation between corresponding points on the
manifolds which we can then use to forecast a sample from one data set given
a sample from the other. The core of the algorithm performs a local smoothing
operation on both data sets where the smoothing is over all neighbours of the
point which have

• projections close to the projections of the chosen point, and
• projections of their corresponding points in the other data set satisfying

the same constraint with respect to the second data set. Note that these
projections will be to different curves.

Thus, the algorithm in outline is the following:

1. Initialise di
1 and di

2, with the projections of xi
1 and xi

2 ∀i onto the first
principal component of each data set.

2. With the current projections di
1 and di

2, ∀i, select xi
1 from the first data

set and the corresponding point, xi
2 from the second data set.

3. If di
1 is the projection of xi

1 and di
2 is the projection of xi

2, then Si = {k :
|dk

1 − di
1| < ε1 and |dk

2 − di
2| < ε2}.

4. Find the local average of points projecting close to xi
1 and xi

2. i.e.
di
1(new) = mean of dj

1, j ∈ Si and di
2(new) = mean of dj

2, j ∈ Si.
5. Return to step 2 until all points have been selected.
6. di

1 = di
1(new) and di

2 = di
2(new), ∀i.

7. If stopping criteria is not met, return to step 2.

The algorithm iterates until a stopping criteria is met: either the algorithm
repeats for a set number of rounds or until the number of nodes to which
the data is projected reaches a certain number (see below) or until the mean
square error reaches a particular value. In the remainder of this chapter, we
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will describe these projected nodes as “knot points” and they will be used as
the basis for a linear interpolation of the data set.

Clearly there are extensions which can be made to this algorithm. For
example it is possible to change the value of the width parameters ε1 and
ε2 during the course of the iterations, though this is not implemented in the
simulations discussed in this paper for reasons which will become clear in the
next section. We might also consider the use of a weighted average rather than
a simple average to improve the accuracy of the new projections; however,
simulation results have shown no improvement with this method. Finally, the
algorithm tends to draw data from the extremes of the principal curve and so
some additional local averaging may be useful at these points.

A reviewer has pointed out that the method described above has more
in common with vector quantisation than with curve fitting. This is to some
extent true and a similar criticism can be made of the original Principal Curves
algorithm. However, note that the smoothing/quantising of the data set is
followed by a joining up of the knot points to create an approximation to a
curve by local linear projections, which, in this chapter, are of three main
types. Thus, for example, when we use this algorithm to forecast, we project
a data point onto curve 1 at a position which lies between two knot points.
Since each knot point has a corresponding knot point on the second curve, we
can identify any intermediate position on the first curve with an intermediate
position on the second curve. Thus, the curve aspect of the algorithm plays
an important part in the forecasting procedure.

14.2 Properties of Twinned Principal Curves

Canonical Correlation Analysis (CCA) is a purely linear method (Chapter
9): it will find the basis of each of two spaces which captures the greatest
correlations between two data sets. In previous chapters, we have developed
neural implementations of CCA and have been able to add nonlinearities to
these so that they can “bend” through data sets. In Chapter 11, we developed
kernel CCA (based very much on the pioneering work of [166] in developing
kernel principal component analysis). The advantage that the current work
has over these methods is one of clarity – we can directly visualise both where
we are in the data space and the local direction of the principal curve.

14.2.1 Comparison with Single Principal Curves

The Twinned Principal Curve Algorithm is a somewhat different algorithm
from that suggested by [70] or [106]. It has a rather nice property of sparsifi-
cation of the projections: the local averaging provides a smoothing of the data
set and since we keep the values of ε1 and ε2 constant during the course of
the simulation this smoothing progressively works out from each data point
resulting in fewer and fewer projections onto the principal curve (compare the
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central two rows in Fig. 14.1). We may use this property to allow the number
of distinct nodes we seek to determine the value of ε1 and ε2 (or vice versa).

It is worth noting also that this algorithm is able to deal with data sets
which standard Principal Curve algorithms find difficult: the very fact of hav-
ing two data sets with which to work simultaneously alleviates several prob-
lems. For example, since we initialise with a PCA and one of our data sets is
circular, any diameter of the circle may be a Principal Component direction.
This unfortunately means that points on opposite sides of the circle project
onto the same part of the eigenvector and so we often have an initial twisting
of a single Principal Curve as it moves from the centre of mass on one side of
the circle to the centre of mass on the other side, these centres of mass being
caused by the finite numbers of samples. However, with Twinned Principal
Curves, we only consider points to be local to the current point if they are
local in both projections. This makes it much less likely that false neighbours
will be chosen.

We have been asked whether we can simply use a single (m + n)-
dimensional Principal Curve rather than twinning an n-dimensional curve
with an m dimensional curve. That this is not necessarily an equivalent pro-
cedure can be seen from part 3 of our algorithm in Section 14.1: a single
(m + n)-dimensional parameter would allow one criterion to be breached if
the other was comfortably achieved. To illustrate this, let us compare the
creation of a single line in a 2d-dimensional space and two lines in two sepa-
rate d-dimensional space. Let us consider the simple case where noise in the
data set is drawn iid from a uniform distribution in each dimension from
[−r, r]. Then the smoothing algorithm above, if using the Euclidean norm,
demands a sphere of radius at least r. In the case of r = 0.5 (a value used
in the experiments described in the next section) with d = 10, V20, the vol-
ume of a 20-dimensional sphere is 2.4611×10−8 while V10, the volume of a
10-dimensional sphere is 0.0025.

However, even more importantly, the proportion of V20 which lies within
0.1 of the surface of the sphere is 98.8% while the proportion of V10 which lies
within 0.1 of the surface of the sphere is 89.3%. Much more of the smoothing is
being done for points which are far from the centre of the sphere in the higher-
dimensional sphere. Further, the above assumes that there is equal noise in
all dimensions: we actually want to have as little smoothing as possible in the
dimension in which the underlying curve is actually lying, and sufficient (i.e.
up to width r) smoothing in the other dimensions. Below, we show that the
twinned algorithm is useful when the structure determining the curve results
in a curve which intersects itself. By smoothing in all dimensions equally, we
are smoothing in space which may be occupied by a curve returning close
to the point where we are currently smoothing: if the next approach to the
current point is principally within one of the d-dimensional subspaces, the
above algorithm will identify it as a separate part of the curve while an algo-
rithm which uses the 2d-dimensional space may smooth the new points to a
single curve. Therefore, just as it is possible to view the two weight vectors
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in standard statistical CCA to be a single weight vector in a combined space,
it is possible to view the resulting curve in Twinned Principal Curves as a
one-dimensional curve in a combined space. However, this is not a useful view
in either case and ignores the distinctive “twoness” in the method for creating
the pair of vectors/curves.

Finally, CCA maximises the correlation between two data sets under the
constraint that the variances of y1 = wT

1 x1 and y2 = wT
2 x2 are both 1.

Twinned Principal Curves can still meet this criterion; having found our sum
of linear approximators, we may project new samples onto these Twinned
Principal Curves and calculate the variance of the resultant projections. In
calculating new correlations, we may simply then divide each of y1 and y2 by
their corresponding standard deviations.

14.2.2 Illustrative Examples

Artificial data

We first create two sets of two-dimensional artificial data which are known
to have a correlation from x1(t) = sin(t) + µ1, y1(t) = cos(t) + µ2, x2(t) =
t+µ3, y2(t) = t

3 +sin(t)+µ4, where t is drawn from a uniform distribution in
[0, 2π] and µi ∼ N(0, 0.2) is Gaussian noise. Examples of this data are shown
in the top row of Fig. 14.1.

Fig. 14.1 also shows the thinning which takes place in data set 2 after 1,
2 and 10 iterations and in data set 1 after 10 iterations. The sparsification
discussed above is clearly evident.

Now we may use these projections to predict the position of a point, x2,
in data set 2 given its corresponding point x1 in data set 1. Typically we will
approximate the principal curves with the sum of linear projections given by
joining the sparse points as shown in the last row of Fig. 14.1. To forecast, we
project x1 onto the current principal curve of the first data set and use the
corresponding point on the current principal curve of the second data as the
predictor of x2. Typical results are shown in Fig. 14.2, the “*” on the curve
being the predictor while the “+” shows the point’s actual position.

Real Data

We now investigate if we can forecast on real data: given the last few days’
exchange rates (U.S. dollar against British pound), is it possible to forecast
the next day’s exchange rate with some degree of accuracy? We have previ-
ously [69] used a variety of methods (Principal Component Analysis, Factor
Analysis, Independent Component Analysis and Complexity Pursuit) to find
the underlying factors in this data set. We then used a standard multilayered
perceptron using backpropagation to predict future values of the time series;
the inputs to the multilayered perceptron were the projections of previous
values of the time series onto the factors found by each method. To test our
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Fig. 14.1. The top two diagrams show samples from the data sets: the first column
shows samples and results from x1(t) = sin(t)+µ1, y1(t) = cos(t)+µ2 and the second
column shows samples and results from x2(t) = t + µ3, y2(t) = t

3
+ sin(t) + µ4. The

second row shows the first and second projections of the second data set. The third
row shows the projections of both data sets after 10 iterations.
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Fig. 14.2. The results of forecasting the positions of points in data set 2 given only
the position of the corresponding point in data set 1.

multilayered perceptron, we have split the data set into two sets: 1706 sam-
ples were used as the training data and 1706 for the test data. Each training
input comprised a particular day’s exchange rate plus the previous n days’
exchange rates where values of n ranged from 5 to 25. With the Twinned
Principal Curves algorithm, we can simultaneously forecast as many days in
advance as we wish, since our second principal curve can be as high dimen-
sional as we wish. Typical results in terms of mean absolute percentage error
on the test set are given in Table 14.1.

Table 14.1. The first column gives the number of knot points and the others give
the mean absolute percentage error on a test data set predicting 1 to 5 days ahead.

Knot points Day 1 Day 2 Day 3 Day 4 Day5

57 1.0006 1.1086 1.2103 1.3035 1.4022
408 0.7413 0.9158 1.0685 1.1863 1.2887
607 0.6711 0.7939 0.9018 1.0197 1.0880

14.2.3 Intersecting Curves

One of the limiting factors for Principal Curves is that the curve (and hence
the data set) should not intersect with itself. If this happens, the direction
of the maximum rate of change will not be unique at that point and so the
Principal Curve cannot be found uniquely. However, when we have two data
sets such intersections are permissible provided intersections in both data sets
do not occur at the same time in both data sets.

Consider the data shown in the top line of Fig. 14.3: it comprises two sets
of two-dimensional artificial data from x1(t) = sin(t) + µ1, y1(t) = cos(t) +



298 Hebbian Learning and Negative Feedback Networks

µ2, x2(t) = t + µ3, if t ∈ [0, 2π] else x2(t) = (4π− t) + µ3, y2(t) = t
3 + sin(t) +

µ4 if t ∈ [0, 2π] else y2(t) = 4π−t
3 + sin(4π − t) + µ4 where t is drawn from

a uniform distribution in [0, 4π] and µi ∼ N(0, 0.2) is Gaussian noise. The
knot points after 10 iterations of the twinned principal curves algorithm are
shown in the second line of this figure. The third line of this figure shows
two examples of prediction using this method. A point is generated from data
set 1 and the equivalent projection onto data set 2 is calculated. The real
data point 2 is also shown in these figures. We see that both points are close
together.
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Fig. 14.3. The top two diagrams show samples from the data sets. The second row
shows the projections of both data sets after 10 iterations. The last row shows the
results of forecasting the positions of points in data set 2 given only the position of
the corresponding point in data set 1.
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14.2.4 Termination Criteria: MSE

Deciding when to stop the iterations of the Twinned Principal Curves method
has been ignored in the above. In order to gain some insight into the perfor-
mance of the curve at different iterations, we can calculate the MSE on a
separate data set at each iteration. In the following experiments, we have re-
created a new test set for each iteration so that the decision as to when to
stop was taken on a totally independent set each time. Each parameter set was
investigated with multiple training runs. We are interested in two functions
of the training regime: the number of knot points and the sum of the squared
errors for the given knot points. An example of three runs is given in Table
14.2.

We see that as the number of knot points decreases, the error initially
decreases before beginning to increase again. The later increase is due to an
increase in bias – the number of knot points is not sufficient to adequately
represent the data. The initial decrease is due to a decrease in variance as
the noise is removed due to the smoothing effect of the algorithm. Table

Table 14.2. The sum of the squared errors on a test set of artificial data. Each pair
of columns is a separate run of the algorithm with a different width (ε) parameter.

Iter Knots SSE Knots SSE Knots SSE

1 973 58.8 950 73.7 976 80.5
2 690 41.1 638 51.5 888 58.4
3 483 48.8 428 59.3 609 52.0
4 316 52.4 268 76.3 318 53.9
5 173 60.9 165 88.7 113 80.7
6 72 71.9 73 97.9 51 88.5
7 37 75.6 33 105.3 31 117.6

14.3 shows the decreasing number of knot points in a simulation based on
the dollar–pound exchange rate (3497 data points). We see that the number
of knot points decreases to 18 and then remains stable for the last three
iterations; also, unsurprisingly, the mean absolute percentage error increases
as the number of knot points decreases and as we try to forecast further into
the future.

14.2.5 Termination Criteria: Using Derivative Information

Another measure which we might use as a stopping criterion is the second
derivatives of the Principal Curves found. We anticipate that the initial es-
timates of the Principal Curves are liable to be extremely noisy and so the
curves will tend to wiggle about a lot: the second derivatives of the curves
will be very high. Subsequently, the local averaging smoothes the curve and
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Table 14.3. The knot points (from a data set of 3497 exchange rates) after 1,2,...,10
iterations of the Twinned Principal Curves algorithm and the corresponding mean
absolute percentage errors. The simulation converges to a stable 18 knot points.

Knot points Day 1 Day 2 Day 3 Day 4 Day 5

1459 0.907 1.008 1.128 1.216 1.328
915 0.920 1.025 1.145 1.237 1.346
571 0.935 1.037 1.162 1.248 1.360
297 1.044 1.143 1.252 1.335 1.430
134 1.194 1.278 1.373 1.441 1.539
42 1.255 1.328 1.421 1.491 1.579
25 1.330 1.397 1.489 1.548 1.632
18 1.349 1.416 1.504 1.566 1.644
18 1.349 1.416 1.504 1.566 1.644
18 1.349 1.416 1.504 1.566 1.644

the second derivatives will tend to decrease. We have investigated this in two
ways:

1. We have calculated the gradients of the curves between successive knot
points. To estimate the gradients, we have found the position of each knot
point in terms of distance along the curve, and then estimated the rate of
change in each dimension using

dxj

dt
|i ≈ ∆xj

∆t
|i (14.1)

where ∆xj is the difference between the ith and (i + 1)th point in the jth

input dimension and ∆t is the distance along the Principal Curve again
between the ith and (i + 1)th point. The scalar product, dxj

dt |i.dxj

dt |i+1,
tends to 1 during the course of the simulation as consecutive gradients
become close to one another (see Fig. 14.4).

2. An alternative is to reuse the same gradient information to calculate an
estimate of the second derivative:

d2xj

dt2
|i ≈ ∆xj |i − ∆xj |i−1

∆t|i (14.2)

where ∆t|i is the difference along the line between the mean of the ith and
(i + 1)th segments. The average of the absolute values of the estimates of
the second derivative begin rather high but tends towards 0 during the
course of the simulation (see Fig. 14.5). The increase at iteration 2 is
rather typical of our results and is caused by the shortening of the line
segments ∆t|i in (14.2) as the smoothing takes place.

Comparing the results of these two methods (Fig. 14.4 and Fig. 14.5), we find
that the first rises quickly and levels off while the second tends to take longer
to tend to 0. Given the MSE results, we consider that the knee on the graph of
the first method is the best predictor of when to stop iterating the algorithm.
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Fig. 14.4. The average dot product between consecutive gradient vectors. We see
that the dot product tends to 1 during the course of the simulation. The actual
highest value is, of course, dependent on the curvature of the data set.

Fig. 14.5. The average second derivative of the curves in various iterations. We
see that this tends towards 0 during the course of the simulation.

14.2.6 Alternative Twinned Principal Curves

The similarity between this algorithm and Canonical Correlation Analysis
suggests other methods of creating the twinned curves rather than simply
joining knot points. In this section, we propose an alternative method of ap-
proximating the principal curve by using a locally linear method similar to
Local Principal Component Analysis (LPCA)[98].
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Local Linear Approximation

The twinned nature of the sparsification process suggests that other means
of finding linear approximations to the curve may be useful. Of course, all
such methods rely on the assumption that the data manifold is locally flat
enough that the linear approximation holds; whether this assumption is true
of a particular real data set is a matter for empirical testing.

The algorithm as outlined in Section 14.1 generates two sets of matching
nodes that describe the nonlinear manifold the data lies on. It also provides a
set of the original data points which project onto each node. These points can
be used to perform a Local Canonical Correlation Analysis (LCCA) which
will give us a locally linear projection of each data set which will approximate
a globally nonlinear manifold. Of course, we lose the simplicity of the previous
method and we must take care at the junctions of consecutive LCCA vectors,
but we will show that the LCCA forecasts provide lower mean square errors
than the original method. We will also use a local version of Exploratory
Correlation Analysis (Chapter 12) which will also be shown to outperform
the above Twinned Principal Curve algorithm on forecasting problems.

Illustrative Experiments

In our first experiment, we use the artificial data set: x1(t) = sin(t) +
µ1, y1(t) = cos(t) + µ2, x2(t) = 1

3 t + µ3, y2(t) = sin(t) + µ4, where t is drawn
from a uniform distribution in [0, 2π] and µi = N(0, 0.12) is Gaussian noise.

We used the local Twinned Principal Curve algorithm to determine the
nodes which lie on the curves. We use the algorithm for 10 iterations and after
each iteration, we computed the local direction of both curves at each of the
matching nodes, using both CCA and ECA as a locally linear approximation.

In Fig. 14.6 we have shown the third and the tenth iteration of the algo-
rithm using CCA as the linear approximation method. The nodes are shown
as circles and the estimated directions of the curve at the nodes are indicated
by small line segments. During convergence, the number of nodes decreases,
which simplifies the description of the principal curve. The same experiment
has been repeated using ECA as the linear approximation method and those
results are shown in Fig. 14.7. To measure performance, we predict the loca-
tion of a set of samples that lie on the principal curve of the second data set,
given the corresponding samples that lie on the first. The error is measured
as the mean of the Euclidean distances between the locations of the predicted
data points and the locations of the actual data points. The results of the
error estimations are shown in Fig. 14.8.

The dotted line shows the error using the original twinned principal curve
algorithm. The dashed line shows the error when the data point is projected
onto the locally estimated CCA vector. The solid line shows the error when
the ECA vectors are used in the prediction.
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As we can see from these error-measurements, both the local ECA and
CCA predictions have a significantly lower error than the prediction of the
original method. As the number of nodes decreases, the error of the origi-
nal method increases, whereas the errors of local ECA and CCA predictions
remain more constant. Note that the original method approaches the more
complex methods at iteration 2, giving us another reason to investigate ter-
mination criteria of the original algorithm.

The predictions using ECA are slightly more accurate than the correspond-
ing CCA predictions. This can also be seen in Fig. 14.6 and Fig. 14.7, where
the CCA vectors track the nonlinear manifold less accurately than the ECA
vectors.
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Fig. 14.6. Results on the artificial data sets using CCA as a local approximation: the
left column shows the local linear approximation on the data set x1(t) = sin(t) +
µ1, y1(t) = cos(t) + µ2 at three iterations (top) and at ten iterations (bottom).
The right column shows the local linear approximation on the data set x2(t) =
1
3
t + µ3, y2(t) = sin(t) + µ4 at three and ten iterations.

Financial Forecasting

In order to test the performance of the locally linear method on real data,
we repeat the forecasting problem as described in Section 14.2.2. After each
iteration of training, we calculate the mean absolute percentage error for each
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Fig. 14.7. Results on the artificial data sets using ECA as a local approximation: the
left column shows the local linear approximation on the data set x1(t) = sin(t) +
µ1, y1(t) = cos(t) + µ2 at three iterations (top) and at ten iterations (bottom).
The right column shows the local linear approximation on the data set x2(t) =
1
3
t + µ3, y2(t) = sin(t) + µ4 at three and ten iterations.

Fig. 14.8. The dotted line shows the errors when using the original method, the
dashed line shows the errors using CCA as a local approximation and the solid line
shows the errors using ECA.



14.3 Twinned Self-Organising Maps 305

forecasted day, using both the original method and the local CCA and local
ECA methods.

The results are shown in Table 14.4, Table 14.5 and in Table 14.6. As
we can see from the tables, both the local CCA and the local ECA methods
outperform the original method. When we compare the performance of local
CCA to local ECA on this real data set, we see that in this case local CCA
outperforms local ECA; this is probably due to noise in the data set, which
provides a variance term to which the ECA algorithm responds.

Table 14.4. Mean square error forecasting exchange rates between the dollar and
the pound, using the original principal curve algorithm.

Iteration Nodes Day 1 Day 2 Day 3 Day 4 Day 5

1 777 0.230 0.321 0.424 0.505 0.615

5 96 0.446 0.554 0.686 0.790 0.932

10 71 0.462 0.583 0.736 0.860 1.007

Table 14.5. Mean square error forecasting exchange rates between the dollar and
the pound, using the local ECA twinned principal curve algorithm.

Iteration Nodes Day 1 Day 2 Day 3 Day 4 Day 5

1 777 0.219 0.315 0.411 0.493 0.598

5 96 0.299 0.396 0.520 0.619 0.751

10 71 0.303 0.416 0.566 0.685 0.816

Table 14.6. Mean square error forecasting exchange rates between the dollar and
the pound, using the local CCA twinned principal curve algorithm.

Iteration Nodes Day 1 Day 2 Day 3 Day 4 Day 5

1 777 0.159 0.261 0.361 0.447 0.560

5 96 0.164 0.268 0.399 0.502 0.637

10 71 0.169 0.288 0.451 0.580 0.716

14.3 Twinned Self-Organising Maps

The connection between Principal Curves and Self-organising Maps (SOM)
has been discussed often in the literature e.g. [134]. This suggests that the
SOM might be used in a similar manner to the Twinned Principal Curves
algorithm. This may be conceptually thought of as two SOMs linked via the
method of determining the winning neuron. Thus, if the centres in our first
space (the last 10 days data, for example) are given by wi and the centres in
the second space (the 5 days ahead, which we wish to predict) are given by
vi, then we can select our winner using
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c = arg min{||x1 − wi|| + ||x2 − vi||} (14.3)

and then updating our individual centres each with the standard learning
rules for a SOM,

∆wi = ηΛ(c, i)(x1 − wi)
∆vi = ηΛ(c, i)(x2 − vi)

where η is a learning rate and Λ(c, i) is the neighbourhood function which in
our case was a simple Gaussian. To test how accurate the trained model is on
new data, we determine the winner only on the x1 data set

c = arg min{||x1 − wi||} (14.4)

and use
|x2 − vc| (14.5)

as a measure of the error of the prediction. Results on the same financial data
set as previously are shown in Table 14.7 which should be compared with
Table 14.1. We see that the SOM easily outperforms the Twinned Principal
Curves algorithm for this task for an equivalent number of centres or knot
points.

Table 14.7. Using the same data set of 3497 exchange rates, the mean absolute
percentage error when using twinned Self-Organising Maps.

Centres Day 1 Day 2 Day 3 Day 4 Day 5

25 (SOM) 0.6552 0.6671 0.6768 0.6908 0.6933

14.3.1 Predicting Student’s Exam Marks

Our second experiment uses the 88 students’ marks on five module exams
(Chapter 9). The exam results can be partitioned into two data sets: two ex-
ams were given as closed-book exams while the other three were open-book
exams. We have used the two methods above to attempt to predict the stu-
dents’ open-book exams from their closed-book exams. The results (in terms
of mean absolute percentage errors) are shown in Table 14.8. The Principal
Curve method has a slight advantage over the Twinned SOM method, but
this advantage is reversed for Exam 3. It is very difficult to analyse why these
results take the form that they do, though clearly the results merit further
study.

The Twinned Principal Curve method used only two iterations through
the data set while the Twinned SOM was trained with 100 000 samples (with
replacement, clearly) from the 88 data points.
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Table 14.8. The mean absolute percentage error when using the two methods to
predict 88 students’ open-book exams from their closed-book exams.

SOM 0.1453 0.3055 0.3601

P Curve 0.2573 0.2494 0.1420

14.4 Discussion

The Twinned Principal Curves algorithm is a somewhat different algorithm
from that suggested by [70] or [106] in that it iteratively uses a kernel smoother
rather than attempting to approximate a principal curve by a mixture of
straight lines. However, it has a rather nice property of sparsification of the
projections: the local averaging provides a smoothing of the data set and since
we keep the values of ε1 and ε2 constant during the course of the simulation
this smoothing progressively works out from each data point resulting in fewer
and fewer projections onto the principal curve (compare the central two rows
in Fig. 14.1). We may use this property to allow the number of distinct nodes
we seek to determine the value of ε1 and ε2 (or vice versa).

It is worth noting also that this algorithm is able to deal with data sets
which standard Principal Curve algorithms find difficult: the very fact of hav-
ing two data sets with which to work simultaneously alleviates several prob-
lems. For example, since we initialise with a PCA and one of our data sets is
circular, any diameter of the circle may be a Principal Component direction.
This unfortunately means that points on opposite sides of the circle project
onto the same part of the eigenvector and so we often have an initial twisting
of the Principal Curve as it moves from the centre of mass on one side of
the circle to the centre of mass on the other side, these centres of mass being
caused by the finite numbers of samples. However, we only consider points to
be local to the current point if they are local in both projections. This makes
it much less likely that false neighbours will be chosen.

CCA maximises the correlation between two data sets under the constraint
that the variance of y1 = wT

1 x1 and y2 = wT
2 x2 are both 1. Twinned Principal

Curves can still meet this criterion; having found our sum of linear approx-
imators, we may project new samples onto these Twinned Principal Curves
and calculate the variance of the resultant projections. In calculating new cor-
relations, we may simply then divide each of y1 and y2 by their corresponding
standard deviations.

We have been asked if the algorithm can be viewed as a single Principal
Curve algorithm which has dimensionality equal to the sum of the dimension-
ality of x1 and x2. The answer is really “no” in that we use the criteria of
closeness in each space independently and so simply having a single Principal
Curve which joins together the two points x1 and x2 would give different re-
sults. It must be noted, however, that the SOM algorithm which does precisely
this appears to work rather well.



15

The Future

We stated at the start of the book that it would be based on several PhD
theses. We have done this, but a book which did justice to all these theses
would be much longer than the current text. Thus, if any part of this book has
proved especially interesting to a reader, he or she may consult the original
thesis from the University of Paisley:

• Dr. Mark Girolami (1998): Chapter 6, Independent Component Analysis
• Dr. Darryl Charles (1999): Chapter 5, Factor Analysis
• Dr. Stephen McGlinchey (2000): Chapter 7, Topology-preserving networks
• Dr. Donald MacDonald (2001): Chapters 6 and 8, Exploratory data

analysis
• Dr. Emilio Corchado (2002, Universidad de Salamanca): Chapter 8,

Maximum Likelihood learning
• Dr. Pei Ling Lai (2000): Chapters 9, 10 and 11, Canonical Correlation

Analysis
• Dr. Zhenkun Gou (2003): Chapters 9 and 13, Canonical Correlation

Analysis
• Dr. Jos Koetsier (2003): Chapters 12 and 14, Higher-order correlations
• Dr. Ying Han (2004): Chapters 12, 13 and 14, Time series analysis

In this final chapter, we review the work which has been covered in this book,
give pointers to work which is not included and discuss current and future
work in this area.

15.1 Review

The aim of our investigations has been to develop artificial neural networks
which can self-organise in order to extract structure from their environment.

Our major goal in developing unsupervised learning procedures is to build
self-organizing network modules which capture important regularities of the
environment in a simple form suitable for further perceptual processing. We
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would like an unsupervised learning procedure to extract and explicitly repre-
sent progressively higher-order features. If, at one stage, the algorithm could
learn to explicitly represent continuous real-valued parameters such as relative
depth, position and orientation of features in an image, subsequent learning
could then discover higher-order relations between these features, represent-
ing, for example, the location of object boundaries.

We began with a negative feedback network which self-organises on the
basis of simple Hebbian learning. We showed that this network was capable of
performing a Principal Component Analysis i.e. it could find the filters of the
data set which contained most of the variance in the data set or, equivalently,
compressed the data to achieve the least mean squared error when compressed
to a linear basis of a particular dimensionality.

This network was shown to be equal to other networks which only feed
forward the activation but use weight decay terms in their learning rules
[138, 160]. However, we believe that putting the negative feedback of activation
as a separate phase in the self-organising process yields advantages in terms of
providing us with a mental image which enables us to visualise processes which
would not otherwise occur to us. Thus, for example, the competition which
we introduced in Chapter 7 is difficult to contemplate in a solely feedforward
architecture.

We have introduced a number of data exploration tools which all self-
organise to find structure of one type or another in data sets. Two of the
networks, those of Chapter 6 and 8, we explicitly linked to the statistical
technique of Exploratory Projection Pursuit, and indeed, we combined these
two techniques so as to develop an artificial neural network which exhibited
fast and accurate convergence to filters which reveal some interesting structure
in a data set where the term “interesting” is used as a highly specialised and
mathematically precisely defined concept.

We have also introduced networks which cluster the data: we have been
especially interested in those clusterings which maintain in the coding, some
topological relations within the data. We discussed three separate networks
which performed this way, each having somewhat different properties from
existing topological networks and from each other.

The second half of this book has discussed the development of artificial
neural network algorithms which can be used for processing information from
more than one data stream at a time. This is especially helpful when each
data stream contains information which is related to the contents of the other
data stream. We related the two sets of basic techniques in Chapter 9 to
Canonical Correlation Analysis and showed that the resulting networks gave
results commensurate with statistical CCA results.

We went on to show that similar networks could be derived from different
starting points and that the resulting networks all shared a similar structure:
they self-organise using Hebbian learning between each output and the oppo-
site input and anti-Hebbian learning between each output and the input which
gave rise to the output. Our conjecture is that this very general finding may
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give clues to natural information processing, but this is a conjecture which we
do not have the technical expertise to validate.

Methods to find greater than linear correlations were introduced in Chap-
ter 11. We did this in two ways:

1. By introducing a nonlinearity into our neural CCA methods.
2. By transforming the data into a feature space, and performing linear CCA

in this feature space.

The second of these methods is not truly a neural method, but the use of
kernels is widespread in neural network journals and conferences and we are
influenced by our environment as are all researchers. These methods were
shown to provide correlations which exceed those which statistical CCA (or
linear neural implementations of CCA) can find. Yet we have stopped short
of stating that we are approaching mutual information. Our mental model for
the first of these methods is rather like that of Principal Curves which takes
the first Principal Component direction from a data set and bends it through
the major (nonlinear) axis of a data set; thus, by analogy, we imagine that our
nonlinear CCA is rather like performing a linear CCA of a twinned data set
and bending both canonical correlation filters through the major (nonlinear)
axes of the data set to maximise correlations. This is, as yet, a less well defined
model than we would like, and future research will undoubtedly tackle this
problem.

A further change allowed us to tackle the difficult problem of multicollinear
data, which may provide less-than-robust solutions to CCA. The methods
proved to be extremely informative with functional data with the resulting
filters providing far more interest than the standard methods. Chapter 12
took two single stream methods for extracting structure from data sets and
adapted them so that they sought joint, higher-order structure in two data
streams at once. A comparison at the end of Chapter 12 discusses the various
aspects of the rules developed. The FastECA method of Chapter 12, again,
is not a truly neural method, but again, the FastICA method on which it
is based, is well known in neural network circles and is, in fact, the tool of
choice for researchers interested in performing an Independent Component
Analysis of a data set. Exploratory Correlation Analysis was performed on
visual data: results on artificially created twinned data were commensurate
with those found by researchers with single stream data; however, when used
with real binocular data, the results were less convincing than previously,
suggesting that it is possible that artificial neural network researchers have
been over-optimistic in equating their results to those found in biology.

A final chapter investigated the twinning of the Principal Curve algo-
rithm. We used this family of methods initially to forecast financial data,
but concluded that the method was more appropriate for exploratory data
investigation.
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15.2 Omissions

In order to make the current exposition readable, we have tended to keep
each topic separate, however several students have used mixtures of these
methods and have interesting results from these networks. Thus for example,
we have not discussed lateral weights other than those in Chapter 4; however,
in the theses of Charles [24] and Corchado [29], we derive lateral connections
from the Rectified Gaussian Distribution and use these for imposing specific
structures on the outputs. In [29], for example, we derive several methods for
identifying separate sets of horizontal and vertical bars from mixtures of bars
using these lateral connections and the maximum likelihood learning method.

We have also, in this book, tended to give credit to one individual for
a specific topic. However, inevitably, when students are working together in
a group, they influence each other and ideas migrate throughout the group.
For example, we have credited Dr. McGlinchey with the work on topology
preservation but Dr. MacDonald also has performed substantial research on
this topic [121].

Other specific topics missing from this book include

• In [66], we have shown that the non-negativity constraints may be applied
to both the bi-gradient algorithm [180] and a class of algorithms derived
from the generalised eigenproblem [188] and that the resulting network
has properties similar to those discussed in Chapter 5.

• We have not discussed unsupervised single stream kernel methods [56] at
all, but these feature very strongly in several theses, particularly that of
Dr. MacDonald [121].

• Inevitably, there is much more in the way of demonstrations of the methods
described herein in the various theses; however, our focus in this volume
has been on the development of methods and so we have had to omit
extended experimental simulations.

However, we have given pointers to the various theses and so they may be
accessed subsequently.

15.3 Current and Future Work

Perhaps the most interesting aspect of this book is that using a very simple
negative feedback architecture, we can create self-organising artificial neural
networks which will find different types of structure in a data set dependent
on the actual rules which are used to change the weights. One of the areas
that merits further attention is the search for nonlinear manifolds in data
spaces. An open question is to what extent the negative feedback architecture
can contribute to this. There are two current streams to our current work on
negative feedback networks:
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1. Combining the negative feedback networks with other exploratory data
analysis techniques. Thus, for example, we are investigating [147] com-
binations of Andrews’ Curves and the Exploratory Projection Pursuit
network of Chapter 6. We are also investigating [152] combining networks
using statistical techniques such as bagging [19] and boosting [49].

2. The methods discussed in this book give linear projections except for those
in Chapter 7. However Fig. 6.1 (left) shows a one-dimensional distribution
whose structure cannot be best represented by a projection onto a straight
line. Thus, one stream of research is finding whether it is possible to
identify a generic nonlinearity which will best describe a data set. Some
work has been done with Principal Curves and Self-organising Maps [68]
but much more is both possible and necessary.

We are also aware of the great deal of interest in deriving unsupervised
artificial neural networks from probabilistic models (see Chapter 8 and Ap-
pendix B) and anticipate that this will also form one strand of our future
work. How much more we can develop the negative feedback network is an
open question, but, with many talented young researchers coming through,
this is a challenge which we relish.



A

Negative Feedback Artificial Neural Networks

Because this book is based on a negative feedback network which is derived
from the Interneuron Model [153], we give pride of place to this model before
going on to investigate other negative feedback models. We review separately
those models where the dynamics of the network settling to an attractor state
have been important to the value of the state reached and those models which
have considered only the transfer of activation as a single event. Finally, we
consider the relationship between the negative feedback model of this book
and biological models.

A.1 The Interneuron Model

Plumbley [153] has developed a model of Hebbian learning which is based on
the minimisation of information loss throughout the system.

He develops these interneurons in two ways, suggesting that he is giving
two different views of the same network. However, we will see that these
interneurons have different capabilities depending on which network is used.

In both networks the interneurons are developed as anti-Hebbian neurons
with the additional property of trying to optimise information transfer within
limited power constraints. Plumbley notes that the best information transfer
rate will be found when the outputs are decorrelated; however, he also at-
tempts to equalise the variance of the outputs to ensure that they are then
carrying equal information.

The dynamics of the network are described by

z = V T y

where zj is the activation of the interneuron, yi is the output from the network,
and Vij is the weight joining the ith ouput neuron to the jth interneuron.

This makes the output response

y = x − V z
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where x is the original input value. Plumbley concentrates on the informa-
tion preserving properties of the forward transformation between inputs and
outputs and shows

y = (I + V V T )−1x

A weight decay mechanism is used in the learning:

∆vij = η(yizj − λvij)

This is equivalent to a learning rule in the limit of

d

dt
v(t) = (C − γI)v

A solution to this equation is

v(t) = A exp(C − γI)t

Therefore, the weights will increase without limit in directions where the
eigenvalue of the correlation matrix exceeds γ. Thus the weights will never
tend to a multiple of the principal eigenvector and no selectivity in information
transfer will be achieved. Note that there are fixed points on the eigenvectors
but these are not stable.

The crucial difference between this model and Oja’s model (Chapter 2)
is that in Oja’s model the decay term is a function of the weights times the
weights. In this model, the decay term is not strong enough to force the
required convergence.

Equally, the anti-Hebbian learning rule does not force convergence to a set
of decorrelated outputs.

∆vij = η(yizj − λvij)

does not mean that

(∆vij = 0) =⇒ (E(yizj) = 0).

However, in taking “another view of the skew-symmetric network”, Plum-
ley uses the interneurons as the outputs to the network.

In this model, we have forward excitations U and backward excitations V
where

z = UT y

y = x − V z

i.e.
z = UT (I + V UT )−1x

where the weight update is done using the same update rule

∆vij = η(yizj − λvij)
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Since the output is from the interneurons, we are interested in the forward
transform from the x values to the z values.

yi = xi −
∑

k

ukizk

Now,

∆uij = η(yizj − λuij) = η

((
xi −

∑
k

ukizk

)
zj − λuij

)

Plumbley states that the last term is the weight decay term. In fact, as can
be seen from the above equations, the second term is the important weight
decay term, being a form of Multiplicative Constraint (Chapter 2). There is
an implicit weight decay built into the recurrent architecture.

However, if we consider the network as a transformation from the x values
to the y values we do not find the same implicit weight decay term:

zi =
∑

j

uijyj (A.1)

=
∑

j

uij

(
xj −

∑
k

ukjzk

)
(A.2)

=
∑

j

uijxj −
∑

k

zk

⎛
⎝∑

j

uijukj

⎞
⎠ (A.3)

And so,

∆uij = η(yizj − λuij) (A.4)

= η

⎛
⎝yi

⎛
⎝∑

j

uijxj −
∑

k

zk

⎛
⎝∑

j

uijukj

⎞
⎠
⎞
⎠− λuij

⎞
⎠ (A.5)

Using this form, it is hard to recognise the learning rule as a Hebb rule,
let alone a decaying Hebb rule of a particular type. However, as we have seen
elsewhere in this book, the negative feedback in Plumbley’s first network is
an extremely valuable tool.

A.2 Other Models

As with many classication systems, it is possible to classify the artificial neural
network models which are similar to the negative feedback model of this book
in a number of ways. We have chosen to split the group into static models
(next section) and dynamic models (Section A.2.2).
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A.2.1 Static Models

The role of negative feedback in static models has most often been as the
mechanism for competition (see e.g.[22, 110] for summaries) often based on
biological models of activation transfer e.g.[124] and sometimes based on psy-
chological models e.g. [28, 62, 64]

An interesting early model was proposed by Kohonen [110] who uses neg-
ative feedback in a number of models, the most famous of which (at least of
the simple models) is the so-called “novelty filter”.

In the novelty filter, we have an input vector x which generates feedback
gain by the vector of weights, M . Each element of M is adapted using anti-
Hebbian learning:

dmij

dt
= −αx

′
ix

′
j (A.6)

where x′ = x + Mx
′

(A.7)
= (I − M)−1x = Fx (A.8)

“It is tentatively assumed (I − M)−1 always exists.” Kohonen shows that,
under fairly general conditions on the sequence of x and the initial conditions
of the matrix M , the values of F always converge to a projection matrix under
which the output x′ approaches zero although F does not converge to the zero
matrix i.e. F converges to a mapping whose kernel ([120], page 125) is the
subspace spanned by the vectors x. Thus, any new input vector x1 will cause
an output which is solely a function of the novel features in x1.

Other negative feedback-type networks include William’s Symmetric Er-
ror Correction (SEC) Network [183] where the residuals at y were used in a
symmetric manner to change the network weights. The SEC network may be
easily shown to be equivalent to the network described in Chapter 3.

A second reference to a negative feedback-type network was given in [117].
Levin introduced a network very similar to Plumbley’s network and investi-
gated its noise resistant properties. He developed a rule for finding the optimal
converged properties and, in passing, showed that it can be implemented using
simple Hebbian learning.

A third strand has been the adaption of simple Elman nets([6, 43, 44,
78, 107]) which have a feedforward architecture but with a feedback from
the central hidden layer to a “context layer”. Typically, the Elman nets use
an error-descent method to learn; however, Dennis and Wiles [37, 38] have
modified the network so that the feedback connection uses Hebbian learning.
However, the Hebbian part of the network uses weight decay to stop uncon-
trolled weight growth and the other parts of the network continue to use back
propagation of errors to learn.

More recently, Xu [185] has analysed a negative feedback network and
has provided a very strong analysis of its properties. While he begins by
considering the dynamic properties of a multilayer network (all postinput



A.2 Other Models 319

layers use negative feedback of activation), it is clear from his discussion that
the single-layer model which he investigates in detail is similar to the network
in this book.

An interesting feature is Xu’s empirical investigation into using a sigmoid
activation function at the negative feedback networks; he reveals results which
show that the network is performing a PCA and suggests that this feature
enabled the network to be more robust i.e. resistant to outliers, a finding in
agreement with other researchers (e.g. [103, 140, 144]).

A.2.2 Dynamic Models

The negative feedback of activation has most often been used in those models
of artificial neural networks which are based on a dynamic settling of activa-
tion. These are generally called Hopfield nets [73] after John Hopfield [79] who
performed an early analysis of their properties though earlier work on their
properties was performed by other researchers e.g. following Grossberg [63],
we note that there are two types of on-center off-surround networks possible
using inhibition. It is possible to generate the following:

• Feed forward inhibition: the activation transfer rule is

dyi

dt
= −Ayi + (B − yi)xi − yi

∑
k �=i

xk (A.9)

where A,B are constants and xi is the input to the ith neuron. This is
clearly not a biological model as it requires each cell to have informa-
tion about all inputs to all other neurons xk, k 	= i. Grossberg points out
though, that, if the activation is allowed to settle, this model has a sta-
tionary point (dyi

dt = 0) when

yi =
xi∑
k xk

∗ B
∑

k xk

A +
∑

k xk
(A.10)

Possibly of most interest is its self-normalisation property, in that the total
activity ∑

k

yk =
B

∑
k xk

A +
∑

k xk
(A.11)

is a constant.
• Feedback inhibition: we use here Grossberg’s term though we tend to make

a distinction between feedback inhibition between layers (as in Plumbley’s
network) and lateral inhibition between neurons in the same layer. Here
Grossberg discusses the activation passing equation

dyi

dt
= −Ayi + (B − yi)[xi + f(yi)] − yi

⎡
⎣Ji +

∑
k �=i

f(yk)

⎤
⎦ (A.12)
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where Ji =
∑

k �=i xk. The most interesting properties from this model de-
velop when the activation function, f(), is a sigmoid which has the prop-
erty that it forms a winner-take-all network which suppresses noise, and
quantises the total activity. Again these properties arise from an analysis
of the dynamic properties of the negative feedback acting on the network
activations.

A.3 Related Biological Models

In keeping with our overall aim, we would like to link our networks with those
of biology. The overall aim for an early processing network has been described
as the minimisation of redundancy so that the further network can be devel-
oped as a “suspicious coincidence” [5] detector. The decorrelation of inputs
formed by projection onto the Principal Components clearly achieves this. The
network most like that described above was devised by Ambrose-Ingerson et
al. [1] in which a network which uses negative feedback between layers at-
tempts to simulate the transfer of olfactory information in the paleocortex.
The sole difference between that network and the negative feedback network
is that the network uses a competitive activation transfer arrangement; the
authors conjecture that a form of PCA is taking place.

Murphy and Sillito [135] have shown that LGN neurons seem to be inhib-
ited by the V1 cells (in the visual cortex) which they excite. Pece [151] has
developed a model based on negative feedback which simulates the reduction
in redundancy in an information-transferring network.

As an interesting aside, we note that Robinson [156] has shown that neg-
ative feedback cannot be used to control the visuomotor system in a con-
tinuously operating closed-loop system with a finite delay term. He shows
that the negative feedback in the system can be made stable if the system
is refractory: each eye saccade is followed by a short period when it will not
respond to another change in target position (caused by the sampling rate
having a finite frequency). Because of this, we can think of such a system as
running on open-loop dynamics for much of the time, which is equivalent to
having discrete time intervals in which activation is passed forward and back.
It is results like this which underlie our conviction that the negative feedback
network is based on cybernetic principles.

A network very much like the network which we have investigated, has
been developed in [95] in which inhibition is specifically used in an artificial
neural network to model the cerebellum. The network appears identical to
that of Chapter 3 but is considered as a dynamic model where the activation
is allowed to pass round the network until settling takes place. However, since
Jonker makes “the biologically plausible assumption that the characteristic
time-scales in the evolution of interactions are much larger than the time-
scales involved in the neuronal dynamics”, ([95], page 87) it is not surprising
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that the emergent properties of the network are very similar to those which
are developed in Chapter 3 from a static network.

We have discussed only algorithms which have been defined as artificial
neural networks. However, adapting parameters incrementally is not confined
to this field and one may find similar models in the fields of statistics, control
and mathematics.



B

Previous Factor Analysis Models

In this appendix, we discuss several models which also find individual factors
underlying a data set and, where possible, relate them to the algorithm and
experiments of Chapter 5. Not all the models in this section were explicitly
related to factor analysis in the original papers, but all were used to find
factors underlying a data set.

B.1 Földiák’s Sixth Model

The major difference between this model which is shown in Fig. B.1, and
Földiák’s [46] previous models is that the neurons are nonlinear units, each
with an adjustable threshold over which its activation must be, before the
neuron can fire. In order to get a sparse coding, each neuron tries to keep down
its probability of firing by adjusting its own threshold. If a neuron has been
firing frequently, its threshold will increase to make it more difficult for the
neuron to fire in the future; if it has been firing only occasionally, its threshold
will decrease, making it easier for the neuron to fire in future. This mechanism
does have some biogical plausibility in that neurons do become habituated to
inputs and stop responding so strongly to repeated sets of inputs.

Let there be n inputs and m output neurons (the representational layer).
Then

yi = f

⎛
⎝ n∑

j=1

qijxj +
m∑

j=1

wijyj − ti

⎞
⎠ (B.1)

where qij is the weight of the feedforward connection from the jth input xj ,
wij is the weight of the lateral connection from the jth output neuron to the
ith in that layer and ti is the adjustable threshold for the ith output neuron.
Both sets of weights and the threshold are adjustable by competitive-type
learning:
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Fig. B.1. Földiák’s sixth model: we have feedforward weights from inputs to out-
puts and then feedback (or lateral) connections between the outputs.

∆wij =
{−α(yiyj − p2), if i 	= j,

0, if i = j or wij < 0.

∆qij = βyi(xj − qij)
∆ti = γ(yi − p)

where α, β, γ are adjustable learning rates. The feedforward weights, qij , use
simple competitive learning. The lateral learning rule for the w weights will
stabilise when E(yiyj) = p2, i.e. each pair of units will tend to fire together
a fixed proportion of the time. This rule will interact with the rule which
changes the threshold: the long-term effect of this rule should be to set the
threshold ti to a set value to ensure E(yi) = p. By choosing the value of p
appropriately we can determine the level of sparseness of the firing pattern.
For example, suppose p = 1

10 . Each neuron will fire about 1
10 of the time and

will fire at the same time as each of its neighbours about 1
100 of the time. So if

we have 500 output neurons, then each input pattern would elicit a response
from about 50 output neurons, which is a distributed representation and not
a grandmother cell response, but one in which the number of neurons firing
at any one time is much less than the number of output neurons.

B.1.1 Implementation Details

Földiák actually describes his feed forward rule with the differential equation

dy∗
i

dt
= f

⎛
⎝ n∑

j=1

qijxj +
m∑

j=1

wijy
∗
j − ti

⎞
⎠− y∗

i (B.2)

which is viewing the neuron as a dynamically changing neuron responding
to a mixture of feedforward inputs and lateral inputs which are themselves
changing in time. It can be shown that, provided the feedback is symmetric,
the network is guaranteed to settle after a brief transient. Földiák simulates
this transient by numerically solving the differential equations. He uses initial
conditions
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y∗
i (0) = f

⎛
⎝ n∑

j=1

qijxj − ti

⎞
⎠ (B.3)

with the function f(u) equal to the logistic function, 1
1+exp(−λu) . The values

at the stable state are now rounded to 1 or 0 depending on whether y∗
i >

0.5 or not. Feedforward weights are initially random but normalised so that∑
j q2

ij = 1 and the feedback weights are zero.

B.1.2 Results

On the bars data (Chapter 5), the network learns to find the bars so that
the feed forward weights match a single possible bar. The code generated
in this case is optimal in that there is no redundancy between neurons —
every neuron represents a different bar — and all information in the input is
preserved — the set of output neurons will identify exactly which of the input
squares is on by identifying which bars are represented in the pattern.

An extension to this experiment was the presentation of input patterns
consisting of images of letters presented in a fixed position on an 8×15 raster
display. During training, the letters were presented in a random order with the
same probabilities that they appeared in a piece of English text. The results
were as you might have hoped (Table B.1) had you hand-designed a code (e.g.
á la Huffmann): frequent letters had fewer active bits than infrequent ones
since otherwise the correlations introduced by simultaneous frequent firing
would force the decorrelating lateral weights to increase inhibition between
the neurons. Another feature was that no two frequent letters were assigned
to the same output though some rare letters did share an output. Finally, the
code has the nice property that similar inputs e.g. O and Q are mapped to
similar output neurons.

Table B.1. Some of the codes found by Földiák’s network after being presented
with 8 000 letters. The letter t appears frequently in the text and so t uses a small
number of firing neurons, while J appears infrequently and so can use a larger number
of firing neurons. Note also that i and ! share a code.

Network output Input pattern

1000000000000000 t
0000100000000000 i or !
0010011000001000 J
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B.2 Competitive Hebbian Learning

White [181] has attempted to play off the extreme focusing of competitive
learning with the broad smearing of Hebbian learning with a model which
attempts to combine both effects.

Consider a one layer network with outputs

yi = f

⎛
⎝∑

j

wijxj

⎞
⎠− 1

2
(B.4)

where f(u) = 1
1+exp (−u) and xj is the jth input. Then each output satisfies

− 1
2 ≤ yi ≤ 1

2 . The information given by the outputs is proportional to

F =
N∑

i=1

y2
i (B.5)

If we simply wish to maximise F we can use gradient ascent so that

∆wij =
∂F

∂wij
= 2f ′

iyixj (B.6)

Now since 2f ′
i is constant for the whole weight vector into output neuron i,

we can ignore this factor (it alters the magnitude of the change but not the
direction) to get simple Hebbian learning:

∆wij = αyixj (B.7)

where α, the learning rate, contains the 2f ′
i factor. But we know that this

causes every output neuron to move to the principal component of the input
data, i.e. all are covering the same information. We introduce a penalty term to
discourage this and the simplest is that the mean square correlation between
output neurons should be as low as possible: if we get totally decorrelated
outputs, then

E(gik) = E((yiyk)2) = 0 (B.8)

We can incorporate the constraint into the optimisation by using the method
of Lagrange multipliers: now we try to maximise the function G given by

G = F +
1
2

N∑
i=1

N∑
k=1,k �=i

λikgik (B.9)

which gives us

∆wij =
∂G

∂wij
∝ αyixj

⎧⎨
⎩1 +

∑
k �=i

λiky2
k

⎫⎬
⎭ (B.10)
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White shows that one solution to this (for the λ values) occurs when all λik

are equal to -4. Thus the weight change equation becomes

∆wij = αyixj

⎧⎨
⎩1 − 4

∑
k �=i

y2
k

⎫⎬
⎭ (B.11)

This rule is known as the Competitive Hebbian Rule: it is used with a hard
limit to the overall length of the vector of weights into a particular output neu-
ron and in addition we do not allow the term in brackets to become negative.
There are therefore three phases to the learning in this network:

• Neuron outputs are weak. In this case there is essentially no interaction
between nodes (the term in the bracket << 1) and all nodes will use
simple Hebbian learning to learn the first Principal Component direction.
But note that when they have done so, (or are doing so) they enter a region
where the interaction is not insignificant and so some interaction between
output neurons begins to take place — the neurons have learned their way
out of the uniform region of weak outputs.

• Neuron outputs are in the intermediate range. This is the effective range of
learning for the Competitive Hebbian Algorithm. A winning node — one
which happens to be firing strongly — will tend to turn off the learning
for the other nodes. This will result in different neurons learning different
regions of the input space.

• Neuron outputs are too strong. When the competitive learning factor (the
bracketed term) becomes negative, no learning takes place since we simply
make the last term 0. If a system gets to this stage, there is no way it can
learn its way out of the region and we must simply stop the algorithm and
restart.

The Competitive Hebbian Algorithm has some success on our horizontal and
vertical bars problem but has proved difficult to stabilise and indeed the actual
parameters used in the algorithm have to be hand-tuned for a particular
problem to get the best results.

B.3 Multiple Cause Models

The algorithms of this type are sometimes known as “Multiple Cause Models”
since the aim is to discover a vocabulary of independent causes or generators
such that each input can be completely accounted for by the action of a few
of these possible generators e.g. that any set of the 216 possible patterns from
the 8×8 bars problem (Chapter 5) can be accounted for by some combination
of the 16 output neurons, each of which represents one of the 16 possible
independent inputs.
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B.3.1 Saund’s Model

Saund [161] has focussed his attention on the activation function. His network
is shown in Fig. B.2. We have a binary input vector {x1, x2, ..., xj , ..., xn}
which is joined by weights wij to an output/coding layer { y1, ..., yi, ..., ym}.
The weights are thought of as associating an input vector with activity at
a cluster centre determined by the weights into that centre. This is similar
to competitive learning which is the simplest way to view this part of the
process.

Input
layer

Coding
Layer

measurement

prediction

Fig. B.2. Saund’s model has activation propagating forwards and prediction prop-
agating backwards.

The cluster centre then corresponds to an output neuron which is in a
position to predict the input that caused it to react. This prediction is then
returned to the input layer. Saund views the outputs as performing a voting
rule associating each prediction with the firing of the various output neurons:
if the ith neuron is firing strongly, then it must be because the inputs to it
approximate the data vector which is currently being presented to the network.
We can view such firing as the probability that it is caused by an item of data
which is close to the weights into that neuron. Thus, he defines the prediction
of the network for the jth input value as

rj = 1 −
∏
k

(1 − wkj .yk) (B.12)

Clearly if all weighted sums of the outputs are close to zero then the prediction
is close to zero. On the other hand, as soon as a single weighted feedback is
close to 1, the prediction of the network goes to one — rather like the neuron
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saying “I’ve found it”. The prediction function for two-dimensional inputs is
shown in Fig. B.3. It is sometimes known as a noisy-OR function since it is a
smoothing of the Boolean OR function.

The prediction function

0

0.5

1 0

0.5

1

0

0.5

1

Fig. B.3. The prediction function for a two-dimensional data set.

Saund identifies an objective function equal to the log likelihood

gi =
∑

j

log (xi,jri,j + (1 − xi,j)(1 − ri,j)) (B.13)

where the i subscript identifies the ith pattern and the j the jth input neuron.
If xi,j and ri,j simultaneously approach 1 or 0, then the objective function
tends to zero. At all other times the objective function will be negative. A
global objective function is merely the sum of these objective functions over
all input patterns and the optimal weights are found by batch gradient ascent.

Saund shows that the network will identify the independent horizontal or
vertical lines, and points out the interdependencies in the training regime: the
optimal weights cannot be calculated independently for each hidden unit but
are dependent on one another’s predictions.

On the left-hand side of Figure B.4, we show a single neuron with cluster
centre (1,1,1) which is attempting to predict the pattern (1,1,0). The best it
can do is to predict (0.666,0.666,0.666) which minimises the error function.
However, a second neuron with centre (1,1,0) can minimise this error (in fact
send it to zero) when it comes online, leaving the first neuron free to continue
responding maximally to (1,1,1). Note that each neuron has responded to a
different pattern and each is minimising the error for a different part of the
input space.
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1 1 10 1 0

1 1 1

Inputs

Predictions0.666 0.666 1 1 00.666

0.666 0 1

Fig. B.4. If there is only a single cluster centre at (1,1,1) the output neuron
cannot respond accurately to the input (1,1,0) since the incorrect prediction of a
1 on the third input would give an error of magnitude 1. The best that can be
done is to predict 2

3
for each input. But if we have two centres, the second centre

can concentrate its resources on this input, leaving the other centre to react to the
pattern (1,1,1).

B.3.2 Dayan and Zemel

Dayan and Zemel [35] view the problem as one of finding a set of prior proba-
bility and conditional probabilities that (approximately) minimize the descrip-
tion length of a set of examples drawn from the distribution: the minimum
description length refers to the number of output neurons required to describe
the input in an invertible code. Their first model uses a backpropagation net-
work with a single hidden layer for autoassociation. They use, however, a
cross-entropy error to judge the accuracy of the reconstructions at the output
layer. Using this on the bars data, they had some success but found that the
network tended to get stuck in a local minima about 73% of the time in which
a particular output would have responsibility for more than one bar.

B.4 Predictability Minimisation

Schmidhuber and Prelinger [162] have developed a network (Fig. B.5) for ex-
traction of independent sources based on the principle of predictability min-
imisation. The core idea is that each prediction layer (the last layer in the fig-
ure) attempts to predict each code neuron’s output based only on the output
of the other code neurons while simultaneously each code unit is attempting
to become as unpredictable as possible by representing input properties which
are independent from the features which are being represented by other code
neurons.

Notice that each prediction neuron is connected in a feedforward manner
to all code neurons except the code neuron whose output it is attempting to
predict. Let the output of the ith code neuron be yi. Then

yi = f

⎛
⎝∑

j

wijxj

⎞
⎠ (B.14)
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Predictions

Code
Units

Prediction
Units

Inputs

Fig. B.5. Schmidhuber’s Predictability Minimisation network: input patterns are
coded across the (large) code neurons. Each code neuron feeds forward to all the
other prediction units but not its own. Each prediction unit attempts to predict the
corresponding code unit’s output. Each code neuron is meanwhile attempting to
avoid being predictable.

where f(u) = 1
1+exp (−u) and xj is the jth input. So 0 ≤ yi ≤ 1. The output

of the prediction units is given by

Pk =
∑
j �=k

vkjyj (B.15)

So Pk sees only the response of the other code neurons and not the code
neuron which it is trying to predict. Now we have two-pass training (both
using conventional backprop).

Pass 1. Each set of weights is trained to minimise the mean squared prediction
error over all sets of inputs, i.e. to minimise

∑
p

∑
i(P

p
i − yp

i )2, where
P p

i is the output of the ith prediction neuron to the pth input pattern
etc. If it does minimise this function, the Pi will then be the conditional
expectation E(yi|{yk, k 	= j}) of the prediction unit given the output of
all the other code neurons. We can see that this conditional expectation
will not be the same as actually predicting the value of the code unit, e.g.
if the code unit fires 1 one-third of the time and 0 the other two-thirds,
the conditional expectation would be 0.333 in this context.

Pass 2. Now in the second pass the weights are again adjusted so that the code
units are attempting to maximise essentially the same objective function
which was previously being minimised, i.e. to make them as unpredictable
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as possible. But now we only need change the w weights into the code
units.

The two criteria co-evolve by fighting each other. Note that each w weight
is maximising only the local prediction error while each v weight is being
updated to minimise the global prediction error.

Schmidhuber states that the code evolved by his network is quasi-binary:
each coding neuron is either 0/1 for each pattern or responds with a constant
value to each input pattern in which case it is simply giving a “don’t know”
response to each pattern.

B.5 Mixtures of Experts

A famous method is the mixtures of experts [92, 96]: the desire is to have
each expert (which is typically itself a backpropagation neural network) learn
to take responsibility for a particular subset of the input data. The experts
are then assigned a weight which can be thought of as the confidence that a
gating network has in each expert’s responsibility for responding to that input
data.

Expert
network

Expert
network
     m

Gating
Network

Input data

Expert
network
    1      2

Gating
weights

Output

Fig. B.6. Each expert and the gating network sees all input data. Each expert
learns to take responsibility for a particular set of input data and the gating expert
learns how much confidence to have in each network’s output for that input.

Consider the network shown in Figure B.6. Each expert sees all the input
data and is itself a network which can be trained by supervised learning (error
descent) methods. The gating network also sees the input data and is trained
by supervised learning. Its responsibility is to put a probability on the chance
that each network is the one to take responsibility for that input.
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A First Attempt

A first attempt might be to use error descent on

Ec =‖ tc −
∑

i

pc
iy

c
i ‖2 (B.16)

where yc
i is the output vector of expert i on case c, pc

i is the proportional
contribution of expert i to the combined output vector and tc is the target
output on case c. Notice that it is the gating expert which determines pc

i while
the experts independently calculate their outputs, yi.

The problem with this error function is that this introduces a strong cou-
pling between the experts, causing them to act together to try to reduce the
error. So each expert attempts to minimise the residual errors when all the
other experts have had their say, which tends to lead to situations where
several experts are combining to take responsibility for each case.

An Improvement

What we really require is for our gating expert to make the decision about
which single expert should be used in each case. This suggests an error term
of the form

Ec = E(‖ tc − yc
i ‖2) =

∑
i

pc
i ‖ tc − yc

i ‖2 (B.17)

Here the error is the expected value of the residual error where each expert
is expected to provide the whole of the approximation to the target and the
gating network evaluates how close this whole approximation is. There will be
still some indirect coupling since when another expert changes its weights the
gating network may alter its assessment of responsibility apportionment, but
this is much less direct than before. Simulations have shown that this network
can evolve to find independent sources.

When an expert network gives less error than the weighted average of the
errors over all experts, its responsibility for that case is increased (the gating
network increases the value of pc

i ) and if it does worse, its responsibility is
decreased.

There is still a difficulty with this error measure, however, which we see
when we consider the rate of change of the error with the output,

∂Ec

∂yc
i

= −2pc
i (t

c − yc
i ) (B.18)

from which we can see that the rate of change for terms which are far away
from the current target is greater than those closer. While this is gated by the
probability vector, it still has an adverse effect on convergence.
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The Final Error Measure

Consider the error measure

Ec = − log
∑

i

pc
i exp

(
−1

2
‖ tc − yc

i ‖2

)
(B.19)

which can be derived by assuming that all output vectors can be described by
a Gaussian distribution and we are maximising the negative log probability of
their independent joint distributions. When we now calculate the derivative
of the error function with respect to the experts’ outputs we get

∂Ec

∂yc
i

= − pc
i exp (− 1

2 ‖ tc − yc
i ‖2)∑

j pc
j exp (− 1

2 ‖ tc − yc
j ‖2)

.(tc − yc
i ) (B.20)

This term has been shown to have much better performance due to the fact
that the first fractional term takes into account how well the ith expert is
performing compared to all other experts.

B.5.1 An Example

Jacobs et al. [92] performed an experiment in which four vowel sounds from a
75 speakers were to be discriminated by an ANN. They compared the results
using the Mixture of Experts network with a backpropagation network and
showed that the latter typically took about twice as long to train.

The actual convergence of the weights in the network is interesting: initially
each expert in the network attempts to minimise all the errors in the network
over every example. There is, at this stage, no cooperation in the network and
each network is attempting to deal with the whole problem itself. However
a stage is reached when one network begins to receive more cases from a
particular class than the others and quickly assumes responsibility for this
class. This leaves the other experts free to concentrate on error minimisation
for the other classes.

Finally, we see an exaggerated version of converged weights in Figure B.7
where we have experts and the gating network working together to model the
problem. It can be seen that each of the networks has a region of the input
space where it is effective and a region where it is ineffective. The gating
network has learned these regions and assigns responsibility for the network’s
output to the expert for problems in the area where the expert is effective.

B.6 Probabilistic Models

Hinton and colleagues (e.g. [75, 76]) have developed models which attempt to
use a generative model which consists of top-down connections from underly-
ing reasons to the input image i.e. the top-down connections create the image
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Fig. B.7. An exaggerated view of how the gating network and the mixtures of
experts work together. The almost vertical line is the gating networks’ view of the
experts: on examples to the left of the line it assigns responsibility to expert 0
while to the right it assigns responsibility to expert 2. Each of these experts have
a linear discriminant function which is accurate for its region of responsibility but
inaccurate outside. In this way the combined network acts together to give a non-
linear boundary between classes.

from an abstraction of the image. This is based on the view that “Visual
perception consists of inferring the underlying state of the stochastic graphics
model using the false but useful assumption that the observed sensory input
was generated by the model.”

Learning is done by maximising the likelihood that the observed data came
from the generative model. The simplest generative model is the Mixtures of
Gaussians model.

B.6.1 Mixtures of Gaussians

In essence, the process is the following:

• Each data point has an associated probability of being generated by a
mixture of Gaussian distributions.

• Given the current parameters of the model, we calculate the posterior
probability that any data point came from the distributions.

• The learning process adjusts the parameters of the model — the means,
variances and mixing proportions (weights) of the Gaussians — to max-
imise the likelihood that the model produced the points.

So when we generate a data point, d, we

• Pick a hidden neuron (the underlying cause of the data). Give it a state
of 1, set all other hidden neurons’ states to 0.

• Each hidden neuron will have a prior probability of being picked of πj .
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• Feedback to input neurons through weight vector, gj . The gj is the center
of the Gaussian = {gj1, gj2, ..., gjn}.

• Add local independent zero mean Gaussian noise to each input.
• This means that each data point is a Gaussian cloud with mean gj and

variance σ2
i .

This gives us

p(d) =
∑

j

πj

∏
i

1√
2πσi

e−(di−gji)
2/2σ2

i (B.21)

Interpreting Data: Expectation Step

The process is:

1. Compute the probability density for each data point (assuming the model
is correct):

p(d|sj = 1) =
∏

i

1√
2πσi

e−(di−gji)
2/2σ2

i (B.22)

2. Weight these with the prior probabilities πj .
3. Use Bayes theorem to calculate the probability that the cause, sj gener-

ated the data,

p(sj = 1|d) =
πjp(d|sj = 1)∑
k πkp(d|sk = 1)

(B.23)

We have now calculated the posterior probabilities of the hidden states
given the data (“perceptual inference”) — the E-step of the EM Algorithm
and we now perform the M step, which involves changing the parameters to
maximise the Expectation.

Learning as Expectation Maximisation

We use the existing parameters to calculate the optimal new parameters:

gj =
E{p(sj = 1|d)d}
E{p(sj = 1|d)}

σ2
i =

E{p(sj = 1|d)(di − gji)2}
E{p(sj = 1|d)}

πj = E{p(sj = 1|d)}

We have now a means of maximising the expectation — the M-step — but
we can also use incremental learning, which involves gradient ascent such as

∆gji = εp(sj = 1|d)(di − gji) (B.24)
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B.6.2 A Logistic Belief Network

A logistic belief network is composed of multiple layers of binary stochastic
neurons whose state sj is based on top-down expectations ŝj from the layers
above:

p(sj = 1) = ŝj = σ

(
g0j +

∑
k

skgkj

)
(B.25)

If the configuration of a network is α,

Pα =
∏

i

p(sα
i |pa(i, α)) (B.26)

where pa(i, α) is the states of i’s parents in configuration α and sα
i is the state

of the ith neuron in configuration α.
Using negative log probabilities as an energy measure, we have

Eα = − lnPα = −
∑

u

(sα
u ln ŝα

u + (1 − sα
u) ln(1 − ŝα

u)) (B.27)

where ŝα
u is the top-down expectation for unit u.

We use the ratio of

∆Eα
u = Eα|su=0 − Eα|su=1 (B.28)

to chose the new state of the uth neuron:

p(su = 1|α) = σ(∆Eα
u ) (B.29)

Hinton shows that this can be factorised into top-down effects and knock-on
effects from below.

Given Gibbs sampling,

∆gji = εsj(si − ŝi) (B.30)

B.6.3 The Helmholtz Machine and the EM Algorithm

As prelude to the discussion in the next section, a discussion of the Helmholtz
machine [33, 34]will be useful. The stochastic Helmholtz machine consists of a
pair of Bayesian networks that are fitted to training data using an algorithm
that approximates generalised Expectation Maximisation (EM).

The EM algorithm is a general approach to iterative computation of
maximum-likelihood estimates when the observed data can be viewed as in-
complete data. The term “incomplete data” has two implications:

1. The existence of two sample spaces X and Y represented by the observed
data vector x and the complete data vector y, respectively.

2. The one-to-many mapping y → x(y) from space Y to X.
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The complete vector y is not observed directly, but only through the vector
x. The EM algorithm is executed in two steps: first an expectation step (E),
followed by a maximisation step (M). During the E-step the “complete-data”
log-likelihood, P (Y |x,M), given the observed data vector x and the current
model, M, is calculated.

The Helmholtz machine then, based on a generalised EM algorithm, has a
generative network P (x,y|V ) and a recognition network Q(y|x,W ), where V
and W may be thought of as generative and recognition weight parameters,
respectively. The recognition model is used to infer a probability distribution
over the underlying causes from the sensory input. The separate generative
model is used to train the recognition model.

B.6.4 The Wake-Sleep Algorithm

The Wake-Sleep algorithm [74] was designed as an improvement on the
Helmholtz machine. The main disadvantage of the Helmholtz machine is that
a recognition network that is compatible with the generative network must
be estimated and this is often a difficult task. In the Wake-Sleep algorithm,
rather than using Gibbs sampling, a separate set of bottom-up recognition
connections are used to pick binary states for units in the layer below. The
learning for the top-down generative weights is the same as for a Logistic Be-
lief Net. This learning rule follows the gradient of the penalised log-likelihood
where the penalty term is the Kullback–Liebler divergence between the true
posterior distribution and the distribution produced by the recognition pro-
cess. The penalised log-likelihood acts as a lower bound on the log-likelihood
of the data and the effect of learning is to improve this lower bound. In at-
tempting to raise the bound, the learning tries to adjust the generative model
so that the true posterior distribution is as close as possible to the distribu-
tion actually computed. The recognition weights are learned by introducing a
sleep phase in which the generative model is run top-down to produce fantasy
data. The network knows the true causes of this fantasy data and attempts
to maximise the log-likelihood of recovering these causes by adjusting the
recognition weights. Frey [48] provides a clear description of the mathemat-
ical process for the Wake-Sleep algorithm which may be summarised by the
following analysis.

The Rectified Gaussian Belief Net

Hinton and Ghahramani’s [76] network is based on the Rectified Gaussian
Belief Network (RGBN) which is an improvement in some ways on the Wake-
Sleep algorithm. The RGBN uses units with states that are either positive
real values or zero, so it can represent real-valued latent variables directly.
The main disadvantage of the network is that the recognition process requires
Gibbs sampling.
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The generative model for the RGBN consists of multiple layers of units,
each of which has a real-valued unrectified state, yj , and a rectified state,
[yj ]+ = max(yj , 0). The value of yj is Gaussian distributed with a standard
deviation σj and a mean ŷj that is determined by the generative bias g0j , and
the combined effects of the rectified states of units, k, in the layer above:

ŷj = goj +
∑

k

[yk]+gkj (B.31)

Given the states of its parents, then the rectified state [yj ]+ has a Gaussian
distribution above zero, but all of the mass that falls below zero is concentrated
in an infinitely dense spike at zero. This form of density is a problem for
sampling and so Gibbs sampling is performed on the unrectified states. Now,
consider a unit in an intermediate layer of a multilayer RGBN. With the
unrectified states of all the other units in the network, then Gibbs sampling is
performed to select a value for yj according to its posterior distribution given
the unrectified states of all the other units. In terms of energies, which are
defined as the negative log probabilities, then the rectified states of the units
in the layer above contribute a quadratic energy term by determining ŷj . The
unrectified states of units, i, in the layer below contribute nothing if [yj ]+ is
0, and if [yj ]+ is positive then they each contribute because of the effect of
[yj ]+ on ŷj . The energy function may then be written as

E(yj) =
(yj − ŷj)2

2σ2
j

+
∑

i

yi −
∑

k[yk]+gki

2σ2
i

(B.32)

where h is an index over all of the units in the same layer as j including j
itself; so yj influences the right-hand side of this energy function by [yj ]+ =
max(yj , 0). Hinton and Ghahramani show that learning rules for generative,
recognition and lateral connections may be formed that not only identify the
underlying causes in a data set but also that a topographical mapping may
also be formed on data sets such as in the stereo disparity problem. Because
sampling is used, this method is considerably slower than the methods of
Chapter 5. Additionally, because of the top-down mechanism of learning it
must be assumed that either horizontal mixes or vertical mixes of bars are
present (in the case of the bars data) at the inputs; that is, there must not be
a mix of both types in the data.

Attias [3] provides a review of current probabilistic approaches to Factor
Analysis and related areas and Frey [48] provides a comprehensive overview
of the probabilistic theory and techniques related to this area of research.

B.6.5 Olshausen and Field’s Sparse Coding Network

The network of Olshausen and Field [145] is essentially a linear network that
attempts to minimise the least mean square error in the network between
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actual images to the network and reconstructions of the image by the net-
work. A prior belief that the output neurons should have sparse responses is
incorporated into the network, which introduces a nonlinearity so that local
features may be identified in the visual data.

A generative model is assumed in which the output values are fixed then
fed back through a matrix of weights and used to determine the mean squared
error between the image generated by the model and the actual image which is
then used in a weight update rule. Error descent is performed on the following
energy function with respect to both the output values y and for the weights
W :

E = −1
2
[(x − WT y)2 + S(y) (B.33)

where S(yi) is a function that ensures a sparse prior distribution on p(yi) =
1
Z exp(−S(yi)) The weight update rule is essentially the same as in the nega-
tive feedback network of Chapter 5 but, unlike that network, gradient descent
is performed to find values for the outputs given the current values on the
weights.



C

Related Models for ICA

In this appendix, we review a few ICA models, particularly concentrating on
the negative feedback model of Jutten and Herault [97], partly because it is a
negative feedback model and partly because it was so important in generating
interest in this problem in the artificial neural networks community. Bell and
Sejnowski’s [10] algorithm similarly stimulated the community and is also
included. We also include a section on nonlinear PCA [101] and penalized
error reconstruction [185] because of their obvious importance to the topic
of the book before concluding with Hyvarinen’s FastICA [85] because this is
generally accepted currently to give the best performance.

C.1 Jutten and Herault

Jutten and Herault [97] proposed a neural network architecture (Figure C.1)
similar to Földiák’s first model. The feedforward of activation and the lateral
inhibition are defined by:

yi = xi −
n∑

j=1

wijyj

As before, in matrix terms, we can write

y = x − Wy

And so, y = (I + W )−1x

This looks very similar to Földiák’s decorrelating model, which we discussed
in Chapter 8, but we shall see that critically Jutten and Herault introduce a
nonlinearity into the learning rule.

Before we look at whether we can find a learning rule which will adaptively
solve the problem, let us first consider if it is possible that such a network can
separate two mixed sources.
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Fig. C.1. Jutten and Herault’s model.

C.1.1 An Example Separation

Consider the 2×2 problem. Let us have two signals s1(t), s2(t) which are
functions of time, and let them be mixed using a matrix A to get the mixed
signals x1(t), x2(t). Then

x1(t) = a11s1(t) + a12s2(t)
x2(t) = a21s1(t) + a22s2(t)

Now we have outputs from the network satisfying

y1 = x1 − w21y2

y2 = x2 − w12y1

Substituting we get

y1 = x1 − w21(x2 − w12y1)

and rearranging gives y1 =
x1 − w21x2

1 − w21w12

Similarly, y2 =
x2 − w12x1

1 − w21w12

Substituting for the xi values gives

y1(t) =
(a11 − w21a21)s1 + (a12 − w21a22)s2

1 − w21w12

y2(t) =
(a21 − w12a11)s1 + (a22 − w12a12)s2

1 − w21w12

From this we can see two pairs of solutions at which the y values are a function
only of a single signal s value:

• If w21 = a11
a21

and w12 = a22
a12

then we get the solution:

y1(t) =
(a12 − w21a22)s2

1 − w21w12

=
(a12 − a11

a12
a22)s2

1 − a11
a12

a22
a12
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=
a12(a12a12 − a11a22)

a12a12 − a11a22
s2

= a12s2(t)

Similarly, y2(t) =
(a21 − w12a11)s1

1 − w21w12

= a21s1(t)

• Alternatively, if w21 = a12
a22

and w12 = a21
a11

then we get the solution:

y1(t) =
(a11 − w21a21)s1

1 − w21w12
= a11s1(t)

y2(t) =
(a22 − w12a12)s2

1 − w21w12
= a22s2(t)

In either case the network is extracting the single signals from the mixture
- each output is a function of only one si(t). However, this only shows that
the solution is possible; it does not give us an algorithm for finding these
optimal weights. We must find a learning algorithm which will adapt the
weights during learning to find these optimal weights.

C.1.2 Learning the Weights

Having created a network which is theoretically capable of separating the two
sources, we need to find a (neural network) algorithm which will adjust the
parameters until the separation actually happens.

The learning rule Jutten and Herault use is

∆wij = −αf(yi)g(yj), for i 	= j (C.1)

which is clearly anti-Hebbian learning.
Notice that if we use identity functions for f() and g() we are using exactly

simple anti-Hebbian learning which we know will decorrelate the outputs.
Recall that when we decorrelate the outputs, E(yiyj) = 0. If we have two
independent sources the expected value of all joint higher-order moments will
be equal to the product of individual higher-order moments. i.e. E(yn

i ym
j ) =

E(yn
i )E(ym

j ) for all values of m and n.
Jutten and Herault suggest using two different odd functions in the learn-

ing rule C.1. Since the functions f() and g() are odd functions, their Taylor
series expansion will consist solely of the odd terms e.g.

f(x) =
∞∑

j=0

a2j+1x
2j+1, and g(x) =

∞∑
j=0

b2j+1x
2j+1 (C.2)

Therefore the change due to the learning rule for a two-output network is of
the form
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∆wij = −αf(y1)g(y2)

= −α
∑

j

∑
k

ajbky2j+1
1 y2k+1

2

Convergence is reached when all the moments E(y2j+1
1 y2k+1

2 ) = 0,∀j, k. Now
statistical independence occurs when

E(y2j+1
1 y2k+1

2 ) = E(y2j+1
1 )E(y2k+1

2 ) (C.3)

Jutten and Herault state that since most audio signals have an even distribu-
tion, their odd moments are zero and hence at the above state of convergence
we have the independence criterion (C.3) satisfied.

In practice the signal separation properties seem to work when separating
two or perhaps three voices from a mixture but no more than that; also, the
process is not robust and requires careful parameter setting.

Another example of using the network was given in the image processing
field: the input data were words written on card but with a sloping style.
The network successfully converted the image to one in which the writing
was parallel to the edges of the paper. The result is due to the fact that a
sloped line introduces dependencies between the x and y coordinates. This
dependency is minimised when the lines are either horizontal or vertical. In
fact, if the original writing is closer to the vertical than horizontal orientation,
the output will be a vertical line of text.

C.2 Nonlinear PCA

Oja’s Subspace Algorithm was shown earlier to find the Principal Components
of the input data which we know means decorrelation rather than indepen-
dence of the outputs. The learning rule is repeated here for convenience:

∆wij = α

(
xiyj − yj

∑
k

wikyk

)
(C.4)

Since it finds an approximation to true PCA and PCA gives us the least error
in reconstruction of the data from a linear operation, the Oja network can be
thought of as finding the best linearly compressed form of the data.

We discussed in Chapter 5 how Karhunen and Joutsensalo [101] have de-
rived from (C.4) a nonlinear equivalent:

∆wij = α

(
xif(yj) − f(yj)

∑
k

wikf(yk)

)
(C.5)

as an approximation to the best non-linear compression of the data. While
there is no 100% secure derivation of this algorithm as a solution to the ICA
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of a data set, it has been found experimentally that the algorithm does indeed
find independent sources of some mixtures of signals (see below). Also, the ad-
dition of a nonlinearity breaks the symmetry which we found using the original
subspace algorithm: with the original algorithm, the individual principal com-
ponents were not found (indeed it is experimentally found that the algorithm
tends to divide the variance evenly between the output neurons). Therefore,
the original linear algorithm finds only a basis of the subspace, not the actual
principal components themselves. However, this nonlinear algorithm (C.5)
finds the independent sources exactly, not just a linear combination of the
sources.

C.2.1 Simulations and Discussion

Karhunen and Joutsensalo have shown that the algorithm derived above is
capable of separating signals into their significant subsignals. As an example,
we repeat their experiment to separate samples of a sum of sinusoids into
its component parts: the experimental data consists of N samples of a signal
composed of the sum of two sinusoids in noise:

x(t) =
2∑

j=1

Aj cos(2πfjt − θj) + ωt (C.6)

The amplitudes, Aj , frequencies, fj , and phases, θj , are unknown and must
be estimated by the algorithm. We use initially white noise, ωt ∼ N(0, 0.05)
where t denotes time.

Our input vector is a vector comprising a randomly drawn instance of x(t)
and that of the 14 subsequent times, t + 1, · · · , t + 14. We can show that a
network whose output neurons use a nonlinear function are better able to
separate the input signal into its component parts while those using linear
functions are less able to differentiate the individual subsignals. The original
signal is shown in Fig. C.2 while the output of the non-linear output neurons
are shown in Fig. C.3. This capability is not affected by coloured noise.
Clearly the output neuron has identified one of the independent sinusoids.
But in general, this network’s performance on e.g. voice data has not yielded
very good results.

C.3 Information Maximisation

Bell and Sejnowski [10] have developed a network based on the desire to
maximise mutual information between inputs X and outputs Y :

I(X; Y ) = H(Y ) − H(Y |X) (C.7)

They reason, however, that H(Y |X) is independent of the weights W and so
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Fig. C.2. The original signal comprising a mixture of sinusoids.
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Fig. C.3. The output from the first interneuron after training when the output
neuron’s output is a non-linear function of its inputs.

∂I(X;Y )
∂w

=
∂H(Y )

∂w
(C.8)

Now comes the interesting part: the entropy of a distribution is maximised
when all outcomes are equally likely. Therefore we wish to choose an activation
function at the output neurons which equalises each neuron’s chances of firing
and so maximises their collective entropy. An example is given in Figure C.4
in which we show a Gaussian distribution and a sigmoid. Note that at the
points of the distribution at which there are maximum values the slope of the
sigmoid is greatest: the high-density parts of the probability density function
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Fig. C.4. The solid line shows a Gaussian probability distribution. The sigmoid is
the optimal function for evening out the output distribution so that all outputs are
equally likely.

of the inputs is matched with the highly sloping parts of the sigmoid; this
evens out the distribution at the outputs.

If we consider a single-output Y with a single input X joined by a single
weight w, the distribution of the Y values is shown in Fig. C.5 over the weights
w and inputs X where

y =
1

1 + exp (−wx)
(C.9)

For large values of w (=1) the Gaussian nature of the input distribution is
clear. For negative values of w the distribution becomes a bipolar distribution
with equal probability for each of the two limiting values; but there is an
intermediate value of w at which the output distribution is uniform. This last
is the optimal value of w for which our learning algorithms should search.

Notice that this value depends on the actual distribution of the input data
which is the sort of relationship that suits neural learning since it inherently
responds to the statistics of the input distribution.

C.3.1 The Learning Algorithm

We can write the probability density function of an output y as

fy(y) =
fx(x)

∂y
∂x

(C.10)

where fy() is the probability density function of y and fx() is the probability
density function of x. Then the entropy of the output is
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Fig. C.5. The distribution of the outputs as a function of inputs and weights. The
weight which gives the most uniform distribution is about 0 in this case. Note that
when the weight increases towards 1, the distribution becomes more peaked (actually
Gaussian). When the weight decreases we tend to get a bimodal distribution.

H(y) = −E(ln fy(y)) = E

(
ln

∣∣∣∣∂y

∂x

∣∣∣∣
)
− E(ln fx(x)) (C.11)

Now the second term here is unaffected by any change in the weights and
therefore we can concentrate on maximising the first term with respect to w:

∆w ∝ ∂H

∂w
=

∂

∂w

(
ln

∣∣∣∣∂y

∂x

∣∣∣∣
)

=
(

∂y

∂x

)−1
∂

∂w

∂y

∂x
(C.12)

In the special case of the logistic transfer function,

act = wx + w0

y =
1

1 + e−act

Then

∂y

∂x
= wy(1 − y) (C.13)

∂

∂w

∂y

∂x
= y(1 − y)(1 + wx(1 − 2y)) (C.14)

Dividing (C.14) by (C.13) give the learning rule for the logistic function of

∆w ∝
(

∂y

∂x

)−1
∂

∂w

∂y

∂x
=

1
w

+ x(1 − 2y) (C.15)

A similar argument gives the derivation of the weight update rule for the bias
term
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∆w0 ∝ 1 − 2y (C.16)

Notice the effect of these two rules:

1. At convergence, ∆w0 = 0 and so the expected output is 1
2 . This in effect

moves the sigmoid horizontally along its graph till the centre of the sigmoid
(the steepest part) is above the peak of the input distribution fx().

2. Meanwhile the first rule is shaping the output distribution:
• The 1

w part acts like an antidecay term and moves the weights away
from one of the uninformative situations, where w is zero and y is
constant regardless of the input, i.e.

y =
1

1 + e−w0
(C.17)

• The other term is anti-Hebbian. This keeps the rule from moving to the
other uninformative solution, which is that the y output is constantly
1, regardless of the input.

These forces balance out and cause the output distribution to stabilise at the
maximum entropy solution.

We do not reproduce the derivation of the many input—many output rule,
but merely give the results:

∆W ∝ (WT )−1 + (1 − 2y)xT

∆w0 ∝ 1 − 2y

It is possible to use very flexible sigmoids in which, e.g. the top and bottom
parts of the sigmoid are independently matched to the input signal’s statistics.
Bell and Sejnowski show that such a network can extract ten voices from a
linear mixture of voices with great precision. Their algorithm has only failed
under two conditions:

• when more than one of the sources was white Gaussian noise;
• when the mixing matrix was almost singular.

In the first case, there is no possible algorithm which can extract a single
Gaussian from a mixture of Gaussians since the mixture of Gaussians is itself
a Gaussian. In the second case the problem is ill-defined since we have n
signals and < n independent inputs to the neural network.

It has been shown that removing the correlations (the second-order statis-
tics) from the input data greatly increases the speed of convergence of the
network: Hebbian (and anti-Hebbian) learning responds mostly to the corre-
lations in the input data; by removing these the network can concentrate on
the other facets of learning.
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C.4 Penalised Minimum Reconstruction Error

We discussed in Chapter 2 how Xu [185] has derived a neural network which we
can describe as one which feeds activation forward to outputs and then back
to inputs through the same weights. He envisages the returning signal from
the outputs as trying to reconstruct the input vector. He aims to minimise
the least mean square error at its inputs and shows that it is a PCA network.
The error term is

J(W ) = E(‖ x − x̂ ‖)
=

∫
p(x) ‖ x − WT Wx ‖ dx

Starting from this (which is one of the definitions of PCA), Xu derives the
learning rule

∆W = µxT x(I − WT W )W + (x − WT Wx)(Wx)T (C.18)

If we put this into the feedforward and feedback terms, we may use y = Wx
and e = x − WT Wx and so state the rule as

∆W = µ(xeT Wy′ + eyT ) (C.19)

C.4.1 Adding Competition

Now in the context of the discussion in the last chapter, we have a network
which is wholly given over to cooperation — the neurons are taking the max-
imum information out of the data set. We need to add some competition to
the network to find the independent sources.

One way to do this is to simply add a nonlinearity to the learning rule to
get

∆W = µ(xeT f(Wy′) + ef(y)T ) (C.20)

This does have some effect in finding the individual sources (this is the same
method Karhunen and Joutsensalo use) but the competition is quite weak.
A better solution, developed by Xu and his colleagues, is to explicitly add a
penalty term to the cost function to get

E(W ) = J(W ) + λG(W ) (C.21)

where J() is the best reconstruction criterion as before and G() is a competi-
tion criterion which will penalise cooperation. The Lagrange parameter λ will
tradeoff competition for cooperation, so we get compromise between these two
criteria.

The next section will consider the nature of the competition function G().
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The Nature of the Competition Function

We can develop a competition function based on information theory. Firstly
let the ith activation be hi which will then be passed through an activation
function f() to get the output yi. Then, in the absence of noise on the inputs,
the mutual information between inputs and outputs satisfies

I(y,x) = I(y,h) (C.22)

If the postsynaptic potentials are factorial,

p(h) =
M∏
i=1

p(hi) (C.23)

One possible index might be to reduce the pairwise correlation over the out-
puts. Thus we might have

G =
M∑
i=1

M∑
j=1,j �=i

gij

where gij =
∫

(yiyj)p(x)dx

This would certainly work for Gaussian distributions but is not sufficient for
non-Gaussian distributions and so we might extend this to

gij =
∫

(yiyj)kp(x)dx (C.24)

Then e.g. taking k = 2 we would have

∆wj = µ

⎛
⎝xeT wjyj + yje − λy′

jx
∑
l �=j

y2
i

⎞
⎠ (C.25)

thereby introducing higher order statistics into the learning rule.
We can imagine a number of competition functions all of which should

share the property that when the output of one neuron increases the other’s
output must decrease, i.e. if σi() is the output function of the ith neuron, then

∂σi

∂yj
< 0,∀j 	= i (C.26)

C.5 FastICA

FastICA [85] is the most popular and commonly used method for performing
independent component analysis. FastICA can use different measures of non-
Gaussianity; i.e. different objective functions for ICA estimation. FastICA is
a very efficient method for maximising the contrast functions defined in [85].
As with most ICA methods the data is assumed to have been sphered.
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C.5.1 FastICA for One Unit

The one-unit version of the FastICA algorithm looks to maximise nongaus-
sianity for one output only. This unit, or neuron, consists of a weight vector,
w that the neuron is able to update by a learning rule. The FastICA learn-
ing rule identifies a direction; a unit vector w such that the projection wTx
maximises non-Gaussianity.

Non-Gaussianity may be measured by an approximation to negentropy
[85]. Since the data is whitened, we can constrain the variance of wT x to
unity by constraining the norm of w to unity.

FastICA is based on a fixed-point algorithm for finding the maximum
of the non-Gaussianity of wT x. It can also be derived as an approximative
Newton method [85]. The basic form of the FastICA algorithm is:

1. Choose an initial random weight vector w.
2. Let

w+ = E
{
xg(wT x)

}− E
{
g′(wT x))

}
(C.27)

3. Let

w =
w+

‖w+‖ (C.28)

4. If not converged go to step 2.



D

Previous Dual Stream Approaches

In this appendix, we review some other dual stream approaches and discuss
their connections to the work presented in this book. We begin with Becker’s
model since we have used her artificial random dot stereogram data extensively
in the book.

D.1 The I-Max Model

Becker [7] has used mutual information maximization to develop the Infomax
principle. The infomax principle applies to a situation where the mutual in-
formation I(y;x) between the output vector y of a neural system and the
input vector x is the objective function to be maximised.

Becker has an interesting model using error descent learning. They begin
with the question “What is the best way to model the input distribution to
encode interesting features in the data” and come up with the observation
that they wish to constrain the learning problem by restricting the features of
interest to those which are liable to be useful for later perceptual processing.
In a general nonspecific environment, there are regularities (“coherence”) in
that any part of the environment is very likely to be predictable from other
close parts of the environment e.g. any object has a finite compact surface area
and so there exists a set of points all physically close to one another which
share visually similar features. Similarly there exists temporal coherence in
our environment. Also there is a coherence across sensory modalities — we
generally see and smell and feel things at a single instant in time. This suggests
that we should use coherence to extract information from the input data; one
objective that might be appropriate for a network would be the extraction
of redundancy (which gives rise to coherence) in raw sensory data since we
do not, for example, have to use sight, smell and touch of an orange in order
to identify the orange. The two output neurons are attempting to reduce the
redundancy in their outputs based on their reaction to the input data which
comes from the same source.
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Becker [7] states that we could perform error descent on the squared error
of the difference between the outputs, but one difficulty with this is that
the network could simply learn to output a constant value at both neurons
x1 and x2. So we need to force the neurons to extract as much information
as possible but still ensure that they are agreeing. This suggests that the
optimisation criterion should be to maximise the mutual information between
the two neurons

Ia,b = H(a) + H(b) − H(a, b) (D.1)
= H(a) − H(a|b) (D.2)

(or = H(b) − H(b|a)) (D.3)

Written this way we can see that by maximising the mutual information be-
tween the neurons, we are maximising the entropy (the expected information
output) of each neuron while minismising the conditional entropy given the
other’s value (the uncertainty left about each neuron’s output). So we wish
each neuron to be as informative as possible while also telling us as little as
possible about the other neuron’s outputs.

Now if we have two binary (1/0) probabilistic units, we can estimate the
mutual information by sampling their activity over a large set of input cases.
This gives us an estimate of their individual and joint probabilities and so
the mutual information can be calculated. Let the expected output of the jth

output neuron on the Kth training example be sK
j and define sj = E(yj) over

all training patterns. sij is defined to be the joint probability that the ith and
jth fire simultaneously. Becker shows that the partial derivative of the mutual
information with respect to the expected output on training case K is

∂Iyi;yj

∂sK
i

= −PK

(
log

si

sī

− sK
j log

sij

sīj

− sK
j̄ log

sīj

sīj

)
(D.4)

where PK is the probability of training case K and sī = E(1− yi), etc. Thus,
we have a method of changing the weights (e.g. by least mean square learning)
to maximise the mutual information:

�w ∝ ∂I

∂w
=

∂I

∂s
· ∂s

∂w
(D.5)

It is possible to extend the IMax algorithm to both continuous variables and
to multivalued spatially coherent features; the latter is interesting in that it
uses a general method of ensuring that every output is a valid probability
between 0 and 1. If we have a discrete random variable A ∈ {a1, ..., aN}, we
can define the probability of the ith event as

P (A = ai) =
exp(xi)∑N

j=1 exp(xj)
(D.6)

which is guaranteed to give a value between 0 and 1 and to ensure that the
probabilities sum to 1.
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In [7], it is demonstrated that by maximizing the mutual information
I(Ya; Yb) it is possible to extract stereo disparity (depth) from random dot
stereograms. We have shown in Chapter 9 that the CCA models also perform
well on this data set.

D.2 Stone’s Model

Stone [174] has studied a similar problem (also of depth extraction). He de-
scribed a temporal learning rule based on a general assumption that inputs
to sensory receptors tend to change rapidly over time. However, the physi-
cal parameters which underlie these changes vary more slowly and smoothly.
For example, a film of a rigidly moving object reveals a great amount of re-
dundant information as the image of the object appears in slightly different
spatial locations on successive frames of the film. Therefore, if a neuron codes
for a physical parameter, its output should also change slowly and smoothly,
in spite of the rapidly fluctuating inputs. Thus, a neuron adapting to make its
output vary smoothly over time can learn to code the invariances underlying
its input.

Thus, we wish to minimise the short term variance of the neuron’s output.
But this is not enough since the neuron could simply always output one value.
Therefore we wish to simultaneously maximise long-term variance.

The temporal learning rule has a single output unit. Stone jointly max-
imises the long-term variance of the output V of the unit and minimizes its
short-term variance U by maximizing the objective function F = log(V/U)
(the logarithm was used so that the derivative of F was easy to compute).
The variances V and U were calculated using moving averages

F = log
V

U

= log
∑T

t=1(z̄t − zt)2∑T
t=1(z̃t − zt)2

(D.7)

where zt was the output of the unit at a particular time, z̄t was its long-term
weighted average, and z̃t was its short-term weighted average (averaging over
time).

The derivative of F with respect to output weight results in a learning
rule that is a linear combination of Hebbian and anti-Hebbian weight update,
over long and short time-scales, respectively:

∂F

∂wjk
=

1
V

∑
t

(z̄kt − zkt)(z̄jt − zjt) − 1
U

∑
t

(z̃kt − zkt)(z̃jt − zjt) (D.8)

This rule captures the temporal smoothness constraint. Another equally valid
constraint is spatial smoothness, which means that physical parameters tend
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to vary smoothly across space. In dealing with the temporal constraint, we
need only consider a single neuron and its output over time. In the spatial
case, however, we need to consider a network of neurons arranged spatially in
such a way that neighbouring output neurons receive inputs from neighbour-
ing regions of space. We can then interpret the spatial smoothness constraint
as follows: if a network of neurons codes for a physical parameter its output
should change slowly and smoothly across the network, despite the quite dif-
ferent inputs received by neighbouring neurons. Stone applied this principle
to learning stereo disparity from dynamic sterograms. In the spatial model,
Stone also maximises a function F = log(V/U). In this model, however, the
long and short-term variances are measured as spatial variance.

D.3 Kay’s Neural Models

Another information-theoretic approach to multi-stream processing was de-
veloped by Kay and Phillips [105]. Central to this work is the concept of con-
textual guidance, which refers to the guiding effect that neighbouring neurons
(the context) have on a particular neuron. It is suggested that the information
that the context provides can assist and guide both the learning phase as well
as the processing stage of neural networks.

This idea is cast in a model in which a neural network consists of a set of
local processors. Each of these local processors has a set of outputs X, recep-
tive field inputs (RF), R, and contextual field inputs (CF), C. The receptive
field inputs are connected directly to a lower layer of processing and the con-
textual inputs are connected to the outputs of neighbouring local processors
that operate in the same context. Furthermore, there are a set of lateral con-
nections that interconnect the outputs of a processor, which are termed the
within-processor (WP) connections. In this way, any number of these proces-
sors can be connected to form a multilayer neural architecture; see Fig. D.1.

It is not necessary for the network to be fully connected, which we can
describe by the set of indices δi(r), δi(c) and δi(x), which denote the indices of
the receptive field connections, the contextual field connections and the within
processor connections, respectively, that are connected to the ith output. The
total integrated field inputs of all three sets of connections then become:

Si(r) =
∑

j∈δi(r)

wijRj − wi0 (D.9)

Si(c) =
∑

j∈δi(c)

vijCj − vi0 (D.10)

Si(x) =
∑

j∈δi(x)

uijXj (D.11)
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Fig. D.1. Diagram of the Contextual Guidance Network

where wij are the weights of the receptive field connections, vij are the weights
of the contextual field connections and uij are the the weights of within-
processor connections; wi0 and vi0 are two bias terms.

To develop learning rules for this network, an information-theoretic ob-
jective function was developed. As the processors deal with three types of
information, the concept of mutual information is extended to three-way mu-
tual information, which describes the information that is shared between all
three variables. It is a natural extension of “normal” mutual information and
can also be displayed in a Venn diagram; see Fig. D.2. From this diagram it
is clear that three-way mutual information can be defined in three different
ways as follows:

I(X, Y, Z) = I(X, Y ) − I(X, Y |Z) (D.12)
= I(X, Z) − I(X, Z|Y ) (D.13)
= I(Y,Z) − I(Y, Z|X) (D.14)

When training the network, the information from the Contextual Field, Re-
ceptive Field and the Outputs will be used. In particular we are interested
in the four information-theoretic quantities that make up the entropy of the
outputs,

H(X) = I(X;R;C) + I(X;R|C) + I(X;C|R) + H(X|R,C) (D.15)

All these four different terms are important when training the network. The
first term relates to the information that the outputs share with the RF and
CF, and the second term represents the information that the outputs share
with the RF, but not with the CF. In general we want to maximise both these
terms. The last two terms, denoting the information the outputs share with
the CF, but not with the RF and the entropy of the outputs, given the CF
and RF, should in general be minimised.
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Fig. D.2. Venn-diagram of three-way mutual information

We can now write the objective function as follows:

J = φ0I(X;R;C) + φ1I(X;R|C) + φ2I(X;C|R) + φ3H(X|R,C) (D.16)

This objective function consists of four different terms that we wish to max-
imise or minimise simultaneously and the parameters φ0 to φ3 indicate the
relative strength that should be given to each of these objectives, and are
taken between −1 and 1.

Using stochastic output units, gradient rules were derived for each of these
terms, enabling the network to be trained. These rules enable a multilayer
network with an arbitrary amount of processors to be built. According to
experiments carried out by Kay [105], the network functions equally well for
small as well as large networks.

D.4 Borga’s Algorithm

Borga proposed a CCA learning algorithm in [16]. He considers the generalized
eigenproblem

Aê = λBê (D.17)

which is closely related to the problem of finding the extremum points of a
ratio of quadratic forms:

r =
wT Aw
wT Bw

(D.18)
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where both A and B are symmetric, B is positive definite, and ê denotes a
unite vector 1. This ratio is known as the Rayleigh quotient and its critical
points, i.e. the points of zero derivatives, will correspond to the eigensystem
of the generalized eigenproblem. To see this let us look at the gradient of r:

∂r

∂w
=

2
wT Bw

(Aw − rBw)

=
2 ‖ w ‖
wT Bw

(Aŵ − rBŵ) = α(Aŵ − rBŵ) (D.19)

where α is a positive factor. Setting the gradient to 0 gives

Aŵ = rBŵ or B−1Aŵ = rŵ (D.20)

which is recognized as the generalized eigenproblem in (D.17). The solutions
ri and ŵi are the eigenvalues and eigenvectors, respectively, of the matrix
B−1A. If the eigenvalues ri are distinct (i.e. ri 	= rj for i 	= j) the different
eigenvectors are orthogonal in the metrics A and B which means that

ŵT
i Bŵj =

{
0, for i 	= j
βi > 0 , for i = j

ŵT
i Aŵj =

{
0, for i 	= j
riβi > 0 , for i = j

This means that the wi’s are linearly independent. Since an n-dimensional
space gives n eigenvectors which are linearly independent, w1, ...,wn is a basis
and any w can be expressed as a linear combination of the eigenvectors. The
function r is bounded by the largest and smallest eigenvalue, i.e.

rn ≤ r ≤ r1 (D.21)

which means that there exists a global maximum and that this maximum is
r1. To investigate if there are any other local maxima we look at the second
derivative, or the Hessian H, of r for the solutions of the eigenproblem

Hi =
∂2r

∂w2

∣∣∣∣w=ŵi
=

2
ŵT

i

Bŵi(A − riB) (D.22)

It can be shown that the Hessians Hi have positive eigenvalues for i > 1, i.e.
there exits vectors w such that

wT Hiw > 0, ∀i > 1 (D.23)

This means that for all solutions to the eigenproblem except for the largest
root there exist a direction in which r increases. In other words, all extremum
1 The hat on a vector in this section, .̂, indicates it is a unit vector.
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points of the function r are saddles except for the global minimum and max-
imum points.

Since the only stable critical point is the global maximum it should be pos-
sible to find the largest eigenvalue and its corresponding vector by performing
a stochastic gradient search on the energy function r. This can be done with
an iterative algorithm:

w(t + 1) = w(t) + �w(t) (D.24)

where the update vector �w1, at least on average, lies in the direction of the
gradient:

E(�w) = β
∂r

∂w
= α(Aŵ − rBŵ) = α(Aŵ − Bŵ) (D.25)

where α and β are positive numbers. Here we use the length of the vector to
represent the corresponding eigenvalue, i.e. ‖ w ‖= r.

It is, of course, possible to enhance this update rule and also take second
order derivatives into account. This would include estimating the inverse of
the Hessian and using this matrix to modify the update direction. Such a
procedures is, for the batch or off-line case, known as Gauss–Newton methods.

For finding the largest canonical correlation, with the matrices A and B
and the vector w:

A =
[

0 Σ12

Σ21 0

]
, B =

[
Σ11 0
0 Σ22

]
,w = ρ

(
wx1

wx2

)
=

(
µx1ŵx1

µx2ŵx2

)
(D.26)

the update direction is:

E[�w] = γ
∂r

w
= α

([
0 Σ12

Σ21 0

]
ŵ − γ

[
Σ11 0
0 Σ22

]
ŵ
)

(D.27)

This behaviour is accomplished if at each time step the vector w is updated
with

δw = α

([
0 x1xT

2

x2xT
1 0

]
ŵ −

[
x1xT

1 0
0 x2xT

2

]
w
)

(D.28)

Since ‖ w ‖= γ = ρ when the algorithm converages, the length of the vector
represents the correlation between the variates.

For finding successive canonical correlations, let G denote the n×n matrix
B−1A. Then n equations for the n eigenvalues solving the eigenproblem,

GE = ED ⇒ G = EDE−1 = ΣλiêifT
i (D.29)

where the eigenvalues and vectors constitute the matrices D and E, respec-
tively:

D =

⎡
⎢⎢⎢⎢⎣

λ1 0
.
.
.

0 λn

⎤
⎥⎥⎥⎥⎦ , E =

⎡
⎣ | |

ê1 . . . ên

| |

⎤
⎦ , E−1 =

⎡
⎢⎢⎢⎢⎣
− fT

1 −
.
.
.

− fT
n −

⎤
⎥⎥⎥⎥⎦ (D.30)
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The vectors, fi, in the rows of the inverse of the matrix containing the eigen-
vectors are the dual vectors of the eigenvectors êi, which means that

fT
i êj = δij (D.31)

The dual vectors fi possessing the property in (D.31), can be found by choosing
them according to

fi =
Bêi

êT
i Bêi

(D.32)

Now, if ê1 is the eigenvector corresponding to the largest eigenvalue of G, the
new matrix

H = G − λ1ê1fT
1 (D.33)

has the same eigenvectors and eigenvalues as G except for the eigenvalue cor-
responding to ê1, which now becomes 0. This means that the eigenvector cor-
responding to the largest eignvalue of H is the same as the one corresponding
to the second largest eigenvalue of G.

Since the algorithm starts by finding the vector ŵ1 = ê1, it is only neces-
sary to estimate the the dual vector f1 in order to subtract the correct outer
product from G and remove its largest eigenvalue. To do this, the two compo-
nents A and B must be modified in order to produce the desired subtraction.
The two modified components, A′ and B′, have the following property:

B′−1A′ = B−1A − λ1ê1fT
1 (D.34)

A simple solution is obtained if only one of the matrices is modified and the
other matrix is kept fixed:

B′ = B and A′ = A − λ1Bê1fT
1 (D.35)

For canonical correlation,

G = B−1A =
[

Σ−1
11 0

0 Σ−1
22

] [
0 Σ12

Σ21 0

]

=
[

0 Σ−1
11 Σ12

Σ−1
22 Σ21 0

]
(D.36)

it is necessary to estimate the dual vector f1 corresponding to the eigenvector
ê1, or rather the vector u1 = λ1Bê1:

E(∆u1) = α(Bw1 − u1)

= α

([
Σ11 0
0 Σ22

]
w1 − u1

)
(D.37)

A stochastic approximation of this rule is given by

∆u1 = α

([
Σ11 0
0 Σ22

]
w1 − u1

)
(D.38)
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with this estimate, the outer product in equation (D.35), can be used to modify
the matrix A:

A′ = A − λ1Bê1fT
1 = A − u1uT

1

wT
1 u1

(D.39)

Then the learning rule which finds the second largest canonical correlation
and its corresponding directions can be written in the following form:

∆w = α

((
0 x1xT

2

x2xT
1 0 − u1uT

1

wT
1 u1

)
ŵ −

[
x1xT

1 0
0 x2xT

2

]
w
)

(D.40)



E

Data Sets

E.1 Artificial Data Sets

E.1.1 Gaussian Data

To illustrate PCA networks, we draw samples from zero mean Gaussian dis-
tributions. We draw each sample independently from the others. If we have
an n-dimensional input sample, we draw x1 from N(0, σ1), x2 from N(0, σ2),
etc. with σ1 > σ2 > · · · > σn.

Thus the largest eigenvalue of the input data’s covariance matrix comes
from the first input, x1, the second largest comes from x2 and so on.

To investigate the constrained network’s potential in Chapter 5, data from
a distribution whose principal components are shown in Table 5.2 was used:
this data set had the first principal component represent the first two inputs
and the second represent the last three inputs — again, there is a clear division
between the two principal components.

In Chapter 6, we changed one of these Gaussian inputs to make it (and it
alone) “interesting”.

In Chapter 9, we use an artificial data set where x1 is a four-dimensional
vector, each of whose elements is drawn from the zero-mean Gaussian distri-
bution, N(0, 1); x2 is a three-dimensional vector, each of whose elements is
also drawn from N(0, 1). In order to introduce correlations between the two
vectors, x1 and x2, we generate an additional sample from N(0, 1) and add it
to the first elements of each vector. In order to ensure that we are not simply
responding to variance, the data is then normalised so that the variance in
each input is identical. This data set is extended in various ways within that
chapter.

A reduced rank data set was used in Chapter 13.

E.1.2 Bars Data

A standard data set which we used in Chapter 5 consists of a square grid of
input values where xi = 1 if the ith square is black and 0 otherwise (see Fig.
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5.2). However the patterns are not random patterns: each input consists of
a number of randomly chosen horizontal or vertical lines. The network must
identify the existence of these lines. The important thing to note is that each
line can be considered as an independent source of blackening a pixel on the
grid: it may be that a particular pixel will be twice blackened by both a
horizontal and a vertical line at the same time, but we need to identify both
of these sources. Typically we use 64 inputs in an 8×8 grid.

Typically, on an 8×8 grid, each of the 16 possible lines are drawn with
a fixed probability of 1

8 independently from each of the others. The data set
then is highly redundant in that there exists 264 possible patterns and we are
only using at most 216 of these.

E.1.3 Sinusoids

Five mixtures of sine waves was input data to the network of Chapter 5 so
that

x0 = sin(t) + sin(2t)

x1 = sin
(
t +

π

8

)
+ sin

(
2t +

π

4

)
x2 = sin

(
3t +

3π

7

)

x3 = sin
(

4t +
4π

3

)
+ sin(5t)

x4 = 2 sin(5t)

The first two mixtures, x0 and x1, are identical but slightly out of phase,
the third is a totally independent sine wave and the last two contain the same
sine wave, however, one has another sine wave mixed with it. Therefore the
relationship between the outputs of the sources is straightforward in the case
of x3 and x4 but time-varying in the case of x0 and x1 where the underlying
source is emitting different phase signals.

In Chapter 11, we embedded two sine waves on the surface of a sphere and
on the plane. We generate artificial data according to the prescription (see
Fig. 11.3):

x11 = sin(s1) ∗ cos(s2)
x12 = sin(s1) ∗ sin(s2)
x13 = cos(s1)
x21 = s1

x22 = s2

where e.g. s1(t) = sin(t/8) ∗ π, s2(t) = sin{(t/5 + 3) ∗ π} for each of t =
1, 2, ..., 500. The results from the nonlinear mixture, x1, and x2 are shown in
Fig. 11.4 .

Other varying mixtures of sinusoids are also used in this chapter.
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E.1.4 Random Dot Stereograms

In Chapter 9, we have a data set in which each input vector consists of a one-
dimensional random strip which corresponds to the left image and a shifted
version of this which corresponds to the right image. The left image has com-
ponents drawn with equal probability from the set {−1, 1} and the right image
is generated by choosing a randomly chosen global shift — either one pixel
left or one pixel right — and applying it to the left image.

A slightly more complex data set was developed by James Stone [174]; a
description of Stone’s method is found in Appendix B. This data simulates a
moving surface with a slowly varying depth. The disparity between the left
and right images of a stereo pair was generated by convolving a circular array
of 1000 uniformly distributed random numbers with a Gaussian function, and
then normalising these values to lie between ± 1. For example, consider an
array, r of 1000 random numbers, and a 1000 × 1000 matrix G with values
given by:

Ga,b =
1
σ

e
−(min(|a−b|,1000−|a−b|))2

2σ2 (E.1)

The min( ) function in (E.1) ensures that the Gaussian wraps around the r
array, which effectively makes it circular. Then, the unnormalised array of
disparity values, d, is given by the product in (11.46). Fig. 11.17 shows an
example of an array of 1000 disparity values generated using this method.

E.1.5 Nonlinear Manifolds

In Chapter 11, we generate data according to the prescription:

x11 = 1 − sin θ + µ1

x12 = cos θ + µ2

x21 = θ − π + µ3

x22 = θ − π + µ4

where θ is drawn from a uniform distribution in [0, 2π] and µi, i = 1, ..., 4 are
drawn from the zero mean Gaussian distribution N(0, 0.1). Equations (11.1)
and (11.2) define a circular manifold in the two-dimensional input space while
(11.3) and (11.4) define a linear manifold within the input space, where each
manifold is only approximate due to the presence of noise (µi, i = 1, ..., 4).
The subtraction of π in the linear manifold equations is merely to centre the
data.

In Chapter 14, we create two sets of two-dimensional artificial data which
are known to have a correlation using x1(t) = sin(t) + µ1, y1(t) = cos(t) +
µ2, x2(t) = t + µ3, y2(t) = t

3 + sin(t) + µ4, where t is drawn from a uniform
distribution in [0, 2π] and µi ∼ N(0, 0.2) is Gaussian noise. Examples of this
data are shown in the top row of Fig. 14.1.
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A similar data set is shown in the top line of Fig. 14.3: it comprises two
sets of two-dimensional artificial data from x1(t) = sin(t)+µ1, y1(t) = cos(t)+
µ2, x2(t) = t + µ3, if t ∈ [0, 2π] else x2(t) = (4π− t) + µ3, y2(t) = t

3 + sin(t) +
µ4 if t ∈ [0, 2π] else y2(t) = 4π−t

3 + sin(4π − t) + µ4 where t is drawn from a
uniform distribution in [0, 4π] and µi ∼ N(0, 0.2) is Gaussian noise.

E.2 Real Data Sets

E.2.1 Wine Data

This is a data set which may be retrieved from the UCI Repository of ma-
chine learning databases and is based on wine: it is a 13-dimensional data set
of 178 samples from three different classes of wine. Extensive experimenta-
tion (Lina Petrakieva, personal communication) has shown that it is almost
one-dimensional (the first principal component contains the overwhelming ma-
jority of the variance).

E.2.2 Astronomical Data

This is a remote sensing data set, the 65-colour spectra of 115 asteroids used
by [130]. The data set is composed of a mixture of the 52-colour survey by
Bell et al. [11] together with the 8-colour survey conducted by Zellner et al.
[187] providing a set of asteroid spectra spanning 0.3–2.5µm. A more detailed
description of the data set is given in [130].

E.2.3 The Cetin Data Set

This is an artificial data set constructed by Cetin [23] which consists of 16 sets
of spectra in which each set contains 32×32 samples arranged in a chequer-
board grid. It was used for comparative study of a variety of algorithms. The
spectra themselves are samples taken from a spectral library.

E.2.4 Exam Data

In Chapter 9, we use a data set reported in [125], page 290; it comprises 88
students’ marks on five module exams. The exam results can be partitioned
into two data sets: two exams were given as closed-book exams (C) while the
other three were open-book exams (O). The exams were on the subjects of Me-
chanics(C), Vectors(C), Algebra(O), Analysis(O), and Statistics(O). We thus
split the five variables (exam marks) into two sets—the closed-book exams
(x11, x12) and the open-book exams (x21, x22, x23).
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E.2.5 Children’s Gait Data

The children’s gait data has been used in [116] and was collected by the Motion
Analysis Laboratory at the Children’s Hospital, San Diego, California, (full
details in [146]). The data set consist of the angular rotations in the sagittal
plane of the hip and knee of 39 normal five-year-old children. The observations
are taken over a gait cycle consisting of one double step taken by each child,
and time is measured in terms of the cycle which has been discretized to a
regular grid of 20 points; the data are illustrated in Fig. 13.1.

E.2.6 Speech Signals

In Chapters 3, 8 and 12, we use three speech signals (each speaker said “per-
haps the most frequent use of ICA is in the extraction of independent causes”)
and mix them linearly. In Chapter 3, we used an ill-conditioned mixing matrix

A =
(

0.8 0.4
0.9 0.4

)
whose determinant is −0.04. Its eigenvalues are 1.2325 and

−0.0325. In Chapter 8, we linearly mixed using the mixing matrix A:

A =

⎛
⎝−0.3 0.4 0.2

0.6 −0.9 0.4
−0.5 0.5 −0.3

⎞
⎠ (E.2)

The kurtosis of the individual signals is 6.8444, 7.7582 and 3.6833 respectively.
In Chapter 6, five samples of five seconds of natural speech was recorded

using the standard telecom sampling rate of 8 kHz. Two adult male and female
voices were used along with that of a female child. The speakers each spoke
their name and a six-digit number. The samples were then linearly mixed
using the 5 × 5 mixing matrix shown in Table 6.2, which is well conditioned
with a determinant value of 1.42. The fourth-order statistics of the original
signals are shown in Table 6.3.

In Chapter 7, we used raw voice data sampled at 8 kHz and subjected to
no preprocessing. We isolated single vowel sections and trained the network
only on these vowel sections. Also in this chapter, we used artificial sound data
containing a range of frequencies between 200 Hz and 10 000 Hz. This data
was high-pass filtered by taking the differences between successive samples.
The training vector consisted of 64 consecutive samples of sound recorded
at 8 kHz giving an input window duration of 8.75 ms. The one-dimensional
map consisted of 24 modules, each of which had a subspace dimensionality of
two. Eight sets of inputs that were adjacent in time formed a single episode.
Representative winners were selected using the maximum energy criterion.

Each input window was multiplied by a Gaussian weighting function with a
full-width half-maximum, FWHM(t), of eight samples and this was increased
to 20 during training. The initial learning rate was 0.008 and was reduced by
0.0005 after every 20 episodes.
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E.2.7 Bank Database

In Chapter 6, we use a small database of bank customers, containing 1000
records, with 12 fields. A few records are shown in Fig. 6.7. Information stored
in the database includes a unique identifier, age, sex, salary, type of area in
which they live, whether married or not, number of children and then several
fields of financial information such as type of bank account, whether they own
a Personal Equity Plan1, etc.

E.2.8 World Bank Data

The world bank data set consists of entries for 124 countries, with fields for
the countries’ name, gross national product (GNP), percentage growth, GNP
per capita plus the percentage growth and finally GNP PPP (productivity per
person) and percentage growth of GNP PPP. We first used the EPP network
of Chapter 6 on the data set.

E.2.9 Exchange Rate Data

We use the U.S. dollar against the British Pound and split the data set into
two sets: 1706 samples were used as the training data and 1706 for the test
data. Each training input comprised a particular day’s exchange rate plus the
previous n days’ exchange rates where values of n ranged from 5 to 25.

E.2.10 Power Load Data

In Chapter 11, we use a data set from the Taiwan Power Company; for the
supervised networks two years (1992 and 1993) were used to train the neural
network, the 1994 data was used for validating, and the 1995 data has been
used for the practical test. The results are shown in Table 11.3. Table 11.2
shows the 12 values which are used as input to the neural networks.

E.2.11 Image Data

In Chapter 11, we use the Columbia Object Image Library (COIL-20) which is
a database of grayscale image of 20 objects (see Fig. 11.13). The objects were
placed on a motorized turntable (see Fig. 11.14) against a black background.
The turntable was rotated through 360 degrees to vary object pose with re-
spect to a fixed camera. Images of the objects were taken at pose intervals of 5
degrees. This corresponds to 72 images per object. The images used have been
size normalized. The object is clipped out from the black background using
1 Personal Equity Plans were a savings scheme devised by the British government to

encourage savers to invest. They are no longer available to purchase but continue
to exist as historical savings vehicles.
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a rectangular bounding box. The bounding box is resized to 128 × 128 using
interpolation decimation filters to minimize aliasing [136]. When resizing, the
aspect ratio is preserved.

In Chapter 12, natural images depicting landscapes, trees, people, etc.
are used. In order to reduce complexity, the images are typically divided into
patches taken from random positions, and PCA is performed on these patches.
Fig. 12.6 shows the results of this experiment, using 12×12 pixels image-
patches taken from nine grayscale images. In these experiments, the visual
data is first mean centred and then preprocessed, using a filter with frequency
response R(f) = f exp(−(f/f0)4). This is a widely used whitening/low-pass
filter that ensures the Fourier amplitude spectrum of the images is flattened
and which also decreases the effect of noise by eliminating the highest fre-
quencies. We randomly sampled the preprocessed images by taking 12 × 12
pixel patches, on which FastICA with 100 outputs was used.

When we create artificial stereo images, we also use the above images but
we also use real stereo images for a two stream sparse coding experiment. We
selected 14 natural stereo images (downloadable from http://www.undersea3d.com/),
which were preprocessed as above. An example of an unpreprocessed stereo
image pair used is displayed in Fig. 12.11. The images were sampled by ran-
domly taking 5000 12 × 12 patches from each image.
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activation function
differential, 69
feedforward, 74
hyperbolic, 121
lateral, 70
lateral and feedforward, 73
non-linear, 260
rectification, 99

anomaly
The VW anomaly, 67
variance, 214

artificial neural network, 2
BCM neuron, 126
hierarchical, 114, 127, 165

biological plausibility, 2, 36, 41, 46, 54,
91, 166, 198, 257

canonical correlation analysis, 191
and principal curves, 285, 287
kernel, 228
local, 245, 293
ridge, 249

code
binary, 158
sparse, 85, 268

convergence
assumptions, 40
coding, 160
EPP, 117
Fast ECA, 265
minor components analysis, 48
PCA, 37–41, 43–46, 60–68, 71, 78, 79,

91

cost function
canonical correlation analysis, 192,

199, 210
from probabilities, 211
joint, 258
kernel CCA, 228
linear discriminants, 206
Newton’s method, 264
non-linear CCA, 218
penalty, 250
residuals, 170
robust, 211
maximum likelihood, 277

data
artificial, 33, 287, 290
artificial shift, 271
astronomical, 182
bank customers, 127
bars, 87, 95, 100, 104, 155

statistics, 175
children’s gait, 253
circle and line, 217, 230
clusters, 142, 178
diminished rank, 252
exams, 195, 205, 229, 231, 253, 263,

298
financial, 287, 291, 294, 298
Gaussian, 33, 35, 42, 47, 68, 72, 74,

76, 83, 88, 89, 172–174, 195, 200,
204, 206

images, 237, 269, 274
kurtosis, 178
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non-Gaussian, 119, 122, 261, 262,
266, 276, 278

random dot stereograms, 196, 241
sinusoids, 223
speech, 53, 134, 148, 154, 184, 279
uniform, 144, 159, 206
wine, 182
World Bank, 130

deflation, 23, 34, 172, 252, 262, 265

eigenvalue, 12
eigenvector, 12, 17

generalised, 202
entropy, 14

Gaussian, 14
EPP, 111

and PCA, 117
ICA, 132
indices, 116
interesting, 112
reprojection, 130
sphering, 113
twinned, 259

error
minimisation, 98

exploratory projection pursuit, see EPP

factor analysis, 92
PFA, 93

forecasting, 223, 287, 294–298
functional data, 250

Hebbian learning, 11, 86, 171, 257, 302
anti-Hebbian, 23, 174, 216, 222
nonlinear, 12
statistical properties, 12
weight decay, 18

ICA, 25, 184, 220, 232, 262, 280
EPP, 132
minor components, 53
neural, 28
non-linear mixtures, 223

independent component analysis, see
ICA

information theory, 13
EPP indices, 123
Gaussian, 37
mutual information, 213, 214

instability, 68

knot points, 285

lateral connections, 57
learning rate

differential, 59
equal, 62

moments, 27
kurtosis, 28, 116, 177, 184

shared, 257
skewness, 28, 116, 180

multiple cause, 95
mutual information, 14

negative feedback, 32
noise, 214, 291

additive, 100
Gaussian, 209
Kanizsa illusion, 106
minimum overcomplete basis, 102
regression, 52

non-negativity, 101
and factor analysis, 94

PCA, 16, 112
and EPP, 117
eigenvectors, 35
gaussian, 17
Hebbian learning, 19–23
kernel, 226
local, 151
non-linear, 96, 114, 194
Principal Curves, 283
robust, 169, 172
weight decay, 19

principal component analysis, see PCA

quantisation, 137, 157, 285

regression
canonical correlation as, 192
minor components, 52
partial least squares, 247, 251
relevance vectors, 234
ridge, 248

residuals
coding net, 162
cost function, 170, 177
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pdf, 212

probability density functions, 275

sphering, 120, 262, 263

suspicious coincidence, 85

topology preservation, 163
comparison, 145
SOM, 137, 295

weights
non-negative, 88, 199, 201
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