@ Springer



Advanced Information and Knowledge Processing




Also in this series

Gregoris Mentzas, Dimitris Apostolou, Andreas Abecker and Ron Young
Knowledge Asset Management
1-85233-583-1

Michalis Vazirgiannis, Maria Halkidi and Dimitrios Gunopulos
Uncertainty Handling and Quality Assessment in Data Mining
1-85233-655-2

Asuncién Gémez-Pérez, Mariano Fernandez-Lopez, Oscar Corcho
Ontological Engineering
1-85233-551-3

Arno Scharl (Ed.)
Environmental Online Communication
1-85233-783-4

Shichao Zhang, Chengqi Zhang and Xindong Wu
Knowledge Discovery in Multiple Databases
1-85233-703-6

Jason T.L. Wang, Mohammed J. Zaki, Hannu T.T. Toivonen and Dennis
Shasha (Eds)

Data Mining in Bioinformatics

1-85233-671-4

C.C. Ko, Ben M. Chen and Jianping Chen
Creating Web-based Laboratories
1-85233-837-7

Manuel Grana, Richard Duro, Alicia d’Anjou and Paul P. Wang (Eds)
Information Processing with Evolutionary Algorithms
1-85233-886-0

Nikhil R. Pal and Lakhmi Jain (Eds)
Advanced Techniques in Knowledge Discovery and Data Mining
1-85233-867-9



Colin Fyfe

Hebbian Learning and
Negative Feedback
Networks

With 117 Figures

@ Springer



Colin Fyfe
Applied Computational Intelligence Research Unit, The University of Paisley, UK

Series Editors
Xindong Wu
Lakhmi Jain

British Library Cataloguing in Publication Data

Fyfe, Colin
Hebbian learning and negative feedback networks.-
(Advanced information and knowledge processing)
1. Neural Networks (Computer science) 2. Data mining
1. Title
006.3"2

ISBN 1852338830

Library of Congress Cataloging-in-Publication Data

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under
the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in
any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic
reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries con-
cerning reproduction outside those terms should be sent to the publishers.

AI&KP ISSN 1610-3947

ISBN 1-85233-883-0
Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005
Printed in the United States of America

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information con-
tained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be
made.

Typesetting: Electronic text files prepared by authors
34/3830-543210 Printed on acid-free paper SPIN 11006701



To my wife, Mary Teresa, for her unswerving help and support.



Contents

1

Introduction . ...... ... ... .. . . . . 1
1.1 Artificial Neural Networks . .......... ... ... 2
1.2 The Organisation of this Book ............................ 3

Part I Single Stream Networks

2

Background ............ .. 11
2.1 Hebbian Learning ............. ... 11
2.2 Quantification of Information ............................. 13
2.2.1 Entropy and the Gaussian Distribution............... 14
2.3 Principal Component Analysis ............ ... ... ... ....... 16
2.4 Weight Decay in Hebbian Learning ........................ 18
2.4.1 Principal Components and Weight Decay ............. 19
2.5 ANNsand PCA ... .. .. . 21
2.5.1 QOja’s One Neuron Model ................ ... .. .... 21
2.5.2 QOja’s Subspace Algorithm .......................... 22
2.5.3 Oja’s Weighted Subspace Algorithm ................. 22
2.5.4 Sanger’s Generalized Hebbian Algorithm ............. 23
2.6 Anti-Hebbian Learning . . ............ .. ... .. .. 23
2.7 Independent Component Analysis ......................... 25
2.7.1 A Restatement of the Problem ...................... 26
2.7.2 A Neural Model for ICA ......... ... ... ... ....... 28
2.8 Conclusion ........ ..ot 29
The Negative Feedback Network........................... 31
3.1 Imtroduction ........... ... i 31
3.1.1 Equivalence to Oja’s Subspace Algorithm............. 31
3.1.2 Algorithm for PCA ....... ... ... .. .. 34
3.1.3 Plasticity and Continuity ............ ... .. ... ... 35

3.1.4 Speed of Learning and Information Content........... 36



VIII

Contents
3.1.5 Analysis of Convergence............................ 37
32 The VIW Model ... 41
3.2.1 Properties of the VW Network ........... ... ... ... 42
3.2.2 Theoretical Discussion ............................. 43
3.3 Using Distance Differences........... ... ... ... ... ... .... 46
3.3.1 Equivalence to Sanger’s Algorithm................... 47
3.4 Minor Components Analysis .............. ... ... ..., 48
3.4.1 Regression.........c.oiiiiiiiii i 49
3.4.2 Use of Minor Components Analysis .................. 50
3.4.3 Robustness of Regession Solutions ................... 52
3.4.4 Application to ICA ....... ... .. ... .. ... .. ... ...... 53
3.5 Conclusion . ......oii i 54
Peer-Inhibitory Neurons .. ............ ... ... ... .. ... ... 57
4.1 Analysis of Differential Learning Rates ..................... 59
411 The GW Anomaly......... ... ... 68
4.1.2 Simulations........... ... ... ... 69
4.2 Differential Activation Functions .......................... 70
4.2.1 Model 1: Lateral Activation Functions ............... 70
4.2.2 Model 2: Lateral and Feedforward Activation Functions 73
4.2.3 Model 3: Feedforward Activation Functions ........... 75
4.24  SUIMIMATY . . o\t te ettt e 77
4.2.5 Other Models . ......... . i 80
4.3 Emergent Properties of the Peer-Inhibition Network ......... 82
4.4 ConcluSion ... ... 83
Multiple Cause Data .......... ... ... .. ... . .. 85
5.0.1 A Typical Experiment ............................. 87
5.1 Non-negative Weights . . ........ ... ... .. .. .. .. ... ... .... 88
5.1.1 Other Data Sets.............oiiiiiiiiinnan. 89
5.1.2 Theoretical Analysis .......... ... ... .. i, 91
5.1.3 Conclusion .............o.iiii e 92
5.2 Factor Analysis ........... i 92
5.2.1 Principal Factor Analysis................ ... .. .... 93
5.2.2 The Varimax Rotation ............................. 94
5.2.3 Relation to Non-negativity .............. ... ... .... 94
524 TheBarsData............ ... ... .. ... ... ........ 95
5.2.5 Continuous Data .......... ... ... ... .. 96
5.2.6 Generalised PCA . ... ... ... ... . ... . .. . .. ... ... ... .. 97
5.2.7 Non-negative Outputs ............. ... ... ........ 99
5.2.8 Additive Noise ... 100
5.2.9 Dimensionality of the Output Space ................. 101
5.2.10 The Minimum Overcomplete Basis .................. 102
5.2.11 Simulations . ... ... 104

5.3 ConcluSion . ......i i 108



Contents X

Exploratory Data Analysis................................. 111
6.1 Exploratory Projection Pursuit............... ... .. ... ... 112
6.1.1 Interesting Directions . ........ ... .. ... .. .. .... 112
6.2 The Data and Sphering ........ ... ... ... . .. 113
6.3 The Projection Pursuit Network............ ... ... ... ... 114
6.3.1 Extending PCA ...... ... .. .. .. . 114
6.3.2 The Projection Pursuit Indices ...................... 116
6.3.3 Principal Component Analysis ...................... 117
6.3.4 Convergence of the Algorithm....................... 117
6.3.5 Experimental Results ........... ... ... ... ... ..., 119
6.3.6 Using Hyperbolic Functions......................... 121
6.3.7 Simulations ............. ... 122
6.4 Other Indices ........ . . i 123
6.4.1 Indices Based on Information Theory ................ 123
6.4.2 Friedman’sIndex......... .. .. . . .. .. 125
6.4.3 Intrator’sIndex ......... .. ... i 127
6.5 Using Exploratory Projection Pursuit ...................... 127
6.5.1 Hierarchical Exploratory Projection Pursuit .......... 128
6.5.2 World Bank Data ............ .. .. .. . ... .. ... 131
6.6 Independent Component Analysis ............ ... ... ...... 133
6.7 Conclusion . ........... it 136
Topology Preserving Maps........... .. ... . ... ... .. 137
7.1 Background......... ... ... 137
7.1.1 Competitive Learning . ............ ... .. ... ... ... 138
7.1.2 The Kohonen Feature Map ......................... 138
7.2 The Classification Network .......... ... ... ... ... .. .... 140
7.2.1 Results.... ... . 141
7.2.2 Stochastic Neurons ............ ... ... 143
7.3 The Scale Invariant Map .......... ... .. .. 143
731 AnExample ... ... ... 144
7.3.2 Comparison with Kohonen Feature Maps............. 145
7.3.3 Discussion . ....... ..o 145
7.3.4 Self-Organisation on Voice Data..................... 148
7.3.5 Vowel Classification............ ... ... ... ... ...... 148
7.4 The Subspace Map ...........o i 149
7.4.1 Summary of the Training Algorithm ................. 151
7.4.2 Training and Results........ ... .. .. ... .. ... ... 153
7.4.3 DiSCusSsion .. ..ot 157
7.5 The Negative Feedback Coding Network.................... 158
7.5.1 Results. ... ..o 159
7.5.2 Statistics and Weights .......... .. ... ... ... 160
7.5.3 Reconstruction Error ........ ... ... ... . ... 162
7.5.4 Topology Preservation .............. .. ... ... ..... 163

7.5.5 Approximate Topological Equivalence ................ 164



Contents

7.5.6 A Hierarchical Feature Map ........................ 165
7.5.7 A Biological Implementation........................ 166
7.6 Conclusion ......... ..ot 167
Maximum Likelihood Hebbian Learning ................... 169
8.1 The Negative Feedback Network and Cost Functions ......... 169
8.1.1 Is This a Hebbian Rule?.......... ... ... ... ... .... 171
8.2 e-Insensitive Hebbian Learning ... ......... ... ... ... ..... 171
8.2.1 Principal Component Analysis ...................... 171
8.2.2 Anti-Hebbian Learning . ............ ... . ... . ..... 174
8.2.3 Other Negative Feedback Networks .................. 175
8.3 The Maximum Likelihood EPP Algorithm .................. 176
8.3.1 Minimum Likelihood Hebbian Learning .............. 177
8.3.2 Experimental Results ........... ... ... ... ... ..., 178
8.3.3 SKEWNESS . . ottt 180
8.4 A Combined Algorithm ........... ... ... ... ..., 181
8.4.1 Astronomical Data ........... ... ... .. .. .. ..., 182
8.4.2 WINE ..ot 182
8.4.3 Independent Component Analysis ................... 183
8.5 Conclusion . ........ ... 186

Part II Dual Stream Networks

9

10

Two Neural Networks for Canonical Correlation Analysis. . 191

9.1 Statistical Canonical Correlation Analysis .................. 191
9.2 The First Canonical Correlation Network . .................. 192
9.3 Experimental Results ........ ... .. . ... .. . 194
9.3.1 Artificial Data ......... .. 195
9.3.2 RealData ..... ... 195
9.3.3 Random Dot Stereograms ............ ... ... ... .... 196
9.3.4 Equal Correlations ............ ... .. ... ... ...... 198
9.3.5 More Than Two Data Sets ......................... 199
9.3.6 Many Correlations. ... ..ot 200
9.4 A Second Neural Implementation of CCA .................. 202
9.5 Simulations . ........ ...t 204
9.5.1 Artificial Data ........... ... .. . . .. 204
9.5.2 RealData ........ ... i 205
9.6 Linear Discriminant Analysis ............ ... ... ... ...... 206
9.7 DiISCUSSION . . o v vttt 207
Alternative Derivations of CCA Networks ................. 209
10.1 A Probabilistic Perspective ........... .. .. ... 209
10.1.1 Putting Priors on the Probabilities .................. 210

10.2 Robust CCA ... 211



11

12

Contents XI

10.3 A Model Derived from Becker’s Model 1.................... 212
10.3.1 Who Is Telling the Truth? ........ ... ... .. ... ..... 213
10.3.2 A Model Derived from Becker’s Second Model ........ 214

10.4 DISCUSSION .« .« v vttt e e 215

Kernel and Nonlinear Correlations ........................ 217

11.1 Nonlinear Correlations . ............c..ooiiiinineneena... 217
11.1.1 Experiment Results......... ... ... ... ... .. ... 217

11.2 The Search for Independence. ................ ... ... ...... 221
11.2.1 Using Minimum Correlation to Extract Independent

SOULCES « .t vttt e 222
11.2.2 Experiments . ... 223
11.2.3 Forcasting . ... 223

11.3 Kernel Canonical Correlation Analysis ..................... 225
11.3.1 Kernel Principal Correlation Analysis ................ 226
11.3.2 Kernel Canonical Correlation Analysis ............... 227
11.3.3 Simulations .. ........ ..o i 230
11.3.4 ICA using KCCA ... ... . 231

11.4 Relevance Vector Regression ......... ... ... ..., 234
11.4.1 Application to CCA ... ... ... .. i 237

11.5 Appearance-Based Object Recognition ..................... 237

11.6 Mixtures of Linear Correlations ........................... 240
11.6.1 Many Locally Linear Correlations ................... 240
11.6.2 Stone’s Data. ... 241
11.6.3 Discussion .. ....o.vuvi e 246

Exploratory Correlation Analysis .......................... 247

12.1 Exploratory Correlation Analysis .......................... 247

12.2 Experiments ... .. ..o 251
12.2.1 Artificial Data ........ ... .. ... 251
12.2.2 Dual Stream Blind Source Separation ................ 252

12.3 Connection to CCA . ... ... 253

124 FastECA ..o 254
12.4.1 FastECA for Several Units.......................... 255
12.4.2 Comparison of ECA and FastECA . .................. 256

12.5 Local Filter Formation From Natural Stereo Images.......... 256
12.5.1 Biological Vision .......... .. ... .. . i i 256
12.5.2 Sparse Coding of Natural Images .................... 259
12.5.3 Stereo Experiments .. ........ ... oo i 260

12.6 Twinned Maximum Likelihood Learning.................... 266

12.7 Unmixing of Sound Signals .......... .. .. .. ... .. ... .. 270

12.8 Conclusion . ...... ... 271



XII Contents

13 Multicollinearity and Partial Least Squares ................ 275
13.1 The Ridge Model ........ ... .. . i 276
13.2 Application to CCA ... ... . 276

13.2.1 Relation to Partial Least Squares.................... 279
13.3 Extracting Multiple Canonical Correlations ................. 280
13.4 Experiments on Multicollinear Data ....................... 281
13.4.1 Artificial Data ........ ... ... 281
13.4.2 Examination Data........... ... ... .. . .. ... 281
13.4.3 Children’s Gait Data ........... ... ... ... .. ..... 281
13.5 A Neural Implementation of Partial Least Squares........... 284
13.5.1 Introducing Nonlinear Correlations .................. 284
13.5.2 Simulations .. ........ . 285
13.5.3 Linear Neural PLS .......... ... ... ... ... ... ..... 285
13.5.4 Mixtures of Linear Neural PLS...................... 286
13.5.5 Nonlinear Neural PLS Regression.................... 287
13.6 ConclusSion ..........iiiiti i e 288

14 Twinned Principal Curves ......... ... .. .. ... . .. .. ... 291
14.1 Twinned Principal Curves .......... .. ... i, 291
14.2 Properties of Twinned Principal Curves .................... 293

14.2.1 Comparison with Single Principal Curves............. 293
14.2.2 Mlustrative Examples ........ ... .. ... .. .. ... .. 295
14.2.3 Intersecting Curves .. .........c.ooouiiiieninnenn .. 297
14.2.4 Termination Criteria: MSE ......... ... ... .. ... ... 299
14.2.5 Termination Criteria: Using Derivative Information . ... 299
14.2.6 Alternative Twinned Principal Curves ............... 301
14.3 Twinned Self-Organising Maps . ........... ... .. ... ... .. 305
14.3.1 Predicting Student’s Exam Marks ................... 306
14.4 DISCUSSION . o .ottt e 307

15 The Future ...... ... . . . i 309
151 REVIEW . . oottt 309
15.2 OMISSIONS .« v vttt et e e 312
15.3 Current and Future Work ............ .. ... .. ... ... ...... 312

Negative Feedback Artificial Neural Networks ................. 315
A.1 The Interneuron Model. .......... ... ... .. . .. .. 315
A2 Other Models . ... e e e 317

A2.1 StaticModels . ........... i 318
A.2.2 Dynamic Models .......... .. .. i 319

A.3 Related Biological Models ........... ... ... . .. 320



Contents  XIII

Previous Factor Analysis Models .............................. 323
B.1 Foldidk’s Sixth Model ........ ... ... i 323
B.1.1 Implementation Details ............ .. .. .. .. ... ... 324
B.1.2 Results. ... oo 325

B.2 Competitive Hebbian Learning ........ ... ... ... ... ... .... 326
B.3 Multiple Cause Models .. ........... i, 327
B.3.1 Saund’sModel ........ ... .. ... . 328
B.3.2 Dayan and Zemel........... .. ... .. . ... . ... 330

B.4 Predictability Minimisation . ......... ... .. . ... ... 330
B.5 Mixtures of Experts ......... ..o 332
B.5.1 AnExample ...... ... ... ... 334

B.6 Probabilistic Models ......... ... .. . 334
B.6.1 Mixtures of Gaussians ............. ... .. ... ..., 335
B.6.2 A Logistic Belief Network .......................... 337
B.6.3 The Helmholtz Machine and the EM Algorithm ....... 337
B.6.4 The Wake-Sleep Algorithm .............. ... ... .... 338
B.6.5 Olshausen and Field’s Sparse Coding Network ........ 339
Related Models for ICA ....... .. ... .. .. .. . . .. 341
C.1 Jutten and Herault ............ ... ... ... .. ... 341
C.1.1 An Example Separation ............................ 342
C.1.2 Learning the Weights ....... ... ... .. .. ... ... ... 343

C.2 Nonlinear PCA . ... .. .. 344
C.2.1 Simulations and Discussion ......................... 345

C.3 Information Maximisation .................c.cciiuiiniirnn... 345
C.3.1 The Learning Algorithm ........................... 347

C.4 Penalised Minimum Reconstruction Error .................. 350
C.4.1 Adding Competition ... ..., 350

C.h FastICA ... 351
C.5.1 FastICAfor One Unit................. .. ... ....... 352
Previous Dual Stream Approaches............................. 353
D.1 The I-Max Model ........ .. .. . 353
D.2 Stone’s Model. ..... ... ... 355
D.3 Kay’s Neural Models............ i, 356
D.4 Borga’s Algorithm ......... ... i 358
Data Sets. ... 363
E.1 Artificial Data Sets . ... i 363
E.1.1 GaussianData ........... .. .. . . i 363
E12 BarsData ... i 363
E.1.3 Sinusoids .. ...ooonii 364
E.1.4 Random Dot Stereograms ............ ... ... ... . 365
E.1.5 Nonlinear Manifolds ................. ... ... ...... 365

E.2 Real Data Sets ....... . . i 366



XIV Contents

E2.1 WineData ........... 366
E.2.2 Astronomical Data ............. .. ... .. .. ... .. ..... 366
E.2.3 The Cetin Data Set............. .. ... .. ... 366
E24 Exam Data.......... ... . ... . . . . . . 366
E.2.5 Children’s Gait Data ......... ... ... ... ... ........ 367
E.2.6 Speech Signals ......... .. .. ... i i 367
E.2.7 Bank Database............ ... ... ... .. ... ... .. ..... 368
E.2.8 World Bank Data ................................. 368
E.2.9 Exchange Rate Data............. .. .. . ... .. .... 368
E.2.10 Power Load Data.. .......... ... ... ... .. ... .. ...... 368
E211Image Data......... ... . . 368
References . .. .. ... . 371



Acronyms

ANN Artificial Neural Network

ASSOM Adaptive Subspace Self-Organising Map
CCA Canonical Correlation Analysis

ECA Exploratory Correlation Analysis

EPP Exploratory Projection Pursuit

FA Factor Analysis

HEPP Hierarchical Exploratory Projection Pursuit
ICA Independent Component Analysis

KCCA Kernel Canonical Correlation Analysis
KPCA Kernel Principal Component Analysis
LDA Linear Discriminant Analysis

MCA Minor Components Analysis

ML Maximum Likelihood

MOB Minimum Overcomplete Basis

MSE Mean Square Error

NLCCA Nonlinear Canonical Correlation Analysis
NLPCA Nonlinear Principal Components Analysis
NLPLS Nonlinear Partial Least Squares

PCA Principal Component Analysis

PFA Principal Factor Analysis

PLS Partial Least Squares

SIM Scale Invariant Map

SOM Self-Organising Map



Preface

This book is the outcome of a decade’s research into a specific architecture
and associated learning mechanism for an artificial neural network: the ar-
chitecture involves negative feedback and the learning mechanism is simple
Hebbian learning. The research began with my own thesis at the University of
Strathclyde, Scotland, under Professor Douglas McGregor which culminated
with me being awarded a PhD in 1995 [52], the title of which was “Negative
Feedback as an Organising Principle for Artificial Neural Networks”.

Naturally enough, having established this theme, when I began to super-
vise PhD students of my own, we continued to develop this concept and this
book owes much to the research and theses of these students at the Applied
Computational Intelligence Research Unit in the University of Paisley. Thus
we discuss work from

Dr. Darryl Charles [24] in Chapter 5.

Dr. Stephen McGlinchey [127] in Chapter 7.

Dr. Donald MacDonald [121] in Chapters 6 and 8.
Dr. Emilio Corchado [29] in Chapter 8.

We briefly discuss one simulation from the thesis of Dr. Mark Girolami [58]
in Chapter 6 but do not discuss any of the rest of his thesis since it has
already appeared in book form [59]. We also must credit Cesar Garcia Osorio,
a current PhD student, for the comparative study of the two Exploratory
Projection Pursuit networks in Chapter 8. All of Chapters 3 to 8 deal with
single stream artificial neural networks.

Chapters 9-14 discuss research into dual stream artificial neural networks
at the Applied Computational Intelligence Research Unit in the University
of Paisley. This work has resulted in four PhDs [60, 67, 108, 113]. T must
therefore acknowledge the work done by:

e Dr. Pei Ling Lai [113] in Chapters 9, 10 and 11.
e Dr. Jos Koetsier [108] in Chapters 12 and 14.
e Dr. Zhenkun Gou [60] in Chapters 9, 11 and 13.
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e Dr. Ying Han [67] in Chapters 12, 13 and 14.

Without their assistance this book could not have been written. We must also
credit current PhD student, Emilio Corchado (yes, his second PhD) with some
of the results in Chapter 14. We must also acknowledge other research students
whose work does not form part of this book, but whose overall contribution
to the life of the group was invaluable: these include Dr. Shang-Jen Chuang,
Dr. Tzai-Der Wang, Dr. Juan Corchado, Dr. Danny Livingstone and Dr. Lina
Petrakieva.

This book also has sections which were used for undergraduate teaching at
the University of Paisley and I must credit these undergraduates with inspiring
me to write more clearly.

Needless to say, we cannot cover all the work in these theses in a single
book and so the interested reader is invited to consult the originals for more
detailed description of any work which commands his or her interest.

Colin Fyfe
Paisley, 2004.



1

Introduction

We report, in this book, on the last decade’s research into a single architec-
ture of artificial neural networks. The research first identified the fact that
a negative feedback artificial neural network using simple Hebbian learning
had important statistical properties in that it could self-organise in order to
identify the principal component filters of a data set. For readers unfamiliar
with these terms, we will discuss them in more detail in Chapter 2. By adding
bells and whistles to the basic architecture, we have discovered quite a bit
about this very powerful architecture and have brought much of our research
together in this single book. Since the book brings together the work of vari-
ous PhD theses, it cannot give all the details which appear in these theses but
seeks to emphasise the common theme underlying the research - the negative
feedback network.

In order to make the book readable as a single entity, some of the nomen-
clature has been changed from the original so that a uniform notation is used
throughout the book; for example, in Chapter 4, we use inputs x, outputs y
and residuals e, not inputs x, outputs z and residuals y which is how the work
first appeared in [51] and [52]. However, these are presentation changes which
do not affect the substance of the research. More important is the develop-
ment of concepts which takes place throughout the book and the chapters are
deliberately organised in such a way as to reflect our growing understanding
of the capabilities of the negative feedback network.

Similarly, we first became aware of negative feedback networks from the
PhD thesis of Mark Plumbley [153] whose work is briefly discussed in Ap-
pendix A. Plumbley used the biological term “interneuron”; we initially
adopted this term and early papers continued to use it for some years, but
we now, in this book, consistently use “output neuron” for these neurons. We
remain interested in them as models of biological information processing but
prefer now to discuss their relevance to engineering problems rather than their
biological inspirations.
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1.1 Artificial Neural Networks

An artificial neural network is typically a software simulation of the hardware
on which we run. It is difficult to equate the simple machines which we have so-
far been able to create with the sophisticated machines between our ears, yet,
nevertheless, we are making advances in understanding what such machines
can do and what are the essential features of such machines. An artificial
neuron receives a number of floating point values either from the environment
or from other neurons. These floating point values compose a vector of inputs
which are modulated by being filtered by a set of weights. The weights model
synaptic efficiencies, the synapse being the connection between one neuron and
the next. Thus typically in this book, we will have a set of inputs, x, which
will reach the i*" neuron through a set of weights, w; to give an activation,
v;, at the i*" neuron.

N
Y :Wi.X:ZU)ijCCj (11)
j=1

where we have assumed there are N inputs. Even allowing for the fact that
we often use nonlinear functions of the activations, we see that a single neu-
ron is a very simple processor. The power of artificial neural networks comes
from using very many neurons acting in concert so as to produce powerful
information processors.

It should be clear that the weight values, w;; are crucial in that they
determine the magnitude of the effect of the signal in the j** input stream
reaching the i*" output neuron. The most interesting aspect of neural networks
is how to find the best values of w;; so that the most relevant information is
passed on. In my opinion, the most interesting aspect of this most interesting
aspect is finding rules so that an artificial neural network can self-organise so
that the most relevant information can be determined automatically. As will
become clear throughout this book, different decisions as to what constitutes
relevance leads to different learning rules in artificial neural networks. However
throughout this book we will use unsupervised learning - learning which does
not use a teacher signal to learn from a data set. We know that such learning
is both possible and powerful since each of us uses it every day.

Therefore, most of the models which we will discuss in this book will be
models which retain biological plausibility - we will attempt to keep within
the sphere of models which could correspond to a model possible in wvivo.
Such models will attempt to use only local information to self-organise; there
will be no globally collected information available throughout the network.
There will be no very tight dependencies or constraints on time or space in
the models. In fact, all models will be based on variations of what is known
as Hebbian learning (Chapter 2), which is believed to underpin much of our
learning.

Having said that, as noted in the Preface, this work is the outcome of
several PhD theses which were undertaken in departments of Computer Sci-
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ence and therefore have to model the concerns of that discipline. Thus, there
is an on-going need to make models of artificial neural networks which have
valuable engineering applications. Many of the networks we develop are pow-
erful data analysis machines capable of data/text mining, revealing hidden
structure, identifying outliers, clustering data sets and finding interesting low
dimensional projections of high dimensional data sets.

Often in artificial neural network research, we create artificial data and run
our networks on them before attempting experiments with real world data.
The advantages of artificial data are

1. We have more control over our data. Real world data is often noisy with
outliers and, in addition, we are also relying on the efficacy of our sampling
methods.

2. We can more easily understand our results. We will create data with the
specific aim of aiding our understanding of the network.

3. We know the answers we hope to get from our network. Our data has
been specifically created to help test a particular hypothesis.

4. We can control the magnitude of our data set. We will use a limited
number of representative samples.

While we cannot have our simulations prove our theories using artificial data,
we can certainly use the artificial data to prove that a theoretical argument
is incorrect [154]. Perhaps a more mundane argument is also often used: if
we cannot have our networks converge to the correct values on nice, clean
artificial data, what chance is there on real, noisy data sets with missing
values, outliers, etc. However, clearly there is an inherent danger in this in
that each researcher is liable to use data sets in which his/her own algorithm
is seen in the best light. Therefore, both real and artificial data sets have their
place in data analysis.

1.2 The Organisation of this Book

This work is in two parts: the first part deals with methods which extract
information from a single stream of data using negative feedback and Hebbian
learning while the second part deals with methods for extracting information
which is shared over two data streams simultaneously.

Chapter 2 sets the scene for the remainder of the book. It provides a short
review of Hebbian learning, Information Theory and Principal Components
Analysis, three of the pillars on which the book is based. We also discuss four
artificial neural networks which perform Principal Component Analysis. Fi-
nally, we introduce Independent Component Analysis and discuss one seminal
artificial neural network which performs ICA.

Chapter 3 introduces the negative feedback network, illustrates its capa-
bilities on some simple data sets and investigates a number of variations of
the network which perform a Principal Component Analysis of the data. We
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also change the learning rules of the network so that it now performs a Minor
Component Analysis and use this on two simple problems. We have opted to
put the more theoretical aspects of this chapter into a separate section since
much of this is also standard fare in many textbooks and we wish to keep the
exposition of the basic network clear.

Chapter 4 investigates under what conditions lateral connections which
also use Hebbian learning to self-organise can be used to force convergence
to the Principal Component filters. Two main methods introduce asymmetry
into the network but it is shown that we require specific asymmetries to force
convergence to the actual principal components.

Chapter 5 introduces a constraint to the basic network introduced in Chap-
ter 3: the constraint involves either keeping the weights non-negative or keep-
ing the outputs non-negative. We discuss the work in this Chapter both in
terms of a constrained Principal Component Analysis and in terms of Factor
Analysis. We illustrate the network’s convergence on a standard problem in-
volving the extraction of a single cause from a data set composed of a number
of interfering causes before using the network on real data sets.

Chapter 6 introduces a variation of the network which performs Ex-
ploratory Projection Pursuit, a technique for finding structure in high dimen-
sional data sets. We derive several functions which seek for specific types of
structure in data sets and illustrate the network’s properties on both artificial
and real data.

Chapter 7 introduces several variations on the basic network which perform
a topology-preserving quantisation of data sets. We show that these methods
find quite different quantisations from Kohonen’s Self-organising Map (SOM)
[111].

Chapter 8 introduces another Exploratory Projection Pursuit network
from a different perspective to that discussed in Chapter 6. The change to
the basic network is first discussed in terms of its connection to Principal
Component Analysis before we discuss its application to Exploratory Projec-
tion Pursuit. We compare the algorithm in this Chapter with that of Chapter
6 and then combine them in an algorithm which seems to get the best of all
worlds.

The second part of this book deals with dual stream architectures.

Chapter 9 introduces two artificial neural networks which perform Canon-
ical Correlation Analysis (CCA), a statistical method for extracting informa-
tion from two data streams. Simulations on real and artificial data sets sets
the scene for the remainder of the book. In Chapter 10, we digress slightly to
investigate alternative derivations of similar learning rules for artificial neural
networks from a variety of perspectives: we show how a probabilistic formu-
lation of the problem enables us to derive a robust form of the learning rules
and how a previous researcher’s algorithm can be modified so that it too can
be seen to be a member of the same family of algorithms.

Yet such networks are perhaps no more than interesting oddities: we have
after all several existing methods of performing CCA. Therefore in Chapter 11,
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we introduce nonlinearities in several ways to the existing networks and show
that the resulting networks can do more than simple linear CCA. In particular,
we use the resulting networks for the “blind separation of sources”. In Chapter
13, we consider the problems associated with multicollinearity which occurs
when there exist internal correlations within a data stream. Several algorithms
for solving this are formed and the best used to extract meaningful structure
from a functional data set.

In Chapter 12, we extend a single stream method which looks for higher
order structure in a single data set so that the resulting method, Exploratory
Correlation Analysis, can find higher order structure shared between two data
streams. We repeat the process with the other exploratory single stream
method from Chapter 8. A comparison of the two methods of this chapter
gives a revealing insight into a family of algorithms which vary in their re-
sponses to twinned information and higher order information.

Readers familiar with the background can skip Chapter 2, however we
recommend that all readers at least skim Chapter 3 in Part I and Chapter
9 in Part II. The other Chapters are designed to be mainly self-contained
though towards the end of Chapter 8, a knowledge of Chapter 6 is necessary
and both of these chapters are precursors to Chapter 12.

In Chapter 14, we discuss the single stream method of Principal Curves.
By twinning the Principal Curves method we create matching curves in two
data spaces simultaneously each of which has something to say about the
information in the other. The curves are used in a forecasting role and various
extensions of the original algorithm are given.

Chapter 15 speculates on what the future might hold for this negative
feedback architecture and where new research in this area might lead.

We have five appendices:

1. Appendix A discusses other negative feedback models.

2. Appendix B discusses other models which deal with multiple cause data
(Chapter 5).

3. Appendix C discusses other models which deal with independent compo-
nent analysis.

4. Appendix D discusses other models of dual stream approaches.

5. Appendix E collects together the various data sets which have been used
throughout the book.

Finally a word on notation. We have used a boldface font with lowercase
symbols for vectors e.g. x, w etc., and uppercase symbols such as W for ma-
trices. Sometimes we wish to identify a particular column of a matrix and to
do this we have used the convention that the i*" column of W is called w;; if
we go on to identify particular elements of this column vector, we use wj;.
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Single Stream Networks
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Chapters 2 to 8 develop artificial neural networks which self-organise on
a stream of data which is dealt with as an holistic entity i.e.even though we
may be seeking independent factors (Chapter 5) or independent components
(Chapters 6 or 8), we treat all the input data at any one time as a single
entity. This is in strict contrast to every network of Chapters 9 to 14 in which
we specifically consider two or more distinct streams of data at each instant
in time. Single stream artificial neural networks are by far the most common
in the literature.

We set the scene in Chapter 2 by introducing a number of topics which
are used throughout the book, particularly Principal Component Analysis
and Artificial Neural Networks which find principal components, Information
Theory and Independent Components Analysis. In this Chapter, we discuss
feedforward neural networks which have a feedback element in their learning
rules while in subsequent chapters, all networks have a specific feedforward
stage followed by a feedback stage followed by a phase during which weights
are updated using simple Hebbian learning.

We have a very gentle progression of ideas throughout these chapters:

e In Chapter 3, we introduce the basic negative feedback network and show
analytically and experimentally that it self-organises to find the principal
components of input data. Any residual left at the inputs contains the
minimum squared error with which it is possible to be left, after using a
linear network to compress the data. We show various extensions of the
basic network, perhaps the most interesting of which is that having differ-
ent feedforward weights than feedback weights. Subsequently, in Chapter
4, we use trainable lateral connections to ensure convergence to the actual
principal components (rather than to the subspace spanned by the prin-
cipal components). In Chapters 5 onwards, we tend mostly to ignore the
fact that we may have different feedforward and feedback rules to make
the exposition simpler; nevertheless, most of the networks described in this
part will function very well with such separate trainable weights.

e We use the networks developed in Chapters 5, 6 and 8 to search for inde-
pendence. The first of these chapters develops a network which we relate to
the statistical technique of Factor Analysis. The second and third chapters
develop networks which we link to the statistical technique of Exploratory
Projection Pursuit. The networks in Chapter 5 find underlying causes in a
data stream when such causes have been OR-ed together. One of the most
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interesting findings in that chapter is the fact that noise may be used to
determine the number of underlying factors in a data set in an entirely
automatic manner. Since the PhD theses upon which this discussion was
based were Computer Science rather than neurology, the relevance to bio-
logical information processing which is inherently noisy is not stressed yet
it is nevertheless obvious. The Exploratory Projection Pursuit network in
Chapter 6 predates that of Chapter 8 and recent experiments have tended
to demonstrate that it is somewhat superior. However, it is interesting that
these two techniques can be easily merged so that at the end of Chapter
8 a combined algorithm is developed. The networks in Chapters 6 and 8
are both used for Independent Component Analysis.

e In Chapter 7, we develop three negative feedback networks which self-
organise in order to preserve some aspects of the topology of the data.
The idea of topology preservation is somewhat ubiquitous in early sensory
information processing but again, since the algorithms were developed in a
Computer Science environment rather than a Neurology department, the
connection with biological neural networks is merely mentioned and not
stressed.

While we have written this book as though these topics were independent
of one another, in practice various researchers have combined two or more
of these techniques though, again to make the exposition clearer, we have
not discussed many such combinations in this book. However, later PhD the-
ses have inevitably built on those which have predated them and interested
readers may consult the later theses for examples of such combinations.

To make clear the distinction between these chapters and those of Part II,
in this Part we are dealing with a single stream of input data whereas in Part
II, we deal with two sets of inputs simultaneously at each instant of time.
We will see later that many of the methods and analyses developed in Part I
can also be usefully deployed in the context of dual stream networks but we
strictly adhere to the single stream of data at all times in Part I.



2

Background

In this chapter, we introduce

Hebbian learning and discuss its ability to perform statistical operations;
Information Theory and the Gaussian distribution very briefly;

Principal Component Analysis (PCA);

a brief survey of the major most-popular Artificial Neural Networks(ANNs)
which perform a PCA.

We will not, in this chapter, provide proofs of convergence of the various nets
discussed since such proofs are very similar to those we use in Chapter 3 to
prove convergence of the negative feedback network and are available in any
case in many other good textbooks (e.g.[71, 73]). We begin by outlining the
simplest possible ANNs and review a very simple unsupervised learning rule.

2.1 Hebbian Learning

The aim of unsupervised learning is to present a neural net with raw data and
allow the net to make its own representation of the data - hopefully retaining
all information which we humans find important. Unsupervised learning in
neural nets is generally realised by using a form of Hebbian learning which is
based on a proposal by Donald Hebb [72] who wrote:

When an azon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

Neural nets which use Hebbian learning are characterised by making the
activation of a unit depend on the sum of the weighted activations which feed
into the unit. They use a learning rule for these weights which depends on the
strength of the simultaneous activation of the sending and receiving neurons.
These conditions are usually written as
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Yi = Zwijxj (2.1)
J
and Aw;; = nz;y; (2.2)

the latter being the learning mechanism. Here y; is the output from neuron
i, x; is the 4" input, and wy; is the weight from x; to y;. n is known as the
learning rate and is usually a small scalar which may change with time. Note
that the learning mechanism says that if z; and y; fire simultaneously, then
the weight of the connection between them will be strengthened in proportion
to their strengths of firing. However, we will not, as does Kosko [112], rename
the Hebbian learning rule when an activation function is used. i.e.when

Yi=g Zwijl'j (2.3)
J
and Aw;; = nz;y; (2.4)

for some function, g(), we will still call this Hebbian learning.
Substituting (2.1) into (2.2), we can write the Hebb learning rule as

Awij = nz; szkffk = Zwikxkx]’ (2.5)
k k
I : d
which is equivalent to pr W(t) x CW (t) (2.6)

where Cj; is the correlation coefficient calculated over all input patterns
between the ¥ and j' terms of the inputs and W(t) is the matrix of
weights at time ¢. In moving from the stochastic equation (2.5) to the av-
eraged differential equation (2.6), we must place certain constraints on the
process, particularly on the learning rate 7. These are usually taken to be
e > 0,5 n < o0o,> n, = oo (see e.g.[129]). The advantage of this formula-
tion is that it emphasises the fact that the resulting weights depend on the
second order statistical properties of the input data. A review of the impor-
tance of this aspect of the Hebbian learning rule is given in Section 2.3.

Because of these statistics-based properties, Hebbian learning has found
applications in a number of early associative-type memories e.g.Steinbuch’s
Learning Matrix [173], Anderson’s linear associative memory [2], Kohonen’s
Adaptive Associative Memory [109] and the model of Willshaw et al [184].

However, a major difficulty with this learning rule is that unless there is
some limit on the growth of the weights, they tend to grow without bound:
we have a positive feedback loop - a large weight will produce a large value of
y (2.1) which will produce a large increase in the weight (2.2). It is instructive
to follow e.g.[73], in examining the Hebb rule’s stability:

Recall first that a matrix A has an eigenvector x with a corresponding
eigenvalue \ if
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Ax = M\x

In other words, multiplying the vector x or any of its multiples by A is
equivalent to multiplying the whole vector by a scalar A. Thus the direction
of x is unchanged — only its magnitude is affected.

Consider a one output neuron network and assume that the Hebbian learn-
ing process does cause convergence to a stable direction, w*; then if wy is the
weight value linking zj to y,

0=FE(Aw})=E(yz;) = F ijmjxi = Z R;jw;
J J

where E() indicate the expected value taken over the distribution and R is the
correlation matrix of the distribution. Now this happens for all i, so Rw = 0.
The correlation matrix, R, is a symmetric, positive semidefinite matrix and so
all its eigenvalues are non-negative. But the above formulation shows that w*
must have eigenvalue 0. Now consider a small disturbance, €, in the weights
in a direction with a nonzero (i.e. positive) eigenvalue. Then

E(Awx) = R(W" +¢) =Re= X >0

i.e. the weights will grow in any direction with nonzero eigenvalue (and such
directions must exist). Thus there exists a fixed point at W = 0, but this is
an unstable fixed point. In fact, it is well known that, in time, the weights of
nets which use simple Hebbian learning tend to be dominated by the direction
corresponding to the largest eigenvalue of the correlation matrix. We will often
implicitly discuss zero mean data in this book (it is simple to make this a valid
assumption for any data set) and so we will equate the correlation matrix of
a data set with its covariance matrix.

We will later discuss in detail one of the major ways of limiting this growth
of weights while using Hebbian learning and review its important side effects.
However, we begin with short reviews of three subjects which will be important
in the development of this book: Information Theory, Principal Component
Analysis and Independent Component Analysis.

2.2 Quantification of Information

Shannon [168] devised a measure of the information content of an event in
terms of the probability of the event happening. He wished to parameterise
the intuitive concept that the occurrence of an unlikely event tells you more
than that of a likely event. He defined the information in an event ¢, to be
— log p; where p; is the probability that the event labelled i occurs.

Using this, we define the entropy (or uncertainty or information content)
of a set of N events to be
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N
H=-% pilogp
i=1

That is, the entropy is the information we would expect to get from one
event happening where this expectation is taken over the ensemble of possible
outcomes.

For a pair of random variables X and Y, if p(i, j) is the joint probability
of X taking on the i*" value and Y taking on the j** value, we define the
entropy of the joint distribution as

i,
Similarly, we can define the conditional entropy (or equivocation or re-
maining uncertainty in X if we are given Y) as:
H(X|Y) == pl(i, ) logp(il)
]

Shannon also showed that if X is a transmitted signal and Y is the received
signal, then the information which receiving Y gives about X is

I(X;Y) = H(X) — HXY) (2.7)
or I(X;Y)=H(Y) - H(Y|X) (2.8)
or I(X;Y)=H(X)+H(Y)—-H(X,Y) (2.9)

Because of the symmetry of the above equations, this term is known as the
mutual information between X and Y.

The channel capacity is defined to be the maximum value over all possible
values of X and Y of this mutual information.

The basic facts in which we will take an interest are the following:

e Because the occurrence of an unlikely event has more information than
that of a likely event, it has a higher information content.

e Hence, a data set with high variance is liable to contain more information
than one with small variance.

e A channel of maximum capacity is defined by 100% mutual information
ie. I(X;Y) = H(X)

2.2.1 Entropy and the Gaussian Distribution

Let us attempt to find the distribution which has the greatest entropy. This
task means little in this form since we can merely keep adding points to the
distribution to increase the uncertainty/entropy in the distribution. We must
constrain the problem in some way before it is soluble.

Haykin [71] puts it this way:
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With the differential entropy of a random variable X defined by
= —/ f(z)log f(x)dx (2.10)

find the probability density function f(x) for which h(X) is a maxi-
mum, subject to the two constraints,

/700 flx)de =1 (2.11)

/OO (x — p)?f(x)dz = 0® = a constant. (2.12)

—00

and

where g is the mean of the distribution and o2 is its variance.

The first constraint simply ensures that the function f() is a proper probability
density function; the second constrains the variance of the distribution. We
will show that the distribution with greatest entropy for a given variance is the
Gaussian distribution: there is more uncertainty/information in a Gaussian
distribution than in any other comparable distribution.

So we have an optimisation problem (maximise the entropy) under certain
constraints. We incorporate the constraints into the optimisation problem
using Lagrange multipliers so that we wish to find the maximum of

/ f(x)log f(x) d:r—i—)\l/ f(z dm—i—)\z/oo(x_u)?f(x)dx
/ {F()10g f(x) — M f(2) = Aola — ) f(x)}da

where A1 and Ao are the Lagrange multipliers. This maximum is achieved
when the derivative of the integrand with respect to the function f(x) is zero.
i.e. when

0= —1—log f(x) + A1 + Aoz — p)?
log f(z) = =14+ A1 + Aa(z — p)? (2.13)
f(@) = exp(=1+ A+ Xo(z — p)?)

Substituting this into (2.11) and (2.12) gives

/ exp(—1 4+ A\ + Xo(z — p)?)de =1

/ (2 — )2 exp(—1 4+ A1 + A& — p)?)da = o

— 00

which gives us two equations in the two unknowns A; and Ay which can be
solved to give
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A1 =1 —log(V2ro?)

1
Np = —
2 202

which can be inserted in (2.13) to give

@) = ﬁ exp (—(5”2‘0;‘)2> (2.14)

the probability density function of a Gaussian distribution. When we use this
to calculate the entropy of the Gaussian distribution we get

h(X) = %{1 + log(270%)} (2.15)

In summary, we have shown the following

1. The Gaussian distribution is the distribution with the greatest entropy
for a given variance: if X and Y are both random variables with a given
variance o2 and if X is a Gaussian random variable, then

h(X) > h(Y) (2.16)

2. The entropy of a Gaussian random variable is totally determined by its
variance. We will later see that this is not true for other distributions.

2.3 Principal Component Analysis

Inputs to a neural net generally exhibit high dimensionality i.e.the N input
lines can each be viewed as one dimension so that each pattern will be repre-
sented as a coordinate in N-dimensional space.

A major problem in analysing data of high dimensionality is identifying
patterns which exist across dimensional boundaries. Such patterns may be-
come visible when a change of basis of the space is made, however an a priori
decision as to which basis will reveal most patterns requires fore-knowledge
of the unknown patterns.

A potential solution to this impasse is found in Principal Component Anal-
ysis (PCA) which aims to find the orthogonal basis which maximises the vari-
ance of the projection of the data onto the basis for a given dimensionality
of basis. The usual tactic is to find the filter which accounts for most of the
data’s variance; this becomes the first basis vector. One then finds the direc-
tion which accounts for most of the remaining variance; this is the second basis
vector and so on. If one then projects data onto the Principal Component di-
rections, we perform a dimensionality reduction which will be accompanied
by the retention of as much variance in the data as possible.

In general, it can be shown [93] that the k*" basis vector from this process
is the same as the k*" eigenvector of the covariance matrix, C, where
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cij = El(zi — E(z;))(z; — E(z;))]

For zero-mean data, the covariance matrix is equivalent to a simple correlation
matrix. Of course, it is difficult to show high-dimensional data on these pages
but a two-dimensional example is shown in Fig. 2.1.

T‘\" First Principal Companent

Data Cloud

Fig. 2.1. The first principal component direction of a two-dimensional data cloud.

Now, if we have a set of weights which are the eigenvectors of the input
data’s covariance matrix, C', then these weights will transmit the largest values
to the outputs when an item of input data lies on those eigenvectors with the
largest eigenvalues. Thus, if we can create a situation in an artificial neural
network where one set of weights (into a particular output neuron) converges
to the first eigenvector (corresponding to the largest eigenvalue), the next set
of weights converges to the second eigenvector, and so on, we will be in a
position to maximally recreate at the outputs the projections with the largest
variance in the input data.

Note that representing data as coordinates using the basis found by a
PCA means that the data will have greatest variance along the first principal
component, the next greatest variance along the second, and so on. While it
is strictly only true to say that information and variance may be equated in
Gaussian distributions, it is a good rule-of-thumb that a direction with more
variance contains more information than one with less variance. Thus, PCA
provides a means of compressing the data whilst retaining as much information
within the data as possible. It can be shown that if a set of Gaussian data
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has eigenvalues {1, Ao, ..., A, } and if we represent the data in coordinates on
a basis spanned by the first m eigenvectors, the loss of information due to the
compression is

E= i Ai (2.17)

1=m-+1
Artificial neural networks and PCA come together in two ways:

1. There are some networks which use Principal Components as an aid to
learning e.g.[82],

2. Some networks have been explicitly designed to (and in fact, do) calculate
Principal Components.

It is the latter in which we are most interested.

2.4 Weight Decay in Hebbian Learning

As noted in Section 2.1, if there are no constraints placed on the growth of
weights under Hebbian learning, there is a tendency for the weights to grow
without bounds. It is possible to renormalise weights after each learning epoch;
however, this adds an additional operation to the network’s processing.

Another possibility is to allow the weights to grow until each reaches some
limit [119] e.g. have an upper limit of w* and a lower limit of w™ and clip the
weights when they reach either of these limits. Clearly a major disadvantage
of this is that if all weights end up at one or other of these limits! the amount
of information which can be retained in the weights is very limited.

A third possibility is to prune weights which do not seem to have impor-
tance for the network’s operation. However, this is an operation which must
be performed using nonlocal knowledge: typically which weights are of much
smaller magnitude than their peers.

Hence, interest has grown in the use of decay terms embedded in the
learning rule itself (e.g. [126], Chapter 17). Ideally such a rule should ensure
that no single weight should grow too large while keeping the total weights
on connections into a particular output neuron fairly constant. One of the
simplest forms of weight decay was developed as early as 1968 by Grossberg[61]
and was of the form

= NYiTj — Wi (2.18)

It is clear that the weights will be stable (when di;f = 0) at the points
where w;; = nE(yjz;) where E(.) indicates an ensemble average. Using a
similar type of argument to that employed for simple Hebbian learning, we

see that at convergence we must have nCw = w. Thus w would have to be

! This will certainly happen if simple Hebbian learning is used
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an eigenvector of the correlation matrix of the input data with corresponding
eigenvalue 1. We shall be interested in a somewhat more general result.

Grossberg went on to develop more sophisticated learning equations which
use weight decay e.g. for his instar coding, [63] he has used

= n{yi —wijtz; (2.19)
where the decay term is gated by the input term x; and for outstar coding

dwij

dt

=n{z; —wij}y (2.20)

where the decay term is gated by the output term y;. These rules, while still
falling short of the decay in which we will be interested, show that researchers
of this era were beginning to think of both differentially weighted decay terms
and allowing the rate of decay to depend on the statistics of the data presented
to the network.

2.4.1 Principal Components and Weight Decay

Miller and MacKay [132] have provided a definitive study of the results of a
decay term on Hebbian learning. They suggest an initial distinction between
Multiplicative Constraints and Subtractive Constraints. They define Multi-
plicative Constraints as those satisfying

d
7 W) =Cw(t) —v(w)w(t)
where the decay in the weights is governed by the product of a function of
the weights, v(w), and the weights, w(t), themselves. The decay term can
be viewed as a feedback term which limits the rate of growth of each weight
in proportion to the size of the weight itself while the first term defines the
Hebbian learning itself.

Subtractive Constraints are satisfied by equations of the form

d
—w(t) =Cw(t) — e(w)n

dt

where the decay in the weights is governed by the product of a function of the
weights , ¢(w), and a constant vector, n, (which is often {1,1,...,1}T ). They

prove that

e Hebbian rules whose decay is governed by Multiplicative Constraints will,
in cases typical of Hebbian learning, ensure that the weights will converge
to a stable point.

e This stable point is a multiple of the principal eigenvector of the covariance
matrix of the input data.
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e Hebbian rules governed by Subtractive Constraints will tend to lead to
saturation of the weights at their extreme permissible values?.

e Under Subtractive Constraints, there is actually a fixed point within the
permitted hypercube of values, but this is unstable and is only of interest
in anti-Hebbian learning (see below).

e If specific limits (w™ and w™) do not exist, weights under Subtractive
Constraints will tend to increase without bound.

In summary then, Subtractive Constraints offer little that cannot be had
from simple clipping of the weights at preset upper and lower bounds. Mul-
tiplicative Constraints, however, seem to give us not just weights which are
conveniently small, but also weights which are potentially useful since

Yi = E wijxj = W;.X
J

where w; is the vector of weights into neuron y; and x is the vector of inputs.
But
w;.X = |w;||x]| cos

where |d| is the length of d and 6 is the angle between the two vectors.

This is maximised when the angle between the vectors is 0. Thus, if w is
the weight into the first neuron which converges to the first Principal Compo-
nent, the first neuron will maximally transmit information along the direction
of greatest correlation, the second along the next largest, etc. In Section 2.3,
we noted that these directions were those of greatest variance which from Sec-
tion 2.2, we are equating with those of maximal information transfer through
the system.

Given that there are statistical packages which find Principal Components,
we should ask why it is necessary to reinvent the wheel using artificial neural
networks. There are two major advantages to PCA using ANNs:

1. Traditional statistical packages require us to have available, prior to the
calculation, a batch of examples from the distribution being investigated.
While it is possible to run the ANN models with this method (“batch
mode”) ANNs are capable of performing PCA in real-time i.e. as informa-
tion from the environment becomes available we use it for learning in the
network. We are, however, really calculating the Principal Components of
a sample, but since these estimators can be shown to be unbiased and to
have variance which tends to zero as the number of samples increases, we
are justified in equating the sample PCA with the PCA of the distribu-
tion. The adaptive/recursive methodology used in ANNs is particularly
important if storage constraints are important.

2 Such values may be partially determined by the eigenvalues of the covariance
matrix but are not, in general, multiples of the eigenvectors.
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2. Strictly, PCA is only defined for stationary distributions. However, in re-
alistic situations, it is often the case that we are interested in compressing
data from distributions which are a function of time; in this situation,
the sample PCA outlined above is the solution in that it tracks the mov-
ing statistics of the distribution and provides as close to a local PCA as
possible in the circumstances. However, most proofs of PCA ANNs conver-
gences require the learning rate to converge to 0 in time and, in practice,
it is the case that convergence is often more accurate when the learning
rate tends to decrease in time. This would preclude an ANN following a
distribution’s statistics, which is an example of the well-known trade-off
between tracking capability and accuracy of convergence.

We now look at several ANN models which use weight decay with the aim of
capturing Principal Components. We will make no attempt to be exhaustive
since that would in itself require a book; we do, however, attempt to give the
most important examples of current network types and, in particular, four
main models which illustrate the historical development of PCA models in
unsupervised Artificial Neural Networks.

2.5 ANNs and PCA

The importance of the work of Oja cannot be overstated in this context. Thus
we begin with his one-neuron model [137], followed by his subspace model
[138] and his weighted subspace model [142, 143] before introducing Sanger’s
deflationary network [160]. We include no proofs in this section since these
models are well known in the literature.

2.5.1 Oja’s One Neuron Model

Oja [137] proposed a model which extracts the largest principal component
from the input data. He suggested a single-output neuron which sums the

inputs in the usual fashion
m

y= Z W5 T
i=1

His variation on the Hebb rule contains a decay term
Aw; = n(wy — yzwi)

Note that this is a rule defined by Multiplicative Constraints (y* = v(w))
and so will converge to the principal eigenvector of the input covariance ma-
trix. The weight decay term has the simultaneous effect of making > w? tend
towards 1 i.e. the weights are normalised.

However, this rule will find only the first eigenvector (that direction cor-
responding to the largest eigenvalue) of the data. It is not sufficient to simply
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throw clusters of neurons at the data since all will find the same (first) Prin-
cipal Component; in order to find other PCs, there must be some interaction
between the neurons.

2.5.2 Oja’s Subspace Algorithm

Oja’s Subspace Algorithm [138] provided a major step forward. The network
has N output neurons, each of which learns using a Hebb-type rule with
weight decay. Note, however, that it does not guarantee finding the actual
directions of the Principal Components; the weights do however converge to
an orthonormal basis of the Principal Component Space. We will call the
space spanned by this basis the Principal Subspace. The learning rule is

Awgj =1 (-ijq; —Yi Zwkjyk> (2.21)

k

which has been shown to force the weights to converge to a basis of the
Principal Subspace?.

One advantage of this model compared with some other networks (e.g.
[160]) is that it is completely homogeneous i.e. the operations carried out at
each neuron are identical. This is essential if we are to take full advantage of
parallel processing.

The major disadvantage of this algorithm is that it finds only the Principal
Subspace of the eigenvectors, not the actual eigenvectors themselves.

2.5.3 Oja’s Weighted Subspace Algorithm

The final stage is the creation of algorithms which find the actual Principal
Components of the input data. In 1992, Oja et al [142, 143] recognised the
importance of introducing asymmetry into the weight decay process in order
to force weights to converge to the Principal Components. The algorithm is
defined by the equations

n
Yi = E Wij T g
i=1

where a Hebb-type rule with weight decay modifies the weights according to

N
Awij = 1yi <CEJ‘ —0; Zykwkj>

k=1

3 In this case v(w;;) = y7. However, the additional weight decay constraints from
the other outputs y: >, i WkiYk force decay in the directions of other eigen-
vectors. Therefore, the total of the decay parameters only forces weight conver-
gence to the subspace.
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Ensuring that 8, < 6, < 63 < --- allows the neuron whose weight de-
cays proportional to 67 (i.e. whose weight decays least quickly) to learn the
principal values of the correlation in the input data. That is, this neuron will
respond maximally to directions parallel to the principal eigenvector, i.e. to
patterns closest to the main correlations within the data. The neuron whose
weight decays proportional to > cannot compete with the first, but it is in a
better position than all of the others and so can learn the next largest chunk
of the correlation, and so on. Empirically, it has been found that it is essential
that the values of #; do not stray too far from 1: values of 0.9, 1.0 and 1.1
give convergence but 0.1, 0.2 and 0.3 do not.

It can be shown that the weight vectors will converge to the principal
eigenvectors in the order of their eigenvalues. The algorithm clearly satisfies
Miller and Mackay’s definition of Multiplicative Constraints with y(w;) =

0i > 1 YkWijT.

2.5.4 Sanger’s Generalized Hebbian Algorithm

Sanger [160] has developed a different algorithm (which he calls the “General-
ized Hebbian Algorithm”) which also finds the actual Principal Components.
He also introduces asymmetry in the decay term of his learning rule:

(]

Aw;j =1 <%‘yi iy wkjl/k) (2.22)
k=1

Note that the crucial difference between this rule and Oja’s Subspace Algo-

rithm is that the decay term for the weights into the i** neuron is a weighted

sum of the first ¢ neurons’ activations. Sanger’s algorithm can be viewed as a

repeated application of Oja’s One Neuron Algorithm by writing it as

i—1
Aw;; =1 ([%‘yi — Y Y wiiyk] — y?wz‘j> (2.23)
k=1

We see that the central term comprises the residuals after the first ¢ — 1
Principal Components have been found, and therefore the rule is performing
the equivalent of One Neuron learning on subsequent residual spaces. However,
note that the asymmetry which is necessary to ensure convergence to the
actual Principal Components, is bought at the expense of requiring the i*"
neuron to “know” that it is the i*" neuron by subtracting only i terms in its
decay. It is Sanger’s contention that all true PCA rules are based on some
measure of deflation such as shown in this rule. We will discuss deflationary
networks in other contexts later in this book.

2.6 Anti-Hebbian Learning

All the ANNs we have so far met have been feedforward networks in that
activation has been propagated only in one direction. However, many real
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biological networks are characterised by a plethora of recurrent connections.
This has led to increasing interest in networks which, while still strongly
directional, allow activation to be transmitted in more than one direction i.e.
either laterally or in the reverse direction from the usual flow of activation. One
interesting idea is to associate this change in direction of motion of activation
with a minor modification to the usual Hebbian learning rule called anti-
Hebbian learning (a definitive analysis of anti-Hebbian learning is given in
[150]).

If inputs to a neural net are correlated, then each contains information
about the other. In information theoretical terms, there is redundancy in the
inputs (I(z;y) >0).

Anti-Hebbian learning (Fig. 2.2) is designed to decorrelate neurons’ out-
puts. The intuitive idea behind the process is that more information can be
passed through a network when the nodes of the network are all dealing with
different data. The less correlated the neurons’ responses, the less redundancy
is in the data transfer. Thus, the aim is to produce neurons which respond to
different signals. If two neurons respond to the same signal, there is a measure
of correlation between them and this is used to affect their responses to future
similar data. Anti-Hebbian learning is sometimes known as lateral inhibition
as this type of learning is generally used between members of the same layer
and not between members of different layers. The basic model is defined by

Awij = —ny:y;

Feedforward
ights
Outputs

O

Inputs
Anti-Hebb
weights

O

Fig. 2.2. Anti-Hebbian weights. Negative decorrelating weights between neurons
in the same layer are learned using an “anti-Hebbian” learning rule.

Therefore, if initially, y; and y; are highly correlated then the weights
between them will grow to a large negative value and each will tend to turn
the other off.
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It is clear that there is no need for weight decay terms or limits on anti-
Hebbian weights as they are automatically self-limiting, provided decorrela-
tion can be attained:

(E(y;.yj) — 0) = (Aw;; — 0) (2.24)

i.e. weight change stops when the outputs are decorrelated. Success in decor-
relating the outputs results in weights being stabilised.

It has been shown [159] that not only does anti-Hebbian learning force
convergence in the particular case of a deflationary algorithm but that the
lateral connections do indeed vanish.

The method is valid for all deflationary networks.

Several authors have developed Principal Component models using a mix-
ture of one of the above PCA methods (often Oja’s One Neuron Rule) and
Anti-Hebbian weights between the output neurons e.g. [17, 18, 149, 158, 182].

We first note a similarity between the aims of PCA and anti-Hebbian
learning: the aim of anti-Hebbian learning is to decorrelate neurons’ responses.
If a set of neurons performs a Principal Component Analysis, their weights
form an orthogonal basis of the space of principal eigenvectors. Thus, both
methods perform a decorrelation of the neurons’ responses.

Further, in information-theoretic terms, decorrelation ensures that the
maximal amount of information possible for a particular number of output
neurons is transferred through the system. We will consider only noise-free
information-transfer since if there is some noise in the system, some duplica-
tion of information may be beneficial to optimal information transfer [118].

2.7 Independent Component Analysis

There is however a more recent strand of research using artificial neural net-
works on the problem of separating out a single signal from a mixture of
signals. This second strand deals mainly with continuous signals and has its
roots in the world of signal processing. The problem is generally known as the
“blind separation of sources” or sometimes “the cocktail party problem”. The
latter name is a reference to the human ability to extract a single voice from
a mixture of voices: there is no simple algorithmic solution to this problem
yet people have no difficulty following a conversation even when the conver-
sation is embedded in multiple other conversations. The former name is in
more general use: we wish to separate out a single source signal from a mix-
ture of sources and/or noise. The problem is known as “blind” since we make
(almost) no assumptions about the signals. A good reference is [85]. We have
included some examples of methods for performing ICA in Appendix C.

We will consider only linear mixtures of signals.

The problem may be set up as follows: let there be N independent non-
Gaussian signals (s1,$2, -+, S$n) which are mixed using a (square) mixing
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matrix A to get N samples, x;, each of which is an unknown mixture of the
independent signals,
x = As (2.25)

There may in addition be noise added to the mixing process, but we shall
ignore that for the time being. Then the aim is to use an artificial neural
network to retrieve the original input signals when the only information pre-
sented to the network is the unknown mixture of the signals. The weights in
the network will be W such that

y=Wx (2.26)

where the elements of y are the elements of the original signal in some order,
i.e. we are not insisting that the first output of our neural network is equal to
the first signal, the second equal to the second signal, and so on. We merely
insist that neuron ¢’s output is one of the N signals uncontaminated by any
of the other signals. Neural and quasineural methods of performing this task
are known as Independent Component Analysis networks (ICA) and are often
thought of as extensions of PCA networks.

However, we did make one assumption when we defined the problem, which
was that the signals should be non-Gaussian. The reason for this is that if we
add together two Gaussian signals we simply get a third Gaussian signal.
Therefore if two or more of our signals (or noise sources) are Gaussian dis-
tributed there is no way to disentangle them. This is less an assumption than
an incontrovertible fact which cannot be side-stepped.

A final limit to our capabilities is with respect to scale. If we multiply one
column of the mixing matrix by a and divide the amplitude of the correspond-
ing signal by a, we get the same vector, x. Thus, since the problem is truly
blind (we are only given x), we always have a scale ambiguity with which to
contend.

2.7.1 A Restatement of the Problem

Let us take another look at the problem. In Fig. 2.3, we show two-dimensional
data points, each of which were drawn independently from the uniform distri-
bution within the parallelogram. The first Principal Component is the direc-
tion with greatest spread, the long axis of the parallelogram. The second PC
is of necessity perpendicular to that; we have no choice with two dimensional
data; the second PC must be perpendicular to the first and so in a plane (with
2D data) we must draw the second PC as shown. Now we are in a situation
where knowledge of the value of the first Principal Component gives some
information about the second: if the projection on the first principal compo-
nent is near the origin, the second principal component can take a wide range
of values, whereas if the first principal component is far from the origin, the
second projection is tightly constrained.
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Second Principal Component
Second Independent §\
Component Direction .

Direction

First Independent Component

Direction

First Principal
Component Direction

Fig. 2.3. The data were points drawn independently from the uniform paral-
lelogram distribution shown. The first Principal Component is the direction with
greatest spread, the long axis of the parallelogram. The second is of necessity per-
pendicular to that. The independent component directions, however, are parallel to
the sides of the parallelogram.

The independent component directions, however, are parallel to the sides
of the parallelogram. Knowing the first Independent Component of a data
point gives us no information about the second; they truly are independent.
Each, however, finds the underlying causes of the distribution in that each
finds the independent directions of the uniform two-dimensional distribution.

There are two major methods used to solve this problem: one uses infor-
mation theory while the other uses the higher-order moments of the data. We
have already used the first two moments of a set of data:

1. The first moment is the mean. The mean can be calculated from
uw=E(X)= /p(gc)xdm (2.27)
2. The second moment is the variance. The variance can be calculated from
o = B(X ~ ) = [ pla)(e - o (2.28)

For a Gaussian distribution, that is all there is to know about the distribu-
tion. For other distributions, you may well be interested in higher moments:

e The third moment measures skewness (see Figure 2.4) in a distribution:

B((X — 1)) = / p()(z — p)de (2.20)

If a distribution is perfectly symmetrical, this will evaluate to 0.

e The fourth moment measures the kurtosis of a distribution. This is a mea-
sure of the proportion of the distribution which is in the tails of the dis-
tribution compared with the proportion in the centre of the distribution:
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B(X =) =3 = [ plo)e - 'da =3 (2.30)
The term “~ 3”7 is added to ensure that a Gaussian distribution has 0
kurtosis.
A Skew A Kurtotic X
Distribution, /' \

Distribution”

Fig. 2.4. Deviations from Gaussian distributions: the dotted line on the left rep-
resents a negatively skewed distribution; that on the right represents a positively
kurtotic distribution; in each case, the solid line represents a Gaussian distribution

It can be shown that if two distributions are independent, then their higher
moments satisfy the same constraint that we saw with the second-order statis-
tics when we decorrelate the distributions:

E((XY)P) = B(XP).E(Y?),Vp (2.31)

This fact is used in some algorithms for ICA.

2.7.2 A Neural Model for ICA

Just as Oja was pivotal in the creation of neural models for PCA, so Jutten
and Herault [97] have been instrumental in initiating interest in neural models
for ICA. Jutten and Herault proposed a neural network architecture (Fig. 2.5)
in which feedforward of activation and the lateral inhibition are defined by

X e
1 Wia
Outputs
Inputs

Wi

y")

X Z

2 N\

Fig. 2.5. Jutten and Herault’s model.

n
Yi = Ti — E WijYj
j=1
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The learning rules are

Awij = —nf(yi)g(y;), for i # j (2.32)

which is clearly an extension of anti-Hebbian learning.

This model and a few of the most important other ICA models are dis-
cussed in Appendix C. We specifically mention Jutten and Herault’s model
since it has been so influential and also since it incorporates negative feedback,
the subject of this book.

2.8 Conclusion

In this chapter, we have set the scene for the remainder of the book. We have
discussed Hebbian learning and Principal Component Analysis and the con-
junction of these two will form one of the themes of the early part of this
book. We will see that the negative feedback neural network can be used with
simple Hebbian learning to perform PCA. We have also discussed Informa-
tion Theory and Independent Component Analysis. In Chapters 6 and 8, in
particular, we will be interested in creating artificial neural networks (all of
which use negative feedback) which approximate the search for independence.

In discussing these topics, we have, of necessity, been brief. While favorite
textbooks are a subjective opinion, it is the author’s belief that the following
books provide good references to these topics:

For Principal Component Analysis, see [93].
For Information Theory, see [31].

For Independent Component Analysis, see [85].
For Artificial Neural Networks, see [71].



3

The Negative Feedback Network

3.1 Introduction

In this chapter, we will develop and investigate the negative feedback network.
We will, in fact, develop an extremely simple and effective Principal Compo-
nent network which needs no weight decay in its learning rule: because of the
negative feedback of activation, we can use simple Hebbian learning which will
not cause instability in the weight growth process and which moreover causes
the weights to converge to the Principal Components of the input data. We
will show that the network can be used to extract both principal and minor
components.

We will note that the basic network is biologically plausible and we will
investigate several modifications to the basic network while still attempting to
remain within the space of models which seem possible for real neurons. Other
negative feedback artificial neural networks are discussed in Appendix A; one
of these is the original network of Plumbley [153] which provided the first
insight into the strength of the combination of Hebbian learning and negative
feedback networks.

3.1.1 Equivalence to Oja’s Subspace Algorithm

Many contemporary artificial neural network models are unidirectional: an
input pattern is presented to the network; the activation is propagated “for-
ward” through the network until all neurons have had an opportunity to
respond to the input pattern; finally, the weights are updated according to a
learning rule. It is well known, however, that in real biological systems, activa-
tion is passed forward, backward and laterally (between neurons in the same
layer). We will, in this chapter, consider a simple network composed of one
layer of neurons to which the input pattern will be presented — the input layer
— and one layer of neurons which we will describe as the output layer. There is
therefore only a single layer of weights between input and output values but
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crucially, before the weights are updated we allow activation to pass forward
and backward within the neural network.

We have, over the last few years, investigated a negative feedback imple-
mentation of PCA defined by (3.1) — (3.3). Let us have an N-dimensional
input vector, x, and an M-dimensional output vector, y, with W;; being the
weight linking the j** input to the i*” output. The learning rate, 7, is a small
value which will be annealed to zero over the course of training the network.
The activation passing from input to output through the weights is described
by (3.1). The activation is then fed back though the weights from the outputs
and the residual, e, calculated for each input dimension. Finally, the weights
are updated using simple Hebbian learning.

N
Yi = Z’wijl‘j,Vi (31)
j=1
M
€; =XTj; — Zw”yz (32)
=1
Awij =M€Y (33)

There is no explicit weight decay, normalisation or clipping of weights in
the model. The subtraction of the weighted sum of the output values acts
like anti-Hebbian learning. We will consider the network as a transformation
from inputs x to outputs y; substituting (3.2) into (3.3), we see that the
resultant network is equivalent to Oja’s Subspace Algorithm (Chapter 2) and
thus causes convergence to the principal component filters of the data. We
have

M

Aw;j =nejy; =n (xj - Zwkjyk> Yi (3.4)
k=1

This last formulation of the learning rule (3.4) is exactly the learning rule

for the Subspace Algorithm [138], (2.21). A more formal analysis is given in

Section 3.1.5

In an earlier formulation, (3.2) was discussed as

M
i=1
while (3.3) was
Aw;; = nx;(t+ 1)y, (3.6)

Thus we envisage activation passing forward from inputs (z-values) to outputs
(y-values) and subsequent (negative) feedback to the input neurons. This is
a more usual convention in which to discuss Hebbian learning but (3.1)-(3.3)
is also very convenient to emphasise the properties of the residual. We will
mainly use the convention (3.1) to (3.3) in this book but will allude to the
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convention (3.5) and (3.6) when we wish to emphasise the Hebbian nature of
the learning.

In order to compare this network with Oja’s Subspace Algorithm, simula-
tions were carried out on similar data'to that which Oja et al [141] used to
compare the Subspace and Weighted Subspace Algorithms. The results shown
in Table 3.1 are from a network with five inputs each of zero mean random
Gaussians, where x1’s variance is largest, xo’s variance is next largest, etc..

Therefore, the largest eigenvalue of the input data’s covariance matrix
comes from the first input, x1, the second largest comes from x5 and so on.
The advantage of using such data is that it is easy to identify the principal
eigenvectors (and hence the principal subspace). There are three outputs in
the network and it can be seen that the three-dimensional subspace corre-
sponding to the first three principal components has been identified by the
weights. There is very little of each vector outside the principal subspace i.e.
in directions 4 and 5. The left matrix represents the results from the negative
feedback network, the right shows Oja’s results.

Table 3.1. Results from the simulated network and the reported results from Oja
et al. The left matrix represents the results from the negative feedback network, the
right from Oja’s Subspace Algorithm. Note that the weights are very small outside
the principal subspace and that the weights form an orthonormal basis of this space.
Weights above 0.1 are shown in bold font.

W W

0.249 0.789 0.561 || 0.207 —0.830 0.517
0.967 —0.234 —0.100||—0.122 0.503 0.856
—0.052 —0.568 0.821 || 0.970 0.241 —0.003
0.001 0.002 0.016 || -0.001 0.001 0.001
—0.001 0.009 0.005 || 0.000 0.000 —0.001
wTw wTw

1.001 0.000 0.000 || 1.000 0.000 0.000
0.000 1.000 0.000 || 0.000 1.000 0.000
0.000  0.000 1.000 || 0.000 0.000 1.000

The lower (WTW) section shows that the weights form an orthonormal
basis of the space and the upper (W) section shows that this space is almost
entirely defined by the first three eigenvectors. The negative feedback network
also maintains the advantages of homogeneity and locality of computation
(indeed, it is difficult to imagine a computationally simpler model). Note that
while we report, in general, on simulations run on this very special type of
input data, all the networks developed in this book perform excellently on all
types of data.

1T did not have the value of the variances Oja used and therefore used variances
of 5,4, 3,2 and 1.
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3.1.2 Algorithm for PCA

While the above networks may be adequate for biological information pro-
cessors, a more precise engineering requirement is that of finding the actual
Principal Components.

Recall that Oja et al [141] amended the Subspace Algorithm by proposing
the following modification to the learning rule

N
Awij = 1y (xj -0, ykwkj>

k=1

Ensuring that 6; < 03 < 03 < --- allows the neuron whose weight decays
proportional to 6; (i.e. whose weight decays least quickly) to capture the
principal component of the variance. The second captures the next largest
component, and so on. The crucial point is the introduction of asymmetry
into the learning algorithm.

This algorithm is local and homogeneous in that each neuron knows only
its own value of 6;. Analysis of the negative feedback learning rule shows that,
to simply insert a parameter, §;, would require computation at the level of the
synapse. While this may be biologically feasible and algorithmically simple to
implement, a different algorithm is developed here which uses the fact that
the proposed network already incorporates subtraction of values.

We propose a very simple algorithm in this section, partly to keep our
attention on the negative feedback network in all its simplicity and partly to
introduce the concept of deflation in finding subsequent filters. The algorithm
is: the system is created with one output; this output finds the first principal
component using the above learning rule. It then loses its plasticity i.e. its
weights will not subsequently change. We then create a second output neuron.
Since the first neuron has found and subtracted the first principal component,
the second neuron will find the largest remaining principal component. It,
too, now loses its plasticity. Then the third output neuron is created, etc..
Therefore, we have introduced our asymmetry in the time dimension; note that
whereas to do so with e.g. Oja’s single neuron network, would have required
the introduction of an extra mechanism — that of subtracting the projection
of the data onto the subspace already found — we do not require this here as
the network automatically finds and subtracts this subspace.

To compare the results with Oja’s Weighted Subspace Algorithm, we re-
peated the above experiment with the algorithm. Oja’s simulation was carried
out for 40 000 iterations. The simulation allowed each output to learn in 13
000 iterations. The first output learned during the first 13 000 iterations, the
second learned during the next 13 000 and the third learned during the last
13 000 iterations. The results are shown in Table 3.2; the left set is from the
negative feedback network, the right from Oja et al [141]. Clearly both meth-
ods find the principal eigenvectors. We note that the negative feedback results
have the advantage of equally weighting each eigenvector, which all therefore
have length one.
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Table 3.2. Results from the negative feedback network (left) and from Oja (right).
Both methods find the principal eigenvectors of the input data covariance matrix.
The negative feedback algorithm has the advantage that each vector is equally
weighted.

W W

1.000 — 0.036 —0.008][ 1.054 — 0.002 — 0.002
0.036 0.999 —0.018|| 0.002 1.000 0.001
0.010 0.018 1.000| 0.003 —0.002 0.954
— 0.002 — 0.002 0.016 ||— 0.001 0.001 — 0.002
0.010 0.003 0.010 || 0.001 —0.001 0.000
wTw wTw

1.001 0.000 0.000 || 1.111 0.000 0.000
0.000 1.000 0.000 || 0.000 1.000 0.000
0.000 0.000 1.000| 0.000 0.000 0.909

The algorithm retains the advantages of homogeneity and locality of com-
putation. A more analytical proof of the convergence of the algorithm is de-
veloped in Section 3.1.5.

3.1.3 Plasticity and Continuity

In this section, we investigate empirically some of the emergent properties of
the negative feedback network. We view these properties as emergent prop-
erties as we do not believe that they could be expected a priori to exist, i.e.
without a detailed investigation of the network.

The results reported in the last section were based on a model which
suggested that only a new output could learn. The underlying assumptions
are:

e an output neuron can only learn during a special period of its existence;
e only one output neuron can learn at any instant in time.

These are clearly not good properties for biological learners to have; we do not
wish to have new learning remove the hard-won gains already achieved from
previous learning; but equally, we do not wish to have to specify in advance
how much time each neuron will have to learn. Further, in setting a specific
time period during which learning will take place, we are providing the system
with a form of meta information.

To test the effects of allowing neurons to continue to learn even after other
new neurons were created, two more simulations were carried out. In the first,
the neurons lost their plasticity gradually and there was an overlap in the
times when two or more neurons were learning; in the second, neurons kept
their plasticity throughout.

Thus, in this last model, the first neuron learns from its creation until the
end of the simulation; the second neuron learns from its creation at iteration
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Table 3.3. Results from the negative feedback network in which each output neuron
stopped learning as a new one was created (left) and from the network in which each
output neuron continued to learn (right).

Disjoint Learner Model ||Contin. Learner Model
W W

1.000 —-0.036 —0.008| 1.000 —0.015 —0.014
0.036 0.999 —0.018|| 0.014 0.999 0.045
0.010 0.018 1.000 ||—0.015 —0.046 0.999
—0.002 —0.002 0.016 ||—0.015 0.006 —0.021
0.010  0.003 0.010 || 0.003 —0.007 0.010
wTw wTw

1.001 0.000 0.000 || 1.000 0.000 0.000
0.000 1.000 0.000 || 0.000 1.000 0.000
0.000 0.000 1.000( 0.000 0.000 1.000

13 000 until the end of the simulation; and the last neuron learns from iteration
26 000 till the end of simulation.

Only the results of the last model are reported, as the conclusions are iden-
tical: we do not have to postulate that neuron weights lose their plasticity.
The left matrix of Table 3.3 repeats the results from the negative feedback
model described in the previous section; the results from neurons which con-
tinue learning are shown on the right. The table shows that the neurons can
retain their plasticity without there being a major loss of precision in finding
the actual principal components.

We suggest that this model then represents a more plausible model of the
form of learning which takes place in biological learners and further, that in
most cases of unsupervised learning, the continuing learning model is pre-
ferred.

3.1.4 Speed of Learning and Information Content

One of the most interesting aspects of the proposed model is its reaction to
statistical data which have inherently differing amounts of information. One
might hope that a model would react to data which has more information
more quickly than it does to data with less. This, in fact, happens.

We showed in Chapter 2 that the entropy [168] of a Gaussian random
variable X with variance o2 is given by

h(X) = %{1 + log(270?)} (3.7)

which is a mathematical formulation of the fact that there is more information
in random variables with large variance than in random variables with small
variance. It would seem plausible to argue that an organism which can quickly
identify data-sources with large information content would have an advantage
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over an organism which does not have this ability. This is, in fact, an emergent
property of the model.

Therefore, in the current set of experiments, there is more information in
x1 than in 23 and so on. That is h(x1) > h(za) > h(zs) > h(za) > h(xs).
We find that, in the above experiment, x; is learned quickest, x5 next most
quickly and so on. Additional experiments to ensure that this rate was not
merely a function of the order of the neuron’s learning confirm that data with
larger variances is learned more quickly. That this is not a necessary property
of PCA networks is shown in ([41], Figure 2.7) where the network takes longest
to converge to the first eigenvector.

3.1.5 Analysis of Convergence

This section provides an analytical investigation of the algorithm which causes
the negative feedback network’s weights to converge to the principal compo-
nents of the input data’s covariance matrix.

The proof of the algorithm follows closely the methods developed by Oja
and Karhunen (e.g. [139]) over the last decade; the proof is in three parts each
of which refers to the negative feedback learning rules. In the first section we
show that the weights of a single output will converge to an eigenvector of the
co-variance matrix; in the second, we show that these weights in fact converge
to the principal eigenvector; in the third, we show that the algorithm ensures
that the i*" output’s weights converge to the i*" eigenvector.

Theorem 3.1 The weights, W, of a single output with the above learning
rules converges to an eigenvector of the input data covariance matrix.

Let w; be the weight of the connection between x; and y.

If the weights of a single output converges to a limit, the expected weight
change over a sufficiently long time will tend to zero. Given some assump-
tions?, particularly regarding the learning rate n and the nature of the distri-
bution of x, and using E(x) to indicate the expected value of x with respect
to the distribution from which it is drawn,

E(Aw;) =0 <= E(ne;y) =0
<~ E(eiy) =0
= E(xi —wiy)y| =0

<x¢ — w; ZW&%) Zwm] =0
k 1
— F (Z WL — W; Zwkxkxlwl> =0 (3.8)

l kl

= ZwlCli — w; ZwkCMwl =0 (39)
l kl

<— F

2 This will be discussed later.
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where C}; is that element of the covariance matrix showing the covariance
between the ‘" and j** elements of the input data x. If the weights of the
network are to converge, then the above must be true for all values of w;.
Therefore the above may be written in matrix notation as

E(Aw) =0+ Cw — (W Cw)w =0
= Cw = (W' Cw)w

Now it is a standard result that the covariance matrix C'is positive-semidefinite;
and hence
wiCw=\A>0

where A is a non-negative real number. Hence,
Cw = \w
Therefore, w converges to an eigenvector of C.

Theorem 3.2 The weights, W, of a single output with the above learning rules
converge to the eigenvector with the largest eigenvalue of the input data co-
variance matriz.

Proof

The proof is by contradiction. Assume that w converges to an eigenvector
c* of C' with corresponding eigenvalue A\*. Then, we will show that if there
exists an eigenvector ¢! of C' with corresponding eigenvalue A' > \* a small
perturbation in the direction of ¢! will cause w to be unstable i.e. convergence
will not take place.
Let w have converged to a direction close to ¢* but to have a component € in
the direction of ¢t. Then,

E(Aw) = Cw — (W' Cw)w
=C(c"+¢€) — ((C*T +eNC(c* +€)(c* +e)
= Cc* + Ce— (¢ Cc)e* — (¢ Cc)e — (¢ Ce)c* — (¢! Cc*)c* + O(e?)
= A"+ Ale— A c* — Ae— c*TClec*) — Ce) e e + O(e?)
= Me—Me— (Melc)e* + 0(e?)
= Me—MNe4+0(e?)
where we have used the facts that CT = C and that its eigenvectors are
mutually orthogonal.
So, ignoring terms of O(e?), if A' > A\*, a perturbation in the direction of

c! will always be unstable. Therefore, c* is the principal eigenvector corre-
sponding to the largest eigenvalue of the covariance matrix.

Theorem 3.3 If output i is installed in the network at time t;, where t1 <
ty < tz3 < ---, and if the weights into the first i — 1 outputs have already



3.1 Introduction 39

converged to the first i — 1 eigenvectors, the weights of the it" output will
converge approzimately to the i" eigenvector of the input data’s covariance
matriz, where such eigenvectors are ordered such that the eigenvalue of vector
1 is the largest, that of vector 2 is next largest and so on.

Proof

Let outputs 1,...,M — 1 be already connected to the network. We assume
that their weights have already converged to the subspace of the first M-1
eigenvectors, and show that the weights of output M (where M > 1) will
converge approximately® to the M*" eigenvector of the covariance matrix C.

In this proof, let w, be the weight vector associated with the p'" output.
Then,

E(Aw)/n = E(eym)
= E[(x—Wy)yum]

r M
=F (X - Zykwk> yM]
L k=1
r M—1
=E (X - pewr — yMWM> QM]
L k=1
r M—1
=F (X — Z (ng)wk — yMWM> yM]
L k=1

= F [(xa7_1 — ymuWar) yu]

where x3;_, is the projection of x onto the subspace of possible values or-

thogonal to the first M — 1 eigenvectors.

Consider the application of this equivalence to the i** component of wy,
i.e. wys, the weight on the connection between e; and yp;. Then, denoting
the i'" component of x3;, , by p;,

E(Awy) =0 <= E[(p; — yprwari)ym] =0

(pi — Wi Z wMMk) Z lexl] =0
k 1

Zlexzpi — Wi Z kaCkaszl] = 0(3.10)
! kl

— F

~— F

We note the similarity between this equation and equation (3.8) in Theorem
3.1. For values of z; within the subspace x3;_;, the first term of equation (3.10)
acts exactly like p;p; and so the remainder of Theorems 1 and 2 hold for values

3 Approximately, since the proof really requires an infinite convergence time for
each weight vector. For a stationary source, x, the finite time intervals used are
close to perfect, but we can only claim “approximately” here.
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of x restricted to this subspace. For values of x outside this subspace, the first
term is 0 (z; is in the subspace whose basis is the first M — 1 eigenvectors, p;
is in the orthogonal projection of this space) and the second term causes the
weights to decrease to zero (recall that w/'C'w = X is a scalar).

Therefore we can apply Theorems 1 and 2 to this subspace to show that the
M output’s weights will converge to the eigenvector corresponding to the
largest eigenvalue of this subspace. This eigenvector has eigenvalue smaller
than those of the M — 1 eigenvectors already allocated to weight vectors
w1, -, War—1, but is larger than any other. Hence this eigenvalue is the M*"
largest eigenvalue of the covariance matrix of the original input vector, x.

Therefore, if the result is true for M — 1 outputs, it is true for M outputs.
We know (Theorem 1) that it is true for one output. Therefore, the algorithm
will force the weights to converge as required.

Assumptions in the Proofs of Convergence

The proof given above is based on a proof developed by Oja and Karhunen
[139] and by Oja et al. [141, 142] for their feedforward networks. The major
difficulty with the proof is the step from the stochastic equations (3.8) which
are used in an empirical algorithm to the ordinary differential equations (3.9)
which are solvable as seen above. Denoting by C} the covariance matrix of
the input data after k presentations of input vectors from the distribution,
the proof given in [139] makes four critical assumptions:

1. Each CY} is almost surely bounded and symmetric and the C are mutually
statistically independent with E(C}) = C for all k.

2. The eigenvalues of C have unit multiplicity.

C M 2 072771% < Oovznk = 00.

4. Each Cj has a probability density which is bounded away from zero uni-
formly in k in some neighbourhood of C' in R™".

w

The first constraint is easiest to satisfy since by taking %k large enough we
can sample the distribution sufficiently often so that the condition is almost
surely satisfied.

The second assumption cannot be guaranteed for every distribution, how-
ever not satisfying it will only result in (a pair of) neurons converging to the
subspace spanned by the eigenvectors with equal eigenvalues.

The third assumption is the difficult one to satisfy in any particular
stochastic realisation of the algorithm: we are constraining the learning rate
in a way that will not be practicable to sustain in any actual simulation; not
only must the learning rate converge to zero (which is easy to manage), but it
must do so sufficiently slowly that > J/TRE infinite. This leads to a long simu-
lation! In practice, it has been found that slow annealing of the learning rate
will, under a wide range of annealing schedules, cause the weights to converge
to the principal components.
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Another way to regard the problem is to say that we have not proved
convergence; we have only proved that if the weights converge, they do so in a
specific direction. We know also that if the weights reach this direction, they
will be stable there but we have not proved that, in any single simulation,
they must reach this direction. The proof that they would so converge with
probability one uses the fact that each point in the neighbourhood of the
attractor is sampled infinitely often.

3.2 The VW Model

The models discussed until now have one major drawback when considered as
a model of biological systems: the weights of the connections from the output
neuron, y, to the input neuron, x, are assumed to be identical to those from
the input neuron, x, to the output neuron, y. This is biologically implausible:
information flow in the neuron is unidirectional. This leads us to propose a
model where these weights are initially different:

y=Wx (3.11)
e=x-VTy (3.12)
AW = a,ey’ (3.13)
AV = a,ey” (3.14)

where the initial values of both V and W are small random numbers not
correlated in any way with each other. Note that both learning rules for W
and V are identical up to the learning rate and use only simple Hebbian
learning.

The convention we will use here is that w;; is the weight of the connection
from x; to y;; similarly, v;; is the weight of the connection from y; to z;.
Unless specifically stated otherwise, we shall be interested in the vectors to
and from the output neurons. Therefore we take the vectors v; to be the
weight vector from the i*" output neuron, i.e. to be the vector of form {v}
for all k; similarly we take the vector w; to be the vector of weights into the
ith output neuron i.e. to be the vector {w;;} for all k; we note here that v;
corresponds to a column of the matrix V' of weights while w; is a row of W.
Both are vectors of length n where n is the number of input neurons.

It is shown in Section 3.2.2, that, for a single output network, v and w
converge to an eigenvector and that, at equilibrium, the weights v and w
converge to the eigenvector, ¢y with the largest eigenvalue such that

1
V=—2-W 3.15
We then show that it is possible to apply the further analysis developed for
the WWW network and hence show that the i*” output neuron converges to the
it" eigenvector of the covariance matrix.
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Table 3.4. Results from the negative feedback network (left) with symmetric
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weights, W and for the V' and W vectors from the VW model (see text).

WW  model

VW  Model

W

w

v

1.000 —0.036 —0.008
0.036 0.999 —0.018
0.010 0.018 1.000
—0.002 —0.002 0.016
0.010 0.003 0.010

0.985 —0.041 —0.003
—0.019 1.033 0.031
0.022 —0.032 1.028
—0.024 —0.041 0.038
0.098 —0.007 —0.011

1.013 —0.017 —0.024
—0.027 0.965 0.032
0.020 —0.017 0.969
—0.007 —0.034 0.037
0.010 0.000 0.002

Experimental results, shown in Table 3.4 confirm this. It can be seen that
both v and w converge to the same eigenvector, although the results are
slightly less accurate than in the previous algorithm. However, given the sim-
plicity of this biologically inspired model, the results are extremely clear: any
entity which used such a method would be able to extract the greatest amount
of information from its environment with a minimal number of output neurons
using a very simple learning rule.

3.2.1 Properties of the VW Network

The motivation for the introduction of the VW model is that it removes a
constraint from the network builder: in the WW model, the weights into and
out of each neuron must be the same and so must be known in a meta-sense
i.e. outwith the learning space. One feature of symmetry still remaining in the
network is the equivalence of the learning rates in the V' and W weights.

Experimental results show that, when v and w learn with different rates,
the angle between v and w converges as quickly as before but the weight, v
or w, with the larger learning rate acquires a larger length than the other.
Indeed the result of the last theorem still applies.

While most of the emergent properties of the symmetric (WW') network
still are found with the VW network, there is one property which this network
does not have: the neurons cannot retain their plasticity when new neurons
are created.

There always remains a slight angle between v and w; although this can
be made arbitrarily small, it is sufficient to destabilise the output neurons’
weights. It is not possible for the weights v and w to be both exactly orthog-
onal to any new neuron’s weights; therefore the new neuron will destabilise
the weights of existing neurons. The interaction between v and w will further
move the weights away from the eigenvector and so the weights will be rotated
in the principal subspace. This is also an empirical finding.

Therefore, for VW neurons, each neuron’s weights must be allowed to
converge to the eigenvector but must then lose their plasticity. This is algo-
rithmically easy to implement, but the need to take this action has led to a
search for other algorithms.
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3.2.2 Theoretical Discussion

Lemma 1

If the weights, w, of a single output neuron with the above learning rules con-
verge to an eigenvector of the input data covariance matriz, then the weights
w and the weights v converge to the same eigenvector.

Proof

Let w; be the weight of the connections from x; to y and and v; be that
from y to x;.

If the weights of a single output neuron converge to a limit, the expected
weight change over a sufficiently long time will tend to zero. Given the usual
approximations, particularly regarding the learning rate 1, and using FE(z) to
indicate the average value of x over the time period,

E(Aw;) =0 <= E(nz;y) =0
< E(z;y) =0
= E((zi —viy)y) =0

<(£¢ — V; Zwk:ck> Zwm];| =0
k l

<— F

~— F E WITIT; — Vi E wiprpriw;| =0
l k,l

< Zwl(]“ —V; Zkaklwl =0
l

k,l

where Cj; is that element of the covariance matrix of the input data, x,
showing the covariance between the " and j** elements. We note that the
same criterion may be deduced from F(Awv;) = 0. If the weights of the output
neurons are to converge, then the above must be true for all values of w;.
Therefore it may be written in matrix notation as

E(Aw) =0 < Cw— (W Cw)v=0
— Cw=(w Cw)v

Now it is a standard result that the covariance matrix C' is positive-semidefinite;
and hence
wliCw=~>0 (3.16)

where v is a non-negative real number. Hence,
Cw=~v (3.17)

Therefore, if w converges to an eigenvector of C' (see below), then Cw = Aw
for some real number, A\, and so v = aw, where « is a scalar; that is, v and w
converge to the same eigenvector. Therefore, it is possible to apply the further
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analysis developed for the WW network and hence show that the i*" output
neuron converges to the i*" eigenvector of the covariance matrix.

However there remains the possibility that the weight w will not converge
to an eigenvector.

Theorem 3.4 If the weights, w, of a single output neuron with the above
learning rules converge, then the weights w and the weights v converge to the
same eigenvector of the input data’s covariance matriz.

From the lemma, we know that the weights converge as stated if they converge
to an eigenvector. Therefore, we must prove that if w converges, it does so to
an eigenvector of C. We use a contradiction argument.

Assume that there is a solution of

Cw=n1v (3.18)

where w is not an eigenvector nor the degenerate solution, w = 0.
Let the eigenvectors of C be ¢y, ¢, ...,c,. Then

n
W = E wW;C;
i=1

Since w # 0, there exists a direction cp, such that wy # 0. Since w is not
an eigenvector, there exists one other direction c, with a nonzero component,
which we denote as w,.

Then

W = W,Cq + WpCh + Z wW;C;
i#a,b
where 1 < a,b <n,a # b, and

V = V4Cq + UpCp + E V;Cq
i#a,b

and from Equation (3.18),
Apwp = YUp

AaWq = YVa

Consider a disturbance of magnitude ¢ > 0 in the direction of ¢, i.e. a
disturbance of €,. Then if w is a stable point of convergence of the weights,
the expected change in the weights over time is zero. Therefore,

E(Aw) =0

— Cw— (W Cw)v=0

— C | wacq + wpcp + €4 + Z wiC; | —7v | vaCq + VpCh + Z vic; | =0
i#a,b i#a,b
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<= AaWaCq + NpWpCp + Ag€a + Z AiWiCi — 7 VaCq
i#a,b
= UsCp — ¥ Z vic; =0
i#a,b

where 7' = (w +¢,)7C(w 4 ¢€,) > 0 since C is a positive semidefinite matrix.
Now, considering the components of the transformation in the direction of
Cyp,
)\bwb — Y Vp = 0
Then,  ~vp — Vlvb =0
Therefore, v = fy' since vy # 0. Now, considering the components of the
transformation in the direction of ¢,

AaWeq + Ag€ — ’y/va =0

YVq — YVq + Ag€ =0
A€=0

which is a contradiction. Hence there does not exist a nonzero, noneigenvector
solution to equation (3.18).

Theorem 3.5 At equilibrium, the weights v and w converge to the same

etgenvector, ¢, with
1

I

(3.19)

Proof
At equilibrium,
Cw = (W' Cw)v =v

and, by Theorem 4, w is an eigenvector of C, c,. Therefore,
Cw = A\ W

where A, is the eigenvalue corresponding to eigenvector c,.

Therefore, AgW = YV
Aa Aa
Therefore, V=—Ww=— w
0 wl'Cw

Now, wT C'w is a scalar; hence,
wlCw = |[w' Cw| = |w||Cw| = |w||[AawW| = Ay |W|?
Therefore,

1

V:Ww
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Note: The theorems in this section imply that the further analysis of this
negative feedback network is identical to that performed previously for the
WW network. In other words, a negative feedback network with asymmetric
weights, w; and v;, will calculate the principal components if the output
neurons are created in the network as in the previous section.

3.3 Using Distance Differences

Another possible model is suggested by the innate asymmetry in real biological
neural networks in terms of the distances between neurons. This will manifest
itself as different times to respond to a signal depending on the distance which
the signal must travel (assuming that there is some uniformity in the speed
of information transfer).

This differential is used in a new model where different output neurons take
different lengths of times to respond to the input signal x. Therefore while
the activation from the input neurons is transmitted to all output neurons at
the same time, each output neuron’s response takes a different length of time
to feedback to the input neurons. Thus, the negative feedback is felt and used
in a phased manner, and learning takes place immediately when the returned
signal is received. Therefore, we embed the learning process in the feedback
loop, so that we now postulate a learning and activation-transmission process
which takes place in the order in which the following equations are given:

Initial value of e(0) = x (3.20)
y=Wx (3.21)

For each output in turn e(i) = e(i — 1) — v;y; (3.22)
Aw; = nye’ (i) (3.23)

Av; = nye’ (i) (3.24)

Other than the first two steps,(the acceptance of the initial activation x and its
forward transmission to the output neurons), the process [defined by (3.22),
(3.23) and (3.24)] is repeated for each output neuron in turn. This corre-
sponds to the feedback from the output neurons being received at different
times (perhaps depending on the physical distance which the activation must
traverse, perhaps depending on the efficiency of transmission of the output
neuron). This process results in the weights of the first (fastest) output neu-
ron learning the first Principal Component; the second fastest output neuron
learns the second Principal Component, and so on. Experimental results from
a network with five inputs and three output neurons are given in Table 3.5.
In order to demonstrate the effect of the network, we have carried out our
simulations on the same type of data as previously. Clearly the first three
principal components have been found by the three output neurons.
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Table 3.5. Results of the differential distance model; each column shows the con-
verged weights between one output neuron and the input neurons after learning on
data from independent zero mean Gaussians with descending variances.

V w
1.000 0.006 -0.010{1.000 0.006 -0.010
—0.000 —1.000 0.013 |—0.000 —1.000 0.013
0.012 0.023 1.000| 0.012 0.023 1.000
0.000 —0.003 0.004 | 0.000 —0.002 0.004
—0.002 —0.004 —0.001|—-0.002 —0.004 —0.001

Note that the crucial difference between this model and previous models
is the embedding of the learning process in the activation reception process.
When this is done, the resulting network is more similar to a Sanger-type [160]
network rather than an Oja-type network. The k** output neuron is learning
to extract the maximum amount of information which is left after the previous
(k — 1) output neurons have extracted their information.

3.3.1 Equivalence to Sanger’s Algorithm

Sanger’s algorithm has, as a learning rule,

Awij = nyi (%‘ - Z ykwkj>

k=1

in a totally feedforward architecture, where the outputs at y are given by
Yi = Z Wij T 5
J

We can show that the output neuron network using the rules determined by
(3.20) to (3.24) is equivalent to Sanger’s algorithm when we use the WV
model in which the feedforward and feedback weights are identical.

Let the e values be indexed with the time of feedback from the output
neurons. Then,

e ¢;(0) is the initial value of e; at time 0 i.e. €;(0) = ;.

e ¢;(1) is the value of e; after receiving the feedback activation from the first
(and hence closest) output neuron i.e. ej(1) = €;(0) — v1;y1. Note that the
time values are only ordinal indices; they do not imply equal intervals
between feedback activations.

Similarly, if e;(2) is the value of e; after receiving feedback from the first two
output neurons, then

e;(2) = €;(1) = va;y2 = €;(0) = > vijyn (3.25)
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In general, if e;(7) is the value of e; after receiving feedback from the first ¢
output neurons,

7 [
ej(i) = €;(0) = > vkjyk = T, — > kU (3.26)
k=1 k=1

Therefore,

A’Uij = Awij = 776j (Z)yZ

i
=1 (61(0) - Z%y%) Yi
k=1
i
= NYi (xj - Z Ukj!/k)

k=1

which is exactly Sanger’s formulation (see Chapter 2).

3.4 Minor Components Analysis

Whereas a Principal Component Analysis finds the eigenvectors of the covari-
ance matrix with greatest eigenvalues, a Minor Component Analysis (MCA)
finds those eigenvectors with smallest eigenvalues. We will perform MCA with
the same network as before but reverse the learing rule so that Aw; = —ay;e.

We showed above that all eigenvectors are stationary points of the learning
rule, Aw; = ay;e i.e. where E(Aw;) = 0, and similarly we may show that
eigenvectors are also solutions to Aw; = —ay;e = 0. We must still prove that
only the eigenvector with the minimum eigenvalue can be stable.

Assume that w converges to an eigenvector c¢* of C with corresponding
eigenvalue \*. Then, we will show that if there exists an eigenvector ¢! of C
with corresponding eigenvalue A! < A\* a small perturbation in the direction
of ¢! will cause w to be unstable i.e. convergence will not take place.

Let w have converged to a direction close to ¢* but to have a component
¢ in the direction of c¢. Then,

E(Aw) = —Cw — (W' Cw)w

{0+ — (€T + (" + (e + )

= —{Cc* 4+ Ce— (¢ Cc*)c* — (¢ Cc*)e — (¢ Ce)e* — (€' Ce*)e* 4 O(€2)}
—{\e* + Ae—Net — Ne—cTC(ec®) — Cle) c*c* + O(2)}

—{Me— e~ (Mele*)e + 0(e%)}

= Me4+ Me+0(?)

where we have used the facts that C7 = C and that its eigenvectors are
mutually orthogonal.
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So, ignoring terms of O(e?), if A\! < \*, a perturbation in the direction of
c! will always be unstable. Therefore, directions other than the eigenvector
corresponding to the smallest eigenvalue of the covariance matrix are unstable.

Note that if the covariance matrix is not of full rank, i.e. Ic; : A; = 0, then
the weights converge to the projection of the initial values of the weights onto
the subspace with zero eigenvalue.

Xu et al. [186] have shown that the Total Least Squares (TLS) fitting prob-
lem can be solved by performing a Minor Component Analysis of the data:
i.e. finding those projections which instead of containing maximum variance
of the data contain minimum variance. In the next section, we first review re-
gression and the TLS solution and then show how Minor Component analysis
can be used to solve it.

3.4.1 Regression

Regression comprises finding the best estimate of a dependent variable, y,
given a vector of predictor variables, x. Typically, we must make some as-
sumptions about the form of the predictor surface e.g. that the surface is lin-
ear or quadratic, smooth or disjoint, etc.. The accuracy of the results achieved
will test the validity of our assumptions.

This can be more formally stated as: let (X,Y") be a pair of random vari-
ables such that X € R™ Y € R. Standard regression aims to estimate the
response surface

f(z)=E(Y|X =) (3.27)

from a set of p observations, x;,y;,i = 1,...,p.

The usual method of forming the optimal surface is the Least (Sum of)
Squares Method which minimises the Euclidean distance between the actual
value of y and the estimate of y based on the current input vector, x). Formally,
if we have a function, f(), which is an estimator of the predictor surface, and
an input vector, X, then our best estimator of y is given by minimising

N
E= m;nD% — f(xi))? (3.28)

i.e. the aim of the regression process is to find that function f() which most
closely matches y with the estimate of y based on using f() on the predictor,
x, for all values (y,x).

For a linear function of a scalar z, we have y = mz + ¢, and so the search
for the best estimator, f(), is the search for those values of m and ¢ which
minimise

. 2
E, = min zi:(yi —mx; — c)

For each sample point in Fig. 3.1, this corresponds to finding that line which
minimises the sum of the vertical lengths such as PR from all actual y-values
to the best-fitting line, y = mx + c.
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Y

Fig. 3.1. The vertical lines will be minimised by the Least Squares method. The
shortest distances, r;, will be minimised by the Total Least Squares method.

However, in minimising this distance, we are making an assumption that
only the y-values contain errors while the x-values are known accurately. This
is often not true in practical situations in which, for example, which variable
constitutes the response variable and which the predictor variables is often a
matter of choice rather than being a necessary feature of the problem. There-
fore, the optimal line will be that which minimises the distance, PQ=r, i.e.
which minimises the shortest distance from each point, (z;,y;) to the best
fitting line. Obviously, if we know the relative magnitude of the errors in x
and y, we will incorporate that into the model; however here we assume no
fore-knowledge of the magnitudes of errors. Thus, we are seeking those values
of m and ¢ which minimise

: s . (y; — ma; — c)?
E> = min E r; = min E -
m,c 4 m,c 4 1+ m?
1 1

This is the so-called Total Least Squares method. Because of the additional
computational burden introduced by the nonlinearity in calculating F5, TLS
is less widely used than LS although the basic idea has been known for ap-
proximately a centuary.

3.4.2 Use of Minor Components Analysis

We will solve the TLS fitting problem by performing a Minor Component
Analysis of the data. The basic idea is that the noise in the data will typically
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contain less variance than the spread along the regression line. Therefore, the
regression line must be orthogonal to the minor component of the data so we
select the line in this direction which goes through the centre of the data. Since
there may be errors in both y and = we do not differentiate between them
and indeed incorporate y into the input vector x. Therefore we reformulate
the problem as: find the direction w such that we minimise E5 i.e.

2
wW.X + ¢
F> = min ( —; ) over all inputs x
w w
N
o (w.x; +c)?
“ugy- vz
i=1
TRw + 2cwTE 2
— N VB c;v (x)+¢
w W W
where R = + Ziil x;x7, the autocorrelation matrix of the data set and
Ex) = % Zfil x;, the mean vector of the data set. Since, at convergence,
% = 0, we must have
Rw + cE(x) — Aw =0 (3.29)
T T 2
where A = ¥ Rw+3VC¥WE(x)+C . Now we wish to find a hyperplane of the form
wx+c=0
So, taking expectations of this equation we have ¢ = —w.E(x) which we can
substitute
Cw—Aw=0 (3.30)
where now \ = ";,TTC‘;" where C' is the covariance matrix. From this we can

see that every eigenvector is a solution of the minimisation of Fs.
We apply the method of Xu et al. [186]* to the negative feedback network,
to get the learning rule
Aw; = —ay;x (3.31)

which causes convergence to the eigenvector with the smallest eigenvalue,
provided such eigenvalue is strictly smaller than all other eigenvalues.

As an example of the network in operation, we show in the first line of
Table 3.6 the converged values of the weights of an MCA network when sample
points are drawn from the line and both z and y coordinates are subject to
noise. Clearly the algorithm has been successful. However, the robustness of
regression solutions has generated a distinct area of research in the statistics
literature. In the next section, we review some of this and consider the effect
of noise on TLS solutions.

4 Xu et al. derived the algorithm with a feedforward network using Hebbian learning
with weight decay.
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3.4.3 Robustness of Regession Solutions
We consider firstly the effect of white noise on all measurements and then

consider the effect of substantial outliers on the convergence of the algorithm.

Table 3.6. Directions converged to when the points from the distribution were

disturbed by noise drawn from N(0,0.05).

Actual Distribution| Direction Found Outliers
3z +2y =10 0.300z + 0.200y =1 None
Jx+2y=1 2.970x 4+ 2.018y =1 None
3z +2y =0.1 24.3x + 23.7y =1 None
3r+2y =1 3.424x + 1.714y = 1|1% in y direction
3r+2y=1 2.459x + 2.360y = 1|1% in z direction

For the lines shown in Table 3.6, points were drawn uniformly from only
the first (both = and y positive) quadrant of the distribution determined by the
line in each case. The first three lines show the direction to which the network
converged when the distribution was affected by only white noise in both x
and y direction drawn from N(0,0.05). Clearly the degree of accuracy of the
convergence depends very greatly on the relative proportion of the amount of
variance due to the length of the distribution from which points were drawn
and the white noise. In the third case, the noise was of the same order as
the variance due to the spread of points on the line and the convergence was
severely disrupted.

As an example of the effect of outliers, we repeated the experiment with
MCA regression to the line 2z 4+ 3y = 1 with 1% outliers (100 points out of
10000). The error in each outlier was O(1). The results are shown in the last
two lines of Table 3.6. Clearly the effect, even at this level of intensity, is much
more severe when outliers occur in the x than the y direction.

Xu et al. suggest amending (3.31) to (our notation)

Aw; = —afBy;x (3.32)

where [ = |x27iy?|’ to give a robust regression procedure. Clearly, for an
outlier, § will be lvery small provided the weights w have already converged
towards the direction indicated by the cloud of data. However, a network
which meets a so-called leverage point early in learning will be just as liable
to converge to a false direction and will treat the “good” points as before
as outliers. Thus we see that in line 4 of Table 3.6, there is some disruption
caused by 1% of the sample being disturbed by noise in the y-direction; but
there is virtually total loss of regression parameters when the noise is in the
x-direction (line 5).



3.4 Minor Components Analysis 53

Our overall conclusion, therefore, is that the method of MCA provides a
valid method of calculating the Total Least Squares Minimum Error of a data
set, but it is not correct to say that the method is robust to outliers.

3.4.4 Application to ICA

An example of blind source separation is the cocktail party problem, where a
number of people at a party all talk simultaneously. A set of microphones are
then placed throughout the room to receive the sound of everyone talking si-
multaneously. Because the microphones are placed in different positions, each
microphone picks up slightly different mixtures. Using the different mixtures
from the microphones we then try to isolate the individual speaker’s speech
signals.

Table 3.7. The relative power of each signal in each of the three mixes. Signal 3
is very much the weakest yet is readily recovered.

Signal 1 Signal 2 Signal 3
Mixture 1]/2.8 x 101 0.3 % 10™! 1
Mixture 2|1.1 % 10! 0.2 % 10*! 1
Mixture 3|2.5 % 10! 1.1 % 10! 1

Fig. 3.2. Left: The original signal. Right: The recovered signal using Minor Com-
ponent Analysis.

We can use MCA to extract a signal from a mixture of signals: we use three
speech signals (each speaker said “perhaps the most frequent use of ICA is
in the extraction of independent causes”) and mix them so that the power
of the weakest signal constitutes a small fraction of the total power in the
mixes. Table 3.7 gives an example of the relative power of each of the signals
in each of the three mixtures. Fig. 3.2 (left) shows the weakest power signal
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while Fig. 3.2 (right) shows the recovered output: the low power signal has
been recovered.

We emphasise that we are using a linear network (and hence the second-
order statistics of the data set) to extract the low-power voice. The mixture
is such that humans cannot hear the third voice at all in any of the three
mixtures and yet the MCA method reliably finds that signal with least power.

We note that a limitation of this method as a biological model might seem
to be that the signal to be recovered must be swamped by the noise: if there
is a component of the noise which is lower power than the signal, it will be
recovered. However there is one situation (and perhaps a frequent one given
the symmetry of our ears and surroundings) in which MCA may be useful: if
the mixing matrix is ill-conditioned. Consider the mixing matrix

0.80.4

A= <0.9 o.4> (8:33)
whose determinant is —0.04. Its eigenvalues are 1.2325 and —0.0325. The ma-
jor principal component will be the term which is constant across the two
signals and so the smaller component will be the residual when this has been
removed. Two voice signals were mixed using this matrix and one recovered by
the MCA method is shown in Fig. 3.3 which should be compared with the orig-
inal signal shown in Fig. 3.2. Most interesting is that the more ill-conditioned
the mixing matrix, the better is the recovery of the lesser-amplitude voice.
Given the closeness of our ears compared with the area from which signals are
liable to be emitted, this suggests that this model might be extremely possible

in a biological implementation: the fact that the data is ill-conditioned might
actually be of help in disentangling different signals.

3.5 Conclusion

We have, in this Chapter, discussed a negative feedback implementation of a
network which has been shown to be capable of performing Principal Compo-
nent Analysis. We have extended the basic algorithm in several ways which
may be of biological interest. Specifically:

e We have shown that we may have different weights feeding back from those
feeding forward.

e We may feed back the outputs and have the subsequent weight change in a
specific order in order to perform an actual Principal Component Analysis.

e If we reverse the direction of the weight change, we create a network which
performs Minor Component Analysis.

This last method is mentioned for completeness but it should be mentioned
that there are serious questions to be raised with respect to the convergence
and stability of Minor Component Analysis methods. There is also the ques-
tion of the magnitude of the weights from online algorithms which perform
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Fig. 3.3. The signal recovered from ill-conditioned mixing. Compare with Fig. 3.2 .

Minor Components Analysis which is not discussed herein. A good recent re-
view of MCA algorithms and a discussion of these problems is given in [133].

In this chapter, we have seen that the algorithm may be approximately
derived from maximisation of variance. In Chapter 5, we show how the equiv-
alent nonlinear algorithm may be derived from minimisation of the mean
square error of the low-dimensional representation; the network of this chap-
ter is a special case of that algorithm and so we may equivalently show that
this network performs the best linear compression of a data set where “best”
is defined in terms of minimum mean squared error.

However, since we have shown that the network is algorithmically equiva-
lent to Oja’s or Sanger’s algorithms, we must ask if we are gaining anything by
phrasing the operation as a negative feedback operation rather than as a sim-
ple feedforward network with weight decay in the Hebbian learning rule. We
believe that phrasing the operation as a three phase operation — feedforward,
feedback and then weight change — gives us a mental model which permits
changes which would not have been possible with a two-phase network with
weight decay. We have already met one of these — the VW network; others
which will be met in this book are the introduction of competition at the
outputs before feedback (Chapter 7) or optimising the network learning with
respect to the probability density functions of the residuals after feedback
(Chapter 8). Such innovations would simply not be possible if we use a totally
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feedforward artificial neural network with negative feedback only within the
learning rule.

Before we investigate these issues, we show in the next chapter how lateral
weights may be used (before the feedback operation) to force convergence to
the Principal Component directions. That chapter and the subsequent ones in
Part 1 can be read almost in any order though it is necessary that the reader
at least skims Chapter 6 before reading Chapter 8.



4

Peer-Inhibitory Neurons

At the start of the previous chapter, we discussed how, in biological systems,
activation was passed forward, backward and also laterally through networks
of neurons. The properties of the system which used the first two of these di-
rections for information passing were discussed fully in that chapter; however,
we did not consider any lateral interactions between the neurons. We take this
approach in the current chapter.

Four factors make the negative feedback network especially exciting as a
PCA network:

Simplicity: There are no logistic or hyperbolic functions to be calculated;
there is no additional computation within the learning rule; there is no
sequential passing back of errors or decay terms.

Homogeneity: Every output neuron is performing exactly the same calculation
as its neighbours.

Locality of Information: Each output neuron uses only the information which
it receives from its own connections; similarly with the input neurons
which calculate the residuals.

Parallelism: Each operation at each output neuron is independent of what is
happening at any other output neuron; similarly with the input neurons.

However, the phased creation of neurons described in the previous chapter
does not utilise the inherent potential of this network for parallel information
processing. We now develop learning algorithms which do this while retaining
as much as possible of the other features.

Thus, in this chapter, we create the entire network at one instant in time
and train all weights simultaneously. We investigate lateral trainable connec-
tions which learn using simple Hebbian learning to self-organise. We analyse
these connections to find under what conditions they may be used to force a
totally parallel network to learn the actual Principal Components themselves.
We amend the basic network by allowing the inhibitory effect of each output
neuron to act on the other output neurons as well as the input neurons. Two
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methods will be used with this amended network in order to create the neces-
sary asymmetry: in the first, we will allow the network weights to be upgraded
at different rates; in the second, we will use different activation functions to
force convergence to the Principal Components.

The first type of network will be characterised by

Feedforward: y’ =Wx (4.1)
Lateral action: y =y —Uy’ (4.2)
Feedback: e =x-VTy (4.3)
Weight change: AW = n,ye’ (4.4)
Weight change: AV = p,yel (4.5)
Weight change: AU = ~yyy’ (4.6)

where y’ is the initial activation of the output neuron before receiving the
lateral inhibition from other output neurons, and U is the matrix of weights
between the output neurons.We do not, however, allow self-connections from
output neurons to themselves.

We note that we have now a 3-phase operation:

1. The activation is fed forward from the input neurons to the output neurons

2. The output neurons feed their activation to their peers and recalculate
their activations

3. The activation is fed back to the input neurons from the output neurons

While this is more computationally complex than before, we only require
O(m?) additional calculations, where m is the number of output neurons.
Further, all learning processes continue to use simple Hebbian learning.

We will introduce a matrix G(z) = (I — U)W (z),! which represents the
forward function from x to y. G is an integral part of the mathematical
model which we will use for understanding the network, but it makes no overt
contribution to the development of the network in the real, stochastic world.
The actual learning in the network, i.e. the weight updates, is accomplished

by updating the actual weights U,V and W although we will discuss 4 as

dt
though it were being performed in the same sense that, e.g. dd—VtV is performed.

We can prove (an obvious special case of Theorem 4.2) that the learning
rules detailed above are equivalent to

% _ dd%/ —([-UWC—(I-U)WCW (I -U)'V  (47)
% =(I-uywewta-u)t (4.8)
G daw dU

! I being the identity matrix.
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where G is the forward function relating x and y and C' is the covariance
matrix of the input data.

We will show, as with other models with lateral inhibition, that U = 0 is
a stable stationary point of the system.

Now, G = (I — U)W
dw  dU
U=U)mr —
=(I-D{I-UyWwC —-IT-UyWwewh(iI-u)'v}
—(I-ywewra-uv)tw
= (I -U){GC - GCGTV} - GCGTW
— GC - GCG'V — GoG™wW
asU — 0

dG
dso =2
and so —

Now G — W as U — 0 and so % — WO — 2WCOWTW using the fact that
V=w.

It can be seen that the necessary asymmetry between the Hebbian learning
term and the weight decay term has not been achieved; however, the important
point to note is that part of the weight decay term comes from the % term
which we can manipulate independently of the % term in order to create the
necessary asymimetry.

In summary, this chapter will show how it is possible to manage the lateral
connections to force the weights to converge to Principal Component filters
(rather than just to identify the Principal Subspace). We can do this by having
the lateral weights learn at different rates or by having different weights of
activation functions in certain models. We discuss the type of models in which
this method does not work.

4.1 Analysis of Differential Learning Rates

Let us consider the system of equations:

y =Wx (4.10)
y=y -Uy (4.11)
e=x-Vly (4.12)

AW = nyye” (4.13)
AV = nyyel (4.14)
AU = TI'yy” (4.15)

Let us review our naming conventions: the convention we will use is that w;;
is the weight of the connection from z; to y;; similarly, v;; is the weight of
the connection from y; to e;; u;; is the weight of the connection from y; to
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yi. Unless specifically stated otherwise, we shall be interested in the vectors
to and from the output neurons. Therefore, we take the vectors v; to be the
weight vector into the i*" output neuron, i.e. to be the vector of form {vg;} for
all k; similarly we take the vector w; to be the vector of weights from the *"
output neuron i.e. to be the vector {w;;} for all k. Both are vectors of length
n where n is the number of input neurons. Note that the learning rates of U
values are different for different output neurons as we wish to force the first
output neuron to learn the first principal component, the second the next and
so on. Thus we have a diagonal matrix, I .

Since we ensure that there are no self-connections, the main diagonal of
U is composed of zeros. Also note that I" is the matrix diag{y1,v2, -, Ym}
where m is the number of output neurons and +; is the learning rate for the
U weights of the i** output neuron such that v; < 72 < ... < ¥,,. We allow
all learning rates to decrement to zero as time tends to infinity.

As introduced in the previous section, G(z) = (I — U)W (z) is the forward
function from x to y. We will assume that, if v;(¢) is the value of ~; during
time interval ¢, lim;_,q n;((tt))
discussed in Section 4.1.1.

exists and is positive. This assumption will be

Theorem 4.1 v; converges if and only if w; converges, where v; is the weight
vector from the it" output neuron and w, is the weight vector into the it"
output neuron. Further,

Vi =aw; +p

_ 5 nv (t)
where a = lim;_.q T (D)
Ny (t) is the value of ny during time interval t,

and p s a vector depending on the initial conditions of v; and w;.
Proof
At time B, we have

w;j(B) = wij(B — 1) + n;i;(B)e; (B)yi(B)

If we start from time 0, we can equate the continuous time point T" with the
sum of the discrete intervals 7;;:

T=> ni;p)

Thus, we are breaking up continuous time into discrete time steps 7;; . Now
the convergence, if it exists, must be taking place simultaneously over all
weights. Therefore, we must ensure that 7;; = 7 for all values of ¢, j. In order
to have no limit on continuous time, we must have
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If we further assume that n(p) > 0 for all p, then we have

Aw;; = ne;y;
=1 (‘rj - szjys> Yi
S
= (xj - szj (Z We L] — Zusprplxl>> X
s l P l
(Z Wity — Z Uiq qurmr>
t q -

Or, in matrix terms,

B PEZY (1 v W E)x(B)”
—(I -U(B))W(B)x(B)x(B)"W(B)"(I -U(B))"V(B)
(4.16)
If we also assume that
Jim_ n(p) =0

then the sequence of wj;(T") asymptotically approaches a continuous-time
function and the left-hand side of (4.16) approaches its derivative. Then we
can replace (4.16) with the corresponding averaged differential equation

‘Z—Vf =([I-UWwcC-{I-Uywewra-u)Tv (4.17)
where C' is the covariance matrix of the stationary distribution producing
the xj values. Now, under the same assumptions as in the previous chapter
about the rate 7 it can be shown that the solution of the stochastic algorithm
approaches the solution of the differential equation (4.17) with probability 1.

Now consider v’s learning.

vi;(B) = vij(B — 1)+ nv(B)e;(B)y;(B)
Therefore,

i (B) —v(B — 1)
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Given the same assumptions as before and making the additional assump-
tion that

G (p)
p—0 n(p)

= a > 0 i.e. the limit exists and is positive.

we have the corresponding differential equation,

d
d—‘tf =a((I -U)WC — (I -U)WCWT (I —U)TV) (4.18)
Therefore,
av _dw
. dt
Therefore, W converges to a solution (where % = 0) if and only if V' con-
verges to a solution.
aw T T
Now, T I-UWC—-(I-UWCW (I-U)'V=f(W,V)

Let F(W,V) = /oo FOW, V)t
0

Then, V =aF(W,V)+aK and W = F(W,V) + K

where K is a function of the initial values of V' and W.

Thus, vi = w;+p, where p is a vector depending only on the initial values
of the system.

Thus if v; and w; converge, they do so simultaneously and close to the
same vector.

Note 1 For the remainder of this section we will assume that a=1. i.e. the
learning rates for V and W are equal.

Note 2 We note that the vectors v; and w; may be made arbitrarily close by
limiting the original size of vectors v;(0) and w;(0). i.e. p may be made
arbitrarily small by appropriate initial choice of v and w. Hence we are
able to assume that v; ~ w;.

Theorem 4.2 The learning rules detailed above are equivalent to

% = dd—?/ =(I-UWC—-(I-UWewrI-u)'v ~ (4.19)
C;Lt] — AU~ U)WCWT(I - U)T (4.20)
dG aw  dU

where G is the forward function relating x and y and A is the matriz
diag{ay,as, ..., am} with a; = limy_¢ nvﬁi/(fg) with 7;(t) being the value of ~;
during the time interval t.
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Proof
With the same assumptions as before, we can write

PR PB4 U)W Ex(B)”
—(I - U(B)W(B)x(B)x(B)"W(B)"(I - U(B))"V(B)
(4.22)
If we also assume that
Jinn(p) =0

then the sequence of w;;(T) asymptotically approaches a continuous-time
function and the left-hand side of (4.22) approaches its derivative. Then we
can replace (4.22) with the corresponding averaged differential equation

% =[I-U)WC—-(I-Uywewh(I-u)Tv (4.23)
where C' is the covariance matrix of the stationary distribution producing the
x) values. Now, under certain assumptions about the rate n it can be shown
that the solution of the stochastic algorithm approaches the solution of the
differential equation (4.23) with probability 1.

Similarly, for the weight updates of the U weights,

uij(B) = uij(B — 1) + 7(B)yi(B)y;(B)

Therefore,
UB) -UB-1) _%B)
n(B) n(B) "
If we make the further assumption that limpg_.q
limit of the above stochastic equation giving

’:;((g)) exists, we can take the

U
ey
T

where A= diag {a1,as,...,am} with a; = limy_, "Z;’((tt)) > 0, and Q the m xm
matrix with elements ¢;; = E(y;y;),i # j, and g;; = 0 for all ¢, j. E() indicate
an ensemble average. We will, for the time being, assume that the a; values
are constant during the learning process. We will return to this assumption

in Section 4.1.1 Now,

Q=E(yy") (4.24)
=EB((I-U)Wxx"wWT(1 -uv)") (4.25)
=([I-U)ywewr(a -u)T (4.26)

where C;; is E(z;z;) for all 4, j. Hence,



64 Hebbian Learning and Negative Feedback Networks
du
dt

The transform from x to y is G where G(t) = (I — U(t))W (t) where U(t) is

the value of U at time ¢, etc. Then,

A(I -UyWow™(1 —-u)”

G dAW(t) dU(t)
o = -UR) == = =W () (4.27)
= - U)d(z/ - %W (4.28)

Theorem 4.3 U= 0, the m x m zero matriz, is a solution of % =0, and

gi=W; = \/%Ta,;ci is the corresponding solution for G and W where ¢; are

the eigenvectors of the covariance matriz of the input data in order. i.e. if

Yuy < Yy < 00 < Yau,,, then w; = \/ﬁci where c; is that eigenvector
with corresponding eigenvalue \; where Ay > Ao > -+ > A, and, as before,
R i ()
a; = lim; nw (t)
Proof
dG aw dU
—={U-U)— - —W
dt ( ) dt dt

First we note that as U — 0,

dG  dw dU

dt - odt dt
=(I-UWC-I-UWCWrI-0)'v — A1 -U)Wewr (1 —U)T'w
= GC - GCGTV — AGCGT™W
- WC - (I+AWCWTW

at the point of convergence of V and W.

Note the similarity between these equations and those required for Oja’s
Weighted Subspace Theorem [142, 143]; therefore, we conjecture that a solu-
tion of ‘2—? =0atU=0isg; =w; = ﬁcl the i*" eigenvector of C' in
normal order. Here we show that the stated values are solutions; stability will
be proved later.

e 7 UdW au

w UG
= (I-U)(([I-U)WC—(T-U)yWewh(r-u)tv)
—~A(I-Uywewt (1 -uv)™w
— WC - WOWTVv — Awew™w
= AW — KV — AKW

where K is the diagonal matrix whose (i,7)*" element is Ai|wil? with \; the
ith eigenvalue and A is the diagonal matrix whose (i,7)"® element is \;.
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Then taking g; as the i vector of G i.e. going into the i*" output neuron
and using the fact that w; = v;, we have

dg;
dt

= \w; — k;w; — azkiw;

)\i )\1 1 ai)\i 1
(«/1+ail+a“/l+ai 1+a“/1+ai>cl
o <)\¢(1+ai)—)\i—a1)\i) )

\/1—|—ai(1+ai) !

So the stated values are stationary points of the system.
Note: We can in fact go further, in that if U = 0 then

dg;
Bl \wi — kew, — agkyw,
dt
= (A = N[ wil® — aphi|wi[P)w;
= Ni(1 = Wil = aswi[P)w;
: d i p— 3 p—
so if %BL = 0 then |w;[*(14a;) = 1 ie. |wy| = iﬁ
Theorem 4.4 At the solutions U = 0, w; = \/%uici of % =0, then
dugj .
% =0 for all 4,5

if \i # 0 i.e. the i*" eigenvalue is not zero.
Proof

%ngU—UMT%”U—UF

= AWCWT

Now WiC'ij =0 for all i # j and w;Cw! = \;|w;|%. Therefore, WCWT is a
diagonal matrix of the form diag{k1, ka2, - -, k. } where k; = \;|w;|?, \; being
the i*" eigenvalue. Then

d
d—(t] = AK = diag{a1k1, asks, -, amknm}
Therefore, d;;-f =0 for all 7 # j.
Theorem 4.5 The solutions u;; = 0, w; = ﬁcz for all i,j of % =0

ensure all variables are stationary at this point.

Proof

At the stated points of solution of % = 0 then dd—(t] = 0. But
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dG daw dU
U0 =W

_aw
Tdt

dG _ dU _ dW _ dV __
Soﬁ_dt dt dt_o

Theorem 4.6 If c; are the unit length eigenvectors of C, the solutions
1
c.
V1+a; !

u; = 0, where 0 s the m*1 zero vector

VvV, = W; =

of the equations governing the dynamics of this network, are asymptotically
stable for all i.

Proof

First consider the u;. We have already shown that U = 0 = % = 0.
Consider a disturbance of € in U = 0. We have
v AT -0+ e)WCW* (I —(0+¢))

= AK — AeWCWT — AWCW e + O(€?)

= —AWCWT — AWCWT e 4 O(e?) (off diagonal)

= —AeK — AKe + O(€?)

Since A and K are both diagonal matrices with entries > 0, if ¢ > 0, the rate
of change of U is negative i.e. U must decrease. If € < 0, the rate of change of
U is positive i.e. U will increase.

Now consider the W weights. We have proved that the stated values are
solutions; we must still prove asymptotic stability. Note that at the stated
points of convergence,

G=I-U0WwW=W
dG aw dU
bS5 ANl
dt ( U) dt dt W
Now since G = W at the points stated, any instantaneous disturbance in W
will have an equal instantaneous effect on GG. Therefore, we will investigate the
effect of a disturbance in W on G in order to derive the asymptotic stability
of W. We do this through investigating the effects of the disturbance on U
and W. Let there be a disturbance of F in the converged weights W. Then,
dUu
= AWCW" + AECWT + AWCE™ + AECE™

~ (AWCWT) + AECWT + AWCET
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ignoring terms of O(E?). Thus,

C;—(tj(w +E) = (AWCWT + AECWT + AWCET)(W + E)
~ AWCWTW + AECWTW + AWCE™W + AWCWTE
= (AWCWTW) 4+ AECWTW + AWCE™W + AKFE
Similarly,
dw -

~WC+EC-wWCewtv — Ecwtv —wcCETV
=(WC-WCW'V)+ EC - ECW'V - WCETV

So still ignoring terms of O(E?),

dG  dW  dU

dt  dt dt

(WC -WCWTV + AWCWTW) + EC — ECWTV — WCETV
—AECWTW — AWCETW — AWCWTE

= EC — ECWTV —WCETV — AECWTW — AWCETW — AKE
= EC — AKE — (I + A(ECWT + WCET)W

Now, considering a disturbance of € in the direction of ¢; of the weight w;,(i.e.
a disturbance of €;) we note first that the matrix(I + A)(ECWT + WCET)is
2)j€

A/ 1+aj

a diagonal matrix with its j*" element (14 a;) . So considering the rate

of change of g; in the direction of c;,

dg; 22X €
o = e T ke — (14 aj)iﬁwj

Aj 2)\j€e 1
= die—a:—" e—(1+a; J C;
( j€ ajl—i—aje (1+ay) Tra;JIta, )"

s
= =), (1 +1 —|—Jaj> ec; (4.29)

Since C' is symmetric, A; > 0 . Further, the learning rates v; were such that
a; > 0 . Then, equation (4.29) shows that if e > 0, which would cause G to
grow, the system will self-organise to cause G to shrink; if ¢ < 0 the system
will self-organise to cause G to grow. Since we have shown that U = 0 is a
stable solution, then the solutions of the W vectors must also be stable.

Now consider the v;. The proof that the stated values are solutions is
implicit in the section above. To show asymptotic stability, let there be a
disturbance of € > 0 in V. Then
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@fzu—UmmnwLJDWCWUI—mWV+@

dt
=WC -WCWT(V +¢)
=WC -WCWTv —wewe
=-wcecwTle
=-Ke<0

since every element of K is greater than 0. Similarly, if € < 0, we have % > 0.
Thus all the stated values are stable points of the system.

4.1.1 The GW Anomaly

There is an apparent anomaly in the above equations. The solution of % =0
is g, = w; = ﬁci whereas the solution of ‘Z—Vf = 0 occurs at w; =

c;. Further, as U — 0, G — W. This suggests a less stable system than
before, and this is indeed the case. Thus, in order to minimise instability, it is
necessary to ensure that the a; values are low. Experimental results suggest a
value of 0.1 is sufficient to ensure stable convergence to Principal Components.
However, we note that, at w; = ﬁch U =0 and so

1+
dW T TvisT
— = (I-UWC—-I-UWewra-u)y"wtv
—SWC -wWewTv
andso de, o )\z ci— )\z 1 s
d  +a @ 1+aIta @

N a;

T Vitalta
Therefore, for any a; # 0 , there will be a tendancy for the weights to grow
away from the global optimum. However, as seen in the equations governing
%, this cause instantaneous change in U, which will drive the W weights in
the opposite direction. In order to produce a damped system, the values of
a; should be small. One possible response to this anomaly is to insist that as
we are taking a limit to infinity, the a; values can only be > 0 i.e. to allow
equality. However, this is not the experimental situation where a strict ratio is
maintained as the terms decrease to 0 nor does it help the analysis as we then
have a diagonal matrix which is not of full rank and would not then provide
the differential decay necessary for convergence to the Principal Components.

The approach chosen here is to choose the values of a; appropriately small
so that the term \/117% ~ 1. Under this constraint the system has been found
experimentally to be stable.

The final point to note is that in this system the decay of the learning rate
to 0 may be essential to the fixed stability of the system; if the learning rates
are not allowed to decay to zero, the very dynamical nature of the convergence
will continue.
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4.1.2 Simulations

The results of a typical experiment on the same type of data as in the previous
chapters are indicated in Table 4.1. Here, the first output neuron has the
smallest learning rate i.e. o, < @y, < ay,. Further, while the initial values
of the w and v weights were O(0.0001) those of the u weights were 0(0.00001).

In order to show that it is the different learning rate which causes the
convergence to Principal Components, the same experiment was rerun with
all the U weights having the same learning rate; the results of this are shown
in Table 4.2. While there may appear to be a soft PCA taking place, this
effect vanishes in larger networks. This effect — that increased size removes
the tendency to perform a “soft” PCA — has been found in other models in
this section, and therefore slightly larger networks have been used in obtaining
other corroborative empirical results.

Table 4.1. Results show the weights of a typical set of V' and W weights from
the parallel learning algorithm with the angle in radians between the v and w vec-
tors. No. of iterations=40 000. Initially, o,y = o, = 0.0001; o, = 0.000005; vy, =
0.00001; a3 = 0.000015.

1% w

Table 4.2. Results of the same

rates.

1.000 0.012 0.000
0.030 1.000 0.008
0.005 —0.003 0.994
0.004 0.007 -0.023
—0.002 0.000 —-0.000

1.000 0.012 —0.000
0.030 1.000 0.009
0.004 —0.003 0.994
0.004 0.007 —0.023
—0.002 0.000 0.000

Output Neuron No.:

1 2 3

Angle (radians)

0.0011 0.0006 0.0004

network as before with homogeneous U learning

v

W

0.651 0.188 1.0312
—0.151 0.984 —0.092
0.824 0.049 -0.305
—0.019 0.006 0.006
—0.001 —0.001 —0.001

0.650 0.188 1.031
—0.150 0.984 —0.092
0.842 0.049 —0.305
—0.018 0.006 0.006
—0.001 —0.001 —0.002
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4.2 Differential Activation Functions

In this section we investigate three models of peer inhibitory output neurons
which use activation functions instead of learning rate to break the symmetry
of the system. We will not repeat the explicit derivations of the last section
for each of the three models as the mathematics is usually very similar; how-
ever specific points of interest will be identified and analysed. First each of
the three models is introduced and experimental results are given; points of
interest in each are identified. Then a comparison of the models is made and
additional models which have similar properties are outlined. Unless stated
otherwise, the empirical data is obtained from a network with 12 inputs, 7
output neurons and input data with variance of x; > variance of zo > ---.
A is a diagonal matrix with A7 > Ags > ---. The simulated network in this
section is slightly larger than in previous sections in order to highlight various
interesting empirical results which are not so obvious in smaller networks.

Restricting ourselves to models where only the output neurons use ac-
tivation functions and restricting such activation functions to multiplicative
factors (so that we still have a linear system), there are several possible models;
we will identify three separate classes of models by determining the charac-
teristics of three of these models. We will use the same conventions in naming
vectors as before. Note, in particular, that there are still no self-connections
for the output neurons i.e. the main diagonal of U is composed of zeros. In
this section, all u weights will learn at the same rate, ny, but there will be dif-
ferential activation functions (multiplicative factors) on the output neurons.
For simplicity, we assume that nyw = ny = ny = 1. (This does not affect our
results and provides a simpler mathematical model).

4.2.1 Model 1: Lateral Activation Functions

The first model is governed by the system of equations:

y =Wx (4.30)
y=y — AUy’ (4.31)
e=x-VTy (4.32)
AW = nye” (4.33)
AV = nye” (4.34)
AU = nyy? (4.35)
Then, omitting details, we have G = (I — AU)W and

dd—li/ = (I - AUWC — (I - AUYWCWT(I — AU)"'V (4.36)
% = (I - AUYWCWT (I — AT (4.37)

dG aw du
o = (I- AU)E - AEW (4.38)



4.2 Differential Activation Functions 71

Then if U converges to 0 at which point G =W =V,

% = (I - AU){(I - AYWC — (I — AUYWCWT(1 — AU)TV}
—A{(I - AUYWCWT(I — AU)T}W
= (I - AU){GC - GCG"V — AGCGTW}

— GC — (I + AGCGTW as U -0

at convergence, which should be compared with the equations in the previous
section.

However, the dynamics of the two models should not be assumed to be
the same; note, for example, the different format of the equations governing
the behaviour of the U values. This will be shown to be important in the
investigation below. The w; weights (almost) converge to the eigenvectors of
the input data’s covariance matrix. The underlying rationale for this network
is that each output neuron has different susceptibility to the inhibition from
its peers. The results shown in Table 4.3 are from a 12-input, 7 output-neuron

Table 4.3. Model 1 results. The results are from a network with 12 input neurons
and 7 output neurons; each column is the vector of weights into each output neuron.
In most cases the actual Principal Components have been identified.

1 2 3 4 5 6 7
—0.005 —0.001 0.004 0.006 —0.023 —0.025 0.999
0.001 0.005 0.012 0.008 -—0.014 0.999 0.029
—0.011 0.011 0.022 —0.045 —0.998 —0.023 —0.031
—0.003 0.021 0.058 —0.999 0.024 0.010 —0.003
0.001 0.146 —0.996 —0.031 0.019 -0.002 0.009
0.040 0.998 0.119 —-0.004 —0.012 —0.019 —0.002
0.998 0.029 0.023 0.004 —-0.016 0.013 0.014
—0.016 —0.013 0.004 0.004 0.003 0.011 —0.007
0.004 0.006 —0.003 0.004 —-0.003 —0.001 —0.20
0.013 0.005 -0.001 0.002 -—0.001 0.003 —0.005
—0.001 —0.004 —0.001 —0.001 —0.003 0.001 0.004
12| 0.001 —0.001 —0.003 —0.003 —0.004 —0.002 0.001

[ —
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network, with a; = 1.58 = 0.2 (i — 1) for ¢ = 1,...,7. We note that while almost
all the Principal Components have been certainly identified, the second and
third output neurons have not identified precisely their respective Principal
Components. The vectors seem to be almost correct and to satisfy wo.w3z =0
(the vectors are mutually normal) yet are not in the direction of the eigenvec-
tors themselves. In fact by appropriate choice of the parameters a;, this effect
can be eliminated; however:

1. We wish to develop a network which will not require any fine tuning as it
is used in different situations.
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2. The analysis of this fault provides insight into the network behaviour.

The reason for this fault lies in the convergence of the U values. In the
model of the last section the learning rule for the U values was shown to be

% = AT -UyWwWewT (1 -u)T

Notice that as U — 0, this learning rule continues to be dominated by the A
matrix whereas, in Model 1, the effect of the A matrix vanishes as U — 0 (see

(4.37)).

The importance of ‘il—[t] is due to the fact that the value of % is a major
component in the decay term in ‘fl—?. Thus, as U tends to zero and hence
dU

T — 0, the decay term tends to zero. In the previous model this decay
term maintained its differential effect as it decreased, but in Model 1, as
U — 0, the decay loses its directional impact — it becomes homogeneous.
More formally, consider the convergence to a solution of the system which is
not an eigenvector. Let w; have converged to ac; + bcj,a,b # 0 and let w;
have converged to cc; + dcj,c,d # 0. Both ¢ and d are necessarily not zero
as w;.w; = 0. Then we can show that the (,7)!" element of WCWT can be

shown to be

w,;wa = (Mac; + Ajbe;).(cc; + de;)
= \iac+ \;bd
Similarly, w;Cw; = \;a® + \;b?
w;Cw] = M\ac+ \jbd
w;Cw] = \ic® + \d?

Now the i*" row of (I — AU) is [ —a;ui; ---1---— a;U;j - - — QiU | where the
1 is in the " position. Similarly with the j** row. Then,

du;
% — (I — AU),WCW™ (I — AU)T
= ’LLZZJ- (aiaj()\iac + /\de)) — U4y (aj()\ia2 + )\jb2)
+a7;(/\ic2 + )\JdZ)) + ()\iac + A]bd)
Thus ds;j at u;; = 0 is equal to (Ajac + A;bd) which is exactly zero for

b=c =0, ie. the eigenvectors.
But, as u;; — 0, a situation arises where there is no particular impulse for
the change of u;; in any particular direction provided the constraint ac+bd = 0

is satisfied. The symmetry of the formula shows that dszj = d;‘gi; thus the
differential term in ddtf‘ also vanishes at this point and so the weights, having

approached the eigenvectors, need not converge precisely to any eigenvector
— the driving force of differential weight decay has vanished.
For the system analysed in the previous section, we have
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du;
—;‘tf = a;u;(Niac+A;bd) —uij (a;(Aia®+A;07)+a; (Ac®+A;d%))+ai(AiactA;bd)
Note the asymmetry in this rule in that even as u;; — 0 ,dst"" dstj t. Therefore

this system will maintain a preferred degree of slope no matter how small

U becomes. As noted earlier, the value of dg;j is precisely the value of the

decay term in df; and so W will continue to converge, taking account of the
network’s asymmetry, no matter how small U becomes.

It is possible to somewhat circumvent this problem by choosing values of
a; which are sufficiently different to make the term containing u,; significant
until U is closer to zero; however, this is an heuristic and an a priori decision
on the size of the a; cannot be made.

A further difficulty with this model is that we now have the activations fed
to the output neurons being processed differently depending on their origins:
all output neurons are responding equally to the fed-forward activations from
the input neurons but are responding differentially to the activations from
their peers. This seems unrealistic for a biological model and requires an
engineered model to have meta-information (as to whether to use an activation
function or not). Model 2 is designed to rectify this.

4.2.2 Model 2: Lateral and Feedforward Activation Functions

Our equations are almost the same as in the last section, but note that ev-
ery input to Z carries an activation function times the weighted inputs. The
rationale behind this model is a belief that all inputs to an output neuron
should be treated equally.

y = AWx (4.39)
y=y — AUy’ (4.40)
e=x-VTy (4.41)

AW = nyel (4.42)
AV = nye” (4.43)
AU = nyy” (4.44)

Then we have
y=U-AU)y = (I — AU)AWx
Therefore

G = (I — AU)AW
G aw  dU

— ={[—-AU)A— —A—A
dt ( U) dt dt W

As before, we can show that
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% = (I — AU)AWC — (I — AU)AWC((I — AU)AW)TV  (4.45)
%[t] = (I — AU)AWC((I — AU)AW)T (4.46)
and so that
% = (I — AU)A(I — AU)AWC

—(I — AU)A(I — AU)AWC((I — AU)AW)TV
—A(I — AUYAWCO((I — AU)AW)T AW
— APWC — A2WC(AW)TV — A2WC(AW)T AWas U — 0
= A{(AW)C — (AW)C(AW)TV — (AW)C(AW)TAWY}  (4.47)

The factor A, which multiplies the whole of the right side of (4.47) acts on
the whole of that side equally i.e. does not have the differential decay effect
necessary to force convergence to Principal Components. It does however have
the effect that the first vector w; has the highest learning rate and so will
tend to adapt to those directions which contain the greatest variance before
the others do. This results in a “fuzzy” PCA. The first and last terms are
precisely those of the Subspace Algorithm [138] i.e. will cause (AW), and
hence W, to converge to the Principal Subspace though not to the Principal
Components themselves. The results of a simulation based on the usual set of
data are shown in Table 4.4.

Table 4.4. Model 2 results. Results from a network with 12 input neurons and 7
output neurons. Each vector into each output neuron (the columns above) has almost
all of its weight into the first seven directions. The actual Principal Components have
not, in general, been identified.

1 2 3 4 5 6 7
0.438 —0.359 0.763 0.001 —0.039 —0.013 0.004
0.661 0.199 —-0.418 —0.176 —0.070 0.017 0.008
0.022 0.709 0.275 0.478 0.112 -—-0.012 —0.001
0.076 —0.266 —0.182 0.852 0.273 0.006 0.047
0.007 0.010 0.023 —-0.206 1.063 0.394 0.010
—-0.027 0.009 0.016 0.060 —0.248 1.248 0.101
0.009 0.006 0.010 -0.007 —0.007 —0.062 1.611
0.003 0.006 —0.010 —0.006 0.002 —0.009 0.006
-0.011 0.010 -0.013 -0.002 0.001 -0.006 0.010
—0.003 0.004 —0.004 0.005 -0.002 0.002 0.013
0.003 0.001 0.003 0.002 0.001 -0.005 —0.002
0.000 0.001 0.002 0.002 0.001 0.002 0.002

[
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A second drawback of this model is that the activation function in (4.40)
is applied only to the effect of the other inhibitory output neurons. i.e. the
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output neurons are calculating their final output values after the activation
function has been applied. This may not be appropriate in a biological mode.

4.2.3 Model 3: Feedforward Activation Functions

Now we only have an activation function on the first calculation of the z
values:

y = AWx (4.48)
y=y —-Uy (4.49)
e=x-VTly (4.50)

AW = nye” (4.51)
AV = nye” (4.52)
AU = nyy” (4.53)

Then we have
y=I-U)y =I-U)AWx

Therefore

G=(I-U)AW

aG aw U
Zog-A= - A
g~ U UAG =AW

As before, we can show that

% = —U)AWC — (I ~U)AWC((I —=U)AW)TV  (4.54)
% =T -U)AWC((I — U)AW)T (4.55)
and thus
dG

— = (I -U)AI -U)AWC — (I - U)A(I — U)AWC((I — U)AW)TV

dt
—(I-U)AWC((I - U)AW)T AW
— A2WC — A2WC(AW)TV — AWC(AW)T AW as U — 0
= A{(AW)C — (AW)C(AW)TV} — (AW)C(AW)T (AW)

= A{(AW)C — AWC(AW)TATW — ATHAW)C(AW)T (AW)} (4.56)

The rationale behind this model is that each output neuron has an equal
inhibitory effect on the others but has a differential response to inputs.

The central term causes convergence to the Principal Subspace but within
that subspace causes no convergence to the Principal Components themselves.
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The last term is the one which causes convergence to the actual Principal
Components.
In more detail, consider the system as governed by

% — (I - U)A(GC — GCGTV — (I — U)A)'\GCGT AW)

— A(GC — GCGTV — A"'GCGTG) as U — 0

We note that as A is diagonal and of full rank, it has an inverse, which is also
diagonal, and each element of the inverse, (A71);; = a; "

Table 4.5. Model 3: the results are from a network with 12 input neurons and 7
output neurons; each column is the vector of weights into each output neuron. In
all cases the actual Principal Components have been identified. Note the different
direction of “slope” of the bold figures (see text).

1 2 3 4 5 6 7
0.794 —0.024 0.014 —0.009 —0.004 —0.002 0.001
0.020 0.849 0.003 —0.007 0.014 0.013 0.005
—0.027 —0.012 0.918 0.047 0.028 —0.008 —0.010
—0.005 0.010 —0.021 1.007 —0.015 0.018 —0.001
0.002 —0.002 —0.017 —0.004 1.129 0.016 0.013
—0.005 —0.018 0.011 0.000 —0.007 1.308 —0.040
0.009 0.013 0.014 —-0.001 —0.025 0.021 1.613
—0.007 0.010 —0.002 —0.004 —0.001 —0.010 0.006
—0.017 —0.001 0.002 —0.004 —0.004 0.006 —0.013
10{—0.003 0.001 0.002 -0.003 0.001 0.006 0.003
11| 0.003 —0.002 0.003 0.001 —0.003 —0.003 0.002
12| 0.001 0.001 0.004 0.003 0.001 0.002 0.001

© 00~ O U W

Then, as before, the central term will have no effect on convergence once
the weights have converged to the Principal Subspace. Within that subspace
convergence of the weights is governed by the equation

dG

e A(GC — AT'GCGT @)

This causes g; to converge to jﬁl cp = +/a;ci where k = m —i. Note that if

a; > a; then a; < a;l and so this model causes convergence in the “opposite
direction” to that normally associated with the A values. See Table 4.5. Now,
g — (I — U)AWl — A; Wy, therefore,

A;W; = /Q;C;
1

ile.w; = c;

NG
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Now G is simply a mathematical construct to help us understand the
model; the actual learning processes take place in the modification of the W
and U weights; in particular, the values of the W weights are determined by
the convergence of %. At w; = \/%cz

dw;
t = aiwiC’ — aiwiC(aiwi)Tvi
dt
_1 _1 S R |
J— 2 2 2
= a;Nia; 2¢; —ai(a; 2¢;)Claa; 2¢;) (a; >c;)
1 1 1 _1
= \a’c; — NaZc;.a?ci(Ma; °c;)
1 _1
= )\i(lf C; — )\iaiai 207;
=0.
dG

In other words, that solution of the overall system dynamics
a solution of dd—vf = (. The system will converge in harmony.

, g = 0, is also

4.2.4 Summary

We present a summary comparison of the models using the rate of change of
the various weights to guide the comparison.

Change in W, %

Note first that in all three models, % will cause convergence to the Principal
Subspace but not to the actual Principal Components themselves. We repeat

the equations here for convenience:

Model 1: W — (1 — AUYWC — (I — AUYWCWT (I — AU)TV
Model 2: W — (I — AU)AWC — (I — AUYAWC((I — AUYAW)TV
Model 3: W = (] — U)AWC — (I - U)AWC((I - U)AW)TV

All three equations are of the form

% - GC -GCGTV as U — 0

and as before it can be shown that V' = KG for some diagonal matrix K.
Therefore, all of these equations will cause the G vectors to converge to the
Principal Subspace but not to the Principal Components themselves. We note
that if a;w; has converged to an eigenvector, then w; has converged to the
same eigenvector. Further, these equations will determine the size of the W
vectors; since each vector, g;, is of length 1, we have, noting that lim;_. u;; =
0:

Model 1: |w;| = 1.
Model 2: |w;| =a, 2.

N
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Table 4.6. Experimental values of A; and corresponding values of f(A;) for the
functions shown.

A Ay As Ay As A Ar
x 1.58 1.38 1.18 0.98 0.78 0.58 0.38
V& 1.26 1.17 1.09 0.99 0.88 0.76 0.62
% 0.79 0.85 0.92 1.01 1.14 1.31 1.62

Table 4.7. Lengths of the relevant vectors from the three models.

w1 w2 w3 W4 ws We wr
Model 1 0.998 1.000 0.998 0.999 0.999 0.999 1.000
Model 2 0.792 0.861 0.930 1.013 1.130 1.309 1.614
Model 3 0.795 0.849 0.919 1.008 1.130 1.308 1.614

N

Model 3: |w;| =a;

This analysis is corroborated by Tables 4.6 and 4.7. We will demonstrate
that the stated solution is correct for Model 2; the other models can be simi-
larly? analysed. We have

‘%Vf = (I — AU)AWC — (I — AU)AWC((I — AU)AW)"V

— AWC — AWC(AW)TV asU — 0

_1
Now let w; = a, *b; where b; = Zj bjc;, i.e. b; is a unit length combina-
tion of the vectors c;, with c; the eigenvectors of C as usual. Then,

% = AWC — AWC(AW)TV

dWZ'

o = (e ® > 0;e))C —aila; * Y bje;)Caila;* Y bje;)T(a; * Y bjey)
j j j j

1 1 1 1
a? > Nbjej —a? Y Nbic; [ aZ Y bic; | | a2 bie;
J J J J
2
1 1
=aZ Y Nbjc; —al Y Nbjc; [ D bjc;
J J J

=0

since b; is a unit length vector and so (3_; bjc;)? =1;

2 Indeed, more simply since we can use the fact that these models cause convergence
to the eigenvectors.
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Change in U, ‘gtj

Neither will dU cause convergence to the actual eigenvectors.
Model 1: & = (I — AUYWCWT(I — AU)"

Model 2: 4 = (I — AU)AWC((I — AU)AW)T

Model 3: & = (I — U)AWC((I — U)AW)T

Note that all equations have the general form ¢ E = GCGT. We consider
only the case U = 0, since it can be shown that, at U = 0 in all models,
‘fg = 03. Then since 4 is a diagonal matrix, convergence to nonzero diagonal
elements is achieved whenever the rows and columns of W are orthogonal. (If

1
a;w; L a;w; then w; L w;). Consider Model 3, at U = 0, w; = a, 2c¢; ; then
duij
dt

= (I -U)Aw;C((I - U)Aw;)T
— Aw;C(Aw;)T as U —0

= ai)\iWi.ajo
= )\iaiajw,;.wj
= /\iaiaj(iija;%a
= )\151](12%0,]%

d“u —

where d;; is the Kronecker delta. Therefore, off the main diagonal,
So the equations governing the growth of U and W merely ensure that the
columns of W form an orthogonal basis of the Principal Subspace of the
covariance matrix of the input data.

Change in G, < dt

% is the equation which causes convergence to the Principal Components.
dG
dt

is the manifestation of the interaction between the dynamical development
of U and that of W. Recall that G is defined as

Model 1: G = (I — AU)W

Model 2: G = (I — AU)AW

Model 3: G = (I —U)AW

If we assume convergence at U=0, then we have
Model 1:

dG

o = (= AU{GC - GCGTV} — AGCG™W

— GC — (I +A)GCGT™W
~ GC — (I + A)GCGTG

3 This is not to be taken that we assume that % =0=U=0.
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This causes convergence of g; to ﬁci; however, note the caveats made
.

in Section 4.2.1.
Model 2:

4G _ (1~ AU)A{GC — GOGTVY — AGCGT(AW)

dt
— A{GC — GCGTV — GCGT (AW)}

There is no specific parameter which will force the weights to the actual

Principal Components themselves; both decay terms cause convergence to

the Principal Subspace but within that subspace are nondirectional.
Model 3

d
(Tf = (I-U)A{GC - GCGTV} — GCGT AW
— A{GC — GCGTV — A~'GCGT AW}

~ A{GC — GOGT(A™1G) — A"\GCGTGY

This causes convergence to %c,n_i. The essential point to note is that
a;
the vector associated with the smallest value of A corresponds to the

vector with the largest eigenvalue.

4.2.5 Other Models

Clearly the models identified above are not the only possible models; however,
all models investigated have been found to be of one of the three classes defined
by the above three models e.g.

Model 4: Our equations are almost the same as in Model 2, but note that the
second outputs of the output neuron are calculated after the subtraction
of the inputs from their peers :

y = AWx (4.57)
y =Aly' -Uy') (4.58)
e=x-VTy (4.59)
AW = nye” (4.60)
AV = nye” (4.61)
AU = nyy” (4.62)

Then we have
y=A(I-U)y = A(I - U)AWx

Therefore

G = A(I - U)AW

G dw
— = AU -U)A—

au
o — AEAW
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As before, we can show that

dstV = A(I - U)AWC — A(I - U)AWC(A(I - U)AW)"V (4.63)
%[t] — A — U)AWC(A(I — U)AW)T (4.64)
and so that
dG
=L = AL - U)AA(I - U)AWC

—A(I = U)AA(I — U)AWC(A(I — U)AW)TV
—AA(I —=U)AWC(A(I — U)AW)T AW
= A(I —U)A(GC — GCGTV — (A(I — U)) 'GCGT(AW)
— AX{(A?W)C — (A2W)C(A*W)TV — A= A*W)C(A*W)T AW}

This model acts similarly to Model 3 in that the A=! causes convergence.
All effects, however, are even more pronounced: the differential learning
rates of the feedforward functions g; are even more exaggerated, and the
differences in the size of vectors are larger. The rationale behind this model
is that each output neuron will calculate its activation at all times based
on the sum of the inputs at that time. This is possibly the most realistic
biological model; it requires no meta knowledge and is local, simple and
parallel.

Model 5:

y =Wx (4.65)
y = Ay - Uy') (4.66)
e=x-Vly (4.67)

AW = nye” (4.68)
AV = nye” (4.69)
AU = nyy” (4.70)

Then we have
y=AI-U)y = A(I -U)Wx

Therefore
G=A(I-UW
daG dw  dU
o =AU =U)— = AW
As before, we can show that
% = AI-UWC - AI -U)WC(A(I —UYW)TV  (4.71)
% = A(I -U)WC(A(I —U)W)T (4.72)
G _ A(Ge - coGatv — cocTwy (4.73)

dt
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This model acts like Model 2. It finds the Principal Subspace but not the
Principal Components themselves as there is no differential decay in the

model.
Model 6:

y = AWx (4.74)

y = Ay’ — AUY') (4.75)

e=x-VTy (4.76)

AW = nye” (4.77)

AV = nyel (4.78)

AU = nyyT (4.79)

Then we have
y=A( - AU)y' = A(I — AU)AWx
Therefore

G = A(I — AU)AW
G dW U
= AU~ AU)AT - — AA=Z AW

As before, we can show that

d
de = A(I — AU)AWC — A(I — AU)AWC(A(I — AUYAW)TV

d

= AU~ AU)AWO(A(T — AU)AW)" (4.80)
d

(Tf — A2{GC - GCGTV — GCGT AW} (4.81)

Again there is no asymmetry in the learning process and so the model will
act like Model 2 — it finds the Principal Subspace but not the Principal
Components.

4.3 Emergent Properties of the Peer-Inhibition Network

A possible criticism of envisaging biological neural nets as performing a Prin-
cipal Component Analysis is that it leads to a situation whereby one neuron
is in charge of all information passing in a particular direction; therefore, if
it is in any way damaged, the information in that direction which should be
passed on will be lost.

An interesting property of large Peer-inhibitory networks is that such so-
called “grandmother” cells take a very long while to form: the network quickly
self-organises until each output neuron’s weights are maximally sensitive to
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four or five directions, but it then takes a very long while to converge to a single
Principal Component. A typical set of weights is shown in Tables 4.9 to 4.12.
It should be seen that each weight is gradually converging to a particular
Principal Component; what is more difficult to show is that the direction
of each Principal Component is maximally associated with the weights of
approximately four or five output neurons after 50 000 iterations and the
weights only gradually thereafter converge to a single Principal Component.
The full matrix would appear as a “fuzzy” diagonal of bold-faced type.

4.4 Conclusion

In this chapter, we have used the negative feedback effect of each output neu-
ron on the other output neurons in an attempt to ensure that the weights into
each output neuron converge to the actual Principal Components themselves.
We have shown that it is not enough to simply feed back the activations of
the output neurons as they are calculated — some measure of asymmetry must
be introduced into the network.

Two main methods of introducing such asymmetry have been shown to be
successful: output neurons using different learning rates and output neurons
using different activation functions. While both of these methods have been
shown to be successful, the results of the analysis and experiments with dif-
ferent activation functions show that simply to introduce an asymmetry into
the network without a theoretical understanding of the consequences could
lead to unpredictable consequences: in the case of activation functions, it has
been shown that the same activation function can have the desired effect, no
effect or the opposite effect to that which might be predicted depending on
where it is introduced.

Nevertheless, several models have been shown to be extremely successful
at finding Principal Components of input data and hence of transmitting the
maximum amount of information with the least possible amount of hardware.
The inherent parallelism of the network should make possible a very fast
implementation of the network on parallel hardware.
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Table 4.8. Each row represents the first 7 components of the first 5 output neuron
weights in a network of 100 inputs and 50 output neurons after 50 000 iterations;
all weights not shown are less than 0.1, most considerably less...

Input 1 Input 2

Input 3 Input 4 Input 5 Input 6 Input 7

Output neuron 1
Output neuron 2
Output neuron 3
Output neuron 4
Output neuron 5

0.737 0.405
0.072 0.323
0.046 0.638
0.340 —-0.259
0.506 —0.466

0.464 0.063 0.154 0.114 -0.079
—-0.637 0.360 0.557 —0.030 —0.021
—0.375 —0.461 —0.429 —0.045 0.297
—0.255 0.533 —-0.475 —0.015 —0.440
—0.366 —0.443 0.123 0.322 0.170

Table 4.9. The same network as above after 100000 iterations...

Input 1 Input 2

Input 3 Input 4 Input 5 Input 6 Input 7

Output neuron 1
Output neuron 2
Output neuron 3
Output neuron 4
Output neuron 5

0.898 0.325
0.021 0.361
—0.095 0.626
0.266 —0.289
0.329 —-0.525

0.256 —0.021 0.081 —0.025 —0.048
—0.690 0.379 0.466 —0.032 0.059
—0.319 —0.496 —0.471 0.043 —-0.091
—0.378 0.490 —0.653 —0.086 —0.226
—0.488 —0.525 0.101 0.190 0.209

Table 4.10.

The same network as above after 200000 iterations...

Input 1 Input 2

Input 3 Input 4 Input 5 Input 6 Input 7

Output neuron 1
Output neuron 2
Output neuron 3
Output neuron 4
Output neuron 5

0.922 0.022
0.207 0.191

0.162 —-0.130 —0.032 —-0.015 0.023
—0.850 0.339 0.248 0.083 —-0.053

—0.082 0.845 —0.082 —0.457 —0.273
0.034 —-0.184 —0.257 0.180 —-0.914
—0.010 —0.479 —0.398 —0.737 0.005

0.004 0.060
—0.121 —-0.016
0.237 0.131

Table 4.11.

The same network as above after 300000 iterations...

Input 1 Input 2 Input 3 Input 4 Input 5

Input 6 Input 7

Output neuron 1
Output neuron 2
Output neuron 3
Output neuron 4

—0.167 —0.037
0.308 0.091
—0.265 —0.101
0.034 —-0.971

0.961 —-0.133 0.139
0.218 0.164 —0.902
0.063 0.949 0.078
—-0.032 —0.063 —0.102

Output neuron 5

—0.137 —0.219 —-0.367 —0.860 0.011

—0.002 0.041
0.035 —0.015
0.056  0.016
—0.157 0.067
0.190 0.103

Table 4.12. At the other end of the matrix/table, the output neurons’ weights are
converging only slightly more slowly.

Input 50 Input 49 Input 48 Input 47 Input 46 Input 45 Input 44

Output neuron 45
Output neuron 46
Output neuron 47
Output neuron 48
Output neuron 49
Output neuron 50

0.013 0.273 -0.061 0.123 -0.717 -0.077 0.297
0.129 -0.172 0.122 0.271 -0.017 —0.868 0.039
0.065 0.317 —-0.072 —-0.859 —-0.090 —0.313 0.018
—0.088 0.058 0.963 -0.114 —-0.105 0.121 —-0.093
0.731 0.558 0.080 0.223 0.270 0.108 0.002
0.617 -0.654 0.007 —-0.237 —-0.297 0.170 —-0.015
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Multiple Cause Data

Barlow [5] has developed a theory of learning based on the neuron as a “sus-
picious coincidence detector”: if input A is regularly met in conjunction with
input B this represents a suspicious coincidence; there is something in the
neuron’s environment which is worth investigating. A crude example might
be the coincidence of mother’s face and food and warmth for a young ani-
mal. Field [45] has made an important distinction between compact codes
and sparse distributed codes (Fig. 5.1). These types of codes are sometimes
known as “factorial codes”: we have lots of different symbols representing the
different parts of the environment and the occurrence of a particular input
is simply the product of probabilities of the individual code symbols. So if
neuron 1 says that it has identified a sheep and neuron 2 states that it has
identified blackness, then presenting a black sheep to the network will cause
neurons 1 and 2 to both fire. Also such a coding should be invertible: if we
know the code we should be able to go to the environment and identify pre-
cisely the input which caused the code reaction from the network. So when
we see neurons 1 and 2 firing we know that it is due to a black sheep.

compact coder sparse distributed coder

- T

Fig. 5.1. The coder on the left is transforming the data by reducing its dimen-
sionality. That on the right retains the dimensionality of the data but sparsifies its
representation
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A compact code is a code such as that formed by projecting the data onto
the first few Principal Components of the data. In other words, such a code
will reduce the dimensionality of the representation while, if it is to be a good
code, retaining as much of the information in the data as possible. A sparse
distributed code, on the other hand, retains (or perhaps even increases) the
dimensionality of the representation, but in such a way that any individual
code uses only a few dimensions of the channel.

However, in a sparse distributed code, while overall each individual cell
may have the same probability of firing, the chances of two cells firing together
are very much reduced. Thus, the chances of false “suspicious coincidences”
are very much reduced. The statistics of such a code are strongly kurtotic —
each code has a great number of low firing cells corresponding to the random
occasional firing of neurons, while at the same time there are a few cells, those
which correspond to the signal, firing very strongly.

Hertz et al. [73] point out that simple competitive learning leads to the
creation of grandmother cells, the proverbial neuron which would fire if
and only if your grandmother hove in sight. The major difficulty with such
neurons is their lack of robustness: if you lose your grandmother cell, will you
never again recognise your grannie. In addition, we should note that with NV
grandmother cells we can only recognise N categories, whereas if we are using
a binary code, we could distinguish between 2 categories.

So simple competitive learning leads to a single neuron firing in response
to an input pattern. At the other extreme, when a large number of neurons
are firing for each input pattern, subsequent layers have to work much harder
to identify the information being presented by that layer.

Foldidk [46] has suggested that an appropriate compromise between these
competing constraints would be to have the neurons in a layer forming a
sparse coding of the input data. i.e. each pattern is represented by a set of m
firing neurons where m > 1 but m << n, the number of neurons in the layer.
He believes that such a representation potentially trades off the benefits of
increased representational capacity to be had with a distributed representation
with the simplicity to be had with a completely local representation. It is this
balance between cooperation (so that a set of output neurons can represent
the input pattern which is currently being presented) and competition (so
that not all outputs are used to represent all patterns) that seems necessary
for the extraction of salient features of the problem. Other networks which
are designed to tackle the same problem are discussed in Appendix B.

We will maintain a close connection with psychological principles which
should suggest that we are using a biologically plausible rule such as the
Hebbian rule. We have seen that the Hebbian rule will extract information
from the environment. What we need to do is modify the Hebbian rule so that
each neuron responds to a particular set of inputs which is unique to itself.
One way to do this is with competitive learning; we will be more interested in a
second way which uses an implicit competition. This will involve a rectification
of the negative feedback PCA network (we will ensure that all outputs or
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weights remain positive) which we will discuss initially in terms of constrained
PCA and then subsequently in terms of Factor Analysis (FA).

5.0.1 A Typical Experiment

Sample
input
patterns

% Output

Patterns

Fig. 5.2. The top line shows sample data (input values) presented to the network.
The second layer shows the independent sources which we hope will also be the
network’s response. If this is so, it has clearly identified the suspicious coincidences
of lines (several squares regularly being nonzero simultaneously).

A standard data set, which we will use in this chapter, consists of a square
grid of input values where x; = 1 if the i*" square is black and 0 otherwise (see
Fig. 5.2). However the patterns are not random patterns: each input consists
of a number of randomly chosen horizontal or vertical lines. The network
must identify the existence of these lines. The important thing to note is that
each line can be considered as an independent source of blackening a pixel on
the grid: it may be that a particular pixel will be twice blackened by both a
horizontal and a vertical line at the same time, but we need to identify both
of these sources.

Typically, on an 8*8 grid, each of the 16 possible lines are drawn with a
fixed probability of % independently from each of the others. The data set then
is highly redundant in that there exists 264 possible patterns and we are only
using at most 2'6 of these. We will typically have 16 output neurons whose
aim is to identify (or respond optimally to) one of the input lines. Thus from
any pattern composed of some of the set of 16 lines, we can identify exactly
which of the 16 lines were used to create the pattern. Note the factorial nature
of the coding we are looking for: neurons 1, 3 and 10 will fire if and only if
the input is composed of a pattern from sources 1, 3 and 10. Note also the
code’s reversibility: given that neurons 1, 3 and 10 are firing we can recreate
the input data exactly.

If we use a principal component net on this data, our first principal com-
ponent will be a small magnitude uniform vector over all 64 positions. i.e. we
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get a global smearing of the patterns which does not reveal how each pat-
tern came to be formed. Subsequent principal components will not identify a
unique bar.

5.1 Non-negative Weights

There is one obvious asymmetry used in nature which we have not used as
yet: it is believed that signals from neurons may be excitatory or inhibitory
but not both i.e. a neuron’s output can excite (positively) other neurons or it
can inhibit (negatively) other neurons; what cannot happen is that it switches
between excitation and inhibition. The results reported in previous chapters
were based on a model where the weights were allowed to take any value,
positive or negative, and so every neuron could switch between excitatory
and inhibitory values. If we allow only non-negative weights i.e. ensure that if
a weight, while learning, never takes a negative value, we have the following
interesting situation.

Assume that two weights of our converged network have values ac;+bc; and
cc; + dcj, with the same notation as before. Then, since the weights converge
to an orthogonal basis of the space, ac + bd = 0. Now if none of the terms
a, b, c or d can be negative, then at least two must be zero (one from each term
ac and bd). In other words, this constraint swings the weight vectors through
the weight space to the actual Principal Components themselves. Since we are
not directing the process, situations where several sets of weights converge to
the same Principal Component tend to appear. An extreme example is shown
in Table 5.1 in which we report the results of a simulation on the same type
of data as previously but where the basic VW negative feedback network was
set up and the weights allowed to learn concurrently but with the constraint
of non-negativity.

Table 5.1. The weights of a five input, four output neuron network with the same
type of input data as previously.

Input 1 Input 2 Input 3 Input 4 Input 5
Neuron 1| 0.552 0 0.004 0.000 0.001
Neuron 2| 0.700 0 0.005 0.000 0.001
Neuron 3| 0.035 0.991 0.004 0.000 0.000
Neuron 4|0.450 0 0.003 0.000 0.001

Clearly, the weights of output neurons 1, 2 and 4 have all converged to
the same Principal Component. Note that, at the end of the simulation, the
weights marked only “0” have been stopped from becoming negative.
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5.1.1 Other Data Sets

However, there is one clear difficulty with this program — if we are calculating
Principal Components from a general data set, there must be a negative term
in at least one of the Principal Components’ coordinates. (In order to have
orthogonal directions, the inner product of the components must be zero and
hence there must be at least one negative component).

Table 5.2. Sample Principal Components of the data calculated using a standard
statistical package.

Direction 1 2 3 4 5 Value
First PC | 0.584 0.811 0.000 —-0.002 —0.002]| 59.3
Second PC| —0.006 0.001 —0.469 —0.617 —0.632| 33.7
Third PC |-0.811 0.584 —0.010 0.005 0.011 7.1
Fourth PC| 0.012 -0.008 —0.876 0.235 0.421 | 2.4
Fifth PC | 0.002 -0.001 0.111 —-0.751 0.650 | 0.5

To further investigate the network’s potential, data from a distribution
whose Principal Components are shown in Table 5.2 was used as input to the
network: it should be clear that there is a sharp division in the data between
the first two directions and the last three.

It might seem to be possible for the network to converge to a mixture of the
above weights e.g. the filters {0.584,0,0.469,0,0} and {0,0.811,0,0.617,0.632}
span the subspace of the first two Principal Components. This does not hap-
pen; the network converges to the first two Principal Components themselves
(see analysis in the next section).

It is impossible for the network using the positive weight constraint to
converge to any filter containing a negative component i.e. from the third
onwards. To find out how the network would respond to a situation where
there were more degrees of freedom than possible directions to be found, we
used the network with these five inputs and four output neurons (with the
constraint that no weights are allowed to become negative). The results are
shown in Table 5.3.

Table 5.3. The weights of a five input, four output negative feedback network
operating on the data of the previous table.

Output neuron 1{0.005 0.000 0.465 0.616 0.635
Output neuron 2(0.391 0.518 0.001 0.000 0.000
Output neuron 3|{0.324 0.467 0.001 0.000 0.000
Output neuron 4(0.296 0.409 0.001 0.000 0.000
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It is clear that the first output neuron has found the second Principal
Component while the second, third and fourth output neurons have found
the first Principal Component. This is a general finding with this type of
network with the non-negative weight constraints.

This form of information extraction may be important if the data has been
preprocessed in order to isolate the “texture” data from the “colour” data from
the “smell” data, etc.. This type of distributed data-processing is known to
happen in biological neural networks. However, this type of data-processing
cannot be an initial data-processing function. The information must first be
differentiated into disjoint dimensions: if there is any overlap between the
dimensions in which the data exists, no more than one Principal Component
per data set is possible.

We note that the length of the total vector of weights into output neu-
rons 2, 3 and 4 is one unit. This is convenient in that it dispels the end of
“grandmother cells”— that elusive neuron which would recognise only your
grandmother. If such recognition is spread over a group of neurons such as is
shown here, this provides a robustness in the network which has been missing
up till now.

Restricting ourselves to our specialised data, we can show that the princi-
pal component directions are found: in Table 5.4, we show the weights from a
network with 100 inputs of the same specialised form as before and 50 output
neurons. All weights not shown were under 0.015 after 100 000 iterations. We

Table 5.4. Results from a negative feedback neuron network with 100 inputs la-
belled 0-99, and 50 output neurons labelled 0-49, e.g. the weights into output neuron
0 have converged to (input) direction 9 and the weight in that direction was 1.000

Neuron|Input|Weight ||Neuron|Input |Weight || Neuron |Input | Weight
0 9 1.000 17 23 | 0.999 34 10 | 0.374
1 19 | 1.000 18 3 | 0.308 35 20 | 0.999
2 33 | 0.998 19 4 | 0.455 36 16 | 0.999
3 8 | 0.554 20 28 | 0.998 37 25 | 0.999
4 12 | 1.000 21 5 | 1.000 38 6 | 0.999
5 1 |0.370 22 27 | 0.998 39 0 | 0.641
6 1 | 0.490 23 35 | 0.993 40 18 | 0.999
7 0 |0.611 24 26 | 0.998 41 31 | 0.998
8 2 | 0.999 25 30 | 0.999 42 22 | 1.000
9 32 | 0.997 26 14 | 0.999 43 7 10.674
10 15 | 0.999 27 3 10951 44 0 | 0.142
11 8 | 0.481 28 10 | 0.870 45 10 | 0.320
12 29 | 0.998 29 11 | 0.797 46 21 | 0.999
13 34 | 0.995 30 17 | 0.999 47 7 |0.738
14 0 | 0.441 31 8 | 0.679 48 11 | 0.602
15 13 | 1.000 32 1 0.451 49 1 0.648
16 4 ] 0.890 33 24 | 0.999
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note that

e The weights into each output neuron converged to a single Principal Com-
ponent.

e Some of the directions with largest eigenvalues, (those of the first 12 Prin-
cipal Components) were covered by more than one output neuron. Max-
imally, directions 0 and 1 were covered by the weights of four output
neurons.

The weights in each direction still (approximately) had length 1.

There is no half-way house with this network’s converged weights — the
weights into different output neurons are either totally orthogonal or in
completely the same direction.

The last two points are potentially important in considering a negative
feedback network as a possible explanation of biological networks’ information
management processes. If such recognition is spread over a group of neurons
such as is shown here, this provides a robustness in the network which has
been missing up until now. Further, since the total weight in any direction still
has length 1, then directions which are represented by more than one output
neuron are not over emphasised in any data processing.

Experiments with larger sizes of networks have shown that the above ef-
fects increases with size.

5.1.2 Theoretical Analysis

Consider a network with four inputs and two output neurons. Let the eigen-
vector of the input data with the largest eigenvalue be a = {a1, a2,0,0} and
the second eigenvector be b = {0,0,b3,bs}. Then, in the situation described
in the last section, if w; is the vector of weights into output neuron 4, then
w1 converges to a and wy to b, or vice versa. We show that this is a stable
solution.

The expected input is

E(I) = kaa —+ kbb = {kaal, kaag, ]431,1)37 kbb4} (51)
E(y1) = ka(af + a3) (5.2)
E(e1) = kqay — kqay(a? + a3)
So, the expected change in the weight between x, and y; is
E(Awy) = nE(eiyr)
= n{(a1(1 — (a + a3))kz(af + a3)} (5.4)
So, since a; # 0,Vi and k, > 0, E(Aw;;) = 0 <= a? + a3 = 1. Since the
eigenvector a has length 1, the converged weights are stable.

Now consider a network whose weights have converged to values incorpor-
tating both eigenvectors e.g. let w; have converged to {a1,0,b3,0} and wo
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have converged to {0, as,0,bs}. Then a similar argument to the above leads
to
E(Awiy) = (kqal + kpb3)ar (ke — (keai + kpb3))

So E(Awiy) = 0 <= ko = ky 12
on the input data relating the internal proportion of each eigenvector in each
direction to the relative size of each eigenvalue.
Thus, while it is possible to construct data to satisfy these criteria, it is
not generally the case that data sets will comply with the constraints.
Further, note that this equation is only one of foug deri\gable from the
kq b3 b

system. We can show that the system requires =g = for stability.
2 1

b2 . . .
7 = kba—%. This equation imposes constraints
1 2

This will not generally be true.

5.1.3 Conclusion

We have shown that the constraint of not allowing the weights to become
negative has an interesting effect on our artificial data sets: the actual Prin-
cipal Components (rather than the Principal Subspace) is found in a totally
parallel network with no lateral connections. The experiment with the data
whose Principal Components, of necessity, contained a negative weight value
showed one limitation of this network and so it cannot be used with general
data sets to find all principal components. However, the experiments do sug-
gest that the network can extract interesting factors which underlie a data
set. It is from this perspective that we now examine this network.

5.2 Factor Analysis

A standard method of finding independent sources in a data set is the statis-
tical technique of Factor Analysis (FA). It is in the nature of human existence
that we find raw data far less interesting than data which has been defined in
some structured model: we may have raw crime statistics showing criminals
ages, history, background, family circumstances, employment and so on, but
it is only when we structure the data that we gain information. We need not
necessarily be stating that a specific factor causes the criminality, merely that
it helps to explain the data. In doing so we are performing an elementary
factor analysis. Various early neural network models which approach Factor
Analysis are discussed in Appendix B.

PCA and FA are closely related statistical techniques both of which achieve
an efficient compression of the data but in a different manner. They can both
be described as methods to explain the data set in a smaller number of di-
mensions, but FA is based on assumptions about the nature of the underlying
data whereas PCA is model free.
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We can also view PCA as an attempt to find a transformation from the
data set to a compressed code, whereas in FA we try to find the linear trans-
formation which takes us from a set of hidden factors to the data set. Since
PCA is model free, we make no assumptions about the form of the data’s
covariance matrix. However, FA begins with a specific model which is usually
constrained by our prior knowledge or assumptions about the data set. The
general FA model can be described by the following relationship:

x=Af +u (5.5)

where x is a vector representative of the data set, f is the vector of factors,
A is the matrix of factor loadings, and u is the vector of specific (unique)
factors.

The usual assumptions built into the model are that:

o FE(f) =0, Var(f) =I i.e. the factors are zero mean, of the same power and
uncorrelated with each other.

e E(u) =0, Cov(u;,u; ) =0, Vi, j, i.e the specific factors are also zero mean
and uncorrelated with each other.

e Cov(f,u) = 0 i.e. the factors and specific factors are uncorrelated.

Let ¥ = E(xx') be the covariance matrix of x (again assuming zero mean
data). Then ¥ = AAT + @ where & is the covariance matrix of the specific
factors, u, and so @ is a diagonal matrix, diag{®11, P22, , Prrar}. Now whereas
PCA attempts to explain X' without a specific model, FA attempts to find
parameters A and ¢ which explain X' and only if such models can be found
will a Factor Analysis be successful.

Estimations of the Factor loading is usually done by means of one of
two methods — Maximum Likelihood Estimation or Principal Factor Analysis
[125]. Since Principal Factor Analysis is a method which uses the covariance
matrix of the input data, this is the method in which we shall be interested
in this chapter.

5.2.1 Principal Factor Analysis

We can expand the main diagonal of ¥ = E(xx') as

op =3 A+ 8% =hl+ 0 (5.6)
J

i.e. the variance of the data set can be broken into two parts, the first of which
is known as the communality and is the variance of x; which is shared via the
factor loadings with the other variables. The second is the specific or unique
variance associated with the i** input.

In Principal Factor Analysis (PFA), an initial estimate of the communal-
ities is made. This is inserted into the main diagonal of the data covariance
matrix and then a PCA is performed on the “reduced correlation matrix”. A
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commonly used estimate of the communalities is the maximum of the square
of the multiple correlation coefficient of the i*" variable with every other vari-
able. Then PCA is used to give the eigenvector—eigenvalue decomposition of
the matrix X — & = Zi\il aicic;fr where & is the estimated specific variances

and o is the i*" eigenvalue corresponding to the i*" eigenvector c;. The esti-
1

mated factor loadings are given by = a?c;, where ); is the column vector
associated with the i*" factor. Now estimates of the specific variances can be
calculated using

M
in = Oz'Qi - Z)‘?j (5.7)
j=1

Note, however, that this method will only provide a feasible factor analysis if
all of the &2, = o2, —Zjlvil 5\% are non-negative since these values represent the
specific variances. This fact can be used to determine the number of factors
which the model permits.

5.2.2 The Varimax Rotation

In PCA the orthogonal components are arranged in descending order of im-
portance and a unique solution is always possible. The factor loadings in FA
are not unique and there are likely to be substantial loadings on more than
one factor that may be negative or positive. This often means that the results
in standard FA are difficult to interpret. To overcome these problems it is pos-
sible to perform a rigid rotation of the axes of the factor space and so identify
a more simplified structure in the data that is more easily interpretable. One
well-known method of achieving this is the Varimax rotation [125]. This has
as its rationale that factors should be formed with a few large loadings and as
many near-zero loadings as possible, normally achieved by an iterative max-
imization of a quadratic function of the factor loadings. It is worth noting
that the Varimax rotation aims for a sparse response to the data and this was
acknowledged as an efficient form coding.

5.2.3 Relation to Non-negativity

We consider the output vector y to be a vector of factors and the weight
matrix, W, to be the factor loadings. In constraining the weight vectors, we
are making an assumption about the form of the model. The learning rules for
the Principal Subspace network have been shown [101] to be an approximation
to the learning rules necessary to minimise F(W,x) = ||(x — WWTx)||?. By
adding the constraint that all weights must be non-negative, we are creating
a constrained optimisation problem which can be solved by the method of
Lagrange multipliers:

Minimise L(W,x) = [|(x — WWTx)||? + Ag(W) where A is the matrix of
Lagrange multipliers and g(WW) = W in this case. Now at the optimal point,
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the weights, W, and the Lagrange multiplier matrix, A , are known to satisfy
the Kuhn—Tucker equations:

OF  \» 09(W")

p A =0
owy; Y Owy;

g(W?) =0

A <0

AijgW™) =0
which, in the special case g(W) = W gives

oF

9T~

owy; Ay
wi; >0

* *
Ajjwi; =0

where we have used the asterisk to identify the optimal point.
Now this last equation Aj;w;; = 0 means that this additional constraint
is removed for any nonzero weight i.e. if w}; # 0 then A}; must be 0. So for
positive weights, a standard PCA is being performed i.e. the first condition

becomes a‘?f;_ = 0. The additional constraint only applies to those weights

which have gjone to zero through rectification. Thus a (depleted) PCA is being
formed — each neuron is attempting to extract the maximum variance from
the depleted input vector. So this method is similar to PFA in that the model
is constrained before performing a PCA. This method has been shown to be
effective in finding the factors which underlie a data set.

5.2.4 The Bars Data

In this section, we illustrate the network’s performance with the benchmark
“bars data”. The networks are trained over 50 000 presentations of the data
with a learning rate of 0.05 which is annealed linearly to zero over the train-
ing period. The squares in the following figures are individual weight vectors
each connected to one output, arranged 2-dimensionally for convenience when
viewing the results. The diameter of circles within the squares represent the
individual weight values where black is a positive weight and white is a neg-
ative weight.

We use the more difficult form of this data in that horizontal and vertical
bars may appear together. Each bar (horizontal or vertical) may appear at
the input to the network with a probability of 1/8 as described previously.

The converged weights of our network when using the straightforward
rectification of the outputs are shown in Figure 5.3.
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Fig. 5.3. Converged weights of the nonlinear PCA network with the straightforword
rectification [y]" with 16 outputs. Each square represents the weights into a single
output neuron and these weights have been arranged so that horizontal and vertical
bars are identifiable by eye.

5.2.5 Continuous Data

As an extension to the factor analysis on discrete data, we use five mixtures
of sine waves as input data to our network so that

xo = sin(t) + sin(2¢)
= sin (t+ =) +sin (2t + )
x1 = sin g) Tsin 1

To = sin (315 + 377T>

4
x3 = sin <4t + %) + sin(5t)
x4 = 2sin(5t)

The first two mixtures, xy and x1, are identical but slightly out of phase,
the third is a totally independent sine wave and the last two contain the same
sine wave, however, one has another sine wave mixed with it. Therefore the
relationship between the outputs of the sources is straightforward in the case
of x3 and x4 but time-varying in the case of x¢ and x; where the underlying
source is emitting different phase signals (Figure 5.4 might give a clearer
idea of the relationships). Results are shown in Table 5.5: the first neuron is
identifying x3 and x4 while the second identifies xg and x1; both ignore x3.
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Fig. 5.4. The five dimensional data set: the first two are the same signal but with
slightly diffferent phases; the last two both contain a signal of frequency sin(5t).

Table 5.5. The converged weights of the network showing that the underlying
sources have been found.

Output 1 Output 2
Input 1| 0.000755 0.708634
Input 2| 0.001283 0.705238
Input 3| 0.021043 0.021338
Input 4]/ 0.708208 0.002265
Input 5/0.705604 0.001692

5.2.6 Generalised PCA

Not unnaturally, the topic of “nonlinear PCA” receives a great deal of atten-
tion from the neural net community e.g. [169, 32, 144, 100, 103, 140, 101, 99].
The impetus for such a development is the recognition that neural networks
are ideally suited to nonlinear adaptation because of their incremental meth-
ods of learning: while closed-form solutions may exist for linear processes such
as PCA, such methods are simply not possible for non-linear algorithms.

Karhunen and Joutsensalo [101] derived from Oja’s Subspace Algorithm
[138]

AW (t) = n(O = WEWT (@)x()x" (W (1)
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three nonlinear equations by introducing a nonlinear function f() in one of
three ways:

AW (1) = n(O)x(6)x" (OW (1) = WEFWT (O)xO)x"(OW ()] (5.8)
AW (t) = n(O)[I = W)W [)x(t) f (=" ()W (1) (5.9)
AW (1) = n(O)[x() f(x" (OW (1)) = W) F(WT (£)x(1)) f (" ()W)](5.10)

(5.8) has a first term identical to the PCA rule; it can be shown to converge to
the Principal Components and, it is claimed in [101], does so more robustly
than the totally linear algorithm. (5.9) was derived in from a constrained
optimisation criterion and will be used in Exploratory Projection Pursuit in
Chapter 6. We now follow [101] in deriving (5.10).

First consider a negative feedback network which calculates a (nonlinear)
function, f(), of the weighted activations passed to it and then returns (via
the same weights) and subtracts this function from the input neurons. i.e.

N
yi = fla) = 1| Y wiz; (5.11)
j=1
M
=) iy (5.12)
k=1
Awij = "NtYi€y (513)

=mf <Z wik$k> {wj - szjf (Z wlkxk> } (5.14)
k=1 1=1 k=1

Consider the optimisation criterion that the reconstruction error, e, of the
N-dimensional input vector x is made as small as possible after activation is
returned from M output neurons. i.e. we wish to minimise

J(W) = %1TE(e2|W) = %1TE[(X —WFWTx))?|W] (5.15)

where 1 is the vector of 1s. We note that Karhunen and Joutsensalo have
suggested that, instead of the mean-square error which we have used, we
may use any even, monotonic, nonconstant, nonnegative, continuously differ-
entiable cost function which has a minimum at e = 0. They also note that
the function f() must be an odd function in order that the feedback process
stabilises.

Now consider the reconstruction error e; at the 4" input neuron.

M
=x; — Zwijf(wi.x) (5.16)
i=1

where, as before, w; is the vector of weights into the i** output neuron. Then
we wish to find stationary point(s) of the derivative of J(W) i.e. where
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8J(W) o 8ej _
= ;ej B = 0 (5.17)
Now,
5(:? = — Wy ' (Win.X) — (Wi x)[0,0, ..., 1,0,..0]T (5.18)

where f’() denotes the derivative of f() w.r.t w,, and the last vector has a 1
in only the 5" position. Then,

) M

M
aé]\fvmm/ - Z <Ij - ;wijf(wi.x)) )

j=1

(Wi [ (Wi X)X + f(Wi,.x)[0,0, .., 1,0..,0])
= —(x = WTFWx)W ' (Wx)x — (x = W' f(Wx)) f(Wx)
(5.19)

This can be used in the usual way in the gradient ascent algorithm

aJ(W)

AW
< Tow

to give a learning rule
Awy, = (x = WTF(Wx))W f'(Wx)x + (x — WT f(Wx)) f(Wx)  (5.20)

Now the first term affects the weight update on an element—by—element basis
while the second term affects each element uniformly; so the driving force of
weight convergence comes from the second term.

Therefore the algorithm given by (5.10) may be thought of as an approxi-
mation of an algorithm to minimise the reconstruction error at the summing
neurons. We note that the linear case as developed in previous chapters is a
special case of this algorithm with f(y) = y and Xu [185] has shown in this
case that the direction of the rate of change of weights using the subspace
learning algorithm is on average the same as the derived direction found by
the derived algorithm (5.20).

5.2.7 Non-negative Outputs

A constraint which has the same effect of enforcing non-negativity on the
weights is to only allow the outputs to be non-negative: this can be shown
to have the same effect of forcing the weights to learn the individual factors
underlying a data set. Thus we are using a simple nonlinear function in (5.11)
of

a;, ifa; >0
vi = flag) = { 0, if a; <02
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Though this works perfectly well in identifying underlying causes, it has the
disadvantage from a theoretical perspective that it is a discontinuous (and
hence nondifferentiable) function. However, we can smooth the effect rather
than have a strict cut-off by creating a function of the activation which gives
a very small value when the weights are negative. This allows us to use all the
theory associated with nonlinear Principal Component networks [101, 102].
The algorithm then becomes

Awij = n{yiz; — yi Y wrsyr}
k

where e.g. y; = exp Zwijxj
J

1
1+ exp({— 32, wijz;} + a)

or y; =

The last of these we will call the soft threshold function since the value of a
can be chosen to vary the response of the function to different data sets.

All of these methods used with the negative feedback rule in parallel, cause
convergence of the weights to find the individual bars. Figure 5.5 shows the
converged weights when using the threshold implementation of the network.
We use the soft threshold function with the artificial data here as it is very
flexible to work with and forgiving of nonoptimal network parameters. The
other threshold functions from this family once optimised, however, yield re-
sults that are virtually indentical.

Fig. 5.5. Trained threshold network — 16 outputs.

5.2.8 Additive Noise

However, the outputs of the network as described up until now will learn
partial bars when there are more outputs than causes, i.e. the bars are shared
between the outputs. If there are sixteen causes in the input space then only
sixteen outputs should be used to code these individual causes regardless of
the dimensionality of the output space. We do not wish to require to have this
prior knowledge of the number of sources hidden in the signals; we wish the
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network to tell us in some way how many signals there are in the mixture and
stop learning when only these signals have been learned. We will show that,
by adding noise to the network after the application of the nonlinearity, we
can ensure that only as many outputs respond to the data as there are causes.
An added bonus is that this may be interesting from a biological perspective
as real neurons tend to operate in a noisy environment. There are already
a number of a biologically plausible aspects to the network such as Hebbian
learning, local learning, sparse coding, as well as thresholding and, as we shall
see, the possibility of topographical mapping.

First we discuss a basis in which solely non-negative coordinates can de-
termine the position of every point.

5.2.9 Dimensionality of the Output Space

By enforcing positive-only output values it may be said that we are searching
for positive—only codes on the outputs of the network that will represent the
data. Another way that this may be expressed is that we are looking for a
set of positive only coordinates that will describe each data point. It is now
shown that the following is true: for every n—dimensional Euclidean space,
there exists an (n+1) basis in which every point in the space may be expressed
with nonnegative coordinates. We first illustrate this for a two-dimensional
space and then discuss the general case.

Let e1,es, be a basis of a two—dimensional space. Then every point, P,
may be expressed as P = (p1,p2) which is equivalent to OP = pire1 + poes
where O is the origin.

Let ¢ = —(e1 + e2). Then we will show that every point P(p1,p2) can be
expressed as P’ = (p),ph,p’) in the basis (e, ez, €) where p, p5,p’ > 0.

This is trivially true if p;,ps > 0 since P’ = (p1,p2,0) in the basis
(e1,eq,¢€).

Let p1 < 0,ps > 0, then P(p1,p2) = P'(0,p2 — p1, —p1), since

OP’ = 0e; + (p2 — p1)es + pi(er + e2)
= pie; +pre; = OP

Finally, each of 0,ps — p1,—p1 > 0, since p; < 0 and py > 0. Similarly if
p2 < 0.
If both p1,pa < 0, P'(—p2, —p1, —(p1 + p2)) has positive coordinates and

OP' = —pye; — pres — (p1 +p2)(—(e1 + e2))

-

= pie; +pres =0

Thus the assertion is true for every two—dimensional space.
Now let eq,...,e,, be a basis for an n-dimensional space. Let ¢, =
— > | e;; then we must prove that every point P(p1,..,p,) in the eq,...,e,
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basis can be represented as P’(p},...,p}) in the ey, ...,e,, €, basis with non-
negative coordinates.

Let A be the subset of indices in U = {1, ...,n} which are such that p; < 0.
Then

n
OP = Zpiei = Z pi€; + sz‘ei
i=1

ie(U—A) icA

Z bi€; — Z ij ei_z Z pj ei—ijGn

i€(U—-A) ie(U-A) \JjEA €A \JEA,j#i JjeEA
= E pi — E pbj | € — E E bj )€ — E Dj€n
ie(U—-A) jeA 1€A \JEA,j#i jeA

where we have used U — A to denote the complement of A in U. Now each
coordinate is non-negative in the new basis.

This result merely shows that is possible to code an n—dimensional space
with nonnegative-only coordinates in an (n + 1)-basis. However it is also pos-
sible to code this space with nonnegative coordinates in any basis with more
than (n 4+ 1) elements. We will derive a method for automatically finding a
basis with the least number of basis vectors in which the data set can be
expressed with nonnegative coordinates. If the data set has inherent dimen-
sionality n, this basis will have n + 1 elements. It will be overcomplete but
minimally so.

5.2.10 The Minimum Overcomplete Basis

It is well known [13] that additive noise may be used to introduce a regular-
ization term into a neural network. The addition of noise into the negative
feedback network acts in a different manner, as will become clear in the next
Sections.

Additive Noise

Nonlinear PCA was derived as an approximation to the minimisation [101] of
J = E.(||x —Wy|]?) = E.(|[x — Wf(a)||?). Now we add noise to the outputs
soy = f(a) + p where p is a vector of independently drawn noise from a zero
mean distribution and define f = f(a) so that,

eu(llx = Wyl )

(X = W(E+ )| )
- Er,u(x x = (£ 4+ p)"Whx = xTW(f + p) + (£ + )" WIW (£ + )
=E,(x"x — fTWhx - x"Wt + fTWTWFE) + E,(u" W W)
=J+ E, (W W wp)
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We have removed terms containing single expectations of p with respect
to p from the equation as they are drawn from zero mean noise.

Now the Subspace Algorithm (Chapter 2) results in an orthogonal matrix
as does the nonlinear PCA algorithm under certain constraints and so J' may
be written as

I =T+ llwill*a} (5.22)
1

Intuitively, it can be seen that when the added noise has low magnitude
then the first term of (5.22) dominates and so (nonlinear) PCA is performed
in the normal manner. If the noise variance is increased, then the learning
is moderated by this additional weighted noise term, which has the effect of
forcing some weight vectors to have only zero weight values (the degenerate
solution).

So the addition of noise to the outputs has the effect of introducing a
second pressure into the learning rule of the nonlinear PCA algorithm. This
is a natural way in which to introduce a sparsification term on to the weights.
Also as the noise is simply added on to the outputs after the application of the
nonlinearity there is less computational expense than adding a specific weight
decay term. Additionally, it is interesting to note that real neurons operate in
a noisy environment.

The Minimum Overcomplete Basis

In Section 5.2.9, we discussed how, if any data space may be represented in n
dimensions, then it may also be represented by nonnegative-only coordinates
in a basis with n + 1 basis vectors. It is desirable to predict the minimum
number of outputs that are required to represent the causes in the data so
that we may form a more efficient coding of the data. This is difficult as
any nonnegatively constrained coordinates determined by more than n basis
vectors will adequately account for the data.

The addition of noise on the outputs enables the network to find this
minimum overcomplete basis (MOB) that will account for the data, as was
illustrated in the previous section. In the standard bars example, this is a
network in which only 16 outputs respond to the data regardless of how many
outputs there are in the network in total. Each output then identifies an
individual bar or is zero, and partial bars are not shared across the outputs.
This happens because the coding cost in the network increases if the network
learns partial bars. For example, if one bar is learned by two outputs, each
output learning half a bar each, then more noise is carried back on the feedback
weights, thus creating a larger reconstruction error. Each weight vector in the
network must have a vector length of 1 so the weighted noise error fed back

through the network when a bar is learned in two halves is 2% 4 * \/g *noise =

4 xnoise . The weighted noise error fed back through the network when a bar
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is learned as a whole is 8 é x noise &~ 2.8 x noise , which is a considerably

lower coding cost.

The major advantage of additive noise is that it reduces the number of
basis terms used to code an input: we are finding the minimum overcomplete
basis.

Additive noise has a further advantage in that it can be added in a number
of ways. For example, if it is added uniformly on to all outputs, then all of the
weight vectors are penalised equally and only features that are strong enough
to dominate the noise are learned. So for the standard bar data, if we have
20 outputs in the network trying to learn 16 individual bars, then only 16
outputs will respond, the weight vectors connected to the other 4 all having
zero weight values.

5.2.11 Simulations
Random Mixes of Horizontal and Vertical Bars

In this section a variety of aspects of the network are illustrated with the
benchmark “bars data”[46]. Unless otherwise stated, the networks are trained
over 50 000 presentations of the data with a learning rate of 0.05 which is
annealed linearly to zero over the training period. The squares in the following
figures are individual weight vectors each connecting to one output, arranged
two-dimensionally so that we can conveniently view the results. The diameter
of circles within the squares represent the individual weight values where black
is a positive weight and white is a negative weight.

With the standard bars data set, but with a network with 24 outputs,
all of the bars are found but some of the bars are shared by two or three
outputs. The threshold implementation of the network is more successful at
identifying the bars in this case: Fig. 5.6 shows the converged weights when
using this implementation of the network on the data. Therefore, when more
outputs than bars are used in the network, then all of the individual bars are
identified, and redundant weight vectors simply contain noisy values. We use
the soft threshold function with the artificial data here as it is very flexible
to work with and forgiving of nonoptimal network parameters. The other
threshold functions from this family once optimised, however, yield results
that are virtually identical.

We have found that the soft threshold nonlinearity is more effective than
the plain rectification of the outputs. With exactly as many outputs as bars
then both networks identify all of the bars easily, whereas when there are
more outputs in the network than bars that make up the data set, then all of
the bars are identified, but in the case of the rectified network some bars are
identified more than once, and junctions of of bars or combinations of bars
are also found.
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Fig. 5.6. Trained threshold network — 24 outputs.

Additive Noise

Additive noise, as can be seen from the results presented below (zero mean,
Gaussian noise, of standard deviation 0.01, is added to every output) is bene-
ficial in all of these networks when added to the outputs after the application
of the nonlinearity. Fig. 5.7 shows that the additive noise enables each of these
networks to identify all of the individual bars. That is, only as many outputs
are used as are required in the coding; the weights connected to the other
outputs each learn values that are close to zero.

As stated earlier we can add noise in a graduated way across the outputs
so that the first output has zero mean Gaussian noise of standard deviation
0.001 added to it and every subsequent output having double the amount of
noise as the previous output. In a network with 20 outputs this has the effect
of forcing the first 16 outputs to learn all of the bars, but the last four to learn
nothing. In this way we can control the location on the outputs where factors
may be learned.

Illusory Causes

The human ability to find structure out of combinations of local and global
information is illustrated in Figure 5.8. It is difficult to avoid seeing the white
triangle, yet it is not there. If you are asked to give a compact description
of the image, you would invariably mention this triangle. We illustrate the
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Fig. 5.7. Trained soft threshold network with additive noise — 24 outputs. Note
that some weight vectors have no significant weight values.

Fig. 5.8. The Kanizsa triangle illustrates the human ability to identify patterns
which do not exist.
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negative feedback network performing in the same way in this section. In
the situation where bar patterns are nonsparse (the bars appear with a ran-
dom probability of 7/8 each) then networks with built—in sparse priors (see
Appendix B) cannot be expected to identify the individual bars. With the
threshold network the results (Figure 5.9) confirm that the network converges
to a very sparse representation, i.e. the illusory bars between the actual bars
patterns. As the network operates so as to find a sparse response with the
minimum descriptive length and because the individual bars are appearing in
dense patterns together, then the network cannot learn the individual bars.
Instead the network learns the spaces between bars patterns, which is the ap-
propriate sparse response (illusory bars). Note that, in this experiment that
the horizontal and vertical bars are not mixed so as to allow the weights to
learn a more visually interesting response.

Although most of the weight vectors have prominent negative values, one of
the weight vectors has small positive values on all of its weights. This weight
vector is used to ensure that the output values respond with a significant
positive value (normally a magnitude of over 3) to the illusory bars.

Fig. 5.9. The noisy soft threshold network discovers illusory bars — 24 outputs.

Using Noise to Modularise the Network Response

If the bars appear as part of horizontally or vertically moving sequences (each
sequence beginning with a probability of 1/6), then by adding lateral con-
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nections on to the outputs of the network to include temporal context and
adding modular noise to the network, it is possible to order the outputs so that
temporally close features are coded spatially close at the output neurons. For
example, this form of the network can be used to force vertical and horizontal
bars to be learned in different modules of the output space.

The lateral connections come into play after the feedforward stage of the
algorithm to give a but before the application of the nonlinearity y = f(a) (see
[26] for details). If the bars appear as part of horizontally or vertically moving
sequences, then this network now can order the outputs so that temporally
close features are coded at the output neurons in a manner that is spatially
close.

Values are given to the lateral weights proportional to the distance between
any particular pair of outputs and so an output’s activation is increased in
proportion to the previous values of the other outputs weighted by the lateral
connections, as shown above. The method of setting the lateral connections
here is simply to fix values of the weights to an output’s four nearest neigh-
bours i.e. an output is only connected to its nearest two neighbours on either
side. An asymmetry can be put into these lateral weight values to encourage
the outputs to learn the temporal sequence of the bars from left to right. Al-
though symmetrical lateral weight values also work well, sometimes the bars
are not exactly coded in sequence. Lateral weight values to the right of an
output are —0.2 and —0.7 (nearest) and to the left 0.2 and 0.7 (nearest).

We create two “wells of attraction” at the outputs of the lateral connected
network by adding local zero mean Gaussian noise after the application of
the nonlinearity proportional to | cos % , where i is the identifier of the
output, i = 1,..., M. This has the effect of encouraging one set of features
to be coded around the output that is one-third from the left and one set
of features to be coded around the output that is one-third from the right
of Fig. 5.10. This happens because the noise is of lower magnitude at these
points and so the error minimisation term of (5.22) dominates.

5.3 Conclusion

We have shown how the basic PCA network can be amended by having a
simple rectification on either the weights or the outputs which results in a
network which can self-organise in order to identify individual causes from a
mixture of causes. We have related the resulting network to both (nonlinear)
Principal Component Analysis and to Factor Analysis and shown its capa-
bilities mainly on artificial data sets. Experiments with other data sets and
extensions of the basic network can be found in the theses of Darryl Charles
[24] and Donald MacDonald [121]. Also in [66], we have shown that the non-
negativity constraints may be applied to both the bigradient algorithm [180]
and a class of algorithms derived from the generalised eigenproblem [188] in
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Fig. 5.10. Trained weights of noisy soft threshold network using noise to modularize
the response of the network.

order to create a network which also identifies independent factors in a data
set.



6

Exploratory Data Analysis

Cross-fertilisation between the fields of artificial neural networks and statis-
tics has recently proved fruitful. In unsupervised learning, the realisation that
simple neural network architectures are capable of performing classical statis-
tical analysis has allowed insight into the operation of simple Hebbian neural
networks and allowed the results of neural networks to be related to human
psychophysical performance. Principal Component networks have been the
major outcomes of this research. Here we use the same neural network archi-
tecture as in previous Chapters and show that it has other important statis-
tical properties.

Fig. 6.1. Two distributions where Principal Component Analysis does not find
the structure in the data: in the first distribution, the first PC would be an almost
horizontal chord of the arc; in the second, it would lie on the diagonal of the rectangle.
So projecting onto either principal component axis would hide the structure in the
data.

Principal Component Analysis (PCA) has proved to be a powerful tool for
the investigation and analysis of large data sets. However, some structure in
data sets is not identifiable by means of the linear associations (correlations)
among the variables; such effects as clustering or definition of edges of data
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sets are easily identified using the human eye on low—dimension projections
of data but are not achievable by using the tools of classical multivariate
analysis. For example, Fig. 6.1 (right) shows two ellipsoids representing the
shapes of two data clusters; the first Principal Component is diagonal (either
from top left to bottom right or bottom left to top right, depending on the
actual samples used) yet the structure in the data — the two clusters — is not
visible in the projection onto this direction. This problem increases in severity
as the dimensionality of the data increases. The success of PCA has, in part,
been because those directions which contain most of the variance in a data
set will tend to contain most of the structure in the data set. However, this
relationship is not logically necessary.

Exploratory Projection Pursuit (EPP) defines a recent form of exploratory
data analysis methods which attempt to find “interesting” directions in high
dimensional data (for reviews see [84, 94]). We introduce a nonlinearity to our
PCA network and show that it is capable of performing an EPP.

6.1 Exploratory Projection Pursuit

The group of methods based on Projection Pursuit is based on one central
idea: rather than solving the difficult problem of identifying structure in high—
dimensional data, project the data onto a low—dimensional subspace and look
for structure in the projection. However not all projections will reveal the
data’s structure equally well. Therefore we define an index that measures how
“interesting” a given projection is, and then represent the data in terms of
the projections that maximise the index and are therefore maximally “inter-
esting”. We will initially restrict our attention to one-dimensional subspaces
i.e. we will identify an index for each line in the space and attempt to max-
imise the index in order to make projections of the raw data onto the line as
interesting as possible.

Clearly the choice of index is the crucial factor in Projection Pursuit, and
the index is specified by our desire to identify interesting directions. Therefore
we must define what we mean by “interesting directions”.

6.1.1 Interesting Directions

Friedman [50] notes that what constitutes an interesting direction is more
difficult to define than what constitutes an uninteresting direction. The idea
of “interestingness” is usually defined in relation to the oft-quoted observation
of Diaconis and Freedman [39] that most projections of high-dimensional data
onto arbitrary lines through most multidimensional data give almost Gaussian
distributions. This would suggest that if we wish to identify “interesting”
features in data, we should look for those directions w, projections onto which
are as non-Gaussian as possible. Thus, we will look for an I(w), an index
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function of the direction w, which is maximum when the projection of the
distribution onto w is furthest from Gaussian.

Two common measures of deviation from a Gaussian distribution are based
on the higher-order moments of the distribution (see Fig. 2.4). Skewness is
based on the normalised third moment of the distribution and basically mea-
sures if the distribution is symmetrical. Kurtosis is based on the normalised
fourth moment of the distribution and measures the heaviness of the tails of
a distribution. A bimodal distribution will often also have a negative kur-
tosis and therefore kurtosis can signal that a particular distribution shows
evidence of clustering. Whilst these measures have there drawbacks as mea-
sures of deviation from normality (particularly their sensitivity to outliers),
their simplicity makes them ideal for explanatory purposes.

In passing, we note that if we know what type of interesting structure we
expect to find in the data set, instead of moving away from the uninteresting
Gaussian distribution, we could move towards the interesting direction.

6.2 The Data and Sphering

Because a Gaussian distribution with mean a and variance = is no more or
less interesting than a Gaussian distribution with mean b and variance y —
indeed this second—order structure can obscure higher—order and more inter-
esting structure — we remove such information from the data. This is known
as “sphering”. That is, the raw data is zeroed, projected onto the principal
component directions and multiplied by the inverse of the square root of its
eigenvalue to give data in all directions which has mean zero and is of unit
variance. This removes all potential differences due to first— and second—order
statistics from the data. To do this, the eigenvalue—eigenvector decomposi-
tion of the covariance matrix! is performed i.e. for input data X, we find the
covariance matrix

Y=FEX-EX))(X-EX)"=UuDU" (6.1)

where U is the eigenvector matrix, D is the diagonal matrix of eigenvalues
and the T denotes the transpose of the matrix. New samples drawn from the
distribution are then transformed to the principal component axes to give
variables y where

1 n
Vi = —F— UZ(X,L — E(Xi)),fOI' 1 S Z S m, (62)
VD; ; !

where n is the dimensionality of the input data and m(< n) is the dimen-
sionality of the sphered data. Typically m << n and so this operation makes

! In practise, we make no distinction between statistics generated by samples from
the distribution and those of the distribution itself.
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high-dimensional data more manageable. It is important to note that any lin-
ear combinations of the y-values also retains these properties of the mean and
variance e.g. see [125], Corollary 3.2.1.3.

This is the data in which we wish to find interesting directions.

6.3 The Projection Pursuit Network

The network is the same negative feedback network which we have used
throughout the book. The sole difference is that a function of the output acti-
vations is calculated after the feedback stage but before the stage of changing
the weights, and this function is used in the simple Hebbian learning proce-
dure. We have for N—dimensional input data and M output neurons

N
S; = Zwijxj (63)
j=1

M
ej =aj— ) wi;sk (6.4)
k=1
N
ri = f(si) = [ | Y wija; (6.5)
j=1
Awij = MNtri€; (66)

N M N
=nef (Z wikxk> {xj - Zwlj Zwlpxp} (6.7)
k=1 =1 =1

where 7; is the value of the function f() on the i** output neuron. Thus (6.7)
may be written in matrix form as

AW (t) = n(O)l] = WEWT ()]x(t) f(x ()W (1) (6.8)

where t is an index of time and I is the identity matrix.

The set of network rules described above is a generalisation of those for
the negative feedback network which performs PCA. Note also the difference
between this network and the nonlinear generalisation of PCA discussed in
Chapter 5: in that chapter, the nonlinear function was calculated before the
feedback and was derived as an error minimisation; in this chapter, the non-
linear function is calculated after the (linear) feedback and will be derived as
a constrained maximisation in the next section.

6.3.1 Extending PCA

Following [101], we can derive (6.8) as an approximation to the maximisation
of a function, J, of the weights J(W) = Efﬁl E(g[xTw;]|w;).
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We must ensure that the optimal solution is kept bounded; otherwise there
is nothing to stop the weights from growing without bound. Formally,

Let J(W ZE xTwy]|lw;) + ZZA” W wW; — agj] (6.9)

11]1

where the last term enforces the constraints w w; — a;; using the Lagrange
multipliers A;;. As usual, we differentiate this equation with respect to the
weights and with respect to the Lagrange multipliers. This yields respectively,
at a stationary point,

agiﬂv/[/) = BE(xg' (x"W)|[W)+WA=0 (6.10)
and WIW = A (6.11)

where ¢'(xTW) is the elementwise derivative of g(xT W), A is the matrix of
parameters a;; (often the identity matrix) and A is the matrix of Lagrange
multipliers. Equations (6.10) and (6.11) define the optimal points of the pro-
cess. Premultiplying (6.10) by W7 and inserting (6.11), we get

A= —-A""WTE(xg' (xTW)|W)

and using this value and reinserting this optimal value of A into (6.10) yields
the equation,
oJ(W)
ow

=[I - WA'WT|E(xg' (x"W)|W) (6.12)

We will use an instantaneous version of this in a gradient ascent algorithm

0.J (W)

AW
< Tow

to yield
AW = p[l — WA WTxg' (xTW) (6.13)

We will be interested in the special case where the W values form an
orthonormal basis of the data space and so A = I, the identity matrix. There-
fore, we can equate (6.13) with (6.8).

Karhunen and Joutsensalo point out that the algorithm is approximative
since the expression for A is derived from the optimum solution and used
from the beginning of the algorithm. As we shall see in Section 6.3.4, the
implications of the approximation are profound: to be used in a gradient ascent
algorithm, 2 W must be continuous and with positive slope in the iteration
intervals. We shall see that these constraints can only be justified, in general,
on the set of points where the second constraint in (6.9) is satisfied a priori.
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6.3.2 The Projection Pursuit Indices

Now for projection pursuit, we wish to maximise a specific index. But note that
from the derivation in the last section, when we wish to maximise an index
function we must use its derivative in the learning algorithm: the function
f() in (6.7) is equivalent to the function ¢'() in (6.13). Thus to maximise a
projection pursuit index e.g. for skewness, we could use a learning process like
that described in (6.13) noting that to maximise the skewness index we must
use the derivative of the index in the learning process.

We wish to emphasise the properties of the negative feedback network
rather than those of specific indices. Thus we choose to report on the net-
work’s self-organisation with the simplest possible indices. The indices which
we investigate in this section are either directly based on the higher moments
of the input data or are functions of them (see Fig. 2.4):

e To measure skewness in a Normal distribution, N(u, o) we use

E{(s — )*}

g(s) = =

where s is a random variable drawn from the distribution with mean p and
standard deviation o. Now our data distributions have all been sphered
i.e. E(z) = 0; E[(x — E(z))?] = 1 and our weights, w;, are normalised and
therefore every direction s; has the same first and second moments. Thus
g(s) = s? is a measure of the skewness of the distribution. Thus, in the
algorithm (6.8), we use

d
s)=kxs?x —s°
7(s) -
Now in all Normal directions, this measure will be zero, but in a direction
with a skewed distribution, there will be a nonzero skew value.
o Similarly, kurtosis? is measured by

Therefore as above, to measure a kurtotic deviation, we could use

d
s)=kxsdx —s*
e We can also use functions (see Section 6.3.6) whose expansions are domi-
nated by either odd or even powers of s to measure kurtosis or skewness
respectively.

2 Typically, 3 is subtracted from this measure in order to make the kurtosis of a
truly Normal distribution 0. However, since we use its derivative, we have simply
used the stated measure.
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The first two are the simplest possible measures of departure from Gaus-
sianity yet are generally not used because of their susceptibility to outliers.
Thus we have derived the third set of measures. We will use the naive sample-
based versions of the measures making no adjustments for any potential differ-
ences between sample and distribution moments (see e.g. [125] for a discussion
of such differences). We further treat each test as measuring only one facet,
although we are aware that tests for skewness and kurtosis are distributionally
dependent (see e.g. the discussion in [80]).

Traditional statistical methods require a computationally intensive recal-
culation of the distribution’s moments from a reasonable sample of data points
from the distribution each time a measure must be recalculated. However, it
will be shown that a Hebbian learning rule for neural networks based on
a measure of the instantaneous moments does in fact find that direction of
maximum interest in the sense of Section 6.1.1.

6.3.3 Principal Component Analysis

The negative feedback network introduced here is identical to that used previ-
ously as a Principal Component network. The transfer of activation is exactly
the same as described in this chapter; however, there was previously no nonlin-
ear activation function at the output neurons. This is equivalent to a network
with f(z) = z, the identity transformation. Now since f is the derivative of the
function we wish to maximise, we can see that the PCA network is maximising
the second moment of the distribution i.e. as we know, PCA is finding that
direction with greatest variance. In fact, in the simulations described below,
we use the above network twice — the first time to project the data onto the
eigenvectors corresponding to the Principal Components and the second time
to carry out Exploratory Projection Pursuit. The fact that the same network
structure is capable of performing a PCA as well as EPP is unsurprising since
Huber [84] has shown that PCA may be viewed as a particular case of Projec-
tion Puruit. Thus, for the PCA network, we are choosing f(z) = z oc - (2?)
and so the original network is seen to be maximising the second—order statis-
tics of the distribution i.e. finding the eigenvectors corresponding to maximal
eigenvalues.

This suggests that Oja’s Subspace Algorithm can be derived in terms of
a gradient ascent procedure. However, Baldi and Hornik [4] have shown that
this algorithm is not derivable from such a procedure. The reason for this
apparent contradiction is found in the approximation assumptions used in
the derivation of the algorithm and will be discussed in the next section.

6.3.4 Convergence of the Algorithm

The derivation of the algorithm was based on gradient ascent using (6.9).
Therefore, this equation must define a function of W which is twice differen-
tiable with respect to W.
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Consider first the convergence of the algorithm on the set of points re-
stricted to the surface ||w|| = ¢, where ||.|| denotes the Euclidean norm and ¢
is a constant. On this set, the second term of the equation,

M M

% 22 Aulwiwy = i), (6.14)

is a constant and we may then return to the original maximisation, which we

will denote J'(W) = Zf\il E(g[xTw;]|w;) on this set. Note first that each of

the functions used in this chapter is twice differentiable.
Used as an instantaneous algorithm, we have, for the presentation of a

single pattern x:

e For kurtosis, J/(W) = M (xTw;)*. Then gjv{z; = 12(w;.x)%z5 > 0.
Thus the function f(s) = ks®,k > 0 will converge to that direction with
maximum kurtosis when the convergence takes place on the set of all
points which satisfy ||w|| = c. Similarly the function, f(s) = ks®,k < 0
will always cause convergence to those directions with minimum kurtosis.
Therefore to test kurtosis in a situation where the form of the data is
unknown, we can (in parallel) test for both positive and negative kurtotic
distributions e.g. with f(s) = k153, k1 > 0 and f(s) = kos3, ke < 0.

e For skewness, J' (W) = Y, (xTw;)?. Now 8‘2&,‘]‘2/. = 6(w;.x)z?. Thus if

ij

17}

AW x %, we have a gradient ascent rule if E(w;.x) is greater than 0,
i.e. we will ascend till we converge to the direction with greatest positive
skewness. If F(w;.x) is less than 0, we will descend till we converge to
the direction with most negative skewness. Thus one function can be used
to test for both positive and negative skewness. It is important to recall
that this is an exploratory data investigation tool: we do not care if the
structure has positive or negative skewness — only that it is deviating from
a Gaussian distribution.

However, this does leave open the possibility that there exists a stage in
the convergence when skewness in two directions reaches a stable point
of convergence which is a mixture of two optimal states, though we have
never seen this situation experimentally.

Therefore the algorithm may be viewed as gradient ascent on the hyper-
sphere satisfying ||w| = ¢. Now we must consider the convergence of the
algorithm in general; consider (6.10) with respect to a particular vector of
weights into output neuron, i, for a function g(s) = s*. Then we have

88‘;’]1 = kX(Wi.X)k_l + WA (615)
0*J - T k—2
—— = k(k — 1)Diag{xx" }(w;.x)" 7% + A\ ] (6.16)

ow?
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where Diag{.} is an operator which sets all off-diagonal entries to 0 and J; is
the vector of Lagrange coefficients for the direction w;. Now since the data is
sphered, (:EJQ) = 1. Thus we only have a positive gradient in those directions,
w;, which satisfy \

(wix)F=2 > k(TU (6.17)
Recalling that A;; determines the relative weight accorded to the function
J' and the constraint [w? w; — &;;] and we can see that the use of the final
converged value of \;; in the converging algorithm causes a more serious prob-
lem than merely being an approximation. The algorithm is not guaranteed to
converge.

In practice, this has not been found to be a problem. One possible heuristic
would be to start the weights normalised and then converge across the surface.
However there is the possibility that the convergence process will be slower
using this. Empically, little difference has been found between starting with
small (near 0) random weights and starting with normalised vectors.

6.3.5 Experimental Results

We have shown that this algorithm causes the weights to converge to identify
the higher—order structure in a data set. Since we later wish to compare various
algorithms, we create artificial data sets in which we know the nature of the
structure in the data set and for which we know where the structure lies. Thus
we can measure how quickly the networks converge to the correct solutions.

We therefore create five dimensional data such that four dimensions con-
tain data drawn independently and identically distributed from zero mean,
Gaussian distributions while the fifth dimension contains kurtotic data: we
draw this also from a Gaussian distribution but randomly (in 20% of cases)
substitute the sample with a small random number drawn from a uniform
distribution between —0.005 and +0.005. We use the above algorithm with
f(y) = y* and repeat the experiment 100 times. The cubic nature of this
function makes learning inherently unstable and in 23 cases we found over-
flow. The convergence of the other 77 cases are shown in the left part of Fig.
6.2 in which we show the mean value of the cosine of the angle between the
network weights and the optimal value at each iteration (central line). We
also show in this figure one standard deviation above and below the mean.
In three experiments, the network did not approach convergence after 80 000
iterations. The results of the remaining 74 cases are shown in the right part
of Fig. 6.2.

More Than One Interesting Direction

Since the projection pursuit method is designed to find interesting directions
worthy of human investigation, and since humans can visually investigate
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Fig. 6.2. Left: convergence of 77 experiments towards the optimal (kurtotic) direc-
tion with f(y) = y® The graph shows the mean value of the cosine of the angle
between the network weights and the optimal weight at each iteration and one
standard deviation on either side of the mean. Right: convergence of the best 74
experiments.

functions over a plane, we are often interested in finding two independent
directions in a data set which contain interest. We first consider the situation
when each interesting direction has the same type of interest. Experiments
have shown that, in such situations, the network usually finds one direction
more interesting than the others; the weights will converge to that direction on
which the projection of the data has the largest deviation from the statistics of
a normal distribution, e.g. when the kurtosis index is 3.67 in dimension 4 and
3.66 in dimension 7, the kurtosis index function invariably causes convergence
to dimension 4.

However, it may be appropriate to find all interesting filters. This situation
sometimes [50] is dealt with by “structure removal” using a transformation of
the interesting filter to create a Normal distribution in that filter. This method
has the disadvantage that such transformations may affect the Normality of
other solution projections. However we note that the learning process used
here not only finds but removes the interesting projections i.e. the residuals
at the inputs consist of the original data minus the projections onto the learned
interesting filters. Thus we suggest running the network until one interesting
projection is found; then set these weights and restart learning with a new
output neuron. This has been found to be very effective.

When the data contains projections which are interesting in different ways,
we can investigate the data in different ways simultaneously. We can, for
example, construct a network as before but with M output neurons each of
which is searching for different characteristics in the sphered input data. So
our final algorithm is:

1. Sphere the input data.
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2. Create a set of output neurons with M different indices and train this
network. For example, for the indices we have so far considered we may
simply have two output neurons which use skew and kurtosis indices,
respectively.

3. Visually examine (either individually, as lines, or in pairs, as planes) the
projections found in order to identify humanly interesting projections.

4. Remove those neurons whose weights have not converged to interesting
projections.

5. Repeat Steps 3-5 training the new neurons on the residuals after all cur-
rent neurons have removed their projections.

6.3.6 Using Hyperbolic Functions

As an example of using hyperbolic functions we perform an experiment sim-

ilar to the last one but report the convergence of f(s) = tanh(s). Since
f(s) = tanh(s) has an expansion of s — % + 22 — ... it is an odd func-

tion. It can then be used to measure the kurtotic deviation from the normal
distribution. In detail, using tanh(s) as the learning function, f(), in (6.8)
maximises the integral of that function; thus, using f(s) = tanh(s) in the
stochastic algorithm maximises

5 franons) = p([ (s 2020 Ya) oy

:1—E<£>+E(295§>—-~- (6.21)

since s is a linear combination of sphered data.

Now for small s, the most important parts of the series are the first few
terms; also, subsequent terms alternate between reinforcing the effect of the
second term (being negative) and detracting from its effect. % > % in
the interval (—1.93, 1.93) which contains almost exactly 95% of the sphered
data in Normal directions. This proportion will be slightly different for a non-
normal direction, but the major conclusion must be that for the overwhelming
majority of the data points the driving force of the learning is the cubed term
in the expansion of tanh(s). Therefore if we use tanh(s) in our algorithm, we
are minimising s* i.e. finding projections with least kurtosis.

Similarly we can use f(s) = sech®(s) which is the derivative of tanh(s)
and is an even function, to find deviations in skewness from the normal dis-
tribution. We can, of course, search for both types of structure in parallel. In
fact, not only does the convergence of the two indices not interfere with each
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other, the convergence of each may actually help the other if we use as input
data for the second output neuron the residuals at x after the first neuron
has subtracted its projection (a deflationary network, c.f. [160]). This has the
effect of decreasing the dimension of the space of input data in which the
second neuron must search for interesting projections. Note also that these
are by no means the only functions which can be used. For example, tan=!(s)
can also be used for searching for kurtotic distributions as its expansion is
also odd.

6.3.7 Simulations

In Fig. 6.3, we show the convergence of 100 simulations on the same type of
data as before (left figure) and then the results of the best 90 experiments
in the right figure when we use f(y) = y — tanh(y), a function which we
will discuss in Section 6.6. We see that we not only improve stability but also
improve the speed of convergence with this function. (Compare with Fig. 6.2).

Fig. 6.3. Left: convergence of 100 experiments towards the optimal (kurtotic) di-
rection. The graph shows the mean value of the cosine of the angle between the
network weights and the optimal weight at each iteration and one standard devi-
ation on either side of the mean. Right: convergence of the best 90 experiments.
These graphs show results when using f(y) = y — tanh(y).

Similarly, we may create data which has one platykurtotic dimension by
sampling from a zero mean Gaussian distribution and then randomly adding
5 to the sample or subtracting 5 from the sample. This gives a bimodal dis-
tribution which the function f(y) = tanh(y) can be used to find. Thus in Fig.
6.4, we show the results of 100 experiments searching for this dimension in
the left figure and the best 99 (only one had not converged by iteration 80
000) in the right of the figure.
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Fig. 6.4. Left: convergence of 100 experiments to optimal bimodal dimension when
using tanh() in the learning rule. Right: convergence of the best 99 simulations.

6.4 Other Indices

With the method and network for Projection Pursuit now established, we
can investigate other possible indices. We will investigate indices based on
Information Theory and two specific indices: Friedman’s index and Intrator’s
index. These have aroused a great deal of interest in their respective commu-
nities and are thought to be substantially the best currently available (though
we must add the caveat that such assessments are usually made with respect
to specific data sets). The most frequently referenced indices from the statis-
tics community are those from Friedman [50] and Hall [65]. Both indices use
polynomial approximations to analytically deduced indices of interestingness;
such polynomials are usually introduced for reasons of computational effi-
ciency. We chose to investigate Friedman’s rather than Hall’s since the former
index is thought to be more generally effective than the latter (e.g. see [175]
for a recent comparison).

In the neural network community, the series of articles written by Intrator
(e.g. [87, 89, 90]) are given as example implementations of the Projection
Pursuit methodologies. Other articles (e.g. [77]) do not specifically mention
Projection Pursuit though often appearing to use a PP methodology. An
interesting implementation of PP methodologies using radial basis function
nets is given in [189].

6.4.1 Indices Based on Information Theory

As noted by Marriot (in Discussion of [94]), “ a moment criterion, or any
criterion dominated by third and fourth cumulants, will miss clustered pro-
jections that happen to be roughly symmetrical and nearly mesokurtic”; this
has led to a search for alternative measures of non-normality.
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Since the data is sphered, we may use the fact that for a constant variance,
the distribution which exhibits maximum entropy is the Gaussian. Thus we
may hope that the distribution which is furthest from a Gaussian has least
entropy. Thus the entropy

H = / ) log p(z)dx (6.22)

could be used as a measure of departure from normality. However, it is not
possible to make an instantaneous calculation of p(x) given the single input z.
A measure using entropy would require to have a memory of previous inputs
in order to calculate the relative frequency approximation to the entropy.

An alternative is to use the difference between the normal distribution
and the actual distribution which can be quantified using the relative entropy
(or Kullback—Leibler divergence [31], page 18). Thus we can measure the dis-
tance between our current distribution, defined by the probability distribution
function p(x), and the normal distribution with function ¢(z), as

DWl6) = 3 p(a) log Qj((x% (6.23)

This gives a measure of the error involved in assuming the distribution of the
x values is determined by ¢(x) when, in fact, the x values are drawn from a
distribution with pdf p(z).

It is interesting in this case to begin with the information measure which
we will use for f(z) and derive the function which we will be maximising.

Consider a neuron which is expecting inputs from a normal N (0, 1) distri-
bution. In each uninteresting projection, the actual probability distribution
which it sees will accord with its expectation that it is receiving data from
the N(0,1) distribution; however, in an interesting projection, it will quan-
tify its inputs’ values based on the prior belief that these inputs are coming
from a Normal distribution when in fact they are coming from a non-Normal
distribution.

Thus we consider the measure f(z) = —log ¢(x), where ¢(z) is the prob-
ability that it would have received input x had input x come from a Normal
distribution. Thus the expected information which it believes that it is receiv-
ing from N samples of input data from the distribution is

N
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where the input data has been binned into M boxes and the mean value of x
in the m*" box is x,,. The value p(z,,) is the relative frequency of the sample
in box m and is taken as an estimate of the probability of having an input x
in box m. Now

M
D=3 plan)log dla)
Mm 1 ) M
= pla mm) =Y p(am)log p(am)
1 m m=1

E(M@(»— H, (6.24)

where D(a||b) is the relative entropy between the distributions a and b and
H, is the Shannon entropy of the distribution a. Note that since we are using
a discrete (binned) version of p(z), we may assume that H, > 0.

Therefore, using the index g(z) = —log ¢(z), we are finding the distribu-
tion which maximises the difference between the distance from the Gaussian
distribution and its own entropy. Note the double effect — a distribution which
is furthest from Gaussian will have the least information in it.

6.4.2 Friedman’s Index

Friedman [50] has developed an index which has attracted wide interest within
the community of statistics users. Sun [175] has performed a useful and in-
formative comparison of Friedman’s and Hall’s indices and has concluded
that Friedman’s is generally better. Hall [65] agrees. Briefly, Friedman’s in-
dex is based on the transformation of the projection of the sphered data,
x'w — R = 2¢(xTw) — 1 where &(X) is the standard normal cumulative

density function
1
P dt 6.25
= [ o () (6.25)

If X follows a standard normal distribution, then R will be uniformly dis-
tributed in the interval [—1,1]. Therefore we take as a measure of the distance
of xw from the Normal distribution, the integral squared distance of the
variable R from the uniform distribution,

1 :1 {p(R - 2] dR = / v dR—% (6.26)

Friedman expands R in Legendre polynomials so that

/: p*(R)dR — % = /_1 iaj (R)dR — = (6.27)
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where the Legendre polynomials are

Po(R) =1
Pi(R)=R
27 —1)RP;_1(R)— (j — 1)P;_2(R
The coefficients a; are given by
2j4+1 [H 25 +1
o= L5= | Pmpman=LmEpn) (©629)
From this, we have an easily calculated projection index
1
g(w) = 5 3227 + (BB (R))? (6.29)
j=1
for any direction w, which is applied as
1< 1 & i
~ o . ) T _
g(w) = 3 ;(23 +1) | % ;Pj(zgp(x w) 1)1 (6.30)

to give the sample version of the index. Note that this must be maximised
under the constraint that WW7 = 1 to ensure a finite solution.

However, we require the derivative of g(w) for our instantaneous measure,
f(s), and so we use

J

Now PJ/» (R) is also easily calculated via the recursion relation

P/(R) =1

P;(R) = RP;_;(R) + jP;-1(R)

Thus the instantaneous version of Friedman’s index used in a neural network
implementation is

D
Z 2j+1)P; P exp(—(xTw)?)
j=1

Simulations on data such as used to test the polynomial indices have shown
that such an index finds projections with either skew or kurtotic deviations
from Normality with great reliability and accuracy.
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6.4.3 Intrator’s Index

Intrator [86, 87, 88, 89, 90, 91] has constructed a model for Exploratory Projec-
tion Pursuit derived from the Bienenstock, Cooper, Monro [12](BCM) model
of cortical plasticity. This model has a learning function of

d 4

di: = p(t)(x.w) <X.W - 3911;) x (6.31)
where 0, = E[(x.w)?] provides a moving threshold which yields the dynamic
flexibility necessary for stability. While this is not immediately transferable
into the format (6.8), an approximate version of the index function

o) = = { 3 Ellwax)®) - (w2} (6.32)

yields a function f(s) = a * (w.x)? + b * (w.x) which has been found (unsur-
prisingly) to have almost identical convergence properties to the simple index
for skewness since E(w.x) = 0.

A comparative study [53] of the network of this chapter and the BCM
neuron found that the negative feedback model of this chapter performed
better. To be fair, however, the comparative study was performed by the
current author who may be thought to favor this model a priori.

6.5 Using Exploratory Projection Pursuit

To illustrate the use of EPP, is it demonstrated on a small database of bank
customers, containing 1000 records, with 12 fields. (A few records are shown in
Fig. 6.7). Information stored in the database includes a unique identifier, age,
sex, salary, type of area in which they live, whether married or not, number of
children and then several fields of financial information such as type of bank
account, whether they own a Personal Equity Plan, etc.

Fig. 6.5 shows that the network has clearly identified 4 clusters in the data
set using EPP with a tanh() non-linearity i.e. we are searching for negative
kurtosis, an indicator of clusters. Manual investigation of the clusters readily
reveals that the clusters are forming on the place of residence field — each
cluster is specific to one of RURAL, TOWN, INNER CITY and URBAN
sites.

Within each cluster, there is a smooth transition within the cluster with
clearly identifiable types of customers in each group. For example, the projec-
tion of each cluster onto the first EPP direction also shows structure: in each
case, the male customers are in the left strip while the female customers are
in the right strip. In addition, the second projection may be crudely associ-
ated with a gradual change from young poor customers to old rich customers.
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Data Results
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Fig. 6.5. The EPP network with a tanh() projection index finds four distinct

clusters. The projection of each cluster onto the first EPP direction also shows
structure: in each case, the male customers are in a left strip while the female
customers are in a right strip. In addition, the second projection may be crudely
associated with a gradual change from young poor customers to old rich customers.

Thus, for example, zooming in on the top left hand corner of Fig. 6.5 gives
Fig. 6.6, the records in the square of which are shown in Fig. 6.7.

Not only are the records all from a rural district, but they also represent
young, low—income customers. Looking at the records at the bottom end of
the left cluster, gives very different records (see Fig. 6.8) from those at the
top where we show older and richer customers.

6.5.1 Hierarchical Exploratory Projection Pursuit

EPP can only provide a linear projection of the data set. There may well be
cases in which the structure of the data is not captured by a single linear
projection of the data. In such cases, a hierarchical scheme may be beneficial.
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Fig. 6.6. Records found by zooming in on the top left-hand corner of Fig. 6.5. This

is a enlarged image of Fig. 6.5, centering on the boxed area in the top left

Fig. 6.5. Some records in the square box are shown in Fig. 6.7.

corner of

077758 [ 24 | WALE RURAL [ T6A733 [ VES [ 2 VEE [ VES VEE [0 RO
1072545 | 27 | FEWALE | RURAL | 157971 | ves |10 O VES YES [ WO VES
1012610 | 23 | FEMALE | RURAL | 112153 | VeS| 2 VES [ VES YES [ MO YES
1012584 | 23 | WALE RURAL | 164038 | YES | 0 YES | VES NG NG NO
1012200 [ 18 | FEMALE | RURAL | 153480 VES |0 VES NG VEE [ WO MO
T 10 [ WALE RURAL [ 166259 | YES 1 NO RG] VES R[] YES
1012137 [ 19 | WALE RURAL | 138960 | VeS| 3 YES | VES YES [ WO NO
1012867 | 40 | FEMALE | RURAL | 15233.1 | NO 0 VES [ VES YES [ VES | VES
Fig. 6.7. Records corresponding to those in the square in Fig. 6.6. They are from
a rural area, with low income, and predominately of a young age.
77770 | 64 | FEWALE [ RURAL | 497840 [ VES VES [ VES VEE [ WO YES
1012205 | B4 [ FEMALE | RURAL | 475620 | VES |3 [ NO VES YES [ MO YES
1012222 | 62 | FEMALE | RURAL | 510188 | VES |1 | VES | VES YES [ MO YES
1012442 | 66 | MALE RURAL | 453461 | VES |1 | vES | VES NG ] VES
1072105 | 67 | FEWALE | RURAL | 517533 | VES_| 0 | MO ES MO ] MG
1012663 | 67 | FEMALE | RURAL | 508978 | VES |0 [ NO VES YES [ WO NO

Fig. 6.8. Records corresponding to the other end of the same cluster from those
records in Fig. 6.7. Here the customers are older, with a higher income, but still
from a rural area.
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Thus we have developed software which allows the user to interactively inves-
tigate data sets: the user performs an EPP on the whole data set and then
dynamically selects (by pointing and clicking a mouse) a subset of the data
on which to perform a second EPP. Typically a user will choose to search for
clusters in the data and then subsequently select one or more clusters in which
to search for subsequent structure. This may be done for as many levels as
seems suitable to the user for the current data set.

Note that we are doing more than zooming in when we use this hierar-
chical investigation. When the user selects a cluster, we perform an EPP on
the records of that cluster which results in a reprojection of the cluster which
is optimal for finding structure in the subset of records which make up the
cluster. Fig. 6.9 shows an example. Again manual inspection revealed that
the EPP has found a second cluster inside the first which contains the peo-
ple without a current account. This shows that the Hierarchical Exploratory
Projection Pursuit (HEPP) network will extract more information from the
data set than is possible with an EPP network. The HEPP network can also
be used to look for different characteristics in the second level of its explo-
ration by changing the nonlinear function used, thus changing the projection
of interest for which the network is looking.

Bata Results
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Fig. 6.9. HEPP projection of the left cluster of Fig. 6.5. This shows there are
outliers in the left cluster. It transpires that records 89 and 95 are of people younger
than the people in the rest of the leftmost cluster.
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6.5.2 World Bank Data

The world bank data set consists of entries for 124 countries, with fields for
the countries’ name, gross national product (GNP), percentage growth, GNP
per capita plus the percentage growth and finally GNP PPP (productivity per
person) and percentage growth of GNP PPP. We first used the EPP network
on the data set, and plot the results in Fig. 6.10.
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Fig. 6.10. Projections of the world bank data clearly separate the first world
countries from the remainder of the countries.

These results cluster third world countries in the upper right half of Fig.
6.10, second world countries are left and lower; in the far bottom left lies the
richest country in the world, the USA, with Switzerland, and Japan close by.
The countries are shown based on their ranking in the three areas GNP, GNP
per capita and GNP PPP in Table 6.1.

Fig. 6.11 shows the results from the HEPP network using tanh() to find
clusters, when we use it on the cluster of countries in the upper right hand
corner of Fig. 6.10. The second world countries have been separated from the
third. The hierarchical use of the HEPP network has found more structure in
the second cluster.
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Table 6.1. The data of the countries selected as outliers by the EPP network.

Country GNP |GNP per captia| GNP PPP
Japan 2 2 5
Switzerland 17 1 3
Germany 3 6 12
France 4 10 10
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Fig. 6.11. A second level clustering of countries from the non-first world countries.

As can be seen from Fig. 6.11, the third world countries have clustered
together, and the second world countries have moved out and towards the top
right. Greece and Portugal are shown to be quite a distance from third world
countries such as the Philippines, the Dominican Republic and Senegal. This
is a good visual example of the power of HEPP to find higher—order structure
in a data set: the second projection shows information that it is not possible
to show with a single projection alone.
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6.6 Independent Component Analysis
Girolami [58] has developed a slightly different form of the negative feedback
EPP network described above and used it to perform ICA.

u W v Weights

X,
u

0 .
P<©> % i) >
w0 2 > %

Fig. 6.12. The extended exploratory projection pursuit network. The first layer
of weights, U, decorrelates the inputs; the interaction between the second layer of
weights, W and the third, V' eliminates statistical dependencies from the z values.

The first layer of weights which spheres the data is based on Foldiak’s
second model [46]; the equations are

n
Zi = x; + E Uij2;
j=1

with learning rule

Auij = —CM(]. — ZiZj)
The net result is that the outputs, the components of z, are decorrelated with
about equal variance. Note that since, if the signals (such as voice signals)
are not Gaussian, this does not lead to separation of the independent sources.
The net result is the removal of the second-order statistics from the data —
the covariance matrix of the z values should be diagonal.

Now z is fed forward through the W weights to the output neurons where
there is a second layer of lateral inhibition. However, before the activation
is passed through this layer it is passed back to the originating z values as
inhibition and then a nonlinear function of the inputs is calculated:

Yi = Zwijzj
J
€j < Zj — WijYi
s; = y; — tanh(y;)

Now we pass this output through the lateral inhibition to get the final output
y values
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Yi = Si + Z VijSj (633)
J
and then the new weights are calculated

Awij = fe;yi
Avij = vyiy;

The net result is the removal of any dependence from the output signals.
The differences then from the network described above on artificial data are
the following:

1. The method of sphering is rather different. There is some evidence that a
sphering method which also equalises variance provides a better starting
point for the exploratory investigation [9] known as ICA.

2. The index is y; — tanh(y;). Therefore, whereas previously we relied on
the fact that E(tanh(y;)) was zero, this index is explicitly removing the
first-order term each time. Thus, whereas previously our argument was
true only in the expectation of the weight update, now the argument is
true for each and every data presentation.

A Simulation Example

Five samples of five seconds of natural speech were recorded using the standard
telecom sampling rate of 8 kHz. Two adult male and female voices were used
along with that of a female child. The speakers each spoke their name and a
six digit number. The samples were then linearly mixed using the 5 x 5 mixing
matrix shown in Table 6.2 which is well conditioned with a determinant value
of 1.42. The fourth—order statistics of the original signals are shown in Table
6.3.

Table 6.2. The mixing matrix used to create a babble of voices.

0.65 0.20 —0.43 0.60 0.467
-0.3 —-049 0.7 -0.3 0.57
0.68 1.5 —-0.8 041 1.34
—0.234 0.38 0.35 0.45 —0.76
0.85 —-043 0.6 —-0.7 04

The output signals played back are clear with no residual of the mixture
as shown in Fig. 6.13. When we look at the converged weight matrices, we see
that both U and V are diagonal and symmetric as would be expected. The
magnitudes of the values in U indicate the large correlations in the incom-
ing raw data, with the off-diagonal terms being typically within an order of
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Table 6.3. Fourth-order cumulants of the individual voices.

Male 1 [0.011347
Male 2 |0.001373
Female 1/0.000288
Female 2(/0.000368
Female 3|0.000191

s -
-

it ol ot
Jhrt Hoie ot

Fig. 6.13. Left column: the original signals. Centre: the mixture presented to the
network. Right: the retrieved signals recovered by the network.
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magnitude less than the diagonal terms. Compare this with the V' weight ma-
trix where the off-diagonal terms are all three orders of magnitude less than
the diagonal terms, which is indicative of the whitened input to the layer of
neurons.

6.7 Conclusion

We have introduced a neural network architecture which, using an extremely
simple architecture and learning rule, has been shown to be capable of per-
forming sophisticated statistical functions. The fact that the same network
structure is capable of performing a PCA as well as EPP is unsurprising since
Huber [84] has shown that PCA may be viewed as a particular case of Projec-
tion Pursuit. Thus, for the standard negative feedback network of Chapter 3,
in performing a PCA we are choosing g(z) = z « %xQ and so the original net-
work is seen to be maximising the second—order statistics of the distribution,
i.e. finding the eigenvectors corresponding to maximal eigenvalues.

The initial PP indices discussed in this chapter are the simplest possi-
ble indices for the finding of non-Normal interesting directions; however, the
method was shown to be equally valuable with Information Theory indices or
with more sophisticated indices such as an instantaneous version of Friedman’s
index [50] or Intrator’s index [90]. The important point to note, however, is
that the method may be used with any function denoting a criterion which
we wish to optimise. Long term it may be that information indices may prove
to be the most effective indices in analysing a variety of distributions: we en-
visage further research into indices which maximise mutual information [7],
which we will discuss in chapter 12, or maximise the effects of contextual
information subject to externally imposed conditions e.g. [104].

The advantage of using Projection Pursuit concepts is that they provide a
framework for understanding and integrating previous neural network models
which have tended to introduce nonlinearity in an ad hoc fashion. However,
we note that the format reviewed in this chapter required the function to
be optimised to be differentiable; this need not be the case for the general
neural network model. For example, Shapiro and Priigel-Bennet [169] have
introduced a nonlinearity — a power law — into Oja’s Subspace Algorithm but
also used a threshold below which the neuron will not fire. Since they set the
threshold to be zero, the analysis of convergence of a second—order network is
understandable in PP terms, yet the fact that the threshold may be changed
suggests a direction for future research of PP indices.

Koetsier [108] has twinned EPP networks so that a pair of networks jointly
extract common or shared higher—order structure over a pair of data sets. This
work will be discussed in Chapter 12.
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Topology Preserving Maps

This chapter introduces three negative feedback artificial neural network ar-
chitectures which perform a vector quantization. Vector quantization is used
in signal processing applications to encode a high—dimensional signal in order
to minimise processing/transmission costs. The basic aim is to associate with
each group of vectors of the raw data a code which uniquely identifies that
group. If the vectors of the group are sufficiently alike and the decoded code is
sufficiently representative of the group, then the error when the code is used
to represent a vector in the group can be made acceptably small. One further
feature of the mapping which we desire is that it should retain an accurate
representation of the topology of the data space. This is a rather complex
feature to specify absolutely accurately so we shall initially content ourselves
with a mapping in which nearby points in the data space are mapped to
the same or nearby neurons in the coding space while ensuring that nearby
neurons in the coding space are decoded to nearby points in data space.

7.1 Background

The most common type of artificial neural networks used to perform a topol-
ogy preserving vector quantization is that developed by Kohonen. In the Ko-
honen network, when a data point is presented to the network, a competition
takes place between the neurons and one neuron is declared the winner; its
weights and those of its neighbours are moved towards the input pattern’s
values while those of the other neurons are moved further away. The net re-
sult is that if the same input pattern or one similar to it is presented again,
the same neuron is most likely to win again. It has been shown that, after a
suitable training period, the neurons of the second layer form a map of the
inputs which preserves some aspect of the topology of the input data. Such
nets are known as self-organising nets as there is no teacher input to the net.
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We will develop two negative feedback networks which quantise the data
in a topology preserving manner but first we review competitive learning and
Kohonen’s algorithm.

7.1.1 Competitive Learning

The basic mechanism of simple competitive learning is to find a winning unit
and update its weights to make it more likely to win in the future should
a similar input be given to the network. We first have the activity transfer
equation

J
which is followed by a competition between the output neurons and then
Awij = 7](.’Ej — wl-j) (72)

for the winning neuron ¢. Note that the change in weights is a function of the
difference between the weights and the input. This rule will move the weights
of the winning neuron directly towards the input. If used over a distribution,
the weights will tend to the mean value of the distribution since Aw;; —
0 <~ Wi — E(J,‘])

7.1.2 The Kohonen Feature Map

The interest in feature maps stems directly from their biological importance.
A feature map uses the “physical layout” of the output neurons to model
some feature of the input space. In particular, if two inputs x; and xo are
close together with respect to some distance measure in the