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Foreword

Constraint Programming is an approach for modeling and solving combina-
torial problems that has proven successful in many applications. It builds on
techniques developed in Artificial Intelligence, Logic Programming, and Op-
erations Research. Key techniques are constraint propagation and heuristic
search.

Constraint Programming is based on an abstraction that decomposes a
problem solver into a reusable constraint engine and a declarative program
modeling the problem. The constraint engine implements the required prop-
agation and search algorithms. It can be realized as a library for a general
purpose programming language (e.g. C++), as an extension of an existing
language (e.g. Prolog), or as a system with its own dedicated language.

The present book is concerned with the architecture and implementation
of constraint engines. It presents a new, concurrent architecture that is far
superior to the sequential architecture underlying Prolog. The new architec-
ture is based on concurrent search with copying and recomputation rather
than sequential search with trailing and backtracking. One advantage of the
concurrent approach is that it accommodates any search strategy. Further-
more, it considerably simplifies the implementation of constraint propagation
algorithms since it eliminates the need to account for trailing and backtrack-
ing.

The book investigates an expressive generalization of the concurrent ar-
chitecture that accommodates propagation-preserving combinators (known
as deep guard combinators) for negation, disjunction, implication, and reifi-
cation of constraint propagators. Such combinators are beyond the scope of
Prolog’s technology. In the concurrent approach they can be obtained with a
reflective encapsulation primitive.

The concurrent constraint architecture presented in this book has been
designed for and realized with the Mozart programming system, where it
serves as the basis for new applications and tools. One example presented in
this book is the well-known Oz Explorer, a visual and interactive constraint
programming tool.

The author of this book, Christian Schulte, is one of the leading experts in
constraint technology. He also is one the creators of the Mozart programming
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system. His book is a must read for everyone seriously interested in constraint
technology.

December 2001 Gert Smolka



Preface

Constraint programming has become the method of choice for modeling and
solving many types of problems in a wide range of areas: artificial intel-
ligence, databases, combinatorial optimization, and user interfaces, just to
name a few. In particular in the area of combinatorial optimization, constraint
programming has been applied successfully to planning, resource allocation,
scheduling, timetabling, and configuration.

Central to the success of constraint programming has been the empha-
sis on programming. Programming makes constraint-based modeling expres-
sive as it allows sophisticated control over generation and combination of
constraints. Programming makes an essential contribution to the constraint
solving abilities as it allows for sophisticated search heuristics.

Todays constraint programming systems support programming for mod-
eling and heuristics. However, they fall short for programming search strate-
gies and constraint combinators. They typically offer a fixed and small set
of search strategies. Search cannot be programmed, which prevents users
from constructing new search strategies. Search hard-wires depth-first explo-
ration, which prevents even system developers from constructing new search
strategies. Combination is exclusively based on reification which itself is in-
compatible with abstractions obtained by programming and often disables
constraint solving when used for combination.

The main contribution of this book is easy to explain: constraint services
such as search and combinators are made programmable. This is achieved
by devising computation spaces as simple abstractions for programming con-
straint services at a high level. Spaces are seamlessly integrated into a concur-
rent programming language and make constraint-based computations com-
patible with concurrency through encapsulation.

State-of-the-art and new search strategies such as visual interactive
search and parallel search are covered. Search is rendered expressive and
concurrency-compatible by using copying rather than trailing. Search is ren-
dered space and time efficient by using recomputation. Composable combina-
tors, also known as deep-guard combinators, stress the control facilities and
concurrency integration of spaces. Composable combinators are applicable to
arbitrary abstractions without compromising constraint solving.
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The implementation of spaces is presented as an orthogonal extension to
the implementation of the underlying programming language. The resulting
implementation is shown to be competitive with existing constraint program-
ming systems.
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1. Introduction

This book presents design, application, implementation, and evaluation of
simple abstractions that enable programming of standard and new constraint
services at a high level. The abstractions proposed are computation spaces
which are integrated into a concurrent programming language.

1.1 Constraint Programming

Constraint programming has become the method of choice for modeling and
solving many types of problems in a wide range of areas: artificial intelligence,
databases, combinatorial optimization, and user interfaces, just to name a
few.

The success of constraint programming is easy to explain. Constraint pro-
gramming makes modeling complex problems simple: modeling amounts to
naturally stating constraints (representing relations) between variables (rep-
resenting objects). Integration into a programming language makes model-
ing expressive. Adapting models is straightforward: models can be changed
by adding, removing, and modifying constraints. Constraint programming is
open to new algorithms and methods, since it offers the essential glue needed
for integration.

Last but not least, the popularity of constraint programming is due to the
availability of efficient constraint programming systems. A constraint pro-
gramming system features two different components: the constraints proper
and constraint services.

Constraints. Constraints are domain specific. They depend on the domain
from which the values for the variables are taken. Popular domains for con-
straint programming are finite domains (the domain is a finite subset of the
integers) [140], finite sets [38], trees [24], records [137], and real intervals [98].

Essential for constraints is constraint propagation. Constraint propaga-
tion excludes values for variables that are in conflict with a constraint. A
constraint that connects several variables propagates information between
its variables. Variables act as communication channels between several con-
straints.

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 1–7, 2002.
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Constraint Services. Constraint services are domain independent. They sup-
port the generation, combination, and processing of constraints. Application
development amounts to programming with constraints and constraint ser-
vices.

Powerful generation of constraints according to possibly involved spec-
ifications is essential for large and complex problems. The availability of a
programming language for this task contributes to the expressiveness of mod-
eling.

Regardless of how many primitive constraints a system offers, combination
of constraints into more complex application-specific constraints is a must.
This makes means for combining constraints key components of a constraint
programming system.

The most important constraint service is search. Typically, constraint
propagation on its own is not sufficient to solve a constraint problem by
assigning values to variables. Search decomposes problems into simpler prob-
lems and thus creates a search tree. It is essential to control shape as well as
exploration of the search tree.

A recent survey on research in constraint programming is [146], an intro-
ductory book on programming with constraints is [75], and an overview on
practical applications of constraint programming is [150].

1.2 Motivation

A cornerstone for the initial success of constraint programming has been
the availability of logic programming systems. They successfully integrated
constraints and constraint propagation into programming systems that come
with built-in search. Most of todays constraint programming systems are
constraint logic programming (CLP) systems that evolved from Prolog:
CHIP [31, 2], Eclipse [151], clp(FD) [23] and its successor GNU Prolog [29],
and SICStus [15], just to name a few. The CLP-approach to search is adopted
by cc(FD) [145]. Jaffar and Maher give an overview on CLP in [57].

Search. All these systems have in common that they offer a fixed and small set
of search strategies. The strategies covered are typically limited to single, all,
and best-solution search. Search cannot be programmed, which prevents users
to construct new search strategies. Search hard-wires depth-first exploration,
which prevents even system developers to construct new search strategies.

This has several severe consequences. Complex problems call for new
search strategies. Research has addressed this need for new strategies. New
strategies such as limited discrepancy search (LDS) [48] have been devel-
oped and have shown their potential [152, 17]. However, the development of
constraint programming systems has not kept pace with the development of
search strategies, since search cannot be programmed and is limited. Even
well established strategies such as best-first search are out of reach.
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Naturally, the lack of high-level programming support for search is an
impediment to the development of new strategies and the generalization of
existing strategies.

An additional consequence of the fact that controlling search is difficult,
is that tools to support the user in search-related development tasks are
almost completely missing. Given that search is an essential ingredient in
any constraint programming application, the lack of development support is
serious.

Combination. The most prominent technique for constraint combination is
constraint reification. Reification reflects the validity of a constraint into a
0/1-variable. Constraints can then be combined using 0/1-variables. Typi-
cally, reified constraints are combined by Boolean combinators or by general-
izations thereof such as the cardinality combinator [143]. Reified constraints
are also known as meta-constraints.

Reification as exclusive combination device is problematic, since it dic-
tates an “all or nothing” policy. All constraints subject to combination must
be reified. In particular, combining a conjunction of constraints (a common
case) requires reification of each conjunct. This results in a dramatic loss of
propagation, as reification disables constraint propagation among the con-
juncts. Constraints for which the system offers no reified version along with
constructions obtained by programming cannot be reified. This renders pro-
gramming incompatible with reification, resulting in a dramatic loss of ex-
pressiveness.

Concurrency. Integration into today’s computing environments which are
concurrent and distributed is difficult. The backtracking model for search
that has been inherited from Prolog is incompatible with concurrency. Most
computations including interoperating with the external world cannot back-
track.

1.3 Approach

The approach taken in this book is to devise simple abstractions for the
programming of constraint services that are concurrency-enabled to start
with and overcome the problems discussed in the previous section.

First-Class Computation Spaces. The abstractions are first-class computa-
tion spaces and are tightly integrated into a concurrent programming lan-
guage. Constraint-based computations are delegated to computation spaces.

Computation spaces are promoted to first-class status in the programming
language. First-class status of computation spaces enables direct access to
constraint-based computations. The direct access allows powerful control of
constraint-based computations and by this simplifies programming.
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Encapsulation. Computation spaces encapsulate constraint-based computa-
tions which are speculative in nature, since failure due to constraint prop-
agation is a regular event. Encapsulation is a must for making constraint
programming compatible with concurrency.

Encapsulation is achieved by a tight integration of spaces into the con-
current programming language together with stability as powerful control
regime. Stability naturally generalizes the notion of entailment. Entailment
is known as a powerful control condition in concurrent execution, which has
been first identified by Maher [74] and subsequently used by Saraswat for the
cc (concurrent constraint programming) framework [118, 117]. Stability has
been first conceived by Janson and Haridi in the context of AKL [59, 44, 58].

Oz Light. Computation spaces are integrated into the Oz Light program-
ming language. The essential features of Oz Light that make the integration
of spaces possible are computing with partial information through logic vari-
ables, implicit synchronization of computations, explicit concurrency, and
first-class procedures.

Oz Light is an idealization of the concurrent programming language Oz
that concentrates on the features mentioned above. Smolka discusses in [134]
the Oz Programming Model (OPM) on which Oz Light is based. OPM ex-
tends the concurrent constraint programming (cc) paradigm [118, 117] by
explicit concurrency, first-class procedures, and concurrent state.

Search. Spaces are applied to state-of-the-art search engines, such as plain,
best-solution, and best-first search. Programming techniques for space-based
search are developed and applied to new and highly relevant search engines.
One new search engine is the Oz Explorer, a visual and interactive search en-
gine that supports the development of constraint programming applications.
Additionally, spaces are applied to parallel search using the computational
resources of networked computers.

Copying and Recomputation. In order to be expressive and compatible with
concurrency, search is based on copying rather than on trailing. Trailing is
the currently dominating approach for implementing search in constraint pro-
gramming systems. The book establishes the competitiveness of copying by
a rigid comparison with trailing.

Recomputation is used as an essential technique for search. Recomputa-
tion saves space, possibly at the expense of increased runtime. Recomputation
can save runtime, due to an optimistic attitude to search.

The combination of recomputation and copying provides search engines
that offer a fundamental improvement over trailing-based search for large
problems. The book introduces adaptive recomputation as a promising tech-
nique for solving large problems.

Composable Constraint Combinators. Spaces are applied to composable con-
straint combinators. Composable means that combinators programmed from
spaces can combine arbitrary computations, including computations already
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spawned by combinators. Combinators obtained from spaces are applicable
to all statements of the programming language without sacrificing constraint
propagation. It is shown how to make composable combinators compatible
with reification while avoiding its “all or nothing” approach. Constraint com-
binators are shown to have a surprisingly simple implementation with spaces.
Composable combinators are also known as deep-guard combinators.

Implementation. The book presents an implementation for first-class compu-
tation spaces as a conservative extension of an implementation for Oz Light.
The implementation is factored into orthogonal support for multiple con-
straint stores as needed by multiple spaces, stability, space operations, and
search. Copying leads to a simple implementation of search.

The implementation model serves as foundation for spaces in the Mozart
implementation of Oz [92]. Mozart is a production quality system and is
shown to be competitive with existing constraint programming systems.

1.4 Outline

The book consists of five parts. The book’s structure and dependencies be-
tween chapters are sketched in Figure 1.1.

Setting the Stage. Chapter 2 introduces constraint inference methods and
identifies underlying concepts for: constraint propagation, constraint distri-
bution, search, and best-solution search. Chapter 3 introduces Oz Light and
relates it to full Oz.

Search. Chapter 4 introduces a simplification of first-class computation
spaces for programming search engines. Their design takes the primitives
identified in Chapter 2 as input.

Chapters 5 through 7 develop essential techniques for programming search
engines from spaces. Plain search engines are introduced in Chapter 5. Best-
solution search and some generalizations are discussed in Chapter 6. Different
recomputation strategies are developed and evaluated in the following chap-
ter.

The remaining two chapters in this part apply the previously developed
techniques to search engines that are new to constraint programming. The Oz
Explorer, a visual and interactive constraint programming tool, is discussed
in Chapter 8. Parallel search engines that exploit the resources of networked
computers are presented in Chapter 9.

Combinators. Chapter 10 presents the full model of computation spaces that
enable the programming of composable constraint combinators. The next
chapter applies spaces to a wide range of combinators and develops concomi-
tant programming techniques.
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2. Constraint Programming 3. Introducing Oz Light

4. Spaces for Search

5. Search Engines

6. Best-solution Search

7. Recomputation

8. Oz Explorer

9. Distributed Search

10. Spaces for Combinators

11. Combinators

12. Implementing Oz Light

13. Implementing Spaces

14. Other Approaches to Search

15. Conclusion

Setting the Stage

Search

Combinators

Implementation

Discussion

Fig. 1.1. Organization of the book.

Implementation. Chapter 12 lays the foundation for the implementation of
computation spaces by outlining an implementation architecture of Oz Light.
The next chapter discusses the implementation of first-class computation
spaces together with extensions such as support for different constraint do-
mains.
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Discussion. The last part is concerned with evaluating and discussing the
book’s results. This includes comparison with other approaches to search and
in particular a detailed comparison with trailing (Chapter 14). Chapter 15
concludes by summarizing the main contributions and presenting concrete
ideas for future work.

1.5 Source Material

Part of this book’s material has already been published in the following ar-
ticles:

– Christian Schulte. Parallel Search Made Simple. Techniques for Implement-
ing Constraint Programming Systems, 2000 [126].

– Christian Schulte. Programming Deep Guard Concurrent Constraint Com-
binators. Practical Aspects of Declarative Languages, 2000 [127].

– Christian Schulte. Comparing Trailing and Copying for Constraint Pro-
gramming. International Conference on Logic Programming, 1999 [123].

– Christian Schulte. Programming Constraint Inference Engines. Interna-
tional Conference on Principles and Practice of Constraint Programming,
1997 [122].

– Christian Schulte. Oz Explorer: A Visual Constraint Programming Tool.
International Conference on Logic Programming, 1997 [121].

Computation spaces build on a previous treatment of the so-called solve
combinator, which shares important aspects with spaces. Section 4.7 relates
spaces to the solve combinator. The solve combinator has been published in
the following articles:

– Christian Schulte and Gert Smolka. Encapsulated Search in Higher-order
Concurrent Constraint Programming. International Symposium on Logic
Programming, 1994 [128].

– Christian Schulte, Gert Smolka, and Jörg Würtz. Encapsulated Search and
Constraint Programming in Oz. Principles and Practice of Constraint Pro-
gramming, 1994 [129].

The first implementation of the solve combinator has been done by Kon-
stantin Popov as masters thesis [106] under my supervision.



2. Constraint Programming

This chapter introduces essential constraint inference methods and clarifies
why constraint programming matters. The inference methods covered are
constraint propagation, constraint distribution, and search.

2.1 Constraints

Constraints express relations between variables. Operationally, constraints
compute the values for variables that are consistent with the constraints. That
is, constraints compute with partial information about values of variables.

propagator · · · propagator

constraint store

Computation Spaces. Computation
with constraints takes place in a
computation space. A computation
space consists of propagators (to be
explained later) connected to a constraint store. The constraint store stores
information about values of variables as a conjunction of basic constraints.

Basic Constraints. A basic constraint is a logic formula interpreted in some
fixed first-order structure. The remainder of this chapter restricts its attention
to finite domain constraints. A finite domain constraint is of the form x ∈ D
where the domain D is a subset of some finite subset of the natural numbers.
If D is the singleton set {n}, the constraint x ∈ {n} is written x = n,
and x is said to be determined to n. Other domains common in constraint
programming are trees and finite sets.

Non-basic Constraints. Non-basic constraints typically express relations be-
tween several variables and are computationally involved. In order to keep
operations on constraints efficient, non-basic constraints are not written to
the constraint store. Examples for non-basic finite domain constraints are
x+ y ≤ z or that the values of variables x1, . . . , xn are distinct.
Constraint Propagation. A non-basic constraint is imposed by a propagator.
A propagator is a concurrent computational agent that amplifies the infor-
mation in the constraint store by constraint propagation. In the context of
finite domain constraints, amplification narrows variable domains.

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 9–14, 2002.
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Suppose a store that contains the constraint φ and a propagator that
imposes the constraint ψ. The propagator can tell (or propagate) a basic
constraint β to the store, if β is adequate (φ ∧ ψ entails β), new (φ does not
entail β), and consistent (φ∧ β is consistent). Telling β to a store containing
φ updates the store’s constraint to φ ∧ β.

x > y

x ∈ {3, 4, 5} ∧ y ∈ {3, 4, 5}

Consider the space sketched to the right.
The propagator imposing x > y can propa-
gate x ∈ {4, 5} and y ∈ {3, 4}. The prop-
agator remains: not all of its information is
propagated yet.

A propagator imposing ψ becomes entailed, if it detects that ψ is entailed
by the constraint store φ. It becomes failed, if it detects that ψ is inconsis-
tent with φ. A propagator that detects entailment disappears. A propagator
detects entailment and failure at latest, if all its variables are determined.

A space S is stable, if no further constraint propagation in S is possible.
A stable space S is failed, if S contains a failed propagator. A stable space S
is solved, if S contains no propagator.

x+ 3 = y y − 2× x > 1

x ∈ {1, . . . , 6} ∧ y ∈ {1, . . . , 6}

Propagators communicate through the
constraint store by shared variables. Sup-
pose that x + 3 = y propagates x ∈
{1, 2, 3} and y ∈ {4, 5, 6}. The right prop-
agator then propagates x ∈ {1, 2}. Narrowing x triggers the left propagator
again to tell y ∈ {4, 5}. Now the right propagator is triggered again, telling
x = 1 which in turn triggers the first propagator to tell y = 4. Since both x
and y are determined, the propagators disappear.

2.2 Search

x �= y x �= z y �= z

x ∈ {1, 2} ∧ y ∈ {1, 2} ∧ z ∈ {1, 2}

Constraint propagation alone is typ-
ically not sufficient to solve a con-
straint problem: a space can become
stable, but neither solved nor failed.
The constraints to the right are unsatisfiable, but no further propagation is
possible. Similarly, if the domains for x, y, and z are {1, 2, 3}, the problem
has solutions albeit no further propagation is possible.
Constraint Distribution. To proceed in this situation distribution is used:
proceed to spaces that are easier to solve, but retain the same set of solutions.
Distributing a space S with respect to a basic constraint β creates two spaces:
One is obtained by adding the constraint β to S, the other by adding ¬β to
S. It is crucial to choose β such that both β and ¬β trigger further constraint
propagation. The constraints β and ¬β are called alternatives. Distribution
is also known as labelling or branching.

In the context of finite domain constraints, a possible strategy to dis-
tribute a space is as follows. Select a variable x with a non-singleton domain
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D and a number n ∈ D, and then distribute with x = n. This strategy is
known as naive distribution strategy. A popular refinement is first-fail : select
a variable with smallest domain.

Search Trees. Search is a complete method for solving finite domain con-
straint problems. Initially, create a space that contains the basic constraints
and propagators of the problem to be solved. Then propagate constraints
until the space becomes stable. If the space is failed or solved, search is done.
Otherwise, the space is distributable.

Search proceeds by distributing the space. Iterating
constraint propagation and distribution leads to a tree
of spaces, the search tree. Each node in the search tree
corresponds to a computation space. Leaves correspond to
solved or failed spaces. Throughout the book failed spaces
are drawn as boxes , solved spaces as diamonds , and
distributable spaces as circles .

Exploration. An important property of the setup is that the search tree is
defined entirely by the distribution strategy. An orthogonal issue is how to
explore the search tree. Possible strategies are depth-first or breadth-first
exploration.

A program that implements exploration is called search engine. The strat-
egy implemented by the search engine is referred to by search strategy. Besides
of different strategies engines can offer a great variety of functionality:

– Search for a single solution, several solutions, or all solutions (Chapter 5).
– Interactive and visual search (Chapter 8).
– Search in parallel making use of networked computers (Chapter 9).

x+ y = z x× y = z

x ∈ {1, . . . , 6} ∧ y ∈ {1, . . . , 6}

Figure 2.1 shows the search tree for the
space sketched to the right, where naive
distribution with order x, y, and z is used.
The figure’s right part shows the store of
the non-failed nodes after constraint propagation.

x �= 3x = 3

x �= 2x = 2

x �= 1x = 1
1

3

5

76

4

2

Node x y z

1 {1, . . . , 5} {1, . . . , 5} {2, . . . , 6}
3 {2, . . . , 5} {1, 2, 3} {3, . . . , 6}
4 2 2 4
5 {3, 4, 5} {1, 2} {4, 5, 6}

Fig. 2.1. Example search tree.
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Best-Solution Search. For a large class of applications it is important to find
a best solution with respect to an application-dependent criterion. The naive
approach to first compute all solutions and then select the best is infeasible.
Typically, the number of solutions grows exponentially with problem size.
But even in case the number of solutions remains manageable, one can do
better.

The idea of best-solution search is to employ information from an already
computed solution to reduce the remaining search space. The information
is expressed by constraints: after a solution has been found, the additional
constraint that a next solution must be better is taken into account. By this
additional constraint, the search tree can become considerably smaller: the
constraint prunes the search space.

As an example, consider searching for a solution where the value of x is
largest. Suppose that there is already a solved space S that assigns x to n.
To ensure that search starting from a space S′ yields a better solution, the
propagator x > n is added to S′. Searching for a solution of S′ then can
only yield a solution with a value of x that is greater than n. The space S′

is constrained by injecting a constraint to S′.
Branch-and-bound best-solution search works as follows. The search tree

is explored until a solution S is found. During exploration, a node is open, if
it is distributable but has not been distributed yet. All spaces corresponding
to open nodes are constrained. This is repeated whenever exploration yields
a next solution. If exploration is complete, the solution found last is best.

x ≥ z y > z

x ∈ {1, 2, 3} ∧ y ∈ {1, 2, 3} ∧ z ∈ {1, 2, 3}

Consider the space sketched
to the right. The goal is to
search for a solution with z is
largest. Again, naive distribu-
tion with order x, y, and z is used. Figure 2.2(a) shows the search tree
explored with a left-most depth-first strategy until a first solved space is
found. The value for z is 1, Spaces 3 and 4 are constrained by z > 1. The
figure shows the nodes after injection. Node 5 gets failed (x ≥ z propagates
z = 1) by adding z > 1. Adding z > 1 to Node 3 propagates z = 2.

Figure 2.2(b) shows the complete search tree. Continuing exploration by
distributing Node 3 creates Nodes 6 and 7, of which Node 6 is a new and
better solution (z has value 2). The constraint z > 2 is added to Node 7 which
leads to failure (z is 2). Hence, the best solution is x = 2 ∧ y = 3 ∧ z = 2.

The search tree for best-solution search is determined also by the order in
which the nodes of the search tree are explored. This is in contrast to “plain”
search, where distribution alone determines the search tree. However, this
is the very idea of best-solution search: use previous solutions to prune the
remaining search space.

In the example above, Nodes 5 and 7 are both pruned. The pruning con-
straints also interact with the distribution strategy. The strategy possibly
considers other constraints for distribution. In the example, this is not the
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x �= 1

y �= 2y = 2

x = 1
1

32

54

z > 1

Node x y z

1 {1, 2, 3} {2, 3} {1, 2}
2 1 {2, 3} 1
3 {2, 3} 3 2
4 1 2 1

(a) After first solution found.

x �= 2x = 2

x �= 1

y �= 2y = 2

x = 1
1

3

76

2

54

z > 2

Node x y z

1 {1, 2, 3} {2, 3} {1, 2}
2 1 {2, 3} 1
3 {2, 3} 3 2
4 1 2 1
6 2 3 2

(b) After second (best) solution found.

Fig. 2.2. Trees for left-most branch-and-bound search.

case. However, the constraint z > 2 excludes distribution with respect to z
in the subtree issuing from Node 3.

2.3 Programming

The need for programming with constraints arises at the application and at
the service level.

Programming Applications. A characteristic task in programming applica-
tions with constraints is the creation of constraints according to a problem
specification. This process normally extends over several levels of abstraction.
It requires programming to compose application-dependent constraints from
system-provided constraints with the help of combination mechanisms. Com-
mon combination mechanisms are Boolean combinators such as disjunction
and negation.
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application

script

constraints distributors

search engine

The anatomy of a constraint-based
application is sketched to the right. The
script is programmed from constraints
and distributors needed for the applica-
tion. A search engine solves the script.

Programming Services. Services are the abstractions required to program ap-
plications, such as propagators, distributors, combinators, and search engines.
This book concentrates on programming services rather than on applying ser-
vices. More specifically, the interest is on programming generic services such
as search and combinators as opposed to domain-specific propagators.

Programming with Spaces. Programming languages allow to build abstrac-
tions in a hierarchical fashion, ranging from simple abstractions programmed
from primitives to sophisticated abstractions programmed from simpler ab-
stractions. To get the whole process started, the right primitives and their
smooth integration into a programming language is essential.

Here, computation spaces have been introduced as central concept for
constraint inference. This is also the route of choice in the remainder of the
book. The integration of spaces together with primitive operations on spaces
in the concurrent programming language Oz Light is described.

The primitives of interest are essentially those required to program con-
straint services such as search engines and combinators. The exposition of
search in Section 2.2 already identified central operations: space creation
taking a script as input, control to decide whether a space is solved, failed,
or distributable, space distribution, and constraint injection. While in this
chapter the intuitive aspects are central, for the purpose of integration into
a programming language the concern is to design a small set of abstractions
that enables the simple programming of constraint services.

Concurrency. Concurrency plays two important roles in our approach.
Firstly, the underlying programming language is concurrent to fit the needs of
todays concurrent and distributed computing environments. Secondly, con-
straint propagation itself is inherently concurrent. Therefore, control of prop-
agation must be concurrency-aware and combination mechanisms must be
concurrent.



3. Introducing Oz Light

This chapter introduces Oz Light as the programming language used in the
remainder of this book. Oz Light is introduced as language on which the
design of computation spaces builds. Extensions and syntactic convenience
for programming space-based constraint services are sketched.

3.1 Overview

The essential features of Oz Light are the following.

Partial Information. Oz Light computes with partial information accessible
through logic variables. Information on values of variables is provided by
constraints.

Implicit Synchronization. Execution implicitly synchronizes until enough in-
formation is available on the variables of a statement. Missing informa-
tion blocks execution. New information resumes execution (“data-flow
synchronization”).

Explicit Concurrency. Computation is organized into multiple concurrent
threads. Threads are created explicitly by the programmer.

First-Class Procedures. Procedures are first-class citizens: they can be passed
as arguments and stored in data structures. Procedures maintain refer-
ence to external entities by lexical scoping.

This chapter gives a brief overview. A tutorial introduction to Oz is [43].
Smolka discusses in [134] the Oz Programming Model (OPM), on which Oz
Light is based. Oz Light extends the concurrent constraint programming (cc)
paradigm [117, 118] by explicit concurrency and first-class procedures.
Section 3.2 introduces Oz Light. The following section covers standard

concepts (such as exception handling), or concepts orthogonal to the basic
setup of Oz Light (such as ports and finite domain constraints). Section 3.4
introduces syntactic convenience to increase the readability of programs used
in the remainder of the book. The last section relates Oz Light to full Oz.
It is recommended to read all of Section 3.2 before proceeding with the

remaining chapters. The material contained in Section 3.3 is best read as the
need arises.

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 15–27, 2002.
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3.2 Oz Light: Basics

thread · · · thread

store

Computation in Oz Light takes place in
a computation space. A computation space
features multiple threads computing over a
shared store. A thread is the control struc-
ture of a sequential computation. The store contains the data structures with
which the threads compute. Variables connect threads to the data structures
in the store. The so-far single space is called toplevel space.
A thread is a stack of statements. A thread reduces by trying to reduce

its topmost statement. Reduction automatically synchronizes until the store
contains sufficient information on the variables of the topmost statement.

3.2.1 The Store

The store has two compartments: the constraint store and the procedure store.
The constraint store contains logic formulas that represent information about
values of variables. The procedure store contains procedures which are created
as computation proceeds.
Procedures are data structures but not values. They are connected to the

constraint store by primitive values called names. The procedure store maps
names to procedures.
The constraint store contains information about values of variables rep-

resented by a conjunction of basic constraints. Basic constraints are logic
formulas interpreted in a fixed first-order structure, called the universe. The
elements of the universe are the values with which threads compute. Variables
are ranged over by x, y, and z.

value

simple value

integer literal

atom name

tuple

The Universe. The universe contains integers,
atoms, names, and rational trees [24] con-
structed from tuples of values. Values are
ranged over by v and integers by i.
Names (ranged over by ξ and η) are primi-

tive entities that have no structure. There are
two special names truetruetrue and falsefalsefalse that repre-
sent the respective truth values.
Atoms are symbolic values that have identity as defined by a sequence

of characters. Examples for atoms are ´atom´, ´nil´, and ´|´. A literal is
either a name or an atom. Literals are ranged over by l. A simple value is
either a literal or an integer. Simple values are ranged over by s.
A tuple l(v1 . . . vn) consists of a single label l (a literal) and fields v1, . . . , vn

with n > 0. The number of fields n is called the tuple’s width.
Lists are constructed from tuples and atoms as follows. A list is either the

empty list (the atom nil) or a pair of an element (the head) and a list (the
tail). A pair is a binary tuple ´|´(x y) which can be written infix as x|y.
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Constraints. A constraint φ is a conjunction of basic constraints β. The con-
straint store contains a constraint which defines the values the variables can
take. A basic constraint β is one of the following:

– x = s, which is interpreted that the value of x is the simple value s.
– x = l(y1 . . . yn), which is interpreted that x is a tree with label l and
subtrees defined by y1 through yn.

– x = y, which is interpreted that the values of x and y are the same.

In the following a constraint store is often identified with its constraint.

Satisfiability and Entailment. A constraint φ is satisfiable, if ∃ φ is valid in
the universe. A constraint φ entails a constraint ψ, if φ → ψ is valid in the
universe. A constraint φ disentails a constraint ψ, if φ entails ¬ψ.
Determined, Aliased, and Constrained Variables. A variable x is determined
by a constraint φ, if there exists a simple value s such that φ entails x = s,
or if there exists a literal l and a natural number n > 1 such that φ entails
∃y x = l(y1 . . . yn). In the former case, x is determined to s/0, in the latter,
to l/n. A variable x is aliased to a variable y by a constraint φ, if x �= y and
φ entails x = y. A variable x is aliased, if there exists a variable y to which
x is aliased. A variable x is constrained by a constraint φ, if x is determined
or aliased by φ.
If the constraint is omitted by which variables are determined, aliased, or

constrained, the constraint stored by the constraint store is assumed.

Telling Constraints. Telling a basic constraint β to a constraint store φ up-
dates the constraint store to contain φ∧ β, provided that φ∧ β is satisfiable.
This means that it is only possible to tell basic constraints that leave the
store satisfiable. Starting out from an empty store (that is �), the constraint
store maintains the invariant to be satisfiable. In case an attempt to tell a
basic constraint would render the store unsatisfiable, the attempt is said to
be unsuccessful.

Dependency. A variable x depends on a variable y with respect to a constraint
φ, x �φ y, if either y is aliased to x by φ, or φ entails ∃z1z2 x = l(z1zz2) and
z �φ y. Analogously, a variable x depends on a name ξ with respect to a
constraint φ, x �φ ξ, if there exists a variable y that is determined to ξ by φ
and x �φ y.

3.2.2 Threads

A thread is a stack of statements. A thread can only reduce if its topmost
statement can reduce. Reduction of the topmost statement pops the state-
ment and can also:

– Tell information to the constraint store.
– Create a new procedure and enter it into the procedure store.
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– Push statements on the stack.
– Create a new thread.

Statements are partitioned into synchronized and unsynchronized state-
ments. Reduction of an unsynchronized statement takes place independently
of the information in the constraint store. In contrast, synchronized state-
ments can only reduce if the constraint store provides sufficient information.
Information in the constraint store is accessed by variables: a statement

synchronizes or suspends on variables. A thread itself synchronizes or sus-
pends, if its topmost statement synchronizes. The set of variables a statement
σ and its thread T synchronizes on, is called its suspension set and is denoted
by S(σ) and S(T ).
Reduction of threads is fair. If a thread can reduce because either its top-

most statement is unsynchronized or otherwise the constraint store contains
sufficient information, it eventually will reduce.
If the last statement of a thread reduces and pushes no new statement,

the thread terminates and ceases to exist. If the topmost statement of a
thread can reduce, the thread is runnable. Otherwise the thread is suspended.
A suspended thread becomes runnable by waking or by resuming. A runnable
thread becomes suspended by suspending the thread.
The current thread is the thread whose topmost statement is being re-

duced. By pushing a statement σ, it is meant that σ is pushed on the current
thread.

3.2.3 Statements

The core statements of Oz Light are shown in Figure 3.1. Their reduction is
as follows.

Empty Statement. The empty statement

skipskipskip

reduces without any effect and is unsynchronized.

Tell. A tell statement
x = v

is unsynchronized. Its reduction attempts to tell x = v to the constraint store.
An unsuccessful attempt raises an exception, which is discussed later.

Sequential Composition. A sequential composition statement

σ1 σ2

is unsynchronized. It reduces by pushing σ2 and then σ1.
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σ ::= skipskipskip empty statement
| x = y | x = v tell statement
| σ1 σ2 sequential composition
| procprocproc {x y} σ endendend procedure creation
| {x y} procedure application
| locallocallocal x ininin σ endendend declaration
| ififif x thenthenthen σ1 elseelseelse σ2 endendend conditional statement
| threadthreadthread σ endendend thread creation

v ::= s simple value
| l(x1 . . . xn) tuple construction

s ::= l | integer literal and integer

l ::= atom | truetruetrue | falsefalsefalse atom and names

x, y, z ::= variable variable

x ::= ε | x x list of variables

Fig. 3.1. Statements of Oz Light.

Declaration. A declaration statement

locallocallocal x ininin σ endendend

is unsynchronized. It creates a fresh variable y and reduces by pushing σ[y/x],
where x is replaced by y in σ[y/x].

Procedure Creation. A procedure creation statement

procprocproc {x y} σ endendend

is unsynchronized. Its reduction chooses a fresh name ξ, stores the procedure
λy.σ under the name ξ in the procedure store, and pushes x = ξ.
The statement σ is the body and the variables y are the (formal) arguments

of the procedure. The arguments y are required to be linear, that is, no
variable occurs twice in y. The variables that occur free in σ but not in y are
the procedure’s free variables.
The notation ξ 
→ λy.σ is used for a procedure λy.σ stored under a name

ξ. Since ξ is fresh, storing the procedure under the name ξ maintains the
invariant that the procedure store is a mapping of names to procedures.

Procedure Application. A procedure application statement

{x y}

synchronizes on the variable x. Reduction requires x to be determined to a
name ξ with ξ 
→ λz.σ and the number of actual parameters y must match the
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number of formal parameters z. Reduction pushes σ[y/z] where the formal
parameters are replaced by the actual parameters.

Conditional. A conditional statement

ififif x thenthenthen σ1 elseelseelse σ2 endendend

synchronizes on the variable x. If x is determined to truetruetrue, reduction proceeds
by pushing σ1. Otherwise, reduction proceeds by pushing σ2.

Thread Creation. A thread creation statement

threadthreadthread σ endendend

is unsynchronized. Its reduction creates a new thread that consists of the
statement σ.

3.3 Oz Light Continued

This section is concerned with additional features of Oz Light. The statements
that are discussed in this section are listed in Figure 3.2.

3.3.1 Primitive Operations

Equality Test. The equality test

x = (y ====== z)

synchronizes until y = z is either entailed or disentailed. If y = z is entailed,
reduction proceeds by pushing x = truetruetrue. If y = z is disentailed, reduction
proceeds by pushing x = falsefalsefalse.

Determination Test. The test whether a variable is determined

{IsDet x y}

is unsynchronized. If x is determined, y = truetruetrue, otherwise y = falsefalsefalse is
pushed.

Indeterminate Synchronization. The operation

{WaitOr x y}

synchronizes until x or y is determined. Its reduction has no effect.

Arithmetic Operations. Unary minus (˜̃̃) is an example for arithmetic oper-
ations.

x = ˜̃̃y

Its reduction synchronizes until y is determined to an integer i. Reduction
proceeds by pushing x = −i.
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σ ::= x = (y ====== z) equality test
| {IsDet x y} determination test
| {WaitOr x y} indeterminate synchronization
| x = ˜̃̃y | x = y ( +++ | --- | >>> ) z arithmetic operations
| {Width x y} | {Label x y} tuple operations

indeterminate synchronization
(a) Primitive operations.

σ ::= trytrytry σ1 catchcatchcatch x thenthenthen σ2 endendend try statement
| raiseraiseraise x endendend raise statement

{Width x y} | {Label x y} indeterminate synchronization
(b) Exception handling.

σ ::= {NewPort x y} port creation
| {Send x y} message sending

{Width x y} | {Label x y} indeterminate synchronization
(c) Ports.

σ ::= x::y domain tell
| {FdReflect x y} domain reflection

{Width x y} | {Label x y} indeterminate synchronization
(d) Finite domain constraints.

Fig. 3.2. Statements of Oz Light, continued.

Tuple Operations. The operation

{Width x y}

synchronizes until x is determined to s/n. Reduction proceeds by pushing
y = n. Similarly, {Label x y} proceeds by pushing y = s.
A common abstraction is {Wait x} that synchronizes on x being deter-

mined. This can be expressed by either {WaitOr x x} or by
procprocproc {Wait X}

ififif X==1 thenthenthen skipskipskip elseelseelse skipskipskip endendend
endendend

A convenient abstraction First that does indeterminate synchronization
on two variables is programmed as follows. {First X Y Z} blocks until at
least one of X and Y becomes determined. If Z is truetruetrue (falsefalsefalse), X (Y) is
determined.

procprocproc {First X Y Z}
{WaitOr X Y} {IsDet X Z}

endendend
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Example 3.1 (Indeterminism). WaitOr adds indeterminism to Oz Light. In
the following example, it is indeterminate whether Z is determined to 1 or 2:

threadthreadthread X=1 endendend threadthreadthread Y=1 endendend
ififif {First X Y} thenthenthen Z=1 elseelseelse Z=2 endendend

3.3.2 Exceptions

Try Statement. A try statement

trytrytry σ1 catchcatchcatch x thenthenthen σ2 endendend

is unsynchronized. It first pushes catchcatchcatch x thenthenthen σ2 endendend and then σ1.
catchcatchcatch x thenthenthen σ endendend is used to define the semantics of exceptions. A

programmer is not allowed to use this statement in programs.

Catch Statement. A catch statement

catchcatchcatch x thenthenthen σ endendend

is unsynchronized. Its reduction has no effect.

Raise Statement. A raise statement

raiseraiseraise x endendend

is unsynchronized. All statements until catchcatchcatch y thenthenthen σ endendend (included) are
popped. Then σ[x/y] is pushed.

3.3.3 Ports and Active Services

Ports provide message sending for communicating concurrent computations.
A port maintains an ordered stream of messages (“mailbox”). A Send-
operation on the port appends a message to the end of the stream. The
stream of messages then can be incrementally processed as new messages
arrive.
Ports are accommodated like procedures: variables refer to names, which

refer to ports. For that matter, the store is extended by a port store as third
compartment.

Port Creation. The statement

{NewPort x y}

is unsynchronized. Its reduction creates a fresh name ξ and stores [x] in the
port store under the name ξ. Reduction proceeds by pushing y = ξ. The
variable x stored by the port [x] is the tail of the message stream.
As with procedures, ξ 
→ [x] refers to a port with stream x stored under

name ξ.
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Message Sending. The statement

{Send x y}

is synchronized. Reduction requires x to be determined to ξ 
→ [z1]. The
message y is added to the stream as follows. A new variable z2 is created and
the port is updated to ξ 
→ [z2]. Reduction proceeds by pushing z1 = y|z2.
Reduction maintains the invariant that the variable stored in the port is the
tail of the message stream.
Ports have been initially conceived in the context of AKL [60]. They have

been adopted in Oz, but as abstractions obtained from cells and not as prim-
itives [134]. Cells are a more primitive concept to capture concurrent state.
Here ports rather than cells are made primitive, since ports are extended as
the presentation of the book proceeds in a way that is not captured easily by
the cell-based construction.
Note that ports are an additional source of indeterminism. If messages to

a port are sent by multiple concurrent threads, the order of messages on the
stream is indeterminate.

Active Services. The Send-operation on ports can be easily extended to deal
with replies to messages. Rather than sending the message, a pair of message
and answer is sent. The answer is a logic variable which serves as place holder
for the answer.
This idea is captured by the following procedure definition:
procprocproc {SendRecv P X Y}

locallocallocal M ininin M=´#´(X Y) {Send P M} endendend
endendend

A common abstraction for communicating concurrent computations is the
use of active services. An active service is hosted by a thread of its own. It
processes messages that arrive on a stream and computes answers to the
messages.
The procedure NewService as shown in Figure 3.3 takes a procedure P

and computes a new procedure ServiceP that encapsulates message sending.
All messages are served in a newly created thread by Serve. A more readable
version using syntactic convenience is available in Figure 3.4.
Active services combine concurrency control with latency tolerance. All

messages are served sequentially which makes concurrency control simple.
Message sending is asynchronous and the service’s client can immediately
continue its computation. Only when needed, possibly much later, the client
automatically synchronizes on the answer.

3.3.4 Finite Domain Constraints

For finite domain constraints, the constraint store supports the basic con-
straint x ∈ D. Here D ⊆ {0, . . . , n̂}, where n̂ is a sufficiently large natural
number. The constraint is interpreted that the value of x is an element of D.
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procprocproc {Serve XYs P}
ififif XYs==nil thenthenthen skipskipskip elseelseelse

locallocallocal XY XYr X Y ininin
XYs=XY|XYr XY=´#´(X Y) {P X Y} {Serve XYr P}

endendend
endendend

endendend
procprocproc {NewService P ServiceP}

locallocallocal XYs Po ininin
{NewPort XYs Po}
threadthreadthread {Serve XYs P} endendend
procprocproc {ServiceP X Y}

{SendRecv Po X Y}
endendend

endendend
endendend

Fig. 3.3. Creating active services.

A variable x is kinded by a constraint φ, if x is not determined by φ
and φ entails x ∈ {0, . . . , n̂}. Accordingly, a variable x is constrained, if x is
determined, kinded, or aliased. Note that a variable can be both kinded and
aliased.

Telling Domains. The statement

x::y

synchronizes until y is determined to a list n1|· · ·|nk|nil of natural numbers.
It reduces by attempting to tell the basic constraint x ∈ {n1, . . . , nk}.
Domain Reflection. The statement

{FdReflect x y}

synchronizes until x is kinded or determined. Suppose that D = {n1, . . . , nk}
is the smallest set for which x ∈ D is entailed and that n1 < n2, . . . , nk−1 <
nk. Reduction proceeds by pushing a statement that constructs an ordered
list containing n1, . . . , nk:

locallocallocal z1 locallocallocal z′1 · · · locallocallocal zk locallocallocal z′k ininin
y = z1|z′1 z1 = n1 · · · z′k−1 = zk|z′k zk = nk z′k =nil

endendend · · · endendend

Propagators. For the purposes of this book it is sufficient to regard a propa-
gator as a thread that implements constraint propagation. More information
on the integration of propagators into Oz can be found in [84, 157].
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3.4 Syntactic Convenience

This section introduces syntactical convenience to ease programming of con-
straint services in the remainder of the book. A tutorial account on Oz syntax
is [43], a rigid treatment is [51].

Declaration. Multiple variables can be introduced simultaneously:

locallocallocal X Y ininin σ endendend ⇒ locallocallocal X ininin locallocallocal Y ininin σ endendend endendend

If a declaration statement comprises the body of a procedure definition
or the branch of a conditional, locallocallocal and endendend can be omitted:

procprocproc {P} Y ininin σ endendend ⇒ procprocproc {P} locallocallocal Y ininin σ endendend endendend

Declaration can be combined with initialization through tell statements:

locallocallocal X=5 ininin σ endendend ⇒ locallocallocal X ininin X=5 σ endendend

Functional Notation. The statement z = {x y} abbreviates {x y z}. Moti-
vated by this abbreviation, {x y} is said to return z. Similarly, nesting of
tuple construction and procedure application avoids declaration of auxiliary
variables. For example:

X=b({F N+1}) ⇒
locallocallocal Y Z ininin

Y=N+1 X=b(Z) {F Y Z}
endendend

Tuple construction is given precedence over procedure application to allow
more procedure definitions to be tail recursive. The construction is extended
analogously to other statements, allowing statements as expressions. For ex-
ample:

X=locallocallocal Y=2 ininin
{P Y}

endendend
⇒ locallocallocal Y=2 ininin X={P Y} endendend

Procedure definitions as expressions are tagged with a dollar sign ($) to
distinguish them from definitions in statement position:

X=procprocproc {$ Y}
Y=1

endendend

⇒ procprocproc {X Y} Y=1 endendend

Procedure definitions can use functional notation by using funfunfun rather than
procprocproc, where the body of a functional definition is an expression:

funfunfun {Inc X} X+1 endendend ⇒ procprocproc {Inc X Y} Y=X+1 endendend
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Lists. Complete lists can be written by enclosing the elements in square
brackets: [1 2] abbreviates 1|2|nil and ´|´(1 ´|´(2 nil)).

Infix Pairs. The label ´#´ for pairs ´#´(X Y) can be written infix: X#Y.

Pattern Matching. Programming with tuples and lists is greatly simplified
by pattern matching. A pattern matching conditional

casecasecase x ofofof l(y1 . . . yn) thenthenthen σ1 elseelseelse σ2 endendend

is an abbreviation for
ififif {Width x}|{Label x} == n|l thenthenthen

y1 . . . yn ininin x = l(y1 . . . yn) σ1
elseelseelse σ2
endendend

The else part is optional and defaults to elseelseelse skipskipskip. Multiple clauses are
handled sequentially, for example:

casecasecase X
ofofof f(Y) thenthenthen σ1
[] g(Z) thenthenthen σ2
endendend

⇒
casecasecase X ofofof f(Y) thenthenthen σ1
elseelseelse casecasecase X ofofof g(Z) thenthenthen σ2 endendend
endendend

trytrytry-statements are also subject to pattern matching. For example:

trytrytry σ1
catchcatchcatch f(X) thenthenthen σ2
endendend

⇒

trytrytry σ1 catchcatchcatch Y thenthenthen
casecasecase Y ofofof f(X) thenthenthen σ2
elseelseelse raiseraiseraise Y endendend
endendend

endendend

Figure 3.4 shows as an example a version of active services that is consider-
ably easier to read and understand than the formulation shown in Figure 3.3.

3.5 Relation to Full Oz

The presentation of Oz Light is targeted at the actual need of the book. The
most prominent features of full Oz missing in the previous exposition are as
follows.

Values: Records. Full Oz offers a richer universe and contains in particular
floating point numbers and records. Records generalize tuples in that subtrees
can be referred to by name rather than by position only. Information on the
universe can be found in [133]. More on records can be found in [137].

Finite Set Constraints. In addition to finite domain constraints, full Oz offers
constraints ranging over finite sets of integers [82, 85].
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funfunfun {SendRecv P X}
Y ininin {Send P X#Y} Y

endendend

procprocproc {Serve XYs P}
casecasecase XYs ofofof (X#Y)|XYr thenthenthen

Y={P X} {Serve XYr P}
endendend

endendend
funfunfun {NewService P}

XYs Po={NewPort XYs}
ininin

threadthreadthread {Serve XYs P} endendend
funfunfun {$ X}

{SendRecv Po X}
endendend

endendend

Fig. 3.4. Active services using syntactic convenience.

Futures. Full Oz offers futures as read only variants of logic variables [78]. Fu-
tures provide reliability for programming abstractions such as active services
and support demand-driven execution.

Cells. Concurrent state is provided by cells in full Oz. Cells implement muta-
ble bindings of names to variables. The development of the Oz Programming
Model by Smolka [134] covers cells and clarifies their relation to ports.

Classes and Objects. Full Oz supports concurrent objects that are obtained
by instantiation from classes [49]. Classes are subject to multiple inheritances.
Objects offer support mutual exclusion by monitors. By this they are an
alternative to active services for structuring concurrent computations.

Distribution. Full Oz supports distributed execution across several computers
connected through the Internet. Distribution is discussed in Section 9.2.

Modules. Full Oz offers a powerful module system that supports separate
compilation and both static and dynamic linking [35]. The module system
serves also as access control mechanism for distributed execution, which is
discussed in Section 9.2.



4. Spaces for Search

This chapter introduces a simplified model of first-class computation spaces
for programming search engines.

4.1 Overview

Computation spaces have been introduced as central mechanism for search in
Chapter 2. This chapter follows the idea and integrates spaces into Oz Light
to program search engines. It presents a simplified model for spaces that is
sufficient for search engines. Chapter 10 generalizes spaces to more expressive
constraint services.

The integration of spaces into Oz Light is concerned with three major
issues.

Language Integration. Spaces are integrated smoothly into Oz Light in order
to ease programming. Ease of programming is facilitated by promoting
spaces to first-class citizens in the programming language. Search engines
are then programmed from operations on first-class computation spaces.

Encapsulation. Constraint-based computations are speculative in that fail-
ure is a regular event. Speculative computations need encapsulation in a
concurrent context. Using backtracking for speculative computations as
in Prolog is unfeasible. Most computations including interoperating with
the external world cannot backtrack.

Operations. The ease of programming search engines depends on which op-
erations on spaces are available. This makes the design of suitable oper-
ations crucial.

The introduction of computation spaces is organized as follows:

Local Computation Spaces. Speculative constraint-based computations are
delegated to local computation spaces. Their setup is discussed in Sec-
tion 4.2.

First-Class Spaces. First-class spaces provide a handle to encapsulated spec-
ulative computations and operations for creation, modification, and ac-
cess (Section 4.3).

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 29–44, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Control and Status. Computation spaces employ stability as simple control
condition. Stability and stability-based control operations are introduced
in Section 4.4.

Search. Operations for distribution and search are introduced in Section 4.5.

Communication. Section 4.6 refines active services to support communication
across space boundaries while obeying encapsulation.

Section 4.7 discusses a previous approach for programming search. Sec-
tion 4.8 provides a brief summary of computation spaces for programming
search engines.

4.2 Local Computation Spaces

threads

store

toplevel

threads

store

local space

The key idea for encapsulation is to del-
egate the execution of a speculative com-
putation to a local computation space. A
local computation space features, like the
toplevel space, local variables, local names,
and a private constraint store. Execution in
a local space resembles execution in the toplevel.

Each space S provides the same constituents as the toplevel: threads,
store, local variables, and local names. Each entity e (thread, variable, name,
and procedure) is situated in exactly one space S, its home (space) H(e).
The home of the current thread is referred to as current space. Similarly, the
notion current store is used. Notions such as determined, aliased, and kinded
that are with respect to a constraint refer by default to the current store.

The basic idea of local spaces is that computations in a local space perform
as they do at the toplevel. However, some points need conservative extension.

Freshness and Visibility. The set of variables and names for each space are
disjoint. This means that a fresh variable or a fresh name is fresh with respect
to all spaces.

In a local space, variables and names of the toplevel and of the local space
itself are visible. Visible means that computations can access them.

toplevel

independence encapsulation

local space

Fig. 4.1. Independence and encapsulation for local spaces.
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Independence. The setup of spaces in this chapter makes two simplifications.
Firstly, no nested spaces are allowed: spaces cannot be created inside spaces.
Secondly, after creation, the space becomes independent of the toplevel (Fig-
ure 4.1). Independence is guaranteed by the fact that only determined toplevel
variables are visible in a local space, non-determined variables are ruled out.
This invariant is satisfied by space creation and is discussed later.

Procedure Application. When a procedure application reduces in a local
space, the appropriate procedure is taken from the union of the local proce-
dure store and the toplevel procedure store. As a consequence of the disjoint-
ness of names, the procedure to be applied is uniquely determined.

Tell. Execution of a tell statement

x = v

tells x = v in the current space.

Failure. An unsuccessful attempt to tell x = v fails a local computation
space. Failing the local space stops all computations: all threads in the local
space are discarded.

Input and Output. The toplevel is the only space that is designated to execute
non-speculative computations. For this reason input and output is allowed in
the toplevel only. In all other spaces an attempt to perform input or output
raises an exception.

4.3 Space Manipulation

This section is concerned with operations that create new spaces, merge
spaces with the toplevel space, and inject computations into existing spaces.

Computation Spaces Are First-Class Citizens. To enable programming, com-
putation spaces are promoted to first-class status: each space S is uniquely
referred to by a name ξ (similar to procedures). A space S with first-class
reference ξ is accordingly written as ξ �→ S. Programs can refer to the space
S by a variable that is determined to ξ.

4.3.1 Space Creation

A new space is created by

{NewSpace x y}

Reduction blocks until x satisfies an independence condition that is explained
later. A new name ξ is created with the toplevel as home. A new space S is
created as follows:
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– The root variable of S is initialized with a fresh variable z with home S.
The root variable serves as entry point to the constraints of S.

– The set of local variables is initialized to contain z. The set of local names
and the procedure store are initialized as being empty.

– The constraint store is initialized with the constraints of the toplevel.
– A thread is created in S to execute {x z}.

Finally, the statement y = ξ is pushed.
The procedure passed to NewSpace is called script and defines which com-

putation is performed. To speculatively execute a statement σ, a new space
is created by:

S={NewSpace procprocproc {$ _} σ endendend}

Example 4.1 makes use of the root variable.

Independence Condition. An essential simplification in this chapter is that
a local space has no access to not yet determined variables of the toplevel
space. This restriction ensures that computations in a local space after their
initial setup are independent of the toplevel.

This is achieved by restricting scripts to not refer to undetermined vari-
ables via the free variables of the script. The restriction is not formalized
further, since the full model in Chapter 10 does not impose this purely di-
dactic restriction.

Synchronizing on Spaces. Operations on spaces other than NewSpace need to
synchronize on a variable x being determined to a name ξ that refers to the
space S. Execution is said to synchronize until x is ξ �→ S.

4.3.2 Merging Spaces

Access to a speculative computation combines two aspects. Firstly, access to
the result of a speculative computation via the root variable. Secondly, access
to the entire speculative computation itself by removing the space serving as
encapsulation barrier.

The following primitive combines both aspects

{Merge x y}

Synchronizes on x being ξ �→ S. If S is failed, an exception is raised. Other-
wise, S is merged with the toplevel space as follows:

– S is marked as merged.
– The set of local variables of the toplevel is updated to include the local
variables of S. The same happens with the local names.

– Similarly, the procedure store of the toplevel is updated to include the
mappings of S’s procedure store.

– y = z is pushed, where z is the root variable of S.
– All constraints of S are told in the toplevel.
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Example 4.1 (Speculative Execution). The function F (to be read as unary
procedure) can be speculatively evaluated by

S={NewSpace F}

To access the result by X, the space S is merged:
X={Merge S}

This is not yet convincing! Before accessing the result by merging the space,
the space’s status must be checked: Has the speculative computation failed?
Has it terminated successfully? These issues are dealt with in Section 4.4.

4.3.3 Injecting into Spaces

It can become necessary to spawn new computations in an already existing
space. As an example consider best-solution search as discussed in Section 2.2:
A space gets a constraint “injected” that it must yield a better result than
the previous solution.

This is captured by the primitive

{Inject x y}

that synchronizes on: x is ξ �→ S and y refers to a procedure which satisfies the
same independence condition as discussed for space creation. If S is failed,
the operation does nothing. Otherwise, a new thread in S is created that
executes {y z} where z is the root variable of S.

Example 4.2 (Killing a Space). A particular application of Inject is to kill
a speculative computation

procprocproc {Kill S}
{Inject S procprocproc {$ _} failfailfail endendend}

endendend

by injecting failfailfail into S. failfailfail abbreviates a statement that raises failure, for
example locallocallocal X ininin X=1 X=2 endendend.

4.4 Control and Status

Example 4.1 shows that it is essential to know when and if a speculative
computation has reached a stable state.

Stability. The definition of when a space has reached a stable state is straight-
forward. A space is runnable, if it contains a runnable thread. A space is sta-
ble, if it is not runnable. According to this definition, a failed space is stable.
A space is succeeded, if it is stable and not failed.
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Status Access. Controlling a space S requires an operation that blocks until
S becomes stable and then returns its status.

{Ask x y}

Reduction synchronizes on x being ξ �→ S and S being stable. It reduces
according to S’s status: if S is failed (merged, succeeded), y = failed
(y = merged, y = succeeded) is pushed. Section 4.5.2 extends Ask to ac-
commodate for distributor threads as needed for search.

Example 4.3 (Example 4.1 Reconsidered). With Ask it is possible to program
a satisfactory abstraction that speculatively evaluates an expression. The fol-
lowing procedure takes again a unary procedure P that returns the compu-
tation’s result.

funfunfun {Speculate P}
S={NewSpace P}

ininin
ififif {Ask S}==failed thenthenthen nil elseelseelse [{Merge S}] endendend

endendend

Speculate returns the empty list (nil) in case the speculative computa-
tion has been unsuccessful. Otherwise a singleton list containing the result is
returned.

Ask synchronizes on stability of a space and then returns its status. Sec-
tion 10.4.2 presents a simpler and more expressive design that does not require
synchronization on spaces but reuses synchronization on variables.

4.5 Search

To support search, spaces need operations for distribution and exploration.
An important goal is to make distribution programmable and to decompose
it into orthogonal primitives. Distribution is generalized as follows:

Arbitrary Statements. Distribution is not limited to be with respect to a
single constraint. Instead an arbitrary number of statements, called al-
ternatives, are allowed.

Explicit Cloning. Distribution is programmed from cloning spaces and com-
mitting a space to a particular alternative.

Problem-Independent Exploration. Alternatives are problem-dependent and
thus require access to the constraints inside a space. For exploration, it
is sufficient to select alternatives by number. The number-based selection
protocol makes the search engine orthogonal to the script to be solved.
Factoring script and exploration is an important design principle. It fol-
lows in spirit one of the main motivations of logic programming which
is often referred to by the slogan “algorithm = logic + control”, due to
Kowalski [69].
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4.5.1 Alternatives

A straightforward approach is to use a choice statement for specifying the
alternatives with which a space is to be distributed:

choicechoicechoice σ1 [] · · · [] σn endendend

where the statements σ1, . . . , σn define the alternatives. This approach would
statically fix the number of alternatives.

The primitive Choose allows an arbitrary number of alternatives:

{Choose x y}

Its reduction blocks until x is determined to a natural number n. If n ≤ 0 an
exception is raised. Otherwise, the current thread T is marked as distributor
thread with n alternatives. If S already contains a distributor thread, an
exception is raised. This construction ensures that there can be at most one
distributor for a space.

The variable y will be determined to a number between 1 and n. The deter-
mination is controlled by a different primitive Commit that is used to program
exploration of alternatives. The primitive is discussed in Section 4.5.4.

For convenience,
choicechoicechoice σ1 [] · · · [] σn endendend

abbreviates
casecasecase {Choose n}
ofofof 1 thenthenthen σ1
[] · · ·
[] n thenthenthen σn
endendend

Multiple Distributors are Considered Harmful. A different and seemingly
more expressive design would be to allow multiple distributors per space.
This design alternative has been explored in different flavors in earlier imple-
mentations of Oz and has been identified to be a common source of hard to
find programming errors.

The first flavor is to leave the order of distributors undefined. This renders
search unpredictable: explored nodes and search tree size depend on which
distributor is considered first. This in particular collides with recomputation
(Chapter 7) which presupposes that exploration can be redone deterministi-
cally.

The second flavor is to order distributors. A dynamic order that records
distributors in order of creation does not offer any improvement in a con-
current setting. A static order can improve this, but is difficult to define: all
concurrent events must be ordered, including injection into spaces. In ad-
dition, a static order is costly to implement [58, 89]. On the other hand,
expressiveness is still unsatisfactory, see Section 11.6.
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As a consequence, a simple but expressive way to employ multiple dis-
tributors is to explicitly program the order. Multiple distributors are then
executed by a single thread in a well defined order. Since the base language
is indeterministic (due to determination test and message sending), indeter-
ministic creation of distributors is still possible. The point is that with at
most one distributor, this type of error is considerably less likely.

4.5.2 Distributable Spaces

A space is distributable, if it is stable and contains a distributor thread T .
A distributable space is said to have n alternatives, if its distributor thread
has n alternatives. Consequently, a stable space is succeeded, if it is neither
failed nor distributable.

The additional stable state is taken into account by Ask for status access
as follows.

{Ask x y}

If x refers to a distributable space which has n alternatives, reduction pushes
y = alternatives(n).

4.5.3 Synchronizing on Stability

Typically, a distributor creates alternatives that reflect the current informa-
tion available in the constraint store. For example, a distributor following a
first-fail strategy gives preference to a variable with smallest domain. Which
variable to select is decided best after all constraint propagation is done, that
is, after the current space is stable.

This requires a primitive that allows a thread to synchronize on stability
of the current space. As a followup to the discussion above, it is useful to
restrict the number of threads that can synchronize on stability to at most
one. Along the same lines, a space can have either a distributor thread or a
thread that waits for stability.

Therefore Choose is extended such that it offers synchronization for
stability in case the number of alternatives is one. If a space S becomes
distributable and has a single alternative, reduction immediately proceeds
as follows: the distributor thread T contains as its topmost statement
{Choose x y} and x is determined to 1. This statement is replaced by push-
ing y = 1. This possibly makes both T and S runnable again. A space that
is distributable and has a single alternative is called semi-stable. Note that a
space that becomes semi-stable, directly becomes runnable again by reduc-
tion of the Choose statement.

In the following the procedure WaitStable is used to synchronize on sta-
bility that is programmed from Choose:

procprocproc {WaitStable}
{Choose 1 _}

endendend
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Example 4.4 (Programming Distribution). Distributor takes a list of finite
domain variables to be distributed:

procprocproc {Distributor Xs}
{WaitStable}
casecasecase {SelectVar Xs} ofofof [X] thenthenthen N={SelectVal X} ininin

choicechoicechoice X=N [] X\=:N endendend {Distributor Xs}
elseelseelse skipskipskip
endendend

endendend

WaitStable is employed to synchronize the shaded statement on semi-
stability. This ensures that variable and value selection take place after con-
straint propagation.

After synchronizing on stability, SelectVar selects a variable X that has
more than one value left, whereas SelectVal selects a possible value N for X.
The binary choice states that either X is equal to N or different from N. The
first-fail strategy, for example, implements SelectVar as to return a variable
with smallest domain and SelectVal as to return the smallest value.

4.5.4 Committing to Alternatives

For exploration, a space must be reduced with alternatives defined by Choose.
This is done with:

{Commit x y}

Its reduction synchronizes on x being ξ �→ S and S being stable and not
merged. Additionally, it synchronizes on y = n for some natural number n.
An exception is raised, if S is not distributable, if n is less than one, or if n
is greater than the number of alternatives of S.

Otherwise, the distributor of S contains a statement {Choose z z′}. This
statement is replaced by pushing y = z′.

At first sight, it seems not essential that Commit synchronizes on stabil-
ity. Typically, before Commit is applied, Ask has been used to test that the
space is indeed distributable. There are search engines (recomputation being
one particular example, Chapter 7) that repeatedly apply Commit. For these
engines synchronization of Commit on stability is convenient and excludes a
great deal of programming errors by design.

4.5.5 Cloning Spaces

A space is cloned by
{Clone x y}

Its reduction synchronizes on x being ξ �→ S and S being stable. It reduces by
creating a clone ξ′ �→ S′ of S with ξ′ being a fresh name. Variables and names
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in S are consistently renamed to fresh variables and fresh names. Reduction
pushes y = ξ′.

Stability is essential for cloning. It fights combinatorial explosion by en-
suring that all computation is done once and for all before cloning. As will
become clear in Section 13.5.2, stability is essential for an efficient implemen-
tation of cloning.

Example 4.5 (Clone and Merge). Cloning performs a consistent renaming of
local variables and names. As a consequence, the statement

C={Clone S} ininin {Merge S}={Merge C}

can possibly raise failure! As an example for a space S to exhibit this behavior
consider

S={NewSpace procprocproc {$ P} procprocproc {P} skipskipskip endendend endendend}

Example 4.6 (Distribution). Suppose that S refers to a distributable space
with two alternatives. Then S is distributed by

funfunfun {Distribute S}
C={Clone S} ininin {Commit S 1} {Commit C 2} [S C]

endendend

where S is the space obtained by distribution with the first alternative and C
the space obtained by distribution with the second alternative.

From distribution it is only a small step to provide a first blueprint of a
search engine programmed from spaces.

Example 4.7 (All-Solution Exploration). Suppose that S refers to a space
that has been created for a script to be solved by search. Then all-solution
exploration that takes S as input and returns a list of all succeeded spaces
representing solutions is as follows:

funfunfun {Explore S}
casecasecase {Ask S}
ofofof failed thenthenthen nil
[] succeeded thenthenthen [S]
[] alternatives(2) thenthenthen [S1 S2]={Distribute S} ininin

{Append {Explore S1} {Explore S2}}
endendend

endendend

Here Append concatenates two lists. Note that Explore is restricted to dis-
tributable spaces with two alternatives.

Example 4.8 (Partial Evaluation with Clone). Cloning can be seen as partial
evaluation: the result stored in a stable space can be reused as many times as
required. In particular, local variables are automatically renamed, whenever
the space is cloned.
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The following procedure sketches this idea. It takes a script P as input
and returns a procedure that on application returns what P would return on
application, provided that encapsulated execution of P becomes stable:

funfunfun {Evaluate P}
S={NewSpace P}

ininin
ififif {Ask S}==failed thenthenthen procprocproc {$ _} failfailfail endendend
elseelseelse procprocproc {$ X} {Merge {Clone S} X} endendend
endendend

endendend

4.5.6 Refining Commit

Commit selects a single alternative. In later chapters, in particular in Chap-
ters 5 and 6, it will become apparent that it is useful to be able to select
alternatives at a finer granularity. Rather than committing to a single alter-
native, it is beneficial to discard some alternatives (or by abusing language,
to commit to a number of alternatives).

To this end, Commit is refined as follows:

{Commit2 x y1 y2}

which synchronizes on x being ξ �→ S and S being stable. Additionally, it
synchronizes on y1 and y2 being determined to natural numbers n1 and n2.
If 1 ≤ n1 ≤ n2 ≤ m does not hold, where m is the number of alternatives
of S, an exception is raised. The idea is that only the alternatives n1, . . . , n2
remain, while the numbering observed by Choose is maintained. If n1 = n2,
reduction coincides with that of Commit.

Otherwise, suppose the distributor thread contains {Choose z1 z2} as its
first statement. Then this statement is replaced by

locallocallocal X Y ininin X=n2 − n1 + 1 {Choose X Y} z2=Y+n1 − 1 endendend

Here, X refers to the new number of alternatives, whereas z2 is obtained by
adding an appropriate offset.

Rather than using Commit2 directly, the following convenient definition
of Commit is employed:

procprocproc {Commit S X}
casecasecase X ofofof N1#N2 thenthenthen {Commit2 S N1 N2}
elseelseelse {Commit2 S X X}
endendend

endendend
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4.6 Situated Procedure Calls: Services Reconsidered

The setup disallows communication between local computation spaces and
the toplevel space. Even the full model for spaces that is discussed in Chap-
ter 10 will restrict communication across spaces such that it is compatible
with encapsulation. For some applications this setup is too strict. Consider
the following situations:

Best-First Search. Best-first search associates a cost value with each node of
the search tree. The cost value must be computed within the space, since
it normally depends on the script’s variables and constraints. The value
itself must be available to the search engine and must be communicated
to the toplevel space.

Database Access. A script might require access to external data. As an ex-
ample, think of products and their associated costs from a warehouse
database. The script cannot access the database directly. The request
must be sent to a service in the toplevel space. The answer must be
communicated back to the script’s space. This scenario has remarkable
similarity with remote procedure calls (RPC) used in distributed comput-
ing: the computation (the service) is stationary, while the arguments and
the result of the call are transmitted across the network (across spaces).
This justifies to refer to this technique as situated procedure call (SPC).

Mapping the two example situations to ports and services, they just cor-
respond to the operations Send and SendRecv on ports as introduced in
Section 3.3.3.

In both situations, the idea to clone and merge the space to get access
is infeasible. The space of interest is typically not stable and thus cannot
be cloned. Moreover, in situations where cloning would be applicable, it is
inappropriate. It is far to costly to clone the entire space to access a cost
value or a small message.

Sending Messages Across Spaces. The message x to be sent to a port that is
situated at the toplevel must be sendable. Intuitively, x is sendable to S, if
x does not refer to variables and names which are local to S.

A variable x is sendable from S with store φ to the toplevel space, if there
is no variable y with x �φ y and y is not determined, and there is no name ξ
with x �φ ξ and ξ is situated in S (� is introduced in Section 3.2.1).

In case x is sendable from S to the toplevel space, all constraints on x
must be made available to a variable x′ that is situated in the toplevel. The
constraints are made available by cloning them from S to the toplevel. As
becomes clear in Section 13.7, the implementation of sending comes for free
in that cloning is not needed.

A send statement
{Send x y}
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reduces as follows. It synchronizes on x being ξ �→ [z]. If H(ξ) is the current
space, reduction proceeds as described in Section 3.3.3.

An exception is raised if y is not sendable from the current space to the
toplevel space. Otherwise, y is sent to x. The message is then appended to the
port’s stream as follows. The port store is updated to ξ �→ [z′] and reduction
proceeds by injecting z = y|z′ into the toplevel space. Since the port store is
updated immediately, sequential order of messages is guaranteed.

Getting Answers. The procedure SendRecv shown in Section 3.3.3 that re-
turns an answer is programmed from Send. This is not longer possible in the
context of sending across spaces. If the sender is situated in a local space and
the port is situated in the toplevel, the answer is computed in the toplevel
and hence the variable to refer to the answer must be situated in the toplevel
as well.

Therefore, SendRecv becomes a primitive operation. Its definition is
straightforward and follows the idea that the variable to take the answer
is situated in the port’s home.

4.7 Previous Work: Solve Combinator

Previous work by me and Smolka introduced the solve combinator [128, 129,
133]. The solve combinator spawns a local computation space and resolves
choices by returning them as procedures. Computation spaces subsume the
solve combinator and avoid its severe limitations.

funfunfun {Solve P}
S={NewSpace P}

ininin
casecasecase {Ask S}
ofofof failed thenthenthen failed
[] succeeded thenthenthen

solved(procprocproc {$ X} {Merge {Clone S} X} endendend)
[] alternatives(N) thenthenthen C={Clone S} ininin

distributed(procprocproc {$ X} {Commit S 1} {Merge S X} endendend
procprocproc {$ X} {Commit C 2#N} {Merge C X} endendend
ififif N==2 thenthenthen last elseelseelse more endendend)

endendend
endendend

Fig. 4.2. The solve combinator programmed from computation spaces.

The solve combinator programmed from spaces is shown in Figure 4.2.
It takes a script, creates a space that executes the script, and returns in-
formation that depends on the space status. It combines the abstractions of
Example 4.3 for speculative execution, of Example 4.8 for providing a solu-
tion, and of Example 4.6 for distribution.
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Spaces provide a more expressive and natural abstraction for program-
ming constraint services. The main disadvantage of the solve combinator is
that it hardwires distribution. This prevents all but the most straightforward
services: while most but not all services discussed in Chapters 5 and 6 can
be programmed from the solve combinator, the services in Chapters 7 to 11
are out of reach.

Example 4.9 (All-Solution Exploration Reconsidered). The solve combinator
can be regarded as a convenient abstraction to program simple search en-
gines. The following example shows all-solution exploration as presented in
Example 4.7 programmed with the solve combinator.

funfunfun {ExploreAll P}
casecasecase {Solve P} ofofof failed thenthenthen nil
[] solved(P) thenthenthen [P]
[] distributed(P1 P2 _) thenthenthen

{Append {ExploreAll P1} {ExploreAll P2}}
endendend

endendend

ExploreAll returns a list of unary procedures rather than a list of com-
putation spaces and, again, is limited to binary alternatives only. The main
difference to be observed is that distribution is fully automatic with the solve
combinator: this accounts for both its elegance and its lack of expressiveness.

4.8 Summary

This section summarizes operations on first-class computation spaces as in-
troduced in this chapter.

NewSpace : Script → Space
Creates a new space with a thread executing the script applied to
the root variable (Section 4.3.1).

Inject : Space × Script
Injects a thread executing the script applied to the root variable
(Section 4.3.3).

Merge : Space → Any
Merges a space with the toplevel and returns the root variable (Sec-
tion 4.3.2).

Ask : Space → Status
Synchronizes until a space becomes stable and then returns the sta-
tus (Section 4.4). Figure 4.3(a) summarizes the states of a compu-
tation space.

Clone : Space → Space
Creates a clone of a stable space (Section 4.5.5).
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(a) Relation between states.
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(b) State transitions.

Fig. 4.3. Summary of space states and transitions.

Commit : Space ×Alternative
Commits a distributable space to alternatives of its distributor (Sec-
tion 4.5.4).

Figure 4.3(b) summarizes the transitions between states of a computa-
tion space. States that correspond to stable spaces are shaded. Transitions
performed by operations applied to first-class spaces are depicted with solid
lines. Transitions performed by computation situated in the space are de-
picted with dashed lines. The picture shows that stable states are indeed
stable with respect to computation inside the space: no dashed edge starts
from a stable state.

Relation to Mozart. The operations on computation spaces as discussed here
are fully implemented in Mozart (Version 1.2). They are available in a module
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Space that is loaded on demand at runtime. To try any of the examples
presented in this book, it is sufficient to write Space.ask rather than Ask,
for example.



5. Search Engines

This chapter presents simple state-of-the-art search engines. The chapter’s
focus is on familiarizing the reader with basic techniques for programming
search engines.

5.1 Depth-First Search

The most basic search strategy is depth-first search (DFS): explore the search
tree left-most depth-first until a first solution is found. In the following, dis-
cussion is limited to distributors with two alternatives, the general case is
discussed in Section 5.3.

Exploration. The procedure DFE (as abbreviation for depth-first exploration)
is shown in Figure 5.1. DFE takes a space as argument and tries to solve it
following a depth-first strategy. The procedure is similar to that shown in
Example 4.7 and is discussed here again to show how to control exploration
until the first solution is found.

funfunfun {DFE S}
casecasecase {Ask S}
ofofof failed thenthenthen nil
[] succeeded thenthenthen [S]
[] alternatives(2) thenthenthen C={Clone S} ininin

{Commit S 1}
casecasecase {DFE S} ofofof nil thenthenthen {Commit C 2} {DFE C}
[] [T] thenthenthen [T]
endendend

endendend
endendend

Fig. 5.1. Depth-first one-solution exploration.

If no solution is found, but search terminates, the empty list is returned.
Otherwise, a singleton list with the succeeded computation space is returned.
If S is distributable, exploration continues with the first alternative. If this
does not yield a solution, a clone is distributed with the second alternative
and is solved recursively.

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 45–54, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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The Engine. The procedure DFE is turned into a complete search engine DFS
that can be used without any knowledge about spaces as follows:

funfunfun {DFS P}
casecasecase {DFE {NewSpace P}} ofofof nil thenthenthen nil
[] [S] thenthenthen [{Merge S}]
endendend

endendend

DFS takes a script as input, creates a new space to execute the script, and
applies DFE to the newly created space. In case DFE returns a list containing
a succeeded space, its root variable is returned as singleton list.

Typically, search engines are not programmed from scratch. The Mozart
implementation of Oz offers a search library programmed from spaces [33].

All-Solution Search. The search engine can be adapted easily to all-solution
search as in Example 4.7. It is sufficient to replace the shaded lines in Fig-
ure 5.1 with:

{Commit C 2} {Append {DFE S} {DFE C}}

Example 5.1 (Send Most Money). As an example, consider a variation of a
popular cryptoarithmetic puzzle: Find distinct digits for the variables S, E,
N , D, M , O, T , Y such that S �= 0, M �= 0 (no leading zeros), and SEND +
MOST = MONEY holds. The puzzle’s script is shown in Figure 5.2.

Execution of Root ::: 0#9 tells the basic constraints that each element
of Root is an integer between 0 and 9. The propagator FD.distinct enforces
all list elements to be distinct, whereas the propagators S\=:0 and M\=:0
enforce the variables S and M to be distinct from 0. The variables for the
letters are distributed (by FD.distribute) according to a first-fail strategy.

Applying the search engine DFS to Money returns [[9 3 4 2 1 0 5 7]].

procprocproc {Money Root}
S E N D M O T Y

ininin
Root = [S E N D M O T Y] Root ::: 0#9
{FD.distinct Root}
S\=:0 M\=:0

S*1000 + E*100 + N*10 + D
+ M*1000 + O*100 + S*10 + T

=: M*10000 + O*1000 + N*100 + E*10 + Y
{FD.distribute ff Root}

endendend

Fig. 5.2. A program for the SEND + MOST = MONEY puzzle.
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5.2 Simplifying Control: Exceptions

Depth-first search for a single solution has a simple termination condition:
either exploration is complete, or a solution is found. The procedure DFE in
Figure 5.1 keeps on testing the latter condition. This leads to a nesting of
conditional statements. A simpler approach is to replace testing by raising
an exception in case a solution is found (Figure 5.3). The exception contains
the solution found.

procprocproc {DFE S}
casecasecase {Ask S}
ofofof failed thenthenthen skipskipskip
[] succeeded thenthenthen raiseraiseraise [S] endendend
[] alternatives(2) thenthenthen C={Clone S} ininin

{Commit S 1} {DFE S} {Commit C 2} {DFE C}
endendend

endendend

(a) Exploration.

funfunfun {DFS P}
trytrytry {DFE {NewSpace P}} nil
catchcatchcatch [S] thenthenthen [{Merge S}]
endendend

endendend

(b) Engine.

Fig. 5.3. Depth-first search engine using exceptions.

The benefits of using exceptions become even more apparent for engines
that consist of more than a single procedure. With testing, each individual
procedure must test whether to continue exploration. Examples that in par-
ticular benefit from exceptions are limited discrepancy search (Section 5.6)
and best-first search (Section 5.7).

5.3 Binarization

The procedure DFE as shown in Figure 5.3 handles two alternatives only. A
straightforward way to deal with an arbitrary number of alternatives is by
an additional procedure NE (Figure 5.4). To use NE, the procedure DFE must
be adopted as follows:

[] alternatives(N) thenthenthen {NE S 1 N}
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procprocproc {NE S I N}
ififif I==N thenthenthen

{Commit S N} {DFE S}
elseelseelse C={Clone S} ininin

{Commit C I} {DFE C} {NE S I+1 N}
endendend

endendend

Fig. 5.4. Exploring alternatives from 1 to n.

A simpler way is to use binarization by splitting alternatives. Different
binarization strategies are sketched in Table 5.1. Binarization trades an ad-
ditional procedure similar to NE for additional commit-operations (c in the
table). Section 13.8 provides evidence that commit-operations are efficient.
Since two alternatives is the most common case, binarization is a simple and
gracefully degrading technique.

Table 5.1. Binarization of n-ary distributors (n > 2).

Strategy Operations c f

None Figure 5.4 n 1

Left
{Commit S 1#(N-1)}
{Commit C N} 2n− 2 n− 1

Balanced
M=N divdivdiv 2 ininin
{Commit S 1#M}
{Commit C (M+1)#N}

2n− 2 �log2 n�

Right
{Commit S 1}
{Commit C 2#N} 2n− 2 1

c Number of commit-operations.
f Number of commit- (clone)-operations for first alternative.

Taking runtime into account, balanced binarization looks most promising
followed by right binarization. For single-solution search, right binarization
has the additional advantage that only one commit- and clone-operation are
needed for the first alternative. This is good when search for the first solution
almost never goes wrong.

Memory consumption yields an even more compelling argument for right
binarization. Using f clone-operations to compute the first alternative also
implies that f spaces must be kept in memory during exploration of the
first alternative. Therefore right binarization is preferable. In Section 6.3 it is
argued that right binarization has further advantages for branch-and-bound
best-solution search.
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To incorporate right binarization into the search engine for depth-first
search, it is sufficient to replace the shaded part in Figure 5.3 by:

[] alternatives(N) thenthenthen C={Clone S} ininin
{Commit S 1} {DFE S} {Commit C 2#N} {DFE C}

5.4 Multiple Solutions

Section 5.1 sketches how to program all-solution search. In general, searching
for all solutions is unfeasible. It is more realistic to search for a limited number
of solutions.

An additional disadvantage of the all-solution engine sketched in Sec-
tion 5.1 is that the engine returns solutions only after the entire search tree
has been explored. In a concurrent setting, it is natural to output solutions
as early as possible such that other threads can start consuming them.

This idea can be combined with using exceptions for termination. As
soon as a solution is found, the engine applies a procedure Collect to it.
Collect then controls how to output the solution and checks whether to
continue exploration. If all desired solutions have been found, Collect raises
an exception that terminates the engine.

A simple example for Collect that implements single-solution search as
before is:

procprocproc {Collect S}
raiseraiseraise [S] endendend

endendend

A more interesting example is SearchSome that searches for a given num-
ber n of solutions where the solutions should be available to other threads
immediately. When the search engine starts, it immediately returns a logic
variable Xs. The variable Xs refers to the list of solutions. The definition of
Collect remembers the tail of the list. If a next solution is found, it is ap-
pended to the list of solutions. If all n solutions are found, Collect raises an
exception to terminate exploration.

Demand-driven search is obtained similarly. After a solution is found, the
new tail of the list is chosen as a by-need future. Only when a next solution is
requested by synchronizing on the future search continues. By-need futures
are available in full Oz, although they are not discussed here in more detail
(Section 3.5 gives a glance at futures).

5.5 Explicit State Representation

DFS shown in Figure 5.3 maintains its state implicitly as statements on a
thread. Engines to be discussed later, for example, best-first search in Sec-
tion 5.7, and in particular parallel search in Chapter 9, require access to
spaces that comprise the engine’s state.
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procprocproc {DFE Ss}
casecasecase Ss ofofof nil thenthenthen skipskipskip
[] S|Sr thenthenthen

casecasecase {Ask S} ofofof failed thenthenthen {DFE Sr}
[] succeeded thenthenthen raiseraiseraise [S] endendend
[] alternatives(2) thenthenthen C={Clone S} ininin

{Commit S 1} {Commit C 2} {DFE S|C|Sr}
endendend

endendend
endendend

Fig. 5.5. Depth-first search engine with explicit state.

An alternative formulation of DFE that explicitly maintains spaces is
shown in Figure 5.5. The engine maintains the state as a stack of spaces (im-
plemented as list). Exploration is performed more eagerly than exploration
by the engine in Section 5.1. The reason is that the commit-operation shaded
gray is immediately applied after cloning.

A straightforward solution to arrive at the same number of exploration
steps is to not store spaces directly. Instead a data structure is used from
which the space is computed if desired. A convenient data structure is of
course a function that returns the space upon application. The data structure
that is suited best depends on the engine.

5.6 Limited Discrepancy Search

Typically, distribution strategies follow a heuristic that has been carefully
designed to suggest most often “good” alternatives leading to a solution.
This is taken into account by limited discrepancy search (LDS), introduced
by Harvey and Ginsberg [48]. LDS has been successfully applied to schedul-
ing [17, 25] and frequency allocation [152].

Fig. 5.6. Probes with 0, 1, 2, and 3 discrepancies.

Exploring against the heuristic is called a discrepancy. In the setting here,
a discrepancy thus amounts to first commit to the second alternative, rather
than to the first. LDS explores the search tree with no allowed discrepancy
first, then allowing 1, 2, . . . discrepancies until a solution is found, or a given
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limit for the discrepancies is reached. Exploration with a fixed number of
allowed discrepancies is called probing.

Additionally, LDS makes a discrepancy first at the root of the search
tree. This takes into account that it is more likely for a heuristic to make
a wrong decision near the root of the tree where only little information is
available. If no solution is found, discrepancies are made further down in the
tree. Figure 5.6 sketches how LDS probes, where discrepancies are shown by
thick vertices (the illustration is adapted from [48]).

procprocproc {Probe S M}
casecasecase {Ask S} ofofof failed thenthenthen skipskipskip
[] succeeded thenthenthen raiseraiseraise [S] endendend
[] alternatives(N) thenthenthen

ififif M>0 thenthenthen C={Clone S} ininin
{Commit S 2#N} {Probe S M-1}
{Commit C 1} {Probe C M}

elseelseelse
{Commit S 1} {Probe S 0}

endendend
endendend

endendend

Fig. 5.7. Probing for LDS.

Figure 5.7 shows Probe that implements probing. It takes a space S and
the number of allowed discrepancies M as input, and raises an exception being
a singleton list containing a succeeded space, if a solution is found. If S is dis-
tributable and no more discrepancies are allowed (that is, M is zero) probing
continues after committing to the first alternative. Otherwise, a discrepancy
is made by committing to the remaining alternatives and probing continues
with one allowed discrepancy less. If this does not yield a solution, probing
continues by making the discrepancy further down in the search tree. Note
that Probe uses binarization: the first alternative corresponds to 0 discrep-
ancies, the second alternative to 1 discrepancy, and the i-th alternative to
(i− 1)-discrepancies.

procprocproc {Iterate S N M}
ififif N==M thenthenthen {Probe S N}
elseelseelse {Probe {Clone S} N} {Iterate S N+1 M}
endendend

endendend
funfunfun {LDS P M}

trytrytry {Iterate {NewSpace S} 0 M} nil
catchcatchcatch [S] thenthenthen [{Merge S}]
endendend

endendend

Fig. 5.8. Iteration-engine for LDS.
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A complete implementation of LDS is obtained straightforwardly from
Probe (Figure 5.8). First, a space S running the script P is created. Then
application of Probe to a clone of S and the number of allowed discrepancies
is iterated until either a solution is found or the discrepancy limit is reached.

It is interesting that LDS is close in structure and shorter (due to ex-
ceptions) than the original pseudo-code for probing in [48]. This demon-
strates that spaces provide an adequate level of abstraction for search en-
gines of this kind. Results of recent research that has explored improvements
of LDS such as ILDS (improved LDS) [68] and variants of LDS such as
DDS (depth-bounded discrepancy search) and IDFS (interleaved depth-first
search) [153, 80, 81] can be adapted to space-based engines easily.

To iteratively apply exploration is a common technique. The presumably
best known example is iterative deepening [66, 67].

5.7 Best-First Search

Distribution makes a local heuristic decision based only on the variables of
a single space. In some cases it can be preferable to make a global decision
instead. Best-first search makes global decisions: each node of the search tree
has a cost value associated. Exploration always continues with the best node,
that is, with the cheapest node.

A best-first search engine takes a cost function in addition to the script.
The cost function is problem-specific. Typically, the cost function needs access
to the root variable of a script. This is also the most interesting point to be
discussed here: the cost is computed inside the space, but must be made avail-
able to the search engine that is executed in the toplevel space. With other
words, best-first search requires communication across space boundaries. For
communication across space boundaries services are used as discussed in Sec-
tion 4.6.

funfunfun {GetCost S F}
N SF={NewService funfunfun {$ X} N=X unitunitunit endendend}

ininin
{Inject S procprocproc {$ R} _={SF {F R}} endendend} N

endendend

Fig. 5.9. Computing a cost for a space.

Figure 5.9 shows GetCost that takes a space S and a cost function F
and returns the cost. It first creates a trivial service SF by application of
NewService (Section 3.3.3) that makes the argument of the first invocation
of SF available via N. Cost computation is by injecting a thread into S that
computes the cost (by application of F to the root variable of S) and applies
the service SF to that cost.
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procprocproc {Insert PQ S F}
casecasecase {Ask S} ofofof failed thenthenthen skipskipskip
[] succeeded thenthenthen raiseraiseraise [S] endendend
[] alternatives(2) thenthenthen {Put PQ {GetCost S F} S}
endendend

endendend

(a) Insertion according to cost.

procprocproc {BFE PQ}
ififif {Not {IsEmpty PQ}} thenthenthen S={Get PQ} C={Clone S} ininin

{Commit S 1} {Insert PQ S F}
{Commit C 2} {Insert PQ C F}
{BFE PQ}

endendend
endendend

(b) Exploration.

Fig. 5.10. Best-first exploration.

The rest of the best-first search engine is straightforward. The engine
organizes nodes according to cost using a priority queue. Central parts of
best-first exploration are shown in Figure 5.10. Figure 5.10(a) shows how a
given space S is inserted into a priority queue PQ (Put enqueues an element
into a priority queue) according to S’s cost. Note that only distributable
nodes are inserted. Failed spaces are ignored and succeeded spaces raise an
exception to return a solution. Figure 5.10(b) shows best-first exploration,
where F again refers to a cost function. IsEmpty tests whether a priority
queue is empty, whereas Get removes and returns the cheapest element.

Example 5.2 (Applying Best-First Search). As an example, best-first search
is applied to the SEND + MOST = MONEY -problem (Example 5.1). An
example cost function is SizeSum: the sum of the sizes of the variables for
the letters. The size of a variable is the cardinality of its domain. BFS is
invoked as follows:

{BFS SMM SizeSum}

The cost function has a similarity with first-fail distribution: it chooses the
space for exploration for which propagation has led to the tightest domain.

Best-first search differs essentially from depth-first exploration. Depth-
first exploration allows for a backtracking implementation. Best-first explo-
ration can continue at arbitrary nodes in the search tree. This issue is dis-
cussed in more detail in Section 14.2.

A severe drawback of best-first search is that it requires exponential mem-
ory in the depth of the search tree for the worst case (similar to breadth-first
search). This can be addressed by recomputation strategies (Chapter 7).
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Best-first search is just one particular instance of an informed search
strategy. The point to discuss best-first search in the context of computation
spaces is to show how to apply services as technique for “informedness”. Other
informed search engines are A∗-search [47] and its derivatives such as IDA∗

and SMA∗. These strategies are discussed by most textbooks on Artificial
Intelligence, for example [97, 114].



6. Best-Solution Search

Best-solution search determines a best solution with respect to a problem-
dependent order among solutions. The art of best-solution search is to prune
the search space as much as possible by previously found solutions. This
chapter presents basic techniques and generalizations for best-solution search.

6.1 Constraining Spaces

Essential for best-solution search is to inject into a space an additional con-
straint that the next solution must be better than all previous solutions.
This constraint prunes the search space to be explored for finding a better
solution.

The following function takes a binary order procedure O and returns a
procedure Constrain.

funfunfun {NewConstrain O}
procprocproc {Constrain S BS}

OR={Merge {Clone BS}}
ininin

{Inject S procprocproc {$ NR} {O OR NR} endendend}
endendend

ininin
Constrain

endendend

Constrain takes a space S and a space BS (the best solution so far). It
injects into S that it must yield a better solution than BS. This is implemented
by the order O on the constraints accessible from the root variables of the
previous solution and S itself.

The solution’s constraints are made accessible by merging a clone of BS
rather than merging BS itself. This allows to possibly return BS as best so-
lution. Constrain can straightforwardly be optimized by memorizing the
solution obtained by merging.
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6.2 Iterative Best-Solution Search

A simple engine for best-solution search is iterative best-solution search
(IBSS). After a solution is found, search restarts from the original problem
together with the constraint to yield a better solution.

Iteration is used as in limited discrepancy search (see Section 5.6). Any
single-solution search engine can be used for IBSS. Iteration continues until
the search engine does not yield a solution. The best solution (if any) is the
solution found last.

6.3 Branch-and-Bound Best-Solution Search

IBSS performs well, if it is easy to find a first solution. If finding a first
solution already involves a great deal of search, IBSS is bound to repeat the
search in each iteration. In this situation, branch-and-bound search (BAB)
can do better, since it avoids repetition.

funfunfun {BABE S BS}
casecasecase {Ask S} ofofof failed thenthenthen BS
[] succeeded thenthenthen S
[] alternatives(N) thenthenthen C={Clone S} ininin

{Commit S 1} {Commit C 2#N}
locallocallocal NBS={BABE S BS} ininin

ififif NBS\=BS thenthenthen {Constrain C NBS} endendend
{BABE C NBS}

endendend
endendend

endendend

Fig. 6.1. Branch-and-bound best-solution search engine.

The procedure BABE (see Figure 6.1) implements exploration for BAB. It
takes the space S to be explored and the space BS as the best solution so
far. It returns the space for the best solution or nil, if no solution exists.
Initially, SolS is nil. The procedure maintains the invariant that S can only
lead to a solution that is better than BS. In case S is failed, the so-far best
solution is returned. In case S is succeeded, it is returned as new and better
solution (which is guaranteed by the invariant).

The central part is shaded: if following the first alternative returns a better
solution (the invariant ensures that a different space is better), the space for
the second alternative is constrained to yield an even better solution than BS.
Note that here the unique identity of spaces and that nil is different from
any space is exploited. The latter ensures that Constrain never gets applied
to nil.
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Binarization (see Section 5.3) has advantages over individually exploring
each alternative for BAB. Application of Constrain can potentially prune
several alternatives simultaneously rather than prune each alternative indi-
vidually.

A search engine BABS is obtained easily: it creates a space running the
script to be solved, creates a procedure Constrain depending on the order,
applies BABE, and possibly returns the best solution.

Example 6.1 (Send Most Money (Example 5.1) Reconsidered). To search for
a solution of SEND + MOST = MONEY with the most money, that is,
MONEY is as large as possible, a binary procedure More is defined as follows.
It takes two root variables O and N and imposes the constraint that N is better
than O.

{BABS Money More} returns [[9 7 8 2 1 0 4 6]] as best solution.

6.4 An Alternative Formulation of BAB

Later chapters present search engines that require explicit access to the
search engine’s spaces. For this reason and for additional insight, this sec-
tion presents a formulation of BAB that maintains spaces explicitly.

The BAB engine shown in the previous section uses the identity of spaces
to determine whether a space must be constrained. Here, the spaces to be
explored are organized on two stacks: the foreground stack (f-stack) and the
background stack (b-stack). Spaces on the f-stack are guaranteed to yield a
better solution. Spaces that are not known to guarantee this invariant are on
the b-stack.

The engine can be characterized by how it maintains the invariants for
the two stacks:

– Initially, the b-stack is empty and the f-stack contains the root space.
– If the f-stack is empty and the b-stack contains S, S is moved to the f-stack
after constraining S.

– If a better solution is found, all elements of the f-stack are moved to the
b-stack.

– If a space taken from the f-stack is comitted or cloned, it is eligible to go
on the f-stack itself.

Taking these facts together yields the program shown in Figure 6.2. The
procedure BABE takes the f-stack (Fs), the b-stack (Bs), and the currently
best solution (BS).

6.5 Prune-Search: Generalizing BAB

BAB uses the currently best solution to prune the remaining search space.
This section shows how to generalize this idea: accumulate information on all
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funfunfun {BABE Fs Bs BS}
casecasecase Fs ofofof nil thenthenthen

casecasecase Bs ofofof nil thenthenthen BS
[] B|Br thenthenthen {Constrain B BS} {BABE [B] Br BS}
endendend

[] F|FR thenthenthen
casecasecase {Ask F} ofofof failed thenthenthen {BABE Fr Bs BS}
[] succeeded thenthenthen {BABE nil {Append Fr Bs} F}
[] alternatives(N) thenthenthen C={Clone F} ininin

{Commit F 1} {Commit C 2#N} {BABE F|C|Fr Bs BS}
endendend

endendend
endendend

Fig. 6.2. BABE with explicit state representation.

solutions found so far to prune the rest of the search space. This technique
is called prune-search (PS).

One particular instance of PS is of course BAB. Accumulation is rather
pathological: the information is just the last solution found. Pruning is
achieved by injecting the constraint that a solution has to be better than
the currently best one.

A different example for PS is searching for all solutions to SEND +
MOST = MONEY with different amounts of MONEY . A naive approach is
to search for all solutions and then remove solutions with the same values for
MONEY . For larger problems, where one is interested in “essentially differ-
ent” solutions this approach is unfeasible. The accumulated information are
the different values for MONEY . Initially, the list is empty. Each solution
found contributes a new value to the list. The constraint to be imposed is
that MONEY must be different from all values in the accumulated list.

From the examples one can see that generalizing BAB to PS is straight-
forward. The notion of currently best solution is replaced by currently accu-
mulated information:

– Initial accumulated information.
– A procedure that combines the previously accumulated information and a
solution and returns the newly accumulated information.

– A procedure that takes the accumulated information and computes a con-
straint to be imposed. This replaces Constrain in BAB.

Otherwise the engine for PS is identical to the engine for BAB with ex-
plicit state as presented in Section 6.4. The formulation for BAB without
explicit state cannot be used for PS, since it relies on the identity of solu-
tions.

An interesting application of PS is symmetry elimination during search.
PS has been used by Backofen and Will for symmetry elimination [8], which
has been successfully applied to the prediction of protein structures [7].
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This chapter introduces recomputation as an essential technique for search
engines. Recomputation saves space, possibly at the expense of increased
runtime. Recomputation can also save time, due to an optimistic attitude to
search. Saving space and time makes recomputation an ideal candidate for
solving large problems.

7.1 Overview

Search demands that nodes of the search tree must possibly be available at
a later stage of exploration. A search engine must take precaution by either
memorizing nodes or by means to reconstruct them. States are memorized by
cloning. Techniques for reconstruction are trailing and recomputation. While
recomputation computes everything from scratch, trailing records for each
state-changing operation the information necessary to undo its effect. This
chapter focuses on recomputation. Trailing and its relation to both cloning
and recomputation are discussed in Section 14.2.

funfunfun {Recompute S Is}
casecasecase Is ofofof nil thenthenthen

{Clone S}
[] I|Ir thenthenthen

C={Recompute S Ir}
ininin

{Commit C I} C
endendend

endendend

1 2

1 2 1 2

1 2 1 2 1 2
A

B

C

R

A={Recompute R [2 1 1]}
B={Recompute R [2 1]}
C={Recompute R [2 1 2]}

Fig. 7.1. Recomputing spaces.

The basic idea of recomputation with spaces is straightforward: any node
in the search tree can be computed without search from the root node of the
search tree and a description of the node’s path. The procedure Recompute
(Figure 7.1) recomputes a space from a space S higher up in the search tree
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and a path between the two spaces represented as list of integers Is. The path
is organized bottom-up, since it can be constructed easily that way during
top-down exploration.
Indeterminism. Recomputation requires that a space can actually be recom-
puted. For a space S and a path Is the application {Recompute S Is} must
always return equivalent spaces. This can go wrong due to indeterminism.
The most likely source of indeterminism by multiple distributors is ruled out
by design (Section 4.5.1). A second, albeit unlikely, source of indeterminism
are the indeterministic constructs of Oz Light.

Indeterministic distributor creation is a programming error. The error
typically proves fatal even without recomputation. Due to indeterminism,
search is unpredictable and might take few milliseconds or several days.

Note that recomputation does not preclude randomly generated alterna-
tives. A random generator is a deterministic program that on each invocation
returns a number out of a pseudo-random sequence of numbers, for exam-
ple [64, Chapter 3].

7.2 Full Recomputation

The most extreme version of recomputation is to always recompute spaces
from scratch. The procedure DFE as shown in Figure 5.1 can be extended by
two additional arguments: R for the root space and Is for the path of the
current space S to the root.

Recursive applications of DFE additionally maintain the path to the root
of the search tree. For example, the part of the search engine that explores
the second alternative replaces cloning by recomputation and is as follows:
· · · thenthenthen C={Recompute R Is} ininin {Commit C 2} {DFE C R 2|Is}

To base exploration on recomputation alone is unfeasible. Suppose a com-
plete binary search tree of height k (where a single node is assumed to have
depth 0), which has 2k leaves. To recompute a single leaf, k exploration steps
are needed. Here and in the following the number of exploration steps is used
as cost measure. An exploration step amounts to a commit-operation and the
resulting propagation. This gives a total of k2k exploration steps compared
to 2k+1 − 2 exploration steps without recomputation (that is, the number of
edges). Hence, full recomputation takes approximately k/2-times the number
of exploration steps required without recomputation.
Last Alternative Optimization (LAO). Even though full recomputation is un-
feasible, it allows to study a straightforward yet important optimization for
depth-first exploration. After all but one alternative A of the root node N
have been explored, further recomputation from N always starts with recom-
puting A. The optimization now is to do the recomputation step N → A
only once. This optimization is well known. For example, it corresponds to
the trust me instruction in Warren’s Abstract Machine [5, 154].
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Let us consider a complete binary search tree of height k. The rightmost
path in the tree has k + 1 nodes and requires k exploration steps (edges).
A left subtree issuing from a node at height i on this path requires i2i−1

exploration steps (this is the unoptimized case). Altogether, a tree of height
k requires

k +
k∑

i=0

i2i−1 = 1 + k + (k − 1)2k

exploration steps. Hence LAO saves approximately 2k exploration steps.

7.3 Fixed Recomputation

The basic idea of combining recomputation with copying is as follows: copy
a node from time to time during exploration. Recomputation then can start
from the last copy N on the path to the root. Note that this requires to start
from a copy of N rather than from N itself, since N might be needed for
further recomputation.

A simple strategy is fixed recomputation: limit the
number of steps needed to recompute a node by a fixed
number m, referred to as MRD (maximal recomputation
distance). That is, after m exploration steps, a clone of
the current node is memorized (sketched to the right for m = 2). Filled circles
correspond to clones. The case of m = 1 coincides with no recomputation.
Analysis. Obviously, fixed recomputation decreases the memory needed dur-
ing depth-first exploration by a factor of m. Suppose that the MRD is m and
the height of the tree is k. The case for k ≤ m corresponds to full recom-
putation. Suppose k = lm, where l > 1. Then each subtree of height m can
be collapsed into a single 2m-ary node. Each of the collapsed nodes requires
m2m exploration steps. A 2m-ary tree of depth l − 1 has

l−1∑

i=0

(2m)i =
2ml − 1
2m − 1

=
2k − 1
2m − 1

nodes. Altogether, a tree of depth k (for k being a multiple of m) needs the
following number of exploration steps:

m2m

2m − 1
(
2k − 1

)
.

Hence fixed recomputation for a MRD of m takes

m2m−1

2m − 1
the number of exploration steps required without recomputation. The relative
overhead is: for m = 2, 1.25, for m = 5, 80/31 ≈ 2.6, and for large m
approximately m

2 .
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LAO. How LAO performs for an MRD of 2 is sketched
to the right. Nodes, where a clone is created during ex-
ploration, are black. Nodes, where a clone becomes avail-
able due to LAO, are gray. Unfortunately, the formulas
resulting from mathematical analysis have no straightforward solved form
and thus do not provide additional insight.

Exploration. The procedure DFRE (Figure 7.2(a)) implements depth-first ex-
ploration with fixed recomputation. S is the currently explored space, and R
is the space and Is the path for recomputation. The maximal recomputa-
tion distance is M (a free variable), whereas D is the current recomputation
distance. The shaded line implements LAO.

procprocproc {DFRE S R Is D}
casecasecase {Ask S}
ofofof failed thenthenthen skipskipskip
[] succeeded thenthenthen raiseraiseraise [S] endendend
[] alternatives(2) thenthenthen C ininin

ififif D==M thenthenthen
C={Clone S}
{Commit S 1} {DFRE S C [1] 1}
{Commit C 2} {DFRE C C nil M}

elseelseelse
{Commit S 1} {DFRE S R 1|Is D+1}
C={Recompute R Is}
{Commit C 2} {DFRE C R 2|Is D+1}

endendend
endendend

endendend

(a) Exploration.

funfunfun {DFRS P M}
S={NewSpace P}
procprocproc {DFRE · · ·} · · · endendend

ininin
trytrytry {DFRE S S nil M} nil
catchcatchcatch [S] thenthenthen [{Merge S}]
endendend

endendend

(b) Search engine.

Fig. 7.2. Fixed recomputation.

Exploration maintains the following invariants:

– 1 ≤ D ≤ M. If D = M, the invariant is maintained by cloning.
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– If D < M, {Length Is} = D. If D = M, Is is either empty (due to LAO), or
{Length Is} = D = M.

– A clone of S can be recomputed by {Recompute R Is}.

The full search engine is shown in Figure 7.2(b). It can be adapted to
multiple alternatives as usual by binarization (Section 5.3). A straightfor-
ward optimization to speed up recomputation is to combine several commit-
operations needed for binarization.

Other Search Engines. Recomputation can be incorporated straightforwardly
into the search engines presented in Chapters 5 and 6. Note that LDS does
not require recomputation, since the number of clones to be stored during
exploration is limited by the typically small number of discrepancies.

The only search engine that requires some effort is BAB. Here recomputa-
tion must also take inject-operations into account (rather than only commit-
operations). The discussion is postponed to Section 9.4, which introduces an
abstraction for recomputation that naturally supports BAB.

0 10 20 30 40 50 60 70 80 90 100
18-Knights (50)
Magic (5)
100-S-Queens (30)
100-Queens (30)

percent

memory time

Fig. 7.3. Runtime and memory gain with fixed recomputation.

Empirical Results. Figure 7.3 shows empirical results of fixed recomputa-
tion for several example programs. All examples have in common that they
are large: 100-Queens, 100-S-Queens, and 18-Knights have deep search trees;
100-Queens, Magic, and 18-Knights feature a large number of constraints
and propagators. Detailed information on the examples can be found in Ap-
pendix A.1. As MRD for fixed recomputation the values given in parentheses
are used.

The figures clearly show that fixed recomputation provides significant
improvements with respect to runtime and memory requirements. It is worth
noting that recomputation can save memory without runtime penalties even
if the search tree is shallow (Magic).

Figure 7.4 relates the runtime to different MRDs for the 18-Knights prob-
lem. For a MRD from 1 to 10 the runtime is strictly decreasing because the
time spent on copying and garbage collection decreases, while the plain run-
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Fig. 7.4. Runtime for 18-Knights with fixed recomputation.

time remains constant. With further increase of MRD the runtime increases
due to the increasing recomputation overhead.

Figure 7.4 shows a small peak at a MRD of 150. The search tree for
18-Knights has five failed nodes at a depth of around 260. This means that
recomputation has to perform around 110 recomputation steps for each of
the nodes. This phenomenon can be observed quite often: slight changes in
the MRD (like from 100 to 150 for 18-Knights) results in unexpected runtime
behavior. This indicates that for some parts of the search tree the assumption
of recomputation is overly optimistic.

7.4 Why Recomputation Matters

Deep search trees are typical in solving large constraint problems. Large
problems require a large number of decisions before arriving at a solution. A
large number of decisions corresponds to a deep search tree.

The following simple facts are essential to understand why recomputation
is an excellent technique for deep search trees and hence an excellent tech-
nique for solving large problems. Section 14.3 shows by an empirical com-
parison that recomputation outperforms all other constraint programming
systems considered.

Space. Space is an obvious issue with deep search trees. Since space require-
ments are proportional to the tree’s depth, the space required per node
in the tree must be kept as small as possible.
Recomputation has the unique property that the space requirements are
independent of the nodes and hence independent of the size of the prob-
lem. Space just depends on the tree’s depth (only a list of integers).

Little Search. The size of a search tree grows exponentially with its depth.
If a solution is found at all, only a small fraction of the search tree is
explored.
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Hence, the right attitude for exploring a deep search tree is to be op-
timistic: assume that a decision made is the right decision. Cloning is
pessimistic: it assumes that each decision is likely to be wrong, since it
always invests into cloning to undo the decision. Recomputation is opti-
mistic: it assumes that every decision is right.

Clustered Failures. If exploration exhibits a failed node, it is quite likely that
not only a single node is failed but that an entire subtree is failed. It is
unlikely that only the last decision made in exploration has been wrong.
This suggests that as soon as a failed node is encountered, the exploration
attitude should become more pessimistic. This is addressed in the next
section.

It is important to remember that efficient recomputation presupposes
copying. Only their combination allows to select the ratio between optimism
and pessimism.

7.5 Adaptive Recomputation

The analysis of fixed recomputation lead to the following two observations.
Firstly, the optimistic assumption underlying recomputation can save time.
Secondly, the fixed and hence possibly erroneous choice of the MRD can
inhibit this.

The following strategy is simple and shows remarkable effect, since it
honors the “clustered failures” aspect. During recomputation of a node N2
from a node N1, an additional copy is created at the middle of the path from
N1 to N2. This strategy is referred to as adaptive recomputation.
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Fig. 7.5. Runtime for 18-Knights with adaptive recomputation.

Runtime. Figure 7.5 shows the runtime for adaptive recomputation applied
to 18-Knights. Not only the peak for a MRD of 150 disappears, also the
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runtime for large MRD values remains basically constant. Even if copies
are created during recomputation only (that is the MRD is ∞) the runtime
remains almost unaffected.
Memory. While adaptive recomputation is a good strategy as it comes to
runtime, it does not guarantee that memory consumption is decreased. In
the worst case, adaptive recomputation does not improve over copying alone.
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B
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Fig. 7.6. Memory requirements for 18-Knights.

Figure 7.6 shows the active heap memory for both fixed and adaptive
recomputation applied to 18-Knights. The numbers exhibit that avoidance
of peaks in runtime is not paid by peaks in memory (for MRDs between 1
and 5, memory requirements for both fixed and adaptive recomputation are
almost identical and thus are left out).

For deep search trees the following technique saves memory. As soon as
exploration has reached a certain depth in the search tree, it is quite unlikely
that nodes high above are going to be explored. Hence, copies remaining in the
upper parts of the tree can be dropped. This decreases memory consumption
and does not affect runtime.
Adaptability. This is the real significance of adaptive recomputation: the
choice of the recomputation distance is not overly important. Provided that
the distance is not too small (that is, no excessive memory consumption),
adaptive recomputation adjusts quickly enough to achieve good performance.

Figure 7.7 compares adaptive recomputation to no and fixed recomputa-
tion. The label n% means that the initial MRD is n percent of the total depth
of the search tree. The comparison with no recomputation (Figure 7.7(a))
shows that adaptive recomputation offers almost always significant speedup.
Additionally, it is clarified that the obtained speedup is almost independent
of the initial choice of the MRD. This means that adaptability is really the
most distinguished feature of adaptive recomputation.

On the other hand, adaptive recomputation performs almost as good as
fixed recomputation with carefully hand-chosen MRDs (Figure 7.7(b)). This
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Fig. 7.7. Adaptability for different MRDs.

substantiates the claim that adaptive recomputation offers great potential
even in case there is almost no knowledge about the problem to be solved.
Starting with a rough guess on the initial MRD, adaptive recomputation
behaves well. The runtime remains stable for a variation of the MRD by a
factor of five (that is, between 10 and 50 percent of the total depth of the
search tree).



8. Oz Explorer: Visual Search

The Oz Explorer is a graphical and interactive tool to visualize and analyze
search trees. The Explorer is programmed from spaces. This chapter presents
its motivation, design, and implementation.

8.1 Development of Constraint Programs

Development of constraint-based applications proceeds in two steps. The first
step is to design a principally working solution. This is followed by the much
harder task to make this solution scale to problems of real-world size. The
latter task usually involves a high amount of experimentation to gain addi-
tional insight into the problem’s structure. Meier reports in [79] that a large
part of the development effort is spent on performance debugging. Therefore
it is surprising that existing systems offer little support for the development
of constraint programming applications.

Fig. 8.1. Screenshot of the Explorer.

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 69–78, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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This chapter presents the Oz Explorer as a visual constraint program-
ming tool. It uses the search tree as its central metaphor (see Figure 8.1).
The user can interactively explore the search tree which is visualized as it is
explored. Nodes carry information on the corresponding constraints that can
be accessed interactively. The Explorer can be used with any search problem,
no annotations or modifications are required.

First insights into the structure of the problem can be gained from the
visualization of the search tree. How are solutions distributed? How many so-
lutions are there? How large are the parts of the tree explored before finding a
solution? The insights can be deepened by displaying the constraints of nodes
in the search tree. Is constraint propagation effective? Does the heuristic sug-
gest the right alternatives? Interactive exploration allows following promising
paths in the search tree without exploring irrelevant parts of it. This supports
the design of heuristics and search engines.

Complex problems require a tool to be practical with respect to both
efficiency and display economy. The amount of information displayed by the
Explorer is variable: the search tree can be scaled and subtrees can be hidden.
In particular, all subtrees without solutions can be hidden automatically.

The Explorer is one particular example of a user-guided interactive search
engine that would not have been possible without first-class spaces.

8.2 Example: Aligning for a Photo

This section introduces the Oz Explorer by means of an example. Five people
want to take a group photo. Each person can give preferences next to whom
he or she wants to be placed on the photo. The problem to be solved is to
find a placement that satisfies as many preferences as possible.

Figure 8.2 shows the script that models this problem. The record Posmaps
the person’s name to a position, that is, an integer between 1 and 5. All fields
of Pos are enforced to be distinct by the propagator FD.distinct. The list of
preferences is mapped to a list Ful of 0/1 variables. An element is 1 in case
the preference can be fulfilled or 0 otherwise. The overall satisfaction Sat is
given by the sum of all elements of Ful. The positions Pos are distributed
(by {FD.distribute naive Pos}) following a naive strategy.

Reified propagators are used to map preferences to 0/1 variables. A reified
propagator employs a 0/1 control variable b. If the propagator is entailed
(disentailed), then b is constrained to 1 (0). If b is 1 (0), the constraint
of the reified propagator is enforced (its negation is enforced). The reified
propagator Pos.A+1=:Pos.B (Pos.B+1=:Pos.A) expresses that A is placed
to the left (right) of B. Thus, the control variable of the reified propagator
stating that the sum of both is 1, yields 1 if A and B are placed next to each
other, and 0 otherwise.
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Names = [a b c d e]
Prefs = [a#c b#e c#d c#e d#a d#e e#a e#b]
procprocproc {Photo Sol}

Pos = {FD.record pos Names 1#{Length Names}}
Ful = {Map Prefs funfunfun {$ A#B}

(Pos.A+1 =: Pos.B) + (Pos.B+1 =: Pos.A) =: 1
endendend}

Sat = {FD.int 0#{Length Prefs}}
ininin

{FD.distinct Pos}
{FD.sum Ful ´=:´ Sat}
Sol = sol(pos:Pos ful:Ful sat:Sat)
{FD.distribute naive Pos}

endendend

Fig. 8.2. Program to solve the photo alignment problem.

The Explorer is used to search for a best solution to the Photo problem.
The optimality criterion is described by a binary procedure stating that the
satisfaction must increase with the solutions found:

{Explorer script(Photo procprocproc {$ Old New}
Old.sat <: New.sat

endendend)}

The Explorer shows a single distributable node. Prompting for
the next solution explores and draws the search tree up to the first
solution as shown to the right. Exploring and drawing the search tree
can be stopped at any time and resumed later at any node. This is
important for problems which have large or even infinite subtrees in its search
tree.

Double-clicking the solution displays the constraints of the succeeded
space using the Oz Browser (a concurrent tool to visualize basic con-
straints) [108]. The first solution is as follows:

sol(pos: pos(a:1 b:2 c:3 d:4 e:5)
ful: [0 0 1 0 0 1 0 0]
sat: 2)

As understanding textual output can be difficult, the Explorer can em-
ploy user-defined display procedures. Suppose a procedure DrawPhoto that
displays constraints graphically. The Explorer is configured such that double-
clicking a node applies DrawPhoto to the node’s constraints by

{Explorer add(information DrawPhoto)

Figure 8.3(a) shows a particular instance of graphical output for the pre-
viously found solution. An arrow between names shows a fulfilled preference,
whereas the circled number above a name yields the number of non-fulfilled
preferences of that person.

Invoking search for all solutions yields the search tree as shown in Fig-
ure 8.4(a). The best solution is the rightmost succeeded node.
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a b c d e

(a) First solution.
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Fig. 8.3. User-defined display for solutions of Photo.

(a) All nodes drawn. (b) Failed subtrees hidden.

Fig. 8.4. Search tree for Photo.

Although Photo is a simple problem, it is hard to find solutions and
paths leading to them. The Explorer provides support to hide all subtrees
which contain only failed leaves by drawing these subtrees as triangles. After
applying this functionality, the search tree looks as shown in Figure 8.4(b).

By double-clicking the rightmost solution (the Explorer assists in finding
certain nodes by moving a cursor to it), the best solution is displayed as
shown in Figure 8.3(b).

The Explorer reports in its status bar that the entire search tree has 72
distributable, 3 solved, and 70 failed nodes. The tree indicates by the length
of paths leading to failed leaves that the alternatives do not result in much
constraint propagation. A better distribution heuristic should lead to more
constraint propagation. The amount of constraint propagation depends on
how many propagators are triggered to amplify the constraint store. So it is
better to assign a value to a variable on which many propagators depend.
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(a) All nodes drawn. (b) Failed subtrees hidden.

Fig. 8.5. Search tree for Photo (with improved distribution strategy).

This is done by replacing the shaded distribution strategy in Figure 8.2
by a strategy implementing the idea from above:

{FD.distribute generic(order:nbSusps) Pos}

The Explorer is applied to the modified problem to study the impact on
the search tree. The resulting tree is shown in Figure 8.5. The Explorer’s
status bar displays that the tree now has 54 distributable nodes, 3 solution
nodes, and 52 failed nodes. That is, the number of nodes has decreased by
about 25%. From the search tree one can conclude that it is much harder to
prove optimality of the last solution than to actually find it.

The search tree in Figure 8.5 reveals that the third and fourth large
subtree have the same shape. A common reason for subtrees exactly looking
alike is that search aims at symmetrical solutions. By using the Explorer to
access constraints of nodes in the right part of the tree, it becomes apparent
that search is aiming at solutions symmetrical (that is, with people placed in
reverse order) to those in the tree’s left part. The search tree can be reduced
in size by removing these symmetries. Some of them can be removed by

(a) All nodes drawn. (b) Failed subtrees hid-
den.

Fig. 8.6. Search tree for Photo (with some symmetries removed).
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placing two persons, say the first and the second in the list of persons, in a
fixed order. Hence, the following constraint is added to the program:

Pos.{Nth Names 1} >: Pos.{Nth Names 2}

Applying the Explorer to the new problem and searching for all solu-
tions draws the search tree as in Figure 8.6(a). The tree now has only 27
distributable nodes, 2 solution nodes, and 26 failure nodes. Thus, removing
just these symmetries reduces the number of nodes by 50%. Figure 8.6(b)
displays the tree after hiding all failed subtrees.

8.3 Features

The main features of the Explorer are as follows.

Direct Use and Manipulation. Using the Explorer does not require any mod-
ification of the script. After having applied the Explorer to the script, all
actions can be invoked by mouse-clicking, menu-selection, or keyboard accel-
erators.

Interactive and Incremental Exploration. Search can be used in an interac-
tive fashion: the user can explore any part of the search tree step-by-step.
Promising paths in the search tree can be followed without being forced to fol-
low a predefined strategy. Furthermore, depth-first exploration of the search
tree for one solution or for all solutions is supported. The Explorer is fully
incremental: exploration of the search tree can be stopped at any time and
can be resumed at any node.

Ergonomic Visualization. After creation of the search tree, the Explorer com-
putes a layout for the newly created part of the search tree and updates the
drawing of the tree. The drawn tree can be scaled by direct manipulation
of a scale bar. Any subtree of the search tree can be hidden by replacing
it with a small triangle. Special support is provided to hide subtrees which
contain failed leaves only. By visualizing the search tree, one can gain insights
into the search process. How are the solutions distributed? Is a first solution
found without too many failed nodes? Is it hard to prove optimality of the
last solution found? The possibility of hiding failed parts of the search tree
assists finding relevant paths leading to solutions.

User-Defined Access to Constraints. All but the failed nodes carry as infor-
mation their spaces. Each node’s space can be displayed with user-defined or
predefined display procedures. It is possible to compare the spaces attached
to any two nodes, which assists to understand how the nodes differ.

Statistics Support. The Explorer provides brief statistical information in a
status bar. Additionally, it is possible to display statistical information for
each subtree. User-defined procedures can be used to process and display
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the statistical information. For instance, a bar chart showing how many fail-
ures occur between solutions can help to understand how hard it is to prove
optimality in best-solution search.

A user manual that includes the description of an API (application pro-
gramming interface) for the Explorer is [124].

8.4 Implementation

The Explorer manipulates a search tree that is implemented as a tree of
objects. Each node is an object which stores the corresponding space. The
object’s class depends on the space to be stored, that is, whether the space
is failed, succeeded, or distributable.

The implementation is factored into the following three parts:

User Interface. The user interface controls the invocation of operations on
the search tree. Invoking an operation at the user interface sends a mes-
sage to the object and leads to execution of the corresponding method.

Layout and Drawing. The methods for computing the layout use an incre-
mental version of the algorithm presented in [63]. The graphical part of
the user interface and the drawing of the tree uses the object-oriented
graphics interface to Tcl/Tk [99] available in Oz [125]. I first considered
using existing tools for computing and drawing layouts for graphs (for
example, VCG [115] and daVinci [36]). Unfortunately, it is hard to design
a powerful user interface, since the tools come with a user interface on
their own that allows for limited customization only. More severely, they
fail to support efficient incremental updates.

Exploration. Construction of the search tree is started with creating the root
node. Further nodes are created as exploration proceeds.
The Explorer uses recomputation for two different purposes. Firstly, re-
computation is used during exploration as in Chapter 7. In contrast to
other search engines discussed so far, the Explorer keeps the entire ex-
plored part of the search tree. The search tree is kept for visualization but
also to allow access to the corresponding spaces. For this purpose, recom-
putation is absolutely necessary, since keeping an exponential number of
spaces is infeasible. The recomputation scheme employed is similar to
that of fixed recomputation (Section 7.3) so that only nodes at a certain
depth store a space, all other are recomputed on demand.
A useful optimization is to always recompute spaces of nodes occurring
in subtrees that do not contain a solution1. This is motivated by the fact
that the focus of interest is usually on nodes that are solutions or that
lead to solutions.

1 This technique has been suggested by Joachim P. Walser.
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8.5 Evaluation

This section compares runtime and memory requirements of the Explorer
with that of non-visual search engines. Its purpose is to show that the Ex-
plorer is practical and scales to very large search trees. It demonstrates the
costs and benefits of some of the Explorer’s features. The platform and ex-
amples used are described in Appendix A.
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Fig. 8.7. Runtime for Explorer in seconds.

Runtime. Figure 8.7 shows the runtime for the three example programs in
seconds. “Plain” is the runtime for a standard search engine without any
visualization features. The remaining numbers are taken with the Explorer.
“E-Fast” is the Explorer that uses full recomputation for state access and
hides failed subtrees while drawing. “E-Std” again hides failed subtrees and
uses a maximal recomputation depth of 5 for the state access. “E-Std” cor-
responds to the standard configuration of the Explorer. “E-Full” again uses
a maximal recomputation depth of 5 and draws the entire search tree.

For Alpha, using the Explorer introduces a runtime overhead of around
70%. This overhead is fairly modest, given that each exploration step is very
cheap. Drawing the entire tree is still feasible, although an overhead of ap-
proximately 300% is incurred.

The Explorer incurs for MT10A and MT10B approximately the same
overhead (MT10A: around 14%, MT10B: around 8%). Full drawing is still
feasible. The smaller overhead of MT10A and MT10B compared to Alpha is
due to the higher cost of each exploration step.

For all examples, “E-Fast” and “E-Std” show runtimes that can be re-
garded as equal. This means that creating additional copies during explo-
ration to speed up state access is feasible with respect to runtime.
Memory. Figure 8.8 relates the memory requirements of the Explorer to
memory requirements of a non visual search engine. The meaning of “Plain”
through “E-Full” is as described before. The memory requirements of the
underlying graphics toolkit are excluded, they are mentioned below.

The important points for the Explorer’s memory requirements are:
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– The memory requirements are modest, even for a standard PC.
– Full recomputation for state access can have remarkable impact. For
MT10A, the required memory is decreased by more than 50%.

– Memory requirements for the Explorer are independent of the memory
requirements of the particular problem. When using full recomputation,
the memory required by the Explorer depends only on the size and shape
of the search tree. Only when creating additional copies to speed up state
access, the memory requirements depend on problem size.

– Drawing the full tree has no strong impact on the memory requirements
of the Explorer itself.
This is different when also considering the memory requirements of the
underlying graphics engine (Table 8.1). For all but MT10B with “E-Full”
the memory requirements remain modest. Drawing the full search tree for
MT10B is a borderline example. While a standard personal computer with
256 MB can handle this (no swapping occurs, this is witnessed through the
modest runtime), full exploration for bigger examples is out of reach.

– Hiding failed subtrees is not only essential for arriving at an understanding
of the search tree. It is also an excellent technique to keep the memory
requirements low.

The runtime and the memory requirements can be summarized as fol-
lows. The Explorer is perfectly capable of exploring and visualizing very
large search trees. Recomputation makes the memory requirements problem
independent and makes the Explorer capable of handling large problems with

Table 8.1. Approximate memory usage of graphics engine in MB.

Example E-Std E-Full

Alpha ≈ 1.5 ≈ 5
MT10A ≈ 3 ≈ 5.5
MT10B ≈ 4 ≈ 105
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large search trees. Features such as recomputation for state access and hiding
of failed subtrees are essential for the scalability of the Explorer.

8.6 Related Work

In the following the Explorer is related to the Grace tool [79], which is built
on top of the Eclipse Prolog system [3]. The Grace tool is intended to sup-
port the development and debugging of finite domain constraint programs.
Rather than using the metaphor of a search tree, it maintains and displays a
backtracking history of the finite domain variables involved.

Exploration of the search space is not user-guided but fixed to a depth-first
strategy. In contrast to the Explorer, it allows tracing of constraint propa-
gation. The display of information supports different levels of detail, but
cannot be replaced by user-defined display procedures. To use the Grace tool
the user’s program requires modification.

Similar in spirit to Grace is the CHIP search tree tool [130] which has been
inspired by the Explorer. The strength of this tool lies in the visualization
of finite-domain constraint propagation and in particular the visualization of
global constraints. As with Grace, the CHIP search tree tool does not support
interactive exploration of the search tree.

The Oz Explorer is focused on search only and does not address the
visualization of constraint propagation. Instead, the Explorer relies on other
tools for that purpose. In the context of Oz, the Oz Investigator offers this
functionality [83].

In the area of parallel logic programming, tools are used to visualize the
parallel execution of programs, for example, the Must Tool [138, 62] and the
VisAndOr Tool [16]. These tools visualize the (OR-parallel) search process,
however they are designed to be used off-line. During execution of a program
a trace file is created. After execution has finished, the tool is used to visualize
and analyze the created trace. This is very different from the Explorer, where
exploration is interactive and user-controlled and where the user has access
to the constraints of the search tree.

An overview on current research in the area of analysis and visualization
tools for constraint programming and constraint debugging is [28].
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This chapter presents search engines that explore subtrees of a search tree in
parallel. Parallelism is achieved by distribution across networked computers.
The main point of the chapter is a simple design of the parallel search engine.
Simplicity comes as an immediate consequence of clearly separating search,
concurrency, and distribution. The obtained distributed search engines are
simple yet offer substantial speedup on standard networked computers.

9.1 Overview

Search in constraint programming is a time consum-
ing task. Search can be speeded up by exploring
several subtrees of a search tree in parallel (“or-
parallelism”) by cooperating search engines called
workers. To the right, exploration with three work-
ers (the color of a subtree corresponds to the exploring worker) is sketched.

The chapter develops search engines that achieve parallelism by distribut-
ing workers across standard networked computers. The chapter has two main
points. The first point is to provide a simple, high-level, and reusable design
for parallel search. The second point is to obtain good speedup rather than
good resource utilization.
Simple and Reusable Design. Parallel search is made simple by separating
three issues: search, concurrency, and distribution.

Search. Workers are search engines that explicitly manipulate their state.
The state corresponds to yet to be explored subtrees of the search tree.
Explicit manipulation is mandatory since workers need to share subtrees.
This has already been done in Section 5.5 for plain search and in Sec-
tion 6.4 for best-solution search.

Concurrency. The main contribution of this chapter is the design of a con-
current search engine that adds communication and cooperation between
workers. Communication and cooperation presupposes concurrency.

Distribution. How workers are distributed across networked computers is
considered independently of the architecture of the concurrent engine.
An important technique for sharing nodes across the network is recom-
putation.

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 79–91, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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The approach obviously simplifies the design, since it allows to address
concerns independently. It allows to reuse the concurrent architecture for
other purposes, such as parallel execution on shared-memory multiprocessors
and cooperative search for multi-agent systems.

The approach presupposes that search is encapsulated and combines well
with concurrency and distribution. Since Oz is a concurrent language that
supports distribution and since spaces are concurrency-enabled, the parallel
search engines can be programmed entirely in Oz. The programming effort
needed is around one thousand lines of Oz code.

Obtaining Speedup. Networked computers are cheap, ubiquitous, and mostly
idle. Hence the criterion of success is whether a simple distributed search
engine can offer substantial speedup. This differs from the traditional crite-
rion of success for parallel search that aims at good utilization of specialized,
expensive, and not widely available hardware.

A performance evaluation shows that the simple distributed engine of-
fers substantial speedup already for small search trees. Large search trees as
common for complex constraint problems provide almost linear speedup.

Related Work. There has been considerable work in the area of parallel
search. Rao and Kumar discuss and analyze the implementation of parallel
depth-first search in [113, 70]. Their focus is on the impact of the underly-
ing hardware architecture and in particular how to best utilize the resources
of the parallel architecture. Parallel execution on shared-memory multipro-
cessors and to a lesser extent on networked computers has received great
attention in logic programming [19]. Early work that uses recomputation to
distribute work is the Delphi Prolog system by Clocksin and Alshawi [21, 22].

Mudambi and Schimpf discuss in [93] distributed search that also relies
on recomputation. A refinement of this work addresses branch-and-bound
search [109]. Perron briefly sketches parallel search for ILOG Solver in [100].
All these approaches have in common that they are mostly focused on the
description how each separate engine works. The discussion of the architec-
ture by which the parallel engines communicate is missing or is at a low-level
of abstraction. In contrast, this chapter is concerned with developing a high-
level concurrent architecture underlying parallel search engines.

The approach to independently consider distribution and architecture is
a consequence of the fact that distribution is provided orthogonally in Oz.
Haridi et al. discuss this design approach in [46].

9.2 Distributed Oz

The basic idea of Distributed Oz is to abstract away the network as much
as possible. This means that all network operations are invoked implicitly by
the system as an incidental result of using particular language operations.
Distributed Oz has the same language semantics as Oz Light by defining
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a distributed semantics for all language entities. The distributed semantics
extends the language semantics to take into account the notion of site (or
process). It defines the network operations invoked when a computation is
distributed across multiple sites.

Partial Network Transparency. Network transparency means that computa-
tions behave the same independent of the site they compute on, and that
the possible interconnections between two computations do not depend on
whether they execute on the same or on different sites. Network transparency
is guaranteed in Distributed Oz for most entities. While network transparency
is desirable, since it makes distributed programming easy, some entities in
Distributed Oz are not distributable.

There are two different reasons for an entity to be not distributable.

– The entity is native to the site. Examples are external entities such as files,
windows, as well as native procedures acquired by dynamic linking. Native
procedures depend on the platform, the operating system, and the process.
Particular examples for native procedures in Mozart are most propagators
which are implemented in C++ rather than in Oz [87].

– Distribution would be too complex. One class of entities for which distri-
bution is too complex are computation spaces. Furthermore, even a dis-
tributed implementation of computation spaces would be of limited use,
since a computation space typically contains native propagators.

Resource Access. For distributed computations that need to utilize resources
of a distributed system, it is important to gain access to site-specific resources.
Access is gained by dynamic linking of functors that return modules. Dynamic
linking resolves a given set of resource-names (which are distributable) asso-
ciated with a functor and returns the resources (which are site-specific).

A straightforward way to access site-specific resources is accessing them
through active services. The service is distributable while its associated
thread is stationary and remains at the creating site. Thus all resource ac-
cesses are performed locally. Services by this resemble remote procedure call
(RPC) or remote method invocation (RMI).

Example 9.1 (Distributable Money). A definition of a functor for the SEND+
MOST = MONEY script as presented in Example 5.1 is as follows:

functorfunctorfunctor F
importimportimport FD exportexportexport script:Money
definedefinedefine Figure 5.2
endendend

The functor F imports the FD module and returns a module that has a
single field script that refers to the procedure Money. The functor F can
be linked and its script can be executed as follows (DFS is introduced in
Section 5.1):

{DFS {LinkFunctor F}.script}
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Compute Servers. An Oz process can create new sites acting as compute
servers [34]. Compute server creation takes the Internet address of a com-
puter and starts a new Oz process with the help of operating system services
for remote execution. The created Oz process can be given a functor for exe-
cution. Thus the functor gives access to the remotely spawned computations.
Typically, a functor is used to set up the right active services and to get
access to remote resources.

Further Reading. An overview on the design of Distributed Oz is [46]. A
tutorial account on distributed programming with Mozart is [147]. The dis-
tributed semantics of logic variables is reported in [45]; the distributed seman-
tics of objects is discussed in [148]. More information on functors, dynamic
linking, and module managers in Mozart can be found in [35].

9.3 Architecture

The concurrent search engine consists of a single manager and several work-
ers. The manager initializes the workers, collects solutions, detects termina-
tion, and assists in finding work for workers. Workers explore subtrees, share
work with other workers, and send solutions to the manager.

9.3.1 Cooperation

Manager and workers are understood best as concurrent autonomous agents
that communicate by exchanging messages. The architecture of the concur-
rent search engine is sketched in Figure 9.1.

Manager

Worker · · · Worker

Worker

– explore subtree
(contains starting node)

– share node
(returns node)

– stop work

Manager

– collect solution from worker
(contains solution)

– find work for idle worker
(contains worker reference)

Fig. 9.1. Architecture of concurrent search engine.

Initialization. The concurrent search engine is initialized on behalf of the
manager. The manager sends an explore-message for the root node of the
search tree to a single worker. This single worker then starts working by ex-
ploring. A worker that currently explores a subtree is busy and idle otherwise.
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Exploration. A worker works by exploring nodes of the search tree. By work-
ing it generates new work (new nodes).

Finding Work. Suppose that worker Wi is idle. It announces this fact to the
manager by sending a find-message. The manager then tries to find a busy
worker Wb that is willing to share work with Wi. If the manager finds work,
it informs Wi by sending an explore-message containing the work found.
To allow communication back from the manager to Wi, the find-message
contains a reference to Wi.

The manager maintains a list of possibly busy workers which are not
known to be idle, since the manager has not received a find-message from
them. From this list the manager picks a worker Wb and then sends a share-
message to Wb.

When Wb receives a share-message, it first checks whether it has enough
work to fulfill the request. A worker receiving a share-message can be unable
or unwilling to share work. It can be unable, because it is idle. It can be
unwilling, because it has so little work left such that sharing it might make
the worker idle itself (for example, the worker has only a single node left). In
case the worker is willing to share work, it removes a node from its own pool
of work and sends it to the manager. When the manager receives the node,
it forwards the node to the requesting worker.

If the manager is informed that a share-message has been unsuccessful,
it tries the next busy worker. If all busy workers have been tried, it starts
over again by re-sending the initial find-message.

Collecting Solutions. When a worker finds a solution, it sends a collect-
message containing the solution to the manager.

Termination Detection. The manager detects that exploration is complete,
when the list of presumably busy workers becomes empty.

Stopping Search. If the search tree needs partial exploration (for example,
single-solution search) the manager can stop search by sending a stop-
message to all workers.

Almost all communication between manager and workers is asynchronous.
The only point where synchronization is needed, is when the manager decides
whether finding work has been successful. This point is discussed in more
detail in Section 9.3.3.

Important Facts. The concurrent search engine does not loose or duplicate
work, since nodes are directly exchanged between workers. Provided that the
entire tree is explored, the number of exploration steps performed by the
concurrent engine is the same as by the standard depth-first engine.

The exploration order is likely to be different from left-most depth-first.
The order depends on the choice of the nodes to be exchanged between work-
ers and is indeterministic. For all-solution search this has the consequence
that the order in which the manager collects solutions is indeterministic. For
single-solution search this has the consequence that it is indeterministic which
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solution is found. In addition, it is indeterministic how many exploration steps
are needed. The number can be smaller or greater than the number of explo-
ration steps required by depth-first exploration. The phenomenon to require
less steps is also known as super-linear speedup.

9.3.2 Worker

A worker is a search engine that is able to share nodes and that can be
stopped. Figure 9.2(a) summarizes which messages a worker receives and
sends. The ability to share work requires explicit state representation (Sec-
tion 5.5). A worker knows the manager and maintains a list of nodes that
need exploration (“work pool”).

find

collect

share

explore

sto
p

work

(a) Worker.

find

colle
ct

sha
re

explore

stop

find

(b) Manager.

Fig. 9.2. Summary of messages.

Concurrent Control. The worker is implemented as active service (Sec-
tion 3.3.3). It runs in its own thread and sequentially serves the messages
it receives. This simple design is enough to ensure consistency of the worker’s
state in a concurrent setting.

The worker recursively invokes exploration as sketched in Section 5.5 by
sending an exploration message to itself. By message sending, exploration
and communication with the manager is easily synchronized.
Which Node to Share. A promising candidate is the highest node in the search
tree, since it is likely that the subtree issuing from it is large (“large work
granularity”). A large subtree prevents that the requesting worker becomes
idle soon and thus helps to avoid excessive communication. Later it will
become clear that sharing the highest node is a particularly good choice for
distribution.

9.3.3 Manager

The manager is implemented as an active service, the messages it sends and
receives are summarized in Figure 9.2(b). The manager knows all workers.
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They are needed for initialization and for stopping. The manager maintains
a list of workers not known to be idle and a list of solutions.

Finding Work. Finding work can be a time consuming task since it can take
several attempts to seek for a worker that is able to share work. Hence, it is
infeasible to block the manager while seeking work.

A design that does not block the manager is as follows. When the manager
receives a find-message, it spawns a new thread that takes the current list
of busy workers as snapshot. Directly after thread creation, the manager is
again available to serve incoming messages. If no work has been found, the
initial find-message is sent again to the manager and the thread terminates.
This is repeated until either work is found or no presumably busy workers
are left.

The solution to take a snapshot of the currently busy workers upon mes-
sage receipt is simple but has the following drawback. The manager might ask
workers that are still contained in the snapshot but have already announced
that they are idle themselves. This can result in a delay of the manager to
find work and thus the initially requesting worker might remain idle for a
longer period of time.

9.3.4 Best-Solution Search

The main design issue in best-solution search is how to maintain the so-far
best solution. The sequential branch-and-bound engine always knows the so-
far best solution (BS in Figure 6.2). This is difficult to achieve in a concurrent
setting with several workers. Maintaining the best solution for each worker
would require a large communication and synchronization overhead. Instead,
a design is preferred, where both manager and workers maintain the so-far
best solution as follows:

Manager. When the manager receives a new solution through a collect-
message, it checks whether the solution is really better. If the solution
is better, the manager sends it to all workers. This requires a better-
message that contains the so-far best solution.

Worker. When a worker finds a new solution, it stores the solution as so-far
best solution and informs the manager by sending a collect-message.
When a worker receives a better-message, it checks whether the received
solution S1 is better than its so-far best solution S2.
Note that it is correct albeit inefficient, if the worker does not check
whether the received solution S1 is better. If S1 is worse, S1 will be
replaced anyway, since the manager eventually sends a solution which is
at least as good as S2 (since it receives S2 from this worker). It might
be better in case the manager has received an even better solution from
some other worker.
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The architecture sketched above entails that a worker might not always
know the so-far best solution. This can have the consequence that parts of
the search tree are explored that would have been pruned away otherwise.
Thus the loose coupling might be paid by some overhead. This overhead is
referred to as exploration overhead.

The worker is based on the branch-and-bound search engine with explicit
state as presented in Section 6.4.

9.4 Distributed Search Engines

This section discusses how to adopt the concurrent search engine such that
its workers are distributed across networked computers.

Search Engine Setup. The setup of the search engine uses compute servers.
The manager is created first. Then a new Oz process is created for each
worker. Typically, each process is created on a different networked computer.
In case a computer has more than a single processor, it can make sense to
create more than a single process on that computer.

Each newly created process is given a functor that creates the worker
service. It is important that the functor can be given first-class, since the
worker requires access to the manager service. Applying the functor returns
reference to the now created worker.

Distributing Nodes. Since spaces are not distributable, workers cannot ex-
change work by communicating spaces directly. Scripts are not distributable,
since they typically contain references to native propagators. However, a func-
tor that on application returns the script is distributable. This means that
the root space can be recomputed via the script from the given script-functor
by all workers.

Given the root space, work can then be communicated by communicating
paths in the search tree that describe how to recompute nodes:

node ←→ root + path

When a worker acquires new work, the acquired node is recomputed. This
causes overhead, referred to as recomputation overhead. The higher the node
in the search tree, the smaller the recomputation overhead. For this reason,
sharing the topmost node is a good choice. Since all nodes are subject to
sharing, a worker must always maintain the path to recompute a node.

Recomputable Spaces. In the following, recomputable spaces (r-spaces for
short) are employed as convenient abstractions for distributed search engines.
An r-space supports all space operations. Additionally, an r-space provides
an export operation that returns the path for recomputation. Search engines
that employ r-spaces rather than “normal” spaces are otherwise identical,
since r-spaces provide the same programming interface.
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The key feature of an r-space is that commit-operations are executed
lazily on demand. Lazy execution is beneficial for two reasons. Firstly, not
the entire search tree might be explored during single solution search (this
point is discussed in Section 5.5). Secondly, a node might be handed out to
some other worker and thus might be wasted for the current worker.

An r-space encapsulates the following three components:

Sliding Space. It is initialized to a clone of the root space.
Pending Path. A list of pending commit-operations.
Done Path. A list of already done commit-operations.

root space sliding space r-space

done path pending path

Fig. 9.3. Sketch of an recomputable space (r-space).

The sliding space always satisfies the invariant that it corresponds to a
space that has been recomputed from the root space and the done path. This
is sketched in Figure 9.3.

Initialization. Creation of an r-space takes a path P as input. The sliding
space is initialized to a clone of the root space. The pending path is
initialized to the path P . The done path is initialized to the empty path.

Commit. A commit to the i-th alternative adds i to the pending path.
Update. Updating an r-space performs all commit-operations on the pending

path. Then the pending path is added to the done path and is reset.
Ask, Clone, Merge. Ask, clone, and merge update the r-space first and then

perform the corresponding operation on the sliding space.
Export. Export returns the concatenation of done and pending path.

An r-space is extended straightforwardly to support best-solution search
by storing a list of operations rather than a simple path. This list of operations
contains elements of the form commit(i) and constrain(x), where i is the
number of an alternative and x is a solution. This presupposes that solutions
are distributable.

The optimization that workers check whether received solutions are better
(Section 9.3.4) helps to reduce the number of constrain(x)-elements on a
path. Keeping the path short is important, since each operation on the path
might be executed by multiple workers and even a single worker might execute
each operation more than once.

Network Failure. What is not considered by now and left as future work is
network failure. However, the interest is mostly on local area networks, where
network failure is infrequent.
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9.5 Evaluation

Evaluation uses common benchmark problems: Alpha, 10-S-Queens, Photo,
and MT10 (Appendix A.1). They vary in the following aspects:

Search Space and Search Cost. All but MT10 have a rather small search
space where every exploration step is cheap (that is, takes little runtime).

Strategy. For Alpha and 10-S-Queens all-solution search is used. For Photo
and MT10 best-solution search is used.

Number of Solutions. 10-S-Queens has many solutions (approximately 10%
of the nodes). This makes the example interesting, as each solution is
forwarded to the manager. This assesses whether communication is a
bottleneck and whether the manager is able to process messages quickly.

The choice of examples addresses the question of how good parallel search
engines can be for borderline examples. MT10, in contrast, can be considered
as a well-suited example as it comes to size and cost.

Total Overhead. Figure 9.4 shows the total overhead of a distributed search
engine. The overhead is taken as the additional runtime needed by a dis-
tributed search engine with a single worker, where both worker and manager
execute on the same computer compared to a sequential search engine. In-
formation on software and hardware platforms can be found in Section A.3.

0 10 20 30 40 50 60
MT10 0.7

Photo 20.6

10-S-Queens 53.9

Alpha 17.5

percent
Fig. 9.4. Total overhead of distributed search engine.

The numbers suggest that for examples with small search space and small
search cost, the overhead is less than 25%. This is due to the additional costs
for maintaining r-spaces and message-sending. For large examples (MT10),
the overhead can be neglected. The overhead of around 50% for 10-S-Queens
is due to frequent communication between worker and manager. Compared
to the small search cost, this overhead is quite tolerable.

Speedup. Figure 9.5 shows the speedup for a varying number of workers. All
examples offer substantial speedup. For three workers all examples yield at
least a speedup of two, and for six workers the speedup is at least around
three. The speedup for MT10 with six workers is larger than 4.5.

For all combinations of workers and examples but 10-S-Queens with six
workers the coefficient of deviation is less than 5% (in particular, for all
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Fig. 9.5. Speedup.

combinations of MT10 less than 2%). For 10-S-Queens with six workers the
coefficient of deviation is less than 10%. This allows to conclude that speedup
is stable across different runs and that indeterminism introduced by commu-
nication shows little effect on the runtime. Moreover, this clarifies that both
minimal and maximal speedup are close to the average speedup.

Work Granularity. Figure 9.6 shows the average work granularity which is
amazingly coarse. Work granularity is the arithmetic mean of the sizes of
subtrees explored by a worker in relation to the size of the entire tree. For all
combinations of examples and workers the granularity remains close to ten
percent. This means that the simple scheme for sharing work is sufficient.

Manager Load. A possible drawback of a single manager is the potential of
a performance bottleneck. If the single manager is not able to keep up with
processing find-messages, workers might be idle even though other workers
have work to share. Figure 9.7 shows the load of the manager, where a load
of 50% means that the manager is idle half of the runtime.

For all examples the manager has a load of less than 50%. For the more
realistic examples Photo and MT10 the load is less than 15%. This provides
evidence that the manager will be able to efficiently serve messages for more
than six workers. There are two reasons why the load is quite low. Firstly,
work granularity is coarse as argued above. Coarse granularity means that
workers infrequently communicate with the manager to find work. Secondly,
each incoming request to find work is handled by a new thread. Hence, the
manager is immediately ready to serve further incoming messages.
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Fig. 9.6. Work granularity.

Alpha 10-S-Queens
(percent)

0

10

20

30

40

50

2
0.6

3

3.6

4

7.6

5

13.2

6

23.4

0

10

20

30

40

50

2
1.3

3

16.9

4

19.1

5

29.6

6

41.1

Photo MT10

(percent)

0

5

10

15

20

2
0.9

3

2.5

4

4.8

5

10.6

6

14.0

0

5

10

15

20

2
0.4

3
0.9

4

1.4

5

2.1

6

3.2

(worker) (worker)

Fig. 9.7. Manager load.

Recomputation Overhead. Figure 9.8 shows the recomputation overhead,
which is always less than 10%. This means that the price paid for distributing
work across the network is low.
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Fig. 9.8. Recomputation overhead.

Exploration Overhead. Exploration overhead occurs for branch-and-bound
search and is due to the different order in which solutions are found (Sec-
tion 9.3.4). Figure 9.9 shows the exploration overhead for Photo and MT10.
The exploration overhead is almost exclusively the cause for the speedup loss.
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Fig. 9.9. Exploration overhead.

Exploration overhead is a consequence of performing branch-and-bound
in parallel and is independent of the implementation of the search engines. A
different approach to parallel best-solution search is presented by Prestwich
and Mudambi in [109]. They use cost-parallelism, where several searches for a
solution with different cost bounds are performed in parallel. This technique
is shown to perform better than parallel branch-and-bound search.



10. Spaces for Combinators

This chapter extends computation spaces for programming composable con-
straint combinators. Composable means that combinators programmed from
spaces can combine arbitrary computations, including computations already
spawned by combinators.

10.1 Overview

Space-based programming of composable combinators requires that spaces
are freely composable themselves. This is achieved by allowing spaces to be
nested inside spaces, leading to a tree of spaces.

Example 10.1 (Negation with Spaces). This example considers the key issues
that arise with programming combinators from spaces. Spaces localize failure
through encapsulation. Hence, an obvious application for spaces seems to pro-
gram a negation combinator for arbitrary statements. To be more concrete,
the negation of X=Y is considered.
If encapsulated execution of X=Y fails, the negation of X=Y holds. If en-

capsulated execution of X=Y becomes stable, X=Y holds. However, due to the
independence restriction introduced in Chapter 4, space creation waits until
both X and Y become determined.
The independence condition prevents deciding failure early. If X and Y are

aliased, speculative execution should already be able to detect failure. If X
and Y are kinded to integers and have disjoint domains, speculative execution
again should detect failure.
For early failure detection, spaces must be created immediately and con-

straints must be propagated into spaces immediately (“nested propagation”).
Encapsulation must take variables situated in superordinated spaces into

account. For example, speculative execution of X=Y aliases X and Y. The alias-
ing must be encapsulated inside the local space and must be invisible in the
toplevel space (Figure 10.1).
Stability must take into account that a non-runnable space is not neces-

sarily stable. For example, as soon as the thread executing X=Y terminates,
the space is not runnable. However it is far from being stable: it can fail due
to tells on X and Y.

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 93–104, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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toplevel

nested propagation encapsulation

local space

Fig. 10.1. Nested propagation and encapsulation for spaces.

The point to use spaces for combinators is to allow combination of arbi-
trary statements. Spaces are made composable so that statements that them-
selves employ combinators are eligible for further combination. A variety of
combinators including a negation combinator are discussed in Chapter 11.
The chapter is concerned with the following aspects:

Space Tree. Spaces are organized in a tree that features nested propagation
and encapsulation (Section 10.2).

Space Tree Manipulation. Space creation, cloning, and merging of spaces are
extended to deal with the space tree. This in particular includes control
conditions for the applicability of space operations (Section 10.3).

Control and Status. Stability is extended to capture nested propagation. A
status mechanism that casts synchronization on spaces into synchroniza-
tion on variables even supports debugging (Section 10.4).

The search-specific aspects of spaces such as distributor creation and com-
mitting to alternatives remain unchanged. The relation of spaces to the un-
derlying programming language is discussed in Section 10.5.

10.2 Space Tree

As argued before, composable spaces lead to a space tree. The root of the
space tree is the toplevel space. The direct predecessor S1 of a space S2 in
the space tree is its parent space, and is written S1

.
< S2. Symmetrically, S2

is a child space of S1. The transitive closure of
.
< is denoted by <, and the

transitive and reflexive closure by ≤.
Important subsets of the space tree with respect to a single space S are:

↑S := {S′ | S′ < S} ⇑S := ↑S ∪ {S} = {S′ | S′ ≤ S}
↓S := {S′ | S < S′} ⇓S := ↓S ∪ {S} = {S′ | S ≤ S′}

A space S1 is superordinated to a space S2, if S1 ∈ ↑S2 . A space S1 is
subordinated to a space S2, if S1 ∈ ⇓S2 . Note that a space is subordinated
but not superordinated to itself.
The space tree is not to be confused with the search tree. Spaces that

implement nodes of a search tree are typically created by cloning. As will
become clear in the following section, spaces of a search tree are siblings in
the space tree.
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Space Constituents. The constituents of a space and notions such as situated
entity and home space remain unchanged. In the following, SC refers to the
current space.
Freshness and Visibility. As before, the set of variables and names for each
space are disjoint. Variables and names are visible in all spaces that are
subordinated to their home. That is, computations in space S can potentially
refer to variables and names in ⇑S .
Procedure Application. When a procedure application reduces in S, the ap-
propriate procedure is taken from the union of procedure stores in ⇑S . As
a consequence of the disjointness of names, the procedure to be applied is
uniquely determined.
Tell. In order to capture nested propagation, execution of a tell statement

x = v

tells x = v in all spaces ⇓SC . This ensures an important monotonicity invari-
ant: if S1

.
< S2 and φi is the constraint of Si, then φ2 entails φ1 (“children

know the parent’s constraints”). The invariant holds since children initially
inherit the parent’s constraints (Section 10.3.1).
Failure. An unsuccessful attempt to tell x = v fails SC . Failing SC stops all
computations in ⇓SC as follows: all threads in ⇓SC and all spaces ↓SC are
discarded.
Sendability. Sendability as defined in Section 4.6 disallows undetermined
variables in messages. Sendability is liberalized as follows. A variable x is
sendable from S1 with store φ to S2, if S2 ∈ ⇑S1 and: there is no variable y
with x�φ y and S2 < H(y), and there is no name ξ with x�φ ξ and S2 < H(ξ)
(� is introduced in Section 3.2.1).

Example 10.2 (Space Tree). Consider the space tree in the top-left of Fig-
ure 10.2. The toplevel space is S0, the spaces S1 and S2 are children of S0,
and S21 is child of S2. The variable x is situated in S0 and the variable y is
situated in S2.

The variable x is visible in all spaces, and y is visible in S2 and S21. The
variable x is sendable to S0 from all spaces, and y is sendable from S21 to S2
but not to S0.

– Telling x = b in S2 also tells x = b in S21 ∈ ⇓S2 .
– Telling x = b in S0 tells x = b in all spaces. Space S1 is failed by the tell.
– Telling y = a in S21 affects S21 only. Now, y is sendable from S21 to S0,
but still not sendable from S2 to S0.

10.3 Space Tree Manipulation

This section is concerned with space creation, cloning, and merging.
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{x} S0

S1 x = a {y} S2

S21

{x} S0

S1 x = a {y} x = b S2

x = b S21

{x} x = b S0

S1 failed {y} x = b S2

x = b S21

{x} x = b S0

S1 failed {y} x = b S2

x = b, y = a S21

tell x = b in S2

tell x = b in S0

tell y = a in S21

Fig. 10.2. Space tree evolution for Example 10.2.

10.3.1 Space Creation

A new space is created by

{NewSpace x y}

Reduction blocks until x becomes determined. A new name ξ is created with
home SC . A new space S is created as child of SC the following way:

– The root variable of S is initialized with a fresh variable z with home S.
– The set of local variables is initialized to contain z. The set of local names
and the procedure store are initialized as being empty.

– The constraint store is initialized with the constraints of SC . This ensures
the invariant that a child’s constraint always entails the parent’s constraint.

– A thread is created in S to execute {x z}.

Finally, the statement y = ξ is pushed.
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Visibility of Spaces. Due to the script’s free vari-
ables, computations in S can potentially access
all variables situated in ⇑S . And by construc-
tion, all children of S can be referred to in S. Al-
together, computations in S (black to the right)
can possibly refer to any space (gray) in

V(S) = {S2 | S1 ∈ ⇑S , S1
.
< S2}

Note that V(S) includes S and excludes the toplevel.
Space Access is Explicit. An important invariant in the design of first-class
spaces is that reference to a space is explicit. The only way to gain first-class
access to a space is by passing references obtained by NewSpace. This also
entails that there is no first-class reference to the toplevel space.
A different design would be to allow implicit access by a primitive

{ThisSpace x} that returns a reference to the current space. Implicit access
would render abstractions programmed from spaces unsafe. Computations
controlled by space-based abstractions could gain access to the current space
and could break the abstraction’s invariants. On top of that, implicit access
would allow to gain access to the toplevel. Having no first-class access to the
toplevel space simplifies the design considerably. Otherwise, most operations
need to take care of the toplevel space as a special case.

Cloning Spaces. Cloning also creates new spaces and needs to take into ac-
count the space tree. Firstly, cloning a space S includes cloning all spaces
in ⇓S . Secondly, the parent of the clone is the current space, which makes
cloning similar to space creation.

10.3.2 Merging Spaces

Reduction of
{Merge x y}

synchronizes on x being ξ → S. Reduction considers the following cases:

– If S is failed, the current space SC is failed.
– If S is merged, an exception is raised.
– If S is not admissible (explained below), an exception is raised.
– If both SC and S contain a distributor thread, an exception is raised. This
maintains the “at most one distributor” invariant (Section 4.5.1).

Otherwise, S is merged with SC as follows:

– S is marked as merged.
– The set of local variables (names) of SC is updated to include the local
variables (names) of S. The invariants discussed in Section 10.2 exclude
conflicts.
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– Similarly, the procedure store of SC is updated to include the mappings of
S’s procedure store. Again, no conflicts are possible.

– y = z is pushed, where z is the root variable of S.
– All constraints of S are told in SC .

Admissibility. Merging must obey a straightforward tree condition. Suppose
that the space S to be merged is included in ↑SC . By merging S, the space
tree would evolve into a cyclic graph. Therefore, execution of {Merge x y}
such that x is ξ → S, raises an exception if SC ∈ ⇑S . Note that even the
case S = SC is excluded, since it is most likely a programming error worth
being detected.

Spaces to which merging can be applied are
admissible. To the right, the current space is
black while the admissible spaces are gray. The
set of admissible spaces with respect to the space
S (typically, S is the current space) is defined as

A(S) := V(S)− ⇑S
= {S2 | S1 ∈ ⇑S , S1

.
< S2} − ⇑S

Admissibility is a very general condition. This has the advantage that
it can be used as single control condition for all operations on spaces. The
following example shows that admissibility for merging is indeed useful.

Example 10.3 (Downward Merge: Partial Evaluation). How to use cloning
and merging of spaces for partial evaluation is shown in Example 4.8.
The essence of using spaces for partial evaluation is to compute a space

and to use it multiply by merging a clone of it. Typically, the clone S1 is a
child of the toplevel space S. The clone S1 is merged to a space S2 which is
subordinated to S but not to S1. Figure 10.3 sketches the space tree.

S

S1 S2

S2
merge

Fig. 10.3. Downward merge for partial evaluation.

Merged Spaces are Not Transparent. The attempt to perform an operation on
a merged space raises an exception. A different design would make merged
spaces transparent: after merging S with SC , any reference to S is auto-
matically redirected to SC instead (similar to logic variables). This design,
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however, would make space access implicit. In particular, ThisSpace could
be programmed:

funfunfun {ThisSpace}
S={NewSpace procprocproc {$ _} skipskipskip endendend} ininin _={Merge S} S

endendend

10.3.3 Injecting into Spaces

The operation
{Inject x y}

with x being ξ → S is also restricted in that S must be admissible. Addi-
tionally, if y refers to a procedure with home S′ and S′ �∈ ⇑S , an exception
is raised.

Merged Spaces are Still Not Transparent. The hypothetical design that makes
merged spaces transparent would allow to express Inject from NewSpace and
Merge:

procprocproc {Inject S2 P}
S2={NewSpace procprocproc {$ X} {Merge S1 X} {P X} endendend}

endendend

Here S1 and S2 would refer to the same space after merging S1 with S2.
Since merged spaces are not transparent, Inject is primitive. It is possible
to create a space with the right computations. However, the space has the
wrong identity.

10.4 Control and Status

The motivating Example 10.1 outlined that a space that is not runnable is
not necessarily stable: it still can be speculative in that the space might fail.
There are two reasons why a space S can still fail, even though S is not
runnable:

– The space S contains a thread T that synchronizes on x that is situated
in ↑S . In case a constraint is told on x in ↑S , T is woken and makes S
runnable.
In this situation, T is globally suspended or speculative. If T suspends on
a variable x with H(x) < S, T globally suspends for H(x). The global
suspension set G(T ) is the set of variables on which T globally suspends.

– A variable x situated in S′ ∈ ↑S is constrained in S. In case a constraint
is told on x in S′, S can fail. This can only be the case, if the constraint
store of S is not entailed by the constraint store of S′. The constraint in
S is speculative. Otherwise, the tell would already fail S′ (and S would be
discarded instead).
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10.4.1 Stability

The intuition is that S is stable, if no tell in ↑S can affect S. This is formalized
as follows.

Runnable and Blocked. A space S is runnable, if ⇓S contains a runnable
thread. Otherwise, S is blocked. According to this definition, a failed
space is blocked.

Stable and Suspended. A space S is stable, if S is blocked and remains blocked
regardless of any tell statements executed in ↑S . A space is suspended, if
it is blocked but not stable.

Succeeded and Distributable. A space is distributable, if it is stable and con-
tains a distributor. A space is succeeded, if it is stable but neither failed
nor distributable.

Entailed and Stuck. A space is stuck, if it is succeeded and contains a thread.
Otherwise, a succeeded space is entailed. The distinction between entailed
and stuck spaces is of great importance in Chapter 11.

Figure 10.4(a) summarizes the states of a space and their relationship. Re-
call that a space can also be semi-stable (Section 4.5.3). Semi-stability is an
orthogonal issue and hence requires no discussion here. Figure 10.4(b) sum-
marizes state transitions for spaces. A solid line represents a transition that
occurs upon application of a space operation, the other “implicit” transitions
are represented by dashed lines.
Stability of a space S is defined with respect to threads in ⇓S . One reason

is that a thread in S can control and synchronize on computations in ↓S . A
further reason is due to cloning: cloning synchronizes on stability and also
clones subordinated spaces.
Since stability is defined with respect to trees of spaces, the following

holds:

– If S is blocked, all spaces in ↓S are blocked. Dually, if S is runnable, all
spaces in ↑S are runnable.

– If S is stable, spaces in ↓S need not be stable. Dually, if S is suspended,
spaces in ↑S need not be suspended.

Stability captures synchronization that arises naturally with concurrent
computations. Consider a speculative computation in S that processes data
(that is, constraints) provided by some other concurrent computation. The
space S becomes suspended if not all required data is provided. Only after
all data is provided, S can become stable.
Stability has been first conceived by Janson and Haridi in the context

of AKL [59, 44, 58]. Stability naturally generalizes the notion of entail-
ment. Entailment is known as a powerful control condition in concurrent
execution, which has been first identified by Maher [74] and subsequently
used by Saraswat for the cc (concurrent constraint programming) frame-
work [118, 117].
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space

running blocked

suspended stable

failed succeeded

entailed stuck

distributable

merged

(a) Relation between states.

runnable suspended

stable

NewSpace

Inject

Inject

Inject

(b) State transitions.

Fig. 10.4. Summary of space states and transitions.

It is instructional to study stability and how stability interacts with failure
and merging spaces by means of some examples.

Example 10.4 (Stability is Pessimistic). An important aspect of stability is
that it is a pessimistic but safe and decidable approximation that a space is
not speculative. Consider the following example

procprocproc {Loop} {Loop} endendend
S={NewSpace procprocproc {$ X} {Loop} endendend}

S is definitely not speculative, but never becomes stable. In the following
example

locallocallocal Y ininin S={NewSpace procprocproc {$ X} Y=1 endendend} endendend

S never becomes stable, even though lexical scoping ensures that no tell on
Y can fail S.

Example 10.5 (Local versus Global Variables). Suppose S is created by
locallocallocal Y ininin S={NewSpace procprocproc {$ X} X=Y endendend endendend
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After the thread that executes X=Y terminates, S becomes stable: regardless of
what is told for Y, S cannot become failed. This is in contrast to Example 10.1,
where the constraint is speculative.

Example 10.6 (Failure and Stability). Consider the following example:
S1={NewSpace procprocproc {$ S2}

S2={NewSpace procprocproc {$ X} Y=1 endendend}
endendend}

where Y is a variable introduced in a space in ↑S1 . Both S1 and S2 eventually
become suspended, since S2 can be failed by a tell on Y. By telling Y=1, both
spaces eventually become stable. By telling Y=2, S2 eventually becomes failed
and S1 stable.

Example 10.7 (Merging and Stability). After execution of
S1={NewSpace procprocproc {$ S2}

Y ininin S2={NewSpace procprocproc {$ X} Y=1 endendend}
endendend}

S1 and S2 eventually become suspended. By
{Inject S1 procprocproc {$ S2} {Merge S2 _} endendend}

S1 eventually becomes stable.

10.4.2 Status Variable

Ask as introduced in Section 4.4 synchronizes on stability of a space and then
returns its status. A simpler design that casts synchronization on spaces to
synchronization on variables is based on the idea of a status variable. As soon
as a space reaches a stable state, information according to its status is told on
the status variable. Ask is then programmed from a primitive that accesses
the status variable.
Each space S features a status variable x that is situated in S’s parent

space S′. The status variable x is created when S is created and is manipu-
lated as follows:

1. If S is merged, x = merged is injected into S′.
2. If S becomes failed, x = failed is injected into S′.
3. If S becomes distributable and has n alternatives, x = alternatives(n)
is injected into S′.

4. If S becomes entailed, x = succeeded(entailed) is injected into S′.
5. If S becomes stuck, x = succeeded(stuck) is injected into S′.

An additional provision, referred to as freshening, is needed for stable
spaces that become runnable again (by application of Inject or Commit,
Figure 10.4(b)):
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6. If S is stable and becomes runnable again, a fresh variable y with home
S′ is created and S’s status variable is replaced by y.

Status variable access is provided by the following primitive operation

{AskVerbose x y}

which synchronizes on x being ξ → S. It returns S’s status variable z by
pushing y = z.
The design of AskVerbose is simple, but suffers from a subtle possibility

of hard to find programming errors. If the current space is subordinated to S,
a thread can synchronize on S’s status variable. Typically, this is the result
of a programming error: S can never become stable due to a thread that
suspends globally on z. To avoid this deadlock scenario, the application of
AskVerbose is restricted to admissible spaces. For an admissible space it is
guaranteed that this situation cannot occur. Section 13.3.5 clarifies that the
restriction to admissible spaces is essential for the implementation.

Relation to Mozart. The Mozart implementation of spaces deviates slightly
in the handling of the status variable. It uses futures (read-only variants of
logic variables, see Section 3.5) instead of logic variables to offer protection
against programming errors.

10.4.3 Debugging Support

A quite common situation is that a space suspends due to a programming
error. Debugging tools that are programmed from spaces need to account for
this situation (the Explorer is a particular example, Chapter 8). Therefore
the design is extended:

7. If S becomes suspended, a fresh variable y with home S′ is created and
S’s status variable is replaced by y. The statement x = suspended(y) is
injected into S′.

funfunfun {Deref X}
casecasecase X ofofof suspended(X) thenthenthen {Deref X} elseelseelse X endendend

endendend
funfunfun {Ask S}

casecasecase {Deref {AskVerbose S}} ofofof succeeded(_) thenthenthen succeeded
[] X thenthenthen X
endendend

endendend

Fig. 10.5. Ask programmed from AskVerbose.

From AskVerbose it is straightforward to program Ask, as is shown in
Figure 10.5.
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Example 10.8. Consider the following example, where the variables X and Y
are not determined and superordinated to S:

S={NewSpace procprocproc {$ _} {Wait X} {Wait Y} endendend}
Z={AskVerbose S}

The thread created to execute the script for S eventually globally suspends
on X. That is, the space S becomes suspended. Hence Z is determined to
suspended(_). After executing X=1, the thread suspending on X resumes but
globally suspends again on Y. And again S suspends, which means that Z is
constrained to suspended(suspended(_)). Telling Y=1 eventually results in
Z being determined to suspended(suspended(succeeded(entailed))).

10.5 Choice of Programming Language

Computation spaces presuppose the essential features of Oz Light. First-class
procedures are essential for space creation and injection. Implicit synchroniza-
tion is essential to synchronize on stability of spaces. Concurrency is essential
for controlling speculative computations and for a clear model of attaching
computations to spaces.
An additional design decision of Oz is that procedures are relational rather

than functional. Relational means that results are passed as side effects on
variables. This decision has no impact on the design of spaces. Any language
will do, provided it offers the essential ingredients such as implicit synchro-
nization, concurrency, and first-class procedures. Smolka describes in [136]
a variant of Standard ML that offers these features. Spaces can straightfor-
wardly build on top of this language. My paper [127] exemplifies this by using
spaces for composable constraint combinators in the context of this variant
of SML.
The decision to use Oz is motivated by the following facts. Firstly, as a

corollary to the above discussion, the language of choice is independent of
spaces. Secondly, using Oz has the advantage that all program fragments are
for real. The programs can be tried with Mozart [92] as a production quality
system. The programs are the abstractions that are used in Mozart. The
programs serve as foundation for the thorough evaluation of the approach in
this book.
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This chapter discusses composable concurrent constraint combinators pro-
grammed from spaces. Spaces are applied to a broad range of combinators:
negation, generalized reification, disjunction, and implication (conditional).
It is empirically shown that a space-based implementation of combinators is
competitive with a native C++-based implementation.

11.1 Introduction

Spaces can be used to encapsulate and control speculative computations.
This allows to program combinators where execution of constraints subject
to combination is delegated to local spaces. The logic behind the combinator
is programmed then from space operations. Whereas combinators allow to
program constraints, spaces allow to program combinators. The composable
setup of spaces makes space-based combinators composable to start with.
Composable combinators are also known as deep-guard combinators.

Applications. Our experience shows that applications of constraint combina-
tors in finite domain programming are infrequent. However, they turn out to
be of great importance for other constraint domains, like feature constraints.
In particular, they have turned out to be essential for computational linguis-
tics [32], where constraints from different domains are combined naturally.

A second application area is prototyping constraints. New constraints can
be developed by high level combination. After experiments have shown that
they are indeed the right constraints, a more efficient implementation can be
attempted. This motivation is similar to that for constraint handling rules
(CHR) [37]. Spaces are primitives to combine constraints, a feature that an
implementation of CHRs presupposes.

Related Work. Previous work on constraint combinators include Saraswat’s
concurrent constraint programming framework [117, 118], the cardinality
combinator by Van Hentenryck and Deville [143], and cc(FD) [145]. The
approaches have in common that the combinators considered are “flat” as
opposed to “deep”: the constraints that can be combined must be either
built-in, or allow a simple reduction to built-in constraints (cardinality com-
binator).

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 105–116, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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A deep-guard combinator has been proposed and implemented first in Nu-
Prolog by Naish [96, 95]. The solution was not fully general in that reduction
was limited to groundness rather than entailment. The first language with a
full design and implementation of deep-guards was AKL [59, 44, 58].

The approaches mentioned so far offer a fixed set of combinators. Here
the focus is on primitives and techniques for programming combinators. For
all combinators except constructive disjunction (available in cc(FD)), it is
shown how to program them from spaces.

A different approach to combining constraints are reified constraints (also
known as metaconstraints). Reification reflects the validity of a constraint
into a 0/1-variable. Constraints can then be combined by using the 0/1-
variable. Spaces are not intended as a replacement for reified constraints. As is
discussed in Section 11.3, a space-based reification combinator can offer better
propagation in cases where reified constructions propagate poorly. Space-
based reification is applicable to all expressions, including propagators for
which a constraint programming system does not offer a reified version.

11.2 Concurrent Negation

This section familiarizes the reader with spaces for programming combinators
by showing how to program a concurrent negation combinator from them.

For a given constraint φ, the negation combinator provides an imple-
mentation for the constraint ¬φ. The negation combinator ¬φ executes the
propagator for φ and:

– disappears, if the propagator for φ becomes failed.
– fails, if the propagator for φ becomes entailed.

Execution of φ by the negation combinator requires encapsulation of the
computation performed by φ. Basic constraints that are told by propagation
of φ must be hidden from other computations. Basic constraints that are told
by other computations must be visible to φ. First-class computation spaces
are used as encapsulation mechanism.

Some Abstractions. The following abstractions are helpful in the remainder
of this chapter. Quite often no access to the root variable of a space is needed,
hence it is convenient to allow a nullary procedure:

funfunfun {Encapsulate P}
{NewSpace ififif {ProcedureArity P}==1 thenthenthen P

elseelseelse procprocproc {$ _} {P} endendend
endendend}

endendend

To simplify presentation the following procedure Status is used (for the
definition of Deref see Figure 10.5 on page 103):
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funfunfun {Status S}
casecasecase {Deref {AskVerbose S}}
ofofof failed thenthenthen failed
[] succeeded(S) thenthenthen S
[] alternatives(_) thenthenthen stuck
endendend

endendend

Detecting Programming Errors. A stuck space (see Section 10.4) is stable,
but neither failed nor entailed. If a space S becomes stuck, it contains prop-
agators or threads that synchronize on variables that are local to S. That is,
constraint propagation within S has not been strong enough to completely
drive reduction. Usually, a stuck space is the result of a programming error.
In the following, this is modeled by raising an exception error.
The Combinator. The concurrent negation combinator takes a statement (as
nullary procedure P) and creates a space running P. To make it concurrent,
a new thread is created that blocks until the created space becomes stable.

procprocproc {Not C}
threadthreadthread

casecasecase {Status {Encapsulate C}}
ofofof failed thenthenthen skipskipskip
[] entailed thenthenthen failfailfail
[] stuck thenthenthen raiseraiseraise error endendend
endendend

endendend
endendend

11.3 Generic Reification

Reification is a powerful and natural way to combine constraints. This section
presents a generic reification combinator which is shown to provide stronger
propagation than constructions that use reified propagators alone.
Reification. The reification of a constraint φ with respect to a 0/1-variable b
(a finite domain variable with domain {0, 1}) is the constraint φ ↔ b = 1.
Whether φ holds is reflected into the control variable b as follows:

“⇒” If φ holds, b = 1 must hold. If ¬φ holds, b = 0 must hold.
“⇐” If b = 1 holds, φ must hold. If b = 0 holds, ¬φ must hold.

Having 0/1-variables b that reflect validity of constraints allows for power-
ful means to combine constraints. Common examples are Boolean connectives
expressed by propagators (Sections 8.2 and 11.4 contain examples).

Direction “⇒” can be programmed along the lines of the negation combi-
nator of Section 11.2. Suppose that S refers to a space running the statement
to be reified and B refers to the 0/1-variable. Then direction “⇒” is as follows:
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〈“⇒”〉 := casecasecase {Status S}
〈“⇒”〉 := ofofof failed thenthenthen B=0
〈“⇒”〉 := [] entailed thenthenthen B=1
〈“⇒”〉 := [] stuck thenthenthen raiseraiseraise error endendend
〈“⇒”〉 := endendend

For the case of direction “⇐” where B is determined to 0, if the space S
becomes entailed, the current space must be failed. Otherwise, if S becomes
failed, nothing has to be done. This behavior is already realized by the above
encoding of direction “⇒”.
Space Merging. Consider the case of direction “⇐” for b = 1. The required
operational behavior includes two aspects. Firstly, a computation state must
be established as if execution of σ had not been encapsulated. Secondly, if
σ has not yet been completely evaluated, its further execution must perform
without encapsulation.

Both aspects are dealt with by Merge. The direction “⇐” of the reification
combinator is as follows:
〈“⇐”〉 := ififif B==1 thenthenthen _={Merge S} elseelseelse skipskipskip endendend

The Combinator. The reification combinator is obtained from the implemen-
tation of both directions, which must execute concurrently. Concurrent execu-
tion is achieved by creating a thread for each direction. The procedure Reify
takes a procedure for the statement to be reified and returns a 0/1-variable:

funfunfun {Reify E}
S={Encapsulate E} B

ininin
B::0#1 threadthreadthread 〈“⇒”〉 endendend threadthreadthread 〈“⇐”〉 endendend B

endendend

Example 11.1 (Relation to Propagator-Based Reification). Consider the
reification of the conjunction of x + 1 = y and y + 1 = x with respect to
the variable b, where x and y are finite domain variables. Ideally, reification
should determine b to 0, since the conjunction is unsatisfiable. Posting
the constraints without reification exhibits failure. To obtain a reified
conjunction, the conjuncts must be reified by introducing control variables
b1 and b2:

b1 = (x+ 1 = y) ∧ b2 = (y + 1 = x) ∧ b ∈ {0, 1} ∧ b1 × b2 = b

Neither b1 nor b2 can be determined, thus b cannot be determined.
The reification combinator developed in this section is applied as
B={Reify procprocproc {$} x+ 1 = y y + 1 = x endendend}

Both constraints are posted in the same local space S. Exactly like post-
ing them in the toplevel space, propagation fails S. Indeed, the reification
combinator determines b to 0.
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This shows that using spaces for reification can yield better constraint
propagation than reifying each propagator individually. Individual propa-
gator reification encapsulates the propagation of each propagator. This in
particular disables constraint propagation in reified conjunctions. This is a
major disadvantage, since reified conjunctions occur frequently as building
block in other reified constructions.

On the other hand, the generic reification combinator offers weak propa-
gation in case the control variable is 0, because it does not impose the con-
straint’s negation. Instead of propagation, constraints told by other propaga-
tors are tested only. Whenever a reified propagator is available, it is preferable
to use it directly. So the reification-combinator offers additional expressive-
ness but does not replace reified propagators.

11.4 Disjunction

This section shows how to program disjunctive combinators that resolve their
alternatives by propagation rather than by search.

Consider a disjunction
σ1 ∨ · · · ∨ σn

that is composed of n statements σi, where the σi are the disjunction’s alter-
natives. A straightforward operational semantics is as follows:

1. Discard failed alternatives (⊥ ∨ σ is logically equivalent to σ).
2. If a single alternative σ remains, reduce the disjunction to σ (a disjunction
with a single alternative σ is equivalent to σ).

3. If all alternatives have failed, fail the current space (a disjunction with
no alternatives is equivalent to ⊥).
This operational semantics can be directly encoded by the reification op-

erator as introduced in Section 11.3. Each alternative σi is reified with respect
to a 0/1-variable bi. The disjunction itself is encoded by

n∑

i=1

bi ≥ 1.

Example 11.2 (Placing Squares). The operational semantics discussed above
is driven by failure only. It can be beneficial to also take entailment of alter-
natives into account.

As an example consider the placement of two squares s1 and s2 such that
they do not overlap. A well known modeling is

x1 + d1 ≤ x2 ∨ x2 + d2 ≤ x1 ∨ y1 + d1 ≤ y2 ∨ y2 + d2 ≤ y1
The meaning of the variables xi, yi, and di is as in Figure 11.1. The squares

do not overlap, if the relative position of s1 with respect to s2 is either left,
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s1

s2

x1

x2

y1

y2

d1

d2

Fig. 11.1. Placing squares (Example 11.2).

right, above, or below. As soon as one of the relationships is established, the
squares do not overlap.

Suppose s1 is placed left to s2. Since the first and second alternative are
mutually exclusive (so are the third and fourth), the first and second reified
propagator disappears. However, the third and fourth remain.

Assume a constraint store φ and a disjunction φ1∨φ2 where φ1 is entailed
by φ (that is, φ → φ1 is valid). Under this condition, φ1 ∨ φ2 is logically
equivalent to � ∨ φ2, which in turn is equivalent to �. This justifies
4. If an alternative is entailed, reduce by discarding all alternatives.

Taking entailment into account has the advantage that execution can
be more efficient, since computations that cannot contribute are discarded
early. In a composable setup, this might allow for earlier reduction of other
combinators and by this provide better propagation.

The implementation of the disjunctive combinator can be simplified by the
following observation: it is sufficient to discard all failed alternatives but the
last one. If a single alternative remains, commit to it, regardless of whether
the alternative is failed or not. Merging a failed space fails the current space
(see Section 10.3.2). In the following, the discussion is limited to a binary
combinator. Its generalization is straightforward.

A procedure Or that takes two alternatives A1 and A2 (again encoded as
first-class procedures) decomposes naturally into three parts: space creation
for encapsulated execution of the alternatives, a concurrent controller, and
reduction as discussed before. This yields:

funfunfun {Reduce S1 S2}
〈Reduction〉

endendend
procprocproc {Or A1 A2}

S1={Encapsulate A1} S2={Encapsulate A2}
ininin
〈Controller〉

endendend
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The controller blocks until either S1 or S2 becomes stable. This indeter-
minate choice is encoded by First, which returns truetruetrue (falsefalsefalse), when its
first (second) argument is determined (Section 3.3.1).
〈Controller〉 := ififif {First threadthreadthread {Status S1} endendend
〈Controller〉 := threadthreadthread {Status S2} endendend}
〈Controller〉 := thenthenthen {Reduce S1 S2}
〈Controller〉 := elseelseelse {Reduce S2 S1}
〈Controller〉 := endendend

The controller guarantees stability of the first space passed to Reduce.
Finally, reduction is programmed as follows:
〈Reduction〉 := casecasecase {Status S1}
〈Reduction〉 := ofofof failed thenthenthen _={Merge S2}
〈Reduction〉 := [] entailed thenthenthen {Kill S2}
〈Reduction〉 := elseelseelse casecasecase {Status S2}
〈Reduction〉 := ofofof failed thenthenthen _={Merge S1}
〈Reduction〉 := [] entailed thenthenthen {Kill S1}
〈Reduction〉 := elseelseelse raiseraiseraise error endendend
〈Reduction〉 := endendend
〈Reduction〉 := endendend

The part of Reduce that does not have a gray background executes immedi-
ately, since the controller ensures that S1 is stable. The gray part synchronizes
on stability of S2. Kill kills a space by injecting failure (Example 4.2).

Reification of a statement σ can be programmed from disjunction by:
{Or procprocproc {$} B=1 σ endendend

procprocproc {$} B=0 {Not procprocproc {$} σ endendend} endendend}

This encoding has the disadvantage that σ is executed twice. This points out
a deficiency in the designs of AKL and early versions of Oz, where neither
spaces nor reification but disjunction was available as primitive.

11.5 Conditional

This section shows how to program conditionals that use arbitrary statements
as conditions. In particular, it presents how to use continuations that allow
to share variables between condition and body of a conditional.

A conditional consists of three constituents, all of which are statements:
a guard G, a body B, and an else-constituent E. A suggestive syntax is

condcondcond G thenthenthen B thenthenthen E endendend

The part G thenthenthen B is called the clause of the conditional.
Programming a conditional from spaces is straightforward. The program

used for programming Not (see Section 11.2) is adapted as follows:
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procprocproc {Cond G B E}
casecasecase {Status {Encapsulate G}}
ofofof failed thenthenthen {E}
[] entailed thenthenthen {B}
[] stuck thenthenthen raiseraiseraise error endendend
endendend

endendend

Here G, B, and E are procedures for guard, body, and else constituent.
A common desire is to introduce variables x locally in the guard G and to

subsequently use them in the body. Thus the conditional should synchronize
on entailment of ∃xG. In the current setup, the bindings computed for x in
G are not accessible. An inefficient solution is to execute the guard again
together with the body.

A more satisfactory solution is to let the guard pass the variables to the
body. This can be accommodated by using the root variable of a space. In a
setting with first-class procedures, sharing variables between guard and body
is straightforward by letting the guard return a function for the body:

locallocallocal x ininin G funfunfun {$} B endendend endendend

Here B can refer to variables declared in the locallocallocal-statement. Programming
the conditional is now straightforward.

procprocproc {Cond G E}
S={Encapsulate G}

ininin casecasecase {Status S}
ofofof failed thenthenthen {E}
[] entailed thenthenthen B={Merge S} ininin {B}
[] stuck thenthenthen raiseraiseraise error endendend
endendend

endendend

Parallel Conditional. A common combinator is a parallel conditional that
features more than a single clause with a committed choice operational se-
mantics: As soon as the guard of a clause becomes entailed, commit the
conditional to that clause (that is, continue with reduction of the clause’s
body). Additionally, discard all other guards.

Encoding the parallel conditional from spaces follows closely the program
for disjunction in Section 11.4. In fact, the setup of the spaces for guard
execution and the concurrent controller can remain unchanged.
〈Reduction〉 := ififif {Status S1}==entailed thenthenthen
〈Reduction〉 := {Kill S2} {{Merge S1}}
〈Reduction〉 := elseifelseifelseif {Status S2}==entailed thenthenthen
〈Reduction〉 := {Kill S1} {{Merge S2}}
〈Reduction〉 := elseelseelse raiseraiseraise error endendend
〈Reduction〉 := endendend

Adding an else-constituent is straightforward.
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Clauses for Disjunction. The disjunctive combinator presented in Sec-
tion 11.4 can be extended to employ clauses as alternatives. This extension
is straightforward but two issues require some consideration. Firstly, when to
start execution of a clause’s body? Secondly, for which clause employ reduc-
tion by entailment?

Execution of the parallel conditional evaluates a clause’s body B only
after the clause’s guard G has become entailed. This in particular ensures
that the thread to compute B has terminated. A disjunctive combinator, in
contrast, can already commit to a clause C if its guard G is not yet stable,
provided the clause is the last remaining.

It is desirable that evaluation of C’s body B starts after G has been
completely executed. This is guaranteed, since procedure application syn-
chronizes on B. And B is determined to a procedure only after full execution
of the guard.

As discussed in Section 11.4, it is beneficial to consider both failure and
entailment of alternatives for the disjunctive combinator. Reduction by entail-
ment is justified by the fact that if an alternative A is entailed, it is logically
equivalent to �. This does apply to a clause only if its body is known to be
logically equivalent to �. A solution is to tag clauses as �-clauses and apply
reduction by entailment to �-clauses only.

11.6 Andorra-Style Disjunction

The disjunctive combinator discussed in Section 11.4 resolves remaining al-
ternatives by propagation only. On the other hand, distributors encode dis-
junctive information as well and are resolved by search only.

A prominent idea originating from logic programming is to combine these
two aspects as follows. Reduce all disjunctive combinators as far as possible by
propagation. If no further propagation is possible, choose one of the not-yet
reduced disjunctive combinators and apply distribution. By this, reduction
consists of interleaving deterministic (propagation) and non-deterministic
(distribution) reduction, where deterministic reduction is given preference.

The idea has been conceived in the context of Prolog, where the disjunc-
tive combinators are Horn clauses, and are, in Prolog, only reduced by search.
The above described principle has been first discovered by D. H. D. War-
ren and has been called Basic Andorra Principle by Haridi and Brand in
1988 [42]. It has been independently discovered by Smolka in 1991, who re-
ferred to it as residuation [132]. Residuation occurred first in the work of
Aı̈t-Kaci and Nasr [6], even though there has been no explicit link to search.
Similar ideas have already been explored in MU-Prolog by Naish [95].

Both styles of reduction can be combined as follows. Propagation and dis-
tribution is linked by a control variable. For a disjunction with n clauses, the
control variable x is a finite domain variable with initial domain {1, . . . , n}.
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Failure of a clause Ci excludes i by telling x ∈ {j | 1 ≤ j ≤ n, i �= j}. If x gets
determined, the disjunction reduces with the x-th clause.

In addition, a distributor for the control variable x is created. This im-
plies that if normal reduction does not suffice to reduce to a single clause,
the distributor assigns a value to the control variable x and by this drives
execution of the disjunction by distribution.

A different way of encoding would be to start directly from the disjunction
as introduced in Section 11.4 and use the constraint x = i in the guard of
the disjunction. The drawback of the encoding is that it cannot be extended
to handle �-clauses, since the guards will not become entailed due to the
constraints on the control variable.

At first sight, the demonstrated combination of propagating and distribut-
ing disjunctions looks promising. Its practical use, however, is limited due to
hard-wired control. Systems built on the Andorra principle suffer from the
inflexible control [116, 58]. Moolenaar and Demoen describe in [91] how selec-
tion criteria like least number of alternatives (first-fail) can be implemented
on an abstract machine level. While strategies like first-fail might be appro-
priate in some situations, they might fall short in others. The right thing is
as usual: make it programmable and provide commonly used abstractions.

Since on the other hand sophisticated selection abstractions for finite do-
main variables are available, the following approach works well in practice.
Make the control variables for the disjunctions explicit and control distribu-
tion by distribution of the control variables.

11.7 Discussion and Evaluation

The Mozart implementation of Oz (version 1.1.0) switched from a native
C++-based implementation of combinators to a space-based implementation.
Information on techniques for native implementation of combinators can be
found in [58, 77, 76]. The main motivation has been to simplify the implemen-
tation. The goal has been to decrease the maintenance effort which turned
out to be prohibitive for the native implementation.

The native implementation requires widespread support. Support for en-
capsulation is needed, which is shared by the space-based implementation.
The native implementation requires extension of the underlying abstract
machine by several instructions and specialized data structures (instead of
spaces). A particular source of problems has been the implementation of a
concurrent control regime in C++ as a sequential language.

This is very much in contrast to the space-based implementation. Spaces
are provided completely orthogonal, most of their supporting routines are
loaded on need (for more details see Chapter 13). And spaces are concurrency-
enabled to start with.
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Reduction and Propagation. The runtime for composable combinators is de-
termined by two factors: the runtime needed for reduction and the runtime
for propagating constraints to spaces. The latter aspect is more important for
constraint applications: typically, combinators are created once at problem
setup time. Most of the computational effort is then spent on search for a
solution which involves a great amount of propagation.

0 250 500 750 1000
Or (Space) 814

Or (Native) 539

Cond (Space) 814

Cond (Native) 539

(a) Append (reduction).

0 250 500 750 1000
Space 590

Native 637

(b) Length (propagation).

Fig. 11.2. Runtime (in milliseconds) for examples using combinators.

Figure 11.2(a) shows the runtime of Append. Append is the typical tail-
recursive program that appends two lists with 10000 elements. Append is just
concerned with reduction. Here the space-based implementation is around
50% slower than the native implementation. The reason why the native im-
plementation is faster is that the entire reduction consists only of space and
thread creation directly followed by reduction. This is faster in a native im-
plementation since no first-class space is created and no overhead is incurred
by executing Oz programs. In addition, it is clarified that both conditional
and disjunctive combinator have the same runtime behavior.

Figure 11.2(b) shows the runtime for the example Length. Length com-
putes the length of a list, where a disjunctive combinator is used to propagate
the length of a list to and from a finite domain variable. This is iterated a
hundred times as follows: from a list the length is computed, from the length
a list is computed, . . ., and so on. The runtime for Length is thus dominated
by propagation. Here the space-based implementation is even slightly more
efficient than the native implementation. The reason is that due to the simpli-
fications that have become possible by removing the native implementation
of combinators, the entire implementation has become more efficient.
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These experiments suggest that the space-based implementation is com-
petitive to the native C++-implementation as it comes to runtime. Native
combinators are slightly faster for programs where execution time is domi-
nated by reduction of combinators. For examples where the runtime is dom-
inated by constraint propagation, both approaches offer approximately the
same execution speed.

0 250 500 750
Space 585

Native 617

Reified 191

(a) Runtime (in milliseconds).

0 500 1000 1500 2000
Space 1460

Native 1366

Reified 687

(b) Memory (in KB).

Fig. 11.3. Runtime and memory requirements for implementations of Bridge.

Comparison to Reification. Figure 11.3 shows runtime and memory require-
ments for the Bridge example. Bridge is a small scheduling problem (Ap-
pendix A.1). A central constraint for Bridge is that two tasks that require
the same resource do not overlap in time. The formulation used is the single-
dimensional variant of the non-overlap constraint for squares as discussed in
Example 11.2. Here the runtime is dominated by propagation which explains
why native and space-based implementation offer the same runtime. They
also require roughly the same memory. The comparison to an implementa-
tion that uses propagator-based reification stresses that combinators are not
a replacement for reified propagators but rather an addition.

Figure 11.3(b) reveals that space consumption of space-based and native
combinators is approximately the same.
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This chapter outlines the implementation architecture of Oz Light. The ar-
chitecture serves as foundation for the implementation of spaces.

12.1 Overview

The chapter is concerned with the implementation aspects of Oz Light that
are fundamental for the implementation of spaces. The first issue is the store
and in particular the variables in the store. The second issue is synchroniza-
tion and control of threads.

The implementation is sequential: there is at most one thread executing
at a time. The architecture features the following components:

Store. The store implements the constraint-graph. Its nodes are the variables
and the values. Its edges represent equality-constraints between nodes.
The central operation on the store is tell which possibly inserts new edges
into the graph.

Emulator. The emulator executes threads. Execution possibly creates new
threads, creates new nodes in the store, and performs tell operations on
the store. The details of the emulator are of little concern for spaces. It
suffices, that after execution of a thread, its status and its suspension set
is available from the emulator.

Scheduler. The scheduler is the implementation’s main control instance. It
maintains a pool of runnable threads and provides fair execution con-
trol for runnable threads. The scheduler creates, suspends, wakes, and
terminates threads.

How the actual statements of Oz Light are implemented is orthogonal to
the implementation of spaces. A sketch of a complete implementation of a
language similar to Oz Light is [77]. Scheidhauer discusses implementation
and evaluation of the emulator in [119]. Mehl discusses the implementation
of store and scheduler in [76].

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 117–120, 2002.
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12.2 Synchronization

The implementation’s most distinguished service is thread synchronization.
When a thread T suspends, its topmost statement is in charge of computing
the suspension set S(T ). As soon as new constraints on a variable in S(T )
become available, T is woken. To implement synchronization efficiently, T is
attached to all variables in S(T ).

As soon as new constraints become available on a variable x, the attached
threads are made runnable by waking them. The set of suspended threads
S(x) attached to a variable x is called the suspension set of x. Waking the
threads in S(x) is also called to wake the variable x.

The emulator provides access to the suspension set of thread T . The sched-
uler attaches a suspended thread T to the variables S(T ). The store detects
which variables must be woken. Again, the scheduler wakes the variables.

A thread that is woken is not guaranteed to make any progress. Even
though new constraints are available, the topmost statement might still be
unable to reduce. For example, if a thread synchronizes on x + y = z and
only x has become determined while y is still unconstrained. The reason is
that the implementation does not track how much information is needed to
resume a thread. It just makes the safe but pessimistic approximation that
new constraints on a variable wake the thread.

12.3 Store

The constraint store implements the constraint-graph. Its nodes represent
variables and values. Its edges represent equality-constraints between vari-
ables and values.

Nodes. The constraint store has three different kinds of nodes (Figure 12.1).
A variable node has a link to its suspension set. A value node for a simple
value has no outgoing edges. A value node for a tuple node f/n has n outgoing
edges that point to the nodes for its n subtrees. A reference node is created by
constraining variables. It has a single outgoing edge pointing to an arbitrary
node. In the following, nodes and their entities are identified.

(a) Variable.

f/n

· · ·
(b) Value. (c) Reference.

Fig. 12.1. Nodes in the constraint store.
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The implementation combines all store compartments in that it has nodes
for procedures and ports. For example, a procedure node has two links to
implement a closure: to the free variables and to the code (statement).

X Y

{T1, T2}

f/2

1 2

=⇒

X Y

f/2

1 2

scheduler wakes {T1, T2}

Fig. 12.2. Binding a variable node.

Binding Variables. Ideally, telling x = v would redirect all links that point
to x to v instead. This is not feasible: there is no simple way to efficiently
maintain the incoming edges of x. Instead, a variable node is turned into
a reference node. Figure 12.2 shows how a new constraint is added to the
store. X refers to a variable node, whereas Y refers to a value node. Telling
X=Y to the store wakes X and turns the variable node into a reference node
pointing to Y. Turning a variable node into a reference node is called to bind
the variable (node). If a variable node x is bound to another variable node y,
both variables are woken: new information is available on both x and y.

Reference nodes in the store are transparent. Routines that access the
store implicitly follow links from reference nodes (“dereferencing”). A garbage
collector, for example, is free to remove reference nodes (“path compression”).

Unification. Unification is used to achieve equality between two subgraphs
in the store. An example is sketched in Figure 12.3. As far as spaces are
concerned, unification adds edges into the store and possibly wakes variables.
For more details of unification in the context of Oz, consider Mehl’s thesis [76].

X Y

f/2 f/2

1

=⇒

X Y

f/2 f/2

1

=⇒

X Y

f/2 f/2

1

Fig. 12.3. Unification example.
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12.4 Scheduler

The scheduler is the implementation’s main control instance. It maintains
a pool of runnable threads and provides fair execution control to the pool.
It controls thread transitions: the scheduler creates, suspends, wakes, and
terminates threads.

Thread Selection. The scheduler maintains the runnable pool containing
runnable threads. When a new thread is created, it is added to the runnable
pool. When a thread is woken, it is also added to the runnable pool.

The scheduler selects threads fairly. This is typically achieved by main-
taining the runnable pool as a queue. The thread selected for execution is
called the current thread.

runnable current terminated

suspended

create
schedule

preempt

terminate

suspendwake

Fig. 12.4. Thread states and their transitions.

Thread State. Figure 12.4 shows thread states and the transitions between
them. The scheduler controls execution of runnable threads. After selection
of the current thread T , the scheduler applies the emulator to T . After ex-
ecution of T stops, the scheduler takes the necessary actions depending on
T ’s execution status:

Terminated. The thread T has been completely executed and is discarded.
Preempted. The thread T is still runnable but has used up its time slice. It is

entered into the runnable pool to be run again later. Preemption together
with organizing the runnable pool as queue guarantees fairness.

Suspended. The topmost statement σ of T has blocked and cannot reduce.
The statement σ itself decides on which variables it synchronizes. The
suspension set S(T ) is available from the emulator. The scheduler enters
T to all variables in S(T ).

Runnable Threads. Since a thread can suspend on more than a single vari-
able, threads contained in a variable’s suspension set can already be runnable.
Therefore, a thread carries a mark that identifies it as being runnable. A
thread is entered into the runnable pool only if it is not yet marked as
runnable. As a corollary, a thread contained in a suspension set of a variable
can also be terminated. In the following, it is assumed that the scheduler
takes care of runnable and terminated threads during waking.
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This chapter discusses the implementation of computation spaces. The imple-
mentation of Oz Light is extended by nodes for spaces and situated entities,
by a scheduler that handles situated threads and tests stability, and by the
space operations proper.

13.1 Overview

The central points in implementing first-class computation spaces are:

Space Tree (Section 13.2). The space tree is implemented by space reference
nodes which provide first-class access to space nodes. The implementa-
tion operates on space nodes for all but first-class access. Situated nodes
implement links to home spaces as required for situated entities. Multi-
ple stores are simulated by a single store that provides the view to the
constraints for a single space at a time.

Stability (Section 13.3). The implementation of stability covers two aspects.
The first aspect is the information required to detect stability and how the
information is maintained as computation proceeds. The second aspect
is how and when to actually test a space for stability.

Merge (Section 13.4). Merging is an involved transformation of the space
tree, since it simultaneously changes the home of a large number and va-
riety of data structures. In particular, merging must consistently maintain
stability information.

Search (Section 13.5). The implementation of search is concerned with dis-
tributors and cloning. While cloning resembles many aspects of copy-
based garbage collection, it also features unique aspects.

Richer Basic Constraints (Section 13.6). Stores are extended to cover alias-
ing of variables, tree constraints, and finite-domain constraints.

Ports (Section 13.7). Message-sending across space boundaries and in par-
ticular sendability is discussed.

Performance Overview (Section 13.8). The last section gives an overview of
the performance of space operations.
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13.2 Space Tree

This section is concerned with data structures for spaces and extensions
needed for multiple stores and situated computations.

13.2.1 Nodes and Links

The model for first-class computation spaces (Chapters 4 and 10) separates
the first-class reference to a space (a name) from the space proper. The
implementation follows this setup. First-class references are implemented by
space reference nodes. Spaces proper are implemented by space nodes.

Space Reference Nodes. Space reference nodes introduce a new type of node
to the store. A space reference features a link that points to a space node.
The only purpose of a space reference is to provide first-class reference to
space nodes.

Space Nodes. A space node is implemented by a data structure that organizes
the space nodes as a tree (“parent link”). The implementation of spaces is
mostly concerned with space nodes. This justifies that space abbreviates space
node in the following. In addition to the parent link, a space node has links
to all components of a space: root variable, status variable, and so on.

Current Space Node. The implementation maintains the current space. The
current space is set by the scheduler: when a thread T is selected as current
thread, the current space is set to H(T ). Making a space S current installs
the space, which in particular involves the installation of the store of S (to
be discussed later).

Situated Nodes. Threads, variables, procedures, and ports are situated in
their home space. This is implemented by a link pointing to the appropriate
space node (“home link”). Upon creation, the home link is initialized to point
to the current space node.

Failed Nodes. A failed space node carries a mark that identifies it as failed.

Discarded Nodes. A space S1 is discarded implicitly, if a space S2 ∈ ↑S1
fails, since S2 has no access to S1. Hence, discarded nodes require an explicit
test. The test traverses the space tree by following parent links from S1 until
a failed node or the toplevel node is encountered. In case a failed node is
encountered, S1 is discarded.

Safe and Unsafe Links. Due to different directions of links with respect to
the space tree, links can be either safe or unsafe.

Upward Links. Home links and parent links point upwards and are safe.
While computation proceeds in the current space, upward links are guar-
anteed to refer to non-failed spaces.
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Downward Links. Links to threads and to spaces as implemented by space
references point downwards and are unsafe. Links to threads are stored in
suspension sets of variables and in the scheduler’s runnable pool. Down-
ward links can point to failed or discarded spaces. An attempt to follow
an unsafe link must always be preceded by a test whether the referred
space is failed or discarded.

Garbage Collection. An obvious advantage of separating space references
from space nodes is a factorization of concerns. An additional advantage
is that the potential for memory reclamation during garbage collection is
increased. Failed space nodes (as well as merged space nodes) are not re-
tained during garbage collection. If the space reference remains accessible,
it is marked appropriately such that space operations can test whether the
operation is applied to a failed or merged space. This is sufficient, since no
operation needs access to failed and merged space nodes.

13.2.2 Threads

Failure introduces new states and new state transitions for threads (Fig-
ure 13.1). When a space S is failed, all threads in ⇓S are discarded. Both
runnable and suspended threads can be discarded. Discarding is implicit as
opposed to the other state transitions that are performed by the scheduler.
An additional transition is that suspended threads can be created (discussed
later).

runnable current
terminated

failed

suspended

discarded

create

create

schedule

preempt

terminate

fail
suspendwake discard

discard

Fig. 13.1. Thread states and their transitions including failure.

Waking Threads. Waking takes into account that threads are situated and
can be possibly discarded. Execution of a tell statement x = n in space
S wakes only threads T with H(T ) ∈ ⇓S . The test whether H(T ) ∈ ⇓S
traverses the space tree starting from H(T ) until either S or the toplevel is
encountered. If S is encountered, H(T ) ∈ ⇓S and T is woken. Additionally,
the test reveals whether T is discarded, in which case T is dropped from x’s
suspension set.
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The Scheduler. The scheduler as main control instance of the implementation
is enhanced in order to support computation spaces. It maintains the current
space, which refers to the home space of the current thread. The scheduler
works as follows:

1. Select a runnable thread T from the runnable pool.
2. If T is discarded, continue with 1.
3. Install H(T ). If installation fails, continue with 1. Otherwise, T becomes

the current thread and H(T ) becomes the current space.
4. Run T .
5. Test H(T ) for stability (Section 13.3).
6. Continue with 1.

The test whether T is discarded is necessary. The test during waking is
not sufficient, since T might have been discarded after waking.

13.2.3 The Store: Model

The model introduced in Chapter 10 defines that each space has a private
constraint store. The private store is inherited from the parent upon space
creation and a tell in S is repeated in all spaces in ↓S . The implementation
improves over the naive model in that it maintains a single store shared
among all spaces. The single store facilitates sharing of common constraints,
avoids repeated tells, and conservatively extends the store implementation of
Oz Light.

The implementation of the single store is introduced in two steps. Firstly,
an abstract model of a single store together with the invariants that make it
faithful with respect to the naive model is introduced. Secondly, a concrete
implementation based on the abstract model known as scripting is described.

In the sequel, a simplified version of the store is described that contains
only basic constraints x = n. Extensions are considered in Section 13.6.

S0

S1 x = 1, y = 1 x = 2 S2

1

x

2S2

S1

y 1
S1

Fig. 13.2. Example space tree and corresponding full graph.

The Full Graph. The store is modeled by a single graph, referred to as the
full graph. Edges in the full graph point from a variable node x to a value
node n and are labelled by a space S. An edge in the full graph is referred to
by x S→ n. The key point is that a variable node can have multiple outgoing
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edges labelled by different spaces. An example space tree together with its
corresponding full graph is shown in Figure 13.2 (the home of both x and y
is S0).

The full graph maintains the following invariants:

Situatedness.
x

S→ n =⇒ H(x) ≤ S
This is obvious: a variable x is only visible in spaces

��H(x) .
Orthogonality.

x
S→ n and x

S′→ n′ =⇒ S 	< S′ and S′ 	< S

This invariant guarantees both consistency and minimality.

Consistency. If x S→ n, then for all S′ ∈ ↓S there is no x S′→ n′ with
n 	= n′.

Minimality. If x S→ n, then for all S′ ∈ ↓S there is no x S′→ n.

If x S→ n and H(x) = S, both invariants together guarantee that there
is no other link for x. This in particular entails that a link x S→ n for the
toplevel space S is the only link for n.

The single operation on the graph is an attempt to tell x = n in a space

S. A failed tell attempt fails S and removes all edges x′ S
′
→ n′ for all x′, n′,

and all S′ ∈ ⇓S . Execution of the tell covers the following cases:

Equal Below. x S′→ n and S < S′: Remove x S′→ n′ and insert x S→ n (mini-
mality).

Different Below. x S′→ n′, S < S′, and n 	= n′: Fail S′ and insert x S→ n
(consistency).

Equal Above. x S′→ n and S′ ≤ S: Do nothing (minimality).

Different Above. x S′→ n′, S′ ≤ S, and n 	= n′: Fail S (consistency).
New. Otherwise, insert x S→ n.

Example 13.1 (Operations on the Full Graph). Consider the following tell
attempts to the full graph shown in Figure 13.2.

– Tell y = 2 in S2: “New” applies (Figure 13.3(a)).
– Tell x = 1 in S0: “Equal Below” for S1 and “Different Below” for S2 applies
(Figure 13.3(b)).

– Tell y = 1 in S1: “Equal Above” applies (space tree and full graph remain
unchanged).
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S0

S1 x = 1, y = 1 x = 2, y = 2 S2

1

x

2

1

y

2

S1

S2

S1

S2

(a) Tell y = 2 in S2.

x = 1 S0

S1 y = 1

x 1 y 1
S1S0

(b) Tell x = 1 in S0.

Fig. 13.3. Results of tells in Example 13.1.

13.2.4 The Store: Implementation

Scripting realizes a subgraph of the full graph that corresponds to the cur-
rent space S and supports switching to a different space S′. The subgraph
contains all links for spaces in ⇑S . If S is current, all spaces in ⇑S are said
to be installed. The subgraph is referred to as installed graph. Due to the
orthogonality invariant, the installed graph has the property that a variable
node can have at most one outgoing edge. This allows to conservatively ex-
tend the implementation of Oz Light to handle multiple bindings in different
spaces.

When switching the current space from S1 to S2, constraints (links) for
S1 must be deinstalled while the constraints (links) for S2 must be installed.
Each space maintains a trail and a script, which are as follows.

– If S is installed, the script is empty. Otherwise, the script records all links
x

S→ n with H(x) < S.
– If S is installed, the trail records all variables x with x S→ n and H(x) < S.
Otherwise, the trail is empty.

Both script and trail care about speculative constraints only, that is about
links x S→ n with H(x) < S. Suppose that S′ is the current space and
H(x) = S. Either the link is installed anyway (S′ ∈ ⇑S ), or it cannot be
observed (S′ 	∈ ⇑S ). As a consequence, both trail and script for the toplevel
space are empty.

Supervisor Threads. Space switching is thread-driven. When the scheduler
picks a thread T for execution, H(T ) is made current by installation. This
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means that installation of a space S can be requested by creating a thread
in S.

The implementation of scripting requires that the constraints contained
in scripts are supervised by supervisor threads. Therefore the implementation
maintains the following invariant. If the script of S is not empty, then S is
either runnable or for each variable x in the script, there exists a supervisor
thread T with H(T ) = S that suspends on x.

Supervisor threads are very attractive for detecting stability in Sec-
tion 13.3. This is due to the fact that if a non-installed space has speculative
constraints, it also has a speculative thread. Hence, considering threads for
stability is sufficient.

Single Supervisor Thread. At most one supervisor thread for all variables in
the trail is sufficient. Mehl [76] observes, that if S is runnable, no supervisor
thread needs to be created, since S is installed eventually. This can be even
further optimized. In case there is already a thread in S that synchronizes
on x, no supervisor thread for x is needed.

Variable Binding. Binding a variable node x in S checks whether the binding
is speculative (H(x) 	= S). If the binding is speculative, x is recorded on the
trail before turning it into a reference node.

Binding a variable covers all cases as for telling to the full graph. “Equal
Above”, “Different Above”, and “New” are as in Oz Light, since they deal
with links that are currently installed. “Equal Below” and “Different Below”
are handled by supervisor threads. If the variable node x is bound in space S
and there is a constraint for x in the script of space S′ ∈ ↓S , then there exists
a supervisor thread T that suspends on x with H(T ) = S′. When binding x
in S, T is woken and eventually S becomes installed.

Script Deinstallation. A new supervisor thread T is created. For each variable
node x stored in S’s trail the pair 〈x, n〉 is put in the script of S. Here n is
the value to which x is constrained. Simultaneously, the variable node for x
is reestablished and T is added to x’s suspension set. After deinstallation the
parent of S is installed.

Script Installation. A space is installed by telling x = n for all script entries
〈x, n〉. As a consequence, installation can fail due to a failed tell attempt. If
installation has been requested by a supervisor thread, cases “Equal Below”
and “Different Below” are handled by installation.

No threads need to be woken during installation. If the script of S contains
〈x, n〉, the constraint x = n has been available when S has previously been
installed. Hence, a thread that suspends on x must have been woken while
S has been installed. The situation is slightly different for supervisor threads
since they are created during deinstallation. But their very purpose is that
they are woken by tells in superordinated spaces only.
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Space Switching. Switching between arbitrary spaces S1 and S2 iterates single
step installation and deinstallation. All spaces up to the toplevel space are
deinstalled and all spaces from the toplevel space to S2 are installed. This can
be optimized by deinstalling only up to the closest common ancestor space
of S1 and S2.

Example 13.2 (Scripting). Let us consider as an example for scripting the
situation as displayed in Figure 13.2. The corresponding store and space tree
with S0 as current space is shown in Figure 13.4(a). Installed space nodes
have a gray background. Space nodes which are not installed are displayed
with their script as content. The nodes for the store are as introduced in
Section 12.3. The threads Ti are the supervisor threads for Si.

Telling x = 1 in S0 executes as follows (shown in Figures 13.4(b)
to 13.4(e)):

– The tell binds x and wakes the threads T1 and T2.
– Running T2 fails S2.
– Running T1 installs S1. The binding of y is recorded on the trail of S1.
– Deinstallation of S1 creates a script entry 〈y, 1〉 and a new supervisor thread
T3.

Single Trail. Each space has a private trail. This can be optimized by using
a single trail common to all spaces. The single trail has multiple sections
separated by marks. Each section corresponds to an installed space. The
topmost section corresponds to the current space. Entries are made only for
the current space, that is, to the topmost section.

Tells in Arbitrary Spaces. Later the need arises to perform tells x = v in a
space S different from the current space (merging is a particular example,
Section 13.4). This can be accommodated by creating a thread in S with
x = v as its single statement.

Related Work. Supporting multiple variable bindings simultaneously depend-
ing on the computational context occurred first in the area of Or-parallel Pro-
log implementations [19]. Gupta and Jayaraman classify in [39] approaches
according to the cost of three essential operations: creation (space creation,
here), switching (space switching, here), and binding-lookup. It is argued that
at most two operations can be implemented in constant time. A formal proof
of this fact can be found in [112]. Scripting decides to make creation and
lookup constant time.

Scripting has the following advantages. It is a conservative technique that
allows to stick to a single outgoing link per variable. Computations in a space
do not pay any overhead for looking up bindings. Enforcing consistency and
minimality comes for free by using threads. Additionally, supervisor threads
are convenient for detecting stability.

The main disadvantage of scripting is that it is an inherently sequential
technique because it only supports the view for a single space at a time. The
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S0

S1 〈 , 〉, 〈 , 〉 〈 , 〉 S2

x y

{T1, T2}1 2 {T1}

(a) Situation corresponding to Figure 13.2 with S0 current.

S0

S1 〈 , 〉, 〈 , 〉 〈 , 〉 S2

x y

1 2 {T1}

(b) After telling x = 1.

S0

S1 〈 , 〉, 〈 , 〉

x y

1 2 {T1}

(c) After unsuccessful installation attempt of S2.

S0

S1 〈 〉

x y

1 2 {T1}

(d) After installation of S1.

S0

S1 〈 , 〉

x y

1 2 {T1, T3}

(e) After deinstallation of S1.

Fig. 13.4. Computation states for Example 13.2.
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Penny system, a parallel implementation of AKL, uses a different solution
that provides multiple views at a time [90, 89]. Each variable maintains a
list of speculative bindings indexed by the space for which the binding is
valid. Montelius shows in [89] that this solution is efficient, since speculative
bindings are infrequent.

Podelski and Smolka study situated simplification in [102] as a technique
for detecting entailment and failure of rational tree constraints used in local
computation spaces. In particular, the presented techniques are proven cor-
rect. Smolka and Treinen discuss scripting for testing entailment of record
constraints [137]. Scripting is not fully incremental in that script installation
and deinstallation redo work. Podelski and Van Roy present a truly incre-
mental algorithm in [103].

13.3 Stability

The implementation of stability deals with two aspects: maintaining infor-
mation on runnable and suspended threads, and testing stability based on
that information. To decide whether a space S is stable, it is necessary to
know whether ⇓S contains runnable threads or globally suspended threads.
To decide whether a stable space S is stuck, it is necessary to know whether S
contains locally suspended threads. Semi-stability and distributable threads
are discussed in Section 13.5.1.

13.3.1 Runnable Threads

Each space S maintains a runnable counter rS . The runnable counter rS is
zero, if and only if ⇓S contains no runnable thread. Rather than counting
all threads in ⇓S , the implementation employs a cascaded scheme as follows:
rS counts the number of runnable threads in S plus the number of runnable
children of S.

The runnable counter is incremented when a runnable thread is created
and when a suspended thread is woken. Incrementing rS is done as follows: rS
is incremented by one and if rS has been zero before, incrementing continues
with the parent of S. Incrementing possibly continues until the toplevel space
is reached.

The runnable counter is decremented when a thread terminates or sus-
pends. Decrementing is dual to incrementing: if, after decrementing, the value
of rS is zero, decrementing continues with the parent of S.

If a space S becomes failed, all runnable threads in ⇓S are discarded
simultaneously by decrementing the runnable counter of S’s parent. Runnable
threads that now have become discarded are still in the runnable pool but
the scheduler can safely ignore them.



13.3 Stability 131

S0 4

S1 0

S2 0

−→
create T2

5

1

1

−→
create T1

5

2

1

−→
terminate T2

5

1

0

Fig. 13.5. Example for managing runnable counters.

Example 13.3 (Managing Runnable Counters). Suppose the space tree as
sketched to the left of Figure 13.5. Creation and termination of threads T1
and T2 with H(Ti) = Si results in values for the runnable counters as shown
in the subsequent space trees.

A different and naive design would be to maintain the number of runnable
threads in ⇓S for each space S. The disadvantage compared to the cascaded
counting scheme is obvious: if a thread in S becomes runnable (suspended),
the numbers in all spaces in ⇑S must be incremented (decremented). The cas-
caded scheme stops incrementing (decrementing) as soon as the first runnable
space is encountered while traversing ⇑S upwards. This in particular entails
that creating and waking a thread T where H(T ) is already runnable does
not require any traversal of the space tree.

An additional advantage of the cascaded scheme is that it supports failure
well. All runnable threads in a subtree can be discarded without requiring
explicit access. This in particular allows to consider discarded threads in the
runnable pool as garbage during garbage collection. Garbage collection of
discarded threads together with the non-cascaded counting scheme has been
a constant source of problems in early implementations of Oz.

13.3.2 Globally Suspended Threads

A blocked space S is stable, if the spaces in ⇓S do not contain threads which
globally suspend for spaces in ↑S (speculative constraints are discussed later).
Each space S maintains the threads in ⇓S that globally suspend for a space in
↑S . Unfortunately, a scheme similar to the runnable counter is not sufficient.
This is due to the fact that if a thread globally suspends for S, it does not
necessarily globally suspend for spaces in ↑S .

Hence, the implementation maintains a global suspension set for each
space S that contains threads that globally suspend for spaces in ↑S . As with
suspension sets of variables, the implementation allows inclusion of already
discarded threads. When testing whether a space has globally suspended
threads, discarded threads are removed.

When a thread T globally suspends for S, the thread is inserted into the
global suspension sets of all spaces in

��H(T ) − ↑S . Insertion is performed
by traversing the space tree starting from H(T ) up to S.
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Waking a thread T removes it from all global suspension sets in
��H(T ) .

This is optimized by marking globally suspended threads upon suspension.
Only if a thread carries a global suspension mark, removal from global sus-
pension sets is considered.

13.3.3 Speculative Constraints

An important insight is that testing for speculative constraints comes for
free. This is a consequence of supervisor threads: if S2 contains a speculative
constraint for S1, it is guaranteed that there is a supervisor thread situated
in S2 that globally suspends for S1.

Only testing stability of installed spaces (in particular for the current
space) needs special attention. Here the supervisor thread has not yet been
created. But the needed information is already available: a space has specu-
lative constraints if its trail is not empty.

13.3.4 Local Threads

A succeeded space S is stuck, if it contains threads. The number of threads
situated in S is maintained for each space S. The number is incremented
upon thread creation and decremented upon thread termination.

13.3.5 Checking Stability

When a space S becomes stable, the scheduler makes the stability information
available by telling the status to S’s status variable. The information is told
as soon as a space becomes blocked (AskVerbose in Section 10.4.3). Hence,
the scheduler is concerned with suspended and stable spaces.

The stability test is performed directly after updating the stability infor-
mation:

1. If the current space SC is runnable, continue with the next thread.
2. Deinstall SC (which is blocked) and make its parent current.
3. Tell SC ’s status to the status variable of SC . Tells to SC ’s status variable

are possible, since the current space (SC ’s parent) is the home of SC ’s
status variable.

4. Check spaces in ⇑SC by traversing the space tree starting from the cur-
rent space upwards, until the first blocked space Sb is encountered. Inject
a new thread T running skipskipskip into Sb: eventually Sb is checked on behalf
of T .

Bottom-Up Checking and Admissibility are Essential. Stability checking is
performed bottom-up. This is necessary due to tells on status variables. A
tell on the status variable for S possibly wakes threads in A(S) (the set of
admissible spaces with respect to S is introduced in Section 10.3.2). Hence
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spaces in A(S) can become runnable. Proceeding bottom-up together with
admissibility guarantees that checking S cannot make S runnable by waking
threads in ↓S .
Stability Checking Is Complete. If S becomes stable, S is eventually checked
for stability. This is obviously the case for blocked spaces: the thread of S
that terminates last, lets the scheduler check S. Suppose that S is globally
suspended and S’s global suspension set contains T . Let us first consider
the case H(T ) = S. Then S can become stable only if T becomes runnable
first (failure is trivial). Then, S is installed and thus checked for stability. If
S < H(T ), the thread T is contained in H(T )’s global suspension set. This
means that S is eventually checked on behalf of a thread injected to S.

13.4 Merge

The implementation of space creation and injection is straightforward given
the material presented in the previous sections. In contrast, merging performs
a possibly involved transformation of the space tree.

When a space S1 is merged to a space S2, S1 is called the source and S2
the destination of the merge operation. The destination of a merge operation
is always the current space.

Making Space Nodes Transparent. All entities situated in the source S1 must
become situated in the destination S2. All entities situated in S1 carry a link
to S1. The implementation uses the same technique as for binding variables:
S1 is marked as merged, and a reference to S2 is stored in S1. Subsequent
accesses consider a merged space transparent and follow the reference until
an unmarked space is encountered (“dereferencing”). Also the access to a
space’s parent uses dereferencing.

Testing Admissibility. The source S1 must be admissible for the current space
S2. Admissibility (S1 	∈ ⇑S2 ) is checked by traversing ⇑S2 . If, while travers-
ing, S1 is encountered, S1 is not admissible. If the toplevel space is reached,
S1 is admissible.

Speculative Constraints. The speculative constraints of the source S1 are
made available to S2 by installing the script of S1. Since script installa-
tion possibly tells constraints new to S1, threads are woken. Note that script
installation can fail S2.

Runnable Threads. To better understand how the runnable counter of the
destination S2 is updated, upward and downward merges are discussed sep-
arately (Figure 13.6).

For an upward merge (Figure 13.6(a)), the destination S2 is the parent of
the source S1. Suppose that S1 is runnable and has n runnable child spaces
and threads. S2 looses the runnable child S1. Hence, its runnable counter is
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Fig. 13.6. Space trees for downward and upward merge.

decremented by one. On the other hand, its runnable counter is incremented
by n, since it acquires n runnable threads and spaces. The runnable counters
in ↑S2 remain unchanged, since S2 remains runnable (the current thread
executes the merge in S2). In case S1 is blocked, nothing is done.

For a downward merge (Figure 13.6(b)), the source’s parent S is an el-
ement of ↑S2 . Again, if S1 is blocked, nothing is done. Suppose that S1 is
runnable. Then S looses a runnable child, hence its runnable counter is decre-
mented by one. And again, the runnable counter of S1 is incremented by the
value of S2’s runnable counter. Upward and downward merge have the same
effect, the distinction is to ease explanation.

Upward merges are common: merging a solution space computed by a
search engine is upward. Example 10.3 discusses the use of downward merges
for partial evaluation.

Globally Suspended Threads. Let us first consider an upward merge. If a
thread T in S2 is globally suspended for a space in ⇑S1 , T is already contained
in the global suspension sets of ⇑S1 .

A downward merge is more involved. Consider a globally suspended thread
T in S2. The thread T is at least globally suspended for S (the parent of S2).
Hence, after merging, T becomes globally suspended for S′ with S ≤ S′ ≤ S1.
Thus T is entered into the global suspension sets of all spaces S′.

Installation of S2’s script during merging possibly changes the global sus-
pension set of S2. However, the order of script installation and global suspen-
sion set update is insignificant. If a thread T is woken by script installation,
it will be removed from all global suspension sets anyway.

Local Threads. The number of local threads of S2 is incremented by the
number of local threads of S1.

The Operation. The merge operation {Merge x y} is as follows:

1. Test whether x is determined to a space reference. If not, suspend on x
or raise an exception.

2. Access the space node S1 from the space reference node.
3. Raise an exception, if S1 is merged or not admissible.
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4. Raise an exception, if both S1 and S2 are distributable.
5. Fail the current space, if S1 is failed.
6. Merge the space node S1 with the current space node S2:

a) Draw a link from S1 to S2.
b) Install the script of S1 and possibly mark S2 as failed.
c) Incorporate stability information of S1.

7. Mark S1 as merged.
8. Tell that S1 is merged (inject a thread, if merge is downward).
9. Constrain the root variable of S1 to y.

13.5 Search

13.5.1 Choose and Commit

The implementation provides more general support for distributors than ac-
tually required by Choose. Choose itself is obtained from this more general
support. This more general support allows distributors to be written in C++.
For example, the Mozart implementation of Oz implements standard distri-
bution for finite domain variables in C++.

A distributable space node contains a reference to a distributor. A dis-
tributor provides support for creation, it can be queried for its numbers of
alternatives, and it provides functionality to commit to an alternative.

Distributor Creation. When a new distributor is created, it is passed a newly
created variable x serving as synchronization variable. The thread that has
created the distributor immediately suspends on x. A reference to x and the
number of alternatives is stored by the distributor. If the space is already
distributable, an exception is raised.

Semi-stability. The stability test checks whether a stable space is dis-
tributable. If the space is not distributable, execution proceeds as before.
If the space has a unary distributor D, the synchronization variable of D is
determined and execution of the suspending thread can proceed. Otherwise,
the status variable is determined to the tuple alternatives(n), where n is
the number of alternatives.

Commit. Invocation of the commit operation, as provided by the distributor
D returns the number k of alternatives D has after performing the commit.
If k is zero or one, D is discarded. If k is one, D has at least determined the
synchronization variable. In general, D has performed a tell to the constraint
store or has created a new thread. Additionally, a fresh status variable is
created that is bound to alternatives(k).
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13.5.2 Cloning Spaces

Cloning makes a copy of a space S. All objects that are reachable from S are
copied by graph copying that preserves sharing. Recursively copying a graph
of objects is well-known from copying garbage collectors (for example [155,
61]). The following aspects need to be taken into account for cloning spaces.

Stability is Essential. Copying assumes that no links point into the space S
to be copied. If there are links, these links must be copied as well. This would
imply a traversal of all data structures rather than only those reachable from
S. Stability ensures that there are no links that point into S. The only links
that can point downward (Section 13.2.1) are links to runnable or globally
suspended threads. A stable space does neither contain runnable nor globally
suspended threads.

Retaining the Original. During garbage collection, the original is discarded.
Graph copying changes the original objects by marking and storing forward
pointers. Thus the original space must be restored after copying. The imple-
mentation uses a trail for the information needed to reestablish the original.

Taking Situatedness into Account. A stable space S typically contains refer-
ences to entities that are situated in ↑S . Entities situated in ↑S must not be
copied. Suppose that S1 is copied and that the home of the entity is S2. The
tree of computation spaces is traversed upwards starting from S2. If during
traversal S1 is encountered, it holds that S2 ∈ ⇓S1 and the entity is copied.

This solution is inefficient in that the space tree is traversed for each
situated entity. A first improvement is that threads need no situatedness-
check. This is due to the invariant that all references to threads are downward
with respect to the tree.

The remaining situatedness checks can be optimized easily. Before copying
of S starts, all spaces in ↑S are marked. If during copying a situated entity
with home S′ is encountered, the check is performed by testing whether S′ is
marked. A further optimization is to avoid dereferencing, which is required for
accessing the home space (this is due to merging, Section 13.4). Dereferencing
can be avoided by marking all spaces including merged spaces that otherwise
are considered transparent during dereferencing.

Example 13.4 (Taking Advantage of Situated Entities). Entities situated in
↑S are not copied when cloning S and hence require no memory. This can
be utilized by explicitly situating data structures by wrapping them using
procedural abstraction. For example,

S={NewSpace procprocproc {$ X} Y ininin {Wait Y} X=Data endendend}

when S is cloned, Data (potentially large) is cloned. This is avoided by
funfunfun {GetData} Data endendend
S={NewSpace procprocproc {$ X} Y ininin {Wait Y} X={GetData} endendend}

When cloning S, Data is not cloned.
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Janson describes in [58] how to situate tree constraints. Each node has a
reference to the creating space and unification updates the reference accord-
ingly. The technique always incurs memory overhead for all data structures.
Its applicability is definitely limited. Typically, data is either used as input to
the computations in a space, or data is subject to local computations anyway
and the optimization cannot offer any advantage. If the data is used as input,
it can be situated if necessary by procedural abstraction.

Implementation Effort. The close relationship to garbage collection keeps
the implementation effort for cloning small. The Mozart implementation, for
example, uses the same templates for garbage collection and for cloning.
The templates are specialized during compile-time for garbage collection and
cloning.

13.6 Richer Basic Constraints

This section is concerned with extensions required by richer basic constraints.

13.6.1 Variable Aliasing

For a store with equations between variables, the implementation is extended
as follows.

Aliasing Order. Telling a speculative constraint x1 = x2 where Si = H(xi)
and S2 < S1 requires that the binding is established from x1 to x2 (“binding
is upward”). If S1 is the current space, this condition (“bind local to global
variable”) is essential for entailment, since it ensures the minimality invariant
introduced in Section 13.2.3. Smolka and Treinen discuss in [137] that this
criteria is sufficient for entailment.

The “binding is upward” condition is needed for stability depending on
globally suspended threads. If a thread T suspends on x1 or x2, T becomes
speculative for both S1 and S2. If the link had been established from x2 to
x1, the scheduler would enter T to the global suspension set of S1 but not to
the global suspension set of S2. Hence S2 would be detected as stable, even
though T is speculative for S2.

Supervisor Threads. Script creation for S takes into account that variable
pairs 〈x1, x2〉 can be put into the script. In this case, {H(x1),H(x2)} ⊆ ↑S
(otherwise, x1 = x2 is not speculative). Hence, the supervisor thread suspends
on both x1 and x2.

Script Installation. No threads are woken during script installation. If the
script contains a variable pair 〈x1, x2〉, all threads that suspend on x1 or x2
have already been woken when the binding has been established initially.
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Fig. 13.7. Oscillating threads (Example 13.5).

Example 13.5 (Oscillating Threads). This example demonstrates why it is
essential to not wake threads during script installation. Consider a space
S0 with children S1 and S2 (Figure 13.7). Each Si (i ∈ {1, 2}) contains
a speculative binding x = yi together with threads Ti1 and Ti2 that are
runnable but when being run will immediately suspend on x. Further suppose
that the scheduler executes the threads in order T11, T21, T12, T22.

When T11 is executed, S1 is installed. As said above, T11 suspends. Now
T21 is executed, S2 is installed, and T21 immediately suspends. And now
the disaster takes place: T12 is run. By installing S1, the speculative binding
is installed which wakes T11. The same happens with execution of T22: by
installing S2, T21 is woken again. Now both T11 and T21 are runnable again.
Their execution will in turn make T12 and T22 runnable . . .: S1 and S2 never
become blocked and thus S is never detected as being stable.

13.6.2 Tree Constraints

Telling a tree constraint can introduce new variable bindings. This is taken
into account during script installation. Suppose that S contains the specula-
tive constraint x = f(y) and in a space in ↑S the constraint x = f(n) is told.
When installing the script for S, the tell y = n is performed. Threads that
suspend on y are woken, since y = n is new. If during script installation new
variable bindings are possible, threads are woken.

Note that a situation as in Example 13.5 cannot happen. Only pairs 〈x, v〉
are entered into the script: provided that no new tree constraints are told on
x, the next installation of the script does not wake any threads.

13.6.3 Finite Domain Constraints

The domain of a finite domain variable can be repeatedly narrowed. This also
holds true for finite set variables and feature constraints. Variables that can
be repeatedly constrained are referred to as constraint-variables.

Constraint Trailing. So far it was sufficient to record the variable being con-
strained on the trail. For a constraint-variable also the current constraint (for
example, the current domain of a finite domain variable) is stored. Undoing
the speculative constraint on a constraint-variable reestablishes the constraint
from the trail.
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Dually, the constraint on a variable x is stored in the script for a space S.
This requires no extension of the script data structure. Assume that x ∈ D.
A pair 〈x, y〉 is put into the script, where y is a new constraint-variable with
H(y) = S and y ∈ D.
Time-Marking. Multiply constraining a constraint-variable x also means to
multiply trail x and the constraint associated with x as described above. This
is not necessary, as only the initial constraint must be reestablished.

A common technique to avoid multiple entries on the trail for the same
variable is time-stamping, which has been first considered in CHIP [1, 2].
The idea is as follows: each time a new speculative context is entered (in this
context, a space is installed) a global time-stamp is incremented. When a
variable is constrained, the variable is marked with the global time-stamp.
The variable must only be trailed, if its time-stamp is less than the global
time-stamp.

Time-marking is used as a different implementation that requires less
memory at a slight expense in runtime for space installation. When a variable
is constrained for the first time in the current space, it is marked (just a single
bit). If a variable carries a mark, it needs no trailing. When the current space
S is deinstalled, the marks of all variables are reset (the marked variables
are found in the trail). For the new current space (S’s parent) the trail is
scanned and all variables on the trail are re-marked. The same technique is
used in script installation.

Time-marking is used since speculative constraints on constraint-variables
are infrequent. This is different from the motivation for time-stamping, where
the trail stores information needed for trailing-based search (Section 14.2
discusses trailing-based search and its comparison to copying).

Variable Aliasing. Variable aliasing must respect situatedness as discussed in
Section 13.6.1. This also holds true for constraint-variables. In particular, the
case can arise where a constraint-variable must be bound to a non-constrained
variable. When considering stability, the technique described by Van Roy,
Mehl, and Scheidhauer in [149] to first create a local constraint-variable to
which both global variables are bound is incorrect. Würtz considers stability
and wrongly proposes this technique for finite domain variables [157].

13.7 Ports

The main issue with message sending to ports across space boundaries is
testing sendability. Consider a send operation {Send x y}, where x is deter-
mined to a port with home S1 and S2 is the current space. If S1 = S2, no
checking is required. Otherwise the constraints on y are checked by constraint
graph traversal similar to the graph traversal for cloning. All situated nodes
v encountered during traversal are checked whether H(v) ≤ S1, where the
same optimized situatedness test as in cloning is used.
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13.8 Performance Overview

This section gives an overview of the performance of operations on spaces.
An empirical comparison with other constraint programming systems is con-
tained in Section 14.3. Appendix A.2 provides more information on the used
software and hardware platform.

Oz Light Operations. Figure 13.8(a) shows the performance of the central
operations of Oz Light. These figures serve as comparison to the performance
of space operations.

0 5000 10000 15000 20000
Message sending 2251

Application 19560

Thread creation 637

(a) Oz Light operations.

0 500 1000 1500 2000
Message sending 250

Clone 444

Semi-stability 281

Alternative reduction 1341

Distributor commit 101

Ask 3617

Merge (downward) 941

Merge (upward) 1379

Inject 392

Space creation 341

(b) Space operations.

0 25 50 75 100 125
100 Threads 5

10 Threads 45

100 Propagators 14

10 Propagators 93

100 Constraints 14

10 Constraints 104

(c) Cloning spaces.

Fig. 13.8. Base performance of operations (in thousand operations per second).
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Space Operations. Figure 13.8(b) shows the performance of space operations.
The script for “Space creation” and “Inject” contains skipskipskip as its body. The
space used for “Clone” contains its root variable. “Distributor commit” cap-
tures creation of a binary distributor and committing to one of its alter-
natives. “Alternative reduction” reduces a ternary to a binary distributor
(Section 4.5.6).

Reducing alternatives of distributors is efficient. This justifies the usage
of binarization as discussed in Section 5.3. Message sending for a typical
message (a tuple containing a port, an atom, and a list with two integers) is
one order of magnitude slower with testing sendability.

Cloning Spaces. The time needed to clone a space depends on the number
of variables, constraints, threads, and propagators situated in the space. Fig-
ure 13.8(c) shows the number of spaces that can be cloned per second depend-
ing on the space’s content. The spaces used are as follows: “n Constraints”
contain n domain constraints for the domain {1, . . . , 100}, “n Propagators”
contain n binary propagators for x 	= y, and “n Threads” contain n threads
that synchronize on a single variable.

The numbers show that cloning is linear in the number of basic con-
straints, propagators, and threads. Cloning gets more efficient as the spaces
contain more content. This is due to the fact that the overhead for cloning
the data structures representing the space itself remains constant regardless
of its content.

Search Engines. The numbers in Figure 13.9 give the performance of basic
search engines in thousand nodes explored per second. All engines explore a
complete binary search tree with 216−1 nodes. For “BAB (failed)” all leaves
of the search tree are failed, whereas for “BAB (solutions)” all leaves are
solutions. While the former gives an upper bound on the performance, the
latter is a lower bound.

“Explorer (Hidden)” gives the performance of the Explorer (Chapter 8)
for exploring the search tree, “Explorer (Full)” includes drawing of the entire
search tree, without hiding any part of it.

The numbers yield important information on the minimal size of a search
problem that can be tackled efficiently using space-based search engines. Due
to the little overhead of search engine, they are efficient enough to be em-
ployed for even small problems.

0 20 40 60 80
Explorer (Full) 2

Explorer (Hidden) 16

BAB (solutions) 59

BAB (failed) 61

Depth-first 60

Fig. 13.9. Base performance of search engines (in thousand nodes per second).
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This chapter compares space-based search with approaches to search found
in other constraint programming systems. A general discussion is followed by
a detailed comparison of copying with trailing as the dominating implemen-
tation technique for search. Empirical evaluation demonstrates that copying-
based search together with recomputation is competitive with trailing-based
search and is superior for large examples.

14.1 Other Constraint Programming Systems

Most of todays constraint programming systems are constraint logic pro-
gramming systems (CLP) that evolved from Prolog and inherited Prolog’s
search capabilities: CHIP [2, 31], Eclipse [151], clp(FD) [23] and its successor
GNU Prolog [29], and SICStus [15], just to name a few. Also cc(FD) [145]
shares the approach to search taken by CLP-based systems. Jaffar and Maher
provide an overview on CLP in [57].

Screamer [131] is based on Common Lisp and supports finite domain
constraints and backtracking search similar to Prolog. Claire [18] is a
programming language for set-based and rule-based programming. Search
is supported by a versioning mechanism that allows backtracking search.
SALSA [72] is a language for the specification of search algorithms that
cover distribution strategies for tree search as well as neighborhood-based
search (local search). SALSA requires a host language that supports search
(for example, Claire) as compilation target. ALMA-O [4] extends Modula-2
by choice points which are resolved by backtracking-based search.

ILOG Solver [55, 110, 111] is a constraint programming library that uses
C++ as its host language. Solver provides finite domain constraints, finite set
constraints, and constraints over real numbers. OPL [142, 144] is a constraint
modeling language that uses Solver as its underlying execution platform.

All systems mentioned so far have in common that they are based on trail-
ing rather than on copying. The next section compares copying and trailing.

Close relatives to computation spaces are AKL and Curry. AKL [44, 58]
has pioneered encapsulated search and stability. An extension of AKL with
finite domain constraints is described in [12]. Curry [40] is a functional logic
language that also provides encapsulated search [41]. Encapsulated search in

C. Schulte: Programming Constraint Services, LNAI 2302, pp. 143–152, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Curry has adopted a variant of the solve combinator [128, 129] (Section 4.7
discusses the solve combinator and its limitations). The combinator in Curry
offers distributors with a dynamic number of alternatives which has not been
possible with the originally proposed solve combinator.

Predefined Search Strategies. All CLP-based languages support single- and
all-solution search. Best-solution search is controlled by a single cost variable
and amounts to search for a solution with smallest or largest cost. CLP-
based systems offer an interactive toplevel that allows the user to prompt
for multiple solutions. The toplevel cannot be used within programs. Eclipse
provides visual search through the Grace tool [79] (Section 8.6).

Solver (and hence OPL) additionally offers LDS [48], DDS [153], and
IDFS [80] (Section 5.6). Best-solution search in Solver also uses a cost vari-
able. To avoid recomputation of the best solution, the program must be
modified to explicitly store solutions. Search in Solver is incremental in that
solutions can be computed on request.

Best-solution search based on a cost-variable requires to map the ordering
between solutions as possible with spaces to a single value. This can result in
complicated solutions that might compromise propagation (think of mapping
two variables to a single cost variable to express a lexicographic order).

Programming Exploration. Only Solver (and OPL) and Curry offer support
for programming exploration, where Curry offers the same programming
model as the solve combinator. Programming exploration in Solver is based
on limits and node evaluators [100, 144]. Programmable limits allow to stop
exploration (time limit, for example). Node evaluators map search tree nodes
to priorities. Node priorities determine the exploration order of nodes. Addi-
tionally, a special priority discards nodes.

Solver supports switching between arbitrary nodes in the search tree by
full recomputation. For example, best-first search needs to switch between
arbitrary nodes. To limit the amount of switching, Solver uses an additional
threshold value. Only if the cost improvement exceeds the threshold, nodes
are switched. This results in an approximation of best-first search. Fully in-
teractive exploration is not feasible with full recomputation.

Encapsulation and Control. AKL shares encapsulation and stability with
computation spaces. Curry offers encapsulation and a simpler and a more
limited control regime than stability: execution stops as soon as a specula-
tive constraint is told. Apart from the limitations that are caused by the
solve combinator (Section 4.7), this restriction resembles the independence
restriction of Chapter 4 and excludes full compositionality and speculative
execution, as for example needed for programming combinators (Chapter 11).

Solver controls and encapsulates search by a manager. Multiple indepen-
dent managers are possible but cannot be nested with automatic propagation
of constraints. Managers support two different modes of operation: edit and
search mode. Propagation and search is disabled during edit mode which
allows the setup of constraint problems, including removal of constraints.
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14.2 Comparison with Trailing

Search demands that previous computation states must possibly be available
at a later stage of computation. A system must take precaution by either
memorizing states or by means to reconstruct them. States are memorized
by copying. Techniques for reconstruction are trailing and recomputation.
While recomputation computes everything from scratch, trailing records for
each state-changing operation the information necessary to undo its effect.

Copying offers advantages with respect to expressiveness: multiple nodes
of a search tree are available simultaneously for further exploration. This
is essential for concurrent, parallel, breadth-first, and user-defined search
strategies. Implementation can be simpler, since copying is independent of
operations and is only concerned with data structures.

On the other hand, copying needs more memory and might be slower
since full copies of the computation states are created. Hence, it is not at all
clear whether copying is competitive to trailing or not.

This section shows that copying is indeed competitive and that it offers a
viable alternative to trailing for the implementation of constraint program-
ming systems. It is clarified how much more memory copying needs. It is
examined for which problems copying is competitive with respect to runtime
and memory. For large problems with deep search trees this section confirms
that copying needs too much memory. It is shown that in these cases recom-
putation can decrease memory consumption considerably, even to a fraction
of what is needed by trailing.

14.2.1 Expressiveness

The main difference in expressiveness between copying and trailing is the
number of nodes simultaneously available for exploration. With copying, all
nodes that are created as copies are directly ready for further exploration.
With trailing, exploration can only continue at a single node at a time. In
principle, trailing does not exclude exploration of multiple nodes. However,
they can be explored in an interleaved fashion only and switching between
nodes is a costly operation.

Having more than a single node available for exploration is essential
to search strategies like concurrent, parallel (Chapter 9), or best-first (Sec-
tion 5.7). The same property is crucial for user-defined interactive exploration
as implemented by the Oz Explorer (Chapter 8).
Resource Model. Copying essentially differs from trailing with respect to
space requirements in that it is pessimistic: while trailing records changes
exactly, copying makes the safe but pessimistic assumption that everything
will change. On the other hand, trailing needs to record information on what
changes as well as the original state of what is changed. In the worst case —
the entire state is changed — this might require more memory than copy-
ing. This discussion makes clear that a meaningful comparison of the space
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requirements for trailing and copying is only possible by empirical investiga-
tions, which are carried out in Section 14.2.5.

14.2.2 Implementation Issues

This section gives a short discussion of the main implementation concepts and
their properties in copying- and trailing-based systems. The most fundamen-
tal distinction is that trailing-based systems are concerned with operations
on data structures while copying-based systems are concerned with the data
structures themselves.

Copying. Copying needs for each data structure a routine that creates a
copy and recursively copies contained data structures. A system that features
a copying garbage collector already provides almost everything needed to
implement copying (see Section 13.5.2).

By this, all operations on data structures are independent of search with
respect to both design and implementation. This makes search in a system an
orthogonal issue. Development of the Mozart system has proven this point:
it was first conceived and implemented without search and only later search
has been added.

Trailing. A trailing-based system uses a trail to store undo information. Prior
to performing a state-changing operation, information to reconstruct the state
is stored on the trail. In a concrete implementation, the state changing op-
erations considered are updates of memory locations. If a memory update is
performed, the location’s address and its old content is stored on the trail.
This kind of trail is referred to as single-value trail. Starting exploration from
a node puts a mark on the trail. Undoing the trail restores all memory lo-
cations up to the previous mark. This is essentially the technology used in
Warren’s Abstract Machine [5, 154].

In the context of trailing-based constraint programming systems two fur-
ther techniques come into play:

Time-Stamping. With finite domains, for example, the domain of a variable
can be narrowed multiply. However it is sufficient to trail only the origi-
nal value, because intermediate values need no restauration: each location
needs to appear at most once on the trail. Otherwise memory consump-
tion is no longer bounded by the number of changed locations but by the
number of state-changing operations performed. To ensure this property,
time-stamping is used: as soon as an entity is trailed, the entity is stamped
to prevent it from further trailing until the stamp changes again. Note
that time-stamping concerns both the operations and the data structures
that must contain the time-stamp. Section 13.6.3 discusses time-marking
as an alternative to time-stamping.

Multiple-Value Trail. A single-value trail needs 2n entries for n changed lo-
cations. A multiple-value trail uses the optimization that if the contents
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of n > 1 successive locations are changed, n + 2 entries are added to
the trail: the location’s address, n itself, and n entries for the locations’
values.

For a discussion of time-stamps and a multiple-value trail in the context
of the CHIP system, see [1, 2]. A general but brief discussion of issues related
to the implementation of trailing-based constraint programming systems can
be found in [57].

Trailing requires that all operations are search-aware: search is not an
orthogonal issue to the rest of the system. Complexity in design and imple-
mentation is increased: it is a matter of fact that a larger part of a system
is concerned with operations rather than with basic data structure manage-
ment. A good design that encapsulates update operations will avoid most of
the complexity. To take advantage of multiple-value trail entries, however,
operations require special effort in design and implementation.

Trailing for elaborated data structures can become quite complex. Con-
sider as an example adding an element to a dictionary with subsequent reorga-
nization of the dictionary’s hash table. Here the simple model that is based
on trailing locations might be unsuited, since reorganizing data structures
alters a large number of locations. In general, copying offers more freedom
of rearranging data structures. Müller and Würtz discuss this issue in the
context of finite domain constraints in [86].

The discussion in this section can be summarized as follows. A system
that features a copying garbage collector already supports the essential func-
tionality for copying. For a system that does not require a garbage collector,
implementing trailing might be as easy or possibly easier depending on the
number and complexity of the operations.

14.2.3 Criteria and Examples

This section introduces constraint problems that serve as examples for the
empirical analysis and comparison. The problems are well known and are
chosen to be easily portable to several constraint programming systems (Sec-
tion 14.3).

The main characteristics of the problems are listed in Appendix A.1.
Besides of portability and simplicity they cover a broad range with respect
to the following criteria.

Problem Size. The problems differ in size, that is in the number of vari-
ables and constraints, and in the size of constraints (that is the number
of variables each constraint is attached to). With copying, the size of
the problem is an important parameter: it determines the time needed
for copying. Additionally, it partly determines the memory requirements
(which is also influenced by the search tree depth). Hence, large problem
sizes can be problematic with copying.
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Propagation Amount. Strong propagation narrows a large number of vari-
ables. This presupposes a large number of propagation steps, which usu-
ally coincides with state changes of a large number of constraints. The
amount of propagation determines how much time and memory trailing
requires: the stronger the propagation, the more of the state is changed.
The more of the state changes, the better it fits the pessimistic assump-
tion “everything changes” that underlies copying.

Search Tree Depth. The depth of the search tree determines partly the mem-
ory requirements for both trailing and copying. Deep search trees are a
bad case for trailing and even more for copying due to its higher memory
requirements.

Exploration Completeness. How much of the search tree is explored. A high
exploration completeness means that utilization of the precaution effort
undertaken by copying or trailing is high.

The criteria are mutually interdependent. Of course, the amount of prop-
agation determines the depth of the search tree. Also search tree depth and
exploration completeness are interdependent: If the search tree is deep, ex-
ploration completeness is definitely low. Due to the exponential number of
nodes, only a small part of the tree can be explored.

Familiar benchmark programs are preferred over more realistic problems
such as scheduling or resource allocation. The reason is that the programs are
also intended for comparing several constraint programming systems. Choos-
ing simple constraints ensures that the amount of constraint propagation is
the same with all compared systems.

Evaluations of Oz that specifically address scheduling problems are [156].
Reports on successful applications using copying-based search are [50, 52, 54,
120].

14.2.4 Copying

This section presents and analyses runtime and memory requirements for
Mozart. Appendix A.2 contains more information on hardware and software
platforms.

Table 14.1 displays the performance of the example programs. The fields
“Copy” and “GC” give the percentage of runtime that is spent on copying
and garbage collection, the field “CGC” displays the sum of both fields. The
field “Max” contains the maximal amount of memory used in Kilobytes, that
is how much memory must at least be available in order to solve the problem.

The numbers clarify that for all but the large problems 100-Queens and
18-Knights the amount of time spent on copying and garbage collection is
around one fourth of the total runtime. In addition, the memory requirements
are moderate. This demonstrates that for problems with small and medium
size copying does neither cause memory nor runtime problems. It can be
expected that for these problems copying is competitive.
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Table 14.1. Runtime and memory performance of example programs.

Example
Time Copy GC CGC Max
msec % % % KB

Alpha 1975 20.2 0.0 20.2 19
10-Queens 739 33.5 0.0 33.5 20
10-S-Queens 572 21.4 0.0 21.4 7
100-Queens 868 49.3 18.7 68.0 21873
100-S-Queens 26 28.6 0.0 28.6 592
Magic 606 13.3 14.1 27.4 6091
18-Knights 5659 44.2 22.3 66.5 121557

On the other hand, the numbers confirm that copying alone for large
problems with deep search trees is unsuited : up to two third of the runtime
is spent on memory management and memory requirements are prohibitive.
The considerable time spent on garbage collection is a consequence of copying:
the time used by a copying garbage collector is determined by the amount of
used memory.

The two different implementations of n-Queens exemplify that copying
gets considerably better for problems where a large number of small propa-
gators is replaced by a small number of equivalent global propagators.

14.2.5 Copying versus Trailing

As discussed before, one of the most essential questions in comparing trailing
and copying is: how pessimistic is the assumption “everything changes” that
underlies copying. An answer seems to presuppose two systems that are iden-
tical with the exception of trailing or copying. Implementing two competitive
systems is not feasible.

0 20 40 60 80 100
18-Knights
Magic
10-S-Queens
100-S-Queens
10-Queens
100-Queens
Alpha

(percent)
multiple-value trail + single-value trail

Fig. 14.1. Memory use of trailing versus copying.
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Instead, the memory requirements of a trailing implementation are com-
puted from the requirements of a copying implementation as follows. Before
constraint propagation in a node N begins, a bitwise copy of the memory area
occupied by N is created. After constraint propagation has finished, this area
is compared to the now changed area occupied by N . The altered locations
are those that a trailing system must have trailed.

Figure 14.1 shows the percentage of memory needed by a trailing im-
plementation compared to a copying implementation. The total length of
bars depicts the percentage needed by a single-value trail, whereas the dark-
colored bar represents the need of a multiple-value trail implementation.

The percentage figures for the multiple-value trail are lower bounds again.
Locations that are updated by separate single update operations might hap-
pen to be successive even though an implementation cannot take advantage
of this fact. It is interesting to note that a multiple-value trail offers some im-
provement only for 10-S-Queens and 100-S-Queens (around 10%). Otherwise,
its impact is quite limited (less than 2%).

The observation that for large problems with weak propagation (100-
Queens and 18-Knights) trailing improves by almost up to two orders of
magnitude coincides with the observation made with respect to the memory
requirements in Section 14.2.4. For the other problems the memory require-
ments are in the same order of magnitude and trailing roughly halves them.

What is not captured at all by the comparison’s method is that other
design decisions for propagators would have been made to take advantage of
trailing, as has already been argued in Section 14.2.2.

14.2.6 Recomputation versus Trailing

Fixed recomputation (Section 7.3) uses less memory than trailing. Figure 14.2
shows the percentage of memory that fixed recomputation takes in compari-
son to the memory needed by trailing.

Trailing and copying are pessimistic in that they make the assumption
that each node needs reconstruction. Recomputation, in contrast, makes the
optimistic assumption that no node requires later reconstruction. For search
trees that contain few failed nodes, the optimistic assumption fits well. In
particular, problems with very deep search trees can profit from the optimistic
assumption, since exploration completeness is definitely low.

0 20 40 60 80 100
18-Knights 86.5

Magic 66.8

100-S-Queens 13.3

100-Queens 42.6

percent
Fig. 14.2. Memory use of fixed recomputation versus trailing.
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Fig. 14.3. Empirical runtime comparison.

This section compares Mozart, a copying-based system, with several
trailing-based systems. Appendix A.2 contains more information on the used
software and hardware platforms. The point to compare systems is to demon-
strate that a copying-based system can be competitive with trailing-based
systems.

All systems support Alpha, 10-Queens, 100-Queens, and 18-Knights. The
propagators that are used for 10-S-Queens and 100-S-Queens are available in
Mozart and Solver only. Eclipse does not support the exactly-constraint that
is used in Magic.

Figure 14.3 shows a relative performance comparison of Mozart with
Eclipse, SICStus, and Solver. The figures to the left are without recomputa-
tion, the figures to the right use adaptive recomputation. As initial value for
the MRD 10% of the search tree depth is used (Section 7.5 discusses the little
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impact of the initial MRD). A number of f below the middle line together
with a light gray box means that Mozart performs f -times better. Otherwise,
the other system performs f -times better than Mozart.

The figures clearly indicate that a system based on copying is competitive
as it comes to runtime. Even for problems that profit from recomputation,
performance is still competitive without recomputation. In general, this is of
course only true if the available memory is sufficient.

The numbers for Mozart with adaptive recomputation show that copy-
ing together with recomputation for large problems and deep search trees
outperform trailing-based systems. An important point is that adaptive re-
computation is automatic and does not require any parameter tuning.

Impact of Finite Domain Implementation. The runtimes of course do not de-
pend only on the systems’ search capabilities, but also on their finite domain
implementation. It has been tried to keep the examples’ implementations for
the different systems as similar as possible. Even if a system provides special
constraints for a particular example, the programs do not take advantage:

– 10-Queens and 10-S-Queens can be implemented more efficiently in SICS-
tus by directly using indexicals as provided by the underlying constraint
solver [14].

– Both Eclipse and SICStus implement domains as list-of-intervals rather
than as bit-vectors and list-of-intervals as Mozart does: this explains why
Mozart is quite efficient for 10-Queens and 10-S-Queens in comparison.

– The performance of Magic for SICStus is due to a naive implementation
of the exactly-constraint [13].



15. Conclusion

This chapter summarizes the main contributions of this book and presents
concrete ideas for future work.

15.1 Main Contributions

This book develops computation spaces as simple programming abstractions
for constraint services at a high-level. It presents a tight integration of spaces
into a concurrent programming language. The tight integration is proven to
ease programming and integration into todays concurrent and distributed
computing environments. The appropriateness of spaces is demonstrated by
application to state-of-the-art search engines, to entirely new search engines,
and to composable constraint combinators. A simple yet efficient implemen-
tation is presented that competes with today’s best commercially available
constraint programming systems.

Search. Spaces cover state-of-the-art search engines, such as plain, best-
solution, and best-first search. They cover new and highly relevant search
engines such as visual and interactive search and parallel search utilizing
the computational power of networked computers. Spaces allow for succinct
programs which are amenable to generalization. Examples are the general-
ization of branch-and-bound to prune search and search engines with explicit
state to concurrent search engines. The Explorer and parallel search engines
exemplify the rich support for controlling search.

Recomputation. The combination of recomputation and copying provides
search engines that offer a fundamental improvement over trailing-based
search for truly large problems. This book shows that adaptive recompu-
tation is an excellent technique for solving large problems. It establishes the
competitiveness of copying by a rigid comparison with trailing.

Encapsulation and Integration. Computation spaces provide encapsulation
to speculative constraint-based computations, a must for the integration of
constraint programming into todays concurrent and distributed computing
infrastructure. Encapsulation is achieved by a tight integration of spaces into
the concurrent programming language Oz together with stability as power-
ful control regime. The tight integration is shown to be advantageous. It is
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the tight integration into a programming language that accounts for ease of
programming. It is the tight integration with concurrency that enables pro-
gramming of composable constraint combinators and parallel search engines.

Coordinating Speculative Computations. Ports as well-established communi-
cation mechanism are generalized to allow global coordination by commu-
nication with speculative computations while obeying encapsulation. Active
services based on ports provide a familiar programming model resembling
remote procedure call (RPC) and remote method invocation (RMI).

Composable Combinators. Composable combinators (also known as deep-
guard combinators) are shown to have a surprisingly simple implementa-
tion with spaces. They are show-cases for concurrency and encapsulation.
The fresh look at combinators by simple composition from abstractions con-
tributed new insights such as how to employ stability to detect programming
errors due to stuck computations.

Implementation. The implementation is factored into orthogonal support for
constraint stores, stability, space operations, and search. Scripting is used as
a technique that requires few and conservative extensions. Supervisor threads
effectively decouple constraint-dependent aspects from the rest of the imple-
mentation. Copying leads to a simple implementation of search that takes
little effort.

Production Quality System. Spaces and services programmed from spaces
have already proven their usefulness and maturity to many users of the
Mozart implementation of Oz. The Mozart implementation is a production
quality system that is successfully used in large applications. It offers unique
tools like the Oz Explorer for the development and distributed search engines
for the deployment of applications due to the material developed in this book.

Impact. Some ideas in this book have already proven their impact. The CHIP
search tree tool [130] has been inspired by the Explorer. Encapsulated search
in Curry is based on a variant of the solve combinator [41].

On a more general level, I am convinced that future constraint program-
ming systems will support the programming of search engines. I am also
convinced that the combination of copying and recomputation will establish
itself as a serious alternative for implementing search that at least matches
the virtues of trailing.

15.2 Future Work

Formal Model. The informal model for computation spaces presented in
Chapters 4 and 10 serves as starting point on how to use and implement
spaces. This book provides evidence that spaces are indeed useful and can be
implemented efficiently. Given this, the investment into a formal model for
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spaces seems justified. The hope is that such a model exists and that it is
useful to formalize and prove interesting properties on spaces. A particularly
interesting and challenging question is whether the implementation with its
central invariants can be proven correct.
Libraries Instead of Languages. This monograph introduces computation
spaces as abstractions that support the programming of constraint services.
Spaces are tightly integrated into a concurrent programming language. This
integration is undoubtedly useful as witnessed by application of spaces to
composable constraint combinators and parallel search engines.

However, a valid and interesting question is: what if the language does not
provide concurrency and implicit synchronization? How can the programming
capabilities provided by spaces be transferred to a library in a programming
language neutral way? The library approach to constraint programming has
been proven successful by ILOG Solver [110]. Further attempts in this direc-
tion are Figaro [53] and CHOCO [71].
Dependency Recording. The search strategies considered in this book do not
record and utilize information why a particular node in the search tree failed.
So-called lookback schemes [27, 65] analyze information found in the search
tree’s nodes and continue exploration at a node such that the same conflict
is not encountered again. This form of exploration requires elaborate control
and recording of dependency information.

Spaces provide elaborate control. It is interesting to understand what
additional space primitives are required for lookback schemes. It is in par-
ticular interesting how dependency recording, which depends on the con-
straint domain, can be integrated with spaces while keeping their domain-
independence.
Resource Adaptive Recomputation. The book has demonstrated the great po-
tential of adaptive recomputation for solving truly large problems. Adaptive
recomputation exclusively bases its decision whether to copy or recompute
on the shape of the search tree. The costs associated with recomputation
and copying for a particular problem are not considered. The hope is that by
taking these costs into account, search efficiency can be further improved.
Search Factories. The presentation of search engines in this book individu-
ally covers various strategies and programming techniques: parallelism; re-
computation strategies; single, all, and best solution search; visualization;
interactivity. From a users perspective it is desirable that these features can
be orthogonally combined by a search factory: the factory returns a custom-
made search engine that has the features required by a particular application.
While increasing usability, this idea can help to understand what are the min-
imal abstractions needed to support a particular feature of a search engine.

Chew, Henz, and Ng describe a search toolkit in [20] that allows the or-
thogonal combination of some of the features introduced in this book. How-
ever, the more challenging features such as parallelism and different recom-
putation strategies are not covered.
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Reusing Parallel Engines. One of the main goals for parallel search engines
in Chapter 9 has been a reusable design. That the design is indeed reusable
and delivers good performance on shared memory multiprocessors has not
yet been assessed. Popov is currently working towards an implementation of
Oz that provides thread-based parallelism on multi-processor machines [107].
This implementation will allow to check whether this claim holds true. Ideally,
the concurrent search engine should run without any modification and deliver
good speedup.

Generational Garbage Collection. A copying garbage collector is a particu-
larly bad choice for copying-based search. Spaces that are copied by cloning
will be copied several times by the garbage collector. This accounts for ex-
cessive runtime spent on memory management. This is worsened by the fact
that copies created for nodes near to the root of the search tree tend to live
for a long time. Moreover, these copies do not change.

These facts make a classical case for generational garbage collection [155,
61]. With generational garbage collection, the memory areas that change more
often are collected more often. Areas that contain data that changes infre-
quently are collected infrequently. The hope is that by generational garbage
collection the time spent on garbage collection can be dramatically decreased.



A. Benchmark Problems and Platforms

This appendix contains information about examples and platforms used for
evaluation.

A.1 Benchmark Problems

This section describes the example constraint problems. Their main charac-
teristics are listed in Table A.1. All are familiar benchmark problems.

Alpha. Alpha is the well-known cryptoarithmetic puzzle: assign variables a,
c, . . ., z distinct numbers between 1 and 26 such that 25 equations hold.

100-Queens, 100-S-Queens, 10-Queens, and 10-S-Queens. For the n-Queens
puzzle (place n queens on a n × n chess board such that no two queens
attack each other) two different implementations are used.
The naive implementation (n-Queens) uses O(n2) disequality constraints.
This is contrasted by a smarter program (n-S-Queens) that uses three
propagators for the same constraints.

Magic. The Magic puzzle is to find a magic sequence s of 500 natural num-
bers, such that 0 ≤ xi ≤ 500 and i occurs in s exactly xi times. For
each element of the sequence an exactly-constraint (ranging over all xi)
on all elements of the sequence is used. The elements are enumerated in
increasing order following a splitting strategy.

18-Knights. The goal in 18-Knights is to find a sequence of knight moves on
a 18×18 chess board such that each field is visited exactly once and that
the moves return the knight to the starting field. The knight starts at
the lower left field.

Photo. This example is presented in Chapter 8, although a larger set of per-
sons and preferences is used (9 persons and 17 preferences).

Bridge. Bridge is a small and well-known scheduling example [30]. It requires
additional constraints apart from the usual precedence and resource con-
straints.

MT10, MT10A, and MT10B. These are variants of the 10 × 10 job-shop
scheduling problem due to Muth and Thompson [94]. All variants use
Schedule.serialized (edge-finding) as serialization-propagator. MT10
uses Schedule.firstsLastsDist, MT10A uses Schedule.lastsDist,
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Table A.1. Characteristics of example programs.

Example Distr. Fail. Sol. Depth Var. Constr.

100-Queens 115 22 1 97 100 14850
100-S-Queens 115 22 1 97 100 3
Magic 13 4 1 12 500 501
18-Knights 266 12 1 265 7500 11205

(a) Single-solution search.

Example Distr. Fail. Sol. Depth Var. Constr.

Alpha 7435 7435 1 50 26 21
10-Queens 6665 5942 724 29 10 135
10-S-Queens 6665 5942 724 29 10 3

(b) All-solution search.

Example Distr. Fail. Sol. Depth Var. Constr.

Bridge 150 148 3 28 198 313
Photo 5471 5467 5 27 61 54
MT10 16779 16701 79 91 102 121
MT10A 17291 17232 60 91 102 121
MT10B 137011 136951 61 91 102 121

(c) Best-solution search (BAB).

and MT10B uses Schedule.firstsDist as resource-oriented serializer
More information on the serialization propagator and the resource-
oriented serializer can be found in [33, Chapter 6].

A.2 Sequential Platform

All numbers but those for distributed search engines in Chapter 9 have been
made on a standard personal computer with a 700 MHz AMD Athlon and
256 Megabytes of main memory using RedHat Linux 7.0 as operating system.
All times have been taken as wall time (that is, absolute clock time), where
the machine was unloaded: difference between wall and actual process time
is less than 5%.

The following systems were used: Mozart 1.2.0, Eclipse 5.1.0, SICStus
Prolog 3.8.5, and ILOG Solver 5.000.

The numbers presented are the arithmetic mean of 25 runs, where the
coefficient of deviation is less than 5% for all benchmarks and systems.
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A.3 Distributed Platform

The performance figures presented in Chapter 9 used a collection of standard
personal computers running RedHat Linux 6.2 connected by a 100 MB Eth-
ernet. The combination of computers for varying number of workers is shown
in Table A.2. The manager has always been run on computer a.

Table A.2. Computers used for evaluation distributed search engines.

Computer Processors Memory

a 2× 400 MHz Pentium II 256 MB
b 2× 400 MHz Pentium II 512 MB

c – f 1× 466 MHz Celeron 128 MB

(a) Hardware.

Workers Combination

1 a
2 a,b
3 a,b,c
4 a,b,c,d
5 a,b,c,d,e
6 a,b,c,d,e,f

(b) Combinations.



References

1. Abderrahamane Aggoun and Nicolas Beldiceanu. Time Stamps Techniques
for the Trailed Data in Constraint Logic Programming Systems. In S. Bour-
gault and M. Dincbas, editors, Actes du Séminaire 1990 de programmation
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86. Tobias Müller and Jörg Würtz. Extending a concurrent constraint language
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120. Klaus Schild and Jörg Würtz. Off-line scheduling of a real-time system. In
K. M. George, editor, Proceedings of the 1998 ACM Symposium on Applied
Computing, SAC98, pages 29–38, Atlanta, GA, USA, 1998. ACM Press.

121. Christian Schulte. Oz Explorer: A visual constraint programming tool. In
Lee Naish, editor, Proceedings of the Fourteenth International Conference on
Logic Programming, pages 286–300, Leuven, Belgium, July 1997. The MIT
Press.

122. Christian Schulte. Programming constraint inference engines. In Smolka
[135], pages 519–533.

123. Christian Schulte. Comparing trailing and copying for constraint program-
ming. In De Schreye [26], pages 275–289.

124. Christian Schulte. Oz Explorer: Visual Constraint Programming Support.
The Mozart Consortium, www.mozart-oz.org, 1999.

125. Christian Schulte. Window Programming in Mozart. The Mozart Consor-
tium, www.mozart-oz.org, 1999.

126. Christian Schulte. Parallel search made simple. In Beldiceanu et al. [9], pages
41–57.

127. Christian Schulte. Programming deep concurrent constraint combinators. In
Pontelli and Costa [105], pages 215–229.

128. Christian Schulte and Gert Smolka. Encapsulated search in higher-order
concurrent constraint programming. In Bruynooghe [11], pages 505–520.

129. Christian Schulte, Gert Smolka, and Jörg Würtz. Encapsulated search and
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V(·), 96
↓· , 94
⇓· , 94
↑· , 94
⇑· , 94
· .< ·, 94
· < ·, 94
· ≤ ·, 94
::, 21, 24
==, 20–21
˜̃̃, see minus, unary

adaptability, 66
AKL, 4, 23, 100, 106, 111, 143, 144
aliasing order, 137
ALMA-O, 143
Alpha, 76, 77, 88–91, 149–151, 157
alternative, 10, 34–36, 109
– random, 60
Append, 38, 42
Ask, see space operation, ask
AskVerbose, see space operation, ask

verbose
atom, 16

b-stack, see stack, background
BAB, see search, branch-and-bound
BABE, 56, 58
BABS, 57
Basic Andorra Principle, 113
benchmark problem, 157–158
BFE, 53
binarization, 47–49, 56, 63
body, 111
bottom-up, 132
branching, 10
Bridge, 116, 157

cascaded counting scheme, 130
cc, see concurrent constraint

programming
cc(FD), 2, 105, 143
cell, 23, 27
child space, 94
CHIP, 2, 78, 139, 143, 147
CHOCO, 155
Choose, see space operation, choose
Claire, 143
class, 27
clause, 111
Clone, see space operation, clone
clp(FD), 2, 143
Collect, 49
combinator, 13
– andorra-style disjunction, 113–114
– conditional, 111–112
– deep, 105
– deep-guard, 105
– disjunction, 109–111, 113
– flat, 105
– negation, 106–107
– parallel conditional, 112
– reification, 107–109
Commit, see space operation, commit
Commit2, see space operation, commit
communication, 30
computation space, see space
compute server, 82
concurrency
– explicit, 15
concurrent constraint programming, 4,

15, 100
Cond, 111, 112
Cond (Native), 115
Cond (Or), 115
consistency, 125
Constrain, 55
constraint, 17



172 Index

– basic, 9, 16–17, 121, 137–139
– disentailed, 17
– entailed, 17
– finite domain, 9, 24–25, 138–139
– non-basic, 9
– reified, 106
– satisfiable, 17
– speculative, 99, 132–133
– tree, 138
constraint distribution, 10–11, 30, 38
constraint handling rules, 105
constraint propagation, 9–10
constraint store, 9, 16
constraint trailing, 138–139
constraint-graph, 118
constraint-variable, 138
control, 29, 33–34, 94, 99–104
control variable, 107, 113
copying, 145–146, 148–149
cost-parallelism, 91
Curry, 143

DDS, see search, depth-bounded
discrepancy

debugging support, 103–104
Deref, 103
dereferencing, 119, 133
DFE, 45, 47, 50
DFRE, 62
DFRS, 62
DFS, 46, 47
discrepancy, 50
Distribute, 38
distribution, 27
distribution strategy, 37
– first-fail, 11, 37
– naive, 11
Distributor, 37
distributor
– creation, 135
distributor thread, 35
domain narrowing, 9
dynamic linking, 81

Eclipse, 2, 143, 144, 151–152, 158
else-constituent, 111
emulator, 117
Encapsulate, 106
encapsulation, 30
entity
– native, 81
– situated, 30
Evaluate, 38–39

evaluation
– partial, 38–39
exception, 47
execution
– speculative, 33
exploration, 11
– breadth-first, 11
– depth-first, 11
exploration completeness, 148
Explore, 38
ExploreAll, 42
Explorer, 69–78

f-stack, see stack, foreground
failfailfail, 33
failure, 31, 95, 102
– clustered, 65
fairness, 18
falsefalsefalse, 16
FdReflect, 21, 24
field, 16
Figaro, 155
finite domain, 9
finite set, 26
finite set constraint, 26
First, 22
functor, 81
future, 26–27, 103

GetCost, 52
GNU Prolog, 2, 143
graph
– full, 124
– installed, 126
guard, 111

home space, 30

IBSS, see search, iterative best-solution
IDFS, see search, interleaved depth-first
ILDS, see search, improved limited

discrepancy
independence, 30–32
indeterminism, 22–23, 60
information
– partial, 9, 15
Inject, see space operation, inject
inject constraint, 12
input, 31
Insert, 53
integer, 16
IsDet, 20–21
Iterate, 51
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Kill, see space operation, kill
18-Knights, 63–67, 149–151, 157

Label, 21
label, 16
labelling, 10
LAO, see last alternative optimization
last alternative optimization, 60–62
LDS, see search, limited discrepancy
LDS, 51
Length (Native), 115
Length (Space), 115
lexical scoping, 15
link
– downward, 123
– safe, 122
– unsafe, 123
– upward, 122
list, 16, 26
literal, 16

Magic, 63, 67, 149–151, 157
mailbox, 22
manager, 82
manager load, 89
Merge, see space operation, merge
merge, 121, 133–135
– destination, 133
– downward, 134
– source, 133
– upward, 133
message sending, 40–41
metaconstraint, 106
method invocation
– remote, 81
minimality, 125
minus
– unary, 21
module, 27, 81
Money, 46
monotonicity invariant, 95
Mozart, 43–44, 158
MRD, see maximal recomputation

distance
MT10, 88–91, 157–158
MT10A, 76, 77, 157–158
MT10B, 76, 77, 157–158

name, 16
– fresh, 19, 30, 95
– visible, 30, 95
NE, 48
negation, 93–94
nested propagation, 94–95

network transparency, 81
NewConstrain, 55
NewPort, 21–23
NewService, 23, 27
NewSpace, see space operation, create
nil, 16
node, 118
– open, 12
– reference, 118
– value, 118
– variable, 118
Not, 107
notation
– functional, 25

object, 27
operation
– arithmetic, 20–21
– determination test, 20–21
– domain reflection, 21, 24
– domain tell, 21, 24
– equality test, 20–21
– indeterminate synchronization, 20–21
– message sending, 21, 23
– port creation, 21–23
– tuple, 21
OPL, 143
OPM, see Oz Programming Model
optimistic, 65
Or, 110
Or (Native), 115
Or (Space), 115
or-parallelism, 79
orthogonality, 125
output, 31
overhead
– exploration, 86, 90–91
– recomputation, 86, 89–90
– total, 88
Oz
– distributed, 80–82
– full, 26–27
Oz Programming Model, 4, 15

pair, 26
parent space, 94
path, 60
– done, 87
– pending, 87
path compression, 119
pattern matching, 26
performance overview, 121, 140–141
pessimistic, 65
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pessimistic approximation, 101
Photo, 88–91, 157
Photo, 71
platform
– distributed, 159
– sequential, 158
port, 22–23, 121, 139
port store, 22
Probe, 51
probing, 51
problem size, 147
procedure argument, 19
procedure body, 19
procedure call
– remote, 40, 81
– situated, 40
procedure store, 16
procedures
– first-class, 15
process, 81
propagation amount, 147–148
propagator, 9, 25
– entailed, 10
– failed, 10
– reified, 70
prune-search, 57–58
PS, see prune-search

100-Queens, 63, 67, 149–151, 157
10-Queens, 149–151, 157
100-S-Queens, 63, 67, 149–151, 157
10-S-Queens, 88–91, 149–151, 157

r-space, see space, recomputation
rational tree, 16
recomputation, 145, 150–152
– adaptive, 65–67
– fixed, 61–64
– full, 60–61
recomputation distance
– maximal, 61
Recompute, 59
record, 26
reduction
– fair, 18
Reify, 108
renaming
– consistent, 38
residuation, 113
resume, 18
RMI, see method invocation, remote
root variable, 32, 96
RPC, see procedure call, remote

runnable counter, 130
runnable pool, 120

SALSA, 143
scheduler, 117, 120, 124
scheme
– lookback, 155
Screamer, 143
script, 14, 32, 126
– deinstallation, 127
– installation, 127, 137–138
scripting, 126
search, 30, 34–39, 121, 135–137
– A∗, 53
– all-solution, 46
– best-first, 40, 52–54
– best-solution, 12–13, 55–58, 85–86
– branch-and-bound, 12, 56–57, 63
– demand-driven, 49
– depth-bounded discrepancy, 52
– depth-first, 45–46
– IDA∗, 53
– improved limited discrepancy, 52
– informed, 54
– interactive, 69–78
– interleaved depth-first, 52
– iterative best-solution, 56
– iterative best-solution search, 56
– iterative deepening, 52
– limited discrepancy, 50–52, 63
– multiple-solution, 49
– plain, 12
– single-solution, 45
– SMA∗, 53
– visual, 69–78
search engine, 11, 38
search space
– prune, 12, 55
search strategy, 11
search tree, 11, 94
search tree depth, 148
semi-stability, 135
Send, 21, 23
Send Most Money, 46, 57
sendability, 139
SendRecv, 23, 27, 41
service
– active, 23–24, 30, 40–41, 81, 84
SICStus, 2, 143, 151–152, 158
site, 81
situatedness, 125, 136–137
Solve, 41
solve combinator, 41–42
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Solver, 143, 151–152, 155, 158
space, 9, 16
– admissible, 98, 103, 132–133
– blocked, 100, 103
– constrain, 12, 55
– current, 30
– discarded, 95
– distributable, 11, 36, 100
– entailed, 100
– failed, 10, 31, 95
– first-class, 29, 31
– installed, 126
– local, 29–31
– recomputable, 86
– runnable, 33, 100
– semi-stable, 36, 100
– sliding, 87
– solved, 10
– stable, 10, 33, 100
– stuck, 100
– subordinated, 94
– succeeded, 33, 100
– superordinated, 94
– suspended, 100
– switching, 128
– transparent, 98, 99
– visible, 96–97
space access
– explicit, 97
– implicit, 97
space installation, 122
space manipulation, 31–33
space node, 122
– current, 122
– discarded, 122
– failed, 122
– garbage collection, 123
– situated, 122
space operation
– ask, 34, 42
– ask verbose, 103
– choose, 35–37
– clone, 37–39, 42, 97, 136–137
– commit, 37–39, 43, 135
– create, 31–32, 42, 96–97
– export, 86
– inject, 33, 42, 99
– kill, 33
– merge, 32–33, 38, 42, 97–99, 102, 108
space reference node, 122
space tree, 94–95, 121–130
– manipulation, 94–99
SPC, see procedure call, situated

Speculate, 34
speculative, 29
speedup, 88–89
– super-linear, 84
stability, 29, 33, 36–38, 100–102, 121,

130–133, 136
– checking, 132–133
stack
– background, 57
– foreground, 57
Standard ML, 104
state representation
– explicit, 49–50
statement
– case, 26
– catch, 22
– choice, 35
– conditional, 19–20
– declaration, 18–19, 25
– empty, 18–19
– pattern matching conditional, 26
– procedure application, 19–20, 31, 95
– procedure creation, 19
– raise, 21–22
– sequential composition, 18–19
– synchronized, 18
– tell, 18–19, 31, 95
– thread creation, 19–20
– try, 21–22, 26
– unsynchronized, 18
Status, 106
status, 29, 94, 99–104
status access, 34
status variable, 102–103
– freshening, 102
store, 16, 117–119
– current, 30
– implementation, 126–130
– model, 124–125
supervisor thread, 126–127, 132, 137
– single, 127
suspend, 18
suspension set, 18
– global, 99, 131
– of a variable, 118
symmetry elimination, 58
synchronization, 118
– data-flow, 15
– implicit, 15
syntax, 25–26
system comparison, 151–152

tell, 10, 17
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– arbitrary space, 128
tell attempt
– unsuccessful, 17
terminate, 18
ThisSpace, 98
thread, 16–18
– current, 18, 120
– discarded, 31
– globally suspended, 99, 131–132, 134
– local, 132, 134
– preempted, 120
– runnable, 18, 120, 130–131, 133–134
– speculative, 99
– suspended, 18, 120
– terminated, 120
thread selection, 120
thread state, 120, 123
time-marking, 139
time-stamping, 139, 146
�-clause, 113
toplevel space, 16, 94
trail, 126
– multiple-value, 146–147
– single, 128
– single-value, 146
trailing, 145–150
truetruetrue, 16
truth value, 16
tuple, 16

unification, 119
universe, 16

value, 16
– simple, 16
variable
– aliased, 17
– aliasing, 137–139
– binding, 119, 127
– constrained, 17, 24
– depending on a name, 17
– depending on a variable, 17
– determined, 17
– free, 19
– fresh, 19, 30, 95
– global, 101
– kinded, 24
– local, 101
– sendable, 40, 95
– shared, 10
– visible, 30, 95

Wait, 21–22
WaitOr, 20–21
WaitStable, 36–37
wake
– a thread, 18, 118, 123
– a variable, 118
Width, 21
width, 16
work granularity, 84, 89
worker, 79, 82
– busy, 82
– idle, 82
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