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Preface

The Eighth Italian Conference on Theoretical Computer Science (ICTCS 2003)
was held at the University Residential Center of Bertinoro, Italy, on October
13–15 2003. The center is composed of three large historical and monumental
buildings not far from one another, forming a united complex on the top of the
built up area of the ancient town of Bertinoro.

Previous conferences took place in Pisa (1972), Mantova (1974 and 1989),
L’Aquila (1992), Ravello (1995), Prato (1998), and Torino (2001).

The conference aims at bringing together computer scientists, expecially
young researchers, to foster cooperation and exchange ideas and results. Its main
topics include: analysis and design of algorithms, data types and data structures,
theory of logical design and layout, computability, complexity, automata, sym-
bolic and algebraic computation, security, cryptography, specification and veri-
fication, formal languages, foundations of functional programming, foundations
of logic programming, term-rewriting, semantics, type theory, new computing
paradigms, parallel and distributed computation, theory of concurrency, theory
of databases, theory of knowledge bases, theory of robotics.

The program committee, consisting of 14 members, considered 65 papers and
selected 27 for presentation. These papers were selected on the basis of original-
ity, quality, and relevance to theoretical computer science. These proceedings
include the revised versions of the 27 accepted papers and the invited talks by
Marios Mavronicolas (Extreme Nash Equilibria), Martin Hofmann (Certification
of Memory Usage), and Gérard Boudol (On Programming Models for Mobility).

Paper selection was a difficult and challenging task, and many good submis-
sions had to be rejected. Each submission was refereed by at least three review-
ers and some had four reports or more. We are very grateful to all the program
committee members, who devoted much effort and valuable time to reading and
selecting the papers. In addition, we gratefully acknowledge the help of a large
number of colleagues who reviewed submissions in their area of expertise. They
are all listed on page VII. We apologize for any inadvertent omissions.

Following the example of ICTCS 2001, we encouraged authors to submit their
contributions in electronic format. We handled the submissions with CyberChair
(http://www.CyberChair.org) a free Web-based paper submission and reviewing
system. With reference to this, we would like to thank Luca Padovani who helped
us a lot at various stages of the whole process. His computer skills and the time
and effort he invested were crucial ingredients of our ability to run the program
committee.

Finally, we would like to thank all the authors that submitted their papers
for making this conference possible, the program committee members, as well as
all the conference participants.

October 2003 C. Blundo
C. Laneve
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Nicoletta Sabadini Università di Milano
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Facoltà di Scienze MM., FF. e NN. dell’Università di Salerno
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Extreme Nash Equilibria�

Martin Gairing1, Thomas Lücking1, Marios Mavronicolas2,
Burkhard Monien1, and Paul Spirakis3

1 Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{gairing,luck,bm}@uni-paderborn.de
2 Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus

mavronic@ucy.ac.cy
3 Computer Technology Institute, P. O. Box 1122, 261 10 Patras, Greece, &
Department of Computer Engineering and Informatics, University of Patras,

Rion, 265 00 Patras, Greece
spirakis@cti.gr

Abstract. We study the combinatorial structure and computational
complexity of extreme Nash equilibria, ones that maximize or minimize
a certain objective function, in the context of a selfish routing game.
Specifically, we assume a collection of n users, each employing a mixed
strategy, which is a probability distribution over m parallel links, to con-
trol the routing of its own assigned traffic. In a Nash equilibrium, each
user routes its traffic on links that minimize its expected latency cost.
Our structural results provide substantial evidence for the Fully Mixed
Nash Equilibrium Conjecture, which states that the worst Nash equilib-
rium is the fully mixed Nash equilibrium, where each user chooses each
link with positive probability. Specifically, we prove that the Fully Mixed
Nash Equilibrium Conjecture is valid for pure Nash equilibria and that
under a certain condition, the social cost of any Nash equilibrium is
within a factor of 6 + ε, of that of the fully mixed Nash equilibrium,
assuming that link capacities are identical.
Our complexity results include hardness, approximability and inapprox-
imability ones. Here we show, that for identical link capacities and under
a certain condition, there is a randomized, polynomial-time algorithm to
approximate the worst social cost within a factor arbitrarily close to
6 + ε. Furthermore, we prove that for any arbitrary integer k > 0, it is
NP-hard to decide whether or not any given allocation of users to links
can be transformed into a pure Nash equilibrium using at most k selfish
steps. Assuming identical link capacities, we give a polynomial-time ap-
proximation scheme (PTAS) to approximate the best social cost over all
pure Nash equilibria. Finally we prove, that it is NP-hard to approxi-

mate the worst social cost within a multiplicative factor 2− 2
m + 1

− ε.

The quantity 2− 2
m + 1

is the tight upper bound on the ratio of the worst

social cost and the optimal cost in the model of identical capacities.

� This work has been partially supported by the IST Program of the European Union
under contract numbers IST-1999-14186 (ALCOM-FT) and IST-2001-33116 (FLAGS),
by funds from the Joint Program of Scientific and Technological Collaboration be-
tween Greece and Cyprus, and by research funds from the University of Cyprus.

C. Blundo and C. Laneve (Eds.): ICTCS 2003, LNCS 2841, pp. 1–20, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 Martin Gairing et al.

1 Introduction

Motivation and Framework. A Nash equilibrium [21,22] represents a stable
state of the play of a strategic game, in which each player holds an accurate opin-
ion about the (expected) behavior of other players and acts rationally. An issue
that arises naturally in this context concerns the computational complexity of
Nash equilibria of any given strategic game. Due to the ultimate significance of
Nash equilibrium as a prime solution concept in contemporary Game Theory [23],
this issue has become a fundamental algorithmic problem that is being inten-
sively studied in the Theory of Computing community today (see, e.g., [3,6,29]);
in fact, it is arguably one of the few, most important algorithmic problems for
which no general polynomial-time algorithms are known today (cf. [24]).

The problem of computing arbitrary Nash equilibria becomes even more chal-
lenging when one considers extreme Nash equilibria, ones that maximize or min-
imize a certain objective function. So, understanding the combinatorial structure
of extreme Nash equilibria is a necessary prerequisite to either designing efficient
algorithms to compute them or establishing corresponding hardness and thereby
designing efficient approximation algorithms. In this work, we embark on a sys-
tematic study of the combinatorial structure and the computational complexity
of extreme Nash equilibria; our study is carried out within the context of a simple
selfish routing game, originally introduced in a pioneering work by Koutsoupias
and Papadimitriou [15], that we describe next.

We assume a collection of n users, each employing a mixed strategy, which
is a probability distribution over m parallel links, to control the shipping of
its own assigned traffic. For each link, a capacity specifies the rate at which
the link processes traffic. In a Nash equilibrium, each user selfishly routes its
traffic on those links that minimize its expected latency cost, given the network
congestion caused by the other users. A user’s support is the set of those links
on which it may ship its traffic with non-zero probability. The social cost of a
Nash equilibrium is the expectation, over all random choices of the users, of the
maximum, over all links, latency through a link.

Our study distinguishes between pure Nash equilibria, where each user
chooses exactly one link (with probability one), and mixed Nash equilibria, where
the choices of each user are modeled by a probability distribution over links. We
also distinguish in some cases between models of identical capacities, where all
link capacities are equal, and of arbitrary capacities.
The Fully Mixed Nash Equilibrium Conjecture. In this work, we formu-
late and study a natural conjecture asserting that the fully mixed Nash equilib-
rium F is the worst Nash equilibrium with respect to social cost. Formally, we
conjecture:

Conjecture 1 (Fully Mixed Nash Equilibrium Conjecture). For any traffic vec-
tor w such that the fully mixed Nash equilibrium F exists, and for any Nash
equilibrium P, SC (w,P) ≤ SC (w,F).

Clearly, the Fully Mixed Nash Equilibrium Conjecture is intuitive and natu-
ral: the fully mixed Nash equilibrium favors “collisions” between different users
(since each user assigns its traffic with positive probability to every link); thus,
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this increased probability of “collisions” favors a corresponding increase to the
(expected) maximum total traffic through a link, which is, precisely, the social
cost. More importantly, the Fully Mixed Nash Equilibrium Conjecture is also
significant since it precisely identifies the worst possible Nash equilibrium for
the selfish routing game we consider; this will enable designers of Internet pro-
tocols not only to avoid choosing the worst-case Nash equilibrium, but also to
calculate the worst-case loss to the system at any Nash equilibrium due to its
deliberate lack of coordination, and to evaluate the Nash equilibrium of choice
against the (provably) worst-case one.

Contribution and Significance. Our study provides quite strong evidence in
support of the Fully Mixed Nash Equilibrium Conjecture by either establishing
or near establishing the conjecture in a number of interesting instances of the
problem.

We start with the model of arbitrary capacities, where traffics are allowed to
vary arbitrarily. There we prove that the Fully Mixed Nash Equilibrium Con-
jecture holds for pure Nash equilibria. We next turn to the case of identical
capacities. Through a delicate probabilistic analysis, we establish that in the
special case, that the number of links is equal to the number of users and for
a suitable large number of users, the social cost of any Nash equilibrium is less
than 6 + ε (for any ε > 0) times the social cost of the fully mixed Nash equilib-
rium. Our proof employs concepts and techniques from majorization theory [17]
and stochastic orders [28], such as comparing two random variables according to
their stochastic variability (cf. [26, Section 9.5]).

For pure Nash equilibria we show that it is NP-hard to decide whether
or not any given allocation of users to links can be transformed into a pure
Nash equilibrium using at most k selfish steps, even if the number of links is
2. Furthermore, we prove that there exists a polynomial-time approximation
scheme (PTAS) to approximate the social cost of the best pure Nash equilibrium
to any arbitrary accuracy. The proof involves an algorithm that transforms any
pure strategy profile into a pure Nash equilibrium with at most the same social
cost, using at most n reassignments of users. We call this technique Nashification,
and it may apply to other instances of the problem as well.

Still for pure Nash equilibria, we give a tight upper bound on the ratio
between SC(w,L) and OPT(w) for any Nash equilibrium L. Then we show that
it is NP-hard to approximate the worst-case Nash equilibrium with a ratio
that is better than this upper bound. We close our section about pure Nash
equilibria with a pseudopolynomial algorithm for computing the worst-case Nash
equilibrium for any fixed number of links.

Related Work and Comparison. The selfish routing game considered in
this paper was first introduced by Koutsoupias and Papadimitriou [15] as a ve-
hicle for the study of the price of selfishness for routing over non-cooperative
networks, like the Internet. This game was subsequently studied in the work of
Mavronicolas and Spirakis [18], where fully mixed Nash equilibria were intro-
duced and analyzed. In both works, the aim had been to quantify the amount of
performance loss in routing due to selfish behavior of the users. (Later studies
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of the selfish routing game from the same point of view, that of performance,
include the works by Koutsoupias et al. [14], and by Czumaj and Vöcking [2].)

The closest to our work is the one by Fotakis et al. [6], which focuses on the
combinatorial structure and the computational complexity of Nash equilibria
for the selfish routing game we consider. The Fully Mixed Nash Equilibrium
Conjecture formulated and systematically studied in this paper has been inspired
by two results due to Fotakis et al. [6] that confirm or support the conjecture.
First, Fotakis et al. [6, Theorem 4.2] establish the Fully Mixed Nash Equilibrium
Conjecture for the model of identical capacities and assuming that n = 2. Second,
Fotakis et al. [6, Theorem 4.3] establish that, for the model of identical traffics
and arbitrary capacities, the social cost of any Nash equilibrium is no more than
49.02 times the social cost of the (generalized) fully mixed Nash equilibrium;
Note that Theorem 3 is incomparable to this result, since it assumes identical
links and arbitrary traffics.

The routing problem considered in this paper is equivalent to the multiproces-
sor scheduling problem. Here, pure Nash equilibria and Nashification translate to
local optima and sequences of local improvements. A schedule is said to be jump
optimal if no job on a processor with maximum load can improve by moving to
another processor [27].

Obviously, the set of pure Nash equilibria is a subset of the set of jump opti-
mal schedules. Moreover, in the model of identical processors every jump optimal
schedule can be transformed into a pure Nash equilibrium without altering the
makespan. Thus, for this model the strict upper bound 2 − 2/(m + 1) on the
ratio between best and worst makespan of jump optimal schedules [5,27] also
holds for pure Nash equilibria.

Algorithms for computing a jump optimal schedule from any given schedule
have been proposed in [1,5,27]. The fastest algorithm is given by Schuurman and
Vredeveld [27]. It always moves the job with maximum weight from a makespan
processor to a processor with minimum load, using O(n) moves. However, in
all algorithms the resulting jump optimal schedule is not necessarily a Nash
equilibrium.
Road Map. The rest of this paper is organized as follows. Section 2 presents
some preliminaries. Stochastic orders are treated in Section 3. Pure Nash equilib-
ria are contrasted to the fully mixed Nash equilibrium in Section 4. Worst mixed
Nash equilibria are contrasted to the fully mixed Nash equilibrium in Section 5.
Sections 6 and 7 consider best and worst pure Nash equilibria, respectively. We
conclude, in Section 8, with a discussion of our results and some open problems.

2 Framework

Most of our definitions are patterned after those in [18, Section 2] and [6, Section
2], which, in turn, were based on those in [15, Sections 1 & 2].
Mathematical Preliminaries and Notation. For any integer m ≥ 1, de-
note [m] = {1, . . . ,m}. Denote Γ the Gamma function; that is, for any nat-
ural number N , Γ (N + 1) = N !, while for any arbitrary real number x > 0,
Γ (x) =

∫ ∞
0 tx−1e−tdt. The Gamma function is invertible; both Γ and its in-
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verse Γ−1 are increasing. It is well known that Γ−1(N) = lg N
lg lg N (1 + o(1)) (see,

e.g., [9]). For our purposes, we shall use the fact that for any pair of an arbi-
trary real number α and an arbitrary natural number N ,

(
α
e

)α = N if and only
if α = Γ−1(N) + Θ(1). For an event E in a sample space, denote Pr(E) the
probability of event E happening.

For a random variable X, denote E(X) the expectation of X. In the balls-and-
bins problem,m balls are thrown intom bins uniformly at random. (See [13] for a
classical introduction to this problem.) It is known that the expected maximum
number of balls thrown over a bin equals the quantity R(m) = Γ−1(m) − 3

2 +
o(1) [9].

In the paper, we make use of the following Hoeffding inequality:

Theorem 1 ([19], Theorem 2.3.). Let the random variables X1, X2, ..., Xn be
independent, with 0 ≤ Xk ≤ 1 for each k and let Sn =

∑
Xk. Then, for any

β > 0,
Pr(Sn ≥ (1 + β)E(Sn)) ≤ e−((1+β) ln(1+β)−β)E(Sn).

Note that Theorem 1 also holds if 0 ≤ Xk ≤ κ for some constant κ > 0.
General. We consider a network consisting of a set ofm parallel links 1, 2, . . . ,m
from a source node to a destination node. Each of n network users 1, 2, . . . , n, or
users for short, wishes to route a particular amount of traffic along a (non-fixed)
link from source to destination. Denote wi the traffic of user i ∈ [n]. Define the
n × 1 traffic vector w in the natural way. Assume throughout that m > 1 and
n > 1. Assume also, without loss of generality, that w1 ≥ w2 ≥ . . . ≥ wn. For a
traffic vector w, denote W =

∑n
1 wi.

A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user
i ∈ [n] is a probability distribution over pure strategies; thus, a mixed strategy is
a probability distribution over the set of links. The support of the mixed strategy
for user i ∈ [n], denoted support(i), is the set of those pure strategies (links) to
which i assigns positive probability.

A pure strategy profile is represented by an n-tuple 〈�1, �2, . . . , �n〉 ∈ [m]n;
a mixed strategy profile is represented by an n ×m probability matrix P of nm
probabilities pj

i , i ∈ [n] and j ∈ [m], where pj
i is the probability that user i

chooses link j. For a probability matrix P, define indicator variables I�
i ∈ {0, 1},

i ∈ [n] and � ∈ [m], such that I�
i = 1 if and only if p�

i > 0. Thus, the support of
the mixed strategy for user i ∈ [n] is the set {� ∈ [m] | I�

i = 1}.
For each link � ∈ [m], define the view of link �, denoted view(�), as the set of

users i ∈ [n] that may assign their traffics to link �; so, view(�) = {i ∈ [n] | I�
i =

1}. For each link � ∈ [m], denote V � = |view(�)|. A mixed strategy profile P is
fully mixed [18, Section 2.2] if for all users i ∈ [n] and links j ∈ [m], Ij

i = 1 1.
System, Models and Cost Measures. Denote c� > 0 the capacity of link
� ∈ [m], representing the rate at which the link processes traffic. So, the latency
for traffic w through link � equals w/c�. In the model of identical capacities, all
link capacities are equal to 1; link capacities may vary arbitrarily in the model of
1 An earlier treatment of fully mixed strategies in the context of bimatrix games has

been found in [25], called there completely mixed strategies. See also [20] for a sub-
sequent treatment in the context of strategically zero-sum games.
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arbitrary capacities. For a pure strategy profile 〈�1, �2, . . . , �n〉, the latency cost
for user i, denoted λi, is (

∑
k:�k=�i

wk)/c�i ; that is, the latency cost for user i is
the latency of the link it chooses. For a mixed strategy profile P, denote δ� the
actual traffic on link � ∈ [m]; so, δ� is a random variable for each link � ∈ [m],
denote θ� the expected traffic on link � ∈ [m]; thus, θ� = E(δ�) =

∑n
i=1 p

�
iwi.

Given P, define the m× 1 expected traffic vector Θ induced by P in the natural
way. Given P, denote Λ� the expected latency on link � ∈ [m]; clearly, Λ� = θ�

c� .
Define the m × 1 expected latency vector Λ in the natural way. For a mixed
strategy profile P, the expected latency cost for user i ∈ [n] on link � ∈ [m],
denoted λ�

i , is the expectation, over all random choices of the remaining users,
of the latency cost for user i had its traffic been assigned to link �; thus, λ�

i =
wi+

∑
k=1,k �=i

p�
kwk

c� = (1−p�
i)wi+θ�

c� . For each user i ∈ [n], the minimum expected
latency cost, denoted λi, is the minimum, over all links � ∈ [m], of the expected
latency cost for user i on link �; thus, λi = min�∈[m] λ

�
i . For a probability matrix

P, define the n× 1 minimum expected latency cost vector λ induced by P in the
natural way.

Associated with a traffic vector w and a mixed strategy profile P is the social
cost [15, Section 2], denoted SC(w,P), which is the expectation, over all random
choices of the users, of the maximum (over all links) latency of traffic through

a link; thus, SC(w,P) =
∑

〈�1,�2,...,�n〉∈[m]n

(
∏n

k=1 p
�k

k ·max�∈[m]

∑
k:�k=�

wk

c�

)

.

Note that SC (w,P) reduces to the maximum latency through a link in the
case of pure strategies. On the other hand, the social optimum [15, Section
2] associated with a traffic vector w, denoted OPT(w), is the least possible
maximum (over all links) latency of traffic through a link; thus, OPT(w) =

min〈�1,�2,...,�n〉∈[m]n max�∈[m]

∑
k:�k=�

wk

c� .

Nash Equilibria. We are interested in a special class of mixed strategies called
Nash equilibria [21,22] that we describe below. Say that a user i ∈ [n] is satisfied
for the probability matrix P if for all links � ∈ [m], λ�

i = λi if I�
i = 1, and λ�

i > λi

if I�
i = 0; thus, a satisfied user has no incentive to unilaterally deviate from its

mixed strategy. A user i ∈ [n] is unsatisfied for the probability matrix P if i is
not satisfied for the probability matrix P. The probability matrix P is a Nash
equilibrium [15, Section 2] if for all users i ∈ [n] and links � ∈ [m], λ�

i = λi if
I�
i = 1, and λ�

i > λi if I�
i = 0. Thus, each user assigns its traffic with positive

probability only on links (possibly more than one of them) for which its expected
latency cost is minimized. The fully mixed Nash equilibrium [18], denoted F, is a
Nash equilibrium that is a fully mixed strategy. Mavronicolas and Spirakis [18,
Lemma 15] show that all links are equiprobable in a fully mixed Nash equilibrium,
which is unique (for the model of identical capacities).

Fix any traffic vector w. The worst Nash equilibrium is the Nash equilibrium
P that maximizes SC (w,P); the best Nash equilibrium is the Nash equilibrium
that minimizes SC (w,P). The worst social cost, denoted WC (w), is the social
cost of the worst Nash equilibrium; correspondingly, the best social cost, denoted
BC (w), is the social cost of the best Nash equilibrium.
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Fotakis et al. [6, Theorem 1] consider starting from any arbitrary pure strat-
egy profile and following a particular sequence of selfish steps, where in a selfish
step, exactly one unsatisfied user is allowed to change its pure strategy. A selfish
step is a greedy selfish step if the unsatisfied user chooses its best link. A (greedy)
selfish step does not increase the social cost of the initial pure strategy profile.
Fotakis et al. [6, Theorem 1] show that this sequence of selfish steps eventually
converges to a Nash equilibrium, which proves its existence; however, it may take
a large number of steps. It follows that if the initial pure strategy profile has
minimum social cost, then the resulting (pure) Nash equilibrium will have min-
imum social cost as well. This implies that there exists a pure Nash equilibrium
with minimum social cost. Thus, we have BC (w) = OPT (w).

Algorithmic Problems. We list a few algorithmic problems related to Nash
equilibria that will be considered in this work. The definitions are given in the
style of Garey and Johnson [8]. A problem instance is a tuple (n,m,w, c) where
n is the number of users, m is the number of links, w = (wi) is a vector of n
user traffics and c = (cj) is a vector of m link capacities.

Π1: NASH EQUILIBRIUM SUPPORTS
Instance: A problem instance (n,m,w, c).
Output: Indicator variables Ij

i ∈ {0, 1}, where i ∈ [n] and j ∈ [m], that support
a Nash equilibrium for the system of the users and the links.
Fotakis et al. [6, Theorem 2] establish that NASH EQUILIBRIUM SUPPORTS is
in P when restricted to pure equilibria. We continue with two complementary
to each other optimization problems (with respect to social cost).

Π2: BEST NASH EQUILIBRIUM SUPPORTS
Instance: A problem instance (n,m,w, c).
Output: Indicator variables Ij

i ∈ {0, 1}, where i ∈ [n] and j ∈ [m], that support
the best Nash equilibrium for the system of the users and the links.

Π3: WORST NASH EQUILIBRIUM SUPPORTS
Instance: A problem instance (n,m,w, c).
Output: Indicator variables Ij

i ∈ {0, 1}, where i ∈ [n] and j ∈ [m], that support
the worst Nash equilibrium for the system of the users and the links.
Fotakis et al. [6, Theorems 3 and 4] establish that both BEST NASH EQUILIB-
RIUM SUPPORTS and WORST NASH EQUILIBRIUM SUPPORTS are NP-hard.
Since both problems can be formulated as an integer program, it follows that
they are NP-complete.

Π4: NASH EQUILIBRIUM SOCIAL COST
Instance: A problem instance (n,m,w, c); a Nash equilibrium P for the system
of the users and the links.
Output: The social cost of the Nash equilibrium P.
Fotakis et al. [6, Theorem 8] establish that NASH EQUILIBRIUM SOCIAL COST
is #P-complete. Furthermore, Fotakis et al. [6, Theorem 9] show that there exists
a fully polynomial, randomized approximation scheme for NASH EQUILIBRIUM
SOCIAL COST.
The following two problems, inspired by NASH EQUILIBRIUM SOCIAL COST
are introduced for the first time in this work.
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Π5: WORST NASH EQUILIBRIUM SOCIAL COST
Instance: A problem instance (n,m,w, c).
Output: The worst social cost WSC(w).
Π6: BEST NASH EQUILIBRIUM SOCIAL COST
Instance: A problem instance (n,m,w, c).
Output: The best social cost BSC(w).
Π7: k-NASHIFY
Instance: A problem instance (n,m,w, c); a pure strategy profile L for the
system of the users and the links.
Question: Is there a sequence of at most k selfish steps that transform L to a
(pure) Nash equilibrium?
The following problem is a variant of k-NASHIFY in which k is part of the input.
Π8: NASHIFY
Instance: A problem instance (n,m,w, c); a pure strategy profile L for the
system of the users and the links; an integer k > 0.
Question: Is there a sequence of at most k selfish steps that transform L to a
(pure) Nash equilibrium?

In our hardness and completeness proofs, we will employ the following NP-
complete problems [12]:
Π9: BIN PACKING
Instance: A finite set U of items, a size s(u) ∈ N for each u ∈ U , a positive
integer bin capacity B, and a positive integer K.
Question: Is there a partition of U into disjoint sets U1, . . . ,UK such that for
each set Ui, 1 ≤ i ≤ K,

∑
u∈Ui

s(u) ≤ B?
Π10: PARTITION
Instance: A finite set U and a size s(u) ∈ N for each element u ∈ U .
Question: Is there a subset U ′ ⊆ U such that

∑
u∈U ′ s(u) =

∑
u∈U\U ′ s(u)?

We note that BIN PACKING is strongly NP-complete [7] 2.

3 Stochastic Order Relations

In this section, we treat stochastic order relations; we establish a certain stochas-
tic order relation for the expected maxima of certain sums of Bernoulli random
variables.

Recall that a function f : � → � is convex if for all numbers λ such that
0 < λ < 1, f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). We proceed to describe
a stochastic order relation between two random variables.

Definition 1. For any pair of arbitrary random variables X and Y , say that X
is stochastically more variable than Y if for all increasing and convex functions
f : � → �, E(f(X)) ≥ E(f(Y )).
2 A problem is strongly NP-complete if it remains NP-complete even if any instance

of length n is restricted to contain integers of size polynomial in n. So, strongly NP-
complete problems admit no pseudopolynomial-time algorithms unless P = NP.
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Call stochastically more variability the corresponding stochastic order rela-
tion on the set of random variables. (See [26, Section 9.5] for a more complete
treatment of the notion of stochastically more variable and [17,28] for more on
majorization theory and stochastic orders.) The following lemma [26, Propo-
sition 9.5.1] provides an alternative, analytic characterization of stochastically
more variability.

Lemma 1. Consider any pair of non-negative random variables X and X̂.
Then, X is stochastically more variable than X̂ if and only if for all numbers
α ≥ 0,

∫ ∞
x=α

Pr(X > x)dx ≥ ∫ ∞
x=α

Pr(X̂ > x)dx.

Consider now a setting of the balls-and-bins problem where n balls 1, . . . , n
with traffics w1, . . . , wn are allocated into m bins 1, . . . ,m uniformly at random.
So, for each pair of a ball i ∈ [n] and a link j ∈ [m], define Bernoulli random

variables Y j
i = wi with probability 1

m and 0 with probability 1− 1
m , and Ỹ j

i = W
n

with probability 1
m and 0 with probability 1− 1

m . For each link j ∈ [m], define

the random variables δj =
∑

i∈[n] Y
j
i and δ̃j =

∑
i∈[n] Ỹ

j
i ; thus, each of δj

and δ̃j , j ∈ [m], is a sum of Bernoulli random variables; denote θj = E(δj)
and θ̃j = E(δ̃j) the expectations of δj and δ̃j , respectively. Note that θj =
E

(∑
i∈[n] Y

j
i

)
=

∑
i∈[n] E

(
Y j

i

)
=

∑
i∈[n]

(
wi

1
m + 0

(
1− 1

m

))
= W

m , while θ̃j =

E(δ̃j) = E
(

∑
i∈[n] Ỹ

j
i

)

=
∑

i∈[n] E
(

Ỹ j
i

)

=
∑

i∈[n]

(
W
n

1
m + 0

(
1− 1

m

))
= W

m .

So, θj = θ̃j for each bin j ∈ [m].

For two numbers x, y ∈ �+ define [x− y] =

{
x− y : if x > y

0 : else.
We can then show the following preliminary lemma:

Lemma 2. Let bi ∈ �+ for i ∈ [n] and let d = 1
n

∑n
i=1 bi. Then for all x ≥ 0,∑n

i=1[bi − x] ≥ n · [d− x].
Proof. Without loss of generality, assume that b1 ≤ b2 ≤ . . . ≤ bn. The claim is
true if x > d. If x ≤ b1, then x ≤ d and

∑n
i=1[bi−x] =

∑n
i=1(bi−x) = n ·(d−x).

Now let bj < x ≤ bj+1 and d > x. It follows that
∑n

i=1[bi−x] =
∑n

i=j+1(bi−x) =
∑n

i=j+1 bi − (n− j)x =
∑n

i=j+1 bi − n · x+ j · x ≥∑n
i=j+1 bi − n · x+

∑j
i=1 bi =

∑n
i=1 bi − n · x = n · (d− x) 	

We finally prove:

Lemma 3 (Stochastically More Variability Lemma). For any traffic vec-
tor w, max

{
δ1, . . . , δm

}
is stochastically more variable than max

{
δ̃1, . . . , δ̃m

}
.

Proof. Define the discrete random variables X = max{δ1, . . . , δm} and X̃ =
max{δ̃1, . . . , δ̃m}. By Lemma 1, it suffices to show that

∫ ∞
x=α

Pr (X > x) dx ≥
∫ ∞

x=α
Pr

(
X̃ > x

)
dx for all α ≥ 0. Let Sk be the collection of all pure strategy



10 Martin Gairing et al.

profiles, where the maximum number of traffics on any link j ∈ [m] is exactly k.
If i �= j, then Si∩Sj = ∅. Furthermore

⋃n
i=� n

m � Si = [m]n. For any pure strategy
profile L ∈ Sk, define Link(L) to be the smallest index of a link, holding k
traffics. Furthermore, for any pure strategy profile L, let I(L) be the collection
of users that are assigned to Link(L). Every set of k traffics is equal to some
I(L), L ∈ Sk with the same probability, say pk. Define the actual traffic on
Link(L) as b(L) =

∑
i∈I(L) wi. If all traffics are identical the actual traffic on

Link(L) for a pure strategy profile L ∈ Sk is simply b̃(L) = k · W
n .

Every pure strategy profile L ∈ [m]n occurs with the same probability 1
mn

and defines together with b(L) a discrete random variable Z. Z is a discrete
random variable that can take every possible value b(L), L ∈ [m]n.

It is easy to see, that X is stochastically more variable than Z, since for
any pure strategy profile L, Z refers to the actual traffic on Link(L), whereas X
refers to the maximum actual traffic over all links. We will complete our proof by
showing, that Z is stochastically more variable than X̃. Since Z and X̃ are dis-
crete random variables

∫ ∞
x=α

Pr(Z > x)dx =
∑n

k=� n
m � (pk ·Ak) , where Ak =

∑
L∈Sk

[b(L) − α] and
∫ ∞

x=α
Pr(X̃ > x)dx =

∑n
k=� n

m �
(
pk · Ãk

)
, where Ãk =

|Sk| · [k · W
n −α] Since for a fixed k each traffic contributes with the same proba-

bility to b(L),
∑

L∈Sk
b(L) = |Sk| ·k · W

n . It follows from Lemma 2 that Ak ≥ Ãk

for each k. Therefore Z is stochastically more variable than X̃, which completes
the proof of the lemma. 	


By definition of stochastically more variability, Lemma 3 implies:

Corollary 1. For any traffic vector w,
E (

max
{
δ1, . . . , δm

}) ≥ E
(
max

{
δ̃1, . . . , δ̃m

})
.

In the balls-and-bins game in which m balls are thrown uniformly at random
into m bins, Corollary 1 shows that, if the sum of the ball weights is the same,
the expected maximum load over all bins is larger when the balls have different
weights in comparison to all balls having the same weight.

4 Pure versus Fully Mixed Nash Equilibria

In this section, we establish the Fully Mixed Nash Equilibrium Conjecture for
the case of pure Nash equilibria. This result holds also for the model of arbitrary
capacities. We start by proving:

Lemma 4. Fix any traffic vector w, mixed Nash equilibrium P and user i.
Then, λi (w,P) ≤ λi (w,F).

Proof. Let P =
(
pj

k

)
,F =

(
f j

k

)
for k ∈ [n] and j ∈ [m]. We can then state, that

∑
j∈[m]

(∑
k∈[n],k 	=i p

j
kwk

)
=

∑
k∈[n],k 	=i wk

(∑
j∈[m] p

j
k

)
=

∑
k∈[n],k 	=i wk , and

∑
j∈[m]

(∑
k∈[n],k 	=i f

j
kwk

)
=

∑
k∈[n],k 	=i wk

(∑
j∈[m] f

j
k

)
=

∑
k∈[n],k 	=i wk. It
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follows that
∑

j∈[m]

(∑
k∈[n],k 	=i p

j
kwk

)
=

∑
j∈[m]

(∑
k∈[n],k 	=i f

j
kwk

)
. Therefore

there exists some link j0 ∈ [m] such that
∑

k∈[n],k 	=i p
j0
k wk ≤

∑
k∈[n],k 	=i f

j0
k wk.

Then, λi (w,P) ≤ λj0
i (w,P) (since λi is the minimum of all λj

i , j ∈ [n]) =
wi+

∑
k∈[n],k �=i

p
j0
k

wk

cj0 ≤ wi+
∑

k∈[n],k �=i
f

j0
k

wk

cj0 = λj0
i (w,F) = λi (w,F) (since f j0

i >
0 and F is a Nash equilibrium). 	

We now prove:

Theorem 2. Fix any traffic vector w and pure Nash equilibrium L. Then,
SC (w,L) ≤ SC (w,F).

Proof. For each user i ∈ [n], λi (w,P) is the minimum, over all links j ∈ [m], of
the expected latency cost for user i on link j, and SC (w,P) is the expectation of
the maximum (over all links) latency of traffic through a link. This implies that
λi (w,P) ≤ SC (w,P) for every mixed Nash equilibrium P. Hence, by Lemma 4:
λi(w,P) ≤ λi (w,F) ≤ SC (w,F) The claim follows now since SC(w,L) =
maxi∈[n] λi(w,L) holds for every pure Nash equilibrium L. 	


5 Worst Mixed Nash Equilibria

In this section we show that if n = m and m is suitable large then the social
cost of any Nash equilibrium is at most 6 + ε times the social cost of the fully
mixed Nash equilibrium.

Theorem 3. Consider the model of identical capacities. Let n = m, m suitable
large. Then, for any traffic vector w and Nash equilibrium P, SC (w,P) < (6 +
ε) SC (w,F), for any ε > 0.

Proof. Fix any traffic vector w and Nash equilibrium P. We start by showing a
simple technical fact.

Lemma 5. Fix any pair of a link � ∈ [m] and a user i ∈ view(�). Then, p�
iwi ≥

θ� − W
m .

Proof. Clearly,
∑

j∈[m] θ
j =

∑
j∈[m]

(∑
i∈[n] p

j
iwi

)
=

∑
i∈[n]

(∑
j∈[m] p

j
iwi

)
=

∑
i∈[n]

(
wi

∑
j∈[m] p

j
i

)
= W . This implies that there exists some link �′ ∈ [m]

such that θ�′ ≤ W
m . Note that by definition of social cost, λ�′

i = (1− pi)wi + θ�′
.

It follows that λ�′
i ≤ wi + W

m . On the other hand, λ�
i = (1− p�

i)wi + θ�.
Since i ∈ view(�), we have, by definition of Nash equilibria, that λ�

i ≤ λ�′
i

(with equality holding when i ∈ view(�′)). It follows that (1−p�
i)wi+θ� ≤ wi+W

m ,
or that p�

iwi ≥ θ� − W
m , as needed. 	


As an immediate consequence of Lemma 5, we obtain:

Corollary 2. Fix any link � ∈ [m]. Then, θ� ≤ V �

V �−1
W
m .
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Proof. Clearly, by Lemma 5 it follows, θ� =
∑

i∈[n] p
�
iwi =

∑
i∈view(�) p

�
iwi ≥

∑
i∈view(�)

(
θ� − W

m

)
= V �

(
θ� − W

m

)
, or θ� ≤ V �

V �−1
W
m , as needed. 	


Since V � ≥ 2, V �

V �−1 ≤ 2. Thus, by Corollary 2:

Lemma 6. Fix any link � ∈ [m] with V � ≥ 2. Then, θ� ≤ 2 W
m .

We now prove a complementary lemma. Fix any link � ∈ [m] with V � = 1.
Let view(l) = {i}. Then θl = wi ≤ maxi wi ≤ OPT(w) ≤ SC (w,F). Thus:

Lemma 7. Fix any link � ∈ [m] with V � = 1. Then, θ� ≤ SC (w,F).

Use w to define the vector w̃ with all entries equal to W
n . By definition

of social cost, SC (w̃,F) is the load W
m of each ball times the expected maxi-

mum number of balls thrown uniformly at random into m bins. Since n = m,

we can state SC (w̃,F) = R(m) · W
m , or W

m =
SC(w̃,F)

R(m) . Fix now any link
j ∈ [n] with V j ≥ 2. Then, θj ≤ 2 W

m (by Lemma 6) = 2
R(m) SC (w̃,F) ≤

2
R(m) SC (w,F) (by Corollary 1) .

Thus, for any constant ε > 0, Pr
(
δj > 4 (1 + ε) SC (w,F)

)

≤ Pr
(
δj > 4 (1 + ε) R(m)

2 θj
)

(since θj ≤ 2
R(m) SC (w,F))

= Pr
(
δj > 2 (1 + ε)R(m) θj

)
= Pr

(
δj > 2 (1 + ε)R(m) E (

δj
))

.
¿From Theorem 1 it follows that for any β > 0, Pr

(
δj ≥ (1 + β)E(δj)

) ≤
e−((1+β)ln(1+β)−β)E(δj) = eβE(δj)

(1+β)(1+β)E(δj) <
(

e
1+β

)(1+β)E(δj)
.

With (1 + β) = 2(1 + ε)R(m) we get:

Pr
(
δj > 4 (1 + ε) SC (w,F)

)
<

(
e

2(1+ε)R(m)

)2(1+ε)R(m) E(δj)
.

Note that by definition of R(m), e
2(1+ε)R(m) <

e
2R(m) = e

2 (Γ −1(m)− 3
2+o(1)) <

e
2Γ −1(m)−3 . Thus, e

2Γ −1(m)−3 < 1 if and only if Γ−1(m) > e+3
2 , which holds for

all integers m ≥ 3.

Thus, for all such integers e
2(1+ε)R(m) < 1 and

(
e

2(1+ε)R(m)

)2(1+ε)R(m)
< 1

as well. Hence,
(

e
2(1+ε)R(m)

)2(1+ε)R(m)E(δj)
<

(
e

2(1+ε)R(m)

)2(1+ε)R(m)
. It fol-

lows that Pr
(
δj > 4 (1 + ε) SC (w,F)

)
<

(
e

2(1+ε)R(m)

)2(1+ε)R(m)
. Note, how-

ever, that
(

e
2(1+ε)R(m)

)2(1+ε)R(m)
=

( 1
2

)2(1+ε)R(m) ·
((

e
(1+ε)R(m)

)(1+ε)R(m)
)2

<

((
e

(1+ε)R(m)

)(1+ε)R(m)
)2

, since
( 1

2

)2(1+ε)R(m)
< 1. Define now α > 0 so that

(
α
e

)α = m. Then, clearly, α = Γ−1(m) +Θ(1). Note that (1 + ε)R(m)
= (1 + ε)Γ−1(m) − (1 + ε) 3

2 + o(1) = (1 + ε)Γ−1(m) + Θ(1) > α , for suitable
large m, since ε > 0. Since

(
x
e

)x is an increasing function of x, this implies that
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(
(1+ε)R(m)

e

)(1+ε)R(m)
>

(
α
e

)α = m . Thus
((

e
(1+ε)R(m)

)(1+ε)R(m)
)2

< 1
m2 . It

follows that Pr
(
δj > 4 (1 + ε) SC (w,F)

)
< 1

m2 . Hence
Pr

(
max�∈[m] | |V �|≥2 δ

� > 4(1 + ε)SC (w,F)
)

=

Pr
(∨

�∈[m] | |V �|≥2 δ
� > 4(1 + ε)SC (w,F)

)
≤

∑
�∈[m] | |V �|≥2 Pr

(
δ� > 4(1 + ε)SC (w,F)

)
<

∑
�∈[m] | |V �|≥2

1
m2 ≤ m · 1

m2 =
1
m . Now, clearly, max�∈[m] δ

� = max
{
max�∈[m] | |V �|≥2 δ

�,max�∈[m] | |V �|=1 δ
�
}≤

max�∈[m] | |V �|≥2 δ
� + max�∈[m] | |V �|=1 δ

�≤max�∈[m] | |V �|≥2 δ
� + maxi∈[n] wi ≤

max�∈[m] | |V �|≥2 δ
j + OPT(w) , so that

E (
max�∈[m] δ

�
) ≤ E (

max�∈[m] | |V �|≥2 δ
j + OPT(w)

)

= E (
max�∈[m] | |V �|≥2 δ

j
)

+ OPT(w) . Note, however, that
E (

max�∈[m] | |V �|=1 δ
j
)

=
∑

0≤δ≤W δPr
(
max�∈[m] ||V �|≥2 δ

� = δ
)

=
∑

0≤δ≤4(1+ε)SC(w,F) δPr
(
max�∈[m] ||V �|≥2 δ

� = δ
)

+
∑

4(1+ε)SC(w,F)<δ≤W δPr
(
max�∈[m] ||V �|≥2 δ

� = δ
)

≤∑
0≤δ≤4(1+ε)SC(w,F) 4(1 + ε)SC (w,F) Pr

(
max�∈[m] ||V �|≥2 δ

� = δ
)

+
∑

4(1+ε)SC(w,F)<δ≤W W Pr
(
max�∈[m] ||V �|≥2 δ

� = δ
)

= 4(1 + ε)SC (w,F)
∑

0≤δ≤4(1+ε)SC(w,F) Pr
(
max�∈[m] ||V �|≥2 δ

� = δ
)

+W
∑

4(1+ε)SC(w,F)<δ≤W Pr
(
max�∈[m] ||V �|≥2 δ

� = δ
)

= 4(1 + ε)SC (w,F) Pr
(
max�∈[m] ||V �|≥2 δ

� ≤ 4(1 + ε)SC (w,F)
)

+WPr
(
max�∈[m] ||V �|≥2 δ

� > 4(1 + ε)SC (w,F)
)

< 4(1 + ε)SC (w,F) · 1 +W · 1
m

(since Pr
(
max�∈[m] | |V �|≥2 δ

� > 4(1 + ε)SC (w,F)
)
< 1

m ). Hence,
SC (w,P) = E (

max�∈[m] δ
�
) ≤ E (

max�∈[m] | |V �|=1 δ
j
)

+ OPT(w) ≤ 4(1 +
ε)SC (w,F)+ W

m +OPT(w) ≤ 4(1+ε)SC (w,F)+2 OPT(w) ≤ 4(1+ε)SC (w,F)+
2SC (w,F) = (6 + ε)SC (w,F) , for any ε, where 0 < ε < 1, as needed. 	


Recall that there is a randomized, polynomial-time approximation scheme
(RPTAS) to approximate the social cost of any Nash equilibrium (in particular,
the fully mixed) within any arbitrary ε > 0 [6, Theorem 9]. Thus, since, by
Theorem 3, the worst social cost is bounded by 6+ ε times the social cost of the
fully mixed Nash equilibrium, this yields:

Theorem 4. Consider the model of identical capacities. Let n = m, m suitable
large. Then, there exists a randomized, polynomial-time algorithm with approx-
imation factor 6 + ε, for any ε > 0, for WORST NASH EQUILIBRIUM SOCIAL
COST.

We significantly improve Theorem 3 under a certain assumption on the traffics.
Theorem 5. Consider any traffic vector w such that w1 ≥ w2 + . . .+wn. Then,
for any Nash equilibrium P, SC (w,P) ≤ SC (w,F).

Proof. Since w1 ≥ w2 + . . . + wn, it follows that the link with maximum la-
tency has user 1 assigned to it in any pure strategy profile. Thus, in particular,
SC (w,P) = λ1 (w,P) and SC (w,F) = λ1 (w,F). By Lemma 4, λ1 (w,P) ≤
λ1 (w,F). It follows that SC (w,P) ≤ SC (w,F), as needed. 	
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6 Best Pure Nash Equilibria and Nashification

We start by establishing NP-hardness for NASHIFY:

Theorem 6. NASHIFY is NP-hard, even if m = 2.

Proof. By reduction from PARTITION. Consider any arbitrary instance of PAR-
TITION consisting of a set A of k items a1, . . . , ak with sizes s(a1), . . . , s(ak) ∈ N,
for any integer k. Construct from it an instance of NASHIFY as follows: Set
n = 3k and m = 2. Set wi = s(ai) for 1 ≤ i ≤ k, and wi = 1

2k for k+1 ≤ i ≤ 3k.
Take the pure strategy profile that assigns users 1, 2, . . . , 2k to link 1 and users
2k + 1, . . . , 3k to link 2.

We establish that this yields a reduction from PARTITION to NASHIFY.
Assume first that the instance of PARTITION is positive; that is, there exists a
subset A′ ⊆ A such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a). Since either |A′| ≤ k

2 or
|A \ A′| ≤ k

2 , assume, without loss of generality, that |A′| ≤ k
2 . Note that each

user assigned to link 1 is unsatisfied in the constructed pure strategy profile
since its latency cost on link 1 is

∑
a∈A s(a) + k · 1

2k =
∑

a∈A s(a) + 1
2 , while

its latency cost on link 2 is k · 1
2k = 1

2 , which is less. Thus, each step that
transfers an unsatisfied user that corresponds to an element a ∈ A′ from link
1 to link 2 is a selfish step, and the sequence of steps that transfer all users
that correspond to elements of A′ from link 1 to link 2 is a sequence of at most
k
2 < k steps. As a result of this sequence of selfish steps, the latency of link 1 will
be

∑
a∈A\A′ s(a) + 1

2 , while the latency of link 2 will be
∑

a∈A′ s(a) + 1
2 . Since

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a), these two latencies are equal and the resulting pure

strategy profile is therefore a Nash equilibrium which implies that NASHIFY is
positive.

Assume now that the instance of NASHIFY is positive; that is, there exists
a sequence of at most k selfish steps that transforms the pure strategy profile
in the constructed instance of NASHIFY to a Nash equilibrium. Assume that
in the resulting pure strategy profile users corresponding to a subset A′ ⊆ A
remain in link 1, users corresponding to the subset A \ A′ ⊆ A are transfered
to link 2, while the sums of traffics of users with traffic 1

2k that reside in link 1
and link 2 are x and 1− x, respectively; thus, the latencies of links 1 and 2 are∑

a∈A′ s(a) + x and
∑

a∈A\A′ s(a) + 1− x, respectively. We consider two cases:
Assume first that A′ = A. Then after at most k selfish steps the latency on

link 2 is at most 1 whereas the latency on link 1 is at least
∑

a∈A s(a) ≥ k. So
there exists an unsatisfied user a ∈ A, a contradiction to the fact that NASHIFY is
positive. So let A′ �= A. We show that this implies

∑
a∈A′ s(a)−∑

a∈A\A′ s(a) =
0. Assume |∑a∈A′ s(a) −∑

a∈A\A′ s(a)| �= 0. Since the traffics of users in A

are integer, this implies |∑a∈A′ s(a) −∑
a∈A\A′ s(a)| ≥ 1. The fact that A′ �=

A shows that at least one user with large traffic was transformed to link 2.
So we can make at most k − 1 selfish steps with the small traffics. However,
transforming k − 1 small traffics to the link with smaller latency leaves one
user with small traffic unsatisfied, a contradiction to the fact that NASHIFY is
positive. So |∑a∈A′ s(a)−∑

a∈A\A′ s(a)| = 0 which implies that PARTITION is
positive. 	
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Algorithm Anashify:
Input: A pure strategy profile L of n users with traffics
w1, . . . , wn.
Output: A pure strategy profile L′ that is a Nash equilibrium.

– Sort the user traffics in non-increasing order so that w1 ≥
. . . ≥ wn.

– For each user i := 1 to n, do
• remove user i from the link it is currently assigned;
• find the link � with the minimum latency;
• reassign user i to the link �.

od
– Return the resulting pure strategy profile L′.

Fig. 1. The algorithm Anashify

We remark that NASHIFY is NP-complete in the strong sense (cf. [8, Section
4.2]) if m is part of the input. Thus, there is no pseudopolynomial-time algorithm
for NASHIFY (unless P = NP). In contrast, there is a natural pseudopolynomial-
time algorithm Ak−nashify for k-NASHIFY, which exhaustively searches all se-
quences of k selfish steps; since a selfish step involves a (unsatisfied) user and a
link for a total of mn choices, the running time of Ak−nashify is Θ((mn)k). We
continue to present an algorithm Anashify that solves NASHIFY when n selfish
steps are allowed.

The algorithm Anashify sorts the user traffics in non-increasing order so that
w1 ≥ . . . ≥ wn. Then for each user i := 1 to n, it removes user i from the link
it is currently assigned, it finds the link � with the minimum latency, and it
reassigns user i to the link �. We prove:

Lemma 8. A greedy selfish step of an unsatisfied user i with traffic wi makes
no user k with traffic wk ≥ wi unsatisfied.

Proof. Let L = 〈l1, . . . , ln〉 be a pure strategy profile. Furthermore, let p = li,
and let q be the link with minimum latency. Denote λj and λ̂j the latency of
link j ∈ [m] before and after user i changed its strategy, respectively. Assume
that user k becomes unsatisfied due to the move of user i. Since only the latency
on link p and q changed, we have to distinguish between two cases. Either lk �= q
and user k wants to change its strategy to p, or lk = q and user k becomes
unsatisfied due to the additional traffic wi on link q.

First, assume that lk �= q, and that user k wants to change its strategy to p.
Since user i changed its strategy from p to q we know that λq < λ̂p and therefore
wk + λq < wk + λ̂p. So if user k wants to change its strategy to p, then user k
was already unsatisfied before user i changed its strategy, a contradiction.

For the case that the strategy of user k is q we define λ̃q = λq−wk. We have
∀j ∈ [m] : λj + wk ≥ λj + wi ≥ λq + wi = λ̃q + wk + wi. Therefore k stays
satisfied. 	
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Theorem 7. Let L = 〈l1, . . . , ln〉 be a pure strategy profile for n users with
traffics w1, ..., wn on m links with social cost SC(w,L). Then algorithm Anashify

computes a Nash equilibrium from L with social cost ≤ SC(w,L) using O(n lg n)
time.

Proof. In order to complete the proof of Theorem 7, we have to show that
algorithm Anashify returns a pure strategy profile L′ that is a Nash equilibrium
and has social cost SC(w,L′) ≤ SC(w,L). It is easy to see that SC(w,L′) ≤
SC(w,L), since for user j we always choose the link with lowest latency as its
strategy. After every iteration the user that changed its strategy is satisfied.
Since we go through the list of users in descending order of their traffic and
because of Lemma 8, all users that changed their strategy in earlier iterations
stay satisfied. Therefore after we went through the complete list of users, all
users are satisfied and thus L′ is a Nash equilibrium.

The running time of algorithm Anashify is O(n lg n) for sorting the n user
traffics, O(m lgm) for constructing a heap with all latencies in the input pure
strategy profile L, and O(n lgm) for finding the minimum element of the heap
in each of the n iterations of the algorithm. Thus, the total running time is
O(n lg n+m lgm+n lgm). The interesting case is whenm ≤ n (since otherwise, a
single user can be assigned to each link, achieving an optimal Nash equilibrium).
Thus, in the interesting case, the total running time of Anashify is O(n lg n). 	


Running the PTAS of Hochbaum and Shmoys [10] for scheduling n jobs on
m identical machines yields a pure strategy profile L such that SC (w,L) ≤
(1+ε) OPT(w). On the other hand, applying the algorithm Anashify on L yields
a Nash equilibrium L′ such that SC (w,L′) ≤ SC (w,L). Thus, SC (w,L′) ≤
(1 + ε)OPT (w). Since also OPT (w) ≤ SC (w,L′), it follows that:

Theorem 8. There exists a PTAS for BEST PURE NASH EQUILIBRIUM, for
the model of identical capacities.

7 Worst Pure Nash Equilibria

Denote with m-WCpNE the decision problem corresponding to the problem to
compute the worst-case pure Nash equilibrium for n users with traffics w1, . . . , wn

on m links. If m is part of the input, then we call the problem WCpNE. We first
show:

Theorem 9. Fix any traffic vector w and pure Nash equilibrium L. Then,
SC(w,L)
OPT(w) ≤ 2− 2

m+1 . Furthermore, this upper bound is tight.

Proof. Schuurman and Vredeveld [27] showed the tightness of the upper bound
for jump optimal schedules proved by Finn and Horowitz [5]. Since every pure
Nash equilibrium is also jump optimal, the upper bound follows directly. Greedy
selfish steps on identical links can only increase the minimum load over all links.
Thus, we can transform every jump optimal schedule into a Nash equilibrium
without altering the makespan, proving tightness. 	
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Theorem 10. It is NP-hard to find a pure Nash equilibrium L with WC(w)
SC(w,L) <

2 − 2
m+1 − ε, for any ε > 0. It is NP-hard in the strong sense if the number of

links m is part of the input.

Proof. We show that for a certain class of instances we have to solve BIN PACK-
ING in order to find a Nash equilibrium with desired property. BIN PACKING
is NP-complete in the strong sense [8]. Consider an arbitrary instance of BIN
PACKING consisting of a set of items U = {u1, . . . , u|U|} with sizes s(uj) ≤ δ,∑

uj∈U = m − 1, and K = m − 1 bins of capacity B = 1. From this in-
stance we construct an instance for the stated problem as follows: Set ε = 2δ.
There are n − 2 = |U| users with traffic wi = s(ui) and two users with traffic
wn−1 = wn = 1. Note that the social cost of a Nash Equilibrium is either 2 when
the users with traffic 1 are on the same link, or at most m+1

m + δ otherwise.
If BIN PACKING is negative, then there exists no Nash equilibrium with both

users with traffic 1 on the same link. Thus every Nash equilibrium has the desired
property. If BIN PACKING is positive, then there exists a Nash equilibrium with
both users with traffic 1 on the same link. The social cost of this Nash equilibrium
is WC(w) = 2. For any other Nash Equilibrium L where the users with traffic 1
use different links, SC(w,L) ≤ m+1

m + δ. This yields

WC(w)
SC(w,L)

≥ 2
m+1

m + δ
=

2
m+1

m + ε
2

=
2m

m+ 1 + εm
2

= 2− 2
m+ 1 + εm

2
− εm

m+ 1 + εm
2
> 2− 2

m+ 1
− ε .

So, to find a Nash equilibrium with desired property, we have to find a distribu-
tion of the small traffics w1, . . . , wn−2 to m−1 links which solves BIN PACKING.

Since BIN PACKING is NP-hard in the strong sense, if the number of bins
is part of the input, it follows that computing a pure Nash equilibrium L with
WC(w)

SC(w,L) < 2 − 2
m+1 − ε is also NP-hard in the strong sense, if m is part of the

input. 	

Since WCpNE is NP-hard in the strong sense [6], there exists no pseudopoly-

nomial algorithm to solve WCpNE. However, we can give such an algorithm for
m-WCpNE.

Theorem 11. There exists a pseudopolynomial-time algorithm for m-WCpNE.

Proof. We start with the state set S0 in which all links are empty. After inserting
the first i traffics the state set Si consists of all (2m)-tuples (λ1, w̃1, . . . , λm, w̃m)
describing a possible placement of the largest i traffics with λj being the latency
on link j and w̃j the smallest traffic placed on link j. We need at most m · |Si|
steps to create Si+1 from Si, and |Si| ≤ (Wi)m · (w1)m, where Wi =

∑i
j=1 wj .

Therefore the overall computation time is bounded by O(n ·m ·Wm ·(w1)m). The
best-case Nash equilibrium and the worst-case Nash equilibrium can be found
by exhaustive search over the state set Sn using O(n ·m ·Wm · (w1)m) time. 	


Remark 1. Theorem 11 also holds for the case of arbitrary link capacities.
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8 Conclusions and Discussion

In this work, we have studied the combinatorial structure and the computational
complexity of the extreme (either worst or best) Nash equilibria for the selfish
routing game introduced in the pioneering work of Koutsoupias and Papadim-
itriou [15].

Our study of the combinatorial structure has revealed an interesting, highly
non-trivial, combinatorial conjecture about the worst such Nash equilibrium,
namely the Fully Mixed Nash Equilibrium Conjecture, abbreviated as FMNE
Conjecture; the conjecture states that the fully mixed Nash equilibrium [18]
is the worst Nash equilibrium in the setting we consider. We have established
that the FMNE Conjecture is valid when restricted to pure Nash equilibria.
Furthermore, we have come close to establishing the FMNE Conjecture in its
full generality by proving that the social cost of any (pure or mixed) Nash
equilibrium is within a factor of 6 + ε, for any ε > 0, of that of the fully mixed
Nash equilibrium, under the assumptions that all link capacities are identical, the
number of users is equal to the number of links and the number of links is suitable
large. The proof of this result has relied very heavily on applying and extending
techniques from the theory of stochastic orders and majorization [17,28]; such
techniques are imported for the first time into the context of selfish routing,
and their application and extension are both of independent interest. We hope
that the application and extension of techniques from the theory of stochastic
orders and majorization will be valuable to further studies of the selfish routing
game considered in this paper and for the analysis and evaluation of mixed Nash
equilibria for other games as well.

Our study of the computational complexity of extreme Nash equilibria has
resulted in both positive and negative results. On the positive side, we have de-
vised, for the case of identical link capacities, equal number of users and links
and a suitable large number of links, a randomized, polynomial-time algorithm
to approximate the worst social cost within a factor arbitrarily close to 6 + ε,
for any ε > 0. The approximation factor 6 + ε of this randomized algorithm will
immediately improve upon reducing 6 further down in our combinatorial result
described above, relating the social cost of any Nash equilibrium to that of the
fully mixed. We have also introduced the technique of Nashification as a tool for
converging to a Nash equilibrium starting with any assignment of users to links
in a way that does not increase the social cost; coupling this technique with a
polynomial-time approximation scheme for the optimal assignment of users to
links [10] has yielded a polynomial-time approximation scheme for the social
cost of the best Nash equilibrium. In sharp contrast, we have established a tight
limit on the approximation factor of any polynomial-time algorithm that approx-
imates the social cost of the worst Nash equilibrium (assuming P �= NP). Our
approximability and inapproximability results for the best and worst Nash equi-
libria, respectively, establish an essential difference between the approximation
properties of the two types of extreme Nash equilibria.

The most obvious problem left open by our work is to establish the FMNE
Conjecture. Some progress on this problem has been already reported by Lücking
et al. [16], where the conjecture is proved in various special cases of the model of



Extreme Nash Equilibria 19

selfish routing introduced by Koutsoupias and Papadimitriou [15] and considered
in this work; furthermore, Lücking et al. disprove the FMNE Conjecture in a
different model for selfish routing that borrows from the model of unrelated
machines [11] studied in the scheduling literature.

The technique of Nashification, as an algorithmic tool for the computation
of Nash equilibria, deserves also further study. Some steps in this direction have
been taken already by Feldmann et al. [4].
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Abstract. In this talk I will discuss some models for mobile code from a
programming perspective. I will first present some requirements for this
style of programming, arising from the features of the “global comput-
ing” context. Then I will discuss some of the models and programming
languages that have been proposed - Obliq, pi-based and Linda-based
models, Ambients. I will then present a model based on the ideas of
“synchronous” programming, that is based on suspension and preemp-
tion primitives associated with locally broadcast events.
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Abstract. Given two proofs in a logical system with a confluent cut-
elimination procedure, the cut-elimination problem (CEP) is to decide
whether these proofs reduce to the same normal form. This decision
problem has been shown to be ptime-complete for Multiplicative Lin-
ear Logic (Mairson 2003). The latter result depends upon a restricted
simulation of weakening and contraction for boolean values in MLL;
in this paper, we analyze how and when this technique can be general-
ized to other MLL formulas, and then consider CEP for other subsys-
tems of Linear Logic. We also show that while additives play the role
of nondeterminism in cut-elimination, they are not needed to express
deterministic ptime computation. As a consequence, affine features are
irrelevant to expressing ptime computation. In particular, Multiplica-
tive Light Linear Logic (MLLL) and Multiplicative Soft Linear Logic
(MSLL) capture ptime even without additives nor unrestricted weaken-
ing. We establish hierarchical results on the cut-elimination problem for
MLL (ptime-complete), MALL (coNP-complete), MLLL (EXPTIME-
complete), and for MLLL (2EXPTIME-complete).

1 Introduction

Cut-elimination is naturally seen as a function from proofs to their normal form,
and we can derive from it an equally natural decision problem: if L is a logical
system with a confluent cut-elimination procedure, and we are given two proofs
in L, do they reduce to the same normal form? Call this the cut elimination
problem (CEP). When L has reasonable representations of boolean values as
proofs, an even simpler decision problem is to ask: given a proof, does it reduce
to the representation for “true”?

Through the Curry-Howard correspondence, we know that proofs in linear
logics represent programs, typically in a functional programming language with
� Supported by “Software Evolution for Declarative Programming” project in Grant-

in-Aid of Scientific Research on Priority Area “Informatics Studies for the Founda-
tion of IT Evolution,” MEXT, JAPAN.
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highly specified forms of copying, where cut-elimination serves as an interpreter:
normalization is evaluation. The cut-elimination problem is then a fundamental
question about program equivalence, and how hard it is to decide. Moreover, the
correspondence facilitates our identification of particular logics with associated
complexity classes, where our goal is to link the expressive power of proofs with
a suitably powerful interpreter that can “run” representations of programs in
that complexity class.

The cut-elimination problem is known to be non-elementary for simply typed
λ-calculus [Sta79], and hence for linear logic. Several low order fragments of sim-
ply typed λ-calculus are investigated in [Sch01]. In this paper, we consider the
decision problem for various weak subsystems of linear logic that have no expo-
nentials, or have very weak forms of them (i.e., the so-called “light” linear logics).
Such an investigation suggests another way to characterize the complexity of lin-
ear logics: not only by the complexity of theorem proving (proof search)—see, for
example, [Lin95]—but also by the complexity of theorem simplification (proof
normalization).

Even in intuitionistic multiplicative linear logic (IMLL), which has no ex-
ponentials, it is possible to simulate weakening and contraction for a restricted
set of formulas, including a formula whose proofs code boolean values. As a con-
sequence, we derive ptime-completeness for CEP in IMLL; see Section 2. This
result contradicts folkloric intuitions that MLL proofnets could be normalized
in logarithmic space—that is, with only a finite number of pointers into the
proofnet, presumably following paths in the style of the geometry of interac-
tion. Similar to the results for IMLL, in Section 3 we derive conp-completeness
results for IMALL, where we also have additives.

An alternative way to represent a complexity class by some logic is to con-
sider the functions realizable (say, by a Turing machine) in the class, and show
how each can be coded as a fixed proof (program) in the logic. For example, Light
Linear Logic has been shown to so represent ptime computations [Gir98], and
the use of additives in that proof was replaced by unrestricted weakening in Light
Affine Logic [Asp98,AR02]. We improve these results to show that such weaken-
ing is also unnecessary: Multiplicative Light Linear Logic is sufficient to capture
ptime (see Section 4), where we also prove that deciding CEP is complete for
doubly-exponential time. Finally, in Section 5 we show similar characterizations
of exponential time in Multiplicative Soft Linear Logic [Laf01].

2 Expressivity of Multiplicatives

2.1 Weakening in MLL

We restrict our attention to the intuitionistic (−◦,∀) fragment IMLL of MLL,
although all the results in this section carry over to the full classical MLL with
no difficulty. Moreover, we omit type annotation from the proof syntax, and
identify proofs of IMLL with type-free terms of linear λ-calculus.

A term (proof) of IMLL is either a variable x, or an application (tu) where
t and u are terms such that FV (t)∩FV (u) = ∅, or an abstraction (λx.t) where
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t is a term and x ∈ FV (t). Terms are considered up to α-equivalence, and the
variable convention is adopted. The substitution operation t[u/x] and the β re-
duction relation are defined as usual. The size |t| of a term t is the number of
nodes in its syntax tree. The type assignment rules are as follows1:

x :A � x :A
Γ � u :A x :A,∆ � t :C

Γ,∆ � t[u/x] :C
x :A,Γ � t :B

Γ � λx.t :A−◦B
Γ � u :A x :B,∆ � t :C

Γ, y :A−◦B,∆ � t[yu/x] :C
Γ � t :A

Γ � t :∀α.A α �∈ FV (Γ )
x :A[B/α], Γ � t :C
x :∀α.A, Γ � t :C

Here, Γ,∆ . . . stand for finite multisets of declarations x :A and FV (Γ ) denotes
the set of all free type variables in Γ . We say that a term t is of type A (or t is
a proof of A) if � t :A is derivable by the above rules. A type A is inhabited if
there is a term of type A.

Unit 1 and tensor product ⊗ are introduced by means of the second order
definitions:

1 ≡ ∀α.α−◦ α A⊗B ≡ ∀α.(A−◦B −◦ α)−◦ α
I ≡ λx.x t⊗ u ≡ λx.xtu

let t be I in u ≡ tu let t be x⊗ y in u ≡ t(λxy.u)

Tensor product is naturally extended to n-ary ones: t1⊗. . .⊗tn and let u be x1⊗
· · ·⊗xn in t. The expression λx1⊗· · ·⊗xn.t stands for λz.let z be x1⊗· · ·⊗xn in t.
We also use shorthand notations such as id ≡ λx.x, t ◦ u ≡ λx.t(u(x)), An ≡
A⊗ · · · ⊗A︸ ︷︷ ︸

n times

, A(n) −◦B ≡ A−◦ · · ·A−◦︸ ︷︷ ︸
n times

B.

Our first observation is that a version of weakening rule can be constructed
for a certain restricted class of IMLL formulas.

Definition 1 (Π1, Σ1, eΠ1, eΣ1). A type A is Π1 (Σ1) if it is built from type
variables by −◦, 1, ⊗ and positive (negative) occurrences of ∀. An eΠ1 (eΣ1)
type is like a Π1 (Σ1) type, but it may additionally contain negative (positive)
occurrences of inhabited ∀-types.

The above definition of Π1 and eΠ1 involves 1 and ⊗ as primitives, but we
may ignore them in practice, because negative occurrences of ⊗ and 1 can be
removed by isomorphisms ((A⊗B)−◦C) ◦−◦ (A−◦B−◦C) and (1−◦C) ◦−◦ C,
while positive occurrences can be replaced with their Π1 definitions.

Finite data types are naturally represented by closed inhabited Π1 types.
A typical example is the boolean type: B ≡ ∀α.α −◦ α −◦ α ⊗ α. Meanwhile,
functional types over those finite data types, such as (B −◦ B) −◦ B, are all
included in the class eΠ1.
1 Note that any term of linear λ-calculus has a propositional type [Hin89]; the role of

second order quantifiers here is not to increase the number of typable terms, but to
classify them by assigning a uniform type to structurally related terms.
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Theorem 1 (eΠ1-Weakening). For any closed eΠ1 type A, there is a term
wA of type A−◦ 1.

Proof. Without loss of generality, we may assume that A does not contain ⊗ and
1. Let B[1] be the type B with all free variables replaced with 1. By simultaneous
induction, we prove: (i) for any eΠ1 type B, B[1] � 1 is provable; and (ii) for any
eΣ1 type B, � B[1] is provable. When B is a variable, the claims are obvious.
When B is C −◦D, for (i) we derive (C −◦D)[1] � 1 from � C[1] and D[1] � 1,
and for (ii) we derive � (C −◦D)[1] from C[1] � 1 and � D[1]. Let B be ∀α.C.
If B is eΠ1, we derive (∀α.C)[1] � 1 from C[1] � 1. If B is eΣ1, � B is provable
by definition, and so is � B[1].

2.2 Encoding Boolean Circuits

Let A be an arbitrary type, and B be a type that supports weakening in the
sense we have just described; we can then define a projection function fstB :
A⊗B−◦A, given by fstB ≡ λx.let x be y⊗z in (let wB(z) be I in y). By using this
coding, we can then specify boolean values, weakening, and operations (including
duplication) as:

true ≡ λxy.x⊗ y :B
false ≡ λxy.y ⊗ x :B
wB ≡ λz.let zII be x⊗ y in (let y be I in x) :B−◦ 1
not ≡ λPxy.Pyx :B−◦B
or ≡ λPQ.fstB(P trueQ) :B−◦B−◦B
cntr ≡ λP.fstB⊗B(P (true⊗ true)(false⊗ false)) :B−◦B⊗B

Recall that a language X ⊆ {0, 1}∗ is logspace reducible to Y ⊆ {0, 1}∗ if
there exists a logspace function f : {0, 1}∗ −→ {0, 1}∗ such that w ∈ X iff
f(w) ∈ Y . Language X is ptime-complete if X ∈ ptime and each language
L ∈ ptime is logspace reducible to X; a decision problem is said to be ptime-
complete when the language defined by that problem is ptime-complete. The
canonical ptime-complete decision problem is the following:

Circuit Value Problem: Given a boolean circuit C with n inputs and 1 out-
put, and truth values x = x1, . . . , xn, is x accepted by C? [Lad75]

Using the above coding of boolean operations, the problem is logspace reducible
to CEP for IMLL:

Theorem 2 (ptime-completeness of IMLL, [Mai03]). There is a logspace
algorithm which transforms a boolean circuit C with n inputs and m outputs into
a term tC of type Bn −◦Bm, where the size of tC is O(|C|). As a consequence,
the cut-elimination problem for IMLL is ptime-complete.

Since binary words of length n can be represented by Bn, the theorem implies
that any finite function f : {0, 1}n −→ {0, 1}m can be represented by a term
tf :Bn −◦Bm. In this sense, MLL captures all the finite functions.
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2.3 Contraction in MLL

One of the key observations in proving Theorem 2 is that contraction is available
for B. We now generalize this observation, and show that the same holds for all
closed inhabited Π1 types (i.e. finite data types). First we show that conditional
is available in IMLL:

Lemma 1 (Conditional). Let t1 and t2 be terms such that x1 : C1, . . . , xn :
Cn � ti : D for i = 1, 2, and the type A ≡ C1 −◦ · · ·Cn −◦ D is eΠ1 (not
necessarily closed). Then there is a term if b then t1 else t2 such that

b :B, x1 :C1, . . . , xn :Cn � if b then t1 else t2 :D,

where (if true then t1 else t2) −→ t1 and (if false then t1 else t2) −→ t2.

Proof. Define if b then t else u ≡ fst∀α.A(b(λx.t)(λx.u))x, where x abbreviates
x1, . . . , xn and ∀α.A is the universal closure of A. This term can be typed as
required; λx.t and λx.u have type ∀α.A, thus b(λx.t)(λx.u) has type ∀α.A ⊗
∀α.A, to which the projection fst∀α.A applies. The rest is obvious.

Fix a quantifier-free type A of size k, built from a single type variable α. A
long normal form of type A is a term t in β-normal form such that � t :A has a
derivation in which all identity axioms are atomic, i.e., of the form x :α � x :α.
It is clear that every long normal form t of type A has size bounded by k, and
we may assume that all variables occurring in it are from a fixed set of variables
{x1, . . . , xk} (due to α-equivalence). Therefore, t can be written as a word in
{0, 1}n, where n = O(k log k). Since {0, 1}n can in turn be represented by Bn,
there must be a function �  which maps a given term u of size bounded by k
into a term �u of type Bn. Furthermore, as a consequence of Theorem 2, we
can associate to this coding two terms abs, app : Bn −◦Bn −◦Bn which satisfy

abs�y�t −→∗ �λy.t, if |λy.t| ≤ k and y ∈ {x1, . . . , xk};
app�t�u −→∗ �tu, if |tu| ≤ k.

We now show that the coding function �  can be internalized in IMLL, as
far as the long normal forms of a fixed type A is concerned. For each subtype B
of A, define σB(t) and τB(t) as follows:

σα(t) ≡ t σB−◦C(t) ≡ abs�yσC(t τB(�y))
τα(t) ≡ t τB−◦C(t) ≡ λz.τC(appt σB(z))

Here y is from {x1, . . . , xk} and �fresh, in the sense that �y does not occur
in t. The term σB(t) has type Bn whenever t has type B[Bn/α], and τB(t)
has type B[Bn/α] whenever t has type Bn. Finally, let codeA ≡ λx.σA(x) :
A[Bn/α]−◦Bn.

Lemma 2 (Internal Coding). Let A be as above. For each closed long normal
form t of type A, codeA(t) −→∗�t.
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For example, let A1 be ((α−◦ α)−◦ α)−◦ (α−◦ α)−◦ α, which has two long
normal forms t1 ≡ λFf.f(F (λy.y)) and t2 ≡ λFf.F (λy.fy)). The term codeA1

is defined as follows:

τα−◦α(�f) ≡ λx.app�fx
τ(α−◦α)−◦α(�F ) ≡ λg.app�F (abs�y(g�y))

codeA1 ≡ λz.abs�F (abs�f(zτ(α−◦α)−◦α(�F )τα−◦α(�f)))
It is then easy to check that codeF (ti) reduces to �ti for i = 1, 2.

Theorem 3 (Π1-Contraction). Let A be a closed Π1 type which is inhabited.
Then there is a contraction map cntrA : A −◦ A ⊗ A such that for any normal
form t of type A, cntrA(t) reduces to t′ ⊗ t′, where t′ is a long normal form
η-equivalent to t.

Proof. Without loss of generality, we may assume that A is free from ⊗ and 1.
Let A− be obtained from A by replacing all subtypes ∀β.C by C[α/β] for a fixed
variable α. Then, there is a canonical map isoA :A−◦A−[D/α] for any D which
preserves the structure of terms up to η-equivalence. By applying Lemma 2 to
the type A− we obtain a coding map codeA− :A−[Bn/α]−◦Bn.

Let t1, . . . , tl be the long normal forms of type A. By using the conditional in
Lemma 1 several times, we can build a term copyA :Bn −◦A⊗A which satisfies

copyA(u) −→∗ ti ⊗ ti, if u ≡ �ti;
−→∗ t1 ⊗ t1, otherwise.

Finally, define cntrA ≡ copyA ◦ codeA− ◦ isoA.

3 Additives as Nondeterminism

3.1 Additive Slices and Nondeterministic Cut-Elimination

We now move on to the multiplicative additive fragment of Linear Logic. We
again confine ourselves to the intuitionistic fragment IMALL, and furthermore,
we only consider & as the additive connective, although ⊕ could be added harm-
lessly2.

The terms of IMALL are defined analogously to the terms of IMLL, but
we have in addition: (i) if t and u are terms and FV (t) = FV (u), then so is
〈t, u〉; (ii) if t is a term, then so are π1(t) and π2(t). The type assignment rules
are extended with

Γ � t1 :A1 Γ � t2 :A2

Γ � 〈t1, t2〉 :A1 &A2

x :Ai, Γ � t :C
y :A1 &A2, Γ � t[πi(y)/x] :C

i = 1, 2

2 However, we have to be careful when considering the classical system, which is not
confluent as it stands [Gir87]. It could be overcome by adopting Tortora’s proofnet
syntax with generalized & boxes, which enjoys confluence [dF03]; see also [MR02].



On the Computational Complexity of Cut-Elimination in Linear Logic 29

and the reduction rules are extended with πi〈t1, t2〉 −→ ti, for i = 1, 2.
Note that some reductions such as (λx.〈x, x〉)t −→ 〈t, t〉 cause duplication,

hence the straightforward cut-elimination procedure costs exponential time in
general3. Our idea is to avoid duplication by computing each component of
〈t1, t2〉 separately. To formalize this idea, we recall the notion of slice [Gir87].

Definition 2 (Slices). A slice of a term t is obtained by applying the following
operation to t as much as possible: 〈u, v〉 �→ 〈u〉1, or 〈u, v〉 �→ 〈v〉2.

We say that two slices t and u (of possibly different terms) are compatible if
there is no context (i.e. a term with a hole) Φ such that t ≡ Φ[〈t′〉i], u ≡ Φ[〈u′〉j ],
and i �= j.

Lemma 3 (Slicewise checking). Two terms t and u are equivalent if and only
if for every compatible pair (t′, u′) of slices of t and u, we have t′ ≡ u′.

The reduction rules are naturally adapted for slices:

(λx.t)u sl−→ t[u/x] πi〈t〉i sl−→ t πi〈t〉j sl−→ fail, if i �= j.

Lemma 4 (Pullback). Let t −→∗u and u′ be a slice of u. Then there is a
unique slice t′ of t such that t′ sl−→∗u′.

Proof. See the following diagrams:

(λx.s)v s[v/x]

(λx.s′)v′ s′[v′/x]

�

�

�

�

�

�

�

�

�
slice of

� � � � � � ��sl

�
slice of

π1〈s, v〉 s

π1〈s′〉1 s′

�

�

�

�

�

�

�

�

�

�

�
slice of

� � � � � � ��sl

�
slice of

Note that there are exponentially many slices for a given term, but once a
slice has been chosen, the computation afterwards can be done in linear steps,
thus in quadratic time, since each slice is entirely a linear term. We therefore
have a nondeterministic polynomial time cut-elimination procedure, viewing the
slicing operation in Definition 2 as a nondeterministic reduction rule. Lemma 3
states that the equivalence of two normal forms can be checked slicewise, and
Lemma 4 assures that every slice of a normal form can be obtained by the above
nondeterministic procedure. Hence we may conclude that the cut-elimination
problem for IMALL is in conp.

3.2 Encoding a coNP-Complete Problem

Now we show that the following conp-complete problem is logspace reducible to
CEP for IMALL:
3 There is, however, a linear step cut-elimination procedure for terms (proofnets) of

lazy types, i.e., those which do not contain positive occurrences of & and negative
occurrences of ∀.
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Logical Equivalence Problem: Given two boolean formulas, are they logi-
cally equivalent? (cf. [GJ78])

By Theorem 2, every boolean formula C with n variables can be translated
into a term tC of type B(n) −◦B in O(log |C|) space. For each 1 ≤ k ≤ n, let

tak ≡ λf.λx1 · · ·xk−1.〈f true x1 · · ·xk−1, f false x1 · · ·xk−1〉,

which is of type ∀α.(B(k) −◦ α)−◦ (B(k−1) −◦ α& α), and define ta(tC) by

ta(tC) ≡ ta1(· · · (tantC) · · · ) : B & · · ·& B︸ ︷︷ ︸
2n times

.

It is clear that the term ta(tC) can be built from tC with the help of a counter
of size O(log n).

The normal form of ta(tC) consists of 2n boolean values, each of which cor-
responds to a “truth assignment” to the formula C. For example, ta(or) re-
duces to 〈〈or true true, or true false〉, 〈or false true, or false false〉〉, and thus to
〈〈true, true〉, 〈true, false〉〉.

Therefore, two formulas C and D with n variables are logically equivalent if
and only if ta(tC) and ta(tD) reduce to the same normal form.

Theorem 4 (conp-completeness of IMALL). The cut-elimination problem
for IMALL is conp-complete.

Remark 1. We do not claim that the complexity of MALL is conp. What we
have shown is that a specific problem, CEP for MALL, is complete for conp.
If we had considered the complement of CEP, then the result would have been
np-completeness. Likewise, we could obtain a C-completeness result for any class
C in the polynomial time hierarchy by complicating the problem more and more.

However, we do claim that additives have something to do with nondeter-
minism, as they provide a notion of nondeterministic cut-elimination, as well as
a very natural coding of nondeterministic Turing machine computation.

4 Multiplicative Light Linear Logic and 2EXPTIME

In this section, we show that the intuitionistic multiplicative fragment IMLLL of
Light Linear Logic is already expressive enough to represent all polynomial time
functions; it needs neither additives (as in [Gir98]) nor unrestricted weakening
(as in [Asp98]).

Since our concern is not normalization but representation, we do not need
to introduce a proper term calculus with the polynomial time normalization
property (see [Asp98] and [Ter01] for such term calculi). We rather use the
standard λ-calculus and think of IMLLL as a typing system for it.

The type assignment rules of IMLLL are those of IMLL with the following:
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x :B � t :A
x :!B � t :!A

Γ � t :C
x :!B,Γ � t : C

x :!A, y :!A,Γ � t :C
z :!A,Γ � t[z/x, z/y] :C

x :A, y :B � t :C
x : !A, y :§B � t :§C

where x : B may be absent in the first rule. Define W to be ∀α.!(B −◦ α −◦
α) −◦ §(α −◦ α). Then each word w = i1 · · · in, where n ≥ 0 and ik ∈ {0, 1}, is
represented by w ≡ λcx.ci1 ◦ · · · ◦ cin(x) : W, where ik is false if ik = 0, and
is true if ik = 1. A function f : {0, 1}∗ −→ {0, 1}∗ is represented by a term t if
f(w) = v ⇐⇒ tw −→∗v for every w ∈ {0, 1}∗.

Simulation of polynomial time Turing machines in Light Linear Logic (see
[Gir98,AR02]) consists of two parts; one for coding of polynomials and the other
for simulation of one-step transition (as well as initialization and output extrac-
tion). Since the former is already additive-free in [Gir98], we focus on the latter
here.

Let M be a Turing machine with two symbols4 and 2n states, and let

δ : Symbols× States −→ Symbols× States× {left, right}

be the associated instruction function. A configuration of M can be specified by
a triple 〈w1, w2, q〉, where the stack w1 ∈ {0, 1}∗ describes the non-blank part of
the tape to the left of the head, the stack w2 ∈ {0, 1}∗ describes the non-blank
part of the tape to the right of the head, and q ∈ States denotes the current
state. By convention, w1 is written in the reverse order, and w1 includes the
content of the cell currently scanned.

The configurations are represented by terms of type ID[Bn], where ID[A] is
defined by ID[A] ≡ ∀α.!(B−◦α−◦α)−◦§(α−◦α−◦(α⊗α⊗A)). Note that ID[A]
is a generalization of W, which allows to encode two words and an additional
datum of type A into one term. For example, the configuration 〈010, 11, q〉 is
represented by

〈010, 11, q〉 ≡ λc.λx1x2.(c0 ◦ c1 ◦ c0(x1))⊗ (c1 ◦ c1(x2))⊗ q,

where q is a term of type Bn coding q ∈ States.
To simulate one-step transition, it is convenient to divide it into two parts:

the decomposition part and the combination part.

Lemma 5 (Decomposition). There is a term dec : ID[Bn]−◦ID[B⊗B⊗Bn]
such that for any configuration 〈i1 · · · in, j1 · · · jm, q〉,

dec〈i1 · · · in, j1 · · · jm, q〉 −→∗〈i2 · · · in0, j2 · · · jm0, i1, j1, q〉.

4 Although more than two symbols are required in general, we describe the two symbols
version here for simplicity. The extension is straightforward.
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Proof. We largely follow [NM02]. Define dec to be λz.λc.G(z F (c)), where the
“step” function F and the “basis” function G are defined as follows:

F (c) ≡ λb1.λb2 ⊗ w.(b1 ⊗ (cb2w))
G(y) ≡ λx1x2.let (y(0⊗ x1)(0⊗ x2)) be (i1 ⊗ w1)⊗ (j1 ⊗ w2)⊗ q in

(w1 ⊗ w2 ⊗ i1 ⊗ j1 ⊗ q)
c :B −◦ α−◦ α � F (c) :B−◦D −◦D

y :D −◦D −◦D ⊗D ⊗Bn � G(y) :α−◦ α−◦ (α⊗ α⊗B⊗B⊗Bn)

Here, D stands for B⊗ α. The behavior of F may be illustrated by

(F (c)i1) ◦ · · · ◦ (F (c)in)(0⊗ x) −→∗ i1 ⊗ (ci2 ◦ · · · ◦ cin ◦ c0(x)) :D,

while G plays the roles of initialization and rearrangement of the output.

Lemma 6 (Combination). There is a term com : ID[B⊗B⊗Bn]−◦ ID[Bn]
such that for any 〈w1, w2, i1, i2, q〉 with δ(i1, q) = (s, q′,m),

com〈w1, w2, i1, i2, q〉 −→∗ 〈w1, si2w2, q
′〉, if m = left;

−→∗ 〈i2sw1, w2, q
′〉, if m = right.

Proof. Let left ≡ true and right ≡ false. By Theorem 2, there is a term delta such
that delta i1q reduces to s⊗ q′ ⊗m when δ(i1, q) = (s, q′,m). Now the key trick
is to use the boolean value m as “switcher.” Observe that msi2 reduces to s⊗ i2
(i2 ⊗ s) and mw1w2 reduces to w1 ⊗ w2 (w2 ⊗ w1) when m is left (right)—thus
m can be used to determine on which side of the tape we push symbols, and in
what order they are pushed.

Formally, let cntr3 : B −◦ B3 be a generalized contraction which produces
three copies of a given boolean value, and define G(m,w1, w2, i2, s, c1, c2) to be

let cntr3(m) be m1 ⊗m2 ⊗m3 in (let m1si2 be j1 ⊗ j2 in

(let m2w1w2 be v1 ⊗ v2 in m3v1(c1j1 ◦ c2j2(v2)))),
which is of type m :B, w1 :α,w2 :α, i2 :B, s :B, c1 :B−◦ α−◦ α, c2 :B−◦ α−◦ α �
G(m,w1, w2, i2, s, c1, c2) :α⊗ α. Then, depending on the value of m, we have

G(true, w1, w2, i2, s, c, c) −→∗w1 ⊗ (cs ◦ ci2(w2));
G(false, w1, w2, i2, s, c, c) −→∗(ci2 ◦ cs(w1))⊗ w2.

Finally, the term com is defined to be

λz.λcx1x2.let zcx1x2 be w1 ⊗ w2 ⊗ i1 ⊗ i2 ⊗ q in

(let delta i1q be s⊗ q′ ⊗m in G(m,w1, w2, i2, s, c, c)⊗ q′).

Although the “cons” variable c is used three times in com, it does not matter
since it is assigned a type !(B−◦ α−◦ α).

The desired one-step transition function is obtained by composing dec and
com.
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Theorem 5 (IMLLL represents ptime functions). A function f :{0, 1}∗−→
{0, 1}∗ is computable in dtime[nk] if and only if it is represented by an IMLLL
term t of type W−◦ §dW, where d = O(log k).

In general, cut-elimination in Light Affine Logic, hence in IMLLL, requires
of time O(s2

d+1
), where s is the size of a proof and d is its depth, which counts

the nesting of ! and § inferences. The reason why we have a characterization of
ptime above is that we consider a fixed program t, so all the terms tw to be
evaluated have a fixed depth. On the other hand, CEP allows the depth to vary,
thus it results in a characterization of doubly-exponential time as in [NM02].

Theorem 6 (2exptime-completeness of IMLLL). The cut-elimination

problem for IMLLL is complete for 2exptime =
⋃

k dtime[22nk

].

5 Multiplicative Soft Linear Logic and EXPTIME

In this section, we show that the intuitionistic multiplicative fragment IMSLL of
Soft Linear Logic is expressive enough to represent all polynomial time functions,
as conjectured by Lafont [Laf01]. As before, we do not introduce a term calculus
for IMSLL, thinking of it as a type assignment system for the standard λ-
calculus.

The type assignment rules of IMSLL are those of IMLL with the following:

x1 :B1, . . . , xm :Bm � t :A
x1 :!B1, . . . , xm :!Bm � t :!A

m ≥ 0
x1 :A, . . . , xn :A,Γ � t :C

z :!A,Γ � t[z/x1, . . . , z/xn] :C
n ≥ 0

The former is called soft promotion and the latter is called multiplexing. A term
which can be typed without multiplexing is called generic. Note that every
generic term is a linear λ-term.

The policy of MSLL programming is to write each program in a generic
way; multiplexing (i.e. duplication) is used only in data. Due to this restriction,
simulation of Turing machines is more sophisticated than before. Let M and δ
be as before. Define IDk[A] to be ∀α.!(B −◦ α −◦ α) −◦ ((α −◦ α)k ⊗ A). Then
each term of type IDk[A] encodes k words as well as an element of type A. For
instance, the configuration 〈010, 11, q〉 is represented by

〈010, 11, q〉 ≡ λc.(c0 ◦ c1 ◦ c0)⊗ (c1 ◦ c1)⊗ q :ID2[Bn].

Lemma 7 (Decomposition). For every k ≥ 1, there exists a generic term
dec of type IDk[Bn] −◦ ID2k[B ⊗ Bn] such that for any 〈i1w1, . . . , ikwk, q〉 ∈
({0, 1}+)k × States,

dec〈i1w1, . . . , ikwk, q〉 −→∗〈w1, . . . , wk, i1, . . . , ik, i1, q〉.
Note that the output contains two occurrences of i1; the first is a word of

length 1 which will be thrown away, while the second is a boolean value which
will be used as input to the δ function in the next combination part.
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Fig. 1. “Write 1 and move right” (↓ indicates the head position)

Proof. The idea is essentially the same as the ψ function of [Laf01]. Consider the
case k = 1. The term dec is defined to be λz.λc.λz ⊗ q.(zF (c)(id⊗ id⊗ 0))⊗ q,
where the step function F is defined by

F (c) ≡ λb.let cntr(b) be b1 ⊗ b2 in (λg ⊗ h⊗ e.fst(((h ◦ g)⊗ cb1 ⊗ b2)⊗ e))
c :B−◦ α−◦ α � F (c) :B−◦ ((α−◦ α)2 ⊗B)−◦ ((α−◦ α)2 ⊗B).

The behavior of F is illustrated as follows;

(F (c)i1) ◦ · · · ◦ (F (c)in)(id⊗ id⊗ 0) −→∗ (ci2 ◦ · · · ◦ cin)⊗ ci1 ⊗ i1.

The case k ≥ 2 is similar, except that we remove all redundant boolean values
i2, . . . , ik by weakening for B.

Now let us move on to the combination part. Due to the genericity restriction,
we face two difficulties: (i) we cannot create a new tape cell, since the “cons”
variable c of type !(B −◦ α −◦ α) cannot be used twice; (ii) we cannot simply
remove an unnecessary tape cell of type α−◦α, since we do not have weakening
for the open type α−◦α. To resolve the first difficulty, we prepare two additional
stacks which are filled with 0’s and 1’s respectively, and instead of creating a new
cell, we pick one from these two stacks according to the instruction δ. To resolve
the second difficulty, we further prepare a ‘garbage’ stack where unnecessary tape
cells are collected. Thus we associate five stacks in total with a configuration.
The transition corresponding to “write 1 and move right” is illustrated in Figure
1.

Lemma 8 (Combination). There is a generic term com of type ID10[B ⊗
Bn] −◦ ID5[Bn] such that for any 〈w1, . . . , w5, i1, . . . , i5, b, q〉 ∈ ({0, 1}+)5 ×
{0, 1}5 × {0, 1} × States with δ(b, q) = (s, q′,m),

com〈w1, . . . , w5, i1, i2, 0, 1, i5, b, q〉
−→∗ 〈w1, 0i2w2, w3, 1w4, i1i5w5, q

′〉 if s = 0 and m = left;
−→∗ 〈w1, 1i2w2, 0w3, w4, i1i5w5, q

′〉 if s = 1 and m = left;
−→∗ 〈i20w1, w2, w3, 1w4, i1i5w5, q

′〉 if s = 0 and m = right;
−→∗ 〈i21w1, w2, 0w3, w4, i1i5w5, q

′〉 if s = 1 and m = right.
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Keep in mind that the third and the fourth stacks are to be filled with 0’s
and 1’s, so that we always find 0 and 1 at positions i3 and i4, respectively.

Proof. As before, there is a term delta such that delta bq reduces to s ⊗ q′ ⊗m
when δ(b, q) = (s, q′,m). Define 1Right by

1Right ≡ (i2 ◦ i4 ◦ w1)⊗ w2 ⊗ (i3 ◦ w3)⊗ w4 ⊗ (i1 ◦ i5 ◦ w5)

w1 :α−◦ α, . . . , w5 :α−◦ α, i1 :α−◦ α, . . . , i5 :α−◦ α � 1Right : (α−◦ α)5,

which corresponds to the case s = 1 and m = right (see Figure 1) and gives
five stacks as output. 0Left, 1Left and 0Right are defined analogously. By using
conditionals in Lemma 1 three times, we obtain

G(m, s,w1, . . . , w5, i1, . . . , i5) ≡
(

if m then if s then 0Left else 1Left
else if s then 0Right else 1Right

)

com ≡ λz.λc.let zc be w1 ⊗ · · · ⊗ w5 ⊗ i1 ⊗ · · · ⊗ i5 ⊗ b⊗ q in

(let delta bq be s⊗ q′ ⊗m in G(m, s,w1, . . . , w5, i1, . . . , i5)⊗ q′).

The rest of coding is basically the same as in [Laf01] except the initialization
part, where we need to fill two stacks with 0’s and 1’s. As in [Laf01], we have no
idea how to extract a single word as output from the final configuration consisting
of five stacks. Instead, we can extract the boolean value which tells us whether
the final configuration is accepting or not. Thus the representation theorem below
is stated in terms of languages rather than functions in general. Furthermore,
due to the genericity restriction, we need to relax the definition of representation
slightly. Define WS to be ∀α.!(B−◦ α −◦ α)−◦ α −◦ α. We say that a language
X ⊆ {0, 1}∗ is represented by a term t :Wl

S−◦B if w ∈ X ⇐⇒ t w · · ·w
︸ ︷︷ ︸
l times

−→∗true

for every w ∈ {0, 1}∗.
Theorem 7 (IMSLL captures ptime). A language X ⊆ {0, 1}∗ is accepted
in dtime[nk] if and only if it is represented by a generic term t of type Wl

S−◦B,
where l = O(k).

As in the case of IMLLL, the complexity of CEP exceeds polynomial time.
A difference is that cut-elimination in IMSLL only requires exponential time
O(sd+2) [Laf01]. Hence we have:

Theorem 8 (exptime-completeness of IMSLL). The cut-elimination prob-
lem for IMSLL is complete for exptime under logspace reducibility.

Proof (sketch). Suppose that a language X be accepted by a Turing machine M
in time O(2nk

). For each word w of length n, the following terms (of suitable
types) can be constructed in O(k log n) space: (1) the Church representation w
of w; (2) the term exp(nk) of size and depth O(nk), which reduces to the tally
integer 2nk

; (3) the term Mn,k(w, x) with two variables w and x, which outputs
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the result of x-steps computation on the input w, when w is of length n and
x is of the same type as exp(nk). By putting them together, we obtain a term
Mn,k(w, exp(nk)) which normalizes to true if and only if w ∈ X.
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Abstract. Random Access Machines (RAMs) are a deterministic
Turing-complete formalism especially well suited for being encoded in
other formalisms. This is due to the fact that RAMs can be defined start-
ing from very primitive concepts and operations, which are unbounded
natural numbers, tuples, successor, predecessor and test for equality to
zero. Since these concepts are easily available also in theorem-provers
and proof-assistants, RAMs are good candidates for proving Turing-
completeness of formalisms using a proof-assistant. In this paper we de-
scribe an encoding in Coq of RAMs into a Linda Calculus endowed with
the Ordered Semantics. We discuss the main difficulties that must be
faced and the techniques we adopted to solve them.

1 Introduction

A Random Access Machine (RAM) [12] is a computational model composed of
a finite set of registers and of a program, that is a sequence of simple numbered
instructions, like arithmetical operations (on the content of registers) or condi-
tional jumps. A register holds an unbounded natural number. The state of a
RAM is the set of values stored in each register plus the program counter (PC),
which is the address of the next instruction to execute. The computation starts
from an initial state and proceeds iterating the two operations of fetching and
executing the next instruction (determined by the PC). The computation ends
as soon as the value of the PC is greater than the index of the last instruction.

The RAMs formalism is Turing complete and has several characteristics that
make it particularly appealing for being encoded into other formalisms to show
their Turing completeness. First of all a RAM can be defined using only very
primitive concepts and operations, which are unbounded natural numbers, tu-
ples, successor, predecessor and test for equality to zero. These concepts are
likely to be already provided in any formalism which we want to show Turing
complete. Moreover it is possible to reduce the set of instructions to only two
elements, Succ (which increments a register) and DecJump which decrements a
� Work partially supported by the European Project IST-33562 MoWGLI
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register if it is not zero or jumps to a given address otherwise. As a consequence
the proofs of completeness of the encodings are very small, having to address
only a couple of cases and only three possible transitions. Finally, RAMs are
completely deterministic, which prevents the usual difficulties given by the sim-
ulation of non-deterministic systems into deterministic ones.

Just to mention a couple of examples, RAMs have been successfully encoded
into several process algebras, such as asynchronous CCS [13] and the ambient
calculus [14]. Even if providing the encoding can be challenging, the soundness
and completeness proofs are usually given in just a few lines, and heavily rely
on the reader intuition to figure out the details by case reasoning.

In the last few years, several process calculi have been formalized, using
proof-assistants, in both constructive and classical logics. Surprisingly, to our
knowledge nobody tried to reproduce a proof of Turing-completeness of those
calculi. Nevertheless, when we started this work, we used to think that giving
one of those proofs by means of a sound and complete encoding of RAMs into the
calculus would have been completely trivial. The reason of our belief was that
the same characteristics that make RAMs so well suited for their encoding in
other formalisms also make their definition in a logical framework quite straight-
forward. Moreover the soundness proof would just be a laborious induction on
the derivation.

In this paper we present our experience in using the proof-assistant Coq
[2] to provide an encoding of RAM into a Turing complete process algebra.
We also give a constructive proof of the soundness property of the encoding.
As usual, the soundness proof exploits the completeness property. However, we
axiomatically assume the completeness of the calculus, that can be proved by
induction over the structure of RAMs and that of their derivations. Since the
RAM formalism is deterministic, the required induction is almost straightforward
and presents no major challenge, even if it is extremely laborious and time
consuming. The soundness proof quickly turned out to require a major effort
and its proof-script is currently more than 10.000 lines long and it is still under
development, since we plan to provide soon also the proof of completeness. The
up-to-date set of Coq files are available for download at the following address:
http://www.cs.unibo.it/RAMs to Linda.tgz.

In section 2 we briefly introduce the Coq proof-assistant and the main fea-
tures of its expressive logic. In section 3 we review the usual definition of RAMs
and we present its formal definition in the Coq system. In section 4 we introduce
a minimal process algebra built around the Linda primitives [5], originally pro-
posed in [1]. The formal definition in Coq is also provided. In section 5 we present
the encoding of RAMs into the Linda Calculus of section 4 and we outline the
formal proof of soundness. Finally, in section 6 we present our conclusions and
future work proposal.

2 The Coq Proof Assistant

Coq [2] is one of the most advanced proof-assistants, used in Europe both in
academical and industrial settings. It is based on an expressive logical frame-



A Constructive Proof of the Soundness of the Encoding 39

work, the Calculus of (Co)Inductive Constructions (CIC), which allows both
constructive and classical proofs and that is particularly suitable for proving the
correctness of programs with respect to their specifications, with the additional
possibility of automatically extracting a certified program from a constructive
proof of the existence of a function that satisfies a given specification.

Briefly, a Coq development is made of a list of definitions, inductive def-
initions and theorems whose correctness is checked by the system. Inductive
definitions, which are one of the main features of CIC, can be used to define
both inductive data types (lists, trees, natural numbers) and inductive proper-
ties (by giving the set of inference rules that define the property). It is possible
to define by structural recursion total functions over an inductive data-type (in
the style of the system T); in the same way it is also possible to prove by struc-
tural induction properties over an inductive data-type. A primitive notion of
case analysis over inductive defined terms is also provided.

Since the main topic of the paper is the technique used for the encoding of
the soundness proof in Coq, the interested reader needs a general expertise in
the world of proof-assistants and in the Coq system in particular. Due to lack
of space, the required knowledge can not be provided in this paper.

3 Random Access Machines

The following is the usual presentation of a particular class of RAMs with only
two-instructions. The proof of their Turing completeness was given in [11].
Definition 1. A Random Access Machine (RAM) is a pair (r,p) where r =
(r1, . . . , rn) is the set of registers and the program p = (i1, . . . , im) is a finite list
of instructions. Each instruction can have one of the following two forms:

– Succ(rj): adds 1 to the content of register rj
– DecJump(rj , s): if the content of register rj is not zero, then decreases it by

1 and go to the next instruction; otherwise jumps to instruction s

Definition 2. Let R be a RAM whose registers are (r1, . . . , rn). A configuration
of R is a tuple (p, c1, . . . , cn) where the program counter (PC) p is the index of
the next instruction to be executed and cl is the content of the register rl.

Definition 3. Let R be a RAM whose registers are (r1, . . . , rn) and whose pro-
gram is (i1, . . . , im). A configuration (p, c1, . . . , cn) moves into a configuration
(q, c′1, . . . , c

′
n) (notation: (p, c1, . . . , cn) −→R (q, c′1, . . . , c

′
n)) iff:

– ip = Succ(rj) and c′j = cj + 1 and ∀l �= j. c′n = cn and q = p+ 1
– ip = DecJump(rj , s) and cj > 0 and c′j = cj − 1 and ∀l �= j. c′n = cn and
q = p+ 1

– ip = DecJump(rj , s) and cj = 0 and ∀l. c′n = cn and q = s

Definition 4. A configuration (p, c1, . . . , cn) is stuck or final when it cannot
move. This happens only when p > m, where m is the length of the program.

As usual, given a RAM R and an initial configuration C, we say that C
reduces to C ′ when C −→∗

R C ′ and C ′ is final, where −→∗
R is the reflexive and

transitive closure of −→R.
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3.1 RAMs in Coq

The only non-trivial issue on the formalization of RAMs in Coq is the way
registers are encoded. In fact the tuple (r1, . . . , rn) of registers just plays the
role of a finite set of indexes such that no instruction refers to a non-existent
index. The only additional constraint we need to impose on the set is that there
exists a decidable equality relation over its elements.

Since the list of instructions is finite and since registers not referred by any
instruction play no role during the reduction, we could have used just the type
of natural numbers for register indexes (with no concern about the fact that the
set of indexes is actually infinite). In this case it would have been possible in
Coq to define a function to compute the greatest used register index. Instead we
preferred to stick ourselves to this alternative definition:

Definition register := nat.

Inductive instruction : Set :=

Succ : register→instruction

| DecJump : register→nat→instruction.

Inductive uses at most [r:register] : instruction→Prop :=

okSucc : ∀r’:register.(r’<r)→(uses at most r (Succ r’))

| okDecJump :

∀r’:register.∀n:nat.(r’<r)→(uses at most r (DecJump r’ n)).

Record RAM : Set :=

{ registers number : nat ;

program : (list instruction) ;

program ok : (AllS (uses at most registers number) program)

}.
i.e. a RAM is a record where the number of available registers is made explicit

and a proof is provided of the fact that each instruction in the program does not
refer to any unavailable register. We prefer this formalization for several reasons:

– This formalization is closer to the traditional one and does not identify two
RAMs with the same program, but a different set of available registers.
Unused but still available registers play a role in the traditional proofs of
some operations used to combine or derive RAMs from other RAMs.

– The fact that the number of available registers is invariant during the reduc-
tion holds trivially for RAMs, but can be much more difficult to prove when
RAMs are encoded into other calculi. That invariant plays an important role
in the soundness and completeness proofs. For example, in section 5 we will
see that we need to encode in the same data-type (i.e. natural numbers)
both the indexes of registers and the value of the program counter (which
is an unbounded natural number). The easiest way to do that is to encode
each program counter value p as M + p where M is the number of available
registers. The decoding function relies on the fact that M does not change
during the reduction.
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We must now formalize configurations. In particular we must choose a rep-
resentation of the state of the registers. The choice has a great impact on the
way two configurations are checked for equality: we may choose an encoding
where two configurations are equal iff they are equal using Leibniz equality; or
we can provide an ad-hoc equality predicate. The first scenario seems at first
more appealing, since Leibniz equality is better handled by Coq’s tactics with
respect to a user-provided one. Moreover, a possible implementation could be
using ordered lists of natural numbers of length n. Unfortunately, reasoning
on ordered lists of fixed length may complicate some proofs and introduce the
usual problems related to the fact that every operation working on them (and,
in particular, the state update function) must be proof-irrelevant on the proof
argument. Proof-irrelevance and dependent types do not combine easily in in-
tensional proof theories as the one of Coq [3,4].

A good compromise is using functions from natural numbers to natural num-
bers, using extensional equality to compare the content of available registers
only :

Record configuration : Set :=

{ program counter : nat ;

registers : register→nat

}.
Definition RAM configuration equality :

nat→configuration→configuration→Prop

:=

λregisters no:nat.λH,H’:configuration.

Cases H of

(Build configuration program counter registers)⇒
Cases H’ of

(Build configuration program counter’ registers’)⇒
program counter=program counter’∧
∀r:register.
(r<registers no)→
(registers r)=(registers’ r)

end

end.

The relation −→R is given as an inductive predicate step. Its definition and
some of its properties (determinism, decidability of being stuck, non modification
of unavailable registers) as well as the definition of −→3

R and its basic properties
are straightforward.

Since we have just defined an encoding of RAMs into CIC, we should prove
the adequacy of the encoding; a detailed proof would be quite complex since it
heavily relies on the metatheory of CIC. Nevertheless, the usual sources of com-
plexity that are involved in the encodings of calculi — as the handling of bound
variables and α-conversion — are not raised by RAMs, due to the simplicity of
the formalism. As a consequence, the adequacy property is not much interesting
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and it is essentially pretty obviously granted by construction. The same remark
holds also for the Linda calculus that we are going to present in the next section.

The whole definition of RAMs, their operational semantics and the proof of
these basic properties are provided in the file RAMs.v which is just 366 lines long.

4 The Linda Calculus

Linda [5] is the most prominent representative of the family of coordination
languages based on the principle of generative communication [5,6]: a sender
communicates with a receiver through a shared data space (called tuple space
TS) where emitted messages are collected; the receiver can read the message or
even remove it from the TS; a message generated by a process has an independent
existence in the TS and can be concurrently manipulated by any process.

The Linda coordination primitives are meant to be embedded into an already
existent programming language. Moreover their semantics is not specified for-
mally and there are several reasonable interpretations for the semantics of some
operations. In particular, it is unclear if a sender who is emitting a message
should block until the message actually appears in the tuple space (ordered se-
mantics) or is free to continue immediately its execution (unordered semantics).

Busi, Gorrieri and Zavattaro defined in [1] a minimal process algebra con-
taining the coordination primitives of Linda together with parallel composition
and a limited form of recursion (the replication operator [10] guarded on inputs).
The algebra is named Linda Calculus. In the same paper they proved that the
Linda Calculus is Turing complete only when the ordered semantics is assumed.
The first part of the proof is made showing a sound and complete embedding
of RAMs in the Linda Calculus with ordered semantics. The proof of soundness
and completeness is just three lines long in the full version of the paper.

In this section we present a formalization in Coq of the Linda Calculus pre-
sented in [1]. The next section is devoted to the formalization of the encoding.

LetMessages be a denumerable set of message names, ranged over by a, b, . . .
The syntax of the Linda Calculus is defined by the following grammar:

P ::= < a > | C | P |P
C ::= 0 | η.C | µ?C C | C||C

where:

η ::= in(a) | rd(a) | out(a) | !in(a) (1)
µ ::= inp(a) | rdp(a) (2)

Agents, ranged over by P,Q, . . ., consist of the parallel composition of the mes-
sages already in the TS (each one denoted by one agent < a >) and the con-
current programs denoted by C,D, . . ., that share the tuples. A program can
be a terminated program 0, a prefix form η.P , an if-then-else form µ?P Q, or
the parallel composition of programs. A prefix η can be one of the Linda prim-
itives in(a), rd(a) or out(a) indicating the withdrawing, the reading (without
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Table 1. Operational semantics (symmetric rules omitted).

(1) < a >
a

−→ 0 (2) in(a).P
a

−→ P

(3) rd(a).P
a

−→ P (4) !in(a).P
a

−→ P |!in(a).P
(5) inp(a)?P Q

a
−→ P (6) rdp(a)?P Q

a
−→ P

(7) inp(a)?P Q
¬a
−→ Q (8) rdp(a)?P Q

¬a
−→ Q

(9) P ||Q τ
−→ P |Q (10) out(a).P

τ
−→ < a > |P

(11) P
α

−→ P ′

P |Q
α

−→ P ′|Q
α �= ¬a (12) P

¬a
−→ P ′ Q

a
−→�

P |Q
¬a
−→ P ′|Q

(13) P
a

−→ P ′ Q
a

−→ Q′

P |Q
τ

−→ P ′|Q′ (14) P
a

−→ P ′ Q
a

−→ Q′

P |Q
τ

−→ P ′|Q

consumption) or the emission of message a, respectively. We also consider the
bang operator !in(a) which is a form of replication guarded on input operations.
The if-then-else forms are used to model the inp(a) and rdp(a) Linda primitives:
inp(a)?P Q (rdp(a)?P Q) is a program which requires the message a to be con-
sumed (or simply read); if a is present, the program P is executed, otherwise Q
is chosen. In the following, Agent denotes the set containing all possible agents.

To give the Ordered Semantics, we use the labeled transition system (Agent,
Label, −→) where Label = {τ} ∪ {a, a, a,¬a | a ∈ Messages} (ranged over by
α, β, . . . ) is the set of possible labels. The labeled transition relation −→ is the
smallest one satisfying all the axioms and rules in Table 1 plus the symmetric
rules of (11) - (14). Due to lack of space, we can not explain here every rule. The
interested reader can find the description of all the rules but (9) in [1]. Rule (9) is
missing in the original paper since in it no syntactic distinction is made between
the inactive parallel composition || and the active parallel composition | .

Particular attention should be given to rule (10), which is the one that char-
acterizes the Ordered Semantics: the continuation P and the message < a >
reach the tuple space at the same time.

Note that rule (12) uses a negative premise. The authors of [1] claim their
operational semantics to be well defined since they can prove that the transi-
tion system is strictly stratifiable. To formalize rule (12) in Coq we prefer to
substitute the negative premise with an equivalent decidable auxiliary predicate
NoMessagea, which is the smallest predicate such that:

(A) NoMessagea(< b >) ifa �= b
(B) NoMessagea(C)
(C) NoMessage(P ) NoMessage(Q)

NoMessage(P |Q)

In what follows we are interested only in computations consisting of reduction
steps, i.e. the internal derivations that a stand-alone agent is able to perform
independently of the context. In the Linda Calculus reductions are not only
the usual derivations labeled with τ , but also those labeled with ¬a. In fact, a
derivation P

¬a
−→ P ′ indicates that P can become P ′ if no tuples < a > are avail-
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able in the external environment, which is always true for stand-alone processes.
Formally we define a new transition −→ (called step) in the following way:

Definition 5. −→ = (
⋃

a

¬a
−→ ) ∪ τ

−→

Since in process algebras there is no explicit notion of state, the only rea-
sonable form of termination of an agent is the absence of outgoing transitions.
Because of the presence of the bang operator, it is senseless to distinguish be-
tween properly terminated (i.e. consisting of the parallel composition of agents
0) and deadlocked agents. Thus we say that an agent Q is stuck if Q �−→ and
we say that an agent P terminates if there exist a computation leading to a
deadlock, i.e. there exists a stuck agent Q such that P −→∗ Q.

No structural congruence relation is defined in [1] on the agents. Nevertheless
many statements given in the paper are true only assuming that processes are
identified up to commutativity and associativity of parallel composition and
neutrality of 0 with respect to parallel composition. Here we prefer to avoid the
definition of a structural congruence relation. Instead in section 5 we will state
the soundness theorem using the congruence relation induced by the equivalence
relation on RAMs1.

4.1 The Linda Calculus in Coq

The formalization in Coq of the Linda Calculus syntax and its transition system
(where rule (12) is modified as already described) is straightforward. Due to
lack of space we do not show here all the constructors of the inductive predicate
OStep which formalizes the labeled transition:

Definition message := nat.

Inductive action : Set :=

In : message→action

| Rd : message→action

| Out : message→action

| BangIn : message→action.

Inductive program : Set :=

Dead : program

| Action : action→program→program

| IfThenElseAction : action→program→program→program

| Parallel : program→program→program.

Inductive agent : Set :=

Message : message→agent

| Program : program→agent

| AParallel : agent→agent→agent.

1 The two congruence relations are provably equal, but we do not provide the formal
proof neither here nor in Coq.
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Inductive label : Set :=

Tau : label

| LIn : message→label

| LRead : message→label

| LOut : message→label

| LNot : message→label.

(* A step in the ORDERED semantics. *)

Inductive OStep : agent→label→agent→Prop :=

SMessage :

∀m:message.(OStep (Message m) (LOut m) (Program Dead))

| SOut :

(* This is the transition that makes the semantics ORDERED *)

∀m:message.∀P:program.
(OStep

(Program (Action (Out m) P))

Tau

(AParallel (Message m) (Program P)))

| ...

The formalization of the Linda Calculus can be found in the Linda.v file,
which is about 130 lines long.

5 The Encoding

We start by reviewing the encoding of RAMs into Linda Calculus agents given
in [1].

To model a RAM in the Linda Calculus we need both an encoding for the
configurations and one for the programs. The program counter in the configu-
ration (p, c1, . . . , cn) is represented by the program counter tuple < p > while
the contents of registers rl is modeled by cl occurrences of the tuple < rl > (for
l = 1 . . . n):

[|(p, c1, . . . , cn)|] def=< p > |< r1 > | . . . | < r1 >︸ ︷︷ ︸
c1 times

| . . . |< rn > | . . . | < rn >︸ ︷︷ ︸
cn times

To model the program R composed of the sequence of instructions i1 . . . im we
consider the parallel composition of m agents, each one modeling an instruction:

[|R|] def= [|i1|]1| . . . |[|im|]m
[|Succ(rj)|]i def= !in(pi).out(rj).out(pi+1)
[|DecJump(rj , s)|]i def= !in(pi).inp(rj)?out(pi+1) out(ps)

Each RAM instruction is realized by means of three internal steps: the first one
(!in(pi)) consumes the program counter; the second update/tests the contents of
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the register; the third one introduces the new program counter. The instruction
is never consumed because of the replication operator.

Finally, the agent modeling the program R that starts its computation from
the configuration (1, c1, . . . , cn) is [|R|]|[|(1, c1, . . . , cn)|].

The part of [1] that describes the encoding ends with the following theorem:

Theorem 1. Let R be a RAM program, then:

– Soundness: if [|R|]|[|(p, c1, . . . , cn)|] −→3 Q then there exists a unique config-
uration (p′, c′1 . . . , c

′
n) such that:

Q = [|R|]|[|(p′, c′1, . . . , c
′
n)|] and (p, c1, . . . , cn) −→R (p′, c′1, . . . , c

′
n)

– Completeness: if (p, c1, . . . , cn) −→R (p′, c′1, . . . , c
′
n) then also

[|R|]|[|(p, c1, . . . , cn)|] −→3 [|R|]|[|(p′, c′1, . . . , c
′
n)|]

Proof. By cases on the possible instructions that can be activated. In the proof
of soundness we use the fact that the program counter tuple < pi > in the
term [|R|]|[|(pi, c1, . . . , cn)|] ensures that only the agent corresponding to the ith

instruction can move. �

Note in the soundness statement the usage of the equality = between agents.
That equality should be intended up to the undefined structural congruence rule.

5.1 The Encoding in Coq

As already suggested in Sect. 3, we decide to encode both register indexes (i.e.
numbers in the interval [0 . . . n)) and program counter values (i.e. unbounded
integers) as natural numbers: a register index i is mapped to i; a program counter
value p is mapped to n+ p.

The encoding relation [| |] is straightforwardly formalized in Coq as a set of
(recursive) definitions. As an example, we show here only the two functions that
map the RAM registers into the corresponding agent:

Fixpoint agent of register [r: register ; v:nat] : agent :=

Cases v of

O ⇒ (Program Dead)

| (S n) ⇒ (AParallel (Message r) (agent of register r n))

end.

Fixpoint agent of registers [f:register→nat ; n:nat] : agent :=

Cases n of

O ⇒ (Program Dead)

| (S m) ⇒
(AParallel

(agent of register m (f m))

(agent of registers f m))

end.
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Technical induction/recursion principles in the spirit of [7] are sometimes
provided to reason on the recursive definitions. Example:

Theorem agent of registers ind :

∀f:(register→nat).∀registers no:nat.∀P: agent→Prop.

(P (Program Dead))→
(∀r:nat.
(r<registers no)→
(P (agent of registers f r))→
(P (AParallel

(agent of register r (f r)) (agent of registers f r))))→
(P (agent of registers f registers no)).

The functions that define the encoding can be found in the file
RAMs to Linda.v, which is only 84 lines long.

We are now left with the formalization of the soundness and completeness
statements and their proof.

5.2 The Soundness Proof in Coq

Coq is based on a constructive logic and allows automatic code extraction from
constructive proofs. In particular, since we decide to stick ourselves to construc-
tive rules only, we can try to automatically obtain code for:

– Mapping RAMs into Linda agents.
– Recognizing Linda agents that are encoding of a RAM.
– Mapping Linda agents to the RAMs they encode.
– Executing RAMs and Linda agents.

Of course, as we will see later, the price to pay is not neglectable.
Before addressing soundness, we need to characterize Linda agents that are

encodings of RAMs. Let’s fix two positive integer numbers N and M . A Linda
agent is the encoding of a RAM with N available registers and whose program
has length M iff:

– the agent is made of parallel compositions of messages < m > (representing
either registers or program counters), dead processes 0 and processes which
are images of a Succ or a DecJump instruction (i.e. have either the shape
!in(p1).out(r).out(p2) or the shape !in(p1).?inp(r).out(p2) out(p3) where r ∈
[0,M) and pi ≥M for each i

– there is exactly one message < m > such that m ≥ N (which is the encoding
of the PC m−N)

– for every m ∈ [M, . . . ,M +N) there is exactly one sub-process which is the
image of an instruction and that is guarded by !in(m). The process is the
encoding of the (m−M)-th instruction

– for every m ≥ M + N there is no sub-process which is the image of an
instruction and that is guarded by !in(m)
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Formally, we define in Coq the following (decidable) inductive predicates in Prop:

Inductive is RAM instruction [registers no : nat ; pc : nat] :

program→Prop

Inductive is RAM image no pc [registers no : nat] : agent→Prop

Inductive is RAM image pc [registers no : nat] : agent→Prop

Inductive instruction does not occur [registers no:nat; n:nat] :

agent→Prop

Inductive instruction occurs once [registers no:nat ; n:nat] :

agent→Prop

Inductive is RAM image

[registers no : nat ; program length : nat ; P:agent] : Prop

:=

Build is RAM image:

(is RAM image pc registers no P)→
(∀n:nat.(n<program length)→
(instruction occurs once registers no (plus registers no n) P))→

(∀n:nat.(n≥program length)→
(instruction does not occur registers no (plus registers no n) P))→

(is RAM image registers no program length P).

Note that several of these predicates are used to characterize only sub-
processes of RAM images: for example is RAM image no pc is satisfied by RAM
image fragments where all the messages are in the [0, n) interval (i.e. are regis-
ters).

We also need to provide some more predicates to identify the transient states
that are assumed by the Linda agent during the two intermediate steps of the
−→3 transition:

Inductive is RAM image succ [registers no:nat ; r:register ; pc:nat]:

agent→Prop

Inductive is RAM image decjump

[registers no:nat ; r:register ; pc’:nat ; pc:nat] : agent→Prop

Inductive is RAM image out pc [registers no:nat ; pc:nat] :

agent→Prop

Inductive instruction does not occur2 [registers no:nat; n:nat] :

agent→Prop

Inductive instruction does not occur3 [registers no:nat; n:nat] :

agent→Prop
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The first predicate is used to check that no PC message appears in the agent
and that the “body” of the Succ instruction does (i.e. there is exactly one sub-
process out(r).out(pc)); the second predicate does the same for the DecJump
instruction; the third predicate checks that no PC message appears in the agent
and that there is exactly one sub-process out(pc); the last two predicates are
almost equivalent to the instruction does not occur predicate, but are used
to state that no instruction guarded by !in(n) is present in agents satisfying
respectively the is RAM image succ/is RAM image decjump predicates or the
is RAM image out pc predicate.

Since all the preceding predicates are given in Prop2, the Coq system is able
to automatically generate only the corresponding induction and inversion prin-
ciples over Prop (i.e. those where the property P to prove is not computationally
relevant and lives in Prop). Nevertheless, since all of them are decidable, it is
possible to manually define also the corresponding recursion principles (which
are extremely useful when proving constructive existential quantifications). In
particular, for each inductive predicate we prove a subset of the following lem-
mas:

1. The decidability proof
2. The corresponding recursion principles (which are proved by induction on the

object of the property and using its decidability lemma and the decidability
property of all the other properties used in the type of the constructors)

3. An inversion principle in Set (i.e. over computational properties)
4. A dependent version of the induction principle

The defined induction/recursion principles can be easily exploited to prove
by induction static properties of RAM images. For example, we use them to
prove that no agent satisfies both is RAM image no pc and is RAM image pc.

The predicate is RAM image pc is particularly important, since it guarantees
the existence of just one program counter message in the agent. Later on we
will have to prove that an agent satisfying this predicate can make a τ move
unless the corresponding RAM is stuck. The τ move will be obtained when
the program counter message will be consumed by the program that encodes
the corresponding instruction, i.e. the program counter message will perform a

p−→ move and the instruction program a
p−→ move where p is the value of the

program counter message. To be able to give a constructive proof of this fact,
we need to provide a computable function (in Set) that, given a process that
satisfies is RAM image pc, gives back its program counter:

2 Prop is the sort of all the types whose terms have no computational content; subterms
of sort Prop are removed during code extraction. The propositions whose type is Prop
can also be proved classically without interfering with the extraction machinery. Set,
instead, is the sort of the types whose terms have computational content; subterms
of sort Set are kept during code extraction. Thus any subterm of sort Set can not
perform any elimination step over a term of sort Prop, since that term will not be
available in the extracted code.
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Definition pc of RAM image pc :

Πregisters no:nat. ΠP:agent.

(is RAM image pc registers no P) → message.

The definition must be given carefully to ensure its proof-irrelevance in the third
argument:

Lemma pc of RAM image pc proof irrelevant :

∀registers no:nat. ∀P:agent.
∀P0,P1:(is RAM image pc registers no P).

(pc of RAM image pc registers no P P0) =

(pc of RAM image pc registers no P P1).

We must also prove several technical lemmas ensuring that the definition is
compositional, i.e. that the value of the program counter of an agent which is a
parallel composition is the same value computed on the branch which actually
holds the program counter. E.g.:

Lemma pc of AParallel equal pc1 :

∀registers no:nat. ∀P,Q:agent.
∀HPQ:(is RAM image pc registers no (AParallel P Q)).

∀HP:(is RAM image pc registers no P).

(pc of RAM image pc ? ? HPQ) = (pc of RAM image pc ? ? HP).

Once we have characterized all the possible states a RAM image can assume,
we need to start describing the dynamic properties of the system. In particular,
for every possible label and for every possible RAM image state, we need to
study which are the possible moves and their outcome. As an example, we show
here a very small subset of the main lemmas we need to prove3:

an agent P that satisfies is RAM image no pc

1. does not perform any ¬a−→ move
2. does not perform any

a−→ move
3. can perform a a−→ move only if a is a program counter (i.e. a ≥ n)
4. can perform a a−→ move only if a is a register (i.e. a < n)
5. if P a−→ P ′ then P ′ satisfies is RAM image no pc

an agent P that satisfies is RAM image pc

1. does not perform any ¬a−→ move
2. does not perform any

a−→ move
3. can perform a a−→ move only if a is a program counter (i.e. a ≥ n)

4. ∗ P p−→ P ′ where p is the PC computed by pc of RAM image pc

5. if P a−→ P ′ then P ′ satisfies is RAM image no pc

6. the a−→ move is deterministic both in a and in the produced agent

3 The lemmas marked with a ∗ are the one with a computational content.
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an agent P that satisfies instruction does not occur

1. can not perform a a−→ move on the instruction that does not occur

an agent P that satisfies instruction occurs once

1. ∗ performs a r−→ move on the instruction guarded by !in(r) that occurs
just once

2. the a−→ move is deterministic

an agent P that satisfies is RAM decjump

1. does not perform any
a−→ move

2. can perform a a−→ move only if a is a program counter (i.e. a ≥ n) or if
a is the register to be decremented

3. can perform a a−→ move only if a is a register (i.e. a < n)
. . .

Proving all these statements without any form of automation turned out to be
extremely annoying, since for each proof we need to consider many cases, most
of them absurd. Moreover many of the proofs are very similar, since (1) the
different predicates just state slightly different properties over similar classes
of processes and (2) many cases are due to Linda process constructors or to
Linda transitions that are symmetric cases of already considered situations. For
example, let’s consider a typical proof fragment:

Proof. Given two agents Q and Q′ such that is RAM image pc(Q) and Q τ−→ Q′,
we need to prove a certain property P(Q). We proceed by induction on the proof
of the hypothesis is RAM image pc(Q). The two inductive cases are symmetric.
The first one is:

Case AParallel1: let Q1, Q2 be two agents such that is RAM image pc(Q1),
is RAM image no pc(Q2) and Q1|Q2

τ−→ Q′. We need to prove P(Q). We
proceed by cases on the definition of τ−→. Four out of six cases are absurd:
Case Tau-Right: Q2

τ−→ Q′
2. Absurd because every process P such that

is RAM image no pc(P ) is stuck.
Case In-Out: Q1

r−→ Q′
1 and Q2

r−→ Q′
2. Absurd since r < n (because Q2

has no program counter) and r ≥ n since Q1 is a RAM image and the
only sub-processes that starts with an rd( ) guard are the instructions
which expect to read a program counter message.

Case Read-Out: Q1
r−→ Q′

1 and Q2
r−→ Q′

2. Absurd since a RAM image
can not move with a

r−→ move.
Case Out-Read: Dual of the previous case.

There are several alternative ways to reduce the size of the proofs and the
time spent to develop them:

– Register all the lemmas in the database used by the Auto tactic of Coq to
try to automatically prove the theorems.

– Develop ad-hoc tactics able to prune out all the typical absurd cases.
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– Develop a whole library of elimination principles used to reason on the dy-
namic properties of processes.

The first solution is not very effective and leads to very poor performances
during the proof-searching/compilation phase. In fact, just expanding the few
Auto tactics we were using to the script they were producing, we cut down
the overall compilation time from 2m30s to less than 2m. Moreover, as for the
second solution, only the size of the script is reduced, and not the size of the gen-
erated proof-object (lambda-term). Big proof-objects make type-checking slow,
are unmanageable when exported to libraries of mathematical knowledge [8], are
difficult to data-mine and to render [9]. Moreover, ad-hoc tactics are a form of
implicit knowledge that can not be easily shared with other proof assistants, nor
presented to the users.

The third solution is the one we tried to pursue4. The idea is to introduce
one elimination principle à la McBride [4] for each combination of moves and
preconditions on the agents that perform the move. In appendix A we show the
thesis of the elimination principle over the dynamic behavior of a process P such
that is RAM image pc(P ), instruction occurs oncepc(P ) and P

τ−→ P ′. The
elimination principle can be exploited to enormously reduce the size of both the
scripts and the proof-objects of, for example, proof of reduction invariants.

A typical case of a statement whose proof is a simple application of one of
these elimination principles5 is:

Lemma is RAM image decjump Tau message multiplicity eq:

∀registers no:nat. ∀r,m:register. ∀pc,pc’:nat. ∀P,P’:agent.
r�=m→
(is RAM image decjump registers no r pc’ pc P)→
(OStep P Tau P’)→
(message multiplicity m P)=(message multiplicity m P’).

Once that we have characterized all the possible transitions that RAM images
are subject to in each of their states, we can state the completeness axiom and
put our attention on the soundness proofs:

Axiom RAMs to Linda completeness:

(r:RAM ; c,c’:configuration)

(RAMs.step r c c’)→
(step3

(agent of RAM and configuration r c)

(agent of RAM and configuration r c’)).

4 So far only a few elimination principles have been introduced. We plan to give all
the needed principles and re-prove all the theorems using them.

5 The one describing the dynamic behavior of RAM images where a DecJump instruc-
tion is under execution.
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Theorem RAMs to Linda soundness:

∀r:RAM. ∀c:configuration. ∀P’:agent.
∀H:(step3 (agent of RAM and configuration r c) P’).

(Σc’:configuration |

(ΣH0:(RAMs.step r c c’)

let Hc be (agent of RAM and configuration is RAM image r c) in

let Hc’ be (is RAM image step3 is RAM image ? ? ? ? Hc H) in

let Hc’’ be (agent of RAM and configuration is RAM image r c’) in

(RAM image equivalence’ ? ? P’

(agent of RAM and configuration r c’) Hc’ Hc’’))).

Note that, to state the soundness theorem, we need to provide another set
of lemmas that grants that

– the encoding of a RAM satisfies the predicate is RAM image (Lemma
agent of RAM and configuration is RAM image). The proof is quite
straightforward.

– after three steps a RAM image becomes again a RAM image (Lemma
is RAM image step3 is RAM image). The proof is very complex and relies
on all the previous lemmas.

Many of the difficulties met in the second proof derive from the combination of
dependent types (used all over the theory) with proof-irrelevant definitions (the
function to extract the program counter from a RAM image). In particular we
were forced to introduce the following axiom6.

Axiom pc of RAM image pc dependent proof irrelevant:

∀registers no:nat. ∀P,P’:agent.
∀H:(is RAM image pc registers no P).

∀H’:(is RAM image pc registers no P’).

P=P’→
(pc of RAM image pc registers no P H) =

(pc of RAM image pc registers no P’ H’).

Notice that both the compleness axiom and the axiom we have just intro-
duced are non-informative (i.e. they are of sort Prop). As a consequence, they do
not inhibit code extraction, even if inconsistent axioms can destroy the strong
normalization property of the extracted code. Indeed, Coq 7.2 successfully ex-
tracts code from all the modules that make up our development.

The proof of the soundness theorem is obtained by the completeness axiom
and by two further lemmas which state that:

6 The axiom is surely related to the axiom used to derive Leibniz equality from John-
Major equality [4]. As a future work, it should be possible to show the consistency
of our axiom by adapting one of the modes that validates the John-Major equality
axiom.
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1. A RAM is stuck iff its RAM image is:
2. The −→3 relation is deterministic up to the congruence induced by the

equality on RAMs:

Theorem step3 almost deterministic:

∀registers no:nat. ∀program length:nat. ∀P,P’,P’’:agent.
(is RAM image registers no program length P)→
(step3 P P’)→(step3 P P’’)→
∀H:(is RAM image registers no program length P’).

∀H’:(is RAM image registers no program length P’’).

(RAM image equivalence’ registers no program length P’ P’’ H H’).

The two lemmas are proved combining all the previously proved lemmas.
A key observation to prove the second lemma is that the transition relation of
RAM images is almost deterministic: the only situation where more than one
transition is possible is the execution of the DecJump(r, s) instruction, that can
remove from the tuple space any instance of the < r > message in case the value
of the register r (in the corresponding RAM) is greater than 1.

Once the lemmas have been proved, the proof becomes almost straightfor-
ward. Informally, if the agent that encodes the RAM r and the configuraiont c
can move in a new agent P ′, than the couple (r, c) must move in a new state
(r, c′) (because of the first lemmas); the completeness property grants that the
image P of (r, c) moves into a new agent P ′′; since the second lemma states
that the reduction −→3 is deterministic (up to the congruence induced by the
equality on RAMs), we must conclude that P ′ = P ′′, ending the proof.

All the lemmas and proof can be found into the two files
RAMs to Linda proofs.v and RAMs to Linda proofs1.v, which are currently
about 8700 lines long and require some minutes to be compiled.

6 Conclusions

In this paper we present the formalizations in Coq of both Random Access Ma-
chines (RAMs) and a Turing complete version of a process algebra built around
the Linda coordination primitives. We also give an encoding of RAMs into the
process algebra and a constructive proof of the soundness of the encoding.

The formalizations of the two calculi as well as the formalization of the en-
coding are almost straightforward. The soundness proof, instead, turned out to
be extremely long and complex. The deep reasons of the complexity of some
parts of the proof can be traced back to the constructive nature of the proof and
the heavy usage of functions having both a computational content and proof-
irrelevant arguments (i.e. functions of the form Πx : A.(P x)→ B : Set). More
concretely, though, the proof required so much work because of lack of automa-
tion in the Coq system: in particular Coq provides only a very limited support
for the generation of inversion/induction principles over decidable predicates and
no automation at all for the handling of “similar” or “symmetric” cases.
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Finally, we strongly believe that both the size of the proof script and of the
proof-objects can be highly reduced introducing many more elimination and in-
version principles to characterize the dynamic behavior of the processes. The
generation of these principles, though, should be automatized, since even guess-
ing their precise statement is a non-trivial task.

The difficulties we have met and the solutions proposed seem to be unrelated
from the particular proof we are examining. Thus further work could be spent
in trying to generalize the technique and apply it to other proofs about the
mutual encoding of formalisms. Automatizing part of the proofs would be very
promising. As a matter of facts, though, it is evident that without any additional
automation, the Coq system is not very effective in dealing with this kind of
proofs: even for relatively trivial facts, the time spent in the development of the
boring details of a constructive and fully formalized proof largely overcomes the
time required by the interesting steps.

In the next few months we are going to finish the whole development giving
also the completeness proof and extracting the code to read-back a RAM from
its Linda encoding.

A long term goal would be to define inside the RAM formalism its own
interpreter and then proving the undecidability of the halting problem. This
would really pave the way to far more interesting results, as the proof that the
two versions of the Linda Calculus (with Ordered and Unordered Semantics) are
not equivalent.
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A One Example of Elimination Principle Characterizing
a Dynamic Behaviour

Lemma is RAM image pc instruction occurs once Tau ind:
∀registers no:nat. ∀P:(agent→agent→Prop).
(∀P0,P’,Q:agent.
∀H:(is RAM image pc registers no P0).
(is RAM image no pc registers no Q)→
let pc be (pc of RAM image pc ? ? H) in
(* This hypothesis can be strengthened *)
(instruction occurs once registers no pc (AParallel P0 Q))→
(P P0 P’)→(P (AParallel P0 Q) (AParallel P’ Q)))→

(∀P0,Q,Q’:agent.
(is RAM image no pc registers no P0)→
(is RAM image pc registers no Q)→
let pc be (pc of RAM image pc ? ? H) in
(* This hypothesis can be strengthened *)
(instruction occurs once registers no pc (AParallel P0 Q))→
(P Q Q’)→(P (AParallel P0 Q) (AParallel P0 Q’))→

(∀P0,P’,Q,Q’:agent. ∀r:register.
∀H:(is RAM image pc registers no P0).
(is RAM image no pc registers no Q)→
let pc be (pc of RAM image pc ? ? H) in
(* This hypothesis can be strengthened *)
(instruction occurs once registers no pc (AParallel P0 Q))→
(OStep P0 (LOut r) P’)→
(OStep Q (LIn r) Q’)→
(P (AParallel P0 Q) (AParallel P’ Q’)))→

(∀P0,P’,Q,Q’:agent. ∀r:register.
(is RAM image no pc registers no P0)→
∀H:(is RAM image pc registers no Q).
let pc be (pc of RAM image pc ? ? H) in
(* This hypothesis can be strengthened *)
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(instruction occurs once registers no pc (AParallel P0 Q))→
(OStep P0 (LIn r) P’)→
(OStep Q (LOut r) Q’)→
(P (AParallel P0 Q) (AParallel P’ Q’)))→

∀a,a’:agent.
∀H:(is RAM image pc registers no a).
let pc be (pc of RAM image pc ? ? H) in
(instruction occurs once registers no pc a)→
(OStep a Tau a’)→
(P a a’).
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1 Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
{dellapenna,intrigila,melatti}@di.univaq.it

2 Dip. di Informatica Università di Roma “La Sapienza”,
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Abstract. Many reactive systems are actually Stochastic Processes. Au-
tomatic analysis of such systems is usually very difficult thus typically
one simplifies the analysis task by using simulation or by working on a
simplified model (e.g. a Markov Chain).
We present a Finite Horizon Probabilistic Model Checking approach
which essentially can handle the same class of stochastic processes of
a typical simulator. This yields easy modeling of the system to be anal-
ysed together with formal verification capabilities. Our approach is based
on a suitable disk based extension of the Murϕ verifier.
Moreover we present experimental results showing effectiveness of our
approach.

1 Introduction

Correctness of digital hardware, embedded software and protocols can often
be verified with Model Checking techniques [5,9,14,13,18,26] by modeling such
systems as Nondeterministic Finite State Systems (NFSS).

However, there are many reactive systems that exhibit uncertainty in their
behavior, i.e. which are stochastic systems. Examples of such systems are: fault
tolerant systems, randomized distributed protocols and communication proto-
cols. Typically stochastic systems cannot be conveniently modeled using NFSS.
However they can often be modeled as Stochastic Processes [19].

Unfortunately, automatic analysis of stochastic processes is quite hard, apart
from some noticeable special classes of stochastic processes. For this reason typ-
ically approximated approaches are used. Namely: simulation or model approxi-
mation. Simulation carries out an approximate analysis on the given stochastic
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process. Model approximation carries out an exact analysis on a simplified (ap-
proximated) model of the given stochastic process. For example, Markov Chains
[3,11] can be used to approximate a given stochastic process.

Automatic analysis of Markov Chains can be effectively performed by using
Probabilistic Model Checkers [28,6,17,23,12,25,4,7,8,2,15,27].

Probabilistic Model Checkers have been developed also for some particular
class of Stochastic Processes [10], namely those in which the probability of an
outgoing transition from state s is a function of the sojourn time in state s
(semi-Markov Processes).

Stochastic Simulators [19] typically can handle fairly general stochastic sys-
tems. However, from a simulator we can only get information about the average
behavior of the system at hand, whereas from a model checker we also get infor-
mation about low probability events.

In this paper we focus on Discrete Time Stochastic Processes (SP). Our goal
is to compute the probability that a given SP reaches an error state in at most
k steps starting from a given initial state (Finite Horizon Verification).

We will present an approach and a tool to carry out Finite Horizon Verifi-
cation of a class of SP that is essentially as large as the class of SP that can be
handled by many simulators (e.g. [27,19]). To the best of our knowledge, this is
the first time that such an approach is presented. Our results can be summarized
as follows.

1. We present (Section 3) Probabilistic Rule Based Transition Systems(PRBTS)
and show (Section 4) how PRBTS can be used to model a fairly large class
of Finite State SP (Discrete Time Stochastic Processes). By using finite pre-
cision real numbers as in [21] (and as in any simulator) we can also handle
Discrete Time Hybrid Stochastic Processes, i.e. stochastic processes which
have continuous (i.e. finite precision real) as well as discrete state variables.

2. PRBTS can be used as a low level language to define stochastic systems. This
is useful to separate the task of designing high level languages for system
descriptions from the task of designing Verification Engines. As an example,
we show (Section 5) how a high level Communicating Processes definition of
a stochastic system can be translated, in linear time, into a low level PRBTS
definition of the same system.

3. We show (Section 7) how FHP-Murϕ [22], a suitable disk based extension of
the Murϕ verifier [18], can be used for automatic Finite Horizon Verification
of PRBTS.
Indeed, using FHP-Murϕ, PRBTS can be used as a low level language to
define stochastic systems whereas FHP-Murϕ can be used as a low level
Verification Engine for Finite Horizon Verification of stochastic systems.

4. We show (Section 7) effectiveness of our approach by presenting experimental
results on automatic analysis of two nontrivial stochastic systems using with
FHP-Murϕ.
Our experimental results show that FHP-Murϕ can handle more general
models than state-of-the-art Probabilistic Model Checkers like PRISM [24,2,16]
or TwoTowers [27].



60 Giuseppe Della Penna et al.

On the other hand PRISM as well as TwoTowers can verify more general
properties (e.g. all PCTL [12] properties for PRISM) than FHP-Murϕ. In
fact FHP-Murϕ can only handle Finite Horizon Verification.

2 Basic Notation

We give some basic definitions on Finite State/Discrete Time General Stochastic
Processes. For more details on stochastic processes see, e.g., [20].

Definition 1.

1. A Finite State/Discrete Time Stochastic Process (shortened SP in the
following) is a triple X = (S,P, q) where S is a finite set (of states), q ∈ S
is the initial state, Seq(S) is the set of all finite sequences of elements of S,
and P : S × Seq(S)× S → [0, 1] is a transition probability function, i.e. for
all s ∈ S, π ∈ Seq(S),

∑
t∈S P(s, π, t) = 1. (We included the initial state q

in the SP definition to simplify our exposition.)
2. An execution sequence (or path) in the SP X = (S,P, q) is a nonempty

(finite or infinite) sequence π = s0s1s2 . . . where si are states and

P(si, s0 . . . si−1, si+1) > 0

for i = 0, 1, . . .. If π = s0s1s2 . . . we write π(k) for sk, and we write π|k
for the sequence s0s1s2 . . . sk−1. The length of a finite path π = s0s1s2 . . . sk

is k (number of transitions), whereas the length of an infinite path is ∞.
We denote with |π| the length of π. We denote with Path(X , s) the set of
infinite paths π in X s.t. π(0) = s. If X = (S,P, q) we write also Path(X )
for Path(X , q).

3. For s ∈ S we denote with
∑

(s) the smallest σ-algebra on Path(X , s) which,
for any finite path ρ starting at s, contains the basic cylinders { π∈Path(X , s)
| ρ is a prefix of π }. The probability measure Pr on

∑
(s) is the unique

measure with Pr{ π ∈ Path(X , s) | ρ is a prefix of π } = P(ρ) =
∏k−1

i=0 P(ρ(i),
ρ|i, ρ(i+1)) = P(ρ(0), ε, ρ(1)) P(ρ(1), ρ|1, ρ(2)) · · · P(ρ(k−1), ρ|(k−1), ρ(k)),
where k = |ρ| and ε is the empty sequence.

We recall that a Markov Chain is a particular SP, such that the probability
transition function P(s, π, t) actually does not depend on π (“lack of memory”)
and therefore reduces to a Stochastic Matrix (see [3]).

Given a SP, we want to compute the probability that a path of length k
starting from the initial state q reaches a state s satisfying a given boolean
formula φ.If φ models an error condition, this computation allows us to compute
the probability of reaching an error condition in at most k transitions.

Problem 1. Let X = (S,P, q) be a SP, k ∈ N, and φ be a boolean function on S.
We want to compute: P (X , k, φ) = Pr((∃i ≤ k φ(π(i))) | π ∈ Path(X )). That is,
we want to compute the probability of reaching a state satisfying φ in at most
k steps in the SP X (starting from the initial state q).
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Problem 1 can be very difficult both from a computational and from an
analytical point of view [4,6,7]. So, the first task is to single out a (large enough)
class of tractable SP. Moreover, we need to better specify the computational
model we want to use. We introduce this model in Section 3. Then, in Section 4
we will show how we intend to cope with our verification problem.

3 Probabilistic Rule Based Transition Systems

Definition 2. A Probabilistic Rule Based Transition System (PRBTS) S is a
3-tuple (S, Rules, q), where: S is a finite set (of states), q ∈ S and Rules is a
finite set of pairs (p, f), with p being a function from S to [0, 1] and f being a
function from S to S and ∀s ∈ S ∑

(p,f)∈Rules p(s) = 1.

Definition 3. Let S = (S, Rules, q) be a PRBTS. An execution sequence in S
is a nonempty (finite or infinite) sequence π = s0s1s2 . . . where si are states and
for every i = 0, 1, . . . there exists a pair (p, f) ∈ Rules, such that f(si) = si+1
and p(si) > 0.

As expected, to a PRBTS we can univocally associate a Markov Chain. This
can be done as follows.

Definition 4. Let S = (S, Rules, q) be a PRBTS. The Markov Chain Smc =
(S,P, q) associated to S is defined as follows: P(s, t)=

∑
(p,f)∈Ruless.t.f(s)=t p(s)

(taking as 0 summation on an empty set).

Proposition 1. Let S = (S, Rules, q) be a PRBTS. Then, the Markov Chain
Smc associated to S is well defined.

4 From Stochastic Processes to PRBTS

As we discussed in Section 1, we cannot hope to analyze all possible SP. So, we
restrict our analysis to SP such that their transition probabilities depend only
on some fixed characteristics of the process history. We formalize this as follows.

Definition 5. Let the SP X = (S,P, q) be given. We say that X has finite
character n iff there exists an equivalence relation R on Seq(S) of finite index n
(that is with n equivalence classes) such that for every π1, π2 ∈ Seq(S)

if R(π1, π2) then ∀s, t ∈ S. P(s, π1, t) = P(s, π2, t)

Now we show that to a finite character SP X we can associate a PRBTS S,
in such a way that the verification Problem 1 for X can be reduced to that for
S.
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Proposition 2. Let the SP X = (S,P, q) be of finite character n w.r.t. an
equivalence relation R. Let moreover Q0, . . . , Qn−1 be an enumeration of the
equivalence classes of R. Then there exists a PRBTS S = (S1, Rules, q1), such
that:

1. S1 = S × n, where n denotes the set {0, . . . , n− 1};
2. if π is any sequence in Path(X ), such that π ∈ Qi and π1 = πs is in

Qj, where by πs we denote the concatenation of s to the sequence π, and
P(s, π, t) > 0, then
– there exists at least one pair (p, f) in Rules such that f((s, i)) = (t, j)

and p((s, i)) > 0,
–

∑
(p,f)∈Rules s.t.f((s,i))=(t,j) p(s) = P(s, π, t);

3. q1 = (q, i0), where q ∈ Qi0 ;
4. Problem 1 on X with respect to φ can be reduced to compute: P (Smc, k, φ1) =

PrSmc((∃i ≤ k φ1(π(i))) | π ∈ Path(Smc)) where ∀j ∈ n, φ1((s, j)) = φ(s),
that is P (X , k, φ) = P (Smc, k, φ1).

Proof. (Sketch) It is easy to see that a PRBTS S, verifying the required condi-
tions, can be specified from X : simply insert in Rules a suitable pair (p, f) of
functions, for every transition P(s, π, t) > 0, taking into account to choose one
representative for each equivalence class. As an example, given P(s, π, t) > 0
with π ∈ Qi and πs ∈ Qj , set f as the constant function on S1 returning al-
ways (t, j), and set p as the function that returns P(s, π, t) for input (s, i) and
0 otherwise. For the last point, observe that for every such S, the associated
Markov Chain Smc gives rise to essentially the same probability measure of X
on cylinders and therefore on every set. Indeed, given a path π ∈ Path(Smc) the
indexes in π give no information, since they are univocally determined by the
path π itself.

We stress that a PRBTS is always defined by a program of a suitable (e.g.
C-like) programming language. This allows us to specify functions (p, f) ∈ Rules
inside the program as procedures. This makes their formulation parametric and
concise. On the basis of such considerations, we state the following claim:

Claim. A rule based (i.e. PRBTS oriented) approach to SP specification is in
many cases exponentially shorter than a Markov Chain based specification ap-
proach. By a Markov Chain based specification approach we mean any language
requiring in many cases an explicit (i.e. tabular) definition of the stochastic
matrix of the input Markov Chain.

In fact, by comparing the protocol LQS modeled in Section 7.1 (with FHP-
Murϕ, so with PRBTS) with the model of the same protocol in PRISM (that it
is not included here, for space reasons: see [29]), we can see that the former is
much shorter than the latter, since it does not grow with the parameter ITEM Q.

One may wonder whether this is only a problem of language expressiveness.
In a sense, this is not the case, since PRISM needs to store in memory the
complete Markov Chain stochastic matrix. On the opposite, FHP-Murϕ treats
the Markov Chain exactly with the transition rules given in the model and it
does not need to generate all the transition matrix.
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5 From Communicating Stochastic Processes to PRBTS

As an example of usage of PRBTS as a low level definition language for SP, in
this Section we show how the definition of an SP S specified by Communicating
Stochastic Processes can be translated into a suitable PRBTS.

Definition 6. A System of Communicating Stochastic Processes (SCSP) S is
a 4-tuple (n, S,q,R), where:
n is an integer (denoting the number of processes in our system);
S = S1×. . .×Sn is the Cartesian product of finite sets (of states) Si, i = 1, . . . , n;
q = (q1, . . . , qn) ∈ S;
R = 〈R1, . . . ,Rn〉 is a n-tuple of sets Ri i = 1, . . . , n s.t. Ri is a finite set of
pairs (p, f) where p is a function from S to [0, 1], f is a function from S to Si,
and ∀i ∈ {1, . . . , n} ∀s ∈ S ∑

(p,f)∈Ri
p(s) = 1.

In the following we denote with boldface letters (e.g. x) elements of S = S1×
. . .×Sn and with xi the i-th component of x. We can define the transition relation
of a SCSP assuming that processes are scheduled with uniform probability (1/n
if we have n processes).

Definition 7. Let S = (n, S,q,R) be a SCSP. The Markov Chain Smc =
(S,P,q) associated to S is defined as follows:
P(s, t) =

∑i=n
i=1

∑
(p,f)∈Ri s.t. (s1,...,si−1,f(s),si+1,...,sn)=t ( 1

n · p(s))
(taking as 0 summations on empty sets).

Essentially PRBTS are (probabilistic) shared variable concurrent programs.
Thus it is not surprising [1] that a SCSP can be transformed into a PRBTS
using a suitable uniform probability scheduler. The following definition shows
how this can be done (e.g. along the lines in PRISM [24]).

Definition 8. Let S = (n, S,q,R) be a SCSP. We denote with Γ (S) the PRBTS
(S,q, Rules) defined as follows: Rules = ∪i=n

i=1 ∪(p,f)∈Ri
{(λx.( 1

n · p(x)), f)}

The following proposition follows immediately from the construction in Def-
inition 8.

Proposition 3. Let S be a SCSP. Then Smc = Γ (S)mc

Remark 1. Note that the PRBTS transformation of a SCSP is not limited to
the case in which the processes are scheduled with a uniform probability. In
fact, it is sufficient to modify Definition 8 in this way: Rules = ∪i=n

i=1 ∪(p,f)∈Ri

{(λx.(s(i) ·p(x)), f)}, where s is a function from {1, . . . , n} to [0, 1] denoting the
scheduling probability of the process i ∈ {1, . . . , n} (obviously, s must be such
that

∑n
i=1 s(i) = 1).
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6 Defining Probabilistic Systems with the Murϕ Verifier

We want to extend the input language of the Murϕ verifier to allow definition
of SP using PRBTS. Since Murϕ input language defines NFSS, our main mod-
ification to Murϕ input language consists of adding transition probabilities to
transition rules.

In this Section we show how we modified Murϕ input language to achieve the
above goal thus defining FHP-Murϕ input language. The length of FHP-Murϕ
finite horizon is passed on the command line to FHP-Murϕ.

6.1 FHP-Murϕ Input Language

We modify Murϕ input language in the following parts: 1. We add a probability
specification to each start state; 2. We change the semantics of rules; 3. We only
allow one invariant to which we add a probability bound.

To handle Discrete Time Hybrid Stochastic Processes it is useful to have
state variables ranging on real numbers. For this reason in the following we
will consider the Murϕ version enhanced with finite precision real numbers, as
described in [21].

To add probabilities in definitions of startstates, we modify the startstate
nonterminal production of the Murϕ language grammar (Chapter 7 of the doc-
umentation [18]) as follows: <startstate> ::=
startstate [<string>] [<realexpr>] [{<decl>} begin] [<stmts>] end
where the expression realexpr must evaluate to a real number in [0, 1], and de-
faults to 1 when it is not specified. If we are given h startstates with probabilities
p1, . . . , ph, then

∑h
i=1 pi has to be 1, or FHP-Murϕ will return an error.

To add probabilities on rules, we modify the semantics of the simplerule
nonterminal production of the Murϕ language grammar (Chapter 7 of the docu-
mentation [18]) as follows. The original production, without priority and fairness
(not modified in our work), was
<simplerule> ::= rule [ <expr> ] ==> [ <decl> begin ] [ stmts ] end.

In FHP-Murϕ, we simply require the expression after the keyword rule (i.e.
expr) to be a real expression valued in [0, 1], instead of a boolean as it is for
Murϕ. FHP-Murϕ does not allow simultaneous use of both boolean and proba-
bility based rules.

The above modification to <simplerule> has a deep impact on Murϕ se-
mantics. In fact, with boolean rules, each state has a set of enabled transitions,
leading to other states; the activation of a rule only depends on its condition
being true or false. In our probabilistic setting, each Murϕ rule defines a pair
(p, f) of the PRBTS being defined.

Finally, we modify the invariant nonterminal production of the Murϕ lan-
guage grammar (Chapter 7 of the documentation [18]) as follows:
<invariant> ::= invariant [ <string> ] <realexpr> <booleanexpr>
where <realexpr> has to be a real valued expression in [0, 1], while
<booleanexpr> has to be a boolean valued expression.
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type real_type : real(4, 10);
var x : real_type;

startstate "init" begin x := 1.0; end;

rule "reset" (x = 0.0? 1.0 : 0.0) ==> begin x := 1.0; end;
rule "beetwen 0 and x" (x > 0.0? x : 0.0) ==> begin x := x/10; end;
rule "beetwen x and 1" (x > 0.0? 1.0 - x : 0.0) ==> begin x := (1.0 + x)/2.0; end;

invariant "never reaches 0.0" 0.0 (x != 0.0)

Fig. 1. An example of FHP-Murϕ input file

In FHP-Murϕ the invariant statement invariant p γ requires that with
probability at least p the following holds: “all states reachable in at most k steps
from an initial state satisfy γ” (k is FHP-Murϕ horizon).

This is equivalent to say that the probability of reaching in at most k steps
from an initial state a state not satisfying γ is less than (1− p).

6.2 A Toy Example

Consider the SP S defined as follows. Initially S is in state 1. If S is in a state
x > 0, then with probability x S moves to state x/10, and with probability
(1 − x) S moves to state (1 + x)/2. If S is in state 0 then S deterministically
moves to state 1. In Fig. 1 we give the FHP-Murϕ definition for S.

The FHP-Murϕ invariant in Fig. 1 requires that, with probability at least
0.0 (i.e. always), in all the states, that are reachable in at most k transitions
(horizon), x 
= 0 holds. That is, the probability that we reach, within horizon k,
state 0, is less than 0. That is, state 0 is not reachable in S.

From definition of S should be quite clear that indeed state 0 is not a reach-
able state for S. However, since we are using finite precision real numbers, state
0 may be reached because of numerical approximations.

In Fig. 1, since the precision of x is 10−9 (with this precision, we have 10−10 =
0), we will reach the state 0 if the horizon is a k ≥ 10. For example, if k = 10,
then the probability to reach state 0 is 10−45.

7 Two Protocols in FHP-Murϕ

In this Section we show how FHP-Murϕ (Finite Horizon Probabilistic Murϕ)
[22], a suitable disk based extension of the Murϕ verifier [18], can be used for
automatic Finite Horizon Verification of PRBTS.

More specifically, we give two examples of our approach describing the be-
havior of two different queueing systems, showing their implementation in FHP-
Murϕ and sketching why they are more naturally described in FHP-Murϕ than
in PRISM.

Both examples describe queue systems with a certain probability that an
element in the queue decides to leave its slot without having being served. This
results in an error state.
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7.1 A Length-Based Queue System

The first system models a “Length-Based” Queue System (LQS in the following),
and it has the dynamics described below. In a generic state s, the following moves
are allowed:

1. An enqueue operation. This operation is possible only if the queue is not
full;

2. A dequeue operation. This operation is possible only if the queue is not
empty;

3. Each element in the queue can leave its slot (this results in an error state);
4. The system may remain in the same state s.

The probabilities of the preceding moves are as follows. Let n be the number
of queue slots. Suppose that, in state s, h operations are allowed. We have that
1 ≤ h ≤ 3 + n, since each of the at most n elements in the queue can go in an
error state. Then the probability of the first two moves (if they are allowed) is
1
h . The probability that a queue element i enters an error state is 1−e−j

h , where
j is the number of elements preceding i in the queue (i.e. the number of dequeue
operations that i must wait for before it is its turn). This means that the more
elements preceding i, the higher the probability that i leaves the queue. Finally,
the probability that no operation is performed is the complement to 1 of the
sum of the other defined probabilities.

The implementation of such a system in FHP-Murϕ is quite simple. The
queue is modeled with a circular array managed by two pointers, head and
tail. For each slot in the queue, we memorize if it is in a correct state or in an
error state (i.e. the element has left).

In Figure 2 we show the two main functions, prob trans and make trans,
and how they are called by the rule ‘‘main’’.

Function prob trans returns the outgoing probabilities from the current
state s. The parameter i is needed to identify which of the moves allowed in
s is the one to be calculated. Note that the function 1−e−j

h , where j is the num-
ber of elements preceding an element in the queue, is calculated by the function
prob err.

Function make trans changes state s so as to generate a next state. It uses
the parameter i in the same manner as prob trans.

The ruleset in Figure 2 calls the rule ‘‘main’’ with the different values
for the variable i which are needed in functions prob trans and make trans.

Finally, the invariant to be checked states that the probability of the event
“for all states s that are reachable in a finite number of steps k, s is not an error
state” must be at least 0, where k is a parameter of the verification. Having set
the probability to be p ≥ 0 (which is always true) forces FHP-Murϕ to always
reach the horizon k (if we had set it to be p ≥ γ, with 0 < γ ≤ 1, the visit would
have stopped when p had become less than γ).
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function prob_trans(i : trans_possib_type) : real_type; begin
tmp := 0; /* number of moves except enqueue and dequeue */
trans_possib := 1; /* total number of possible moves */
calc_trans_possib(trans_possib, tmp);
if (i >= trans_possib) then return 0.0;

/* i ranges on the max transitions number,
whilest they are not always all possible */

else
if (i < tmp) then return 1.0/trans_possib;
else if (i = trans_possib - 1) then return 1.0/trans_possib - sum_prob_prec();
else return prob_err(i - tmp)/trans_possib;
endif; endif; endif; end;

procedure make_trans(i : trans_possib_type); begin
/* the first part is the same as prob_trans */
tmp := 0; trans_possib := 1; calc_trans_possib(trans_possib, tmp);
if (i<trans_possib) then /* now, instead of giving probabilities, moves are done */

if (!queue_empty() & i = 0) then /* dequeue */
q[head] := noerr;
if (head = ITEM_Q - 1) then head := 0;
else head := head + 1; endif;

else if (!queue_full() & (tmp = 1 ? i = 0 : i = 1)) then /* enqueue */
q[tail] := noerr;
if (tail = ITEM_Q - 1) then tail := 0;
else tail := tail + 1; endif;

else if (i != trans_possib - 1) then /* gone away */
q[i - tmp] := err;

endif; endif; endif; endif; end; /* if i = trans_possib - 1 no action is done */

ruleset i : trans_possib_type do /* general rule for the whole system */
rule "main" prob_trans(i) ==> begin make_trans(i); end; end;

invariant "queue ok" 0.0 forall i : queue_range do q[i] != err endforall);

Fig. 2. FHP-Murϕ implementation sketch for LQS

7.2 A Time-Based Server-Queue System

The second system models a “Time-Based” Server-Queue System (TSQS in the
following), and it has the sequent behavior. In a generic state s, there are two
different set of allowed moves. The first set just consists of the enqueue, the
dequeue, the server status change and the null operations, with uniform proba-
bility.

The server status is given by a counter ranging from 0 to MAX COUNT S, mod-
eling the time of service. If the server counter is 0, the server is free, then a
dequeue (on a nonempty queue) can be made. In this case, the server counter
is set to MAX COUNT S. If the server counter is greater than 0, then it is reset to
0 with probability proportional to the current server counter, and it is simply
decremented with a complementary probability.

This models the fact that the higher the time of service, the higher the
probability of returning free.

The second set of moves consists in updating a counter associated to each
element in the queue, modeling the time spent by the element in the queue.
When this counter reaches a given maximum value (MAX COUNT Q), we are in an
error state. The updating phase consist in n + 1 possible transitions, where n
is the number of elements currently in the queue: each of the element counters
can immediately reach MAX COUNT Q with probability directly proportional to
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function prob_trans(i : trans_possib) : real_type;
begin

num_trans_possib := 1; calc_trans_possib(trans_possib);
if (i >= num_trans_possib) then return 0.0;
else /* mod_glob distinguish the two set of moves */

if (mod_glob = 0) then
if (s > 0 & i < 2) then

if (i = 1) then return (s/MAX_COUNT_S)/(num_trans_possib - 1);
else return (1.0 - s/MAX_COUNT_S)/(num_trans_possib - 1);
endif;

else return 1.0/(s > 0? num_trans_possib - 1 : num_trans_possib);
endif;

else
if (i!=num_trans_possib-1) then return (q[slot(i)]/MAX_COUNT)/num_trans_possib;
else return 1.0/trans_possib - sum_prob_prec();
endif; endif; endif;

end;

procedure make_trans(i : trans_possib);
begin

num_trans_possib := 1; calc_trans_possib(trans_possib);
if (i < num_trans_possib) then

if (mod_glob = 0) then
if (s > 0 & i < 2) then s := (i = 1? s - 1 : 0);
else if (!queue_empty() & s = 0 & i < 1) then

. . . . /* dequeue operation */
s := MAX_COUNT_S;

else
if (!queue_full()&(s>0?i<3:(!queue_empty()?i<2:i<1))) then
. . . . /* enqueue operation */
endif; endif; endif;

else
if (i != num_trans_possib - 1) then

/* function slot(i) return the i-th element in the queue */
q[slot(i)] := MAX_COUNT;

endif;
for k : queue_range do

if (in_queue(k) & q[k] != MAX_COUNT) then q[k] := q[k] + 1;
endif; endfor;

/* if i = trans_possib - 1 no action is done */
endif; endif;

mod_glob := (mod_glob + 1)%2; /* switch between the two set of moves */
end;

invariant "queue ok" 1.0
(forall i : queue_range do q[i] != MAX_COUNT endforall);

Fig. 3. FHP-Murϕ implementation sketch for TSQS

the current counter value, while all the other counters are simply incremented.
Moreover, the last possibility is that all counters are simply incremented.

This models the fact that the higher the time spent in queue, the higher the
probability to go away without being served.

Also the FHP-Murϕ implementation of TSQS is simple, and it is sketched
in Figure 3. The data structures are essentially the same as in LQS: the only
modification consists in maintaining a counter (and not a boolean) for each slot,
and in adding a counter to model the server. The structure of the code is the
same as in Figure 2, so we only give functions prob trans and make trans.

Note that both these protocols are more difficult to write in PRISM input
language. In fact, PRISM only allows constant probabilities to be defined on
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ITEM Q Horizon Memory (disk) Visited Time Probability
4 10 0 104 3.900 0.2843699449
4 20 0 264 6.450 0.6043041472
5 10 0 126 3.930 0.3189541147
5 20 0 375 6.790 0.6333385081

Fig. 4. Results for LQS on a INTEL Pentium III 750Mhz with 128MB of RAM. Murϕ
options: -b (bit compression), -c (40 bit hash compaction), -m80 (use 80 MB of RAM).
Memory occupations are in MB, time is in seconds.

ITEM Q MAX COUNT Q MAX COUNT S Horizon Memory (disk) Visited Time Probability
5 3 3 10 0 114 13.090 0.595936214
5 3 3 20 0 518 20.850 0.9432926435
10 20 20 30 0 705081 2243.830 0.7360071576
10 20 20 40 139.810176 20072051 65949.160 0.885392219

>10 > 1 day

Fig. 5. Results for TSCS on a INTEL Pentium III 750Mhz with 128MB of RAM.
Murϕ options: -b (bit compression), -c (40 bit hash compaction), -m200 (use 200 MB
of RAM). Memory occupations are in MB, time is in seconds.

transitions. On the other hand, here we have that the transition probabilities
depends on the current state. Hence, to implement these protocols in PRISM, we
are forced to list the values of the parameters from which they depend (e.g., in
LQS, we have to list all the possible values representing the number of elements
preceding the current one, asking for each of them if it is the correct value [29]),
and then to tabulate, for each of them, the transition probability values. On the
opposite, in FHP-Murϕ we have been able to describe the transition probabilities
in a uniform way.

7.3 Experimental Results

In Figures 4 and 5 we report the results obtained verifying, respectively, LQS
and TSCS with FHP-Murϕ. For each verification we report the values of the
parameters from which the protocol depends (i.e. ITEM Q for LQS, indicating the
number of available slots in the queue, ITEM Q, MAX COUNT Q and MAX COUNT S for
TSCS), the finite horizon of the verification, the memory (on disk), the visited
states, the time required by the verification and the final probability (of violating
the invariant). Observe that, in TSCS, we were able to cope with quite large
numbers of visited states. In fact, being the FHP-Murϕ verification algorithm
disk-based, almost any verification can be performed, if one waits for a suitable
amount of time. This is symbolized by the last row of Figure 5.

8 Conclusions

We presented (Section 3) Probabilistic Rule Based Transition Systems (PRBTS)
and showed (Section 4) how PRBTS can be used to model a fairly large class of
Finite State Discrete Time Stochastic Processes as well as Discrete Time Hybrid
Stochastic Processes (by approximating reals with finite precision real numbers).
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PRBTS can be used as a low level language for Stochastic Verification En-
gines. As an example (Section 5) we showed how a high level definition of a
stochastic system based on Systems of Communicating Stochastic Processes can
be translated into a PRBTS definition.

We showed (Section 7) how FHP-Murϕ [22], a suitable disk based extension
of the Murϕ verifier [18] can be used for automatic Finite Horizon Verification
of PRBTS.

We showed (Section 7) effectiveness of our approach by presenting experi-
mental results on automatic analysis with FHP-Murϕ of two nontrivial stochas-
tic systems. Our experimental results show that FHP-Murϕ can handle more
general models than state-of-the-art Probabilistic Model Checkers like PRISM
[24,2,16] or TwoTowers [27]. On the other hand PRISM as well as TwoTowers
can verify more general properties (e.g. all PCTL [12] properties for PRISM)
than FHP-Murϕ.

Future works include extending our approach to more general properties
than Finite Horizon Verification, e.g. PCTL formulas with unbounded until.
Moreover, it would be interesting to compare our approach with the discounting
theory in [30]. In fact, this approach, where the future becomes less and less
relevant, seems to fit well with a finite horizon point of view.
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Abstract. Different approaches to time granularity have been proposed
in the database literature to formalize the notion of calendar, based on
algebraic, logical, and string-based formalisms. In this paper, we further
develop an alternative approach based on automata, originally proposed
in [4], which makes it possible to deal with infinite time granularities in
an effective (and efficient) way. In particular, such an approach provides
an effective solution to fundamental problems such as equivalence and
conversion of time granularities. We focus our attention on two kinds
of optimization problems for automaton-based representations, namely,
computing the smallest representation and computing the most tractable
representation, that is, the one on which crucial algorithms (e.g., granule
conversion algorithms) run fastest. We first introduce and compare these
two minimization problems; then, we give a polynomial time algorithm
that solves the latter.

1 Introduction

The notion of time granularity comes into play in a variety of problems involv-
ing time representation and management in database applications, including
temporal database design, temporal data conversion, temporal database inter-
operability, temporal constraint reasoning, data mining, and time management
in workflow systems. Different approaches to time granularity have been pro-
posed in the database literature, based on algebraic [1,9], logical [3], and string-
based [11] formalisms. We restrict our attention to the latter.

The string-based formalism eases access to and manipulation of data associ-
ated with different granularities, making it possible to solve some basic problems
about time granularities, such as the equivalence problem, in an effective way.
String-based algorithms, however, may potentially process every element (sym-
bol) of representations, independently from their redundancy, thus requiring a
large amount of computational time. This efficiency problem is dealt with by
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the automaton-based approach to time granularity, that revises and extends the
string-based one.

According to such an approach, granularities are viewed as strings generated
by a specific class of automata, called Simple Single-String Automata (Simple
SSA for short), thus making it possible to (re)use well-known results from au-
tomata theory. Simple SSA were originally proposed by Dal Lago and Montanari
to model infinite periodical granularities [4]. Furthermore, they showed that reg-
ularities of modeled granularities can be naturally expressed by extending Simple
SSA with counters (let us call SSA the resulting class of automata). This exten-
sion makes the structure of the automata more compact, and it allows one to
efficiently deal with those granularities which have a quasi-periodic structure.

In [5], we proved that SSA provide an efficient solution to the fundamental
problems of equivalence, namely, the problem of establishing whether two differ-
ent representations define the same granularity, and granule conversion, namely,
the problem of relating granules of a given granularity to those of another one.
To this end, we introduced a suitable variant of SSA, called Restricted Labeled
Single-String Automata (RLA for short), and we showed that these automata
are at least as expressive as the string-based formalism, better fitting for direct
algorithmic manipulation. As an example, granule conversion problems can be
solved in polynomial time with respect to the size of the involved RLA.

The algorithmic flavor of automaton-based representations of time granular-
ity suggests an alternative point of view on their role: RLA can be used not only
as a formalism for the direct specification of time granularities, but also as a
low-level formalism into which high-level time granularity specifications can be
mapped. From this point of view, the problem of reducing as much as possible
the complexity of basic algorithms becomes even more crucial. In [5], we defined
a suitable set of algorithms mapping expressions of Calendar Algebra (the high-
level formalism for modeling time granularities developed by Ning et al. in [9])
to equivalent RLA-based representations. In this paper, we focus our attention
on minimization problems for RLA.

There exist at least two possible notions of minimization. According to the
first one, minimizing means computing the smallest representation of a given
time granularity; according to the second one, minimizing means computing
the most tractable representation of a given granularity, that is, the one on
which crucial algorithms run fastest. The former kind of automaton-based rep-
resentation is called a size-optimal representation, while the latter is called a
complexity-optimal representation. These two criteria are clearly not equivalent,
since the smallest representation is not necessarily the most tractable one, and
vice versa. Furthermore we claim that both problems yield non-unique solutions.
In the following, we tackle the complexity-minimization problem by using dy-
namic programming: we state some closure properties of RLA with respect to
concatenation, iteration, and repetition of words, and we show how to compute
complexity-optimal automata from smaller (optimal) ones in a bottom-up fash-
ion. The resulting algorithm runs in polynomial time with respect to the size of
the string-based description of the involved granularity.
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The rest of the paper is organized as follows. In Section 2, we give a defi-
nition of time granularity and we briefly describe the main features of Wijsen’s
string-based formalism, which represents regular granularities by means of (en-
codings of) ultimately periodic words. In Section 3 we focus our attention on
the automaton-based approach to time granularity. We define RLA and we state
some basic properties of them. In Section 4 we briefly describe some polynomial
algorithms which can be used to efficiently solve the equivalence and granule con-
version problems for RLA-based representations of time granularies. In Section
5 we introduce the size-minimization and complexity-minimization problems,
we point out important aspects about their solutions, and we give an intuitive
explanation of the computation of complexity-optimal automata. In Section 6,
we discuss the details of the proposed solution; in particular, we show how a
complexity-optimal automaton recognizing a given ultimately periodic word can
be effectively built up from a suitable representation of the repetitions of the
word. In Section 7 we outline future research directions, with a special emphasis
on possible improvements on the proposed complexity-minimization algorithm
and on promising strategies to efficiently solve the size-minimization problem.
(Reference [6] is an extended version of this work, including all proof details.)

2 The String-Based Model of Time Granularities

Since in many applications different time granularities can be used to specify
the validity intervals of different facts [1], database systems need the ability
of properly relating granules belonging to different time granularities. Such an
ability presupposes the formalization of the notion of granularity. In this section,
we first give a formal definition of time granularity, which captures a reasonably
large class of temporal structures; then, we specialize such a definition in order
to allow a finite representation and an efficient manipulation of the associated
data.

Definition 1. Given a set T of temporal instants and a total order < on T , a
time granularity on the temporal domain (T,<) is a total function G : Z → 2T

such that, for every pair of integers x and y, x < y implies

∀ tx ∈ G(x). ∀ ty ∈ G(y). tx < ty.

Each non-empty set G(x), with x ∈ Z, is called a granule and each integer in the
set {x ∈ Z : G(x) �= ∅} is called a label. Note that Definition 1 captures both
time granularities that cover the entire temporal domain, such as Day, Week, and
Month, and time granularities with gaps within and between granules, like, for
instance, BusinessDay, BusinessWeek, and BusinessMonth. Figure 1 depicts
some of these granularities.

In the following, we assume granularity labels to belong to the set N
+ (as

a matter of fact, most applications assume the existence of a first granule). It
is immediate to see that the set of all functions satisfying Definition 1 becomes
uncountable as soon as the underlying temporal domain becomes infinite. As
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Fig. 1. Some examples of time granularities.

a consequence, it is not possible to deal with all of them by means of a fini-
tary formalism. However, the problem of mastering temporal structures for time
granularity can be tackled in an effective way by restricting to periodical granu-
larities. In [11], Wijsen shows that such granularities can be naturally expressed
in terms of ultimately periodic words over an alphabet of three symbols, namely,
� (filler), � (gap), and � (separator), which are respectively used to denote time
points covered by some granule, to denote time points not covered by any gran-
ule, and to delimit granules. In the following, we assume the reader to be familiar
with basic terminology and notation on finite and infinite strings [10]. In partic-
ular, we will often write a generic string u as u[1]u[2]u[3] . . ., where u[i] denotes
the i-th element of the string, and we will use the notation u[i, j] to denote the
substring u[i]u[i+1] . . . u[j] of u. Furthermore, given a finite set S, we will denote
by S∞ the set Sω ∪ S∗, where Sω (respectively, S∗) stands for the set of all and
only the infinite (respectively, finite) strings over S.

Definition 2. Given a word u ∈ {�,�, �}ω containing infinitely many occur-
rences of non-separator symbols, we say that u represents G if, for every pair
of positive integers x and y, x ∈ G(y) if and only if u[x + y − 1] = � and
u[1, x+ y − 2] contains exactly y − 1 occurrences of �.

As an example, the infinite word ������� �������� � . . . represents the
granularity BusinessWeek over the temporal domain of days.

In order to finitely model time granularities, Wijsen introduces the notion
of granspec. A granspec is an ordered pair (u, v) of finite strings such that
u, v ∈ {�,�, �}∗ and v contains at least one occurrence of a non-separator sym-
bol. Strings u and v are respectively called the prefix and the repeating pattern of
the ultimately periodic string u·vω representing the (periodical) time granularity.
For instance, the granularity BusinessWeek ������� �������� � . . . can
be encoded by the granspec (ε,��������). Furthermore, to solve the equiv-
alence problem for (representations of) time granularities, Wijsen proposed a
suitable canonical form of granspecs, which turns out to be a sort of minimum
representation of periodical granularities. However, it is worth mentioning that,
whenever the granularity to be represented has a long period and/or a long
prefix, the granspec formalism produces lengthy canonical granspecs. As a con-
sequence, computations on time granularities represented by granspecs may take
a great deal of time. For example, if (u, v) is a granspec representing months of
the Gregorian Calendar in terms of days, we have that |u| + |v| ≥ 146097. In
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the following section, we introduce the automaton-based approach, which yields
more succinct representations of time granularities.

3 From Strings to Automata

The idea of viewing granularities as ultimately periodic strings naturally con-
nects time granularity to the fields of formal languages and automata, because
any ω-regular language is uniquely determined by its ultimately periodic words
[2]. The basic idea underlying the automaton-based approach to time granular-
ity is simple: we take an automaton M recognizing a single word u ∈ {�,�, �}ω
and we say that M represents granularity G if and only if u represents G. In
the following, we introduce Restricted Labeled Single-String Automata (RLA
for short), which differ from finite automata and Büchi automata as they accept
single words instead of sets of words. As a matter of fact, RLA can also be viewed
as a variant of SSA [4], in which counters over discrete domains are exploited to
obtain succinct representations of time granularities.

Before formalizing the notion of RLA, we give an intuitive explanation of
the structure and behavior of automata belonging to this class. In order to
simplify the notation and the formalization of useful properties, RLA label states
instead of transitions. The set of states of an RLA, denoted by S, is partitioned
into two groups, respectively denoted by SΣ and Sε. SΣ is the set of states
where the labeling function is defined, while Sε is the set of states where it is
not defined. Furthermore, there are two kinds of transitions, respectively called
primary and secondary transitions. Intuitively, primary transitions are defined in
the standard way, while secondary transitions have been introduced to succinctly
represent repetitions. At any point of the computation, at most one (primary or
secondary) transition is taken according to an appropriate rule envisaging the
state at which the automaton lies and the value of a counter.

Figure 2 depicts two RLA, that respectively recognize the words (��6�)ω and
(� � (��)6)ω, both representing mondays in terms of days (the former associates
the labels 1, 2, 3, . . . with the granules, while the latter associates the labels
1, 8, 15, . . . with them). States in SΣ are represented by labeled circles, while
states in Sε are represented by triangles. Primary and secondary transitions are
represented by continuous and dashed arrows, respectively. The initial state is
identified by a little triangular tip. The (initial values of) counters are associated
with states in Sε. This simple example provides an intuitive idea of how RLA
allow one to compactly encode repeating patterns in granularities by means of
counters and transitions.

Definition 3. A Restricted Labeled Single-String Automaton is an 8-tuple
M = (SΣ , Sε, Σ,Ω, δ, γ, s0, C0), where
• SΣ and Sε are disjoint finite sets of states (let S = SΣ ∪ Sε);
• Σ is a finite alphabet;
• Ω : SΣ → Σ is the labeling function;
• δ : S ⇀ S, is a partial function, called primary transition function;
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Fig. 2. Two RLA that represent mondays in terms of days.

• γ : Sε → S is a total function, called secondary transition function, such
that:
i) for every s ∈ Sε, (γ(s), s) belongs to the reflexive and transitive closure
δ∗ of δ; the least n ∈ N such that (γ(s), s) ∈ δn is called the γ-degree of
s and ΓM ⊆ Sε × S is a relation such that (s, r) ∈ ΓM iff r = δi(γ(s))
with i less than or equal to the γ-degree of s;

ii) the reflexive and transitive closure Γ ∗
M of ΓM must be antisymmetric;

• s0 ∈ S is the initial state;
• C0 : Sε → N is the initial valuation.

Conditions i) and ii) on the secondary transition function enforce the existence of
a partial order Γ ∗

M on states of M . Such an order immediately suggests an induc-
tion principle, called γ-induction, which may be used in both formal definitions
and proofs.

The definition of the computation of an RLA is based on the notion of con-
figuration. For any finite set S of states, a valuation C on S is any function
C : S → N. In the following, we denote as CM the class N

Sε of all the valuations
for the counters of an RLA M = (SΣ , Sε, Σ,Ω, δ, γ, s0, C0). A configuration is a
pair (s, C), with s ∈ S and C ∈ CM . The transitions of M are taken according
to a partial function ∆M : S × CM ⇀ S × CM such that ∆M (s, C) = (t,D) if
and only if one of the following three conditions holds:
• s ∈ SΣ ∧ t = δ(s) ∧ ∀ r. D(r) = C(r) (namely, whenever the automaton

lies in a labeled state, then it always makes a primary transition);
• s ∈ Sε ∧ C(s) �= 0 ∧ t = γ(s) ∧ D(s) = C(s) − 1 ∧ ∀ r �= s. (D(r) =
C(r)) (namely, whenever the automaton lies in a non-labeled state and the
corresponding counter is positive, then it makes a secondary transition);

• s ∈ Sε ∧ C(s) = 0 ∧ t = δ(s) ∧ D(s) = C0(s) ∧ ∀ r �= s. (D(r) =
C(r)) (namely, whenever the automaton lies in a non-labeled state and the
corresponding counter is 0, then it makes a primary transition and it re-
initializes the counter).

The computation of M is the maximum (possibly infinite) sequence ρ ∈ (S ×
CM )∞ such that ρ[1] = (s0, C0) and ∆M (ρ[i]) = ρ[i + 1] for every i ≥ 1. From
the computation ρ of M , it is easy to extract a sequence of states ρΣ ∈ S∞

Σ

by discarding states belonging to Sε and valuations. We say that M recognizes
the word u if and only if u = Ω(ρΣ), where Ω(ρΣ) is the sequence obtained by
applying the labeling function Ω to (each element of) the sequence of states ρΣ .
Thus, RLA recognize either finite words or ultimately periodic words (namely,
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those words which result from concatenating a finite prefix to a repeating pat-
tern). Note that the computation of M may be an infinite sequence, even if the
recognized word is finite. However we can overcome this clumsy situation by
discarding useless states and transitions of RLA.

As already mentioned, the main feature of RLA is the way they encode
repeating patterns of words. As a matter of fact, it is possible to provide a
formal characterization of the words recognized by RLA in terms of repetitions
of smaller substrings. Precisely, given a RLA M = (SΣ , Sε, Σ,Ω, δ, γ, s0, C0),
one can show that it recognizes the word

u = Ω
(
ρs0 · ρδ(s0) · ρδ2(s0) · . . .

)

where each ρs is defined to be
• s, whenever s ∈ SΣ ;
• (ργ(s) · ρδ(γ(s)) · ρδ2(γ(s)) · . . . · ρδn−1(γ(s)))C0(s), where n is the γ-degree

of s, whenever s ∈ Sε.
As a consequence, any word recognized by an RLA can be represented using
expressions as (�5�2�)ω, ((�2�)2��)ω, . . . denoting nested repetitions.

4 Granularity Equivalence and Granule Conversions

In this section, we briefly discuss the equivalence and the granule conversion
problems. The decidability of the former problem implies the possibility of effec-
tively testing the semantic equivalence of two descriptions, making it possible to
use smaller, or more tractable, representations in place of bigger, or less tractable,
ones. The relevance of the granule conversion problem has been advocated by
several authors, e.g., [1], even though in most solutions it has been only partially
worked out in a rather complex way.

To explain our solutions, we first address a simpler problem, which arises
very often when dealing with representation of time granularities as well as with
infinite strings in general, namely, the problem of finding the n-th occurrence of
a given symbol in a string. From the point of view of the theory of automata,
this problem can obviously be solved in linear time with respect to the num-
ber of transitions needed to reach the n-th occurrence of the symbol: it suffices
to follow the transitions of the automaton (of the RLA in our case) until the
n-th occurrence of the symbol is recognized. Nevertheless, we can improve this
straightforward solution by taking advantage of the definition of RLA. For in-
stance, if we are searching for an occurrence of a symbol a ∈ Σ in the word u
recognized by the RLA M = (SΣ , Sε, Σ,Ω, δ, γ, s0, C0) and Ω(ρs0) contains no
occurrences of symbol a, then we can avoid processing the first |ρs0 | symbols
in u. Similarly, if s0 ∈ Sε and Ω(ρs0) contains at least an occurrence of a, but
Ω(ργ(s0)) does not, then we can start searching for an occurrence of a in u from
the position (1 + |ργ(s0)|). For every state s ∈ S and every symbol a ∈ Σ, the
length of ρs and the number of occurrences of a in Ω(ρs) can be computed in
polynomial time with respect to the number of states by exploiting the definition
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of ρs. Furthermore, such values can be pre-computed and stored into appropri-
ate data structures for M . On the grounds of the above observations, we can
define an algorithm, called SeekAtOccurrence, which returns the configuration
reached by simulating transitions of M from a given configuration (s, C) until
the n-th occurrence of a symbol in a distinguished set A ⊆ Σ has been read. As
a side effect, SeekAtOccurrence(M, s,C,A, n, counter) returns in counter [a] the
number of processed occurrences for each symbol a ∈ Σ.

In spite of the simplicity of this idea, SeekAtOccurrence turns out to be rather
complex and the formal analysis of its complexity is even more involved [5]. How-
ever, it is not difficult to show that the worst-case time for SeekAtOccurrence(M,
s,C,A, n, counter) is asymptotically equivalent to a suitable complexity measure,
defined in terms of the nesting structure of the transition functions of M . We
use ‖M‖ to denote such a measure, which is defined, according to the principle
of γ-induction, as follows:

‖M‖ = max{CM
s0,t : (s0, t) ∈ δ∗},

where, for each pair of states (s, t) ∈ δ∗, CM
s,t is defined to be

• 1, if s = t;
• 1 + CM

δ(s),t, if s ∈ SΣ and s �= t;
• max{1 + CM

δ(s),t,C
M
γ(s),s}, if s ∈ Sε and s �= t.

As for relationships between the complexities of automaton-based and string-
based representations, there exist a number of cases that account for the com-
pactness and tractableness of RLA with respect to granspecs. As an example, it
is not difficult to provide an RLA representing the granularity Month in terms of
days and having complexity 520, which is significantly less than the size of any
equivalent granspec.

We now give an intuitive account of how to decide whether or not two
given RLA represent the same granularity. Details of the algorithm, which ex-
ploits noticeable properties of equivalent representations and extensively uses
SeekAtOccurrence, are given in [5]. The basic ingredients are the following ones.
First, it holds that two RLA M and N represent the same granularity if and
only if ultimately periodic words u and v, recognized respectively by M and N
and having prefix lengths pu and pv and period lengths qu and qv, are G-aligned.
Two ultimately periodic words u and v are said to be G-aligned if and only if
all occurrences of the filler symbol in u and v lie at the same positions and are
interleaved by the same number of occurrences of the separator symbol. Such a
characterization of equivalent representations can be exploited by showing that
a sufficient condition for u and v to be G-aligned is that two prefixes of u and v
(not shorter than max (pu + qu, pv + qv) + lcm(qu, qv)) are G-aligned. Algorithm
SeekAtOccurrence can be used to check the G-alignment property on words rec-
ognized by two RLA M and N in time O((‖M‖+ ‖N‖)n), where n bounds the
number of occurrences of � in the prefix and period of u and v.

Consider now the problem of converting temporal intervals from a given gran-
ularity to a coarser or finer one. RLA can be exploited to solve many conversion
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problems in polynomial time with respect to the number of states of the in-
volved automata. In particular, we can define two functions mapping intervals
of temporal points to intervals of labels of a given granularity covering the input
interval, and vice versa. It is worth pointing out that such functions are similar
to the conversion operators introduced by Snodgrass et al. [7] and that they
can be computed on RLA by exploiting the algorithm SeekAtOccurrence. As an
example, the following two algorithms solve conversion problems by requiring
only a finite number of calls to SeekAtOccurrence. It is not difficult to show that
such algorithms, as well as many others which compute similar functions, can
be executed in time O(‖M‖), where M is the RLA representing the involved
granularity.

UpConversion(M, t1, t2)
1: let M = (SΣ , Sε, Σ,Ω, δ, γ, s0, C0)
2: (s, C)← (s0, C0)
3: SeekAtOccurrence(M, s,C, {�,�}, t1 − 1, counter1)
4: SeekAtOccurrence(M, s,C, {�}, 1, counter2)
5: x1 ← counter1[�] + counter2[�] + 1
6: (s, C)← (s0, C0)
7: SeekAtOccurrence(M, s,C, {�,�}, t2, counter3)
8: (s, C)← (s0, C0)
9: SeekAtOccurrence(M, s,C, {�}, counter3[�], counter4)

10: x2 ← counter4[�]
11: return (x1, x2)

DownConversion(M,x1, x2)
1: let M = (SΣ , Sε, Σ,Ω, δ, γ, s0, C0)
2: (s, C)← (s0, C0)
3: SeekAtOccurrence(M, s,C, {�}, x1 − 1, counter1)
4: SeekAtOccurrence(M, s,C, {�}, 1, counter2)
5: t1 ← counter1[�] + counter2[�] + counter1[�] + counter2[�]
6: (s, C)← (s0, C0)
7: SeekAtOccurrence(M, s,C, {�}, x2, counter3)
8: (s, C)← (s0, C0)
9: SeekAtOccurrence(M, s,C, {�}, counter3[�], counter4)

10: t2 ← counter4[�] + counter4[�]
11: return (t1, t2)

5 Optimality of Automaton-Based Representations

In the previous section we briefly summarized the main features of two basic al-
gorithms working on RLAM , whose worst-case time complexity linearly depends
on ‖M‖. It immediately follows that it is worth to minimize ‖M‖. Furthermore,
there exists a widespread recognition of the fact that state minimization is a
crucial problem in classical automata theory as well as in the theory of reac-
tive systems. Another goal of practical interest is thus the minimization of the
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Fig. 3. Size-optimal and complexity-optimal automata.

number of states of M (let us denote it by |M |), so that smaller representations,
in place of bigger ones, can be used. The former problem is called complexity-
minimization problem, while the latter is called size-minimization problem.

Size and complexity of an RLA are obviously related one to the other; how-
ever, corresponding problems are not equivalent at all. In particular, the size-
minimization problem seems to be harder than the complexity-minimization
problem and it will not be discussed in detail in this paper. Furthermore, op-
timal automata are not guaranteed to be unique (up to isomorphisms) as it
happens, for instance, for Deterministic Finite Automata. As an example, Fig-
ure 3 depicts two size-optimal automata (M and N) and two complexity-optimal
automata (M and O) recognizing the finite word ���������.

Automata minimization problems can be addressed in many different ways,
e.g., by partitioning the state space or by exploiting noticeable relations between
automata and expressions encoding recognized words. In this paper, we cope with
the minimization problem for RLA by using dynamic programming, that is, by
computing an optimal automaton starting from smaller (optimal) automata in
a bottom-up fashion. The key point of such a solution is the proof that the
problem enjoys an optimal-substructure property. In the following we describe
three operations on RLA, and we prove closure properties for them; then, we
compare the complexity of compound automata with that of their components.
In the next section we will take advantage of these results to give an optimal
substructure property for RLA.

The class of RLA is closed with respect to the operations of concatena-
tion, repetition, and iteration of words. Given two RLA M and N , which re-
spectively recognize a (finite) word u and a (not necessarily finite) word v, let
Concatenate(M,N), Iterate(M), and Repeat(M,k) respectively be the concate-
nation of M and N , which recognizes the word u · v, the iteration of M , which
recognizes the word uω, and the k-repetition of M , which recognizes the word
uk. The resulting automata can be computed as follows:
• the automaton Concatenate(M,N) can be obtained in the usual way by

linking the final state of M , namely, the state reached at the end of the
computation of M , to the initial state of N by means of a primary transition;

• the automaton Iterate(M) can be obtained by linking the final state of M
to the initial state of M by means of a primary transition;

• the automaton Repeat(M,k) can be obtained by introducing a new non-
labeled state sloop and by adding (i) a primary transition from the final
state of M to sloop , (ii) a secondary transition from sloop to the initial state
of M , and (iii) a counter on sloop , with initial valuation equal to k.
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Moreover, the complexity of these automata can be given in terms of the com-
plexities of the component automata as follows:
• Concatenate(M,N) has complexity max{‖M‖, n+ ‖N‖}, where n is the car-

dinality of the set of states reachable from the initial state of M by means
of primary transitions only;

• Iterate(M) has complexity ‖M‖;
• Repeat(M,k) has complexity ‖M‖+ 1.

As a matter of fact, we can actually give the status of algorithms running in
linear time to Concatenate, Iterate, and Repeat , as it can be easily checked.

Finally, let Σ be a finite alphabet and let BΣ be the set {Ma : a ∈ Σ},
where Ma is the single-state RLA recognizing a ∈ Σ. We denote by CΣ the
class of all the RLA which can be obtained from BΣ by applying the operations
of Concatenate, Iterate, and Repeat . CΣ is properly included in the class of all
the RLA, that is, there exist some RLA, including size-optimal and complexity-
optimal ones (e.g., the automaton M in Figure 3), which cannot be generated
from automata in BΣ by applying the operations of concatenation, iteration, and
k-repetition. Nevertheless, it turns out that, for every RLA M , CΣ always con-
tains at least one RLA which is equivalent to M and has the same complexity.
This property can be used to prove that a complexity-optimal automaton for a
given string can be generated by appropriately composing smaller (complexity-
optimal) automata using the operators Concatenate, Iterate, and Repeat . Un-
fortunately, similar properties do not hold for the size of RLA.

6 Computing Complexity-Optimal Automata

6.1 Sharing Free Automata

For every RLA M = (SΣ , Sε, Σ,Ω, δ, γ, s0, C0) and for every pair of states r, s
such that (r, s) ∈ δ∗, let ∆M

r,s denote the set {δi(r) : 0 ≤ i ≤ n}, where n is the
least natural number such that s = δn(r).

Definition 4. Given an RLA M = (SΣ , Sε, Σ,Ω, δ, γ, s0, C0) and a state s ∈
Sε, s is said to be sharing if there is a state t /∈ ∆M

γ(s),s \ {s0} such that the set
∆M

t,s∩∆M
γ(s),s contains states other than s itself. M is sharing-free if Sε does not

contain sharing states.

As a matter of fact, any automaton in CΣ is sharing free. The following lemma
shows that sharing states can be eliminated by replicating states, without in-
creasing complexity.

Lemma 1. For every RLA M , there exists an equivalent sharing-free RLA,
denoted SharingFree(M), such that ‖M‖ = ‖SharingFree(M)‖.

6.2 An Optimal Substructure Property

In this section, we prove that RLA satisfy the optimal substructure property.
Lemma 1 implies that for any (finite or ultimately periodic) word u ∈ Σ∞, there
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Fig. 4. Relationship between partial periods and borders.

is at least one sharing free complexity-optimal automaton M which recognizes
u. In fact, we are going to show that we can choose M in such a way that it
belongs to CΣ and it is decomposable into complexity-optimal automata.

As a preliminary step, we characterize repeating patterns of words through
the notions of period, partial period, and border.

Definition 5. A word u has period p if there is a positive integer k such that
u = u[1, p]k. The period of u is the minimum period of u. By analogy we define
the prefix length and the period of an ultimately periodic word u to be the
integers l and q such that u = u[1, l] · u[l + 1, l + q]ω and l + q is minimum.
Furthermore, p is said to be a partial period of u provided u is a prefix of
u[1, p]ω. Finally a border of a finite word u is a non-empty string v different
from u such that v is both a prefix and a suffix of u.

It is worth noticing that u[1, q] is a (maximum) border of u if and only if p =
|u| − q is a (minimum) partial period of u (see Figure 4).

The following two theorems state optimal substructure properties for finite
and ultimately periodic words, respectively. Notice that both theorems provide
only a finite number of ways to build a complexity-optimal automaton for u from
(optimal) automata for substrings of u.

Theorem 1. Given a finite word u such that |u| > 1, one of the following
conditions holds:
i) for every pair of complexity-optimal automata M and N recognizing respec-

tively the prefix u[1] and the suffix u[2, n] of u, Concatenate(M,N) is a
complexity-optimal automaton recognizing u;

ii) there exists an integer r ∈ [1, |u| − 1] such that whenever M and N are
two complexity-optimal automata recognizing respectively the prefix u[1, p]
(with p being the period of u[1, r]) and the suffix u[r + 1, |u|] of u, then
Concatenate(Repeat(M, r

p ), N) is a complexity-optimal automaton recogniz-
ing u.

iii) for every complexity-optimal automaton M recognizing u[1, p], with p < |u|
being the period of u, Repeat(M, n

p ) is a complexity-optimal automaton rec-
ognizing u;

Theorem 2. Given an ultimately periodic word u with minimum prefix length
l and minimum period q, one of the following conditions holds:
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i) l > 0 and for every pair of complexity-optimal automata M and N recogniz-
ing respectively the prefix u[1] and the suffix u[2, ω] of u, Concatenate(M,N)
is a complexity-optimal automaton recognizing u;

ii) l > 0 and there is an integer r ∈ [1, 2l + 2q] such that whenever M and
N are two complexity-optimal automata recognizing respectively the prefix
u[1, p] (with p being the period of u[1, r]) and the suffix u[r+ 1, ω[ of u, then
Concatenate(Repeat(M, r

p ), N) is a complexity-optimal automaton recogniz-
ing u.

iii) l = 0 and for every complexity-optimal automaton M recognizing u[1, q],
Iterate(M) is a complexity-optimal automaton recognizing u;

Theorems 1 and 2 suggest a simple dynamic programming algorithm which,
given a finite string u or a string-based representation of an ultimately periodic
word u, computes in polynomial time a complexity-optimal RLA recognizing
u. This algorithm heavily uses information on periods of all the substrings of
u. For any finite string v (or any finite prefix v of a given ultimately periodi-
cal word), the periods of all the substrings of v can be efficiently computed in
time Θ(|v|2) by exploiting noticeable properties of periods and borders (the
approach is somehow similar to the one used by Knuth, Morris, and Pratt
in order to compute the prefix function of a pattern in the context of string-
matching problems [8]). In particular, it turns out that the length q(j) of the
maximum border of v[1, j] satisfies the equations q(1) = 0 and, for every j > 1,
q(j) = max ({0} ∪ {l : v[l] = v[j] ∧ l − 1 ∈ q+(j − 1)}), where q+ denotes the
transitive closure of the function q. Since to each maximum border corresponds
a minimum partial period, it turns out that the minimum partial periods of all
the prefixes of v can be computed in linear time. The above mentioned bound
easily follows.

7 Further Work

In this paper we gave a polynomial time algorithm that determines a complexity-
optimal representation for RLA. We believe that such an algorithm can actually
be improved, by exploiting subtle relationships between repeating patterns of
strings and secondary transition functions of complexity-optimal RLA. As a
matter of fact, we conjecture that loops of primary and secondary transition
functions of a complexity-optimal RLA can be related to maximal repetitions in
the recognized word (a maximal repetition of u is a periodical substring u[i, j]
whose minimum period increases as soon as u[i, j] is prolonged to the right, e.g.,
u[i, j + 1], or to the left, e.g., u[i− 1, j].

Another interesting research direction is the development of an algorithm
that efficiently solves the size-minimization problem. To this end, we conjecture
that size-optimal automata can be built up from smaller components, as we did
for complexity-optimal ones, via concatenation, repetition, iteration, and a new
operator which collapses “non-distinguishable” states of RLA (at the moment,
the major stumbling block is the problem of finding an appropriate definition of
RLA distinguishable states).
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with O(
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of quantum mechanical processes might be beyond that of traditional computa-
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“quantum computer”, Deutsch [10] develops the model of quantum Turing ma-
chine as a physically realizable model for a quantum computer. From the point
of view of structural complexity, in [9], the class BQP of problems solvable in
polynomial time on quantum Turing machines is introduced and compared with
the corresponding deterministic class P or probabilistic class BPP.

A well known result witnessing quantum power is Shor’s algorithm for inte-
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Some efforts have been made for constructing quantum devices, and their
realizations seems to be a difficult task. For this reason, it might be useful to
study the computational characteristics of simple devices such as quantum finite
automata. Some models have been introduced: measure-once [3,7,21], measure-
many [1,17], enhanced [22], reversible [12], with control language [5].

In this paper, we consider measure-once 1-way quantum automata (1qfa’s,
for short) accepting unary languages, i.e., languages of type L ⊂ {a}∗. Our main
contributions are the following.

– First of all, we consider n-periodic languages. In [20], it has been proved that
every n-periodic language can be recognized by a 1qfa with O(

√
n) states. In

Section 3, we prove that certain n-periodic languages require Ω(
√
n/ log n)

states to be accepted by 1qfa’s.
– Next, we consider unary finite languages of type L<n = {ak ∈ L | k < n}.

For 0 ≤ s < j < n, let #L(s, j) = {ak ∈ L | s ≤ k < j} and, for 1 ≤ t < n/2,
let γL(t, n) = maxt≤k≤n−t

{
|#L(k−t,k)−#L(k,k+t)|

t

}
.

Fixed ε > 0, we give a lower bound on the number q of states of 1qfa’s
accepting L<n in terms of numbers τL(t, n, ε), where

τL(t, n, ε) =
{

0 if γL(t, n) < ε/(1− ε)
(1− ε) γL(t, n)− ε otherwise.

Precisely, in Section 4 we state, and prove in Section 5, that

log q ≥
log n−1∑

k=0

(

1−H
(

1
2

+
1
2
τL(2k, n, ε)

))

,

where H(X) = −x log x− (1− x) log(1− x) is the entropy function. For in-
stance, any quantum automaton accepting the language {ak | n/2 ≤ k < n}
with probability 1− ε must have at least n1−H(1−ε) states.

Since the latter result requires quantum information theory arguments, in
Section 2, among basics on quantum computing, we briefly recall the notion of
Von Neumann’s entropy and Holevo’s theorem.

2 Preliminaries

2.1 Linear Algebra

We quickly recall some notations of linear algebra. For more details, we refer the
reader to, e.g., [18,19].

We denote by C the field of complex numbers and by Cn×m the set of n×m
matrices having entries in C. Given a complex number z ∈ C, its conjugate is
denoted by z, and its modulus is |z| = √zz. The adjoint of a matrix M ∈ Cn×m

is the matrix M† ∈ Cm×n, where M†
ij = Mji. For matrices A,B ∈ Cn×m,

their sum is the matrix (A + B)ij = Aij + Bij . For matrices C ∈ Cn×m and
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D ∈ Cm×r, their product is the matrix (CD)ij =
∑m

k=1 CikDkj in Cn×r. The
trace of a matrix M ∈ Cn×n is Tr(M) =

∑n
i=1Mii.

An Hilbert space of dimension n is the linear space C1×n equipped with
sum and product by elements in C, in which the inner product (π, ξ ) = πξ† is
defined. If (π, ξ ) = 0 we say that π is orthogonal to ξ. The norm of vector π, is
defined as ‖π‖=

√
(π, π ). Two subspaces X,Y are orthogonal if each vector in

X is orthogonal to any vector in Y ; in this case, the linear space generated by
X ∪ Y is denoted by X ⊕ Y .

A matrix M ∈ Cn×n can be view as the automorphism π 	→ πM of the
Hilbert space C1×n in itself. M is said to be unitary whenever MM† = I =
M†M , where I is the identity matrix; moreover, a matrix is unitary if and only
if it preserves the norm, i.e., ‖ πM ‖= ‖ π ‖ for each vector π ∈ C1×n. The
eigenvalues of unitary matrices are complex numbers of modulus 1, i.e., they are
in the form eiϑ , for some real ϑ. M is said to be Hermitian whenever M = M†.
Given an Hermitian matrix O, let c1, . . . , cs be its eigenvalues and E1, . . . Es the
corresponding eigenspaces. It is well known that each eigenvalue ck is real, that
Ei is orthogonal to Ej , for any i �= j, and that E1⊕· · ·⊕Es = C1×n. Each vector
π ∈ C1×n can be uniquely decomposed as π = π1 + · · ·+πs, where πj ∈ Ej . The
linear transformation π 	→ πj is the projector Pj on the subspace Ej . It is easy to
see that

∑s
j=1 Pj = I. An Hermitian matrix O is biunivocally determined by its

eigenvalues and its eigenspaces (or, equivalently, by its projectors); it holds that
O = c1P1 + · · ·+ csPs. If c1, . . . , cs ≥ 0 then O is called positive semidefinite.

2.2 Axiomatic for Quantum Mechanics in Short

Here, we use the previous formalism to describe quantum systems.
Given a set Q = {q1, . . . , qm}, every qi can be represented by its characteristic

vector ei ∈ {0, 1}m having 1 at the i-th position and 0 elsewhere. A quantum state
on Q is a superposition π =

∑m
k=1 αkek, where the coefficients αk are complex

amplitudes and ‖ π ‖= 1. Every ek is called pure state. Given an alphabet
Σ = {a1, . . . , al}, with every symbol ai we associate a unitary transformation
U(ak) : C1×m → C1×m. An observable is described by an Hermitian matrix
O = c1P1 + · · · + csPs. Suppose that a quantum system is described by the
quantum state π. Then, we can operate:

1. Evolution U(aj). The new state ξ = πU(aj) is reached; this dynamics is
reversible, since π = ξU†(aj).

2. Measurement of O. Every result in {c1, . . . , cs} can be obtained; cj is ob-
tained with probability ‖πPj ‖ 2 and the state after such a measurement is
πPj/ ‖πPj ‖ . The state transformation induced by a measurement is typi-
cally irreversible.

2.3 Von Neumann’s Entropy

We briefly recall elements of quantum information theory. For more details, we
refer the reader to, e.g., [14].
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Consider the quantum system 〈{π1, . . . , πm}, p〉, where π1, . . . , πm ∈ C1×q

are quantum states and p a probability distribution on {π1, . . . , πm}, so that
pk is the probability of πk. Such a system is described by the so called density
matrix σ ∈ Cq×q, where

σ =
m∑

k=1

pk π
†
kπk

It is not difficult prove that:

– σ is Hermitian, positive semidefinite.
– Let λ1, . . . , λq be the eigenvalues of σ. Then

∑q
k=1 λi = 1.

Since σ is positive semidefinite, we have that λ1, . . . , λq ≥ 0. Therefore,
λ1, . . . , λq can be viewed as a distribution probability. Von Neumann’s entropy
S(σ) of σ is Shannon’s entropy of λ1, . . . , λq, i.e.:

S(σ) = −
q∑

k=1

λk log λk.

We observe that, given a unitary matrix U , the density matrix of the system
〈{π1U, . . . , πmU}, p〉 is U†σU . Since U†σU has the same eigenvalues of σ, then
S(U†σU) = S(σ).

Given an observable O = 1·P1+0·P0, where P0+P1 = I, the probability that
a measurement of O on σ gives 1 as result is

∑m
k=1 pk ‖πkP1 ‖ 2 or, equivalently,

Tr(P1σP1).

An important tool in this theory is Holevo’s Theorem [16]:

Theorem 1. Given density matrices σ1, . . . , σm, consider their convex linear
combination σ =

∑m
k=1 pkσk, for p1, . . . , pm ≥ 0 and

∑m
i=1 pi = 1. Given an

observable O = 1 · P1 + 0 · P2, consider the random variables X and Y, with
values in {1, . . . ,m} and {0, 1} respectively, such that

Prob{X = k, Y = b} = pk Prob{measurement of O on σk gives b}.
Then

S(σ) ≥
m∑

k=1

pkS(σk) + I(X,Y ).

Recall that the mutual information I(X,Y ) is defined as

I(X,Y ) = H(Prob{X}) +H(Prob{Y })−H(Prob{X,Y }),
where H is the entropy.

To obtain lower bound on the number of states of quantum automata by using
quantum information arguments, it is fundamental to observe that the entropy
S(σ) of a density matrix σ attains its maximum whenever the eigenvalues of σ
are all equal [22]. This yields

Theorem 2. If σ is a q × q density matrix, then S(σ) ≤ log q.
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2.4 1-Way Unary Quantum Automata

1-way quantum finite automata (1qfa, for short) are computational devices par-
ticularly interesting because of their simplicity. Moreover, their analysis provides
a good insight into the nature of quantum computation, since 1qfa’s are a theo-
retical model for a quantum computer with finite memory.

From the point of view of computational capabilities, quantum models of 1-
way finite automata present both advantages and disadvantages with respect to
their classical (deterministic or probabilistic) counterpart. Essentially, quantum
superposition offers some computational advantages on probabilistic superposi-
tion. On the other hand, quantum dynamics are reversible: because of limitation
of memory, it is generally impossible to simulate classical automata by quantum
automata. Limitations due to reversibility can be partially attenuated by sys-
tematically introducing measurements of suitable observables as computational
steps.

Several models of quantum automata have been proposed in the literature.
Basically, they differ in measurement policy [5,15]. In this paper we consider only
the measure-once model in the simple unary case. The measure-once model is the
simplest 1qfa [3,7,21]. In this case, the transformation on a symbol of the input
alphabet is realized by a unitary operator. A unique measurement is performed
at the end of computation.

More formally, a measure-once 1qfa with q control states on the unary al-
phabet {a} is a system A = 〈π, U, P 〉, where π ∈ C1×q, U ∈ Cq×q is a unitary
matrix and P ∈ Cq×q is a projector that biunivocally individuate the observable
O = 1 ·P + 0 · (I −P ). The behavior of A is the stochastic event pA : a∗ → [0, 1]
defined by

pA(ak) = ‖ πUkP ‖2 .
In general, we say that a stochastic event p : {a}∗ → [0, 1] is n-periodic if

p(ak) = p(ak+n), for every k ≥ 0.
In what follows, we will simply write 1qfa, understanding the designation

“measure-once”.

3 Lower Bound for Unary Periodic Languages

In this section, we prove a lower bound on the number of states of 1qfa’s recog-
nizing certain unary periodic languages.

Definition 1. A language L ⊂ {a}∗ is n-periodic if and only if ak ∈ L implies
ak+n ∈ L, for every k ≥ 0.

For a given ε ∈ (0, 1/2), a unary language L ⊂ {a}∗ is recognized by a 1qfa
A = 〈π, U, P 〉 with probability 1 − ε if and only if the following holds for any
k ≥ 0:

– ak ∈ L implies pA(ak) ≥ 1− ε,
– ak �∈ L implies pA(ak) ≤ ε.
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In [20], it is proved that

Theorem 3. Every n-periodic language can be accepted with probability 1 − ε
greater than 1/2 by 1qfa’s with O(

√
n) states.

Here, we prove an Ω(
√
n/ log n) bound for certain languages.

Theorem 4. There exist n-periodic languages that cannot be accepted by 1qfa’s
inducing n-periodic events with less than

√
n/(3 log n) states.

Proof. Let p be an n-periodic event induced by a unary 1qfa with q states. In [6,
Lemma 3], it is proved that there exists ∆ = {a1, a2, . . . , aq} ⊆ Zn and a matrix
C ∈ Cq×q such that:

p(ak) =
∑

1≤s,t≤q

ei 2π
n (as−at)kCst.

We can set 1/2 as cut point. Moreover, we can choose ∆ in
(
n
q

)
different ways,

each one yielding n hyperplanes of the form

∑

1≤s,t≤q

Dst cos(
2π
n
k(as − at)) + Est sin(

2π
n
k(as − at)) =

1
2
,

for 0 ≤ k < n and reals Dst, Est. These n hyperplanes lay in a 2q2 dimensional
space S and can divide S in at most n2q2

different regions [8]. The event induced
by coefficients Dst and Est in the same region define the same language. This
implies that the number of n-periodic languages accepted by q-state 1qfa’s is
bounded above by

(
n
q

)
n2q2

< n3q2
.

By noticing that the number of distinct n-periodic languages is 2n, we must
require that n3q2 ≥ 2n, in order to accept every n-periodic languages by using
q-state 1qfa’s. Such an inequality is easily seen to yield q ≥√

n/(3 log n).

4 Lower Bound for Finite Unary Languages

In this section, we state a lower bound on the number of states of 1qfa’s which
“recognize” finite unary languages. Since 1qfa’s cannot accept finite languages [4]
(except, of course, the empty set), we need to introduce a different notion of
acceptance:

Definition 2. Given a unary language L ⊂ {a}∗, a 1qfa A = (π, U, P ) accepts
L<n = {ak ∈ L | k < n} with probability 1 − ε, for a given ε ∈ (0, 1/2), if and
only if the following holds for any k < n:

– ak ∈ L<n implies pA(ak) ≥ 1− ε,
– ak �∈ L<n implies pA(ak) ≤ ε.
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We are now going to prove a lower bound on the number of states of a 1qfa
accepting L<n with probability 1 − ε. First, we introduce some notations. For
any 0 ≤ s < j < n, we let #L(s, j) = |{ak ∈ L | s ≤ k < j}|. Moreover, for every
1 ≤ t < n/2, we write

γL(t, n) = max
t≤k≤n−t

{ |#L(k − t, k)−#L(k, k + t)|
t

}

,

and

τL(t, n, ε) =
{

0 if γL(t, n) < ε/(1− ε)
(1− ε) γL(t, n)− ε otherwise.

Example 1. Consider the language E<n = {a2k | k < n/2}. In this case, we get

τE<n(t, n, ε) =
{

0 for even t
(1− ε)/(t− ε) for odd t.

Example 2. Consider the language F<n = {ak | n/2 ≤ k < n}. In this case, for
any t ≥ 1, we get

τF <n(t, n, ε) = 1− 2ε.

We are ready to state our main result which will be proved in Section 5 by
using quantum information theory arguments.
Theorem 5. If L<n is accepted by a q-state 1qfa, then

log q ≥
log n−1∑

k=0

(

1−H
(

1
2

+
1
2
τL(2k, n, ε)

))

.

Example 3. By Theorem 5, we get that a q-state 1qfa accepting the language
E<n = {a2k | k < n/2} at Example 1 must satisfy the trivial lower bound log q ≥
(1− 2ε)2 yielding q ≥ 2. Actually, E<n can be recognized with probability 1 by
the following 2-state automaton

A =
(

(1, 0),
(

0 1
1 0

)

,

(
1 0
0 0

))

.

Example 4. By Theorem 5, any q-state 1qfa accepting with probability 1 − ε
the language F<n = {ak | n/2 ≤ k < n} at Example 2 must satisfy log q ≥
(1−H(1− ε)) log n, i.e., q ≥ n1−H(1−ε).

5 The Proof of the Main Result

Let us consider two density matrices σa and σb, and an observable O = 1 · P +
0 · (I − P ) such that

– Prob{measurement of O on σa gives 1} ≥ p,
– Prob{measurement of O on σb gives 1} ≤ q,
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The following lemma is an extension of Lemma 3.2 in [22]:

Lemma 1. If p > q, then

S
(

1
2
σa +

1
2
σb

)

≥ 1
2
S(σa) +

1
2
S(σb) + 1−H

(
1
2

+
1
2

(p− q)
)

.

Proof. (Outline.) By Holevo’s Theorem (see Section 2.3), we have

S
(

1
2
σa +

1
2
σb

)

≥ 1
2
S(σa) +

1
2
S(σb) + I(X,Y ),

where X and Y are random variables with values in {a, b} and {0, 1}, respec-
tively, such that

Prob{X = a, Y = 1} ≥ 1
2 p Prob{X = a, Y = 0} ≤ 1

2 (1− p)

Prob{X = b, Y = 1} ≤ 1
2 q Prob{X = b, Y = 0} ≥ 1

2 (1− q).

Easy calculations shows that

I(X,Y ) = H(Prob{X}) +H(Prob{Y })−H(Prob{X,Y })
≥ H

(
1
2
p+

1
2
q

)

− 1
2
H(p)− 1

2
H(q) ≥ 1−H

(
1
2

+
1
2

(p− q)
)

.

��
Consider now a 1qfaA = (π, U, P ) and the observableO = 1·P+0·(I−P ). Let

πk = πUk be the superposition reached by A after reading ak, and let σk = π†
kπk

be the corresponding density matrix. For s < j, define σs,j = 1
j−s

∑j−1
k=s σk, and

let ps,j be the probability that measuring O on σs,j yields 1. It is easy to verify
that

ps,j =
1

j − s
j−1∑

k=s

pA(ak).

We can show that the entropy of σs,j is invariant under translation.

Theorem 6. For any k, S(σs,j) = S(σs+k,j+k).

Proof. By definition, we have S(σs+k,j+k) = (U†)kσs,jU
k. Since U is unitary,

the claimed result follows. ��
The following lemma is crucial in the proof of our main result:

Lemma 2. For every 1 ≤ t ≤ s,

S(σ0,2t) = S(σs−t,s+t) ≥ S(σ0,t) + 1−H
(

1
2

+
1
2

(ps−t,s − ps,s+t)
)

.
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Proof. In fact:

S(σ0,2t) = S(σs−t,s+t) (by Theorem 6)

≥ 1
2
S(σs−t,s) +

1
2
S(σs,s+t) + 1−H

(
1
2

+
1
2

(ps−t,s − ps,s+t)
)

(by Lemma 1)

= S(σ0,t) + 1−H
(

1
2

+
1
2

(ps−t,s − ps,s+t)
)

(by Theorem 6).

��
Suppose now that the 1qfa A = (π, U, P ) accepts L<n with probability 1− ε.

Recall that, for 0 ≤ s < j < n, we write #L(s, j) = |{ak ∈ L | s ≤ k < j}|. The
following lemma relates the probability ps,j to the number #L(s, j).

Lemma 3. For 0 ≤ s < j < n,

(1− ε)#L(s, j)
j − s ≤ ps,j ≤ (1− ε)#L(s, j)

j − s + ε.

Proof. By recalling that ps,j = 1
j−s

∑j−1
k=s pA(ak), and by observing that ak ∈ L

implies pA(ak) ≥ 1− ε and ak �∈ L implies pA(ak) ≤ ε, we get the result. ��
We are now ready to prove our main result.

Theorem 7. If L<n is accepted by a q-state 1qfa, then

log q ≥
log n−1∑

k=0

(

1−H
(

1
2

+
1
2
τL(2k, n, ε)

))

.

Proof. (Outline.) Recall, from the previous section, the notation

γL(t, n) = max
t≤k≤n−t

{ |#L(k − t, k)−#L(k, k + t)|
t

}

,

for 1 ≤ t < n/2. Our proof consider two distinct cases, for every 0 ≤ j < log n:

• γL(2j , n) ≤ ε/(1−ε): In this case, we have τL(2j , n, ε) = 0. Thus, we can write

S(σ0,2j+1) ≥ S(σ0,2j ) (by Lemma 2)

= S(σ0,2j ) + 1−H
(

1
2

+
1
2
τL(2j , n, ε)

)

(since τL(2j , n, ε) = 0).

• γL(2j , n) > ε/(1− ε): Let

k′ = argmax
2j≤k≤n−2j

{ |#L(k − 2j , k)−#L(k, k + 2j)|
2j

}

.
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Without loss of generality, we can assume (the opposite case follows by the
same reasoning) that

(1− ε) #L(k′ − 2j , k′)−#L(k′, k′ + 2j)
2j

> ε.

By Lemma 3, we get

(1−ε) #L(k′ − 2j , k′)
2j

≤ pk′−2j ,k′ and pk′,k′+2j ≤ (1−ε) #L(k′, k′ + 2j)
2j

+ε.

As a consequence, we get

pk′−2j ,k′ − pk′,k′+2j ≥ (1− ε) #L(k′ − 2j , k′)−#L(k′, k′ + 2j)
2j

− ε
= τL(2j , n, ε). (1)

By Lemma 2 and inequality (1), we obtain

S(σ0,2k+1) ≥ S(σ0,2k) + 1−H
(

1
2

+
1
2

(pk′−2j ,k′ − pk′,k′+2j )
)

≥ S(σ0,2k) + 1−H
(

1
2

+
1
2
τL(2j , n, ε)

)

.

Hence, for any 0 ≤ k ≤ log n− 1, we have

S(σ0,2k+1) ≥ S(σ0,2k) + 1−H
(

1
2

+
1
2
τL(2j , n, ε)

)

.

By solving this system of inequalities and by Theorem 2, we conclude that

log q ≥ S(σ0,n) ≥
log n−1∑

j=0

(

1−H
(

1
2

+
1
2
τL(2j , n, ε)

))

.

��
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Abstract. In previous work on the language F ickle and its extension
F ickleII Dezani and us introduced language features for object re-classifi-
cation for imperative, typed, class-based, object-oriented languages.
In this paper we present the language F ickle3, which on one side re-
fines F ickleII with more expressive effect annotations, and on the other
eliminates the need to declare explicitly which are the classes of the ob-
jects that may be re-classified. Therefore, F ickle3 allows to correctly type
meaningful programs which F ickleII rejects. Moreover, re-classification
may be decided by the client of a class, allowing unanticipated object re-
classification. As for F ickleII, also the type and effect system for F ickle3

guarantees that, even though objects may be re-classified across classes
with different members, they will never attempt to access non existing
members.
The type and effect system of F ickle3 has some significant differences
from the one of F ickleII. In particular, besides the fact that intra-class
type checking has to track the more refined effects, when a class is com-
bined with other classes some additional inter-class checking is intro-
duced.

1 Introduction

Re-classifiable objects support the changing of an object’s behaviour by changing
its class membership at runtime, see e.g. [2,10,8,11]. In previous work on the
language F ickle [5] and its extension F ickleII [6] Dezani and us introduced
language features which allow objects to change class membership dynamically
and showed how to combine these features with a strong type system. We based
our approach on an imperative, class-based language, where classes are types
and subclasses are subtypes, and where methods are defined inside classes and
selected depending on the class of the object on which the method is invoked.
� Work partially supported by IST-2001-33477 DART, MIUR Cofin ’01 NAPOLI, and

MIUR Cofin’02 McTati projects. The founding bodies are not responsible for any
use that might be made of the results presented here.

C. Blundo and C. Laneve (Eds.): ICTCS 2003, LNCS 2841, pp. 97–110, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



98 Ferruccio Damiani, Sophia Drossopoulou, and Paola Giannini

In this paper we present the language F ickle3, which on one side refines
F ickleII with more expressive effect annotations, and on the other eliminates
the need to declare explicitly which are the classes of the objects that may be
re-classified. We focus on the differences of the new proposal over F ickleII. For
comparison with other proposals in the literature we refer to [6].
F ickle3 is a Java-like language with a re-classification operation that changes

the class membership of an object while preserving its identity. The basic prob-
lem in the design of the language is to have a sound type system, that is, a type
system that, even in the presence of object re-classification, insures that no at-
tempt is made at accessing non existing members. This is obtained by changing
the type of this and of local identifiers that might point at a re-classified object
in a method body. An object o of class c could also be pointed at by a field f
of type d (of some other object o’), where d is a superclass of c. Therefore, to
achieve type soundness, we must forbid re-classification from (a subclass of) d to
a class which is not a subclass of d (otherwise subsequent accesses to members
of o’.f existing in class d could fail). Classes for which this does not happen are
said to be “respected” by re-classification and can be safely used as types for
fields.

– In F ickleII, this was guaranteed by explicitly marking classes which had to
be respected by re-classification with the keywords state and root. State
classes are the possible sources and targets of re-classifications, and root
classes are the superclasses of state classes and declare all the members
common to them.

– In F ickle3 the set of classes that are respected by re-classification is inferred
by tracing all possible re-classifications in the program.

Re-classifications are traced by effects, see [9,12], and methods are annotated
with the effects that may be caused by the execution of their body.

– In F ickleII effects are just sets of root classes, {c1, ..., cn}, meaning that the
method may perform any re-classification between two subclasses of a class
in the set.

– In F ickle3 effects are sets of pairs, { c1⇓c′
1, ..., cn⇓c′

n }, meaning that the
method may perform any re-classification from a subclass of ci to a sub-
class c′

i .

F ickleII-style effect annotations can be coded into F ickle3-style effect annota-
tions, but not vice versa, and F ickle3 allows to correctly type meaningful pro-
grams which F ickleII rejects. Moreover, by eliminating the explicit marking of
classes that must be respected by re-classification, we obtain a language that is
syntactically simpler, and allows unanticipated dynamic object replacement (see
e.g. [3]). However, this has a drawback: when linking a class c with an existing
set of classes we have to check on one side that the effects of the methods of c
respect the classes used as types of fields of the preexisting classes, and on the
other that the effects of the methods of the preexisting classes respect the classes
used as types of fields of c.
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The operational semantics (which ignores effect annotations and types) of
F ickle3 is essentially unchanged w.r.t. F ickleII1, whereas in the type and ef-
fect system there are some significant differences. In particular, as previously
mentioned, along with the intra-class checking we also need some inter-class
checking.

This paper is organized as follows: In Section 2 we introduce F ickle3 infor-
mally using an example. In Section 3 we give syntax and operational semantics.
In Section 4 we present the typing rules and state type soundness. Some technical
definitions are listed in the appendix.

2 The Example of the Frog and of the Prince

In Figure 1 we give, by using a syntax similar to Java’s, an example inspired
by adventure games. The example is essentially the same example illustrated in
Section 2 of [6]. Besides the differences in the syntax of the language, the only
difference is that, in class Princess, we have replaced the method walk2 with the
method walk3.

We define a class Player with subclasses Frog and Prince. When woken up,
a frog inflates its pouch, while a prince swings his sword. When kissed, a frog
turns into a prince; when cursed, a prince turns into a frog.

Annotations like { }, {Frog⇓Prince} , and {Prince⇓Frog} before method
bodies are called effects; expressions like Prince⇓Frog and Frog⇓Prince are called
atomic effects. Effects list potential re-classifications that may be caused by
the invocation of that method (each atomic effect represents a potential re-
classification). Methods with the empty effect { }, e.g. wake, may not cause
any re-classification. Methods with non-empty effects, e.g. kissed with effect
{Frog⇓Prince} , may re-classify objects from a subclass of the left-hand side
of one of their atomic effects to a subclass of the right-hand side of that atomic
effect; in our case from Frog to Prince. Such re-classifications may be caused
by re-classification expressions (e.g. this⇓Prince in method kissed of class Frog,
or mate2⇓Prince in method walk3 of class Princess), or by further method calls
(e.g. mate.kissed (()) in method walk1 of class Princess).

The classes c such that an object belonging to some subclass of c may be
re-classified to a class that is not a subclass of c cannot be used as type for fields;
in our example Frog and Prince.

The method body of kissed in class Frog contains the re-classification ex-
pression this⇓Prince. At the beginning of the method the receiver is an object
of class Frog, therefore it contains the fields brave and pouch, but not the field
sword. After execution of this⇓Prince the receiver is of class Prince, and there-
fore sword can be selected, while pouch can not, and brave retains its value.
This mechanism supports the transmission of some information from the object
before the re-classification to the object after the re-classification.
1 The only difference is that, in F ickle3, object re-classification preserves the fields of

the least common superclass of the source and target of re-classification while, in
F ickleII, the field preserved are those of the root class.
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abstract class Player extends Object{
bool brave;

abstract bool wake(()) { } ;
abstract Weapon kissed(()) {Frog⇓Prince } ;

}
class Frog extends Player{

Vocal pouch;

bool wake(()) { } {pouch.blow(()) ; brave}
Weapon kissed(()) {Frog⇓Prince } {this⇓Prince; sword:= new Weapon}

}
class Prince extends Player{

Weapon sword;

bool wake(()) { } {sword.swing(()); brave}
Weapon kissed(()) { } {sword}
Frog cursed(()) {Prince⇓Frog } {this⇓Frog; pouch:= new Vocal; this}

}
class Princess extends Object{

bool walk1((Frog mate)) {Frog⇓Prince } {mate.wake(());
mate.kissed(()); mate.wake(())}

Weapon walk3((Prince mate1, Frog mate2)) {Frog⇓Prince }
{mate2⇓Prince; mate2.sword:= mate1.sword}

}

Fig. 1. Program Ppl- players with re-classifications in F ickle3.

Consider the instructions in the method body of walk1 in class Princess:

1. mate.wake(()); // inflates pouch
2. mate.kissed(());
3. mate.wake(()) // swings sword

(1)

Suppose that the parameter mate is bound to a Frog object with field brave
containing true. After line 2., the object is re-classified to Prince with the same
value for brave. Therefore, the call of wake in line 1. selects the method from
Frog, and inflates the pouch, while the call of wake in line 3. selects the method
from Prince, and swings the sword.

Re-classification from class c1 to class c2 removes from the object all fields
that are not defined in the least common superclass of c1 and c2, and adds the
remaining fields of the target class. E.g. after line 2. in example (1) the object
denoted by mate has a sword but not a pouch.

Consider now the instructions in the method body of walk3 in class Princess:

1. mate2⇓Prince;
2. mate2.sword:= mate1.sword

(2)

Let the parameters mate1 and mate2 be bound to a Prince and to a Frog object,
respectively. After line 1., the object pointed at by mate2 is re-classified to Prince



Refined Effects for Unanticipated Object Re-classification: F ickle3 101

and, in the left-hand side of line 2., field sword can be selected. Moreover, the
object pointed at by mate1 is unchanged and, in the right-hand side of line 2,
field sword can be selected. So the execution of this method is safe.

As a matter of fact in F ickleII [6] walk3 does not type-check because the effect
inferred for the re-classification mate2⇓Prince, in line 1, is {Player }, meaning
that the type of all the local identifiers having as type a subclass of Player is
changed to Player (except for mate2, whose type is changed to Prince). So in line
2 the variable mate1 is of class Player and mate1.sword gives type error. Note
that mate2.sword type-checks both in F ickleII and F ickle3.

3 Syntax and Operational Semantics

The syntax of F ickle3 is given in Fig. 22. We use standard extended BNF, where
a [ - ] pair means optional, and A∗ means zero or more repetitions of A. We
follow the convention that non terminals appear as nonTerm, keywords appear
as keyword, literals appear as literal and identifiers appear as identifier. We
omit separators like “; ” or “, ” where they are obvious. Expressions are usually
called e, e′, e1 etc., and values are usually called v, v′, v1 etc.. By id, id′,etc.we
will denote either this or a parameter name (x, x′,etc.). A program is a sequence
of class definitions. Method declarations have the shape:

t m ((t1 x1, ..., tq xq)) { c1⇓c′
1, ..., cn⇓c′

n }{ e }
where t is the result type, t1, ..., tq are the types of the formal parameters
x1, ..., xq, and e is the body3. The effect consists of atomic effects c1⇓c′

1,..., cn⇓c′
n,

with n ≥ 0. Each atomic effect ci⇓c′
i means that any object of a subclass of ci

may be re-classified to any subclass of c′
i .

The operational semantics of F ickle3 (which ignores effects annotations) dif-
fers from that of F ickleII [6] only in the evaluation of re-classification expres-
sions, id⇓c. Here we briefly present the signature of the rewriting relation, � ,
and the semantics of re-classification expressions, id⇓d. A detailed description
of the other rules of the operational semantics is given in Section 4 of [6]. The
signature of the rewriting relation � is:

� : progr −→ e × store −→ ( val ∪ dev ) × store

The operational semantics rewrites pairs of expressions and stores into pairs of
values, exceptions, or errors, and stores in the context of a program P. The store
maps this to an address, parameters to values, and addresses to objects. Values
are addresses, or the source language values as in Section 3. Addresses may point
to objects, but not to other addresses, primitive values, or null. Thus, in F ickle3,
2 The syntax of F ickle3 differs from the syntax of F ickleII [6] only in the keywords

root and state (that are not present in F ickle3) and in the effect annotations
occurring in methods’ signatures. Section 2 follows a slightly more liberal syntax,
with abstract classes, abstract methods, and the implicit use of this to access fields
and methods from the current class.

3 Extending F ickle3 to allow methods to have local variables would be straightforward.
The typing rules for local variables would be the same as for parameters.
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progr ::= class∗

class ::= class c extends c { field ∗ meth∗ }
field ::= type f
meth ::= type m ((par ∗ )) eff { e }
type ::= bool | c
par ::= type x
a ::= c⇓c
eff ::= { a∗ }
e ::= if e then e else e | var := e | e ; e | sVal |

this | var | new c | e.m(( e∗)) | id⇓c
var ::= x | e. f
sVal ::= true | false | null
id ::= this | x

with the following conventions
c ::= c | c′ | ci | d | ... for class names
f ::= f | f′ | fi | ... for field names
m ::= m | m′ | mi | ... for method names
x ::= x | x′ | xi | ... for parameter names

Fig. 2. Syntax of F ickle3.

as in Java, pointers are implicit, and there are no pointers to pointers. As we
will show, execution of well-typed expressions never produces an error, although
it may throw a null pointer exception. Stores are denoted with σ, addresses with
ι, exceptions and errors with dv.

store = ( {this} −→ addr ) ∪ ( x −→ val ) ∪ ( addr −→ object )
val = sVal ∪ addr
dev = {nullPntrExc, Err}
object = { [[f1 : v1, ..., fr : vr]]

c | f1, ..., fr are fields names,
v1, ..., vr ∈ val , and c is a class name }

To evaluate a re-classification expressions, id⇓d, we find the address of id,
which points to an object of class c. We replace the original object by a new
object of class d. We preserve the fields belonging to least common superclass of
c and d, and initialize the other fields of d according to their types. For example,
for store σ1, with σ1(x1) = ι, and σ1(ι) = [[brave : true , sword : ι′]]Prince,
σ1(ι′) = [[...]]Weapon, we have x1⇓Frog, σ1 �Ppl

ι, σ2 where σ2 = σ1[ι �→[[brave :

true , pouch : null]]Frog]. I.e. we obtain an object of class Frog with unmodified
field brave.

4 Typing

The following assertions, defined in Fig. 3 (where C(P,c), formally defined in
Appendix A, returns the definition of class c in program P), describe classes,
types, the subclassing relationship, and the widening relationship between types:
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The definitions in P are unique
� P �u

� P �u and the class hierarchy of P is acyclic
� P �h

� P �u

Object �P Object

� P �u

P = ... class c extends c′{ ... }...

c �P c
c �P c′

c �P c′

c′ �P c′′

c �P c′′

� P �h

C(P, c) = class c...
P � c �ct

P � c �t

P � bool �t bool ≤P bool
c �P c′

c ≤P c′

t1 �Pt2 =

{
t if t1 ≤P t t2 ≤P t ∀t′.(t1 ≤P t′ and t2 ≤P t′)⇒ t ≤P t′

Udf otherwise

Fig. 3. Programs with unique definitions, well-formed inheritance hierarchy, subclasses,
types, widening, and lub on types.

Γ = {x1 : t1, ..., xn : tn, this : c}

Γ(id) =

{
ti if id = xi

c if id = this
Udf otherwise

Γ[id �→t](id′) =

{
t if id′ = id
Γ(id′) otherwise

Fig. 4. Environment lookup and update.

P � c �ct means “c is a class in P”,
P � t �t means “t is a type in P” (i.e. either a class or bool),
c �P c′ means “class c is a subclass of c′ in P”, and
t ≤P t′ means “type t′ widens type t in P” (i.e. t subclass of, or identical to, t′).

Environments, Γ, map parameter names to types, and the receiver this to a
class. They have the form {x1 : t1, ...xn : tn, this : c}. Lookup, Γ(id), and update,
Γ[id�→t], are defined in Fig. 4.

An atomic effect is a pair of classes, c⇓c′, meaning that any object of a
subclass of c may be re-classified to any subclass of c′. An effect, φ, is a set
{ c1⇓c′

1, ..., cn⇓c′
n } of atomic effects; it means that any object of a subclass of ci

may be re-classified to any subclass of c′
i . The empty effect, { }, guarantees that

no object is re-classified. We say that the effect { c1⇓c′
1, ..., cn⇓c′

n } is well formed
in P, and write P � { c1⇓c′

1, ..., cn⇓c′
n } �, to mean that

1. c1,...,cn are not subclasses of each other in P, and
2. for all i, j ∈ {1, ..., n}, if (c′

i is a subclass of cj) or (cj is subclass of c′
i ), then c′

j is a
subclass of c′

i .

These two requirements simplify the definition of the operation of application
of an effect to a type (that will be defined in Section 4.1). The first require-
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ment assures that, for any class c, there is at most one atomic effect saying that
objects belonging to class c might be re-classified. The second requirement as-
sures that there is no atomic effect saying that objects belonging to a subclass
of the target class c′ of another atomic effect might be re-classified to a class
that is not a subclass of c′. For instance, {Prince⇓Frog,Frog⇓Prince} is not a
well-formed effect, since it does not satisfy the second requirement. The effect
{Prince⇓Player,Frog⇓Player} is, instead, well-formed.

4.1 Typing Rules for Expessions

Typing an expression e in the context of program P and environment Γ involves
three components, namely

P, Γ � e : t [] Γ′ [] φ

where t conservatively estimates the type of e after its evaluation, the environ-
ment Γ′ contains conservative estimations of the types of this and of the param-
eters after evaluation of e, and φ conservatively estimates the re-classification
effect of the evaluation of e on objects4.

The typing rules for expressions are given in Fig. 55. We use the lookup
functions F(P, c, f) and M(P, c,m) which return, respectively, the definition of
the field f and of the method m in the class c, going through through the class
hierarchy, if necessary (see Appendix A). We follow the convention that rules
can be applied only if the types in the conclusion are defined. This is useful in
rules (cond) and (id).

Consider the rule (cond) for conditionals. The branches of the conditional,
e1 and e2, are typed in the environment Γ0, i.e. the environment updated by
typing the first expression, e. Rule (cond) uses least upper bounds on types,
environments, and effects to determine a conservative approximation of the type,
of the resulting environment, and of the effect of the conditional expression. With
t �Pt′ we denote the least upper bound of t and t′ with respect to ≤P, when it
exists6 (see Fig. 3). With Γ �PΓ′ we denote the least upper bound operation on
environments in P, defined by:

Γ �PΓ′ = {id : (t �Pt′) | Γ(id) = t and Γ′(id) = t′}.
The subeffecting relation, �P, defined by:

φ�Pφ′ iff , for all c⇓c′ ∈ φ, there exists d⇓d′ ∈ φ′such that c �P d and c′ �P d′,
4 In F ickleII [6], where effect annotations are set of root classes, typing has the format

P, Γ � e : t [] Γ′ [] {c1, ..., cn}, where the F ickleII-style effect annotation {c1, ..., cn}
is equivalent to the F ickle3-style effect annotation {c1⇓c1, ..., cn⇓cn}, meaning that
any object of a subclass of the root class ci may be re-classified to any subclass of
the root class ci.

5 Besides the fact that the typing rules of F ickle3 use the least upper bound operator
on effects (�P) instead of the set-theoretic union (∪), the only difference between the
typing rules for expressions of F ickle3 (in Fig. 5) and the typing rules for expressions
of F ickleII (in Fig. 6 of [6]) is in rule (recl).

6 Note that for any class c the least upper bound c �Pbool does not exist.
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P, Γ � e : bool [] Γ0 [] φ P, Γ0 � e1 : t1 [] Γ1 [] φ1 P, Γ0 � e2 : t2 [] Γ2 [] φ2

(cond)
P, Γ � if e then e1 else e2 : t1 �Pt2 [] Γ1 �PΓ2 [] φ �Pφ1 �Pφ2

P, Γ � e : c [] Γ0 [] φ
P, Γ0 � e′ : t [] Γ′ [] φ′

F(P, φ′@Pc, f) = t′ t ≤P t′
(a-field)

P, Γ � e.f:=e′ : t [] Γ′ [] φ �Pφ′

P, Γ � e : t′ [] Γ′ [] φ
Γ′(x) = t t′ ≤P t

(a-var)
P, Γ � x:=e : t′ [] Γ′ [] φ

P, Γ � e : c [] Γ′ [] φ
F(P, c, f) = t

(field)
P, Γ � e.f : t [] Γ′ [] φ

P, Γ � e : t [] Γ0 [] φ
P, Γ0 � e′ : t′ [] Γ′ [] φ′

(seq)
P, Γ � e; e′ : t′ [] Γ′ [] φ �Pφ′

(bool)
P, Γ � true : bool [] Γ [] { }
P, Γ � false : bool [] Γ [] { }

P � c �ct

(null)
P, Γ � null : c [] Γ [] { }

(id)
P, Γ � id : Γ(id) [] Γ [] { }

P � c �ct

(new)
P, Γ � new c : c [] Γ [] { }

P, Γ � e0 : c [] Γ0 [] φ0
P, Γi−1 � ei : t′i [] Γi [] φi (∀i ∈ {1, ..., n})
M(P, (φ1 �P · · · �Pφn)@Pc, m) = t m((t1 x1, ..., tn xn)) φ { ... }
(φi+1 �P · · · �Pφn)@Pt′i ≤P ti (∀i ∈ {1, ..., n})

(meth)
P, Γ � e0.m((e1, ..., en)) : t [] φ@PΓn [] φ �Pφ0 �P · · · �Pφn

P � Γ(id) �ct

(recl)
P, Γ � id⇓c : c [] ({ Γ(id)⇓c }@PΓ)[id 
→c] [] { Γ(id)⇓c }

Fig. 5. Typing rules for expressions.

formalizes the fact that the effect φ is a conservative approximation of the effect
φ′. The effect φ �Pφ

′, defined by:

φ �Pφ′ = let
φ0 = {c⇓(c′ �P(�P{d′ | d⇓d′ ∈ φ′ and d �P c})) | c⇓c′ ∈ φ}

∪ {d⇓(d′ �P(�P{c′ | c⇓c′ ∈ φ and c �P d})) | d⇓d′ ∈ φ′}
in

{c0 ⇓ (c′
0 �P(�P{d′

0 | d0⇓d′
0 ∈ φ0 and (c′

0 �P d0 or d0 �P c′
0)})) | c0⇓c′

0 ∈ φ0}

is the least upper bound of the effects φ and φ′ with respect to �P. Note that the
least upper bound of well-formed effects is always defined and it is a well-formed
effect. The two branches of a conditional may cause different re-classifications
for this and the parameters. So, after the evaluation we can only assert that
this and the parameters belong to the least upper bound of their relative classes
in Γ1 and Γ2. We can prove that for this rule Γ1 �PΓ2 is defined. On the other
hand, the least upper bound of the types of the branches, t1 �Pt2, may not be
defined, in which case the rule cannot be applied.

Consider now the typing of assignments, i.e. rules (a-field) and (a-var). Eval-
uation of the right hand side may modify the type of the left hand side. In
particular, in (a-var) evaluation of e can modify the type of x. This is taken into
account by looking up x in the environment Γ′. Also, in rule (a-field) evalua-
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tion of e′ may modify the class of the object e. For this purpose, we define the
application of effects to types:

{ c1⇓c′
1, ..., cn⇓c′

n }@Pt =






c′
i �Pt if t �P ci for some i∈1, ..., n

c′
i1 �P... �Pc′

im �Pt if ij∈1, ..., n (j∈1, ..., m and m ≥ 1)
are all the indexes such that cij �P t

t otherwise

For example, {Frog⇓Prince } @PplFrog = Player, {Frog⇓Prince } @PplPrince =
Prince, and {Frog⇓Prince } @PplPrincess = Princess.

In rule (a-field), by applying φ′ to c before looking up f, we provide for the
case where evaluation of e′ might re-classify e and remove f in the process.

We say that an effect φ respects a set of classes C in P to mean that, for all
c ∈ C, φ@Pc = c.

Note that the field type cannot be changed since classes not respected by
the effects listed in the program are not allowed to be used as types for fields.
The effect of field assignment is the least upper bound of the effects of the left-
hand side and of the right-hand side of the assignment, which conservatively
approximates the application of the effect of the left-hand side followed by the
application of the effect of the right-hand side. (This is due to the fact that: if
P � φ �, P � φ′ �, and P � c �ct, then φ′@P(φ@Pc) �P (φ �Pφ

′)@Pc).
Consider now (recl): id⇓c is type correct if Γ(id) (the type of id before the re-

classification) is a class; note that, since the class hierarchy is a tree, this implies
that c (the target of the re-classification) and Γ(id) have a common superclass.
The typing rule for re-classification updates the environment by changing the
class of the identifier id. Moreover, since there could be aliasing with identifiers
of classes that are subclasses or superclasses of the class of id, the static type of
all such variables is set to the least upper bound of the current type and of the
target of the re-classification. For this reason, we define the application of effects
to environments:

φ@PΓ = {id : φ@Pt | Γ(id) = t}
For example, for an environment Γ1, with Γ1(x1) = Γ1(x2) = Frog, Γ1(x3) =
Prince, we have {Frog⇓Prince } @PplΓ1 = Γ2, where Γ2(x1)=Γ2(x2)=Player and
Γ2(x3)=Prince. Therefore, the following typing judgement can be derived:

Ppl, Γ1 � x2⇓Prince : Prince [] Γ3 [] {Frog⇓Prince }

where Γ3(x1)=Player, but Γ3(x2)=Γ3(x3)=Prince.
Consider rule (meth) for method calls, e0.m((e1, ..., en)). The evaluation of the

arguments ei+1, ..., en may modify the types of the arguments e1, ..., ei and of the
object e0. This could happen if the original type of ej (0 ≤ j ≤ i) is a subclass or
superclass of the left-hand side of an atomic effect among the effects of ei+1, ..., en.
The definition of m has to be found in the new class of the object e0, and the types
of the formal parameters must be compared with the new types of e1, ..., en−1.
In (meth) we look up the definition of m in the class obtained by applying the
effect of the arguments to the class of the receiver and we compare the types of
formal and actual parameters by keeping into account the effects of the actual
parameters.
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C(P, c) = class c extends c′ {...}
∀f : FD(P, c, f) = t0 =⇒ P � t0 �t and F(P, c′, f) = Udf
∀m : MD(P, c, m) = t m((t1 x1, ..., tn xn)) φ { e } =⇒

P � φ �

P, {x1 : t1, . . . , xn : tn, this : c} � e : t′ [] Γ′ [] φ′

t′ ≤P t
φ′Pφ
M(P, c′, m) = Udf or (M(P, c′, m) = t m((t1 x1, ..., tn xn)) φ′′ { ... } and φPφ′′)

(wfc)
P � c �

� P �h ∀c : C(P, c) �= Udf =⇒ P � c � Effect(P) respectsClassesFT(P)
(wfp)

� P �

Fig. 6. Rules for well-formed classes and programs.

4.2 Rules for Well-Formed Classes and Programs

The rules for checking that a program is well-formed are listed in Fig. 67. With
Effect(P) we denote the effect

�P{φ | φ occurs in the signature of a method defined in a class of P}

and with ClassesFT(P) we denote the set of classes

{c | c is used as type for a field defined in a class of P}.

A program is well formed (i.e. � P �) if the inheritance hierarchy is well-formed
(i.e. � P �h), all its classes c are well-formed (i.e. P � c �), and the effects re-
spect the classes used as types for fields (i.e. Effect(P) respects ClassesFT(P)).
Fields may not redefine fields from superclasses, and methods may redefine su-
perclass methods only if they have the same name, arguments, and result type,
and their effect is a subeffect of that of the overridden method8. Method bodies
must be well formed, must return a value appropriate for the method signature,
and their effect must be a subeffect of that in the signature. See Fig. 6, where
C(P,c) returns the definition of class c in program P, and the lookup func-
tions FD(P, c, f), MD(P, c,m) return, respectively, the definition of field f and
method m in class c (the formal definitions are given in Appendix A).

7 The only differences between the rules for well-formed classes and programs of
F ickle3 (in Fig. 6) and those of F ickleII (in Fig. 7 of [6]) are the following. In
rule (wfc), the rule for F ickle3 uses a different notion of well-formed effect and uses
the subeffecting relation instead of the set-theoretic inclusion. In rule (wfp), the rule
for F ickle3 has the additional requirement that the effects must respect the classes
used as types for fields.

8 Thus, in contrast to Java and C++, F ickle3 does not allow field shadowing, nor
method overloading. These features can be included into F ickle3 adopting the ap-
proach from [7]. However, this would complicate the presentation unnecessarily.
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v = true or v = false
(bool ≺)

P, σ � v ≺ bool

P � t �ct

(null ≺)
P, σ � null ≺ t

σ(ι) = [[...]]c c ≤P t
(ι ≺)

P, σ � ι ≺ t

P, σ � v ≺ t v ∈ sV al
(sV al �)

P, σ � v � t

σ(ι) = [[...]]c P, σ � ι ≺ t
∀f ∈ Fs(P, c) : P, σ � σ(ι)(f) ≺ F(P, c, f)

(ι �)
P, σ � ι � t

σ(this) = σ′(this)

σ(ι) = [[...]]c =⇒ σ′(ι) = [[...]]c′ and
{

c′ P c �Pd′ if c P d for some d⇓d′ ∈ φ
c′ = c otherwise

(σ �)
P, φ � σ � σ′

σ(ι) = [[...]]c =⇒ P, σ � ι � c (for all addresses ι)
Γ(id) �= Udf =⇒ P, σ � σ(id) � Γ(id) (for all identifiers id)

(�)
P, Γ � σ �

Fig. 7. Agreement between programs, stores, and values.

4.3 Soundness

Figure 7 introduces agreement notions between programs, stores, and values9.
The judgement P, σ � v ≺ t is instrumental to the definition of P, σ � v � t:
it avoids the use of coinduction. The judgement P, φ � σ � σ′ guarantees that
the differences from σ to σ′ are “small”; in particular, only objects of a subclass
of a class occurring in the left-hand side of an atomic effect in φ may be re-
classified. The judgement P,σ � v � t, guarantees that value v conforms to type
t. In particular, it requires that when v is an address it corresponds to an object
of some class c subclass of t, that the object contains all fields required in the
description of c, and that the fields contain values which conform to their type
in c. The judgement P, Γ �σ� guarantees that all object fields contain values
which conform to their types in the class of the objects, and that all parameters
and the receiver are mapped to values which conform to their types in Γ.

The type system is sound in the sense that a converging well-typed expression
returns a value which agrees with the expression’s type, or nullPntrExc.

Theorem 1 (Type Soundness). For a well-formed program P, environment
Γ, and expression e, such that P, Γ � e : t [] Γ′ [] φ if P, Γ � σ�, and e, σ
converges then

– either e, σ �P v, σ′, P, σ′ � v � t, P, Γ′ � σ′ �,
– or e, σ �P nullPntrExc, σ′.

9 The definitions in Fig. 7 differs from the analogous definition introduced in [6] for
F ickleII in the rule for the judgment P, φ � σ � σ′ (which is crucial to prove Theo-
rem 1).
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5 Conclusions

In this paper we have proposed the language F ickle3 which improves F ickleII
[6] by providing a more expressive type and effect system, and removing the
need for the qualifiers root and state for classes. This makes possible uses of
classes that were not anticipated at their definition time, so that a same class can
be used for re-classifiable objects in certain contexts and for non re-classifiable
objects in others.

Keeping the root and state qualifiers results in the language F ickleIII, an
extension of F ickleII, described in [4].

More experimentation with F ickle3 and F ickleIII is needed in order to assess
the “real usefulness” of their features and to compare the two languages from
the “software engineering point of view”.

The paper [1] provides a translation of F ickle into Java. The same translation
scheme could be used for F ickle3 and F ickleIII.
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A Definitions Concerning Lookup

For program P with � P �u (see Fig. 3) and identifier c �=Object, we define the
lookup of the class declaration for c:

C(P, c) =

{
class c extends c′{cBody} if P = P′ class c extends c′{cBody} P′′,
Udf otherwise

For program P with � P �h (see Fig. 3), identifier c such that

C(P, c) = class c extends c′{cBody},

and identifiers f and m we define:

FD(P, c, f) =
{

t if cBody = ... t f ...
Udf otherwise

F(P, c, f) =
{

FD(P, c, f) if FD(P, c, f) �= Udf ,
F(P, c′, f) otherwise

F(P, Object, f) = Udf

Fs(P, c) = {f | F(P, c, f) �= Udf }

MD(P, c, m) =
{

t m((t1 x1, ..., tn xn)) φ { e } if cBody = ...t m ((t1 x1...tn xn))φ{e}...
Udf otherwise

M(P, c, m) =
{

MD(P, c, m) if MD(P, c, m) �= Udf ,
M(P, c′, m) otherwise

M(P, Object, m) = Udf
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Abstract. In this paper, we study the problem of cost constrained fixed job 
scheduling (CCFJS). In this problem, there are a number of processors, each of 
which belongs to one of several classes. The unit time processing cost for a 
processor varies with the class to which the processor belongs. There are N 
jobs, each of which must be processed from a given start time to a given finish 
time without preemption. A job can be processed by any processor, and the cost 
of that processing is the product of the processing time and the processor’s unit 
time processing cost. The problem is to find a feasible scheduling of the jobs 
such that the total processing cost is within a given cost bound. This problem 
(CCFJS) arises in several applications, including off-line multimedia gateway 
call routing. We show that CCFJS can be solved by a network flow based algo-
rithm when there are only two classes of processors. For more than two classes 
of processors, we prove that CCFJS is not only NP-Complete, but also that 
there is no constant ratio approximation algorithm. Finally, we present an ap-
proximation algorithm, derive its worst-case performance ratio (non constant), 
and show that it has a constant approximation ratio in several special cases. 

1   Introduction 

Fixed job scheduling (sometimes called interval scheduling) has been studied exten-
sively. In fixed job scheduling, we need to process without preemption a given set of 
jobs on several processors, such that a job starts at a given time and finishes at a given 
time. Many variations of fixed job scheduling have been considered in the literature 
(cf. Fischetti, Martello & Toth [1,2], Kolen & Kroon [3,4,5,6], Kroon, Sen, & Deng 
[7], and Jansen [8]), and the computational complexity of those variants has been 
established. In particular, Kroon, Sen, & Deng [7] studied the optimal cost chromatic 
partition problem (OCCP), one variation of fixed job scheduling with processor-
dependent processing cost. In that problem, a sufficient number of processors are 
available. A job can be processed by any one processor during a fixed time interval, 

and if job j is carried out by processor p, then the associated processing cost is pk . 

The objective is to find a feasible non-preemptive schedule to achieve the minimum 
total processing cost. 

In this paper, we study cost constrained fixed job scheduling (CCFJS), which is 
similar to [7]. In CCFJS, there are a number of processors, each of which belongs to 
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one of several classes. The unit time processing cost for a processor varies with the 
class to which the processor belongs. Each job requires processing by one and only 
one processor without preemption. The cost of processing a job is the unit time proc-
essing cost of the processor times the job’s processing time. The problem is to find a 
feasible scheduling of the jobs within a given cost bound, or equivalently, to find a 
feasible scheduling of minimum cost.  The difference between CCFJS and OCCP is 
that, in OCCP, the processing cost of a job depends only on the processor: if a num-
ber of jobs are processed by the same processor, they have the same processing costs; 
In CCFJS, the processing cost of a job depends not only on the processor, but also on 
the processing time (the processing cost is equal to the product of the unit time proc-
essing cost of that processor and the processing time). 

CCFJS arises in off-line multimedia gateway call routing. Multimedia gateways in-
terconnect different media networks (circuit-switched PSTN, packet-switched IP, 
ATM, wireless). A multimedia gateway routes each incoming call to one of its media 
networks. Media networks differ in the unit time media cost for calls routed to the 
network, and each media network has a bandwidth capacity on the number of simul-
taneous calls. The media cost of a call is equal to the call duration times the unit time 
media cost of the network to which the call is routed. The goal of call routing is to 
minimize the media cost (or equivalently within its cost bound) taken over all calls. 

In section 2, we formally define CCFJS and provide relevant terminology. In sec-
tion 3, we show that CCFJS can be solved by a network flow based algorithm (i.e. in 
polynomial time) when there are only two classes of processors. In section 4, we 
show that for more than two classes of processors, CCFJS is not only NP-Complete, 
but also that there is no constant ratio approximation algorithm. In section 5, we pre-
sent an approximation algorithm, derive its worst-case performance ratio (non con-
stant), and show that it has a constant approximation ratio in several special cases. 

2   Problem Descriptions and Terminology 

In this section, we formally define CCFJS as a decision problem. The optimization 
version of the problem should be clear. 

Instance of CCFJS: A cost bound 0
B

C > ; Jobs 
1
, ...

N
J J , and for each job iJ , a start 

time is  and a finish time 
i

f  ( 0
i i

s f≤ < ); K classes of processors, and for each class 

1, ...j K= , the number jB  of processors, and the unit time processing cost jC  for 

processors in this class. Let 
1

K

i

i

B B
=

=∑  be the total number of processors. We assume 

that 
1 2

0 ...
K

C C C< < < < . 

Question: Does there exist a feasible schedule for the N jobs, such that the cost 

1

( )
N

iT j i i B
i

C C f s C
=

= − ≤∑ ? Here, 
ij

C  is the unit time processing cost of the processor 

on which job iJ  is processed.  
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Relative to the specification of CCFJS, a feasible schedule is an assignment of 
each job to a processor such that each job must be processed by one processor from 
its given start time to its given finish time without preemption, and each processor can 
process at most one job at a time. 

Throughout this paper, we make use of the following terminology: Jobs iJ  and 

( )
j

J i j≠  are compatible if the time intervals [ , )i is f  and [ , )j js f  do not overlap. Job 

iJ  is active at time t if [ , )i it s f∈ . Rank(t) is the number of active jobs at time t. 

Further, Rank( iJ ) is the maximum number of active jobs (including iJ  itself) at any 

point of time [ , )i it s f∈ . To avoid trivial infeasible instances, we assume throughout 

the paper that: 

                           ( )( )( 1, 2, .... )max iRank J i N B= ≤                                                  (2.1) 

A null job has zero processing time with start time equal to finish time. Adding null 
jobs to an instance of CCFJS doesn’t affect the feasibility of the problem since null 
jobs introduce no cost.  A feasible schedule has the following fundamental property: 

Partition Property:  n of the total N jobs (n<N) can be processed by P processors 
(P<B) if and only if the remaining N n−  jobs can be processed by B P−  processors. 

3   A Polynomial Time Algorithm for Two Classes of Processors 

In this section, we show that when there are two classes of processors (i.e. K=2), 
CCFJS can be solved in polynomial time. The algorithm we give has two steps: (1) 
Build a flow network based on each job’s start time and finish time along with the 
total number of processors; (2) Apply a minimum cost network flow algorithm [9] to 
obtain a minimum total cost for the constructed flow network. It will follow that if the 

minimum total cost is greater than 
B

C , then CCFJS has no feasible solution; other-

wise CCFJS has a feasible solution. 

3.1   Construct a Flow Network 

The algorithm that we give constructs a flow network in the form of a layered directed 
acyclic graph (DAG). Each layer has exactly B vertices and each edge connects two 
vertices from two adjacent layers. Each vertex represents a job, and will be assigned a 
weight equal to the job’s processing time. A path represents a sequence of jobs that 
can be processed by the same processor. Clearly, any two jobs on the same path must 
be compatible. Further, if any P vertex-disjoint paths ( 0 P B< < ) are removed from 
the flow network, then in the remaining flow network, there will exist B P−  vertex-
disjoint paths, such that each remaining vertex belongs to exactly one of the B P−  
vertex-disjoint paths (i.e. the Partition Property holds). In section 3.2, we will let P 

be equal to 
2

B , and the jobs on the resulting 
2

B  vertex-disjoint paths will be assigned 
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to processors of class 2. Likewise, the jobs on the remaining 
1

B  vertex-disjoint paths 

will be assigned to the processors of class 1. 

3.1.1   Building a Layered DAG 
The algorithm Build_Layered_DAG  described  below  has  two  inputs:  the  total 
number of processors B and an array of N jobs stored in J[1..N]. The output is a lay-
ered DAG in which each layer contains exactly B vertices, and each edge is directed 
from a vertex in one layer to a vertex in the next higher layer. 

 
------------------------------------------------------------------------------------------------------- 
Algorithm Build_Layered_DAG(Input J[1..N], B; Output G=(V,E))  
Sort and store the 2N values of J[k].start_time and J[k].finish_time (k=1..N)  into 
ascending order in A[1..2N]; 
V ← {s, t};  L ← 1;  F ← 0;  
weight(s) ←0;  weight(t) ← 0; Layer[0] ←{s}; 
for i ← 1 to  N+1 do  Layer[i] ←NULL; 
for i ← 1 to  2N do 

  j←A[i].index; 
  if A[i].type = start_time 
        Layer[L] ← Layer[L] U  vertex(J[j]); // Add job J[j] into Layer L 

        weight(vertex(J[j]))←J[j].proc_time;  // Set job J[j]’s weight to its length 
       F ← 0; 
 else /* A[i].type = finish_time */ 

  if  (F =0) 
  F ← 1; 
  //Duplicate vertices of layer L into layer L+1 
  Layer[L+1] ← Layer[L]; 
  //Set duplicated vertices’ weight to zero  
  weight(v)  ← 0  for each [ 1]v Layer L∈ + ;   

 Add an adequate number of vertices with weight zero (null jobs) 
into layer L, such that laye L has exactly B number of verti-
ces; 

 L←L+1;  //Advance the current layer L to L+1 
 //Remove job J[j] from the current layer L 
Layer[L] ← Layer[L] - vertex(J[j]);   

Layer[L] ←{t}; 
for i ← 1 to L-1 do V←V U  Layer[i]; 
for every vertex [ ]v Layer i∈  

if  v has a duplicated vertex [ 1]u Layer i∈ +   then E ← E U  (v,u); 

else for each non-duplicated vertex [ 1]u Layer i∈ + , E ← E U  (v,u) ; 

Assign capacity one and weight zero to each edge; 
 

The data structures used in the algorithm are: Each element of J[1..N] has three 

fields:  J[k].start_time is job kJ ’s start time, J[k].finish_time is job kJ ’s finish time 
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and J[k].proc_time is job kJ ’s processing time. Clearly, J[k].start_time+ 

J[k].proc_time= J[k].finish_time.  Array [1..2 ]A N  stores the sorted start and finish 

times of all the jobs. Each element of A has three fields: A[i].type (start_time or 
finish_time) indicates whether it is a start time or  a finish time;  A[i].value is either 
the start or the finish time depending on the A[i].type; A[i].index  is the job’s index in 

[1.. ]J N . Each element of array Layer[1..N+2] is used to store the vertices of a given 

layer. 
Build_Layered_DAG works as follows: The algorithm first sorts  the 2N time 

values into ascending order, and stores them in array A[1..2N]. If the finish time of a 
job is the same as the start time of other jobs, the finishing times are placed before the 
starting times in A[1..2N]. 

Then, the algorithm processes A[i] with index i increasing from 1 to 2N. If 
A[i].type is start_time, then a vertex representing job J[A[i].index] is added to layer L,  
and the weight of the vertex is set to J[A[i].index].proc_time. If A[i].type is 
finish_time, then each vertex of layer L is duplicated and placed in a new layer (L+1). 
The weight of each duplicated vertex in this new layer is set to zero, and  the vertex of 
job J[A[i].index] is removed from the new layer. Note that if there are contiguous 
elements of A[i].type equal to finish_time, then the algorithm keeps on removing the 
vertex of job J[A[i].index]  from the new layer until encountering the first  A[i].type 
equal to start_time. (i.e. a new layer is constructed only for the first of a series of 
finish_times). Note that the number of vertices in the new layer is at most B from the 
assumption (2.1). If the old layer has fewer than B vertices, the algorithm adds enough 
vertices with weight zero into the old layer to ensure that it has exactly B vertices 
(vertices with weight zero represent null jobs). 

After building the final layer, the algorithm adds edges: for each vertex v in layer k 
(not the final layer), if v has a duplicated vertex u in layer k+1, add edge (v,u); 
otherwise add edge (v,u) for each non-duplicated vertex u in the layer k+1. The run-

ning time of Build_Layered_DAG is 2( log )O N N NB+ . 

3.1.2   An Example 
Figure 1 shows seven jobs with start times and finish times in sorted order. Each job’s 
processing time is shown in parentheses. Figure 2 is the layered DAG produced by 
Build_Layered_DAG. Each vertex’s weight is indicated in the parentheses. 

3.1.3   Properties of the Layered DAG 
In this section we prove the following theorem about the properties of the layered 
DAG. These properties are clearly illustrated in the example above. 

Theorem (3.1) The graph ( , )G V E=  generated by Build_Layered_DAG has the 

following properties: 1. ( , )G V E=  is a DAG in which each layer (except the first and 

the last) has exactly B vertices, and any two vertices (except for the null jobs vertices) 
in that layer are not compatible. 2. Each vertex in a layer can have at most one 
duplicated vertex in the next layer. 3. Each edge connects two vertices from two 
adjacent layers. 4. Each vertex u is located on at least one path from s to t (an s-t 
path). 5. There exist exactly B vertex disjoint s-t paths in the graph, such that each 
vertex (except s and t) belongs to exactly one of those B paths. Note that the selection 
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of those B paths may not be unique. 6. If any P vertex-disjoint paths ( 0 P B< < ) are 
removed (except s and t) from ( , )G V E= , then the remaining flow network has the 

above 1-5 properties with B replaced by B P− . 7. A set of m jobs can be processed 
by P processors subject to the Partition Property if and only if there exist P 
( 0 P B< < ) vertex-disjoint s-t paths in ( , )G V E=  containing all non-duplicated and 

duplicated vertices of those m jobs. These P vertex-disjoint paths may not be unique. 
 

 

Fig. 1. Job Sequence Input for Build_Layered_DAG, B=3 

 

Fig. 2. Output Layered DAG from Fig. 1 

The first 4 properties and property 6 follow easily from the algorithm. Property 5 
can be proved by using induction on the number of layers constructed. In property 7, 
the “if” part is straightforward and the “only if” part can be proved by using induction 
on the number of processors P. The details of the proofs are omitted here due to space 
limitation. 

3.2   The Algorithm and Its Correctness 

------------------------------------------------------------------------------------------------------- 

Algorithm Two_Class_Scheduling(Input J[1..N],
1

B ,
2

B ,
1

C ,
2

C ; Output *

T
C ) 

Build_Layered_DAG(Input J[1..N ], 
1

B +
2

B ; Output G’=(V’,E’)); 

Convert G’=(V’,E’) into an edge capacitated flow network G=(V,E) using the 
standard techniques (i.e. split each vertex ' { , }u V s t∈ −  into two vertices 

u’ and u” and add an directed edge (u’,u”) with direction the same as 
s t→  direction, capacity equal to one and weight equal to vertex u’s 
weight). 
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Compute a minimum cost flow in G=(V,E) with flow value of 
2

B [9]; 

Assign the jobs that are on the minimum cost flow to class 2 processors, and let 
*

2L  be the total processing time of such jobs; Assign the jobs that are not 

on the minimum cost flow to class 1 processors and let *

1L  be the total 

processing time of such jobs. 

Calculate the total cost 
1

* *

1 2 2

*

T
C L C L C← ∗ + ∗ . 

 
Having constructed a flow network, we use a minimum cost network flow algo-

rithm [9] to find 
2

B  vertex-disjoint paths with minimum total weight. Clearly, all 

vertices not on those 
2

B  vertex-disjoint paths can fit into 
2 1

B B B− =  vertex-disjoint 

paths. In Two_Class_Scheduling described below, input J[1..N] is the same as the 

input for Build_Layered_DAG, 1B and 2B  are the numbers of processors of the two 

processor classes, and 
1

C  and 2C  are the unit time processing costs of those classes. 

We assume 1C < 2C . The algorithm returns the minimum cost *
TC  . Note that 

*

T BC C≤  ( BC  is the cost bound) decides the feasibility of the scheduling.  

The following theorem establishes the correctness of the algorithm: 

Theorem (3.2): Two_Class_Scheduling correctly computes the minimum cost and 
the feasibility of CCFJS when there are only two classes of processors. 

Proof: For given N jobs, let L be the total processing time. Given a scheduling, let 
1

L  

be the total processing time on class 1 processors and 
2

L  be the total processing time 

on class 2 processors. Thus L=
1

L +
2

L . Since 1C < 2C , the cost 
1 1 2 2
* *L C L C+  of 

processing all of the jobs is minimized if 
2

L  is minimized. From property 7 of theo-

rem (3.1), 2L  is minimized if and only if all the jobs contributing to 2L  are on the 

minimum cost flow with flow value 
2

B . Thus, the theorem is established. 

For the flow network G=(V,E) where all capacities are one, the running time of the 

best minimum cost flow algorithm is 2(| | | | log | |)O VE V V+ ([9]), which is also the 

running time of Two_Class_Scheduling. 

4   Complexity for More Than Two Classes of Processors 

In this section, we show that CCFJS is not only NP-Complete, but also that there is no 
constant ratio approximation algorithm for CCFJS when the number of classes of 
processors is more than two. 
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Theorem (3.3): If  and 1(  is a constant)P NP r r≠ ≥ , then there is no polynomial 

time approximation algorithm with ratio bound r for CCFJS when the number of 
classes of processors is at least 3. 
Proof: The proof is by contradiction. Suppose that for some 1r ≥ , there is a polyno-

mial time approximation algorithm A for CCFJS with ratio bound r, i.e. */A TC C r≤  

where AC  is the cost returned by the algorithm A and *
TC  is the optimal solution.  We 

will show how to use A to solve instances of Numerical 3-Dimensional Matching 
(N3DM) in polynomial time. Since N3DM problem is NP-Complete [10], our theorem 
follows. Recall the definition of N3DM [10]: 

INSTANCE of N3DM: Integers ,   and ,  ,   for 1, 2, ...i i it d a b c i t= , satisfying the 

following relations:

 
( )

1

t

i i i
i

a b c td
=

+ + =∑  and 0 , ,  for 1, 2, ...i i ia b c d i t< < = .
 

QUESTION: Are there permutations and ρ σ  of {1, 2, ..., }t , such that: 

( ) ( )i i ia b c dρ σ+ + =
 
( 1,..., )i t= ? 

Consider a particular instance of N3DM. We construct an instance of CCFJS in-
stance (inspired in part from [7]) as follows. Define 

 4 249U dt r=                                                                          (3.4) 

 2 4 2 27 49 7V U dt r dt r dt r= − = −                                          (3.5) 

 2 4 2 27 3 49 7 3W U dt r d dt r dt r d= + + = + +                         (3.6) 

 4 2 298 7 4Z W U d dt r dt r d= + + = + +                                 (3.7) 

Define K=3, ( ) 23 2

1 2 314 14 5 / 5 / / ,  1/  and 7C dt dt dt r d r Z C r C t= + − + = = . It 

can be easily verified that 1 2 30 C C C< < < . Define 449BC dt= , 2

1 2,  B t B t t= = −  

and 2

3B t= . In this instance of CCJFS, the total number of processors is 
2

1 2 3 2B B B B t= + + = . Next, we choose 2 2t t+  distinct rational numbers (see figure 

3) ,,   and  i j i jE F X  with , 1, 2, ...,i j t=  such that: 

 ,2 3j i jiU F U d E U d X U d< < + < < + < < +
               

   (3.8) 

 
 

 

Fig. 3. Job instance construction relationship 

Then, we define 26N t t= +  jobs. We will identify these jobs by their start time 
and finish time pairs, rather then by separate names. In that context, these jobs are as 
follows: 
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,

,

,

[0, )  ( 1, 2, ..., )                                               [ , ) ( , 1, 2, ..., )

( 1) times [ , ) ( 1, 2, ..., )                           [ , ) ( , 1, 2, ..., )

[ , )  ( , 1, 2

i i i j

j j i j

i j i j

E i t E X i j t

t V F j t F X i j t

X W a b i j

= =

− = =

+ + =

,

, ..., )                          [ , ) ( 1, 2, ..., )

( 1) times [ , ) ( 1, 2, ..., )                            [ , ) ( 1, 2, ..., )

[ , 3 ) ( , 1, 2, ... )

k

i j

i j

t W d c Z k t

t U E i t U F j t

X U d i j t

+ − =

− = =

+ =

 

This completes the construction of the instance of CCFJS. Clearly, this construc-
tion requires polynomial time, and it is easy to verify that the instance satisfies (2.1). 
Assume algorithm A is applied to the above instance of CCFJS. We show that 

A BC r C∗≤  if and only if the instance of N3DM has a solution, thus algorithm A can 

solve the instance of N3DM in polynomial time. 

To show that the instance of N3DM has a solution when 
A B

C r C∗≤ , we prove the 

following lemmas: 

Lemma (3.9): Jobs [0, )  ( 1, 2, ..., )iE i t=  can only be assigned to class 1 processors. 

Proof: Suppose a job [0, )iE
 
is assigned to a non class 1 processor. Thus the unit 

time processing cost for this job is at least 1/r. From (3.8) and (3.4), the processing 

time of this job is 4 249iE U d U dt r> + > = . Thus 449A BC dt r r C> = ∗ , a contra-

diction. 

Lemma (3.10): Jobs ( 1) times [ , )  ( 1, 2, ..., )jt V F j t− =  can only be assigned to class 

2 processors. 

Proof: Jobs ( 1) times [ , )  ( 1, 2, ..., )jt V F j t− =  can’t be assigned to class 1 processors 

due to lemma (3.9).  The rest of proof is similar to the proofs of lemma (3.9). 

Lemma (3.11): Jobs ( 1) times [ , )  (i 1, 2, ..., ) it U E t− =  and [ , )jU F  for 

1, 2,...,j t=  can only be assigned to class 3 processors. 

Proof: Immediate result of lemmas (3.9) and (3.10). 

Lemmas (3.12): Jobs [ , ) ( 1, 2, ..., )kW d c Z k t+ − =  can only be assigned to class 1 

processors. 
Proof: Similar to the proofs of lemma (3.9). 

Lemma (3.13): Jobs ,[ , )  ( , 1, 2, ..., )i j jiX W a b i j t+ + =  can’t be assigned to class 3 

processors, and there is no idle time for each of the class 1 and class 2 processors 
during [ 3 , )U d W+ . 

Proof: Similar to the proofs of lemma (3.9). 

Lemma (3.14): Jobs ,[ , 3 ) for , 1, 2, ...i jX U d i j t+ =  can only be assigned to class 3 

processors. 
Proof: Immediate result of lemma (3.13) 
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Lemma (3.15): There is no idle time for each of the 22t processors during time 
[ , 3 )U U d+ .  

Proof: Obvious from the definition of the jobs. 

After proving the above lemmas, now we show that there is no idle time for each 
of the class 1 processors during time interval [ , ]W W d+  and the instance of N3DM 
has a solution. From lemmas (3.9), (3.12), (3.13) and (3.15), it follows that jobs 

[0, ),iE  ,[ , ),i jiE X  ,[ , )i j i jX W a b+ +  and [ , )kW d c Z+ −  ( , 1, 2, ..., )i k t=  must 

be assigned to class 1 processors. Each i and k occur exactly once. From lemmas 

(3.10), (3.13) and (3.15), it follows that jobs ( 1)t −  times ,[ , ),  [ , )j j i jV F F X , 

,[ , )i j i jX W a b+ +  must be assigned to class 2 processors, where each 

 ( 1, 2, ..., )j j t=  occurs exactly ( 1)t −  times. Thus from lemma (3.13), for the jobs 

,[ , )i j i jX W a b+ +  assigned to class 1 processors, each ( 1, 2, ..., )j j t=  occurs ex-

actly once. From lemmas (3.11), (3.14) and (3.15), it follows  that jobs ( 1) times t −  

, ,[ , ), [ , ) and [ , 3 )i i i j i jU E E X X U d+  must be assigned to class 3 processors, where 

each  ( 1, 2, ..., )i i t= occurs ( 1)t −  times, and that jobs [ , ) and jU F  

,[ , ) ( 1, 2, ..., )j i jF X j t=  must be assigned to class 3 processors. Finally, from the fact 

that ( )
1

i i i
i

t

a b c td
=

+ + =∑ and the conclusions that each i, j and k occurs exactly once 

for jobs ,[ , )i j i jX W a b+ +  and [ , )kW d c Z+ − assigned to class 1 processors, it 

follows that there is no idle time for each of the class 1 processors during time inter-

val [ , ]W W d+ . Thus i j kW a b W d c+ + = + − . If we define ( )  and ( )i j i kρ σ= = , 

then ( ) ( ) for 1, 2, ..., i i i i ta b c dρ σ =+ + =  and the instance of N3DM has a solution. 

 
Now suppose the instance of N3DM has a solution, the jobs assignment can follow 

the above proof (see figure 4). The total processing cost 

( )3 2 2 2 2

4

* 14 14 5 / 5 / / ( ) ( 2 ) / 3 7

49 *

A

B B

C tZ dt dt dt r d r Z t t W d V r t d t

dt C r C

= + − + + − ∗ + − + ∗ ∗

= = ≤
Thus algorithm A can solve N3DM in polynomial time, which contradicts the assump-
tion that .P NP≠  

 
From theorem (3.3), we can easily prove the following corollary by letting r=1 and 

A TC C= : 

Corollary (3.16) CCFJS is NP-Complete. 
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Class 1 processors:  ( )1

3 2

1,  14 14 5 / 5 / /B t C dt dt dt r d r Z= = + − +  

0 
1E  11X                1 1W a b+ +  3W d c+ −             Z 

0 
2E  23X                 2 3W a b+ +  1W d c+ −         Z 

0 
3E  32X               3 2W a b+ +  2W d c+ −      Z 

Class 2 processors:  2

2 2,  1/B t t C r= − =  

0 V 
1F  21X              2 1W a b+ +                      Z 

0 V 
1F  31X                   3 1W a b+ +                Z 

0 V 
2F  12X              1 2W a b+ +                Z 

0 V 
2F  22X         2 2W a b+ +               Z 

0 V 
3F  13X              1 3W a b+ +              Z 

0 V 
3F  33X                         3 3W a b+ +       Z 

Class 3 processors:  2 2

3 3,  7B t C t= =  

0 U 
1E  12X  3U d+                    Z 

0 U 
1E  13X  3U d+                    Z 

0 U 
2E  21X  3U d+                    Z 

0 U 
2E  22X  3U d+                    Z 

0 U 
3E  31X  3U d+                    Z 

0 U 
3E  33X  3U d+                    Z 

0 U 
1F  11X  3U d+                    Z 

0 U 
2F  32X  3U d+                    Z 

0 U 
3F  23X  3U d+                    Z 

Fig. 4. An CCFJS Instance when t=3 

5   An Approximation Algorithm 

In this section, we present an approximation algorithm based on network flows, de-
rive its worst-case performance ratio (non constant), and show that it has a constant 
approximation ratio in some special cases. 

5.1   The Algorithm Approximate_Cost 

Recall in section 3 for the two classes of processors case, the minimum cost flow is 
computed with flow value equal to the number of processors of the most expensive 
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class of processors. The jobs that are on the minimum cost flow are assigned to the 
processors of the expensive class, and the remaining jobs are assigned to the proces-
sors of the cheap class. Adapting this method to three or more classes of processors, 
in the algorithm Approximate_Cost, we consider partitioning the classes of processors 
into an expensive set and a cheap set.  We then compute the minimum cost flow with 
flow value equal to the sum of the number of processorss of the expensive set of 
processors. Each job that is on that minimum cost flow will be assigned to one of the 
processors in the expensive set, and each job that is not on that minimum cost flow 
will be assigned to one of the processors in the cheap set. In order to assign each job 
in the two sets to a particular class of processor, we use a greedy approach: specifi-
cally, we compute the minimum cost flow with flow value equal to the number of 
processors of the most expensive class and assign the jobs that are on that minimum 
cost flow to processors of that most expensive class. We then remove those jobs and 
the processors of that class and iterate until every job is assigned to a processor of a 
particular class. Since we don’t know in advance how to partition the processors into 
an expensive set and a cheap set, we perform the above computation for each possible 
partition (for K classes of processors, there are K-1 partitions), and retain the partition 
and the associated assignment of jobs to the processors that yield the smallest cost. 

5.2   Algorithm Complexity and Performance Ratio 

Similarly to section 3.2, the running time of Approximate_Cost is  
2 2 2( | | | | log | |)O K VE K V V+ .  

Note that we are not partitioning the expensive set and the cheap set recursively (in-
stead, we use the greedy approach described above). Recursive partitioning will lead 
to exponential complexity in terms of K. Before we analyze the performance ratio of 
the algorithm, we first provide the following theorem and corollary (recall that we 

assume 1 20 ... KC C C< < < < ): 

Theorem (3.17) In Approximate_Cost, for 1,...,i K= , let iX  be the total processing 

time assigned to class i processors, let iy  be the minimum total processing time as-

signed to a single class i processor, and let iY  be the maximum total processing time 

assigned to a single class i processor. Then  

 
1 1 1 2 21 2 2 .../ / /

K KK KY y Y y Y yX B X B X B≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥         (3.18) 

Corollary (3.19) Let 
1

K

i
i

X X
=

=∑  be the total processing time, and approx_cost be 

the cost returned. Then approx_cost
1 1 1

/
K K K

i i i i i

i i i

XC X C B B
= = =

= ≤∑ ∑ ∑               (3.20) 

In Approximate_Cost, a minimum cost network flow algorithm is applied between 

each pair ( , 1)( )i i i K+ <  classes of processors, such that the flow value includes 1iB +  

without iB . Thus theorem (3.17) can be proved by using minimum cost network flow 

property. Corollary (3.19) can be proved by showing that when  
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1 1 2 2
/ / ... /

K K
X B X B X B= = = ,  

approx_cost reaches its upper bound 
1 1

/
K K

i i i

i i

X C B B
= =

∑ ∑ . 

Consider a particular partition in Approximate_Cost where the cheap set includes 
processors from class 1 to class j (j=1…K-1) and the expensive set includes proces-

sors from class j+1 to K. After the minimum cost flow is computed, let 1.. jX  be the 

total processing times and _1jc  be the cost of jobs that are assigned to the cheap set, 

and let 1..j KX +  be the total processing times and _ 2jc  be the cost of jobs that are 

assigned to the expensive set. Let jc  be the final cost as calculated in that partition.  

Analogous to corollary (3.19), we have: 

 

_1 _ 2
1 1 1 1

1 1 1 1

1.. 1..

_1 _ 2 1.. 1..

/ ,

/ /

,   /  
j j K K

j i i i j i i i
i i i j i j

j j K K

i i i i i i
i i i j i j

j j K

j j j j j K

c X C B B c X C B B

c c c X C B B X C B B

= = = + = +

= = = + = +

+

+

≤ ≤

≤ += +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
   (3.21) 

Let optc  be the optimal processing cost.  Since 10 ... KC C< < < , the optimal value 

optc  will not decrease if 2 ..., jC C  decreases to 
1

C  and 2 ...,j KC C+  decrease to 1jC + .                    

Thus, 

 1.. 1 1.. 1j j K jopt X C X Cc + +≥ +                                                    (3.22) 

 

 11

1

11
1.. 1..

11

1.. 1 1.. 1
1

11

max ,

K

i ji

K

j

Kj

i ii i
i ji

j j Kj K j

i i ii i i
j i ji

j

j j K j
ii

i ji

opt

C BC B

X X

B C BB C B
c

c X C X C
C BC B

= +=

+

= +=
+

= +=

+ +

= +=

+

≤ ≤
+

 
 
 
  
 

∑∑

∑ ∑∑ ∑

∑∑
         (3.23) 

 
Since the algorithm returns the smallest cost for each j,  

 min{ 1, 2, ..., 1} /|j optc j K cρ = = −                                      (3.24) 

Finally from (3.23) and (3.24),  

 
11

11
11

min max , 1, 2,..., 1,

K

i ji

K

j

j

i ii i

j

ii
i ji

C BC B

j K

C BC B

ρ = +=

+
= +=

≤ = −

  
  
  
  

    

∑∑

∑∑
                         (3.25) 
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Example 1 1 2 2 3 33, 3, 100, 6, 50, 12, 25K C B C B C B= = = = = = = .   

By applying (3.25), we have 4 / 3ρ ≤ . In practical situations (for example in the 
off-line multimedia gateway call routing), the more expensive the processors, the less 

the number of processors. In this example, 
1 1 2 2 3 3

C B C B C B= = . In general, if K>2 is 

a constant and 
1 1 2 2

...
K K

C B C B C B= = = , then from (3.25), / 2Kρ ≤ , i.e. ρ  is 

bounded by a constant.  

Example 1 1 2 2 3 3 4 44, 1, 100, 2, 100, 4, 100, 8, 100K C B C B C B C B= = = = = = = = =  

By applying (3.25), we have 3 / 2ρ ≤ . In this example, 
1 2 3 4

B B B B= = = , 

1
/ 2 ( 1, 2,3)

i i
C C i+ = = . In general, if K>2 is a constant, 

1 2
...

K
B B B= = = , and 

1
/ ( 1, ..., 1)

i i
C C q i K+ = = −  is a constant, then from (3.25), 

/ 2 1

0

2 /
K

j

j

q Kρ
−

=

≤ ∑ , i.e. ρ  

is also bounded by a constant. 

6   Summary 

In this paper, we have studied the problem of CCFJS and we present a complete clas-
sification of its computational complexity. We show that CCFJS is polynomial solv-
able when there are only two classes of processors. We prove that the general CCFJS 
is NP-Complete and that there is no constant ratio approximation algorithm. We fur-
ther present an approximation algorithm and analyze its worse case performance ratio. 
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Abstract. The Lexicographically First Maximal Independent Set Problem on
graphs with bounded degree 3 is at most

√
n-complete, and thus very likely

not parallelizable in a fine-grained setting. On the other hand, we show that in
a coarse-grained setting (few processors and a lot of data) the situation is differ-
ent, by giving a work-optimal algorithm on a shared memory machine for n and
p such that p · log p ∈ O(log n).

1 Motivation and Background

It is commonly believed that not all problems are parallelizable, but what paralleliz-
able means in practice and what theoretical models are able to capture differs some-
what. If T ∗(n) is the best sequential runtime on an input of size n, then with p pro-
cessors the best parallel runtime we can hope for is Θ(T ∗(n)/p), yielding a work-
optimal algorithm. Most actual parallel computers are coarse-grained, having p orders
of magnitude smaller than n for practical problems. However, the well-known paral-
lel complexity class NC requires a parallel runtime polylogarithmic in n, implying
p = Ω(T ∗(n)/polylog(n)), and this we call fine-grained. Showing that a problem
is P-complete, meaning that it is not in NC unless P=NC, is therefore an argument
for non-parallelizability only on a fine-grained computer, and may not have practical
implications.

To remedy this situation Kruskal et al[10] studied parallel complexity classes EP,
AP and SP that require only parallel runtime O(T ∗(n)1−ε) for some ε > 0. EP implies
work-optimality, whereas AP (and SP) allows a factor polylogarithmic (and polyno-
mial) in n away from work-optimality. Vitter et al showed that some P-complete prob-
lems indeed are parallelizable in this sense [14]. Condon[2] extended this work also
with non-parallelizability results by showing, roughly, problems that could not have
O(
√
n

1−ε) parallel runtime unless all problems in P had a similar parallel speedup over
its best sequential runtime. She showed this for the Lexicographically First Maximal
Independent Set (LFMIS) problem, among others.

In the current paper, we look for a positive parallel result for the LFMIS problem,
for which Condon gave only the negative result. The requirement that a lexicographic
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ordering of vertices must be respected gives the problem an inherently sequential flavor.
Hardly any results are known on parallel algorithms for LFMIS, whereas efficient par-
allel solutions exist if the ordering requirements are dropped, see e.g Ferreira and Sch-
abanel [5] and Gebremedhin et al. [6]. Uehara [12] gave an NC algorithm for LFMIS
restricted to graphs with a polylog(n) bound on the length of the longest path respecting
the lexicographic order given in the input.

We instead focus on a variant of LFMIS that is known to remain P-complete [11],
that we call LFMIS3, where input graphs have bounded degree 3. We first extend Con-
don’s result on the hardness of LFMIS to LFMIS3. Then, our main result is stated as
follows:

Theorem 1. There is a parallel algorithm for LFMIS3 that is work-optimal for all n
and p such that p · log p ∈ O(log n).

The paper is organized as follows. In the following section, we will introduce the
models of parallel computation that will be used throughout the paper. We also provide
a brief discussion about the complexity issues involved. Then Section 3 will introduce
the problem and our main technique to handle it which we call block graph. The parallel
algorithm itself is described in Section 3, followed by two sections that discuss the two
different phases of preprocessing that this parallel algorithm needs. The main part of
the paper being presented for a PRAM, in Section 7 we find it convenient to outline
how the assumption of using a shared random access memory might be relaxed. This is
done by specifying a concrete communication pattern between different processors.

2 Parallel Machine Models and Performance Measures

Although our research was guided by the more practical and realistic coarse grained
machine models for parallel computation, see [13, 3, 4, 7], we will for this paper use
simply the PRAM while taking the granularity restriction into account. This is done to
make the approach as transparent as possible and not get lost behind certain (practically
motivated) constraints of the coarse-grained models. At the end of this paper we will
indicate how our results can be extended to a distributed coarse-grained setting.

We use a convenient modification of the classical CREW-PRAM1, see [9] for an
overview. The algorithm that we give will use bit-parallelism so we have to be more
precise about the “RAM” part of the machine description. We will assume that each
processor is a word-RAM with word size w and that it supports all conventional op-
erations (e.g memory access, addition, subtraction, bitwise and and or) on machine
words in constant time.

The choice of a word-RAM as a base for the machine model is in contrast to some
of the complexity theoretic work cited above, e.g [2]. The difference in the perfor-
mance measures as presented hereafter when using a more restricted RAM (so mainly
considering bit complexity) would be a w-factor on time and cost. To allow for a fair
comparison, that factor would have to be taken into account for both sequential and
parallel algorithms. So, as long as we handle such a factor consistently when measuring

1 Concurrent Read Exclusive Write - Parallel Random Access Machine
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the speed up of a parallel algorithm over a sequential one this effect would cancel out.
Thus we may choose this variant of the PRAM for convenience.

We will assume that the word-size of our machine is at least logarithmic in the input
size (here the number of vertices of a graph G) since otherwise our input could not be
randomly addressed in its entirety, i.e.

logn ≤ w. (1)

The main performance measures of a PRAM algorithm A are its parallel running
time TA(n) and its overall work or cost CA(n) = TA(n)pA(n), where pA(n) denotes
the number of processors used byA. Unless such PRAM algorithms are work-optimal,
i.e. CA(n) = O(TA∗(n)), they will show poor performance when scaled down, using
Brent’s principle, see [1], to fewer processors.

An inconvenience of requiring work-optimality is the fact that the definition de-
pends on A∗, an optimal sequential algorithm that for a specific problem may not be
known. But for this paper we luckily avoid this since the problem we will consider has
a linear-time sequential algorithm. So for work-optimality it will be sufficient to prove
a linear upper bound on CA(n).

When we want algorithms that are scalable for a range of processors their running
time TA(p, n) and cost CA(p, n) become also functions of p, the number of processors.
In this paper we aim for an algorithm A that will be work-optimal for n and p such
that p · log p ∈ O(log n). To be more precise on the quantifications there are constants
1 ≥ δ, e > 0 and p0 (all independent from n and p) such that for all n and p that fulfill
p ≥ p0 and

p log p ≤ δ logn. (2)

we have
CA(p, n) ≤ eTA∗(n) (3)

or equivalently

TA(p, n) ≤ eTA∗(n)
p

. (4)

To ease the design and presentation of our algorithmA we will consider p as being
determined by n, namely maximal p such that it fulfills (2). The full algorithmA′ with
input of size n and p′ processors would then consist of computing the right value of
p as imposed by maximizing for (2) and then simulating A (with n and p) via Brent’s
principle on p′ processors. The only obstacle for the design ofA′ is the computation of
p on p′ processors in time O(n/p′) which can be done easily for what is needed here.

3 LFMIS and the Block Graph

Given a linear ordering on the vertices of a graph, the lexicographically first maximal
independent set is the subset of vertices built starting from the empty set by considering
vertices in the order given, and adding the considered vertex to the set if it does not have
a neighbor already in the set. The problem that is treated in Theorem 1 is the following,
see the book [8] for an overview.
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Problem 1 (Lexicographically First Maximal Independent Set-3 (LFMIS3)).
Input: An undirected graph G = (V,E) of maximum degree 3 with an ordering
v1, . . . , vn on V such that the edges are lexicographically sorted, and a designated ver-
tex v.
Output: Is vertex v in the lexicographically first maximal independent set?

The assumption on the ordering of the edges which is a bit more than is usually re-
quired for LFMIS has no impact on parallel complexity of the problem: because of the
bounded degree of the graph it can be achieved efficiently if necessary by a linear-work
algorithm: in O(log n) time on a PRAM, or in O(n/p) time in a conventional coarse
grained setting.

The LFMIS3 problem is P-complete even if the input graph is restricted to be pla-
nar and have maximum degree 3, see [11]. From now on we consider only graphs of
maximum degree 3. We first note that the P-completeness proof given for LFMIS3 by
Miyano in [11] in fact also shows that LFMIS3 is hard in the sense defined by Condon
in [2].

Corollary 1. The LFMIS3 problem is at most
√
n-complete for P.

Proof. In the paper [11] LFMIS3 is shown to be P-complete by a reduction from the
circuit value problem CVP, which itself was shown in the paper [2] to be at most

√
n-

complete for P. Since the given reduction preserves the input size, i.e. the graph is linear
in the circuit given as input, it follows from the results of [2] that also LFMIS3 is at most√
n-complete for P. ��

This corollary means, roughly, that if anyone would give a parallel algorithm for
LFMIS3 with a parallel runtime O(nε) for ε < 1

2 then all problems in P would have a
parallel algorithm with polynomial speedup over their best sequential algorithm.

We now turn to our parallel algorithm for LFMIS3. In the following we will in
fact not solve the decision problem as given by the definition, but give an algorithm
that produces the corresponding independent set. We will derive our algorithm from a
straightforward linear-time sequential algorithm, see Algorithm 1.

Algorithm 1 Sequential LFMIS3.

Input: A graphG = (V,E) of max degree 3 with an ordering v1, . . . , vn on V .
Output: The lexicographically first maximal independent set S.
Data Str.: Boolean vector S[v1 . . . vn] with S[vi] = 0 only if vi �∈ S.
begin

for i = 0 to n do S[vi] = 1
for i = 0 to n do

for all edges vivj ∈ E with i < j do
if S[vi] == 1 then S[vj ] = 0

output {v : S[v] == 1}
end;
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The idea presented in this paper to obtain a parallel algorithm is to alter the conven-
tional data structure for the input graph so that several processors will be able to handle
a set of different edges concurrently. Therefore we will need to compress information
concerning certain vertex and edge sets into machine words. To obtain such a “com-
pressed” representation of the input graph, we partition it into vertex blocks of fixed
size B, and consider the representation of intra-block and inter-block edges.

Definition 1. Given an undirected graphG = (V,E) of max degree 3 with an ordering
of vertices v1, . . . , vn and an integer 1 ≤ B ≤ n, we define the B-block graph of G by
the following:

vertex partition We partition V into �n/B	 blocks V0, . . . , V�n/B� following the given
vertex ordering, i.e. with Vi = {viB+1, . . . , viB+B} for 0 ≤ i ≤ 
n/B� − 1 and
V�n/B� the remaining vertices. For simplicity we may assume w.l.o.g. thatB divides
n. A vertex v = vi of G is thus given a a block number bB(v) = 
i/B� and a
relative number rB(v) = (i mod B) + 1 between 1 and B within its block.

inter-block edges The vertices of block Vi have neighbors in at most 3B other vertex
blocks Vj with i < j. Each such pair i, j constitutes an inter-block edge Ei,j . For
each of these inter-block edges we store a vector Ei,j [1 . . . 3B] that encodes the
induced subgraph between vertices of blocks Vi and Vj . It has entries 3k− 2, 3k−
1, 3k, for 1 ≤ k ≤ B, containing the relative number of the 3 possible neighbors
that the kth relative vertex in Vi has in Vj .

intra-block edges Intra-block edges inside a vertex block Vi are represented by a sim-
ilar vector Vi [1 . . . 3B ].

Fig. 1. The B-block of a graph with max degree 3 and vertices ordered 1 . . .  8 for B = 3, i.e. 3
vertices per block. Black vertices are in the LFMIS.
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See Figure 1 for an example. A relative vertex number rB(v) requires �logB	 bits
of storage. Total storage in bits for the block graph is therefore at most

( (n/B)3B
︸ ︷︷ ︸

# inter edges

+ n/B
︸︷︷︸

# intra edges

) 3B logB
︸ ︷︷ ︸

vector encoding

= O(nB logB). (5)

So this encoding of our graph is in fact not compressed in the sense that it occupies less
space than a conventional one. If we assume in addition that

2B logB < logn (6)

by our bound for the word size (1) we obtain

2B logB < w. (7)

So the number of machine words needed for this new encoding is still linear in the
number of vertices (and edges).

To discuss the example of Figure 1 we will write machine words as a vector of
(small) numbers. We note such words as 〈 a b . . . 〉� where a, b, . . . are numbers that are
written with � bits and that are concatenated in the machine word. E.g

〈
〈 1 2 0 〉2 · 〈 0 0 0 〉2 · 〈 1 3 0 〉2

〉

6
= 〈 24 · 0 · 28 〉6
= 〈 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 〉1 (8)

which represents the decimal number 98332.
Inter-block edges between V0 and V1 are represented by a vector of 3B numbers

in the range 0 . . . B, namely
〈
〈 1 2 0 〉2 · 〈 0 0 0 〉2 · 〈 1 3 0 〉2

〉

6
, with 〈 1 2 0 〉2 ≈ 24

denoting that vertex 1 is adjacent to 4 and 5 (which have relative numbers 1 and 2
in V1), 〈 0 0 0 〉2 ≈ 0 denoting that vertex 2 has no adjacencies, and 〈 1 3 0 〉2 ≈ 28
denoting that vertex 3 is adjacent to vertices 4 and 6 (which have relative numbers 1
and 3). Likewise, intra-block edges for V0 are represented by the vector

〈
〈 2 0 0 〉2 · 〈 1 3 0 〉2 · 〈 2 0 0 〉2

〉

6
≈ 132896. (9)

Taking a B-block graph as input we still have a simple sequential linear-time algorithm
for LFMIS3, but now with a potential for parallelization in the innermost for-loop,
see Algorithm 2. The subroutines Intra-block-update and Inter-block-update in that al-
gorithm are quite distinct. Intra-block-update is no simpler than the original LFMIS3
problem, and could for example be handled by the standard algorithm restricted to the
subgraph induced by the vertex block.

Inter-block-update returns a bit-vector that has a 0 in a particular position if the
corresponding vertex should not be in S and a 1 otherwise. So anding the bits of S[Vj ]
with this value accumulates the constraints (of not being in S) imposed by different
neighbors. Inter-block-update has no dependency constraints coming from the vertex
ordering, as we simply have to find the vertices of block Vj that have a neighbor in
Vi ∩ S.
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Algorithm 2 Sequential Block-LFMIS3.

Input: The B-block graph of some G with max degree 3, with an ordering
V0, . . . , Vn/B on vertex blocks, intra-block edges Vi[1 . . . 3B] and inter-block
edges Ei,j [1 . . . 3B] (if non-empty) for 0 ≤ i < j ≤ n/B.
Output: The lexicographically first maximal independent set S of G.
Data Str.: Boolean matrix S[V0 . . . Vn/B ][1 . . . B]
Invariant: S[Vi][k] == 0 only if the kth vertex of Vi (i.e. the vertex
number iB + k − 1) is known not to be in S.
begin

for i = 0 to n/B do S[Vi] = 〈 1 · 1 · · · 1 〉1
for i = 0 to n/B do

S[Vi] = Intra-block-update(Vi[1 . . . 3B],S[Vi])
for all j > i with Ei,j [1 . . . 3B] non-empty do

S[Vj ] = S[Vj ] bit-and Inter-block-update(Ei,j[1 . . . 3B],S[Vi])
output {v : S[bB(v)][rB(v)] == 1}

end;

4 The Parallel Algorithm

We now consider a CREW PRAM implementation of Algorithm 2, see Algorithm 3.
The representation of the block graph will be computed in a pre-processing step that
we discuss in Section 4. Moreover, the subroutine calls Intra-block-update and Inter-
block-update will be handled by simple table lookups, and these two tables will also be
computed in a pre-processing step discussed in Section 5. The index to the tables will
be the parameters for the subroutine calls, namely: Vi[1 . . . 3B] (where each entry has
logB bits) plus S[Vi][1 . . . B] (with boolean entries) for Intra-Block and Ei,j [1 . . . 3B]
plus S[Vi][1 . . . B] for Inter-Block. These indices consist of 3B logB + B bits which
by (7) fit into one word of our machine.

We choose the block-size equal to the number of processors, p = B. To ensure that
we can compute the lookup tables in O(n/p) time, we must constrain the table size to
n/p, thus

(2p+ 1) log p ≤ logn (10)

Constraints (7) and (10) are both met with the granularity condition (2).
Thus the Intra and Inter tables will have about n/p entries each. Using table

lookup, the initialization of all n/p entries of the S vector and all n/p intra-block up-
dates are done inO(n/p) time by a single processor. For the inter-block edges, there are
at most 3p such edges out of block Vi, going to at most 3p distinct blocks in increasing
order Vi0 , Vi1 , . . . , Vi3p−1 and processor Pk, 0 ≤ k < p will be responsible for those
going to Vik

, Vip+k
, Vi2p+k

.
For the example graph in Figure 1, when handling inter-block edges from V0, pro-

cessor P0 will first update S[V1], since V10 = V1, by setting

S[V1] = S[V1] bit-and Inter
[〈
〈 1 2 0 〉2 · 〈 0 0 0 〉2 · 〈 1 3 0 〉2

〉

6
, 〈 1 0 1 〉2

]

(11)
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Algorithm 3 Parallel LFMIS3 with processors Pi, i = 0, . . . p − 1 such that
p�log p	 ≤ 
δ logn� and B = p.

Input: A graphG = (V,E) of max degree 3 with an ordering v1, . . . , vn on V .
Output: The lexicographically first maximal independent set S.
Data Str.: Boolean matrix S[V0 . . . Vn/B ][1 . . . B] with S[Vi][k] == 0 only if kth

vertex of Vi �∈ S.
Vectors for intra-block edges Vi[1 . . . 3p] and inter-block edges Ei,j [1 . . . 3p] (if

non-empty) for 0 ≤ i < j ≤ n/p.
Tables Intra[1 . . . n/p] and Inter[1 . . . n/p] giving instructions for

Intra-block-update and Inter-block-update.
begin

Compute the p-block graph of G, see Section 4.
Compute lookup tables Intra and Inter, see Section 5.
for i = 0 to n/p do P0: S[Vi][k] = 〈 1 · 1 · · · 1 〉1
for i = 0 to n/p do

P0: S[Vi] = Intra[Vi[1 . . . 3B], S[Vi]]
foreach Pk in-parallel do

for x = 0 to 2 do
S[Vixp+k

] = S[Vixp+k
] bit-and Inter[Ei,ixp+k

[1 . . . 3B], S[Vi]] (*)
foreach Pk in-parallel do

for x = 0 to n/p2 − 1 do
for j = 1 to p do

if S[Vxp+k][j] == 1 then output v(xp+k)p+j

end;

(since E0,1 =
〈
〈 1 2 0 〉2 · 〈 0 0 0 〉2 · 〈 1 3 0 〉2

〉

6
and S[V0] = 〈 1 0 1 〉2) while P1 will

update S[V2] since V20 = V2 (there are not enough vertex blocks in the example to see
the parallel scheme in full effect). The processors will lookup the inter-block update ac-
tion in parallel, thus possibly reading concurrently, and then write the new information
to distinct blocks.

Apart from the pre-processing involved in computing the representation of the block
graph and the tables, discussed in the next section, we see that this algorithm takes time
O(n/p) using p processors on a CREW PRAM.

5 Pre-processing: The p-Block Graph

We indicate how to compute the representation of the p-block graph of G using p
processors on a CREW PRAM in time O(n/p), see Algorithm 4. Processor Pk, 0 ≤
k ≤ n/p will be uniquely responsible for the n/p2 blocks with contiguous indices
kn/p2, kn/p2 + 1, . . . , kn/p2 + n/p2 − 1 thus avoiding any write conflicts. A single
processor will go through all the at most 3p edges out of a block and will spend con-
stant time per edge for total time O(n/p). When processing edges out of a block Vi,
say an edge vavb with a < b, the processor must first find the block number and relative
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Algorithm 4 Compute p-block graph with processors Pi, i = 0, . . . p− 1 such that
p�log p	 ≤ 
δ logn�
Input: A graphG = (V,E) of max degree 3 with an ordering v1, . . . , vn on V .
Data Str.: Vectors for intra-block edges Vi[1 . . . 3p],
and inter-block edges Ei,j [1 . . . 3p] (if non-empty) for 0 ≤ i < j ≤ n/p.
begin

foreach Pk in-parallel do
for i = 0 to n/p2 − 1 do

foreach edge e = vavb with a < b and a ∈ Vkn/p2+i do
compute block number j of vb and relative numbers of va and vb

if j = kn/p2 + i, i.e. e is an intra-block edge do
update Vkn/p2+i[1 . . . 3p]

else do
if e is the first inter-block edge Vkn/p2+i, Vj do

initialize Ekn/p2+i,j to 0-vector
update Ekn/p2+i,j in correct position by e

end;

number of va and vb, and based on this information it can write to the appropriate word
in memory. If this is the first edge between these two blocks initialize Ei,j [1 . . . 3p] to
the 0-vector, otherwise update Ei,j [1 . . . 3p] in the correct bit positions using an OR-
operation with the oldEi,j [1 . . . 3p] and an appropriate mask. Consider an example: For
the graph in Figure 1 when computing the intra-block edge between V0 and V1 a sin-
gle processor will go through the edges in order (1, 4), (1, 5), (3, 4), (3, 6) and for each
of these (say (1, 5)) the processor merely computes the low-endpoint block-number,
0, and high-endpoint block-number, 1, and low-endpoint relative number, 1, and high-
endpoint relative number, 2, and this allows it to find the correct 〈x1x2x3 〉6 slot in the
E0,1 intra-block edge, and within this slot it first checks if x1 is 0 (assume no) then
sees if x2 is 0 (assume yes) so it now has the appropriate mask to update E0,1[1 . . . 3p]
in the correct bit positions using an OR-operation with the old E0,1[1 . . . 3p], thereby
inserting the correct relative number, 2, at x2.

6 Pre-processing: The Lookup Tables

Now we consider the computation of the lookup tables for block-size p, see Algo-
rithm 5. Note that this is independent of the input graph G, except for the fact that
p is chosen as a function of n such that the tables will have n/p entries. The table Inter
has indices of the formEi,j [1 . . . 3p] (where each entry has log p bits) plus S[Vi][1 . . . p]
(with boolean entries) thus consisting of 3p log p+ p bits total. For each boolean index
of this length, we must compute the corresponding update word. The processors will
each be responsible for n/p2 entries, and can spend O(p) time per entry.

For the example of Figure 1, S[V1] is updated by inter-block edges from V0 to V1

by setting

S[V1] = Inter

[〈
〈 1 2 0 〉2 · 〈 0 0 0 〉2 · 〈 1 3 0 〉2

〉

6
, 〈 1 0 1 〉2

]

(12)
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Algorithm 5 Compute lookup tables with processors Pi, i = 0, . . . p − 1 such that
p�log p	 ≤ 
δ logn�.
Data Str.: Tables Intra[1 . . . 23p log p, 1 . . . 2p] and Inter[1 . . . 23p log p, 1 . . . 2p]
begin

foreach Pk in-parallel do
for i = 0 to n/p2 − 1 do update Intra[kn/p2 + i] and Inter[kn/p2 + i]

end;

(since E0,1 =
〈
〈 1 2 0 〉2 · 〈 0 0 0 〉2 · 〈 1 3 0 〉2

〉

6
and S[V0] = 〈 1 0 1 〉2). This data

forces all vertices of V1 to be not in S, thus the lookup table must be set

Inter

[〈
〈 1 2 0 〉2 · 〈 0 0 0 〉2 · 〈 1 3 0 〉2

〉

6
, 〈 1 0 1 〉2

]

= 〈 0 0 0 〉2 . (13)

As mentioned earlier the crucial point is to find the vertices of block Vj that have a

neighbor in Vi∩S. In the index
〈
〈 1 2 0 〉2 · 〈 0 0 0 〉2 · 〈 1 3 0 〉2

〉

6
, 〈 1 0 1 〉2 the second

component 〈 1 0 1 〉2 tells us that only the first and third parts of the first component, i.e.
〈 1 2 0 〉2 and 〈 1 3 0 〉2 are of interest. From these we must union all numbers mentioned,
and those bit positions in the output word should be set to 0. All this can be done, for
each index, by O(p) word operations.

For the intra-block table Intra the procedure is slightly more complicated, as the
vertex ordering is important. Thus, for the graph in the example, the update operation

S[V0] = Intra

[〈
〈 2 0 0 〉2 · 〈 1 3 0 〉2 · 〈 2 0 0 〉2

〉

6
, 〈 1 1 1 〉2

]

(14)

accounts for edges inside block V0. This data forces the second vertex of V0 to be not
in S, thus the lookup table must be set

Intra

[〈
〈 2 0 0 〉2 · 〈 1 3 0 〉2 · 〈 2 0 0 〉2

〉

6
, 〈 1 1 1 〉2

]

= 〈 1 0 1 〉2 . (15)

Here we need a sequential traversal through the p parts of the first and second index
components simultaneously. Again, this can be done using O(p) word operations.

7 Organizing the Communication

The force of the recent coarse grained parallel models (e.g BSP [13], CGM [4] and
PRO [7]) is that they are able to account for communication more realistically than
the PRAM. They assume that each processor has its private share of memory and that
all information needed by more than one processor has to be communicated explicitly
between the processors via messages. When doing so, they account for the sending and
receiving of message. So to be efficient, in general an algorithm has to ensure that at
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any moment every processor sends out and also receives about the same amount of data.
Otherwise the running time on the different processors would desequilibrate.

To fit into such a setting we have to replace the random access to memory by com-
munication between processors. Therefore we have to design a communication pattern
that is able to fulfill these constraints of sending and receiving the same amount of data
at any processor and time. In fact, for most of what was described above this is easy
to do: e.g in Algorithm 4 the processors mainly do all computation by their own. They
only have to communicate the tables that they computed at the very end.

The memory access that is difficult to handle is the line (*) in Algorithm 3. We
will assume that each processor Pk will assemble the values S[Vi] for all k such that
i = j · p+ k for some j.

The algorithm performs in steps where each processor Pk performs the following:

1. Receive a previously computed value S[Vi′ ] for some i′ from Pk−1.
2. Perform the line (*) for at most three block-edges, namely such that the source

block-vertex of the edge is before Vi′′ and the target block-vertex is Vi.
3. Send a value S[Vi′′ ] for some i′′ to processor Pk+1.

Some tedious choice of the indices i′, i′′ and for the block-edges and some com-
putation shows that the number of steps can be bounded to O(n/p). We postpone the
detailed arguments and proofs to the journal version of this paper.

8 Conclusion

We have shown that the behavior of a problem that is notoriously hard in a fine grained
PRAM setting may be solved work-optimally compared to a sequential algorithm, if the
number of processors p is restricted to some (slowly) growing function in n. This result
is first of all a theoretical, we would not expect it to be efficiently implemented in a
realistic setting. Nevertheless, it proves the potential of such a setting and shows that
the complexity of problems can be quite different in fine grained and coarse grained
settings.

Perhaps more subproblems or algorithms known from sequential algorithmics could
in principle be used for the design of parallel (coarse grained) algorithms than what is
commonly thought. A prominent example would be the computation of a DFS-tree in a
coarse grained setting.

For each problem P it might also be interesting to look at the borderline for what
function of p in n such work-optimal parallel algorithms exist, see e.g [7] for such an
approach.
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Abstract. Consider a complete graph G with the edge weights satisfy-
ing the β-sharpened triangle inequality: weight(u, v) ≤ β(weight(u, x)+
weight(x, v)), for 1/2 ≤ β < 1. We study the NP-hard problem of finding
a minimum weight spanning subgraph of G which is k-vertex-connected,
k ≥ 2, and give a detailed analysis of an approximation quadratic-time
algorithm whose performance ratio is β

1−β
.

The algorithm is derived from the one presented by Böckenhauer et al.
in [3] for the k-edge connectivity problem on graphs satisfying the β-
sharpened triangle inequality.

1 Introduction

Graph connectivity problems are of fundamental importance in network design
and fault-tolerance problems hence many efforts have always been devoted to-
wards a better comprehension of their various aspects. A graph is k-vertex con-
nected if the deletion of up to k−1 vertices leaves the graph still connected (the
deletion of the vertices can be seen as occurrences of arbitrary failures). Given
a k-vertex connected weighted graph G, the k-vertex connectivity problem is the
problem of finding a minimum-weight spanning subgraph of G which is still k-
vertex connected. Similar definitions can be given for the edge connectivity by
substituting edges for vertices in the definitions. In what follows when we speak
generally of connectivity without specifying edges or vertices, we refer to both
the problems. The connectivity problem, for k > 1, is well known to be NP-
hard [8], thus it is natural to study its particular instances: for small values of
k, efficient ad-hoc approximation algorithms with very small performance ratio
have been proposed see e.g. [1,10]; for k = 2 in [6,7] its APX-hardness has been
proved (even in the case of bounded degree and identical weights).
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Recently in a series of papers [5,4,2,3] it has been proposed to study the
connectivity problem when the graph G is complete and the weights of the edges
satisfy the β-sharpened triangle inequality: w(u, v) ≤ β(w(u, x)+w(x, v)), 1/2 ≤
β < 1. The motivation for the study of this particular case of edge weights is
well described in those papers, here let us simply recall that in this way one can
characterize and hence classify hard instances of the problem using the achievable
performance ratio of an approximation algorithm as parameter. Moreover the
existing PTAS for the Euclidean Travelling Salesman Problem (TSP) are rather
impractical due to their worst case running time, thus often one uses Christofides
algorithm for the metric TSP, getting an approximation ratio of 3/2. Hence it
is desirable to characterize significative subclasses of the problem which have a
better performance ratio.

In [2] the 2-connectivity problem is considered (both for edges and vertices)
and the authors prove its APX-hardness even if the edge weights belong to
an interval [1, 1 + ε], for an arbitrary small ε. In [2] a (2/3 + 1/3β/(1 − β))-
approximation algorithm for both the edge and vertex connectivity problems,
when k = 2, is given. In [3] a β/(1 − β)-approximation algorithm is given only
for the edge-connectivity, anyway the result holds for all k > 1.

In this paper we provide an approximation algorithm with the same perfor-
mance ratio of β/(1−β) for the case of k-vertex-connectivity problem, k > 1. The
algorithm we show is derived from the one given in [3], anyway here we present
a detailed and non trivial analysis of the graph in order to show its k-vertex
connectivity. To this aim let us recall that an equivalent definition of k-vertex
connectivity is that in such graphs for each pair of vertices i and j there exist k
internal-vertex disjoint paths, that is paths that have only the end-point vertices
i and j in common.

In [5,4,3] a lemma relating the weights of two edges incident to the same
vertex in a complete graph, where the β-sharpened triangle inequality holds,
was given. The lemma states that these two weights cannot differ too much, in
particular for all adjacent edges e1, e2 the inequality w(e1)/w(e2) ≤ β/(1 − β)
holds.

Let us recall that a graph is k-regular if all its vertices have degree k. From the
above lemma and a very simple combinatorial argument we informally observe
that the weight of an optimal k-vertex-connected spanning subgraph cannot dif-
fer too much from the weight of any k-regular subgraph. This observation gen-
eralizes theorem 1 of [3], as a k-vertex-connected subgraph is k-edge-connected
as well. (Note that when k · n is odd the definition of k-regular does not apply,
does to cover this case too, we call almost-k-regular a graph which is either k-
regular if k · n is even or it is such that all its vertices but one have degree k
and one vertex has degree k + 1, for our purposes suppose also that this vertex
has a minimum-weight edge incident in it.) More formally, we have the following
theorem.

Theorem 1. Let 1/2 ≤ β < 1 and let G be a complete graph with n vertices,
whose edges are weighted with a cost function w(·) satisfying the β-sharpened
triangle inequality and let 2 ≤ k ≤ n − 1 be a constant. Let G′ be an almost-k-
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regular spanning subgraph of G and let G′′ be a spanning subgraph of G whose
vertices have degree greater than or equal to k. Then w(G′)

w(G′′) ≤ β
1−β .

From this, it immediately follows that the weight of an arbitrary almost-k-
regular spanning subgraph that is also k-vertex-connected is at most β/(1− β)
times worse than the weight of a minimal k-vertex-connected spanning subgraph.

The algorithm VCONN(k,G), we give in section 3, returns a k-vertex- con-
nected spanning subgraph H which is almost-k-regular. It is similar to the algo-
rithm given in [3], for the edge-connectivity problem, thus we obtain their same
approximation ratio of β/(1 − β). The rest of the paper is devoted to the non
trivial proof that H is k-vertex-connected.

Organization of the paper. In the next section we give some definitions used
in the paper. In section 3 we show the algorithm and give some invariant prop-
erties on the returned graph. In section 4 we show how to find the k internal
vertex disjoint paths between any two vertices, through a series of technical
lemma. Finally in section 5 we put together the pieces to get the main result of
the k-vertex connectivity problem.

2 Definitions and Notations

Consider a complete and weighted graph G = (V,E,w) where V = {0, 1, · · · , n−
1} and w(·) is an edge weight function satisfying the sharpened triangle inequal-
ity w(i, j) ≤ β(w(i, l) + w(l, j)), for 1/2 ≤ β < 1.

Define the distance between two vertices i and j as the value dist(i, j) =
j − i, where the subtraction is in Zn

1. From this, it is obvious that dist(i, j) =
n− dist(j, i).

The edge
(
i, i+

⌊
n
2

⌋)
for 0 ≤ i ≤ ⌊

n
2

⌋
and the edge

(
i, i+

⌈
n
2

⌉)
for

⌊
n
2

⌋ ≤ i ≤
n−1 are called diameter-edges of vertex i (note that the vertex

⌊
n
2

⌋
is the only

vertex which has two distinct diameter-edges, when n is odd). We will denote
(i, ui) the diameter edge of i, if i =

⌊
n
2

⌋
and n is odd then (i, ui) =

(⌊
n
2

⌋
, 0

)
and

(i, u′
i) =

(⌊
n
2

⌋
, n− 1

)
.

Given vertices i, j, we define IVDP(i,j) as an abbreviation for internal ver-
tex disjoint path constituted only by vertices in {(i + 1), (i + 2), · · · (j − 1)}.
For a vertex i, NBH+(i) denotes the set of vertices

{
i+ 1, i+ 2, · · · , i+ ⌊

k
2

⌋}

and NBH−(i) denotes the set
{
i− 1, i− 2, · · · , i− ⌊

k
2

⌋}
. Moreover NBH(i) =

NBH+(i) ∪NBH−(i), (the neighborhood of i).
Finally, we will use a specific notation to describe paths:

• i NBH+

−−−−→ j is the edge (i, j) with j ∈ NBH+(i). We extend this notation

to use i
NBH+

−−−−→ i to denote no edge;

• i NBH−

−−−−→ j is the edge (i, j) with j ∈ NBH−(i). We extend this notation

to use i
NBH−

−−−−→ i to denote no edge;
1 Throughout all the paper the operations on the vertices are in Zn.
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Algorithm VCONN(k, G)
INPUT: A complete undirected weighted graph G = (V, E, w) where w is
the weight function and an integer 2 ≤ k ≤ (n− 1).
OUTPUT: A k-vertex-connected spanning subgraph H = (V, EH) of G.

EH ← ∅
if k odd then

if n odd then
Let (u, v) be an edge with minimum weight.
Rename vertex

⌊
n
2

⌋
as u and vice-versa.

Rename vertex n− 1 as v and vice-versa.
endif
for i← 0 to

⌊
n
2

⌋
do

EH ← EH ∪
(
i, i +

⌊
n
2

⌋)
/* diameter-edge of vertex i */

endfor
endif
for i← 0 to n− 1 do

for j = 1 to
⌊

k
2

⌋
do

EH ← EH ∪ (i, i + j) /* set NBH(i) */
endfor

endfor
return H ← (V, EH)

Fig. 1. Algorithm VCONN.

• i JMP−−−−→ j is the edge (i, j) where j = i +
⌊

k
2

⌋
(called jump-edge). We

extend this notation as follows: i
JMP k

−−−−→ j stands for the path i
JMP−−−−→

j1
JMP−−−−→ j2

JMP−−−−→ · · · JMP−−−−→ jk where jk = j.

• i DMT−−−−→ j is the diameter-edge (i, j) of vertex i.

3 Algorithm VCONN

In this section we show a quadratic-time approximation algorithm VCONN for
the k-vertex-connected problem (see fig. 1). As said in section 1, the algorithm
strongly resembles the one given in [3] (although there the case when k × n is
odd was not explicitly mentioned), thus its performance ratio is the same.

Theorem 2. Given a constant 1 < k < n and a complete graph G with the
edge weight function obeying the β-sharpened triangle inequality, the algorithm
VCONN(k,G) is an approximation algorithm for the k-vertex-connectivity prob-
lem with performance ratio β

1−β .

Proof. The approximation ratio derives from theorem 2 of [3], while the k-vertex-
connectivity of the returned graph is given in theorem 3. ��
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It is easy to see that the graph H = (V,EH , w) returned by the algorithm
has the following properties.

Property 1. If i �∈ NBH(j) then
⌊

k
2

⌋
< dist(i, j) < n− ⌊

k
2

⌋
.

Property 2. If k is odd, j = i+
⌊

n
2

⌋
and i ≤ ⌊

n
2

⌋
then (i, j) ∈ EH .

Property 3. If k is odd, j = i+
⌈

n
2

⌉
and i ≥ ⌊

n
2

⌋
then (i, j) ∈ EH .

When n is odd, from the last two properties, the vertices 0 and n− 1 share
one endpoint of their own diameter edge.

Let us abuse in the notation and use in the rest of the paper the set NBH+(i)
as the vertex set of the complete graph induced by its vertices (analogously for
NBH−(i)).

4 Internal Vertex Disjoint Paths

In this section we give some results on the existence of internal vertex disjoint
paths between two vertices in a graph returned by VCONN. We will use these
results in the next section to prove the k-vertex-connectivity of the graph re-
turned by VCONN. All these results are constructive (we prove not only their
existence, but we show also the edges constituting the paths).

The next lemma gives a result on the existence of
⌊

k
2

⌋
paths between two

vertices i, j such that either (i, j) �∈ EH or (i, j) is a diameter-edge.

Lemma 1. Let H = (V,EH , w) be the graph returned by V CONN(k,G). Given
i, j ∈ V s.t. j �∈ NBH(i), then there exist

⌊
k
2

⌋
IVDP(i,j) of length greater than

1.

Proof. Suppose w.l.o.g. i < j and let d = dist(i, j). Let d = q
⌊

k
2

⌋
+ r with

0 ≤ r < ⌊
k
2

⌋
. By property 1, q ≥ 1. We will show that for all 1 ≤ t ≤ ⌊

k
2

⌋
, there

exist the following IVDP(i,j)

p(t) = i
NBH+

−−−−→ i+ t
JMP s(t)

−−−−→ i+ t+ s(t)
⌊
k

2

⌋
NBH+

−−−−→ j

where

s(t) =
{
q if 1 ≤ t < r
q − 1 if r ≤ t ≤ ⌊

k
2

⌋

These paths have length s(t) + 2. The first edge (i, i + t) exists as i + t ∈
NBH+(i) and the next s(t) ones exist as well, as they are jump-edges. Since
d = j − i = q

⌊
k
2

⌋
+ r, then

dist

(

i+ t+ s(t)
⌊
k

2

⌋

, j

)

= j − i− t− s(t)
⌊
k

2

⌋

≤

≤
{
j − i− 1− q ⌊

k
2

⌋
= r − 1 <

⌊
k
2

⌋
if 1 ≤ t ≤ r − 1

j − i− r − (q − 1)
⌊

k
2

⌋
=

⌊
k
2

⌋
if r ≤ t ≤ ⌊

k
2

⌋
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Now, we prove that these paths only use the vertices (i+ 1), · · · , (j − 1). Let
(i+ t+ a

⌊
k
2

⌋
) be the vertices of the paths then:

• for 0 ≤ a ≤ q and 1 ≤ t ≤ r − 1

i+ t+ a

⌊
k

2

⌋

< i+ r + q

⌊
k

2

⌋

= i+ d = j

• for 0 ≤ a ≤ (q − 1) and r ≤ t ≤ ⌊
k
2

⌋

i+ t+ a

⌊
k

2

⌋

≤ i+ q

⌊
k

2

⌋

< i+ d = j

Finally, we show that these paths have all disjoint vertices. In fact, suppose
by way of contradiction that there exists a vertex i+t+a

⌊
k
2

⌋
that belongs to the

paths p(t) and p(t1) �= p(t) (1 ≤ t, t1 ≤
⌊

k
2

⌋
). Then i+ t+a

⌊
k
2

⌋
= i+ t1 +a1

⌊
k
2

⌋

for 0 ≤ a1 ≤ r. Now, if a1 = a then t1 = t, which is a contradiction as we
assumed that t1 �= t, whereas, if a1 �= a then |t − t1| = |a1 − a|

⌊
k
2

⌋
which is

impossible because 1 ≤ t, t1 ≤
⌊

k
2

⌋
. This completes the proof of theorem. ��

The next lemma shows the existence of internal vertex disjoint paths when
(i, j) ∈ EH and j ∈ NBH(i). In particular, the lemma returns a different number
of paths if j ∈ NBH+(i) and if j ∈ NBH−(i).

Lemma 2. Let H = (V,EH , w) be the graph returned by V CONN(k,G) for
k �= 3. Given i, j ∈ V s.t. j ∈ NBH(i), there exist

1. dist(i, j)− 1 IVDP(i,j) of length greater than 1 if j ∈ NBH+(i)
2. k − dist(j, i) IVDP(i,j) of length greater than 1 if j ∈ NBH−(i)

Proof. Let d = dist(i, j) and d′ = n − d. Consider first the case j ∈ NBH+(i).
By property 1, d ≤ ⌊

k
2

⌋
, then the following d− 1 paths

p(t) = i
NBH+

−−−−→ i+ t
NBH+

−−−−→ j

for 1 ≤ t ≤ d′ − 1 are all IVDP(i,j) and this completes the first case of lemma.
Now, let j ∈ NBH−(i), i.e. d′ ≤ ⌊

k
2

⌋
and by property 1 d ≥ n − ⌊

k
2

⌋
. Let

|NBH+(i) ∩ NBH−(j)| = x, if x ≥ d′ than d = 2
⌊

k
2

⌋ − x ≤ 2
⌊

k
2

⌋ − n + d,
i.e. n ≤ k which is impossible. Therefore let x < d′. First we will prove that for
1 ≤ t ≤ ⌊

k
2

⌋− d′ the following IVDP(i,j) exist:

p(t) = i
NBH+

−−−−→ i+ t
NBH−

−−−−→ j.

Clearly all these paths are internal vertex disjoint and it is also clear that (i+t) ∈
NBH+(i). Now to show that j ∈ NBH−(i+ t) note that dist(j, i+ t) = d′ + t ≤
d′ +

⌊
k
2

⌋− d′ =
⌊

k
2

⌋
.
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Symmetrically we can prove that for 1 ≤ t ≤ ⌊
k
2

⌋−d′ the following IVDP(i,j)
exist:

p(t) = i
NBH−

−−−−→ j − t NBH+

−−−−→ j.

Now observe that (j − ⌊
k
2

⌋
+ d′ − i− ⌊

k
2

⌋
+ d′) > 0, thus all the 2

⌊
k
2

⌋− 2d′

paths we have found until now are vertex disjoint. Moreover, none of them uses
the vertices i+

⌊
k
2

⌋−d′ +1, · · · , j−⌊
k
2

⌋
+d′−1: therefore the remaining d′ paths

(or d′ + 1 if k odd) will use only these vertices. We distinguish the case k even
and k odd.
CASE 1 [k even]: In this case we have to distinguish two subcases:
CASE 1a [x = 0]: let dist(i + k

2 − d′ + 1, j − k
2 + d′ − 1) = q k

2 + r with
0 ≤ r < k

2 and y = |d′ − r|. It is easy to see that for k
2 − d′ + 1 ≤ t ≤ k

2 the
following IVDP(i,j) exist: if r ≥ d′ then

p(t) = i
NBH+

−−−−→ i+t
JMP q

−−−−→ i+t+q
k

2
NBH+

−−−−→ i+t+q
k

2
+I(t)d′ NBH+

−−−−→ j

where

I(t) =
{

1 if t ≤ k
2 − d′ + 1 + y

0 if t > k
2 − d′ + 1 + y

whereas if r < d′ then

p(t) = i
NBH+

−−−−→ i+ t
JMP s(t)

−−−−→ i+ t+ s(t)
k

2
NBH+

−−−−→ j

where

s(t) =
{
q if k

2 − d′ + 1 ≤ t ≤ k
2 − d′ + 1 + r

q − 1 otherwise

CASE 1b [1 ≤ x < d′]: In this case, we have that i + k
2 ≥ j − k

2 . Therefore,
it is clear that for k

2 − x ≤ t ≤ k
2 the following IVDP(i,j) exist (see figure 2a)

p(t) = i
NBH+

−−−−→ i+ t
NBH+

−−−−→ j.

Moreover, since for k
2 − d′ + 1 ≤ t ≤ k

2 − x− 1 it holds dist(i+ t, i+ t+ d′) = d′,
it is easy to see that the following IVDP(i,j) exist (see figure 2b)

p(t) = i
NBH+

−−−−→ i+ t
NBH+

−−−−→ i+ t+ d′ NBH+

−−−−→ j.

CASE 2 [k odd]: Let (i, ui) be the diameter-edge of i and (j, uj) the diameter-
edge of j. If i =

⌊
k
2

⌋
then ui = n − 1 and if j =

⌊
k
2

⌋
then uj = 0. We now

distinguish between two subcases.
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(a)

i i + k/2 − d’ j − k/2 i + k/2 j − k/2 + d’ j

i + t + d’i + t

(b)

i i + k/2 − d’ j − k/2

i + t

i + k/2 j − k/2 + d’ j

Fig. 2. Paths for case 2.

CASE 2a [x = 0]: We have two cases:

• if i +
⌊

k
2

⌋ − d′ + 1 ≤ uj ≤ i +
⌊

k
2

⌋
(which implies j − ⌊

k
2

⌋ ≤ ui ≤ j −⌊
k
2

⌋
+ d′ − 1), (d′ − 1) IVDP(i,j) are constituted by connecting a vertex of

[i+
⌊

k
2

⌋− d′ + 1, uj − 1] ∪ [uj + 1, i+
⌊

k
2

⌋
] to a vertex in [j − ⌊

k
2

⌋
, ui − 1] ∪

[ui + 1, j − ⌊
k
2

⌋
+ d′ − 1] through a series of jump-edges, but possibly the

last. Then this path continues directly to j as the last vertex considered is
in NBH−(j). More specifically, let dist(i +

⌊
k
2

⌋ − d′, j − ⌊
k
2

⌋
) = q

⌊
k
2

⌋
+ r

with 0 ≤ r < ⌊
k
2

⌋
. Then these IVDP(i,j) are given by

i
NBH+

−−−−→ i+ t
JMP s(t)

−−−−→ i+ t+ s(t)
⌊
k

2

⌋
NBH+

−−−−→

i+ t+ s(t)
⌊
k

2

⌋

+ I(t)d′ NBH+

−−−−→ j

for
⌊

k
2

⌋− d′ < t ≤ ⌊
k
2

⌋
, where

s(t) =
{
q if 1 ≤ t ≤ r − 1
q − 1 otherwise I(t) =

{
0 if 1 ≤ t ≤ r − 1
1 otherwise

The others two IVDP(i,j) are

i
NBH+

−−−−→ uj

DMT−−−−→ j and

i
DMT−−−−→ ui

NBH+

−−−−→ j

which give the desired (d′ + 1) IVDP(i,j).
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• if uj > i+
⌊

k
2

⌋
(which implies ui < j − ⌊

k
2

⌋
) and whenever n is odd, (i, j) �=

(0, n−1) results, then d′ IVDP(i,j) are constituted by connecting a vertex in
[i+

⌊
k
2

⌋− d′ + 1, i+
⌊

k
2

⌋
] to a vertex in [uj , ui− 1] through a series of jump-

edges, but possibly the last. Then one path continues from uj to j through
the diameter-edge of j, the others d′ − 1 paths continues from a vertex in
[uj +1, ui−1] to a vertex in [j−⌊

k
2

⌋
, j−⌊

k
2

⌋
+d′−1] (note that this interval

contains d′ vertices and we use only d′−1 of them). Finally, the last (d′ +1)-
th path is constituted by the diameter edge of i and a series of jump-edges,
but possibly the last, ending in the unused vertex of [j−⌊

k
2

⌋
, j−⌊

k
2

⌋
+d′−1].

More precisely let dist(i+
k/2�−d′, ui) = q1
k/2�+r1 with 0 ≤ r1 < 
k/2�
and dist(uj , j − 
k/2� + d′) = q2
k/2� + r2 with 0 ≤ r2 < 
k/2� (note that
uj < ui) and proceed in the following way:
1. get the following d′ internal vertex disjoint paths:

p2(t) = i
NBH+

−−−−→ i+ t
JMP s1(t)

−−−−→ i+ t+ s1(t)
⌊
k

2

⌋
NBH+

−−−−→

i+ t+ s1(t)
⌊
k

2

⌋

+ I1(t)d′

for 
k/2� − d′ + 1 ≤ t ≤ 
k/2�, where

s1(t) =
{
q1 if 1 ≤ t ≤ r1 − 1
q1 − 1 otherwise I1(t) =

{
0 if 1 ≤ t ≤ r1 − 1
1 otherwise

Note that these paths end in the vertices of the interval [uj , ui − 1].
2. get the following d′ internal vertex disjoint paths:

p2(t) = uj + t
JMP s2(t)

−−−−→ uj + t+ s2(t)
⌊
k

2

⌋
NBH+

−−−−→

uj + t+ s2(t)
⌊
k

2

⌋

+ I2(t)d′ NBH+

−−−−→ j

for 1 ≤ t ≤ d′, where

s2(t) =
{
q2 if 1 ≤ t ≤ r2 − 1
q2 − 1 otherwise I2(t) =

{
0 if 1 ≤ t ≤ r2 − 1
1 otherwise

3. For a vertex uj ≤ v ≤ ui − 1, let pv
1 be the path p1(t) which ends in the

vertex v and for a vertex uj + 1 ≤ v ≤ ui, let pv
2 be the path p2(t) which

ends in the vertex v.
4. Get the following (d′ − 1) IVDP(i,j) (as sequences of subpaths):

< pv
1, p

v
2 >

for uj + 1 ≤ v ≤ ui − 1.
5. Get the following 2 IVDP(i,j) (as sequences of subpaths and edges):

< p
uj

1 , (uj , j) >
< (i, ui), pui

2 >
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• if n is odd and (i, j) = (0, n − 1), then d′ = 1, therefore we need only to
show the existence of two IVDP(i,j). Let dist(i, n−1

2 − 1) = q1
k−1
2 + r1 with

0 ≤ r1 <
k−1
2 and dist(n−1

2 + 1, j − k−1
2 ) = q2

k−1
2 + r2 with 0 ≤ r2 <

k−1
2 .

It is easy to see that the following two IVDP(i,j) exist:

i
DMT−−−−→ n− 1

2
DMT−−−−→ j

and

i
JMP q1

−−−−→ q1
k − 1

2
NBH+

−−−−→ n− 3
2

NBH+

−−−−→ n+ 1
2

JMP q2

−−−−→
n+ 1

2
+ q2

k − 1
2

NBH+

−−−−→ j − k − 1
2

NBH+

−−−−→ j

Let us note that if k = 3 this last path cannot exist, as the edge
(

n−3
2 , n−1

2

)

does not exist.

CASE 2b [1 ≤ x < d′]: In this case, as seen in the CASE 1b, for
⌊

k
2

⌋ − x ≤
t ≤ ⌊

k
2

⌋
the following IVDP(i,j) exist (see figure 2a)

p(t) = i
NBH+

−−−−→ i+ t
NBH+

−−−−→ j.

Moreover, since for
⌊

k
2

⌋ − d′ + 1 ≤ t ≤ ⌊
k
2

⌋ − x − 1 s.t. i + t �= uj it holds
d(i + t, i + t + d′) = d′, it is easy to see that the following IVDP(i,j) exist (see
figure 2b)

p(t) = i
NBH+

−−−−→ i+ t
NBH+

−−−−→ i+ t+ d′ NBH+

−−−−→ j.

Finally let us note that, as uj + d′ = ui, the vertices ui and uj have not been
used. Therefore, we can consider the IVDP(i,j)

i
NBH+

−−−−→ uj

DMT−−−−→ j and

i
DMT−−−−→ ui

NBH+

−−−−→ j.

In this way we have d′ + 1 IVDP(i,j) which completes the proof of this lemma.
��

Finally, the following lemma shows the existence of internal vertex disjoint
paths when k is odd.

Lemma 3. Let H = (V,EH , w) the graph returned by V CONN(k,G) when k
is odd and k > 3. Given i, j ∈ V s.t. (i, j) �∈ EH and dist(i, j) ≥ ⌈

n
2

⌉
, then there

exist
⌈

k
2

⌉
IVDP(i,j).
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Proof. W.l.o.g suppose i < j. Note that dist(i, uj) < dist(i, ui). Let d =
dist(i, j) = q
k/2�+r with 0 ≤ r < 
k/2�, let d1 = dist(i, uj) = q1
k/2�+r1 with
0 < leqr1 < 
k/2� and let d2 = dist(i, ui) = q2
k/2� + r2 with 0 ≤ r2 < 
k/2�.
Then we can get the following IVDP(i,j):

p(t) = i
NBH+

−−−−→ i+ t
JMP s(t)

−−−−→ i+ t+ s(t)
⌊
k

2

⌋
NBH+

−−−−→ j

for 0 ≤ t < 
k/2� and t �= r1, r2, where

s(t) =
{
q if 0 ≤ t < r
q − 1 if r ≤ t < ⌊

k
2

⌋

These are respectively 
k/2� − 1 IVDP(i,j) if r1 = r2 and 
k/2� − 2 IVDP(i,j) if
r1 �= r2. To get the last 2 paths in the former case or 3 paths in the latter, we
proceed in the following way:

• if r1 = r2 we get the following two paths:

p1(r1) = i
NBH+

−−−−→ i+ r1
JMP q1

−−−−→ uj

DMT−−−−→ j

and

p2(r1) = i
DMT−−−−→ ui

JMP s−q2

−−−−→ i+ r1 + s

⌊
k

2

⌋
NBH+

−−−−→ j

where

s =
{
q if 0 ≤ r1 < r
q − 1 if r ≤ r1 <

⌊
k
2

⌋

• if r1 �= r2, let x be the maximum vertex such that x < ui and x ≡
ui mod 
k/2� and let y be the maximum vertex such that y < ui and
y ≡ uj mod 
k/2�. Since dist(x, ui) ≤ 
k/2� and dist(y, ui) ≤ 
k/2� then
either y ∈ NBH+(x) or y ∈ NBH−(x). Hence we get the following two
paths:

p(r1) = i
NBH+

−−−−→ i+ r1
JMP q1

−−−−→ uj

DMT−−−−→ j

and

p(r2) = i
DMT−−−−→ ui

JMP s−q2

−−−−→ i+ r2 + s

⌊
k

2

⌋
NBH+

−−−−→ j

where

s =
{
q if 0 ≤ r1 < r
q − 1 if r ≤ r1 <

⌊
k
2

⌋
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Finally, if y ∈ NBH+(x) we get the following path:

p = i
NBH+

−−−−−→ i + r2
JMP q2−1

−−−−−→ x
NBH+

−−−−−→ y
JMP s−(q2−1)

−−−−−→ i + r2 + s

⌊
k

2

⌋
NBH+

−−−−−→ j

else we get the following path:

p = i
NBH+

−−−−−→ i + r2
JMP q2−1

−−−−−→ x
NBH−

−−−−−→ y
JMP s−(q2−1)

−−−−−→ i + r2 + s

⌊
k

2

⌋
NBH+

−−−−−→ j

This completes the proof of the lemma. ��

5 k-Vertex-Connectivity

In this section we give the main result of the paper by showing that the graph
returned by the algorithm is k-vertex-connected.

Theorem 3. The graph H = (V,EH , w) returned from algorithm V CONN
(k,G,w) is k-vertex-connected.

Proof. For k = 3, H is constituted by an external cycle < 0, 1, · · · , n−1, 0 > and
by the set of diameter-edges. Deleting two vertices i and j we split the external
cycle into the two sequences of vertices S1 =< i + 1, i + 2, · · · , j − 1 > and
S2 =< j+1, j+2, · · · , i−1 >. W.l.o.g. suppose |S1| ≤ |S2|. Since dmt(j−1) ∈ S2,
then the graph is still connected.

Let k �= 3. We have to show that, given two vertices i, j ∈ V , k internal vertex
disjoint paths exist that connect the vertex i to the vertex j. If i ∈ NBH(j)
then w.l.o.g. let dist(i, j) < dist(j, i). Then, from the first item of lemma 2,
(dist(i, j) − 1) IVDP(i,j) exist with length greater than 1 and from the second
item (k−dist(i, j)) IVDP(j,i) exist with length greater than 1. Therefore, (k−1)
internal vertex disjoint paths exist with length greater than 1 connecting i to j.
Then, considering the path constituted by the edge (i, j) we have the k desired
paths.

Now, let i �∈ NBH(j). If k is even, then applying two times lemma 1, there
exist k

2 IVDP(i,j) (from i to j) and k
2 IVDP(j,i) (from j to i), which proves that

k internal vertex disjoint paths exist in this case.
If k is odd and (i, j) �∈ EH then from lemma 1,

⌊
k
2

⌋
IVDP(i,j) exist and from

lemma 3,
⌈

k
2

⌉
IVDP(j,i) exist, which gives k internal vertex disjoint paths for

this case. If k is odd and (i, j) is a diameter-edge then by applying two times
lemma 1, there exist

⌊
k
2

⌋
IVDP(i,j) with length greater than one (from i to j)

and
⌊

k
2

⌋
IVDP(j,i) with length greater than one (from j to i). Now, considering

the path constituted by the diameter-edge (i, j) we have the k desired paths.
This completes the proof of theorem. ��
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Abstract. The honeycomb grid is a network topology based on the
hexagonal plane tessellation, which is convenient to model the regular
placement on the plane of the base stations of wireless networks. For
an efficient use of the radio spectrum in such networks, channels have
to be assigned to the base stations so as to avoid interferences. Such a
problem can be modeled as a suitable coloring problem. Precisely, given
an integer t and a honeycomb grid G = (V, E), an L(1t)-coloring of G
is a function f from the vertex set V to a set of nonnegative integers
such that |f(u)− f(v)| ≥ 1, if the distance between the vertices u and v
is at most t. This paper presents efficient algorithms for finding optimal
L(1t)-colorings of honeycomb grids.

1 Introduction

In the 4th generation of wireless access systems, due to the decreasing cost of in-
frastructures and to the need of wider bandwidth, a large number of small cells,
each with significant power, is expected to cover a huge communication region
[16]. Such a covering can be achieved by placing the base stations according to
a regular plane tessellation. It is well-known that only three different regular
tessellations of the plane exist, depending on the kind of regular polygons used.
Specifically, the honeycomb, square and hexagonal tesselations cover the plane,
respectively, by regular hexagons, squares, and triangles. Such tessellations can
be used to place at the polygon vertices the base stations of the wireless com-
munication networks, leading to three well-known topologies: honeycomb, square
and hexagonal grids, depicted in Fig. 1 for 16 vertices.

So far, the most studied topology for wireless communication networks has
been the hexagonal grid [3,9,12]. However, the performance of a topology can
be evaluated with respect to several parameters, such as degree and diameter.
As proved in [14], defined the network cost as the product of the degree and
diameter, the honeycomb grid beats both the hexagonal and square grids, as
� Corresponding author

C. Blundo and C. Laneve (Eds.): ICTCS 2003, LNCS 2841, pp. 150–162, 2003.
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Table 1. [14] Comparison of networks, each with n vertices (data are approximated).

network degree diameter cost
honeycomb grid 3 1.63

√
n 4.9

√
n

square grid 4 2
√

n 8
√

n

hexagonal grid 6 1.16
√

n 6.93
√

n

(b)(a) (c)

Fig. 1. The possible grids of 16 vertices: (a) honeycomb, (b) square, and (c) hexagonal.

summarized in Table 1 for grids with n vertices (in such a table, coefficients
are rounded and additive constants are neglected). Therefore, the honeycomb
grid appears more convenient than the hexagonal and square grids to model the
placement of the base stations.

In a wireless network, the main difficulty against an efficient use of the radio
spectrum is given by interferences, which result in damaged communications.
Interferences can be eliminated by means of suitable channel assignment tech-
niques, which partition the given radio spectrum into a set of disjoint channels.
The same channel can be reused by two stations at the same time provided that
no interference arises. To avoid interference, a separation vector (δ1, δ2, . . . , δt)
of non increasing positive integers is introduced in such a way that channels
assigned to interfering stations at distance i be at least δi apart, with 1 ≤ i ≤ t,
while the same channel can be reused only at stations whose distance is larger
than t [8,9]. Since only a continuous interval of the radio spectrum can be ac-
quired, the objective is to minimize its width (or span), namely the difference
between the highest and lowest channels assigned. In case of separation vectors
containing repeated integer values, a more compact notation will be convenient
and so, as an example, (δ1, 1q) is a shorthand for (δ1, 1, 1, . . . , 1︸ ︷︷ ︸

q

).

Formally, given (δ1, δ2, . . . , δt) and an undirected graph G = (V,E), an
L(δ1, δ2, . . . , δt)-coloring of G is a function f from the vertex set V to the set
of nonnegative integers {0, . . . , λ} such that |f(u) − f(v)| ≥ δi, if d(u, v) =
i, 1 ≤ i ≤ t, where d(u, v) is the distance between vertices u and v. An optimal
L(δ1, δ2, . . . , δt)-coloring for G is one minimizing λ over all such colorings. Thus,
the channel assignment problem consists of finding an optimal L(δ1, δ2, . . . , δt)-
coloring for G.

The L(1t)-coloring problem has been widely studied in the past [1,6,10,12]. In
particular, its intractability has been proved by McCormick [10], while optimal
L(1t)-colorings have been proposed in [1,2] for rings, trees, and square grids.
Moreover, optimal L(δ1, 1t−1)-colorings have been proposed in [3,13] for rings,
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square grids and hexagonal grids. Optimal L(δ1, δ2)-colorings on square grids and
hexagonal grids have been given by Van Den Heuvel et al. [15], who provided
also an optimal L(2, 12)-coloring for square grids. The L(2, 12)-coloring problem
has been also optimally solved for hexagonal grids and rings in [3]. Finally, the
L(2, 1)-coloring problem has been studied also in [4,5,7,11].

This paper provides, for the first time, optimal L(1t)-colorings on honey-
comb grids. Such colorings use less colors than those needed by the hexagonal
and square grids. Therefore, honeycomb grids beat the hexagonal and square
grids in terms of both the network cost and channel requirement. The proposed
algorithms allow any vertex to self-assign its proper channel in constant time,
provided that it knows its relative position within the network. If this is not the
case, such relative positions can be computed for all the vertices using simple
distributed algorithms requiring optimal time and optimal number of messages,
as explained in [3].

2 Preliminaries

The L(1)-coloring problem on a graph G is exactly the classical vertex coloring
problem on G, where the minimum number of colors needed is λ + 1 = χ(G),
the chromatic number of G. In the case of L(1t)-colorings, the term t-chromatic
number of G, denoted by χt(G), will be used. A lower bound for χt(G) is the
size ω(AG,t) of the maximum clique of the augmented graph AG,t, which has the
same vertex set as G and the edge [r, s] iff d(r, s) ≤ t in G.

A t-independent set is a subset St of vertices of G whose pairwise distance
is at least t + 1. If the size of St is the largest possible, then St is a maximum
t-independent set, and is denoted by S∗

t . Assigning different colors to different
t-independent sets one obtains a feasible L(1t)-coloring. Conversely, given a fea-
sible L(1t)-coloring, all the vertices with the same color form a t-independent
set. Any feasible L(1t)-coloring uses at least as many colors as the minimum
number µt(G) of maximum t-independent sets that cover all the vertices, that
is χt(G) ≥ µt(G).

Let G1 and G2 be any two graphs, and let V (G) denote the vertex set of a
graph G. A t-homomorphism from G1 to G2 is a total function φ : V (G1) �→
V (G2) such that: (i) φ(u) = φ(v) only if u = v or d(u, v) > t, and (ii) d(φ(u),
φ(v)) ≤ d(u, v) for all nodes u, v of G1. Now, if g is an L(δ1, . . . , δt)-coloring of
G2, and φ is a t-homomorphism from G1 to G2, then the composition g ◦ φ is
an L(δ1, . . . , δt)-coloring of G1.

In this paper, brick representations of honeycomb grids are adopted where
each hexagon is represented by a rectangle spanning 3 rows and 2 columns. In
this way, a honeycomb grid H of size n = rc is represented by r rows and c
columns, indexed respectively from 0 to r − 1 (from top to bottom) and from 0
to c − 1 (from left to right), with r ≥ 3 and c ≥ 2. A generic vertex u of H is
denoted by u = (i, j), where i is its row index and j is its column index. Note
that each vertex (i, j), which does not belong to the grid borders, has degree 3
and is adjacent to the following 3 vertices: (i − 1, j), (i + 1, j), and (i, j + 1) if
i+ j is even, or (i, j − 1) if i+ j is odd.
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3 Optimal L(1t)-Coloring

In this section, optimal L(1t)-colorings of sufficiently large honeycomb grids will
be presented, which depend on the parity of t. In particular, when t is odd the
lower bound on χt(H) is given by ω(AH,t) and this bound is achievable. When
t is even, such a lower bound is not achievable, and a stronger lower bound is
needed which depends on µt(H). In both cases, the optimal colorings are based
on a grid tessellation.

3.1 L(1t)-Coloring with t Odd

Lemma 1. Let t = 8p + q, with p ≥ 0 and q = 1, 3, 5, 7. There is an L(1t)-
coloring of a honeycomb grid H of size r × c, with r ≥ t + 1 and c ≥ ⌈

t−3
4

⌉
+⌊

t+1
4

⌋
+ 1, only if

χt(H) ≥ ω(AH,t) =






24p2 + 12p+ 2 if q = 1
24p2 + 24p+ 6 if q = 3
24p2 + 36p+ 14 if q = 5
24p2 + 48p+ 24 if q = 7

Proof. The maximum clique ofAH,t is a diamond with
⌈

t−3
4

⌉
+

⌊
t+1
4

⌋
+1 columns.

The leftmost column has (t+ 1)− 2
⌈

t−3
4

⌉
vertices, and each subsequent column

has two extra vertices up to the central column which counts t+1 vertices. Each
of the remaining

⌊
t+1
4

⌋
columns, on the right of the central one, decreases its

size by two. In particular, the rightmost column has (t + 1) − 2
⌊

t+1
4

⌋
vertices.

Depending on the value of q, the number of left and right columns is, respectively:

⌈
t−3
4

⌉
=

{
2p if q = 1, 3
2p+ 1 if q = 5, 7

⌊
t+1
4

⌋
=






2p if q = 1
2p+ 1 if q = 3, 5
2p+ 2 if q = 7

Note that the shape of the maximum clique varies with q. For instance, Fig. 2
shows the maximum cliques when q = 1, 3, 5 and 7 and t = 17, 19, 21 and 23,
respectively. Then,

ω(AH,t) = (t+ 1) +
� t+1

4 �∑

i=1

(t+ 1− 2i) +
� t−3

4 	∑

i=1

(t+ 1− 2i)

Solving the above formula with t = 8p+ q, the proof follows. ∇

By the above lemma, all the vertices of each diamond must get a different
color. An optimal L(1t)-coloring, with t odd, can be easily achieved tessellating
the honeycomb grid by means of diamonds, all colored in the same way. Ob-
serving Fig. 2, one notes that diamonds have the same number of left and right
columns, i.e. they are symmetric, for q = 1, 5; while they have one more right
column, i.e., they are asymmetric, for q = 3, 7. Therefore, there are two possible
tessellations depending on the symmetry of the diamonds, which are illustrated
in Figure 3 (where t = 13 and t = 15 are assumed).

In the following, it is shown how a color can be assigned in constant time to
any vertex u of the grid. The coloring depends on the symmetry of the diamond.
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t = 17

p = 2
q = 1

t = 19

p = 2
q = 3

p = 2

t = 21

q = 5 p = 2

t = 23

q = 7

2p 2p 2p 2p + 1
2p + 12p + 1

2p + 1
2p + 2

Fig. 2. The maximum cliques (diamonds) for t = 17, 19, 21 and 23.

Table 2. The order in which diamond columns are encountered.

order 0 1 2 3 4 . . . 4p− 1 4p

column 0 2p 4p 2p− 1 4p− 1 . . . 1 2p + 1

Coloring with Symmetric Diamonds in O(1) Time. Consider the case
with t = 8p + 1 (the other case with t = 8p + 5 can be dealt with similarly).
The diamond has as many right columns as its left columns, namely 2p (see the
leftmost diamond in Fig. 2).

Observe the honeycomb tessellation by the symmetric diamonds, and restrict
the attention to the rectangle R, consisting of the leftmost 4p+ 1 columns and
the uppermost ω(AH,8p+1) = 24p2+12p+1 rows of the grid, as depicted in Fig. 4
(left) for t = 9, namely p = 1. Clearly, the top left corner of R has coordinates
(0, 0). Sequentially scanning top-down the vertices in column 0 of R, 4p + 1
different diamonds are encountered. Moreover, for each traversed diamond, a
different column is encountered and overall all the 4p + 1 diamond columns,
and hence all the diamond vertices, are met. By the above property, assigning a
different color to each vertex in column 0 of R allows each diamond within the
tessellation to be colored the same using the minimum number of colors.

To achieve such a goal, let the diamond columns be numbered from left to
right, starting from 0 and ending at 4p. The diamond columns met along column
0 of R follow the order shown in Table 2. Formally, denoted by x(j) the order
in which the diamond column j is encountered, x(j) = j(4p − 1) mod (4p + 1).
Conversely, given the order x in which a column is encountered, the column
index col(x) = 2px mod (4p+ 1).
Moreover, the size, i.e. the number of vertices, of the diamond column j is:

size(j) =
{

4p+ 2 + 2j if 0 ≤ j ≤ 2p
12p+ 2− 2j if 2p ≤ j ≤ 4p
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Fig. 3. The honeycomb tessellation: on the left, by the symmetric diamonds (t = 13);
on the right, by the asymmetric diamonds (t = 15).

Finally, the number of vertices of a diamond that have been encountered before
the topmost vertex of column j is:

pred(j) =
x(j)−1∑

k=0

size(col(k)).

As an example, x(j), size(j) and pred(j) are also shown in Fig. 4 for t = 9 (i.e.
p = 1).

Now, in order to assign different colors to all the vertices in column 0 of
R, let the color of vertex (i, 0) be simply g(i, 0) = i. The coloring of the entire
rectangle R is obtained assigning to the remaining columns a suitable cyclic shift
of the coloring of column 0. Such a cyclic shift is chosen so that all the diamond
columns with the same number are colored the same in all diamonds. To do
this, let the shift for column j be denoted by ∆(j). Given the above coloring for
column 0 of R, it is easy to see that ∆(j), where 0 ≤ j ≤ 4p, must be:

∆(j) =
{

(pred(j) + 2p)− (2p− j) if 0 ≤ j ≤ 2p
(pred(j) + 2p)− (j − 2p) if 2p ≤ j ≤ 4p

In conclusion, given any vertex (i, j) ∈ R, its color is defined as

g(i, j) = (∆(j) + i) mod (24p2 + 12p+ 1).

The coloring of the entire grid H is obtained by defining a t-homomorphism
φ : V (H) �→ V (R), which can be viewed as a covering of H with colored copies
of R. Such copies are shifted up by one row, to reproduce, within each rectangle,
the same diamond pattern as in R, as shown in Fig. 4 (right). Hence, for any
vertex (i, j) ∈ H, its color f(i, j) is given by g(φ(i, j)), where

φ(i, j) =
((

i+
⌊

j

4p+ 1

⌋)

mod (24p2 + 12p+ 1), j mod (4p+ 1)
)

.
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4

1

2

0

3

x(j) 0  3  1  4  2

j 0  1  2  3  4

size(j)

pred(j)

6  8 10 8  6

(j)

j

0 23 8 31 16

0  1  2  3  4

0 22 6 30 16

t

p

ω

=  9

=  1

=  37

∆

(i,j)

����

����

φ

(i,j)

Fig. 4. The diamond columns encountered by scanning column 0 of R (left). The
coloring of H by copies of R (right).

Observe that
⌊

j
4p+1

⌋
counts how many rows the rectangle to which (i, j) be-

longs is shifted up with respect to the leftmost rectangle containing row i. Clearly,
if (i, j) ∈ R then φ(i, j) = (i, j) and thus f(i, j) = g(i, j). The correctness easily
follows since all diamonds are colored the same, while the t-homomorphism pro-
vides a constant time coloring of each vertex which depends only on the vertex
indices. Observe also that R contains O(p3) vertices, and that the computation
of each ∆(j) requires O(p) time. Since t (and hence p) is a costant, the coloring
of vertex (i, j) takes O(1) time.

Coloring with Asymmetric Diamonds in O(1) Time. Consider now the
case with t = 8p+q, where q = 3, 7. The diamond has one more right column than
its left columns (see Fig. 2). Due to the fact that the diamonds are horizontally
aligned in the tessellation (see Fig. 3), the coloring is much simpler than in the
symmetric case. Let left and right denote the number of left and right columns,
respectively. As one can check in the proof of Lemma 1:
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(i,j)

(i,j)φ

Fig. 5. The coloring of H by copies of R in the asymmetric case.

left =
{

2p if q = 3
2p+ 1 if q = 7 right =

{
2p+ 1 if q = 3
2p+ 2 if q = 7

Observe the honeycomb tessellation by the asymmetric diamonds, and re-
strict the attention to the rectangle R, consisting of the leftmost left+right+1
columns and the uppermost t − left − 1 rows of the grid. As before, the top
left corner of R is vertex (0, 0). The number of vertices in R is exactly ω(AH,t),
where

ω(AH,t) =
{

24p2 + 24p+ 5 if q = 3
24p2 + 48p+ 23 if q = 7

Any coloring of the grid H obtained by covering H by colored copies of R
leads to a feasible and optimal coloring (see Fig. 5). Let R be colored in row-
major order. In details, given any vertex (i, j) ∈ R, let its color be

g(i, j) = (i(left+ right+ 1) + j) mod ω(AH,t).

The coloring of the entire grid H is obtained by defining a t-homomorphism
φ : V (H) �→ V (R). For any vertex (i, j) ∈ H, f(i, j) = g(φ(i, j)) where

φ(i, j) =
(

i mod (t− left),
(

j − right
⌊

i

t− left
⌋)

mod (left+ right+ 1)
)

3.2 L(1t)-Coloring with t Even

Lemma 2. Let t = 8p + q, with p ≥ 0 and q = 0, 2, 4, 6. There is an L(1t)-
coloring of a honeycomb grid H of size r×c, with r ≥ t+1 and c ≥ � t

4�+� t
4	+1,

only if

χt(H) ≥ ω(AH,t) =






24p2 + 6p+ 1 if q = 0
24p2 + 18p+ 4 if q = 2
24p2 + 30p+ 10 if q = 4
24p2 + 42p+ 19 if q = 6
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p = 2

t = 16

q = 0

2p 2p 2p + 1
2p + 12p + 1

2p + 1
2p + 2

p = 2

t = 18

q = 2

2p

h = 2p

p = 2

t = 20

q = 4

h = 2p + 1

p = 2

t = 22

q = 6

h = 2p
h = 2p + 1

Fig. 6. The maximum cliques (diamonds) for t = 16, 18, 20 and 22. The number of
holes is denoted by h.

Proof. As in Lemma 1, the maximum clique of AH,t is again a diamond, which
can be symmetric or asymmetric. However, there are some holes (i.e., vertices not
included in the clique) on a single border column of the diamond. The holes are
located according to the center of the diamond. The center is the middle vertex
(i, j) of the central column, which can be termed either left center or right center
depending on whether it is horizontally connected either to vertex (i, j − 1) or
(i, j+1), respectively. In the symmetric case, the holes are located in the furthest
column on the opposite side with respect to the horizontal connection of the
center. Instead, in the asymmetric case, the holes are located on the same side
as the center connection.

To compute the clique size ω(AH,t), a reasoning similar to that in the proof
of Lemma 1 is followed. As an example, Fig. 6 shows the maximum cliques when
q = 0, 2, 4 and 6 and t = 16, 18, 20 and 22, respectively (in such a figure, the
clique centers are depicted by black dots). ∇

A Stronger Lower Bound Based on t-Independent Sets. In contrast to
the case t odd, when t is even the lower bound on the number of colors given
by ω(AH,t) is no more reachable by an L(1t)-coloring. Indeed it is possible to
derive a stronger lower bound by considering how a maximum t-independent set
S∗

t can be built.

Lemma 3. When t is even, the minimum distances among three closest vertices
belonging to S∗

t are t+ 1, t+ 1 and t+ 2.

Proof. Let a vertex u = (i, j) of H be a left vertex, if it is horizontally con-
nected to vertex s = (i, j−1), or a right vertex if it is connected to d = (i, j+1).
By contradiction, assume there are 3 vertices u, v and w such that d(u, v) =
d(v, w) = d(w, u) = t+1. W.l.o.g., let u be a left vertex. Since t+1 is odd, then
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both v and w must be right vertices. This implies that d(v, w) must be even and
greater than t. But this is a contradiction, and d(v, w) = t+ 2. ∇

Given a vertex v, let Bt(v) be the set of vertices at distance exactly t + 1
from v. One can show that |Bt(v)| = 3t+ 3 for any t even. To build a maximum
t-independent set that contains v, let select as many vertices as possible among
those in Bt(v). By Lemma 3, since those vertices are all at distance t + 1 from
v, they must be at distance at least t+ 2 among them.

Lemma 4. When t is even, there is no way to select 6 vertices u0, u1, . . . , u5 of
Bt(v) such that d(ui, u(i+1) mod 6) = t+ 2.

Proof. Since any two consecutive vertices of Bt(v) are at distance 2, no more
than one out of t+2

2 consecutive vertices of Bt(v) can be selected. Therefore at

most
⌊

3t+3
t+2
2

⌋
= 5 vertices can be selected. ∇

Lemma 5. When t is even, there is no way to select 6 vertices u0, u1, . . . , u5
such that: (1) ui belongs to Bt(v) for i = 1, . . . , 5; (2) d(ui, ui+1) = t + 2, for
i = 1, . . . , 4; and (3) d(u0, u1) = d(u0, u5) = t+ 1.

Proof. After selecting u1, . . . , u5 on Bt(v) such that d(ui, ui+1) = t + 2 for
i = 1, . . . , 4, there are t− 2 vertices of Bt(v) left out between u5 and u1. Then,
there are t vertices at distance t + 2 from v between u5 and u1. Moreover, the
shortest path from u5 to u1, which does not include any other vertex of Bt(v),
has length 2t. Therefore, there is no way to choose on such a path any vertex u0
at distance t+ 1 from both u0 and u5. ∇

By the previous lemmas, to build a maximum t-independent set including a
given vertex v, one should choose the six vertices closest to v such that at most
four of them are at distance t+1 from v, and at least two of them are at distance
t + 2. Moreover, in a maximum t-independent set such a property should hold
for any of its vertices, and in particular for the 6 vertices closest to v.

Lemma 6. Let t = 8p+ q, with p ≥ 0 and q = 0, 2, 4, 6. The minimum number
of maximum t-independent sets that cover a sufficiently large honeycomb grid H
is:

µt(H) ≥






24p2 + 8p+ 1 if q = 0
24p2 + 20p+ 4 if q = 2
24p2 + 32p+ 11 if q = 4
24p2 + 44p+ 20 if q = 6

Proof. Choose a vertex v of S∗
t and its 6 closest vertices such that 4 of them

are at distance t + 1 and the remaining 2 are at distance t + 2. By Lemma 2,
each of these vertices can be perceived as a center of a diamond. The vertices
of each diamond must belong all to different independent sets because they are
pairwise at distance at most t. Building such a diamond around each vertex of
S∗

t , one obtains a tessellation of H with some uncovered vertices between any
two diamonds whose centers are at distance t + 2. A possible placement of the



160 Alan A. Bertossi et al.

11

11

129

10

9

Fig. 7. The maximum 8-independent set (left) and 10-independent set (right) consist-
ing of the diamond centers (depicted by black dots). The uncovered vertices are shown
by white circles.

vertices of the maximum t-independent set is depicted in Figure 7 for t = 8 (on
the left) and t = 10 (on the right). Note that there is no way to decrease the
number of uncovered vertices because, by Lemmas 4 and 5, v and its 6 closest
vertices are as dense as possible. Clearly, these uncovered vertices cannot belong
to S∗

t .
Since every center has two closest vertices at distance t + 2, by observing

Figure 7, one notes that there are two groups of uncovered vertices adjacent to
any diamond: one group is above the diamond left columns and the other group
is below the diamond right columns. Now, a mapping can be defined between
each diamond center and the uncovered vertices by assigning to a diamond with
a left center the uncovered vertices above its left columns, and assigning to a
diamond with a right center the uncovered vertices above its right columns. Note
that if the two diamond centers are at distance t + 2, they are both either left
or right centers. Hence, the mapping assigns the uncovered vertices between the
two diamonds to one and only one of them.

Finally, the number of uncovered vertices associated to each diamond is the
minimum between the number of left and right columns of the diamond, which
in turn is exactly equal to the number h of holes of the diamond, that is: h = 2p
if q = 0, 2, or h = 2p+ 1 if q = 4, 6. Hence, only one vertex out of the diamond
vertices and its holes, that is one out of ω(AH,t) + h vertices, can belong to S∗

t .
Therefore, µt(H) ≥ ω(AH,t) + h, and by Lemma 2 the proof follows. ∇

Optimal Coloring. By Lemma 6, to derive optimal colorings when t is even,
one only needs to consider a diamond enlarged in such a way that it includes also
all its h holes. Then one tessellates the grid by means of the enlarged diamonds,
using exactly the same techniques already seen in the case that t is odd.
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Table 3. Minimum number χt of channels used for a sufficiently large network G (for
honeycomb grids, t = 8p + q, with p ≥ 0 and 0 ≤ q ≤ 7).

Network G L(1t)

honeycomb grid χt =






24p2 + 8p + 1 if q = 0
24p2 + 12p + 2 if q = 1
24p2 + 20p + 4 if q = 2
24p2 + 24p + 6 if q = 3
24p2 + 32p + 11 if q = 4
24p2 + 36p + 14 if q = 5
24p2 + 44p + 20 if q = 6
24p2 + 48p + 24 if q = 7

square grid χt = � (t+1)2

2 �
hexagonal grid � 34 (t + 1)2� ≤ χt ≤ (t + 1)2 − t

References [1,12,13]

4 Conclusion

Table 3 summarizes the results for optimal L(1t)-coloring for the three grids
based on regular tessellations. By observing Table 3, one notes that the pro-
posed colorings for honeycomb grids use less colors than those required by the
hexagonal and square grids for any t > 1. Therefore, honeycomb grids beat
the hexagonal and square grids in terms of both network cost and channel re-
quirement. However further work has still to be done on honeycomb grids. For
instance, one could study the L(δ1, δ2)- and L(δ1, 1t−1)-coloring problems with
arbitrary δ1, δ2 or t.
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Abstract. The L(h, k)-labeling is an assignment of frequencies to the
transmitters/receivers of a multihop radio network such that ‘close’
transmitters must have frequencies which differ by at least k, and ‘very
close’ transmitters must have frequencies which differ by at least h. The
span of an L(h, k)-labeling is the difference between the largest and the
smallest assigned frequency. In this paper we study the L(h, k)-labeling
problem of cellular graphs, seeking those with minimum span for each
value of k and h ≥ k.

Keywords: L(h, k)-labeling, multihop radio networks, frequency as-
signment problem, cellular graphs.

1 Introduction

The huge class of frequency assignment problems play a very important role in
wireless networking, due to the rapid growth of wireless networks and to the rel-
atively scarce radio spectrum. The importance of these problems is even bigger
for mobile cellular communication networks as the demand for communication
services is significantly going to grow in the future. Many variants of the fre-
quency assignment problem have been defined and studied in many fields such
as graph theory, simulated annealing, genetic algorithms, tabu search and neural
networks (e.g. see [1,16,19,22]), but the task of all of them is to assign radio fre-
quencies to transmitters at different locations using minimum span and without
causing interference. In a mobile cellular network the service area is divided into
a number of cells, each one in charge of a transmitter/receiver; a frequency is
assigned to each cell to satisfy the local traffic demand. The same frequency can
be used in two different cells if there is no perceptible interference.

In this paper, we study the L(h, k)-labeling problem. It refers to the frequency
assignment problem where two kinds of interferences are avoided: direct collisions
(neighboring cells must have far frequencies, so their signals will not interfere)
and hidden collisions (a cell must not receive signals of the same frequency from
any of its adjacent neighbors, so cells distant two hops must use far frequencies).
More precisely, neighbor cells must use frequencies at least h apart, and cells

C. Blundo and C. Laneve (Eds.): ICTCS 2003, LNCS 2841, pp. 163–173, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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that are neighbors of the same cell (two hops far) must use frequencies at least
k apart. The nature of the environment and the geographical distance are the
major factors determining parameters h and k; we can assume h ≥ k from the
definitions of direct and hidden collisions. The span of an L(h, k)-labeling is the
difference between the largest and the smallest assigned frequency. The aim of
the L(h, k)-problem is to satisfy the distance constraints using the minimum
span.

Since its formal definition as a specialization of the frequency assignment
problem [14] the L(h, k)-labeling problem has been widely studied by means
of techniques from disparate research areas and receiving many names (an ab-
solutely non exhaustive list of related references is [4,5,6,7,10,9,11,17,18,20]).
However, almost all the literature concerns the special case of k = 1 and h = 2,
and very few papers [8,12,13,15] investigate on the more general problem. Nev-
ertheless, the solution of the problem for any h and k is worthy since it allows
one to handle more realistic scenarios.

The L(h, k)-labeling problem can be formulated as a coloring problem and,
hence, its decisional version is NP-complete [2]. This motivates seeking optimal
solutions on particular classes of graphs.

In this paper we completely solve the frequency assignment problem with
L(h, k) constraints on cellular networks covering full range of frequencies ex-
pressed in terms of k > 0 and h ≥ k. The proposed labelings are optimal, except
a very small range, where we give a good approximation as we provide close up-
per and lower bounds. For theoretical completeness we study the same problem
also on hexagonal and squared grids, although we do not include the proofs of
these latter results in this extended abstract.

Exploiting the upper bounds presented in this paper, a frequency can be
assigned to any node in a distributed fashion in constant time in all considered
grids, provided that the relative position of the node in the graph is locally
known. To avoid heaviness in notation we do not express explicitly each label as
function of the coordinates of any node in the grid.

2 Preliminaries and Discussion of the Results

A mobile cellular network is usually represented as a tassellation of hexagonal
cells. We do not care about the dimension of the network, so we consider it as
an infinite graph.

From now on, we study the cellular network by means of its interference
graph: each cell of the network is represented as a node and two nodes have an
edge in between if the corresponding cells are subject to direct collisions, i.e.
they are adjacent. This graph is a triangular grid and we call it cellular graph,
according to the notation introduced in [21].

In this context, the L(h, k)-labeling problem can be formulated as a graph
coloring problem, where colors represent possible frequencies. More precisely,
given real positive k and h ≥ k, an L(h, k)-labeling of a graph G = (V,E) is a
function L : V → IR such that
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− |L(u)− L(v)| ≥ h if (u, v) ∈ E and
− |L(u)− L(v)| ≥ k if there exists w ∈ V such that (u,w) ∈ E and (w, v) ∈ E.

The span of an L(h, k)-labeling is the difference between the largest and the
smallest value of L, so it is not restrictive to assume 0 as the smallest value of
L. For any positive reals k and h ≥ k, we denote by λh,k(G) the smallest integer
λ such that graph G has an L(h, k)-labeling of span λ.

In this paper, we study the L(h, k)-labeling problem on cellular graph C,
proving that:

λh,k(C) = 6h if k ≤ h ≤ 4
3k;

λh,k(C) = 8k if 4
3k ≤ h ≤ 2k;

3h+ 2k ≤ λh,k(C) ≤ min(4h, 11k) if 2k ≤ h ≤ 3k;
λh,k(C) = 3h+ 2k if 3k ≤ h < 4k;
λh,k(C) = 2h+ 6k if h ≥ 4k;

For theoretical completeness we have considered also the other regular tas-
sellations of the plane, i.e. hexagonal and squared grids, but we omit these study
in this extended abstract.

A graphical summary of results is depicted in Fig. 1.
The L(h, k)-labeling problem on regular grids has already been studied in [3]

for h = 2 and k = 1, and in [5] for h = 0, 1, 2 and k = 1. Of course, the results
obtained in this paper include as special case the previous ones.

In [15] the distance between two labels i, j ∈ {0, 1, . . . , n − 1} is defined as
min{|i−j|, n−|i−j|}. Using this definition and restricting h and k to be integer,
the authors study a variant of L(h, k)-labeling on triangular and squared grids
(for a summary of their results see Fig. 2). They approach this different problem
from a purely combinatorial point of view, with completely different techniques,
for each integer h and k. Furthermore, observe that – despite the similarity of
the L(h, k)-labeling problem and the variant introduced in [15] – it does not
seem possible to shift from results in [15] to ours (compare Fig. 1 and Fig. 2).

Before proving one by one all bounds listed above, we state some general
results that will be useful in the following.

Observation 1 Any two neighboring nodes have different labels, so given any
regular grid of the plane G with degree ∆ (∆ = 3, 4 or 6) with an optimal
L(h, k)-labeling, there always exists a node x and one of its neighbors y such
that L(y) < L(x). If, in addition, G is a cellular graph, then any three nodes x, y
and z, forming a triangle can be choosen in such a way that L(y) < L(x) < L(z).

Observe that, in any L(h, k)-labeling, if L(x) > L(y) and x and y are neigh-
bors in the grid, then it must be L(x) ≥ L(y) + h ≥ h. Analogously, if L(z) >
L(w) and z and w are at distance two in the grid, then L(z) ≥ L(w) + k ≥ k.
Theorem 2. Given any regular grid of the plane G with degree ∆ (∆ = 3, 4 or
6), the following conditions for λh,k(G) hold:
a. λh,k(G) ≥ ∆h for any k ≤ h ≤ (∆+2

∆ )k;
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Fig. 1. Summary of the results. Lines labeled by ∆ = 6, ∆ = 4 and ∆ = 3 summarize
the results on cellular graphs, squared and hexagonal grids, respectively. Value h is
considered as a function of k.

b. λh,k(G) ≥ (∆+ 2)k for any (∆+2
∆ )k ≤ h ≤ 2k;

Sketch of Proof. Let be given any optimal L(h, k)-labeling of G, and let us con-
sider a node x according to Obs. 1. Node x has degree ∆ and, in view of the
definition of L(h, k)-labeling, its label L(x) must be at least h apart from the
label of each one of its neighbors. On the other hand, all ∆ neighbors of x are
at distance 2 in the graph via x, so their labels must differ by at least k.

Let us prove bounds a. and b. together.
Let k ≤ h ≤ 2k. Consider set U of distinct used labels in the L(h, k)-labeling.

|U | must be at least ∆ + 1. Furthermore, since each label can assume the role
of L(x), we have to impose that the L(h, k)-constraints hold for each element of
U . We can focus on two special cases:

1. Let us consider the distance-1 constraint of the L(h, k)-labeling, first: since
L(x) must differ by at least h from the labels of all its neighbors, we can
assume that all used values are positioned at distance h from each other. In
this way, we need a span of ∆h, ∀h ≥ k.
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Fig. 2. Summary of the results presented in [15] translated in our nomenclature. Ob-
serve that here λh,k refers to ‘cyclic’ L(h, k)-labeling, with h and k integer values. Lines
labeled by ∆ = 6 and ∆ = 4 summarize the results on cellular graphs and squared
grids, respectively. Value h is considered as a function of k.

2. Now, let us add the distance-2 constraint: since all neighbors of x must
differ at least by k from each other, we can assume that all used labels are
positioned at distance k from each other. As h ≤ 2k, it is enough to have
only ∆+ 3 different values (i.e. one used for x, ∆ used for its neighbors and
at most two – too close to L(x) – not used). In this case the span is (∆+2)k.

The previously defined L(h, k)-labelings are both feasible. Furthermore, any
other L(h, k)-labeling cannot use span smaller than the minimum of the pre-
viously found values because it has to join the distance-1 and distance-2 con-
straints. The claim follows. ��

3 Cellular Graphs
Given a cellular graph with an optimal L(h, k)-labeling, for any node x we call
a1, a2, . . . a6 its neighbors arranged in clockwise order around x. It is not restric-
tive to assume that a1 has the smallest label, and that L(a2) < L(a6).

In this section, we derive exact values of λh,k(C) by proving coinciding upper
and lower bounds, except for interval 2k ≤ h ≤ 3k, where bounds are slightly
different.

3.1 k ≤ h ≤ 2k

Theorem 3. If k ≤ h ≤ 4
3k, then λh,k(C) = 6h; if 4

3k ≤ h ≤ 2k, then λh,k(C) =
8k.
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a. b.
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0

0
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Fig. 3. Optimal labelings of a cellular graph when a. k ≤ h ≤ 4
3k and when b. 4

3k ≤
h ≤ 2k.

Proof. Lower bound. It directly descends from Thm. 2, items a. and b.
Upper bound. If k ≤ h ≤ 4

3k, use the pattern of labels 0, h, 2h, . . . , 6h. A
possible feasible labeling is shown in Fig. 3.a and it is obtained by replicating
the pattern of labels row by row shifting it by two positions on the left when
going to the next row. Its span is 6h.

If 4
3k ≤ h ≤ 2k, consider the labeled portion of cellular graph limited by bold

lines in Fig. 3.b. The L(h, k)-labeling is performed by replicating this pattern
of labels. This is possible because nodes on both horizontal and vertical sides of
the labeled portion are colored with the same ordered set of labels (0 3k 6k and
0 7k 5k 3k, respectively). In view of the distances between the used labels, it is
straightforward to see that the produced coloring is a feasible L(h, k)-labeling
and its span is 8k. Observe that this labeling is exactly the same as a L(2, 1)-
labeling, where each value has been multiplied by k. ��

3.2 2k ≤ h < 4k

Theorem 4. If 3k ≤ h < 4k, then λh,k(C) = 3h + 2k; if 2k ≤ h ≤ 3k then
3h+ 2k ≤ λh,k(C) ≤ min(4h, 11k).

Proof. Upper bound. If 2k ≤ h ≤ 3k, the L(h, k)-labelings derived by repli-
cating the labeled portions of cellular grid limited by bold lines in Fig. 4.a and
4.b are both feasible and their span is 4h and 11k, respectively. It follows that
λh,k(C) ≤ min(4h, 11k). The threshold value of h changing the result of min
function is 11

4 k.
If 3k ≤ h < 4k, consider the labeled portion of cellular graph limited by bold

lines in Fig. 5.a, and replicate this pattern. The produced coloring is a feasible
L(h, k)-labeling and its span is 3h+ 2k.
Lower bound. Let be given a cellular graph with any optimal L(h, k)-labeling,
2k ≤ h < 4k. We consider a node x according to Obs. 1 (i.e. having two neighbors
y and z such that L(y) < L(x) < L(z)) and all possible relative orders of the
labels of x and its neighbors. We prove – by contradiction – that λh,k(C) ≥
3h + 2k if 2k ≤ h < 4k. So, assume λh,k(C) < 3h + 2k. For the nomenclature,
we refer to Fig. 6.
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Fig. 4. Two feasible labelings of a cellular graph when 2k ≤ h ≤ 3k. Their span is a.
4h and b. 11k.
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Fig. 5. Two optimally labeled portions of cellular graph when a. 3k ≤ h < 4k and b.
h ≥ 4k.

Case 5− x− 1:
Suppose first that x has 5 neighbors whose labels are smaller than L(x) and only
one with label bigger than L(x) (see Fig. 6.a). Hence, in all this item, L(x) is in
position F while L(a1) is in position A.

First of all, observe that two adjacent nodes ai and ai+1 cannot have their
labels in consecutive positions (e.g. L(ai) in C and L(ai+1) in D), otherwise the
span would become too large, against the hypothesis λh,k(C) < 3h+ 2k. In the
same way, two adjacent nodes ai and ai+1 cannot have their labels separated by
only one label (e.g. L(ai) in C and L(ai+1) in E) otherwise the span would be
≥ 3h+ 2k. Therefore, L(a2) cannot be in position B, or in C. L(a2) cannot be
in G because we know that L(a2) < L(a6).

It follows that L(a2) lies either in D or in E.
If L(a2) in D – for the previous considerations – L(a3) must be in G and

hence L(a6) must be in E. In this way, L(a4) and L(a5) would be in B and C,
in some order, achieving in any case a too large span.

Finally, if L(a2) is in E, then L(a6) must necessarily be in F and L(a3), L(a4)
and L(a5) occupy positions B,C and D in some order, leading again to a too
large span.

We deduce that – under the hypothesis λh,k(C) < 3h+2k – this configuration
never occurs.
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Fig. 6. Some possible relative positions of L(x) and of labels of x’ neighbors.

Cases 4− x− 2, 2− x− 4 and 1− x− 5:
If x has 4 neighbors whose labels are smaller than L(x) and 2 with label bigger
than L(x) (see Fig. 6.b), with considerations similar to the previous ones, it is
possible to prove that this case never occurs when λh,k(C) < 3h+ 2k.

The cases in which x has either two neighbors or one neighbor whose labels
are smaller than L(x) are symmetrical to the previous two cases and then omitted
for the sake of brevity.

Case 3− x− 3:
Suppose now that x has 3 neighbors whose labels are smaller than L(x) and 3
with label bigger than L(x) (see Fig. 6.c). In this case, L(a1) is in position A
and L(x) is in position D.

Since this case does not lead to any contradiction, it can occur when
λh,k(C) < 3h+ 2k.

We have proven that, in the hypothesis λh,k(C) < 3h+ 2k, only three cases
can occur; namely, it can happens that the six labels of x’s neighbors are either
all smaller than L(x), or all bigger than L(x) or three smaller and three bigger
than L(x). Now we want to study which values L(x) can assume and prove that
no value is feasible, i.e. our hypothesis λh,k(C) < 3h+ 2k is false.
0 ≤ L(x) < 2h− 3k
In this interval L(x) would have all six labels of x’s neighbors to its right. If
L(x) was ≥ 2h − 3k then the space to its right would be not sufficient to keep
the span < 3h+ 2k and, at the same time, to fit six labels at mutual distance k
and at distance ≥ h from L(x).
2h− 3k ≤ L(x) < h+ 2k
L(x) never lies inside this interval because there is not enough room to fit six
label to the right of L(x) and not enough room to fit three labels to the left of
L(x). From the previous part of the proof, we know that other configurations
are not possible.
h+ 2k ≤ L(x) < 2h
If L(x) lies in this interval, three labels must be smaller than L(x) and three
labels must be bigger than it.
2h ≤ L(x) < h+ 5k
L(x) never lies here, for analogous reasons with respect to the second interval.
h+ 5k ≤ L(x) < 3h+ 2k
This interval is analogous to the first one.
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So, only three intervals are feasible for L(x). Now observe that the second
one, [h+2k, 2h), is h− 2k wide; since h− 2k < 2k when h < 4k, we deduce that
inside this interval we can fit at most two labels at mutual distance k. It follows
that the other two intervals must contain at least four labels each and hence
they must be at least 3k wide. This is absurd if 2k ≤ h < 3k and the proof is
concluded in this case. If 3k ≤ h < 4k let us consider the general L(x) in the first
(third) feasible interval. All six x’s neighbors must have label bigger (smaller)
than L(x), and only two can be in the second feasible interval while four are
in the third (first) one. Let us focus on the labels L(ai) and L(aj) lying inside
the second feasible interval. If ai and aj are neighbors, then the second interval
must be at least h wide, and this is absurd. If ai and aj have distance two in the
cycle induced by x’s neighbors, then consider the three nodes different from ai,
aj and their common neighbor; they must all lie in the third (first) interval. If
ai and aj have distance three in the cycle induced by x’s neighbors, then there
exist two pairs of neighbors whose labels all lie in the third (first) interval. Both
configurations imply that the third (first) feasible interval is at least h+ k wide,
possible if and only if h ≥ 4k, i.e. an absurd.

The contradictions raised from the hypothesis λh,k(C) < 3h+ 2k. ��

In the interval 2k ≤ h ≤ 3k, the achieved upper and lower bounds for λh,k(C)
are not coinciding. The following result, whose proof is omitted in this extended
abstract, ensures us that the lower bound is not tight, at least in a subinterval:

Theorem 5. If 2k < h < 5
2k, then λh,k(C) > 3h+ 2k.

On the base of the previous theorem and of the continuity of function λh,k(C)
we conjecture that λh,k(C) = 4h if 2k ≤ h ≤ 5

2k and λh,k(C) = 2h + 5k if
5
2k ≤ h ≤ 3k.

3.3 h ≥ 4k

Theorem 6. If h ≥ 4k, then λh,k(C) = 2h+ 6k.

Sketch of Proof. Upper bound. Consider the labeled portion of cellular graph
limited by bold lines in Fig. 5.b and replicate it in all directions.

The produced coloring is a feasible L(h, k)-labeling and its span is 2h+ 6k.
Lower bound. Let be given a cellular graph with an optimal L(h, k)-labeling.
Let x be any node in the grid such that L(x) ≥ h according to Obs. 1. By
contradiction, let us assume λh,k(C) < 2h + 6k. By considering all different
cases and, very similarly to the proof of Thm 4, it is possible to prove that
either all labels of x’s neighbors lie to the same side with respect to L(x) or
they are three to the left and three to the right of L(x). By examining which
values L(x) can assume, we can show that the assumption λh,k(C) < 2h+ 6k is
absurd. ��
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4 Conclusions and Open Problems

In this paper we have studied the L(h, k)-labeling problem on cellular networks.
For each value of k and h ≥ k we have obtained exact values of the span, except
in a small interval, where we provide slightly different upper and lower bounds
for λh,k(C). It is easy to see that the replication schemes presented for the upper
bounds lead to simple distributed algorithms to label the whole grid in constant
time, provided that each node knows its coordinates in the grid.

Three open problems arise from this work.
The first one is to prove (or disprove) our conjecture and close the gap be-

tween upper and lower bound when 2k ≤ h ≤ 3k.
The second one is to understand if there exists some shifting method to go

from the results collected in the present paper and those presented in [15] (see
Fig. 2) and vice-versa. Indeed, it is not surprising that the values of λh,k under
the ‘cyclicity’ assumption are bigger than ours, but it is not clear the reason why
our λh,k function is fragmented in a bigger number of segments.

Finally, it would be interesting to study the L(h, k)-labeling problem for other
(not regular) tilings, built with different shaped tiles (i.e. the edge-clique graph
of the cellular graph, having degree 4, constituted by triangular and hexagonal
tiles).
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Abstract. Consistency checking is a fundamental computational problem in ge-
netics. Given a pedigree and information on the genotypes (of some) of the indi-
viduals in it, the aim of consistency checking is to determine whether these data
are consistent with the classic Mendelian laws of inheritance. This problem arose
originally from the geneticists’ need to filter their input data from erroneous in-
formation, and is well motivated from both a biological and a sociological view-
point. This paper shows that consistency checking is NP-complete, even with
focus on a single gene and in the presence of three alleles. Several other results
on the computational complexity of problems from genetics that are related to
consistency checking are also offered. In particular, it is shown that checking the
consistency of pedigrees over two alleles, and of pedigrees without loops, can be
done in polynomial time.

1 Introduction

A paradigmatic problem from the field of genetics in which the use of algorithmic
techniques is by now widespread, and is embodied in software tools like Allegro [6],
Genehunter [8], Merlin [1] and Pedcheck [11], is that of linkage analysis. Linkage anal-
ysis is a well established, statistical method used to relate genes in the human genome
to some biological trait that an individual possesses. Example traits that may be in-
vestigated range from simple ones like blood type and eye colour to those that may
predispose an individual for a disease. Genes causing major diseases (e.g., Parkinson’s
disease, obesity and anxiety) have already been discovered using this technique [4].

In order to track the inheritance of genetic traits, geneticists use structures called
pedigrees. A pedigree describes the family relations amongst a collection of individuals,
and usually comes equipped with (possibly partial) information on their genotypes –
i.e., on the pairs of alleles at a locus in their genome. (An allele is one of the possible
forms a gene may have.) Pedigrees are the subject of algorithmic analysis via methods
like linkage analysis.

A computational problem that is closely related to that of linkage analysis is con-
sistency checking. Given a pedigree and information on the genotypes (of some) of the
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individuals in it, the aim of consistency checking is to determine whether these data are
consistent with the classic Mendelian laws of inheritance (see, e.g., the reference [7]).
If it turns out that the inheritance of the genotypes in the pedigree is in conflict with the
Mendelian laws of inheritance, then the pedigree and the information on the genotypes
are inconsistent. If no such conflict arises, then the data are consistent.

The problem of consistency checking arose originally from the geneticists’ need
to filter their input data from erroneous information, because inconsistent data are un-
desirable. According to [15, p. 496], it is essential that all Mendelian inconsistencies
be eliminated prior to linkage analysis as “a few inopportunely placed errors, if ig-
nored, can tremendously affect evidence for linkage.” Furthermore, as reported in [11],
in many real-life cases the manual identification of inconsistencies can be very diffi-
cult, time consuming, and sometimes unsuccessful. It would therefore be most helpful
to have automatic tool support for this task.

Hence, consistency checking is a well motivated problem from a biological view-
point. Another issue is whether it is computationally feasible. The aim of this paper
is to show that consistency checking is NP-complete even if we focus on genotype
information for a single gene, and thus that the existence of consistency checking algo-
rithms that have polynomial worst case complexity is unlikely – cf., e.g., the claim by
O’Connell and Weeks that their “new genotype-elimination algorithm is guaranteed to
detect every Mendelian inconsistency efficiently and quickly” [12, pp. 1739–1740]. To
the best of our knowledge, this is a new result in both computer science and genetics.

After discussing a simple formal model for pedigrees and associated genotype in-
formation, we use it to formalize the consistency checking problem with focus on a
single gene (Sect. 2). The consistency checking problem is shown to be NP-complete in
Sect. 3, even in the presence of three alleles. Our proof of NP-hardness for this problem
is based on a reduction from 3SAT (a classic NP-complete problem – see, e.g., [13,
Propn. 9.2, p. 183]), and uses pedigrees with loops. As stated in [12, p. 1733], like-
lihood computations on, and consistency checking of, pedigrees with loops continue
to pose daunting computational challenges. This is confirmed by the use of looping
pedigrees in our NP-completeness proof, and by the fact that pedigrees without loops
can be checked for consistency in polynomial time (Thm. 2). (Note, however, that the
loops that arise in our constructions are of the kind geneticists call “marriage loops”
[14], and not loops arising from inbreeding.) Sect. 4 presents results on the computa-
tional complexity of three problems from the genetics literature that are closely related
to consistency checking. In particular, we show that checking consistency of pedigrees
over two alleles is in P (Thm. 4). On the other hand, checking consistency of phase
known genotype information, and deciding whether a pedigree has k critical genotypes
(with k ≥ 0) are both NP-complete (Thms. 3 and 5). The paper concludes with a brief
mention of avenues to future work (Sect. 5).

A full account of the work presented in this extended abstract may be found in [2],
to which the reader is referred for the technical details.

Related Work. As previously mentioned, linkage analysis is a statistical method used
to relate genes in the human genome to some biological trait that an individual pos-
sesses. Like this method, other pedigree analysis techniques involve calculations with
probability distributions describing, e.g., the likelihood of gene transmission from one
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generation to the next. The study [14] investigates the structural complexity of two
problems whose solution is part and parcel of many statistical pedigree analysis meth-
ods, viz. the calculation of the so-called marginal probability, and that of computing the
so-called maximum likelihood. The decision problems associated with both of these
computational tasks are shown NP-hard in op. cit. even for pedigrees without inbreed-
ing loops, and with focus on a single gene. There is a close connection between our
NP-completeness result for the consistency checking problem and the NP-hardness re-
sults from [14], but neither set of results implies the other. For instance, a pedigree
with genotype information is consistent if, and only if, the maximum likelihood for that
pedigree is positive. The consistency checking problem can therefore be reduced to an
instance of the decision version of the maximum likelihood problem. However, this does
not yield our NP-completeness result as a corollary. Moreover, we focus on consistency
checking, an apparently very basic problem in genetics, with a purely combinatorial
flavour, that does not involve any likelihood computations. It is also interesting to look
at similarities and differences in the proofs of the NP-completeness result for consis-
tency checking we offer here (see Thm. 1), and of Thms. 5 and 9 in [14]. Both sets of
results use reductions from 3SAT. The reductions are, however, very different, and, at
first sight, somewhat at odds with one another. In our proof of Thm. 1, we focus on a
single gene with three alleles. The use of three alleles in this proof of NP-hardness of
the consistency checking problem is most likely necessary because, as stated in Thm. 4,
checking consistency of pedigrees over two alleles is in P. The reduction employed
in [14] instead uses only two alleles, and the threshold value on, e.g., the maximum
likelihood plays a crucial role in the proofs of the NP-hardness results offered ibidem.
Indeed, the pedigrees over two alleles generated by the reductions employed there are
always consistent, as would be detected by the algorithm on which the proof of our
Thm. 4 is based.

In an effort to accelerate likelihood calculations, geneticists have proposed geno-
type elimination algorithms. The aim of these algorithms is to identify, and eliminate,
those genotypes that are not consistent with the observed phenotype information in
the pedigree. The first algorithm for genotype elimination was proposed by Lange and
Goradia in [9], where it was shown that the algorithm is correct for genotype elimina-
tion over non-looping pedigrees, but fails to detect all superfluous genotypes for inbred
pedigrees. An algorithm for genotype elimination that is correct also in the presence of
loops in pedigrees has been offered by O’Connell and Weeks in [12]. Genotype elimina-
tion algorithms may be used to detect Mendelian inconsistencies and critical genotypes
in pedigrees – see, e.g., the proof of Thm. 2, detailed in [2], where we make use of the
aforementioned algorithm by Lange and Goradia to argue that pedigrees without loops
can be checked for consistency in polynomial time. This makes them suitable as pre-
processing steps in algorithms that assume that the input genotype data be consistent.
An example of such a use of genotype elimination algorithms is presented in [10], where
the authors propose a rule-based, iterative, heuristic algorithm, the block extension al-
gorithm, for the so-called Minimum-Recombinant Haplotype Configuration Problem.
Although this problem is shown to be NP-hard in op. cit., the encouraging preliminary
experimental results given in that reference seem to indicate that the block extension
algorithm performs rather well in practice under the assumption that its input data are



The Complexity of Checking Consistency 177

consistent. As we show in this paper, however, checking the consistency of the input
data is itself computationally hard. The reference [10] also offers a polynomial time
algorithm for haplotype reconstruction without recombination; this algorithm assumes
input data with no missing genotypes, whose consistency can be checked in linear time
in the number of non-founders of the input pedigree. (See the proof of Thm. 1 in this
extended abstract.)

2 Formalizing Gene Inheritance and Mendelian Consistency

As already mentioned in Sect. 1, a pedigree is a fundamental structure used in genetics.
In order to reason about pedigrees and the genotype information that they contain, we
need a formal model for them. Several formalizations of the notion of pedigree have
been presented in the literature on computational genetics. (See, e.g., [10, 14].) We now
proceed to present the models for pedigrees and their associated genotype information
adopted in this study, and then use these models to formalize the consistency checking
problem.

Definition 1 (Pedigree). A pedigree consists of a 4-tuple P = 〈V, F,p,m〉 where:

– V is a finite, non-empty set of members of the pedigree (ranged over by u, v),
– F ⊆ V is the set of founders,
– p,m : V \ F −→ V are the paternal and maternal functions, respectively, where

p(V \ F ) ∩m(V \ F ) = ∅

(that is, nobody can be both a mother and a father), and
– the transitive closure of the binary relation obtained as the union of the graphs of

p and m is irreflexive (that is, a member of the pedigree is never its own ancestor).

The set N = V \ F is usually referred to as the set of non-founders of the pedigree.

Note that the set of founders in a pedigree is always non-empty. Moreover, since the
model specifies the sex of an individual only implicitly via the paternal and maternal
functions, the sex of a “leaf” in a pedigree (i.e., of an individual without offspring) is
not specified. In our examples and constructions, the sex of individuals in a pedigree
without offspring will be chosen arbitrarily, as it is immaterial in consistency checking.
Our pictorial representation of pedigrees (with associated genotype information) is bor-
rowed from the genetics literature, and is introduced in Fig. 1. That figure represents a
pedigree whose founders are individuals 1 and 2, who are respectively the father and
the mother of individual 3.

For the sake of precision, we now offer a formal definition of loop in a pedigree.
The following definition is based on that in [12].

Definition 2 (Looping Pedigree). Let P = 〈V, F,p,m〉 be a pedigree. Two distinct
members u and v of the pedigree are said to mate if they have an offspring in common
– that is, if there is a non-founder v′ of P such that {p(v′),m(v′)} = {u, v}. Such a v′

is a child of u and v.



Fig. 2. A pedigree illustrated as done throughout this paper, and its associated mating graph as
defined in Def. 2. The black dots are the mating nodes and the grey dots are “person nodes”.

The mating graph associated with P is the undirected graphGP whose set of nodes
includes V , and contains mating nodesMu,v for every pair (u, v) of members of P that
mate. The edges in such a graph are those that connect members u and v that mate
to the mating node Mu,v, and those that connect such a mating node to the common
children of u and v.

A loop in GP is a non-empty path consisting of distinct edges that starts and ends
in the same node.

Finally, we say that a pedigree P is looping (or has a loop) if its associated mating
graph GP contains a loop.

An example of a looping pedigree is given in Fig. 2, together with its associated mat-
ing graph. One of the loops in that pedigree is due to inbreeding, and arises because
individuals 4 and 5 mate, and have a common ancestor. Another is a so-called marriage
loop, and stems from the matings between individual 6 and the two brothers 5 and 7.

Consistency checking of a pedigree is based on its associated genotype information;
intuitively, the pedigree defines the structure of the family relationships that are being
modelled, and the genotype information is the data which must be consistent with the
structure. We now present a formal genotype model. In what follows, it is always as-
sumed that instances of this genotype model are in the context of a specific gene and
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pedigree. We also assume a fixed, finite and non-empty set A of alleles ranged over by
A, B, etc.

In what follows, Two(A) denotes the family of non-empty subsets ofA that contain
no more than two alleles. As described below, an element of Two(A) will be used to
represent a genotype over the set of alleles A.

Definition 3 (Genotype Information). Let P = 〈V, F,p,m〉 be a pedigree. A geno-
type information for P is a partial function G : V ↪→ Two(A) that associates a geno-
type to (some of) the members of the pedigree. The domain, dom(G), of the function is
referred to as the set of genotyped members of the pedigree. The genotype information
G is complete if dom(G) = V .

Let G and G′ be two genotype information. We say that G′ extends G if dom(G) is
included in dom(G′), and G and G′ coincide over dom(G).
In the above definition, a genotype information may be seen as assigning an unordered
pair of alleles to members of the pedigree. This indicates that the phase of the alleles is
unknown. If a pedigree member is homozygous at a given locus in its genome, i.e., the
two alleles at that locus coincide, the function G returns a singleton set. In the literature
on genetics, and in our pictorial representation of pedigrees, the genotype {A,B} is
given as the string AB (or BA). In particular, the genotype {A} is given as AA. In
the remainder of this paper, we shall use these notations interchangeably without further
explanations.

Considering consistency for a specific gene amounts to checking whether the pedi-
gree and the genotype information are consistent according to the Mendelian law of
segregation (see [7]). The law of segregation implicitly defines the following constraint
on consistent genotype assignments: Each individual must inherit precisely one allele
from each of its parents.

Our order of business will now be to formalize this constraint, and what it means
that a genotype information is consistent with respect to a pedigree.

Definition 4 (Consistent Genotype Information). Let P = 〈V, F,p,m〉 be a pedi-
gree.

1. A complete genotype information G for P is consistent with P if, whenever v ∈ N :
(a) if G(v) = {A,B}, then either A∈ G(p(v)) and B∈ G(m(v)), or B∈ G(p(v))

and A∈ G(m(v));
(b) if G(v) = {A}, then A is contained in both G(p(v)) and G(m(v)).

2. A genotype information for P is consistent with P if it can be extended to a com-
plete, consistent genotype information for P .

3 Consistency Checking Is NP-Complete

In what follows, CONS will denote the consistency checking problem for genes with an
arbitrary number of alleles. We shall use nCONS to refer to the consistency checking
problem for a gene with n possible alleles, for some positive integer n. Our aim in the
remainder of this section will be to show the following result:
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Theorem 1. The problems nCONS (n ≥ 3) and CONS are NP-complete.

Remark 1. The proviso in the statement of the above theorem that the number of alleles
n be larger than, or equal to, three is most likely necessary. In fact, in the presence of a
single allele, there is only one complete genotype information, viz. that which assigns
the only allele to each member of the pedigree, and that is consistent. Hence, in that
case, each genotype information is consistent with respect to every pedigree. Moreover,
as will be shown in Thm. 4, the problem 2CONS is decidable in polynomial time.

To prove Thm. 1, we shall first show that CONS, and thus nCONS for every n, is in
NP. We then show that 3CONS, and therefore CONS and nCONS for every n ≥ 3, is
NP-hard.

It is not too hard to see that CONS is in NP. To this end, given any pedigree P
with genotype information G, it is sufficient to exhibit a certificate that is verifiable in
polynomial time. The certificate for an instance of problem CONS is a complete and
consistent genotype information Gc that extends G in the sense of Def. 3. To check
the consistency of Gc we only have to make sure that the conditions in Def. 4(1) are
satisfied for each non-founder of the pedigree. This only takes constant time for each
non-founder, and thus the whole consistency check takes linear time in the number of
non-founders of the pedigree. Note that the complexity of this consistency check is
independent of the number of possible alleles, which shows that nCONS is in NP for
every n.

Our order of business will now be to show that 3CONS, and thus CONS, is NP-
hard. Note that this is a strong indication that the structural complexity of consistency
checking does not depend on the number of alleles for a gene, if that number is at least
three. Our NP-hardness proof for 3CONS is by reduction from 3SAT. The central idea
of the proof is to build a pedigree with associated genotype information from a 3SAT
instance in such a way that the structure of the pedigree together with the genotype
information mimic the variables and clauses of the input 3SAT instance as closely as
possible. The constructed pedigree with genotype information is consistent if, and only
if, the 3SAT instance it models is satisfiable.

We recall, for the sake of clarity, that 3SAT is the special case of the satisfiability
problem for boolean formulae in which the input formulae are in conjunctive normal
form, and all of their clauses (i.e., disjunctions of literals) have exactly three literals
– where a literal is either a variable or a negated variable. Our aim, in the remainder
of this section, is to offer a polynomial time reduction from 3SAT to 3CONS. In fact,
it is not too hard to see that, without loss of generality, we can restrict ourselves to
considering boolean formulae in conjunctive normal form whose clauses have the form
x ∨ y, x ∨ y, x ∨ y ∨ z, or x ∨ y ∨ z, for some distinct variables x, y, z. Indeed, any
3SAT instance can be brought into that form in the following four steps:

1. Remove all clauses containing complementary literals (as they evaluate to true). If
all clauses are removed in this step, then the original formula is satisfiable.

2. Replace multiple occurrences of the same literal within a single clause with a single
occurrence of the same literal (as l ∨ l = l, for every literal l).
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3. If a clause consists of a single literal, then
(a) remove all clauses that contain this literal (as it must be assigned the value true)

and
(b) remove all occurrences of its negation in other clauses (as they have to be

assigned the value false).
If all clauses are removed in step 3a above, then the original formula is satisfiable.
If some clause reduces to the empty clause in step 3b, then we know that there is
no assignment that can satisfy the clause, and the formula is not satisfiable.

4. Finally, we put every clause in the formula into one of the forms x ∨ y, x ∨ y,
x ∨ y ∨ z, or x ∨ y ∨ z, for some distinct variables x, y, z. This can be done by
introducing dummy variables. For instance, a clause of the form x∨y∨z is replaced
with (x∨ p)∧ (y ∨ z ∨ p), for some fresh variable p. (We use a different variable p
for each clause.) The complete set of reduction rules used in this step may be found
in Table 1.

Table 1. The rules for step 4 in the transformation of 3SAT instances.

2 literals 3 literals
0 negations x ∨ y (no reduction) x ∨ y ∨ z (no reduction)
1 negation x ∨ y → (x ∨ p) ∧ (y ∨ p) x ∨ y ∨ z → (x ∨ p) ∧ (y ∨ z ∨ p)

2 negations x ∨ y (no reduction) x ∨ y ∨ z → (x ∨ y ∨ p) ∧ (z ∨ p)

3 negations x ∨ y ∨ z (no reduction)

It is clear that any instance of 3SAT can be rewritten to the form described above in
polynomial time, and that the resulting formula is satisfiable if, and only if, so was the
original one.

We are now ready to present our reduction from 3SAT to 3CONS. Let φ be an
instance of 3SAT. In light of the above discussion, we may assume that φ is in conjunc-
tive normal form, and that its clauses have one of the forms x ∨ y, x ∨ y, x ∨ y ∨ z,
or x ∨ y ∨ z, for some distinct variables x, y, z. Furthermore, we assume a fixed total
ordering on the variables, and that the variables always appear in clauses in an order
that is compatible with it. The construction of a pedigree Pφ with associated genotype
information Gφ from a formula φ proceeds in the following three steps. First we make
variable gadgets for each of the variables in φ. Next, we construct clause gadgets for
each of the clauses in φ. Finally, we combine the variable gadgets with the clause gad-
gets, and output the resulting pedigree.

In the construction outlined below, the genotype information Gφ will be explicitly
described in stepwise fashion as we show how Pφ is built.

We start by describing the construction of the variable gadgets. In our construction,
we shall make use of three alleles, denoted by A, F and T. The alleles T and F are
intended to play the role of “true” and “false” in the 3SAT problem. The third allele A
is an auxiliary dummy allele used for controlling possible inheritance patterns.

For each variable x that occurs in φ we construct the pedigree Px thus:

Px = 〈Vx, Fx,px,mx〉 ,



Fig. 3. The variable gadget Px.

The next step in the reduction is to construct a clause gadget Pγ , for each clause γ
in the formula φ. As we have already pointed out, there are only four different types
of clauses we need to consider, and each leads to a different type of clause gadget.
The clause gadgets for clauses γ of the form x ∨ y and x ∨ y (respectively, x ∨ y ∨ z
and x ∨ y ∨ z) have the same pedigree structure Pγ , but the genotype information Gφ

assigns a different genotype to the one individual in Pγ without offspring. In each pedi-
gree Pγ , we shall use cγ to denote this single “leaf”, and fγ and mγ to stand for its
father and mother, respectively. If the clause γ contains three literals, the pedigree Pγ

also contains individuals gf γ and gmγ , who are, respectively, the maternal grandfather
and grandmother of cγ . The paternal and maternal functions pγ and mγ encode the
family structure that we have just described – that is:

pγ(u) =

{
fγ if u = cγ

gf γ if u = mγ and γ contains three literals

mγ(u) =

{
mγ if u = cγ

gmγ if u = mγ and γ contains three literals.
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where Vx = {fx,mx, vx, sx}, Fx = {fx,mx, sx}, and the paternal and maternal func-
tions are given by px(vx) = fx and mx(vx) = mx. The genotype information Gφ

assigns genotype AA to both mx (the mother of vx) and sx (the spouse of vx), and
genotype TF to fx (the father of vx). The genotyped pedigree Px is depicted in Fig. 3.
(In that figure, vx and her spouse sx are joined by a “mating line” to indicate that they
will mate when the variable gadget is incorporated in the clause gadgets – see Fig. 4.)
The pedigree Px consists of three genotyped members, and one ungenotyped individ-
ual vx. The genotype of vx can, however, be partly inferred by the Mendelian laws, and
has the form xA, where the “allelic variable” x takes either the value F or T. This is
indicated by xA on the figure. Moreover, the allele x associated with the individual vx

is the only possible origin of a T or F allele that can be inherited further from the inher-
itance point of Px. We shall refer to individual vx in Fig. 3, as the variable individual
for x. The illustration on the left of Px in Fig. 3 shows how the variable gadgets are
depicted in larger pedigrees.

Inheritance
Point

�� ��

����

��

��



Fig. 4. The pedigrees constructed for the four basic clause types along with their connections with
the appropriate variable gadgets.
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In what follows, we shall write Vγ for the set of individuals of the pedigree Pγ . The
only new genotyped individual in Pγ is its leaf cγ . The genotype Gφ(cγ) is TA if γ
contains only positive literals, and FA otherwise.

The four different types of clause gadgets are depicted in Fig. 4, where we also show
how the clause gadgets will be linked to the variable gadgets in the construction of the
pedigree Pφ. The genotype information associated with the leaves of these pedigrees is
used to code constraints on the values of the variables in a satisfying assignment for the
original clauses. For instance, the leaves of the pedigrees associated with the clauses
containing only positive literals have genotype TA to represent the fact that one of
the variables in that clause must be assigned the truth value true in every satisfying
assignment.
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Fig. 5. The form of the pedigree constructed in the reduction from 3SAT.

The pedigree Pφ is depicted in Fig. 5. The following result states the correctness of our
construction of Pφ from a 3SAT formula φ.

Proposition 1. A 3SAT formula φ is satisfiable if, and only if, the genotype information
Gφ is consistent with Pφ.
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Having constructed a variable gadget for each variable and a clause gadget for each
clause occurring in φ, we combine these gadgets, and output the resulting pedigree Pφ.
The pedigree Pφ = 〈Vφ, Fφ,pφ,mφ〉 is built thus:

– the set Vφ of members of Pφ is the union of the Vx’s (with x a variable occurring
in φ) and of the Vγ’s (with γ a clause of φ);

– the set Fφ of founders of Pφ is the union of the Fx’s (with x a variable occurring in
φ);

– the functions pφ : Vφ\Fφ → Vφ and mφ : Vφ\Fφ → Vφ are obtained by extending
the paternal and maternal functions for the pedigrees Px and Pγ thus:

pφ(u) =



sx if u = fγ , and the first variable of γ is x

sy if u = mγ , and γ = x ∨ y for some variable x

sy if u = gf γ , and γ = x ∨ y ∨ z for some variables x, z

sz if u = gmγ , and γ = x ∨ y ∨ z for some variables x, y

mφ(u) =



vx if u = fγ , and the first variable of γ is x

vy if u = mγ , and γ = x ∨ y for some variable x

vy if u = gf γ , and γ = x ∨ y ∨ z for some variables x, z

vz if u = gmγ , and γ = x ∨ y ∨ z for some variables x, y.
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Since the pedigree Pφ can be constructed in polynomial time from the formula φ, the
proposition above allows us to conclude that 3CONS is NP-hard, and the proof of
Thm. 1 is now complete.

As already remarked in Sect. 1, our reduction from 3SAT to 3CONS employs loop-
ing pedigrees. The following result, which seems to be folklore in the literature on
computational genetics, offers strong evidence that this is most likely necessary.

Theorem 2. Checking the consistency of non-looping pedigrees can be performed in
polynomial time.

4 Further Results

In this section we discuss briefly three new problems related to CONS motivated by the
underlying biology, and study their computational complexity.

Tolerance to Critical Genotypes. A critical genotype is genotype information on an
individual that, if removed, would make an inconsistent pedigree with genotype infor-
mation consistent. Assume that it is revealed that some application of pedigrees with
genotype information is tolerant to a specific number, say k, of critical genotypes in the
genotype information. We denote the problem of deciding whether there are k critical
genotypes in a CONS instance as kCRIT. Note that 0CRIT is just the CONS problem.

Theorem 3. In the presence of at least three alleles, kCRIT is NP-complete for every
k ≥ 0.

Consistency Checking with Two Alleles. According to [16, p. 274], single nucleotide
polymorphisms are utilized markers where two alleles exist. Consistency checking of
such data amounts to the problem 2CONS. A relevant question is whether 2CONS is
also NP-complete or whether it is polynomial time decidable. Three is often a “magic
number”, when it comes to the structural complexity of a computational problem. For
instance, 3COLORING and 3SAT are NP-complete, while 2COLORING and 2SAT
are polynomial time decidable (see, e.g., [13, pp. 185 and 198]). The same holds for
consistency checking of pedigrees in light of the following result:

Theorem 4. The problem 2CONS is decidable in polynomial time.

In light of Thms. 2 and 4, one can argue that 3CONS is indeed the simplest consistency
checking problem that is still intractable. In fact, restricting our attention to genes over
two alleles or to pedigrees without loops yields algorithmic problems that can be solved
in polynomial time.

Phase Known Consistency Checking. In this paper, we have considered consistency
checking in a phase unknown setting – that is, when it is not possible, by observing
a chromosome pair, to say which component is inherited paternally or maternally. We
now briefly turn our focus to the task of consistency checking where the phase of the
genotype information is known. The motivation for this type of investigation is that it is
sometimes possible to infer the identity of the parent from whom some allele originated
(and thereby also the origin of the other allele).
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Definition 5. A phase known genotype information for a pedigree P = 〈V, F,p,m〉
is a partial function Gp : V ↪→ A × A. The genotype information Gp is complete if
dom(Gp) = V .

A complete, phase known genotype information Gp for a pedigree P is consistent
with P if whenever v ∈ N and Gp(v) = (A,B), then A is one of the components of
Gp(p(v)), and B is one of the components of Gp(m(v)).

A phase known genotype information is consistent with P if it can be extended to a
complete and consistent phase known genotype information for P .

Let PCONS be the problem of checking the consistency of a pedigree with phase known
genotype information. We have that:

Theorem 5. In the presence of at least four alleles, PCONS is NP-complete.

5 Concluding Remarks

The results in this paper show that certain basic combinatorial problems in pedigree
analysis, viz. consistency checking and determining whether a genotyped pedigree has
some number of critical genotypes, are NP-complete, even if we focus on a single gene
with a fixed, small number of alleles. It follows that these problems are most likely
computationally intractable. It would be most interesting, however, to develop heuristic
algorithms for these problems, and evaluate their efficiency on real-life and/or randomly
generated data. In particular, we plan to develop and evaluate algorithms for consistency
checking based upon Binary Decision Diagrams [3] and various available SAT-solvers
and tautology checkers – see, e.g., the reference [5] for a survey. We believe that the
experimental evaluation of these algorithms would be of value, because consistency
checking routines, like genotype elimination ones, may be used as pre-processing steps
in algorithms for, e.g., linkage analysis and haplotype reconstruction [10].

From a theoretical viewpoint, we conjecture that the problem of computing the num-
ber of complete consistent extensions of a genotype information for a pedigree is #P -
complete [17] – i.e., it is as hard as counting the number of satisfying assignments of a
boolean formula. It would also be interesting to study the complexity of approximation
algorithms for computing the number of critical genotypes in a pedigree. We leave an
in-depth study of these problems as future work.
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Abstract. This paper is concerned with threee closely related problems,
viz., checking boolean equivalence of CNF formulas, deciding hull inclu-
sion (linear and integer) in certain polyhedral families and determining
the satisfiability of CNF formulas. With the exception of linear hull in-
clusion, these problems are provably “hard” in that there are instances
of these problems that are complete for classes, which are not known
to be tractable. In the case of satisfiability testing, we design a simple
randomized algorithm for the problem of checking whether a Q2CNF
formula has a model.

1 Introduction

This paper is concerned with three related problems, viz., boolean equivalence
checking of CNF formulas, checking hull inclusion in polyhedra specified by
systems of linear inequalities and satisfiability checking in CNF formulas. The
boolean equivalence checking problem is coNP-complete, even when problem
instances are restricted to be 3CNF formulas; likewise it is PSPACE-complete
in case of Q3CNF formulas (See Section §2.). It follows that the integer hull
inclusion problem is also coNP-complete, while the quantified integer hull in-
clusion problem is PSPACE-Hard. We show that for certain clausal families, the
boolean equivalence problem is tractable; the techniques developed therein are
suitably extended to show that integer hull inclusion is also tractable for certain
polyhedral classes. Finally, we develop a randomized algorithm for the Q2SAT
problem.

The primary contributions of this paper are as follows:

1. Demonstrating the existence of polynomial time algorithms for boolean
equivalence checking in certain clausal families.

2. Designing a polynomial time algorithm for the linear hull inclusion problem.
3. Providing polynomial time algorithms for the integer hull inclusion problem

and the quantified integer hull inclusion problem in case of 2SAT polyhedra.
4. Designing a randomized algorithm for the problem of checking whether a

Q2CNF formula has a boolean model.
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The rest of this paper is organized as follows: Section §2 formally describes
each of the problems considered in this paper. A detailed discussion on the moti-
vation for our work as well as related approaches in the literature is available in
the journal version of this paper. Algorithms for boolean equivalence are detailed
in Section §3, while Section §4 deals with the linear hull inclusion problem. The
integer hull inclusion problem and the quantified integer hull inclusion problem
are addressed in Section §5. In Section §6 we propose a randomized algorithm
for Q2SAT decidability. We conclude in Section §7, by summarizing our work in
this paper and identifying avenues for future research.

2 Statement of Problems

Let φ1 = C1∧C2∧ . . . Cm and φ2 = C ′
1∧C ′

2∧ . . . C ′
m′ denote 2 boolean formulas,

where the Cis and C ′
js are disjunctions on the literals {x1, x̄1, x2, x̄2, . . . , xn, x̄n}.

Definition 1. The boolean equivalence problem, Beq, is defined as follows:
Given 2 CNF formulas φ1 and φ2, is φ1 ⇔ φ2, i.e., does φ1 ⇒ φ2 and φ2 ⇒ φ1?

Lemma 1. Beq is coNP-complete.

Proof: Note that Beq is clearly in coNP, since a nondeterministic Turing machine
(NDTM) need merely guess an assignment that satisfies φ1 and falsifies φ2 or
vice versa, in order to show that φ1 �⇔ φ2.

Let A1 denote an algorithm that takes any pair of CNF formulas (φ1, φ2)
and decides whether φ1 ⇔ φ2. We can use A1 to decide whether an arbitrary
3CNF formula, φ, is satisfiable, as follows: Set φ1 to φ and φ2 to {(x1)(x̄1)};
now, provide (φ1, φ2) as the input to A1. If A1 outputs “yes”, we know that φ is
unsatisfiable; likewise, if it outputs “no”, we know that φ is satisfiable. In other
words, we have a Turing reduction1 from the 3CNF satisfiability problem, which
is NP-complete, to Beq, thereby establishing the coNP-hardness of Beq. �

Observe that the proof of Lemma (1) explicitly uses the hardness of 3CNF
satisfiability, in order to prove the hardness of the boolean equivalence checking
problem. So the following question arises naturally:
Problem: Is Beq solvable in polynomial time for clausal families, in which the
satisfiability problem can be decided in polynomial time?

We now discuss the boolean equivalence problem, in case of Quantified
Boolean Formulas (QBFs).
Let Φ1 = Q(x, y) φ(x, y) and Φ2 = Q(x, y) φ2(x, y) denote two QBFs, where,

1. φ1 and φ2 are CNF formulas on the set of variables
V = {x1, x2, . . . , xn, y1, y2, . . . , yn},

2. The xi variables are existentially quantified, while the yi variables are uni-
versally quantified;

1 In this paper Turing reduction means polynomial time Turing reduction.
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3. The quantifier specification, Q(x, y), which is common to Φ1 and Φ2, imposes
a linear ordering on the set V .

If a boolean formula φ, is simple, i.e., all the quantifiers are existential, a
solution to φ, is an assignment of {true, false} values to its variables, such that
φ evaluates to true. In case of a QBF Φ = Q(x, y) φ(x, y) though, the concept
of a solution satisfying Φ is a lot more involved and better understood through
the use of a 2-person game or 2 Non-deterministic machines working in parallel,
each basing its decision on the moves made by the other, thus far [6].

Definition 2. The quantified boolean equivalence problem, QBeq, is defined as:
Given two CNF formulas φ1(x, y) and φ2(x, y) and a quantifier specification
Q(x, y)), is Q(x, y) φ1 ⇔ Q(x) φ2?

Lemma 2. QBeq is PSPACE-complete, in general.

Proof: We first show that QBeq is in PSPACE. Observe that to show that Φ1 =
Q(x, y) φ1(x, y) �⇔ Φ2 = Q(x, y)φ2(x, y), it suffices to find one sequence of moves
made by the players X and Y, so that φ1 evaluates to true and φ2 evaluates
to false, or vice versa. Since there are at most 22·n distinct assignments to the
variables in V , all the assignments can be generated using a 2 ·n bit counter. For
each valid assignment (as per Q(x, y)), verifying that φ1 ⇔ φ2 can be carried
out in polynomial time and hence polynomial space. If it is the case that for all
valid assignments φ1 ⇔ φ2, it follows that Q(x, y) φ1 ⇔ Q(x) φ2.

It has been shown in [8] that the problem of checking whether a Q3CNF
formula has a model is PSPACE-complete.
Let Φ1 = Q(x, y) φ(x, y) denote an arbitrary Q3CNF formula and let Φ2 =
Q(x, y) {(x1)(x̄1)}. We can now argue, exactly as we did in case of Lemma
(1), that the problem of Q3CNF decidability can be Turing reduced to QBeq,
thereby establishing the PSPACE-hardness of QBeq. �

Problem: Is QBeq decidable in polynomial time, when Φ1 and Φ2 belong to a
clausal family for which QBF decidability is tractable?

We proceed to describe the linear hull, integer hull and quantified integer hull
inclusion problems. Assume that we are given two polytopes P1 : {A1 · �x ≤ �b1}
and P2 : {A2 · �x ≤ �b2}. The linear hull of P1 is defined as the set of its extreme
points, whereas its integer hull viz., SP1 , is defined as the set of its extreme
lattice points [4]; SP2 is defined similarly.

Definition 3. The linear hull inclusion problem is defined as follows: Given
polyhedra P1 and P2, is it the case that P1 ⊆ P2?

Definition 4. The lattice point equivalence problem, Leq is defined as follows:
Given polyhedra P1 and P2, is it the case that SP1 = SP2?

We shall focus our efforts on a related problem.
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Definition 5. The integer hull inclusion problem, IHI, is defined as follows:
Given polyhedra P1 and P2, is it the case that SP1 ⊆ SP2?

It is not hard to see that the IHI problem is closely related to the lattice point
equivalence problem, since SP1 = SP2 if and only if SP1 ⊆ SP2 and SP2 ⊆ SP1 .

Lemma 3. IHI is coNP-complete in general.

Proof: Set P1 to be the polyhedral system representing a 3SAT formula and P2
to {x1 ≥ 1, x1 ≤ 0}. The Lemma follows, from Lemma (1). �

The natural question is:
Problem: Are there classes of polytopes, for which IHI can be decided in poly-
nomial time?

Definition 6. Let x1, x2, . . . xn be a set of n variables with integral ranges. A
mathematical program of the form

Q1 x1 ∈ {a1 − b1} Q2 x2 ∈ {a2 − b2}, . . .
Qn xn ∈ {an − bn} A · �x ≤ �b (1)

where each Qi is either ∃ or ∀ is called a Quantified Integer Program (QIP).

It is easy to see that Quantified Integer Programs generalize QBFs and that
QIP decidability is PSPACE-Hard. Further, the solution to a QIP is a model (i.e.,
a vector of integer Skolem functions), in exactly the same way as for a QBF.

Definition 7. Given two Quantified Integer Programs M1 = Q(x) P1 and M2 =
Q(x) P2, the Quantified Integer Hull Inclusion problem (QIHI) is defined as
follows: Is every model �x for M1, also a model for M2?

It is easily seen that QIHI is PSPACE-Hard.
We now define some special classes of polytopes; the structure of these poly-

topes will be exploited to design polynomial time algorithms for one or more
type of hull inclusion.

Definition 8. A polyhedral system P1 : A · �x ≤ �b is said to be a 2SAT polytope,
if all entries of A belong to the set {0, 1,−1} and further, there are at most 2
non-zero entries per row of A.

Definition 9. A polyhedral system of the form P1 : {�x : A · �x ≥ �b}, where all
entries in A belong to {1, 0,−1} and at most one entry in each row is positive,
is called a Horn polytope.

Observe that 2SAT polytopes and Horn polytopes generalize 2CNF clauses
and HornCNF clauses respectively.

Definition 10. A matrix A is said to be totally unimodular (TUM), if every
square submatrix of A has determinant 0, 1 or −1.
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3 Boolean Equivalence

Harking back to Section §2, we are interested in checking if two given CNF
formulas, φ1 and φ2 are equivalent. Observe that the equivalence problem can
be broken into 2 subproblems, viz., φ1 ⇒ φ2 and φ2 ⇒ φ1.

Consider the subproblem φ1 ⇒ φ2. As before, we assume that φ1 = C1 ∧
C2 . . . ∧ Cm and φ2 = C ′

1 ∧ C ′
2 . . . C

′
m′ . Now,

φ1 ⇒ φ2

⇔ [φ1 ⇒ C ′
1 ∧ C ′

2 . . . C
′
m′ ]

⇔ ∧m′
i=1[φ1 ⇒ C ′

i]

Pick a particular clause C ′
i ∈ φ2. It is clear that [φ1 ⇒ C ′

i] if and only if [φ1∧ C̄ ′
i]

is unsatisfiable. Observe that C ′
i is a disjunction of literals, so that C̄ ′

i is a
conjunction of unit literal clauses; hence φ1 ∧ C̄ ′

i is in CNF form. Thus, in order
to check whether φi ⇒ φ2, we merely need to confirm that all the CNF formulas
in the set {φ1 ∧ C̄ ′

1, φ1 ∧ C̄ ′
2, . . . , φ1 ∧ ¯C ′

m′} are unsatisfiable. In other words, the
implication problem for CNF problems has been Turing reduced to the CNF
unsatisfiability problem.

It follows that

Theorem 1. The problem Beq is Turing reducible to the problem of checking
whether a CNF formula is unsatisfiable.

Proof: Given φ1 and φ2, first check whether φ1 ⇒ φ2 and then whether φ2 ⇒ φ1.
�

Corollary 1. Beq can be decided in polynomial time for the 2CNF and
HornCNF formulas.

Proof: There exist polynomial time algorithms to decide unsatisfiability in
2CNF and HornCNF formulas [6]. �

We proceed to address the QBeq problem. We first focus on the subproblem
Q(x, y) φ1(x, y)⇒ Q(x, y) φ2(x, y). Once again, observe that,

Q(x, y) φ1(x, y)⇒ Q(x, y) φ2(x, y)
⇔ [Q(x, y) φ1(x, y)⇒ Q(x, y) (C ′

1 ∧ C ′
2 . . . C

′
m′)]

⇔ ∧m′
i=1[Q(x, y) (φ1(x, y)⇒ Q(x, y) C ′

i)]

⇔ ∧m′
i=1[Q(x, y) (φ1(x, y)⇒ C ′

i)]

Pick a particular clause C ′
i ∈ φ2. It is clear that Q(x, y) (φ1(x, y) ⇒ C ′

i) if and
only ifQ(x, y) (φ1∧C̄ ′

i) is unsatisfiable (i.e., does not have a model.) Observe that
C ′

i is a disjunction of literals, so that C̄ ′
i is a conjunction of unit literal clauses;
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hence φ1∧C̄ ′
i is in CNF form. Thus, in order to check whether Q(x, y) (φi ⇒ φ2),

we merely need to confirm that all the QCNF formulas in the set {Q(x, y) (φ1 ∧
C̄ ′

1), Q(x, y) (φ1∧ C̄ ′
2), . . . , Q(x, y) (φ1∧ ¯C ′

m′)} are unsatisfiable. In other words,
the implication problem for QCNF problems has been Turing reduced to the
QCNF unsatisfiability problem.

From the above discussion it follows that

Theorem 2. QBeq is Turing reducible to the problem of checking whether a
QCNF formula has a model.

and hence,

Corollary 2. QBeq is decidable in polynomial time for Q2CNF and
QHornCNF formulas.

Proof: Both Q2CNF [1] and QHornCNF [3] can be checked for unsatisfiability
in polynomial time. �

4 Linear Hull Inclusion
In this section, we provide a polynomial time algorithm for the linear hull inclu-
sion problem, which is also referred to as the Polytope Inclusion problem.

Consider 2 polyhedra represented by:

A · �x ≤ �b, �x ≥ �0 (2)

where,

1. A, is an m× n rational matrix,
2. �b is a rational m−vector,
3. �x ∈ �n

+

and
C · �x ≤ �d, �x ≥ �0 (3)

where,

1. C, is an m′ × n rational matrix,
2. �d is a rational m′−vector,
3. �x ∈ �n

+

The goal is to decide the following predicate:

(∀�x, �x ≥ �0)(A · �x ≤ �b⇒ C · �x ≤ �d)? (4)

Algorithm (1) represents our strategy to decide Query (4).

4.1 Analysis

Let L(m,n) denote the running time of the fastest linear programming algorithm
on m constraints and n variables [10]. Since a total of m′ calls are made, the
running time of Algorithm (1) is O(m′ ·L), which is a polynomial function, since
L is a polynomial function of m and n.
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Algorithm 1 Algorithm for Polytope Inclusion.

Function Polytope-Include(A, �b,C, �d)

1: { Let the ith constraint of C · �x ≤ �d, �x ≥ �0 be represented as: �ci · �x ≤ di }.
2: for ( i = 1 to m′ ) do
3: if ( maxA·�x≤�b �ci · �x > di ) then
4: return( false )
5: end if
6: end for
7: return( true )

This is the non-negative orthant x1,x2,....xn ≥ 0

A.x ≤ b

c’.x’> d’

C.x ≤  d

Fig. 1. Polytope non-inclusion.

4.2 Correctness

Lemma 4. If Algorithm (1) returns true, then for all �x ∈ �n
+,

A · �x ≤ �b⇒ C · �x ≤ �d.

Proof: Let us assume the contrary, i.e. Algorithm (1) returns true, yet there
exists a point �x′, such that A · �x′ ≤ �b, but C · �x′ �≤ �d. We note that the notation
C · �x′ �≤ �d, is used to indicate the fact that at least one of the m′ constraints
defining the polyhedron C · �x ≤ �d is violated. Let �c′ · �x ≤ d′ denote a violated
constraint, i.e., �c′ · �x′ > d′. (See Figure (1).) Clearly, maxA.�x≤�b

�c′.�x is greater
than d′, contradicting the hypothesis that true was returned by the algorithm. �

Lemma 5. If Algorithm (1) returns false, there exists a point �x′ ∈ Rn
+ such

that A · �x′ ≤ �b and C · �x′ �≤ �d.

Proof: See Figure (1). Let maxA·�x≤�b
�c′ · �x exceed d′ at point �x′. Clearly �x′ is

the required offending point! �
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Corollary 3. Algorithm (1) decides if the polyhedron defined by
{�x ≥ �0 : A · �x ≤ �b} is contained in the polyhedron represented by:
{�x ≥ �0 : C · �x ≤ �d}

5 Integer Hull Inclusion

Let us restate the Integer Hull inclusion problem (IHI): Given polyhedra P1 :
A1 · �x ≤ �b1 and P2 : A2 · �x ≤ �b2, is it the case that the integer hull of P1, i.e.,
SP1 is contained within the integer hull of P2, i.e., SP2?

We note Algorithm (1) shows that the hull inclusion problem (Linear or
Integer) is Turing reducible to the problem of finding the maximum (linear or
integer) of a linear function over a polyhedron, and it therefore follows that the
IHI problem can be solved in polynomial time, when A1, A2 are TUM. In case
of both 2SAT polytopes and Horn polytopes, finding the integer maximum of
a linear function is NP-complete. Thus a different strategy is needed to decide
integer hull inclusion in case of these polytopes.

Assume that A1 has dimension m× n and that A2 has dimensions m′ × n;
we consider P1 as being constructed by taking the intersection of the m half-
spaces �a1

1 · �x ≤ b11,
�a2
1 · �x ≤ b21, . . . �am

1 · �x ≤ bm1 . Likewise, we consider P2 as
being constructed by the intersection of the m′ half-spaces, �a1

2 · �x ≤ b12, �a2
2 · �x ≤

b22, . . .
�am′
2 · �x ≤ bm

′
2 .

Observe that {∀�x, �x ∈ SP1 ⇒ �x ∈ SP2} if and only if for all lattice points �x,
�x ∈ P1 ⇒ �x ∈ P2. Now, for a lattice point �x

�x ∈ P1 ⇒ �x ∈ P2

⇔ �x ∈ P1 ⇒ �x ∈ ∧m′
j=1

�aj
2 · �x ≤ bj2,

⇔ ∧m′
j=1[�x ∈ P1 ⇒ �aj

2 · �x ≤ bj2]

Let us focus on proving �x ∈ P1 ⇒ �aj
2 · �x ≤ bj2, for a specific constraint of

P2, i.e., the jth half-space defining P2. As in the case of CNF equivalence, we

observe that for lattice points �x, �x ∈ P1 ⇒ �aj
2 · �x ≤ bj2, if and only if the set

P1∧ [ �aj
2 · �x �≤ bj2] is empty with respect to lattice points. Note that the constraint

�aj
2 · �x �≤ bj2 can be written as: l1 : �aj

2 · �x > bj2. However, l1 is an open constraint;
in general, the theory of polyhedral combinatorics does not apply to open sets.
In particular, no algorithm is known for the problem of checking whether the
intersection of open half-spaces is non-empty [2]. But we are only interested
in lattice point solutions. Consequently, a lattice point solution will satisfy the

constraint l1 if and only if it satisfies the constraint �aj
2 · �x ≥ (bj2 + 1), which is

a closed half-space. Thus, we can check whether for lattice points �x, �x ∈ P1 ⇒
�aj
2 · �x ≤ bj2 by checking whether the polyhedron P1 ∧ �aj

2 · �x ≥ (bj2 + 1) does not
have any lattice points. The operation of negating a constraint is referred to as
Constraint Complementation.
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From the above discussion, it follows that

Theorem 3. Given polyhedra P1 and P2, the IHI problem Turing reduces to
the problem of checking whether a polyhedron does not have any lattice point.

Corollary 4. The IHI problem can be solved in polynomial time for 2SAT poly-
topes.

Proof: 2SAT polytopes are defined by constraints that are closed under Con-
straint Complementation, insofar as lattice points are concerned. For instance,
the complement of the constraint x1−x2 ≤ 4 is x1−x2 > 4, which is equivalent
to x1 − x2 ≥ 5, and hence equivalent to −x1 + x2 ≤ −5, if only integral values
of x1 and x2 are permitted. In other words, the complement of a constraint in
a 2SAT polytope is also a 2SAT constraint. The presence (or absence) of lattice
points in a 2SAT algorithm can be checked, using the algorithm in [9], which
runs in O(n3) time; the corollary follows. �

Corollary 5. The Quantified Integer hull inclusion problem (QIHI) is decid-
able in polynomial time, when P1 and P2 are defined by 2SAT polytopes.

Proof: We combine the arguments used in establishing Theorem (2) and Corol-
lary (4). Once again, we note that constraints of 2SAT polytopes are closed
under Constraint Complementation and the emptiness of a QIP can be checked
in O(n3) time, if the constraint system is a 2SAT polytope (See [9].). �

6 A Randomized Algorithm for Q2SAT
In [5], an elegant polynomial time Monte Carlo algorithm was presented for the
2SAT problem, i.e., for the problem of checking whether a given 2CNF formula
has a satisfying assignment. They show that if the input 2CNF formula φ is
satisfiable, then their coin-flipping algorithm finds a satisfying assignment with
probability greater than one half. Their analysis is based on the following simple,
but useful observations:

1. If the current truth value assignment T , to the variables {x1, x2, . . . , xn} of
the 2CNF formula φ, does not satisfy φ, then exists a clause C ∈ φ, such
that both its literals are set to false under T . Let us say that φ is satisfiable
and there exists a unique assignment T̂ that satisfies φ. Let us also say that
the current assignment differs from T̂ , in exactly k variables. In any truth
assignment that satisfies φ, at least one of the 2 literals in C must be set
to true; thus in T̂ at least one of the literals of C is set to true. It follows
that if T is altered by picking one of the 2 literals in C (uniformly and at
random) and flipping its value, with probability at least 1

2 , the resulting
truth assignment T ′ is closer to T̂ than T is. In fact, with probability 1

2 , T ′

is one variable closer (than T ) to T̂ and with probability 1
2 , T ′ is one variable

farther away from a satisfying assignment than T is.
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2. Consequently, the strategy of choosing an unsatisfied clause and flipping
one of its literals at random, can be modeled as a one-dimensional random
walk with a reflecting and absorbing barrier. The random walk is over the
integers in the range [0..n], with 0 as the absorbing barrier (indicating that
the current assignment T disagrees with T̂ on 0 variables and n serving as
the reflecting barrier (indicating that T disagrees with T̂ on all n variables).

We now present a convergence analysis of the algorithm in [5]; our description
is modeled on the analysis in [7].

Lemma 6. Let X and Y denote two random variables; let E[X|Y ] denote that
function of the random variable Y , whose value at Y = y is E[X|Y = y]. Then,

E[X] = E[E[X|Y ]].

In other words,

E[X] =
∑

y

E[X|Y = y] · Pr[Y = y].

Proof: See pages 101− 103 of [7]. �

Essentially, Lemma (6) allows us to calculate the expectation of a random vari-
able X, by taking the weighted average of the conditional expectation of X,
given that Y = y, with the conditional expectation being weighted with the
probability that Y = y.

Assume that φ has a satisfying assignment T̂ . Let t(i) denote the expected
number of flips from the current assignment to get to T̂ , assuming that the
current assignment is exactly i values away from T̂ .

As argued above and using Lemma (6), it is not hard to see that:

t(0) = 0

t(i) =
1
2
· [(t(i− 1) + 1) + (t(i+ 1) + 1)]

t(n) = 1 + t(n− 1) (5)

Note that if we start off with T = T̂ , i.e., T agrees with T̂ , on all n variables,
then we do not need any flips. Likewise, if the initial assignment T , differs from T̂
on all n variables, then flipping any literal must increase the number of variables
on which T and T̂ agree. Finally, for i �= 0, 1, note that with probability one half,
the new assignment will differ from T̂ , in one more variable than T ; likewise, with
the same probability, it will differ from T̂ , in one less variable than T ; applying
Lemma (6), we get the desired weighted average.

In [6], it is shown that the System (5) can be solved to yield t(n) = n2, i.e.,
the expected number of literal flips is n2.

From classical probability, we know that

Theorem 4. Let X be a random variable that assumes non-negative values only.
For any a > 0,

Pr[X ≥ a · E[X]] ≤ 1
a

(6)
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Theorem (4) is known as Markov’s inequality ([7]) and it can be applied to
our flipping algorithm to conclude that if there is a satisfying assignment, the
probability that this assignment is not discovered after 2 · n2 literal flips times
is less than 1

2 .

6.1 A Coin-Flipping Strategy for Q2SAT

There are 2 preconditions that need to be met, for the above analysis to hold
for a randomized algorithm for satisfiability testing:

1. Y1 : For a literal to be flipped, it must have exactly 2 assignable values, at
the time at which it is assigned.

2. Y2 : Given that the current assignment (model) differs from the satisfying
assignment (model) in exactly i variables, flipping a literal should result in
exactly one of two events, viz.,
(a) The resulting assignment differs from the satisfying assignment in (i−1)

variables,
(b) The resulting assignment differs from the satisfying assignment in (i+1)

variables,
Event (2a) should have probability at least one half, while event (2b) should
have probability at most one half.

Note that Y1 is trivially met by simple CNF formulas, since every variable must
be either true or false, in any satisfying assignment. In case of QBFs though, a
solution is a vector of Skolemized boolean functions and hence Y1 does not hold,
in general. Condition Y2 cannot be met if the clause that is not satisfied by the
current assignment has more than 2 literals; indeed, both [6] and [7] provide an
instance of a HornCNF formula that takes exponential time to converge, under
randomized literal flipping.

We now show that the above 2 conditions can be met in case of Q2CNF
decidability. Let Φ = Q(x, y) φ(x, y) denote a Q2CNF formula, with the existen-
tially quantified variables being drawn from the set V1 = {x1, x2, . . . , xn} and the
universally quantified variables being drawn from the set V2 = {y1, y2, . . . , yn}.
Q(x, y) imposes a linear ordering on the set V1 ∪V2; each clause C ∈ φ(x, y) has
exactly 2 literals.

We first establish that Y1 is met. Observe that

1. Satisfiable Q2CNF formulas have simple models, i.e., models in which every
existentially quantified variable xj , is assigned true, false, yi or ȳi, where
yi is a universally quantified variable that preceded xj in Q(x, y); indeed
the linear time algorithm in [1], which checks whether a Q2CNF formula Φ
has a model, produces a simple model, if the Q2SAT instance is satisfiable.
Further, note that that verifying a simple model for a Q2CNF formula is a
linear time procedure.

2. Now process the clauses in φ sequentially. Let C be an arbitrary clause in
φ(x, y). Note that
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(a) If C is of the form (yi, yj), i.e., both its literals universally quantified,
then Φ does not have a model.

(b) If C is of the form (xj , yk), and xj occurs after yk in Q(x, y), then xj = 1
or ȳk in any model that satisfies Φ. Proceed to the next clause.
However, if yk succeeds xj in Q(x, y), or if xj is also paired with yp, p �=
k, in a clause distinct from C, then xj must be true in any model for Φ.
(If the existential literal is x̄j , instead of xj , replace true with false.)
Delete xj from Q(x, y) and all clauses containing xj . Likewise, replace
all clauses of the form (x̄j , u), with the unit clause (u). If u is universally
quantified, then Φ does not have a model; if it is existentially quantified,
it must be set to true in any model and the process of altering clauses
and Q(x, y) is repeated.

(c) If C is of the form (xi, xj), the following cases arise:
i. Both xi and xj have been assigned in Step (2b); in this case, there

is nothing to be done;
ii. xi is not assigned, but xj is assigned to true. Delete this clause from

φ(x, y), since it has no bearing on the existence of a model.
iii. xi is not assigned, but xj is assigned to false. Set xi to true; delete

xi from Q(x, y) and reprocess all clauses, as in the latter half of Step
(2b).

iv. Neither xi nor xj has been assigned. Proceed to the next clause.

When Step (2 :) terminates, we will be left with a collection of clauses (say
φeh) of the form (xi, xk), i.e., both literals will be existential. φeh is called the
existential hull of Φ; in any model for Φ, the variables in φeh are assigned either
true or false! This assertion follows immediately from the proof of correctness
for Q2CNF decidability in [1]. We have thus established that condition Y1 is
met by Q2CNF formulas.

We proceed to show that condition Y2 is also met. Assume that Φ has a
model T̂ . Let the current assignment T , differ from T̂ , in exactly i variables
and let C be a clause, that is not satisfied by T . First observe that under our
assignment scheme, C cannot be of the form (xi, yj); hence C must be of the
form (xi, xj). Since C is falsified, at least one of the 2 variables is set to a different
value in T̂ . Further, there are only 2 possible values for each of these variables,
as per the above discussion. It therefore follows that picking one of the variables
at random and flipping it, moves T closer to T̂ with probability at least one half.

Algorithm (2) is a formal description of our strategy:
Using an analysis, that is almost identical to the one for 2SAT formulas, we

can conclude that

Theorem 5. Algorithm (2) is a randomized algorithm for the Q2SAT problem.
Given a satisfiable Q2CNF formula, the probability that it finds a model in at
most 2 · n2 literal flips is at least one half.

7 Conclusion
In this paper, we proved a number of interesting results, regarding clausal equiv-
alence and hull inclusion. In particular, we showed that the clausal equivalence
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Algorithm 2 Randomized algorithm for the Q2SAT problem.

Function Q2SAT-Solve(Φ = Q(x, y) φ(x, y))
1: Process each clause in φ(x, y) till every existentially quantified variable is set to

one of: (a)true, (b)false, (c)true|ȳj , (d) true|false.
2: {There are a few more symmetric categories, but we ignore them to simplify the

exposition. The crucial observation is that each variable has at most 2 valid values.}
3: Let T be the initial truth assignment to the variables {x1, x2, . . . , xn}.
4: if (T is a model for Φ) then
5: return(“Φ is satisfiable”)
6: end if
7: while (T is not a model) do
8: Pick a clause C that is falsified in φ by T .
9: Choose a literal at random and flip its value in T , so that C is satisfied.

10: if (T is now a model for φ) then
11: return(“Φ is satisfiable”)
12: end if
13: end while
14: return(“Φ is probably unsatisfiable”)

problem could be solved in polynomial time, if the formulas involved had the
forms 2CNF, Q2CNF, Horn or QHorn. We also showed that the integer hull
inclusion problem (and the Quantified Integer Hull inclusion problem) could be
solved in polynomial time, in case of 2SAT polytopes, whereas the linear hull in-
clusion problem is polynomial time Turing reducible to the Linear Programming
problem.

We are interested in the following 2 open problems have arisen, as a conse-
quence of our work in this paper:

1. Is there a simple approach for the problem of checking feasibility in HornSAT
polytopes, i.e., a method that does not use Linear Programming?

2. Can the Random walk strategy discussed in Section §6 for Q2SAT feasibility
can be extended to boolean equivalence problems?
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Abstract. We investigate logical semantics of the first order ς-calculus. An as-
signment system of predicates to first order typed terms of the OB1 calculus is
introduced. We define retraction models for that calculus and an interpretation
of terms, types and predicates into such models. The assignment system is then
proved to be sound and complete w.r.t. retraction models.

1 Introduction

The essence of logical semantics of a calculus is a system of predicates and a relation of
satisfiability, such that the meaning of a term in the calculus can be identified with the
set of predicates it satisfies. Examples are intersection types for the type-free λ-calculus
[7, 6], pre-locales for typed λ-calculi and domain logic [4], Hennessy-Milner logic for
CCS terms [15, 3]. The present work is aimed at defining a logical semantics suitable
for typed object calculi.

In [12] it is shown that certain characterizations of reduction properties of pure λ-
terms via intersection types (for which see e.g. [10, 16, 6, 11]) are smoothly inherited
by the type-free ς-calculus, provided we extend the intersection type discipline to a λ-
calculus with records, and interpret ς-terms using the self-application interpretation of
[14]. Nonetheless the focus of research in the area of object calculi is on typed systems
and typed equational theories. To make our approach applicable to the latter case we
have to put on a clear footing the idea of an assignment system of predicates to typed
objects: a first investigation is [13].

For monomorphic typed calculi predicates differ from types in that each term has ex-
actly one type, but satisfies (often infinitely) many predicates. This difference is blurred
in the polymorphic case (indeed, in the literature, Curry types, intersection types and
ML types are considered as forms of polymorphism), but it is still true that, while pred-
icates give partial information about the behavior of single terms, types are concerned
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with general properties of the system, like strong normalization for typed λ-calculi, or
error-freeness of the reducts of typed terms in object calculi.

The solution we propose is to consider types as languages of predicates, or even
better as theories. The denotation of a term is then a set of predicates closed under
conjunction and logical implication (technically a filter), but when such a denotation
is relativized to a type, which is the counterpart of typing the term, its denotation is
restricted to the language associated with that type. This suggests a natural interpreta-
tion of features of polymorphic typed systems, as it is the case of subtyping: A <: B
if the theory associated to B is “included” into the theory of A, which means that its
discriminating power is at most that of A (for a topological interpretation of the same
idea, and its relation to realizability models and PER inclusion see [13]).

In the present paper we investigate logical semantics of the first order ς-calculus of
[1], called there system OB1. This is the core of the object calculi studied in that book,
even if it is poorly expressive and does not include any form of subtyping. Still it is an
interesting case study, as the recursive nature of types is challenging to model (it is the
most complex and contrived part of the semantic constructions in [2, 1, 8]). It comes
out that the filter model of the typed calculus has the structure of a retraction model,
in the sense of [18], where retractions map filters of predicates to their intersection
with the language associated to the given type. This leads to a completeness theorem
of the assignment system with respect to retraction models of the calculus. We stress
that languages, which define the retractions over the filter model, are inductively defined
sets of predicates: a concept of lower logical complexity, and much easier to understand,
than fixed-points of contractive operators over ideals or over complete uniform PERs.

2 Assignment for the Typed ς-Calculus

In this section we introduce the calculus, its types and typing rules, the syntax of the
predicates and an assignment system, to syntactically derive judgements associating
predicates to typed terms under the assumption of similar judgements about a finite set
of typed variables. Predicates are transparently intersection types for a λ-calculus with
records, and come from [12]. The essential difference is that the set of predicates is
stratified into languages, in such a way that whenever a predicate can be deduced for a
term aA, it belongs to the language LA associated with A.

2.1 The Calculus

Definition 1 (Untyped terms). Let L = {�i | i∈N} be a denumerable set of labels.
The terms of the first order ς-calculus are defined through the following grammar.

a, b ::= x | [�i = ς(xi)bii∈I ] | a.� | a.�↼↽ς(x)b

In the expression ς(xA)b, the operator ς(·) binds x in b; free and bound variables are
defined as usual. Terms are considered equal modulo α-conversion, i.e. up to renaming
of bound variables.
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Definition 2 (Reduction). On terms, the reduction relation is defined as the contextual,
transitive closure of the following reduction rules:

[�i = ς(xi)bii∈I ].�j → bj{xj← [�i = ς(xi)bii∈I ]}
[�i = ς(xi)bii∈I ].�j↼↽ς(x)b → [�i = ς(xi)bii∈I\j , �j = ς(x)b]

where j ∈ I and a{x← b} is the substitution of x by b in a, avoiding variable clashes.

The reduction relation is confluent (see [1] Ch. 6). Terms do not necessarily have a
normal form: e.g. Ω ≡ [� = ς(x)x.�].� is such that Ω → Ω.

2.2 The Typed System

The following is a presentation of the system OB1 of [1], with minor changes consisting
in writing aA instead of a:A, and omitting rules for deriving well formed types and
contexts: first order types are indeed defined by a simple inductive definition.

Definition 3 (Types). Let K be a set of type constants, ranged over by K . The set of
types is defined by the following grammar:

A,B ::= K | [�i : Bi
i∈I ]

where I is a finite set of indexes.

In the present setting, a context for a type judgement is just a finite set E of type
decorated variables, of the shape xA.

Definition 4. The type judgements are defined by the following natural deduction sys-
tem (where A = [�k : Bk

k∈I ]):

(Var) (xA∈E)
E � xA (Val Object)

E, xA
i � bBi

i (∀i∈I)
E � [�i = ς(xA

i )bBi

i
i∈I ]A

(Val Select)
E � aA

(j∈I)
E � (aA.�j)Bj

(Val Update)
E � aA E, xA � bBj

(j∈I)
E � (aA.�j↼↽ς(xA)bBj )A

Having adopted the notation xA for a term variable x of type A, the context E
becomes redundant. We keep it, however, since this turns out to be useful when intro-
ducing bases in the subsequent section.

Reduction among typed terms is defined by adapting Definition 2 in the obvious
way. The main result about this system (and all its extensions in [1]) is that types are
preserved under reduction: since a term of the form [�i = ς(xA)b].�j or of the form
[�i = ς(xA)b].�j↼↽ς(yA)c has no type if i �= j, we may conclude that the reduction of
typed terms will never get stuck into not well formed terms (see [1] Ch. 7). Typed terms
do not necessarily normalize, however: � ΩA ≡ ([� = ς(x[�:A])x.�].�)A is derivable in
the empty context for all types A.
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2.3 A Predicate System

Much in the style of [7], in this section we will present a notion of intersection types,
called predicates here; using these, we will define a notion of predicate assignment,
which will consists basically of associating a predicate to a typed term.

Definition 5 (Predicates). The set L of predicates is inductively defined by:

σ, τ ::= κ | ω | (σ→τ) | (σ∧τ) | 〈�i : σi
i∈I〉

where κ ranges over a countable set of atoms. On predicates a preorder≤ is inductively
defined by:

σ ≤ σ
σ ≤ ω
ω ≤ ω→ω

(σ→τ)∧(σ→ρ) ≤ σ→(τ∧ρ)
ρ≤σ ∧ τ≤µ ⇒ σ→τ≤ρ→µ

σ∧τ ≤ σ, σ∧τ≤ τ
σ≤ τ ∧ σ≤ ρ ⇒ σ≤ τ∧ρ

σ≤ τ ⇒ 〈� : σ〉≤ 〈� : τ〉

〈�i : σi
i∈I〉∧〈�j : τj j∈J 〉 ≤ 〈�k : ρk

(k∈I ∪J)〉, where



ρk = σk∧τk, if k∈I∩J,
ρk = σk, if k∈I\J,
ρk = τk, if k∈J\I

〈�i : σi
i∈I〉 ≤ 〈�j : σj

j∈J 〉, if J ⊆ I
σ≤ τ≤ρ ⇒ σ≤ ρ

Finally σ = τ ⇐⇒ σ≤ τ≤σ.

Atomic predicates κ are intended to describe elements of atomic type in the domain
of interpretation; σ→τ is the property of functions sending elements satisfying σ into
elements satisfying τ ; 〈�i : σi

i∈I〉 is the property of records having values that satisfy
σi associated with the field �i for all i ∈ I . Predicates ω and σ∧τ mean truth and
conjunction respectively; σ ≤ τ reads as ‘σ implies τ ’.

In the following we consider as ‘types’ also arrow types A→B: functional types
are indeed implicit in the interpretation of objects (especially of methods) but do not
appear in the syntax of the calculus OB1 (but they do in the calculi in [1] enriched
with lambda abstraction and functional application). Here their use allows for more
transparent notations.

Definition 6 (Languages). The set of all predicates L is stratified into a family {LA}A
of sets of predicates called languages, indexed over types such that:

1. any κ belongs exactly to one LK , for some K∈K;
2. any LA is the least set (including atoms if A ≡ K) such that:

ω∈LA

σ∈LA τ ∈LA

σ∧τ ∈LA

σ∈LA τ ∈LB

σ→τ ∈LA→B

σ∈LA→Bj
(A = [�i :Bi

i∈I ], j∈I)〈�j : σ〉∈LA

σ∈LA
(σ≤ τ)

τ ∈LA
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A statement is an expression of the shape aA :σ, where a is a term,A is a type, such
that there exists E with E � aA, and σ is a predicate, and a is called the subject of this
statement.

A basis Γ is a finite set of statements with only (distinct) term variables as subject,
of which the predicate is not ω. We say that Γ preserves languages if σ∈LA whenever
xA :σ∈Γ .

IfE is a context and Γ a basis, we say thatE fits into Γ , written E �Γ , if xA :σ∈Γ
implies xA∈E. We say that two bases Γ0, Γ1 are compatible if there exists a contextE
including all variables occurring in both Γ0 and Γ1, fitting into both of them.

Definition 7 (Predicate Assignment). Let A ≡ [�i : Bi
i∈I ] and B,Bi be any type,

then:

(Var) (xB :σ∈Γ )
Γ � xB :σ

(Type Object)
Γ, xA

i :σi � bBi

i :τi
(∀i∈I ∧ J ⊆ I)

Γ � [�i = ς(xA
i )bii∈I ]A :〈�j :σj→τjj∈J 〉

(Val Select)
Γ � aA :〈�j :σj→τj j∈J〉 Γ � aA :σk

(k∈J)
Γ � a.�Bk

k :τk

(Val Update)
Γ � aA :〈�j :σj

j∈J 〉 Γ, yA :σ � bBk :τ
(k∈J)

Γ � (a.�k↼↽ς(yA)b)A :〈�j :σj
j∈J\k, �k:σ→τ〉

plus the following ‘logical’ rules:

(ω)
E � aB

(E � Γ )
Γ � aB :ω

(∧I)
Γ � aB :σ Γ � aB :τ

Γ � aB :σ∧τ
(≤)

Γ � aB :σ σ ≤ τ
Γ � aB :τ

As a straightforward induction shows, if all bases in the derivation of Γ � aA :σ
preserve languages, then σ∈LA.

We remark that in rule (Type Object) it is not required that the σi are equal, not even
pairwise consistent (but for the fact that they belong to the same language LA). This
should be compared to rule (Val Update), which allows for replacing the subexpression
σk in the predicate 〈�j :σj

j∈J〉 of the first premise by the completely unrelated predicate
σ→τ in the conclusion. This is sound, however, because of rule (Val Select), which
checks in the crucial place that the antecedent of the arrow holds of aA, to which the
self variable xA

k is bound.
These features, which surely sound odd to readers familiar with the literature on

object calculi, are indeed essential. Suppose in fact that

A ≡ [�0 : Int, �1 : Int] and a ≡ [�0 = ς(xA)1, �1 = ς(xA)x.�0]

(using a constant 1 of type Int), so that � aA. Then

xA:ω � 1 : Odd

xA:〈�0 : ω→Odd〉 � xA : 〈�0 : ω→Odd〉 xA:〈�0 : ω→Odd〉 � xA : ω

xA:〈�0 : ω→Odd〉 � (x.�0)
Int : Odd

� aA:〈�0 : ω→Odd, �1 : 〈�0 : ω→Odd〉→Odd〉
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where �0 is a field and �1 is the method get�0. By rule (Val Update) one might derive
the seemingly incorrect:

� aA : 〈�0 : ω→Odd, �1 : 〈�0 : ω→Odd〉→Odd〉 yA:ω � 2 : Even

� (a.�0↼↽ς(yA)2)A : 〈�0 : ω→Even, �1 : 〈�0 : ω→Odd〉→Odd〉
This makes sense, however, since it simply tells that if the value at �0 is an odd

integer, then the method �1 will return an odd integer; it also tells that this is vacuously
true of the actual object (a.�0↼↽ς(yA)2)A, since it has an even integer at �0. More-
over it is harmless: (a.�0↼↽ς(yA)2).�1

∗→ 2 and we clearly assume that �� 2 : Odd;
nonetheless �� (a.�0↼↽ς(yA)2).�1 : Odd, because rule (Val Select) does not apply since
�� (a.�0↼↽ς(yA)2) : 〈�0 : ω→Odd〉.

On the other hand the following odd-looking assignment is legal as well, this time
by rule (Type Object):

xA:ω � 1 : Odd

xA:〈�0 : ω→Even〉 � xA : 〈�0 : ω→Even〉xA:〈�0 : ω→Even〉 � xA : ω

xA:〈�0 : ω→Even〉 � (x.�0)
Int : Even

� aA:〈�0 : ω→Odd, �1 : 〈�0 : ω→Even〉→Even〉
In the last case, however, the apparently odd predicate we deduce, is of use to con-

clude by rule (Val Update):

� aA : 〈�0 : ω→Odd, �1 : 〈�0 : ω→Even〉→Even〉 yA : ω � 2 : Even

� (a.�0↼↽ς(yA)2)A : 〈�0 : ω→Even, �1 : 〈�0 : ω→Even〉→Even〉
which is what we expected.

The next lemma will be of use in the last section. Let Γ ≤ Γ ′ mean that for all
xA :τ ∈Γ ′ there exists σ ≤ τ such that xA :σ∈Γ .

Lemma 8. 1. Γ ≤ Γ ′ and Γ ′ � aA :σ implies Γ � aA :σ.
2. If Γ0, Γ1 are compatible bases, then there exists the basis Γ0∧Γ1 which is the

greatest one such that Γ0∧Γ1 ≤ Γi for i = 0, 1.

Proof. The first part is proved by induction over the derivation of Γ ′ � aA :σ, using
(≤). For the second, let Γ0∧Γ1 be the basis including exactly the statements xA :σ
such that either xA :σ is in one of the two basis and not in the other, or xA :σ0∈Γ0,
xA :σ1∈Γ1 and σ ≡ σ0∧σ1.

We end this section by stating, without proof, the main theorem about syntactical
properties of the assignment system. It establishes that predicates are invariant under
conversion.

Theorem 9 (Subject reduction and expansion).

1. If Γ � aA :ρ, and a→ a′, then Γ � a′A :ρ.
2. If Γ � aA :ρ and a′ → a where E � a′A for E � Γ , then Γ � a′A :ρ.
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3 Models and Logical Semantics

There is no definite agreement about what should be considered as a model of object
calculi. Even [1] does not give a general definition of this concept. Rather it is com-
monly held, especially after Cardelli’s seminal work on records calculi, that it should
be a model of the λ-calculus including operators to build, access and modify finite
records, often seen as finite functions over a set of labels.

Definition 10. We call a structure D = 〈D,L, emp, lcond, sel〉 an untyped ς-model
if:

– D is a λ-model;
– L = {�i | i∈N } is a denumerable set of labels;
– emp∈D;
– sel : D × L→ D;
– lcond : D × L×D → D

such that (writing lcond and sel in a Curryfied form):

1. sel(lcond x �i y)�i = y,
2. i �= j ⇒ sel(lcondx �i y)�j = selx �j ,
3. i �= j ⇒ lcond(lcond x �i y) �j z = lcond(lcond x �j z) �i y.

emp is the empty record; sel is a selection operator, depending on its second argument
for the field to be selected on its first argument; lcond is a conditional update operator,
setting to the value of its third argument the field of its first argument at the label which
is the second argument. Note that, due to the untyped nature of the structure, nothing
prevents from field selection or field update of some non record element of the domain.

An untyped ς-model is a particular case of what is called a λ, record-combinatory
structure in [17] ch. 10. Differences are that here D is a λ-model, instead of a par-
tial combinatory algebra, and the third axiom about lcond which is not in the original
definition. The present choices allow for a simpler treatment and are satisfied by the
untyped structure in [1] ch. 14, which is the only denotational model of the ς-calculus
in the literature.

Since any D is a λ-model, we shall freely use abstraction notation. Moreover, we
use the abbreviations:

〈·〉 = emp
〈�i = di

i∈{1,...,n}〉 = lcond(. . . (lcond emp �1 d1) . . .)�n dn

d ·�i = sel d �i
d ·�i := e = lcond d �i e

A structure of this form can be constructed by solving the domain equation:

D = At + [L→ D ] + [D → D ] (1)

where At is a domain interpreting atomic (namely ground) types. This equation appears
in [9, 5], and is essentially the same as in [1], where it is used to build a model of the
(second order) typed ς-calculus.
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Definition 11. To each predicate σ we associate a subset [[σ]]Dη ⊆ D (or simply [[σ]]η
when D is clear from the context), where η sends each predicate atom κ to some subset
of D, and η(κ) ⊆ [[K]] when κ∈LK for some constant type K:

1. [[ω]]η = D,
2. [[κ]]η = η(κ),
3. [[σ∧τ ]]η = [[σ]]η ∩ [[τ ]]η ,
4. [[σ→τ ]]η = {d∈D | ∀e∈ [[σ]]η. de∈ [[τ ]]η},
5. [[〈�i : σi

i∈I〉]]η = {d∈D | ∀i∈I. d · �i∈ [[σi]]η}.

The latter definition formalizes the intended meaning of predicates by defining their ex-
tensions; the subsequent proposition states that implication corresponds to set theoretic
inclusion of predicate denotations as expected.

Proposition 1. If σ ≤ τ then, for any η, [[σ]]η ⊆ [[τ ]]η .

Definition 12. A type interpretation over D is a mapping associating with each type A
a subset [[A]]D ⊆ D. It is said to be consistent with the predicate interpretation [[ · ]]η if
σ∈LA implies [[σ]]η ⊆ [[A]].

Previous definitions provide the essentials to give meaning to aA :σ and to judg-
ments Γ � aA :σ.

Definition 13. Suppose that D is an untyped ς-model. Let the type interpretation and
the predicate interpretation be consistent, E be a context, Γ a basis and ξ a term envi-
ronment:

1. ξ |= E if ξ(xA)∈ [[A]]D whenever xA∈E;

2. E |= aA if for all ξ s.t. ξ |= E, [[aA]]Dξ ∈ [[A]]D;

3. ξ |= Γ if xA :σ∈Γ implies ξ(xA)∈ [[σ]]η ⊆ [[A]]D;

4. Γ |= aA :σ if for all ξ s.t. ξ |= Γ , [[aA]]Dξ ∈ [[σ]]η ⊆ [[A]]D.

3.1 A Model of Retractions

Let D be any domain solving the equation (1). Following [18], a retraction over D is a
continuous function ρ : D → D such that ρ2 = ρ ◦ ρ = ρ. Types can be interpreted by
means of retractions by setting [[A]] = {d∈D | ρA(d) = d}, which is the same as the
range of ρA. For basic types one may choose ρK(d) = d if d∈At , else ⊥.

Proposition 2. LetA ≡ [�i : Bi
i∈I ]: if ρBi is a retraction for all i∈I , then there exists

a retraction ρA such that

ρA(d) = 〈�i = ρA→Bi(d · �i) i∈I〉,

where ρA→B(d) = λx.ρB(d(ρA(x))) (indeed ρA→B is a retraction, if ρA and ρB are).
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Proof. The function (in Curryfied form)

ΥAfd = 〈�i = λx.ρBi((d · �i)(fx)) i∈I〉

is continuous, hence it has a fixed-point ρA = Fix(ΥA) =
⊔

n Υ
(n)
A , where Υ (0) =

λx.⊥, Υ (n+1)
A = ΥA(Υ (n)

A ). By its definition we have

ρA(d) = 〈�i = λx.ρBi ((d · �i)(ρA(x))) i∈I〉 = 〈�i = ρA→Bi(d · �i) i∈I〉.
Observe that this is indeed a retraction:

ρ2
A(d) =

⊔
n

Υ
(n)
A (

⊔
m

Υ
(m)
A (d)) =

⊔
n,m

Υ
(n)
A (Υ (m)

A (d)) =
⊔

n+m

Υ
(n+m)
A (d) = ρA(d).

We say that (D, {ρA}A) is a retraction model ifD is an untyped ς-model and {ρA}A
is a family of retractions such that ρA(d) = 〈�i = ρA→Bi(d · �i) i∈I〉, where A ≡ [�i :
Bi

i∈I ].

Definition 14. Let (D, {ρA}A) be a retraction model. The typed interpretation [[aA]]Dξ ,
where ξ is an environment associating with each term variable an element of D, is
inductively defined by:

[[xA]]ξ = ξ(x)
[[[�i = ς(xA

i )bBi

i
i∈I ]]]ξ = 〈�i = λd.[[bBi

i ]]ξ[xi:=ρA(d)]
i∈I〉

[[(aA.�i)Bi ]]ξ = ([[aA]]ξ·�i)[[aA]]ξ
[[aA.�i↼↽ς(xA)bBi ]]ξ = [[aA]]ξ·�i := λd.[[bBi ]]ξ[x:=ρA(d)].

Theorem 15 (Soundness of the type system w.r.t. retraction models).
If E � aA then E |= aA.

Proof. By induction over the derivation of E � aA we prove that ρA([[aA]]ξ) = [[aA]]ξ
for any environment ξ such that ξ |= E.

Lemma 16. Suppose that the image of η(κ) under ρK is included into η(κ) when
κ∈LK . If σ∈LA and d∈ [[σ]]η then ρA(d)∈ [[σ]]η.

Proof. By induction on σ. Cases ω and κ are trivial, by definition and hypothesis re-
spectively. Case σ∧τ ∈LA is immediate by induction, since then σ, τ ∈LA.

Case σ→τ ∈LA→B: then σ∈LA and τ ∈LB; if d∈ [[σ→τ ]]η then:

e∈ [[σ]]η ⇒ ρA(e)∈ [[σ]]η by ind.
⇒ d(ρA(e))∈ [[τ ]]η by hyp. on d
⇒ ρB(d(ρA(e)))∈ [[τ ]]η by ind.

and we conclude since ρA→B(d) = λx.ρB(d(ρA(x))).
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Case 〈�j : σj
j∈J 〉∈LA, where A ≡ [�i : Bi

j∈J ] and J ⊆ I: then σj∈LA→Bj for
all j. This implies that, if d∈ [[〈�j : σj

j∈J 〉]]η then d · �j∈ [[σj ]]η and by induction
ρA→Bj (d)∈ [[σj ]]η: the thesis follows since ρA(d) = 〈�i = ρA→Bi(d) i∈I〉.

Theorem 17 (Soundness of the predicate system w.r.t. retraction models).
If Γ � aA :σ then Γ |= aA :σ.

Proof. By induction on the derivation of Γ � aA :σ. We show only the interesting cases.

The derivation ends with:

(Type Object)
Γ, xA

i :σi � bBi

i :τi
(∀i∈I ∧ J ⊆ I)

Γ � [�i = ς(xA
i )bii∈I ]A :〈�j :σj→τjj∈J 〉

By definition ([[aA]]ξ · �j)d = [[bBj

j ]]ξ[xj:=ρA(d)], where j∈J ⊆ I: if d∈ [[σj ]]η
then, by Lemma 16, ρA(d)∈ [[σj ]]η, since σj∈LA; therefore ξ[xj := ρA(d)] |=
Γ, xA

j :σj and, consequently, by induction, [[bBj

j ]]ξ[xj :=ρA(d)]∈ [[τj ]]η. This implies

that [[aA]]ξ∈ [[〈�j :σj→τjj∈J 〉]]η.

The derivation ends with:

(Val Select)
Γ � aA :〈�j :σj→τjj∈J 〉 Γ � aA :σk

(k∈J)
Γ � (a.�k)Bk :τk

The thesis follows immediately by induction:
[[aA]]ξ∈ [[〈�j :σj→τjj∈J 〉]]η and [[aA]]ξ∈ [[σk]]η and by the definition [[(a.�k)Bk ]]ξ =
([[aA]]ξ·�k)[[aA]]ξ.

The derivation ends with:

(Val Update)
Γ � aA :〈�j:σj

j∈J 〉 Γ, yA :σ � bBk :τ
(k∈J)

Γ � (a.�k↼↽ς(yA)b)A :〈�j :σj→τkj∈J\k, �k:σ→τ〉
Define cA ≡ (aA.�k↼↽ς(yA)bBk)A, and recall that

[[cA]]ξ = [[aA]]ξ·�k := λd.[[bBk ]]ξ[y:=ρA(d)].

Let d∈ [[σj ]]η for some j∈J : if j �= k then ([[cA]]ξ·�j)d = ([[aA]]ξ·�j)d∈ [[τj ]]η by
induction. Otherwise j = k and ([[cA]]ξ·�j)d = [[bBk ]]ξ[y:=ρA(d)]∈ [[τk]]η, again by
induction.

3.2 The Filter Model

Definition 18. A filter of predicates is a subset F ⊆ L of predicates such that:

1. ω∈F ,
2. if σ, τ ∈F then σ∧τ ∈ F ,
3. if σ∈F and σ ≤ τ then τ ∈F .

Let F be the set of all filters of predicates.

A filter is principal if it is of the form {τ | σ ≤ τ}, which we denote by ↑σ (the
upset of σ). As is known from the literature (see e.g. [11]), F is a λ-model, where
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continuous functions, that is mappings f : F → F such that f(F ) =
⋃

σ∈F f(↑σ),
are representable by the filters

Ψ(f) = {σ→τ | τ ∈f(↑σ)}
and functional application is defined by:

FG = {τ | ∃σ∈G . σ→τ ∈F}.
Moreover,F is a solution of the domain equation (1), hence it is a model of the type-free
ς-calculus. In the next proposition we spell out the details of the definitions of record
selection and record update operations over filters.

Proposition 3. The following operations on filters interpret the record constant and
operations, turning F into an untyped ς-model:

1. emp = ↑〈·〉;
2. F · �i = {σ | 〈�i : σ〉∈F};
3. (F · �i := G) = {〈�j : σj

j∈J 〉 | (j �= i ∧ 〈�j : σ〉∈F ) ∨ (j = i ∧ σi∈G)}.
Proof. The equations of Definition 10 are checked by straightforward calculations.

We remark that all the operations above, as well as functional composition, are
continuous in their arguments which are filters.

Proposition 4. [[σ]]η = {F ∈F | σ∈F} is a predicate interpretation that satisfies all
clauses in Definition 11. Moreover, if η(κ) ⊆ [[K]] whenever κ∈LK , then [[σ]]η ⊆ [[A]]
if σ∈LA.

In the following, if X is a variable ranging over filters and e[X ] an expression
denoting a filter such that the function λX.e[X ] is continuous, then we abuse notation
writing λX.e[X ] for Ψ(λX.e[X ]).

Lemma 19. The family {ρA}A where ρA(F ) = F ∩ LA, is a family of retractions
turning F into a retraction model.

Proof. We check that F ∩LA = 〈�i = λX.(F · �i)(X ∩ LA) ∩ LBi
i∈I〉. Observe that

σ∈〈�i = λX.(F · �i)(X ∩ LA) ∩ LBi
i∈I〉 if and only if σ = 〈�j :

∧
α→β j∈J 〉,

where J ⊆ I and β∈(F · �i)(↑α∩LA)∩LBj for each α→β in
∧
α→β and j∈J . On

the other hand β∈(F · �i)(↑α ∩ LA) ∩ LBj if and only if 〈�j : α′→β〉∈F ∩ LA for
some α′∈↑α ∩ LA.

Now, if σ∈〈�i = λX.(F · �i)(X ∩ LA) ∩ LBi
i∈I〉 then 〈�j :

∧
α′→β j∈J 〉∈F ∩

LA and 〈�j :
∧
α′→β j∈J 〉 ≤ 〈�j :

∧
α→β j∈J 〉 = σ which is then in F ∩ LA.

Vice versa, if σ∈F ∩ LA then σ = 〈�j :
∧
γ→δ j∈J 〉 ≥ 〈�j :

∧
α→β j∈J 〉 for

some J ⊆ I , α∈LA, β∈LBj . This implies that
∧
α→β ≤ γ→δ for each j∈J and

γ→δ in
∧
γ→δ. This is true if and only if

∧
Y ≤ δ where Y = {β | α∈X} and

X = {α | α ≥ γ}. It follows that
∧
α→β ≤ ∧

X→∧
Y ≤ γ→δ; sinceX ⊆ ↑γ∩LA

and both filters and languages are closed under finite intersections,
∧
X∈↑γ ∩ LA,

which implies δ∈(F · �j)(↑γ ∩ LA): now σ∈〈�i = λX.(F · �i)(X ∩ LA) ∩ LBi
i∈I〉

follows.
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Theorem 20. For all aA such that E � aA, for some E, and all environment ξ such
that ξ |= E:

[[aA]]Fξ = {σ | ∃Γ. ξ |= Γ & Γ � aA :σ}.
Proof. (⊇): (F , {ρA}A) is a retraction model by Lemma 19 and therefore, by Theorem
17, if ξ |= Γ and Γ � aA :σ then [[aA]]ξ∈ [[σ]]η , so that σ∈ [[aA]]ξ by definition of [[σ]]η.

(⊆): by induction over aA.

Case xA: if σ∈ [[xA]]Fξ = ξ(xA) ⊆ LA, then {xA:σ} is a well formed context, ξ |=
{xA :σ} and {xA :σ} � xA :σ by (Var).

Case aA ≡ [�i = ς(xA
i)bBi i∈I ]A: if

σ∈ [[aA]]Fξ = 〈�i = λX.[[bBi

i ]]Fξ[xi:=X∩LA] ∩ LBi

i∈I〉,

then σ = 〈�j :
∧
α→β j∈J 〉∈LA for some J ⊆ I , where β∈ [[bBj

j ]]Fξ[xj :=↑α∩LA] ∩
LBj . By induction hypothesis for each j∈J there exists Γj such that ξ[xj := ↑α∩
LA] |= Γj and Γj , � bBj

j :β: this implies that xAj :α′∈Γj for some α′∈↑α ∩ LA.

Since this holds for all j∈J , while clearly Γk � bBk

k :ω for all k∈I \ J , we derive
Γ ′ � aA :〈�j :

∧
α′→β〉 by (Val Object), where Γ ′ = Γ \xA

j : α for any j∈J . Now
α′ ≥ α which implies

∧
α′→β ≤A

∧
α→β and we are done.

Case (aA.�i)Bi : if τ ∈ [[(aA.�i)Bi ]]Fξ = ([[aA]]Fξ · �i)[[aA]]Fξ then there exist σ∈ [[aA]]Fξ
such that 〈�i : σ→τ〉∈ [[aA]]Fξ . By induction there are Γ0, Γ1 such that ξ |= Γi for
i = 0, 1, and Γ0 � aA :〈�i : σ→τ〉 and Γ1 � aA :σ: it follows that Γ = Γ0∧Γ1 is a
well formed context such that ξ |= Γ , and that Γ � aA :〈�i : σ→τ〉 and Γ � aA :σ.
The thesis follows by (Val Select).

Case (aA.�i↼↽ς(xA)bBi)A: if

τ ∈ [[(aA.�i↼↽ς(xA)bBi)A]]Fξ = [[aA]]Fξ · �i := λX.[[bBi ]]Fξ[x:=X∩LA] ∩ LBi ,

then τ = 〈�j :
∧
α→β j∈J 〉 for some J ⊆ I: if j �= i then 〈�j :

∧
α→β〉∈ [[aA]]Fξ ,

which by induction implies that Γj � aA :〈�j :
∧
α→β〉 for some Γj such that

ξ |= Γj ; if j = i then β∈ [[bBi ]]Fξ[x:=↑α∩LA] ∩ LBi , hence by induction there

exist Γi s.t. ξ |= Γi, x
A :α and Γi, x

A :α � bBi :β. Take Γ =
∧

j∈J Γj : then
ξ |= Γ and Γ � aA :〈�j :

∧
α→β〉 and Γ, xA :α � bBi :β, and we conclude by

(Val Update).

Corollary 1 (Completeness w.r.t. retraction models). Γ � aA :σ⇐⇒Γ |= aA :σ.

Proof. The ‘only if’ part is Theorem 17. For the ‘if part’ define the term environment
ξΓ (xB) = ↑ τ if xB :τ ∈ Γ , ↑ ω if x does not occur in Γ : then ξΓ |= Γ , hence
σ ∈ [[aA]]FξΓ

. By Theorem 20 there exists Γ ′ such that ξΓ |= Γ ′ and Γ ′ � aA :σ. Now if
ξΓ |= Γ ′ then ξΓ (xB) ∈ [[τ ′]]η (for any η consistent with the type interpretation) when
xB :τ ′ ∈ Γ ′; this implies that τ ′ ∈ ξΓ (xB) = ↑ τ , and xB :τ ∈ Γ : we conclude that
Γ ≤ Γ ′, hence Γ � aA :σ by Lemma 8.
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4 Conclusions and Further Work

We have shown that an assignment system of predicates (essentially of intersection
types) to typed terms of the object calculus OB1 induces a sound and complete seman-
tics with respect to a family of models of the ς-calculus using the range of a family
of retractions as the interpretation of types. This is a logical semantics, since a retrac-
tion model can be constructed in which the denotation of a term coincides with the set
(namely the filter) of predicates that can be derived for it in the system.

It remains to be seen how retraction models extend to cope with subtyping and
bounded quantification, to model the full ς-calculus. It should be also investigated the
relation of retraction models to PER models, which are used in [1] to model the calculus,
e.g. along the lines of [13]. This will be the topic of further research.
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Abstract. Light Affine Logic (LAL) is a formal system derived from
Linear Logic that is claimed to correspond, through the Curry-Howard
Isomorphism, to the class FPTIME of polytime functions. The com-
pleteness of the system with respect to FPTIME has been proved by
embedding different presentations of this complexity class into LAL. The
dual property of polytime soundness, on the other hand, has been stated
and proved in a more debatable way, depending crucially on the under-
lying coding scheme. In this paper, we introduce two relevant classes
of coding schemes, namely uniform and canonical coding schemes. We
then investigate on the equality between FPTIME and the classes of
functions that are representable in LAL using these coding schemes,
obtaining a positive and a negative result.

1 Introduction

The logical characterization of computational complexity classes has a long tra-
dition. The most followed path has been to extensionally characterize complexity
classes as the models of certain logical theories. Logical systems, however, have
a built-in computational mechanism — normalization. The definition of logical
systems which could be normalized inside an interesting class, and, at the same
time, give extensional characterization of that same class, is a much more recent
research direction.

In the last ten years, in particular, many different systems derived from Lin-
ear Logic [6] have been proposed and claimed to be the logical counterpart of
FPTIME (i.e. the class of all functions that are computable in polynomial time).
Noticeable examples are Bounded Linear Logic (BLL, [5]), Light Linear Logic
(LLL, [7]) and Soft Linear Logic (SLL, [8]). An affine variant of Light Linear
Logic, called Light Affine Logic (LAL, [2, 1]) has deserved the attention of the re-
search community: its use as a programming language has been investigated [13],
while phase, coherent and game semantics for LAL have been proposed [14, 3,
12]. Furthermore, strong relations between a slight extension of light affine logic
and the complexity class NPTIME have been recently discovered [10].

A necessary condition for a logic L to be considered the counterpart of FP-
TIME is the equality between FPTIME itself and the class FL of all functions
f : S → T that are representable inside L using a reasonable coding scheme

C. Blundo and C. Laneve (Eds.): ICTCS 2003, LNCS 2841, pp. 216–227, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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for f , S and T . This strong condition can be considered as the conjunction of
soundness and completeness, each corresponding to an inclusion between FL and
FPTIME. Actually, LAL has not been proved to enjoy the property we have
just described in a satisfactory way. Indeed, while completeness has been proved
by showing that each polytime function can be represented inside LAL [1, 11],
soundness has only been proved restricting to bounded box-depth coding schemes.
Mairson and Møller [9] have recently shown that, if the used coding scheme is
not of this kind, LAL becomes complete for the class of functions computable
in doubly exponential time.

In this paper, we study polytime soundness for LAL restricting to uniform
coding schemes. In a uniform coding scheme, a function f : S → T is encoded
by a proof π with conclusion A � B, (where A and B depend on S, T and f);
moreover, all elements of S (respectively, T ) are encoded by (cut-free) proofs
having conclusion � A (respectively, � B). This definition is strongly inspired by
the Curry-Howard Correspondence, according to which formulae are interpreted
as types and proofs are interpreted as programs. Notice that the coding scheme
used by Mairson and Møller [9] is not uniform in this sense.

There are many reasons for being interested in uniform coding schemes. For
example, a soundness result on uniform coding schemes would justify research
on denotational semantics for LAL [3, 12]. A number of authors advocated de-
notational models for light logics as a way to achieve insights on FPTIME [7,
4]. If the underlying logical system is polytime unsound with respect to uniform
encodings, however, semantical frameworks such as coherent spaces or game
models are not expected to be useful for this purpose.

The rest of this paper is organized as follows. Sections 2 and 3 are devoted to
preliminary definitions. In Section 4, we show that a function outside FPTIME
can be uniformly encoded in LAL. In Section 5, we define canonical coding
schemes, showing that every function that can be represented in LAL using
these coding schemes has to be polytime. The notion of a canonical encoding
is justified by showing that a number of encodings which can be found in the
literature are actually canonical.

2 Syntax

Following existing literature, we will use an intuitionistic variant of LAL, called
ILAL, as our reference system. Formulae are generated by the grammar

A ::= α | A � A | A⊗A | A�A | A⊕A | !A | §A | ∀α.A
where α ranges over a set L of atoms. An is an alternative notation for

n times︷ ︸︸ ︷
A⊗ . . .⊗A .

Sequents have the form A1, . . . , An � B, where A1, . . . , An, B are all formulae.
ILAL rules are reported in Figure 1. An ILAL proof is simply a tree whose
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Identity and Cut.

A � A
I

Γ � A ∆, A � B

Γ, ∆ � B
U

Structural Rules.

Γ � A
Γ, B � A

W
Γ, !A, !A � B

Γ, !A � B
C

Multiplicative Logical Rules.

Γ, A, B � C

Γ, A ⊗ B � C
L⊗

Γ � A ∆ � B
Γ, ∆ � A ⊗ B

R⊗

Γ � A ∆, B � C

Γ, ∆, A � B � C
L�

Γ, A � B

Γ � A � B
R�

Additive Logical Rules.

Γ, A � B

Γ, A�C � B
L1

�

Γ, A � B

Γ, C�A � B
L2

�

Γ � A Γ � B
Γ � A�B

R�

Γ, A � C Γ, B � C

Γ, A ⊕ B � C
L⊕

Γ � A
Γ � A ⊕ B

R1
⊕

Γ � A
Γ � B ⊕ A

R2
⊕

Exponential Logical Rules.

A � B
!A �!B

P 1
!

� A
�!A

P 2
!

Γ, ∆ � A

!Γ, §∆ � §A P§

Second Order Logical Rules.

� Γ, A[C/α] � B

Γ,∀α.A � B L∀ Γ � A α /∈ FV (Γ )

Γ � ∀α.A R∀

Fig. 1. Intuitionistic Light Affine Logic, ILAL.

nodes are labelled with sequents according to ILAL rules. A proof π having
conclusion Γ � A is sometimes denoted as π : Γ � A.

If π has conclusion Γ,A � B and ρ has conclusions ∆ � A, π(ρ) is the proof:

ρ : ∆ � A π : Γ,A � B
Γ,∆ � B

If π has conclusion Γ � A, §(π) is

π : Γ � A
§Γ � §A

and, provided Γ contains at most one formula, !(π) is the proof:



On the Expressive Power of Light Affine Logic 219

π : Γ � A
!Γ �!A

In this way, ! and § can be easily given the status of (partial) functions on the
space of ILAL proofs.

Most results about ILAL are traditionally given on proof-nets, which are
handy in studying the dynamics of proofs. Nevertheless, we chose to present
ILAL as a sequent calculus, in order to cut down preliminaries. There is a
correspondence between proofs in sequence calculus and proof-nets; however, this
correspondence is not bijective, because many sequent calculus proofs differing
only in the order of application of rules could correspond to the same proof-net.
For our purposes this is not a problem, since we can consider sequent calculus
as mere syntactic sugar for proof-nets.

Definition 1. Given an ILAL proof π, the box-depth ∂(π) of π is the maximum
integer n such that there is a path in π from a leaf to the root which crosses n
instances of rules P 1

! , P 2
! and P§.

This definition of box-depth can be easily checked to be equivalent to the one
traditionally given on ILAL proof-nets [1].

In the following, we will work with the multiplicative fragment of ILAL,
which is enough to represent all the polynomial functions (the weakening rule
W being unrestricted).

3 Representing Functions on Free Algebras

We are interested in studying the class FILAL of all functions representable
inside ILAL. The first matter we have to deal with is to define precisely the
class FILAL, facing the following two questions:
• What kind of functions has to be encoded?
• What is an acceptable representation of a function inside ILAL?
Possible answers to these two questions will be given in the rest of the present
section.

3.1 Free Algebras and ILAL

Without losing generality, we could restrict our attention to functions f : S → T
where S and T are both {0, 1}∗. This is what has been done in the literature.
In the following, we relax this constraint, letting S and T being arbitrary free
algebras. A free algebra A is a couple (C,R) where C is a finite set of constructors
and R : C → N maps every constructor to its arity. Terms of a free algebra
A = (C,R) are defined as follows:
• If c ∈ C and R(c) = 0, then c is a term of A;
• If c ∈ C, R(c) = n ≥ 1 and t1, . . . , tn are terms of A, then c(t1, . . . , tn) is a

term of A.
A word algebra W = ({c1, . . . , ck, e},R) is a free algebra such that R(ci) = 1
for every i ∈ {1, . . . , k} and R(e) = 0. E will be the word algebra ({c, e},R). If
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f : A → A is an injective function, then its generalized inverse is the function
f∗ : A→ A ∪ {∗} such that

f∗(a) =
{
t if f(t) = a
∗ if ∀t.f(t) 
= a

There is a natural way to encode free algebras into second order (intuitionistic)
propositional logic and this encoding can be easily adapted to ILAL. Given a
free algebra A = ({c1, . . . , ck},R), the ILAL type FA is

∀α.!(αR(c1) � α) � . . . �!(αR(ck) � α) � §α.
Clearly, FA is univoquely determined once a total order on {c1, . . . , ck} is fixed.
A term t of a free algebra A can be represented as an ILAL cut-free proof PA(t)
having conclusion � FA. For example, if A = ({e, f, g},R), R(e) = 0, R(f) = 2
and R(g) = 1, the proof PA(f(g(e), f(e, e))) is:

α � α

α � α α � α
α � α, α � α

α � α
α � α α � α
α, α � α⊗ α

α⊗ α � α, α, α � α
α⊗ α � α, α � α, α, α, α � α⊗ α

α⊗ α � α, α⊗ α � α, α � α, α, α, α � α
� ∀α.!(α⊗ α � α) �!(α � α) �!α � §α

In general, if a term t of A = (C,R) contains n occurrences of (not necessarily
distinct) constructors in C, then PA(t) is the proof

πt : αR(c1) � α, . . . , αR(cn) � α � α
� FA

where, c1, . . . , cn are the constructors appearing in t and πt is defined by induc-
tion on the structure of t as follows:
• If t = c (where R(c) = 0), then πt is simply:

α � α.
• Suppose t = c(t1, . . . , tm), then πt is:

α � α
πt1 : Γ1 � α . . . πtm : Γm � α

Γ1, . . . , Γm � αm

αm � α, Γ1, . . . , Γm � α
The following lemma can be easily proved.

Lemma 1. If Ω is obtained from § and ! by composition, then both (Ω ◦PA) and
(Ω◦PA) are injective functions ranging over cut-free ILAL proofs not containing
instances of rule L∀. Moreover, (Ω ◦PA), (Ω ◦PA), (Ω ◦PA)∗ and (Ω ◦PA)∗ are
all polytime functions.
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If W = ({c1, . . . , ck, e},R) is a word algebra, a minor variation FW (PW, respec-
tively) on FW (PW, respectively) is often used. In particular, FW is the formula

∀α.
k times︷ ︸︸ ︷

!(α � α) � . . . �!(α � α) � §(α � α).

and PW is defined very similarly to PW. For example, P E(cce) is:

α � α
α � α α � α
α � α, α � α

α � α, α � α, α � α
α � α, α � α � α � α

� ∀α.!(α � α) � §(α � α)

3.2 Encoding Functions

As explained in the introduction, we chose to accept only encodings that re-
spect types. In other words, all elements of the domain of a function must be
encoded by ILAL proofs having the same conclusion, this condition holding on
the codomain, too. Following another reasonable assumption, all ILAL proofs
encoding terms must be cut-free.

We are now able to give the notion of a uniform encoding of function f :
A→ B inside ILAL: it is a tuple (Π,π,A,B, Φ, Ψ) where:
• Π is a set of ILAL cut-free proofs;
• π is an ILAL proof whose conclusion is A � B;
• Φ : A → Π is a polytime injective function mapping every term t ∈ A to an

ILAL proof Φ(t) ∈ Π whose conclusion is � A; Φ∗ : Π → A ∪ {∗} must be
itself polytime;
• Ψ : B → Π is a polytime injective function mapping every term t ∈ B to an

ILAL proof Ψ(t) ∈ Π whose conclusion is � B; Ψ∗ : Π → B ∪ {∗} must be
itself polytime;
• For every t ∈ A, π(Φ(t)) normalizes to Ψ(f(t)).
A function f : A → B is uniformly representable in ILAL if there is a uniform
encoding of f inside ILAL. FU

ILAL is the class of all functions that are uniformly
representable in ILAL. Notice that the notions we have just given can be easily
extended to many other (intuitionistic) logical systems enjoying cut-elimination.

As we have already explained, the notion of a uniform encoding is inspired
by the Curry-Howard Correspondence. We here claim that it is one of the most
natural notions of an encoding which can be given. Nevertheless, as we will show
in the next section, ILAL is not polytime sound if the full power of uniformity
is exploited.

A uniform encoding (Π,π,A,B, Φ, Ψ) is said to be canonical if every proof in
Π does not contain instances of the rule L∀. A function f : A→ B is canonically
representable in ILAL if there is a canonical encoding of f inside ILAL. FC

ILAL

is the class of all functions that are canonically representable in ILAL. Uniform
encodings differ from canonical encodings only on the imposed conditions on Π ,
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which are more restrictive in the latter case. The additional requirements on Π
are enough to guarantee polytime soundness and, at the same time, do not rule
out most of the encodings used to prove polytime completeness [1], as we will
see in Section 5.

4 Uniformly Representable Functions

In this section, we prove that FU
ILAL 
⊆ PTIME by giving a uniform encoding

(inside ILAL) of an intrinsically exponential function.

Lemma 2. For every n ∈ N, there is a cut-free ILAL proof ρn such that
(Π, ρn, FE, §n+1FE, P E, §n+1 ◦ P E) (where Π is the set of all cut-free ILAL
proofs) is a uniform encoding of the polynomial pn : E → E, where pn(cme) =
cm

n

e for every m ∈ N.

Proof. In this proof, we use a slightly liberal notion of a uniform encoding, which
applies to functions in the form f : Em → Ep and to proofs having conclusions
such as A1, . . . , Am � B1 ⊗ . . . ⊗ Bp or A1 ⊗ . . . ⊗ Am � B1 ⊗ . . . ⊗ Bp. Some
results on the representability of basic functions such as successor and addition
are here used without an explicit proof, which can be found in the literature [1].

Since the case n = 0 is trivial, we can assume n ≥ 1. For every m ≥ 1,
we can inductively define Γm as follows. First of all, Γ1 = FE; moreover, Γm =
Γm−1, §m−1!FE for everym > 1. For everym ≥ 1, Am denotes the tensor product
of all the formulae appearing in Γm, taken in the order induced by the definition
of Γm. We now prove, by induction on m, that there is a proof πm : Am � §mFE

encoding m-ary multiplication. If m = 1, then σm is

π : FE � FE

� FE � FE

�!(FE � FE)

P E(e) : � FE FE � FE

FE � FE � FE

§(FE � FE) � §FE

FE � §FE

where π encodes the successor function on E. If m > 1, then σm is

π : FE, FE � FE

FE � FE � FE

!FE �!(FE � FE)

PE(e) : � FE σm−1 : Γm−1 � §m−1FE

FE � FE, !FE, . . . , §m−2!FE � §m−1FE

§(FE � FE), §!FE, . . . , §m−1!FE � §mFE

Am � §mFE

where π encodes binary addition on E. We are now able to build ρn:

π : An � An

� An � An

�!(An � An)

τ : � An

σm : Γn � §nFE

An � §nFE

An � An � §nFE

§(An � An) � §n+1FE

FE � §n+1FE
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Here, π encodes n-ary successor on E and τ is obtained from P E(e), (! ◦ PE)(e),
. . . , (§n−1◦ ! ◦ P E)(e) by repeatedly use R⊗. Notice that ρn, as we have defined
it, is cut-free. �

We have just proved that, for every n ∈ N, ρn uniformly encodes the polynomial
pn. Now, if all the different ρn had the same type, it would be easy to build a proof
π such that π(ρn) reduces to ρn(PE(cce)), then normalizing to (§n+1 ◦PE)(c2

n

e).
Actually, every ρn has a conclusion which is different from the conclusion of
any other ρm. This problem, however, can be circumvented by building another
sequence of proofs {σn}n∈N. Every such σn behaves similarly to ρn, but all the
proofs in the sequence have the same conclusion. In this way, we can find a
uniform encoding inside ILAL of an intrinsically exponential function on the
free algebra E:

Proposition 1. There is a function f ∈ FU
ILAL not belonging to the class FP-

TIME.

Proof. f : E→ E is the function defined by letting

f(cne) = c2
n

e

whenever n ∈ N. Clearly, f cannot belong to FPTIME, because the length of
its output is exponential in the length of its input. For every n ∈ N, the proof
σn is defined as follows:

ρn : FE � §n+1FE α � α
FE, §n+1FE � α � α
FE, ∀β.(β � α) � α

� FE � ∀β.(β � α) � α

where ρn as in Lemma 2. For every m ∈ N, the proof τm is defined as follows:

P E(cme) : � FE

� §�lgm�+1FE α � α
§�lgm�+1FE � α � α
∀β.(β � α) � α
� ∀β.(β � α) � α

Let now π be the proof:

P E(cce) : � FE ∀β.(β � α) � α � ∀β.(β � α) � α

FE � ∀β.(β � α) � α � ∀β.(β � α) � α

Φ : E→ Π is the function defined by letting Φ(cne) = σn for every n ∈ N; Both
Φ and its generalized inverse Φ∗ can be easily checked to be polytime functions.
Ψ : E → Π is defined by letting Ψ(cme) = τm; as a consequence of Lemma 1,
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both Ψ and its generalized inverse Ψ∗ are polytime. It is easy to realize that,
for every n ∈ E, π(σn) = π(Φ(cn)) normalizes to τ2n = Ψ(f(c2

n

)), meaning that
(Π,π, FE � ∀β.(β � α) � α, ∀β.(β � α) � α,Φ, Ψ), where Π is the set of
all cut-free ILAL proofs, is a uniform encoding of f inside ILAL. �

5 Canonically Representable Functions

The real issue to guarantee ILAL soundness is to force representing inputs
and outputs by proofs having bounded box-depth. This, as we have just seen,
cannot be achieved by restricting to proofs all having the same conclusion. In
this section, we prove that the use of L∀ in input and output representations
is essential to prove a negative result such as Proposition 1. To do this, we
show that every function that is canonically representable inside ILAL must be
polytime.

Given an ILAL formula A, the integer #(A) is defined by induction as
follows:

#(α) = 0
#(A⊗B) = max{#(A),#(B)}
#(A � B) = max{#(A),#(B)}

#(!A) = #(A) + 1
#(§A) = #(A) + 1
#(∀α.A) = #(A)

If A1, . . . , An � B is an ILAL sequent, then #(A1, . . . , An � B) is simply
max{#(A1), . . . ,#(An),#(B)}. #(Γ � A) turns out to be an upper bound on
∂(π) whenever π is the representation of a term in a canonical encoding:

Proposition 2. Let π be a cut-free ILAL proof with conclusion Γ � A. Then,
if π does not contain instances of the rule L∀, ∂(π) ≤ #(Γ � A).

Proof. By induction on the structure of π (which cannot contain instances of
rules U and L∀). We can distinguish a number of cases, depending on the last
rule used in π:

Case I. By definition, ∂(π) = 0 ≤ #(A);
Case W . π must be in the form:

ρ : A1, . . . , An � C
A1, . . . , An, B � C

By inductive hypothesis,

∂(π) = ∂(ρ)
≤ max{#(A1), . . . ,#(An),#(C)}
≤ max{#(A1), . . . ,#(An),#(B),#(C)};

Case R⊗. π must be in the form:

ρ : A1, . . . , An � B σ : C1, . . . , Cm � D
A1, . . . , An, C1, . . . , Cm � B ⊗D
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By inductive hypothesis

∂(π) = max{∂(ρ), ∂(σ)}
≤ max{max{#(A1), . . . ,#(An),#(B)},

max{#(C1), . . . ,#(Cm),#(D)}}
= max{#(A1), . . . ,#(An),#(B),#(C1), . . . ,#(Cm),#(D)}
= max{#(A1), . . . ,#(An),#(C1), . . . ,#(Cm),#(B ⊗D)};

Case L⊗. π must be in the form:

ρ : A1, . . . , An, B, C � D
A1, . . . , An, B ⊗ C � D

By inductive hypothesis

∂(π) = ∂(ρ)
≤ max{#(A1), . . . ,#(An),#(B),#(C),#(D)}}
= max{#(A1), . . . ,#(An),#(B ⊗ C),#(D)}};

Case P 1
! . Necessarily, π must be in the form:

ρ : A � B
!A �!B

By inductive hypothesis

∂(π) = ∂(ρ) + 1
≤ max{#(A),#(B)} + 1
= max{#(A) + 1,#(B) + 1}
= max{#(!A),#(!B)};

Case R∀. π is in the form:

ρ : A1, . . . , An � B
A1, . . . , An � ∀α.B

By inductive hypothesis

∂(π) = ∂(ρ)
≤ max{#(A1), . . . ,#(An),#(B)}
≤ max{#(A1), . . . ,#(An),#(∀α.B)}.

All other cases can be solved similarly. �

We are now able to prove the main result of this section, that is the equality
between the class of canonically representable functions and the class of polytime
functions.
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Theorem 1. FC
ILAL = FPTIME.

Proof. By a result in [2, 1], normalization of an ILAL proof π takes polynomial
time, the exponent of the polynomial depending only on ∂(π). Now, if f : A→ B

is canonically representable, an algorithm that computes f(t), given t ∈ A as
input, is the following (let (Π,π,A,B, Φ, Ψ) be a canonical encoding of f into
ILAL):
• Compute Φ(t);
• Normalize π(Φ(t)), obtaining ρ;
• Compute Ψ∗(ρ).

By Proposition 2 and by definition of a uniform encoding, this algorithm is
polytime. This proves that FC

ILAL ⊆ FPTIME.
In the original proof of polytime completeness for ILAL [1], inputs and

outputs are represented by cut-free proofs not containing instances of L∀. A set
of canonical encodings spanning the entire class FPTIME can then be obtained.
This, in turn, implies that FPTIME ⊆ FC

ILAL. �

All encodings derived from the ones we described in Section 3.1 are, by Lemma 1,
canonical encodings. By Theorem 1, it follows that all functions that can be
encoded in that way are actually polytime.

6 Conclusions

The main contributions of this paper are a couple of results on the expressiveness
of light affine logic. If the full power of second order quantification is exploited,
LAL becomes polytime unsound and this has many theoretical consequences.
For example, the study of denotational models for (second-order) LAL is not
expected to give any insight on FPTIME. On the other hand, a large class of
encodings, including the majority of those used in the literature [1, 11], is shown
to precisely capture the class of polytime functions. Topics for further research
include the study of polytime completeness for the propositional fragment of
LAL, this fragment being polytime sound in the uniform sense.
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Abstract. We propose an approach to reasoning about conversation
protocols within the framework of a logic-based agent language. We show
how to embed a theory of communicative actions in the framework of
a modal logic of action and beliefs, to specify software agents that, sit-
uated in a multi-agent environment, can interact with one another by
a speech act based communication mechanism. Agents have their own
local beliefs on the world and on the other agents mental state. Complex
communicative behaviors can be specified as conversation protocols, and
agents can reason on the belief dynamics caused by communications,
before committing to a given interaction.

1 Introduction and Motivations

In the last few years, great attention has been devoted to the issue of communica-
tion and dialogue among agents, in the context of a formal approach to the theory
of agency [13]. In particular, the diffusion of open multi-agent systems has led
the agent community to focus on the creation of standardized communication
languages (ACL), that, having an explicit, general and well-defined semantic,
could be used by heterogeneous agent programs and give an answer to the inter-
operability issue [15,17]. In this framework, while a lot of work has been done in
defining the semantics of the agent speech acts, those semantics aspects of com-
munication that are related to the conversational context, in which a speech act
occurs, started being investigated only recently [20,22]. Moreover, although for-
mal models of speech acts take into account the mental state of other agents, the
approaches to communication taken in the practical setting of agent languages
[24,12] do not account for this aspect and do not permit to model individual
agents that subjectively reason about effects of communication on the mental
state of their interlocutors.

The capability of reasoning about conversations is useful in many application
areas. Let us consider, as an example, a user personal assistant, i.e. a software
agent that searches the web to find web services, according to a user’s specifica-
tion. The currently available languages for describing web services (e.g. DAML-S
[9], WSDL [8]) base descriptions on the lists of inputs/outputs required/returned
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by the service. The agent matches the user’s request (“book two tickets at a cin-
ema where they show Akira but do not give my credit card number”) to the
descriptions of the available services and selects one that satisfies all the condi-
tions. Some of these conditions (“do not give my credit card number”), actually
concern the way in which the interaction between the service provider and the
personal assistant should be carried on. Standard description languages do not
allow the representation of behavioral information [7] but if a formal specifica-
tion of the interaction protocol was available, the personal assistant could reason
about the change caused by a conversation to its own belief state and make ratio-
nal assumptions on the change caused to the provider beliefs. In the application
framework, the agent could, then, either verify if the interaction may be person-
alized by following an execution path that satisfies all the user’s requirements,
or, when this is not possible, decide to search for another provider.

In this work, we face the problem of describing and reasoning about conver-
sation protocols in an agent logic programming setting, by extending the logical
framework of the agent language DyLOG [5] so to deal also with communicative
behaviors. DyLOG is a logic programming language for specifying and reason-
ing about the behavior of rational agents, based on a modal logic for reasoning
about actions and beliefs, that has successfully been used in the development of
adaptive web applications [4]. It permits to define complex actions and sensing
actions. Agents programmed in DyLOG choose a course of actions, conditioned
by their beliefs about the world, and use sensors for acquiring knowledge. We
present an extension of the language, in which a communication kit, including
both primitive speech acts and conversation protocols, has been integrated. Such
an extension is based on an agent theory, in which agents have local beliefs about
the world and about the mental state of the other agents, and where commu-
nications are modelled as actions that transform the interlocutor mental state.
Our account of communication aims at coping with two main aspects: the state
change caused by a communicative act on an agent local beliefs, and the decision
strategy used by the agent for sending suitable answers to a received communica-
tion. To these aims, the semantics of primitive speech acts is described in terms
of effects on the mental state both in case the agent is the sender and in case it
is the recipient. Moreover, in the line of [20], we use conversation protocols as
decision procedures that allow agents to suitably respond to communications.
Conversation protocols are built upon speech acts, and specify communication
patterns for agent conversations. We took a subjective representation of such
protocols, by making hypothetical assumptions on the other ’s answers. They
have been easily integrated with the other policies that specify the agent behav-
ior, being both represented as complex actions by DyLOG procedure axioms. We
provide a goal-directed proof procedure in order to support agent’s reasoning
and planning in presence of communication. This procedure allows an agent to
reason about the interaction that it is going to enact with another agent, with
the aim of proving if there is a possible execution of the communication protocol,
after which a set of beliefs of interest (goal) will be true in its mental state.
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The article is orgnized as follows: Section 2 introduces DyLOG with a partic-
ular attention to the tools that it offers for dealing with communication; Section
3 briefly shows the solution to the persistency problem that we adopted; in
Section 4 we describe the techniques applied for reasoning in presence of com-
munication; an example application follows, and the article is concluded by a
contextualization of the work in the literature and a few considerations.

2 The Agent Language

The agent language accounts both for atomic and complex actions, or procedures.
Atomic actions are either world actions, affecting the world, or mental actions,
i.e. sensing or communicative actions which only affect the agent beliefs. The
set of atomic actions consists of the set A of the world actions, the set C of
communicative acts, and the set S of sensing actions. For each atomic action a
and agent agi we introduce the modalities [aagi ] and 〈aagi〉. [aagi ]α means that α
holds after every execution of action a by agent agi; 〈aagi〉α means that there is
a possible execution of a (by agi) after which α holds. For each atomic action a
in A∪C we also introduce a modality Done(aagi) for expressing that a has been
executed. Done(aagi)α is read “a has been executed by agi; before its execution,
α was true” 1. The modality � denotes formulas that hold in all the possible
agent mental states. Our formalization of complex actions draws considerably
from dynamic logic for the definition of action operators like sequence, test and
non-deterministic choice. However, differently than [19], we refer to a Prolog-
like paradigm: procedures are defined by means of (possibly recursive) Prolog-
like clauses. For each procedure p, the language contains also the universal and
existential modalities [p] and 〈p〉. The mental state of an agent is described in
terms of a consistent set of belief formulas. We enriched the belief state of a
DyLOG agent by allowing also nested beliefs, for representing what other agents
believe and reasoning on how they can be affected by communicative actions.
We use the modal operator Bagi to model the beliefs of agent agi. The modality
Magi is defined as the dual of Bagi (Magiϕ ≡ ¬Bagi¬ϕ). Intuitively Magiϕ
means that agi consider ϕ possible.

All the modalities of the language are normal; � is reflexive and transi-
tive, its interaction with action modalities is ruled by �ϕ ⊃ [aagi ]ϕ. The epis-
temic modality Bagi is serial, transitive and euclidean. The interaction of the
Done(aagi) modality with other modalities is ruled by: ϕ ⊃ [aagi ]Done(aagi)ϕ
and Done(aagj )ϕ ⊃ BagiDone(aagj )ϕ (awareness), with agi = agj when aagi �∈
C.

2.1 The Agent Theory

In the line of [5] the behavior of an agent agi can be specified by a domain
description, which includes, besides a specification of the agent belief state: (1)
1 Done(aagi)� is read “the action a has been executed by agent agi”.
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action and precondition laws for describing the atomic world actions in terms
of their preconditions and effects on the executor’s mental state; (2) sensing
axioms for describing atomic sensing actions; (3) procedure axioms for describing
complex behaviors.

Belief state. Agents are individuals, each having a mental state: its subjective
point of view on a dynamic domain. Then, we do not model the real world but
only the internal dynamics of each agent in relation to the changes caused by
actions. A mental state is a set of belief formulas (belief state), intuitively it
contains what agi (dis)believes about the world and about the other agents.
A belief state is a complete and consistent set of rank 1 and 2 belief fluents,
where a belief fluent F is a belief formula BagiL or its negation. L denotes a
belief argument, i.e. a fluent literal (f or ¬f), a done fluent (Done(aagi)� or
its negation), or a belief fluent of rank 1 (Bl or ¬Bl). We use l for denoting
attitude-free fluents: a fluent literal or a done fluent. Consistency is guaranteed
by the seriality of the Bagi modalities2. In essence a belief state provides, for
each agent agi, a three-valued interpretation of all the possible belief arguments
L: each L is either true, false, or undefined when both ¬BagiL and ¬Bagi¬L
hold. In the following we use UagiL for expressing the ignorance of agi about L.

World actions. are described by their preconditions and effects on the actor ’s
mental state; they trigger a revision process on the actor’s beliefs. Formally,
action laws describe the conditional effects on agi’s belief state of an atomic
action a ∈ A, executed by agi itself. They have the form:

�(BagiL1 ∧ . . . ∧ BagiLn ⊃ [aagi ]BagiL0) (1)
�(MagiL1 ∧ . . . ∧MagiLn ⊃ [aagi ]MagiL0) (2)

Law (1) states that if agi believes the preconditions to an action a in a certain
epistemic state, after a execution, agi will also believe the action’s effects. (2)
states that when the preconditions of a are unknown to agi, after the execution
of a, agi will consider unknown also its effects3. Precondition laws specify mental
conditions that make an action in A∪ C executable in a state. They have form:

�(BagiL1 ∧ . . . ∧ BagiLn ⊃ 〈aagi〉�) (3)

agi can execute a when the precondition fluents of a are in agi’s belief state.

Sensing Actions. produce knowledge about fluents; they are defined as non-
deterministic actions, with unpredictable outcome, formally modelled by a set of
sensing axioms. If we associate to each sensing action s a set dom(s) of literals
(domain), when agi executes s, it will know which of such literals is true:

[s]ϕ ≡ [
⋃

l∈dom(s)

sBagi l]ϕ (4)

2 A belief state is not consistent when it contains: a belief Bagi l and its negation, or
the belief formulas BagjBagi l and BagjBagi¬l, or the belief formulas BagjBagi l and
Bagj¬Bagi l.

3 Laws of form (2) allow actions with non-deterministic effects, that may cause a loss
of knowledge, to be specified.
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∪ is the choice operator of dynamic logic and sBagi l, for each l ∈ dom(s), is an
ad hoc primitive action, that probes one of the possible outcomes of the sensing.

Complex Actions. We specify agent complex behaviors by means of procedure
definitions, built upon other actions. Formally, a complex action is defined by
means of a collection of inclusion axiom schema of our modal logic, of form:

〈p0〉ϕ ⊂ 〈p1; p2; . . . ; pm〉ϕ (5)

p0 is a procedure name and the pi’s (i = 1, . . . ,m) are either procedure names,
atomic actions, or test actions; the operator “;” is the sequencing operator of
dynamic logic. Procedure definitions may be recursive and procedure clauses can
be executed in a goal directed way, similarly to standard logic programs.

2.2 Communication

The integration of a communication theory in the general agent theory is ob-
tained by adding further axioms and laws to agi’s domain description. In this
section we will introduce a communication kit that allows the specification of
communicative behaviors.

Speech Acts. Communication primitives are atomic actions, described in terms
of preconditions and effects on the agent mental state. They have the form
speech act(sender, receiver, l), where sender and receiver are agents and l is
either a fluent literal or a done fluent. Such actions can be seen as special mental
actions, affecting both the sender’s and the receiver’s mental state. In our model
we focused on the internal representation, that agents have of each speech act,
by specifying agi’s belief changes both when it is the sender and when it is the
receiver. They are modelled by generalizing the action and precondition laws of
form (1), (2), and (3), so to allow the representation of the effects of commu-
nications performed by other agents on agi mental state. Such a representation
provides the capability of reasoning about conversation effects.

Speech act specification is, then, twofold: one definition holds when the agent
is the sender, the other when it is the receiver. In the first case, the precondition
laws contain some sincerity condition that must hold in the agent mental state.
When agi is the receiver, the action is always executable. Let us consider some
primitive speech acts from the standard agent communication language FIPA-
ACL, and let us define them and their semantics within our framework:

inform(sender, receiver, l)
a) �(Bagi l ∧ BagiUagj l ⊃ 〈inform(agi, agj , l)〉�)
b) �([inform(agi, agj , l)]MagiBagj l)
c) �(BagiBagjauthority(agi, l) ⊃ [inform(agi, agj , l)]BagiBagj l)
d) �(� ⊃ 〈inform(agj , agi, l)〉�)
e) �([inform(agj , agi, l)]BagiBagj l)
f) �(Bagiauthority(agj , l) ⊃ [inform(agj , agi, l)]Bagi l)
g) �(Magiauthority(agj , l) ⊃ [inform(agj , agi, l)]Magi l)
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Clause (a) states that an inform act can be executed when the sender believes l
and believes that the receiver does not know l. When agi is the sender it thinks
possible that the receiver will adopt its belief, although it cannot be certain -
autonomy assumption (b)-. If it believes that agj considers it a trusted authority
about l, it is confident that the receiver will adopt its belief (c). When agi is the
receiver, it believes that l is believed by the sender agj (e), but it adopts l as an
own belief only if it thinks agj is a trusted authority (f)-(g).

queryIf(sender, receiver, l)
a) �(Uagi l ∧ ¬BagiUagj l ⊃ 〈queryIf(agi, agj , l)〉�)
b) �(� ⊃ 〈queryIf(agj , agi, l)〉�)
c) �([queryIf(agj , agi, l)]BagiUagj l)

By queryIf agi asks agj if it believes that l is true. To perform a queryIf act, agi

must ignore l and it must believe that the receiver does not ignore l (a). After a
queryIf act, the receiver will believe that the sender ignores l.

refuseInform(sender, receiver, l)
a) �(Uagi l ∧ BagiDone(queryIf(agj , agi, l))� ⊃ 〈refuseInform(agi, agj , l)〉�)
b) �(� ⊃ 〈refuseInform(agj , agi, l)〉�)
c) �([refuseInform(agj , agi, l)]BagiUagj l)

By refuseInform an agent refuses to give an information it was asked for. The
refusal can be executed only if: the sender ignores l and it believes that the
receiver previously queried it about l. After a refusal the receiver believes that
the sender ignores l.

Get Message Actions. are used for receiving messages from other agents.
We model them as a special kind of sensing actions, because from the agent
perspective they correspond to queries for an external input, whose outcome is
unpredictable. The main difference w.r.t. normal sensing actions is that they are
defined by means of speech acts performed by the interlocutor. Formally, we use
get message actions defined by an axiom schema of the form:

[get message(agi, agj , l)]ϕ ≡ [
⋃

speech act∈Cget message

speech act(agj , agi, l)]ϕ (6)

Intuitively, Cget message is a finite set of speech acts, which are all the possible
communications that agi expects from agj in the context of a given conversation.
We do not associate to a get message action a domain of mental fluents, but we
calculate the information obtained by looking at the effects of the speech acts in
Cget message on agi’s mental state.

Conversation Protocols. We suppose individual speech acts to take place
in the context of predefined conversation protocols [20] that specify communi-
cation patterns. Each agent has a subjective perception of the communication
with other agents, for this reason each protocol has as many procedural repre-
sentations as the possible roles in the conversation. Let us consider, for instance
the yes no query protocol reported in Fig. 1, a simplified version of the FIPA
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Querier Informer

queryIf(Fluent)

X

inform(Fluent)

inform(~Fluent)

RefuseInform(Fluent)

Fig. 1. The AUML graph [21] represents the communicative interactions occurring
between the querier and the informer in the yes no query protocol.

Query Interaction Protocol [16]. The protocol has two complementary views,
one to be followed for making a query (yes no queryQ) and one for responding
(yes no queryI). In the following get answer and get start definitions are instances
of the get message axiom.

〈yes no queryQ(Self,Other, F luent)〉ϕ ⊂
〈queryIf(Self,Other, F luent); get answer(Self,Other, F luent)〉ϕ

[get answer(Self,Other, F luent)]ϕ ≡
[inform(Other, Self, F luent) ∪ inform(Other, Self,¬Fluent) ∪
refuseInform(Other, Self, F luent)]ϕ

Intuitively, the right hand side of get answer represents all the possible answers
expected by agent Self from agent Other about Fluent, in the context of a
conversation ruled by the yes no queryQ protocol.

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
BSelfFluent?; inform(Self,Other, F luent)〉ϕ

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
BSelf¬Fluent?; inform(Self,Other,¬Fluent)〉ϕ

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
USelfFluent?; refuseInform(Self,Other, F luent)〉ϕ

The yes no queryI protocol specifies the behavior of the agent Self , that waits
a query from Other; afterwards, it replies according to its beliefs on the query
subject. get start is a get message action ruled by the following axiom:

[get start(Self,Other, F luent)]ϕ ≡ [queryIf(Other, Self, F luent)]ϕ

We can define the communication kit of an agent agi, CKitagi , as the triple
(ΠC , ΠCP , ΠSget), where ΠC is the set of simple action laws defining agi’s prim-
itive speech acts, ΠSget is a set of axioms for agi’s get message actions and ΠCP
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is the set of procedure axioms specifying the agi’s conversation protocols. In this
extension of the DyLOG language, we define as Domain Description for agent
agi, a triple (Π,CKitagi , S0), where CKitagi is agi communication kit, S0 is the
initial set of agi’s belief fluents, and Π is a tuple (ΠA, ΠS , ΠP), where ΠA is the
set of agi’s world action and precondition laws, ΠS is a set of axioms for agi’s
sensing actions, ΠP a set of axioms that define complex actions.

3 Dealing with Persistency

We adopt a non-monotonic solution to the persistency problem, by proposing
an abductive semantics for our modal language, in which abductive assumptions
are used to model persistency of beliefs fluents, from a state to the following
one, when an action is performed. The solution is a generalization of the one
in [5], so to deal with nested beliefs and communicative actions, and consists in
maximizing persistency assumptions about epistemic fluents after the execution
of action sequences. In particular we assume that any belief fluent F which holds
in a given state persists through an action, unless it is inconsistent to assume
so, i.e. unless ¬F holds after the action execution.

Note that belief states are inconsistent when they contain either a belief
Bagi l and its negation, or the belief formulas BagjBagi l and BagjBagi¬l, or the
belief formulas BagjBagi l and Bagj¬Bagi l. However, from the seriality of the Bagi

operators, the general formula schema for the rank 2 beliefs

BagiBagj¬ϕ ⊃ ¬BagiBagjϕ (7)

holds in our logic for any two agents agi and agj
4. This property guaran-

tees that when an inconsistency arises “locally” in the beliefs ascribed from
agi to some other agent, the beliefs of agi itself will be inconsistent. There-
fore, in case of a nested epistemic fluent BagiBagj l, the persistency is correctly
blocked when a locally inconsistent fluent BagiBagj¬l becomes true after an
action execution, because ¬BagiBagj l can be derived from (7). Given these
considerations, we can adopt the same approach to the definition of an ab-
ductive semantics, that we followed in [5]. In particular, we adopt the same
style used by Eshghi and Kowalski in the definition of the abductive seman-
tics for negation as failure [14]. We define as abducibles a new set of atomic
propositions of the form M[a1] . . . [am]F 5. Their meaning is that the fluent
expression F can be assumed to hold in the state obtained by the execution
of the primitive actions a1, . . . , am. Each abducible can be assumed to hold,
if it is consistent with the domain description (Π,CKitagi , S0) and with the
other assumed abducibles. Then we add to the axiom system, that character-
izes the logic defined by the domain description, the persistency axiom schema:
[a1] . . . [am−1]F∧M[a1] . . . [am−1][am]F ⊃ [a1] . . . [am−1][am]F , where a1, . . . , am

4 Actually, the general schema for any rank of nesting holds.
5 Notice that M is not a modality. Mα denotes a new atomic proposition. Mα means

“α is consistent”, analogously to default logic.



236 Matteo Baldoni et al.

are primitive actions and F is a belief fluent. It means that if F holds after
a1, . . . , am−1, and it can be assumed to persist after action am (i.e., it is con-
sistent to assume M[a1] . . . [am]F ), then we can conclude that F holds after the
sequence of actions a1, . . . , am. The definition of abductive solution is given on
the line of [5] and is here omitted.

4 Reasoning in Presence of Communication

Given a domain description, we can reason about it and formalize the temporal
projection problem and the planning problem by existential queries of form:

〈p1〉〈p2〉 . . . 〈pm〉Fs (8)

Each pk, k = 1, . . . ,m in (8) may either be an (atomic or complex) action
executed by agi or an external speech act, that belongs to CKitagi (by the word
external we denote a speech act in which the agent plays the role of the receiver).
By checking if a query of form (8) succeeds we can cope with the planning
problem. In fact this corresponds to answering the question “is there an execution
trace of p1, . . . , pn leading to a state where the conjunction of belief fluents
Fs holds for agi?”. Such an execution trace is a plan to bring about Fs. The
procedure definition constrains the search space. Notice that when all the pk

in the query are atomic actions that belong to A ∪ C, by checking if the query
succeeds, we cope also with the temporal projection problem: “does Fs hold for
agi, after the execution of the action sequence a1, . . . , am?”.

In presence of communication, the planning and the temporal projection
problems turn respectively into the problem of reasoning about conversation
protocols and reasoning about simple conversations, where a conversation is a
sequence of speech acts. This allows, for instance, an agent to investigate the
possible changes to its mental state, produced by a specific conversation, or if a
conversation is an instance of some predefined protocol [13]. In the case of tem-
poral projection, the action sequence will contain both actions in which the agent
is the sender and actions in which it is the receiver. In the case of conversation
protocols, since they represent conversation schemas that guide the communica-
tive behavior of the agent, by answering to the query (8) we find a conversation,
which is an instance of the protocol, after which the desired condition Fs holds.
In this process we treat get message actions as sensing actions, whose outcome
cannot be known at planning time. Since agents cannot read each other’s mind,
they cannot know in advance the answers that they will receive. For this reason
all of the possible alternatives are to be taken into account; we can foresee them
because of the existence of the protocol. Therefore, the extracted plan will be
conditional, in the sense that for each get message and for each sensing action
it will contain as many branches as possible action outcomes. Each path in the
resulting tree is a linear plan that brings about the desired condition Fs. More
formally, a conditional plan σ is either:
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– an action sequence a1; . . . ; am, with m ≥ 0;
– if a1; . . . ; am (m ≥ 0) is an action sequence, s ∈ S is a sensing action,

and σ1, . . . , σt are conditional plans then a1; . . . ; am; s; ((Bagi l1?);σ1 ∪ . . . ∪
(Bagi lt?);σt), where l1, . . . , lt ∈ dom(s);

– if a1; . . . ; am (m ≥ 0) is an action sequence, g ∈ S is a get message action, and
σ1, . . . , σt are conditional plans then a1; . . . ; ak; g; ((BagiDone(c1)�?);σ1 ∪
. . . ∪ (BagiDone(ct)�?);σt), where c1, . . . , ct ∈ Cg.

The proof procedure is a natural evolution of the work in [5], it is goal-
directed, and based on negation as failure (NAF). NAF is used to deal with
the persistency problem to verify that the complement of a mental fluent is not
true after an action execution. The proof procedure allows agents to find linear
and conditional plans for achieving a goal from an incompletely specified initial
state. The soundness w.r.t. the abductive semantics can be proved by imposing
domain descriptions to be e-consistent, i.e. for any action the set of their effects
must be consistent. Moreover, the extracted plans have the following property:
they always lead to a state in which the desired condition Fs holds, for all the
possible results of the sensing actions.

Figure 2 shows the proof procedure that constructs linear plans, by making
assumptions on sensing actions and on external communicative actions. Figure 3
introduces a variant for finding conditional plans. In general, we will need to
establish if a goal holds at a given state. Hence, we will write:

a1, . . . , am � 〈p1; p2; . . . ; pn〉Fs with answer (w.a.) σ

to mean that the query 〈p1; p2; . . . ; pn〉Fs can be proved from the domain de-
scription at the state a1, . . . , am with answer σ. σ is an action sequence which
represents the state resulting by the execution of p1, . . . , pn in the current state.
We denote by ε the empty action sequence that represents the initial mental
state. Rules (1–6) in Fig. 2 deal with the execution of complex, sensing, primi-
tive and test actions. The complex actions in the query are reduced to a sequence
of primitive and test actions; the proof procedure verifies if the primitive actions
can be executed and if the tests are successful. To do this, it reasons about the
execution of the primitive actions and computes the values of fluents at different
states. The value of fluents at a state is not explicitly recorded but it is computed
when needed in the computation. Rules (7–13), allow the values of mental fluents
to be determined and, in particular, to determine if Fs is true after a1, . . . , am.
An epistemic fluent F holds in the current state if: either F is an immediate
effect of action am, whose preconditions hold in the previous state (8a); or am

is an ad hoc primitive action, used in the definition of a sensing action (8b);
or F persists from the previous state (8c); or we are in the initial state and F
holds (8d). Rule (8c) deals with the frame problem: F persists from a state to
the next one unless am makes ¬F true; not represents NAF. Rules (10) and
(11) respectively deal with the seriality and the transitivity of the beliefs. Rules
(12) and (13) deal with the awareness of action’s execution. Fig. 3 reports the
two rules that substitute (4) and (5) in Fig. 2 to build conditional plans. The
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1)
a1···m � 〈p′

1; . . . ; p′
n′ ; p2···n〉Fs w. a. σ

a1···m � 〈p; p2···n〉Fs w. a. σ
where p ∈ P and

〈p〉ϕ ⊂ 〈p′
1; . . . ; p′

n′〉ϕ ∈ ΠP ∪ΠCP

2)

a1···m � Fs′ a1···m � 〈p2···n〉Fs w. a. σ

a1···m � 〈(Fs′)?; p2···n〉Fs w. a. σ

3)
a1···m � Fs′ a1···m, a � 〈p2···n〉Fs w. a. σ

a1···m � 〈a; p2···n〉Fs w. a. σ
where a ∈ A ∪ C, and

�(Fs′ ⊃ 〈a〉�) ∈ ΠA ∪ΠC

4)
a1···m � 〈sBagi l; p2···n〉Fs w. a. σ

a1···m � 〈s; p2···n〉Fs w. a. σ
where s ∈ S and

l ∈ dom(s)

5)
a1···m � 〈c; p2···n〉Fs w. a. σ

a1···m � 〈g; p2···n〉Fs w. a. σ
where g ∈ Sget and
[g]ϕ ≡ [

⋃
c∈Cg

c]ϕ

6)
a1···m � Fs

a1···m � 〈ε〉Fs w. a. σ where σ = a1; . . . ; am

7) a1···m � �

8a)
a1···m−1 � Fs′

a1···m � F
where m > 0 and

�(Fs′ ⊃ [am]F ) ∈ ΠA

8b) a1···m � F if am = sF

8c)
not a1···m � ¬F a1···m−1 � F

a1···m � F where m > 0

8d) ε � F if F ∈ S0

9)
a1···m � Fs′ a1···m � Fs′′

a1···m � Fs′ ∧ Fs′′

10)
a1···m � BagiL

a1···m � MagiL 11)
a1···m � Bagj l

a1···m � BagiBagj l

12)
a1···m � Done(a)�

a1···m � BagiDone(a)� 13) a1···m � Done(am)�

Fig. 2. A goal directed proof procedure for DyLOG. Legend: a1···m ≡ a1, . . . , am and
p2···n ≡ p2, . . . , pn.

4-bis)

∀lk ∈ F , a1···m � 〈sBagi l; p2···n〉Fs w. a. a1; . . . ; am; sBagi l; σ′
k

a1···m � 〈s; p2···n〉Fs w. a. a1; . . . ; am; s; (
⋃

k=1...t
(Bagi lk?); σ′

k)

5-bis)

∀ck ∈ Cg, a1···m � 〈ck; p2···n〉Fsi w. a. a1; . . . ; am; ck; σ′
k

a1···m � 〈g; p2···n〉Fsi w. a. a1; . . . ; am; g; (
⋃

k=1...t
(BagiDone(ck)�?); σ′

k)

Fig. 3. A variant of the proof procedure for extracting conditional plans. In (4-bis)
s ∈ S and F = {l1, . . . , lt} = dom(s); in (5-bis) g ∈ S and {c1, . . . , ct}= Cg.
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new rules deal with the execution of sensing and get message actions, respec-
tively. As a difference with the previous proof procedure, when a sensing action
is executed, the procedure considers all the possible outcomes, thus producing
many branches. If all branches lead to success, the main query succeeds. In such
a case, the conditional plan will contain the branches as alternative sub-plans.
The same holds for the execution of get message actions.

Example 1. Let us consider the protocol get ticket 1C , describing from the cus-
tomer perspective the interaction with a cinema booking service:

(a) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self, WebS, available(Film)) ; BSelf available(Film)? ;
get info(Self, WebS, cinema(C)) ; yes no queryI(Self, WebS, pay by(credit card)) ;
BSelf pay by(credit card)? ; inform(Self, WebS, cc number);
get info(Self, WebS, booked(Film))〉ϕ

(b) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self, WebS, available(Film)) ; BSelf available(Film)? ;
get info(Self, WebS, cinema(C)) ; yes no queryI(Self, WebS, pay by(credit card));
¬BSelf pay by(credit card)? ; get info(Self, WebS, pay by(cash));
get info(Self, WebS, booked(Film))〉ϕ

(c) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self, WebS, available(Film)); ¬BSelf available(Film)?〉ϕ

(d) [get info(Self, WebS, F luent)]ϕ ≡ [inform(WebS, Self, F luent)]ϕ

get ticket 1C permits both to book a ticket to be paid later by cash and to buy
it by credit card; suppose it is followed by the web service click ticket. Given the
query 〈get ticket 1C(pa, click ticket, akira)〉Bpa¬Bclick ticketcc number, a
personal assistant pa could reason on it to determine if there is a conversation
between pa and click ticket about the movie akira, after which the service does
not know the credit card number of the user. Since such a conversation exists,
the agent pa finds an execution trace of get ticket 1C , which corresponds to a per-
sonalized conditional dialogue plan between itself and the provider click ticket,
always leading to satisfy the user goal of not giving the credit card number. For
a deeper discussion about personalization of web service fruition see [3].

5 Conclusion and Related Work

Communication among agents has extensively been studied by the AI commu-
nity. One of the most popular approaches, derived from the work of philosophers
and linguists carried on in the sixties [2,23], considers rationality as a key con-
cept. In other words, communicative acts are interpreted as rational actions
with preconditions and effects on the agent mental state, that can be planned
and reasoned about [11,1,10]; this approach lead to the definition of well-known
ACLs like FIPA [17]. The semantics of communication can be given at different
levels of detail. In many formal approaches [11,10,6,18] the focus is posed at the
level of the single speech acts and the task of reasoning about communication
and planning is achieved based on their preconditions and desired effects, with-
out considering them in the context of a conversation protocol. Indeed many
of these approaches [6,18] have been born for the developement of intelligent
human-machine dialogue systems, then they are focussed on techniques where
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recognizing intentions in communications is fundamental for producing a suit-
able reply. On the line of [20], we argue that the use of conversation protocols
makes the design of software components that must interact easier: the interop-
erability of the various components (often separately developed) is improved and
the verification of compliance to the desired standards is simplified. By working
at the level of protocols, agents can more easily be seen as individuals, devel-
oped independently, on different platforms and with different approaches, a very
attractive view in the applicative field of web applications and web services. For
all these reasons we focus on a semantics of communication that supports the
specification and reasoning about single speech acts, as well as the specification
and reasoning about speech acts in the context of a conversation protocol. In
our framework, protocols are intended as tractable decision procedures, that the
agent can use for selecting and producing communicative acts, suitable to the
agent goals. Since they limit the domain of possible interactions, an advantage
is that they reduce the search space.

More specifically, we have presented an approach to reason about conver-
sation protocols within the framework of an agent language based on a modal
logic of action and beliefs. The approach extends with communication the pro-
posal to model rational agents in [5]. We used conversation protocols to provide
our agents decision procedures for suitably responding to communications. We
took a subjective representation of conversation protocols, by making hypothet-
ical assumptions on the other’s answers. As a consequence protocols have been
easily integrated with other policies defining the agent’s behavior, being both
represented as procedures specified in DyLOG. Notice that, since we are only
interested in reasoning about the local mental state’s dynamics, our approach
differs from other logic-based approaches to communication in multi-agent sys-
tems, as the one taken in [24], where communicative actions affect the global
state of a multi-agent system and the target is to prove global properties of
the overall multi-agent system’s execution. Instead our focus on the internal
specification of interaction protocols for planning dialogue’s moves is closer to
the one taken in [22], where negotiation protocols, expressed by sets of dialogue
constraints, are included in the agent program and used for triggering dialogues
that achieve goals. However such an approach is not aimed at implementing the
kind of reasoning about conversations we focused on: it does not support plan
extraction and it cannot exploit the information about the others, that instead
we can supply by nested beliefs.
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Abstract. In this paper we study decision problems and invertibility
for two notions of equivalence of recursive types. In particular, for re-
cursive types presented by means of a recursion operator µ, we describe
an algorithm showing that the natural equivalence generated by finitely
many steps of folding and unfolding of µ-types is decidable. For recur-
sive types presented by finite systems of recursive equations, we give a
thoroughly coinductive characterization of the equivalence induced by
their interpretation as infinite (regular) trees, from which the decidabil-
ity of this equivalence follows. A formal proof of the former result, to our
knowledge, has never appeared in the literature. The latter result, on
the contrary, is known but we present here a new proof obtained as an
application of general coalgebraic facts to the theory of recursive types.
From these results invertibility is easily proved for both equivalences.

1 Introduction

Recursive types are a pervasive notion in programming. This is true both in
theoretical investigations, where recursive types appear in the semantics of pro-
gramming languages of any kind (as witnessed by domain theory and its recent
generalizations, or by the use of recursive types in describing fundamental con-
cepts of object-oriented programming [1]), and in programming practice as a
unifying notion that is orthogonal to most programming styles. We address in
particular those type systems that arise in functional programming and that
therefore include a function type constructor→.

There are basically two ways of concretely presenting recursive types within
a type system.

On the one hand, we have µ-types of the form µt.A, for any type A, whose
intended meaning is a canonical solution of a type equation t = A, where the
type variable t may occur free in type A. Any natural equivalence �µ on µ-types,
as suggested by the above interpretation, should satisfy

µt.A �µ A[t := µt.A], (1)

C. Blundo and C. Laneve (Eds.): ICTCS 2003, LNCS 2841, pp. 242–255, 2003.
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where the latter expression denotes the result of substituting µt.A for every (free)
occurrence of t in type A. Yet, there is some freedom as to how to describe such an
equivalence, and in fact at least two of them have been studied in the literature.
One approach (see [2]) consists in taking �µ as the smallest congruence ∼µ

satisfying (1). We shall call this weak equivalence. A different view was taken
in [3], where µ-types were regarded as finite notations for the infinite (regular)
trees that arise from the infinite unwiding of the recursion, according to (1). This
suggests a stronger notion of equivalence whereby types A,B (possibly involving
µ-types) are equivalent, written A ≈µ B, whenever the infinite trees associated
to A and B are equal. The two relations are different, see e. g. example 1 in
section 2.3. While the former equivalence admits an inductive characterization,
the latter can be described by means of coinductive techniques suggested by the
observation that infinite trees are the final coalgebra of a (polynomial) functor
over the category of sets ([4,5]).

On the other hand, a recursive type may also be described by a system of
equations over a set {X1, . . . , Xn} of unknowns of the form:

R = {X1 = A1, . . . , Xn = An} (2)

where every Ai is a type possibly containing X1, . . . , Xn. This view is perhaps
closer to what happens in (functional) programming languages, where a typical
recursive definition of a data structure may look like the following (Peyton Jones
[6]):

tree ::= LEAF num | BRANCH tree tree

introducing the type of trees of numbers (elements of the type num). Also in
this case, there are at least two natural equivalence relations on types induced
by a system of recursive type definitions: there is the smallest congruence ∼R
generated by R, studied in [7,8], and the stronger equivalence relation that iden-
tifies types A and B (over the unknowns X1, . . . , Xn), written A ≈R B, when
S(A) = S(B), where S is the unique substitution {X1, . . . , Xn} → Tr∞ that
solves R in the set of infinite trees. Also in this case, ∼R has an inductive char-
acterization whereas ≈R can be described exploiting the coalgebraic nature of
systems of equations of the shape (2). The relations between these two equiva-
lences have been studied in [9].

In this paper we discuss some basic properties of type equivalences, namely
decidability and invertibility. Invertibility, which roughly means that two types
with the same outermost constructor are equivalent only if the corresponding ar-
guments are pairwise equivalent, has been introduced only recently in [7], where
it is proved that invertibility of type equivalence is a necessary and sufficient
condition to prove the subject reduction theorem for the corresponding typed
λ-calculus.

After introducing the basic notations and notions in section 2, we describe in
section 3 an algorithm yielding a (constructive) proof that weak equivalence on
µ-types is decidable. As far as we know, a direct proof of this fact was part of
the folklore of the subject and has never appeared in print. The corresponding
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problem for ≈µ has been solved, among others, by [10]. As a corollary of our
proof we easily obtain that ∼µ is invertible.

We also give a natural characterization of systems of recursive type equations
of a special form (called simultaneous recursions, following [7]) as coalgebras
(section 2.5); the theory of coalgebras as developed, for example, in [5] yields
a simple characterization of the equivalence of two simultaneous recursions, ex-
ploited in showing decidability of ≈R in section 4 following, for example, the
ideas of [11, Remark 3.39].

We should stress that our motivation for studying these problems is their
relevance for type systems for λ-terms, which is also the reason for restricting
our choice of constructors to→and constants. However, the same problems could
be studied more generally in the context of a generic first-order signature Σ, and
our results could be applied to this more general situation without substantial
modifications.

Acknowledgments. The authors would like to thank the referees for their useful
suggestions and Wil Dekkers for pointing out a mistake in an earlier proof of
Theorem 3.

2 Type Structures and Type Constraints

In this section we define the basic notion of type structure, that we shall use
later as one way of describing recursive types. This notion was first motivated
by Scott [12] and formally developed in Breazu Tannen and Meyer [13]; more
recently, it has been taken up in [7] and [8].

2.1 Type Structures

The main feature of recursive types is that one makes identifications between
them. So it is natural to define a type structure as a set of types with a congruence
relation.

Definition 1. Let TT be a set of syntactic objects (types) closed under the→
type constructor, and possibly including constants κ ∈ K and type variables
t1, t2, t3, . . . from a denumerable set V . A type structure over TT is a pair T =
〈TT,�〉 where � is a congruence over TT (i.e. an equivalence relation such that
A � A′ and B � B′ implies A→A′ � B→B′).

The notion of invertibility of a type structure has been investigated thor-
oughly in [7].

Definition 2 (Invertibility). Let 〈TT,�〉 be a type structure. Then � is said
to be invertible if (A→B) � (A′→B′) ⇒ A � A′ and B � B′.

Invertibility holds, for instance, in the type structure freely generated by V ∪K.
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2.2 Typed λ-Calculus with Recursive Types

Explicitly typed versions of λ-calculus with recursive types can be defined as-
suming that types are defined by a type structure. As usual a type context Γ is
a set of typing assumptions of the shape x : A, where x is a variable and A a
type.

Definition 3. Let T = 〈TT,�〉 be a type structure and A,B ∈ T . The well typed
terms of the typed λ-calculus over T are defined by the following term formation
rules:

(ax) Γ, x : A 
T x : A

(→E)
Γ 
T M : A→ B Γ 
T N : A

Γ 
T MN : B

(→I)
Γ, x : A 
T M : B

Γ 
T (λx : A.M) : A→ B

(equiv)
Γ 
T M : A A � B

Γ 
T M : B

See [3] for a review of the basic properties of typed λ-calculi with recursive
types. We shortly mention a couple of them. The first one is that type checking
is decidable iff � is decidable.

Proposition 1. Let Γ be a type context and M a typed λ-terms over a set TT of
types. Then it is decidable whether there is a type A such that Γ 
〈TT,�〉 M : A
iff � is decidable.

Moreover we say that a type structure T has the subject reduction property if
Γ 
T M : A and M→βN imply Γ 
T N : A. Subject reduction has important
consequences like the well known property that “well typed terms cannot go
wrong” [14]. The following result has been proved by R. Statman [7].

Theorem 1. A type structure T has the subject reduction property iff T is in-
vertible.

We introduce below two type structures which are different both in the notion
of types and in the nature of the type equivalence.

2.3 µ-Types

Definition 4 (µ-types). Let A = K ∪ V . The set Tµ = Tµ(A) is defined by
the following abstract syntax:

Tµ = A | Tµ→Tµ | µV.Tµ



246 Felice Cardone and Mario Coppo

We assume that→ takes precedence over µ, so that, for example, the type
µt.A → B should be parsed as µt.(A → B). The subset of Tµ containing only
types without occurrences of the µ operator equations will be identified with the
set T of simple types.

In the last clause of this definition, the operator µ binds the variable t, which
can therefore be renamed by α-conversion. We will always assume in the sequel
that the names of bound and free variables in types are distinct: this can be
easily obtained by a renaming of bound variables.

According to the intuitive semantics of recursive types, a type expression
of the form µt.A should be regarded as the solution for t in the equation t =
A, and is then equivalent to the type expression A[t := µt.A]. The notion of
type equivalence ∼µ is defined by a set of formal rules in which this equality is
extended to a congruence on Tµ by adding structural rules and transitivity.

Definition 5. (i) The equational Theory (µ) is defined by the following axioms
and rules.

(µ-eq) 
 µt.A = A[t := µt.A]

(ident) 
 A = A

(symm)

 A = B


 B = A

(→)

 A = A′ 
 B = B′


 A→B = A′→B′

(µ)

 A = A′


 µt.A = µt.A′

(trans)

 A = B 
 B = C


 A = C

A is weakly equivalent to B, notation A ∼µ B if 
 A = B is provable in (µ).
(ii) Let Tµ denote the type structure 〈Tµ,∼µ〉.
We call unfolding the operation consisting in replacing µt.A by A[t := µt.A]

and folding its inverse. Then two types in Tµ are weakly equivalent if they can
be transformed one into the other by a finite number of applications of folding
and unfolding. Note that the free type structure T can be embedded into Tµ.

Lemma 1. If A ∼µ B then A[t := C] ∼µ B[t := C].

Proof. Routine. ��
We will use ≡ to denote definitional equality of types modulo t conversion.

For example µt.t→ t ≡ µu.u→u.

Example 1. Let T1 ≡ µt.A→ t. Then we have

T1 ∼µ A→T1 ∼µ A→A→T1 ∼µ . . .
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Let now T2 ≡ µt.A→A→ t. Notice that

T2 ∼µ A→A→T2 ∼µ . . .

but it is easy to see that T1 �∼µ T2. However, for the stronger notion of equivalence
≈µ mentioned in the introduction we have that T1 ≈µ T2

2.4 Type Constraints and Recursive Definitions

A very natural way of generating type structures is to assume a (finite) set
of equations between types (called type constraints) and to take the congruence
generated by it via the rules of equational reasoning. In the definition of recursive
types we are particularly interested in the type structures generated by a system
of type constraints of the shape X = C where X is a new atomic symbol (an
indeterminate) and C is a type expression containing possibly X itself. More
formally, we consider a set T of types built inductively from constants κ ∈ K,
type variables t ∈ V and indeterminates X = X1, . . . , Xn, for some n ≥ 0,
by means of the type constructor →. When we want to highlight the set of
indeterminates we write T[X1, . . . , Xn], but often we shall simply write T when
the indeterminates are understood from the context. It will be useful to consider
types in T as the term algebra generated by the first-order signatureΣ containing
one binary operation symbol→ and nullary operation symbols K ∪ V ∪X. The
set K ∪ V will occasionally be referred to as the set of atoms.

Definition 6 (Simultaneous recursion). A system of equations R over T is
a simultaneous recursion (s.r. for short) if it has the form R = {Xi = Ci | 1 ≤
i ≤ n} where

1. for all 1 ≤ i ≤ n, Xi is an indeterminate and Ci ∈ T[X1, . . . , Xn] is not an
indeterminate, for all i = 1, . . . , n;

2. Xi �= Xj for all i �= j.

The indeterminates X1, . . . , Xn are called in this context the unknowns of the
simultaneous recursion, and {X1, . . . , Xn} will also be abbreviated as Unk(R).

Example 2. Let R1 = {X1 = A→ X1} where A is any type be a s.r. defining a
type X such that X1 =R1 A→X1 =R1 A→A→X1 . . . and so on. Define now
R2 = {X2 = A → A → X2}. Observe that, in R1 ∪ R2, X1 cannot be proved
equal to X2 by equational reasoning. We will now define an equivalence relation
on simultaneous recursions for which X1 is indeed equivalent to X2

1.

2.5 Tree Equivalence of Types

A simultaneous recursion R can be interpreted as a simultaneous recursive defi-
nition of a set of infinite trees {τ1, . . . , τn} that satisfy the equations of R, where
each τi corresponds to the unknown Xi.
1 Note that X1, X2 have the same properties of types T1, T2 of Example 1.
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Definition 7 (Infinite trees). (i) Let Σ be the signature {→}∪K∪V . A Σ-tree
τ is a partial function τ : {1, 2}∗ → Σ satisfying the following conditions:

– if uv ∈ dom(τ), then also u ∈ dom(τ);
– if u2 ∈ dom(τ), then also u1 ∈ dom(τ);
– if τ(u) =→ then u1, u2 ∈ dom(τ);
– if τ(u) ∈ K ∪ V then ui �∈ dom(τ), for i ∈ {1, 2}.

The set of Σ-trees will be denoted by Tr∞.
(ii) Given a tree τ ∈ Tr∞ and a word w ∈ dom(τ), let τ � w (the subtree of τ
rooted at w) be the tree defined by:

– (τ � w)(u) = τ(wu), for all u ∈ dom(τ � w).

A solution of a simultaneous recursion R is just a substitution of infinite trees
for the unknowns of R that satisfies all the equations in R:

Definition 8. Let R be a simultaneous recursion, and let S : Unk(R) → Tr∞.
We say that S solves R (or that S is a solution of R) if S(Xi) = S∗(Ci), where
S∗ is the homomorphic extension of S to T.

The infinite trees that appear as components of solutions of simultaneous recur-
sions are always regular, as the number of equations in R is finite: regular trees
are those (finite or) infinite trees that have a finite set of subtrees (Courcelle
[15]).

It is easy to see that any simultaneous recursion R can be transformed into
a flat simultaneous recursion R�, namely one where every Ci appearing on the
right-hand side has the simplest possible form:

Definition 9 (Flat simultaneous recursion). A s.r. R is flat if every Ci

has one of the following shapes:

1. Xj→Xk, for Xj , Xk ∈ Unk(R),
2. κ, for κ ∈ K,
3. t, where t ∈ V .

In order to build R� from R it is enough to replace every equation whose right-
hand side has not one of the forms listed in the above definition by new equations,
in this process adding new unknowns. An algorithm for obtainingR� is described
in [16, §2.3]. The following proposition has a straightforward proof:

Proposition 2. Let R be a simultaneous recursion and S : Unk(R)→ Tr∞ any
substitution. For any flat version R� of R there is a unique substitution S� such
that S solves R if and only if S� solves R�.

There is some advantage in adopting a more abstract approach to infinite
trees, that exploits the coalgebraic nature of flat simultaneous recursions and of
Tr∞. This will allow us to define an interpretation (·)∗

R : T→Tr∞ and also when
two types in T are equivalent modulo a simultaneous recursion R. We first recall
the general definition of a coalgebra over the category of sets (see, e. g., [5]).
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Definition 10 (Coalgebra). Let T : Set→ Set be a functor. A T -coalgebra
is a pair 〈A,α : A→ TA〉. If 〈A,α : A→ TA〉 and 〈B, β : B → TB〉 are T -
coalgebras, then a T -coalgebra homomorphism is is a mapping h : A→B such
that the following diagram commutes:

A
α−−−−→ TA

h



�



�Th

B
β−−−−→ TB

A flat simultaneous recursion R with unknowns U =def Unk(R), may be seen
as a TΣ-coalgebra R : U→TΣU , where TΣ is the polynomial functor defined on
objects by the clause:

TΣA =def

∐

c∈Σ

A× . . .×A︸ ︷︷ ︸
ar(c)

and whose action on maps is defined by the equation:

(TΣf)(〈c, 〈a1, . . . , aar(c)〉〉) =def 〈c, 〈f(a1), . . . , f(aar(c))〉〉, (3)

for any function f : A→B.

Now, given a tree t ∈ Tr∞, the pair

ω(τ) =def 〈τ(ε), 〈τ � 1, . . . , τ � ar(c)〉〉 (4)

is an element of
∐

c∈Σ Tr∞ × . . .× Tr∞︸ ︷︷ ︸
ar(c)

, therefore

ω : Tr∞→TΣ(Tr∞) (5)

is a TΣ-coalgebra. However, more than this is true and well-known (see, e. g.,
[4]):

Proposition 3. ω : Tr∞→TΣ(Tr∞) is the final TΣ-coalgebra.

Note that if R : Unk(R)→ TΣ(Unk(R)) is a flat simultaneous recursion, then
the unique TΣ-homomorphism (·)R : Unk(R) → Tr∞ as in the commutative
diagram:

Unk(R) R−−−−→ TΣ(Unk(R))

(·)R



�



�TΣ(·)R

Tr∞ ω−−−−→ TΣ(Tr∞)

exists by finality and is precisely the (unique) solution of R.

Corollary 1. (1) Every (flat) simultaneous recursion R has a unique solution
in Tr∞.
(2) Let (Xi)R = τi, for Xi ∈ Unk(R). Then τi is a regular tree.



250 Felice Cardone and Mario Coppo

Proof. Point (1) follows immediately from the above remark, while for (2) it is
enough to observe that every subtree of τi is among τ1, . . . , τn, hence the number
of subtrees of τi is bounded by n.

Then, we inductively extend the solution (·)R : Unk(R) → Tr∞ of R to the
mapping (·)∗

R : T[Unk(R)]→Tr∞ as in definition 8. For types A,B ∈ T[Unk(R)]
we can now define when they are equivalent modulo R, written A ≈R B:

Definition 11. (i) A ≈R B if, and only if, (A)∗
R = (B)∗

R.
(ii) TR denotes the type structure 〈T[Unk(R)],≈R〉.

Observe that the type structure TR is trivially invertible.

Example 3. Take R1 and R2 as defined in Example 2. Both X1 and X2 have the
same interpretation as infinite trees, and so X1 ≈R1∪R2 X2.

3 Decidability of Weak µ-Equivalence

Both invertibility and decidability will be proved by defining a combinatory
reduction system (CRS) which generates ∼µ as its convertibility relation. For an
introduction to term rewriting systems and CRS see e.g. [17] and [18].

Definition 12. Let ⇒µ ∈ Tµ × Tµ be the reduction relation defined by:

1. µt.A⇒µ A[t := µt.A].
2. If A⇒µ A

′ then
– A→B⇒µ A

′→B
– B→A⇒µ B→A′

– µt.A⇒µ µt.A
′.

As usual⇒µ
n denotes reduction in n steps and⇒µ

∗ is the transitive and reflexive
closure of ⇒µ.

As usual, a subexpression of a type B of the shape µt.A is called a redex. The
contraction of a redex in B is obtained by replacing the redex by the r.h.s. of
the corresponding rule. The following lemma can be easily proved by induction
on the size of proofs in ∼µ.

Lemma 2. The relation ∼µ is the convertibility relation generated by ⇒µ.

It is easy to see that 〈Tµ,⇒µ〉 is an orthogonal Combinatory Rewriting Sys-
tem (see [11]) and then it is Church-Rosser (CR).

Lemma 3. The reduction relation ⇒µ is CR, i.e. if A ∼µ B then there is a
type C ∈ Tµ such that A⇒µ

∗ C and B⇒µ
∗ C.

Note however that ⇒µ is not normalizing: types can be infinitely unfolded. The
CR property however is enough to prove invertibility.
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Theorem 2. ∼µ is invertible, i.e. A1→B1 ∼µ A2→B2 implies A1 ∼µ A2 and
B1 ∼µ B2.

Proof. By Lemma 3 there is a type C such that A1 → B1 ⇒µ
∗ C and A2 →

B2 ⇒µ
∗ C. But then we must have C ≡ C1 → C2 and then Ai ⇒µ

∗ C1 and
Bi⇒µ

∗ C2 for i = 1, 2. By Lemma 2 this implies Ai ∼µ Bi for i = 1, 2.

To prove decidability we need some more properties of reduction systems.
An important notion is that of standard reduction. We define this notion in the
case of ⇒µ.

Definition 13. Let
R : A1⇒µ A2⇒µ . . .⇒µ An

Assume that at each step Ai⇒µ Ai+1 we mark with ∗ all µ occurring in Ai to
the left of the contracted µ and assume that all starred µ remain such through
the remaining steps of R. Then R is standard if only non starred µ are reduced
in it.

In other words, a reduction is standard if reductions are performed from left
to right (and from the outside in).

The following standardization theorem for⇒µ can be obtained as a particular
case of the standardization theorem for CRS. See [18] for a proof.

Lemma 4. If A⇒µ
∗ B then there is standard reduction from A to B.

Definition 14. If A ∈ Tµ its subterm closure SC(A) ⊆ Tµ is defined by cases
in the following way.

1. SC(c) = {c} if c is a variable or a constant.
2. SC(A1→A2) = {A1→A2} ∪ SC(A1) ∪ SC(A2)
3. SC(µt.A) = {µt.A} ∪ SC(A[t := µt.A])

The following Lemma is proved in [10, Theorem 2.3].

Lemma 5. For all types A ∈ Tµ SC(A) is finite.

Recall that 
 A = B if A = B can be proved using the rules of system (µ)
Definition 5(i). In the following definition we introduce a slightly different (but
equivalent) system.

Definition 15. The system (µ−) is defined as the system (µ) of Definition 5(i)
by replacing (µ-eq), (symm) and (trans) by the following rules

(µ-tr-left)

 A[t := µt.A] = B


 µt.A = B

(µ-tr-right)

 A = B[t := µt.B]


 A = µt.B

We write 
− A = B if A = B is provable in (µ−).
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Lemma 6.

 A = B (i.e. A ∼µ B) ⇔ 
− A = B.

Proof. The (⇐) direction is trivial since rules (µ-tr-left), (µ-tr-right) can be
derived using (µ-eq) and (trans). As for (⇒), by Lemma 2 we have A and B are
convertible under ⇒µ and then, by the CR property, there exists a type C such
that A⇒µ

nC and B⇒µ
mC for some n,m ≥ 0. Moreover by the standardization

theorem 4 we can assume that both reductions are standard. The proof is now
by induction on n+m.
If m = n = 0 then A ≡ B and we are done.
The induction step is by induction on |A| + |B| where |T | denotes the number
of→ and µ operators occurring in T . The base step (A and B atomic) is trivial.
In the induction step we distinguish the following cases.
Case 1. Let A ≡ µt.A′ and let A ⇒µ A

′[t := µt.A′] ⇒µ
n−1 C (i.e. the first

step in the reduction of A is an unfolding). By induction hypothesis we have

− A′[t := µt.A′] = B and we can get 
− µt.A′ = B by rule (µ-tr-left). The
symmetric case on B is handled similarly using (µ-tr-right).
Case 2. Let A ≡ µt.A′, B ≡ µt.B′ and the first step in the reduction of both
A and B is not by unfolding the leftmost µ. In this case, since the reduction is
standard, the leftmost µ is never reduced in both A and B. Then we must have
C ≡ µt.C ′ and both A′⇒µ

n C ′ and B′⇒µ
n C ′. By induction hypothesis on the

structure of types then we have 
− A′ = B′ and we can get 
− A = B by rule
(µ).
Case 3. Let A ≡ A1 → A2 and B ≡ B1 → B2. In this case we must have
C ≡ C1→C2 and both A1⇒µ

n1 C1, A2⇒µ
n2 C2, B1⇒µ

m1 C1 and B2⇒µ
m2 C2

where n = n1 + n2 and m = m1 + m2 and then n1, n2 ≤ n, m1,m2 ≤ m. By
induction hypothesis on the structure of types then we have 
− A1 = B1 and

− A2 = B2. So we can get 
− A = B by rule (→).

Deductions in 
− are interesting for the following reason.

Lemma 7. (i) Let D be a deduction of 
− A = B then all statements A′ = B′

occurring in it are such that A′ ∈ SC(A) and B′ ∈ SC(B).
(ii) It is decidable whether 
− A = B.

Proof. (i) By a straightforward induction on deduction.
(ii) Let N = |SC(A)| and M = |SC(B)|. Let D be any deduction in 
− A = B.
By point (i) there are at most M ·N possible distinct statements that can occur
in D. So we can assume that D has no branch of length greater then M ·N , since
otherwise we can reduce the size of D by replacing the innermost occurrence of
a statement A′ = B′ in a branch of length greater then M ·N by the outermost
occurrence of the same statement. So there are only a finite number of possible
deductions for 
− A = B.

By Lemma 6 then we have the decidability of ∼µ

Theorem 3. It is decidable whether A ∼µ B.
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4 Deciding Equivalence of Simultaneous Recursions

In this section we sketch a proof of the decidability of strong equivalence of
simultaneous recursions. We are mainly interested in highlighting the coalge-
braic characterization of the equivalence of simultaneous recursions R and R′,
in terms of the existence of a bisimulation between Unk(R) and Unk(R′): the
definition of the right notion of bisimulation follows from general coalgebraic
notions and our characterization of (flat) simultaneous recursions as coalgebras.
To our knowledge, this characterization does not seem to have been exploited
in the literature on recursive types (for a different application of coinductive
techniques to recursive types, see e. g. [19]).

Definition 16. Given two simultaneous recursions R1,R2, we define a bisim-
ulation between Unk(R1) and Unk(R2) to be a binary relation R ⊆ Unk(R1) ×
Unk(R2) such that the following conditions hold.
For all X ∈ Unk(R1) and Y ∈ Unk(R2) such that XRY

– either X = X1 → X2 ∈ R1 and Y = Y1 → Y2 ∈ R2 and X1RY1 and
X2RY2;

– or X = ξ ∈ R1 and Y = ξ ∈ R2 for some ξ ∈ V ∪K.

Given two simultaneous recursions R1 and R2, they are bisimilar if there is a
bisimulation R ⊆ Unk(R1)×Unk(R2).

There is a general characterization of bisimulations in categorical terms (see [5],
and [4], for example). For the functor TΣ : Set→ Set that we have been using,
a (categorical) bisimulation between sets A and B is a relation R ⊆ A × B
for which there is a coalgebra structure ρ : R → TΣR such that the following
diagram commutes

A
r1←−−−− R

r2−−−−→ B

R1



�



�ρ



�R2

TΣA
TΣ(r1)←−−−− TΣR

TΣ(r2)−−−−→ TΣB

(6)

where r1 and r2 are respectively the composites R ↪→ A × B π1→ A and R ↪→
A×B π2→ B and are therefore TΣ-coalgebra homomorphisms. It is now a straight-
forward matter to prove the following:

Proposition 4. For simultaneous recursions R and R′, a relation
R ⊆ Unk(R)×Unk(R′) is a bisimulation if and only if the diagram (6) commutes
for some ρ : R→ TΣR.

Observe also that the following diagram, where S solves R and S′ solves R′,

R
r1−−−−→ Unk(R)

r2



�



�S

Unk(R′) S′
−−−−→ Tr∞
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commutes, by finality of Tr∞, because all mappings involved are coalgebra ho-
momorphism (see [20]), hence we have the following result, stating that bisimilar
unknowns have the same unfolding:

Corollary 2. For simultaneous recursions R and R′, if 〈X,Y 〉 ∈ R for a bisim-
ulation R between Unk(R) and Unk(R′), then S(X) = S′(Y ), where S solves R
and S′ solves R′.

Decidability of equivalence for simultaneous recursions has been proved by Cour-
celle, Kahn and Vuillemin [16] by direct means. Here we use coinduction, but
first define precisely what it means for two simultaneous recursions to be equiva-
lent. For a simultaneous recursion R, equation X1 = C1 is the principal equation
of R, and X1 the principal unknown.

Definition 17 (Equivalence of simultaneous recursions). Let R1 ≈ R2 be
the equivalence relation which holds between simultaneous recursions R1 and R2
if and only if S1(X1) = S2(Y1), where Si is the solution of Ri and X1, Y1 are
the principal unknowns of R1,R2, respectively.

Now, given two simultaneous recursions R1 and R2, the following algorithm can
be used to test whether R1 ≈ R2 (this is a slight reformulation of the decision
procedure described in [11]):

Definition 18. Define sets of pairs C(n), O(n) ⊆ Unk(R1) × Unk(R2) by the
following algorithm:

– Let C(0) = ∅ and O(0) = {〈X1, Y1〉};
– while O(n) �= ∅ build C(n+1), O(n+1) from C(n), O(n) in the following way.

Take any pair 〈X,Y 〉 ∈ O(n)

• if X = X1 → X2 ∈ R1 and Y = Y1 → Y2 ∈ R2 set:
– O(n+1) = O(n) − {〈X,Y 〉} ∪ {〈Xi, Yi〉 | i = 1, 2 and 〈Xi, Yi〉 /∈ C(n)}
– C(n+1) = C(n) ∪ {〈X,Y 〉}

• if X = ξ ∈ R1 and Y = ξ ∈ R2 for some ξ ∈ V ∪K then set:
– O(n+1) = O(n) − {〈X,Y 〉}
– C(n+1) = C(n) ∪ {〈X,Y 〉}

• otherwise stop reporting failure.

It is easy to see that, since the number of equations in each system is finite, either
this process stops with failure or eventually O(n) = ∅ for some n. Furthermore:

Proposition 5. R1 ≈ R2 if and only if the algorithm stops after N steps with-
out reporting failure. In this case the relation C(N) is a bisimulation.

Finally, given types A,B ∈ T[Unk(R)], we can use the above algorithm to decide
whether A ≈R B. Let

RA = {Z = A}
RB = {Z ′ = B}

where Z,Z ′ are new unknowns, and take the (flat) simultaneous recursions RA∪
R and RB ∪ R with principal unknowns Z and Z ′ and solutions SA and SB ,
respectively. It is straightforward to prove that SA(Z) = (A)∗

R and SB(Z ′) =
(B)∗

R, hence A ≈R B if and only if RA ∪R ≈ RB ∪R.
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Abstract. The algebraic models of computation for contextual nets that have
been proposed in the literature either rely on a non-free monoid of objects, or
introduce too many fictitious behaviors that must be somewhat filtered out. In
this paper, we exploit partial membership equational logic to define a suitable
theory of models, where the meaningful concurrent computations can be selected
by means of membership predicates.

1 Introduction

Thanks to their friendly formulation as multiset rewrite systems and to their graphical
presentation, Petri nets [25, 26] are an appealing formalism for the specification and
study of concurrent and distributed systems: states consist of token distributions over
the set of places and transitions can atomically fetch the tokens in their presets and
generate new tokens according to their postsets. In particular, several transitions can
execute concurrently when they work on mutually disjoint sets of tokens.

Contextual nets [24] (also introduced separately with different names, such as nets
with read arcs [30], nets with test arcs [8], and nets with activator arcs [16]) encompass
a non-destructive reading operation not present in the basic Petri net model. In fact,
read arcs allow multiple concurrent readings of the same resource, an operation whose
need arises naturally in many distributed systems, while the naı̈ve encoding of read
arcs as self-loops in ordinary Petri nets serializes all the accesses to read tokens with
a dramatic loss of concurrency. Nets with read arcs have been used to model a variety
of applications and phenomena, such as transaction serializability in databases [11],
concurrent constraint programming [23], asynchronous systems [29], and analysis of
cryptographic protocols [10].

As a drawback, the presence of read arcs introduces some complication in the math-
ematical characterization of computations, leading to the development of suitable ex-
tensions of well-studied domains and models for Petri nets. Extensions of this kind
include: the asymmetric event structures of [2], the match-share categories of [13], and
the monoids of places proposed in [17] and fully developed in [7] and in [22].
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In this paper we extend the so-called “Petri nets are monoids” approach initiated
in [19] to find a neat algebraic characterization of the monoidal category of concurrent
computations in the presence of read arcs. In particular, we improve upon [13], where
such computations were shown to be faithfully embedded in a too large, freely gener-
ated category. Our approach is to define a typing discipline – expressed by membership
predicates term : Sort in partial membership equational logic [18] – that characterizes
in that category the valid computations, distinguishing them from “garbage” expres-
sions. Moreover, by considering pre-nets as “implementations” of ordinary Petri nets
(in the sense explained in [5] and recalled in Section 2), we are able to give a functorial
construction, respecting the simulation morphisms between nets, a result not achieved
in all previous proposals in the literature [17, 13, 7].

Synopsis. In Section 2 we summarize the techniques used for defining functorial models
for Petri nets. Section 3 describes the technical problems arising when extending the
approach to nets with read arcs, and Section 4 presents our solution. Section 5 gives our
conclusions. Proofs omitted for space limitation can be found in the technical report [6].

We assume the reader has some familiarity with some basic concepts from category
theory as, e.g., the notion of natural transformation, adjunction and monoidal category.

2 On the Algebraic Semantics of Petri Nets

Petri nets are one of the most studied models for concurrency, thanks to their natural
representation of concurrent and distributed systems based on multiset rewriting. Their
flexibility has encouraged many different semantical interpretations. In particular, an
overall distinction can be drawn between collective and individual token philosophies
(see, e.g., [14]). According to the collective token philosophy (CTph), net semantics
should not distinguish between different tokens in the same place, because any such
token is operationally equivalent to all the others. The individual token philosophy
(ITph) says that the different origins and histories of tokens must be accounted for,
because choosing different tokens can make an event causally dependent on different
past events, and causal dependencies may influence the degree of concurrency in the
computations. In the classical example below, for instance, after t0 and t1 have fired, a
firing of t will look as caused by one of them and concurrent to the other, depending on
which of two tokens in c is consumed. Also, two instances of t may fire concurrently
that only differ in their causal histories.

•a t0
c

t

•b t1

The “Petri nets are monoids” approach [19] is an algebraic approach to the analysis
of concurrent semantics based on the observation that the monoidal structure of mark-
ings can be lifted to computations, in such a way that the suitably axiomatized terms of
the new algebra exactly correspond to the concurrent computations of place/transitions
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Petri nets (PT nets), according to the CTph. This construction respects the intuitive sim-
ulation morphisms between nets, when these are seen as graphs with structured nodes.
This is expressed as a functor T from the category Petri of PT nets (as objects) and sim-
ulation morphisms (as arrows) to the category CMonCat of strictly symmetric strict
monoidal categories (as objects) and monoidal functors (as arrows). Moreover, T is
the left adjoint to an obvious forgetful functor from the full subcategory of CMonCat
consisting of categories whose set of objects is a free monoid.

The functorial character of the construction is important for at least two reasons:
(1) working within categories, we make explicit the associated morphisms, which cor-
respond to appropriate notions of “simulation” or “refinement” between nets; (2) func-
tors act on objects and behave consistently on their simulation maps, preserving them.
Furthermore, when functors are adjoints they preserve limits or colimits, yielding good
compositionality properties, since complex models can often be expressed as (co)limits
of their simpler constituents [31].

Since the publication of [19], several studies have extended the functorial construc-
tion from the CTph towards the ITph [12, 21, 28]. Building on the notion of process
presented in [15], the idea has been to take semantic models in the category of symmet-
ric monoidal categories. But all the proposed constructions lacked functoriality. The
difficulty in dealing with the ITph is that net morphisms in Petri allow replacing two
different tokens a and b in the source net by, say, the same token c in the target net. In
this way, an ambiguity about the origin of c is introduced that confuses causal histo-
ries in the target net and makes a functorial treatment impossible. A first solution was
proposed in [28] based on pseudo functors (see also [21]).

In [5], we introduced pre-nets, which are more suitable than PT nets to be given a
functorial semantics according to the ITph. A pre-net is essentially an implementation
of a PT net, where the abstract data structure of multisets is refined into a more concrete
string structure, and where each transition t : u→ v is simulated by one, arbitrarily
fixed, linear implementation tū,v̄ : ū→ v̄ for some linearizations ū and v̄ of u and v 1.
Although resorting to pre-nets (instead of PT nets) might at first appear unnatural to net
enthusiasts, our formal approach to the ITph benefits from several good properties:

– All the pre-net implementations of the same net share the same semantic model,
i.e. the semantics is independent of the choice of linearizations.

– Algebraic models of pre-nets are freely generated and, as part of adjunctions, pre-
serve colimit constructions, allowing a form of compositional reasoning.

In [5] it is shown that the construction can be conveniently expressed at the level of
algebraic theories of the form (Σ,E), rather than at the level of their categories of mod-
els, i.e. of (Σ,E)-algebras. Essentially, if PETRI is the theory of PT nets and CMONCAT
is the theory of strictly symmetric monoidal categories, then there is a theory mor-
phism form PETRI to CMONCAT that induces a forgetful functor between the category
of CMONCAT-algebras (i.e., strictly symmetric monoidal categories) and the category of

1 We observe, lest confusion arises, that pre-nets differ sharply from phrase-structure grammars,
because pre-nets do not distinguish between terminal and non-terminal symbols, and strings
can be permuted before performing any step. Grammars only generate monoidal categories,
with no symmetries.
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PETRI-algebras (i.e., PT nets). The left-adjoint to this forgetful functor is the free con-
struction that associates to each PT net the strictly symmetric monoidal category of its
concurrent computations. In such category, objects are the markings of the net, arrows
are computations, (arrow) composition models progression in time of a computation,
while tensor product accounts for concurrent activities. For instance, in the example
above, t0; t represents the sequential execution of t0 and t, while t0⊗ t1 stands for the
concurrent firing of t0 and t1. In the individual token philosophy, the strict symmetry
– characteristic of the collective token interpretation – must be given up to model the
causal flows of tokens in computations. The order of transitions in a parallel composi-
tion, say t0⊗ t1, determines the order of tokens “in the output” and, consequently, the
causal connections to the activities that may follow. For instance, (t0⊗ t1) ; (t⊗ idc) rep-
resents the computation where t depends causally on t0 (that is, it consumes the instance
of c generated by that transitions). We are allowed to exchange t0 and t1 in the tensor
product only if we keep track of this and maintain the correct order of output tokens, as
e.g. in (t1⊗ t0) ; γ ; (t⊗ idc), for γ the swap symmetry on c⊗ c. (A thorough discussion
and the details are given, e.g., in [27], but see also [12, 21].) As explained above, we
can relate the theory PRENETS of pre-nets (where pre- and post-sets of transitions are
taken in the free monoid of places instead than in the free commutative monoid) to the
theory SMONCAT of symmetric monoidal categories (details in [5]).

The above-mentioned theories can be conveniently expressed in partial member-
ship equational logic (PMEqtl, see [18, 20] for self-contained presentations), taking
advantage of membership predicates and subsorting to model objects as a special kind
of arrows (the identities), and of partiality to model sequential composition, defined
only if the codomain of the first arrow coincides with the domain of the second arrow.
Moreover, the notion of tensor product of theories allows a more modular presentation
of concepts; for example, we can define the theory of monoidal categories as the tensor
product of the theory of monoids and that of categories.

3 Atoms, Electrons and Match-Share Categories

The extension of the approach to nets with read arcs has been considered in [7], by
relying on non-free monoids of objects, and in [13], exploiting match-share categories
in place of symmetric monoidal categories.

Regarding [7], the idea is to model each token a as an atom that can emit “neg-
ative” particles a- (electrons) while keeping track of their number, i.e., as suggested
in [17], we have that for all k ∈ N, a = ak⊗⊗k

i=1 a-, where ak represents an atom that
has released exactly k particles to the environment. Then, by replacing context arcs
on a with self-loop arcs on a-, we obtain an axiomatic construction of the monoidal
category of concurrent net computations. The approach of [7] deals satisfactorily with
both the collective and the individual token philosophy; possibly, a remaining concern
is that non-free monoids of objects sit uneasily with the traditional intuition of tokens as
atomic pieces of data that one should not be able to decompose. The problem with the
construction in [13] is instead that the freely generated model of computations has too
many arrows, representing spurious computations that contextual nets cannot perform.

In this paper we improve upon [13] by selecting suitable theories in partial mem-
bership equational logic in order to distinguish ‘good’ arrows – corresponding to com-
putations – from meaningless ones.
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ops d(_) c(_): Arrow -> Object. *** domain and codomain
op _⊗_: Arrow -> Object. *** monoidal product
op e : Object. *** unit of ⊗
op _;_ . *** Arrow composition (partial op.)
op γ(_,_): Object Object -> Arrow. *** symmetric natural transformation

Fig. 1. Operators in SMONCAT.

We refer the reader to the appendix of [5] for the essentials of partial membership
equational logic. Instead, for the reader’s convenience, we summarize in Appendix A
the description of the theories of monoids, categories, monoidal categories and symmet-
ric monoidal categories. Here we just remark that SMONCAT includes two sorts called
Object and Arrow (with Object a subsort of Arrow, written Object< Arrow), and
six operators (see Figure 1) satisfying the axioms of symmetric monoidal categories.

The idea presented in [13] is to model multiple concurrent readings by introduc-
ing in the class of net computations suitable transformations that take care of creating
as many copies as needed (sharing phase) and then reassembling all copies after the
reading (matching phase). These two transformations are called duplicators and co-
duplicators and are denoted by ∇ and ∆ respectively. It is worth observing that they are
“non-natural”, in the technical sense that the naturality axioms f ; ∇ = ∇ ; f ⊗ f and
∆ ; f = f ⊗ f ; ∆ are not enforced.

The theory of match-share categories is summarized in Figure 2. The right-hand
side of the figure gives a pictorial representation of the main axioms of the left-hand
side. The first group of axioms expresses the coherence of ∇ (defining the domain and
codomain of each component of ∇, stating that the unit e is trivially shared and that the
component for a⊗b can be expressed in terms of the components for a and b, the last
two axioms roughly establishing that sharing is associative and commutative), and the
second group that of ∆. The third group of axioms states how the two transformations
interact together. If we look at ∇(a) as a wiring establishing two connections between
the object a in the domain and the occurrences of a in the codomain, and dually for
∆(a), the last two axioms say that the multiplicity of connections is not important, and
that connections are bidirectional, i.e. it is not important how objects are connected but
just the fact that they are connected by an undirected path of “wiring.”

The theory of match-share categories is a conservative extension of the theory of
symmetric monoidal categories and therefore the construction between (pre-)nets and
symmetric monoidal categories can be straightforwardly extended to match-share cate-
gories. For modeling read arcs, the idea is to first view read arcs as self-loops (i.e. pairs
of inbound and outbound arcs), so that a transition t : u

w−→ v from u to v in context w is
regarded as an ordinary pre-net transition [t] : u⊗w−→ v⊗w, and then apply the free
construction to the resulting pre-net, building a match-share category of computations.
The special role of w – a “context” marking represented as an ordinary one – is dealt
with by copying ∇ and matching ∆. This however generates arrows that do not represent
admissible computations of the net. The construction is not resource-conscious, and the
distinction between read arcs and pre/post-sets is lost, since each token can be matched
and shared in all possible ways.
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fth MSCAT is
including SMONCAT.
ops ∇(_) ∆(_) : Object -> Arrow.

vars a b : Object.

eq d(∇(a)) = a.
eq c(∇(a)) = a⊗a.
eq ∇(e) = e.
eq ∇(a⊗b) = (∇(a)⊗∇(b));(a⊗γ(a,b)⊗b).
eq ∇(a);(∇(a)⊗a) = ∇(a);(a⊗∇(a)).
eq ∇(a);γ(a,a) = ∇(a).
eq d(∆(a)) = a⊗a.
eq c(∆(a)) = a.
eq ∆(e) = e.
eq ∆(a⊗b) = (a⊗γ(b,a)⊗b);(∆(a)⊗∆(b)).
eq (∆(a)⊗a);∆(a) = (a⊗∆(a));∆(a).
eq γ(a,a);∆(a) = ∆(a).

eq ∇(a);∆(a) = a.
eq ∆(a);∇(a) = (a⊗∇(a));(∆(a)⊗a).
endfth

·
∇·

∇

·
· · ·

=

·
∇· ·

∇· · ·
·
∇·
γ

·
· ·
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·
∇· ·
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·
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∆ =
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∆

·
∆
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∆

·
∇· ·
·
∆ =

·

·
· ·
·
∆

∇· ·
=
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·
∆

·

Fig. 2. Theory of match-share categories.

On the other hand, once we replace read arcs with self-loops, we can form the free
symmetric monoidal category of computations of the pre-net. Such category distin-
guishes arrows that represent the same concurrent computation, in that the construction
enforces sequentialization of all multiple readings of the same resource. For instance,
if t : a

c−→ b, the fact that t can fire two concurrent instances from a⊗a⊗ c will not be
reflected. However, the monoidal and the match-share category can be combined via a
mapping from the former to the latter that: (1) identifies all computations that are distin-
guished because of the order in which multiple readings are performed; and (2) selects
only the admissible computations of the net with read arcs.

Notation. Let R be a pre-net with read arcs. We denote by [R] the pre-net with the same
places as R and transitions {[t] : u⊗w −→ v⊗w | t : u

w−→ v ∈ R}. Moreover, we let
S([R]) denote the free symmetric monoidal category generated by [R] and let MS([R])
denote the free match-share category generated by [R].

Definition 1. The symmetric monoidal functor E : S([R])→MS([R]) is defined on gen-
erators by:

E(a) def= a (for any place a ∈ R)

E([t]) def= (u⊗∇w);([t]⊗w);(v⊗∆w) (for any transition t : u
w−→ v ∈ R).
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fth RAUT is including MON.
sort Rtrans.
subsort Monoid < Rtrans.
ops pre(_) post(_) ctx(_) : Rtrans -> Monoid.
var u : Monoid.
eq pre(u) = e.
eq post(u) = e.
eq ctx(u) = u.
endfth.

Fig. 3. Theory of read-automata.

Proposition 1 (cfr. [13]). The image E(S([R])) ⊆MS([R]) is isomorphic (via a sym-
metric monoidal functor) to the category of concatenable contextual processes of R.

The question that then arises is how to tell whether an arrow of MS([R]) belongs to
E(S([R])). We answer this by reformulating the construction at the level of theories in
partial membership equational logic, thus expressing a typing discipline for discarding
all meaningless arrows from MS([R]), while keeping all the good ones.

4 Functorial Models for Pre-nets with Read Arcs

The first step is to define the theory of “programs,” that is our base category of nets. It is
technically convenient to consider a larger class of nets, whose states are elements of a
generic, non-free monoid, as expressed in Figure 3. The class of pre-nets with read arcs
is then embedded as the full subclass whose states are free monoids (generated from
the set of places), and the results can be extended via the obvious embedding.

The theory RAUT has three operations, pre( ), post( ), and ctx( ), that define
respectively source, target and (read) context of each read-transition in Rtrans. Idle
transitions are included by the subsorting relation Monoid< Rtrans. The sort Monoid
comes from the theory MON of monoids, consisting of a total operation ⊗ which is
associative and has the constant e as unit (see Figure 9 in Appendix A).

The second step is to refine the theory MSCAT into a theory RCOMP by adding sorts
and operators that are needed to characterize the class of meaningful arrows. Thus, we
add two sorts Rtrans and Rarrow, with Object < Rtrans < Rarrow < Arrow: the
sort Rtrans is for embedding basic transitions, and the sort Rarrow is for collecting
all correct computations. Among the operators, we add those of RAUT for source, target
and context of basic transitions (i.e., pre( ), post( ), and ctx( )). Note that these
operators, unlike those for domain and codomain (i.e., d( ) and c( )), are not defined
for all arrows, but only for the elements of Rtrans. Note also that they are related to
the domain and codomain of transitions by the first two equations of the theory. The
membership axioms state that the sort Rarrow is closed under monoidal and sequential
composition and that it contains all the symmetries. The main novel ingredient is the
operator mk( ), which models the embedding E described above, namely mk(t) = [t],
for any transition t, as expressed by the last equation of the theory. The presence of
mk( ) is also technically convenient to prove the main correspondence results.
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fth RCOMP is including MSCAT.
sorts Rtrans Rarrow. subsorts Object < Rtrans < Rarrow < Arrow.
ops pre(_) post(_) ctx(_) : Rtrans -> Object.
op mk(_) : Rtrans -> Arrow.
vars h k : Rarrow. var t : Rtrans. var u : Object.
mb h⊗k : Rarrow.
mb γ(u,v) : Rarrow.
cmb h;k : Rarrow if c(h) == d(k).
eq pre(t)⊗ctx(t) = d(t).
eq post(t)⊗ctx(t) = c(t).
eq pre(u) = e.
eq post(u) = e.
eq ctx(u) = u.
eq d(mk(t)) = d(t).
eq c(mk(t)) = c(t).
eq mk(u) = u.
eq (pre(t)⊗∇(ctx(t)));(mk(t)⊗ctx(t));(post(t)⊗∆(ctx(t))) = t.
endfth.

Fig. 4. Theory of read-computations.

view RV from RAUT to RCOMP is
sort Monoid to Object.

endview.

Fig. 5. The view RV.

The third step is to express the adjunction between the class of programs and that
of models. This task is accomplished by the signature morphism RV in Figure 5, which
embeds homonym sorts and operators and maps the sort Monoid of RAUT to the sort
Object of RCOMP. It is easy to verify that all axioms in RAUT are respected by RV:

Proposition 2. The view RV is a theory morphism.

By Proposition 2 and because of the properties of theory morphisms [18], we know
that there is a right-adjoint forgetful functor URV from the category of RCOMP-algebras
to the category of RAUT-algebras, which includes all pre-nets with read arcs. We denote
by FRV the left-adjoint going in the opposite direction.

Lemma 1. Given a pre-net with read arcs R, its initial RCOMP-algebra FRV(R) is a
match-share category.

Proof. The free functor FRV ensures that the elements of sort Arrow of FRV(R) are built
by composing objects, transitions t ∈ R, symmetries and (co-)duplicators, together with
the additional elements mk(t) for any t ∈ R. The axioms of match-share categories are
enforced on all the elements of Arrow by inclusion of the theory MSCAT into RCOMP. ��

The fourth and final step is to show that the sort Rarrow can be used to characterize
all meaningful computations of R. For the following definition, we recall that a lluf
subcategory A of a category C is just a subcategory having all the objects of C.
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Definition 2. Given a pre-net with read arcs R, we let Rarrow(R) denote the lluf sub-
category of the match-share category FRV(R) whose arrows have sort Rarrow.

Lemma 2. For any pre-net with read arcs R, an element t has sort Rtrans in FRV(R) if
and only if t is a transition of R or t is a string of places.

Lemma 3. The category Rarrow(R) is symmetric monoidal.

Theorem 1. The category MS([R]) is isomorphic (via a match-share functor S ) to
FRV(R).

Proof. The match-share category FRV(R) is generated by composing t and mk(t) (for
any transition t) with identities, symmetries and (co-)duplicators in all possible ways.
Any expression of sort Arrow can be equivalently expressed as the parallel and sequen-
tial composition of just the mk(t)’s with identities, symmetries and (co-)duplicators,
because of the equation

eq (pre(t)⊗∇(ctx(t)));(mk(t)⊗ctx(t));(post(t)⊗∆(ctx(t))) = t.

that allows replacing all occurrences of t. Note that if t = u for some object u, then
mk(u) = u. Hence the constructor mk( ) cannot be applied to identities for generating
new arrows. Moreover, no other axioms involving t : Rtrans are present that could
further quotient out the elements of sort Arrow.

Let us consider the match-share functor S : MS([R])→ FRV(R) sending [t] to mk(t)
(and being the identity otherwise) which is well-defined by initiality of MS([R]). The
functor S is full and faithful, it preserves symmetries and (co-)duplicators, and it defines
an isomorphism on objects (and thus on arrows). ��
Theorem 2. The category E(S([R])) is isomorphic (via a symmetric monoidal functor
R ) to Rarrow(R).

Proof. The functor R is S restricted to E(S([R])). In fact, suppose that α ∈ E(S([R])),
then an arrow β ∈ S([R]) must exist such that E(β) = α. Let Q : S([R])→ Rarrow(R)
be the symmetric monoidal functor sending [t] to t and preserving identities, symme-
tries, sequential composition and monoidal composition. Then it is straightforward that
S(α) = Q (β) and hence S(α) has sort Rarrow. The functor R is an isomorphism be-
cause it is injective on the generators (the transitions of the net) and preserves the oper-
ations of symmetric monoidal categories strictly. ��

Note that the categories E(S([R])) and Rarrow(R) are not match-share categories,
and hence the functor R is not a match-share functor.

Theorem 2 defines a typing discipline for selecting the admissible computations
from the larger class MS([R]). Since, under appropriate assumptions [3], membership
predicates allow automated verification in languages like Maude [9], then the construc-
tion RV answers to the ambiguity of E .

Note that for the arrows in Rarrow(R) only the operations of domain and codomain
are defined, not those involved with contexts. However, the properties of the initial
model can be exploited to factor out the domain and codomain of arrows in Rarrow(R)
into their consumed, read and produced parts. We show this below.
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u1 u1 v1 v1
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h
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·
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u2 · a a · v2

Fig. 6. A read object a for the arrow h.
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Fig. 7. The proof of Lemma 4, graphically.

Definition 3. Let h ∈ Rarrow(R) and let a be an object with d(h) = u1⊗ a⊗ u2 and
c(h) = v1⊗a⊗ v2 for suitable objects u1, u2, v1, v2. The object a is said to be read in h
if h can be written as (cf. Figure 6):(

u1⊗∇(a)⊗u2

)
;
(

u1⊗a⊗ γ(a,u2)
)

;
(

h⊗a
)

;
(

v1⊗a⊗ γ(v2,a)
)

;
(

v1⊗∆(a)⊗ v2

)
.

Lemma 4. Let t : Rtrans. Then, ctx(t) is read in h.

The proof is graphically illustrated in Figure 7, where for simplicity we let u =
pre(t), v = post(t) and w = ctx(t). The marking read – and not consumed – by h is
the maximum marking read by h, and it can be characterized as follows.

Definition 4. Let h∈ Rarrow(R). The arrow h is pure if d(h) = u⊗w and c(h) = v⊗w,
with (u⊗∇(w));(h⊗w);(v⊗∆(w)) = h and no other object in u and v is read. The
object w is called the context of h and denoted by ctx(h), while u and v are denoted
respectively by pre(h) and post(h).

For h pure, we denote by ĥ the twisted version of h obtained by exchanging the
position of the context with that of the pre- and post-set (respectively, in the domain
and codomain of h), i.e. ĥ = γ(w,u);h;γ(v,w).

Corollary 1 (From Lemma 4). Any arrow h ∈ Rtrans(R) is pure.

Lemma 5. Let h∈ Rarrow(R) be pure, with pre(h) = u, post(h) = v and ctx(h) = w.
Then ĥ ∈ Rarrow(R) and ĥ = (∇(w)⊗u);(w⊗ ĥ);(∆(w)⊗ v).
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Fig. 8. The proof of Proposition 3, graphically.

The following result shows that computations which are serialized on contexts are
equivalent to the concurrent executions with multiple readings of the context.

Proposition 3. Let h1,h2 ∈ Rarrow(R) be pure arrows, with pre(hi) = ui, post(hi) =
vi and ctx(hi) = w for i = 1,2. Then:

(h1⊗u2);(v1⊗ ĥ2) = (u1⊗∇(w)⊗u2);(h1⊗ ĥ2);(v1⊗∇(w)⊗ v2)

= (u1⊗ ĥ2);(h1⊗ v2)

Proof. The proof exploits Lemmas 4 and 5 and is (partially) illustrated in Figure 8:

– we first make explicit that the arrows h1 and ĥ2 read the context w by applying the
laws (valid for pure arrows):

h1 = (u1⊗∇(w));(h1⊗w);(v1⊗∆(w))

ĥ2 = (∇(w)⊗u1);(w⊗ ĥ2);(∆(w)⊗ v1)

– then, we apply the axioms of match-share categories to rearrange the matching and
sharing of w to have enough concurrent copies of it available at the same time and
use functoriality of the tensor to shift h1 and ĥ2 in parallel;

– finally, we get rid of additional copies by applying back the laws of pure arrows.

The equality with the expression where ĥ2 precedes h1 is analogous. ��

5 Conclusion

Previous approaches to extending the “Petri nets are monoids” semantics to nets with
read arcs have either relied on structured tokens or have defined a too rich category of
computations, where it was difficult to filter out meaningless arrows. We have employed
theories in partial membership equational logic to solve the latter problem.

Specifically, we have introduced a suitable theory RCOMP that provides us with a
typing discipline to select all and only the correct concurrent computations. The theory
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RCOMP enucleates the fundamental algebraic principles on which the non-trivial opera-
tion of reading without consuming is based on. The functorial construction presented in
this paper has been reconciled with unfolding semantics in [1]. Moreover, as equational
reasoning in PMEqtl is supported by the rewriting logic language Maude [9], the the-
ory RCOMP offers a mathematical basis for the analysis and optimization of concurrent
computations in systems with many-readers access policies to shared resources (e.g.,
for the applications of contextual nets in [11, 23, 29, 10]).

We conclude by mentioning that a non-initial match-share category of abstract mod-
els for nets with read arcs has been used in [4], based on categories of (co)spans in Set.
However, the models in [4] do not retain all the information about the concurrent com-
putations of the net: they just keep track of which resources have been read throughout
the computation and thus can be concurrently accessed from the environment.
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22. J. Meseguer, P.C. Ölveczky, and M.-O. Stehr. Rewriting logic as a unifying framework for
Petri nets. Advances in Petri Nets: Unifying Petri Nets, LNCS 2128, pp. 250–303. Springer,
2001.

23. U. Montanari and F. Rossi. Contextual occurrence nets and concurrent constraint program-
ming. Proc. Dagstuhl Seminar on Graph Transformations in Computer Science, LNCS 776,
pp. 280–295. Springer, 1994.

24. U. Montanari and F. Rossi. Contextual nets. Acta Inform., 32:545–596, 1995.
25. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathe-

matik, Bonn, 1962.
26. W. Reisig. Petri Nets: An Introduction. EATCS Monographs. Springer, 1985.
27. V. Sassone. An axiomatization of the algebra of Petri net concatenable processes. Theoret.

Comput. Sci., 170(1-2):277–296, 1996.
28. V. Sassone. An axiomatization of the category of Petri net computations. Math. Struct. in

Comput. Sci., 8(2):117–151, 1998.
29. W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. Proc. ICALP’97,

LNCS 1256, pp. 538–548. Springer, 1997.
30. W. Vogler. Partial order semantics and read arcs. Proc. MFCS’97, LNCS 1295, pp. 508–517.

Springer, 1997.
31. G. Winskel and M. Nielsen. Models for concurrency. Handbook of Logic in Computer

Science. Oxford University Press, 1995.



Algebraic Theories for Contextual Pre-nets 269

fth CAT is fth MON is
sorts Object Arrow. sort Monoid.
subsort Object < Arrow. op e : -> Monoid.
ops d(_) c(_) : Arrow -> Object. op _⊗_ : Monoid Monoid -> Monoid
op _;_. [assoc id: e].
var a : Object. endfth
vars f g h : Arrow.
eq d(a) = a. fth MONCAT is
eq c(a) = a. MON

⊗
CAT renamed by (

ceq a;f = f sort (Monoid,Object) to Object.
if d(f) == a. sort (Monoid,Arrow) to Arrow.

ceq f;a = f op e left to e.
if c(f) == a. op _⊗_ left to _⊗_.

cmb f;g : Arrow op _;_ right to _;_.
if c(f) == d(g). op d(_) right to d(_).

ceq c(f) = d(g) op c(_) right to c(_). ).
if f;g : Arrow. endfth

ceq d(f;g) = d(f) if c(f) == d(g).
ceq c(f;g) = c(g) if c(f) == d(g).
ceq (f;g);h = f;(g;h) if c(f) == d(g) and c(g) == d(h).
endfth

Fig. 9. The theories CAT, MON, and MONCAT.

fth SMONCAT is including MONCAT.
op γ(_,_) : Object Object -> Arrow.
vars a a’ b b’ c : Object. vars f f’ : Arrow.
eq d(γ(a,b)) = a⊗b.
eq c(γ(a,b)) = b⊗a.
eq γ(a,e) = a.
eq γ(e,a) = a.
eq γ(a⊗b,c) = (a⊗γ(b,c));(γ(a,c)⊗b).
eq γ(a,b);γ(b,a) = a⊗b.
ceq (f⊗f’);γ(b,b’) = γ(a,a’);(f’⊗f)

if d(f) == a and d(f’) == a’ and c(f) == b and c(f’) == b’.
endfth

Fig. 10. The theory SMONCAT.

A Theories in Partial Membership Equational Logic

The theory of categories CAT is defined in Figure 9. It has sorts Object and Arrow with
Object< Arrow. There are two unary total operations d( ) and c( ), for domain and
codomain, and a binary composition ; defined iff the codomain of the first argument
is equal to the domain of the second argument. By convention, functions with given
domain and codomain are total on that domain and codomain. It is easy to check that
a model of CAT is a category (in which objects coincide with identity arrows), and that
CAT-homomorphisms are just functors (cf. [20] for the details).
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The theory MON of monoids is even simpler (Figure 9). It has a unique sort Monoid
and two total operators: the associative tensor ⊗ and the unit element e, which is the
identity for ⊗ . Then, by exploiting the tensor product of theories

⊗
defined in [20],

the theory of monoidal categories can be obtained by combining the theories MON and
CAT as illustrated in Figure 9. Note that the tensor product construction MON

⊗
CAT has

the sort poset originated from the product of the two sort posets in MON and CAT and
operators “opM left” and “opC right” for each operator opM in MON and opC in
CAT. The axioms of MON

⊗
CAT are generated by combining the axioms of MON and CAT

(see the appendix of [5] for details). The theory MONCAT just renames sorts and operators
by a more friendly notation.

Finally, the theory of symmetric monoidal categories SMONCAT is defined in Fig-
ure 10, by adding the symmetric natural transformation γ( , ).
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Abstract. We introduce a coalgebraic description of static web sites,
whereby pages are modeled by their links to other pages together with
some extra information. This information can be either related to the
contents or to the presentation or to the architecture of the page, etc.,
and its granularity can vary. This coalgebraic model provides a formal
framework for the analysis of the design of single web sites and for the
comparison of different sites. We give two alternative coalgebraic ac-
counts of user visits to a web site, as they arise by extracting the infor-
mation contained in the log file of the web server. The first one is defined
in terms of the notion of injective simulation, the latter in terms of an
appropriate lax morphism in Rel. These notions provide formal descrip-
tions of user behaviours and can suggest formal tools for the study of
the usability of a site.

Keywords: Web Site, Log File, User-Visit, Coalgebra, Coalgebraic
Bisimulation, Simulation, Relators.

Introduction

The social and economic importance of the World Wide Web has increased
enormously in recent years. Hence web usability issues have become essential in
site development. Nielsen warns us: The user “who clicks the mouse gets to decide
everything. It is so easy to go elsewhere; all the competitors in the world are but
a mouseclick away” [14]. Therefore the notion of web interaction is crucial when
dealing with usability. Intuitively, a web interaction occurs when a user visits a
website.

In spite of the role of the World Wide Web, apart from recent attempts such
as the one by J. Goguen on web interfaces, [7, 8], no completely satisfactory
formal model for dealing rigorously with web-design issues has yet been put
forward.

In this paper, we explore the possibility of utilizing coalgebraic tools in the
description of web sites, and we suggest a basic coalgebraic account of web inter-
actions. We feel that this approach can provide a simple, but firm, foundation
to a rigorous approach to web design and analysis.
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Coalgebras are algebraic structures dual to algebras. They can offer conve-
nient abstract accounts of datastructures, when the focus is on behaviour, ob-
servations, top-down recognition, etc., rather than on compositional generation.
F -coalgebras, for F endofunctor on a category C, provide a uniform categorical
descritpion of the behaviour of dynamical systems and various kinds of circular
and infinite objects [1, 2, 9, 5, 10, 18]. Furthermore, coalgebraic models give nat-
ural notions of behavioural equivalences between states of a dynamical system,
and between dynamical systems themselves. Such equivalences can be coinduc-
tively characterized as greatest coalgebraic bisimulations. Moreover, the unique
morphism from the coalgebra representing the system into the final coalgebra
gives a canonical model of the system, where bisimilar states are equated.

In this paper we model static websites as coalgebras for the functor A ×
Pf ( ), where Pf denotes the finite powerset functor and A denotes, with varying
granularity, page information, which can be either related to the contents or to
the presentation, or to the architecture of the page, or hyperlinks outgoing from
the site.

There is another coalgebraic approach to the World Wide Web in the lit-
erature due to Lisitsa and Sazonov, [11, 19]. They present an abstract hyperset
model of the Web. Coalgebraically, this amounts to modeling the Web as a coal-
gebra for the (hyper)set functor Pf(L× ), where Pf denotes the finite powerset
functor and L is a set of labels for links. This model is link-oriented. Pages are
modeled as sets of “words”, up to bisimilarity. Words carry a contents and a link
component. “Real” links correspond to links to non-empty pages.

The coalgebraic description that we propose takes into account the notions of
site and page information, and, unlike Sazonov’s model, it is contents-oriented.
Hence, we can naturally accomodate many features of web pages and web inter-
actions. First of all, we give a coalgebraic account of single web sites, and pages
are modeled not only in terms of their links but also of extra non-dynamic infor-
mation which they can carry. This information can be related to the contents,
including hyperlinks outgoing from the site, or to the architecture or presentation
of the page, according to which aspect of page/site design we wish to focus on.
The granularity of this information is not fixed, but in the case of contents, for
example, it can range from the entire text to a set of keywords. Page bisimilarity
in our abstract representation of web-sites immediately suggests what we feel
are correct design principles, which reduce the disorientation in the user w.r.t.
contents. We focus on static sites; in order to deal with dynamic sites, our model
should be enriched with extra information modeling various classes of users. A
more detailed comparison of our approach with Sazonov’s appears in Section 3.
Our coalgebraic model gives a formal framework for the analysis of (static) site
design, and for the comparison of different sites in terms of coalgebraic bisimi-
larity.

In modeling user visits, we proceed realistically, namely we utilize only the
information which can be extracted from the log file of the web server at the
site, i.e. the file in which the users’ activities concerning that site are registered.
We give two alternative (but equivalent) coalgebraic accounts of a user visit
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to a web site. The first one is defined in terms of the notion of simulation,
the latter in terms of an appropriate lax coalgebra morphism in a category of
sets and relations between the coalgebra representing the visit and a suitable
coalgebra induced by the site. In the latter we use the notion of relator [20, 17,
4]. Our coalgebraic account of user visits gives us a formal tool for studying user
behaviour, and hence for analysing the usability of a site, which could fruitfully
complement the more standard, but subjective methods of heuristic evaluation
and user testing. In particular, we provide formal descriptions of various web
design notions and properties, such as user behavior, locality, reachability. An
interesting result of our analysis is that bisimilarity equivalence on sites can be
expressed in terms of the behavioural equivalence on sites as can be gathered by
considering the possible visits to them. This implies that also if we (can) assess
the usability of a site in terms of the server-centred information contained in the
log file, sites can be taken essentially up-to bisimilarity.

Synopsis. In Section 1, we present an overwiev of the features of the web which
are of interest for our purposes. In Section 2, we present our coalgebraic model
of web interactions. Comparison with related work and final remarks appear in
Section 3. In the Appendix A, some basic notions on coalgebras are recalled.

A preliminary version of this paper was presented at the WADT02 Confer-
ence, Frauenchiemsee, Germany.

1 An Overview of Web

1.1 What Is a Website?

A website can be described as a set of web pages together with a link structure,
for example a tree, a graph. Recently, Brajnik and Toppano1 proposed a more
analytical definition of a web site, accounting for extra features, which intervene
in web design. More precisely, they view a site under three different (indepen-
dent) perspectives: contents, architecture, and presentation. Therefore, a site is
represented as a triple corresponding to the three aspects above. In particular,
the contents part describes the topic of each page. Architectural aspects include
the organization of the information, the navigation system, the labeling system
[16]. Finally, the presentation part accounts for e.g. font and character size of
each page. The main advantage of this approach is a reduction of the complexity
in designing and analysing a site.

1.2 How Can We Gather Information on User Behaviour?

In the literature, there are three methods for obtaining information on user
behaviour: Usability Testing (also known in the literature as (Discount) User
Testing), Questionary, and the Log File. The first is a reproduction of the inter-
action between user and site. Questionaries provide subjective opinions of the

1 private communication.
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user on the site. Finally, the Log File is the only objective tool available for
measuring the workload of a server. In the literature also Heuristic Evaluation
is considered. This is a usability engineering method for discovering usability
problems in a user interface design, so that they can be taken care of through
an interactive design process [13]. Heuristic Evaluation does not tell us anything
about user behaviour.

1.3 Log File

Broadly speaking, the log file is a set of lines. Each of these represents a user’s
request to a site. More precisely, user’s requests are operations on a site, called
hits. They measure the workload of the server (or rather, the program on the
server that manages the interface with the web server).

At a lower level, an interaction between user and site is an interaction between
the client of a user and the web server of a site via some protocol. Nowadays
the most frequent web protocol is HTTP. In such an interaction, the web server
registers the requests of the client on the log file. In the following example, we
illustrate a fragment of a log file, where we highlight the first hit.

Example 1 (Fragment of Log File).

#Software: Microsoft Internet Information Server 4.0
#Version: 1.0
#Date: 2000-10-06 00:01:56
#Fields: date time c-ip cs-method cs-uri-stem sc-status sc-bytes cs-bytes
# cs-version cs(User-Agent) cs(Referer)

Hit =




2000-10-06 00:01:56 193.207.47.2 GET /TimeService.taf 200 174 143
HTTP/1.0 Tango+Application+Server/4.05.020+(WindowsNT/4.0;
+INTEL) -

2000-10-06 00:03:33 209.73.164.40 GET /catalogo.taf 200 27254 284 HTTP/1.0
Scooter/2.0+G.R.A.B.+V1.1.0 -
2000-10-06 00:17:17 212.41.211.28 GET /images/pulsantiera logo Alias.gif 200
871 312 HTTP/1.1 Mozilla/4.0+(compatible;+MSIE+4.01;+Windows+98)
http://www.alias.it/
2000-10-06 00:17:18 212.41.211.28 GET /images/pulsantiera internet.gif 200
1046 310 HTTP/1.1 Mozilla/4.0+(compatible;+MSIE+4.01;+Windows+98)
http://www.alias.it/

A hit represents each individual operation; that is, if a web page has four
images, then we have five hits: four for loading the images, and one for loading
the web page. Each hit consists of fields, such as date, time, and method. More
particularly, these fields depend on the format of the log file.

At the beginning of the (fragment) of the log file, we marked by # some notes
which help us in reading the hits. The fields are only a subset of those available
in the Microsoft IIS format. Take for example the first hit. Then 2000-10-06
and 00:01:56 are the date and the GMT time of the request; 193.207.47.2
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is the client address; GET is the method used for the client server interaction
(called by the acronym cs); /TimeService.taf is the requested resource; the
status field 200 means that the server satisfied the client request; 174 is the
number of bytes sent from the server to the client (called by the acronym sc)
whereas 143 is the number of bytes received by the client; HTTP/1.0 and
Tango+Application+Server/4.05.020+(WindowsNT/4.0;+INTEL) are respec-
tively the protocol version and the software used by the client in the interaction
(note that we have also the information concerning the operating system); finally
the referer field is the previous requested resource of the client, note that in the
first hit the referer is not recordered (in fact we have “-”) whereas in the last
hit the referer is http://www.alias.it/.

The only information about the user registered in the log file is the IP address
of the computer which she is using. Of course, there can be more users on the
same computer, or the same user can be on more computers, but these situations
are not described in the log file. Several algorithms have been introduced in the
literature, in order to understand when several users have the same IP [15], but
these algorithms are not normally available. Therefore, we choose to approximate
users with IP addresses.

By a user visit, we mean the set of page requests to a site from the user,
registered in the log file. Notice that we consider only page requests and not a
generic request (e.g. for loading an image). This corresponds to selecting, in the
log file, exactly the hits where the method is GET and the file has the extension
.html. However, in general, not all pages visited by a user are registered in the
log file, due to the mechanisms of browser caching and Internet caching.

1.4 Browser and Internet Caching

When a page is requested from a client to a server, it is usually loaded in the
client’s cache.
Take for example A= http://www.dimi.uniud.it, and suppose the user visits
also a linked page, for example http://www.dimi.uniud.it/people. If the user
returns to A, either via a back link or via an ordinary link, then the latter
operation will not be registered in the server. In fact the user is visiting the copy-
cache of A in her client. This gives rise to a GAP in the log file. More properly, we
define a GAP as any path of the user on the graph of the site that is unregistered
in the log file. In general, the cache memory depends on the architecture of the
client. GAPs in the log file can be also due to Internet caching. The mechanism
of Internet caching allows to recover a page from the cache memory of a server
different from the one which has requested the page. This happens when a client
requests a page of a site through another site (typically through a search engine),
and the page is resident in the cache of the intermediate site.

Therefore, if we assume an “unlimited” cache memory for the user, which
seems to be a good approximation in many concrete cases, then only “first vi-
sits” to web pages are registered in the log file. However, not all first visits
are registered, due to Internet caching. For simplicity, we do not treat Internet
caching in this paper.
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2 The Coalgebraic Model

In this section, we illustrate our coalgebraic model of web interactions, and we
analyse the properties captured by it. First, we give a coalgebraic account of a
web site, whereby pages are modelled by their links together with some extra
information. This information can be related either to the contents, including
hyperlinks outgoing from the site, or to the architecture or to the presentation
of the page, according to which aspect of page/site design we wish to focus on.
Then, we give a coalgebraic account of user visits, as they can be defined on the
basis of the information in the log file.

Rather than using ordinary Set Theory, we prefer we work in the category
Set∗U of non-wellfounded sets (or hypersets) with Urelements (atoms), i.e. sets
of a universe with atoms satisfying an Antifoundation Axiom [6, 1]. Hypersets
provide a very intuitive and convenient way of describing the final coalgebras for
the functors involved in this paper, the function being the identity. In ordinary
Set Theory this would not be so, and we would need some extra effort to grasp
the shape of the final coalgebra. Furthermore, by so doing we make it more easy
to compare our approach to Sazonov’s.

2.1 Coalgebraic Description of Web Sites

We describe a site w.r.t. three parameters: contents, architecture, presentation.
To this end, we define a set A � C × A × P , where C,A, P are sets of atoms
encoding contents, architecture, presentation information, respectively.

A web page p can then be represented by a (possibly circular) pair (a, {l1 :
p1, . . . , ln : pn}), where li(∈ L) is a link label in p and pi is the page linked
by li, and a ∈ A is the encoding of a contents related information on the page
p. In this page representation, more than one link from one page to another is
allowed. However, link labels are missing in the log file. Therefore, in our model,
we assume that there is at most one link from one page to another. This allows
us to simplify the above presentation of a web page p with p = (a, {p1, . . . , pn}).
Our assumption is also justified by the fact that it is a design principle to have
at most one link from one page to another with the exception of textual links.
We emphasize that {p1, . . . , pn} are a subset of the pages in the site, since our
model is stricly based on the log file. Information of any external link, that is
links from an inside page to a outside page can be registered in A.

A (static) web site S, i.e. a set of (link connected) web pages closed under
the relation induced by the links, is represented as a coalgebra for the functor
FA(X) : Set∗U → Set∗U defined by FA(X) � A × Pf (X). For a set of pages S
representing a site, the coalgebra structure fS : S → FA(S) yields the identifier
of the current page (state) and the pages reached via the links from the current
page (the next states), i.e. fS(p) = (a, {p1, . . . , pn}).

We call web-site coalgebra a coalgebra for the functor FA above.
Our coalgebraic description of a site induces a notion of coalgebraic equiva-

lence on the web-pages of a given site:
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Notion Coalgebraic Description w.r.t. FA = A×Pf ( )

Page p = (a, {p1, . . . , pn}), where a ∈ A

Site FA-coalgebra fS : S → FA(S) defined by fS(p) � 〈a, {p1, . . . pn}〉

Definition 1 (Web-page bisimilarity). Let fS : S → FA(S) be a web-site
coalgebra. Two pages p1, p2 ∈ S are coalgebraically equivalent if there exists an
FA-bisimulation R ⊆ S×S relating p1 and p2. I.e. there exists a relation R such
that (p1, p2) ∈ R, and moreover :

(p, p′) ∈ R =⇒
i) π1 ◦ fS(p) = π1 ◦ fS(p′) and
ii) ∀p1 ∈ π2 ◦ fS(p) ∃p′1 ∈ π2 ◦ fS(p′). (p1, p

′
1) ∈ R and

iii) ∀p′1 ∈ π2 ◦ fS(p′) ∃p1 ∈ π2 ◦ fS(p). (p1, p
′
1) ∈ R .

Similarly, we introduce a coalgebraic equivalence between different sites:

Definition 2 (Web-site bisimilarity). Two web-sites fS : S → FA(S) and
gT : T → FA(T ) are coalgebraically equivalent if there exists an FA-bisimulation
R ⊆ S × T , i.e.

(p, p′) ∈ R =⇒
i) π1 ◦ fS(p) = π1 ◦ gT (p′) and
ii) ∀p1 ∈ π2 ◦ fS(p) ∃p′1 ∈ π2 ◦ gT (p′). (p1, p

′
1) ∈ R and

iii) ∀p′1 ∈ π2 ◦ gT (p′) ∃p1 ∈ π2 ◦ fS(p). (p1, p
′
1) ∈ R .

According to the coalgebraic paradigm (see Appendix A), the image of the
unique morphism from the coalgebra representing a site, (S, fS) say, to the fi-
nal FAcoalgebra provides the canonical model of the site, i.e the minimal (non
redundant) web-site equivalent to (S, fS).

Proposition 1 (Irredundant web-site). Let (S, fS) be a web-site coalgebra.
Then the image of the unique morphism MS from (S, fS) into the final FA-
coalgebra gives the minimal (non redundant) web site equivalent to S w.r.t. the
chosen page representation A, i.e. MS(p) = MS(p′) iff p ∼A p′, where ∼A is
the largest FA-bisimulation.

Clearly, in designing a web-site, one has to have very good reasons not to go
for an irredundant web-site, given the contents A.

In our coalgebraic description of web pages, we have not fixed the parame-
ter A, encoding page information. We can choose to model pages with different
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levels of abstraction, according to the analysis that we want to carry out. E.g.,
as far as contents, the finest description is obtained by taking the parameter C
in A to encode the entire contents of pages. A coarser description can be ob-
tained when C encodes just the titles of pages. The coarsest possible description
is obtained by taking C � 1, where 1 is a one-element set, i.e. the final object in
Set∗U . This corresponds to disregarding contents information completely. Differ-
ent levels of abstraction in the parameter A give rise to different functors related
by (surjective) natural transformations, η : FA

·→ FA′ ; this represents the ab-
straction procedure from one representation to a coarser one. Correspondingly,
the coalgebraic representations of a site w.r.t. FA and FA′ are η-related. I.e. if
(S, fS) is the FA-coalgebra representation of a site, then (S, ηS ◦ fS) is the FA′ -
coalgebra representation of the same site given by FA′ . Moreover, as expected,
page equivalence is preserved from the finer model to the coarser one.

Our coalgebraic model can be used to study the structure of a given web
site. By choosing different levels of granularity for A, we can detect contents
(architecture, presentation) related pages or possibly useless page duplications.
In particular, the coalgebraic model can capture naturally the property of co-
herence of a site. Informally, a site is coherent w.r.t. architecture, respectively
presentation, if the corresponding choices are the same for all pages. This can be
accounted for in our coalgebraic model, by showing that the site FA-coalgebra
is also a site FA′ -coalgebra for a suitable A′. Intuitively, the three parameters of
A, (that is, contents, architecture and presentation) can be considered as three
viewpoints on the site. Take for example the case of architecture of a page. If we
abstract both the contents and presentation parameters, then we only see the
pages of a site under the architectural feature. As a result, the final coalgebra
will exactly give all architectural schemata of the pages.

2.2 Coalgebraic Description of User Visits
We model a user visit to a site (S, fS), on the basis of the information registered
in the log file of S (see Subsection 1.3). We assume first that each client has a
personal (unlimited) cache memory. As a consequence, for each user, only the
first visit to each site page is registered in the log file. Therefore, by abstracting
from possible multiple requests of the same page, a visit can be realistically
represented as a tree, which is a subgraph of the site.

First we need to introduce the notion of FA-simulation, between FA- coalge-
bras. This is a sort of one-sided bisimulation:

Definition 3. Let fS : S → FA(S) and gT : T → FA(T ) be FA-coalgebras. An
FA-simulation R ⊆ S × T , is a relation such that

(p, p′) ∈ R =⇒
i) π1 ◦ fS(p) = π1 ◦ gT (p′) and
ii) ∀p1 ∈ π2 ◦ fS(p) ∃p′1 ∈ π2 ◦ gT (p′). (p1, p

′
1) ∈ R.

An FA-simulation R is total if its domain is precisely S.

Now we are in the position of introducing our first coalgebraic description of
user visit:



A Coalgebraic Description of Web Interactions 279

Definition 4 (User Visit). A visit to a site (S, fS : S → FA(S)) is a total,
functional, and injective FA-simulation between an FA-coalgebra (V, gV ) and
(S, fS), where (V, gV ) is a tree coalgebra. A tree coalgebra (V, gV ) is a coalgebra
such that there exists p0 ∈ V representing the entry page and ∀p ∈ V , there
exists a unique sequence (p0, . . . , pn) such that pn = p and, for all 0 ≤ i < n,
pi+1 ∈ π2 ◦ gV (pi).

In the simulation condition above, the injectivity condition guarantees that
visits correspond exactly to subgraphs of the site, and not only up-to bisimilarity.

One can notice that user-visits are not FA-subcoalgebras of the original site.
A somewhat weaker notion of FA-coalgebra morphism is necessary to describe
user visits, namely that of lax coalgebra morphisms. Hence we show that user
visits can be alternatively characterized via lax coalgebra morphisms in the cat-
egory Rel∗U of non-wellfounded sets and relations.

First we need to introduce the notion of relator, originally introduced and
discussed in the literature by [20, 17, 4]. The notion of relator simulation can be
given in any category of relations. For simplicitly, we do not give it in its full
generality, but we focus on the category Rel∗U .

Definition 5 (Relator). i) A strong relator Γ is a functor in the category
Rel∗U .
ii) A relator is a strong relator which does not necessarily preserve the identity
relation.
iii) A F -relator Γ , where F : Set∗U → Set∗U is a functor, is a relator which
extends the functor F , i.e.

– Γ (A) = F (A), for every set A
– F (f) ⊆ Γ (f), for every function f (identified with its graph-relation).

Relators can be used to provide a purely categorical account of simulations,
but we shall not develop this here, see [20] for more details.

We can now define a lax coalgebra morphism between Γ -coalgebras, for a
relator Γ :

Definition 6 (Lax Coalgebra Morphism). Let Γ : Rel∗U → Rel∗U be a rela-
tor, and let (X, fX), (Y, fY ) be Γ -coalgebras. Then h : (X, fX) → (Y, fY ) is a
lax coalgebra morphism if Γ (h) ◦ fX ⊆ fY ◦ h.

A direct calculation shows that a user visit can be characterized as follows:

Proposition 2. A user visit of the site (S, fS : S → FA(S)), i.e. a total, func-
tional, injective simulation R between a tree coalgebra (V, gV ) and (S, fS), is a
lax morphism R : (V, gV ) → (S,RfS ) in Rel∗U w.r.t. the FA-relator ΓA defined
by: for all R ⊆ X × Y, ΓA(R) : A × Pf (X) → A× Pf (Y ), (a, x)ΓA(R)(a, y)
iff x ⊆ R̂(y), where R̂(y) � {z | ∃z′ ∈ y . zRz′}, and where RfS : S × ΓA(S) is
defined by (p, (a, x)) ∈ RfS iff a = π1 ◦ fS(p) and x ⊆ π2 ◦ fS(p).

Vice versa any total, functional and injective lax morphism R : (V, gV ) →
(S,RfS ) between ΓA-coalgebras, for ΓA FA-relator defined as above, (V, gV ) tree
FA-coalgebra and (S,RfS ), arising from an FA-coalgebra (S, fS) as above, is a
user visit for (S, fS).
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Various properties concerning user behaviors can now be discussed in our
coalgebraic setting.

First of all, the notion of locality of a visit R of the site (S, fS), i.e. the set of
pages of the site which have been explored during a visit, can be recovered by
taking the image of the user visit R.

In our coalgebraic setting, bisimilarity on visits defines user behaviours, in
the sense that two users can be taken to have the same behaviour w.r.t. a site,
if their visits are bisimilar.

An interesting result that we obtain from our model is that user visits to a
site are sufficient to characterize a site up-to bisimilarity, i.e. if we ignore self-
references to pages, that is the links from a page to itself. Namely two sites are
equivalent (bisimilar) if and only if they admit equivalent (bisimilar) visits.

Proposition 3. Let (S, fS), (S′, fS′) be site FA-coalgebras, with no self-links.
Then S is bisimilar to S′, if and only if for any visit V of S there exists a
bisimilar visit V ′ of S′ and vice versa.

Proof. (Sketch) If the sites S, S′ are bisimilar then it is immediate that they
have bisimilar visits. In order to show the converse, we use coinduction. 
�

The problem of self-references arises because in the log file only the first visit
to a page is registered. Hence, we cannot “observe” self-links, while any other
link connecting different pages is observable. In order to overcome this problem,
we could set the life-time of pages in the local cache memory to 0. Under this
assumption, all user visits to pages of a site are registered in the log file. As a
consequence, a visit can be characterized as a path in the graph of the site. In
the general case, where we have a bounded cache memory, a visit amounts to a
subgraph of the site. Coalgebraically, this can be described as a visit according to
Definition 4, where the tree coalgebra hypothesis on the simulation is dropped:

Definition 7 (User Visit, bounded cache). A user visit of the site (S, fS :
S → FA(S)) is a total, functional, injective FA-simulation between a FA- coal-
gebra (V, gV ) and (S, fS).

Analogous results to those given for user visits under the assumption of
unlimited cache memory hold also in this case. In particular, a strenghtening of
Proposition 3 holds, whereby bisimilarity equivalence of sites, including pages
with self-links, can be exactly characterized in terms of bisimilarity of user visits.

If we (could) assess the usability of a site only in terms of the server-centred
information contained in the log file, sites could be taken essentially up-to bisi-
milarity.

More accurate models for visits can be obtained by exploiting also the time
information in the hits of the log file, although we need to be very cautious. The
time interval between visits to successive pages could be taken as an approxima-
tion of the time spent by the user to “completely understand” each single page,
but this is true only up to a first approximation. The functor used in this case
would be FA×∆, where ∆ encodes positive time intervals. A natural notion of
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∆-enriched visit can then be defined by taking the domain of the simulation to
be (V, gV ), where (V, gV ) is an FA×∆-coalgebra, and (V, ηV ◦ gV ) is a standard
visit domain, for η : FA×∆

·→ FA the abstraction natural transformation. The
bisimilarity equivalence on this model allows us to study user behaviour on the
basis of the time spent for a visit, and hence to judge the usability of pages/sites.

3 Conclusions and Directions for Future Work

In this paper, we have introduced a coalgebraic description of web interactions.
In particular, we have defined coalgebraic models of sites and user visits to
a site. The latter relies on the information registered in the log file. In our
coalgebraic model, we provide formal accounts of some important properties of
sites, including coherence of a site, locality of a visit, user behaviour.

Comparison with Sazonov’s approach. In the introduction, we have sketched
Sazonov’s model for the web. He considers the web as a coalgebra for the (hy-
per)set functor Pf (L× ), where Pf denotes the finite powerset functor and L is a
set of labels for links. His aim was to provide an abstract, “static” set-theoretic
view of the web in order to build a query language for Web-like Data Bases.
Such a model apparently needs to be link-oriented. Unlike Sazonov, our aim was
to give a formal model of the interaction between user and site by exploiting
the information in the log file. Ours is a contents-oriented approach. We have
chosen therefore the functor FA(X) = A×P (X), A denoting the contents, pos-
sibly at different levels of abstraction. Moreover, since in the log file the precise
nature of links is missing, we did not deal explicitly with them. Hence, unlike in
Sazonov’s model, we do not have, in general, more than one link from a given
page to another page, and similarly two pages, p1, p2, whose only difference is in
the labels to the same pages, are taken to be equivalent for us but different for
Sazonov. In our approach the precise nature of labels can be accounted for in
the contents. This is fine unless one wants to access pages using set-theoretic op-
erations acting explicitly on the label as Sazonov does. As a trade-off we do not
need to use the “trick” of a label to an empty page to represent contents, which
has no hyperlinks. Furthermore, by modifying the nature of A, using natural
transformations, we have a more flexible approach which allows for discussing
naturally also issues not related to links.

Probably a more complete categorical picture of websites can be achieved
by considering as functor GA(X) = A × P (L × X). However, for the precise
purposes of this paper this would have resulted in unnecessary complications.

We end up with a list of open problems issuing from our approach:

– It would to interesting to extend our model, in order to capture possibly
dynamic sites. To this end it could be interesting to consider the approach
by Atzeni and al. [12, 3].

– In this paper we have mainly focussed on possible applications of our coal-
gebraic model to the analysis of web sites. We are confident that our model
can help also in the design of sites. Yet unexplored in the literature are the
issues of site specification and site refinement.
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– It would be interesting to study formal (coalgebraic) techniques for reasoning
on the correctness of algorithms on web sites. To this end, sites could be
formalized as (coinductive) data types, following the approach in this paper.

– The issue of Internet caching would probably lead us to cosider visits as
forests. More work needs to be done here.

– There are still a number of other mechanisms which could be better under-
stood, given a formalization of their behaviour, e.g. Forward and Backward
moves.
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A Coalgebraic Preliminaries
In this section, we recall the notion of coalgebra, coalgebra morphism, coalgebraic
bisimulation, and the main result of the coalgebraic paradigm, which chara-
cterizes equivalences induced by morphisms into final coalgebras as coalgebraic
bisimilarities, i.e. greatest coalgebraic bisimulations. For more details, see e.g. [9].
We work in the category Set∗U of non-wellfounded sets with Urelements (atoms),
i.e. sets of a universe with atoms satisfying an Antifoundation Axiom, [6, 1].

Definition 8. Let F : Set∗U → Set∗U . A F -coalgebra is a pair (X, fX), where
fX : X → F (X) is an arrow in Set∗U . F -coalgebras can be endowed with the struc-
ture of a category by defining F -coalgebra morphisms as follows. h : (X, fX) →
(Y, fY ) is a F -coalgebra morphism if h : X → Y is an arrow of the category
Set∗U such that the following diagram commutes

X
h ��

fX

��

Y

fY

��
F (X)

F (h)
�� F (Y )

Definition 9 (F -bisimulation, [2]). Let F be an endofunctor on the category
Set∗U . A relation R ⊆ X × Y is a F -bisimulation on F -coalgebras (X, fX) and
(Y, fY ), if there exists an arrow of Set∗U , γ : R→ F (R), such that the following
diagram commutes

X

fX

��

R
π1�� π2 ��

γ

��

Y

fY

��
F (X) F (R)

F (π1)
��

F (π2)
�� F (Y )

Equivalences induced by unique morphisms into final coalgebras can be char-
acterized coinductively as the greatest F -bisimulations.

Theorem 1. Suppose that F : Set∗U → Set∗U has a final F -coalgebra (ΩF , fΩF ).
Let (X, fX) be a F -coalgebra, and let M : (X, fX) → (ΩF , fΩF ) be the unique
final morphism. If F preserves weak pullbacks, then
i) for all F -bisimulations R on (X, fX), M◦ π1 =M◦ π2;
ii) the kernel pair of M is an F -bisimulation on (X, fX).
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Abstract. We define a calculus for modeling dynamic linking indepen-
dently of the details of a particular programming environment.
The calculus distinguishes at the language level the notions of software
configuration and execution, by introducing separate syntactic notions
of linkset expression and command, respectively.
A reduction step can be either a simplification of a linkset expression,
or the execution of a command w.r.t. a specific underlying software con-
figuration denoted by a linkset expression; because of dynamic linking,
these two kinds of reductions are interleaved.
The type system of the calculus, which is proved to be sound, relies on
an accurate dependency analysis for ensuring type safety without losing
the advantages offered by dynamic linking.

1 Introduction

In the early years of programming languages, programs were considered as large
self-contained entities. Programming environments offered only primitive facili-
ties for splitting code into single fragments and manipulating these individually.
Correspondingly, formal models of type-checking and execution were related to
whole programs.

However, the need for mechanisms of modularization has quickly emerged
in different phases of the process of software production and execution. At the
language level it was soon realized the importance of decomposing software into
relatively small pieces, each one corresponding to a single logical unit. This pieces
of software are usually called modules. In this way it is possible to associate with
each module a specification of its behavior. Moreover, single modules can be
developed and tested independently and then composed by just relying on their
specifications. Considerable effort has been invested in studying theoretical foun-
dations and designing advanced forms of module systems [2,13,14,12,5,9,11,1],
inspired by the unifying principle of two separate linguistic levels, a module lan-
guage providing operators for combining software components, with their own
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typing rules, constructed on top of a core language for defining module compo-
nents. The module language should be independent as much as possible from
the core language, even more, in principle could be instantiated over different
core languages (see, e.g., [12,2] for an effective demonstration of these ideas).

Turning now to consider extra-linguistic aspects, an important feature a pro-
gramming environment should support in order to achieve modularization is
separate compilation. This means that modules in the language should corre-
spond to compilation units (actually the necessity of splitting large programs
into fragments in order to compile them separately was one of the initial moti-
vations for modularization). Of course, from the compilation of a single source
fragment we do not expect in general to get an executable program, since this
fragment is open, that is, refers to other fragments on which it specifies some
requirements; however, an executable program can be obtained by assembling
together in some way a collection of binary fragments obtained by separate com-
pilation, provided that mutual requirements are satisfied. This process, which is,
for instance, performed by a (static) linker, is usually underspecified in program-
ming environments, and has not deserved much attention until the recent years.
Cardelli’s work on foundations of linking [4] can be considered a milestone in this
direction and is based on the definition of a simple framework where each module
can be separately compiled to a self-contained entity called a linkset, which is a
collection of named judgments X1 �→ Γ1 � e1 : τ1, . . . , Xn �→ Γn � en : τn where
ei is a code fragment named Xi, τi is the type associated to this fragment during
separate compilation (here, as in [4], we reduce compilation to type-checking and
do not consider issues concerning code generation), and Γi is a type environment
specifying the requirements on other fragments needed for type-checking ei. At
this point, provided that the linkset inter-checks (that is, linkset fragments are
consistent with respect to each other), an executable program can be obtained
from the linkset by applying a sequence of linking steps, where each step consists
of resolving (by substitution) the dependencies of all other fragments on a given
self-contained fragment Xi (mutual recursion is not considered in [4]), finally
leading to a closed piece of code. In addition to Cardelli’s paper, it must be
pointed out that module calculi such as, e.g., CMS introduced in [2], can also be
seen as formal models of linking; indeed, in these calculi modules can be viewed
both as entities at the language level (hence, operators of the calculus model
operators of the module language) and as code fragments. In the latter view, op-
erators of the calculus model operations which can be performed on fragments
(such as primitives of a configuration language): for instance, the linking step in
[4] corresponds in CMS to the application of a freeze1 operator which resolves
all dependencies on a given module component X by making a local copy of the
current definition of X in such a way that further changes to X will not affect
the other components (this allows to also model mutual recursion).

1 This is the name adopted in the original formulation in [2], while in the calculus
presented here we will adopt for the analogous operator the more appropriate name
link.
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All these formal frameworks only model static linking, that is, the case in
which the configuration phase of the software system takes place only before
execution and yields a closed piece of code. However, most widely-used modern
programming environments such as those of Java and C# provide an even more
advanced form of modularization where not only single source fragments can
be separately compiled, but the resulting code fragments can be be linked to
an already executing program (dynamic linking), hence the configuration and
execution phases can be interleaved.

To our knowledge, a simple formal model of dynamic linking analogous to
that for static linking in [4] is missing; the existing literature on the subject
is mainly concerned with the modeling of concrete mechanisms in existing pro-
gramming environments (see, e.g., the large amount of work of Drossopoulou
and others on phases of dynamic linking and verification in Java-like languages
[7,6,8]). In this paper, we provide a first step towards an understanding of the
dynamic linking mechanism abstracted from the details of a particular program-
ming environment.

To this end, we introduce a simple calculus of configurations, which are pairs
consisting of a linkset expression and a command. Configurations can evolve
in two ways: either by simplifying the linkset expression (that is, performing a
configuration step) or by performing a step in the execution of the command.
However, configuration and execution are interleaved: an execution step may
trigger a configuration step (for instance, when a not linked yet fragment is
needed) and modify the execution context (for instance, updating a fragment).
Summary. Section 2 contains the formal definitions and main results together
with some simple examples; in Section 3 we draw some conclusion and we discuss
possible directions for future work.

2 A Calculus of Linksets

In this section we formally define our calculus. Terms of the calculus, called con-
figurations, model snapshots in the lifetime of a software system, and are pairs
consisting of a linkset and a command, corresponding to two different phases
called configuration phase and execution phase, respectively. The configuration
phase corresponds to the process of obtaining an executable application by com-
bining in various ways different pieces of software. This phase may be interleaved
with the execution phase, even though it typically takes place before execution;
for instance, it can correspond to what is performed by a (static) linker. In our
calculus, this phase is modeled by the fact that the linkset is, in general, a com-
plex expression, which must be reduced to a normal form for performing some
kind of command; after that, it is possible to start reducing the command, in
the context provided by the linkset.

Basic linksets are roughly, as in [4], collections of named, interdependent code
fragments, and operators for composing linksets correspond to operations one
can perform during configuration. In particular, an important operation one can
perform on a linkset is what is called in [4] a linking step: we can link a fragment,
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say X, that is, resolve the dependencies on X. Static linking (as modeled, e.g.,
by Cardelli [4]) requires fully linked linksets in order to start the execution of
any command, so that all dependencies have been resolved before the execution
phase starts.

However, in our model we want to be more flexible by allowing linking to
take place at run-time too. Hence, execution can start also when the linkset
is not fully linked; during execution of the command, we can find references
to other fragments which have not been resolved yet, hence they need to be
dynamically linked. We distinguish two forms of run-time linking. In the first
form, which we call (permanent) dynamic linking or simply dynamic linking,
a fragment is permanently linked to the executing program the first time it
is needed. This is what dynamic linking means in, e.g., Java and C#. In the
second form, which we call volatile dynamic linking, or simply volatile linking,
a fragment is made available to the executing program when its code is needed,
but not permanently linked, so that when a later reference to the same fragment
is encountered the linking must be performed again, and in case the fragment’s
code has been changed thereafter the new version is used. The latter form of
linking offers the flexibility necessary for dynamic reconfiguration of systems.
Even if this feature is not largely exploited yet in current real-world programming
languages, volatile linking can also be seen as an abstraction to manage at the
programming language level the new forms of networks (peer-to-peer, ad-hoc,
etc.) in which the high-level of mobility requires context-aware programming.

2.1 Syntax

Before defining configurations, we introduce some notations and conventions.

Notations

– f : A
fin→ B means that f is a partial function from A to B with finite domain,

written dom(f); the image of f is written img(f). We write ai : bii∈I for
the partial function mapping ai to bi for all i ∈ I (where the ai must be
different, i.e., ai = aj implies i = j). We use the following operations on
partial functions:
• ∅ is the everywhere undefined partial function;
• f and g are compatible when f(x) = g(x) for x ∈ dom(f) ∩ dom(g);
• f1, f2 denotes the union of two partial functions with disjoint domain;
• f1 ⊆ f2 means that the graph of f1 is included in that of f2, i.e.,

dom(f1) ⊆ dom(f2) and f1 and f2 compatible;

• f \A is defined by (f \A)(x) ∆=
{
f(x) if x �∈ A
undefined otherwise;

• f{a : b} denotes the update of f in a, that is, f \{a}, a : b;
– If e is a term, and ρ a finite partial function from a set of variables to a set of

terms, then e{ρ} denotes the parallel substitution of all variables x ∈ dom(ρ)
with ρ(x) in e (modulo α-conversion).
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l ∈ Linkset ::= linksets
[ι; o; ρ] with
dom(ι) ∩ dom(ρ) = basic linkset
∅ ∧ UV ([ι; o; ρ]) ⊆ (dom(ι) ∪ dom(ρ))

| l1 + l2 sum
| linkX (l) link
| dlinkp

X (l) (permanent)
dynamic link

| dlinkv
X (l) volatile (dynamic)

link

ι : Var
fin→ Name input assignment

o : Name
fin→ Exp output assignment

ρ : Var
fin→ Exp local assignment

c ∈ Com ::= e | set(X, e) | get(X) | let x = c1 in c2 | . . . commands
e ∈ Exp ::= x | ∗ | n | . . . (core) expressions
τ ∈ Type ::= int | void | . . . (core) types

γ ∈ Conf ::= (l, c) configurations
with FV(c) ⊆ BV (l) ∧ FN (c) ⊆ BN (l)

Fig. 1. Syntax of configurations.

The syntax of the calculus is given in Fig.1. It is parametric in an infinite set
Name of (fragment) names X, an infinite set Var of variables x, and a set Exp of
(core) expressions (the expressions of the underlying language used for defining
single code fragments). Intuitively, names are used to refer to fragments from
outside a linkset, whereas variables are used in code within a linkset (indeed,
expressions are assumed to be built on top of variables, see the production for
Exp). This distinction between external and internal names of fragments is quite
standard now in module and fragment calculi and has motivations both on the
methodological side, such as allowing to model name resolution performed by
a linker, and on the technical side, such as allowing α-conversion for variables
while keeping external interfaces (see, e.g., [2] for an extended discussion of this
point).

Linksets are either basic linksets (collections of named code fragments in the
underlying expression language) or are constructed by linkset operators corre-
sponding to the operators of a configuration language.

A basic linkset is similar to a basic module in module calculi (see, e.g., [2]),
and consists of three components. The ι component is a mapping from variables
into names and represents the input interface of the linkset; the o component is
a mapping from names into expressions and represents the output interface of
the linkset; the ρ component is a mapping from variables into expressions and
represents the local (that is, already linked) fragments. Variables in the domain
of ι and ρ are called the deferred and the local variables of the basic linkset,
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respectively. Basic linksets must satisfy some well-formedness requirements, that
is, the sets of deferred and defined variables must be disjoint, and the set of the
used variables, that is, free variables in expressions inside the linkset, must be
a subset of the deferred and local variables. The set UV (l) of the used variables
of a linkset is defined as follows:

– UV ([ι; o; ρ]) ∆=
⋃

X∈dom(o) FV(o(X)) ∪⋃
x∈dom(ρ) FV(ρ(x));

– UV (l1 + l2)
∆= UV (l1) ∪ UV (l2);

– UV (linkX (l)) = UV (dlinkp
X (l)) = UV (dlinkv

X (l)) ∆= UV (l).

We consider four operators on linksets: the sum operator, which allows merging
of two linksets, and three different link operators: link for static linking, dlinkp

for permanent dynamic linking and dlinkv for volatile dynamic linking. We will
explain linkset operators in more detail when introducing reduction rules for
linksets and configurations.

We will abbreviate dlinkK1
X1

(. . . (dlinkKn

Xn
(l)) . . .), where n ≥ 0, Ki ∈ {p, v}, by

dlink[P ;V ] (l), where P = {Xi | Ki = p} and V = {X1, . . . , Xn} \ P (so, in the
case n = 0, dlink[∅;∅] (l) obviously coincides with l).

Note that the above notation is sound since semantics of a linkset expression
is invariant w.r.t. to permutations and repetitions in a sequence of application of
the dynamic link operators. Moreover, in case of application of both a permanent
and a volatile dynamic link operator for the same name, only the permanent one
is taken into account (see the reduction rules in Fig.4).

Commands model, intuitively, actions which can be performed in the exe-
cution phase, which include standard execution of the underlying core expres-
sions (hence expressions are included into commands) and metaoperations on
fragments which can be interleaved with standard execution. In particular, as
examples of metaoperations, we consider here a get operation which loadssome
fragment’s code, and a set operation which updates the code of an existing
fragment. Moreover, we use in the examples a standard let-in construct corre-
sponding to a sequence of two commands with value-passing and we abbreviate
let x = c1 in c2 with c1; c2 when x �∈ FV(c2).

Expressions of the core language are not specified; we only assume that they
contain variables, the constant ∗ which denotes the unique value of type void
and, to the aim of writing examples, integer constants n.

A configuration is a pair consisting of a linkset and a command. Configura-
tions must satisfy some well-formedness requirements, that is, the set of the free
variables (resp. names) in the command must be a subset of the binding vari-
ables (resp. names) of the linkset. Fig.2 contains the definitions of the functions
FV, FN, BV and BN.

Note that the command in a configuration may contain both variables (since
expressions may contain variables) and names of the current linkset. Indeed, on
one hand an execution step can be a standard execution step, that is, an eval-
uation step of an expression. Code in execution can refer to internal names of
fragments, either already resolved (local variables in ρ), or still to be resolved
(deferred variables in ι); for instance, modeling the execution of a Java appli-
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c ∈ Com FV( ) ⊆fin Var
set(X, e) FV(e)
get(X) ∅

let x = c1 in c2 FV(c1) ∪ (FV(c2) \ {x})
e ∈ Exp FV( ) ⊆fin Var

x {x}
∗ | n ∅

l ∈ Linkset BV ( ) ⊆fin Var
[ι; o; ρ] dom(ι) ∪ dom(ρ)
l1 + l2 ∅

linkX (l) | dlinkp
X (l) | dlinkv

X (l) BV (l)
γ ∈ Conf BV ( ) ⊆fin Var

(l, c) BV (l)

c ∈ Com FN ( ) ⊆fin Name
set(X, e) {X}
get(X) {X}

let x = c1 in c2 FN (c1) ∪ FN (c2)

l ∈ Linkset BN ( ) ⊆fin Name
[ι; o; ρ] dom(o)
l1 + l2 BN (l1) ∪ BN (l2)

linkX (l) | dlinkp
X (l) | dlinkv

X (l) BN (l)

Fig. 2. Auxiliary functions.

cation, variables would correspond to class names appearing in Java code, and
a class C not loaded yet would be a deferred variable. On the other hand, an
execution step can be a metaoperation which manipulates the fragment “from
the outside”, hence through names. In the Java example above, names would
correspond to physical names (in the file system or on the web) of files contain-
ing classes, and ρ would model the mechanism used by a loader for associating
to a class name C a physical name. A set command would model the fact that
the code contained in some file is modified, either by effect of an external agent
or even by the application itself.

Free variables are defined as usual. The set of the binding variables of a
sum is empty; indeed, in this case it makes no sense to refer to the variables in
the linkset, since performing the sum may cause an α-renaming. If the linkset
contains no sum operators, hence it is obtained by applying a chain of link
operators to a basic linkset, then the set of the binding variables consists of the
deferred and local variables of this basic linkset.

The free names of a command are those that appear inside the command as
arguments of either a set or a get operation. The binding names of a linkset are
those defined inside the linkset, that is, belonging to the domain of its output
assignments.

2.2 Semantics

We define two different reduction relations, corresponding to the configuration
and execution phase, respectively.

Configuration Phase. The reduction rules for the configuration phase are
given in Fig.3. In this phase only the linkset expression in a configuration is
reduced.

We assume that the reduction relation
l
> is defined over well-formed

linksets, hence we have omitted side conditions ensuring well-formedness of
terms, since they are assumed to be implicitly satisfied.
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Fig. 3. Reduction rules for the configuration phase.

Rule (l-ctx) is the usual contextual closure, where one hole evaluation contexs
for linksets are also defined in Fig.3.

The reduction rule for the sum is similar to those of module and link calculi
(see, e.g.,[2]). This operation has the effect of gluing together two linksets, under
some conditions. The binders of one linkset must be disjoint from those of the
other, that is, BV (l1) ∩ BV (l2) = ∅ (implicit side condition). This condition
can always be satisfied by an appropriate α-conversion. Moreover, the output
fragments of the two linksets must be disjoint, that is, dom(o1) ∩ dom(o2) = ∅
(implicit side-condition); this conflict cannot be resolved by α-conversion. The
set of input fragments of the two arguments can have a non empty intersection
and the resulting set of input fragments of the sum is simply the union of them;
this means that imported fragments with the same name in the two linksets are
shared.

Finally, in the sum the sets of fragment names dynamically linked is obtained
by taking the union of the corresponding sets in the two linksets, and taking only
the permanent operator into account when both permanent and volatile linking
turn out to be applied to the same name.

Note that sum only expresses the possibility of collecting pieces of unrelated
code, but does not provide any way for inter-connecting fragments in a linkset
(that is, no linking step is performed yet). This inter-connection can take place
only at a next stage, after sum has been performed, by means of the link operator,
or at an even later stage, after execution has started, by means of the dynamic
link operators.

The link operator, as stated above, accomplishes inter-connections of frag-
ments. So, in rule (link), the effect of linking fragment X is that this fragment
name is resolved, hence it disappears from the input names and all the variables
mapped by ι into it are now linked, that is, they become local. These variables
are associated with the definition of X in the output assignment, ‘which must ex-
ist (side-condition). Moreover, the name X also disappears from those for which
a dynamic linking operator is applied.

Note that there are no reduction rules for the dynamic link operators; indeed,
the intuition for these operators is that they are not performed during the con-
figuration phase, but they will be performed on demand only after execution is

L[ ] ∈ ECL ::= � | L[ ] + l | l + L[ ] | linkX (L[ ]) | dlinkK
X (L[ ]) linkset contexts.

(l-ctx)
l

l
> l′

L[l]
l
> L[l′]

(sum)
dlink[P1;V1] (l1) + dlink[P2;V2] (l2)

l
> dlink[P ;V \P ] ([ι1, ι2; o1, o2; ρ1, ρ2])

V = V1 ∪ V2

P = P1 ∪ P2

li ≡ [ιi; oi; ρi], i ∈ {1, 2}

(link)
linkX

(
dlink[P ;V ] ([ι; o; ρ])

)
l
> dlink[P\{X};V \{X}]

(
[ι\L; o; ρ, x : o(X)x∈L]

) L = {x | ι(x) = X}
L 
= ∅ ⇒ X ∈ dom(o)
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started (see reduction rules for configurations in Fig.4). As a consequence, terms
which cannot be further reduced are obtained by a sequence of dynamic linking
operators applied to a basic linkset, as formalized below.

Fact 1 A linkset expression is in normal form w.r.t. the reduction relation

l
> iff it has the form dlink[P ;V ] ([ι; o; ρ]).

In the following, we use ln as metavariable ranging over linksets in normal form.

Execution Phase. The reduction rules for the execution phase are given in
Fig.4.

Fig. 4. Reduction rules for the execution phase.

The reduction relation > is parametric on the relation
e
> which

corresponds to evaluation of core expressions, and on the set CVal of core values
which includes at least integer constants and the constant ∗, as shown in Fig.4.

The (linkset) and (core) rules express that an execution step can consist in
a configuration step of the linkset or, if the command is a core expression, in an
evaluation step at the core level.

The rule (c-ctx) is the usual contextual closure, where one hole evaluation
contexts for the particular set of commands we consider are defined at the top
of Fig.4.

The (let) rule is the standard call-by-value rule for evaluating a let-in con-
struct.

The subsequent three rules can only be applied when the linkset is in normal
form.

The (set) rule expresses that an execution step can consist in updating the
definition of an existing output fragment; note that this execution step modifies
both the linkset and the command in the current configuration.

C( ) ∈ ECC ::= � | let x = � in c2 | . . . command contexts.
v ∈ CVal ::= n | ∗ | . . . (core) values

(linkset)
l

l
> l′

(l, c) > (l′, c)
(core)

e
e
> e′

(l, e) > (l, e′)

(c-ctx)
(l, c) > (l′, c′)

(l, C(c)) > (l′, C(c′))

(let) (l, let x = v in c) > (l, c{x : v})
(set)

(
dlink[P ;V ] ([ι; o; ρ]) , set(X, e)

)
>

(
dlink[P ;V ] ([ι; o{X : e}; ρ]) , ∗), X ∈

dom(o)
(get)

(
dlink[P ;V ] ([ι; o; ρ]) , get(X)

)
>

(
dlink[P ;V ] ([ι; o; ρ]) , o(X)

)
, X ∈ dom(o)

(var)
(
dlink[P ;V ] ([ι; o; ρ]) , x

)
>






(
dlink[P ;V ] ([ι; o; ρ]) , ρ(x)

)
if x ∈ dom(ρ)(

linkX

(
dlink[P ;V ] ([ι; o; ρ])

)
, o(X)

)
if ι(x) = X ∧X ∈ (dom(o) ∩ P )(

dlink[P ;V ] ([ι; o; ρ]) , o(X)
)

if ι(x) = X ∧X ∈ (dom(o) ∩ V )
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The (get) rule expresses that an execution step can consist in obtaining as
command to be executed the current definition of an existing fragment.

The (var) rule shows how dynamic and volatile linking work. If a variable
x is defined in ρ, then its corresponding code is already available and does not
need to be linked; on the other hand, if x is deferred (that is, the corresponding
fragment, say X, has not been linked yet), then, in the command, the variable
is replaced by the current definition of X. Moreover, if the linking is dynamic,
then the corresponding fragment X is permanently linked in the linkset, so that
further occurrences of x will always refer to the same definition, while this is not
the case if the linking is volatile.

The reduction relations for the configuration and the execution phases enjoy
the Church Rosser property.

Proposition 1. The relations
l
> on linksets and > on configurations

are confluent.

Proof. The reduction rules are left-linear and non-overlapping. �
The following proposition states some properties concerning how names and

variables within configurations change during reduction. Here we use the abbre-
vation anylink[S;P ;V ] (l) for
anylinkX1

(. . . (anylinkXn
(l)) . . .), where n ≥ 0 and anylinkX ::= linkX | dlinkK

X .

Proposition 2.

(a) If l1
l
> l2, then BN (l1) = BN (l2).

(b) If (l1, c1) > (l2, c2), then BN (l1) = BN (l2), FN (c2) ⊆ FN (c1), FV(c2) ⊆
FV(c1) ∪ UV (l1).

(c) If li are linksets without any application of the sum operator, that is, li ≡
dlink[Si;Pi;Vi] ([ιi; oi; ρi]), i ∈ {1, 2}, with l1

∗
l
> l2, then ι2 ⊆ ι1, ρ1 ⊆ ρ2,

dom(ι1) ∪ dom(ρ1) = dom(ι2) ∪ dom(ρ2) and
dom(o1) = dom(o2).

(d) If (l1, c1)
∗
> (l2, c2), with li ≡ dlink[Si;Pi;Vi] ([ιi; oi; ρi]), i ∈ {1, 2}, then

ι2 ⊆ ι1, ρ1 ⊆ ρ2, dom(ι1) ∪ dom(ρ1) = dom(ι2) ∪ dom(ρ2) and dom(o1) =
dom(o2).

Proof. (a) By case analysis on the reduction rules for the configuration phase;
(b) by induction on the reduction rules for the configuration phase and we use
the point (a); (c) by case analysis on the reduction rules for the configuration
phase; (d) by induction on the reduction rules for the configuration phase and
we use the point (c). �

We state now some results concerning the relation between the three different
forms of link operators. First of all, if there were no commands affecting the
linkset in a configuration, such as the set command, then static, dynamic and
volatile linking could not be distinguished, as formally expressed by the following
proposition.
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Proposition 3. If in the grammar for commands we do not include the pro-
duction for the set operation, then the three kinds of link operators give the same
result, that is, if l is a linkset containing as link operator only the static one, and
(l, c)

∗
> (l′, v), then (P (l) , c)

∗
> (l′′, v) and (V (l) , c)

∗
> (l′′′, v),

where P (l) and V (l) are the linksets obtained from l by replacing all the static
link operators by dynamic and volatile link operators, respectively.

Proof. By defining a suitable equivalence between linksets and proving that
reduction relation preserves the equivalence. �
The difference between the three kinds of linking becomes observable if we allow
commands to modify the execution context, for example using the set operation.
In this case, it is easy to see that we can obtain different results by using,
for example, either dynamic or volatile linking, as illustrated by the following
example:

Example 1.

– (dlinkp
Y ([y : Y ;Y : 0, X : y; ]) , y; set(Y, 3); get(X))

(c-ctx)+(var)
>

(linkY (dlinkp
Y ([y : Y ;Y : 0, X : y; ])) , 0; set(Y, 3); get(X))

(linkset)
>

([;Y : 0, X : y; y : 0], 0; set(Y, 3); get(X))
(let)
>

([;Y : 0, X : y; y : 0], set(Y, 3); get(X))
(c-ctx)+(set)

>
(let)
>

([;Y : 3, X : y; y : 0], get(X))
(get)

>
(var)

> ([;Y : 3, X : y; y : 0], 0)

– (dlinkv
Y ([y : Y ;Y : 0, X : y; ]) , y; set(Y, 3); get(X))

(c-ctx)+(var)
>

(dlinkv
Y ([y : Y ;Y : 0, X : y; ]) , 0; set(Y, 3); get(X))

(let)
>

(dlinkv
Y ([y : Y ;Y : 0, X : y; ]) , set(Y, 3); get(X))

(c-ctx)+(set)
>

(let)
>

(dlinkv
Y ([y : Y ;Y : 3, X : y; ]) , get(X))

(get)
>

(var)
>

(dlinkv
Y ([y : Y ;Y : 3, X : y; ]) , 3)

Finally, the following proposition states that static, dynamic and volatile linking
do not differ w.r.t. dynamic errors. That is, if a configuration containing only the
static link operator does not get stuck, then replacing all the static link operators
by dynamic and volatile linking operators, respectively, we get a configuration
which does not get stuck as well, even though it may evolve in a different way.
The only exception is the case in which the configuration can only evolve by
performing a (link) step.

Moreover, dynamic link operators strictly increase the expressive power of
the language allowing to obtain more results; indeed, if a configuration evaluates
to a value, then it still evaluates to the same value even if we apply to the linkset
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a dynamic link operator. The converse does not hold, as can be easily seen by
considering a configuration where the command contains a non local variable.

Proposition 4. Let
¬link
> denote a > reduction step obtained without

applying rule (link). If l is a linkset containing as link operator only the static
one, then

1. (l, c)
¬link
> iff (P (l) , c) > iff (V (l) , c) > ;

2. (l, c)
∗
> (l′, v) ⇒�⇐

(
dlinkK

X (l) , c
) ∗

> (l′′, v).

Proof. 1. By induction on the reduction rules for the execution phase;
2. ⇒) Similar to that of Prop.3. �⇐) A counterexample is the configuration in

Example 1 without dlink operator. �

2.3 Type System

We introduce linkset types [πι; πo; Γ ; R], where πι, πo : Name
fin→ Type are the

input and output signature, respectively, Γ : Var
fin→ Type is the type environment

for variables, and R is a relation on Name ∪ Var called a dependency relation.
The first two components are standard for module and fragment calculi (see

e.g., [2]), while R keeps trace of the variables a name X depends on and is needed
in order to type-check configurations which contain a get(X) command (see rule
(get) in Fig.7).

Moreover, R and Γ together are used to type-check configurations in which
the command contains free variables (hence the current linkset does not contain
the sum operator). Indeed, in this case we require that each of these free vari-
ables, say x, can be successfully resolved at run-time, that is, x is either local
or bound to an input fragment for which there is an application of a dynamic
link; moreover, if x depends on another variable y (through R) , then y can be
successfully resolved at run-time as well (see the definition of the environment
ΓR in Definition 2).

Well-formedness of linkset types is defined in the following way.
Definition 1 (Well-formed linkset types). A linkset type [πι; πo; Γ ; R] is
well-formed, written � [πι; πo; Γ ; R] �, iff the following conditions hold:
– πι and πo are compatible;
– (X, ) ∈ R ⇒ X ∈ dom(πι);
– ( , X) ∈ R ⇒ X ∈ dom(πo).

The type system for linksets derives judgments of the form �l l : [πι; πo; Γ ; R]
with meaning “l is a is well-formed linkset of type [πι; πo; Γ ; R]” and is defined
in Fig.5. In the type system we use the following conventions:

– given a linkset l ∆= [ι; o; ρ], the dependency relation Rl induced by l is the
relation on dom(ι) ∪ img(ι) ∪ dom(o) ∪ dom(ρ) defined by

Rl
∆= {(X,x) | X = ι(x)} ∪
{(y,X) | y ∈ FV(o(X))} ∪
{(y, x) | y ∈ FV(ρ(x))}
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– R∗ is the transitive closure of R.

Moreover, given Γ andR, we define the type environment ΓR for the variables
which can successfully resolved at run-time as the sub-environment of Γ whose
domain is closed w.r.t. R, as shown below.

Definition 2. Given a linkset type [πι; πo; Γ ; R], we denote by ΓR the type
enviroment s.t. ΓR ⊆ Γ and dom(ΓR) = {x | {y | (y, x) ∈ R∗} ⊆ dom(Γ )}.

(basic)

� [
πι; πo; Γ ; R[ι;o;ρ]

] 	
{Γ ι, Γ ρ �e o(X) : πo(X) | X ∈ dom(o)}
{Γ ι, Γ ρ �e ρ(x) : Γ ρ(x) | x ∈ dom(ρ)}

�l [ι; o; ρ] :
[
πι; πo; Γ ρ; R[ι;o;ρ]

]
dom(πι) = img(ι)

dom(πo) = dom(o)

Γ ι = πι ◦ ι

dom(Γ ρ) = dom(ρ)

(sum)
�l l1 : [πι

1; πo
1 ; Γ1; R1] �l l2 : [πι

2; πo
2 ; Γ2; R2]

�l l1 + l2 : [πι
1, πι

2; πo
1 , πo

2 ; ∅; R1 ∪ R2]
dom(πo

1) ∩ dom(πo
2) = ∅

(link)
�l l : [πι; πo; Γ ; R]

�l linkX (l) :
[
πι\{X}; πo; Γ, x:πo(X)x∈L; R

]
X ∈ dom(πι) ⇒ πι(X) = πo(X)

L = {x | (X, x) ∈ R}
Γ ′ ∆= Γ, x:πo(X)x∈L

(dlink)
�l l : [πι; πo; Γ ; R]

�l dlinkK
X (l) :

[
πι; πo; Γ, x:πo(X)x∈L; R

] X ∈ dom(πι) ⇒ πι(X) = πo(X)

L = {x | (X, x) ∈ R}

Fig. 5. Typing rules for for linksets.

In rule (sum) the dependency relation in the result type is obtained gluing
together the dependency relations in the types of the arguments. Note that Γ
is empty; indeed, as mentioned before, it makes no sense to refer to variables
inside a linkset containing a sum operator since performing the sum may cause
an α-renaming.

In the result type in rules (link) and (dlink), the type environment Γ is
enriched with the variables associated to X.

Moreover, in rule (link) πι is updated to keep trace of the linking of the
name fact that the input name X is now linked, hence it does no longer appear
in the input signature. On the contrary, in rule (dlink) πι does not change; this
conforms to the intuition that dynamic link operators are not performed during
the configuration phase, but they only keep trace of the information that the
name X is dynamically linked.

In both (link) and (dlink) rules the dependency relation R is unchanged,
since the transformation of a deferred variable into local does not affect the
dependencies between variables. The type environment Γ , instead, is updated
to keep trace of the variables associated with the linked name.
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The type system for linksets depends on that for core expressions, which we
assume to derive judgments of the form Γ �e e : τ . In Fig.6 we give the rules for
the subset of the core language specified in the syntax.

(C-var)
Γ �e x : Γ (x)

x ∈ dom(Γ ) (C-int)
Γ �e n : int

(C-void)
Γ �e ∗ : void

Fig. 6. Typing rules for core expressions.

The typing rules for configurations and commands are shown in Fig.7.

�l l : [πι; πo; Γ ; R] πo; Γ R; R �c c : τ

� (l, c) 

(core)
Γ �e e : τ

πo; Γ ; R �c e : τ

(set)
Γ �e e : πo(X)

πo; Γ ; R �c set(X, e) : void
X ∈ dom(πo)
FV(e) ⊆ {y | (y, X) ∈ R∗}

(get)
πo; Γ ; R �c get(X) : πo(X)

X ∈ dom(πo)
{y | (y, X) ∈ R∗} ⊆ dom(Γ )

(let)

πo; Γ ; R �c c1 : τ1

πo; Γ, x : τ1; R �c c2 : τ2

πo; Γ ; R �c let x = c1 in c2 : τ2

Fig. 7. Typing rules for configurations and commands.

A configuration is well-formed if the linkset is well-formed, and the command
is well-formed w.r.t. the linkset, that is, w.r.t. the information πo, ΓR and R
extracted from the linkset type: πo is used to check that a command only refers
to names defined in the current linkset; ΓR contains all the variables that can
be successfully resolved at run-time; R keeps trace of the dependencies between
names and variables in the linkset.

Typing rules for commands derive judgments of the form πo;Γ ;R �c c : τ
with meaning “c is a well-formed command of type τ in πo, Γ and R”.

In rule (set), we must check that the new expression which will be associated
to X does not introduce new dependencies in R.

In rule (get), we require all the variables on which X depends to be variables
that can be successfully resolved at run-time.
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Example 2. The configuration γ ∆= (dlinkp
Y ([y : Y, z : Z;Y : 0; ]) , get(Y )) is well-

formed even though component Y is selected from a linkset that still has an
unresolved variable z; indeed, the definition of Y does not depend on z. On the
other hand, (dlinkp

Y ([y : Y, z : Z;Y : z; ]) , get(Y )) is ill-formed.

2.4 Technical Results

In order to prove the subject reduction and progress properties for the two
reduction relations

l
> and > we need to assume that these properties

hold for the core language. Formally: if Γ �e e1 : τ and e1
e
> e2, then

Γ �e e2 : τ ; if Γ �e e : τ and e �∈ CVal, then e
e
> . Moreover, we need also the

assumption: if e1
e
> e2, then FV(e2) ⊆ FV(e1).

We state the following auxiliary lemmas.

Lemma 1. If �l l : [πι; πo; Γ ; R], then [πι; πo; Γ ; R] is well-formed.

Proof. Induction on the typing rules. �

Lemma 2. If �l dlink[P ;V ] ([ι; o; ρ]) : [πι; πo; Γ ; R], then

1. X ∈ dom(o) ∧ {y | (y,X) ∈ R} ⊆ dom(Γ ) ⇒ Γ �e o(X) : πo(X);
2. x ∈ dom(ρ) ∩ dom(Γ ) ⇒ Γ �e ρ(x) : Γ (x);
3. x ∈ dom(ι) ∩ dom(Γ ) ∧ ι(x) ∈ dom(o) ∩ (P ∪ V ) ⇒ Γ (x) = πo(ι(x)).

Proof. By case analysis. �

Proposition 5 (Subject Reduction for
l
> ). If �l l1 : [πι

1; π
o
1; Γ1; R1]

and l1
l
> l2, then �l l2 : [πι

2; π
o
2; Γ2; R2], with πι

2 ⊆ πι
1, π

o
1 = πo

2, Γ1 ⊆ Γ2 and
R1 = R2.

Proof. By case analysis on reduction rules and induction on typing rules. �

Proposition 6 (Progress for
l
> ). If �l l : [πι; πo; Γ ; R] and l �= ln, then

l
l
> .

Proof. By induction on the structure of l. �

Proposition 7. If �l l1 : [πι
1; π

o
1; Γ1; R1], πo

1;Γ1;R1 �c c1 : τ and
(l1, c1) > (l2, c2), then �l l2 : [πι

2; π
o
2; Γ2; R2], πo

2;Γ2;R2 �c c2 : τ with
πι

2 ⊆ πι
1, π

o
1 = πo

2, Γ1 ⊆ Γ2 and R1 = R2.

Proof. By case analysis on reduction rules and induction on the derivation of
the first judgment. We use Lemma 2 and Proposition 5. �
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Theorem 2 (Subject Reduction for > ). If � (l, c) � and

(l, c) > (l′, c′), then � (l′, c′) �.
Proof. Follows from Proposition 7. �

Theorem 3 (Progress for > ). If � (l, c) � and (l, c) �= (ln, v), then

(l, c) > .

Proof. By induction on the structure of (l, c). �

3 Conclusion

We have defined a calculus for dynamic linking supporting three different notions
of linking:

– the classical notion of static linking, whose formalization is inspired by pre-
vious pioneering work [4,2,13,14], and where code can be executed only after
all variables (that is, references) have been resolved;

– the notion of dynamic linking à la Java, where execution can be started even
though the code contains an unresolved variable x, whose corresponding code
is permanently linked the first time the value of x is really needed;

– the notion of volatile linking, which is a more flexible version of dynamic
linking, where code for an unresolved variable x is re-linked each time x
needs to be evaluated.

For simplicity, the calculus keeps distinct the two phases of code configu-
ration and execution by distinguishing two different languages: a configuration
language whose expressions denote linksets, and a command language, whose
terms are evaluated w.r.t. a specific linkset. However, linksets and commands
are mutually dependent since not only command execution clearly depends on
the configuration specified by the underlying linkset, but also the execution of a
command can change its underlying linkset; in fact, evaluations of linksets and
commands can be interleaved.

We have defined a reduction semantics for the calculus and shown that, if
the language of commands is expressive enough, then the three link‘ operators
can be observationally distinguished. Then we have presented a type system
for the calculus and proved its soundness; if on one hand dynamic and volatile
linking allow more flexible forms of software reconfiguration, on the other hand
they make typechecking more challenging, and require a more accurate static
analysis for fully exploiting the advantages without losing type safety.

The novelty of our calculus mainly resides in the fact that it is the first at-
tempt we are aware of at providing (1) a theoretic underpinning of dynamic
linking, and (2) a formal framework for investigating the behavior of heteroge-
neous systems where different and hybrid forms of linking may coexist.

Concerning related work, we already cited work on static linking [4,2,13,14]
and on concrete linking mechanisms in existing programming environments [7,6,8].
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Moreover, the recent [3] presents a simple calculus modeling dynamic software
updating, where modules are just records, many versions of the same module
may coexist and update is modeled by an external transition which can be en-
forced by an update primitive in code.

We plan to further study dynamic linking in different directions.
First, we need to test the expressive power of the calculus by showing that

it can be effectively used for modeling a variety of programming languages sup-
porting dynamic linking.

Then, since real languages are unlikely to combine different kinds of linking,
it would be interesting to define calculi which only support one kind (e.g., ei-
ther dynamic or volatile linking) and to compare their properties, similarly to
distinguishing between call-by-value and call-by-name forms of lambda calculus.

A more challenging issue would be to consider a calculus which would not
distinguish between the configuration and the execution phase, so that linksets
could be freely manipulated as first class values during execution.

Finally, an aspect which deserves investigation is the relation between our
approach and mobile process calculi such as the pi-calculus and the ambient
calculus. In particular, the idea of separating the configuration from the execu-
tion language reminds of the basics of the so-called coordination approach [10],
according to which computation and inter-components interdependencies should
be programmed separately.
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Abstract. It is often infeasible to recompile all the sources an applica-
tion consists of each time a change is made. Yet, a recompilation strategy
which does not guarantee the same outcome of an entire recompilation
is not useful: why wasting time in debugging a program (a set of .class
files in the Java case) which might behave differently from the program
obtained recompiling all the sources from scratch?

We say that a compilation strategy is sound if it recompiles, besides
the changed sources, all the unchanged sources whose new binary, pro-
duced by the overall recompilation, would differ from the existing one
(if any) and all the sources for which the recompilation would be unde-
fined: indeed, when the entire compilation fails, so should do the partial
recompilation.

We say that a compilation strategy is minimal if it never recompiles an
unchanged source whose new binary would be equal to the existing one.

In this paper we present a compilation strategy for a substantial subset
of Java which is proved to be sound and minimal.

1 Introduction

When dealing with large applications it is infeasible to recompile all the sources
each time a change is made. Of course, separate compilation is the answer to
such a problem, but a key point has to be considered: in addition to the modi-
fied sources, which files have to be recompiled as well? A recompilation strategy
which does not guarantee the same outcome of an entire recompilation is not
useful: why wasting time in debugging a program (a set of .class files in the
Java case) which might behave differently from the program obtained recom-
piling all the sources from scratch? It is known that, using the most common
Java compilers (including the standard one), a program which is the result of a
successful recompilation may throw linking related exceptions at runtime even if
these errors could have been detected at compile time [3]. This is not in contrast
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with the soundness for Java investigated by other papers [6, 7] because they did
not take separate compilation into account.

Two contrasting requirements have to be considered: on the one hand re-
compilations can be rather expensive (in time), hence they should be avoided
when possible. More precisely, they are useless when the recompilation of an
unchanged (with respect to the previous compilation) source fragment S, whose
corresponding binary fragment B is already present, would produce a binary
equal to B. On the other hand, a recompilation strategy which saves time not
recompiling a fragment S, with a corresponding binary fragment B, whose re-
compilation would produce a new binary B′ different from B, could cost a lot
of wasted time in debugging an inconsistent application, that is, an application
that cannot be rebuilt by recompiling all the sources.

Albeit some Java IDEs support smart or incremental compilation, to our
knowledge there are no publications which explain in detail the inner working of
such recompilation strategies. In this paper we chose to analyze Java, a main-
stream language, and model its peculiar features, because our final goal is to
implement a compilation manager, for a widespread language, whose correct-
ness and minimality (in the sense explained below) can be formally proved.

We say that a compilation strategy is sound if it recompiles all the changed
sources and the unchanged sources whose new binary, produced by the overall
recompilation, would differ from the existing one (if any) and all the unchanged
sources for which the recompilation would be undefined. This latter requirement
is very important: indeed, when the entire recompilation is not defined, so should
be the partial recompilation.

Of course, a strategy which recompiles all the sources each time a change is
made is trivially sound and, obviously, totally useless in practice. We say that
a compilation strategy is minimal if it never recompiles an unchanged fragment
whose new binary would be equal to the existing one.

In this paper we present a compilation strategy for a substantial subset of
Java which is proved to be sound and minimal.

Section 2 presents the formal framework, Section 3 explains the ideas behind
our compilation strategy and Section 4 discusses related and future work.

2 Formalization

2.1 The Language

In this paper we model a substantial subset of Java at both source (Figure 1) and
binary (Figure 2) level. Our model of bytecode is rather abstract: it is basically
source code enriched with some annotations (discussed below). However, the
same source level expression can be compiled to different binary level expressions,
as it happens in Java. For instance, a method invocation x.m() can be translated
to a virtual method invocation or an interface method invocation depending on
the static type of x.

With the exception of arrays and inner-classes we model all the major fea-
tures of Java: classes (including abstract classes), interfaces, primitive types, ac-
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S ::= AM CK class C extends C′ implements I1 . . . In { KDSs FDSs MDSs } |
AM interface I extends I1 . . . In { FDSs MDSs }

AM ::= public | protected | ε | private
CK ::= ε | abstract

KDSs ::= KDs
1 . . . KDs

n

FDSs ::= FDs
1 . . . FDs

n

MDSs ::= MDs
1 . . . MDs

n

KDs ::= AM KH { super(Es
1, . . . , E

s
n); STMTSs }

FDs ::= AM FINAL FK T f = Es ;
MDs ::= AM MK MH { STMTSs return Es; } | AM abstract MH ;
KH ::= (T1 x1, . . . , Tn xn) throws ES

MK ::= ε | static | abstract
MH ::= T m(T1 x1, . . . , Tn xn) throws ES

FINAL ::= ε | final
FK ::= ε | static
T ::= RT | int | bool
RT ::= C | I
ES ::= C1, . . . , Cn

Es ::= PRIMARYs|ASSIGNs|N|true|false
PRIMARYs ::= null | this | NEWs | x | INVOKEs | super.f | PRIMARYs.f | RT.f
ASSIGNs ::= x = Es | PRIMARYs.f = Es | super.f = Es | RT.f = Es

NEWs ::= new C(Es
1, . . . , E

s
n)

INVOKEs ::= PRIMARYs.m(Es
1, . . . , E

s
n) | super.m(Es

1, . . . , E
s
n) | RT.m(Es

1, . . . , E
s
n)

STMTSs ::= STMTs
1 . . . STMTs

n

STMTs ::= {STMTSs} | SEs ; | if (Es) STMTs
1 else STMTs

2 | while (Es) STMTs |
try {STMTSs } CATCHESs finally { STMTSs

1 } | throw Es

SEs ::= ASSIGNs | INVOKEs | NEWs

CATCHESs ::= CATCHs
1 . . . CATCHs

n

CATCHs ::= catch (C x) { STMTSs }

Assumptions:

– interface names in S are distinct;
– field names in FDSs are distinct;
– method/constructor signatures in MDSs/KDSs are distinct;
– parameter and exception names in both KH and MH are distinct;
– class names in CATCHESs are distinct.

Fig. 1. Syntax - Sources.

cess modifiers (including packages, but without the import directive), construc-
tors, (instance/static) fields (both in classes and interfaces), (instance/static/
abstract) methods, super field accesses and method invocations, exceptions. The
treatment of arrays and inner-classes would complicate the model without ap-
parently giving further insights.

Figure 1 gives the syntax of the language. A source fragment S can be a
class declaration or an interface declaration. In the former case it consists of:
an access modifier AM, a class kind CK (either ε or abstract), the name of the
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class, the name of the superclass, the list of the implemented interfaces and
the declaration of constructors, fields and methods. Analogously, an interface
declaration consists of an access modifier, the name of the interface, the name
of the superinterfaces and the declaration of fields and methods.

A constructor declaration KDs consists of an access modifier AM, a construc-
tor header KH, the invocation of a superclass’s constructor1 and a sequence of
statements STMTSs. A constructor header consists of the sequence of parameters
and the exception specification ES. In this paper we assume for simplicity that
any class can be an exception, that is, we do not model the predefined class
Throwable. So, an exception specification is just a sequence of class names.

A field declaration FDs consists of an access modifier AM, an optional modifier
FINAL, a field kind FK, a type T, the name of the field f and the initialization
expression Es.

A method declaration MDs can be either concrete or abstract. In the former
case it consists of an access modifier AM, a method kind MK, a method header MH,
a sequence of statements STMTSs and a return expression Es. In the latter case
it just consists of an access modifier AM, the keyword abstract and a method
header. A type T can be a reference type RT or a primitive type (int or bool).
We distinguish between class names C and interface names I for clarity only,
even though they actually range over the same set of names.

An expression Es can be: a primary expression, an assignment expression,
an integer literal N or a boolean literal. Some expressions, SEs, can be used
as statements; they are: assignment ASSIGNs, method invocation INVOKEs and
instance creation NEWs.

While Java permits accessing a static member of a class/interface RT via both
the type name RT or any expression which has static type RT, here we allow only
the former kind of access (because allowing both kinds of access would require
additional, uninteresting, typing rules).

Figure 2 gives the syntax of the binary language. As already said, it mostly
mimics the source language, except for it is enriched with some annotations
enclosed between “�” and “�”.

For example, the instance creation expression NEWs is translated to NEWb,
which contains, as annotation, the tuple of types describing the constructor
which has been found as most specific at compile time. Analogously, method
invocation expressions are annotated with the signature of the most specific
method found at compile time and the static type of the receiver. There are
four kinds of (binary) method invocation expressions INVOKEb: virtual (instance
method invocation), super (invocation via super), static and interface.

2.2 Type Environments

Type environments Γ are defined in Figure 3. A type assignment γ maps a
class/interface name to its type.
1 Invocations of a constructor of the same class (using this) are not considered since

they are simply syntactic shortcuts (recursive invocations are not allowed - see 8.8.5
of [8]).



Fig. 2. Syntax - Binaries.

The assignment

C �→ [AM=AM, CK=CK, PARENT=C′, IS=I1 . . . In, KSS=KSS, FSS=FSS,MSS=MSS]

has the meaning “the class C has access modifier AM and kind CK, extends C’,
implements I1 . . .In and has constructor signatures KSS, field signatures FSS and
method signatures MSS”. Analogously, I �→ [AM=AM, IS=I1 . . . In, FSS=FSS,MSS=MSS]
has the meaning “the interface I has access modifier AM, extends I1 . . .In, and
has field signatures FSS and method signatures MSS”.

Type assumptions λ, also defined in Figure 3, describe fine-grained require-
ments; they are:

– T ≤ T′ with the meaning “T is a subtype of T′”;
– RT <1 RT′ with the meaning “RT directly extends RT′”;
– RT� ∃ T with the meaning “type T exists and is accessible from code con-

tained in type RT”2;

2 If you think the symbol “ � ” as an eye, then you can interpret any assumption of
the form “RT � . . . ” as: “RT sees . . . ” and this is supposed to help �.
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B ::= AM CK class C extends C′ implements I1 . . . In { KDSb FDSb MDSb } |
AM interface I extends I1 . . . In { FDSb MDSb }

KDSb ::= KDb
1 . . . KDb

n

MDSb ::= MDb
1 . . . MDb

n

FDSb ::= FDb
1 . . . FDb

n

KDb ::= AM KH { super(Eb
1, . . . , E

b
n) � T̄ �c; STMTSb }

FDb ::= AM FINAL FK T f = Eb

MDb ::= AM MK MH { STMTSb return Eb; } | AM abstract MH ;

Eb ::= PRIMARYb|ASSIGNb|N|true|false
PRIMARYb ::= null | this | NEWb | x | INVOKEb

PRIMARYb. � C.T �if f |� RT.T �sf f

ASSIGNb ::= x = Eb | PRIMARYb. � C.T �if f = Eb |� RT.T �sf f = Eb

NEWb ::= new C � T̄ �c (Eb
1, . . . , E

b
n)

INVOKEb ::= PRIMARYb. � C.m(T̄)T �vrt m(E
b
1, . . . , E

b
n) | this. � C.m(T̄)T �spr m(E

b
1, . . . , E

b
n) |

PRIMARYb. � C.m(T̄)T �stt m(E
b
1, . . . , E

b
n) | PRIMARYb. � I.m(T̄)T �int m(E

b
1, . . . , E

b
n)

STMTSb ::= STMTb
1 . . . STMTb

n

STMTb ::= {STMTSb} | SEb ; | if (Eb) STMTb
1 else STMTb

2 | while (Eb) STMTb

try {STMTSb } CATCHESb finally { STMTSb
1 } | throw Es

SEb ::= ASSIGNb | INVOKEb | NEWb

CATCHESb ::= CATCHb
1 . . . CATCHb

n

CATCHb ::= catch (C x) { STMTSb }

Assumptions:

– interface names in B are distinct;
– field names in FDSb are distinct;
– method/constructor signatures in MDSb/KDSb are distinct;
– class names in CATCHESb are distinct.
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Γ ::= γ1 . . . γn

γ ::= C �→ [AM=AM, CK=CK, PARENT=C′, IS=I1 . . . In, KSS=KSS, FSS=FSS, MSS=MSS] |
I �→ [AM=AM, IS=I1 . . . In, FSS=FSS, MSS=MSS]

T⊥ ::= T | ⊥
KS ::= AM T̄ throws ES

FS ::= AM FK T f

MS ::= AM MK T m(T̄) throws ES

T̄ ::= T1 . . . Tn

T̄
⊥ ::= T⊥1 . . . T⊥n

KSS ::= KS1 . . . KSn

FSS ::= FS1 . . . FSn

MSS ::= MS1 . . . MSn

λ ::= T ≤ T′ |
RT <1 RT′ |
RT� ∃ T |
RT� ∃C CK

� C |
RT� ∃I I |
RT� Cns(C, T̄⊥) = [PAR=T̄, ES=ES] |
RT� Fld(RT′, f) = [FINAL=FINAL�, FK=FK, T=T] |
RT� Mth(RT′, m, T̄⊥) = [MK=MK�, RET=T, PAR=T̄, ES=ES]

CK� ::= CK | FINAL� ::= FINAL | MK� ::= MK | not-static

Fig. 3. Type environments and Type assumptions.

– RT� ∃C CK� C with the meaning “class C, with kind CK�, exists and is acces-
sible from code contained in RT”. CK� = means “any kind”, that is, we do
not care whether the class is abstract or not;

– RT� ∃I I with the meaning “interface I exists and is accessible from code
contained in RT”;

– RT� Cns(C, T̄⊥) = [PAR=T̄, ES=ES] with the meaning “the most specific con-
structor for class C and parameter types T̄⊥, invoked from code contained in
RT, has parameter types T̄ and can throw exceptions which are compatible
with the exception specification ES”3;

– RT� Fld(RT′, f) = [FINAL=FINAL, FK=FK, T=T] with the meaning “if code con-
tained in RT looks up a field named f in type RT′, then it finds a field with
a final modifier FINAL�, kind FK and type T”. FINAL� = means we do not
care whether the field is final or not;

– RT� Mth(RT′, m, T̄⊥) = [MK=MK�, RET=T, PAR=T̄, ES=ES] with the meaning “the
most specific method, invoked from code contained in RT, for a method
named m, with parameter types T̄⊥ on a receiver with static type RT′ is a
method which has kind MK�, return type T, parameter types T̄ and can throw
exceptions which are compatible with the exception specification ES”3.

These assumptions can be thought as “the minimal pieces of information”
needed to compile a certain source to a certain bytecode, as we will detail in

3 That is, any exception C such that a C’s superclass is contained in ES - see 11.2 of [8].
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the sequel. The rules defining the judgment Γ � λ are omitted for lack of
space. A forthcoming extended work, containing all the rules, will be available at
http://www.disi.unige.it/person/LagorioG/publications.html shortly.
Also, the rules for a small subset of Java can be found in [2].

Next subsection shows how and when these assumptions are used in the
process of compilation, while Section 3 explain how to exploit type assumptions
in order to obtain a recompilation strategy which is both sound and minimal.

2.3 Compilation

Compilation of expressions is expressed by the following judgment:

RT;Π ; ES;Γ � Es � Eb : T

with the meaning “expression Es has type T and compiles to binary expression
Eb when contained in type RT, in a local environment Π , in a context where
exceptions ES can be thrown and in a type environment Γ”. Type RT is needed
to model the access control; for instance, RT’s private methods can be invoked
only by expressions inside RT. The local environment Π maps parameter names
and this to their respective types (this is undefined when typing expressions
contained in static cont exts). Figure 4 show some selected rules defining this
judgment.

Compilation of statements is expressed by the following judgment:

RT;Π ; ES;Γ � STMTs � STMTb

with the meaning “statement STMTs is compiled to STMTb when contained in type
RT, in a local environment Π , in a context where exceptions ES can be thrown
and in a type environment Γ”. The rules defining this judgment are omitted
because of lack of space.

Before describing the compilation of fragments, we need to introduce the no-
tion of compilation environment. A compilation environment ce maps fragment
names to the corresponding fragment.

ce : RT⇀ S ∪ B
Note that ce models a compilation environment from a compiler’s point of

view; that is, for each fragment name ce returns either a source or a binary
fragment, but not both. In fact, even if both are present, only one is considered
by the compiler, usually the most up-to-date according to the file’s attributes.
As a consequence, a type environment Γ can be extracted from a compilation
environment ce by disregarding the code while retaining signatures and infor-
mation about type hierarchy. Let us assume the function extractEnv : ce → Γ
does this job.

Assume we have a consistent compilation environment ce, that is, if we
compile all the sources in ce we obtain, for the sources which have been re-
compiled, the same binaries already present in ce. Assume, then, to change a



Fig. 4. Selected expression typing rules.

bunch of sources, say RT1, . . . , RTn, obtaining cenew (and a corresponding Γnew =
extractEnv(cenew)). What do we have to do in order to obtain a new consistent
compilation environment?

First of all, we have to check that the environment Γnew is well-formed, for
instance, it must not contain a cycle in the type hierarchy. We formally capture
this notion with the judgment � Γnew	. One could argue that we do not want
to check the well-formedness of the whole Γnew after having changed, say, a tiny
detail in one source. Right, we do not want to; yet, we need to unless we know
something more (see Section 3).

After having checked the environment Γnew, we need to decide which frag-
ments to (re)compile. Of course we have to recompile those which have been
changed, that is, RT1 . . . RTn but what else? Are you tempted to answer “make
clean; make all will do”? A lot of real-world programmers would do just that.
When dealing with a small/medium application and a quite powerful computer
you can do that. And, it works. It works fine actually, but what if you can not
do that? Next section a ddresses this crucial point. For now, just assume we have
to compile RT1, . . . , RTm (obviously m ≥ n).

When we have a well-formed Γnew and do know which fragments to recompile
we can go for it: in our model “running the compilation” on each fragment RTi

amounts to prove the following judgments:

RTi;Γnew � cenew(RTi) � Bi
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∀i ∈ 1..n RT; Π ; ES; Γ 
 Es
i � Eb

i : Ti

Γ 
 RT� Cns(C, T1 . . . Tn) = [PAR=T̄, ES=ES]
Γ 
 RT� ∃C ε C

RT; Π ; ES; Γ 
 new C(Es
1, . . . E

s
n) � new C � T̄ �c (Eb

1, . . . , E
b
n) : C

Γ 
 C <1 C′

Γ 
 C� Fld(C′, f) = [FINAL= , FK=ε, T=T]

C; Π ;ES; Γ 
 super.f � this. � C′.T �if : T
this ∈ Def (Π)

RT; Π ; ES; Γ 
 Es
1 � Eb

1 : C
Γ 
 RT� Fld(C, f) = [FINAL=ε, FK=ε, T=T]

RT; Π ; ES; Γ 
 Es
2 � Eb

2 : T2

Γ 
 T2 ≤ T

RT; Π ; ES; Γ 
 Es
1.f = Es

2 �
Eb
1. � C.T �if= Eb

2 : T

Γ 
 RT�Fld(RT′, f) = [FINAL= , FK=static, T=T]

RT; Π ; ES; Γ 
 RT′.f � � RT′.T �sf : T

RT; Π ;ES; Γ 
 Es � Eb : RT′

Γ 
 RT� ∃C RT′

Γ 
 RT� Mth(RT′, m, T1 . . . Tn) = [MK=not-static, RET=T, PAR=T̄, ES=ES]

∀i ∈ 1..n RT; Π ; ES; Γ 
 Es
i � Eb

i : Ti

RT; Π ; ES; Γ 
 Es.m(Es
1, . . . , E

s
n) � Eb. � RT′.m(T̄) �vrt (Eb

1, . . . , E
b
n) : T

RT; Π ;ES; Γ 
 Es � Eb : RT′

Γ 
 RT� ∃I RT
′

Γ 
 RT� Mth(RT′, m, T1 . . . Tn) = [MK=abstract, RET=T, PAR=T̄, ES=ES]

∀i ∈ 1..n RT; Π ; ES; Γ 
 Es
i � Eb

i : Ti

RT; Π ; ES; Γ 
 Es.m(Es
1, . . . , E

s
n) � Eb. � RT′.m(T̄) �int (Eb

1, . . . , E
b
n) : T



Fig. 5. Selected compilation rules.

Figure 5 shows some selected rules defining this judgment. In defining the
compilation of a set of classes we assume to compile them one by one, that is,
we assume that no global optimizations take place. This reflects the fact that
in languages with dynamic linking like Java, the concept of “program” is only
significant at runtime so it is safer to leave cross class optimizations to virtual
machines like HotSpot [9].

3 A Smart Strategy

When dealing with an updated compilation context cenew (in respect to a previ-
ous ceold) there are two steps to perform: checking whether the corresponding
new type environment Γnew is well-formed and, when it is, decide which (un-
changed) source fragments have to be recompiled besides the changed ones. Some
information gathered during a previous compilation can be used to speedup both
these steps. We first show how we can check only the “updated part” of an en-
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These metarules assume Γ to be well-formed, that is, 
 Γ�.
Anyway, we do not want 
 Γ� to be a premise of any of them (see the text for full details).

C; Γ 
 KDSs � KDSb C; Γ 
 FDSs � FDSb C; Γ 
 MDSs � MDSb

Γ 
 AM CK class C extends C′ implements I1, . . . , Im {KDSs FDSs MDSs} �
AM CK class C extends C′ implements I1, . . . , Im {KDSb FDSb MDSb}

AM ∈ {ε, public}

I; Γ 
 FDSs � FDSb I; Γ 
 MDSs � MDSb

Γ 
 AM interface I extends I1 . . . Im { FDSs MDSs } �
AM interface I extends I1 . . . Im { FDSb MDSb }

MDSs = MDs
1..MD

s
n

∀i ∈ 1..n MDs
i = public abstract . . .

FDSs = FDs
1..FD

s
m

∀i ∈ 1..m FDs
i = public static final . . .

AM ∈ {ε, public}

Γ 
 C <1 C′

∀i ∈ 1..n C; Π ;ES; Γ 
 Es
i � Eb

i : Ti

C; Π ;ES; Γ 
 STMTSs � STMTSb

Γ 
 C�Cns(C′, T1 . . . Tn) = [PAR=T̄, ES=ES]

C; Γ 
 AM (T1 x1, . . . , Tn xn) throws ES { super(Es
1, . . . , E

s
n); STMTSs } �

AM (T1 x1, . . . , Tn xn) throws ES { super(Eb
1, . . . , E

b
n) � T̄ �c; STMTSb }

Π = {x1 �→ T1,
. . . ,
xn �→ Tn,
this �→ C}

RT; Π ; ∅; Γ 
 Es � Eb : T′

Γ 
 T′ ≤ T

RT; Γ 
 AM FINAL FK T f = Es ; � AM FINAL FK T f = Eb ;
Π = This(FK, C)

C; Π ; ES; Γ 
 STMTSs � STMTSb

C; Π ; ES; Γ 
 Es � Eb : T′

Γ 
 T′ ≤ T

C; Γ 
 AM MK T m(T1 x1, . . . , Tn xn) throws ES { STMTSs return Es; } �
AM MK T m(T1 x1, . . . , Tn xn) throws ES { STMTSb return Eb; }

Π = {x1 �→ T1,
. . . ,
xn �→ Tn}∪
This(MK, C)

MK �= abstract

This( , I) = ∅
This(static, C) = ∅;
This(ε, C) = {this �→ C}
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vironment Γnew when a previous well-formed environment Γold is known. Then,
we show how the type assumptions used to compile a fragment can be used later
to decide whether it has to be recompiled.

We define leavesΓ (RT) = {RT′|Γ � RT′ ≤ RT ∧ ∀RT′′ Γ � RT′′ ≤ RT′ =⇒
RT′′ = RT′} and the judgment Γ � okOvr RT with the meaning “RT correctly
extends its parent types (up to Object) in Γ”. That is, RT’s hierarchy is acyclic
and the Java rules on method overriding/hiding are respected. The rules defining
such a judgment are omitted for lack of space.

Definition 1. A type environment Γnew is well-formed w.r.t. another type envi-
ronment Γold iff the following conditions hold:

[add] RT ∈ Def (Γnew) \Def (Γold) =⇒
{
Γnew � okOvr RT
usedΓnew

(RT) ⊆ Def (Γnew)
[rmv] Def (Γold) \ Def (Γnew) �= ∅ =⇒ ∀RT ∈ Def (Γnew) usedΓnew

(RT) ⊆
Def (Γnew)

[cng] RT ∈ Def (Γold) ∩Def (Γnew), Γold(RT) �= Γnew(RT) =⇒{∀RT′ ∈ leavesΓnew
(RT) Γnew � okOvr RT′

usedΓnew
(RT) ⊆ Def (Γnew)

where “used by RT in Γ”, usedΓ (RT), means all types directly referenced by RT.

Theorem 1. If � Γold	 holds, and Γnew is well-formed w.r.t. Γold then, � Γnew	
holds.

Proof Two requirements have to be met:

– Γnew must be closed, that is, usedΓnew
(RT) ⊆ Def (Γnew) for all RT ∈ Def (Γnew);

– overriding rules must be satisfied, that is, for any RT ∈ Def (Γnew) the judg-
ment Γnew � okOvr RT must be valid.

The former requirement is met by hypothesis when some type defined in Γold
has been removed from Γnew, see [rmv] in Definition 1. When no types have
been removed, the unchanged types cannot, trivially, refer to undefined types
because, by hypothesis, Γold is closed. By [add] and [cng] of Definition 1 new
and updated types refer only to types defined in Γnew.

The latter requirement can be proved by case analysis. Consider Def (Γnew)
as the union of three disjoint sets: U , C and N . These sets contain, respectively,
the unchanged, changed and new types in Γnew with respect to Γold. Formally:

U = {RT|RT ∈ Def (Γnew) ∩Def (Γold), Γnew(RT) = Γold(RT)}
C = {RT|RT ∈ Def (Γnew) ∩Def (Γold), Γnew(RT) �= Γold(RT)}
N = Def (Γnew) \Def (Γold)

Let us consider N ∪C first. For any new type RT, contained in N , the judgment
Γnew � okOvr RT is valid by the hypothesis, see [add] of Definition 1. For any
changed type RT, contained in C, the judgment Γnew � okOvr RT is valid because
of [cng] of Definition 1.
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It remains to prove that the judgment holds for the unchanged types, con-
tained in U . Since they are unchanged the direct supertypes of any type in U
are the same in Γold and Γnew. Furthermore, each direct supertype of RT must
be contained in Def (Γold) and in Def (Γnew) because of, respectively, the fact
that � Γold	 holds and the fact that Γnew is closed (which we have proved be-
fore). Hence, these direct supertypes must be contained in Def (Γold)∩Def (Γnew)
which, by definition, is equal to: U ∪ C. If a direct supertype is in U , then the
same reasoning can be applied; so, for any RT ∈ U , only two cases are possible:

– all supertypes of RT are in U ; then, the hierarchy of RT has not changed and
by the hypothesis � Γold	 is valid, so the judgment Γnew � okOvr RT is valid
too;

– there exists a supertype RT′ of RT which is in C, whose subtypes till RT
are in U . Then, by [cng] there exists a type RT′′ such that RT′′ ≤ RT and
Γnew � okOvr RT′′ holds. So, Γnew � okOvr RT must be valid too.

In summary, as long as we keep trace of a previous well-formed environ-
ment Γold we can check for the well-formedness of any new environment Γnew
by examining the changes w.r.t. Γold. The most expensive check must be per-
formed when some classes are removed; this is acceptable because classes are
added/changed more often than removed in the usual software development cy-
cle. The requirement of having a previous well-formed environment available may
seem restrictive, but it is not, since one can always use the empty environment
(which is trivially well-formed) as Γold when starting to use our strategy from
scratch.

Assume we have a compilation environment ceold, a corresponding well-
formed type environment Γold = extractEnv(ceold), and we can prove:

RT;Γold � ceold(RT) � B

The proof tree for this judgment can be proved to be unique, and contains a set
of assumptions Λ = λ1, . . . , λn. We call it the requirements for RT in Γold and
write

Reqs(RT, Γold) = Λ

Assume to change ceold leaving the fragment for RT untouched. That is, as-
sume to have another compilation environment cenew, with a corresponding well-
formed environment Γnew, such that cenew(RT) = ceold(RT).

Does RT compile in cenew? If it does, can we say something about the corre-
sponding binary?

The following theorem states that, if Γnew still satisfy the requirements of RT
in Γold, then we do know that RT compiles in Γnew and it compiles to the same
binary.

Theorem 2. If ceold and cenew are two compilation environments which share
the same source for RT, that is, ceold(RT) = cenew(RT), the corresponding type
environments Γold = extractEnv(ceold) and Γnew = extractEnv(cenew) are well-
formed, and the judgment RT;Γold � ceold(RT) � B can be proved, then:

RT;Γnew � cenew(RT) � B ⇐⇒ Γnew � Reqs(RT, Γold)
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Proof (sketch) If Γnew � Reqs(RT, Γold), that is, Γnew � λ holds for all λ ∈
Reqs(RT, Γold), the proof for RT;Γold � ceold(RT) � B is a proof for RT;Γnew �
cenew(RT) � B too. On the other hand, if Γnew �� Reqs(RT, Γold), then there exists
at least one λ ∈ Reqs(RT, Γold) such that Γnew �� λ. Since the proof tree for a
compilation judgment is unique, either there is no proof tree for compiling RT in
Γnew or the compilation produces another binary B′ which differs from B.

When the compilation for a fragment RT is undefined, or the binary produced
by the compilation differs from the existing one, a sound strategy requires the
compilation of RT.

To sum up, our compilation strategy is quite simple: a fragment has to be
recompiled if and only if the new environment does not entail its requirements.
This strategy is both sound and minimal.

So far so good: if we keep trace of the requirements for a fragment when we
compile it we can apply a sound and minimal strategy. However, from a practical
point of view there is another point to ponder: the cost of checking whether the
requirements of a fragment are entailed by a type environment. If this checking
costed more than compiling the source fragment, then all the reasoning so far
would be useless. Luckily, this is not the case. In typechecking a source fragment
a compiler must necessarily perform all the steps which are necessary to check
the validity of the entailment. In addition, a compiler must, of course, parse
the source and generate the code. So, checking whether the entailment holds
is definitely faster than recompiling, and we expect this to be much faster. Of
course, the global cost of using a smart strategy is not easy to determine because
it depends on the particular compiler and the compilation context. That is, on
the one hand there is the additional cost of checking the entailment, on the other
hand there is the saving in not compiling the fragments whose requirements
are entailed by the new environment. In a sense, the time used to find that a
fragment’s requirements are not entailed may appear “wasted”, because that
fragment has to be recompiled. However, if the compilation manager and the
compiler are tightly integrated, the compiler’s typechecking step can use the
results of the previous entailment checking step as a sort of cache and skip many
checks when recompiling the fragment. Using this trick, the “wasted” time is
extremely small: it just consists in finding that a single requirement λ does not
hold.

We can model an extended compilation environment as follows:

ce+ : 〈Γ, RT⇀ S ∪ B ∪ (B× Λ)〉
That is, a pair consisting of the previous (well-formed) environment Γ and a
function which, for each fragment name, returns either: the source only, the bi-
nary only (when the source is not available) or a pair consisting of the binary and
the requirements (the idea is that they are the result of a previous compilation).

4 Related and Further Work

This paper, together with [3, 4], can be considered a step towards a better support
for separate compilation of Java-like languages.
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The solution presented here, which extends the ideas in [2], is similar to at-
tribute recompilation, according to the classification given in [1] - here attributes
correspond to assumptions.

An inspiring source of our work has certainly been Dmitriev’s paper [5], which
describes a make technology, based on smart dependency checking, that aims to
keep a project consistent while reducing the number of files to be recompiled. A
freely downloadable tool, Javamake, is based on such a paper and implements the
selective recompilation upon any Java compiler. Unfortunately, as pointed out
by the author himself, there is no proof of the correctness of the approach, which
is not based on theoretical foundations. So, it might happen that Javamake fails
to force the recompilation of some classes which is actually needed for ensuring
the consistency of the project. Conversely, Javamake cannot avoid a considerable
amount of unnecessary recompilations. Hence, it is neither sound nor minimal.

The final goal of the work presented in this paper is implementing a smart
compilation manager for the whole Java language, à la Javamake, but based on
a formal model on which the correctness can be actually proved. To achieve this
result, there are some subtle and Java-peculiar features which must be addressed.

– Unreachable code is not just a bad idea: it is forbidden (see 14.20 of [8]) -
this is the most challenging issue to be tackled.

– Final methods : an invocation of a final instance method is compiled to differ-
ent bytecode w.r.t. an invocation of a non-final instance method (non-virtual
invocation vs virtual one, see 15.12.3 of [8]). This issue should not pose major
problems.

– Accessing a final field initialized by a constant expression is a constant
expression (see 15.28 of [8]) and so should be compiled directly to the cor-
responding value. This issue should not pose problems too, as long as an
assumption keeps track that such a constant is really an access to a static
final field.
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Università di Salerno, 84081 Baronissi (SA), Italy
{cimato,paodar,visconti}@dia.unisa.it

Abstract. In this paper we propose efficient schemes enabling groups
of users of a mobile network to communicate anonymously with respect
to an adversarial party (i.e, other users, network managers, and so on).
Each user can start a group communication, and his identity, as well as
the identities of the other members of the group, are not revealed even
if several other parties of the system collude. We consider two network
settings and, for each of them, we propose an efficient and secure scheme.

Keywords: Mobile Communication, Cryptography, Anonymity, Privacy

1 Introduction

Mobile communication has heavily grown up in the last decade. In order to
provide high-quality services, researches have mainly been focusing on the de-
velopment of a new mobile network infrastructure, and on the design of enough
powerful and well-equipped mobile devices. Such efforts have given rise to a
scenario where many applications are provided to the users. By means of their
mobile devices, users can have group communication, can receive and exchange
multimedia data, can browse the Internet, as well as can subscribe to certain
information services, offered by public or private agencies. However, as much
as mobile networks, devices and applications are having spread diffusion, so is
user privacy request becoming more and more demanding. In the literature,
many papers examine the security threats involved in mobile communication,
e.g., confidentiality of the conversation, privacy of user location, protection of
user identity.
Our contribution. This paper deals with anonymous group mobile communica-
tion. We describe two schemes enabling a user to start anonymously a group
communication with other users, whose identities are hidden to parties who do
not belong to the group. More precisely, only the user starting the conference
knows the identities of the parties involved in the conversation, while neither
the service provider, nor any involved user knows the identities of the others.
Such an anonymous conference system allows discussions on sensitive topics to
be started among participants which do not want to disclose their identities, and
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they have applications in both business and fancy fields (politics boards, chat
or dating systems). Each protocol yields a different security degree. Moreover,
following a recent trend in cryptographic researches, in designing our scheme,
we try to minimize the need for trust in third parties as much as possible.
Related Work. Several papers in the literature have addressed the issue of secure
communication in mobile networks. Anonymous communication has been stud-
ied in [9]. The issue of anonymous and accountable access to services in mobile
communication systems has been instead addressed in [3], where a trusted cus-
tomer care agency is used, in order to grant and charge accesses to services. An
efficient scheme which provides privacy of the conversation (i.e. content protec-
tion) in group mobile communication has been recently given in [17]. Another
approach for preserving user privacy in mobile communication networks can be
found in [12], as well as in [2] a replicated memory service is used in order to
preserve user location privacy. Anonymity in wired communication networks has
been deeply studied, and it has been source of ideas also for the mobile setting.
In [4,15] mix networks have been introduced to achieve several goals in wired
networks and later applications to mobile communication have been considered
in [8,1].

2 Background

Rabin Cryptosystem. Let Z∗
n be the multiplicative group of the integers x be-

tween 1 and n− 1 such that gcd(x, n) = 1. We say that y is a quadratic residue
modulo an odd integer n iff there exists w such that w2 ≡ y mod n. Let Qn

be the set of quadratic residues modulo n. Deciding whether y is a quadratic
residue modulo n is easy if n is prime. Indeed, y is a quadratic residue modulo
a prime n iff y

n−1
2 ≡ 1 mod n and the two solutions of w2 = y mod n are given

by ±y n+1
4 mod n. On the other hand, if the modulo n is composite, then the

quadratic residuosity of y modulo n can be efficiently decided only if the factor-
ization of n is known. In our construction we consider special moduli n called
Blum integers. We say that n is a Blum integer if n is the product of two primes
p, q of the same length, both congruent to 3 modulo 4. In such a case, the number
of solutions of w2 = y mod n is 4. We assume that computing one square root
of a quadratic residue modulo a Blum integer is hard if the factorization of the
Blum integer is not known. Rabin’s cryptosystem works as follows:

– Set-up. A user generates a Blum integer n = pq, publishes n and keeps secret
its factorization.

– Encryption. A message M is encrypted computing M̂ = M2 mod n.
– Decryption. An encrypted message M̂ is decrypted computing the four

square roots modulo n and choosing one of them according to some proba-
bilistic criterion (e.g., the last bits of a message represents the message digest
of the other bits).

The encryption operation is very efficient: it just requires a modular mul-
tiplication. Hence, several encryptions can be efficiently performed by a smart
card. The decryption requires two modular exponentiations.
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Chinese Remainder Theorem. An important result from Number Theory, fre-
quently used in Cryptography, is given by the so called Chinese Remainder
Theorem (see [18] for details):

Theorem 1. Let n1, . . . , nk be pairwise relatively prime integers, and let n =
n1 · n2 · . . . · nk. Then, for any integers a1, a2, . . . , ak, the set of simultaneous
equations X ≡ ai mod ni, for i = 1, . . . , k, has a unique solution modulo n for
the unknown X.

In other words, there exists and can be efficiently computed a single value
0 < X <

∏k
i=1 ni such that X ≡ ai mod ni, for i = 1, . . . , k.

Secret Sets Constructions. Secret sets where introduced by Molva and Tsudik in
[14] as a basic construct for communication with a group of mutually suspicious
entities. Loosely speaking, a set is secret if any entity can test its membership
in the set but can determine neither the other members nor the cardinality of
the set. Secret sets were further studied in [6]. We will use one of the schemes
given in [14], based on the Chinese Remainder Theorem, in the design of our
first protocol. Basically, the scheme for constructing a secret set will be used at
the beginning of the conference to set up a broadcast message for inviting other
users to join the conference.

Blind Signatures. Blinding is a well-known cryptographic technique used to al-
low an entity to sign a message, received from another entity, without knowing
the content of the message [5]. In Chaum’s blind signature scheme, based on
RSA [13], user A is able to obtain B’s signature on a message m, releasing no
information on m. More precisely, let (n, e) and d be B’s public and private
key, respectively. Let k be a random integer chosen by A with 0 ≤ k ≤ n − 1
and gcd(n, k) = 1. To get the blind signature from B on a message m, A first
computes m∗ = h(m)ke mod n, and sends it to B. B returns to A the message
s∗ = (m∗)d mod n. Finally, A can obtain B’s signature on the original message
m by computing s = k−1s∗ mod n.

Billing. Anonymous subscription protocols have been proposed in the literature,
allowing users to anonymously access an electronic service. Some protocols are
based on the use of pseudonyms [4], some others rely on the use of anonymous
tokening systems, which make use of blind signatures [19]. The solution we de-
scribe here is given by the bit counting scheme, which has been recently proposed
by Ramzan and Ruhl in [16]. The idea is to give each user, holding a regular
subscription to a service, a number of anonymous tokens, encoding the binary
representation of the number of allowed accesses. Each time the user wishes to
access the service, he sends a subset of the valid tokens to the service provider,
such that the validity of the subscription can be checked. The service provider
replies by providing the service and by sending back to the user a new set of
tokens, encoding the remaining number of allowed accesses.

More precisely, the service provider fixes V = 2m − 1, to be the maximum
number of accesses to a service for a valid subscription. Then, it selects 2m pub-
lic/secret key pairs, named g1, g2, . . . , gm and f1, f2, . . . , fm. Assume that a user
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buys a subscription for � ≤ V accesses to the service: he sends to the provider m
blinded tokens t1, t2, . . . , tm (with each ti = (mi, h(mi)d)). The provider returns
the tokens signing each ti with gi, if the corresponding bit in the binary represen-
tation of � is 1, or with fi, if the corresponding bit in the binary representation
of � is 0.

Each time a user wants to access the service, he sends to the provider the
subset of tokens t1, . . . , ti, such that ti is the first token signed with gi, while
t1, . . . , ti−1 are all signed with keys f1, , . . . , fi−1. He also sends i fresh blinded
tokens tn1 , . . . , tni

to the provider. The provider can check that the tokens t1, . . . ,
ti are valid and have not been used before. If this is the case, then it provides
the user with the requested service, and sends him the i signed fresh tokens
t∗n1
, . . . , t∗ni

, where tn1 , . . . , tni−1 have been signed with keys g1, . . . , gi−1, while
tni has been signed with fi.

Notice that the communication complexity of the above billing scheme is op-
timal, since the user sends on average only two tokens per item request. If k de-
notes the security parameter, then communication complexity is O(k) bits. User
storage complexity is low as well, since the user is requested to keep O(klog�)
bits, where � is usually a small integer. The storage complexity for the service
provider is high, since it is requested to store every used token. However, by
requiring the 2m keys to expire at regular intervals, the provider has to store
only O(kn�) bits, where n is the number of subscribers.

3 Broadcast-Based Setting

A mobile conference is a synchronous collaboration session, in which conferees
communicate through a wireless network. In this section we consider a simple
scenario, where users are connected to a service provider. More precisely, the
entities involved are the following:

– Mobile devices, used by the customers to make or receive a call. Mobile
devices are directly connected to the service provider.

– Service provider (SP, for short), contacted by the users who wish to setup or
participate to a mobile conference. The SP receives messages from conferees,
operates on these messages in an appropriate way, and then it broadcasts1

the results to the other conferees.

We assume that, during an off-line registration phase, users subscribe to the
service offered by SP, identify themselves, and pay for the service a certain fee,
receiving from SP some tickets that can be spent from time to time to access
the service. Moreover, we assume that the following conditions are satisfied:

– Anonymous channel. We assume that when the user contacts SP, the channel
does not provide the identity of the caller.

1 Broadcast messages directed to a single user can be thought as messages sent along
a point-to-point channel between SP and the user.
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Fig. 1. Broadcast-based Setting.

– Low Conference Call-Request Rate: The number of conferences that take
place in a certain time-period is low.

The first condition is required because if the channel carries out the identity
of the caller, anonymity is impossible. The second condition is required because
in our scheme a mobile device has to perform some computation any time a new
conference call is broadcasted by the SP, in order to find out whether or not
the user is part of the conference. Too many calls (i.e., broadcast messages to
decrypt) cannot be managed by the low-power mobile device.

3.1 Protocol

Any conference is started by a user, which we refer to as the Conference Initia-
tor, CI for short. The structure of a protocol providing anonymous and secure
communication is basically divided in four steps:

– Anonymous Identification of CI: The conference initiator CI interacts
with SP in order to be identified as one of the users allowed to access the
service. More precisely, CI sends a call-request message to SP containing
anonymous identification information, and tokens for paying the service. At
the end of such a phase, the SP sends a randomly chosen conference id, say
cid, to CI.

– Conference Call: Once granted the access, the conference initiator CI,
chooses uniformly at random a session key k, embeds k in a larger message
M containing some other information (among which the conference id cid),
encrypts M obtaining B, and asks SP to broadcast B to the users.

– Membership Test and Key Recovery: Every user receives B and checks
in it if he belongs to the conference: If this is the case, then the user succeeds
in decrypting the message and in recovering the session key k.

– Conference Join and Conversation: Users belonging to the conference,
anonymously identify themselves to the SP and pay for the service. Then,
when the conference starts, the SP broadcasts every encrypted message with
the prepended conference id cid, received by one of the members of the group.
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The above general protocol can be instantiated as follows: The conference
initiator CI, can anonymously identify himself to the SP as a subscriber, paying
the anonymous conference service fee according to the bit counting billing scheme
described before, as follows2:

Anonymous Identification:
– CI constructs a message MI = t1, . . . , tk||tn1, . . . , tnk containing a subset of k tokens

t1, . . . , tk such that tk is the first token signed with key gk, and k fresh blinded tokens
tn1, . . . , tnk, and sends it to SP .

– SP verifies the validity of the tokens t1, . . . , tk in MI , signs opportunely the k fresh
tokens tn1, . . . , tnk, and computes a random number cid. He returns to CI a message
MR = tn∗

1, . . . , tn
∗
k||cid containing the signed tokens tn∗

1, . . . , tn
∗
k and the conference

identifier cid.
We assume that every user Ui holds a certified pair of keys (PKi, SKi), and

he is associated with a public known prime number pi. Moreover, we denote
by {M}K the encryption/decryption of M by using a cryptographic key K.
Once CI has been identified by SP as a subscriber of the anonymous conference
service, he has paid the fee, and has received the conference identifier cid, then
CI proceeds as follows:

Conference Call:
– For each Ui ∈ C, CI constructs a message Mi = Ri||k||cid||msg, given by the

concatenation of a random string Ri, used for randomization purposes, the session
key k, the conference identifier cid, and a message msg establishing membership, and
computes xi = {Mi}PKi .

– Then CI, by using the Chinese Remainder Theorem, computes the value X satisfying,
for each Ui ∈ C the congruence X mod pi = xi and sends it to the SP .

– Finally, SP broadcasts the value X.

Every user of the network, operates as follows:

Membership Test and Key Recovery:
– User Ui, in order to find out whether or not he is part of the conference, computes

xi = X mod pi, and then Mi = {xi}SKi .

Finally, each user that is member of the conference, anonymously identify himself
to SP , and pays the conference fee. Such a step is basically the same performed
by the conference initiator CI. More precisely:

Conference Join and Conversation:
– Ui constructs a message Ji = t1, . . . , tk||tn1, . . . , tnk||cid containing a subset of k

tokens t1, . . . , tk such that tokens t1, . . . , tk−1 are signed with keys f1, . . . , fk−1 and
tk is signed with key gk, k fresh blinded tokens tn1, . . . , tnk, and the conference
identifier cid. Then he sends such a message to SP .

– SP verifies the validity of the tokens t1, . . . , tk in Ji, it signs opportunely the k fresh
tokens tn1, . . . , tnk, and it returns to Ui the message JR = tn∗

1, . . . , tn
∗
k containing

the signed tokens.
Afterwards, the conversation takes place in a straightforward manner: every

user of the group, encrypts the message he wishes to send by using the session

2 Notice that, in order to avoid replay or man-in-the-middle attacks, each message
should be encrypted by using a symmetric key established with an asymmetric
scheme.
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key k, prepends to the message the conference identifier cid, and sends it to SP .
Then, SP broadcasts such messages that users in the group receive and decrypt.

The scheme is efficient both from the computational and communication
points of view. Indeed, notice that mobile conferences involve usually small
groups of users (e.g., 5, 6, · · ·). It does not make any sense a mobile confer-
ence in which 10, 000 people are involved . Conversation would be impossible!
In the above scheme, the conference initiator CI only needs to encrypt a mes-
sage for each member of the conference, and to compute the value X. The first
computation is efficient since we are using Rabin’s Cryptosystem3. The second
computation can be easily carried out by means of few multiplications and ap-
plications of the Euclidean algorithm. Moreover, the size of the broadcast X is
proportional to the number of members of the conference. Finally, every user
can check membership by means of a modular division and a single decryption.

In terms of memory storage, the above construction just requires each user to
store his own secret key, apart the information needed to anonymously identify
himself to the SP. Current smart cards have enough memory storage capability
and computational power to support such a scheme4.

4 Mix-Network Based Setting

The above construction is elegant and efficient but cannot be applied to a large
scale network. Indeed, several features of real mobile networks do not match
the assumptions we have done before. For example, in the GSM system, the
base station to which a mobile device is connected knows the identity of the
user. Moreover, the idea of a call-for-conference based on an encrypted broad-
cast message is not feasible in presence of a large number of call-requests. In this
section we consider a more feasible scenario resembling widely used mobile com-
munication standards. Mobile users are connected to the network through base
stations, which authenticate them and propagate incoming calls. More precisely,
the entities we consider are:

– Mobile devices: used by the customers to make or receive a call. When making
or receiving a call, a radio connection between the mobile device and the
nearest radio station is established. The smart card contained in the mobile
device allows the user to have the calls charged on his own account, and also
to access the services the user has subscribed during the registration phase.

– Base stations: consist of transreceivers and controllers who physically man-
age the communication between the users and the network switching system.

3 Due to a suitable implementation by means of the Montgomery multiplication
algorithm (see [17] for details), we can gain even more efficiency.

4 The parameters of the other conferees must be known to the mobile device of the
conference initializer as well. Current storage capabilities of mobile devices make it
feasible for a few users.
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Fig. 2. Mix Network Based Setting.

– Network switching system: connects mobile devices to other mobile devices
in the same network or in different networks. Mobile switching systems are
employed to handle handover, location updating, registration, authentication
and call routing. The network switching system usually connects also mobile
devices to the fixed (non-mobile) phone networks. The network switching
system relies on mix networks (which will be described later on) to redirect
messages among mobile users in an anonymous way.

– Conference manager (CM, for short): contacted through the network switch-
ing system by the users, in order to start a mobile conference. The confer-
ence manager receives messages from conferees, operates on these messages
in an appropriate way, and then it forwards the results through the network
switching system to the conferees.

4.1 Mix Network

In current standard mobile networks the mobile device interacts with a base
station, in order to inform the network switching system about the user location.
Indeed, the network switching system needs to know the location of a mobile
device, in order to redirect a call request to the correct base station. Information
about user location is therefore stored in a specific register, called Home Location
Register (HLR, for short), and accessed by the network switching system.

Such a mechanism is obviously a strong threat against user privacy, since the
information stored by the HLR can be used to trace user movements. A similar
threat for user privacy arises in TCP/IP networks for IP addresses. However,
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in the TCP/IP setting the problem has been deeply studied. A proposal for
protecting user privacy from tracing attacks, based on the so called mix net-
work, has been described in [7,11]. A solution based on mix network for wireless
communication has been subsequently presented in [1,8].

A mix network is composed of special computers, referred to as mixes, that
manage the delivering of a message transmitted by a sender to a receiver. Mixes
should belong to different institutions, in order to preserve user privacy against
collusion attacks, performed by corrupted parties. A mix network works as fol-
lows: The sender of a message chooses a path in the mix network the message
has to cross to reach the receiver (i.e., a sequence of mixes). Then, he encrypts
according to a onion-like style, a message composed of an header part and a
content part: in the header part, there is an address (or just the unique name)
of a mix. In the body part, there is the message that will be managed by the
mix. To clarify the discussion, let us consider an example. Suppose that Alice
wants to send anonymously a message M to Bob. Alice’s mobile device ran-
domly chooses l mixes, say m1, . . . ,ml, along the mix network, and performs the
following computation:

M̂ = {m2||{· · · {ml||{Bob||{M}Bob}ml
}

ml−1
· · ·}

m2

}
m1

The message M is firstly encrypted with Bob’s public key. Then, the resulting
message is concatenated to Bob’s mobile address and encrypted with ml’s public
key. The resulting message is concatenated with the address of ml and encrypted
with ml−1’s public key and so on, until the encryption with m1’s public key is
performed. The resulting message M̂ is sent by Alice tom1. The mixm1 decrypts
M̂ , reads the name m2 of the next mix in the path, and sends it the remaining
message. The mix m2 proceeds in the same way, and so on until the message
reaches ml. The last mix ml decrypts the message, reads Bob′s address, and
sends him the remaining message. The communication between the mixes takes
place along a fast communication channel. Finally, Bob receives and decrypts
the message. Alice and Bob are unlinkable as long as one of the chosen mix
is honest, in the sense that it does not cooperate with the other mixes. In the
following, we use the notation A⇒MIX B : M to say that a message M is sent
by A to B by using the MIX network.

Sessions. In order to let a party reply to a caller without knowing his identity we
assume that a session is established between the sender and the receiver across
the mixes. More precisely, when the first message is sent, the caller chooses a
random serial number for the session, and he appends it to the message that is
encrypted with the public key of the first mix in the path. The same operation
is repeated by all mixes along the path. For example, mix mi receives for a given
message a serial number si from mi−1 and sends to the next mix mi+1 a serial
number si+1 with the message. The receiver obtains a serial number sr and for
each message that he sends back to the caller, he uses the same mix that sent
him the first message and he appends to the reply message the serial number
sr. The message then can reach the destination using the same path followed by
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the first message, but in reverse order. Indeed, the mix mi will receive from mix
mi+1 a message with serial si+1. Thus, he knows that the mix he has to forward
the received message is mi−1 and the serial number he has to append is si. Note
that the existence of a session does not threat the anonymity of the system.

4.2 Protocol

As before, a conference is started by a certain conferee, referred to as the confer-
ence initiator (CI, for short). He contacts through the network switching system
a conference manager (CM , for short) in order to start a conference. During this
step, a conference identifier (cid, for short) is established, and the initial fee is
paid by CI, according to the bit counting billing scheme described in Section 2.
The mix network inside the network switching system guarantees the privacy of
CI.
Anonymous Identification:

– CI ⇒MIX CM : {Init}CM . The Init message contains a symmetric session key
and the tokens, i.e. Init = Init||KIM ||t1, . . . , tk||tn1, . . . , tnk.

– CM ⇒MIX CI : {Start}KIM
. Start = Start||cid||tn∗

1, . . . , tn
∗
k where cid is a

conference identifier randomly chosen by CM and tn∗
1, . . . , tn

∗
k are the blind signatures

of tn1, . . . , tnk. This step is performed only if tokens t1, . . . , tk||tn1, . . . , tnk are well
computed.
Once CI has been anonymously identified, he invites the other conferees by

giving them a randomly chosen session key, the address of the conference man-
ager, and the conference identifier. The conferees then join the conference and
pay the required fee. The mix network is used during both invitation and joining
since we want to guarantee user privacy also in peer-to-peer communication.
Conference Call
CI generates for conference cid a symmetric key Kcid. Let C1, . . . , Cl be the conferees of
conference cid. For 1 ≤ i ≤ l the following steps are executed:

– CI ⇒MIX Ci : {Invite}Ci
. The Invite message contains the conference identifier

cid, the conference key Kcid, and the address of the conference manager CM , i.e.,
Invite = Invite||cid||Kcid||CM .

– Ci ⇒MIX CM : {Enrollment}KCM
. The Enrollment message contains the confer-

ence identifier cid, a symmetric session key KiM , and the tokens for the joining fee,
i.e., Enrollment = Enrollment||cid||KiM ||t1, . . . , tk||tn1, . . . , tnk.

– CM ⇒MIX Ci : {Join}KiM
. The Join message has the following structure: Join

= Join||cid||tn∗
1, . . . , tn

∗
k, where cid is a conference identifier and tn∗

1, . . . , tn
∗
k are the

blind signatures of tn1, . . . , tnk. This step is performed only if the tokens sent in the
Enrollment message are well computed.
Once a conference has begun and the conferees have joined it, each message

of a conferee reaches the conference manager that then forwards it to the other
conferees. Moreover each conferee is charged by the conference manager. Notice
that our scheme allows an arbitrary charging policy: conferees can pay only at
the beginning of the conference a certain fee, as well as they can pay at the end
of each fixed time-period a certain fee. The mix network is still used in order to
guarantee unlinkability.
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Conference Join and Conversation:
Once a conference cid is started the following messages are exchanged between the con-
ference manager and each conferee Ci that has joined cid.

– Ci ⇒MIX CM : {Pay}KiM
. The Pay message contains the conference identifier cid

and the tokens corresponding to the amount of money that the conferee Ci must
periodically pay established by the charging policy of CM . More precisely, the Pay
message has the following structure: Pay = Pay||cid||t1, . . . , tk||tn1, . . . , tnk.

– CM ⇒MIX Ci : {Ack}KiM
. The Ack message is sent in order to give back the signed

blind tokens after a Pay message, i.e., Ack = Ack||cid||||tn∗
1, . . . , tn

∗
k.

– Ci ⇒MIX CM : {Talk}KiM
. The Talk message contains the conference identifier

cid and the conversation of conferee Ci encrypted with the conference key Kcid, i.e.,
Talk = Talk||cid||{M}Kcid

.
– CM ⇒MIX Ci : {Conversation}KiM

. The Conversation message contains a con-
ference identifier cid and a message that has been previously received by CM from a
conferee in a Talk message, i.e., Conversation = Conversation||cid||{M}Kcid

.

4.3 Performance

We briefly discuss now the communication and computation complexities of the
mix network based solution. There is a trade-off between the privacy of the
system and the communication complexity of our architecture since the work of
each mobile device (based essentially on encryptions/decryptions) linearly grows
with the number of mixes he wishes to use. Moreover we distinguish between
symmetric and asymmetric encryptions/decryptions and between modular mul-
tiplications and exponentiations. Indeed, a modular exponentiation corresponds
to hundred modular multiplications. We have decided to use Rabin’s cryptosys-
tem due to the low computational complexity of its encryptions, that efficiently
satisfies the requirements of a mix network. We assume that all encryptions are
opportunely randomized.
Mix overhead. If the mix network is composed of mixes belonging to different
institutions and each mix in a chosen path belongs to a different institution, a
reasonable length for a path has a small constant value. The overhead added
by the mix network is thus few modular multiplications that can be reasonably
performed also by a smart card.
Symmetric encryption. Almost all messages are encrypted by using a symmetric
algorithm like the Advanced Encryption Standard, which is fast and presumed
to be secure at the state of current knowledge. The reader is referred to [18] for
details.
Conference Initiator. The conference initiator CI performs some extra tasks,
compared to the other conferees. Indeed, he has to contact each other conferee
in order to invite him to the conference, by giving him the necessary information
for joining the conference and encrypting/decrypting the conversation. However,
the number of conferees is in general bounded by a small constant as we discussed
in Section 3.1.
Conversation. Each conferees that actively attends the conference sends his con-
tribution to the conference by sending to the conference manager his messages.
The conference manager then forwards the message to each other conferee. The
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overhead of the conversation is thus essentially based on a symmetric encryp-
tion/decryption for each message.

5 Conclusions

In this extended abstract we have described two protocols providing anonymous
group communication in mobile networks. Both schemes satisfy a number of con-
straints usually presented by mobile devices, such as low computational power
and limited memory storage capabilities. Our schemes are based on several cryp-
tographic techniques used in the literature in different (or related to the one we
have considered) settings, and provide features like billing and conference man-
agement, which are not supported by previous proposed schemes. Due to space
limitations, we have not included security analysis and other details, which will
be considered in the full version of this paper.

References

1. Askwith, B., Merabti, M., Shi, Q., Whitely, K.: Achieving User Privacy in Mobile
Networks. In Proc. of the 13th Annual Computer Security Applications Conference
(ACSAC ’97), December 08 - 12, 1997, San Diego, CA

2. Birman, K. P., Cooper, D. A.: Preserving Privacy in a Network of Mobile Com-
puters. In Proc. of IEEE Symposium on Security and Privacy, May 8-10, 1995,
Oakland, CA

3. Buttyan, L., Hubaux, J.: Accountable Anonymous Access to Services in Mobile
Communication Systems. In Proc. of the 18th IEEE Symposium on Reliable Dis-
tributed Systems, October 18 - 21, 1999, Lausanne, Switzerland.

4. Chaum, D.: Untraceable Electronic Mail, Return Addresses and Digital
Pseudonyms. Communications of the ACM (CACM), Vol. 2, no. 24, 1981

5. Chaum, D.: Security without Identification: Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM (CACM), Vol. 10, no. 28, 1985

6. De Santis, A., Masucci, B.: On secret set schemes. Information Processing Letters,
Vol. 74, Issues 5-6, June 30, 2000, 243-251

7. Federrath, H., Jerichow, A., Kesdogan, D., Pfitzmann, A.: Security in Public Mo-
bile Communication Networks. In Proc. of the IFIP TC 6 International Workshop
on Personal Wireless Communications, Prag, 1995, 105-116

8. Federrath, H., Jerichow, A., Pfitzmann, A.: MIXes in Mobile Communication Sys-
tems: Location Management with Privacy. In Proc. of Information Hiding, First
International Workshop, Cambridge, U.K., May 30 - June 1, 1996. Lecture Notes
in Computer Science, Vol. 1174, 121-135

9. Goldschlag, D. M., Reed, M. G., Syverson, P. F.: Protocols using Anonymous
Connections: Mobile Applications. Security Protocols, 5th International Workshop,
Paris, France, April 7-9, 1997

10. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences (JCSS), Vol. 28, 270-299, April 1984

11. Gulcu, C., Tsudik, G.: Mixing e-mail with Babel. Symposium on Network and
Distributed System Security, Feb. 96, 2-16



328 Stelvio Cimato, Paolo D’Arco, and Ivan Visconti

12. Kesdogan, D., Reichl P., Junghartchen, K.: Distributed Temporary Pseudonyms:
A New Approach for Protecting Location Information in Mobile Communication
Networks. In Proc. of the 5th European Symposium on Research in Computer
Security (ESORICS ’98), Louvain-la-Neuve, Belgium, September 1998. Lecture
Notes in Computer Science, Vol. 1485, 295-312

13. Menezes, A. J. , Van Oorschot, P. C., Vanstone, S. A.: Handbook of Applied
Cryptography. CRC Press, Oct. 1996

14. Molva R., Tsudik, G.: Secret Sets and Applications. Information Processing Let-
ters, Vol. 65, Issue 1, 15 January 1998, 47-55

15. Pfitzmann, A., Pfitzmann, B., Waidner, M.: ISDN-MIXes - Untraceable Commu-
nication with very small Bandwidth Overhead. Information Security, in Proc. of
IFIP/Sec’91, Mai 1991, Brighton, Amsterdam, Holland. 1991, 245-258

16. Ramzan Z. , Ruhl, M.: Anonymous Subscription Protocols. Available at
http://citeseer.nj.nec.com/ramzan00anonymous.html

17. Siew C. K., Tan, C. H., Yi, X.: A Secure and Efficient Conference Scheme for
Mobile Communications. IEEE Transactions on Vehicular Technology (to appear)

18. Stinson, D.: Cryptography Theory and Practice, Second Edition. CRC Press. 2002
19. Stubblebine, S. G, Syverson P., GoldSchlag, D.M.: Unlinkable Serial Transactions:

Protocols and Applications. ACM Transactions on Information and System Secu-
rity, Vol. 2, no. 4, Nov. 1999



Aspects of Pseudorandomness
in Nonlinear Generators of Binary Sequences
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Abstract. A method of computing the number of 1′s and 0′s as well as
the number of runs of any length in the sequence obtained from a LFSR-
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one to check balancedness and run distribution goodness in the output
sequence. Simple design rules are also derived.
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1 Introduction

Generators based on Linear Feedback Shift Registers (LFSRs) ([1], [12]) are very
common devices to generate keystream sequences in symmetric-key cryptogra-
phy. Desirable properties for such sequences can be enumerated as follows: 1)
large period, 2) large linear complexity, 3) good statistical properties. There are
well-known proposals ([2], [3], [4], [9], [10], [11]) for which conditions 1) and 2)
above are perfectly satisfied. Nevertheless, how to obtain sequences with good
statistics is a feature that even now remains quite diffuse.

Balancedness and adequate distribution of 1′s and 0′s in the output sequence
are necessary (although not sufficient) conditions that every keystream generator
must satisfy. Roughly speaking, a binary sequence is balanced if it has approx-
imately the same number of 1′s as 0′s. On the other hand, a run of 1′s (0′s)
of length k is defined as a succession of k consecutive 1′s (0′s) between two 0′s
(1′s). The runs of 1′s are called blocks while the runs of 0′s are called gaps.
It is a well known fact ([1], [13]) that in a pseudorandom binary sequence of
period T there are T/2 runs distributed as follows: half the runs have length 1,
one quarter of the runs length 2, one eighth of the runs length 3, and so forth.
Moreover, half the runs of any length are gaps, the other half are blocks. That
is to say, in a pseudorandom binary sequence the number and distribution of
digits is perfectly quantified.

Due to the long period of the keystream sequence, it is unfeasible to produce
an entire cycle of such a sequence and then analyze the number and distribu-
tion of 1′s and 0′s. Therefore, in practice, portions of the output sequence are
chosen randomly and different statistical tests [9](monobit test, run test, poker
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test, serial test ... ) are applied to all these subsequences. Nevertheless, passing
the previous tests merely provides probabilistic evidence that the LFSR-based
generator produces a sequence with certain characteristics of pseudorandomness.

In this work, a deterministic method of computing the degree of balancedness
and number of runs of different lengths in one period of the output sequence
is proposed. If the computed values are not in the expected range, then the
generator must be rejected.

The procedure here presented is based on the expansion of the generating
function in global minterms. As a straight consequence of this method, simple
rules to design generators with good balancedness and run distribution are also
derived. Some illustrative examples complete the work.

2 Theoretical Background and Basic Notation

Any L-variable Boolean function can be expressed canonically in terms of its
minterms [7], that is the logic product of the L variables (a1, a2, ..., aL) where
each variable can be in its true or complementary form. Examples of minterms
of L variables are:

a1a2 ... aL, a1a2 ... aL, a1a2 ... aL

where the superposition of variables represents the logic product. In addition,
any L-variable Boolean function can be uniquely expressed in Algebraic Normal
Form (A.N.F.) or Muller expansion [6] by means of the sum exclusive-OR of
logic products of different orders in the L variables. A simple example of Boolean
function in A.N.F. is:

f(a1, a2, ..., aL) = a1a2 ⊕ a2aL−1 ⊕ aL

where ⊕ represents the exclusive-OR logic operation.
In mathematical terms, a LFSR-based generator is a L-variable nonlinear

Boolean function, F : GF (2)L − {0} → GF (2), whose L input-variables are
the stages of the LFSRs. At each clock pulse the LFSRs generate new stage
contents that will be the new input-variables of F . In this way, the generator
produces the successive bits of the output sequence or generated sequence. A
LFSR-based generator is a nonlinear Boolean function F given in its A.N.F.
Moreover, the LFSRs involved in this kind of generator are maximal length-
LFSRs [1]. In fact, a LFSR of L stages is a maximal length-LFSR whether its
characteristic polynomial is primitive. In this case, its output sequence is called
a PN-sequence of period T = 2L − 1. Balancedness and run distribution of PN -
sequences have been extensively studied in the literature. See for example [1],
[10] and [13].

Let A be an arbitrary maximal length-LFSR of length LA and ai (i =
1, ..., LA) the binary content of the i-th LFSR stage. A minterm of LA vari-
ables is denoted by Ai...j whether such a minterm includes the variables ai ... aj

in their true form while the other variables are in complementary form. Accord-
ing to the Muller expansion [6], a minterm of LA variables expressed in A.N.F.
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is a nonlinear function with 2LA− j terms (1 ≤ j ≤ LA, j being the number of
variables in true form). Such a function can be easily obtained by expanding out
the corresponding minterm.

Let ΛL denote the set of L-variable Boolean functions in A.N.F. and ΦF the
minterm function of F . In fact, ΦF : ΛL → ΛL, such that, given F , ΦF substi-
tutes every term of F by its corresponding minterm. For a nonlinear function in
A.N.F., e.g. F (a1, a2, a3) = a1 a2 a3 ⊕ a1 a3 ⊕ a2 a3 ⊕ a2 ⊕ a3, we have:

ΦF = A123 ⊕A13 ⊕A23 ⊕A2 ⊕A3.

On the other hand, every minterm considered as a generator applied to the
LA stages of A generates a canonical sequence [10] with an unique 1 and period
T = 2LA−1. Let us see for a simple example the particular form of the minterms
and their corresponding canonical sequences. Example 1: For a LFSR of L = 3
stages, characteristic polynomial P (D) = D3 + D + 1 and initial state (1, 1, 0)
we have:

A123 = a1 a2 a3 ←→ {0, 0, 0, 0, 0, 0, 1}
A23 = a1 a2 a3 = a1 a2 a3 ⊕ a2 a3 ←→ {0, 0, 0, 0, 0, 1, 0}
A13 = a1 a2 a3 = a1 a2 a3 ⊕ a1 a3 ←→ {0, 0, 0, 0, 1, 0, 0}
A2 = a1 a2 a3 = a1 a2 a3 ⊕ a2 a3 ⊕ a1 a2 ⊕ a2 ←→ {0, 0, 0, 1, 0, 0, 0}
A3 = a1 a2 a3 = a1 a2 a3 ⊕ a2 a3 ⊕ a1 a3 ⊕ a3 ←→ {0, 0, 1, 0, 0, 0, 0}
A1 = a1 a2 a3 = a1 a2 a3 ⊕ a1 a2 ⊕ a1 a3 ⊕ a1 ←→ {0, 1, 0, 0, 0, 0, 0}
A12 = a1 a2 a3 = a1 a2 a3 ⊕ a1 a2 ←→ {1, 0, 0, 0, 0, 0, 0}.

The left column represents the ordered succession of the corresponding minterms
while the right column shows their generated sequences. The cyclic succession
of minterms is computed by increasing the previous minterm indexes by 1 and
applying the linear recurrence relationship of the LFSR. Indeed, a1 a2 a3 →
a2 a3 a4 = a2 a3(a2 ⊕ a1) = a1 a2 a3; a1 a2 a3 → a2 a3 a4 = a2 a3 (a2 ⊕ a1) =
a1a2 a3 ... and so forth. Thus, the ordered minterm succession is:

A123, A23, A13, A2, A3, A1, A12.

Let us now generalize the previous statements to more than one LFSR.
Let A, B, ..., Z be N LFSRs whose lengths are respectively LA, LB , ... , LZ

(supposed (Li, Lj) = 1, i �= j). We denote by ai (i = 1, ..., LA), bj (j =
1, ..., LB), ... , zk (k = 1, ..., LZ) their corresponding stages. The global minterms
associated with the generator have now LA + LB + ...+ LZ variables and are of
the form, e.g. Aij Bpqr ... Zs , that is to say the ordered product of the individual
minterms of each LFSR. For two ordered successions of individual minterms:

A12, A2, A1

B123, B23, B13, B2, B3, B1, B12

the global minterm succession including 3 x 7 elements is:

A12B123, A2B23, A1B13, A12B2, A2B3, A1B1, ... , A2B1, A1B12.
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As before every global minterm considered as a generator applied to the
stages of the LFSRs generates a sequence with an unique 1 and period T =
(2LA − 1)(2LB − 1) ... (2LZ − 1) [10]. In brief, every LFSR-based generator can
be expressed in terms of its global minterms as well as every global minterm
provides the output sequence with a unique 1.

Once the nonlinear function F given in its A.N.F. has been converted into
its global minterm expansion, the basic ideas of this work can be summarized as
follows:

1. The number of global minterms in the representation of F equals the number
of 1′s in the output sequence.

2. The contiguity of such minterms in the ordered global minterm succession
determines the run distribution in the generated sequence.

3 Conversion from A.N.F. to Minterm Expansion

Previously to the conversion procedure, the following facts are introduced:
Fact 1: F = ΦF ◦ ΦF , where the symbol ◦ denotes the composition of func-

tions. Indeed, for the previous example:

F (a1, a2, a3) = a1, ΦF = A1 = a1 a2 a3 ⊕ a1 a2 ⊕ a1 a3 ⊕ a1

ΦF ◦ ΦF = ΦF (a1 a2 a3 ⊕ a1 a2 ⊕ a1 a3 ⊕ a1) =

A123 ⊕A12 ⊕A13 ⊕A1 = a1 = F (a1, a2, a3).

Fact 2: For every LFSR A, the exclusive-OR of all the possible terms of any
order [8] equals 1. In fact,

a12...LA
⊕ a12...LA−1 ⊕ ...⊕ a2...LA

⊕ ...⊕ aLA
⊕ ...⊕ a2 ⊕ a1 =

A12...LA
⊕A12...LA−1 ⊕ ...⊕A2...LA

⊕ ...⊕ALA
⊕ ...⊕A2 ⊕A1 = 1. (1)

The previous equation can be rewritten as:

A
′
1 ⊕A1 = 1. (2)

On the other hand, the total number of terms in (1) is:

LA∑

i=1

(
LA

i

)

= 2LA − 1 (3)

and, according to the previous section, the number of terms in A1 = a1a2 ... aLA

is:
Nt (A1) = 2LA−1. (4)

Thus, the number of terms in A
′
1 will be:

Nt (A
′
1) = 2LA−1 − 1. (5)

Appropriate notation will be used for the rest of LFSRs.
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3.1 Procedure of Conversion

Input: N (number of LFSRs), LA, LB , ..., LZ (lengths of the LFSRs) and a
nonlinear function F in A.N.F.

For instance, NZ = 2, LA = 2, LB = 3 and F (a1, a2, b1, b2, b3) = a1 b1.

– Step 1: Compute ΦF

ΦF = A1B1.

– Step 2: Substitute every minterm by its corresponding function in A.N.F.
and cancel common terms (if there exist)

ΦF = (a1 a2 ⊕ a1)(b1 b2 b3 ⊕ b1 b2 ⊕ b1 b3 ⊕ b1) =

a1 a2 b1 b2 b3 ⊕ a1 a2 b1 b2 ⊕ a1 a2 b1 b3 ⊕ a1 a2 b1⊕
a1 b1 b2 b3 ⊕ a1 b1 b2 ⊕ a1 b1 b3 ⊕ a1 b1.

– Step 3: Compute F (ai, bj) = ΦF ◦ ΦF

F (ai, bj) = ΦF ◦ ΦF = A12B123 ⊕A12B12 ⊕A12B13 ⊕A12B1⊕
A1B123 ⊕A1B12 ⊕A1B13 ⊕A1B1.

Output: F expressed in terms of its global minterms.
Once the function F has been expressed in terms of its minterms, balanced-

ness and run distribution in the output sequence can be analyzed.

4 Balancedness in the Output Sequence
of LFSR-Based Generators

The number of 1’s in the generated sequence coincides with the number of global
minterms in the expression of F or, equivalently, the number of terms in ΦF (Step
2 ). Remark that such a number does not depend on the LFSR characteristic
polynomials. An illustrative example of application of such a procedure to a
well-known generator is presented.

4.1 A Numerical Example

Let A,B,C be three LFSRs of lengths LA, LB , LC respectively. The combining
function is chosen:

F = a1b1 ⊕ b1c1 ⊕ c1 (6)

that corresponds to the generator of Geffe [12] and the minterm function ΦF is
computed:

ΦF = A1B1 ⊕B1C1 ⊕ C1

= A1B1(C ′
1 ⊕ C1)⊕ (A′

1 ⊕A1)B1C1 ⊕
⊕(A′

1 ⊕A1)(B′
1 ⊕B1)C1

= A1B1(C ′
1 ⊕ C1)⊕ (A′

1 ⊕A1)B′
1C1 .
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The number of 1′s in the output sequence can be directly obtained by counting
the number of terms in ΦF via the equations (4) and (5). According to this
simple rule, the number of 1′s in the output sequence obtained from a Geffe’s
generator is given by:

No. 1′s = 2LA−12LB−1(2LC − 1) + (2LA − 1)(2LB−1 − 1)2LC−1. (7)

Remark that the previous expression is function exclusively of the lengths of the
three registers LA, LB , LC . For lengths of the LFSRs in a practical range, we say
Li � 80, and keeping in mind that the period is T = (2LA−1)(2LB−1)(2LC−1),
the number of 1′s in the output sequence is: No. 1′s � T/2. Consequently, the
generated sequence is balanced.

5 Run Distribution in the Output Sequence
of LFSR-Based Generators

The computation of runs in the output sequence is based on the following result.

Proposition 1. Let us consider the ordered minterm succession of a maximal
length-LFSR of length L. If the minterms including an arbitrary index i are
replaced by 1 and the minterms not including the index i are replaced by 0, then
the resulting binary sequence is the reverse version of the PN-sequence generated
by the LFSR.

The previous result is a straight application of the linear recurrence rela-
tionship of the LFSR given by its characteristic polynomial. Thus, a minterm
succession can be treated as a PN -sequence but remark that the number of runs
of any length of a PN -sequence is perfectly quantified. Indeed, each m-gram
(that is every one of the 2m possible configurations of m bits (m = 1, ..., L)) will
appear exactly 2L−m times throughout the PN -sequence except for the L-gram
00 . . . 0 that will not appear any time. Moreover, in the global minterm succes-
sion each m-gram of any LFSR will coincide once with each one of the m-grams
of the other LFSRs. Based on these considerations, the computation of runs in
the output sequence can be carried out as it is shown in the following example.

Example 2 : For two LFSRs, A and B, of lengths LA and LB respectively
(LA < LB) and generating function F = a1b1, we proceed:

ΦF = A1B1 = (a1 ⊕ a1a2 ⊕ . . .⊕ a1a2 . . . aLA
)(b1 ⊕ b1b2 ⊕ . . .⊕ b1b2 . . . bLB

)

F = ΦF ◦ ΦF = (A1 ⊕A12 ⊕ . . .⊕A12...LA
)(B1 ⊕B12 ⊕ . . .⊕B12...LB

)

Notice that the minterm expansion of F will only include products of individual
minterms with the index 1. Let us now introduce the following notation:

Y denotes an arbitrary minterm of A or B including the index 1.
N denotes an arbitrary minterm of A or B not including the index 1.
SecA denotes the ordered succession of minterms of A in format Y/N .
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SecB denotes the ordered succession of minterms of B in format Y/N .
It is clear that a 1 in the output sequence corresponds to a minterm product

Y Y (for example, A1B12) while a 0 in the output sequence corresponds to the
minterm products Y N, NY or NN (for example, A1B2,A23B13 or A3B2). See
the formation rule in Table 1.

Table 1. Global minterm formation rule for F in Example 2.

SecB SecA Output bit

Y Y 1
N Y 0
Y N 0
N N 0

Now we can compute the number of runs of different lengths.

5.1 Runs of Length 1

Blocks: They are runs of the form “0 1 0” that come from minterm structures

SecB : ∗ Y ∗
SecA : ∗ Y ∗

The symbol ∗ denotes Y or N . The 3-gram NYN will appear 2LA−3 times in
SecA and 2LB−3 times in SecB, the 2-gram NY ∗ will appear 2LA−2 times in
SecA and 2LB−2 times in SecB, and so forth.

The different configurations of minterms able to generate a block of length
1 are depicted in Table 2 at columns notated “Configurations”. The columns
notated “No. of config.” show the number of times that such configurations will
appear on their corresponding minterm sequences.

Table 2. Configurations of minterms producing blocks of length 1.

Configuration No. of config. Configuration No. of config.

SecB ∗ Y ∗ 2LB −1 ∗ Y N 2LB −2

SecA N Y N 2LA −3 N Y Y 2LA −3

SecB N Y ∗ 2LB −2 N Y N 2LB −3

SecA Y Y N 2LA −3 Y Y Y 2LA −3

Thus, the number of blocks of length 1 will be the sum of all suitable config-
urations multiplied by the number of times that such configurations appear

NB(1) = (2LB −1 + 2 · 2LB −2 + 2LB −3) 2LA −3 . (8)
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Gaps: They are runs of the form “1 0 1” that come from minterm structures

SecB : Y ∗ Y
SecA : Y ∗ Y

The different configurations of minterms able to generate a gap of length 1
are depicted in Table 3.

Table 3. Configurations of minterms producing gaps of length 1.

Configuration No. of config. Configuration No. of config.

SecB Y N Y 2LB −3 Y ∗ Y 2LB −2

SecA Y Y Y 2LA −3 Y N Y 2LA −3

Thus, the number of gaps of length 1 will be the sum of all suitable configu-
rations multiplied by the number of times that such configurations appear

NG(1) = (2LB −3 + 2LB −2) 2LA −3 . (9)

5.2 Runs of Length n

The procedure can be generalized in order to compute the number of runs of
length n (n = 1, ..., LA − 2).

Blocks: They are runs of the form “0 1 . . . 1 0” (with n consecutive 1′s)
coming out from minterm structures

SecB : ∗ Y . . . Y ∗
SecA : ∗ Y . . . Y ∗

with n minterms Y in both sequences. The different configurations able to gen-
erate a block of length n and their number are depicted in Table 4.

Table 4. Configurations of minterms producing blocks of length n.

Configuration No. of config. Configuration No. of config.

SecB N Y . . . Y N 2LB −(n+2) ∗ Y . . . Y N 2LB −(n+1)

SecA Y Y . . . Y Y 2LA −(n+2) N Y . . . Y Y 2LA −(n+2)

SecB N Y . . . Y ∗ 2LB −(n+1) ∗ Y . . . Y ∗ 2LB −n

SecA Y Y . . . Y N 2LA −(n+2) N Y . . . Y N 2LA −(n+2)

Thus, the number of blocks of length n will be:

NB(n) = (2LB −(n+2) + 2 · 2LB −(n+1) + 2LB −n) 2LA −(n+2) . (10)
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Gaps: They are runs of the form “1 0 . . . 0 1” (with n consecutive 0′s) coming
out from minterm structures

SecB : Y ∗ . . . ∗ Y
SecA : Y ∗ . . . ∗ Y

with n symbols ∗ in both sequences. Notice that in SecA there will be 2n different
configurations able to generate a gap of length n ranging from Y N . . . N Y up
to Y Y . . . Y Y . Some of such configurations and their number are depicted in
Table 5.

Table 5. Configurations of minterms producing gaps of length n.

Configuration No. of config. Configuration No. of config.

SecB Y ∗ . . . ∗ Y 2LB −2 Y N . . . N Y 2LB −(n+2)

SecA Y N . . . N Y 2LA −(n+2) Y Y . . . Y Y 2LA −(n+2)

Thus, the number of gaps of length n will be:

NG(n) = (
n∑

i=0

(
n
i

)

2LB −(n+2−i) ) · 2LA −(n+2). (11)

Therefore, the number of runs of any length up to LA−2 can be easily computed
in the proposed example. Equations (10) and (11) give us the exact number of
blocks and gaps that can be found in the output sequence. Remark that NB and
NG depend exclusively on the LFSR’s lengths (LA, LB) and on the run length
(n). There is no dependency on the characteristic polynomials. Consequently,
different LFSRs of the same length will produce output sequences with the same
number of blocks and gaps.

According to these expressions, it can be seen that the analyzed function
F does not match the expected values. Indeed, for a numerical example LA =
7, LB = 8 the computation of runs is depicted in Table 6. For n = 1, NB > NG.
For n = 2, both values coincide as equation (10) equals equation (11). For n ≥ 3,
NB < NG since in this case the number of terms in (11) is greater than in (10).
As expected, there are more gaps than blocks because the formation rule in
Table 1 is not balanced.

The upper limit LA − 2, LA being the length of the shortest LFSR, follows
from the fact that blocks and gaps of length n include n+2 bits but we can only
guarantee the presence of at most LA-grams. At any rate, the designer of binary
pseudorandom generators is basically interested in the runs of low length (e.g.
up to length 15) while in cryptographic applications every LFSR length takes
values in the range Li � 80.
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Table 6. Numerical example.

n No. of blocks No. of gaps

1 4608 1536
2 1152 1152
3 288 864
4 72 648
5 18 486

5.3 Generalization to More Complex Generators

The procedure above developed can be generalized to sequence generators with
any number of LFSRs and more complex combining functions. Indeed, general
expressions for the number of blocks and gaps of length n can be derived. Next,
we present the expressions of NB and NG for a LFSR-based generator with three
LFSRs of lengths LA, LB , LC and generating function:

F = a1 ⊕ b1 ⊕ c1 (12)

that is just the OR-exclusive sum of the three registers. The corresponding
minterm function ΦF is:

ΦF = A1B1C1 ⊕A1B
′
1C

′
1 ⊕A′

1B1C
′
1 ⊕A′

1B
′
1C1 . (13)

Table 7 shows the global minterm formation rule for this linear function. It can
be noticed that such a formation rule is balanced. The same procedure developed
in subsections 5.1 and 5.2 allows us to get general expressions for the number of
runs of length n. Next equation gives us the unified expression of NB and NG.

NB(n) = NG(n) = 24 22n 2LA−(n+2) 2LB−(n+2) 2LC−(n+2)

−2(2n+1 − 1)(
∑

i,j

2Li−(n+2) 2Lj−(n+2)) (14)

− 2Li−(n+2) (
∑

j

2Lj−(n+2) − 1)

where i, j ∈ {A, B, C}, i �= j .

Table 7. Global minterm formation rule for F defined in (12).

SecC SecB SecA Output bit

Y Y Y 1
Y Y N 0
Y N Y 0
Y N N 1
N Y Y 0
N Y N 1
N N Y 1
N N N 0
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The subtractive terms correspond to configurations with (n+ 2) consecutive
N’s in either one of the minterm sequences or in two minterm sequences simul-
taneously. It can be noticed that in the previous example the run distribution
matches the canonical values. Indeed, the number of blocks equals the number
of gaps for any run length as well as the following equalities hold:

NB(n+ 1) = NB(n)/2 NG(n+ 1) = NG(n)/2. (15)

Remark that every minterm sequence in Table 7 is compensated too. It means
that for every minterm sequence two symbols Y’s (N’s) correspond to bits 1 in
the output sequence while the other two symbols Y’s (N’s) correspond to bits 0
in the output sequence. Practical results confirm that, for other formation rules
balanced although not perfectly compensated, the degree of balancedness and
run distribution in the generated sequence is quite satisfactory. See, for example,
the run distribution for the Geffe generator (subsection 4.1) whose expressions
for NB(n) and NG(n) are:

NB(n) = 24 22n 2LA−(n+2) 2LB−(n+2) 2LC−(n+2)

− 32 2LA−(n+2) 2LB−(n+2) − (2n+2 − 1) 2LA−(n+2) 2LC−(n+2) (16)

−23 2LB−(n+2) 2LC−(n+2) − (2LA−(n+2) + 2LB−(n+2) − 1) 2LC−(n+2)

and

NG(n) = 24 22n 2LA−(n+2) 2LB−(n+2) 2LC−(n+2)

− 3n 2LA−(n+2) 2LB−(n+2) − (2n+2 − 1) 2LA−(n+2) 2LC−(n+2) (17)

−(3n − 1) 2LB−(n+2) 2LC−(n+2) − (2LA−(n+2) + 2LB−(n+2) − 1) 2LC−(n+2) .

Its corresponding global minterm formation rule can be seen in Table 8.

Table 8. Global minterm formation rule for F defined in (6).

SecC SecB SecA Output bit

Y Y Y 1
Y Y N 0
Y N Y 1
Y N N 1
N Y Y 1
N Y N 0
N N Y 0
N N N 0

Notice that the first term in NB(n) and NG(n) is the same for every gen-
erator with three LFSRs and balanced formation rule. The subtractive terms
are function of the output bit distribution in the global minterm formation rule.
The more the formation rule is compensated, the better the output sequence
matches the standard distribution of runs.
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5.4 Simple Design Rules

In the previous subsection, we have seen that a balanced formation rule guar-
antees good balancedness and run distribution. For a binary sequence generator

with N LFSRs there will be 22N

possible formation rules of which
(

2N

2N−1

)

will

be balanced. So, simple design rules can be enumerated as follows:

– Choose one of the balanced formation rule
– Determine its corresponding minterm function ΦF

– Compute the combining function F by means of the composition of ΦF

F = ΦF ◦ ΦF .

In this way, the output sequence obtained from the LFSR-based generator will
exhibit the desired characteristics of pseudorandomness. At the same time and
following the same procedure as before, specific expressions for the number of
1′s and number of runs in the output sequence can be obtained.

6 Conclusions

A method of computing the number of 1′s and 0′s as well as the run distribu-
tion in the output sequence of LFSR-based generators has been developed. The
procedure allows one to reject the generators not satisfying expected values of
balancedness and run distribution goodness.

The method here described has been applied exclusively to nonlinear com-
bining functions. Nevertheless, these ideas concerning the analysis of the global
minterms seem to be suitable for more general keystream generator. Consider,
for instance, the multiple-speed generators that can be expressed in terms of
a more complex combining function or the shrinking generator whose global
minterms can be obtained by removing certain individual minterms from the se-
lector register. In both cases, the developed method can be adapted and applied
to these schemes in order to evaluate certain aspects of pseudorandomness in
the generated sequences.
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Abstract. In this paper we propose an information-theoretic approach
to the access control problem in a scenario where a group of users is
divided into a number of disjoint classes. The set of rules that specify
the information flow between different user classes in the system defines
an access control policy. An access control policy can be implemented by
using a key assignment scheme, where a trusted central authority (CA)
assigns an encryption key and some private information to each class.
We consider key assignment schemes which are unconditionally secure
against attacks carried out by any coalition of classes. We show lower
bounds on the size of the private information that each class has to
store and on the amount of randomness needed by the CA to set up any
key assignment scheme. Finally, we propose an optimal construction for
unconditionally secure key assignment schemes.

1 Introduction

The access control problem deals with the specification of users’ access permission
and is a fundamental issue in any system that manages distributed resources,
such as e-newspaper, pay-TV subscription services, etc. The access control prob-
lem is defined in a scenario where the users of a computer system are organized
in a certain number of disjoint classes, called security classes. A security class
can represent a person, a department, or a user group in an organization. The
set of rules that specify the information flow between different user classes in the
system defines an access control policy. In particular, for any class in the system,
the access control policy specifies the set of classes which can be accessed by
that class. This set is called the accessible set of the class.

Within the scope of cryptography, an access control policy can be imple-
mented by using a key assignment scheme, that is, a method to assign a key and
some private information to each class. The encryption key will be used by each
class to protect its data by means of a symmetric cryptosystem. The private in-
formation will be used by each class to compute the keys assigned to all classes
in its accessible set. This assignment is carried out by a central authority, the
CA, which is active only at the distribution phase.

In a perfectly secure key assignment scheme, the key assigned to each class
is secure against a coalition of all the classes which are not entitled to access
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its secret data, i.e., even pooling together their private information, they cannot
compute anything about that key. The basic and straightforward perfectly se-
cure key assignment scheme requires each class to memorize the encryption keys
assigned to all classes in its accessible set. The disadvantage of this solution is
that it penalizes users in classes with large accessible sets, since they need to
handle more information than users in classes with smaller accessible sets.

Given the high complexity of such a scheme, a natural step is to trade com-
plexity for security. We may still require that the key assigned to each class
is unconditionally secure, but only with respect to an adversary controlling a
coalition of classes of a limited size. First, we propose an information theoretic
approach to key assignment schemes. Afterwards, we show lower bounds on the
size of the private information that each class has to store and on the amount
of randomness needed by the CA to set up any key assignment scheme. Finally,
we propose an optimal construction for unconditionally secure key assignment
schemes.

1.1 Related Work

The problem of reducing the inherent complexity of the basic straightforward
key assignment scheme was first considered by Akl and Taylor [1], who proposed
an elegant solution to solve the access control problem in a system organized
as a partially ordered hierarchy (poset). In their scheme, each class is assigned
a key that can be used, along with some public parameters generated by a
central authority, to compute the key assigned to any class lower down in the
hierarchy. Subsequently, many researchers have proposed schemes that either
have better performances or allow inserting and deleting classes in the hierarchy
(e.g., [2,6,7,8,12,13,14,15,17]). All these schemes can be used to implement only
poset-based access control policies.

There are several examples of distributed systems requiring more general
access control policies. For example, these access control policies may violate
the anti-symmetrical and transitive properties of a poset. The problem of de-
signing cryptographic key assignment schemes for access control policies with
transitive and anti-symmetrical exceptions was first considered by Yeh, Chow,
and Newman [19]. However, Hwang [9] showed that their scheme was insecure
against collusion attacks carried out by non-authorized classes. Subsequently,
the authors of [4] proposed a general method to construct a cryptographic key
assignment scheme for any arbitrary access control policy.

The most used approach to key assignment schemes (different from the
one proposed in this paper) is based on unproven specific assumptions (e.g.,
[1,4,2,6,7,8,12,13,14,15,16,17]). The information theoretic approach differs from
the above computational approach since it does not depend on any unproven
assumption. Such an approach has been used in [5] to analyze the access control
problem in a system organized as a partially ordered hierarchy. In this paper
we use the information theoretic approach to analyze key assignment schemes
implementing any arbitrary access control policy.
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a b c

e fd

Fig. 1. An arbitrary access control policy.

2 The Model

We consider a scenario where the users of a computer system are divided into
a certain number of disjoint classes, called security classes. The set of rules
that specify the information flow between different user classes in the system
defines an access control policy. An access control policy can be represented by
a directed graph G = (V,E), where the vertex set V corresponds to the set of
security classes and there is a directed edge (u, v) ∈ E if and only if class u can
access class v. For each u ∈ V , we define the accessible set of u as the set of classes
that can be accessed by u, including u itself, i.e., Au = {v ∈ V : (u, v) ∈ E}. We
also define the forbidden set of u as the set of classes that cannot access class u,
i.e., Fu = {v ∈ V : u �∈ Av}. For any subset of classes X ⊆ V , we denote by A

X

the set ∪v∈XAv.
For example, consider the directed graph of Figure 1, where self-loops are omit-
ted. The accessible and forbidden sets of each class are the following:

Aa = {a, b} Fa = {e, f}
Ab = {a, b, c, f} Fb = {c, d, e, f}
Ac = {a, c} Fc = {a, d, f}
Ad = {a, d, f} Fd = {a, b, c, f}
Ae = {c, d, e} Fe = {a, b, c, d, f}
Af = {f} Ff = {a, c, e}

An access control policy represented by a directed graph G = (V,E) can be
implemented by using a key assignment scheme, where a trusted third party,
called the central authority (CA), has the task to assign a key and some private
information to each class u ∈ V . For any class u ∈ V , we denote by pu the private
information sent by the CA to users in class u and by ku the key assigned to class
u, respectively. Moreover, we denote by Pu and Ku the sets of all possible values
that pu and ku can assume, respectively. Given a set X = {u1, · · · , u�} ⊆ V , we
denote by P

X
and K

X
the sets Pu1 × · · ·×Pu�

and Ku1 × · · ·×Ku�
, respectively.

In this paper, with a boldface capital letter, say Y, we denote a random
variable taking values on a set, denoted by the corresponding capital letter Y ,
according to some probability distribution {PrY (y)}y∈Y . The values such a ran-
dom variable can take are denoted by the corresponding lower case letter. Given
a random variable Y, we denote by H(Y) the Shannon entropy of {PrY (y)}y∈Y

(we refer the reader to [3] for a complete treatment of Information Theory).
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We consider key assignment schemes where the key assigned to each class
is unconditionally secure with respect to an adversary controlling a coalition of
classes of a limited size. Our schemes are characterized by a security parameter
r, the size of the adversary coalition. The maximum value that the security
parameter r can assume is equal to maxu∈V |Fu|, since any adversary coalition
for class u can contain at most |Fu| classes. We formally define r-secure key
assignment schemes by using the entropy function, mainly because this leads
to a compact and simple description of the schemes and because the entropy
approach takes into account all probability distributions on the keys assigned to
the classes. An r-secure assignment scheme is defined as follows.

Definition 1. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy and let 1 ≤ r ≤ maxu∈V |Fu|. An r-secure key assignment
scheme for G is a method to assign a key to each class in such a way that the
following two properties are satisfied:

1. Any class allowed to access another class can compute the key assigned to
that class.
Formally, for any u ∈ V and any v ∈ Au, it holds that

H(Kv|Pu) = 0.

2. Any coalition of at most r classes not allowed to access another class have
absolutely no information about the key assigned to that class.
Formally, for any u ∈ V and any X ⊆ Fu such that |X| ≤ r, it holds that

H(Ku|PX
) = H(Ku).

3 Lower Bounds

In this section we prove lower bounds on the size of the private information held
by each class and on the number of random bits needed by the CA to set up any
r-secure key assignment scheme. In order to prove our results we need the next
definition.

Definition 2. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy. In any r-secure key assignment scheme for G, a sequence
of classes u1 . . . um is called r-independent if, for any j = 2, . . . ,m, there exists
a set Xj ⊆ Fuj such that

1. |Xj | ≤ r,
2. {u1, . . . , uj−1} ⊆ AXj

.

Remark 1. When r = maxu∈V |Fu|, any r-independent sequence of classes is
called an independent sequence.

Consider the graph shown in Figure 1. It is easy to see that cbd and acb are
1-independent sequences, whereas, acbf and cbde are 2-independent sequences.
The next lemma will be an useful tool to prove our results.
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Lemma 1. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy. In any r-secure key assignment scheme for G, if u1u2 . . . um

is an r-independent sequence of classes, then it holds that

H(Ku1 . . .Kum) =
m∑

j=1

H(Kuj ).

Proof. Since u1u2 . . . um is an r-independent sequence, from Definition 2 we have
that, for any j = 2, . . . ,m, there exists a set Xj ⊆ Fuj such that |Xj | ≤ r and
{u1, . . . , uj−1} ⊆ A

Xj
= ∪v∈XjAv. Therefore, from 2. of Definition 1 it holds

that
H(Kuj |PXj

) = H(Kuj ). (1)

Since ui ∈ AXj
for each i = 1, . . . , j−1, it follows that there exists a class vi ∈ Xj

such that ui ∈ Avi
. Hence, from 1. of Definition 1 it follows that H(Kui

|Pvi
) = 0

and from (13) of the Appendix we have that

H(Ku1 . . .Kuj−1 |PXj
) ≤

j−1∑

i=1

H(Kui |PXj
) ≤

j−1∑

i=1

H(Kui |Pvi) = 0.

Hence, from (12) of the Appendix it follows that

H(Ku1 . . .Kuj−1 |KujPXj
) ≤ H(Ku1 . . .Kuj−1 |PXj

) = 0. (2)

Consider the mutual information I(Kuj
;Ku1 . . .Kuj−1 |PXj

). From (11) of the
Appendix it holds that

H(Kuj |PXj
)−H(Kuj |Ku1 . . .Kuj−1PXj

)

= H(Ku1 . . .Kuj−1 |PXj
)−H(Ku1 . . .Kuj−1 |KujPXj

). (3)

Hence, from (2) and (3) it follows that

H(Kuj
|Ku1 . . .Kuj−1PXj

) = H(Kuj
|P

Xj
). (4)

Therefore, from (7) and (10) of the Appendix it holds that

H(Ku1 . . .Kum
) = H(Ku1) +

m∑

j=2

H(Kuj
|Ku1 . . .Kuj−1)

≥ H(Ku1) +
m∑

j=2

H(Kuj |Ku1 . . .Kuj−1PXj
)

= H(Ku1) +
m∑

j=2

H(Kuj |PXj
) (from (4))

=
m∑

j=1

H(Kuj )(from (1)).

��
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The next theorem shows a lower bound on the size of the private information
held by any subset of classes X ⊆ V .

Theorem 1. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy. In any r-secure key assignment scheme for G, for any
X ⊆ V , if there exists an r-independent sequence of classes u1 . . . um in A

X
,

then it holds that

H(P
X

) ≥
m∑

j=1

H(Kuj
).

Proof. Let u1 . . . um be an r-independent sequence of classes in A
X

= ∪v∈XAv.
Since uj ∈ AX

for each j = 1, . . . ,m, it follows that there exists a class vj ∈ X
such that uj ∈ Avj

. From 1. of Definition 1 it follows that H(Kuj
|Pvj

) = 0 and,
from (13) of the Appendix, we have that

H(Ku1 . . .Kum |PX
) ≤

m∑

j=1

H(Kuj |PX
) ≤

m∑

j=1

H(Kuj |Pvj ) = 0. (5)

Consider the mutual information I(P
X

;Ku1 . . .Kum). From (9) of Appendix it
holds that

H(P
X

)−H(P
X
|Ku1 . . .Kum) = H(Ku1 . . .Kum)−H(Ku1 . . .Kum |PX

). (6)

Since H(P
X
|Ku1 . . .Kum

) ≥ 0, from (5) and (6) it follows that

H(P
X

) ≥ H(Ku1 . . .Kum).

Hence, the theorem follows from Lemma 1. ��
In Definition 1 we did not make any assumption on the entropies of random

variables Ku and Kv, for different classes u and v. For example, we could have
either H(Ku)>H(Kv) or H(Ku) ≤ H(Kv). Our results apply to the general
case of arbitrary entropies of keys, but for clarity we state the next result for
the simpler case that all entropies of keys are equal, i.e. H(Ku) = H(Kv) for all
u, v ∈ V . We denote this common entropy by H(K).
The next corollary easily follows from Theorem 1.

Corollary 1. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy. In any r-secure key assignment scheme for G, for any
u ∈ V , if there exists an r-independent sequence of length m in Au, then it holds
that

H(Pu) ≥ m ·H(K).

In the following we define and analyze a measure for the amount of ran-
domness needed by the CA to set up any r-secure key assignment scheme. The
measure for the amount of randomness is formally defined using the Shannon en-
tropy of the random variables generating the pieces distributed by the CA to the
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Fig. 2. Example of access control policy.

classes. The entropy is strictly related to the measure of randomness introduced
by Knuth and Yao [11]. Let A be an algorithm that generates the probability
distribution {PrX(x)}x∈X using only independent and unbiased random bits in
input. Denote by T (A) the average number of random bits used by the algorithm
A and let T (X) = minA T (A). Knuth and Yao [11] proved the following inequal-
ities: H(X) ≤ T (X) < H(X) + 2. Thus, the entropy of a random source is very
close to the average number of independent unbiased random bits necessary to
simulate the source.

In the following we denote by H(P
V
) the amount of randomness needed

by the CA to set up any r-secure key assignment scheme for a directed graph
G = (V,E), representing an arbitrary access control policy. The next corollary
states a lower bound on the size of the information generated by the CA to set
up any r-secure key assignment scheme.

Corollary 2. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy. In any r-secure key assignment scheme for G, if there exists
an r-independent sequence of length m in V , then it holds that

H(P
V
) ≥ m ·H(K).

Proof. Since A
V

= ∪v∈V Av = V , the corollary follows from Theorem 1. ��

4 Perfectly Secure Key Assignment Schemes

In this section we consider key assignment schemes where each key is secure
against any coalition of classes having size at most r = maxu∈V |Fu|. These
schemes are called perfectly secure key assignment schemes.

Let G = (V,E) be the directed graph that represents an arbitrary access
control policy. For any u ∈ V , we define the incoming set of u as the set of
classes that have access to u, i.e., Cu = {v ∈ V : u ∈ Av}.
For example, consider the graph shown in Figure 2. The incoming sets of the
classes are the following:

Ca = {a} Cb = {b} Cc = {a, b, c, d}
Cd = {a, b, c, d} Ce = {c, e} Cf = {d, f}.
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Fig. 3. Two reduced graphs for V .

c

a a

d

Fig. 4. Two reduced graphs for Aa.

In the following, for any subset of classes X ⊆ V , we show how construct an in-
dependent sequence in A

X
. Our construction works as follows: first, we construct

a graph G
X

= (V
X
, E

X
), called the reduced graph for X, such that |V

X
| ≤ |A

X
|

and G
X

is acyclic. Afterwards, we execute the topological sort on G
X

.

Construction of the Reduced Graph for X.

1. Starting from G = (V,E), we construct a graph G′ = (V ′, E′) as follows:
(a) we partition V in disjoint sets such that, for each u, v ∈ V , u and v are

in the same set if and only if Cu = Cv. Then, we choose a representative
class for each set and we place it in V ′.

Remark 2. Notice that, if Cu �= Cv for each u, v ∈ V , then V ′ = V.

(b) E′ = {(u, v) ∈ E : u, v ∈ V ′, Cu ⊆ Cv and u �= v}.
2. G

X
= (V

X
, E

X
) is the subgraph induced by A

X
on G′.

Remark 3. Notice that, if X = V then G
V

= G′.

Remark 4. Notice that we can obtain many reduced graphs for X according to
the class chosen to represent a set at step 1.(a). All reduced graphs for X have
the same number of classes.

For example, consider the graph shown in Figure 2. Figures 3 and 4 show two
reduced graphs for V and two reduced graphs for Aa = {a, c, d}, respectively.

The next lemma shows that for each X ⊆ V , a reduced graph for X is acyclic
and such that |V

X
| ≤ |A

X
|.

Lemma 2. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy. For each X ⊆ V and for any reduced graph G

X
= (V

X
, E

X
)

obtained by our construction, it holds that |V
X
| ≤ |A

X
| and G

X
is acyclic.
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Proof. Let X ⊆ V and let G
X

= (V
X
, E

X
) be a reduced graph for X. Assume

by contradiction that G
X

is not acyclic. Let < u1 . . . us > be a cycle in G
X

.
From step 1.(b) of our construction we have that Cuj

⊆ Cuj+1mods
, for each

j = 1, . . . , s. It follows that Cu1 = Cu2 = . . . = Cus . Hence, in step 1.(a) the
classes u1, u2, . . . , us are placed into the same set and a single representative
class of the set is placed in V ′. Since V

X
⊆ V ′, this is a contradiction. Hence, the

resulting graph G
X

is acyclic.
Since G

X
= (V

X
, E

X
) is the subgraph induced by A

X
on G′ and in step 2 of

our construction a single class for any incoming set is placed in V ′, it follows
that |V

X
| ≤ |A

X
|. ��

The next lemma shows how to construct an independent sequence in a set
X ⊆ V starting from the sequence output by the topological sort on a reduced
graph for X. Recall that a topological sort of a directed acyclic graph G = (V,E)
is a linear ordering of all its vertices such that if E contains an edge (u, v), then
u appears before v in the ordering.

Lemma 3. Let G = (V,E) be the directed graph that represents any arbitrary
access control policy. In any perfectly secure key assignment scheme for G, for
any X ⊆ V there exists an independent sequence of classes in A

X
, whose length

is |V
X
|, where G

X
= (V

X
, E

X
) is a reduced graph for X.

Proof. We show how to construct an independent sequence of classes in A
X

having length |V
X
|, where G

X
= (V

X
, E

X
) is a reduced graph for X. Since G

X
is a

directed acyclic graph we can perform the topological sort on it. Let |V
X
| = m and

let vm · · · v2v1 be the topologically sorted sequence of classes. We show that the
reverse sequence v1v2 · · · vm is an independent sequence in A

X
. From Definition

2 we need to show that for any j = 2, . . . ,m, there exists a set Xj ⊆ Fvj such
that |Xj | ≤ r and {v1v2 . . . vj−1} ⊆ AXj

.
For any j = 2, . . . ,m, let Xj = Fvj

. It follows that |Fvj
| ≤ maxu∈V |Fu| = r.

Moreover, if there exists a class ui ∈ Fvj such that vi ∈ Aui it follows that
{v1, . . . , vj−1} ⊆ ∪j−1

i=1Aui ⊆ A
Fvj

= A
Xj

. Hence, in order to show that 2. of
Definition 2 holds, we only need to prove that for any j = 2, . . . ,m and for each
i = 1, . . . , j − 1, there exists a class ui ∈ Fvj such that vi ∈ Aui . If vi ∈ Fvj , it
follows that ui = vi. If vi �∈ Fvj , then vj ∈ Avi , that is (vi, vj) ∈ E. Since in the
sequence output by the topological sort on G

X
, vj appears before than vi, the

edge (vi, vj) does not belong to E
X

. From 1.(b) of our construction, it follows
that Cvi �⊆ Cvj . Hence, there exists a class ui ∈ Fvj such that vi ∈ Aui and 2.
of Definition 2 holds. ��

For example, consider the reduced graphs shown in Figures 3 and 4. It is easy
to see that ca is an independent sequence in Aa and cbafe is an independent
sequence in V .

The next lemma shows that the sequence constructed by Lemma 3 is one of
the longest independent sequences.

Lemma 4. Let G = (V,E) be the directed graph that represents an arbitrary
access control policy. For each X ⊆ V and any independent sequence S in A

X
it

holds that |S| ≤ |V
X
|, where G

X
= (V

X
, E

X
) is a reduced graph for X.
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Proof. Let S′ be an independent sequence in A
X

constructed by Lemma 3, i.e.,
|S′| = |V

X
|. Assume by contradiction that there exists an independent sequence

S in A
X

such that |S| ≥ |S′|. The sequence S contains at least two classes in the
same incoming set. Let u and v be such classes. W.l.o.g, assume that u appears
before than v in S. From 2. of Definition 2 there exists a set Xv ⊆ Fv such that
u ∈ A

Xv
. This is a contradiction. Indeed, since Cu = Cv, there does not exist

any class that has access to u but has no access to v. It follows that there does
not exist an independent sequence in A

X
whose length is greater than |V

X
|. ��

4.1 Lower Bounds

The next theorem shows that each class has to store a private information whose
size is lower bounded by the sum of the sizes of the keys assigned to all classes
in a reduced graph for its accessible set.

Theorem 2. Let G = (V,E) be the directed graph that represents any arbitrary
access control policy. In any perfectly secure key assignment scheme for G, for
any u ∈ V it holds that

H(Pu) ≥ |VAu
| ·H(K),

where GAu = (VAu , EAu) is a reduced graph for Au.

Proof. Let G
Au

= (V
Au
, E

Au
) be a reduced graph for Au. From Lemma 3, there

exists an independent sequence of classes in Au, whose length is |V
Au
|. Thus, the

theorem follows from Corollary 1. ��
The next theorem shows that the amount of randomness needed by the CA

to setup any perfectly secure key assignment scheme for G = (V,E) is lower
bounded by the sum of the sizes of the keys assigned to all classes in a reduced
graph for V .

Theorem 3. Let G = (V,E) be the directed graph that represents any arbitrary
access control policy. In any perfectly secure key assignment scheme for G it
holds that

H(P
V
) ≥ |V ′| ·H(K),

where G′ = (V ′, E′) is a reduced graph for V .

Proof. Let G′ = (V ′, E′) be a reduced graph for V . From Lemma 3, there exists
an independent sequence of classes in V , whose length is |V ′|. Thus, the theorem
follows from Corollary 2. ��

The bounds of Theorems 2 and 3 are tight. Indeed, in the next section we
show a perfectly secure key assignment scheme that meets the bounds.

4.2 An Optimal Construction

In Figure 5 we show an optimal perfectly secure key assignment scheme for any
access control policy represented by a directed graph G = (V,E). In our scheme
all keys assigned to classes have the same size.

For example, consider the graph of Figure 2. The disjoint sets constructed
by the CA during the initialization phase are the following:
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Initialization phase

– The CA partitions V into m disjoint sets S1, . . . , Sm such that for each u, v ∈ V , u
and v are in the same set if and only if their incoming set coincide (i.e., Cu = Cv).

– Afterwards, the CA chooses a large prime number q ≥ m.
– Finally, the CA randomly chooses m integers x1, x2, . . . , xm in Zq.

Key generation phase

– For any i = 1, . . . , m and any u ∈ Si, let ku = xi.

Information distribution phase

– The CA sends the value xi to any class u such that Si ⊆ Au, over a private
channel.

Fig. 5. A perfectly secure key assignment scheme.

S1 = {a} S2 = {b} S3 = {c, d} S4 = {e} S5 = {f}
The key assignment scheme distributes information as follows:

a gets (x1, x3) b gets (x2, x3) c gets (x3, x4)
d gets (x3, x5) e gets (x4) f gets (x5)

It is easy to see that the scheme of Figure 5 satisfies Definition 1. Moreover, our
scheme is optimal both with respect to the size of the information kept secret
by each class and with respect to the randomness needed by the CA. Indeed,
since for any class u ∈ V there are exactly |V

Au
| disjoint sets of classes in Au,

where G
Au

= (V
Au
, E

Au
) is a reduced graph for Au, the users in class u receive

exactly |V
Au
| keys and the bound of Theorem 2 is met with equality. Moreover,

since m = |V ′|, where G
V

= (V ′, E′) is a reduced graph for V , the CA generates
exactly |V ′| keys and the bound of Theorem 3 is also met with equality.

In the basic and straightforward perfectly secure key assignment scheme each
class gets the key assigned to any class in its accessible set. Differently from the
scheme of Figure 5, the basic and straightforward perfectly secure key assignment
scheme is not optimal in general. For example, consider the graph depicted in
Figure 2, corresponding to an organization where users in classes c and d have
the same supervisors but are in different classes because they have different
access rights. In the basic and straightforward perfectly secure key assignment
scheme, classes a and b get three distinct keys, while classes c and d get two
distinct keys. On the other hand, in our scheme classes a and b get two different
keys, while classes c and d get only one key. Therefore, compared to the basic
perfectly secure scheme, our scheme distributes less information to classes.
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Appendix: Information Theory Background

In this Appendix we review the basic concepts of Information Theory used in our
definitions and proofs. For a complete treatment of the subject the reader is advised
to consult [3].
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Given a probability distribution {PrX(x)}x∈X on a set X, we define the entropy1

of X, H(X), as
H(X) = −

∑

x∈X

PrX(x) log PrX(x).

The entropy satisfies the following property: 0 ≤ H(X) ≤ log |X|, where H(X) = 0 if
and only if there exists x0 ∈ X such that PrX(x0) = 1; whereas, H(X) = log |X| if and
only if PrX(x) = 1/|X|, for all x ∈ X.

Given two sets X and Y and a joint probability distribution on their cartesian
product, the conditional entropy H(X|Y), is defined as

H(X|Y) = −
∑

y∈Y

∑

x∈X

PrY (y)Pr(x|y) log Pr(x|y).

From the definition of conditional entropy it is easy to see that H(X|Y) ≥ 0.
Given n sets X1, . . . , Xn and a joint probability distribution on their cartesian

product, the entropy of X1 . . .Xn can be expressed as

H(X1 . . .Xn) = H(X1) +
n∑

i=2

H(Xi|X1 . . .Xi−1). (7)

Given n + 1 sets X1, . . . , Xn, Y and a joint probability distribution on their cartesian
product, the entropy of X1 . . .Xn given Y can be expressed as

H(X1 . . .Xn|Y) = H(X1|Y) +
n∑

i=2

H(Xi|X1 . . .Xi−1Y). (8)

The mutual information I(X;Y) between X and Y is defined by

I(X;Y) = H(X)−H(X|Y) (9)

and satisfies the following properties: I(X;Y) = I(Y;X) and I(X;Y) ≥ 0, from which
one gets

H(X) ≥ H(X|Y). (10)

Given three sets X, Y, Z and a joint probability distribution on their cartesian
product, the conditional mutual information I(X;Y|Z) between X and Y given Z is

I(X;Y|Z) = H(X|Z)−H(X|ZY) (11)

and satisfies the following properties: I(X;Y|Z) = I(Y;X|Z) and I(X;Y|Z) ≥ 0, from
which one gets

H(X|Z) ≥ H(X|ZY). (12)

From (8) and (12) one easily gets that for any sets Y, X1, . . . , Xn and a joint probability
distribution on their cartesian product it holds that

n∑

i=1

H(Xi|Y) ≥ H(X1X2 . . .Xn|Y). (13)

1 All log’s in this paper denote basis 2 logarithms.
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Abstract. Stack inspection is a basic mechanism for implementing lan-
guage based security. Stack inspection is time consuming and may pre-
vent from code optimization. A static analysis is presented that safely
approximates the access rights granted at run-rime. Stack inspection op-
timizations are then possible, along with program transformations.

1 Introduction

The growing use of network technologies in current distributed computing has
made security critical in the design, development and distribution of applica-
tions. Indeed, both final users and application designers put special emphasis on
security issues. For final users, the awareness of security mechanisms is crucial
for choosing the best network services that match their requirements. Design-
ers wish to control resource usage and access in order to ensure and maintain
adequate security levels.

Designing and implementing security policies at the programming language
level help in handling security. Here, we consider an authorization-based model
where a security policy is enforced by inserting appropriate checks in a program.
Clearly, writing secure applications is difficult: omitting a single check somewhere
in the code may compromise the security of the whole application. There is no
general mechanism which identifies what kind of security checks have to be
inserted in a program, and where.

The Java programming language features constructs and mechanisms for
secure execution of mobile code. Java applications run components with different
levels of trust, e.g. components originated from different administration domains.
In the Java security model, access control decisions are taken by examining the
call stack at run-time. A permission is granted, provided that it belongs to all
principals on the call stack. The so-called privileged operations are an exception.
These are allowed to execute any code granted to their principal, regardless of
the calling sequence. This access control mechanism is known as stack inspection.
Beyond Java, other run-time environments (e.g. the .NET Common Language
Runtime [15]) adopt stack inspection as basic authorization mechanism.
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Stack inspection has some drawbacks. First, the run-time overhead due to
the analysis of stack frames may grow very high. Second, stack inspection deeply
affects standard program transformations, such as method inlining and tail call
elimination. These optimizations may in fact alter the structure of the call stack.
Hence, understanding the semantics of program transformations in a setting with
stack inspection is a research (and technological) challenge.

Our contribution aims at developing semantic-driven mechanisms as an aid
to improve efficiency of architectures for language-based security. We build over
control flow analysis [16]. The idea of control flow analysis is to efficiently obtain
computable approximations of the set of values that the objects of a program
may assume during its execution. These approximations are then used to analyze
program properties in a safe way: if a property holds at static time, then it will
always hold at run-time. The vice-versa may not be true: the analysis may “err
on the safe side”.

In Section 2 we consider an idealized object-oriented language with primitive
constructs for method invocations, exceptions, and access control. The execution
traces of Java code are safely approximated by the traces of their corresponding
abstract programs. We represent these programs by control flow graphs, a pro-
gramming model not tied to any particular language. These graphs are equipped
with a formal operational semantics.

In Section 3 we introduce a static analysis over control flow graphs, called
Trace Permissions Analysis. This analysis computes, for each program point and
each execution reaching that point, the set of permissions granted at run-time.
The analysis is sound and complete with respect to the operational semantics
of our idealized language, i.e. it computes all and only the permissions that are
granted at run-time.

In Section 4 we show that the Trace Permissions analysis provides us with the
basis for some security-aware code optimizations. As a first application, we detect
and remove the redundant checks in a program, i.e. the checks which always pass.
Dead code elimination is a program optimization which detects and removes
the code unused or unreached in executions. Security restrictions may cause
more fragments of code to become unreachable, e.g. because a security check
protecting it is never passed. Our technique permits to discard such dead code
in the linking phase. We also cope with method inlining, an optimization that
replaces a method invocation with a copy of the called method code. In presence
of stack inspection, method inlining may break security, because the protection
domain of the inlined method is ignored. The Trace Permissions analysis provides
us with the basis to efficiently construct the set of method invocations which can
be safely inlined.

In Section 5 we examine the adequacy of our model, and we propose some
extensions to make it suitable for real-world applications.

Because of space limitations, here we will provide the overall picture of the
technical development of our approach by focusing on the underlying ideas. We
refer to the full paper [2] for the proofs, some illustrative examples, and the
detailed description of the model.
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2 The Program Model

We model programs as control flow graphs (CFGs for short) whose nodes repre-
sent the activities relevant for stack inspection (i.e. checks, method invocations
and returns) and whose arcs represent the flow of control. We do not define how
CFGs are extracted from an actual program. This construction is well under-
stood and algorithms and tools exist for it; see for example [10, 16, 20, 21].

By construction, CFGs hide any data flow information, and are therefore ap-
proximated; typically, the conditional construct is rendered as non-deterministic
choice. This approximation is safe, in the sense that any actual execution flow
is represented by a path in the CFG. However, the converse may not be true:
some paths may exist which do not correspond to any actual execution. For
instance, both branches of an “if” statement are represented, even in the cases
when always the same branch is taken at run-time.

There is a further source of approximation, especially for object-oriented
languages with dynamic resolution of method invocations. In Java, for example,
when a program invokes an instance method on an object O, the virtual machine
may have to choose among various implementations of that method. The decision
is not based on the declared type of O, but on the actual class O belongs to,
which is unpredictable at static time. To be safe, CFGs consider a superset of
the methods that can be invoked at each program point. This is a main source
of approximation for the analyses built over CFGs.

2.1 Syntax

Let D be a finite set of protection domains, and P be a finite set of permissions.

Definition 1. A CFG 〈N ∪ {nε}, E,Priv,Dom〉 is an oriented graph, where:

– N is the set of nodes. Each node n ∈ N is associated with a label �(n),
describing the control flow primitive it represents. Labels partition nodes in
three kinds: call nodes, that stand for method invocation, return nodes,
which represent return from a method, and check nodes, which enforce the
access control policy. For each P ∈ P, a node labeled check(P ) can be seen as
the abstract representation of an AccessController.checkPermission(P)

instruction in the Java language. The distinguished element nε /∈ N plays
the technical role of a single, isolated entry point.

– E ⊆ (N ∪{nε})×N is the set of edges. Edges are partitioned into four sets:
entry edges •−→ n, that represent the entry points of a program; call edges
n −→ n′, which model interprocedural flow; transfer edges n ��� n′, which
correspond to sequencing; and catch edges n ����n

′, which correspond to
exception handling. The last two kinds of edges represent intraprocedural
flow. The set of entry edges contains all pairs (nε, n) where n is a program
entry point. The nε element is the source of entry edges, only.

– Priv : N → Bool tells whether a node enables its privileges or not.
– Dom : N → D is a mapping from nodes to protection domains.
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When unambiguous, we shall write 〈N,E〉 instead of 〈N ∪ {nε}, E,Priv,
Dom〉.

Each CFG is associated with a security policy Perm : D → 2P , which grants
a set of permissions to each protection domain. Hereafter, we will always abbre-
viate Perm(Dom(n)) with Perm(n).

Definition 2. The methods of a CFG 〈N,E〉 are the connected components of
the graph 〈N,E′〉, where E′ is the set of intraprocedural edges in E, with no
orientation. We call µ(n) the method to which node n belongs. The entry points
of µ(n) are defined as:

ε(µ(n)) = {n′ ∈ µ(n) | •−→ n′ ∨ ∃m ∈ N. m −→ n′ }
The set ρ(n) of return nodes associated to a node n is:

ρ(n) = {m ∈ N | �(m) = return ∧ n −→ ε(µ(m)) }
The set ξ(n) of nodes that may throw an exception catchable by n is defined as
the smallest set satisfying:

ξ(n) =

{
{n} if �(n) = check(P )
{ ξ(n′) | n −→ ε(µ(n′)) ∧ n′ 
���� } otherwise

The set ξ1(n) of nodes that may propagate an exception to n is defined as:

ξ1(n) = {n′ | n −→ ε(µ(n′)) ∧ n′ 
���� ∧ ξ(n′) 
= ∅ }
As discussed in [2], all the CFGs derived from admissible Java programs sat-

isfy the following well-formedness constraints: (1) check nodes have no outgoing
call edges; (2) return nodes have no outgoing edges; (3) each method has a single
entry point (4) nodes in the same method are in the same protection domain.
Moreover, we require that only call nodes can be privileged. In general, security
checks can also occur within privileged actions: however, privileged check nodes
make little sense, because it is always possible to determine whether a privileged
check will succeed or not. Similarly, there is no point in enabling return nodes to
be privileged, because a return node will never be on the call stack when stack
inspection is performed.

2.2 Semantics

The operational semantics of CFGs is defined by a transition system whose
configurations are sequences of nodes, modeling call stacks. Additionally, each
state has a boolean tag which tells whether an exception is active, i.e. thrown
and not caught yet. Formally, we define the set of states as N∗ × Bool .

If no exception is active, a state is represented as sequence of nodes enclosed
in square brackets: for example, σ = [n0, . . . , nk] is a state whose top node is nk.
If an exception is active, we append the symbol � to the sequence of nodes, i.e.
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Table 1. Operational semantics of CFGs.

•−→ n

[ ] � [n]

�(n) = call n −→ n′

σ : n � σ : n : n′
�(m) = return n ��� n′

σ : n : m � σ : n′

�(n) = check(P ) σ : n � P n ��� n′

σ : n � σ : n′
�(n) = check(P ) σ : n �� P

σ : n � σ : n�

n ����n′

σ : n� � σ : n′
n �����

σ : n� � σ�

[ ] � P

P ∈ Perm(n) σ � P

σ : n � P

P ∈ Perm(n) Priv(n)

σ : n � P

σ� abbreviates 〈σ, true〉. Pushing a node n on a stack σ is written as σ : n (the
infix operator : associates to the left).

The transition relation � between states is the minimal relation induced by
the inference rules in Table 1. A trace of G leading to 〈σk, xk〉 is a derivation
〈σ0, x0〉 � · · · � 〈σk, xk〉 where σ0 = [] and x0 = false. By overloading the
notation, we also denote with � the relation:

G� 〈[ ], false〉
G� 〈σ, x〉 〈σ, x〉 � 〈σ′, x′〉

G� 〈σ′, x′〉
stating when there is a trace of G which can lead to a given state. We say that
a node n is reachable iff 〈σ : n, x〉 is a reachable configuration.

In our formalization, we use a slightly simplified version of the full access
control algorithm presented in [8]. The simplified algorithm scans the call stack
top-down. Each frame in the stack refers to the protection domain containing the
class to which the called method belongs. As soon as a frame is found whose pro-
tection domain has not the required permission, an AccessControlException is
raised. The algorithm succeeds when a privileged frame is found that carries the
required permission, or when all frames have been visited. We formally specify
this behavior by the minimal relation induced by the inference rules for � in
Table 1. We say that a permission P is granted to a state σ if σ � P .

3 The Trace Permissions Analysis

In this section we review the static analysis over CFGs called Trace Permissions
Analysis (TP). The TP analysis approximates the access rights granted to each
reachable state.
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Table 2. Flow equations for the TP analysis.

TPin(n) =
⋃

(m,n)∈E

TPout(m, n)

TPout(m,n) =



{{Dom(n)}} if •−→ n

{ γ ∪ {Dom(n)} | γ ∈ TPcall(m) } if m −→ n

TPtrans(m) if m ��� n

TPcatch(m) if m ����n

TPcall(n) =

{
{{Dom(n)}} if Priv(n) and TPin(n) �= ∅

TPin(n) otherwise

TPtrans(n) =



{ γ ∈ TPin(n) | P ∈ Π(γ) } if �(n) = check(P )

{ γ ∈ TPin(n) | Trans(n, {Dom(n)}) } if �(n) = call, Priv(n)

{ γ ∈ TPin(n) | Trans(n, γ) } otherwise

TPcatch(n) =



{ γ ∈ TPin(n) | P /∈ Π(γ) } if �(n) = check(P )

{ γ ∈ TPin(n) | Catch(n, {Dom(n)}) } if �(n) = call, Priv(n)

{ γ ∈ TPin(n) | Catch(n, γ) } otherwise

Trans(n, γ)
def
= ∃m ∈ ρ(n). γ ∪ {Dom(m)} ∈ TPin(m)

Catch(n, γ)
def
= ∃m ∈ ξ1(n). γ ∪ {Dom(m)} ∈ TPcatch(m)

Since the set of permissions granted to a state is just the intersection of
the permissions associated to each protection domain traversed after the last
privileged frame (if any), we can identify the set {P ∈ P | σ � P } with the
security context Γ (σ), where Γ : N∗ → 2D is defined as follows:

Γ ([ ]) = ∅ Γ (σ : n) =

{
{Dom(n)} if Priv(n)
Γ (σ) ∪ {Dom(n)} otherwise

The set of permissions granted to a security context γ is:

Π(γ) =
⋂

D∈γ

Perm(D)

The permissions granted to the security context of a state σ are exactly the
permissions granted to σ, i.e. σ � P ⇐⇒ P ∈ Π(Γ (σ)) for all σ ∈ N∗, P ∈ P .

Given a CFG G and a security policy Perm, the analysis is specified by the
set of equations TP=(G,Perm) in Table 2. A solution τ |= TP=(G,Perm) is
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a 5-tuple τ = 〈τin , τcall , τtrans , τcatch , τout 〉 which satisfies all the equations. The
purpose of the analysis is to find, for each node n, the set {Γ (σ : n) | G � σ : n }.

Technically, TP is a forward, monotone control flow analysis with values in
22D

. Since both G and D are finite, the least solution to the analysis does exist
and is finitely computable.

The following theorem states the correctness of the TP analysis. The first
equation below states that any solution to the analysis is sound w.r.t. the op-
erational semantics. The second equation states that the least solution to the
analysis is also complete. This fact should not seem bizarre: indeed, complete-
ness is only up to the precision of the CFG, which is an approximated model of
the analyzed program.

Theorem 1. Let τ |= TP=(G,Perm). Then:

G� σ : n =⇒ ∃γ ∈ τcall(n). γ = Γ (σ : n)

Moreover, the minimal solution w.r.t. the inclusion relation on 22D
is such that:

γ ∈ τcall (n) =⇒ ∃σ. G� σ : n ∧ γ = Γ (σ : n)

The worklist algorithm which actually computes the (unique) minimal so-
lution to the analysis has computational complexity O(c · |N |) = O(|N |). The
constant c depends on the number of protection domains occurring in G: in the
worst case, c = 23·|DG|, where DG =

⋃
n∈N Dom(n). However, the exponential

factor only occurs when the number of protection domains is proportional to the
number of nodes. Actually, the number of protection domains can be considered
as a constant, because it depends on the security policy, rather than on the size
of the program.

Dynamic linking is the mechanism which allows a program to be extended
on demand, e.g. with code coming from the network. Although our program
model does not directly support this feature, the TP analysis can be computed
incrementally. An incremental CFG construction algorithm, e.g. the one pre-
sented in [19], can be used in order to correctly perform the dynamic linking of
the relevant CFGs. Indeed, this operation cannot be performed by looking at
the CFGs alone, because CFGs do not carry enough information to restrict the
set of targets of dynamically dispatched method invocations. We now outline
how the incremental computation of the analysis is performed. Let G = 〈N,E〉,
and assume that a solution τ to TP=(G,Perm) is available when the CFG
G′ = 〈N ′, E′〉 is loaded. Through the CFG construction algorithm, we single out
the set E� of resolved calls between G and G′, i.e. those edges n −→ m such that
n,m do not belong both to the same CFG. Linking G and G′ together yields the
CFG G � G′ = 〈N ∪N ′, E ∪ E′ ∪ E�〉. The analysis τ ′ |= TP=(G � G′,Perm)
is a refinement of τ . To compute it, the worklist algorithm adds to τ all the
contexts associated with the new paths created by the resolved calls. It suffices
now to restart the algorithm with the worklist containing all nodes n such that,
for some node m, (n,m) ∈ E�. Moreover, the worklist must include all entry
points of G′, if any. Although this technique is not fully compositional, note that
adding new executable paths to a CFG never affects the analysis of the old ones.
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4 Program Transformations

In this section we show that the Trace Permissions analysis provides us with an
effective basis for some security-aware code optimizations.

4.1 Redundant Checks Elimination
Our first application of the analysis is a code optimization which detects and
removes the redundant checks occurring in a program, i.e. those checks which
always pass, regardless of the execution trace.

The following theorem states conditions to recognize redundant checks, so
enabling the compiler to safely remove them from the code:

Theorem 2. Let τ |= TP=(G,Perm). For each check node n, let Π(n) be the
set of permissions (statically) granted to n:

Π(n) =
⋂
{Π(γ) | γ ∈ τcall(n) }

If �(n) = check(P ) and P ∈ Π(n), then n is redundant, i.e. for each σ ∈ N∗:

G� σ : n =⇒ σ : n � P
Actually, redundant checks can only be disabled in presence of dynamic link-

ing, because loading a new method may add new traces where the permission is
no longer granted. A similar situation also holds for the other optimizations of
stack inspection considered below.

4.2 Dead Code Elimination
Dead code elimination is a program optimization which prevents the compiler
from generating bytecode for unreachable or useless pieces of code. Dead code
elimination reduces both the size of the generated bytecode and the total appli-
cation running time (e.g. when code has to be downloaded from the network).

The following theorem allows to detect (and remove) those pieces of code
which cannot be reached due to security restrictions:

Theorem 3. Let τ |= TP=(G,Perm). Then:

τcall(n) = ∅ =⇒ ¬∃σ. G� σ : n

4.3 Method Inlining
The TP analysis can be exploited to compute the set of method invocations
which can be safely inlined. Intuitively, a method invocation may be inlined if
the outcome of the security checks is not affected by the the elimination of the
protection domain of the inlined method.

We adopt the so-called original version inlining approach [11], which always
considers the original version of the callee and the current version of the caller
when performing inlinings. This can be obtained by duplicating the original code
of the inlined method.
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Let ṅ be the node candidate for inlining, and ṅ −→ n′. We assume that
the method invocation represented by ṅ can be statically dispatched, i.e. it has
exactly one callee, represented by µ(n′).

The decision procedure, which tells whether or not the inlining of ṅ is safe, is
outlined below. We first assign a fresh name to the protection domain of µ(n′),
without modifying its granted permissions. Assume that a solution τ to the TP
analysis is available. We restart the worklist algorithm from ṅ, in order to isolate
the protection domain of µ(n′) in the computed security contexts. This allows
for the definition of a function Inl ṅ which simulates the effect of method inlining
on security contexts: given a context γ, Inl ṅ(γ) is obtained by substituting the
protection domain of µ(n′) for that of µ(ṅ). Each time a check node n is reached,
we ensure that for each context γ ∈ τin (n), γ and Inl ṅ(γ) agree on the permission
P checked by n, i.e. P ∈ Π(γ) ⇐⇒ P ∈ Π(Inl ṅ(γ)).

The inlining of ṅ is safe if this holds for each check node reached during
this procedure. Note that it is possible to deal with the general case of virtual
calls with many callees: this only requires some more machinery (all the possible
callees must be inlined).

We formally define below when a method invocation can be inlined. The con-
dition (1a) guarantees static dispatching of ṅ, as well as that ṅ is not a recursive
call (otherwise inlining makes little sense). The condition (1b) rephrases the orig-
inal version inlining approach. The condition (1c) ensures that the protection
domain of ṅ is isolated. These conditions, apart from ṅ being not recursive, can
easily be satisfied, as noted above. The key condition is (1d): it guarantees that
the security checks passed after inlining are exactly those passed before inlining.

Definition 3. We say that ṅ is inlineable in G iff:

∃1n′ ∈ N. ṅ −→ n′ ∧ n′ /∈ µ(ṅ) (1a)
∀m,n′ ∈ N. ∀n′ ∈ N. ṅ −→ n′ ∧ m −→ n′ =⇒ m = ṅ (1b)
∀n′ ∈ N. ṅ −→ n′ =⇒ ∀m /∈ µ(n′). Dom(m) 
= Dom(n′) (1c)
∀n. �(n) = check(P ), γ ∈ τin(n). P ∈ Π(γ) ⇐⇒ P ∈ Π(Inl ṅ(γ)) (1d)

Next, we define the effect of the method inlining transformation on CFGs.
Instead of substituting ṅ for µ(n′) and adjusting the edges accordingly, we equiv-
alently operate on the semantics of the transformed CFG.

The effect of the inlining of ṅ on states is simulated by the function inl ṅ in
Table 3. Given a state σ, inl ṅ(σ) is obtained by removing all the occurrences of
ṅ in σ (except when ṅ is in top position).

The operational semantics of a CFG after the inlining of ṅ is defined by the
transition relation �ṅ in Table 3.

We define the ṅ-inlined version of a CFG G = 〈N ∪ {nε}, E,PrivG,DomG〉
as Ġ = 〈N ∪ {nε}, E,PrivĠ,DomĠ〉, where:

PrivĠ(n) =

{
true if PrivG(ṅ) and ṅ −→ µ(n)
PrivG(n) otherwise
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Table 3. Specification of method inlining.

inl ṅ([ ]) = []

inl ṅ(σ) = σ̇ top(σ) �= ṅ

inl ṅ(σ : n′) = σ̇ : n′
inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′

Inl ṅ(∅) = ∅
Inl ṅ(γ) = γ̇ Inl ṅ(γ′) = γ̇′

Inl ṅ(γ ∪ γ′) = γ̇ ∪ γ̇′

ṅ �−→ µ(n′)

Inl ṅ({Dom(n′)}) = {Dom(n′)}
ṅ −→ µ(n′)

Inl ṅ({Dom(n′)}) = {Dom(ṅ)}

�(n) = call n −→ n′ n �= ṅ

σ : n �ṅ
inl σ : n : n′

�(ṅ) = call ṅ −→ n′

σ : ṅ �ṅ
inl σ : n′

�(n′) = return ṅ ��� m ṅ �−→ µ(n′)

σ : n : n′ �ṅ
inl σ : m

�(n′) = return ṅ ��� m ṅ −→ µ(n′)

σ : n′ �ṅ
inl σ : m

n ���� ṅ �−→ µ(n′)

σ : n� �ṅ
inl σ�

n ���� ṅ −→ µ(n′)

σ : n� �ṅ
inl σ : ṅ�

DomĠ(n) =

{
DomG(ṅ) if ṅ −→ µ(n)
DomG(n) otherwise

Note that we may end up with privileged checks and returns, thus violating one of
the well-formedness constraints in Section 2. However, this constraint can easily
be removed, at the price of a slightly more involved definition of the TP analysis.

The following theorem states the correctness of method inlining: each trace
in the original CFG corresponds to a trace in the ṅ-inlined version of the CFG.

Theorem 4. If ṅ is inlineable in G, and Ġ is the ṅ-inlined version of G, then:

〈σ0, x0〉 � · · · � 〈σk, xk〉 ⇐⇒ 〈σ̇0, x0〉 �ṅ
inl · · · �ṅ

inl 〈σ̇k, xk〉
where σ0 = [], x0 = false, and σ̇i = inl ṅ(σi) for each i ∈ 0..k.

5 Adequacy of the Model

There are some differences between our model and the Java security model [8]:

– our model prevents a permission P to be granted to a state σ : n if P
does not belong to the permissions granted to Dom(n). Instead, in the Java
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security model, P may be implied by some permission P ′ ∈ Perm(n). For ex-
ample, FilePermission("/-","read") implies the permission to read any
file on the local disk. We can easily extend our program model by intro-
ducing a partial order on permissions to encompass permission implications.
The inclusion test P ∈ Perm(n) in the rules for � should be replaced by
Perm(n)⇒ P , which tests if P is implied by some permission P ′ ∈ Perm(n).

– although the Java security model allows for the dynamic instantiation of
permissions (e.g. an application that asks the user for a file name and then
tries to open that file), we only consider the permissions that can be deter-
mined statically. We are currently investigating an extension of our present
approach to deal with such parametric permissions on the form P (x), where
x ranges over the set of possible targets for the permissions of class P .

– in the Java security model, a new thread upon creation inherits the access
control context (i.e. the set of protection domains for the classes on the call
stack) from its parent. When stack inspection is performed, both the context
of the current thread and the contexts of all its ancestors are examined. In
this way, a child thread cannot obtain a resource access which is not granted
to its ancestors. We do not model threads. To consider them, we should
first single out the program points where new threads can be created (and
started) while constructing the CFG (as done in [12]).

– in our model, we consider a “skeletal” exception handling mechanism, where
exceptions are all of the same type, and neither nested try blocks nor
finally clauses are featured. A full treatment of exceptions requires a tai-
lored construction of the CFG, e.g. by the techniques presented in [5, 18],
that also suggest how to adjust interprocedural analyses to exceptions.

– the Java Authentication and Authorization Service [13] extends the Java
security model by allowing for user-centric access control policies, based on
the principal who actually runs the code. Permissions can be granted to
principals, and the doAs method allows a piece of code to be executed on
behalf of a given subject. This is done by associating the (authenticated)
subject running the code with the current access control context. Stack in-
spection ensures that subjects are taken into account when access control is
performed. Unfortunately, static analysis techniques are weak in detecting
the set of principals which can get authenticated at a given program point.

There are some features of the Java security architecture we think difficult
to cope with: they are reflection, native methods, some “dangerous” permissions
implications (e.g. AllPermission may breach the whole security system by re-
placing the JVM system binaries), and dynamic policies (although some recent
works, e.g. [9, 14], have addressed the formal treatment of this issue). Besides
deeply affecting security, these features reduce the effectiveness of any static
analysis which aims at determining the permissions granted to running code.
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6 Conclusions and Related Work

We have developed a technique to perform program transformations in presence
of stack inspection. The technique relies on the definition of our Trace Permis-
sions Analysis. It is a control flow analysis, and computes a safe approximation
to the set of permissions which are always granted to bytecode at run-time.
The analysis is sound and complete w.r.t. the control flow graphs derived from
the bytecode (however, these graphs only approximate the actual behavior). In
this paper, we focused on redundant checks elimination, dead code elimination
and method inlining. A similar approach also applies to general tail call elim-
ination (see [2] for details). Although we restricted our attention to Java, the
same techniques work with other programming languages whose authorization
mechanisms rely on stack inspection (e.g. C
 [23]).

Many authors advocated the use of static techniques in order to understand
and optimize stack inspection.

Besson, Jensen, Le Mètayer and Thorn [4] were among the first to apply
static techniques to the verification of global security properties. They formalize
classes of security properties through a linear-time temporal logic. They show
that a large class of policies (including stack inspection) can be expressed in this
formalism, while more sophisticated ones (like the Chinese Wall policy) are not.
Model checking is then used to prove that local security checks enforce a given
global security policy. Their verification method is based on the translation from
linear-time temporal formulae to deterministic finite-state automata, and it can
be used to optimize stack inspection. For each node n, the analysis in [4] can
compute the set {P ∈ Pcheck | G � σ : n ∧ σ : n � P }, where Pcheck is the
set of permissions checked in G. The computational complexity of the method
is O(c · |N |), where the constant c depends on the cardinality of Pcheck (in the
worst case, c = 2|Pcheck|). Therefore, our Trace Permissions analysis performs
better when there are few protection domains, while [4] is more efficient when
there are few security checks. Note that our analysis is at least as precise as [4],
because Pcheck ⊆ P . Also, the analysis in [4] does not seem to scale up smoothly
to handle dynamic linking, because it must be recomputed each time a new
permission is discovered.

Wallach, Appel and Felten [22] formalize stack inspection by exploiting the
access control logic of [1]. The authors show that their decision procedure is
equivalent to Java stack inspection, according to an informal operational seman-
tics. Moreover, they propose an alternative semantics of eager stack inspection,
called security-passing style. This technique consists of tracking the security state
of an execution as an additional parameter of each method invocation. This al-
lows for interprocedural compiler optimizations that do not interfere with stack
inspection. The security-passing style allows each security operation to be per-
formed in constant time, but it involves an overhead, because the security state
must be computed at each method invocation. Dynamic caching techniques are
adopted to reduce this overhead: therefore, in the optimal case, the additional
cost of each method invocation is that of a hash lookup. The same technique
allows for an implementation of security checks which requires a hash lookup in
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the optimal case. In [3] we propose an approach to eager stack inspection which
allows for security operations that cost as a hash lookup in the worst case, while,
in the optimal case, they are as cheap as a bitwise operation. A further difference
w.r.t. our approach is that [22] assumes that the whole program is available at
compilation time, while we can deal with dynamic linking of code.

Pottier, Skalka and Smith [17] address the problem of stack inspection in
λsec, a typed lambda calculus enriched with primitive constructs for enforcing
security checks and managing permissions. They have polymorphic types on the
form τ1 → ς → τ2, where τ1, τ2 are types and ς is a set of permissions. Intuitively,
the type τ1 → ς → τ2 details the security context necessary to execute a function
of type τ1 → τ2. Stack inspection never fails on a well typed program, because
the set of permissions granted at runtime always includes the security context.
These types are very powerful and can deal with several issues (e.g. security
policy overriding, dependencies from untrusted code). Moreover, they can be
smoothly extended to deal with objects by standard type-theoretic techniques.

The problem of establishing the correctness of program transformations in
presence of stack inspection is investigated by Fournet and Gordon in [7]. They
present an equational theory, together with a coinductive proof technique, for
the λsec calculus. They study how stack inspection affects program behavior,
proving that certain function inlinings and tail-call eliminations are correct. The
equational theory is used to reason about the (somewhat limited) security prop-
erties actually guaranteed by stack inspection. Some examples are also given of
how subtle interaction between trusted and untrusted code may give rise to se-
curity breaches. Here, we are more concerned with efficient (semantically-based)
optimization procedures, rather than with a general reasoning framework.

Clemens and Felleisen [6] presents a different semantics of (eager) stack in-
spection on continuation CESK machines, which allows for tail-call optimizing
implementations.

Compared with our approach, [6, 7, 17] consider more basic programming
primitives (e.g. there is no exception mechanisms). Also, static typing appears
to be more difficult than control flow analysis when permissions can be dy-
namically instantiated. Indeed, we argue that typing and control flow analysis
are complementary static techniques. Approaches based on types focus more on
defining safe programming disciplines; control flow analysis, instead, seems more
accurate in efficiently determining effective program optimizations.
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Abstract. Information flow security in a multilevel system aims at gua-
ranteeing that no high level information is revealed to low level users,
even in the presence of any possible malicious process. Persistent BNDC
(P BNDC, for short) is an information-flow security property which is
suitable to deal with processes in dynamic contexts. In this work we
show that P BNDC is compositional with respect to the replication ope-
rator. Then, by exploiting the compositionality properties of the class
of P BNDC processes, we define a proof system which provides a very
efficient technique for the stepwise development and the verification of
recursively defined P BNDC processes.

1 Introduction

The design of large and complex systems that satisfy a given property strongly
depends on the ability of dividing the task of the system into subtasks that are
solved by system components. It is the classical divide-and-conquer approach,
at the basis of any systematic development of complex systems. When security
is the property of interest, difficulties can be encountered in applying this ap-
proach since secure systems might not be composed by secure components only.
Nevertheless it is essential to know how properties of the components behave
under composition. General theories of compositionality exist for properties like
safety and liveness [25,1] and compositionality results for information-flow based
confidentiality properties have also been developed [18,26,15].

The problem of protecting confidential data in a multilevel system is one
of the relevant issues in computer security. Information flow security assures
confidentiality since it guarantees that no high level (confidential) information is
revealed to users running at low levels [12,17,9,22], even in the presence of any
possible malicious process. To establish that information does not flow from high
to low it is sufficient to establish that high behavior has no effect on what low
level users can observe, i.e., the low level view of the system is independent of high
behavior. This notion of information flow security, known as Non-Interference,
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has been introduced in [13], and subsequently developed by many authors in
many different settings [9,10,21,23,14].

In this paper we consider the security property Persistent BNDC (P BNDC,
for short), proposed in [11], and further studied in [4]. P BNDC is a security
property based on Non-Interference suitable to analyze processes in completely
dynamic hostile environments. In [11] it is proved that the P BNDC property is
equivalent to an already proposed security property called SBSNNI and studied
in [9]. From the analysis presented in [9] two important problems emerge: how
to verify the P BNDC property and how to construct P BNDC processes. The
first problem has been considered in [11] and it has been shown to be decidable.
The second problem has been analyzed in [4] where we exploit the composi-
tionality properties of P BNDC processes to define a proof system which allows
us to statically prove that a process is P BNDC by just inspecting its syntax.
The proof system consists of two layers, a kernel which deals only with non-
recursive processes and a second layer where a rather complex rule, involving
many expensive checks, handles recursive processes. The system is correct but
not complete, for instance it does not deal with recursive processes involving the
parallel operator. The incompleteness and the complexity of the system is due
to the lack of a compositionality result for constant definitions, which is the only
way recursion is expressed in the SPA language, a variant of Milner’s CCS [19].

In this paper we consider another form of recursion expressed using the repli-
cation operator (!) instead of constant definitions. The two approaches have the
same expressive power in π-calculus [20,24], but as recently proved in [7], repli-
cation cannot supplant recursion in CCS. In this paper we show that the class
of P BNDC processes is compositional with respect to the replication operator.
This allows us to extend the kernel Core of the proof system in [4] with a new
inference rule for the replication, thus allowing us to deal also with recursive
processes involving the parallel operator. Moreover, we prove a partial composi-
tionality of P BNDC with respect to constant definitions, i.e., we identify a class
of constant definitions which can be safely added to our language and treated
by the extended proof system.

The paper is organized as follows. In Section 2 we introduce the language,
and recall the definition of P BNDC process and its properties. In Section 3 we
prove that P BNDC is compositional with respect to the replication operator,
and then present a proof system which, by exploiting the new compositionality
result, extends the kernel presented in [4] by adding recursion through replication
in a very simple way. In Section 4 we (re)-introduce constant definitions. Finally,
in Section 5 we draw some conclusions. All the proofs can be found in [5].

2 Basic Notions

2.1 The Language

In this section we report the syntax and semantics of the process algebra we
consider. It is a variation of Milner’s CCS [19], similar to SPA [9], where the
set of visible actions is partitioned into high level actions and low level ones in
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order to specify multilevel systems. Differently from [19], we use the replication
(!) operator instead of the constant definitions. Intuitively, the process !E (bang
E) means E|E| . . ., i.e., the parallel composition of as many copy as needed of
the process E. In Section 4 we will reintroduce constant definitions.

The syntax of our process algebra is based on the same elements as CCS that
is: a set L of visible actions such that L = I ∪ O where I = {a, b, . . .} is a set
of input actions and O = {ā, b̄, . . .} is a set of output actions; a special action
τ which models internal computations, i.e., not visible outside the system; a
complementarily function ·̄ : L → L, such that ¯̄a = a, for all a ∈ L; Act = L∪{τ}
is the set of all actions. The set of visible actions is partitioned into two sets, H
and L, of high and low actions such that H = H and L = L. A process E is a
term built using the following productions:

E ::= 0 | a.E | E + E | E|E | E \ v | E[f ] |!E
where a ∈ Act , v ⊆ L, f : Act → Act is such that f(L) ⊆ L ∪ {τ}, f(H) ⊆
H ∪ {τ}, f(ᾱ) = f(α) and f(τ) = τ .

Given a fixed set L we denote by E ! the set of all processes, by E !
H the set of

all high level processes, i.e., those constructed over H ∪ {τ}, and by E !
L the set

of all low level processes, i.e., those constructed over L ∪ {τ}.
The operational semantics of processes is given in terms of a Labelled Tran-

sition System (LTS). In particular, the operational semantics of our language
is the LTS (E !,Act ,→), where the states are the terms of the algebra and the
transition relation →⊆ E ! × Act × E ! is defined by structural induction as the
least relation generated by the inference rules reported in Figure 1.

In the paper we use the following notations. If t = a1 · · · an ∈ Act∗ and
E

a1→ · · · an→ E′, then we say that E′ is reachable from E and write E t→ E′, or
simply E � E′. We also write E t=⇒ E′ if E( τ→)∗ a1→ ( τ→)∗ · · · ( τ→)∗ an→ ( τ→)∗E′

where ( τ→)∗ denotes a (possibly empty) sequence of τ labelled transitions. If
t ∈ Act∗, then t̂ ∈ L∗ is the sequence gained by deleting all occurrences of τ
from t. As a consequence, E â=⇒ E′ stands for E a=⇒ E′ if a ∈ L, and for
E( τ→)∗E′ if a = τ (note that τ=⇒ requires at least one τ labelled transition while

τ̂=⇒ means zero or more τ labelled transitions). Given two processes E,F we
write E ≡ F when E and F are syntactically equal.

The concept of observation equivalence between two processes is based on
the idea that two systems have the same semantics if and only if they cannot be
distinguished by an external observer. This is obtained by defining an equiva-
lence relation over E !. We report the definitions of weak bisimulation and strong
bisimulation [19]. Intuitively, weak bisimulation equates two processes if they
mutually simulate their behavior step by step, but it does not care about inter-
nal τ actions. So, when P simulates an action of Q, it can also execute some τ
actions before or after that action.

Definition 1 (Weak Bisimulation). A symmetric binary relation R ⊆ E !×E !

over processes is a weak bisimulation if (E,F ) ∈ R implies, for all a ∈ Act,

• if E a→ E′, then there exists F ′ such that F â=⇒ F ′ and (E′, F ′) ∈ R;
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Prefix
a.E

a→ E

E1
a→ E′

1 E2
a→ E′

2

Sum
E1 + E2

a→ E′
1 E1 + E2

a→ E′
2

E1
a→ E′

1 E2
a→ E′

2 E1
�→ E′

1 E2
�̄→ E′

2

Parallel � ∈ L
E1|E2

a→ E′
1|E2 E1|E2

a→ E1|E′
2 E1|E2

τ→ E′
1|E′

2

E
a→ E′

Restriction if a �∈ v

E \ v
a→ E′ \ v

E
a→ E′

Relabelling

E[f ]
f(a)→ E′[f ]

E
a→ E′ E

�→ E′ E
�̄→ E′′

Replication � ∈ L
!E a→ E′|!E !E τ→ E′|E′′|!E

Fig. 1. The operational rules.

Two processes E,F ∈ E ! are weakly bisimilar, denoted by E ≈ F , if there exists
a weak bisimulation R containing the pair (E,F ).

The relation ≈ is the largest weak bisimulation and is an equivalence rela-
tion [19].

Strong bisimulation is stronger than weak bisimulation, since it consider the
τ actions as all the other actions.

Definition 2 (Strong Bisimulation). A symmetric binary relation R ⊆ E !×
E ! over processes is a strong bisimulation if (E,F ) ∈ R implies, for all a ∈ Act,

• if E a→ E′, then there exists F ′ such that F a→ F ′ and (E′, F ′) ∈ R;
Two processes E,F ∈ E ! are strong bisimilar, denoted by E ∼ F , if there exists
a strong bisimulation R containing the pair (E,F ).

The relation ∼ is the largest weak bisimulation and is an equivalence rela-
tion [19]. Moreover, two strongly bisimilar processes are also weakly bisimilar.

2.2 The P BNDC Security Property

In this section we recall the Persistent Bisimulation-based Non Deducibility on
Compositions (P BNDC, for short) security property (see [11]). We start by
introducing an equivalence relation on low actions that is a sort of weak bisim-
ulation which considers only the low actions. Hence, when two processes are
weakly bisimilar on low actions they cannot be distinguished by a low level user.
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Definition 3 (Weak Bisimulation on Low Actions). A symmetric binary
relation R ⊆ E ! × E ! over processes is a weak bisimulation on low actions, if
(E,F ) ∈ R implies, for all a ∈ L ∪ {τ},
• if E a→ E′, then there exists F ′ such that F â=⇒ F ′ and (E′, F ′) ∈ R.
Two processes E,F ∈ E ! are weakly bisimilar on low actions, denoted by E ≈l F ,
if there exists a weak bisimulation on low actions R containing the pair (E,F ).

The relation ≈l is the largest weak bisimulation on low actions and it is an
equivalence relation [5]. Moreover, it holds E ≈l F if and only if E \H ≈ F \H.

Using weak bisimulation on low actions we recall the notion of Bisimulation-
based Non Deducibility on Compositions (BNDC, for short) [9] which is at the
basis of P BNDC. The BNDC security property aims at guaranteeing that no
information flow from the high to the low level is possible, even in the presence
of an attacker. A system E is BNDC if for every high process Π a low user
cannot distinguish E from (E|Π), i.e., if Π cannot interfere [13] with the low
level execution of E.

Definition 4 (BNDC). Let E ∈ E !. E ∈ BNDC iff ∀ Π ∈ E !
H , E ≈l (E|Π).

In [11] it is shown that BNDC is not strong enough for systems in dynamic
environments. To deal with these situations, the property P BNDC is intro-
duced. Intuitively, a system E is P BNDC if it never reaches insecure states.

Definition 5 (P BNDC). Let E ∈ E !. E ∈ P BNDC iff E � E′ implies
E′ ∈ BNDC.

Although the decidability of BNDC is still an open problem, P BNDC is
decidable (in polynomial time) as shown in [11]. In [4] another decidable char-
acterization of P BNDC processes has been proposed. It allows us to express
P BNDC in terms of a local property of high level actions and it recalls the
unwinding conditions proposed in other settings. Also if we are using a variation
of the SPA, with replications instead of constant definitions, the characterization
presented in [4] holds.

Theorem 1 (Unwinding). Let E ∈ E !. E ∈ P BNDC iff if E � Ei
h→ Ej,

then Ei
τ̂=⇒ Ek and Ej ≈l Ek.

The following lemma rephrases the corresponding lemma in [4] and it proves
that the class of P BNDC processes enjoys the following compositionality prop-
erties.

Lemma 1. The class of P BNDC processes contains all the processes in E !
L∪E !

H

and is closed with respect to restriction, renaming, and parallel composition.
Moreover, if Ei, Fj ∈ P BNDC, ai ∈ L and hj ∈ H, i ∈ I and j ∈ J , then∑

i∈I ai.Ei +
∑

j∈J(hj .Fj + τ.Fj) ∈ P BNDC.
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3 P BNDC and Replications

In this section we first extend the compositionality result of Lemma 1 by proving
that P BNDC is closed also with respect to the replication operator. Then we
present a proof system for P BNDC processes.

3.1 Compositionality of P BNDC wrt!

We start by observing that the processes reachable from !E have the form of a
parallel composition of a finite number of processes reachable from E and !E.

Lemma 2. Let E ∈ E ! be a process. If !E � E′, then there exist n ≥ 0 and
E1, . . . , En such that E � Ei, for i = 1, . . . , n and E′ ≡ E1|E2| . . . |En|!E.

Hence the set {E1, . . . , En} of processes reachable from E characterizes the
process E1|E2| . . . |En|!E reachable from !E.

There is an interesting connection between the processes reachable from E
and the processes reachable from !E when E is P BNDC : if the sets {F1, . . . , Fn}
and {G1, . . . , Gn} of processes reachable from E are pairwise weakly bisimilar
on low actions, i.e., Fi ≈l Gi, this relation is preserved also on the processes
reachable from !E that they characterize.

Lemma 3. Let E be a P BNDC process and ∀i ∈ {1, .., n} Fi, Gi be reachable
from E. If ∀i ∈ {1, .., n} Fi ≈l Gi then F1|F2 . . . |Fn|!E ≈l G1|G2 . . . |Gn|!E.

The two previous lemmas, together with the unwinding condition (see The-
orem 1), allow us to prove that P BNDC is compositional with respect to the
replication operator.

Theorem 2. Let E ∈ E ! be a process. If E ∈ P BNDC, then !E ∈ P BNDC.

3.2 A Proof System for Processes with Replications

In [4] it has been presented a proof system which allows us to build P BNDC
processes in an incremental way. The proof system is composed by a set of rules
whose conclusions are in the form E ∈ HP[A], where A is a set of constants.
The intended meaning of the judgment is that E is a P BNDC process provided
that all the constants in A are P BNDC . The set A plays the role of a set of
assumptions: if it is empty then E is P BNDC otherwise we are still working
on our construction under open hypothesis. It is immediate to observe that the
system described in [4] is correct also using set of processes, instead of set of
constants, as assumptions. Hence, in this section the meaning of E ∈ HP[A] is
that E is a P BNDC process provided that all the processes in A are P BNDC .
We show how to exploit Lemma 1 and Theorem 2 in order to extend the system
to the case of processes with replication. In particular, let us consider the proof
system System ! whose rules are shown in Figure 2 1.
1 We use E[F/G] to denote the process we obtain by replacing all the occurrences of G

in E with F , where G denotes a process whose occurrences in E can be syntactically
and unambiguously identified.
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E ∈ HP[{E}]
E is a process (Proc)

E ∈ HP[∅]
E ∈ E !

L (Low)
E ∈ HP[∅]

E ∈ E !
H (High)

E ∈ HP[A]

E \ v ∈ HP[A]
(Rest)

E ∈ HP[A]

E[f ] ∈ HP[A]
(Label)

E ∈ HP[A] F ∈ HP[B]

E|F ∈ HP[A ∪B]
(Par)

Ei ∈ HP[Ai] Fj ∈ HP[Bj ]
∑

i∈I ai.Ei +
∑

j∈J(hj .Fj + τ.Fj) ∈ HP[∪IAi ∪ ∪JBj ]

ai ∈ L ∪ {τ}, hj ∈ H
(Choice)

E ∈ HP[A]

!E ∈ HP[A]
(Repl)

E[G] ∈ HP[A] F ∈ HP[B]

E[F/G] ∈ HP[(A \ {F}) ∪B]
(Subst)

Fig. 2. The proof system System !.

Theorem 3 (Correctness). System ! is correct, i.e., if there exists a proof in
System ! which ends with E ∈ HP[A], then E is P BNDC provided that all the
processes in A are P BNDC.

Corollary 1. Let E ∈ E !. If there exists a proof of E ∈ HP[∅], then E is
P BNDC.

Example 1. Consider the process CH defined as

CH ≡ ((in0.(out0.σ.0 + τ.σ.0) + in1.(out1.σ.0 + τ.σ.0))|
!(σ.(in0.(out0.σ.0 + τ.σ.0) + in1.(out1.σ.0 + τ.σ.0)))) \ {σ, σ}

where in0, in1, σ, σ ∈ L and out0, out1 ∈ H. This process CH is a channel which
may accept a value 0 (or 1) through the low level input in0 (or in1). When it
holds a value, it may deliver it through a high level output out0 (or out1). The
channel can transmit values infinitely many times. In fact, when the σ action is
reached the process resets itself and recursively repeats the sequence of actions.

This process is a variation of the channel described in [19]. It is easy to see
that we can derive the judgement CH ∈ HP[∅] in System !.

This example shows that System ! is more powerful than Core of [4], in fact
Core cannot handle any recursive process. In [4] we introduced a more complex
rule to deal with recursion.
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4 Adding Constant Definitions

In this section we add some constant definitions to our language. Then, exploit-
ing the compositionality of P BNDC with respect to the replication operator,
we prove a compositionality result for P BNDC with respect to the constant
definitions we consider. We do not add all constant definitions, since in CCS,
differently from π-calculus [24], replication is not expressive enough to represent
all constant definitions [7].

4.1 Definitions Using Replications

In standard CCS [19] complex recursive systems are defined parametrically, as
Z

def= E[Z], where Z is a process identifier and E[Z] a process expression which
may contain “calls” to Z as well as to other parametric processes.

Example 2. Consider the process Z recursively defined as Z def= a.Z + b.0. Intu-
itively this process can perform either an action a and return in its initial state
or an action b and terminate. Similarly it is possible to consider two mutually
defined processes X and Y where X performs an action a and then calls Y ; while
Y performs an action b and calls X. Their definitions are

X
def= a.Y Y

def= b.X

This way of defining recursive processes was taken as basic in [9] and in other
previous works on P BNDC (see [4]). In the context of the π-calculus in [20],
an encoding is defined which eliminates a finite number of constant definitions
using replication. As already noticed in [24], the same encoding applied to full
CCS does not work (see also Remark 1). In what follows we identify a fragment
of CCS on which the encoding is correct.

Let Act = L∪{τ} be a set of actions, with L partitioned into the two sets H
and L, as described in Section 2.1. Let C be a finite set of constants. Consider
all the processes D which can be obtained using the following productions:

D ::= 0 | a.D | D +D | D|D | Z

where Z ∈ C is a constant which must be associated to a definition Z
def= D.

Let Edef be the set of processes defined with this syntax. Given a process D,
const(D) denotes all the constants which occur in D. We say that a process D
is constant-free if const(D) = ∅.

In order to define the semantics of the processes in Edef we add to the rules
of Figure 1 the following rule to deal with constant definitions.

Constant if Z def= D

Z
τ→ D

This rule tells us that if Z def= D then Z performs a τ transition and then behaves
as D.
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Example 3. Let Z be the constant defined in Example 2. By applying once the
rule Constant we obtain that Z τ→ a.Z + b.0, then either a.Z + b.0 b→ 0 or
a.Z + b.0 a→ Z. In the second case we can apply again the rule Constant.

All the processes in Edef can be translated into an equivalent (bisimilar)
process of the language E ! presented in Section 2.1 (i.e., into a process with
restriction and replication and without constant definition).

We briefly recall how the encoding which removes the constant definitions
works. Let Z1, . . . , Zn be n constants defined as Zi

def= Di, where for all i =
1, . . . , n const(Di) ⊆ {Z1, . . . , Zn}. Let S = {σ1, σ1, . . . , σn, σn} be a new set of
actions disjoint from Act . We associate to the constant Zi the actions σi and σi

and we introduce the notation2:

Ẑi ≡ !(σi.Di[σ1.0/Z1, . . . , σn.0/Zn]),

where in Di each constant Zj is replaced by the constant-free expression σj .0.
Since const(Di) ⊆ {Z1, . . . , Zn}, Ẑi is a constant-free expression.

Definition 6 (Encoding of Edef). Let D ∈ Edef be a process with const(D) ⊆
{Z1, . . . , Zn}. Its encoding [[D]] is the constant-free process

[[D]] ≡ (D[σ1.0/Z1, . . . , σn.0/Zn]|Ẑ1| . . . |Ẑn) \ S.

In particular, when D is one of the Zi’s we obtain

[[Zi]] ≡ (σi.0|Ẑ1| . . . |Ẑn) \ S.

Example 4. Let Z be the constant defined in Example 2. The encoding of Z is
[[Z]] ≡ (σ.0|Ẑ)\S,but Ẑ ≡!(σ.0.((a.Z+b.0)[σ.0/Z]))) ≡!(σ.0.(a.σ.0+b.0))) hence
we obtain [[Z]] ≡ (σ.0|!(σ.0.(a.σ.0+b.0)))\S. Note that Ẑ and [[Z]] are different.

Remark 1. In the encoding, the action σi is used to make a “call to the pro-
cedure” Zi which is represented by Ẑi. The encoding does not work in the full
CCS, since the scope of the restrictions and renamings is not enlarged to the
Ẑi. Consider for instance a constant Z defined as Z def= a.Z and the process
E ≡ (Z)\{a}. The process E can only perform a τ action, then it terminates. If
we apply our encoding we obtain [[E]] ≡ ((σ.0) \ {a}|!(σ.a.σ.0)) \ S. Differently
from E, the process [[E]] performs a τ , and then it is able to perform an action
a, since in Ẑ the action a is allowed. Actually, we can overcome this problem
and define a correct translation for E (see Definition 7). Another process which
cannot be translated is obtained using two mutual recursive constant definitions

X
def= (a.X|b.a.Y ) \ {a, a} Y

def= (b.Y |a.b.X) \ {b, b}
2 We use the notation D[Z1, . . . , Zn] when we want to stress the fact that the constants

Z1, . . . , Zn can occur in D.
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The process F ≡ X can perform only b and τ actions. Its encoding would be the
process [[F ]] defined as

(σX .0|!(σX .((a.σX .0|b.a.σY .0) \ {a, a}))|!(σY .((b.σY .0|a.b.σX .0) \ {b, b}))) \ S.
The process [[F ]] can perform also a actions, since the restriction on a is not
applied to Ŷ . The solution we will apply later to enlarge the encoding cannot
be applied to this process.

The following theorem states the observational equivalence between D and
[[D]] when D belongs to Edef . Since D ∈ Edef and [[D]] ∈ E ! the bisimulation we
establish is a relation on Edef × E !.

Theorem 4. For each D ∈ Edef it holds D ∼ [[D]].

The actions σi’s introduced in the encoding are neither high nor low level
actions. They are used only in the encoding, in order to obtain constant free-
processes, but they are not visible outside because of the outmost restriction.
Indeed, they are introduced only to fire infinitely many times the actions of the
Di’s. Nevertheless, we have to decide how to treat them in the definition of the
attackers and in the definition of the low level observational equivalence. We
consider this issue in the next section.

Before moving to our security property we show how to apply the encoding
to a richer language in which restriction and renaming can be used “outside”
the recursive definitions. In particular, consider all the processes E defined by
the following productions:

E ::= 0 | a.E | E + E | E|E | E \ v | E[f ] |!E | Z
where Z ∈ C is a constant which must be associated to a definition Z

def= D,
with D ∈ Edef . Let Edef! be the set of processes defined with this syntax.

Since the constants are defined using processes in Edef , by Theorem 4, we have
that Z ∼ [[Z]]. Observing that ∼ is a congruence on our language we immediately
get that the following encoding can be applied to the processes in Edef!.

Definition 7 (Encoding of Edef!). Let E ∈ Edef! be a process with const(E) ⊆
{Z1, . . . , Zn} its encoding {{E}} is the constant-free process

{{E}} ≡ E[[[Z1]]/Z1, . . . , [[Zn]]/Zn].

Corollary 2. For each E ∈ Edef! it holds E ∼ {{E}}.
Example 5. Consider the constant Z and the process E defined in Remark 1.
The process E is in Edef!. Its encoding is {{E}} ≡ ((σ.0|!(σ.a.σ.0)) \ S) \ {a}.
Now, we correctly obtain that E performs a τ transitions, then it terminates.

The constants X and Y of Remark 1 do not belong to Edef!. In fact, in order
to translate X we would need a correct encoding of Y , and this is not possible
without a correct encoding of X, i.e., we enter in a loop. We can conclude that
Edef! is still not expressive as CCS with constant definitions. On the other hand,
Corollary 2 says that Edef! is expressive as E !. The relation between Edef! and
Edef is still an open problem; we conjecture that Edef! is more powerful.
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4.2 P BNDC and Definitions

Let Act = L∪H ∪{τ} as defined in Section 2.1. Let S be a new set of (synchro-
nization) actions such that S ∩Act = ∅ and S = S, i.e., S is closed with respect
to the complementation operation. In what follows we consider as set of actions
Act ′ = L∪H ∪ {τ} ∪ S. Moreover, we require that if f is a relabelling function,
then ∀σ ∈ S, f(σ) = σ. As previously observed the actions of S do not represent
‘real’ actions, but they are only instrumental for the encoding. The processes we
start with have no actions in S, while their encodings do. For this reason it is
necessary to decide how to treat S with respect to our security notions. In order
to keep the compositionality of P BNDC it is convenient to assimilate them to
low level actions. Therefore, the high level attacker cannot perform them and
the low level user can observe them. In this way we can treat in a compositional
way also processes in which these actions occur. In particular, we extend the
concept of weak bisimulation on low actions considering the actions in S as if
they were actions in L. With a slight abuse of notation from now on we say that
two processes E,F ∈ Edef! (built also using actions in S) are weakly bisimilar
on low actions, denoted by E ≈l F , if there exists a symmetric binary relation
R ⊆ Edef! × Edef! such that if (E,F ) ∈ R, then for all a ∈ L ∪ S ∪ {τ},
• if E a→ E′, then there exists F ′ such that F â=⇒ F ′ and (E′, F ′) ∈ R.

Clearly ≈l is still the largest weak bisimulation on low actions and it is an
equivalence relation. Moreover it is still true that E ≈l F iff E \H ≈ F \H.

Using this definition of ≈l the notions of BNDC and P BNDC can be con-
sistently transposed. Notice that using these extended definitions Theorem 1
and Theorem 2 continue to hold. As far as Lemma 1 is concerned some trivial
changes are necessary. In particular, let Edef!

HS (Edef
HS) be the set of all processes

in Edef! (Edef) constructed over H ∪ S ∪ {τ}. Similarly, let Edef!
LS (Edef

LS ) be the
set of all processes constructed over L ∪ S ∪ {τ} and Edef!

HL (Edef
HL) be the set of

all processes constructed over L ∪ H ∪ {τ}. In the first sentence of Lemma 1
it is necessary to consider constant-free processes in Edef!

LS ∪ Edef!
H . In the third

sentence the actions ai’s can range over L∪S ∪ {τ}. Moreover, from Theorem 4
we immediately get the following result.

Corollary 3. Let Z1, . . . , Zn be constants defined as Zi
def= Di, with Di ∈ Edef

HL

for i = 1, . . . , n. If for all i = 1, . . . , n it holds const(Di) ⊆ {Z1, . . . , Zn} and
[[Zi]] ∈ P BNDC, then all the Zi’s are P BNDC.

4.3 Extension of the Proof System to Processes with Definitions

In order to deal with the language extended with the actions in S and with the
constant definitions we have to modify some of the rules of the proof system
described in Section 3.2 and to add new rules to deal with constant definitions.
In particular, we change the rules (Low) and (Choice) by considering L ∪ S
instead of L and by adding “E is constant-free” to the rules (Low) and (High).
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Then we add the following rules to deal with constant definitions

E \ S ∈ HP[∅]
E ∈ Edef!

HS , E is constant-free (High2)

[[Xi]] ∈ HP[A]

Xi ∈ HP[A]
(Xi

def= Di)n
i=1, Di ∈ Edef

HL (Const)

where [[Xi]] is a constant-free process.
We call Systemdef! the modified system. Corollary 3 ensures its correctness.

Example 6. Consider the channel C as defined in [3] (see [19]) and its encoding.

C = in0.(out0.C + τ.C) + in1.(out1.C + τ.C)
[[C]] ≡ (σ.0| !(σ.(in0.(out0.σ.0 + τ.σ.0) + in1.(out1.σ.0 + τ.σ.0)))) \ S

It is easy to see that we can derive C ∈ HP[∅] in our extended proof system.
Notice that the process CH described in Example 1 is exactly the process we
obtain after a τ transition of [[C]].

Corollary 4. Let E ∈ Edef! be a process. If there exists a proof of E ∈ HP[∅]
in Systemdef!, then E is P BNDC.

By exploiting the result of Corollary 2 we can add the derived rule below,
which can be used to shorten derivations involving constant definitions:

{{E}} ∈ HP[A]

E ∈ HP[A]
E ∈ Edef!

HL (Trans)

Example 7. Let Z be defined as Z def= l.Z+h.l.0+τ.l.0 and consider the process
E ≡ l.Z, where l ∈ L and h ∈ H. By applying rule (Trans) we can directly
prove that E is P BNDC without explicitly prove that [[Z]] is P BNDC .

Example 8. Consider the two processes X and Y mutually defined as follows

X
def= l.X|Y Y

def= τ.X + h.X

where l ∈ L and h ∈ H. Their encodings in E ! are

[[X]] ≡ (σX .0|!(σX .(l.σX .0|σY .0))|!(σY .(τ.σX .0 + h.σX .0))) \ S
[[Y ]] ≡ (σY .0|!(σX .(l.σX .0|σY .0))|!(σY .(τ.σX .0 + h.σX .0))) \ S

It is easy to derive the judgements [[X]] ∈ HP[∅] and [[Y ]] ∈ HP[∅] in System !,
hence we conclude that X and Y are P BNDC processes.

It is worth noticing that the system proposed in [4] cannot treat the process of
Example 8. In fact, as already observed in the introduction, the system of [4]
does not deal with recursive processes involving the parallel operator.
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5 Conclusions

In this paper we study the class of P BNDC processes written in a variant of
Security Process Algebra (SPA) where recursive processes are defined by means
of replications instead of constant definitions. The modified language is slightly
less powerful than the original one, but the loss of expressive power is largely
compensated by the compositionality result obtained.

We proved that the class of P BNDC processes is compositional with respect
to replication. This result allows us to define a proof system which provides
a very efficient technique for the stepwise development and the verification of
recursively defined P BNDC processes. We also identify a class of constants
definitions which can be safely added to our language and treated by an extended
proof system.

We are currently working in extending the results on information flow security
obtained for SPA to π-calculus, where the two forms of recursion are equivalent.
Our feeling is that we could reach the same compositional results reached in SPA
language, by choosing a good extension for the P BNDC class.

As already noticed in [4], there are many other approaches to the verification
of information flow properties. In the literature we found only another example
of a proof system for security proposed by Martinelli [16] which deals only with
finite processes. Other verification techniques for information flow security are
based on types (see, e.g., [23,14]) and control flow analysis (see, e.g., [2,6]).
However, most of them are concerned with different models, e.g., trace semantics
(see, e.g., [8,18]).
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1 Introduction

Increasing trend to distribute streamed radio and video over the Internet must
provide sufficient security guarantees. In particular, so called stream signature
protocols were born with the intent to efficiently solve the problem to sign digital
streams, i.e. long, possibly infinite, sequence of bits. This class of protocols,
designed for open architectures, makes use of hashing techniques and thrifty use
of standard digital signatures to ensure the integrity of the stream.

Roughly speaking, an intrinsic infinite nature marks the class of stream signa-
ture protocols from the standard cryptographic ones, in the sense that a sender
broadcasts a continuous (and possibly unbounded) stream of messages to an ar-
bitrary number of receivers. Further, receivers use information retrieved in earlier
packets to legitimate later packets or vice-versa. In wireless (or semi-wireless)
environments, the mobile receiver may leave a cell without prior negotiation and
reenter any other cell an arbitrary number of times.

Given these peculiarities, the use of formal techniques to analyze stream
signature protocols have recently raised an increasing interest among researchers.
In particular, in [3] it is shown how to build a finite model of the TESLA protocol
[18], despite the possibly unbounded stream of messages (and cryptographic
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keys) broadcasted by a sender. This allows the authors of [3] to exploit model
checking techniques for the formal verification of TESLA. The work in [1] has
previously analyzed the same protocol making use of the theorem prover TAME.

Our approach is quite different and focuses its attention on the verifiability
of a system with an arbitrary number of components. In this paper we show
how to apply a compositional principle allowing us to compose safely processes,
preserving the security properties they enjoy. Broadly speaking, a compositional
principle gives sufficient conditions to conclude that the parallel composition
of two (or more) processes satisfies a certain property, provided that the single
processes by themselves satisfy the same property. Compositional reasoning is
often useful. An interesting application field is indeed the analysis of systems
with an arbitrary number of components (like the possibly arbitrary number of
receivers participating through a stream signature protocol).

The principle we are going to exploit in this paper was first discussed in [11]
for the GNDC schema of properties, defined in [4,5]. In turn, the GNDC schema
is based on the notion of non-interference, [7]. We aim at applying the principle
to stream signature protocols for the verification of the integrity property, where
integrity means, informally, that the information accepted by a receiver is exactly
what the sender intended.

Digital streams are usually sent over UDP, the User Datagram Protocol, [20].
UDP is considered to be an unreliable transport protocol. When UDP sends
packets over a network, it just sends them and forgets about them. This does
not mean that UDP is ineffective, only that it does not handle reliability. If a
stream is received incomplete, we would still like to be able to prove the integrity
of all the packets that were not lost. Stream signature protocols dealing with the
problem of packet loss have been recently proposed, [8,16,17,19]. Here, the main
target of our analysis will be the EMSS protocol, [19].

The main contribution of this paper is the formal capability to check a stream
signature protocol with an arbitrary number of receivers, contrary to previous
work in the area, [1,3] (the target of our analysis however being different from
the TESLA protocol considered in those papers). To present our methodology,
an instance of the EMSS protocol has been formally analyzed with compositional
proof rules and the results are reported in the paper. Earlier results in [12] dealt
with the protocol in [6], not designed for dealing with packet loss. Finally, this
paper is an extended and revised version of [15].

The paper is organized as follows. In Section 2, we present the formal lan-
guage we use for the description of cryptographic protocols. In Section 3, we
describe the EMSS stream signature protocol in more detail. Section 4 recalls a
general schema for defining security properties and illustrates a compositional
result to establish if a system enjoys security properties defined by means of
the general schemes. Sections 5 shows how to apply the compositional results to
successfully prove the correctness of an instance of EMSS in terms of packets’
integrity. In Section 6 we report some concluding remarks and discuss about
related and future work.
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2 A Formal Language for the Description
of Protocols: Crypto-CCS

A language, a slight modification of CCS process algebra, is adopted for the de-
scription of cryptographic protocols. It makes use of cryptographic-modeling con-
structs and deals with confidential values, hence the name Crypto-CCS [4,5,14].
The Crypto-CCS model consists of a set of sequential agents able to communi-
cate by exchanging messages.

The data handling part of the language consists of messages and inference
systems. Messages are the data manipulated by agents, they form a set Msgs of
terms possibly containing variables. The set Msgs is defined by the grammar:

m ::= x | b | F 1(m1, . . . ,mk1) | . . . | F l(m1, . . . ,mkl
)

where F i (for 1 ≤ i ≤ l) are the constructors for messages, x ∈ V , a countable
set of variables, b ∈ B, a collection of basic messages, and ki, for 1 ≤ i ≤ l, gives
the number of arguments of the constructor F i. Messages without variables are
closed messages.

Inference systems model the possible operations on messages. These systems
consist of a set of rules r:

r =
m1 . . . mn

m0

where m1, . . . ,mn is a set of premises (possibly empty) and m0 is the conclusion.
An instance of the application of the rule r to closed messages mi is denoted
as m1 . . . mn �r m0. Given an inference system, we can define a deduction
function D s.t. if φ is a finite set of closed messages, then D(φ) is the set of
closed messages that can be deduced starting from φ by applying instances of
the rules in the system.

The control part of our language consists of compound systems, basically
sequential agents running in parallel. The terms of our language are generated
by the following grammar:

Compound systems: S ::= (S1 |S2) | S \ C | Aφ

Sequential agents: A ::= 0 | p.A | A + A1 | [m1 . . . mn �r x]A; A1

| [m = m′]A; A1 | E(m1, . . . , mn)
Prefix constructs: p ::= c!m | c?x

where m,m′,m1, . . . ,mn are closed messages or variables, x, x1, . . . , xn are mes-
sage variables, c ∈ Ch, a finite set of channels, φ is a finite set of closed messages,
C is a subset of Ch. Constants are defined as follows: E(x1, . . . , xn) .= A where
A is a Crypto-CCS agent which may contain no free variables except x1, . . . , xn

which must be distinct. The informal semantics of sequential agents and com-
pound systems is as follows:

– 0 is the process that does nothing.
– p.A is the process that can perform an action according to the particular

prefix construct p and then behaves as A:
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• c!m denotes a message m sent on channel c;
• c?x denotes the receiving of a message m on channel c. The received

message replaces the variable x.
– A+A1 represents the non deterministic choice between A and A1.
– [m1 . . .mn �r x]A;A1 is the inference construct. If, by applying an instance

of rule r with premises m1 . . .mn, a message m can be inferred then the
process behaves as A (where m replaces x), otherwise it behaves as A1. This
is the message-manipulating construct of the language. For instance,

[m sk(y) �sign x]A;0

is the process that uses the rule sign to obtain a digitally signed message
from plaintext m and private key sk(y) and then behaves like A, or it gets
stuck.

– [m = m′]A;A1 is the match construct to check message equality: if m = m′

then the system behaves as A, otherwise it behaves as A1.
– E(m1, . . . ,mn) is a constant process that behaves like the respective defining

term P (see Tab. 1) where all the variables x1 . . . xn are substituted with
messages m1 . . .mn.

– A compound system S1 |S2 denotes the parallel execution of S1 and S2.
S1 |S2 performs an action p if one of its sub-components performs p. A
synchronization or internal action, denoted by the symbol τ , may take place
whenever S1 and S2 are able to perform two complementary actions, i.e.
send-receive actions on the same channel.

– A compound system S \C allows only visible actions whose channels are not
in C. (Internal action τ being the invisible action).

– The term Aφ is a single sequential agent whose knowledge, i.e. the set of
messages which occur in its term, is described by φ. The agent’s knowledge
increases either when it receives messages (see rule (?) in Tab. 1) or infers
new messages from the messages it knows (see rule D in Tab. 1). For every
sequential agent Aφ, we require that all the closed messages that appear in
A belong to its knowledge φ.

2.1 Operational Semantics and Auxiliary Notions

The agents’ activities are described by the actions they can perform. The set
Act of actions which may be performed by a compound system ranges over by
a and it is defined as: Act = {c?m, c!m, τ | c ∈ C,m ∈Msgs,m closed}. We call
P the set of all the Crypto-CCS closed terms (i.e., with no free variables). We
define sort(P) to be the set of all the channels that syntactically occur in the
term P.

The operational semantics of a Crypto-CCS term is described by means of the
labeled transition system (lts, for short) 〈P, Act, { a−→}a∈Act〉, where { a−→}a∈Act

is the least relation between tCryptoSPA processes induced by the axioms and
inference rules of Tab. 1

The expression S
a−→ S′ means that the system can move from the state S

to the state S′ through the action a. The expression S =⇒ S′ denotes that S
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Table 1. Operational semantics, where the symmetric rules for |1, |2, \1, +2 are omitted.

(!)
(c!m.A)φ

c!m−→ (A)φ

(?) m ∈Msgs

(c?x.A)φ
c?m−→ (A[m/x])φ∪{m}

(D)
m1 . . . mn �r m (A[m/x])φ∪{m}

a−→ (A′)φ′

([m1 . . . mn �r x]A; A1)φ
a−→ (A′)φ′

(|1) S
a−→ S′

S |S1
a−→ S′ |S1

(|2)S
c!m−→ S′ S1

c?m−→ S′
1

S |S1
τ−→ S′ |S′

1

(\1)S
c!m−→ S′ c /∈ L

S \ L
c!m−→ S′ \ L

(+2) S
a−→ S′

S + S1
a−→ S′

(D1)
� ∃m s.t. m1 . . . mn �r m (A1)φ

a−→ (A′
1)φ′

([m1 . . . mn �r x]A; A1)φ
a−→ (A′

1)φ′

(=) m = m′ (A)φ
a−→ (A′)φ′

([m = m′]A; A1)φ
a−→ (A′)φ′

(=1)
m �= m′ (A1)φ

a−→ (A′
1)φ′

([m = m′]A; A1)φ
a−→ (A′

1)φ′

(Const)E(x1, . . . , xn) =def A A[m1/x1, . . . , mn/xn] a−→ A1

E(m1, . . . , mn) a−→ A1

and S′ belong to the reflexive and transitive closure of τ−→; let γ = α1 . . . αn ∈
(Act\{τ})∗ be a sequence of actions. Then, S

γ
=⇒ S′ if and only if there exist

S1, S2, . . . , Sn−1 ∈ P such that S α1=⇒ S1
α2=⇒ S2 . . .

αn−1=⇒ Sn−1
αn=⇒ S′.

As behavioral relations among Crypto-CCS terms, in the following we will
be mainly interested in trace inclusion (equivalence) and (weak) simulation.

Definition 1. We say that the traces of P are included in the traces of Q
(P ≤trace Q) whenever, if P

γ
=⇒ P1 then Q

γ
=⇒ Q1. We write that P=traceQ iff

P ≤trace Q and Q ≤trace P .

Definition 2. We say that a relation R among processes is a weak simulation,
if for every (P,Q) ∈ R we have:

– If P a−→ P ′, a �= τ , then there exists Q′ s.t. Q a=⇒ Q′ and (P ′, Q′) ∈ R.
– If P τ−→ P ′ then there exists Q′ s.t. Q =⇒ Q′ and (P ′, Q′) ∈ R.

The union of all weak simulations is a weak simulation and it is denoted by
≺. As usual, it holds that if P ≺ Q then P ≤trace Q.
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3 The EMSS Protocol

In [19], Perrig et al. presented the Efficient Multi-chained Stream Signature
(EMSS) protocol to sign digital streams. EMSS exploits a combination of hash
functions and digital signatures and–contrary to previous proposals [6]–achieves
(some) robustness against packet loss.

We assume that a sender S wants to send a stream of messages m0,m1, . . . ,
mlast to a set of receivers {Rn | n ≥ 1}. The protocol then requires S to divide
the stream into packets and send them to the receivers. The basic idea of the
construction is the following: a hash of packet Pi−1 is appended to packet Pi,
whose hash is in turn appended to packet Pi+1 and so on. A signature packet,
containing the hash of the final data packet along with a signature, is sent at the
end of the stream. To achieve robustness against packet loss (the event of one or
more packets loss would break the chain) each packet contains multiple hashes
of previous packets and the signature packet signs hashes of multiple packets.
[19] uses both deterministic and random distribution of hashes per packet.

Here we focus on a specific instance of the EMSS, viz. the deterministic
(1,2) schema, where packet Pi contains hashes of packets i− 1, i− 2 and whose
hash is contained in packets i + 1, i + 2. After an initial phase, each packet
Pi contains a meaningful payload mi

1 together with the hashes h(Pi−1) and
h(Pi−2) of the previous two packets sent. Packets are sent over channels ci, 0 ≤
i ≤ last. The end of a stream is indicated by a signature packet Psign over
channel csign, containing the hashes of the final two packets, along with a digital
signature. The protocol can formally be described as follows.

Packet P0 c0 S → {Rn} : m0, null, null
Packet P1 c1 S → {Rn} : m1, h(P0), null
Packet Pi ci S → {Rn} : mi, h(Pi−1), h(Pi−2) 2 ≤ i ≤ last

Let Plast be the last packet of the stream. Upon sending Plast a signature packet
is sent:

Sign-Pack Psign csign S → {Rn} : {h(Plast), h(Plast−1)}sk(S)

A packet Pi is said to be verifiable if there exists a path (in terms of hash
chains) from Pi to the signature packet. Given a set of verifiable packets, we
intend to prove the correctness of the construction in terms of packet integrity,
i.e. to assure a receiver that the information he received is exactly what the
sender has originally intended.

3.1 Crypto-CCS Specifications of the (1,2) EMSS

We present the Crypto-CCS specifications of the (1,2) scheme of the EMSS pro-
tocol. The sender and receiver processes can perform sendings and receptions
1 We assume the sender’s private key sk(S) cannot be deduced from the set of messages
{mi}.
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according to the protocol original specifications. Compared with a standard no-
tation like the one in Section 3, the Crypto-CCS representation is more expres-
sive: checks on the received packets are explicitly represented. We remind that
the whole formalization, in particular the way a receiver process acts, is based
on implementative choices of the authors since some details are not explicitly
given in [19].

The sender process is parameterized by variables containing the hashes he
should insert in the following packet. With notation xm we mean “variable x
should contain message m”.

S0(0, 0) .=
[m0 �tuple xP0 ] Create tuple
[xP0 �hash xh(P0)] Compute hash of P0

(S1(xh(P0), 0) |MB0(xP0)) Output P0 and go to next state

S1(xh(P0), 0) .=
[m1 xh(P0) �tuple xP1 ] Create tuple
[xP1 �hash xh(P1)] Compute hash of P1

(S2(xh(P1), xh(P0)) |MB1(xP1)) Output P1 and go to next state

Si(xh(Pi−1), xh(Pi−2))
.=

[mi xh(Pi−1) xh(Pi−2) �tuple xPi ] Create tuple
[xPi �hash xh(Pi)] Compute hash of current packet
(Si+1(xh(Pi), xh(Pi−1)) |MBi(xPi)) Output Pi and go to next state

Ssign(xh(Plast), xh(Plast−1))
.=

[xh(Plast) xh(Plast−1) �tuple xt] Create tuple of final hashes

[xt sk(S) �sign xPsign ] Sign the tuple
MBsign(xPsign) Output the signature packet

The special process MB is responsible for potentially sending each packet an
unbounded number of times, in order to simulate a one-to-many (one-to-all)
sending typical of a multicast/broadcast session. The process is parameterized
by the packet the sender is to multicast (or broadcast).

MBi(xPi
) .= ci!xPi

.MBi(xPi
) 0 ≤ i ≤ last

MBsign(xPsign) .= csign!xPsign .MBsign(xPi)

Among the set of receivers, each process behaves in the same way. The generic
receiver process at step i is parameterized by: 1) the two last packets he received
(let them be Pj1 , Pj2) - over an ideal channel, without packet loss, we have
that Pj1 = Pi−1 and Pj2 = Pi−2; 2) a tuple tupi−1

{mj}. tup{mj} consists of the or-
dered sequence of payloads among {mj}j=0,1,...last whose corresponding packets’
hashes h(Pj) the receiver was able to check2. tupi−1

{mj} is the tuple updated at step
2 For the sake of readability we assume the receiver may infer the sequence number

of a packet by simply observing the packet itself. Otherwise, we should arrange the
receiver with more parameters or arrange a “sequence number” field in the packet
structure and let the receiver retrieve it. This could introduce a too clumsy notation.
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i, by inserting either xmi−2 or xmi−3 . tup
i−1
{mj} could be either (xmi−2 , tup

i−1
{mj})

or (xmi−3 , tup
i−1
{mj}) or it may remain unchanged. Similarly, tup{mj} may either

be (xmlast
, tuplast

{mj}) or (xmlast−1 , tup
last
{mj}) or tuplast

{mj}.
We model the unreliability of the transmission over UDP by considering that

process Rec non deterministically chooses whether to receive a packet or not.
Finally, we assume that the signature packet Psign is always received (this is
likely since in the original protocol multiple copies of the signature packets are
sent).

Rec0(0, 0, 0) .=
Rec1(0, 0, 0) + Packet loss : go to next state, otherwise
( c0?xP0 . Receive initial packet
Rec1(xP0 , 0, 0) ) Go to next state

Rec1(0, 0, 0) .=
Rec2(0, 0, 0) + Packet loss : go to next state, otherwise
( c1?xP1 . Receive packet P1

Rec2(xP1 , 0, 0) ) Go to next state

Rec1(xP0 , 0, 0) .=
Rec2(0, xP0 , 0)+ Packet loss : go to next state, otherwise
(c1?xP1 . Receive packet P1

[xP1 �2−nd xh(P0)] Extract hash of previous packet P0

[xP0 �hash xhMY (P0)] Compute my hash hMY (P0)
[xh(P0) = xhMY (P0)] Compare the hashes

([xP0 �1−st xm0 ] IF equal : extract previous payload
Rec2(xP1 , xP0 , xm0) Update parameters and go to next state
);0 ELSE abort

)

Reci(xPj1
, xPj2

, tupi−1
{mj})

.=
Reci+1(xPj1

, xPj2
, tupi−1

{mj}) + Packet loss : go to next state, otherwise

(ci?xPi . Receive packet Pi

([j1 = i− 1] Was Pi−1 received?
Rec′

i(xPi , xPi−1 , tupi−1
{mj}); Go to Rec′

i; otherwise

([j2 = i− 2] Was Pi−2 received?
Rec′′

i (xPi , xPi−2 , tupi−1
{mj}) Go to Rec′′

i ; otherwise

)
); Reci+1(xPi , xPj1

, tupi−1
{mj}) Go to next state :

) P1−1 and Pi−2 were not received
Rec′

i(xPi , xPi−1 , tupi−1
{mj})

.=
[xPi �2−nd xh(Pi−1)] Extract h(Pi−1) from Pi

[xPi−1 �hash xhMY (Pi−1)] Compute my hash hMY (Pi−1)
[xhMY (Pi−1) = xh(Pi−1)] Compare the hashes
([xPi−1 �1−st xmi−1 ] IF equal : extract mi−1 from Pi−1

Reci+1(xPi , xPj1
, (xmi−1 , tupi−1

{mj})) Update parameters and go to next state

);0 ELSE : abort
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Rec′′
i (xPi , xPi−2 , tupi−1

{mj})
.=

[xPi �3−rd xh(Pi−2)] Extract h(Pi−2) from Pi

[xPi−2 �hash xhMY (Pi−2)] Compute my hash hMY (Pi−2)
[xhMY (Pi−2) = xh(Pi−2)] Compare the hashes
([xPi−2 �1−st xmi−2 ] IF equal : extract mi−2 from Pi−2

Reci+1(xPi , xPj1
, (xmi−2 , tupi−1

{mj})) Update parameters and go to next state

);0 ELSE : abort

Recsign(xPj1 , xPj2 , tuplast
{mj})

.=
csign?xPsign . Receive signature packet

Rec∗
sign(xPsign , xPj1 , xPj2 , tuplast

{mj}) Go to intermediary state Rec∗
sign

Rec∗
sign(xPsign , xPj1 , xPj2 , tuplast

{mj})
.=

[xPsign pk(S) �ver xver] V erify the signature
[j1 = last] Was Plast received?
Rec′

sign(xver, xPlast , tuplast
{mj}); If so, go to Rec′

sign; otherwise

([j2 = last− 1] Was Plast−1 received?
Rec′′

sign(xver, xPlast−1 , tuplast
{mj}); If so, go to Rec′′

sign; otherwise

(capp!tuplast
{mj}.0) Plast and Plast−1 were not received.

) Send the stream of verifiable payloads
to the application level

Rec′′
sign(xver, xPlast−1 , tuplast

{mj})
.=

[xver �2−nd xh(Plast−1)] Extract h(Plast−1) from Psign

[xPlast−1 �hash xhMY (Plast−1)] Compute my hash hMY (Plast−1)
[xhMY (Plast−1) = xh(Plast−1)] Compare the hashes

[xPlast−1 �1−st xmlast−1 ] IF equal : extract mlast−1 from Plast−1

capp!(xmlast−1 , tuplast
{mj}).0; Send the stream of verifiable payloads

0 to the application level and stop; ELSE
abort

Rec′
sign(xver, xPlast , tuplast

{mj})
.=

[xver �1−st xh(Plast)] Extract h(Plast) from Psign

[xPlast �hash xhMY (Plast)] Compute my hash hMY (Plast)
[xhMY (Plast) = xh(Plast)] Compare the hashes
[xPlast �1−st xmlast ] IF equal : extract mlast from Plast

capp!(xmlast , tuplast
{mj}).0; Send the stream of verifiable payloads

0 to the application level and stop; ELSE
abort

In the final state Recsign (along with intermediary states Rec∗sign, Rec
′
sign,

Rec′′sign) the receiver aims at verifying the digital signature (we assume he has
previously retrieved the public key pk(S) corresponding to the private key of the
supposed sender). The correct verification of the signature implies the receiver
to have guarantees on the integrity of the verifiable payloads. He can now send
the stream to his application level to consume it. In our formalization, this is
modeled by a scenario where the receiver sends the content of his parameter
tuple (the stream accepted) over channel capp. If the verification of the signature
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in the final state or the equality tests in the previous states do not succeed the
receiver should abort.

4 Compositional Analysis within GNDC
In this section we recall the general schema Generalized Non Deducibility on
Compositions (GNDC) for the definition of security properties given in [4,5] and
a compositional proof rule for such a schema, discussed in [11]. The main idea is
the following: a system P satisfies property GNDCα

� if the behavior of P , despite
the presence of a hostile environment X that can interact with P only through
a fixed set of channels C, appears to be same (w.r.t. a behavioral relation � of
observational equivalence) to the behavior of a modified version α(P ) of P that
represents the expected (correct) behavior of P .

The analysis of cryptographic protocols involves specifying a set of messages
known by the adversary at the beginning of the computation. This static (ini-
tial) knowledge of the hostile environment must be bound to a specific set of
messages. This limitation is needed to avoid a too strong hostile environment
that would be able to corrupt any secret (as it would know all cryptographic
keys, etc.). Given an adversary X, we call ID(X) the set of closed messages
that syntactically appear in X. This set, intuitively, contains all the messages
that are initially known by X. Let φX be a set of messages representing the
static, initial knowledge that we would like to give to X. We want ID(X) to be
consistent with φX . This can be obtained by requiring that all the messages in
ID(X) are deducible from φX by means of the deduction function D.

The set EφX

C of processes that can communicate on a subset of public channels
C and have an initial knowledge bound by φX can be therefore defined as follows:

EφX

C = {X ∈ P | sort(X) ⊆ C and ID(X) ⊆ D(φX)}
We consider as hostile processes only the ones belonging to EφX

C .
We define the property GNDCα

� as follows:

Definition 3. A process P is GNDCα
� iff ∀X ∈ EφX

C : (P |X) \ C � α(P )
where � is a behavioral relation between processes and α is a function between
processes.

For the analysis of safety properties it is enough to consider the trace inclusion
relation ≤trace as behavioral relation among the terms of the algebra. When the
≤trace relation is considered, there exists a sufficient criterion for the static char-
acterization (i.e. not involving the universal predicate ∀) of GNDCα

� properties
(for further details see [4,5]). Generally, GNDC≤trace properties are not compo-
sitional. To get a compositional rule we need to strengthen our requirements on
the behavior of the processes.

Definition 4. We say that a process P is stable w.r.t. φX , whenever for every
X with ID(X) ⊆ φX , (P |XφX

) \ C γ
=⇒ (P ′ |X ′

φ′
X

) \ C then D(φX) = D(φ′
X).

Basically, a process P is stable when an enemy with a certain knowledge φX

does not increase significantly φX during the execution of P .
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The following compositional rule holds for the GNDCα
≤trace

schema (under
the assumption that the involved processes are stable).

Proposition 1. Given φX and a set of public channels C, assume processes
Pr ∈ GNDC

αr(Pr)
≤trace

with 1 ≤ r ≤ n and Pr stable w.r.t. φX . It follows that

(P1 | . . . |Pn) is stable w.r.t. φX and (P1 | . . . |Pn) ∈ GNDCα1(P1) |... | αn(Pn)
≤trace

.

5 Compositional Analysis of the (1,2) EMSS Protocol

Our goal is to apply the previous compositional rule for checking that the (1,2)
EMSS scheme guarantees integrity of the delivered stream even in presence of
an adversary. The specifications of the (1-2) EMSS scheme, namely the sender
S0 and the receiver Rec0, are given in Subsection 3.1. The general system with

n receivers may be considered as S0 |
n

︷ ︸︸ ︷
Rec0 | . . . |Rec0.

We formally define integrity in the GNDC schema as the ability to accept only
the message mi by a receiver as the i− th message sent by the sender (assuming
mi is not lost). Assume that a receiver signals the acceptance of a stream of
messages as a legitimate one, by issuing it, as a unique list of messages, on a
special channel capp. Thus, let αint be Specsign =

∑
s∈streams capp!s.0, where

streams is the set of all the possible ordered sub streams of m0 . . .mlast.

Definition 5. A system P , consisting of a sender of a stream of messages {mi}
and a receiver, enjoys the integrity property whenever P ∈ GNDCαint

≤trace
.

Basically, it means that the receiver accepts exactly a subset of the messages mi

in the correct order even in presence of an adversary. The key point is that the
intruder will never acquire the private key of the sender to successfully sign the
final packet of the stream. Note that in a multi-receiver environment with one
sender, a protocol guarantees integrity whenever each receiver accepts only the
stream of messages that the sender wishes to deliver. In our case, the specification
for n receivers is simply the parallel composition of αint n-times.

We may prove that S0, Rec0 are stable w.r.t. the following initial knowledge
φX :

φX = {P0} ∪ {P1} ∪ {Pi | i = 2, . . . , last} ∪ {pk(S), Psign}

Proposition 2. S0 and Rec0 are stable w.r.t. φX .

Actually, we include in the initial knowledge φX the messages an adversary would
be able to add to his knowledge by eavesdropping on a run of the protocol. This
implies that we arrange for an intruder to have the most powerful means to act
since the beginning of the computation. If the protocol satisfies the integrity
property in this very hostile environment then it means that it will satisfy this
property in a less powerful one (this may be formally justified).

We may prove that S0 enjoys GNDC0
≤trace

and Rec0 enjoys GNDCαint

≤trace
,

that is to say for all X ∈ EφX

C we have (S0 |X)\C ≤trace 0 and (Rec0 |X)\C
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≤trace αint. This may be done by finding a suitable weak simulation relation
between (S0 |X)\C and 0, and between (Rec0 |X)\C and Specsign (∀X ∈ EφX

C ),
respectively. The set C of channels over which an intruder is able to communicate
is C = {csign} ∪ {ci | 0 ≤ i ≤ last}.

The weak simulation relation we consider for dealing with the sender speci-
fications is the following:

RS = (((Si(...) |X)\C,0) | X ∈ EφX

C , 0 ≤ i ≤ last)
∪(((Ssign(...) |X)\C,0) | X ∈ EφX

C )

The weak simulation relation we consider for dealing with the receiver spec-
ifications is the following:

RR = (((Rec0(0, 0, 0) |X)\C, Specsign) | X ∈ EφX

C )
∪(((Rec1(0, 0, 0) |X)\C, Specsign) | X ∈ EφX

C )
∪(((Rec1(xP0 , 0, 0) |X)\C, Specsign) | X ∈ EφX

C )
∪(((Reci(xPj1 , xPj2 , tup

i−1
{mj}) |X)\C, Specsign) | X ∈ EφX

C , 2 ≤ i ≤ last)
∪(((Rec′i(xPi , xPi−1 , tup

i−1
{mj}) |X)\C, Specsign) | X ∈ EφX

C , 2 ≤ i ≤ last)
∪(((Rec′′i (xPi , xPi−2 , tup

i−1
{mj}) |X)\C, Specsign) | X ∈ EφX

C , 2 ≤ i ≤ last)
∪(((Recsign(xPj1 , xPj2 , tup

last
{mj}) |X)\C, Specsign) | X ∈ EφX

C )
∪(((Rec∗sign(xPsign , xPj1 , xPj2 , tup

last
{mj}) |X)\C, Specsign) | X ∈ EφX

C )
∪(((Rec′sign(xver, xPlast

, tuplast
{mj}) |X)\C, Specsign) | X ∈ EφX

C )
∪(((Rec′′sign(xver, xPlast−1 , tup

last
{mj}) |X)\C, Specsign) | X ∈ EφX

C )

tupi−1
{mj}, tup

last
{mj} are lists of meaningful payloads (also updated). By inspection

of the possible cases we may show that RS and RR are weak simulations. We
omitted to explicitly put in RS and RR the pairs in which the first process
performs deduction constructs.

Here we give a sketch of the proof dealing with the receiver specifications.
When the first process performs inference (or match) constructs and it gets

stuck because an inference rule does not apply, or simply travels to the next state,
it can be weakly simulated by whatever process, in particular Specsign. When
Rec0 performs a receiving action, the process on the left may perform a τ action
and it can be weakly simulated by whatever process, in particular Specsign. The
interesting case is when the first process outputs a tuple of messages tup{mj}
over channel capp /∈ C. In this case, it must be {xver}sk(S) = Psign and, assuming
that digital signatures and hash functions cannot be forged, all the messages in
tup{mj} must be replaced with one of all the possible ordered sub streams of
m0 . . .mlast. This can be weakly simulated by Specsign that has been defined as
the process sending all the possible ordered sub streams of m0 . . .mlast.

Each resulting pair consisting of the derivatives still belong to RR.

Proposition 3. S0 ∈ GNDC0
≤trace and Rec0 ∈ GNDCαint

≤trace.

The following proposition follows by Proposition 1, 2, 3.
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Proposition 4. S0 |Rec0 ∈ GNDCαint

≤trace.

Compositional reasoning is powerful: to check a system with an arbitrary number
of components we do not consider the whole system but only the components
by themselves and the result simply follows by Proposition 1 where index r is
not fixed a priori and P1 = S0 and Pr, 2 ≤ r ≤ n is Rec0.

Proposition 5. The (1,2) EMSS Protocol enjoys integrity for whatever number
of receivers.

6 Conclusions
The compositional analysis can be successfully applied to formally verify in-
tegrity properties in a multicast/broadcast environment. (We remind that in-
tegrity means, from our point of view, assurance that multicast data are not
modified en-route.) In particular, we considered as a case study EMSS [19] in its
deterministic (1,2) scheme variant. We modeled such a scheme considering com-
munication channels with packet loss. We are able to formally check the system
with an arbitrary number of receivers.

Prominent works related to streams verification are those in [1], a formal
analysis based on theorem proving techniques to analyze a well known stream
authentication protocol (the TESLA protocol [18]) and in [3], where the authors
verify the same protocol with model checking techniques.

Notable examples of compositional proof techniques for reasoning about cryp-
tographic protocols may be found in [2,13]. In [13] a compositional proof system
for an environment-sensitive bisimulation has been developed. One main dif-
ference from ours is that we consider a weak notion of observation where the
internal actions are not visible. (Actually, the authors of [13] leave as a future
work the treatment of such a form of equivalence). In [2] the concept of disjoint
encryption has been developed and the authors were able to perform composi-
tional reasoning both for secrecy and authentication properties.

Works in progress are the following: 1) applying our compositional proof rules
to erasure codes-based solutions like the ones proposed in [16,17]; 2) extending
the analysis to real-time broadcast environments where time synchronization
plays an essential role. Compositionality being a fundamental issue in static
analysis approaches, we leave as a future work the comparison of our approach
with the one proposed in [9,10], based on type systems for checking authentic-
ity/integrity properties.
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