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V 

PREFACE 

The remote sensing area has experienced rapid growth in recent years. One 
major factor that impacts the growth is the numerous information processing 
techniques originated from the significant progress in other fields such as image 
and signal processing, pattern recognition, artificial intelligence, computer 
vision, and related areas such as neural networks, fuzzy logic, etc. There has also 
been a number of new mathematical approaches for example in wavelet 
transform, deconvolution, etc., which motivated development of more efficient 
information processing techniques for use in remote sensing. 

The book presents chapters that highlight some frontier work in remote 
sensing information processing. . I am very honored to have leaders in the field 
to prepare the chapters that present readers with these frontier developments 
Although no attempt is made to cover every topic, the representative chapters in 
each topic should give readers a good insight of the status of remote sensing 
information processing. Topics are not arranged according to their order of 
importance. In fact all topics covered are of equal importance. Chapter lengths 
may vary, but they are equally significant. 

The book begins with topics of general interest. With the advance of remote 
sensing sensors, the need for advanced information processing techniques that 
match the capability of the sensors is quite evident. So we begin with Chapter 1 
by Prof. Richards on remote sensing sensors, on their capabilities and 
information processing requirements. Information processing functions such as 
parameter estimation and classification tasks obviously must keep up with 
increased complexity of sensors, and increased demand for more accurate and 
detailed knowledge from the data provided by the sensors. To address the issue 
of data fusion, Prof. Richards suggests that a more pragmatic approach is to fuse 
at the level of labels or decisions, and illustrates this concept by depicting the 
data chain model in a remote sensing system as at least one component of a 
knowledge system Chapter 2 deals with the general topic of transform methods 
in processing remote sensing data. Proper transform methods can be useful in 
remote sensing for efficient data representation and reduction, noise removal, 
effective feature extraction for classification, and efficient image compression. 
For more on the transform methods, the readers are encouraged to consult the 
sister volume, "Information Processing for Remote Sensing", also edited by 
myself and published by World Scientific Publishing 1999 (ISBN 981-02-3737-
5). 

Since there are always a large amount of data in remote sensing, from which 
desired information must be extracted, data mining is a topic of increasing 
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interest and importance. Chapter 3 describes the work on developing a 
probabilistic visual grammar that supports among other things complex query 
scenarios that consist of many regions with different feature characteristics. The 
system is demonstrated with query scenarios that cannot be expressed by 
traditional region level approaches while the visual grammar provides accurate 
classification and effective retrieval. A different aspect of information mining is 
the use of a shape-based approach to represent geometrical patterns in 
agriculture and irregular boundaries of lakes, as presented in Chapter 4. The 
work is clearly useful also for change detection and monitoring to measure say 
lake change response to short or long term climatic variation. 

Among the remote sensing data, SAR images have attracted the most interest 
because of some unique capabilities of SAR sensors. Dr. Lee and his colleagues 
at Naval Research Lab. presents in Chapter 5 a review of polarization orientation 
angle estimation and in particular a circular polarization algorithm for estimating 
orientation angle. For the polarimetric interferometric SAR data, Dr. Ferro-Famil 
and his colleagues presents in Chapter 6 the unsupervised classification of 
polarimetric data based on the multivariate Wishart density function of 
coherency matrics. A k-mean clustering algorithm using Wishart statistics 
segments pixels into compact clusters according to their scattering properties. 

In the last ten years the wavelet transform has received enormous interest in 
remote sensing community. In Chapter 7, Dr. Liu and his colleagues at NASA 
Goddard provides a very comprehensive study of the use of Gaussian wavelet 
transform for near real time screening of satellite data, data reduction and image 
enhancement, with application to coastal monitoring (e.g. oil spills) and for ice 
edge and ice floe tracking, etc. Chapter 8 by Dr. Pierce and his colleagues starts 
with wavelet denoising overview and then presents a Markov random field 
(MRF) based spatially adaptive wavelet despeckling algorithm for SAR images 
in both intensity and amplitude formats. In Chapter 9, a redundant wavelet 
representation is presented using a dyadic wavelet frames. It is then extended 
towards orthogonal wavelet bases using the discrete wavelet transform. The 
representation is very suitable for image fusion and an algorithm is presented for 
fusion and merging of multispectral images. 

Military application of remote sensing has been less reported in the 
literature. Chapter 10 has an excellent coverage of automated satellite 
interpretation algorithms and diagnostic tools that provide meteorological 
parameter estimation, which assist the US Navy weather observer and forecaster. 
The cloud classification algorithm takes advantage of all five Geostationary 
Operational Environmental Satellite (GOES) channels of data and makes use of 
the 1-nearest neighbor classification routine. 

Enhancing spatial resolution of the microwave sensor data is the focus of 
Chapter 11.by Dr. Long who presented several algorithms for resolution 
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algorithms based on inverse filtering and irregular sampling reconstruction. An 
application example is provided on the Earth Resources Satellite Active 
Microwave Instrument scatterometer data. 

Application of statistical pattern recognition in remote sensing dates back to 
the mid-60's. While the fundamental issues have been addressed and new 
techniques developed in statistical pattern recognition throughout the years, there 
has been a parallel effort in dealing with unique issues in statistical classification 
and feature extraction for remote sensing. Chapter 12 addresses the problem of 
land-cover map which needs to be updated regularly from the multitemporal 
image data. The class distribution estimates derived from a supervised training 
on a previous image of the considered area can represent only rough estimates of 
the class distributions in the new image to be classified. The training data for the 
new image is not available in practice. The EM (Expectation-Maximization) 
algorithm is applied in order to improve such estimates iteratively on the basis of 
global density function of the new image. The authors also considered 
classification strategies of using multiple classifier system composed of partially 
supervised classifiers. The popular nearest neighbor decision rule (NNDR) is 
closely examined in Chapter 13. The authors carefully point out the 
shortcomings of the traditional NNDR and presented the concept of Nearest 
Centroid Neighborhood (NCN) and a k-Near Surrounding Neighborhood (k-
NCN) decision rule. The pixel classification of remote sensing problems presents 
a good data base for comparison of various nearest neighbor decision rules. The 
chapter also considered combining nearest neighbor classifiers and demonstrated 
the advantage of using ensemble of classifiers. The Markov random field model 
of the rich contextual information has been very popular in remote sensing. In 
Chpaterl4, the parameter estimation of Gauss-Markov random field model of 
hyperspectral images is considered. The resulting large dimensionality is 
compressed by using the Principal Component Analysis (PCA). The MRF+PCA 
algorithm clearly demonstrated improved unsupervised classification 
performance over the use of PCA alone and significant image compression 
capability. 

Sensor fusion has a clear significance in remote sensing, as each sensor has 
its limited capability making fusion necessary or highly desirable. Chapter 15 is 
focused on an empirical performance comparison of fusion algorithms for 
combining the output of segmentation algorithms for PMMW, LADAR 
reflectance, and LADAR range imagery. Four fusion algorithms along with the 
three segmentation algorithms are applied to a database containing target 
instance and target classes. The Bayesian fusion performs the best in terms of 
jointly optimizing detection and clutter rates. 

During the 80's and early 90's there were much excitement on artificial 
neural networks (or simply called neural networks) which seem to have potential 
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applications in every area including remote sensing problems. In more recent 
years there has been better understanding of advantages and limitation of neural 
networks. Chapter 16 presents the use of competitive neural networks such as the 
Self-organizing Map for land cover mapping. The authors further employ the 
Jeffrey-Matusita distance between class pairs for evaluating features. Texture 
indicators including Energy and Local homogeneity are also considered. The 
proposed method is shown to perform better than other methods. Another 
example of making effective use of neural network as presented in Chapter 17 is 
to structure the input layer in such as way that each pixel belonging to each root 
window resulting from the contextual feature extraction procedure is represented 
by an input node. The output of the network, which is usually interpreted to crisp 
class assignment according to the winner-take-all rule, is softened here 
considering the value of output neurons directly as classification results, and 
interpreted as degrees of possibility or compatibility to classes. 

Change detection is probably one of the most unique problems in remote 
sensing, especially considering the need to monitor the state of the Earth surface. 
The supervised information most likely is not available or high unreliable. 
Chapter 18 presents two unsupervised change-detection methodologies. The first 
technique is based on a thresholding algorithm often employed in computer 
vision. The second technique applies EM algorithm in a transformed space, 
computed by the Fisher transform. The authors demonstrated the feasibility of 
the techniques by studying an area damaged by forest fire. There are many other 
change detection applications such as the study of effect of flood, the change in 
crops in different months, etc. 

A special feature of this book is to include the topic of seismic signal 
processing which may be considered as remote sensing of the deep earth, rather 
than the earth surface. All three chapters were presented at the Fourth 
International Symposium on Computer-Aided Seismic Analysis and 
Discrimination, held in June 2002 at Westborough, Massachusetts. The meeting 
was very fortunate to have Dr. Enders A. Robinson, the leader of the field, to 
give an opening lecture. The full text of his talk is in Chapter 19, "Robust 
detection using dual sensors". The receiver is made up of dual geophone-
hydrophone sensors The geophone measures the particle velocity while the 
hydrophone measures the pressure. The receiver is buried at a level below the 
level of the buried source. This meets the requirement for Einstein deconvolution 
which can remove all the reverberations and ghosts due to interfaces above the 
receiver, and unknown source signature in the same operation. The resulting 
deconvolved seismogram is the desired unit impulse reflection response that 
would be produced as if there were no layers at all above the buried receiver. 
The chapter that presents a new approach of Einstein deconvolution is very 
readable even for non-experts. The second chapter in seismic signal processing, 



IX 

i.e. Chapter 20, by Dr. Yi Luo and his colleagues at Saudi Aramo presents a new 
approach of using edge-preserving smoothing (EPS) idea in computer vision to 
enhance 3-D seismic images. The time slice produced by applying edge detection 
algorithm with edge-preserving clearly has much more details useful for 
geophysicists to discover fault zones in oil exploration. The third chapter, i.e. 
Chapter 21, is another chapter on seismic imaging which develops an inverse 
scattering algorithm to perform the task of imaging in the absence of accurate 
velocity information. 

The remote sensing problem is not limited to images. Time series analysis is 
of equal importance. Chapter 22 presents two methods: adaptive Savitzky-Golay 
filter, and non-linear least-squares fits to asymmetric Gaussion model function, 
for extracting the seasonality information of the underlying vegetation. The 
authors applied the methods to NASA/NOAA Pathfinder AVHRR Land 
Normalized Difference Vegetation Index (NDVI) data over Africa and showed 
that the two methods complement each other and they may be suitable in 
different areas depending on the behavior of the NDVI signal. 

Image compression techniques for remote sensing data has been an active 
research area for over forty years, for the objectives of bandwidth reduction and 
efficient storage. While lossy compression techniques are well documented, the 
near-lossless compression of the remote-sensing data as presented in Chapter 23 
plays a particularly important role in remote sensing. The chapter starts with the 
review of distortion measures, and then presents the near-lossless image 
compression through causal and noncausal DPCM for multispectral data, 
hyperspectral data, and SAR data. Unlike typical lossless compression achieving 
compression ratios (CR) of two, the methods presented allow a virtually lossless 
compression with CRs larger than three for 8-bit multispectral data and larger 
than five for 16-bit hyperspectral data. 

The emerging topic of land mine detection or remote sensing just below the 
earth surface, is presented in Chapter 24, entitled, "Image enhancement in 
ground penetrating radar (GPR) signal processing to detect landmines". Among 
many subsurface sensing techniques for detecting and localizing buried 
landmines, GRS is widely used as it is able to detect both metallic and non-
metallic objects and to localize buried objects in a three-dimensional space and 
obtain discrimination information based on the received signals. However there 
are clutters in the GPS data, which can come from the reflection by the ground 
surface and scattering in the soil. The authors present two contrast stretch 
(histogram manipulation) techniques to enhance the landmine reflected signals. 
As illustrated by a number of examples, in most cases the task for detecting 
landmines become simple from enhanced images In other cases post-processing 
may be needed to further enhance the data. 
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Infrared technology has been increasingly popular in remote sensing in 
recent years. Chapter 25 entitled, "Infra-red image processing" presents the use 
of powerful Pearl's Bayes networks for extraction of urban regions in a near 
infra-red image. The approach is equally useful for the texture segmentation of 
driveable regions for autonomous land vehicles, and for medical applications. 
The chapter further illustrates that many new techniques in remote sensing 
information processing are useful in wide range of application domains. 

Finally the increasingly important topic of hyperspectral images is examined 
in Chapter 26, "Hyperspectral imaging (HSI) analysis and applications", by Dr. 
Su May Hsu et al. Starting from the hyperspectral imaging sensors, the chapter 
presents an overview of HSI algorithms for preprocessing, feature extraction and 
classification & detection. The enormous potential of HSI is illustrated by 
discussion of HSI application examples such as material identification, anomaly 
detection, and background classification, along with the issues of HSI fusion 
with other sensors. The chapter clearly reinforces our view that sensor 
development in remote sensing must be accompanied by advances in information 
processing. 

Among other topics, knowledge-based method and dedicated software 
systems are not covered in this volume. While there is continuing progress in 
developing new information processing techniques for remote sensing, we 
believe that the book has presented important frontier developments and thus 
will play a useful role as a resource book for continued progress in remote 
sensing information processing. 

Once again I would like to thank all contributors for their outstanding 
contributions to the book and their cooperation to meet the manuscript deadline. 
It was indeed a pleasure to work with them to make this book possible. My 
special thanks go to Steven Patt, World Scientific Publishing Co. in-house editor 
of this book, for his efficient effort to make a timely publication of the book 
possible, and to Mr. Peter Pei-Gee Ho for his help to transmit some chapter 
manuscripts to the publisher. 

C. H. Chen 
March 6, 2003 
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CHAPTER 1 

REMOTE SENSING SENSORS: CAPABILITIES AND 
INFORMATION PROCESSING REQUIREMENTS 

John Richards 

Research School of Information Sciences and Engineering 
The Australian National University, Canberra ACT 0200, Australia 

Email: john.richards@anu.edu.au 

Following a brief review of developments in optical and radar sensor characteristics, 
the implications of improved sensor properties for thematic mapping frpm optical data 
are discussed. Particular attention is given to the likely poor estimates of second order 
class statistics obtained with practical training set sizes; methods used to overcome 
that problem are highlighted. Block diagonalisation of the class covariance matrix is 
suggested as a viable, practical process to adopt in practice. 

Noting the relative maturity of the current generation of sensors, the chapter 
concludes by commenting on the desirable characteristics of an information system 
for operational remote sensing purposes, noting especially the need to focus on 
procedures that manipulate knowledge, rather than data. 

1. Introduction 

From a simple beginning, in which the user community was dependent on 
essentially a single supply of general purpose satellite image data, we are now in an 
era: 

(a) where there are a number of competing data suppliers, 
(b) in which spaceborne platforms will possibly be members of a (planned) 

group of missions, and 
(c) in which missions employ a cluster of sensors, some of which serve a 

range of applications but with others designed specifically to meet the data 
requirements of a particular scientific community. 

Moreover, data products are now just as likely to be specified regularly in terms of 
biophysical or geophysical variables1, rather than a processing level that describes 
the integrity of the data product but which nevertheless is still specified in terms of 
the original measurement variables. 

The multiplicity of current programs and sensors means that attention has also 
shifted from utilising single data products that satisfy the needs of a given 
application to the use of integrated sets of data that might have come from different 

3 
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missions and almost certainly recorded with different sensor technologies. Practical 
and operational information systems now form as much a part of the image 
interpretation task as processing algorithms themselves. 

While many algorithms are mature, the data produced by newer sensors calls 
into question the efficacy of some of the procedures that have been in use for 
several decades. 

This chapter treats the impact that developments in sensor technology, and 
notably improvements in spectral resolution and coverage, have had on the data 
analysis task. We restrict our attention to the challenge of producing reliable 
thematic maps from recorded data, and thus focus on methods for labelling pixels. 
More generally this is known as classification. We also restrict ourselves largely to 
the processing of optical image data, although a brief comment is made on the 
particularities of radar data when thematic mapping is required. 

It is on classification procedures that sensor evolution has perhaps had the 
greatest influence in respect of image processing. Techniques that performed well 
on the data generated by early sensors, notwithstanding the limitations inherent in 
the data themselves, run into trouble when data complexity increases. One would 
expect that modern sensor data should contain sufficient information for a range of 
sophisticated applications; however data processing algorithms may often strike 
mathematical intractabilities or may not be well matched to the complex nature of 
the data being generated. 

Although traditional classification procedures might have to be adapted if they 
are to be used, the improved characteristics of the data produced by the new 
generation of sensors permits analytical procedures to be devised that could not be 
entertained with early data types. Interpretation of hyperspectral data by 
spectroscopic analysis is one such possibility. 

While we concentrate here principally on interpretation and labelling, other 
image processing procedures, most notably transformation operations, are also 
affected by increasing sensor sophistication. Comment will be made in passing on 
how those methods can be modified for use on higher dimensional data sets. 

Data compression procedures are also summarised owing to the higher data 
rates and volumes now being generated. 

2. The Data Chain Model 

A convenient way to envisage the total problem at hand is to look, first, at a data 
chain model of a remote sensing system, such as that depicted in Figure 1. 
Upwelling radiation provides a signal to a transducer or receiver that is converted to 
data for transmission to the user, often via a ground receiving station and a data 
processing agent. The data are then analysed, in our case using classification 
methods, to generate accurate thematic map products that are suited to an 
application of interest. 

Our concentration is on the analysis classification methods themselves and how 
they have had to be adapted to increasing sensor performance and complexity. It is 
not just that the improved data types place strains on "tried and true" analytical 
methods, but the richness of new data sources means that we are challenged to find 
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methods that allow more meaningful knowledge to be gained about Earth cover 
types and their usage. 

By wishing to understand how sensor development has impacted on analytical 
procedures and their extensions: 

(a) we need to have some idea of evolution in variety and quality of sensors, 
and corresponding developments in the nature of the data they produce, 

(b) we need to understand the characteristics and limitations of the labelling 
methods used successfully with earlier, simpler data types so we can 
appreciate how they are affected by increasing sensor and data 
complexity, and 

(c) we need to devise methods for obviating the incipient limitations of 
standard labelling algorithms, or derive new means for interpretation. 

space or airborne segment 

(data) 
sensor 

7X" 
transmission 

ground segment 

(data) 

analysis 

T 
signal 
(upwelling radiation) 

user product 
(information) 

Fig. 1. The data chain in a remote sensing system. 

3. Remote Sensing Sensor Evolution 

The sensor in a remote sensing system is the primary data gathering device from 
which the recorded signal is made available for subsequent analysis and 
interpretation. Its design is governed by many factors including, most 
fundamentally, the primary energy source that forms the basis of the measurement, 
the applications envisaged for the recorded data and the technologies available. The 
final specification of the characteristics of a sensor is often determined by a trade
off among those factors. More so now than in the past, sensors may be designed for 
quite specific applications in mind; in contrast, the sensors of two decades ago were 
envisaged as serving a wide range of application domains. 

The data gathering ability of a sensor is also influenced by the platform on 
which it is carried. Platform repeat cycle and mission characteristics such as swath 
width, will impact on recorded data characteristics and will influence data volume 
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and data rate. Platform velocity, altitude and attitude variations will affect data 
quality, as will the design specifications of the instruments used. 

In a treatment such as this, in which sensors and data processing requirements 
are considered together, it is important at the outset to establish the range of 
applications of interest. To this extent, we here exclude sensors used for weather 
forecasting and climatology. In many ways they are similar in their measurement 
characteristics to those used for land based remote sensing, being significantly 
different mainly with respect to spatial resolution. More recent sensors also allow 
atmospheric properties to be assessed directly but they are beyond the scope of the 
current treatment. Instead, we focus here on those sensors used to gather 
information about the surface of the Earth. They therefore have spatial resolutions 
of better than about 100m x 100m. 

3.1 Primary energy sources 

There are three primary sources of energy used in remote sensing of the Earth's 
surface. 

The first and most common is the Sun. Sensors optimised to measure sunlight 
reflected from the surface of the Earth typically operate in a wavelength range 
between about 0.4 and 2.5 um, the regime over which the Sun, as an approximation 
to a black body with a surface temperature of about 6,000K, is significantly 
emitting energy. By far the majority of sensors used in Earth surface remote 
sensing operate within these wavelengths, along with thermal sensors and those 
based on microwave radar technology. 

The second principal energy source is the Earth itself. It is also able to be 
considered in terms of black body radiation theory. At 300K it radiates maximally 
over the range of about 8 to 12 (im, emitting what we commonly term thermal 
energy. Sensors designed to operate in those wavelengths in effect measure the 
temperature (and emissivity) of the Earth itself. Over that range, the reflected solar 
energy is very small and can be considered insignificant compared with thermal 
emission. 

Along the same lines as thermal emission from the Earth itself is emission from 
hot bodies such as burning fires. With a temperature of about 1,000K they emit 
maximally in the range of 3 to 5 um; some sensors are designed to operate over that 
range if the application of interest is, for example, in monitoring forest fires. 

The third energy source is that created artificially. In the microwave range, 
where wavelengths are typically 10,000 times longer than those of light or heat, the 
energy levels of reflected sunlight and thermal Earth emission are so small that the 
Earth is for all practical purposes almost dark. That provides the opportunity to 
employ radar technology to irradiate the Earth artificially with a radio energy 
source and thereby create an image of Earth surface features in the microwave 
wavelength range. Known as active remote sensing in contrast to passive, where 
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the Sun or Earth provide the principal sources of energy, quite different properties 
of the Earth's surface can be measured . 

Using large pixel sizes and sensitive detectors, it is also possible to record self 
emission of microwave energy from the Earth, allowing thermal measurements to 
be made under unfavourable weather conditions. Such passive microwave imaging 
is also useful for soil moisture assessment. 

Remote sensing instrumentation is designed to operate with one or more of the 
three primary energy types. Those developed to measure Earth surface 
characteristics using reflected solar or emitted thermal energy are frequently called 
optical sensors, in contrast to microwave sensors such as imaging radars and 
microwave radiometers. 

3.2 Optical sensor development 

The earliest optical sensors used for remote sensing purposes were carried on 
aircraft, and it was these that were employed for the first development of automated 
image analysis tools. Typically they incorporated about twelve visible and infrared 
channels, with perhaps one or two thermal bands as well. 

Among the earliest quasi-operational spaceborne imagery was that obtained 
with the first Landsat Multispectral Scanner (MSS) in 1972 which recorded data in 
four very broad wave bands. They were 100 nm in width for the visible green, 
visible red and first of the near infrared bands and 300 nm for the remaining 
infrared band. When set against the spectral reflectance characteristic of common 
Earth surface cover types it is clear that with such broad band definitions very little 
detail of scientific value can be obtained, although general cover type 
characteristics can be assessed using appropriate analytical procedures. 
Nevertheless, in the case of vegetation for example, by measuring the depth of the 
red absorption band (attributed to chlorophyll) and the magnitude of the infrared 
response, it is possible to assess the vigour and moisture status of the vegetation in a 
relative sense and even to do some rudimentary discrimination among vegetation 
types. But in reality, the spectral resolution of the MSS was simply too coarse for 
fine differentiation of vegetation and other cover types. 

With the availability of the first Landsat Thematic Mapper (TM) data in 1982 
the spectral resolution was improved but, more importantly, additional wavebands 
gave the ability to derive information about cover types that were not revealed well 
in the MSS bands. Like all spaceborne sensors to that time, however, its design had 
to be a compromise over application regimes because of the capital cost involved in 
designing and orbiting such a sensor. In other words, these earlier sensors, like 
some but not all of their successors, were envisaged as general purpose from the 
outset. 

Another active remote sensing system is lidar in which laser energy is used to irradiate the 
Earth. One application of lidar is in bathymetry, in which short wavelength laser energy is 
used to penetrate shallow oceans and to be reflected off the sea bottom. 
* For a summary of the technical characteristics of remote sensing instrumentation to about 
1996 see Richards and Jia2. 



The original SPOT HRV sensor, orbited in 1986, while providing only three 
wave bands, gave a slightly better spatial resolution in its multispectral bands. It 
also provided the first look at high spatial resolution panchromatic imagery from 
space. Its application domain was not too different from that of Landsat's TM and 
MSS with the exception that the Thematic Mapper was better suited to geological 
applications. 

It was not until the advent of hyperspectral sensors, flown first on aircraft 
platforms and most recently on the Terra3 and EO spacecraft4 that sufficient spectral 
resolution has been made available to allow fine diagnosis of the features of a 
reflectance spectrum from space. Most hyperspectral sensors operate over the 
range of wavelengths corresponding to reflected solar energy (0.4 - 2.5 urn) and 
include approximately 200 bands in that range with spectral resolutions of about 10 
nm. For the first time that suggests that information extraction can be performed 
based on understanding the spectroscopy of the radiation-matter interaction process, 
rather than simply by applying classification algorithms. 

Table 1. High spatial resolution spaceborne remote sensing missions. 
Panchromatic bands have been ignored in this comparison. 

Sensor 

MSS 

TM 

HRV 

MESSR 

LISSI 

nssn 
AVNIR 

LISS m 
ETM+ 

HRVIR 

Ikonos 

ASTER 

Hyperion 

ALI 

First 
used 

1972 

1982 

1986 

1987 

1988 

1991 

1996 

1997 

1999 

1999 

1999 

1999 

2000 
2000 

Pixel 
size (m) 

79 

30, 120b 

20 

50 

73 

36 

16 

23, 70c 

30, 60b 

20 

4 

15,30c,90b 

30 
30 

Swath 
(km) 

185 

185 

60 

100 

146 

146 

80 

142-146 

185 

60 

11 

60 

7.7 
37 

Bands 

4 

7 

3 

4 

4 

4 

4 

4 

7 

4 

4 

15 

22 
10 

Bits 
/pixel 

7,6a 

8 

8 

8 

7 

7 

8 

7 

8 

8 

11 

8,8c,12b 

12 
8 

Kbyte/ 
lOOha 

0.54 

6.74 

7.5 

1.6 

0.66 

2.7 

15.63 

5.14 

6.94 

10 

343.75 

25.37 

366.67 
11.11 

a For the second near infrared band 
b For the thermal band(s) 
c For the middle infrared band(s) 

Table 1 shows the characteristics of a number of spaceborne optical sensors. 
Only those with high spatial resolution (pixel size better than about 100m x 100m) 
are included. Also, the band information provided does not cover any panchromatic 
bands; that data is more of value to topographic and cartographic purposes than to 
thematic mapping, which is the subject of this treatment. It could be noted in 
passing, though, that high resolution panchromatic data is often used to "sharpen" 
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colour products created from lower resolution multispectral data when visual 
interpretation is envisaged. 

Also shown in Table 1 is the maximum data volume produced forlOOha of 
ground coverage. This is used to illustrate, in principle, the increasing volume of 
data to be processed with improvements in sensor technology. When plotted 
logarithmically, as shown in Figure 2, it is suggested that the maximum demand for 
data processing (measured by slope in the maximum data volume "straight line" 
envelope shown) is increasing by about an order of magnitude per decade. Clearly 
this is a very coarse measure, since it assumes all bands for each sensor would be 
employed in a given classification exercise and that those sensors with the 
maximum data generation would be chosen in preference to the others. Task-
specific sensor selection, and the use of feature reduction techniques, makes both 
unlikely. Nevertheless the measure highlights the likely increase in data to be 
analysed. It could be noted that the average increase in data processing demand is 
about an half an order of magnitude (i.e. about 3 times) per decade. 

Clearly, improvements in computational technology have more than kept pace 
with the increase in data volume, but algorithm development may have not, as we 
will illustrate below. 

'1
00

ha
) 

lo
g(

kB
 

3.00 

2.50 

2.00 

1.50 

1.00 

0.50 

0.00 

-0.50 
,-*MSS 

TM ,••"' 

Hyperion, 
Ikonos ^ i 

ASTER 
• 

•HRV I 
• 

• 
• 

• 

1970 1980 1990 2000 

Fig. 2. Maximum data volume generated per lOOha for the high 
spatial resolution multispectral sensors in Table 1. 

Interestingly, the maximum envelope in Figure 2 is defined by the EOS sensor 
family (MSS, TM and Hyperion). Given that the platform repeat cycles are the 
same (approximately so for MSS), then their data rates are in the same proportions. 
These are data rates in terms of analysis demand not the telemetry rates used for 
transmission from orbit to a receiving station. 
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3.3 Radar sensor development2 

As with optical data capture, the first imaging radar systems were airborne and, in 
fact, pre-dated optical airborne systems. The first spaceborne radar was that carried 
on the Seasat satellite launched in 1978, followed by the shuttle-based SIR-A 
mission in 1981. The radars on both Seasat and SIR-A recorded just a single 
channel of microwave image data. With the launch of SIR-B in 1984, a variable 
look angle was introduced making possible, for the first time from a spaceborne 
platform, the creation of a multiply dimensioned image, characterised by using 
different look angles for the same region being imaged. 

Dimensionality was increased further with the shuttle SIR-C/X-SAR mission 
flown in 1994 through the use of multiple polarisations, multiple wavelengths and 
multiple incidence angles. 

The European and Japanese free flying radar satellites ERS-1 and JERS-1, first 
launched in 1991 and 1992 respectively, ushered in the era of operational radar 
imaging from space. Their instruments again were single dimensional. Radarsat-1 
launched in 1995 provided a variable look angle and thus increased data 
dimensionality. 

While with optical systems, data complexity has increased through 
improvements in spectral resolution (and number of channels), complexity in 
spaceborne radar systems has resulted from increased wavelengths (analogous to 
bands for optical systems), increased polarisations (and, because of the coherent 
nature of the radiation, the ability to synthesise other polarisations), and the use of 
variable look angles. 

As a result of the use of coherent radiation in imaging radar systems, 
interferometric imaging is possible, permitting fine topographic detail on the 
Earth's surface to be measured. Although demonstrated initially with data from 
general purpose imaging radar missions5, this development has led to the dedicated 
Shuttle Radar Topography Mission for wide scale topographic mapping of the 
Earth's surface6. 

4. The Data Processing Problem 

The intersection between the sensors themselves and the demand they place on data 
processing for information extraction lies, first, in the volume of data they produce, 
as suggested in Figure 2. This is determined by their characteristics and specifically 
the number of separate bands of data recorded, the pixel rate (sometimes expressed 
as number of pixels per frame) and the number of brightness or radiometric values 
associated with the measurements represented by each pixel in each band. 

For a given application not all of the data produced by a particular sensor would 
need to be used. Instead, sensors are often designed to meet the needs of a variety 
of applications and thus cover spectral ranges and radiometric values beyond those 
required for a specific application. Nevertheless, as noted above, the total data 
volume generated by a sensor is a useful primary indicator of the demands made on 
image interpretation algorithms. 



11 

Processing demand as expressed by the volume of data to be handled is only one 
consideration. Complexity in data processing also arises with new sensors because 
of the improved nature of the recorded data and the type of information that the user 
is, in principle, now able to extract. 

Pioneering work in the development and application of computer assisted 
procedures for creating thematic maps from remotely sensed data was carried out at 
the Laboratory for Applications of Remote Sensing (LARS) at Purdue University in 
the 1960s and 1970s7. It was realised, by association with signal processing, that 
maximum likelihood estimation techniques should perform well with the nature of 
the multispectral data recorded by aircraft sensors and later by the then new Landsat 
Multispectral Scanner data. 

The essential objective of the analysis has remained the same since that time -
it's just that the complexity of the task has increased. In summary, to produce a 
thematic map from an image we need to label each pixel using a decision rule along 
the lines: 

xs a* if gt(x) > gj{x) for all./*;' (1) 

where x is a vector of the multispectral measurements (brightness values) for the 
pixel being labelled and aty i=l,.. .C is the /th class label of C total possible labels. 

gi(x) is a discriminant function, which can be defined in many ways, depending 
on the particular algorithm or technique adopted for the classification task2. When 
maximum likelihood estimation is used, it is assumed that the pixels in each class 
are distributed in the spectral domain in a multidimensional normal fashion - i.e. a 
Gaussian distribution model is assumed - so that the discriminant functions take the 
form2: 

gi(x) = Inpicod - Vi Inffl - Vi (x-md%'(.x-m,) (2) 

in which m, is the mean brightness vector for class Oj and Zt is its covariance 
matrix; p{c^)is the prior probability of the class, which is the likelihood with which 
o)i could be guessed as the correct class label for the pixel in the absence of the 
remotely sensed information. 

Although ostensibly simple to apply, the maximum likelihood technique has 
pitfalls if the user is not careful in its application, and particularly in understanding 
the limitations of the algorithm. The first relates to the assumption of class 
normality. It was recognised early on that this is essentially an incorrect 
assumption for most recorded data. Rarely do pixels from individual classes 
distribute themselves spectrally in a Gaussian fashion, even if they do form clusters 
in the spectral domain. More often they are part of a continuum8. Nevertheless, 
careful use of clustering methods beforehand9 allows the data to be conditioned in 
such a manner that maximum likelihood classification works well, leading to its 
being the most commonly adopted labelling technique applied to spectral data. 

A second limitation with maximum likelihood estimation was also understood 
and overcome at the outset, at least with the limited number of spectral channels 
then available; that has to do with over-dimensioned data. In order to use maximum 
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likelihood classification the mean vector and covariance matrix m, and Zj for each 
class have to be known. They are found by the analyst having identified previously 
a set of pixels known to come from each of the classes of interest. Using those 
prototype - or training - pixels, values for m, and £t are estimated. For N 
dimensional data (i.e. N multispectral bands) there are N components of /ra,. Zj is an 
NxN matrix, but there are only V£N(N+1) distinct components, since the matrix is 
symmetric. 

In principle, the user should need only to identify around V£N(N+1) pixels for 
each class in order to estimate the class parameters. For Landsat MSS data that 
would suggest 10. However, the way the training pixels are chosen in practice does 
not ensure that they are independent samples; more than this number is needed to 
given reliable estimate of the class statistics2'7. Should not enough independent 
samples be chosen or available then the statistics will be poorly estimated and the 
labelling of a given image will have low accuracy. 

In the remote sensing literature this effect is often referred to as the Hughes 
phenomenon7, and it is posed in the following manner. For a given set of training 
pixels the accuracy of a classification will generally increase as the number of 
bands available (i.e. dimensionality) increases; there will however be a 
dimensionality beyond which the accuracy of the classification outcome will 
deteriorate. To avoid reaching that stage it has been suggested that between ION 
and 100N training pixels per class be used7. 

It is this problem that bedevils the application of maximum likelihood methods 
to modern sensors. 

5. Classification with Increased Sensor Complexity 

5.1 The problem of limited training data 

From a classifier performance point of view, the most significant development in 
sensor characteristics has been the much greater number of bands available, 
especially with hyperspectral instruments such as MODIS and Hyperion. Not only 
does that lead to an increased classification time for maximum likelihood 
classification, owing to the quadratic dependence on dimensionality of the 
discriminant function in (2), but often it is not possible to find enough training 
samples per class to avoid poor estimation of the elements of the covariance matrix. 
In other words, there is a major consideration with respect to the reliable 
determination of class statistics for hyperspectral data sets. As a guide, between 
about 2000 and 12,000 pixels per class should be used with Hyperion data if all 
channels were to be used in labelling; clearly that is impracticable. 

5.2 Feature reduction 

A rather logical approach to solving the problem has been to seek to reduce data 
dimensionality prior to the application of classification algorithms, particularly 
since it is expected that for many application domains the highly dimensioned 
hyperspectral data sets would contain major redundancies. For example, principal 
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components transformations have been used . However, as correctly pointed out 
by Morgan et aln , the principal components transformation is sub-optimal from a 
labelling standpoint because the correlation that is exploited for dimensionality 
reduction is that of the global data set, and is not class-specific. Nevertheless, the 
transformation frequently does perform well for feature reduction, particularly for 
highly correlated data sets, because the classes themselves are often distributed 
approximately along the diagonals in multispectral space. A fast principal 
components transformation for hyperspectral data, which benefits from segmenting 
the covariance matrix in the manner described in Section 5.4 below, has been 
proposed by Jia and Richards12. 

The problem with trying to apply more appropriate feature selection methods to 
hyperspectral data, such as those based on any of canonical analysis, divergence and 
Jeffries Matusita distance2'7, is that they require class covariance matrices to be 
available. Thus we have the same difficulty as in attempting classification in the 
first place. 

Lee and Landgrebe13 have devised a feature reduction technique in which 
decision boundaries are located between training set pixels directly and redundant 
features - i.e. those that do not contribute significantly to discrimination - are 
transformed out. The remaining features then form the reduced set for classification 
purposes. The procedure is known as Decision Boundary Feature Extraction 
(DBFE). 

An alternative is Discriminant Analysis Feature Extraction14 (DAFE). In 
essence it is similar to canonical analysis2 and, as with the traditional separability 
measures, requires class covariance information to be estimated beforehand. This 
problem is overcome in the Non-parametric Weighted Feature Extraction procedure 
proposed recently15. 

5.3 Non-parametric labelling methods 

Non-parametric, non-statistical schemes have been explored in order to obviate the 
difficulties with covariance estimation altogether. These have included the use of 
Support Vector Machines (SVM), which are a practical extension of the linear 
learning machine (Perceptron) concept16 known for many decades, but in which the 
training process is guided by only the most significant training pixels (support 
vectors) and in which linear inseparability is handled through expression of the 
pixel vectors in a higher dimensional space. 

In the Perceptron, two class training is achieved by setting up a linear 
hyperplane to separate all pixels into one of the two classes by using each pixel's 
position in the spectral domain relative to the others. Essentially the hyperplane is 
found by iterating an initial guess into a final state by reference to all the training 
pixels. In the SVM only those pixels "closest" to the separating hyperplane are 
needed and used to determine its position. Further, the position of the hyperplane is 
so determined that the distance (margin) between the closest pixels in each of the 
two classes and the hyperplane position is maximised. If the training data sets are 
linearly inseparable, which is highly likely for real world applications, a 
transformation to a higher dimensional space is used to force separability. 
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Being non-parametric, the SVM does not suffer the parameter estimation 
difficulty of maximum likelihood methods, although its computational demand can 
be high, and will increase linearly with data dimensionality. 

Recent experiments with SVM have shown it to perform well1718 and, for the 
limited trials reported, it performs better than neural networks and Gaussian 
maximum likelihood. The poorer performance of the maximum likelihood 
algorithm is not surprising, given the parameter estimation difficulties already 
mentioned. 

5.4 Modifying the maximum likelihood rule 

Another solution has been to stay with the traditional maximum likelihood 
classification approach for thematic mapping, but devise procedures that permit 
reasonable estimation of the covariance matrix, particularly for classes for which 
limited training samples are available. An immediate possible benefit of this 
approach is that standard classification software, based on class normality and the 
long-standing maximum likelihood rule, can be retained. 

Generally there have been two approaches to this particular problem. In the 
first, approximation methods are employed to give covariance elements that are 
sufficiently accurate that classifier performance does not unreasonably suffer. In 
the second, the properties of the actual covariance matrix revealed with real data 
sets are exploited to reduce the problem to one of smaller dimensionality. 

Kuo and Landgrebe19 review and improve on several schemes that seek to 
determine reliable versions of me class conditional sample covariance matrix by 
using mixtures of the actual sample covariance matrix, estimated from the available 
training data, and the pooled covariance matrix computed over all the training 
samples. Properties of these matrices, including their traces and diagonal forms, are 
sometimes used in these regularisation procedures. 

The maximum likelihood rule has been iterated in Jackson and Landgrebe20 to 
improve covariance estimates and thus labelling accuracy. By using limited 
available training data, an initial classification is performed. This is known to be 
affected by poorly estimated class statistics. Previously unknown pixels that have 
now been labelled in this classification step are then used with the original training 
data (although weighted down in their influence) to give better covariance 
estimates. The classification is then repeated. Iterating through this sequence 
produces good results in relatively few iterations provided the initial statistics 
estimates and labelling accuracy are not too poor. The procedure is improved if 
acceptable covariance estimators, designed specifically for use small training sets, 
are also employed21. 

As an alternative, consider the actual properties of the covariance matrix from a 
real data set. In the following, we are going to be guided by the correlations among 
the bands of data and so examine the correlation matrix rather than the covariance 
matrix. Even so, the properties to be adduced will provide guidance on how the 
covariance matrix can be handled. 

Figure 3(a) shows the correlation matrix (in pseudo-image form) for a set of 
pixels recorded by the AVIRIS sensor; 196 wavebands have been used, with white 
implying 100% positive or negative correlation and black indicating zero 
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correlation . What is immediately obvious is the dark stripes running through the 
correlation matrix corresponding to the water absorption bands in the recorded 
spectral data. Those bands can be used to segment the correlation (and thus the 
covariance) matrix into blocks. Figure 3b, shows such a segmentation. The blocks 
along the diagonal generally show the highest correlations, while those in the off-
diagonal positions often show lower correlations and in Figure 3(b) are set to zero. 
As might be expected this behaviour suggests that adjacent bands are the most 
strongly correlated, while those further apart in the spectrum generally show lower 
correlations. A notable exception, however, can be the correlations among the 
middle infrared bands either side of the 1.9 (Xm water absorption. 

We can, therefore, with little loss of covariance information, approximate the 
correlation and covariance matrices just by the block diagonal form depicted in 
Figure 3(b) and can use the properties of block diagonal matrices to simplify the 
classification task. For example, it can be shown that22 

N=flM 
k=\ 

where Z i t is the determinant of the covariance matrix of the k'h diagonal block, of 

the total K blocks in the full class covariance matrix 2J. Similarly, it can be 
demonstrated that 

where 1Tik is the inverse of the covariance matrix of the k'h block for the i'h class. 

With these the discriminant function in (2) can be expressed 

K 

k=l 

The discriminant function of (2) therefore becomes the sum of the discriminant 
functions computed over the individual blocks. The largest block of the covariance 
matrix determines the number of training pixels needed to avoid the Hughes 
phenomenon and thus poor estimates of the components of the covariance. 
Typically this block will be no larger than about one third of the size of the 
complete covariance matrix. The discriminant function will also be faster to 
evaluate owing to the quadratic time saving. 

Using the positions of the water absorption bands to define the block boundaries 
is a fairly crude tool, and other segmentations of the covariance matrix might be 
better, as shown by Jia22. For example, Figure 3(c) shows a segmentation in which 

Also called quasi-diagonal matrices. 
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finer block diagonalisation is realised by making use of obvious structure in 
addition to that provided by the absorption bands. Although sub-optimal, using the 
locations of the water absorption bands is nevertheless a simple, repeatable and 
data-independent method for partitioning the matrix and is recommended. Work 
has yet to be undertaken to test the penalty incurred in classification through making 
this simplification. 

(a) (b) W 

Fig. 3. (a) Covariance matrix of a 192 band image recorded by AVIMS. 
(b) Band diagonal form based on water absorption bands. In the white blocks the 
original covariance information would be retained, whereas in the grey regions the 
correlations (and thus covariances) are assumed to be zero.(c) Band diagonal form 
with further sub-division within the visible and near infrared region. 

A benefit of this approach is that standard image classification software can be 
used. All that is needed is a means for aggregating the individual discriminant 
functions for each class. 

Full details of the block diagonalisation approach are given in Jia22, and Jia and 
Richards23. 

Roger24 also examines the properties of the covariance matrix, although in its 
inverse form. He shows that its sparseness allows simplified maximum likelihood 
procedures to be devised by approximating the inverse matrix by a band diagonal 
form, as against the block diagonal form discussed here. 

5.5 Other information extraction techniques for hyperspectral data sets 

As a result of the fine spectral resolution and large number of bands available in 
hyperspectral data it is possible to apply spectroscopic knowledge to features 
observed in a recorded spectrum. It is also possible to compare the reflectance 
spectrum for a pixel recorded by a remote sensing program with those of known 
cover types recorded by a laboratory-based spectrometer, in order to find a match 
for the remotely sensed spectrum. 

We can also seek to un-mix the pixels in the data. The problem of mixed pixels 
- i.e. those that do not consist of a single cover type - has been a long-standing one 
in remote sensing data capture. The quality of data now available means that it is 
possible to create reasonable models that estimate the proportions of "pure" cover 
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types within a given recorded pixel. A good overview of unmixing is given in 
Keshava and Mustard25. 

6. Impact of Sensor Evolution on other Image Processing Operations 

Even though we are concentrating here on labelling processes, it is nevertheless 
important to comment on the effect new sensor technologies have on other image 
processing operations. In many cases the problem is simply one of scaling the 
computational demand through the added channels of data. But for operations 
involving the use of second order statistics, the same problem arises as when 
employing maximum likelihood classification. Thus, separability assessment using 
divergence-based techniques, canonical analysis for dimensionality reduction and, 
to a lesser extent, principal components transformation all suffer. Block 
diagonalisation of the covariance is as useful a remedy here as it is for 
classification. The reason that principal components analysis is not so badly 
affected is that it does not rely upon the estimation of class specific covariance 
matrices, but rather on the global covariance of a large data set, for which sufficient 
pixels are usually available. 

7. Labelling from Radar Data 

Although beyond the scope of this treatment it is important to comment on the 
interpretation of radar imagery since, even with single band radar data, pattern 
classification procedures don't work particularly well. There are several reasons for 
this. First, the speckle noise present in radar (for which the signal noise ratio is 
often not much better than 0 dB) means that variance resulting from cover type 
differences is usually dominated by speckle variance. In order to derive any 
meaningful labelling it is often necessary to average over large numbers of pixels to 
reduce the speckle noise more than might already have been the case through what 
is called look-averaging. This suggests that spatial resolution needs to be sacrificed 
for labelling accuracy. 

Secondly, the nature of the mechanisms by which cover types appear in radar 
imagery means that application of discriminant function based techniques will often 
be unsuccessful. For example, while most reflected energy in optical remote 
sensing is the result of surface scattering, for radar imagery there are also major 
components of volume scattering in a typical scene; there are also strong scattering 
elements such as trees and buildings that act as corner reflectors. Pixels of 
comparable brightness might have resulted from any of these mechanisms. There is 
also the prospect, particularly with long wavelength radars, for sub-surface 
reflection in very dry regions; this can complicate the interpretation process further. 

A viable approach for the interpretation of radar data is to model the energy-
matter interactions that lead to the recorded radar data and then invert those models 
to derive properties of interest. 

Lee and Grunes26 summarise recent approaches used for labelling radar data, 
including for multi-band and multi-polarization imagery. Interestingly, the Support 
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Vector Machine approach has also been used with multi-band, multi-polarisation 
aircraft radar data with apparently good results, although the image was spatially 
pre-filtered to reduce the effect of speckle27. 

8. Data Compression 

Compression of data for transmission and storage purposes is a standard signal 
processing procedure and has been used widely for data telemetry since the earliest 
days of remote sensing. With the increasing data rates from the more recent 
sensors evident in Figure 2, the need for efficient coding schemes for compression 
has become more critical. Schemes have ranged from the use of principal 
components28 (as a lossy procedure) through to adaptation of vector coding 
techniques used in the television industry ' . Qian et al have recently proposed a 
vector coding technique in which the code books are significantly smaller than with 
the conventional method and which seems to offer prospects for compressions to 
levels of 30:1 while maintaining sufficient data integrity for most applications. 

9. Data Fusion - Towards Operational Classification and the Knowledge 
Chain Model in Remote Sensing 

Many of the contemporary sensors in remote sensing are designed to operate as part 
of an information system. Each provides information on a particular aspect of the 
Earth or one of its primary cycles, and together they provide a synergy of data that 
allows knowledge to be built up about fundamental processes, land cover and land 
use in manner not possible with sensors operating independently. 

Deriving viable techniques for merging data has therefore been a subject of 
considerable attention in the field of image classification for many years. Twenty 
years ago, effort was focussed on simple problems, such as incorporating the effect 
of spatial context or topographic information, into a classification32' 33 whereas 
recently the more general problem of labelling pixels described by several separate 
sets of data has been of interest. Techniques have ranged from the use of evidential 
theory34 to the adoption of expert system methods35. 

Generally, the employment of several different sources of data together to form 
joint inferences is called data fusion. In an operational context however, one must 
question whether fusion at the data level is practical. Given that data sources may 
not all be available at the same time, that some may already have been transformed 
from data to biophysical variables and that there is value in performing labelling in 
the context of a geographical information system, where individual data types may 
be held and maintained by the primary data agencies rather than by the users 
themselves, a more pragmatic approach is to fuse at the level of labels36 or 
decisions37. Figure 4 illustrates this concept, depicting the data chain model of 
Figure 1 as (at least) one component of a data/knowledge system. 

In label level fusion decisions can be taken about the correct class for a pixel 
from each available data source individually, using analytical techniques optimally 
matched to the characteristics of those sources. A joint inference about the pixel is 
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then formed by operating on the information labels generated from the individual 
analyses. This approach seems to offer most prospect of operationalising a 
distributed data, information and knowledge processing system to meet the needs of 
contemporary sensors ranging from the general purpose to those designed with 
specific applications in mind. 
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Fig. 4. The data chain as a knowledge chain. 

This is not to say that the challenge of devising viable image interpretation 
tools for the data sets is not important; rather, it means that attention can be 
focussed on deriving the most suitable analytical procedures for each data source, 
independently of the other types of data that will be used with it to achieve a final 
outcome. 

10. Concluding Comments 

The move towards special purpose instruments, instrument clusters and mutli-
platform missions will undoubtedly continue, as will the trend to specify recorded 
data in terms of those variables most familiar to the user. Indeed, with an 
appropriately developed information system and suitable analytical tools, many 
future end-users might not even be aware that the primary source of data gathered 
for their particular application was from a spaceborne platform. If that can be 
achieved we will know that remote sensing has, in a sense, become properly 
operational and we would expect to see a user uptake of the technology long hoped 
for but not really experienced in the past three decades. While mission design, 
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because of capital costs, will always involve some form of compromise, current and 
anticipated data types and their frequencies are well suited to a very wide range of 
user needs so that such an operational scenario should not be too far off, once the 
interpretation tools needed for the newer sensor data sets are finally settled. 
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One unique feature in the remote sensing problems is that a significant amount of 
data are available, from which desired information must be extracted. Transform 
methods offer effective procedures to derive the most significant information for 
further processing or human interpretation and to extract important features for 
pattern classificaiton. 

In this chapter a survey of the use of major transforms in remote sensing is 
presented. These transforms have significant effects on data reduction and 
compression and on pattern recognition as features derived from orthogonal or 
related transforms tend to be very effective for classification. After the introduction, 
we will examine the PCA and discriminant analysis transform, empirical orthogonal 
functions (EOF), component analysis and an independent component analysis (ICA) 
algorithm, followed by concluding remarks. 

1. Introduction 

In remote sensing, the large amount of data makes it necessary to perform some type of 
transforms that preserve the essential information while considerably reducing the 
amount of data. In fact most remote sensing image data are redundant, dependent and 
noisy. Transform methods can help in three ways: effective data representation, 
effective feature extraction, and effective image compression. 

Orthogonal transforms are highly desired as they tend to extract "non-overlapped" 
information from the data and thus result in more efficient representation. These 
transforms generally involve linear operations. Let x be an input vector and y =Wx be 
an output vector with reduced dimensionality after applying a transformation 
represented by the matrix W. For orthogonal transform, the vectors forming W are 
orthogonal. The optimal orthogonal transform in the minimum mean square error sense 
is the discrete Karhunen-Loeve transform (KLT). It has several equivalent names such 
as the empirical orthogonal function (EOF) and principal component analysis (PCA). 
The topic of PCA for remote sensing has been well examined in the literature (see e.g. 
[1,2,3]). For the purpose of pattern classification, such transforms can be useful in 
feature extraction. However the low mean square error does not guarantee the 
minimum probability of error typically used as a classification performance measure. In 
fact the transforms for data representation are generally not the same as those for 
discrimination. 

In this chapter we will examine the PCA and discriminant analysis, empirical 
orthogonal functions (EOP), component analysis, independent component analysis 
(ICA) and an ICA algorithm. The topics of wavelet transform and image compression 
are treated in detail in other chapters of this volume. The references listed though 
incomplete are representative of the activity in the topic areas. 
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2. PCA and Discriminant Analysis 

Consider a set of N n-dimensional vectors {Xk ,k = 1,2,..., N} which are mapped 

onto an m -dimensional feature space, where m < n . The new feature vectors Y k are 
defined as, 

Yk = W T (Xk - E(Xk)) , k = 1,2 ,..., N 
where W is a matrix of eigenvectors. Let ST, Sn and Sw respectively the total scatter 
matrix, the between-class and within-class scatter matrices of Xk. . The total scatter 
matrix of Yk is w T S T W • The optimal transformation W ' is chosen as (O-P in 

Fig. 1), 
W]pt = arg max \w T S T W I = [ W? , W\ ,..., W l

m ] 

For data representation we have x = V y .\ . where m < n, and v; is the 
; = i 

eignvector corresponding to the ith largest eigenvalue. 
In a non-linear transform, replace y-, by a function of ŷ  g ((y;) 
To obtain maximum class separability according to the linear discriminant 

criterion, the optimal transformation: w n
2, is chosen if S w is nonsingular. as (O-Z 

in Fig. 1) 

\w Tsbw\ 
W„l, = arg max f— \ = [W,2 ,W 2

2 ,..., W*] 
w \w

 T SW 

It is obvious that W , # W , 
op! opt 

P Optimal PCA projection direction 

'(i.e., direction of maximal variance for the entire data set) 

' Class 1 data distribution 

The entire data distribution 

Fig. 1 The optimal PCA projection and separation projection for two sets of data. 

(O-Z direction is the least overlapped projection direction for the two classes) 
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The linear discriminant analysis (LDA) is generally used in multiple classe also. The 
following are some drawbacks. 
1 The between-class scatter matrix has rank of C-1 where C is the number of classes. 

This limits the number of features extracted to C-l. For remote sensing, the number 
of classes is usually large. 

2. For high-dimensional data, the number of samples per class must also be large, a 
condition often not satisfied in practice. As a result the within-class scatter matrix 
can be singular. 

3. Existing criteria place too much emphasis on classes which have large inter-class 
distances. 

For discriminant analysis feature extraction, the definition of inter-class scatter can be 
modified and in fact a weighted inter-class scatter may work well with a larger number 
of classes arid may result in better features without the problem of matrix singularity. 
This and similar procedures to overcome the dreawbacks listed above are now well 
documented in the pattern recognition literatures (see e.g. [4], [5]). 

In summary, PCA or KLT is based on the global covariance matrix. Therefore it 
is not sensitive to inter-class structure [6]. It is good as a feature reduction tool but the 
maximum data scatter does not correspond to the best direction for class separability. 
For discriminant analysis both inter-class and intra-class scatter matrices must be 
considered. Both EOF and PCA make use of only second order statistics which may 
not be adequate for good classification. An orthogonal transform that employs high-
order statistics is yet to be developed for remote sensing study. Also it is noted that 
EOF, PCA or KLT involve linear operations which normally do not provide new 
information from the original data. Functional expansion by other orthogonal basis 
functions such as Walsh function, Hermite polynomial are possible but they have not 
been examined for use in remote sensing to the author's knowledge. It is further noted 
that there are other orthogonal image transforms such as discrete cosine transform, sine 
transform, slant transform, etc. (see e.g. [7]) but none of which has better minimum 
mean square reconstruction error than the KLT and the features provided by such 
transforms are not more effective than the KLT. The discrete cosine transform which 
has fast transform algorithm available can serve as a useful approximation of KLT 
which does not have fast computation algorithm. The eigenvectors of PCA or KLT 
depends on the data. Among other transforms which do not necessarily make use of the 
orthogonal basis functions are Projection Pursuit [8], Matching Pursuit [9] and mixed 
transform [10]. 

3. Empirical Orthogonal Functions (EOF) 

EOF (empirical orthogonal function) is closely related to PCA and is used in 
geophysical sciences using a time sequence of images. The characteristics of EOF's 
make them ideal for spectral compression especially when there are a large number of 
such bands such as with high resolution images [11-16] The EOF's form the 
orthogonal basis in the data space which provides the most efficient data 
representations. The images corresponding to small eigenvalues are almost entirely due 
to noise and can be removed to reduce the effect of noises [11]. In general the 
sequence of images can be considered as a time series of images. In order to obtain a 
two dimensional data matrix for the analysis, the columns of each image are stacked so 
that the image becomes a column vector. When these column vector images are placed 
together as sequential columns, an MxN matrix is formed. Here M represents the 
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number of elements in the spatial dimension, in this case the number of pixels in the 
image, and N represents the number of elements in the temporal dimension. Singular 
value decomposition (SVD) provides the most efficient and convenient way to 
calculate EOF's. SVD decomposes the data matrix into three matrices containing the 
eigenvalues, eigenvectors and eigenfunctions needed for decomposition. In general M 
is not equal to N. 

Mathematically, the time series of images is represented by a linear combination 
of the eigenfunctions F„ 

N 
T(x,t)= la„(t)F„(x) 

n = l 

where a„ are the temporal amplitudes, or eigenvectors. The eignefunctions, or spatial 
amplitude functions, can themselves be viewed as images, giving a visual 
representation of the variance of each mode. 

Here is another interpretation of EOF. Let T(A) be the covariance between X(t) 
and X(t+A), E be the covariance of X(t), and ZA be the covariance of X(t)-X(t + A). 
The desired linear transform is obtained by solving the generalized eigenvalue 
problem, 

S« = A,XA a where a are the (conjugate eigen-) vectors, X is the eigenvalue. 

4. Component Analysis 

The term "component analysis" is in general the subspace analysis in mathematical 
statistics. In remote sensing it refers to the principal component analysis (PCA), 
curvilinear component analysis (CCA), canonical component transform (CCT), taseled 
cap components (TCT), and independent component analysis (ICA). These component 
analysis methods are very different conceptually. PCA or KLT is to look for the 
principal components according to the second order statistics. CCA performs nonlinear 
feature space transformation while trying to preserve as much as possible the original 
data information in the lower dimensional space [17]. The nonlinear operation in CCA 
does present an opportunity for improved features. This is yet to be verified in practice. 
Both CCT and TCP are well presented in [18]. CCT is similar to PCA, except that the 
data are not lumped into one distribution in the vector space. Rather, training data for 
each class are used to maximize the separability of the defined classes. The CCT is a 
linear transform on the original feature space such that the transformed features are 
optimized and are arranged in order of decreasing separability of classes. TCT is a 
linear matrix transform, just as the PCA and CCT, but is fixed and independent of the 
data. It is, however, sensor dependent and must be derived for any given sensor [18]. 

ICA looks for independent components from the original data assumed to be 
linearly mixed from several independent sources. Nonlinear PCA that makes use of the 
higher order statistical information [19,20] can provide an improvement over the linear 
PCA that employs only the second order covariance information. Mathematically 
instead of minimizing the mean square error between x and W'y, the nonlinear PCA is 
to minimize the mean square error between x and W'g(y), where g(y) can be an odd 
function of y [19]. 

ICA is a useful extension of the traditional principle component analysis (PCA). 
While PCA method attempts to decorrelate the components in a vector, ICA methods 
are to make the components as independent as possible. There are currently many 
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approaches available for ICA. Oja et al. developed a nonlinear PCA learning rule [20, 
21], Wang et al. developed the bigradient algorithm [22], Hyvarinen developed a fast 
fixed point algorithm [23], Bell and Sejnowski derived the infomax [24] approach 
using mutual information and later Lee, et al. developed extended informax [25] to 
extract both subgaussian and supergaussian sources. These and many others 
contributed significantly to the development of ICA all with blind source separation in 
mind. 

ICA applications in remote sensing study become a new topic in recent years. Szu 
used ICA to reduce boundary error with multiple-label-remote-sensing (MLRS) [26]. 
Chiang, et al. also used ICA in AVIRIS data analysis [27]. Tu used a noise-adjusted 
version of fast independent component analysis (NAFICA) for unsupervised signature 
extraction and separation in hyperspectral images [28]. Yoshida and Omatu showed 
their work on ICA and BP classifier for LANDS AT TM data [29]. With remote 
sensing in mind we developed a new independent component analysis (ICA) method 
that makes use of the higher order statistics The algorithm is presented in the next 
section. The work is quite different from that of Cardoso [30]. We name it the joint 
cumulant ICA (JC-ICA) algorithm [31,32]. It can be implemented efficiently by a 
neural network. Experimental evidence [31] shows that for the SAR image pixel 
classification, a small subset of ICA features performs a few percentage point better 
than the use of original data or PCA as features. The significant component images 
obtained by ICA have less speckle noise and are more informative. Furthermore for 
hyperspectral images, ICA can be useful for selecting or reconfiguring spectral bands 
so that the desired objects in the images may be enhanced [32]. Figs. 2 and 3 show 
respectively an original AVIRIS image and the enhanced image using the JC-ICA 
approach. The latter has more desired details. In summary, ICA methods provide 
speckle reduction in SAR images, better features in pixel classification, and significant 
data reduction in hyperspectral images. 

Fig. 2 An AVIRIS image of Moffett field. Fig. 3 Enhanced image using JC-ICA. 
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5. The JC-ICA Algorithm 

Independence among signals means there is no statistical dependence among them. For 
the second order statistics with Gaussian random variables, independence means their 
mutual correlations are zero. For higher order statistics, the dependence is judged by 
joint cumulants, and independence means that the mutual joint cumulants are zero. 
Generally speaking, we deal with non-Gaussian random variables. So it is necessary to 
consider higher order statistics for independence. 

Before proceeding with the proposed approach, we would like to review a basic 
structure of ICA The structure has 3 levels. X is the input mixed signal. The first step 
is to whiten the input data X and reduce dimension if necessary. Y = VX. V is the 
whitening matrix. Either the standard PCA method or neural learning methods can be 
used to obtain V. In our computation, V is obtained by using eigenvalue-eigenvector 
method. The purpose of this whitening is to normalize the second order statistics. 

The second step is to do separation. Let W be the separating matrix. Z = WTY. Z is 
the extracted independent signals, or at least as independent as possible. There are 
many algorithms currently available to find W and Z. We will discuss ours in this 
section. 

The third step is to estimate the basis vectors of ICA. U = QZ. U usually equals X. 
Q is the basis vector, and can be calculated using the neural learning rule: 

Q(k + l ) = Q(k)+ Li(kXx - Q(k)z(k))z(k)T 

where (J, is a small learning rate. This step is useful in projection pursuit. If the goal is 
merely to do source separation, this step is not necessary. 

5.7. Initial Approach 

Consider a set of n real random variables {zj, z2, ..., zn}, From the high order statistics 
point of view, if these components are statistically independent, their mutual joint 
cumulants must be zero. In other words zero joint cumulants are a consequence of 
independence and may not be a sufficient condition for independence. It is reasonable 
however to expect that when components are as independent as possible, the joint 
cumulants should be as small as possible. We can determine the independent 
components by minimizing the joint cumulants of the variables. For computational 
simplicity, we consider only the 3rd and 4th order cumulants. 
We define a penalty function P, 

3( z l ' z2>-> z j )= I 
alli<j 

Cum(z,z-,z. )/2- • I 
all i < j 

Cum(z,z-,Zj)/2+ X Cum(z,z-,Z:,Zj) 
J J all i< j J J 

The separation matrix W can be obtained by minimizing P with regard to W. W is [w/ 
W2T ... wn

T]T, where Wi through wn are row vectors. The gradient descent method is 
used in experiments. Independent components are extracted one by one. When 
extracting the j-th component xj; joint cumulants are calculated for all i and j 
combination with i < j . 

We first assume input signals Y be whitened, i.e. zero mean, unit variance. For 
non-whitened signals, simply do a PCA whitening. 

Consider the first component. It can be determined by maximizing its fourth order 
cumulant, kurtosis [21], and the separating function is, 

Wl(k+1) = E[ Y (Y'Wl(k))3] - 3 wKk) 



29 

It is noted that when only one component is considered, there is no joint 
cumulants. In this case we follow the fixed point approach to extract independent 
components by maximizing the kurtonis [21]. From the second component, we start 
using the joint cumulant approach. 
For the j- th component, 
P ( j ) = X | C u m ( z j . Z j . z J ^ + ^ICumCz i , z J , z j ) | / 2 + X|Cum(z £ , z j 3 z ^ z j ) | 

i<j i<j i<j 

= X | E [ ( W i Y ) 2 - W j Y ] | / 2 + X | E [ w , Y - ( W j Y ) 2 ] | / 2 + 
i < j i < j 

X | E [ ( W i Y ) 2 • ( w j Y ) 2 ] - 2 E 2 [ ( w i Y ) - ( w J Y ) ] - E [ ( w , Y ) 2 ] E [ ( w J Y ) 2 ] | 

and 

A 9 p 0 ) V ^ / 3Cum(z i .Zj .Zj ) 
AWj = — - — = > Cum(z j . Z j . Z ; ) 12 + 

a w • •• d w • 
" W J 1<J J 

_, 3Cum(z : , z , , z j ) _ 3Cum(z t,z,,z-.,z-.) 
XCumCZi .Zj .Zj ) J J / 2 + XCumCZi .Zj .Zi .Zj ) ' ] ' J 

i<j ° w j i<j " W j 

= X E [ ( w i Y ) 2 • w J Y ' ] E [ ( w i Y ) 2 Y ' ] / 2 + X E [ w i Y • (w jY)2] • E [ ( W i Y ) • (w j Y ) Y ' ] / 2 

+ X { E [ ( W i Y ) 2 - (w j Y ) 2 ] - 2 E 2 [ ( W i Y ) ( w ;Y )] - E [( w , Y ) 2 ]E [( w >Y )2 ]} • 
i< j 

{2E[(w;Y)2 • (w jY)Y'] - 4E[(w;Y) • (WjY)] E[(w;Y)Y']- 2 E [ ( W ; Y ) 2 ] E[(wjY)Y']} 

Wj(k+1) = Wj(k) + aAwj. 
where a is a small learning rate, and is adjusted adaptively. 

To compute the j- th component, j > 1, we need to calculate 3*j - 3 terms of joint 
cumulants. 

5.2. Simplified Approach 

We can reduce calculation with simplified joint cumulant combination. The penalty 
function can be slightly modified to: 

J P ( z 1 , z 2 , . . . , z k ) = ]T |Cum(z .,Zj,zk)\+ X | C u m ( z i » z ; » z * » z * ) | 
i,j < k i,j,fi < k 
i,j,kEsm hj,j,keSe 

To extract the k-th component, we reduce joint terms by choosing i, j , h with minimal 
but essential terms in sm and s0. sm and s0 are sets of possible combinations for z ; , z2, 
..., zk in the 3rd and 4th joint cumulants. 

The initial approach involves a lot of calculation on the joint cumulants and their 
derivatives. The simplified approach is introduced to reduce the calculation, with a 
looser condition: we only calculate minimal but essential terms of joint cumulants. All 
components appear only once in the joint cumulant terms of the same order. Although 
there is no mathematical proof of this independence criterion, experiments show the 
results are as good as initial approach, with shorter convergence time. 

We still use the gradient descent method to calculate separation matrix W, and the 
independent components are again computed one by one. The first two components are 
computed in the same way as the initial approach because there is no difference in these 
two cases. For other components, we use the 7th component as an example. 



30 

C7i = Cum(zi, z2, z7) = E(ziZ2z7) 
. 3Cum ( z ! , z 2 , z 7 ) „[V v , , i , . . l 

Aw71 = J; ' l '' = E[(w!Y • w 2 Y ) Y J 
dw 7 

C72 = Cum(z3, z4, z7) = E(z3z4z7) 
3 Cum (z 3, z 4 , z 7 ) [V v W n 

A w 72 = r-^ — = E |_(w 3 Y • w 4 Y _) Y J 
dw 7 

C73 = Cum(z5, z6, z7) = E(z5z6z7) 
3Cum ( z 5 , z 6 , z 7 ) [, v W ' l 

Aw73 = ^ — 6 ^ = E[(w5Y w 6 Y ) Y J 
C74 = Cum[z1,z2,z3,z7] = E(ziz2z3z7) - E(ziZ2)E(z3z7) - E(z!Z3)E(z2z7) - E(z!Z7)E(z2z3) 

_ 3 C u m ( z 1 , z 2 , z 3 , z 7 ) 
AW 7 4 -

dw 7 

= E [ ( w 1 Y ) - ( w 2 Y ) - ( w 3 Y ) Y ' ] - E [ ( w ,Y ) • (w 2 Y )] E[(w 3 Y ) Y ] -

E[(w 1 Y)-(w 3 Y)]E[ (w 2 Y ) Y ' ] - E [ ( w 2 Y ) • (w 3Y)] E[(w , ¥ ) ¥ " ] 

C75 = Cum[z4,z5,z6,z7] = E(z4z5z6z7) - E(z4z5)E(z6z7) - E(z4z6)E(z5z7) - E(z4z7)E(z5z6) 
. 3Cum ( z 4 , z 5 , z 6 , z 7 ) 
A w 75 = ^-^——— — 

dw 7 

= E [ ( w 4 Y ) - ( w 5 Y ) - ( w 6 Y ) Y ' ] - E [ ( w 4 Y ) • (w 5 Y )] E[(w 6 Y)Y ] -

-E[(w 4 Y)- (w 6 Y)]E[ (w 5 Y ) Y ' ] - E [ ( w 5 Y) • (w 6Y)] E[(w 4Y)Y' ] 

Aw7 = C71Aw71 + C7 2Aw7 2 + C7 3Aw7 3 + C7 4Aw7 4 + C75Aw75 

w7(k+l) = w7(k) + a Aw7. 
Other components can be extracted in a similar manner. To extract the m-th 

component, there are usually ceil[(m-l)/2] + ceil[(m-l)/3] terms in calculating Aw. 
ceil() is defined as an operation rounding to the nearest larger integer. For the 7th 
component, it has 3*7-3 = 18 terms in initial approach, compared to ceil[(7-l)/2] + 
ceil[(7-l)/3] = 5 terms in simplified approach. Because of the similarity of each term, 
all derivation and calculation can be done automatically in computer. 

The stopping criterion for the algorithm is chosen such that the iteration continues 
until the penalty function drops below 0.005. 

It is important to note that our algorithm is very different from that of Cardoso 
[30] which uses the likelihood contrast and a class of Jacobi algorithms for 
optimization. Our method was motivated by the fixed point approach of Oja et al.[21] 

6. Concluding Remarks 

While we are looking for "magic" transforms, either through iterative or non-iterative 
procedures, that can provide us the desired characteristic, be it effective 
representation, compression or discrimination, we have to be realistic that such 
transform may not exist. 

Preprocessing and image modeling can be very useful to achieve a better 
transform. By representing the spatial dependence with a Gaussain Markov random 
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field, and the PCA dimensionality reduction, the resulting transform can be much more 
effective for classification [33]. The drawback is that a significant amount of 
computation is required. 

We did not discuss the linear wavelet transform and related transforms since the 
topic is well examined in chapters in this volume. However, it is worth to note that 
nonlinear wavelet transforms can also be powerful transforms. Indeed there are many 
potentials for new and more effective transforms in the foreseeable future for remote 
sensing, as we constantly seek for better information processing techniques. 
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Automatic content extraction, classification and content-based retrieval are highly 
desired goals in intelligent remote sensing databases. Pixel level processing has 
been the common choice for both academic and commercial systems. We extend 
the modeling of remotely sensed imagery to three levels: Pixel level, region level 
and scene level. Pixel level features are generated using unsupervised clustering of 
spectral values, texture features and ancillary data like digital elevation models. 
Region level features include shape information and statistics of pixel level feature 
values. Scene level features include statistics and spatial relationships of regions. 
This chapter describes our work on developing a probabilistic visual grammar 
to reduce the gap between low-level features and high-level user semantics, and 
to support complex query scenarios that consist of many regions with different 
feature characteristics. The visual grammar includes automatic identification of 
region prototypes and modeling of their spatial relationships. The system learns 
the prototype regions in an image collection using unsupervised clustering. Spa
tial relationships are represented by fuzzy membership functions. The system 
automatically selects significant relationships from training data and builds vi
sual grammar models which can also be updated using user relevance feedback. A 
Bayesian framework is used to automatically classify scenes based on these mod
els. We demonstrate our system with query scenarios that cannot be expressed 
by traditional region or scene level approaches but where the visual grammar 
provides accurate classifications and effective retrieval. 

1. I n t r o d u c t i o n 

Remotely sensed imagery has become an invaluable tool for scientists, governments, 

military, and the general public to understand the world and its surrounding en

vironment. Automat ic content extraction, classification and content-based retrieval 

are highly desired goals in intelligent remote sensing databases. Most of the cur

rent systems use spectral information or texture features as the input for statistical 

classifiers tha t are built using unsupervised or supervised algorithms. The most 

commonly used classifiers are the minimum distance classifier and the maximum 

likelihood classifier with a Gaussian density assumption. Spectral signatures and 
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texture features do not always map conceptually similar patterns to nearby lo
cations in the feature space and limit the success of minimum distance classifiers. 
Furthermore, these features do not always have Gaussian distributions so maximum 
likelihood classifiers with this assumption fail to model the data. Image retrieval sys
tems also use spectral or texture features2 to index images and then apply distance 
measures3 in these feature spaces to find similarities. However, there is a large se
mantic gap between the low-level features and the high-level user expectations and 
search scenarios. 

Pixel level processing has been the common choice for both academic and com
mercial land cover analysis systems where classifiers have been applied to pixel 
level measurements. Even though most of the proposed algorithms use pixel level 
information, remote sensing experts use spatial information to interpret the land 
cover. Hence, existing systems can only be partial tools for sophisticated analy
sis of remotely sensed data where a significant amount of expert involvement be
comes inevitable. This motivated the research on developing algorithms for region-
based analysis with examples including conceptual clustering,38 region growing9 

and Markov random field models34 for segmentation of natural scenes; hierar
chical segmentation for image mining;41 rule-based region classification for flood 
monitoring;20 region growing for object level change detection;13 boundary delin
eation of agricultural fields;32 and task-specific region merging for road extraction 
and vegetation area identification.42 

Traditional region or scene level image analysis algorithms assume that the re
gions or scenes consist of uniform pixel feature distributions. However, complex 
query scenarios and image scenes of interest usually contain many pixels and regions 
that have different feature characteristics. Furthermore, two scenes with similar re
gions can have very different interpretations if the regions have different spatial 
arrangements. Even when pixels and regions can be identified correctly, manual 
interpretation is necessary for studies like landing zone and troop movement plan
ning in military applications and public health and ecological studies in civil ap
plications. Example scenarios include studies on the effects of climate change and 
human intrusion into previously uninhabited tropical areas, and relationships be
tween vegetation coverage, wetlands and habitats of animals carrying viruses that 
cause infectious diseases like malaria, West Nile fever, Ebola hemorrhagic fever and 
tuberculosis.12'30 Remote sensing imagery with land cover maps and spatial analysis 
is used for identification of risk factors for locations to which infections are likely 
to spread. To assist developments in new remote sensing applications, we need a 
higher level visual grammar to automatically describe and process these scenarios. 

Insightful Corporation's VlSlMlNE system17'18 supports interactive classifica
tion and retrieval of remotely sensed images by modeling them on pixel, region and 
scene levels. Pixel level characterization provides classification details for each pixel 
with regard to its spectral, textural and ancillary (e.g. DEM or other GIS layers) 
attributes. Following a segmentation process that computes an approximate poly-
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gon decomposition of each scene, region level features describe properties shared 
by groups of pixels. Scene level features describe statistical summaries of pixel and 
region level features, and the spatial relationships of the regions composing a scene. 
This hierarchical scene modeling bridges the gap between feature extraction and se
mantic interpretation. ViSlMlNE also provides an interactive environment for train
ing customized semantic labels from a fusion of visual attributes. 

Overviews of different algorithms in VISIMINE were presented in our recent 
papers.26 '25 '23 '24 '19 '17 '16 '18 This chapter describes our work on developing a proba
bilistic visual grammar4 for scene level image mining. Our approach includes learn
ing prototypes of primitive regions and their spatial relationships for higher-level 
content extraction, and automatic and supervised algorithms for using the visual 
grammar for content-based retrieval and classification. 

Early work on spatial relationships of regions in image retrieval literature in
cluded the VisualSEEk project37 where Smith and Chang used representative col
ors, centroid locations and minimum bounding rectangles to index regions, and 
computed similarities between region groups by matching them according to their 
colors, absolute and relative locations. Berretti et al.5 used four quadrants of the 
Cartesian coordinate system to compute the directional relationship between a pixel 
and a region in terms of the number of pixels in the region that were located in 
each of the four quadrants around that particular pixel. Then, they extended this 
representation to compute the relationship between two regions using a measure of 
the number of pairs of pixels in these regions whose displacements fell within each 
of the four directional relationships. Centroids and minimum bounding rectangles 
are useful when regions have circular or rectangular shapes but regions in natural 
scenes often do not follow these assumptions. 

Previous work on modeling of spatial relationships in remote sensing applications 
utilized the concept of spatial association rules. Spatial association rules15,24 repre
sent topological relationships between spatial objects, spatial orientation and order
ing, and distance information. A spatial association rule is of the form X —> Y(c%), 
where X and Y are sets of spatial or non-spatial predicates and c% is the confidence 
of the rule. An example spatial association rule is prevalent-endmember(x, concrete) 
A texture-class(x,c\) —> close-to(x,coastline) (60%). This rule states that 60% of re
gions where concrete is the prevalent endmember and that texture features belong 
to class C\ are close to a coastline. Examples of spatial predicates include topological 
relations such as intersect, overlap, disjoint, spatial orientations such as left-of and 
west-of, and distance information such as close-to or far-away. 

Similar work has also been done in the medical imaging area but it usually re
quires manual delineation of regions by experts. Shyu et al.3e developed a content-
based image retrieval system that used features locally computed from manually 
delineated regions. Neal et al.2S developed topology, part-of and spatial associa
tion networks to symbolically model partitive and spatial adjacency relationships 
of anatomical entities. Tang et al.39'40 divided images into small sub-windows, and 
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trained neural network classifiers using color and Gabor texture features computed 
from these sub-windows and the labels assigned to them by experts. These classi
fiers were then used to assign labels to sub-windows in unknown images, and the 
labels were verified using a knowledge base of label spatial relationships that was 
created by experts. Petrakis and Faloutsos29 used attributed relational graphs to 
represent features of objects and their relationships in magnetic resonance images. 
They assumed that the graphs were already known for each image in the database 
and concentrated on developing fast search algorithms. Chu et al.7 described a 
knowledge-based semantic image model to represent image objects' characteristics. 
Graph models are powerful representations but are not usable due to the infeasibil-
ity of manual annotation in large databases. Different structures in remote sensing 
images have different sizes so fixed sized grids cannot capture all structures either. 

Our work differs from other approaches in that recognition of regions and de
composition of scenes are done automatically, and training of classifiers requires 
only a small amount of supervision in terms of example images for classes of in
terest. The rest of the chapter is organized as follows. An overview of hierarchical 
scene modeling is given in Sec. 2. The concept of prototype regions is defined in 
Sec. 3. Spatial relationships of these prototype regions are described in Sec. 4. Al
gorithms for image retrieval and classification using the spatial relationship models 
are discussed in Sees. 5 and 6, respectively. Conclusions are given in Sec. 7. 

2. Hierarchical Scene Modeling 

In VISIMINE, we extend the modeling of remotely sensed imagery to three levels: 
Pixel level, region level and scene level. Pixel level representations include land cover 
labels for individual pixels (e.g. water, soil, concrete, wetland, conifer, hardwood). 
Region level representations include shape information and labels for groups of 
pixels (e.g. city, residential area, forest, lake, tidal flat, field, desert). Scene level 
representations include interactions of different regions (e.g. forest near a water 
source, city surrounded by mountains, residential area close to a swamp). This 
hierarchical scene representation aims to bridge the gap between data and high-
level semantic interpretation. 

The analysis starts from raw data. Then, features are computed to build classi
fication models for information fusion in terms of structural relationships. Finally, 
spatial relationships of these basic structures are computed for higher level model
ing. Levels of the representation hierarchy are described below. 

2.1. Raw Data 

The lowest level in the hierarchy is the raw data. This includes multispectral data 
and ancillary data like Digital Elevation Models (DEM) or GIS layers. Examples 
are given in Figs. l (a)- l(b) . 



39 

2.2. Features 

Feature extraction is used to achieve a higher level of information abstraction and 
summarization above raw data. To enable processing in pixel, region and scene 
levels, we use the following state-of-the-art feature extraction methods: 

• Pixel level features: 

(1) Statistics of multispectral values, 
(2) Spectral unmixing for surface reflectance (spectral mixture analysis),25 

(3) Gabor wavelet features for microtexture analysis,22 

(4) Gray level co-occurrence matrix features for microtexture analysis,10 

(5) Laws features for microtexture analysis,21 

(6) Elevation, slope and aspect computed from DEM data, 
(7) Unsupervised clustering of spectral or texture values. 

• Region level features: 

(1) Segmentation to find region boundaries (a Bayesian segmentation al
gorithm under development at Insightful, a hierarchical segmentation 
algorithm,41 and a piecewise-polynomial multiscale energy-based re
gion growing segmentation algorithm14), 

(2) Shape information as area, perimeter, centroid, minimum bounding 
rectangle, orientation of the principal axis, moments, and roughness 
of boundaries, 

(3) Statistical summaries (relative percentages) of pixel level features for 
each region. 

• Scene level features: 

(1) Statistical summaries of pixel and region level features for each scene, 
(2) Spatial relationships of regions in each scene. 

VlSlMiNE provides a flexible tool where new feature extraction algorithms can 
be added when new data sources of interest are available. Examples for pixel level 
features are given in Figs. l(c)-l(h). Example region segmentation results are given 
in Figs. 2(a) and 2(c). 

2.3. Structural Relationships 

We use a Bayesian label training algorithm with naive Bayes models35 to perform 
fusion of multispectral data, DEM data and the extracted features. The Bayesian 
framework provides a probabilistic link between low-level image feature attributes 
and high-level user defined semantic structure labels. The naive Bayes model uses 
the conditional independence assumption and allows the training of class-conditional 
probabilities for each attribute. Training for a particular semantic label is done using 
user labeling of pixels or regions as positive or negative examples for that particular 
label under training. Then, the probability of a pixel or region belonging to that 
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(a) LANDSAT (b) DEM data (c) 15 clusters for (d) 15 clusters for 
data spectral values Gabor features 

(e) 15 clusters for (f) Spectral mix- (g) Aspect from (li) Slope from 
co-occurrence fea- ture analysis DEM DEM 
tures 

Fig. 1. Raw data and pixel level feature examples for Vancouver, British Columbia. Images in 
l(c)-l(f) show the cluster labels for each pixel after unsupervised clustering. Images in l(g)-l(h) 
show features computed from DEM data using 3 x 3 windows around each pixel. These pixel level 
features are used to compute structural relationships for image classification and retrieval. 

semantic class is computed as a combination of its attributes using the Bayes rule 
(e.g. probability of a region being a residential area given its spectral data, texture 
features and DEM data). Figures 2(b) and 2(d) show examples for labels assigned 
to regions using the maximum a posteriori probability rule. 

2.4. Spatial Relationships 

The last level in the hierarchy is scene modeling in terms of the spatial relationships 
of regions. Two scenes with similar regions can have very different interpretations if 
the regions have different spatial arrangements. Our visual grammar uses region la
bels identified using supervised and unsupervised classification, and fuzzy modeling 
of pairwise spatial relationships to describe high-level user concepts (e.g. border
ing, invading, surrounding, near, far, right, left, above, below). Fuzzy membership 
functions for each relationship are constructed based on measurements like region 
perimeters, shape moments and orientations. When the area of interest consists of 
multiple regions, the region group is decomposed into region pairs and fuzzy logic 
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(a) (b) Region labels (c) (d) Region labels 
Bayesian segmen- for Seattle Bayesian segmen- for Vancouver 
tation for Seattle tation for Vancou

ver 

Fig. 2. Region level representation examples for Seattle, Washington and Vancouver, British 
Columbia. Segmentation boundaries are marked as white. Region labels are city (gray), field (yel
low), green park (lime), residential area (red) and water (blue). 

is used to combine the measurements on individual pairs. 
Combinations of pairwise relationships enable creation of higher level structures 

that cannot be modeled by individual pixels or regions. For example, an airport 
consists of buildings, runways and fields around them. An example airport scene 
and the automatically recognized region labels are shown in Fig. 3. As discussed 
in Sec. 1, other examples include a landing zone scene which may be modeled in 
terms of the interactions between flat regions and surrounding hills, public health 
studies to find residential areas close to swamp areas, and environmental studies to 
find forests near water sources. The rest of the chapter describes the details of the 
visual grammar. 

(a) LANDSAT (b) Airport (c) Region labels 
image zoomed 

Fig. 3. Modeling of an airport scene in terms of the interactions of its regions. Region labels 
are dry grass (maroon), buildings and runways (gray), field (yellow), residential area (red), water 
(blue). 
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3. Prototype Regions 

The first step to construct a visual grammar is to find meaningful and representa
tive regions in an image. Automatic extraction of regions is required to handle large 
amounts of data. To mimic the identification of regions by experts, we define the 
concept of prototype regions. A prototype region is a region that has a relatively 
uniform low-level pixel feature distribution and describes a simple scene or part of 
a scene. Spectral values or any pixel-level feature listed in Sec. 2.2 can be used for 
region segmentation. Ideally, a prototype is frequently found in a specific class of 
scenes and differentiates this class of scenes from others. In addition, using proto
types reduces the possible number of associations between regions and makes the 
combinatorial problem of region matching more tractable. (This will be discussed 
in detail in Sees. 5 and 6.) 

VlSlMlNE uses unsupervised fc-means and model-based clustering to automate 
the process of finding prototypes. Before unsupervised clustering, image segmen
tation is used to find regions in images. Interesting prototypes in remote sensing 
images can be cities, rivers, lakes, residential areas, tidal flats, forests, fields, snow, 
clouds, etc. Figure 4 shows example prototype regions for different LANDSAT im
ages. The following sections describe the algorithms to find prototype regions in an 
image collection. 

3.1. K-means Clustering 

iiT-means clustering8 is an unsupervised algorithm that partitions the input sample 
into k clusters by iteratively minimizing a squared-error criterion function. Clusters 
are represented by the means of the feature vectors associated with each cluster. 

In fc-means clustering the input parameter k has to be supplied by the user. 
Once the training data is partitioned into k groups, the prototypes are represented 
by the cluster means. Then, Euclidean distance in the feature space is used to match 
regions to prototypes. The degree of match, r^, between region i and prototype j 
is computed as 

T = i 1 l f j = a rSm i n*=l ,- . . , fe | l x i -MtH 2 /JN 

1 0 otherwise 

where Xj is the feature vector for region i and pit is the mean vector for cluster t. 

3.2. Model-based Clustering 

Model-based clustering8 is also an unsupervised algorithm to partition the input 
sample. In this case, clusters are represented by parametric density models. Para
metric density estimation methods assume a specific form for the density function 
and the problem reduces to finding the estimates of the parameters of this specific 
form. However, the assumed form can be quite different from the true density. On 
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(a) City (b) Residential 
area 

(c) Park (d) Lake 

(e) Fields (f) Tidal flat (g) Clouds and 
shadows 

(h) Glacier 

Fig. 4. Example prototype regions for different LANDSAT images. Segmentation boundaries are 
marked as green and prototype regions are marked as red. 

the other hand, non-parametric approaches usually require a large amount of train
ing data and computations can be quite demanding when the data size increases. 
Mixture models can be used to combine the advantages of both parametric and 
non-parametric approaches. In a mixture model with k components, the probability 
of a feature vector x is defined as 

k 

P(x) = ]Pa ip(x|j) (2) 

where ctj is the mixture weight and p(x||j) is the density model for the j'th com
ponent. Mixture models can be considered as semi-parametric models that are not 
necessarily restricted to a particular density form but also have a fixed number of 
parameters independent of the size of the data set. 

The most commonly used mixture model is the Gaussian mixture with the com
ponent densities defined as 

P(*li) = ,n w ^ n / , e - ^ ^ J 1 ^ ) / 2 (3) 
( 2 T T ) 5 / 2 | S J 

1/2 

where [J,A is the mean vector and S3- is the covariance matrix for the j ' t h com-
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ponent respectively, and q is the dimension of the feature space, x G M.g. The 
Expectation-Maximization (EM) algorithm27 can be used to estimate the param
eters of a mixture. The EM algorithm first finds the expected value of the data 
log-likelihood using the current parameter estimates (expectation step). Then, the 
algorithm maximizes this expectation (maximization step). These two steps are re
peated iteratively. Each iteration is guaranteed to increase the log-likelihood and the 
algorithm is guaranteed to converge to a local maximum of the likelihood function.27 

The iterations for the EM algorithm proceed by using the current estimates 
as the initial estimates for the next iteration. The fc-means algorithm can be used 
to determine the initial configuration. The mixture weights are computed from 
the proportion of examples belonging to each cluster. The means are the cluster 
means. The covariance matrices are calculated as the sample covariance of the points 
associated with each cluster. Closed form solutions of the EM algorithm for different 
covariance structures6,1 are given in Table 1. As a stopping criterion for the EM 
algorithm, we can use a threshold for the number of iterations or we can stop if the 
change in log-likelihood between two iterations is less than a threshold. 

Table 1. Solutions of the Expectation-Maximization algorithm for a 

mixture of k Gaussians. x i , . . . , x n are training feature vectors inde

pendent and identically distributed with p(x) as defined in Eq. (2). 

Covariance structures used are: S j = a2J, all components having the 

same spherical covariance matrix; Hj = <r2I, each component having 

an individual spherical covariance matrix; E j = diag({<T2
t}j=1), each 

component having an individual diagonal covariance matrix; S3- = S , 

each component having the same full covariance matrix; S j , each 

component having an individual full covariance matrix. 

Variable Estimate 

nfilx-l °jP(*ilJ) 

&. E i = i P ( i l * i ) 

,-. E i = i pQ'l*i)*i 
M J E ? = 1 p 0 1 x i ) 
£ . _ £.2j £2 _ Ej=l E"=l PU\xi)(xj-fij)T(xi-iij) 

3 nq 
»2T -2 _ E"=iPO|x i)(x i-/t. j)

T(x i-£.?-) 
3~ i °i~ 9E?= iP(j |xi) 

.2 19 \ A2 _ E r = l P 0 | x j ) ( x i t - A j t )
2 

S,=diag({afJ?=l) * j t = ^ = 1 g ^ | V 
s j , _ E J = i E " = i P 0 > i ) ( x i - £ 3 ) ( x i - £ 3 ) , J 

n 
•e, f „ v — Er=lP0'lxi)(xi-A3)(xj-/l3) 

^ j ~ E?=1PO>-») 

Vj 

The number of components in the mixture can be either supplied by the 
user or chosen using optimization criteria like the Minimum Description Length 
Principle.31,1 Once the mixture parameters are computed, each component corre
sponds to a prototype. The degree of match, r^ , between region i and prototype j 
becomes the posterior probability r^ = p(j\xi). The maximum a posteriori proba-
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bility (MAP) rule is used to match regions to prototypes where region i is assigned 
to prototype j * as 

j * = arg max p(j|xi) 
j=i,...,fc 

= arg max ajp(xi\j) 
j=l,...,k 

(4) 
= arg max log(ajp(xj|j)) ' 

j=l,...,k 

= arg max^ j log ay - - log |Ej-| - - ( X i - i x , , - ) 7 ^ 1 ^ - /x.,) I . 

4. Region Relationships 

After the regions in the database are clustered into groups of prototype regions, 
the next step in the construction of the visual grammar is modeling of their spatial 
relationships. The following sections describe how relationships of region pairs and 
their combinations can be computed to describe high-level user concepts. 

4.1. Second-order Region Relationships 

Second-order region relationships consist of the relationships between region pairs. 
These pairs can occur in the image in many possible ways. However, the regions of 
interest are usually the ones that are close to each other. Representations of spatial 
relationships depend on the representations of regions. VlSlMlNE models regions by 
their boundary pixels and moments. Other possible representations include mini
mum bounding rectangles,37 Fourier descriptors33 and graph-based approaches.29 

The spatial relationships between all region pairs in an image can be represented 
by a region relationship matrix. To find the relationship between a pair of regions 
represented by their boundary pixels and moments, we first compute 

• perimeter of the first region, m 
• perimeter of the second region, TTJ 
• common perimeter between two regions, iTij 
• ratio of the common perimeter to the perimeter of the first region, r^ = — 
• closest distance between the boundary pixels of the first region and the bound

ary pixels of the second region, dij 
• centroid of the first region, v\ 
• centroid of the second region, Vj 
• angle between the horizontal (column) axis and the line joining the centroids, 

dij 

where i,j € { 1 , . . . , n} and n is the number of regions in the image. 
The distance d\j is computed using the distance transform.11 Given a particular 

region A, to each pixel that is not in A, the distance transform assigns a number 
that is the spatial distance between that pixel and A. Then, the distance between 
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region A and another region B is the smallest distance transform value for the 
boundary pixels of B. The angle dij is computed as 

{arccos ( v%c
d
 Vjc J if vir > Ujr 

— arccos ( Vic^c ) otherwise 
(5) 

where Vir and Vic are the row and column coordinates of the centroid of region i, 
respectively (see Fig. 5 for illustrations). Then, the n x n region relationship matrix 
is defined as 

R = {{nj,dij,%} \i,j = l,...,n,Vi^j}. (6) 

r* 
Fig. 5. Orientation of two regions is computed using the angle between the horizontal (column) 
axis and the line joining their centroids. In the examples above, $ij is the angle between the c-axis 
and the line directed from the second centroid Vj to the first centroid v%. It is used to compute 
the orientation of region i with respect to region j . 9ij increases in the clockwise direction, in this 
case 024 < 0 < 043 < 0 3 1 < 0x2. 

One way to define the spatial relationships between regions i and j is to use crisp 
(Boolean) decisions about r^, dij and 0y. Another way is to define them as relation
ship classes.33 Each region pair can be assigned a degree of their spatial relationship 
using fuzzy class membership functions. Denote the class membership functions by 
flc with c e {DIS, BOR, INV, SUR, NEAR, FAR, RIGHT, LEFT, ABOVE, BELOW} cor
responding to disjoined, bordering, invaded-by, surrounded-by, near, far, right, left, 
above and below, respectively. Then, the value flc(rij,dij,$ij) represents the degree 
of membership of regions i and j to class c. 

Among the above, disjoined, bordering, invaded-by and surrounded-by are 
perimeter-class relationships, near and far are distance-class relationships, and 
right, left, above and below are orientation-class relationships. These relationships 
are divided into sub-groups because multiple relationships can be used to describe 
a region pair, e.g. invaded-by from left, bordering from above, and near and right, 
etc. Illustrations are given in Fig. 6. 

For the perimeter-class relationships, we use the perimeter ratios r^ with the 
following trapezoid membership functions: 
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** t c 
Brown DISJOINED Brown BORDERING 

with blue blue 
Brown INVADED Brown SURROUNDED 

BY blue BY blue 

(a) Perimeter-class relationships: disjoined, bordering, invaded-by and surrounded-by 

• 

* 

0 
Green NEAR 

blue 
Green FAR 
from blue 

(b) Distance-class relationships: near and 
far 

Brown on the 
RIGHT of green 

Brown on the 
LEFT of green 

Brown ABOVE 
green 

Brown BELOW 
green 

(c) Orientation-class relationships: right, left, above and below 

Fig. 6. Spatial relationships of region pairs. 

disjoined: 

Oois(ry) = < . 
0 otherwise. 

(7) 
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• bordering: 

^ B O R ( ^ i ) 

if 0 < rij < 0.40 
. 2 0 , 

1 3 ' l J + 15 if 0.40 < rtj < 1 

otherwise. 

(8) 

invaded-by: 

ftlNvfcj) — < 

10ry - 4 

1 

3 '*J ' 3 

0 

surrounded-by. 

^ S U R ^ i j ) = 

' 2 0 _ 16 
3 ' l J 3 

< 1 

0 

if 0.40 < nj < 0.50 

if 0.50 < rtj < 0.80 

if 0.80 < nj < 1 

otherwise. 

if 0.80 < nj < 0.95 

if 0.95 < rij < 1 

otherwise. 

(9) 

(10) 

These functions are shown in Fig. 7(a). The motivation for the choice of these 
functions is as follows. Two regions are disjoined when they are not touching each 
other. They are bordering each other when they have a common perimeter. When 
the common perimeter between two regions gets closer to 50%, the larger region 
starts invading the smaller one. When the common perimeter goes above 80%, the 
relationship is considered an almost complete invasion, i.e. surrounding. 

For the distance-class relationships, we use the perimeter ratios r^, distances be
tween region boundaries dij and sigmoid membership functions with the constraint 
^NEAR(T"JJ, dij) + flp^R(rij, d^) = 1. The membership functions are defined as: 

• near: 

far: 

a NEAR \rij j dij ) -<*(dij-P) 

•1+e- Adu-P) 

if rij > 0 

otherwise. 
(11) 

^FAR(rij, dij) 
0 if r^ > 0 

otherwise. 
(12) 

^ i+e-
a(.dij-0) 

These functions are shown in Fig. 7(b). 0 is the parameter that determines the 
cut-off value when a region becomes more far than near, and a is the parameter 
that determines the crispness of the function. We first choose /3 to be a quarter of 
the image width, i.e. j3 — 0.25w where w is the image width, and then choose a to 
give a far fuzzy membership value less than 0.01 at distance 0, i.e. 1+

1
ea/i < 0-01 =>• 

a > log(99)//J. 
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DISJOINED 
BORDERING 
INVADED BY 
SURROUNDED BY 

200 300 400 500 

Distance 

(a) Perimeter-class spatial relationships (b) Distance-class spatial relationships 

\ " \ / 
\ / / 

' •' ' / 

\ 

\ 

— 

/'-•-

ABOVE 
LEFT 
BELOW 

\ 

\ / 
W 

A 
-3 -2 

(c) Orientation-class spatial relationships 

Fig. 7. Fuzzy membership functions for pairwise spatial relationships. 

For the orientation-class relationships, we use the angles fty and truncated cosine 
membership functions with the constraint BRIGHT(@ij) + ^ L E F T ( % ) + ^ABOVE(%) + 
^BEiow(Sij) — 1. The membership functions are defined as: 

• right: 

O ((t f^f^l if - TT/2 < % < TT/2 
BRIGHT (% J = < x , 

0 otherwise. 

(13) 

• left: 

^LEFT(%) — 

l+cos(2g i j ) 
2 if - 7r < 9ij < -7r/2 or 7r/2 < % < ix 

otherwise. 
(14) 
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• above: 

• below: 

fiABOVE(%)^ 2 * < ^ < 0 ( 1 5 ) 

0 otherwise. 

{ 1 — COs(2#i,-) -r n . a . 

^ T ^ rf0<6»y<. ( 1 6 ) 
0 otherwise. 

These functions are shown in Fig. 7(c). 

Note tha t the pairwise relationships are not always symmetric, 

I.e. i ̂ cyij , &ij , Oij) is not necessarily equal to Q,c{rji,dji,9ji). Furthermore, some 

relationships are stronger than others. For example, surrounded-by is stronger than 

invaded..by, and invaded.by is stronger than bordering, e.g. the relationship "small 

region invadedJby large region" is preferred over the relationship "large region bor

dering small region". The class membership functions are chosen so tha t only one 

of them is the largest for a given set of measurements r ^ , dij, 9ij. We label a region 

pair as having the perimeter-class, distance-class and orientation-class relationships 
c\j = arg max fic [r^, <%, % ) 

c6{DIS,BOR,INV,SUR} 
cfj = arg max f2c(r i j , dtj, 6^) tyj\ 

ce{NEAR,FAR} ^ ; 

cf • = arg max fic ( r ^ , d^, 0y) 
c£{RIGHT,LEFT,ABOVE,BELOW} 

with the corresponding degrees 

P% = n.tin^dij^ij), t = 1,2,3. (18) 

4 .2 . Higher-order Region Relationships 

Higher-order relationships (of region groups) can be decomposed into multiple 

second-order relationships (of region pairs). Therefore, the measures defined in the 

previous section can be computed for each of the pairwise relationships and can 

be combined to measure the combined relationship. The equivalent of the Boolean 

"and" operation in fuzzy logic is the "min" operation. For a combination of k re

gions, there are (2) = ^ ̂  ' pairwise relationships. Therefore, the relationship 

between these k regions can be represented as lists of Q) pairwise relationships 

using Eq. (17) as 

ct
1...k = {ct

ij\i,j = l,...,k,Vi<j}, 4 = 1 ,2,3 (19) 

with the corresponding degrees computed using Eq. (18) as 

/>i...fc = . min p%, * = 1 ,2 ,3 . (20) 
i,]=l,...,k J 

i<j 
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Example decompositions are given in Fig. 8. These examples show scenarios 
that cannot be described by conventional region or scene level image analysis al
gorithms which assume the regions or scenes consist of pixels with similar feature 
characteristics. 

5. Image Retrieval 

To use the automatically built visual grammar models for image mining, users can 
compose queries for complex scene scenarios by giving a set of example regions or 
by selecting an area of interest in a scene. VlSlMlNE encodes and searches for a 
query scene with multiple regions using the visual grammar as follows: 

(1) Let k be the number of regions selected by the user. Find the prototype label 
for each of the k regions. 

(2) Find the perimeter ratio, distance and orientation for each of the {^) possible 
region pairs. 

(3) Find the spatial relationship and its degree for these k regions using Eqs. (19) 
and (20). Denote them by c* = {c*-|i,j = 1 , . . . , k, Vz < j}, t = 1,2,3 and 
j5t, t = 1,2,3, respectively. 

(4) For each image in the database, 

(a) For each query region, find the list of regions with the same prototype label as 
itself. Denote these lists by Ui,i = 1 , . . . , k. These regions are the candidate 
matches to query regions. Using previously defined prototype labels simplifies 
region matching into a table look-up process instead of expensive similarity 
computations between region features. 

(b) Rank region groups (u\, u?,..., Uk) € U\ x Ui x • • • x Uk according to the 
distance 

= l , z , 3 t = J L , z , 3 2,_7 = l , . . . , /c J 
i<3 

or alternatively according to 

max max 
t=l ,2 ,3 i , j = l,...,fe 

Pij ^ ^c* -VUiUj 5 ("UiUj 5 "uiUj ) 

(21) 

(22) 

(c) The equivalent of the Boolean "or" operation in fuzzy logic is the "max" 
operation. To rank image tiles, use the distance 

min p — max 
4 = 1 , 2 , 3 (u1,u2,...,uk)e (_* 

UiXl/2X---XUk 

or alternatively the distance 

min min fL* (ru.u.,cL.u.,8u.u.) 
= 1,2,3 i 7 = 1 . . . fc *i utu3i « i « j i utu3 j 

i<j 

(23) 

mm 
( u i , M 2 , - , " f c ) 6 
Ui x C/2 x • • • x Uk 



LANDSAT image of Seattle 

City is bordering water Park is near water 

(a) Relationships among residential area, city, park and water in a Seattle scene 

Forest is bordering 
water 

Forest is to the north 
of residential area 

Residential area is 
near water 

LANDSAT image of a forest 

(b) Relationships among forest, water and residential area in a forest scene 

Buildings and runways are Residential area is 
bordering dry grass field bordering dry grass field 

LANDSAT image of an airport 

Residential area is 
bordering 

buildings and runways 

(c) Relationships among buildings, runways, dry grass field and residential area, in 
an airport scene 

8. Example decomposition of scenes into relationships of region pairs. Segmentation bound-
are marked as white. 
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In some cases, some of the spatial relationships (e.g. above, right) can be too 
restrictive. The visual grammar also includes a DONT_CARE. relationship class that 
allows the user to constrain the searches based on the relationship groups he is 
interested in using the VISIMINE graphical user interface. Relevance feedback can 
also be used to find the most important relationship class (perimeter, distance or 
orientation) for a particular query. 

Example queries on a LANDSAT database covering Washington State in the 
U.S.A. and southern part of British Columbia in Canada are given in Figs. 9-13. 
Traditionally, queries that consist of multiple regions are handled by computing a 
single set of features using all the pixels in the union of those regions. However, 
this averaging causes a significant information loss because features of pixels in 
different regions usually correspond to different neighborhoods in the feature space 
and averaging distorts the multimodal characteristic of the query. For example, 
averaging features computed from the regions in these query scenes ignores the 
spatial organization of concrete, soil, grass, trees and water in those scenes. On the 
other hand, the visual grammar can capture both feature and spatial characteristics 
of region groups. 

g|ResuUSet 

Tile 1419 Tile 1603 Tile 1436 Tile 1420 Tile 1633 

0 00 011 0.29 0 31 0 40 

-JSJXJ 

0 - «J* \ M l 

Fig. 9. Search results for a scene where a residential area is bordering a city and both are bordering 
water, and a park is surrounded by a residential area and is also near water. Identified regions 
are marked by their minimum bounding rectangles. Decomposition of the query scene is given in 
Fig. 8(a). 

Fig. 10. Search results for a scene where a forest is bordering water and is also to the north of a 
residential area. Decomposition of the query scene is given in Fig. 8(b). 



Fig. 11. Search results for a scene where buildings, runways and their neighboring dry grass field 
are near a residential area. Decomposition of the query scene is given in Fig. 8(c). 

0.00 000 0.00 QUO 000 

Fig. 12. Search results for a scene where a lake is surrounded by tree covered hills. 

Fig. 13. Search results for a scene where a residential area and its neighboring park are both 
bordering water. 

6. Image Classification 

Image classification is defined here as a problem of assigning images to different 
classes according to the scenes they contain. Commonly used statistical classifiers 
require a lot of training data to effectively compute the spectral and textural signa
tures for pixels and also cannot do classification based on high-level user concepts 
because of the lack of spatial information. Rule-based classifiers also require sig
nificant amount of user involvement every time a new class is introduced to the 
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system. 

The visual grammar enables creation of higher level classes that cannot be mod
eled by individual pixels or regions. Furthermore, learning of these classifiers require 
only a few training images. We use a Bayesian framework that learns scene classes 
based on automatic selection of distinguishing (e.g. frequently occurring, rarely oc
curring) relations between regions. 

The input to the system is a set of training images that contain example scenes 
for each class defined by the user. Let s be the number of classes, m be the number 
of relationships defined for region pairs, k be the number of regions in a region 
group, and t be a threshold for the number of region groups that will be used 
in the classifier. Denote the classes by w\,... ,ws. VISIMINE automatically builds 
classifiers from the training data as follows: 

(1) Count the number of times each possible region group with a particular spa
tial relationship is found in the set of training images for each class. This is a 
combinatorial problem because the total number of region groups (unordered 
arrangements without replacement) in an image with n regions is (£) and the 
total number of possible relationships (unordered arrangements with replace
ment) in a region group is ( A2/ ). A region group of interest is the one 

(2) 

that is frequently found in a particular class of scenes but rarely exists in other 
classes. For each region group, this can be measured using class separability 
which can be computed in terms of within-class and between-class variances of 
the counts as 

^logfl + 4 ) (25) 

where a^y = J^i=i Vi\ar{zj | j G w{\ is the within-class variance, Vi is the 
number of training images for class Wi, Zj is the number of times this region 
group is found in training image j , a% = v a r { ^ -eiu. Zj\i = 1 , . . . , s} is the 
between-class variance, and var{-} denotes the variance of a sample. 

(2) Select the top t region groups with the largest class separability values. Let 
x\,...,xt be Bernoulli random variables for these region groups, where Xj = T 
if the region group Xj is found in an image and Xj = F otherwise. Let p(xj = 
T) = 8j. Then, the number of times Xj is found in images from class u>i has a 
Binomial(vi,0j) = ( ^ ^ ( l - 9j)Vi~~Vi:> distribution where Vij is the number 
of training images for Wi that contain Xj. The maximum likelihood estimate of 

becomes Jo 

v. p(xj=T\Wi) = -^. (26) 

Using a Beta(l, 1) distribution as the conjugate prior, the Bayes estimate for 
9j is computed as 

p(xj=T\wi) = ^±l. (27) 
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Using a similar procedure with Multinomial and Dirichlet distributions, the 
Bayes estimate for an image belonging to class Wi (i.e. containing the scene 
defined by class Wi) is computed as 

»M = 2 ^ 7 <»> 

In other words, discrete probability tables are constructed using Vi and Vij, 
i = 1 , . . . , s, j = 1 , . . . , t, and conjugate priors are used to update them when 
new images become available via relevance feedback. 

(3) For an unknown image, search for each of the t region groups (determine whether 
Xj = T or Xj = F, Vj) and compute the probability for each class using the 
conditional independence assumption as 

p(Wi,Xi,...,Xt) 
p{Wi X i , . . . , X t ) = - — 

P\x\,...,xt) 

= p{wi)p{x1,...,xt\wi) 

p(xi,...,xt) ^ > 

P(Wi) i lL lP(^ l W i ) 
p(xi,...,xt) 

Assign that image to the best matching class using the MAP rule as 

w* = axgma,xp(wi\xi,... ,xt) 
Wi 

* (30) 
= argmaxp(wi) TTp(x,|u;i). 

3=1 

Classification examples are given in Figs. 14-16. We used four training images 
for each of the classes defined as "clouds", "tree covered islands", "residential areas 
with a coastline", "snow covered mountains", "fields" and "high-altitude forests". 
These classes provide a challenge where a mixture of spectral, textural, elevation and 
spatial information is required for correct identification of the scenes. For example, 
pixel level classifiers often misclassify clouds as snow and shadows as water. On the 
other hand, the Bayesian classifier described above could successfully eliminate most 
of the false alarms by first recognizing regions that belonged to cloud and shadow 
prototypes and then verified these region groups according to the fact that clouds 
are often accompanied by their shadows in a LANDSAT scene. Other scene classes 
like residential areas with a coastline or tree covered islands cannot be identified 
by pixel level or scene level algorithms that do not use spatial information. The 
visual grammar classifiers automatically learned the distinguishing region groups 
that were frequently found in particular classes of scenes but rarely existed in other 
classes. 



57 

(a) Training images 

(b) Images classified as containing clouds 

Fig. 14. Classification results for the "clouds" class which is automatically modeled by the dis
tinguishing relationships of white regions (clouds) with their neighboring dark regions (shadows). 

7. Conclusions 

In this chapter we described a probabilistic visual grammar to automatically an
alyze complex query scenarios using spatial relationships of regions and described 
algorithms to use it for content-based image retrieval and classification. Our hier
archical scene modeling bridges the gap between feature extraction and semantic 
interpretation. The approach includes unsupervised clustering to identify prototype 
regions in images (e.g. city, residential, water, field, forest, glacier), fuzzy modeling 
of region spatial relationships to describe high-level user concepts (e.g. bordering, 
surrounding, near, far, above, below), and Bayesian classifiers to learn image classes 
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(a) Training images 

(b) Images classified as containing tree covered islands 

Fig. 15. Classification results for the "tree covered islands" class which is automatically modeled 
by the distinguishing relationships of green regions (lands covered with conifer and deciduous 
trees) surrounded by blue regions (water). 

based on automatic selection of distinguishing (e.g. frequently occurring, rarely oc
curring) relations between regions. 

The visual grammar overcomes the limitations of traditional region or scene 
level image analysis algorithms which assume that the regions or scenes consist of 
uniform pixel feature distributions. Furthermore, it can distinguish different inter
pretations of two scenes with similar regions when the regions have different spatial 
arrangements. We demonstrated our system with query scenarios that could not be 
expressed by traditional pixel, region or scene level approaches but where the visual 
grammar provided accurate classification and retrieval. 



(a) Training images 

(b) Images classified as containing residential areas with a coastline 

Fig. 16. Classification results for the "residential areas with a coastline" class which is automati
cally modeled by the distinguishing relationships of regions containing a mixture of concrete, grass, 
trees and soil (residential areas) with their neighboring blue regions (water). 

Future work includes using supervised methods to learn prototype models in 
terms of spectral, textural and ancillary GIS features; new methods for user assis
tance for updating of visual grammar models; automatic generation of metadata 
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for very large databases; and natura l language search support (e.g. "Show me an 

image tha t contains a city surrounded by a forest tha t is close to a water source."). 

Insightful Corporation's I N F A C T product is a natural language question answering 

platform for mining unstructured data . A V I S I M I N E - I N F A C T interface will be an 

alternative to the query-by-example paradigm by allowing natura l language-based 

searches on large remote sensing image archives. This will especially be useful for 

users who do not have query examples for particular scenes they are looking for, or 

when transfer of large image da ta is not feasible over slow connections. 
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Shape analysis has not been considered in remote sensing as extensively as in 
other pattern recognition applications. However, shapes such as those of 
geometric patterns in agriculture and irregular boundaries of lakes can be 
extracted from the remotely sensed imagery even at relatively coarse spatial 
resolutions. This chapter presents a procedure for efficiently retrieving and 
representing the shape of objects in remotely sensed imagery using supervised 
classification, object recognition, and parametric contour tracing. Using the 
piecewise linear polygonal approximation technique, shape similarity can be 
compared by means of a computationally efficient metric. Our study was 
conducted on a time series of radiometric and geometric rectified Landsat 
Multispectral Scanner (MSS) images and Thematic Mapper (TM) images, 
covering the scenes containing lakes in the Nebraska Sand Hills region. The 
results show the effectiveness of our approach in detecting changes in lake 
shapes, which is potentially useful for specific applications such as the study of 
the lake change response to short or long term climatic variation and drought 
monitoring. 

1. Introduction 

Shape retrieval and representation in remote sensing imagery have not received 
adequate attention as in other fields such as machine vision [1]. It is relatively 
easy to recognize the regular shapes, such as farm fields, which often appear as 
squares or rectangles, or highways or roads that are either straight or curved 
lines. However, irregular shapes such as lake boundaries tend to be scribbles and 
polygons without a set pattern. Recently, the point diffusion technique (PDT) [2], 
proposed to handle objects whose shape is not well defined and can be 
represented by set of sparse points, was applied to meteorological satellite images 
for fast and efficient shape similarity evaluation. Nevertheless, more attention 
needs to be given to the shape of the objects appearing in remotely sensed 
images. Shape analysis involves techniques such as image segmentation, object 
recognition, and contour extraction, etc. Other aspects that play an important role 
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in the algorithmic solutions are the approximation of shapes, the measurement of 
shape similarity, and the organization of shapes into search structures. An 
overview of fhe-state-of-art in shape analysis, classification, and similarity 
measure is given in [3] and [4]. Shape retrieval is generally carried out starting 
from an intermediate representation, typically involving the segmented image 
where the object shape has been located with special shape descriptors. Most 
popular image segmentation techniques are edge-based or region-based. 
Nevertheless, it is inherently difficult to extend differential methods to multi-
band remotely sensed images by computing the gradient of the vector field [5] to 
obtain the edges of the regions. A hierarchical segmentation algorithm based on 
region growing and spectral clustering techniques was proposed in [6]. However, 
its practical implementation needs large-scale parallel processing to achieve 
reasonable processing times. Although hybrid approaches to integration of edge 
and region data in image segmentation exists [7], we adopted a supervised 
classification approach using the spectral information in the multi-band images to 
delineate the objects of concern. 

Our study and analysis was conducted on a time series data set of radiometric 
and geometric rectified Landsat Multispectral Scanner (MSS) and Thematic 
Mapper (TM) images, covering scenes containing lakes in the Western Lakes 
Region of the Nebraska Sand Hills. The analysis of size, shape, and pattern of 
water-covered surfaces is potentially useful for flood and drought monitoring. 
MSS and TM images provide researchers with potentially unique chronological 
records that can be used to study surface water resources where no other 
hydrologic data exist. Buckwalter's [8] work stands as the original effort to 
monitor variations in the surface-water area of Sand Hills lakes. MSS data have 
been used to study the interrelationships between the timing of precipitation 
events and changes in the surface-water area of certain Sand Hills lakes [9], and 
to investigate the seasonal and interannual patterns of lake-size variability [10]. 
However, none of these studies addressed the issue of shape change of the lakes, 
which is important because lakes having little surface area variation may appear 
in much different shape and vice versa. Furthermore, the procedure for 
identifying and delineating surface water in these studies involves only simple 
level thresholding of the radiation signal in the near-infrared waveband, i.e., 
accepting scene pixels with low values while rejecting all others since the pixel 
value corresponding to water is typically low compared to other terrain features 
[11]. The challenge is to determine what specific level of the band reflectivity 
marks the "threshold" between terrestrial covers and standing surface water. 
Therefore, we applied a supervised classification technique using the support 
vector machine (SVM) in order to achieve more accurate delineated water 
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bodies. The SVM, a novel type of learning machine based on statistics learning 
theory introduced by Vapnik and Burges [12], [13], shows state-of-the-art 
performance in real-world applications including image classification. Recently, 
a study was conducted addressing the SVM-based classification scheme for land 
cover using polarimetric synthetic aperture radar (SAR) images [14]. In [15], it 
was concluded using hyperspectal AVIRIS images that the SVM outperforms the 
other traditional classification rules. A SVM-type classifier was developed for 
automatic classification of cloud data from GOES imagery in [16], and improved 
results were observed over other classification schemes such as Probabilistic 
Neural Networks. 

We can mask out the water bodies in the classified images to obtain a series 
of binary images containing only the objects, i.e. lakes, of interest. To identify 
each individual object, we need to find the connected components in the binary 
image. There exist a number of algorithms for the connected components 
labeling operation. Tanimoto [17] assumes that the entire image can fit in 
memory and employs a simple recursive algorithm that works on one component 
at a time, but can move all over the image. Other algorithms were designed for 
larger images that may not fit in memory and work on only two rows of the 
image at a time. Rosenfeld and Pfaltz [18] developed the "classical" two-pass 
algorithm using a global equivalence table. Lumia, Shapiro, and Zuniga [19] 
developed another two-pass algorithm that uses a local equivalence table to avoid 
paging problems. In our work, we applied a connected components labeling 
algorithm with feature computation utility, adapted from the algorithm presented 
in [20]. The approaches to shape representation can be broadly divided into 
transform-based, region-based, and contour-based [4]. Transform-based methods 
such as Fourier or wavelets coefficients are frequently used as shape descriptors 
for classification. Representing shapes directly by binary images involves some 
drawbacks such as large storage space requirement. Therefore, we adopted the 
contour-based approach, which can be further divided into nonparametric 
contours in which the shape outline is simply represented as a set of points, 
without any special order among them, and parametric contours in which the 
shape outline is represented as a parametric curve implying a sequential order 
along it. Parametric contours can be simplified and compressed by curve 
approximation technique, e.g., using a set of geometric primitives such as 
straight-line segments or splines to fit the shape outline. The contours need to be 
converted into polygons before a shape similarity metric can be applied to 
quantify the shape change. Meanwhile, by polygonal approximation, the spur 
pixels introduced by classification errors can be eliminated to a certain degree 
and the total data required to be stored can be significantly reduced. The 
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polygonal approximation problem has been studied by many researchers [21]-
[23]. The ideal procedure is to represent lines and boundaries by means of 
polygons with minimum number of vertices under a certain fit criterion. It 
remains an open problem to find a piecewise linear interpolation algorithm that 
both returns the fewest number of pieces and runs in 0(n) time. In this research, 
we developed a polygonal approximation algorithm running in 0(n) time, 
adapted from the piecewise linear interpolation algorithm for time series data 
presented in [24] and [25]. This algorithm produces a small but not minimum 
number of vertices that lie on the given contour described by an array of points, 
hi order to find out the similarity between the shapes of a lake at different dates, 
we resorted to an efficiently computable shape similarity metric proposed in [26]. 

In this chapter, we introduce our approach to efficiently retrieve and 
represent interesting shapes, e.g. lakes, in remotely sensed imagery. After 
discussing the supervised classification using support vector machines and 
comparing the classification accuracy with other classifiers in Section 2, a 
description of connected components labeling and parametric contour tracing is 
presented in Section 3. The piecewise linear polygonal approximation algorithm 
is developed in Section 4. Section 5 presents the computable similarity metric for 
measuring the similarity between shapes, and Section 6 presents the study results 
with further discussion. Finally, Section 7 contains conclusions and proposals for 
future work. 

2. Supervised Image Classification 

The imagery consists of 36 4-band Landsat MSS images (256x256 pixels), 
covering scenes containing the lakes of the Nebraska Sand Hills region 
encompassing the period from 1981 to 1987, and 10 7-band Landsat TM images 
(768x768 pixels) covering the same area from 1992 to 1997. These images have 
been pre-calibrated and registered to UTM-13 map. As simple level thresholding 
technique is challenged by the requirement of accurately separating the water 
bodies. Therefore, we adopted a supervised classification approach using Support 
Vector Machine. Classification of remote sensing images using SVM has been 
reported to be computationally simple and can result in accuracy better than other 
more computationally intensive rules [14] - [16]. 

The training and test data were sampled by a region growing algorithm. The 
algorithm simultaneously sets the spatial constraints including the maximum area 
A of the region and the maximum distance D from the seed pixel, and spectral 
Euclidean distance S , which refers to those pixels whose spectral reflectance is 
within a certain distance from the mean of the region pixels. The basic procedure 
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is outlined in Table 1, where (rs,cs) is the coordinate of the seed pixel, /(/•„,c„) 
is the gray level of a pixel from region R with coordinates (/„,c„) and /uR is the 
mean gray level of all pixels in R. 

Table 1. Region growing algorithm for training data sampling 

repeat until AR> A 

for each pixel p at the border of R do 
for all neighbors pn at (rn,cn) of p do 

if \(rn,cn)-(rs,cs)\<Dwi& /(r„,c„)-

add pn to /? and update juR 

end if 
end for 

end for 

- p.R 1 < S then 

According to a general rule given in [27], more than lOn pixels of training 
data should be sampled for each class where n is the number of bands. Hence, 
we sampled 100 pixels for each class in a MSS image and 200 pixels in a TM 
image. Five data sets for each class were sampled at different sites and we used 
20% of the sampled data for training and the remaining 80% for testing. 

2.1. Theoretical Background of SVM 

A comprehensive introduction to SVM is given in [28] and we briefly review the 
basics as follows. Given a set of examples consisting of pairs of class labels and 
^-dimensional feature vectors as(y,,x,y = 1,...,/,y,e {i,-l},x, e R", we want to 
find a decision function f(x) = (w,x) + b, x eR" , k R satisfying 
y, sgn(/(x,))>0 in the linearly separable case. The SVM approach places the 
hyperplane (w, x) + b = 0 so that the margin, which is defined as the distance of 
the closest vectors in both classes to the hyperplane, is maximized. It can be 
shown that the geometric margin is computed as l/||w|| and the corresponding 
hyperplane is obtained by the optimization problem: 

minwt < w w >, y,(< w;• x, > +b) > 1, / = 1,...,/. (1) 

This optimization problem can be translated into the following form by 
introducing the Lagrange multipliers a, > 0, subject to 
Xa,.y,. =0, «,>0, i = l,...,/. 

max W(a) = ]T a,. - - X * W * , < V x ; > ' (2) 

Only a small number of multipliers at have nonzero values and they are 
associated with the exemplars, or the so-called support vectors, which form the 
boundaries of the classes. This is significant because it is usually true that a small 
subset of all the training data are actually involved in defining the hyperplane, 
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i.e., those examples that are closest to the hyperplane. The maximal margin 
classifier can be generalized to nonlinearly separable data via two approaches. 
One is to introduce a soft margin parameter C to relax the constraint that all the 
training vectors of a certain class lie on the same side of the optimal hyperplane. 
This approach is effective in case of noisy data. The other is to transform input 
vectors into a higher dimensional feature space by a map function^ and then do 
a linear separation there. The expensive computation of inner products 
^>(x,.),p(x;.)) can be reduced significantly by using a suitable kernel function 
K(xi,\j) = {(p(xi),q>(xj)j. That is, we do not need to have an explicit 
representation of q>, but only K. 

2.2. Structure of the Classifier 

We implemented the Support Vector Machine classifier using the SVMLIB 
library [29], which is based on both Sequential Minimal Optimization (SMO) 
algorithm by Piatt [28] and SVMLight by Joachims [30]. The feature vector is 
composed of the intensity in each of the four bands [IvI2>h>! J f° r MSS data 
and in each of the six bands [/1,/2,/3,/4,/5,/7] for TM data, in which the 
elements are standardized to have the same range, i.e., [0, 1]. The one against 
one method, which constructs k(k -1) / 2 hyperplanes that discriminate each pair 
of classes, was chosen to construct the multi-class classifier. The library also 
provides a set of optional kernel functions that satisfy the necessary and 
sufficient conditions for the expansion of the kernel function given by Mercer's 
theorem [31]. Radial basis function (RBF) defined in (3) below is used as the 
kernel to build each of the binary classifier. 

£(x i.,x.) = exp(-)/|x,.-x.| ) (3) 

The soft margin parameter C was decided by the cross validation function 
offered by the library. We set C = 100 after trying a series of values ranging from 
1 to 500. We choose y = 0.5 as in [32], wherein it is reported that the SVM is not 
sensitive to different choices of parameter ^ for RBF. According to USGS Land 
Use / Land Cover Classification scheme and the land cover map produced by 
Nebraska GAP project, five land cover classes are defined as shown in Table 2. 
Fig. 1 (a) and Fig. 1 (b) show the original TM image and the classified image in 
pseudo color respectively. 

Table 2 Land cover categories 

Land Cover Type 

Open Water 
Emergent Wetlands 
Bare Rock/Sand/Clay 
Grasslands/Herbaceous 
Pasture/Hay 

Color 
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Fig. 1 (a). Original Landsat TM image, Fig. 1 (b). Classified Landsat TM image. 

2 3 . Accuracy Assessment 

The classification was repeated five times using a different 20% subset of the 
sampled data for training and using the remaining 80% for test. Table 3 gives an 
average performance for different classes for a typical MSS image and a typical 
TM image. Note both the producers accuracy and users accuracy are very high 
and water was classified almost completely correctly. In general, results obtained 
from the TM image are better than those from the MSS image. Table 4 compares 
the overall classification accuracy of the Support Vector Machine classifier, the 
Maximum Likelihood (ML) classifier, and the Minimum Distance to Means 
(MDM) classifier. It shows that the SVM classifier outperforms both the ML 
classifier and the MDM classifier. 

Table 3. Classification accuracy for different classes 

Class Name 

Open Water 
Emergent Wetlands 
Bare Rock/Sand/Clay 
Grasslands/Herbaceous 
Pasture/Hay 

MSS Image 
Producer's User's 
Accuracy Accuracy 

98.4% 98.7% 
91.7% 92.6% 

. 89.5% 87.8% 
88.3% 86.4% 
92.1% 94.5% 

TM Image 
Producer's User's 
Accuracy Accuracy 

99.8% 99.7% 
93.3% 93.6% 
90.4% 88.1% 
89.0% 86.8% 
94.9% 96.4% 

Table 4. Overall performances for different classifiers 

Classifier 
Overall Classification Accuracy 
MSS Images TM Images 

Support Vector Machine 
Maximum Likelihood 
Minimum Distance to Means 

91.5% 
87.2% 
80.6% 

93.6% 
89.8% 
82.3% 
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3. Object Recognition and Parametric Contour Tracing 

The water bodies were masked out from the classified image to obtain a binary 
image containing all the objects (lakes of interest) as shown in Fig. 2 (a). Our 
task now is to recognize each of the objects using a connected components 
labeling algorithm that searches the entire image to find all the different sets of 
pixels that are connected to each other. The labeling algorithm used in this 
research was modified from the one introduced in [20], which is briefly described 
here. The definition of the connected component is as follows [20]. Suppose two 
pixels occur in a binary image where I(r,c) = I(r',c') = v , ve {0, 1} . The pixel 
(r,c) is connected to the pixel (r',c') with respect to value v is there is a 
sequence of pixels S:(r,c), (r0,c0), ...,(rn,cj, (r',c') in which 
/(r,, cI) = v, i = 0,..., n , and (r,, c,) is the neighbor of (/,_,, c,_j). The sequence of 
pixels 5 forms a connected path from (r,c) to (r',c'). A connected component of 
value v is a set of pixels C, each having value v, and such that every pair of pixels 
in the set is connected with respect to v. The algorithm scans through a binary 
image and locates connected regions defined by " 1 " pixels against a background 
of "0" pixels. The assumption is that each region of "l"s represents the image of 
a single object. When this algorithm finishes labeling all the " 1 " pixels (object) 
reachable from the first found " 1 " , it then creates another label and searches for 
the next unlabeled " 1 " pixel and propagates anew. The labeling process is 
finished when all the " 1 " pixels in the image are exhausted. 
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Fig. 2 (a). Binary image containing water. Fig. 2 (b). Lakes of interest with Feret box. 

The area of each object is calculated by counting the number of pixels of 
each connected components during the labeling. In this study, we only consider 
the lakes with average size larger than a threshold, for instance, 200 for MSS 
images and 1000 for TM images, so that the retrieval and representation of shape 
are nontrivial. Therefore, tiny objects can be removed as nonlake objects or just 
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classification errors. The objects with the corresponding Feret box, defined as the 
smallest rectangle that orients with respect to the coordinate axis and encloses the 
object, are computed during the labeling as shown in Fig 2 (b), wherein the name 
of each studied lake is indicated. The histogram of the average area for each 
identified object, as shown in Fig. 3, was plotted to assist the threshold selection. 
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Fig. 3. Histogram of the average area of each lake. 

The procedure of obtaining a parameterized representation of the contour is 
referred to as contour tracing, or alternately contour following and contour 
extraction in some literature. There are many algorithms for extracting 
parametric contours in a binary image, and some examples include the use of 
run-length codes [33] and chain-codes [34]. However, the assumption of these 
algorithms is that only one object exists in a given image. In our case, the binary 
image contains several objects. To avoid manually discerning each of the lakes in 
the connected components, we developed an algorithm that automatically goes 
through all the Feret boxes associated with the lakes to extract their contours and 
features such as centroids and perimeters. Our algorithm is based on an efficient 
contour following algorithm proposed in [4], which can trace out the external 
contour of a single connected object in a binary image and join them into a list of 
points. The initial point belonging to each of the objects can be found using raster 
scanning, i.e., search line by line, until the first "0" pixel having a labeled pixel 
as a neighbor at its right is found. As shown in Fig. 4., the neighbors at the 
positions 0, 1, 2, 3 have already been visited during the scan. Fig. 5. illustrates 
the possible positions of four candidates, i.e., 4, 5, 6, 7. After identifying the start 
pixel of the object, the algorithm circumnavigates the connected object until the 
starting pixel is revisited, which indicates the completion of the tracing of the 
current object. The pseudo-code of this algorithm is presented in [4], which will 
not be further discussed here. 

http://nn.nniilli.fi
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Fig. 4. Verified positions during scanning search. 

Fig. 5. Automatic contour tracing on connected components. 

Since the Feret boxes might overlap with each other, the tracing algorithm 
regards the pixels with a specific component label as the object and other pixels 
as background within a given Ferex box. The location of each of the lakes of 
interest can be automatically recognized by referring to the UTM coordinates 
given in [10]. Specifically, we converted the UTM coordinates of each lake to the 
relative coordinates with a binary image by mapping the UTM coordinate of the 
pixel at the upper-left corner to origin. Suppose the retrieved contour is 
represented as a complex-valued signal c[n] = x[n] + iy[ri\, with n = 0,..., N -1, the 
centroid of the lake can be obtained as the average value of all points of c[n], i.e., 

N-l 

C=J^ . (4) 
N 

We then calculate the Euclidean distance between the centroid and each of 
the reference coordinates and assign the name of the lake with the one having the 
minimum distance. The perimeter of each lake can be computed according to 8-
neighborhood connectivity, i.e., the length between consecutive pixels is v2 if 
the pixels are diagonal neighbors, and 1 otherwise. The perimeter is computed as 
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P = 2Jc[« + l]-c[«]|, (5) 

where c[N] = c[0] and ||| denotes the complex modulus. 

The complete algorithm is summarized in Table 5. The retrieved contours of 
Crescent Lake on different dates are shown in Fig. 6 (a) to Fig. 6 (c), in which we 
can observe the noticeable variation of the shape of the lake over the two-year 
period. 

Table 5. Parametric contour Tracing and lake recognition 

55 

50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

for each Feret box F, do 

Trace and save the object's contour 
Compute centroid C, and perimeter Pi of the object 

for each lake with reference coordinate RC, do 

dy = Euclidean Distance(C,,/?Cj) 

Assign object the name of the lake with m i n ^ ) 

end for 
end for 
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Fig. 6. Retrieved contours of Crescent Lake. 

4. Piecewise Linear Polygonal Approximation 

The contour needs to be converted into a polygonal shape before a shape 
similarity metric can be applied so as to a quantitative measurement of the lake 
boundary change. Using polygonal approximation, noise introduced by spur 
pixels due to the classification errors can be reduced and so does the total data 
that needs to be stored. The ideal procedure is to represent the contour by means 
of polygons with a minimum number of vertices and satisfying a given fit 
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criterion. There has been much work carried out on the polygonal approximation 
problem using the piecewise linear functions [21]-[23]. However, it remains an 
open problem to find a piecewise linear interpolation algorithm that both returns 
the fewest number of pieces and runs in 0(n) time. In this research, we developed 
a piecewise linear polygonal approximation (PLPA) algorithm running in 0(n) 
time, adapted from the piecewise linear interpolation algorithm for time series 
data presented in [24], [25]. This approximation algorithm produces a small but a 
non-minimum number of vertices that lie on the given contour presented by an 
array of points. 

Given a sequence of points S:(x0,y0), (x^yj, ...,(%_!,y^j) and an error 
threshold ¥, PLPA finds a piecewise linear function / , composed of a set of 
segments represented by linear functions fjt j = \,...,K where/: is the total 
number of pieces, whose domains are disjoint. Assuming that the start and end 
points of a piece are [xm, ym] and [xn, y„] respectively as shown in Fig. 7 (a), each 
linear function f, is defined as 

J J 

fjix)=yS-j!!Hx-Xm)+ym 

-*•» Xm 
(6) 

The lower line and upper line according to the threshold W are denoted as: 

Lj(x) = {y"~'F)'-y"'(x-xm) + ym (7) 

Uj(x)=iy"+V) y"(x-xm) + yit (8) 

PLPA tries to extend each piece until it cannot because the upper line £/. 

becomes lower than the lower line L-. Fig. 7 (b) illustrates the case xn < xm , in 

which Lj now starts from (xm,ym) and passes through (x„,yn+¥) while {/ 

starts from the same point and passes through (xn,yn-
xF). 

+y 

(a) xn > xm 

^n>yn+v) 

'•/ ( w „ - n 

(b) *n < xm 

{xm>ym> 

Fig. 7. Start and end points of a segment. 
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Table 6 shows the algorithm in which the input is the point sequence S, i.e., 
the coordinates of the contour, and a maximum error threshold W, the output is a 
piecewise linear polygonal approximation function. The variable Start is the start 
point with SL and Su representing the slope of a piece. The proof of the 
correctness of this algorithm is similar to those given in [25] and not presented 
here. 

Table 6. Piecewise linear polygonal approximation algorithm 

Start = (x1,y1), SL=-oo, Sv =+<*> 

for / = 1 to n -1 do 

S'L =max(>S L,slope(Start,(xl+l, 

S'v = min(Su ,slope(Start,(xM, 

if xM < xt then 

Exchange(SL ,SV) 

end if 

if SL < S(j then 

SL = SL, i „ = Sv 

else 

yM-v))) 
y,-+,+n» 

S + S 
f. (x) = — — {x - Start.x) + Start.y 

Start = {xi,fi{xi)) 

SL= slope(Start, (xM, yM 

Sv = slope(Start, (xi+l, yM 

if xM < Xj then 

Exchange( SL,SU) 

end if 
end if 

end for 

-<?)) 

+f)) 

The approximated polygons of the contour of Crescent Lake in June 1985 
under different thresholds are shown in Fig. 8 (a) to Fig. 8 (c). It can be seen that 
the smaller W is, the more segments the piecewise linear function (i.e., the 
polygon) will contain, which preserves more details of the shape. 

The compression ratio (CR), defined in (9) below, for different thresholds is 
shown in Fig. 9 (a), which shows that the larger the threshold value, more the 
number of points along the contour can be eliminated. 

# of polygon vertices 
CR=\ — 

# of contour points 
(9) 
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Since the threshold measures the maximal distance between the original points 
and the approximated line, theoretically, suppose the length of the perimeter is P, 
the upper-bound of the approximation error in the area will be eA < P • ¥. Hence 
lakes with high perimeter to area ratio (PAR) defined as P/ A will have higher 
errors in general than those lakes that have low PAR. We test this on different 
representative lakes and Fig. 9 (b) shows the approximation precision (AP), 
defined in (10) where A represents the original area and A is the approximated 
value, for different compression ratios. Note that very high precision is conserved 
even at 55% compression ratio. Therefore, we chose 0.25 as the threshold. 

AP = \-
A-A 

(10) 

25 30 35 

(a) ¥ = 1.00. (b) ¥ = 0.50. (c) !F = 0.25. 

Fig. 8. Approximated polygons of the contour of Crescent Lake 
in June 1985 under different thresholds. 
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Fig. 9 (a). Compression ratio vs. thresholds. Fig. 9 (b). Precision vs. compression ratios. 
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5. Shape Similarity Measure 

Assuming that the noise generated by the classification error is roughly 
uniformly distributed over the sides of the approximated polygon, we can apply a 
shape similarity metric discussed below to give a quantitative measure of the 
change of a shape, i.e., to evaluate the similarity between the shapes of a specific 
lake on different dates. A similarity measure is a function defined on pairs of 
shapes indicating the degree of resemblance of the shapes and it is desirable that 
such a similarity measure be a metric. Suppose S is any set of shape objects, a 
metric on S is a function d(.,.) : 5 xS -> 9t satisfying the following properties for 
al\X,Y,ZeS [3]: 

d(X,X) = 0 (11) 

d(X,Y) = 0=>X =Y (lT) 

d(X,Y) = d(Y,X) ( 1 3 ) 

d(X,Y) + d(Y,Z)>d(X,Z) ( 1 4 ) 

In this research, we used an efficiently computable metric proposed in [26]. 
This metric is based on the L2 distance between the turning functions of the two 
polygons that can be both convex and noncpnvex. It has several important 
properties. First, it is invariant under translation, rotation, and change-of-scale. 
Second, it can be computed in time 0{mn\ogmn) where m is the number of 
vertices in one polygon and n is the number of vertices in the other. Third, it is 
insensitive to small perturbations and matches human intuitive notions of shape 
resemblance. The detailed representation of polygons and corresponding distance 
function were presented in [26] and briefly described as follows. 

5.1. Polygon Representation by Turning Function 

A polygon A can be represented by a list of vertices around its boundary with 
corresponding coordinates. An alternative method is to use the turning function 
0A (s), which measures the cumulative angle of the counterclockwise tangent as 
a function of the arc length s, measured from some reference point O on A's 
boundary as shown in Fig. 10. It increases with left-hand turns and decreases 
with right-hand turns. The polygon is rescaled so that the total perimeter length is 
1, i.e., .ye [0,1], and &A{s) is a function from [0,1] to 9?. Since 0A(s) may 
become arbitrarily large over [0,1] for a nonconvex polygon, we should have 
&A (1) = 0A (0) + 2% in order to represent a closed polygon [26]. 
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0(s) 

e+2jt 

Fig 10. Polygon representation using turning function. 

5.2. Distance Measure 

Given two polygons A and B and their associated turning functions @A(s) and 
0B (s), we can measure the degree to which they are similar by taking the 
distance between 0A{s) and ©B(s) in terms of the metric on function spaces. 
The LP distance between A and B is defined as [26] 

dP(A,B) = \\0A-0B\\p =(fo \&A(s)-0B(s)\ p \p 
as (15) 

where \\-\\ denotes the Lp norm. 

Suppose the turning function is 0A(s + t) if the reference point O along A's 
boundary is shifted by t , and it is 0A(s) + 6 if A is rotated by 6, then to 
minimize the distance over all such effects, the similarity measure in case of the 
planar polygons, i.e., P = 2 , is given as [26] 

d2(A,B) = \ min f' \0As + t)-0R{s) + 6\ ds (16) 

6. Study Results 

Lake change is characterized by its variations of area, perimeter, and shape. 
Reference [9] has reported that generally the lakes in this study area experience 
surface-area maxima in June with minima occurring in October, which is verified 
in our research. However, we adopted relative values instead of absolute values. 
Results obtained from MSS data set are shown in Fig. 11 to Fig 13. Fig. 11 (a) 
shows the variability of the area occurred in consecutive months for the studied 
lakes in 1983. Note that the area of Goose Lake had a considerable increase 
during May to June and significant decrease during August to September. The 
corresponding shape similarity measures are shown in Fig. 11 (b), in which the 
smaller the measurement is, the more similar the compared two shapes are. It can 
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be observed that the shape variation is not consistent with area fluctuation. 
Island, Hackberry, and Goose's shapes show more variation than those of other 
three lakes and the shape of Goose Lake presents the largest variability. 
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Fig. 11 (a). Seasonal variability of the area in 1983. 
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Fig. 11 (b). Shape similarity measure in 1983. 

The overall fluctuation is examined by the standard deviation of the relative 
area change occurred in each year as shown in Fig. 12. It is observed that the 
fluctuation in area is significant during May to June and August to October. We 
calculated coefficient of variation CV =al/u [10] for the area and the perimeter 
for all the lakes in each year, where fi is the mean and a is the standard 
deviation. The average values are shown in Fig. 13. Note that Island Lake and 
Goose Lake have CV > 10% for both area and perimeter. An interesting 
discovery is that the CV of perimeter is always less than that of area except for 
Goose Lake, which might be caused by its more irregular shape. 
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Fig. 12. Standard deviation of the relative area change. 

Goose Ashburger 

Fig. 13. Average coefficient of variation of lake area and perimeter. 

It has been found that in our study area, a good correlation exists between 
lake-surface area and precipitation occurring over the previous 45 days, and this 
pattern tends to be repeatable and steady [9]. Now we are interested in the 
relationship between the lake changes and the drought events. Specifically, the 
area variations for each lake were correlated with the short-term (1-month) 
drought indices. Although there exist many kinds of drought indices, we 
employed the modified Palmer Drought Severity Index (PDSI), which has been 
used in the National Drought Atlas, as a good representation of existing 
conditions for real-time, operational use [35]. Fig. 14 illustrates the variation of 
the PDSI in different years. Drought is defined as beginning in the month when 
the PDSI equals or falls below -1 after having been above - 1 , and the drought 
duration is defined as the interval of time for which the PDSI remains equal or 
below -1 [35]. Fig. 15 shows the correlation coefficient between the areas and 
the indices for each of the lake. Strong correlations are observed although the 
coefficients are not always positive. It shows positive correlation when the 
indices stay below - 1 , i.e., within the drought period as in 1981 and 1987. 
Negative correlations are observed at end of the drought duration, i.e., the indices 
go above -1 as in 1983 and 1984. Note a very strong correlation occurred in 1985 
when the indices are above - 1 , which indicates a nondrought period. 
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Fig. 14. Variation of Palmer Drought Severity Index. 
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Fig. 15. Lake area / Palmer Drought Severity Index correlations. 

Since TM data has a higher spatial resolution, we studied three more lakes, 
i.e., Wolf, Bean, and Swan. However, due to the fact that the total number of the 
TM images available to us was small, results obtained from TM data set only 
illustrate changes occurring during summer (June vs. August) and autumn 
(September vs. October) as shown in Fig. 16 to Fig. 18. It can be seen from Fig. 
16, and Fig. 17 that Crescent, Island, Hackberry, and Blue always have no 
significant area change except in 1993, in which all the lakes show dramatic area 
reduction, except Wolf who showed an increase. All the lakes show the nearly 
same area fluctuation pattern in fall except Ashburger who shows a considerable 
gain and Bean who shows a remarkable loss. With regard to perimeter, Goose 
and Bean show substantial variability while other lakes have similar pattern in 
fall. Note that Swan demonstrates more fluctuations of both area and perimeter 
than other lakes in summer but not in autumn. It also can be observed that 
significant area change does not always imply large perimeter change. 

. u w 
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Fig. 16 (a). Surface-area fluctuations of the lakes in Summer. 
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Fig. 16 (b). Perimeter variability of the lakes in Summer. 
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Fig. 17 (a). Surface-area fluctuations of the lakes in Autumn. 
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1992 — -0 — 1997 

Fig. 17 (b). Perimeter variability of the lakes in Autumn. 

It is observed from Fig. 18 that the pattern of the shape similarity in summer 
is more obvious than that in autumn. Blue and Hackberry always have their shape 
preserved as the similarity measure is around 0.5, except that Hackberry attained 
1.4 in summer 1995. Ashburger and Wolf show shape similarity variability from 
about 1.0 in summer to about 0.7 in autumn. Note the variability of the shape of 
Island in summer is larger than that in autumn and Goose's shape changes 
dramatically both in summer and autumn. 

Crescent Island Hackberry Blue Goose Ashburger Wolf Bean Swan 

Lakes 

Fig. 18 (a). Shape similarity of the lakes in Summer. 
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Fig. 18 (b). Shape similarity of the lakes in Autumn. 

7. Conclusions 

In this chapter, we have presented a shape-based approach to lake change 
detection using time series Landsat images. Using support vector machine, we 
achieved higher classification accuracy than that using other traditional 
classifiers. The study results show the effectiveness of the proposed shape 
retrieval and representation scheme and its potential capability in specific 
applications in the study of lake change response to short or long term climatic 
variation and drought monitoring. The correlation between the lake area and the 
drought indices is regarded as significant, although it is beyond the scope of this 
paper to discuss detailed reasons for it. Shape similarity is also considered 
important in quantitative measurement of the object variation besides the 
classical parameters such as area, perimeter, etc. However, the limitation of the 
temporal resolution of the available image data sets prevents us from performing 
further detailed trend analysis. In addition, images with higher spatial resolution 
are preferred in order to characterize the shapes of the lakes more precisely. 
Finally, the proposed approach can be used to automatically retrieve and 
represent other sorts of objects with irregular shapes, although it was applied to a 
special kind of object of interest, namely, the lake, in this research. 
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CHAPTER 5 

A REVIEW OF POLARIZATION ORIENTATION ANGLE 
ESTIMATION FROM POLARIMETRIC SAR DATA 

Jong-Sen. Lee, Dale L. Schuler and Thomas L. Ainsworth 
Remote Sensing Division, Naval Research Laboratory, Washington Dc 203 75-5351 

E-mail: lee(a),ccf.nrl.navy.mil 

This chapter reviews the recent advances in polarization orientation angle 
estimation and its applications using polarimetric synthetic aperture radar (SAR) 
data. Polarization orientation shifts are induced by topography slopes in the 
azimuth direction. Orientation angles can be readily extracted from polarimetric 
SAR data. Difficulties are frequently encountered in the estimation of orientation 
angles from polarimetric data. These difficulties will be discussed and the effect 
of radar wavelength and calibration on the estimation will be investigated. SIR-C 
and JPL AIRSAR polarimetric SAR data are used for illustration. 

1. Introduction 

Interferometric (SAR) has been successfully applied to measure topography. 
Radar interferometry requires the use of dual antennas separated by a baseline in 
a single pass system, or by a repeated pass configuration. Recently, a new 
technique has been developed using polarimetric SAR (POLSAR) to measure 
azimuth slopes that are related to shifts in polarization orientation angles [1-4]. 
Polarization orientation angle is one of the least used parameters among the 
wealth of polarimetric information when analyzing POLSAR data. The 
polarization state of an electromagnetic wave is characterized by its polarization 
orientation angle 9 and ellipticity angle % as shown in Fig. 1. The orientation 
angle, which is of importance to this study, is the angle between the major axis of 
the polarization ellipse and the horizontal axis. For distributed media, orientation 
shifts are induced by azimuthal slopes, which cause the polarization rotation 
about the line of sight. 

\ / h 

Fig. 1. Polarization ellipse and the orientation angle. 

Polarization orientation shifts are frequently considered as a direct measure of 
azimuthal slopes. This is not correct. Lee [4] and Pottier [5] have found that 
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orientation shifts are also affected by the radar look angle and the range slope. 
However, in the absence of range slope data, orientation angles can be used as a 
rough estimate of azimuthal slopes, especially in cases of gentle terrain and a 
large radar look angle. An example is shown in Fig. 2. A SIR-C L-band 
polarimetric SAR data of Camerota, Italy, is used in the computation of 
orientation angles. The upper right image is the SAR image, color coded by 
|HV|, |HH|, and |VV| as red, green and blue, respectively. Orientation angles 
were estimated from the polarimetric data. A DEM was generated by integrating 
orientation angles as azimuthal slopes. When integrating azimuthal slopes to 
produce a DEM, we use the coastline to provide a common zero elevation 
reference. The 3-D representation of the derived DEM, with the polarization 
SAR image (upper right) draped over it, is shown in the lower part of Fig. 2. It is 
evident that polarization orientation angles can be extracted from POLSAR data, 
and that they are related to the azimuthal slopes. 

POLARIMETRIC SAR DERIVED TOPOGRAPHY 

Fig. 2 Polarimetric SAR derived topography based on SIR-C L-Band POLSAR data. 
Orientation angles derived from the POLSAR data are used to produce a DEM. 

In this chapter, we review orientation angle estimation methods, and the radar 
geometry related to the azimuth and range slopes. Difficulties are frequently 
encountered in the estimation of orientation angles from POLSAR images. 
These difficulties will be discussed and the effect of radar wavelength and 
calibration on the estimation will be investigated. Applications to geophysical 
parameter estimation, and to ocean surface feature sensing will be specifically 
mentioned. 
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2. Radar Geometry of Polarization Orientation Angle 

The change in the polarization orientation angle is geometrically related to 
topographical slopes and the radar look angle [3]. Fig. 3 shows the schematic 
diagram. The unit vector pair (x, y) defines a horizontal plane, (y, z) defines 
the radar incidence plane, and the radar line of sight is in the reverse direction of 
the axis I1. The angle (j) between I1 and z is the radar look angle. The axis x 
is in the azimuth direction, and y is in the ground range direction. The surface 

normal for a ground patch is denoted by TV . Assume that the polarimetric SAR 
is calibrated so that the horizontal polarization (H) is parallel to the horizontal 
plane (Jc, y), and the vertical polarization (V) is in the incidence plane. 

pi| (Surface Normal) 

(Ground Range) 

-' • y 

Fig. 3 A schematic diagram of the radar imaging geometry which relates the 
orientation angle to the ground slopes. 

For a horizontal surface patch, its surface normal N is in the incidence plane, 
and no orientation angle shift is induced. However, for a surface patch with an 
azimuthal tilt, its surface normal N is no longer in the incidence plane. The 
induced polarization orientation angle shift 6 is the angle that rotates the 
incidence plane (y, z) about the line of sight to the surface normal by the 
following equation [3], 

tan8 = tan co 
tan ycos <j) + sin ty 

(1) 
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where tan CO is the azimuth slope, and tan y is the slope in the ground range 
direction. This equation shows that the orientation angle shift is mainly induced 
by the azimuth slope, but that it is also a function of the range slope and the radar 
look angle. For small range slope, the orientation angle tends to overestimate 
azimuthal slope angle by the factor of (1 / sin <|)). In general, orientation angle 

measurements overestimate the actual azimuth slope angles, when the range 
slope is positive (toward the radar), and may underestimate them, if the range 
slope is negative. The difference between the orientation angle and the 
corresponding azimuth slope angle becomes smaller for larger radar look angles. 
For an accurate estimate of azimuth slopes, range slope information, therefore, is 
required. This can be achieved by imaging the area with polarimetric SAR in 
orthogonal passes [2]. 

3. Polarimetric SAR Data Representation and Rotation 

To derive the orientation angle estimation algorithm, it is necessary to understand 
the rotation of polarimetric matrices and the transformation to a circular 
polarization basis. 

Scattering Matrix 
POLSAR data can be represented by the scattering matrix (2) for single-look 
complex data. 

S = 
Syu Syy 

(2) 

For backscattering from reciprocal media, SHV = Syu • The rotation of an 

orientation angle 6 is achieved by 

cos(0) sin(e)~p/Hj S^TcosCe) -sin(0)" 
-sin(G) COSCGJ-SJ/K S^lsinCe) cos(0) 

S = (3) 

The "~" on top of the matrix S denotes the matrix after the rotation by 9. For 
convenience, this notation will be used throughout this chapter to indicate the 
matrix after the rotation by 9. 

Covariance Matrix from Circular Polarizations 
The circular polarization components can be derived from the scattering matrix. 
The three circular components for right-right, left-left and right-left circular 
polarizations are 

SRR = (SHH ~SW +i2SHV)/2 

SLL = (Sw -SHH + nSjjy)!! (4) 
SRL=i(SHH+Sw)l2 

The rotation by an orientation angle can be obtained by applying (3). After 
manipulation, we have. 
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SRR ~S RR' 
-ne 

„j29 SLL = SLL e 

SRL =SRL 

Defining a circular basis vector, 
SRR 

C = 4is RL 

SLL 

(5) 

(6) 

the circular polarization based covariance matrix G is obtained from the vector c by 

cc 

>«R M(SmSRL*)) UsggSh.) 

^((SRLSRR ) 2 15 RL SUSKLSIL) 

(SLLSM)) JlUSuSu) >LL\ 

(7) 

Applying (5), the upper off-diagonal terms of the rotated circular polarization 
covariance matrix are modified to (8). 

G = 

RR 

* 

{(SLLS*m)ei4» 

imSggS^ )e -;26 

I2USP,S. «29 2 1^ RL 

SUs^ST^e"9 

\(SRRSLL)e 

s((sprs: 

-i49 

RL^LL)e 

2 

LL\ 

-i 29 
(8) 

The lower off-diagonal terms are the conjugate of their respective upper off-
diagonal terms in (8). The diagonal terms are rotation invariant. It is apparent in (8) 
that the change in the orientation angle affects only the phases of off-diagonal terms. 
The circular polarization method to be discussed later is directly related to the (1, 3) 
term. 

4. The Circular Polarization Algorithm 

The orientation angle shift causes rotation of both the scattering matrix and 
circular covariance matrix about the line of sight. Since the orientation angle 
information is embedded in the polarimetric SAR data, several methods have 
been developed to estimate azimuth slope induced orientation angles. The 
polarization signature method [1] and the circular polarization method [3] have 
been proven to be effective. Other methods have also been proposed [5-8]. The 
polarization signature method is based on the concept that the angle 
6 corresponds to the change in the polarization orientation angle, and is 
estimated by the shift of the maximum co-polarization response. The polarization 
signature, as proposed by van Zyl [9], gives the polarization responses in the 
orientation and ellipticity plane, which is used to find the maximum co-
polarization response. To speed up the optimization process, a steepest ascent 
algorithm was also developed [1]. 
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In this chapter, we will limit the discussion to the circular polarization 
method, because it is based on a theoretical derivation. This method is also 
simpler and more accurate than any other methods. 

The circular polarization method was proposed in [3] to extract the orientation 
angle, using right-right (RR) and left-left (LL) circular polarizations from either 
the single-look complex, or from the multi-look, data. This algorithm has proven 
to be successful. The concept of reflection symmetry [10] is used to explain the 
soundness of the circular polarization method, and to show problems associated 
with other algorithms. L-band POLSAR data of Camp Roberts, California are 
used to substantiate the value of this method. 

Krogager and Czyz [6] proposed estimating orientation angles using the phase 
difference between right-hand and left-hand circular polarizations. This method 
has been further modified and refined by Lee et al. [3]. 

From the circular covariance matrix (8), the right-right and left-left circular 
polarization term (i.e., the (1,3) term) can be used to estimate the orientation 
angle. If the dominant orientation angle shift is induced by azimuth slope, then 

<SRSS*LL> = <SRSSlL>e-"° (9) 

For a reflection symmetrical medium as associated with a horizontal surface, 

< SggS^L > is required to be real in value, so that it will not corrupt the 

—/40 

orientation angle related to the phase term e . We will prove that 

< SRRSiL > is real for a reflection symmetrical medium. For a reflection 

symmetrical medium, the cross-pol and co-pol correlation terms are zero. 

Substituting (4) into < SRRSLL > a nd setting terms that contain SHy to zero 

(except the <| Sjjy | > term), we have 
< SRRS*LL >= (-<l SHH -SW |2> +4 <lSHV | 2 » / 4 (10) 

This term is real, so the argument of < SRRSLI > is zero or TL Consequently, 

the phase difference between SHHand Syy does not cause error in the 

estimation of orientation angles. 
The factor of 40 in (9) limits the range of 0 to [-TC/4,JI/4]. TO derive a 

general expression, substitute (4) into < SJU(SLL > . We then have 

<SRRSLL
 > =

 —{<~\SHH~SW I +4 |>SVI > ,11N 

4 (11) 

-i4Re(<(SHH-Svy)S*HV>)} 

From (9) and (11), we would have 

- 40 = Arg(< S^Sli. >) = t a n _ 1 
( - 4 R e ( < ( 5 g t f - ^ F F ) 5 ; F > ) 

-<\SHH-SVV\2>+4<\SHV\2> 
(12) 

If (12) is applied directly, it would introduce errors, because, for an azimuth 

symmetrical medium, (<| SHH-Syy |2>) is normally greater than 4 <| SHV |2> . 
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The denominator is then negative. Consequently, when the numerator is near 
zero, the arctangent is near±7C. The orientation angle would be ±TC/4 rather 
than near zero as it should be. To match the orientation angle corresponding to 
the azimuth slope angle, the bias must be removed by adding %. The circular 
polarization estimator is 

e = J Tt, / / Tl<7t/4 
[TI — 71 /2 , if r| > 7C/4 

where 

(13) 

TV tan 4Re(<(SHH-Svv)SHV» 
-SVV\2>+4<\SHV\2> 

+ n 
~<\SHH 

The arctangent in (14) is computed in the range of (-K, 7t) . 

(14) 

Fig. 4 This photo shows the topography and vegetation in Camp Roberts, California. 

This algorithm has proven successful for orientation angle estimation [3]. An 
example is given here of applying it to the JPL AIRSAR L-band data of Camp 
Roberts, California. A photo of Camp Roberts in Fig. 4 shows the rugged terrain 
in the background with sparsely distributed oak trees. In the valley, the 
vegetation is much more dense. 

The polarization image of Camp Roberts is shown in the top of Fig. 5. We use 
the Pauli matrix based color-coding for the combination of polarization channels: 
red for |HH-VV|, green for |HV|, and blue for |HH+W|. The rectangular shaped 
object in the fork-like valley is the site of Camp Roberts. The middle image 
shows polarization orientation angles derived by the circular polarization method 
from the polarimetric data. The streaks at the top are from instrument noise. 

JPL AIRSAR simultaneously imaged this area with C-Band TOPSAR to 
obtain interferometric data. This permits verification of polarimetric SAR 
derived orientation angles by those obtained from the interferometric generated 
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DEM and equation (1). Orientation angles derived from the DEM are shown in 
the lower image. The similarity between these two images indicates the validity 
of this estimation algorithm. The capability of deriving polarization orientation 
angles enables us to measure azimuthal slopes and to compensate polarimetric 
SAR data for terrain slope variation. The compensated data improves the 
accuracy of geophysical parameter estimations, as well as land-use and terrain 
type classification. 

Fig. 5 The top image shows the POLSAR data of Camp Roberts, The middle image shows 
polarization orientation angles derived by the circular polarization method. For 
comparison, the lower image shows orientation angles derived from a DEM, generated 
by C-band interferometric SAR. These two images are strikingly similar, except for the 
streaking in the middle image due to instrument noise. 

To take a closer look, an area within this image is selected which contains a 
variety of complex scatterers. Fig. 6A shows the span image of the selected 
area. The image size is 600x600 pixels. Rugged mountain terrain and a valley 
are present within the image. This POLSAR image contains artifacts, which 
appear as bright horizontal streaks. The orientation angle image derived by the 
circular polarization method is shown in Fig. 6B. For comparison, we computed 
the orientation angles from the interferometry generated DEM (shown in Fig. 
6C). The circular polarization derived orientation angles show good agreement 
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with those derived from DEM. However, noisy results are scattered throughout 
the areas that correspond to bright areas in Fig. 6A. We observed that these areas 
also represent steep positive range slope areas that produce higher radar returns. 
For steep positive range slope areas, the scattering approaches the specular case, 
where S^^Syy. In this situation, the measurement sensitivity is low for 
azimuth slope induced orientation angles. Consequently, the near specular 
scattering makes estimation very sensitive to vegetation variations. 

A secondary effect is that high radar returns produce high speckle noise. 
Speckle noise is multiplicative in nature in the sense that the noise level is higher 
in higher return areas [11]. The bright specular returns from distributed media 
induce higher speckle noise in the orientation angle estimation. Fig. 6D shows 
the histogram of orientation angles produced by the circular polarization method. 
The bell shaped curve indicates that it is a good estimator compared with 
unsymmetrical histograms from most other methods. 

Fig. 6 Polarization orientation angles extracted from a 600x600 pixel area of Camp 
Roberts, California. (A) The L-band span image of an area containing a variety of 
complex scatterers. (B) The orientation angle image derived by the circular polarization 
method. (C) For comparison, the orientation angles from a DEM generated using C-
band interferometry. (D) Histogram of orientation angles using the circular polarization 
algorithm. 

Comparisons of this algorithm with the original polarization signature 
algorithm and other methods based on polarimetric target decomposition [12] 
have been made by Lee et al.[3]. This algorithm is slightly better than the 



polarization signature method, but is much better than those algorithms based on 
target decomposition. 

Remarks 

1) Another estimator using the circular polarization 
Another estimator can also be derived from the circular polarization matrix (8) using 
the (1, 2) term or the (2, 3) term. Assuming that the dominant orientation angle 
shift is induced by azimuth slopes, we have 

< W « >=< SRRS'ML > e~™ (15) 

If (15) is a valid estimator, <SRRSRL > must not be complex in value for 
reflection symmetrical media. However, this assumption is not valid, because for 
reflection symmetrical media 

< SggS^ >=[2 < JmiS^S'yy) > ~i(<\ S„„ \' > - <| Syy \' >)] / 4 (16) 

where Im( ) denotes the imaginary part of a complex number. The above 

equation indicates that <Sgj{Sj(i > is complex in value, except when Sgjj and 
Syy are in phase. For general terrain having vegetated or rough surfaces, the 
difference in the locations of scattering phase centers between HH and W 
polarizations induces phase differences. Consequently, this estimator produces 
erroneous results in vegetated and rough surface areas. 

2) Orientation Angle Estimation from the Scattering Matrix 
Eq. (5) shows that the phase of SRR is directly related to the orientation rotation. 
We assume S^ to be real in value for a reflection symmetric medium. Applying 
(4) to sRR, we have 

\SRR | cos 26 + i\SRR | sin 29 = (SHH - <V + i2SHV) / 2 (17) 

If SHH, Syy and sHV are real in value, or in-phase, a simple estimator can be 
derived 

tan 26 = ~ 2SRL (18) 

The above equation reveals that the orientation angle shift increases with sHV. 
The range of the measurement from (18) appears to be between -n/2 and nl2. The 
actual range is between -7i/4 and Jt/4, because the sign of the denominator is affected 
by the orientation rotation and scattering characteristics of the medium, hi other 
words, the sign of the denominator is not uniquely affected by the orientation 
rotation. The algorithm is inherently unstable when sHH <=Syy. This happens when 

radar scattering is near specular or when the orientation tilt nears 45°. In addition, 
scattering matrix data inherently has high speckle levels that make the result noisy 
for practical applications [11]. This algorithm is only of theoretical interest. 
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5. Discussion 

Besides the selection of algorithms, many factors affect the accuracy of 
orientation angle estimations. They will be summarized in the following: 

Radar Frequency 
Orientation angles can be derived from L-band and P-band POLSAR data, but 
less successfully from C-band or higher frequency data. Higher frequency 
POLSAR responses are less sensitive to azimuth slope variations, because 
electromagnetic waves with shorter wavelengths are less penetrative and are 
more sensitive to small scatterers within a resolution cell. The orientation angles 
induced from smaller scatterers overwhelm the orientation angle induced from 
the ground slope. We have found that C-band data produces a very noisy 
orientation angle image. On the other hand, longer wavelength radars (operating 
for example at P-band) are more penetrative and are less sensitive to smaller 
scatterers, and produce better results than L-band. Radio frequency interference, 
however, is often a problem. 

JPL AIRSAR data from Freiburg Forest, Germany is used for illustration and 
is shown in Fig. 7. The area is heavily forested as shown in Fig 7A. The 
orientation angles derived from the P-band data (Fig. 7B) are well defined and 
show the strength of penetration from P-band. The orientation angles derived 
from the L-band data (Fig. 7C) are noisy, and are less sensitive to the under-
canopy topography. C-band data produce even worse results than L-band. 

Fig. 7 In heavily forested areas, orientation angles can be extracted from P-band data, 
but not from L-band or higher frequency data. JPL AIRSAR P-band and L-band Data of 
Freiburg Forest, Germany, is applied to extract orientation angles. (A) \HH-VV\, \HV\ 
and \HH+VV\ color coded P-Band SAR image, (B) Orientation angle image derived from 
the P-band data, (C) Orientation angle image derived from the L-band data. 
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The Importance of Polarimetric Calibration 
POLSAR data calibration is a crucial step in the process of deriving accurate 
orientation angles. Both amplitude and phase calibration accuracies affect the 

derivation of orientation angles. The | Sjjy | term and phase differences 
between cross-polarization and co-polarization terms are especially affected. 
Many polarimetric SAR calibration algorithms assume zero correlation between 
co-polarization and cross-polarization terms [12]. This assumption could 
introduce errors in orientation angle estimation. Recently, a revised method has 
been introduced by Ainsworth et al. [13] to account for this deficiency. In 
addition, non-zero pitch angles of the radar platform introduce a bias in the 
orientation angles. These pitch angles should be properly compensated before 
applying the orientation angle extraction method. 

Dynamic Range of Radar Response 
The dynamic range and polarization channel isolation of the radar receiver are 
critical to the success of the orientation angle estimation. The success of the 
circular polarization methods depends on the accuracy of measuring the 

<{SHH-Syy)S*HV > term. This term is much smaller than <\SHH\2> or 

<|iS'KK|2> . A lack of dynamic range makes this correlation term very noisy. In 
addition, POLSAR data compression, if necessary, has to be carefully devised to 
preserve the dynamic range. The extraction of orientation angles becomes an 
impossible task for SAR systems with small dynamic range and poor channel 
isolation. 

6. Applications Involving Orientation Angles 

Polarimetric Data Compensation 
The derived orientation angle can be used directly to compensate POLSAR data 
in rugged terrain areas. It is important to compensate the polarimetric SAR data 
to ensure accurate extraction of geophysical parameters, such as, soil moisture, 
surface roughness, snow cover, and biomass. A study on POLSAR data 
compensation has been investigated by Lee et al. [3]. The azimuth slope 
compensated data shows that all components of the coherency matrix have been 

modified except the <\SHH +SVV\2> term, which is rotation invariant. The 

greatest changes occur in the real part of the < (SHH - Syy )SHV > term. The 

reduction in <| SHV |2 > is also significant. 

DEM Generation 
The derived orientation angles can be used to generate topography (Schuler et al. 
[1, 2]). Two orthogonal POLSAR flight passes are required to derive orientation 
angles in perpendicular directions. By applying equation (1), the ground slopes 
in two directions can be computed. The slope data is then used to solve a 
Poisson equation to estimate the elevation surface. This algorithm is similar to 
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the global least-square phase unwrapping algorithm used by SAR interferometry. 
Digital elevation maps have been generated. Due to the radar layover effect, 
difficulties were encountered when co-registering these two images. Currently, 
the accuracy of the DEM derived from this method is inferior to that generated 
by SAR interferometry. 

LBuid |W| 

Fig. 8 Polarization orientation angles of a current front in the Gulf Stream. The \HV\ 
and | VV\ SAR images are shown on the left. The orientation angle derived from the P-
band data is shown on the upper right, and a profile cut across near the ship is, also 
shown. 

Ocean Applications 
Another interesting application is for the direct estimation of ocean surface 
slopes. Backscattering from the ocean surface can be assumed in most cases to 
be homogeneous, and is characterized by two-scale Bragg scattering. This type 
of scattering provides excellent conditions for orientation angle estimation. 
Adjustment for range slopes according to (1) may not be necessary, because of 
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small range slopes of the ocean surface, but corrections for radar look angles 
have to be made. 

In a study of convergent current fronts within the Gulf Stream (Lee et al. [14]), 
it was found that there existed a sudden change in the orientation angle from 
positive to negative across a convergent front with the maximum slope change 
being smaller than 2° as shown in the orientation angle image on the upper right 
of Fig. 8. The |HV| image (upper left of Fig. 8) shows the front as a bright linear 
feature, but the signature of the front is much weaker in the | W | image. This 
study indicates the potential to use orientation angles to estimate small ocean 
surface slopes within an accuracy of a fraction of a degree. This study has been 
expanded by Schuler et al. [15, 16] and Kasilingam et al. [8] to estimate ocean 
wave slope spectra, and by Schuler et al [17] who applied this technique to study 
internal wave radar signatures. In addition, Ainsworth et al. [18] used this 
technique to study ocean surface features. 

7. Conclusion 

In this chapter, we have reviewed the recent advances in polarization orientation 
angle related research. Polarization orientation angle estimations based on the 
circular polarization covariance matrix are reviewed in detail. The concept of 
reflection symmetry was used to explain the soundness of the circular 
polarization method, and to show problems associated with other algorithms. 
Difficulties encountered in the estimation of orientation angles are discussed. 
We believe that this technique should be applied for better accuracy in 
geophysical parameter estimation by compensating polarimetric SAR data in 
areas of high topographic relief. The potential for DEM generation and ocean 
remote sensing was also discussed. SIR-C and JPL AIRSAR L-band and P-
band POLSAR data were used for illustrations. 
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This paper introduces an approach to the classification and interpretation of SAR 
data using complementary polarimetric and interferometric information. Strictly 
polarimetric and polarimetric interferometric data are first analyzed and classified 
separately. An unsupervised polarimetric segmentation, based on multivariate 
Wishart statistics, is applied to one of the separate polarimetric datasets. The use 
of pertinent polarimetric indicators permits to give an interpretation of each re
sulting cluster polarimetric properties and to classify the observed scene into 
three canonical scattering types. The interpretation and the segmentation of an 
optimized interferometric coherency set leads to the discrimination of different 
natural media that cannot be achieved with polarimetric data only. Finally, each 
type of scattering mechanism is processed through an unsupervised statistical in
terferometric classification procedure merging results from separate studies. The 
resulting classes show an enhanced description and understanding of the scatter
ing from the different natural media composing the observed scene. 

1. Introduction 

There is currently a great deal of interest in the use of polarimetry and interfe-
rometry for radar remote sensing. In this context, different and important objec
tives are to classify Earth terrain components within a fully polarimetric inter
ferometric SAR image and then extract physical information from the observed 
scattering of microwaves by surface and volume structures. 

Polarimetric SAR data classification has been widely addressed in the last 
decade1"6. The tight relation between natural media physical properties and their 
polarimetric features leads to highly descriptive classifications results that can be 
interpreted by analyzing underlying scattering mechanisms7"9. Interferometric data 
provide information concerning the coherence of the scattering mechanisms and 
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can be used to retrieve observed media structures and complexity10"12. An example 
of the complementary aspect of polarimetric and interferometric information is 
given with polarimetric interferometric data acquired by the DLR E-SAR sensor at 
L band in repeat-pass mode with a baseline of approximately 10m. Optical, pola
rimetric and interferometric images are displayed in Figure 1. 

Figure 1 Optical image (top), polarimetric color coded image (bottom left) and inter
ferometric coherence (bottom right) over the Oberpfaffenhofen test site 

The Oberpfaffenhofen scene (Germany) is composed of various agricultural areas, 
forests and urban zones. Buildings at the center correspond to the DLR (German 
Aerospace Center). The polarimetric color-coded image and a coherence image 
give different descriptions of the observed scene. It can be observed in Figure 1 
that, in general, forests have a uniform polarimetric behavior while the inter
ferometric coherence show large variations. On the opposite some surface have 
similarly high coherences while the polarimetric image depicts different scattering 
mechanisms. The objective of an unsupervised classification process is to gather 
the complementary information contained in polarimetric and interferometric data 
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in order to deliver highly descriptive clusters as well as an interpretation of their 
characteristics. 

The second section of this chapter presents an analysis of the characteristics of 
polarimetric SAR data based on the work of Cloude and Pottier7'8. A polarimetric 
decomposition theorem is applied to coherency matrices measured over natural 
targets in order to extract a dominant scattering mechanism. Parameters obtained 
from this decomposition theorem are interpreted in order to perform an unsuper
vised identification of the scattering mechanism. 

The third section is dedicated to the unsupervised classification of polarimetric 
data based on the multivariate Wishart density function of coherency matrices. 
Results of the scattering mechanism identification procedure presented in part two 
are used to initialize two statistical segmentation schemes13"14. A k-mean cluster
ing algorithm using Wishart statistics segments, in an unsupervised way, pixels 
into compact clusters according to their scattering properties. An identification of 
the resulting clusters to three canonical scattering mechanisms is introduced. It 
requires to estimate the number of relevant scattering contributions in order to 
reject secondary terms, which may introduce a bias in the retrieval of the scatter
ing characteristics. Each scattering phenomenon is then identified to Volume dif
fusion, Surface Reflection or Double bounce Reflection15. 
In the fourth part is presented the analysis of polarimetric interferometric data 
from their (6x6) coherency matrix. The optimization procedure developed by 
Papathanassiou and Cloude10"12 is used to process optimal coherence sets showing 
an enhanced contrast and being highly related to the target volume structure. 
This optimal coherence set is normalized in part five and parameterized with two 
indicators15. These parameters are then used to segment in an unsupervised way 
natural media with different coherent features. Finally results from the pola
rimetric identification procedure and from the analysis of the optimal inter
ferometric coherence spectrum are merged into a classification procedure based on 
the Wishart statistics of the interferometric coherency matrix6'16. 
The effectiveness of this classification method is demonstrated on polarimetric 
interferometric SAR data acquired by the DLR E-SAR sensor at L band over the 
Oberpfaffenhofen test site (Germany). 

2. Polarimetric SAR Data Analysis 

2.1. Incoherent Polarimetric Representation 

For a given measurement configuration, a target is fully characterized by its co
herent (2x2) complex scattering matrix, S, relating the incident and scattered 
Jones vectors. In a monostatic case, this matrix is composed, in the (X,Y) polari
zation basis, of three complex variables and is given by : 
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(1) 

An important development in the extraction of physical information from the 
scattering matrix has been achieved through the construction of target vectors 7'17. 
A three complex element target vector, k , is built from a vectorization of the S 
matrix as follows: 

k = [k{,k2,k^ with k, = -&(&¥.,) (2) 

where ^ (SY. ) stands for the trace of S*P. and T indicates transposition. Y, is a 

(2x2) matrix and belongs to the complex basis matrix set, Y , onto which the 
scattering matrix is decomposed. There exist, in the literature, many different basis 
sets. A special set, widely used in natural media remote sensing, is built from a 
linear combination of Pauli orthogonal matrix set elements and is given by: 

T = V2 
"1 0" 

0 1 
,fi "1 0" 

0 - 1 
,fi "0 f 

1 0 

The corresponding target vector, k , has the following expression: 

K= r- \SXX + Syy S^ ~ Syy 2 S xy J 

(3) 

(4) 

The factor v 2 arises in (3) and (4) to keep the norm of the target vector k equal 

to the span of the scattering matrix S , namely the total power back-scattered by 
I |2 I |2 i i2 

the target, given by span = 15^, J +|S„, +2 |5 '„ | . 

This type of target vector is generally used, in a linear basis, to retrieve natural 
media physical parameters. The amplitude of its elements is related to both the 
amplitude of the scattering matrix elements and to their relative phase difference. 
Data sets are generally processed using incoherent averaging techniques of data 
compression and/or speckle reduction. In order to characterize the second order 
statistical properties of a set of n independent S matrices, a n-look (3x3) coher
ency matrix, T , is built from the n corresponding target vectors k ; as follows: 

1 

n~t 

Ik,k[ (5) 

where the symbol f stands for transpose conjugate. 
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The diagonal terms of T correspond to the back-scattered power in the differ
ent polarization channels while the off-diagonal terms relate to polarimetric cor
relation coefficients. 

2.2. H-A- a Polarimetric Decomposition Theorem 

An unfiltered coherency matrix is constructed from a single target vector and has 
its rank equal to one. Its elements are linked by four equations, known as "target 
equations"18, deriving from the calculation of the matrix minors. In this case, the 
coherency matrix is said to represent a pure target and is equivalent to a single 
relative scattering matrix, Srel, defined as: 

S = e*'Srel (6) 

If the number of independent samples is superior to one, the rank of Tis superior 
to ones and the coherency matrix cannot be related to a single relative scattering 
matrix. T is then associated to a distributed target. 
Cloude and Pottier7'8 proposed an interpretation of the scattering phenomenon 
using an eigenvalue decomposition of the coherency matrix : 

T = V I V ' (7) 

where 2 represents a diagonal non-negative real eigenvalue matrix and V is a 
special unitary eigenvector matrix. 
The eigenvector decomposition of a distributed target coherency matrix is consid
ered as a simple statistical model consisting in the expansion of T into a weighted 
sum of three coherency matrices T.. This expansion may be expressed as follows: 

T = I ^ v ; = l ^ (8) 

Unit power T, matrices are defined from the mutually orthogonal eigenvectors 

v,, while the expansion weights are given by the corresponding eigenvalues A,.. 

Each coherency matrix, T., can be related to a single relative scattering matrix. 
If only one eigenvalue is non-zero, T corresponds to a pure target and can be 

related to a single relative scattering matrix. On the other hand, if all eigenvalues 
are equal, T is composed of three orthogonal scattering mechanisms with equal 
amplitudes. The corresponding target response shows no polarization structure at 
all. In general, T has non-zero and non-equal eigenvalues. The analysis of its 
polarimetric properties requires a study of the eigenvalues distribution as well as a 
characterization of each scattering mechanism of the expansion. 
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2.2.1. Characterization of the eigenvalue set 

Pseudo-probabilities of the coherency matrix expansion elements are defined, 
from a set of sorted eigenvalues, as: 

Pt = -rJ— = —*- with \ > X, > X, 
X1 3 span (9) 

The distribution of the three probabilities can be fully described by two parame
ters. 
- The entropy, H, indicates the degree of statistical disorder of the scattering phe
nomenon. It derives, in the Von Neumann sense, from the set of probabilities as: 

3 

H = -^Pilog,Pi with 0 < # < 1 (10) 
f=i 

If the entropy, H, is close to 0, the probability of the first term of the expansion 
described in (8) almost equals 1 and the coherency matrix T represents a pure 
target. 

Entropy close to 1 depicts a uniform distribution of the probability set. In this 
case the scattering process is a random noise and no reliable polarimetric informa
tion can be extracted from T. 
- For intermediate entropy values, i.e. different from 0 and 1, a complementary 
parameter is necessary to fully characterize the set of probabilities. The anisot-
ropy, A, is defined as the relative importance of the secondary scattering mecha
nisms and is given by: 

A=Pl~P' with 0<A<1 (11) 
Pi+Pi 

A value of A close to 0 corresponds to secondary mechanisms with equal impor
tance, while A = \ indicates that the power associated to the third matrix, T3, is 
null. 

2.2.2. Extraction of the dominant scattering mechanism 

Cloude and Pottier7'8 proposed a method to extract a pure dominant scattering 
mechanism from the results of the coherency matrix expansion enounced in (8). 
The unitary eigenvector associated to each scattering mechanism is parameterized, 
using four real coefficients, under the following form: 

v. =e'1 [cosai,sinal cos fi^5' ,sinai sin p^"]1 (12) 
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The phase term £. depends on the way eigenvectors are calculated and does not 
contribute to the scattering mechanism. The coherency matrix expansion presented 
in (8) may then be rewritten as: 

T = ^ T 1 ( a , j 8 1 > 5 „ y 1 ) (13) 
(=1 

The condition of mutual orthogonality between the eigenvectors involve that the 
three polarimetric parameters sets resulting from the expansion are not independ
ent. 

For this reason, each polarimetric parameter is associated to a three symbol 
Bernoulli statistical process. In this way, the estimate of the mean polarimetric 
parameter set is given by: 

3 

(a,M,7) = 2 > {a,fi„8„y,) (14) 

The set of average polarimetric parameters defined in (14) may then be inserted in 
(11) to form an average target vector, leading to the definition of a pure coherency 
matrix corresponding to the dominant scattering mechanism. An interpretation of 
the polarimetric information related to each average parameter is given by Cloude 
and Pottier7. 
- a can be considered as the main parameter resulting from the estimation per

formed in (14). It indicates the nature of the underlying dominant scattering 
mechanism. A value close to 0 relates surface reflection, a equals 45° for 

scattering from a dipole and reaches 90° when the target consists in a metallic 
dihedral scatterer. 

- The three remaining parameters were shown19 to be related to the orientation of 
the considered target around the radar line-of-sight. 

It may be easily shown that the indicator of the underlying scattering mechanism, 
a, is invariant under azimuthal rotation around the radar line-of-sight. Moreover, 

the entropy and anisotropy indicators, which are constructed from the set of ei
genvalues, are invariant under any change of polarization basis. These invariance 
properties may confer to the three parameters an appreciable robustness for the 
characterization of general targets. 

2.2.3. Application to polarimetric SAR data 

The polarimetric decomposition described in the former paragraph is applied to 
the Oberpfaffenhofen polarimetric SAR dataset. The resulting entropy, anisotropy 
and a images are shown in Figure 2. 
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Figure 2 Polarimetric decomposition main parameters: H, A and a 

The values of a observed over the scene under analysis corroborate the inter
pretations presented in the former paragraph. In a general way, a is less than 45° 
degrees for a large part of the agricultural fields, which correspond to rough sur
faces. It reaches 40° to 60° over forested areas, and shows values close to 90° for 
some buildings and urban areas characterized by double bounce scattering. The 
entropy has low values over surface scattering areas, which behave as almost 
deterministic targets. Over building and urban areas, H shows intermediate to high 



113 

values due to the mixing of different types of scattering mechanism during the 
incoherent averaging. Some point targets, back-scattering fully polarized waves, 
are characterized by a null entropy. Over forests, H is close to 1 and depicts tar
gets with no polarimetric structure. 

2.3. Unsupervised Identification of a Polarimetric Scattering Mechanism 

In 7"8, an algorithm is proposed to identify in an unsupervised way polarimetric 
scattering mechanisms in the H-a plane. The key idea is that entropy arises as a 

natural measure of the inherent reversibility of the scattering data and that a can 
be used to identify the underlying average scattering mechanism. 

The H- a classification plane is sub-divided into 8 basic zones characteristic of 
different scattering behaviors. The basic scattering mechanism of each pixel of a 
polarimetric SAR image can then be identified by comparing its entropy and a 
parameters to fixed thresholds. The different class boundaries, in the H-a plane, 
have been determined so as to discriminate surface reflection (SR), volume diffu
sion (VD) and double bounce reflection (DB) along the a axis and low, medium 
and high degree of randomness along the entropy axis. Detailed explanations, 
examples and comments concerning the different classes can be found in7"8. 

Figure 3 shows the H- a plane and the occurrence of the studied polarimetric 
data into this plane. 
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Figure 3 H- a scattering mechanism identification plane (top). Polarimetric data occur

rence in the H- a plane (bottom) 

Grey zones in the H- a plane correspond to unfeasible areas. 
It can be seen, in Figure 3, that the largest densities in the occurrence plane 

correspond to volume diffusion and double bounce scattering with moderate and 
high randomness. Medium and low entropy surface scattering mechanisms are 
also frequently encountered in the scene under examination. 

Data distribution in the H-a plane does not show, for the considered scene, 

distinct natural clusters belonging to a single scattering mechanism class. There
fore, identification results may highly depend on segmentation thresholds. 

Results of the unsupervised identification procedure are presented in Figure 4. 
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Figure 4 Unsupervised scattering mechanism identification in the H- a plane 

It can be observed in Figure 4 that the proposed segmentation in the H-a 
plane permits to identify in a macroscopic way the type of scattering mechanism. 
Agricultural fields and bare soils are characterized by surface scattering. Scatter
ing over forested areas is dominated by volume diffusion while urban areas are 
mainly characterized by double bounce scattering. It may be noted that the identi
fication process slightly overestimates volume diffusion and double bounce scat
tering over surfaces. 

3. Unsupervised Classification of Polarimetric SAR Data 

The particularity of the identification procedure introduced in the former para
graph resides in the estimation of the type of observed media from a physical 
interpretation of canonical scattering mechanisms using robust indicators. Never
theless, the analysis of natural scenes using this unsupervised approach may reach 
some limitations: 
- The arbitrarily fixed linear decision boundaries in the H- a plane may not fit 

data distribution. A natural cluster corresponding to similar targets may lie 
across a frontier in the decision plane. In this case, pixels with very similar 
characteristics may be assigned, in an almost random way, to different classes 
due slightly different locations in the H-a plane. This effect can be observed 

in Figure 4 where the variability in natural media polarimetric features lead to 
noisy classification results. 
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- Even if the computation of H and a requires fully polarimetric data, these two 
parameters do not represent the whole polarimetric information. The use of 
other indicators such as the span or specific correlations coefficients may im
prove the classification results in a significant way. 

Segmentation procedures based on the whole coherency matrix statistics permit to 
overcome the limitations mentioned above. Nevertheless, it is shown in the fol
lowing, that the physical interpretation of the scattering phenomenon permits to 
enhance in a significant way the performance of statistical segmentation schemes. 

3.1. Polarimetric SAR Data Statistics 

It has been verified that when the radar illuminates an area of random surface of 
many elementary scatterers, k can be modeled as having a multivariate complex 
gaussian probability density function ^ ( 0 , 2 ) of the form4: 

., x expC-k^-'k) 
P(X)= V \ ,]T} (15) 

I 

where q stands for the number of elements of k , equal to three in the monostatic 
case, | | represents the determinant, and E = £(kk f) is the global (3x3) coher
ency matrix of k . 

It has been shown that assuming that target vectors have a Nc(0,E) distribu
tion, a sample n-look coherency matrix T, introduced in (5), follows a complex 
Wishart distribution with n degrees of freedom, Wc(n,T£), given by4'20. 

^"iTHexpHKnlT'T)) 
P(T) = — — rr„ 

K(n,qp\ 
(16) 

with K{n,q) = nqU,~'V2f[T{n-i + \) 

where T() is the gamma function. 

3.2. Unsupervised Maximum Likelihood Segmentation Based on the Wishart 
Distribution 

A Maximum Likelihood (ML) segmentation process assigns sample coherency 
matrices Tto the class Xm maximizing its likelihood function over N possible 
classes. This decision may be expressed under the following form: 

r e X m i f p(T/X„,)> jp(T/X,) i = l,-,N i*m (17) 



117 

The ML assignment of a sample coherency matrix following a Wishart distribu
tion becomes: 

X„=argmax/>(T7X.) 

n'"|Tr*exp(-/r(«i;;1T)) ( 1 8 ) 

with p(T/XJ 
K(n,qpm 

where Em corresponds to the global coherency matrix evaluated over the class 

Xm. 

The joint likelihood optimization for all the sample matrices cannot be per
formed in an easy way. Indeed, in the frame of an unsupervised segmentation, the 
global coherency £m is built from the sample matrices belonging to the class Xm . 

An optimal solution would consist in testing all the possible segmentations of a 
given number of sample matrices into N classes. This optimal solution cannot be 
applied due to the unrealistic computational load it requires. 

Lee et al.4 proposed an alternative method, based on a k-mean iterative clus
tering algorithm. At each iteration of the algorithm, a sample coherency is as
signed to the class according to the following decision rule: 

TeX„, i f rf(T,XJ<rf(T7X,) i = l, — ,N i*m (19) 

The statistical distance between the sample matrix Tand the class Xm , d(T,Xm), 

derives from the Log-likelihood function and is given by: 

d(T,Xm) = hi\Lm\ + tr{^T) (20) 

Figure 5 depicts the unsupervised segmentation process. 
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Figure 5 Unsupervised Maximum Likelihood segmentation scheme 

It is known that the initialization of the pixel distribution into N classes is a critical 
stage of the k-mean clustering algorithm. An adequate initialization permits a fast 
convergence and provides correctly segmented clusters. 

The convergence of the algorithm is evaluated by testing a condition of termi
nation. Such a criterion may be defined from the estimation of the classification 
quality, or consist in a maximum number of iterations or in a sufficiently low 
number of pixels that are differently classified from one iteration to the other. 

3.3. Combined Wishart H-A- a Unsupervised Classification Schemes 

3.3.1 Wishart H- a unsupervised segmentation ofpolarimetric SAR data 

Lee et al.13 introduced an unsupervised ML segmentation procedure based on 
Wishart statistics, initialized with the results of the unsupervised identification of a 
scattering mechanism. This initialization provides 8 classes relating to the under-
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lying physical scattering mechanism and giving a stable initial approximation of 
the segmentation. 

Results obtained using Wishart H-a segmentation are displayed in Figure 6. 

CI C2 C3 C4 C5 C6 C7 C8 

Figure 6 Wishart H- a segmentation results 

An important improvement in the segmentation accuracy can be observed in the 
image presented in Figure 6. The main kinds of natural media are clearly discrimi
nated by the Wishart H- a segmentation scheme. This unsupervised classification 
algorithm modifies the decision boundaries in an adaptive way to better fit the 
natural distribution of the scattering mechanisms and takes into account informa
tion related to the back-scattered power. 

3.3.2 Wishart H-A- a unsupervised segmentation ofpolarimetric SARdata 

Pottier and Lee 14 further improved the ML Wishart unsupervised segmentation by 
explicitly including the anisotropy information during the segmentation procedure. 
As mentioned previously, the anisotropy indicates the relative importance of sec-
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ondary mechanisms obtained from the expansion of a coherency matrix. This 
polarimetric indicator is particularly useful to discriminate scattering mechanisms 
with different eigenvalue distributions but with similar intermediate entropy val
ues. In such cases, a high anisotropy value indicates two dominant scattering 
mechanisms with equal probability and a less significant third mechanism, while a 
low anisotropy value corresponds to a dominant first scattering mechanism and 
two non-negligible secondary mechanisms with equal importance. 

Among the different approaches tested, the best way to introduce the anisot
ropy information in the classification algorithm consists in implementing two 
successive segmentation procedures as shown in Figure 7. 
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Figure 7 Synopsis of the Wishart H-A- a segmentation procedure 
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Polarimetric data are first segmented according to the algorithm presented in 
the former paragraph. Once this procedure has converged, the 8 resulting clusters 
are split into 16 ones by comparing the anisotropy of each pixel to a threshold 
fixed to 0.5. The 16 segments are then used to initialize a second Wishart ML 
segmentation procedure. 

C9 CIO Cll C12 C13 C14 C15 C16 

Figure 8 Wishart H-A- a segmentation results 

The segmentation results presented in Figure 8 show an enhanced description 
of the Oberpfaffenhofen scene. The introduction of the anisotropy in the clustering 
process permits to split large segments into smaller clusters discriminating small 
disparities in a refined way. Several kinds of agricultural fields are separated. The 
runway and other low intensity targets are distinguished from other surfaces. 
Buildings are discriminated from other types of scatterers present in urban areas. 
The Wishart H-A-a classification scheme gathers into segments pixels with 
similar statistical properties, but does not provide any information concerning the 
nature of the scattering mechanism associated to each cluster. 
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3.4. Unsupervised Identification to Canonical Scattering Mechanisms 

An efficient estimation of the nature of scattering mechanisms over natural scenes 
can be achieved by gathering results obtained from the polarimetric decomposition 
and segmentation procedures presented in previous paragraphs15. The identifica
tion of polarimetric properties of compactly segmented clusters permits, by ana
lyzing groups of scatterers, to reduce the influence of the variations in pola
rimetric indicators over natural media. The estimation of scattering properties 
provides an accurate interpretation of nature media from manmade structure in the 
observed scene. 

Volume diffusion and double bounce scattering were found to be over
estimated during the identification of scattering mechanisms using the H- a seg
mented plane. One of the reasons of this over-estimation resides in the calculation 
of the average parameter set given in (14). In some cases, the expansion of a 
coherency results in a dominant scattering mechanism and secondary mechanism 
showing very different polarimetric properties. The calculation of average indica
tors as the weighted sum of the indicators of each element of the expansion may 
then lead to an erroneous interpretation of the nature of the scattering mechanism. 
This phenomenon is illustrated by the following example: 

0.4731 -0.3242 0 

-0.3242 0.2369 0 

0 0 0.29 

(21) 

gives V = 
0.8192 0 0.5735 

-0.5735 0 0.8192 and A = c?jag[0.7,0.29,0.1] 

The corresponding set of separate and global a parameters is given by 

[a,,a2,a3] = [35o,90o,55o] => a = 51.15°,# = 0.6, A = 0.93 (22) 

The example depicted in (21) and (22) shows that secondary mechanisms may 
corrupt average parameters and lead to the estimation of double bounce reflection, 
while the dominant contribution, with 70% of the total power, corresponds to 
surface scattering. 

A restriction of the retrieval of the dominant scattering properties to the study 
of the most significant contributions permits to limit the influence of secondary 
mechanisms. As it was mentioned previously, the entropy and anisotropy pa
rameters can be used to determine the number of relevant scattering mechanisms 
in the global scattering phenomenon. 

In Figure 9 are represented different basic configurations of the pseudo-
probability spectrum according to the values of H and A. This information is then 
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used to select, in the H-A plane, the appropriate contributions arising from the 
expansion of a coherency matrix15. 
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Figure 9 Discrimination of different pseudo-probability sets using H and A (left). Selec
tion of relevant mechanisms in the H-A plane (right) 

High and low entropy respectively correspond to random and almost deterministic 
scattering. Global scattering with intermediate entropy values are associated to 
two scattering mechanisms with equal importance or one dominant scattering 
mechanism perturbed by secondary terms according to the anisotropy value. 

Specific identification procedures may then be applied to each of the three 
cases discriminated in the H-A plane according the number of significant mecha
nisms : 
- In presence of a single dominant scattering mechanism, single and double 

bounce scatterings are separated by a, < 45° and a, > 45°, respectively. 
- In the case of two significant mechanisms, scattering features cannot be esti

mated using average parameters in order to avoid the over-estimation problem 
mentioned above. Instead, a distributed matrix, Td, is constructed from the first 
two elements of the expansion as follows: 

T,i = Pjs+PiTi 

2 A, C-jD H + jG 

C + jD B0+B E + jF 

H-jG E-jF B0-B 

(23) 

where the distributed matrix is parameterized using the 9 Huynen coefficients. 
The nature of the scattering mechanism is determined by comparing the first two 
Huynen generators, 2Alt and B0+B . 

- Three mechanisms with equal probabilities depict random polarimetric scattering 
and are associated to volume diffusion. 

The determination of the number of relevant mechanisms and the correspond
ing identification procedure are applied to each pixel of the image. 
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Its most representative scattering mechanism type then characterizes each 
cluster. It is important to note that this type of decision prevents an excessive 
sensitivity of the classification process to the hard-decision limits with respect to 
the parameters H, A and a. The relevant mechanisms selection and identification 
to canonical scattering mechanisms results are shown in Figure 10. 
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Figure 10 Selection of significant mechanisms from the H-A plane (top). Unsupervised 
identification to canonical scattering mechanisms (top) 

The unsupervised classification results show a good discrimination of the three 
basic scattering mechanisms over the scene under consideration. Forested areas 
are well separated from the rest of the scene. Buildings, characterized by double 
bounce scattering, can be distinguished over the urban area and the DLR. It may 
be noted that the identification assigns some buildings to the volume diffusion 
class. The polarimetric properties as well as the power related information do not 
permit to separate these targets form forests. Such buildings have specific orienta
tions with respect to the radar and particularly rough roofs and back-scatter ran
domly polarized waves. 

4. Polarimetric Interferometric SAR Data Analysis 

4.1. Polarimetric Interferometric Representations 

Interferometric measurements of a target consist in two acquisitions of its elec
tromagnetic response, realized from slightly different positions. The polarimetric 
interferometric behavior of a target is then fully described by two scattering 
matrices, S, and S2. A six element complex target vector, k6 , obtained by 
stacking target vectors from each interferometric image, gathers the polarimetric 
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interferometric information into a compact representation. The corresponding 
(6x6) interferometric coherency matrix is given by10"12: 

T 6 = - X k
6 k l withk6 = and k, =[*„,*„,*„f (24) 

This coherency matrix has the following structure: 

w i t h T l 2 = i X k ^ (25) 
T T 
rpt J 

The matrices T, and T2 are the standard n-look (3x3) hermitian sample covari-

ance matrices for separate images. T12 is a (3x3) complex matrix which contains 

information about the interferometric correlation between k, and k2 . The target 

vector k6 follows a complex normal zero mean distribution VVc(0,E6), with E6 

its (6x6) covariance matrix. The sample (6x6) covariance matrix T6 has then a 

complex Wishart distribution Wc(n,TZ6), characterized by n degrees of freedom 
6,16 

4.2. Polarimetric Interferometric Coherence Set 

The sample interferometric correlation matrix, T12, has complex diagonal ele
ments, from which is computed a three polarimetric complex coherence set as 
follows: 

(hK) 
(Y„Y2,Y3) with y,= V '== (26) 

where the operator < > stands for the sum over n samples represented in (25). 
Standard real coherence values are obtained from the modulus of y.t, while its 

arguments correspond to the interferometric phase difference. It may be noted that 
the coherence defined in (26) is not invariant under a change of polarimetric basis. 
In general, coherence may be decomposed into multiplicative contributions as ,0: 

* temporal' i polar V / 

where the different terms indicate decorrelations related respectively to the back-
scattered wave signal to noise ration, the spatial distribution of the illuminated 
scatterers, temporal variations between the acquisitions and finally the polarization 
state. Coherence images for the different polarization channels are displayed in 
Figure 9. 
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Figure 11 Interferometric coherences for the different polarimetric channels in the Pauli 
basis 

Range filtering and topographic phase removal procedures are applied to the 
interferometric data sets prior to the computation of the polarimetric inter-
ferometric coherences. The range filtering procedures corrects wave number shifts 
inherent to interferometric measurements. 

High coherence values are observed for surface areas in the co-polarized chan
nels. Smooth surfaces, like the runway, scatter waves in the radar direction with a 
low signal to noise ratio, involving a low coherence in every polarization channel. 
In a general way, the maximum of the three coherence set corresponds to the first 
or second channel according to the dominant scattering mechanism, i.e. single or 
double bounce reflection respectively. Over forested areas, all three coherencies 
have low values. 

Cloude and Papathanassiou1012 introduced the following original formulation 
of the polarimetric interferometric coherence: 

w!T12w2 
Yi = / . = = = (28) 

Vwfrw, wf
2T2w2 

where wt and w2 are three elements complex vectors. The formulation of (27) 
permits to compute the interferometric coherence of a polarization channel in any 
emitting-receiving polarization basis. 

Papathanassiou and Cloude further developed this concept to define an optimal 

coherence set (yoptVYopt2,Yopt3), with Yoptl>Yopt2>yopt3. The optimal coherence set 

is obtained by analytically tuning the projection vectors, wt and w2 , to maximize 
the modulus of the coherences in 3-dimensonal, 2-dimensional and 1-dimensional 
spaces. 
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Figure 12 Optimal interferometric coherences 

The results of the optimization procedure presented in Figure 12 show an en
hanced contrast between the different optimal coherences. The first one has val
ues close to one over the major part of the considered scene and intermediate 
values over forested areas and low SNR targets. The third one shows minimal 
values over decorrelating media such as forest and smooth surfaces and reaches 
high values for a limited amount of very coherent point scatterers. The complete 
optimized coherence set represents highly descriptive indicators of the pola-
rimetric interferometric properties of each natural media and may then be used 
efficiently in a classification process. 

5. Unsupervised Classification of Polarimetrie Interferometric SAR Data 

As has been mentioned, the optimized coherency set offers a high degree of de
scription of the coherent properties of a medium with respect to the polarization. 
The color-coded image presented in Figure 13 represents the joint information 
associated to the optimal coherencies. 
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Figure 13 Color-coded image of the optimal coherence set 

The color-coding used for the joint representation of the optimal coherency set 
reveals particular behaviors of different types of natural medium under examina
tion. 

White areas indicate targets showing high coherence independently of the 
polarization. Such a behavior is characteristic of point scatterers and bare soils. 
They are also correspond, to buildings, fences and some vegetation free agricul
tural fields. 

Green zones reveal the presence of a single dominant coherent mechanism 
within the resolution cell. Secondary coherences, associated to the red and blue 
channels have significantly lower values. Such zones correspond to surfaces with 
low SNR responses and some particular fields. 

Forested areas, characterized by a dark green color have scattering features 
dominated by a single mechanism but with a very low coherence. 

A comparison of the image of Figure 13 with the polarimetric color-coded 
image shown in Figure 1 indicates that the distribution of strictly polarimetric and 
polarimetric interferometric features over surfaces and agricultural fields are sig
nificantly different. Coherence related information permits to discriminate par
ticular buildings that cannot be separated from forested areas using only pola
rimetric data. 
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Over forested areas, the polarimetric color-coded image shows homogeneous 
zones, while interferometric data indicate that there exist large variations of the 
coherent scattering properties corresponding to clear-cuts and low-density forest. 
In order to isolate the polarization dependant part of the optimal coherencies, it is 
necessary to define their relative values as: 

\Y„ \l > 7 , • with Y • V > V 
' / mill t 01 

(29) 

The relative optimal coherence spectrum can be fully described by two parame
ters. We propose to define Ai and A2 as characteristic indicators of the distribution 
of the coherency in the different optimized channels. 

t op! I / oi 
and A = 

I opt 1 l opt 3 

i opt 1 

(30) 

These parameters indicate relative amplitude variations between the different 
optimized channels. Similarly to the polarimetric case, the indicators A, and A2 

may be used to estimate the number of independent coherent scattering mecha
nisms from the optimization results. The different optimal coherence set configu
rations are represented and identified in Figure 14. 
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Figure 14 Discrimination of different optimal coherence set using A] and A2 (left). Selec
tion in the ArA2 plane (right) 

The schematic on the left hand side of Figure 14 separates the different optimal 
coherence set configurations in five classes. The diagonal classes correspond to 
configurations for which y = fopt3 with different importance with respect to the 

largest normalized coherence f . A column describes configurations with a 

constant proportionality ratio between y and y i . The real segmentation from 

A) and A2 is realized over nine classes in order to improve the resulting clusters 
descriptivity and accuracy. Results of the normalized optimal coherence set classi
fication are shown in Figure 15. 

Approximately four major classes arise from the identification of the optimal 
coherence set distribution. This unsupervised segmentation was also found to 
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achieve a high degree of descriptivity on other scenes observed with different 
baselines . This is a consequence of both the coherence optimization and the 
definition of a relative coherence set. 

Figure 15 Unsupervised identification of the number of coherent scattering mechanisms. 

The classification results are used to provide an adequate initialization to a 
segmentation merging polarimetric and interferometric analysis results. The clas
sification algorithm processes the different canonical scattering mechanisms sepa
rately. Pixels belonging to one of the typical scattering type shown in Figure 10 
are first segmented using the results of the interferometric coherence set identifi
cation depicted in Figure 14. The resulting clusters are used to initialize a k-mean 
unsupervised segmentation procedure based on the Wishart distribution of the 
(6 x 6) polarimetric interferometric coherency matrix, T6, introduced in (24). In 
this way, pixels are segmented according to their polarimetric and interferometric 
features. Results for the Volume Diffusion and Surface Reflection classes are 
shown in Figure 16. 
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Figure 16 Unsupervised polarimetric interferometric segmentation results over the Vol
ume Diffusion basic class (top), Surface Reflection class (middle) and all three canonical 
scattering mechanisms (bottom) 

Clusters resulting from the ML segmentation are assigned a color indicating 
their average coherence, ranging from black for low coherence to white for high 
coherence. 

Globally, polarimetric interferometric characteristics are efficiently segmented 
into compact clusters corresponding to scatterers with similar polarimetric and 
interferometric characteristics. 

The segmentation of the Volume Diffusion class successfully discriminates 
buildings, dense forest, sparse forest and clear-cuts. Surface Reflection areas are 
separated into segments according to both polarimetric and interferometric char
acteristics information. Details of the classification are displayed in Figure 17 for 
two particular zones corresponding to the DLR buildings and forest parcels. 
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Figure 17 Polarimetric Interferometric classification results over two areas, a) polarimetric 
color coded image b) optimal coherence set color coded image c) volume diffusion classifi
cation results d) surface reflection classification results e) Global classification into three 
canonical mechanisms including double bounce reflection 

It may be seen in Figure 17 a) that the DLR buildings do not have the same 
polarimetric behavior. Some of them have a polarimetric response dominated by 
double bounce scattering while the rest present behaviors characteristic of volume 
diffusion with high back-scattered power and significant amplitude in the cross-
polarized channel. The color-coded interferometric coherence image in Figure 17 
b) indicates that scattering mechanisms over the buildings have a high degree of 
coherence. The classification approach proposed in this paper first assigns the 
different buildings to the double bounce reflection or volume diffusion classes 
according to their polarimetric behavior. The introduction of the interferometric 
information permits then to separate vegetated areas from man-made targets and 
corrects possible errors in the interpretation of the scattering from strictly pola
rimetric data only, Figure 17 c). The classification of the areas dominated by sur
face reflection, presented in Figure 17 d) clearly discriminates very smooth sur
faces with low SNR, car parks and agricultural fields. 

The selected forested area presents a uniform polarimetric behavior dominated 
by volume diffusion characteristic of dense vegetation observed at L band. The 
color-coded interferometric image shows some large variations of the polarimetric 
interferometric coherence set. In some parts of the studied area, optimal emitting 
and receiving polarization states lead to a high degree of coherence. The joint use 
of polarimetric and interferometric data permits to segment the corresponding 
sparsely vegetated zones or clear-cuts and provides a final mapping with signifi
cantly increased information content. 

6. Conclusion 

This chapter presents an unsupervised procedure for classifying polarimetric inter
ferometric SAR data. Data acquired in polarimetric and interferometric modes 
have complementary characteristics; their joint use in a classification process 
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provides significantly higher performance. The classification approach resides on 
separate polarimetric and interferometric data classification and interpretation. 

Each scatterer is accurately identified to a basic scattering mechanism using 
efficient polarimetric indicators. The results of this identification are then used to 
evaluate polarimetric properties of clusters obtained from an unsupervised statisti
cal segmentation based on the multivariate Wishart distribution. 

A parameterization of an optimal interferometric coherence spectrum is used 
to segment data according to their interferometric properties. 

Finally, an unsupervised classification process, gathering polarimetric and 
interferometric results, is applied to each canonical scattering mechanism. The 
resulting images show significant improvements compared to the strictly pola
rimetric case. Clear-cuts sparse and dense forests are separated according to their 
coherent properties. Particular buildings having a polarimetric behavior similar to 
forest are discriminated. Surfaces are also better classified with more descriptive 
and more informative clusters. 

It is important to note the generality of this classification method. The pa
rameters used in these studies were chosen so as to reduce the sensitivity of the 
whole algorithm to changes from one site to the other or for different measure
ment conditions. Its applications to data acquired over a different site with a dif
ferent baseline also led to equally satisfying results. 
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A two-dimensional wavelet transform is a very efficient bandpass filter, which can be used 
to separate various scales of processes and show their relative phase/location. A feature 
tracking procedure based on wavelet transform has been developed and used for image 
processing at NASA Goddard Space Flight Center for the past several years. The 
two-dimensional Gaussian wavelet has been applied to satellite images for coastal 
monitoring (e.g. oil spills) and for ice edge and ice floe tracking from synthetic aperture 
radar (SAR), ocean color, and infrared (IR) data. However, SAR is valuable for feature 
tracking due to the fine spatial resolution of the data, but its less than daily coverage may be 
a serious problem for some ocean applications. A similar technique of wavelet analysis for 
scatterometer and radiometer data has been developed to obtain daily sea ice drift 
information in the Arctic region. This technique provides improved spatial coverage and 
better temporal resolution over techniques utilizing data from SAR. From low earth orbits, 
ocean surface feature tracking analyses have always been based on data from a single 
orbital sensor collected over the revisit interval of a single satellite. For the first time, ocean 
surface layer currents have been derived by wavelet feature tracking of ocean color data 
from different sensors on different satellites. Ocean color data can be used as a tracer for 
measuring ocean surface layer currents, because the ocean color signal comprises 
information from a deeper water depth than surface signatures. The results of feature 
tracking from these multiple sensors demonstrate that wavelet analysis of satellite data is a 
very useful tool for image processing. 

1. Introduction 

Basically, wavelet transforms are analogous to Fourier transform but are localized 
both in frequency and time. A two-dimensional wavelet transform is a highly 
efficient band-pass filter, which can be used to separate various scales of processes 
and show their relative phase/location [1]. A feature tracking procedure based on 
wavelet transform has been developed and used for image processing at NASA 
Goddard Space Flight Center for the past several years. The two-dimensional 
Gaussian wavelet (often referred to as a "Mexican hat" wavelet) has been applied 
to satellite images to separate various scale processes including relative 
phase/location information for coastal monitoring [2] and for ice edge and ice floe 
tracking [3]. This Gaussian wavelet transform works as a band-passed filter. 
Ideally, only features with length scale within a chosen band are retained upon 
transformation [4]. The wavelet transforms of SAR images can be used for near 
real-time "quick look" screening of satellite data (feature detection), data reduction 
(binary image), and image enhancement (edge linking). 
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However, SAR is valuable for feature tracking due to the fine spatial resolution 
of the data, but its less than daily coverage may be a serious problem for some 
ocean applications. A similar procedure of wavelet analysis for scatterometer and 
radiometer data can be used to obtain daily sea ice drift information for the Arctic 
region [5],[6]. This technique provides improved spatial coverage over the 
existing array of Arctic Ocean buoys and better temporal resolution over 
techniques utilizing data from SAR. Comparisons with ice motion derived from 
ocean buoys give good quantitative agreement. Both comparison results from 
scatterometer and radiometer are compatible, and both results are definitely 
complement with each other. Then these sea-ice drift daily results from satellite 
data can be merged as a composite map by some data fusion techniques. Examples 
of derived ice-drift maps illustrate large-scale circulation reversals over a period of 
few days. 

Historically, from low earth orbits, ocean surface feature tracking analyses 
have been based on data from a single orbital sensor collected over the revisit 
interval of a single satellite. For the first time, ocean surface layer currents have 
been derived by wavelet feature tracking of ocean color data from different sensors 
on different satellites [7]. Satellite ocean color data provide important insight into 
the marine biosphere by quantifying certain fundamental properties on a global 
scale. In addition, satellite ocean color data can also be used as a tracer for 
measuring ocean surface layer currents by wavelet feature tracking, because the 
ocean color signal comprises information from a deeper water depth than surface 
signatures (such as sea surface temperature). 

In this chapter, some recent works developed at NASA Goddard Space Flight 
Center using wavelet analysis for satellite image processing are reviewed. After a 
general introduction section, the contents are organized as follows. An introduction 
to the satellites and sensors used later in the case studies is first presented. A brief 
description of the two-dimensional wavelet analysis, which forms the basis of our 
tracking technique, is presented next. This is followed by several case studies of 
feature extraction based primarily on the wide swath SAR data to demonstrate the 
many applications such as monitoring of fronts, sea ice boundary, and oil spills. 
Case studies employing feature tracking technique from multiple sensors where 
sea-ice drift is derived from sequential SAR data, sea-ice motion from QuikSCAT 
and SSM/I data, and ocean surface layer drift from MODIS and SeaWiFS data are 
then presented. The concluding remarks are provided in the last section. 

2. Recent Satellites and Sensors for Ocean Applications 

In this section, some recent satellites and sensors that used for ocean applications are 
introduced as background for the case studies presented later in this chapter. 

a) Synthetic Aperture Radar (SAR): 
Synthetic aperture radar (SAR) is a side-looking imaging radar usually operating on 
either an aircraft or a spacecraft. SAR instruments transmit radar signal, thus 
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providing their own illumination, and then measure the strength and phase of the 
signals scattered back to the instrument. Radar waves have much longer wavelengths 
compared with light, allowing them to penetrate clouds with little distortion. The 
ability of SAR for monitoring surface signatures of swells, wind fronts, and eddies 
has been amply demonstrated. With all-weather, day/night imaging capability, SAR 
can penetrate clouds, smoke, haze and darkness to acquire high quality images of the 
Earth's surface. This frequently makes SAR the sensor of choice for many overcast 
coastal regions. Space agencies of the U.S., Canada, and Europe use SAR imagery on 
an operational basis for sea ice monitoring, and for the detection of icebergs, ships, 
and oil spills. However, there can be considerable ambiguity in the interpretation of 
physical processes responsible for the observed ocean features [8]. 

The first spaceborne SAR was flown on the U.S. satellite Seasat in 1978. Although 
Seasat only lasted three months, analysis of its data confirmed the sensitivity of SAR 
to the geometry of surface features. It was followed by a decade with very little 
progress in SAR technology. On March 31, 1991 the Soviet Union became the next 
country to operate an earth-orbiting SAR with the launch of Almaz-1. Almaz-1 
returned to earth in 1992 after operating for about 18 months. The European Space 
Agency (ESA) launched its first remote sensing satellite, ERS-1, with a C-band SAR 
on July 17, 1991. Shortly thereafter, the JERS-1 satellite, developed by the National 
Space Development Agency of Japan (NASDA), was launched on February 11, 
1992 with an L-band SAR. This was followed a few years later by ERS-2, launched 
in April 1995 by ESA, and RADARSAT-1, the first Canadian remote sensing 
satellite, launched in November 1995 by the Canadian Space Agency (CSA). 
RADARSAT-1 has a ScanSAR mode with a 500 km swath and a 100 m resolution, 
an innovative variation of the conventional SAR (with a swath of 100 km and a 
resolution of 25 m). Most recently, ESA's Envisat, equipped with an Advanced SAR 
(ASAR), was launch on March 1, 2002. In the near future, CSA has RADARSAT-2 
scheduled for launch in early 2004, and NASDA has the Advanced Land Observing 
Satellite (ALOS), which was equipped with a Phased Array type L-band SAR 
(PALSAR), scheduled for launch in the summer of 2004. 

b) QuikSCAT: 
QuikSCAT, a "quick recovery" mission to fill in the gap created by the loss of data 
from NSCAT, when the ADEOS-1 satellite lost power in June, 1997, was launched 
on June 19, 1999. It will continue to add to the important ocean wind data set 
begun by NSCAT in September, 1996. QuikSCAT has 25km resolution with 5km 
resolution from enhanced processing. The finer resolution will further reduce the 
uncertainty of the ice motion product that inherits from satellite data and therefore 
may improve the accuracy of the product. 

c) Special Sensor Microwave/Imager (SSM/I): 
The SSM/I is a seven-channel, four frequency, linear-polarized, passive microwave 
radiometric system which measures atmospheric, ocean, ice and terrain microwave 
brightness temperature at 19, 22, 37 and 85 GHz. The 85GHz data are used in this 
study because of its 12.5 km resolution. The Advanced Microwave Radiometer for 
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EOS (AMSR-E) was put to use aboard the satellite Aqua upon its launch on May 
4, 2002. Spatial resolution of the individual measurements is 5.4 km at 89 GHz. 

d) Sea-viewing Wide Field-of-view Sensor (SeaWiFS): 
The spacecraft SeaStar carries the SeaWiFS instrument and was launched to low 
earth orbit on board an extended Pegasus launch vehicle on August 1, 1997. The 
purpose of SeaWiFS Project is to provide quantitative data on global ocean bio-
optical properties to the Earth science community. Subtle changes in ocean color 
signify various types and quantities of marine phytoplankton (microscopic marine 
plants), the knowledge of which has both scientific and practical applications. 

e) Moderate Resolution Imaging Spectroradiometer (MODIS): 
MODIS is a 36-band spectroradiometer measuring visible and infrared radiation 
and obtaining data that will be used to derive products ranging from vegetation, 
land surface cover, and ocean chlorophyll fluorescence to cloud and aerosol 
properties, fire occurrence, snow cover on the land, and sea ice cover on the 
oceans. The first MODIS instrument was launched on board the Terra satellite in 
December 1999 and the second MODIS instrument was launched on board the 
Aqua satellite in May 2002. 

3. Wavelet Analysis 

3.1 A Histogram Screening Routine for Feature Detection 

Intuitively, if one is to discern a "feature" from an image, there must be 
sufficient contrasts in the pixel grayscales. Statistically, that means the 
pixels that made up the scene do not all belong to a single group, but rather, 
to multiple distinct groups, which translates into multiple peaks in 
histogram presentation. The histogram screening routine is based on this 
physical intuition [4]. It further assumes that multiple peaks in histogram is, 
in addition to being a necessary condition, also a sufficient condition for the 
existence of a visually distinguishable feature(s). 

hi practice, the histogram screening routine first divides an image into smaller, 
overlapping regions. Each region shares 50% of the same pixels with each of its 
four neighboring regions; consequently each pixel may belong to four different 
regions at most. The intensity histogram is calculated for each region. Overlapping 
of the screening area is necessary to ensure a feature, such as a front, that happens 
to follow the boundary of two adjacent screening regions will not be overlooked. If 
more than one distinct peaks are detected, the region under screening is deemed to 
be one with feature(s), otherwise to be one without a feature. A matrix 
corresponding to the original image is constructed with each grid point 
representing an individual screening area and its value the screening result ("1" for 
feature found; "0" for feature not found). 
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In examining the histogram screening result, an eight-neighbor connection 
scheme is adapted, that is, a grid node is considered to be connected to its eight 
immediate neighbors: its upper left, upper, upper right, left, right, lower left, lower 
and lower right grid nodes. In this way, the linear dimension and the area of a 
feature can be estimated, thus to decide whether the feature is large enough for a 
particular study to render further investigation. Once a feature of significant size is 
detected, one can use a feature extraction routine, such as the two-dimensional 
wavelet analysis described in the following section, to delineate it. 

3.2 Wavelet Transform 

In general, two-dimensional continuous wavelet transform Ws(a,b) of a function 
s(r), where r = (x,y), is expressed in terms of the complex valued wavelet function 
w(r) as follows: 

/ v h 
Ws(a,k) = -\s(r)w*(=^)dr (1) 

a a 
in which the wavelet function is dilated by the factor a, and shifted by the vector 
b. The function w(r) is the basic wavelet [1]. The superscript * indicates complex 
conjugate. Two frequently used wavelet functions are the Morlet wavelet, a 
Gaussian modulated sine and cosine wave packet, and the Mexican hat, the second 
derivative of a Gaussian function. In this study, we use the Mexican hat that can 
be expressed as follows: 

2 2 

w(x,y) = (2-(x2 + / ) ) e x p ( - ^ - ^ ) . (2) 

Since convolution is commutative with respect to differentiation, the resulting 
wavelet transform is the Laplacian of a Gaussian smoothed function. Thus, zeroes 
correspond to the inflection points of the original function. The contours of zero 
crossing indicate the edges in the pattern of the input function. 

To perform the wavelet transformation, first a suitable a value is chosen, 
which corresponds to the length scale of the Gaussian function. The general rule of 
thumb is to choose this value based on 1) the length scale of the feature of interest; 
and 2) the resolution (or pixel spacing) of the original image. 

3.3 Threshold for Feature Extraction 

A differential detection is then carried out to determine the pixel locations of 
significant differentials so that the feature of interest can be delineated from the 
background. In this chapter, both kinds of wavelet-transformed data (wl, the first 
derivative and Wl, the second derivative) are examined. An edge is expected to 
locate at pixel (x0, yo) if both of the following conditions are met: 

wl(x0,yo) exceeds a chosen threshold value T, 
where T = [wl(x, y)] +1 x [wl(x, y]', and 
[w]: the ensemble average; 
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[w]': the standard deviation of the ensemble. 
w2(x0, y0) equals to a predetermined value c which is typically in the 
neighborhood of zero. 

The choices of t and c rely to a great extent on the observation as to where the 
actual edges lie, which can be achieved by visual inspection. For noise-free 
images, the threshold / can be chosen such that all amplitude changes above a 
minimum contrast level are detected as edges, and all others are considered non-
edges. With noisy images, such as SAR with speckle noise, the threshold selection 
becomes a tradeoff between missing valid edges and designating noise-induced 
false edges. 

The Laplacian G(x,y) of the original image F(x,y) is zero if F(x,y) is constant 
or changing linearly in amplitude. If the rate of change of F(x,y) is greater than 
linear, G(x,j>)exhibits a sign change at the point of inflection of F(x,y). The zero 
crossing of G(x,y) thus indicates the presence of an edge. In reality, since SAR 
imagery is subject to heavy "speckle noises", the rate of the change of the original 
image (F(x,y)) equals to zero at many pixel locations throughout the image. The 
zero crossings of G(x,y) under this circumstance are clearly false edges. Therefore, 
it often becomes necessary to find a suitable value other than zero for c. By 
properly selecting a non-zero contour value, Liu et. al. (1997a) has shown that one 
can pick out the valid edges while reducing the amount of the false edges by as 
much as 80%. Obviously, in order to keep the edges identified in a sufficiently 
narrow band of the point of the inflection of F(x,y), the contour value has to be 
sufficiently close to zero. 

4. Feature Extraction: SAR for Coastal Monitoring 

The wavelet analysis of SAR images can be used for near real-time "quick look" 
screening of satellite data (feature detection), data reduction (binary image), and 
image enhancement (edge linking). Figure 1 shows the flow chart of feature 
extraction using wavelet analysis based on SAR, IR, and ocean color data as 
reference. 

4.1 An Oil Spill off Point Barrow, Alaska 

The reason why oil spills are detectable on radar images is that surface films have 
a dampening effect on short surface waves. Radar is remarkably sensitive to small 
changes in the roughness of the sea. The dark appearance on radar images is due 
to the smooth ocean surface for very low intensity of backscattering. It is the 
distinctive shape and sharp boundary of surface film which enables them to be 
identified with a high degree of certainty. 
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MAXICAN HAT (LAFLACIAN OF GUAS5IAN) 

SMALL SCALE THRESHOLD LARGE SCALE THRESHOLD 

FEATURE EXTRACTION 

IMAGE ENHANCEMENT (EDGE LINKING) 

TEXTURE EVALUATION 

FEATURE TRACKING 
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Figure 1 Flow Chart of Feature Extraction Technique Using Wavelet 
Analysis of Satellite Data from SAR, Ocean Color, and IR 

In early November 1997, shortly after the satellite RADARSAT had resumed 
its coverage of the Arctic region, the SAR sensor on board captured an oil spill off 
Point Barrow, Alaska. The oil slicks show up clearly on the RADARSAT 
ScanSAR imagery on November 2, 3 and 9. The oil spill might be related to the 
Alaskan Oil Pipeline, although the exact source remains unidentified. Three 
subscenes of 1024x1024 pixels with 100 m resolution encompassing the oil slicks 
was cropped out from each of the original ScanSAR images for analysis (Figure 
2a, b, c). 

Among the three SAR images, the oil slicks on November 2 have the most 
well defined shape, apparently as the result of the low wind and calm sea 
conditions. The matching a value for the wavelet analysis is 8, corresponding to a 
length scale of L = 800 m. The threshold / is chosen to be 0.6. Figure 2a shows 
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the result of wavelet analysis with the oil slicks delineated. The oil spill shows up 
as three separate patches that lined up in the north-south direction. 

On November 3, the wind had obviously become stronger with wind streaks 
clearly visible as shown in Figure 2b. The wind streaks from the SAR image 
follow the northwest to southeast direction. The oil slicks had broken into a series 
of elongated patches. A much smaller a = 2 is used in order to delineate them. This 
value corresponds to a length scale of L = 200 m. The threshold is chosen to be 
2.4. In general, as a value becomes smaller, the differential detection picks up 
finer details. The threshold t is then raised to offset the effect. The shapes of oil 
slick patches are not well-defined due to the strong wind drift. Therefore, the 
outlines of some of the less distinguishable oil slicks are missed out as a 
consequence. Six days later on November 9, the oil slicks had drifted further 
offshore toward northwest and become two elongate patches. Figure 2c shows a 
subscene from the SAR image collected on November 9 with the oil slicks 
delineated by wavelet transform. The relevant parameters for the wavelet analysis 
are: a = 4 for wavelet length scale, and the threshold t = 2.2. Figure 2d shows a 
map of Point Barrow and its vicinity to summarize the approximate locations of 
the oil slicks and their tracks as they were drifting further offshore in response to 
the wind and current. 
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Figure 2 Oil Slicks Monitoring near Point Barrow, Alaska on (a) Nov. 2, (b) 3 and 
(c) 9, 1997 and (d) Location Map 

4.2 An Ice Eige in the Bering Sea 

Sea ice is not a stationary, rigid sheet of material atop of sea surface, it is 
driven constantly by winds and currents, and develops ridges, leads, and 
coastal polynyas as response to the internal stresses caused by these forcing. 
Not surprisingly, the marginal ice zone and the position of the ice edge are 
highly dynamic [9]. In the Bering Sea, for instance, the daily displacement 
of sea ice is easily on the order of a few kilometers, even greater during sea 
ice advance/retreat seasons. SAR imagery can provide valuable information 
on the position/motion of the ice edge. 

Figure 3b is a subscene of RADARSAT ScanSAR image acquired in 
southeastern Bering Sea near Nunivak Island on April 3, 2000, during a period of 
sea ice retreat. Its aerial coverage is about 200 km by 200 km (2048x2048x100 m). 
Here sea ice appears heavily textured along the edges but gradually becomes 
smooth away from the edge. In this instance, the resulting binary image (Figure 3a) 
using a 128x128-pixel screening window identifies areas with heavy texture, either 
along the ice edge or in the interior of the sea ice where sea ice and open water are 
both present. 

With the scaling factor a = 20 (corresponding to 4km), a number of curves are 
identified as the most prominent boundaries at this scale by wavelet analysis. The 
discriminatory procedure then retains the longer ones near the border of the 
identified feature zone. The technique of edge linking is then applied to connect 
individual line segments. The white curve in Figure 3b represents the ice edge 
delineated by the wavelet analysis. Notice that a small open water area inside of 
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ice cover is also extracted by wavelet analysis due to its very low ice 
concentration. 

Figure 3 Marginal Ice Zone (a) Binary Image to Identify Ice Cover Area, 
(b) Ice Edge Extraction Using Automated Wavelet Analysis 

4 3 Sea Ice Motion near St. Lawrence Island 

St. Lawrence Island is a small island due south of Bering Strait at 63.5°N? 

170.5°W. Its extent in the east-west direction is about 150 km. Polynyas off its 
leeward coast, behind the tall, round-shaped Kookooligit Mountain, is a recurring 
phenomenon during winter. Since December of 1998, ScanSAR Wide (100-m 
pixel resolution, 510-km swath width) images covering St. Lawrence Island and its 
vicinity have been regularly received to study the evolution of the polynyas off its 
leeward coast as well as the surface velocity field surrounding that island. In SAR 
images containing floes or polynyas, the boundaries between open water and ice, 
or young gray ice and older brighter ice are sometimes easily identified. In such 
circumstances, a single continuous boundary may be detected through a 
single-scale wavelet transform by using the Mexican-hat wavelet. The maximum 
gradient change in pixel intensity along a zero-crossing contour determines the 
boundary location. 

Two sequential images collected over St. Lawrence Island on January 4, and 6, 
1999 were chosen for this study. Subscenes from the two images, each of size 
2048x2048 pixels, are shown in Figure 4a, and b, with the polynya delineated by 
the 2-D wavelet analysis. The shape and the make-up of the polynya have 
evidently changed a great deal from one scene to another over a course of 2 days, 
suggesting that the polynya is rapidly evolving. 
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Figure 4 Two Sequential ScanSAR Images Collected over St. Lawrence Island on 
(a) January 4, and (b) January 6, 1999 with the Polynya 

Delineated by the 2-D Wavelet Analysis 

Figure 5a, and b are ScanSAR subscenes of the same area just north of St. 
Lawrence Island on January 4, and 6. A number of ice floes in this area remain 
visually recognizable through out this period. A triangle, which is created by 
connecting the centers of mass of three particular ice floes, is indicated by a thick 
black line in these figures. A comparison of the two triangles on Jan. 4 (Figure 5a) 
and Jan. 6 (Figure 5b) indicates that the three floes had all moved slightly 
eastward. The displacement is by no means a simple translation. The area of the 
triangle had changed from approximately 465 km2 on Jan. 4 to 275 km2 on Jan. 6, 
indicating an area of convergence. It appears that the wind is blowing out of the 
west, herding the ice floes up against the more consolidated ice located on the east. 
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Figure 5 ScanSAR Subscene north of St. Lawrence Island on (a) January 4, and 
(b) January 6 1999, and (c) Ice Floe Motion during these two days. 

The motion of the ice floes can be further quantified by means of 2-D wavelet 
analysis. First, some distinct ice floes identified by the wavelet analysis are 
numbered in Figure 5a? and b. By calculating the displacement of the center of 
mass of each floe, one can estimate the velocity of each floe between the time 
period that separates the two snapshots. Figure 5c shows the displacements and 
directions of ice floes during Jan. 4 and Jan. 6. The two floes located in the less 
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consolidated region have moved 10 km, or an average of 286 meters per hour, to 
the east. The third floe, which is located well within the consolidated region, has 
moved only approximated 3.4 km, or an average of 97 meters per hour, in the 
southeasterly direction. 

Studies discussed above clearly reveal that the flow field surrounding St. 
Lawrence Island is fairly dynamic, both in the sense that it amounts to a 
considerable speed and in that the flow pattern changes quite rapidly. Results of 
the polynya and floe tracking suggest that the time scale associated with them is 
less than 5 days, presumably as a response to the synoptic weather pattern, which 
typically has a time scale of 3 to 5 days. Therefore, both high temporal and spatial 
coverage of marginal ice zone areas, such as using ScanSAR, is critical for the 
coastal monitoring. 

5. Feature Tracking: Multiple Sensors 

5.1 Sea-Ice Motion from QuikSCAT and SSM/I 

Satellite imageries are providing the full view of sea ice motion in the polar region 
every day. Because of this unprecedented capability, satellite imageries have been 
frequently used to study polar sea ice motion and made their important 
contributions to the better understanding of the polar sea ice motion. Using 
different approaches, [5] and [6] demonstrated that sequential imagery from SSM/I 
85GHz could provide ice motion observations based on wavelet transform and on 
cross-correlation methods, respectively. [10] reported a completely unexpected 
success in using NASA Scatterometer (NSCAT) to derive sea ice motion, even 
though NSCAT was not designed for this purpose. The combined use of multiple 
satellite imageries is obviously important in order to get more accurate and 
complete ice motion data. [11] reported that sea ice motion derived from wavelet 
analysis of SSM/I and NSCAT agreed quantitatively with the ice motion derived 
from buoy data. Thereby the ice motion derived from these two satellite data sets is 
compatible with and complement to that derived by buoy data. Furthermore, the 
two sea ice motion daily results from satellite data can be merged with those from 
buoys by some data fusion techniques to provide a composite map with more 
complete coverage of sea ice motion. Validation of sea ice motion from 
QuikSCAT with those from SSM/I and buoy has been studied by [12]. 

For reference, Figure 6 shows the flow chart of feature tracking procedure 
using wavelet analysis for satellite data from SSM/I, and QuikSCAT/SeaWinds. 
In this tracking procedure, daily satellite images of the entire Arctic region are first 
constructed and interpolated to fit into the numerical grid where land is masked 
out. Wavelet transform defined by Equations (1) and (2) is then applied to the 
interpolated satellite images at various scales to separate different ice textures or 
features. The choice of the scales for wavelet transform depends on the physical 
scales of the ice signatures (brightness temperature for SSM/I and 
backscatter/roughness for QuikSCAT) to be extracted. The effect of this wavelet 
transform is a band pass-filter with a threshold for feature detection. Then two 
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Figure 6 Flow Chart of Feature Tracking Procedure Using Wavelet Analysis of 
Satellite Data from SSM/I and QuikSCAT 

tracking regions are considered: the coastal/bay regions for fast ice motion (with a 
two-day sliding window), and central Arctic for slow ice motion (with a four-day 
sliding window). Because the displacement of ice feature within the separation 
days is not expected to be very large, the domain of the template matching is 
restricted to an area that completely encompasses the target template at the center 
and is a few pixels wider than the template on all sides. To perform template 
matching, the template is shifted over each pixel in the domain. The summation of 
the absolute differences of the corresponding pixel values in the shifted template 
and the target template is computed for all possible locations of the shifted 
template. The sequence of the summation values is then used to determine the 
displacement vector which points to the shifted template that assumes the 
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minimum value of the summation. The displacement vectors whose length exceeds 
a pre-determined limit based on the prior knowledge of the ice motion in Arctic 
region are subsequently discarded. The displacement vectors obtained in this way 
at various spatial scales are then block-averaged to form a daily map of sea ice 
motion with outliers filtered out. Finally the displacement vectors are divided by 
the separation time to obtain the velocity vectors for the target day. 

Figure 7a and b are maps of Arctic ice motion on a grid of 100x100 km 
derived from wavelet analysis of SSM/I and QuikSCAT, respectively, for Dec. 13, 
1999. White arrows in the figure indicate the ice velocities derived from SSM/I or 
QuikSCAT data, while the thick white arrows indicate the ice velocities derived 
from buoy data. Notice that the ice circulation has been clearly derived and that the 
velocities derived from satellite data agrees well with those derived from buoy 
data. Also, the flow patterns in these two images are extremely similar and they 
complement each other well. Incidentally, the areas with no velocity vectors are 
those where, during template matching, a matching pair to the target template 
cannot be found within a preset threshold. The results from SSM/I, QuikSCAT, 
and buoy data can be further merged to form more complete composite maps by 
some data fusion techniques. The following merging strategy is applied to derive 
merged sea ice motion. For locations where sea ice velocities from all three data 
sources exist, we use weighted average with the weights 0.25, 0.25, 0.5 assigned to 
those derived from buoy, SSM/I, and QuikSCAT data, respectively. For locations 
where there is no buoy observation, equal weights of 0.5 are assigned to sea ice 
velocities from SSM/I and QuikSCAT data sets if both exist, otherwise the weight 
of 1.0 is assigned to the result from the only data set that exists. Figure 8 is a 
merged ice motion map for December 13, 1999 that derived from SSM/I, 
QuikSCAT and buoy data. It is evident from Figures 7 and 8 that the merged ice 
motion map provides a more complete picture than the ice motion map derived 
from either data source alone. 
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Figure 7 Arctic Sea-Ice Motion Maps in a Grid of 100 x 100 km Derived 
from SSM/I, and (b) QuikSCAT on December 13, 1999 

5.2 Surface Layer Drift from MODIS and SeaWiFS 

At present, there are two major global ocean color sensors in orbit: SeaWiFS and 
MODIS. Both satellites are in polar orbits at 705 km altitudes, and each sensor 
views greater than 90% of the Earth's surface in 1-2 days. SeaWiFS acquires data 
in 8 visible and near-infrared bands, and MODIS acquires data in 36 spectral bands 
(UV-VIS-IR). Several of MODIS visual wavelength bands are analogous to the 
SeaWiFS ocean color bands. In this case study, how images of chlorophyll a 
concentration acquired by MODIS and SeaWiFS can be used to derive surface 
layer drift has been demonstrated. Data from MODIS and SeaWiFS (Figure 9) 
were collected on May 8, 2000 at 15:45 and 16:52 GMT, respectively, off the east 
coast of the United States. Major oceanographic features, such as the Gulf Stream 
boundary and a large cold-core eddy south of the Gulf Stream, can be clearly 
identified. 
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Figure 8 Merged Sea-lee Motion Map in the Arctic on December 13, 1999 

When using multiple ocean color sensors to track color feature motion, the first 
step is to transform the images to the same map projection. In this case, the 
MODIS and SeaWiFS images used are both 1024x1024 pixels (with 1.1 km 
resolution), and the Mexican-hat wavelet transform is applied to filter each image 
with several length scales. The length scale of the wavelet transform corresponds 
to the length scale of the Gaussian function and is based on the length scale of the 
feature of interest. Filtered images, acquired 67 minutes apart, are then examined 
to find matching features using templates, which are then readily converted to 
motion vectors and averaged onto a 17 kmxl7 km grid. The choice of 17 km as the 
matching template size corresponds to 16 pixels of satellite data. 17 km represents 
an optimal scale in a tradeoff between higher resolution and better feature tracking 
abilities. The accuracy of this technique is only limited by the persistence of the 
features and by the spatial resolution and navigational accuracy of satellite data. 
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Figure 9 The Chlorophyll-a Concentration Data of Ocean Color Images 
Collected over the U.S. East Coast from (a) MODIS, and (b) SeaWiFS 

on May 8, 2000, Separated by 67 Minutes 

Figure 10 shows the surface layer drift (red arrows) derived by wavelet 
analysis of feature tracking from MODIS and SeaWiFS chlorophyll a 
concentration data. A re-scaled MODIS image is laid as background to highlight 
eddies. The data were collected on May 8, 2000 over the mid-North Atlantic 
Ocean, separated by 67 minutes. The drifter data are shown as dark arrows in the 
figure and show a generally consistent pattern as compared with satellite results. 
As shown in this figure, both Gulf Stream current (1.5 m/s) and spin-off eddies 
have been well derived and can be clearly identified. Notice that the cold ring 
south of the Gulf Stream (center bottom of the map) is cyclonic, while the warm 
ring north of the Gulf Stream (right center) is anti-cyclonic. The convergence zone 
at Georges Bank is also clearly observable. The areas lacking drift vectors in the 
map indicate the regions where matching pairs cannot be found. These results 
indicate that same-day multiple ocean color satellite images can be used to derive 
surface layer drift, and can help to identify oceanic processes such as currents and 
eddies. 

6. Discussion 

Remote sensing with repeated coverage is the most efficient method to monitor 
and study marine productivity and pollution. The mapping of mesoscale ocean 
features in the coastal zone is a potentially major application for satellite SAR data, 
especially for the wide-swath SAR, such as ScanSAR (with 500 km swath) aboard 
RADARSAT. The use of SAR-derived observations to track eddies, surface 
temperature-related features, and river and estuarine plumes can aid in the 
management of fisheries. It is especially so in places like the Alaskan coastal area, 
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where uniformly cold sea surface temperatures and frequent cloud cover preclude 
AVHRR measurements of surface temperature features, and obscure ocean color 
observations. 

The wavelet transforms of satellite images can be used for near real-time 
"quick look" screening of satellite data (feature detection), data reduction (binary 
image), and image enhancement (edge linking). By combining ocean color 
(SeaWiFS, MODIS), SAR and infrared (AVHRR) images using some data fusion 
techniques, mesoscale features of various physical processes such as oil spills, 
surface slicks, fronts, upwelling, and eddies can be detected and tracked in the 
coastal zone. Wavelet analysis can provide a more cost-effective monitoring 
program that would keep track of changes in important elements of the coastal 
watch system. In this study, we have demonstrated that the two-dimensional 
Gaussian-based wavelet analysis is a very useful tool for data fusion from multi-
sensors, such as SAR, AVHRR, and SeaWiFS. 

For SAR imagery, an algorithm to detect, extract, and classify linear ocean 
features is conceptualized and developed for automated screening, though not yet 
at operational level at present time. The methodology includes using histogram 
screening for feature detection, wavelet analysis for feature extraction, and texture 
analysis for feature classification. The intensity histogram of SAR images can be 
used for near real-time "quick look" screening of satellite data feature detection). 
The two-dimensional wavelet transform of a SAR image for the extraction of 
boundary features can be used as an edge detector with multi-scales for different 
type of features. More case studies of application of this algorithm to linear ocean 
features, such as fronts, ice edge and polar low imaged by SAR instruments, are 
provided by [4]. 
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Figure 10 Surface Layer Drift (Red Arroew) Derived from MODIS and 
SeaWiFS Data over Mid-North Atlantic Ocean 

For the sea ice motion, the technique used here provides improved spatial 
coverage over the existing array of Arctic Ocean buoys and better temporal 
resolution over techniques utilizing data from spaceborne SAR. This new source of 
ice motion data offers a potential solution to the problem of inadequate temporal 
sampling. It is found that the results from both QuikSCAT and SSM/I agree well 
quantitatively with ice drift derived from buoy data, and that the flow patterns 
illustrated by both results are exteremly similar, suggesting that they would 
complement each other well. Furthermore, the ice motion derived from SSM/I, 
QuikSCAT and buoy data can be merged into one by some data fusion techniques 
to form composite maps that offer better covarage than results from any data 
source alone. Moreover, it is found that the streamlines of sea ice flow based on 
the merged drift data are highly correlated with the surface pressure contours, 
implying that the sea ice in this region is primarily driven by wind. The daily sea 
ice motion map can no doubt add detailed information and lend further insight into 
sea ice dynamics and processes through data assimilation of ocean-ice numerical 
model. 
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Analysis and tracking of ocean surface feature from low earth orbits have 
historically been done based on data from a single orbital sensor collected over the 
revisit interval of a single satellite. In the previous section, ocean surface layer 
drift has been derived by feature tracking of ocean color data from multiple sensors 
aboard different satellites. Since satellite ocean color signal comprises information 
from a deeper water depth (10 to 30 meters) as opposed to that from a very thin 
surface layer (such as sea surface temperature), one can use satellite ocean color 
data as a tracer for estimating surface layer currents. The example presented in 
Section 5.2 demonstrates how chlorophyll a concentration images collected by 
MODIS and SeaWiFS are used to derive surface layer drift. All major 
oceanographic features, such as Gulf Stream boundary and a large cold-core eddy 
south of the Stream, can be identified in the resulting drift field, confirming that 
the methodology is indeed a viable way to derive surface layer drift. These results 
of feature tracking from these multiple sensors demonstrate that wavelet analysis 
of satellite data is a very useful tool for satellite image processing. 
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Wavelet filters have been used for despeckling of SAR images using a variety of different 
methods. This chapter discusses many of those previous methods and provides a frame
work for better understanding them and their relationship to each other. We also present 2 
different techniques that use spatial correlation in different ways to perform the filtering. 
These techniques and others like them show promise in solving the problem of despeckling 
of SAR images quickly and accurately under a variety of different imaging scenarios. 

1. Introduction 

Image speckle is an inherent property of all coherent imaging systems, including Synthetic 
Aperture Radar. In a SAR image, speckle manifests itself in the form of a random pixel-
to-pixel variation with statistical properties similar to those of thermal noise. Due to its 
granular appearance in an image, speckle noise makes it very difficult to visually and au
tomatically interpret SAR data. Therefore, speckle filtering is a critical pre-processing step 
for many SAR image post-processing tasks, such as segmentation and classification. 

The objective of SAR speckle filtering is to reconstruct the backscattering coefficient 
from the image intensity. A good speckle filter should possesses the following properties 
[40]: 

• Speckle reduction in statistically homogeneous areas 
• Feature preservation 
• Radiometric preservation 

In the past ten years, many algorithms have been developed to suppress speckle noise 
in order to facilitate postprocessing tasks. Two types of approaches are traditionally used. 
The first, often referred to as multi-look processing, involves the incoherent averaging of 
L single looks during the generation of the SAR image. The averaging process narrows 
down the probability density function (pdf) of speckle and reduces the variance by a factor 
L, but this is achieved at the expense of the spatial resolution (pixel area is increased by 
a factor L). If the looks are not independent, such as when the Doppler bandwidth of the 
SAR return signal is segmented into multiple overlapping subbands, one needs to define 
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an equivalent number of looks (ENL) [40] to describe the speckle in the resultant images. 
The second approach, which is applied after the formation of the multi-look SAR image, 
involves the use of adaptive spatial filtering through an examination of the local statistics 
surrounding a given pixel. To date, various spatial filters have been developed to reduce 
speckle without significant loss in spatial resolution. 

In 1980's, spatial niters that take into account the multiplicative speckle model were 
developed. The best known include the Lee [27], Kuan [25] and Frost [17] filters. A com
mon theme among them is the use of the MMSE (Minimum Mean Square Error) technique 
and the assumption that the local statistics are stationary inside a moving window, which 
is often square-shaped. The Lee and Kuan filters are similar in that for each individual 
pixel, the noise-free signal is retrieved by a weighted average of pixel values in the local 
window, based on the criteria of MMSE. The local standard deviation usually plays a role 
in calculating the weighting coefficients. The only difference is that the former applies the 
MMSE technique on the linearized multiplicative model while the latter uses the multi
plicative model directly. The Frost filter differs from the Lee and Kuan filters since the 
observed image is modeled as the convolution of the product of the scene reflectivity and 
speckle noise with the impulse response of the SAR system. Under the assumption that the 
radar system response is constant over some finite bandwidth and the scene reflectivity is 
an autoregressive process, the impulse response of the Frost filter is derived as a circular 
symmetric filter by using the MMSE criteria. 

Lopes, et al. [33] introduced some practical criteria to enhance the filters in terms of 
speckle reduction and texture preservation. The authors proposed to divide the image under 
analysis into three categories using two thresholds. The first category is homogeneous areas 
in which a simple average filter should be applied; the second category is heterogeneous 
areas in which the spatial statistical filters, such as Lee, Kuan, and Frost should be utilized; 
the last category is areas containing an isolated point target, in which the observed value is 
preserved. 

The effectiveness of a spatial filter relies heavily on its method of reliably measuring 
local statistics (for example, mean and standard deviation) through a moving window. De
spite the computational simplicity of these early filters, they fail to accurately capture the 
underlying structure due to their fixed window size and shape. Often they cause serious 
degradation of features in their reconstruction. With the aim of reducing speckle in homo
geneous areas while preserving the texture information in heterogeneous areas, adaptive 
speckle filters have been developed by adapting the size and the shape of windows accord
ing to the underlying structural features. An early example of a spatially adaptive filter is 
the refined Lee filter [26], an improved version of the original Lee filter in the sense that the 
former can achieve better spatial adaptability by incorporating local gradient information. 
The local relative standard deviation is calculated in a 7 x 7 sliding window. After com
parison with a predefined threshold, it is then determined whether an edge exists in this 
window. Depending on the gradient information, one of the eight pre-defined templates is 
chosen to calculate the weighted average in the same manner as the original Lee filter. If 
no edge is detected, the simple average over the whole window is assigned to the pixel of 
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interest. 
For a spatial filter, the choice of window size and shape to use for estimating local 

statistics is obviously a compromise. On one hand, large windows should be chosen to 
minimize the influence of speckle on the estimates of the local statistics. On the other hand, 
large windows often contain pixels belonging to regions with different reflectivity prop
erties, consequently, small windows are favored for better representation of fine features 
under such conditions. Therefore, the speckle filter with a fixed window size and shape is 
incapable of recovering the signal reliably. To overcome this problem, the EPOS (Edge Pre
serving Optimized Speckle) filter [22] was proposed to deal with the local geometry more 
adaptively. The shape and size of its moving window can be adjusted in a multi-resolution 
fashion in order to determine the largest homogeneous area around the central pixel, which 
is suitable for calculating the average. The EPOS filter starts with an initial large window 
(11x11) consisting of eight subwindows, if, based on some criteria, a homogeneous area 
is not detected through any combination of those subwindows, it moves to a smaller win
dow. The window size can be continuously decreased until the smallest window ( l x l ) is 
reached. Because only averaging is carried out, the problem with the EPOS filter is its in
effectiveness in dealing with textured areas [47]. Another example of filters with variable 
window size is the MHR (maximum homogeneous region) filter presented in [52] by Wu 
and Maitre. The basic idea behind the MHR filter is very similar to the EPOS filter, aiming 
to find the largest homogeneous window surrounding the pixel of interest. However, the 
window evolution of the MHR filter is different than in the EPOS filter since the region 
growing technique in image segmentation is applied. The MHR is initiated with a small 
window (3x3). At each step, the window size is increased until the largest homogeneous 
window is determined, in which the original Kuan filter will be used for speckle filtering. 
An adaptive windowing technique also appeared in [41]. 

All of these filters make use of the multiplicative noise model, as well as the related 
speckle statistics, but they do not account for the statistics of the underlying radar clutter. 
If prior knowledge about the RCS (Radar Cross Section) in the product model is available, 
speckle filtering becomes equivalent to a Bayesian reconstruction problem. When com
bined with the probability distribution of speckle, the pdf of the RCS model can be used to 
seek the MAP (maximum a posteriori) estimate. A few studies [23] have reported that the 
Gamma distribution provides a good fit to terrain clutter. The MAP reconstruction using the 
Gamma distribution as the prior pdf is called the Gamma-Gamma MAP filter. Sometimes, 
the clutter is simply assumed to obey a Gaussian pdf, in which case the MAP filter becomes 
Gamma-Gaussian MAP [40] filter. Since the specific prior knowledge is incorporated into 
the denoising procedure, we expect such filters to yield more reliable reconstructions. With
out a doubt, spatial adaptability is essential for this type of filter, because the parameters 
that specify the distribution need to be estimated locally. 

The filters we discussed above have been the mainstream in the SAR community. It 
should be noted that there have been some other spatial filters, such as: [29,41, 50, 49, 51]. 
With the advent of multi-frequency and fully polarimetric SAR data, the correlation of 
terrain reflectance between the multiple bands and multiple polarizations opens a new win-
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dow to speckle reduction. It is assumed that multi-channel filters that explore the corre
lation between different channels will lead to a better estimate of the underlying signal 
than single-channel filters by which different channels are despeckled independently. The 
correlation is incorporated into the denoising procedure via the polarization covariance ma
trix or the covariance matrix in general. Representatives in the category of multi-channel 
speckle filters include the vector LMMSE filter developed by Lin and Allebach [31], the 
polarimetric whitening filter (PWF) proposed by Novak and Burl [38], and the polarimetric 
Lee filter [28]. The vector LMMSE filter is a generalization of the scalar LMMSE filter. 
The PWF constructs an optimal intensity image that has the minimum possible amount of 
speckle from the three complex measurements HH, HV and VV (assume HV and VH iden
tical). While the PWF is intended to combine the complex HH, HV and VV images into 
one intensity image, the polarimetric Lee filter is able to handle multi-look SAR images 
in both intensity and amplitude formats, and produce speckle-reduced HH, VV and HV 
images separately. We will limit our treatment to the development of single-channel filters 
throughout this chapter. 

A number of studies reported that spatial adaptive filters are preferable options over 
those that lack spatial adaptability. In principle, effective speckle reduction demands fil
tering algorithms capable of operation on different scales. As mentioned previously, the 
wavelet transform has independently arisen as a powerful tool for interpreting and process
ing images at different scales. More recently, a new approach has emerged in which speckle 
reduction is implemented in the framework of wavelet transforms. The first effort aimed 
at developing wavelet-based speckle filters was conducted at Rice University [14]. Guo et 
al. [21] extended Donoho's wavelet soft and hard thresholding techniques to speckle reduc
tion for SAR imagery. Due to the fact that Donoho's algorithm was originally developed 
for additive white Gaussian noise (AWGN), the logarithmic transformation is applied to 
the SAR imagery first and the transformed speckle noise is assumed as AWGN. A number 
of wavelet despeckling filters have emerged following the basic approach of [21]. Gagnon 
and Jouan [19] considered wavelet despeckling using the complex Daubechies wavelets 
for the property of symmetry. In [8], a hidden Markov tree (HMT) model is proposed to 
describe the statistical properties of wavelet coefficients. This has given rise to the work 
by Sveinsson [46] where speckle reduction is studied based on the HMT. The problem of 
interest in [56] is speckle reduction for echocardiographic images. The authors regulated 
soft thresholding by applying scale-dependent thresholds, instead of a single global thresh
old initially proposed by Donoho. The main contributions of the literature cited above lie 
in transplanting the latest developments in wavelet transforms as well as in wavelet de-
noising for additive noise to a multiplicative speckle model. However they have a com
mon drawback - the lack of efforts to fully characterize the statistical properties of the 
log-transformed speckle noise. There are other despeckling approaches reported in the lit
erature based on wavelet multi-resolution decompositions where the log transform is not 
necessary. The most notable is the work done by Foucher et al. [16]. The authors are cred
ited with the first attempt of MAP-based wavelet despeckling using a realistic prior model. 
The algorithm can be viewed as an extension of the Gamma-MAP filter to the wavelet do-
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main. In [12], a speckle filtering algorithm for edge sharpening is proposed. In a nutshell, 
this algorithm behaves like a mean filter if no edge crossing is detected in a local window, 
otherwise it implements spatially adaptive averaging under the guidance of the location of 
the edge crossings. The derivation of this algorithm does not account for the speckle model. 

The next section details the standard wavelet denoising techniques for SAR images, 
while section 1.3 presents our spatially-adaptive extension of these techniques. Section 1.4 
then introduces another technique that avoids the use of the log operator. 

2. Standard Wavelet Denoising 

To estimate the speckle-free radar response, most spatial filters use local statistics, which 
are usually measured within a local sliding window. A filter's performance heavily depends 
on the choice of the window size and orientation. As stated by Marr [35], and also noted by 
other observers, "the spatial organization of a surface's reflectance function is often gener
ated by a number of different processes, each operating at a different scale". As a result, 
features present in SAR imagery often exhibit different scales. This requires an adjustable 
local window to adapt to local spatial variations, including feature scale and geometric 
structure. Most filters we reviewed in section one fail to achieve spatial adaptation because 
they only deploy a local window with fixed size and shape. There exist a few filters which 
are capable of adapting the size or the shape of the local window to some extent according 
to the underlying structural features. The refined Lee filter [26] is such an example. 

Improvement of speckle filtering can be expected with accurate and efficient feature-
detection. Wavelet multiresolution analysis provides great promise for image feature de
tection at different scales. Wavelet decomposition has the very useful property of space 
and scale localization. Multiresolution analysis decomposes the original image into a set of 
approximations and wavelet subimages by filtering and subsampling. In view of the many 
theoretical developments that occurred in the last decade, wavelets have found success
ful applications in a variety of signal processing problems, including image compression, 
image denoising and image coding. 

In what follows, we are concerned with the development of a SAR speckle filter in 
the context of wavelet denoising. We use the logarithmic transform to convert the mul
tiplicative speckle model to an additive noise model, and assume that the resultant noise 
approximately follows the Gaussian distribution. The combination of the mean and the 
standard deviation derived from the statistical models presented in [54] will provide a good 
characterization for the log-transformed speckle noise. As detailed in that paper, the mean 
of the log-transformed speckle noise is not zero, whereas most wavelet-based denoising 
techniques assume AWGN with zero mean. In the literature, a number of wavelet-based 
despeckling algorithms [19, 21,46] fail to address this mean-bias problem. For the purpose 
of radiometric preservation, the mean bias should be corrected before the exponential op
eration, especially for SAR images with a high noise level. In this section we present an 
overview of wavelet denoising algorithms. First we introduce the statistical model used in 
this study to characterize wavelet coefficients of natural images. Next, the hyperparameter 
estimation problem is addressed using the EM (Expectation and Maximization) algorithm, 
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followed by an implementation of the Bayesian-Markov denoising technique. Finally we 
outline our implementation of the translation-invariant wavelet transform, and then evaluate 
this new filter's performance. 

2.1. Wavelet Denoising Overview 

The wavelet transform (for example: [32, 36]) applies 4 different filters to the image, re
sulting in one image that is similar to a "low-pass" version of the image, with three other 
images, each like a "high-pass" version, but with the edge detection in different directions. 
These resultant images are then subsampled by two. Each of these images is called a sub-
band. These filters can then be applied again, to the "low-pass" resultant image to produce 
four more subsampled images. Each time these filters are applied we produce images at a 
different scale, and each scale is called a "level" in what follows. 

The essence of denoising using wavelet analysis is to reduce the noise in the wavelet 
transform domain. Suppose we have a length-TV noisy observation w = [wi,w2, ...WN]: 

w = f + e, (1) 

where f = [/i, f2, .-./JV] is the desired noise-free signal, and e = [ei, e2, ...ejv] is AWGN 
with zero mean and standard deviation an. Because a discrete wavelet transform is a linear 
operator it yields an additive noise model in the transform domain: 

y = DWT(w) = DWT(f) + DWT(e) = x + n, (2) 

where DWT stands for the discrete wavelet transform and IDWT will be used to denote the 
inverse transform. 

In order to simplify notation, here we use the 1-D vector format with boldfaced letters 
to represent 2-D images instead of the matrix representation. For the ith wavelet coefficient 
at level j in detail subband d (d = 1, HL; d = 2, LH; d = 3, HH), the observation 
model in the wavelet domain is formulated more specifically by 

yftj=xftj+nij. (3) 

For clarity of notation, we will omit the level index j and the detail subband index d unless 
they are explicitly needed. 

Because the wavelet scaling filter {g(k)} (lowpass), and the wavelet filter {h(k)}, 
(highpass) satisfy the orthogonality conditions, the resultant noise in the wavelet domain n 
has the same statistical properties as the untransformed noise e; i.e., n is also white Gaus
sian noise with zero mean and standard deviation an. 

The main scheme for recovering f from w using wavelet denoising techniques is sum
marized in the following three steps, as shown in Fig. 1: 

(1) Perform a 2-D Wavelet transform: y = DWT(w) 
(2) Manipulate the wavelet coefficients: x = f(y,an) 
(3) Perform a 2-D wavelet inverse transform: / = IDWT(x) 
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The main scheme for recovering f from w using the wavelet transform can be summarized 
by the three primary steps shown in Fig. 1(a). 

For SAR images, a typical model used is: 

w = fe. (4) 

Applying the log operator to both sides results in: 

logw = logf+ loge. (5) 

which is now in the form of 1. This is why we interject the "log" and "exp" steps, as 
shown in Fig. 1(b). In the majority of wavelet denoising algorithms, noise reduction is 
accomplished in detail subbands with the approximation subband intact. In such cases, 
it is important to correct the biased mean in the approximation band introduced by the 
logarithmic transform. To overcome this problem, we add an additional step "adjust mean" 
between the "IDWT" (Inverse Discrete Wavelet Transform) and the final "exp" step. The 
biased mean is corrected by subtracting the mean value of the log-transformed speckle from 
the output image of "IDWT". 

In general, the step where the wavelet coefficients are manipulated is the most cru
cial. What distinguishes one denoising method from another is mainly related to the ap
proach used in this particular step. Two major denoising techniques used in this context 
are the thresholding technique and the Bayesian estimation shrinkage technique. In these 
two techniques, algorithms can be further categorized by how the wavelet coefficients are 
statistically modeled. Most early models [4, 6] assumed the wavelet coefficients to be in
dependently distributed. 

Later, researchers proposed more complicated, but also more accurate, models that ex
ploit inter-scale dependencies [8], intra-scale dependencies [3, 34, 37] and the hybrid inter-
and intra-scale dependencies [5, 44] among wavelet coefficients. We will discuss some of 
these algorithms briefly next. 

2.1.1. Thresholding Technique 

Denoising based on thresholding in the wavelet domain was initially proposed by Donoho 
and Johnstone [13, 14]. Thresholding typically involves a binary decision. In [14], the au
thors introduced two thresholding methods, namely soft and hard thresholding. For each 
wavelet coefficient, if its amplitude is smaller than a predefined threshold, it will be set 
to zero, otherwise it will be kept unchanged (hard thresholding), or shrank in the absolute 
value by an amount of the threshold (soft thresholding). 

The key decision in the thresholding technique is the selection of an appropriate thresh
old. If this value is too small, the recovered image will remain noisy. On the other hand, 
if the value is too large, important image details will be smoothed out. Using a mini-
max criterion, Donoho proposed what the wavelet community calls the universal threshold 
T — <\/2log(N)an, where N is the sample size and an is the noise standard deviation. The 
universal thresholding technique has been recognized as simple and efficient, but if only a 
single threshold is used globally, it provides no spatial adaptation during the process of 
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Fig. 1. The wavelet denoising procedure. The filtering methods modify the wavelet coefficients in different ways. 
The SAR image noise model is converted from multiplicative to additive by the log operation, and un-done by 
adjusting the mean, and then applying the exp operator. Figure is from [53], ©2002 IEEE, used with permission. 

noise suppression. Following Donoho, some researchers have focused on developing spa
tially adaptive thresholding techniques instead of using a global uniform threshold. In [56], 
a simple scaling factor function was proposed to regulate thresholds for the purpose of 
scale adaptation. Chang [3] first proposed a multiple threshold denoising scheme to take 
into account local spatial characteristics. Using the Gaussian distribution and Laplacian dis
tribution to model wavelet coefficients, Chang et. al [4] proposed an approximate MMSE 
solution to soft-thresholding. 
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2.1.2. Bayesian Estimation 

As far as Bayesian estimation is concerned, it is necessary to assume an a priori distribution 
p(x) associated with the wavelet coefficients of the noise-free image. Given the likelihood 
functionp{y\x), and assuming that x is independently and identically Gaussian distributed 
with zero mean and variance o2

x, given the AWGN model, we can estimate the noise-free 
wavelet coefficients x by [44]: 

The deficiencies associated with this shrinking function are twofold. First, the assumed 
prior disagrees with the strong non-Gaussian statistics exhibited by wavelet coefficients of 
natural images. Secondly, each wavelet coefficient is denoised individually with the lack of 
spatial adaptation toward the intra-scale and inter-scale dependencies. 

In the remainder of this section, we therefore adopt the mixture of Gaussian densities [6, 
8] to model natural images, meanwhile characterizing the intrascale contextual dependence 
of wavelet coefficients using Markov random fields (MRF). The idea of exploiting the 
clustering property of wavelet coefficients using MRF also appears in [34]. 

To capture the insignificant/significant coefficient property, for each wavelet coefficient 
we define a binary hidden state s$, which can take on the value 0 (insignificant coefficient) 
or 1 (significant coefficient). The configuration of s» over the entire wavelet subband image 
forms a binary mask s. The marginal density of wavelet coefficients is defined as: 

P(xi) = ^2 P{si = k)p(xi\si = k), (7) 
fc=0,l 

p{xi\8i = k) ~ M{0,a2
xk), k = 0,l (8) 

where iV(0, axk) stands for a Gaussian distribution with zero mean and standard deviation 
0~xk-

When the signal is corrupted by additive white Gaussian noise, it is easy to show that 
the noisy wavelet coefficients also obey the mixture density of two normal distributions 
with zero mean, but with an increased variance that depends on the noise level. That is: 

P(Vi) = Yl P(Si = k)P(Vi\Si = fc)> (9) 
fe=0,l 

p(Vi\si = k) ~ Af(0,a2
xk+a2

n), k = 0,1. (10) 

Given o^, the statistical model is fully parameterized by three independent parameters, 
ox\,o~xi, and p(st = 0). These parameters can be grouped into a model hyperparameter 
vector 0 . A total of 3 J sets of 9 need to be estimated for the three orientation subbands 
across J decomposition levels. In [6], hyperparameters are chosen intuitively and empir
ically. We use the EM algorithm to estimate the hyperparameters because it is automatic 
and it will result in more accurate estimates. 

The general EM algorithm was first formalized by Dempster, et al. [10] in order to 
obtain ML-estimates from incomplete data. Consider the observed data x as the incom
plete data. We assume that there exists a complete data set z = (x, y) and also assume 
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a joint density function: p(z|8) = p(x, y |0) . Given the new density function, we de
fine a new likelihood function L(0|x,y) = p(x, y |0) , called the complete-data likeli
hood, which is parameterized by 0 . The goal of EM in its basic form is to seek the solu
tion 6 which maximizes the log-likelihood function log p(x, y |0), instead of log p(x|0) . 
The algorithm starts with an initial value 0° , and then it proceeds iteratively. Each EM 
iteration consists of an E-step and an M-step. The E step is to evaluate the probabil
ity distribution for the data given the model parameters from the previous iteration, i.e., 
(^(©I©^1) = E[\og p(x, j / |6) |x, y, 0 J _ 1 ] , and the M step is to find 0* by maximizing 
Q(0|@1-1)- The two steps are iterated until convergence is reached. 

In this study, we have a mixture Gaussian model: 

m 

p(X\e) = yjajp(X\H,Ej) (11) 
i = i 

i (x-Mj)TS"1(x- / i ; , - ) p ( x | ^ , E j ) = - p = r e - 2 ^ - w J ^ (*-H) (12) 
2 T | E j r 

where fij and £ j are the mean value and the covariance matrix of the jth component. For 
the mixture model problem, we introduce the unobserved data y = (2/1,2/2, •••J/AT) which 
indicates the origin of the component distribution [42]. For each i, yi is an integer between 
1 and TO, and yt = j means the ith sample originates from the jth mixture component. The 
parameter vector 0 = (a±,..., am; fix,..., fim; Si , . . . , Em ) can be estimated by the EM 
algorithm as follows [42]: 

i ^Pj(Xk\e)-1) . i " 
ak i = — ^-r—> a) - T7 > ak ,-. (13) 

2̂ *—1 ak iXk 
M5 = "~N k'l , d 4 ) 

l^k=\ ak,j 

h ~ ^ i v - — • (15) 

By way of illustration, we applied the EM (Expectation and Maximization) algorithm 
described briefly above to fit the two-Gaussian density model to the wavelet coefficient his
togram of the Lena subbands at level one, with and without speckle noise. The noisy version 
of the Lena image has 3-look speckle in amplitude format. Table 1 lists the estimates of the 
mixture Gaussian model hyperparameters. In Table 1, the fact thatp(s = 0) > p(s = 1) 
confirms the sparse representation provided by the wavelet transform. The majority of the 
wavelet coefficients are represented by the Gaussian distribution with the low variance 
axo, while the remaining significant coefficients obey the Gaussian distribution with the 
high variance ox\. In order to illustrate how the Gaussian mixture model fits the wavelet 
coefficients, we compare the model based on hyperparameters listed in Table 1 with the 
histogram of the noise-free and noisy Lena HL1 subband, in Fig. 2(a) and Fig. 3(a), re
spectively. For both cases, we also plot their corresponding two mixture components in 
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Fig. 2(b) and Fig. 3(b). 
Next we explore how to use a Markov random field to incorporate spatial dependencies 

into the denoising procedure. 
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(a) The Gaussian mixture density (b) Two mixture components 

Fig. 2. The Gaussian mixture density for subband HL\ of the log-transformed noise-free Lena image. Note that 
the 2 mixture components model the data very well, and that a single Gaussian density could not deal with the 
tails correctly. Figure is from [53], ©2002 IEEE, used with permission. 

3. MRF Based Spatially Adaptive Bayesian Wavelet Denoising 

A problem in the majority of automated information extraction techniques using remote 
sensing images is that they do not consider the pixel's spatial context during the process. 
As a result, discrimination accuracy is not always very good. In order to incorporate the 
rich information in the spatial constraints that the human vision system uses successfully 
into the process of image interpretation, the Markov random field (MRF) model is one of 
the solutions generally proposed. 

A Markov Random Field is a stochastic process defined on a 2-D lattice system to spec
ify its contextual characteristics. MRFs form a fundamental framework for various image 
modeling and processing problems [30]. In this section, we will use a Markov random field 
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Fig. 3. The Gaussian mixture density for subband HL\ of the log-transformed noisy Lena image with 3-look 
speckle in amplitude format. Note that in this case, as compared with the previous figure, a single Gaussian density 
can more successfully model the data. Figure is from [53], ©2002 IEEE, used with permission.. 

to model the intrascale spatial dependence between wavelet coefficients in each individual 
subband. 

After the hyperparameters specifying the mixture Gaussian density have been esti
mated, our proposed denoising algorithm[53] proceeds as follows: 

• Calculate the shrinkage function using the Bayesian MMSE estimation technique 
• Generate an initial binary mask, s, corresponding to the hidden state configuration 

using MAP 
• Redefine the prior p(s) using MRF, then refine the binary mask by maximizing p(s\y) 
• Modify the shrinkage function based on the optimal binary mask s. 

The estimate of the noise-free wavelet coefficients is [6]: 

fe=0,l 

p{si = k\yi)- 'xk 

a, 
TVi = & Vi 

xk 

where 

ii 
fe=0,l 

k\Vi)- 'xk 

(16) 

(17) 
'xk 

is called the shrinkage factor. Equation (16) shows that the Bayesian MMSE estimate of x 
is a nonlinear rescaling of the noisy observation y. 

To take spatial dependence into account, we introduce a Markov random field prior 
model for the hidden state configuration, s, of the wavelet coefficients. In order to distin
guish it from the prior p(s) defined previously, we denote the new prior pnew (s). 

The prior is described by a two-state Potts model [30] with a second order neighbor
hood system. Furthermore, only single-site and pair-site cliques are considered. The prior 
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is defined as: 

U(S) = V1(s) + V2(s) (19) 
JV 

s) = ]Jp(si) (20) e 

JV 

V2(s) = - / 3 ] T ^ ( ( J ( S i - a . ) - i ) (21) 

where Z is a normalizing constant, /? is the parameter which controls the local smoothness, 
r](i) is the second-order neighborhood of pixel i, S(-) is the discrete delta function, and V\ 
and V2 are the single-site and pair-site clique functions respectively, which are defined in 
such a way that the former represents the prior knowledge of the distribution of the hidden 
state without considering spatial constraints, and the latter favors the neighboring pixels to 
have the same label. 

With s being the binary image of the hidden state, where each pixel can take on two 
states 0 or 1, and y being the noisy wavelet coefficients, we assume that each wavelet co
efficient yi is conditionally independent of all other coefficients conditioned on knowledge 
of the hidden state at that location, st. This assumption is summarized by the following 
likelihood functionp(y\s): 

P(V\S) = f[p(Vi\*i) = f [ / 0 , 2 _, 2 e ' ^ 7 ^ . (22) 

Combining the likelihood function and the prior model, we can seek the MAP solution 
of p(s\y) as an optimal configuration: 

s = argmaxp(sjj/) = argmax p(y\s)pnew(s). (23) 

In this work, maximizing the posterior probability p(s\y) is implemented by the iter
ative conditional modes (ICM) algorithm, which is summarized in the next subsection. In 
general, the convergence rate of this optimization scheme is very much dependent on the 
initial condition; therefore, we generate a reasonable initial configuration of the hidden 
state by using the MPM (Marginal A Posteriori Mode) criterion based on the old indepen
dent prior. For each wavelet coefficient, its associated initial hidden state s° is determined 
as: 

s° = a rgmax s . e ( 0 1 ) p(si\yi) = arg max p(yi\si)p(si). (24) 

3.1. The Optimization Scheme - ICM (Iterated Conditional Modes) 

Once the binary mask refinement problem has been formulated as a maximiza
tion/minimization problem, it can be solved by an optimization algorithm. Bayesian meth
ods coupled with Markovian modeling usually result in a nonconvex cost or energy func
tion, which could have many local maxima/minima. Global optimization algorithms, such 
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as simulated annealing [1] could be applied. To speed up the convergence, Besag [2] pro
posed a deterministic optimization algorithm called the iterated conditional modes (ICM) 
method which maximizes the local conditional probability iteratively. 

Suppose that x is an estimate of the true x, the ICM algorithm proceeds to update the 
current state £i at pixel i using the information of observation y and the current configura
tion x at any place except pixel i. Following Bayes' theorem, we have [2]: p(xt jy, £s\i) oc 
p{yi\xi)p(xi\xm) where r\i is the neighborhood of pixel i, and S\i denotes the set of all 
the pixels in the image except pixel i. The new state of x» can be found by maximizing the 
local distributionp(xj|y,xs\j). Note that [2]: p(x.\y) = p(x i |y,a;S\ i)p(xS\ ijy). Because 
the update at xt does not affect p(xs\i\y), it is apparent that p(x|y) never decreases at 
any stage [2]. This guarantees the eventual convergence, but only a local maximum will 
be achieved. The procedure completes an iteration after being applied to each site within 
the image. We can apply the algorithm for a fixed number of iterations, or until there is 
evidence of convergence [24]: 

(1) start with an initial configuration and set k = 0 
(2) for each site i, update the current state Xi with Xi which maximizes the local 

p(xi\y,xs\i) 
(3) go to step 2 with k = k + 1 until convergence is reached 

In what follows, we derive the local property that is specified through the conditional 
probability: 

P(sk\si,i^k) = —-, L J T ~ = v> (Gs (25) 

Substituting into the above equation, we have: 

JV N 

n p O 0 e x p ( / 3 £ £ (S(Sl-Sj)-l)) 

p{sk\si,i^k) = ^ ^ (26) 
E I l P M e x p O S E E (S(Si-Sj)-l)) 
$k i = l i = l iGrj(-s) 

Divide both the numerator and denominator into two sets, one containing the site s^ and the 
other not containing the site Sk • After a few steps of straightforward algebraic manipulation, 
the above can be written as: 

p{sk\si,i^k) = P(sk\si,ieriik)) = —Poid{sk)exp [213 ^ (S(sk - st) - 1)J (27) 
lev(k) 

where Z' is a constant that does not depend on sk. Using the ICM method, for the wavelet 
coefficient at pixel i, its optimal hidden state Sj can be iteratively updated by: 

Si = arg max I - - l og (^ s i + a\) - \ + log(p(«i)) 

+2f3 Y, (S(8i-8j)-l)}. (28) 
jEr)(i) 
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Shown in Figure 4 are the initial binary mask and its MAP estimate for the HL detail 
image of Lena at level 1. In both figures, bright pixels indicate the detected significant 
wavelet coefficients, while dark pixels represent the insignificant coefficients. It is obvious 
that in Figure 4(a), there exist some dubious responses due to noise in smooth regions. The 
optimization process led to false alarm reduction and detection improvement. As a result, 
we obtain a "cleaner" binary mask in Figure 4(b). 

20 40 60 80 100 120 20 40 60 80 100 120 

(a) The initial binary mask (b) The optimal binary mask 

Fig. 4. The MAP estimate of the hidden state for HL detail image of Lena at level 1. Figure is from [53], ©2002 
IEEE, used with permission. 

Once the optimal binary mask is produced, for each wavelet coefficient, we search all 
its neighboring pixels with the same hidden state in its second-order neighborhood, then we 
calculate a weighted average of shrinkage factors of those pixels and assign it to the cur
rent pixel. To account for the directional property represented by different detail subbands, 
we consider a set of subband-dependent weighting coefficients for subbands HL, LH and 
HH. Nevertheless, we use the same set of weighting coefficients for the same orientation 
subbands across the decomposition levels. Figure 5 shows the values of the weighting co
efficients {oji} when the entire 3x3 window is occupied by only one state. Pixels with a 
different hidden state from the central pixel will be excluded from the averaging process, 
consequently normalization is necessary in order to preserve the intensity level. In sum
mary, given the optimized binary mask s, the shrinkage factor for the central pixel i in a 
3x3 local window is modified as 

& = ^ J V 3 ±. (29) 

We can now estimate the noise-free wavelet coefficient by ii = ^yi-
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Fig. 5. Weighted averaging coefficients {uii} used in a 3 x 3 window for subband LH, HL and HH. Figure is 
from [53], ©2002 IEEE, used with permission. 

3.2. Application to SAR Images 

In this section, we illustrate the performance of our proposed spatially adaptive wavelet 
despeckling algorithm for SAR images in both intensity and amplitude formats. 

In addition to the denoising techniques and the statistical models of wavelet coefficients 
as we discussed earlier, the choice of the underlying wavelet family as well as the length 
of the wavelet filter is also important for the overall denoising performance. The length of 
a wavelet filter is related to smoothness and localization properties. The primary advan
tage of short wavelet filters, such as the Haar wavelet, is their compact spatial support; in 
contrast, longer wavelet filters are preferred for smoothness. Furthermore, computational 
time of the wavelet transform is approximately proportional to the length of the wavelet 
filter [21]. To compromise, we employed Daubechies' maximally flat wavelet [9] of length 
6 to implement the orthogonal DWT throughout this work. To allow for robust and reli
able parameter estimation, we maintained the minimum dimension of a wavelet subband at 
32x32. For the simulated SAR images of 256x256 used in this study, the decomposition 
level was therefore limited to three. At each decomposition level, the denoising algorithm 
was applied separately to three detail subbands, while the approximation subband was left 
intact. For simplicity, we used (3 = 1.5 for the Potts model to control local smoothness. A 
few papers [15], [45] have reported that (3 = 1.5 usually gives satisfactory results. Other 
than being fixed to a constant beforehand, (3 can be estimated in a more justifiable way 
by applying statistical inference approaches [30]. More specifically, labeling (the optimal 
s) and estimation (the model parameter j3) have to be performed alternately from the ob
servation (y). This is performed at the expense of computational complexity. In terms of 
the convergence rate of the ICM, Besag reported that a local maximum can be reached by 
six to eight cycles of the ICM [2]. To speed up the entire procedure, we optimized each 
n binary mask using the ICM with four cycles. The termination rule for the iterative EM 
algorithm is a logical "or" of two conditions: one is exceeding the maximum number of 
iterations (30), the other is that the maximum relative change of parameters between two 
adjacent iterations is less than a threshold (1%). 

The other methods against which we assess the performance of the proposed speckle 
filter include: 

• The Bayesian soft thresholding technique proposed in [4] and described in Section 2. 
• The Bayesian MMSE estimation technique using the Gaussian mixture density model 
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developed in [6] and described in this section. 
• The refined Lee filter [26]. 

We have conducted a thorough study of speckle filter performance and have found that 
among commonly used spatial filters, the refined Lee filter [26] possesses the best trade-off 
between noise reduction and feature preservation. Therefore we also include the refined 
Lee filter in the comparison, with its local window being set up as a classical 7x7. 

Simulated S AR images 

(a) Lena (b) House 

Fig. 6. Two test images used in this study. Figure is from [53], ©2002 IEEE, used with permission. 

The reference images used in this study include the standard 256 x 256 Lena and House 
images shown in Fig. 6, both of which are used frequently by the wavelet community. We 
corrupted them by multiplying simulated spatially uncorrelated speckle noise. In a SAR 
image, a number of independent pixels are averaged together to generate an image. For N 
independent samples this is called an N-look image, with N-look speckle statistics [20]. 
For quantitative evaluation, the following measures have been used: 

® SNR: the signal-to-noise ratio is deined as the ratio of the variance of the noise-free 
signal f to the mean-squared error (MSE) between the noise-free image and the de-
speckled image f [44]: 

var(f) 
SNR = 101og10 

® ENL: the equivalent number of looks is defined as 

^2 

A)2 

ENL: 
(mean)2 

variance' U-i. 
Intensity format 

— 1, Amplitude format 

(30) 

(31) 
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with the mean and the variance measured within a homogeneous region. 

Using a 3-level wavelet decomposition, Tables 2-5 list the SNR values for the Lena image 
and the House image at nine noise levels (nine different numbers of looks) and two SAR 
image formats (intensity and amplitude), with the highest SNR values highlighted. It should 
be noted that the SNR is calculated on an average of ten independent noise samples. The 
experiment was repeated ten times under exactly the same settings except that speckle was 
realized using different random seeds, but with the same distribution. 

Looks 
Noise 

Baye. Thr. 
Baye. MMSE. 

This Study 
Refined Lee 

1 
-6.63 
5.43 
5.21 
5.39 
4.99 

2 
-3.62 
7.39 
7.38 
7.60 
6.84 

3 
-1.86 
8.41 
8.36 
8.66 
7.94 

9 
2.91 
10.83 
11.19 
11.48 
11.08 

16 
5.41 
11.97 
12.56 
12.94 
12.74 

25 
7.35 
12.96 
13.71 
14.07 
14.00 

36 
8.94 
13.82 
14.69 
15.13 
15.03 

Looks 
Noise 

Baye. Thr. 
Baye. MMSE. 

This Study 
Refined Lee 

1 
-0.99 
8.37 
8.57 
8.74 
8.55 

2 
2.02 
10.13 
10.42 
10.65 
10.48 

3 
3.78 
11.08 
11.47 
11.75 
11.62 

9 
8.55 
13.58 
14.47 
14.82 
14.76 

16 
11.05 
15.01 
16.07 
16.55 
16.47 

25 
12.99 
16.22 
17.33 
17.84 
17.78 

36 
14.57 
17.28 
18.55 
18.95 
18.90 

Looks 
Noise 

Baye. Thr. 
Baye. MMSE. 

This Study 
Refined Lee 

1 
-8.32 
5.52 
5.37 
5.42 
4.35 

2 
-5.31 
8.27 
8.26 
8.30 
6.25 

3 
-3.55 
9.34 
9.35 
9.43 
7.48 

9 
1.22 
11.99 
12.10 
12.24 
11.00 

16 
3.72 
13.20 
13.49 
13.65 
12.82 

25 
5.66 
14.18 
14.61 
14.80 
14.14 

36 
7.24 
15.00 
15.43 
15.68 
15.18 

As we can see from these tables, the proposed method consistently outperforms the 
other two wavelet-based denoising algorithms in most cases (L>2). For the Lena image, 
when compared with the Bayesian MMSE estimation method, the improvement is about 
0.2dB-0.5dB, depending on the noise level, for both intensity and amplitude formats. The 
SNR improvement over the Bayesian soft thresholding method ranges from 0.2dB to 1.3dB 
for the intensity format, and from 0.4dB to 1.7dB for the amplitude format. For the House 
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Looks 
Noise 

Baye. Thr. 
Baye. MMSE. 

This Study 
Refined Lee 

1 
-2.68 
9.27 
9.30 
9.42 
8.20 

2 
0.33 
11.26 
11.31 
11.41 
10.36 

3 
2.09 
12.23 
12.42 
12.56 
11.60 

9 
6.86 
14.76 
15.22 
15.37 
14.92 

16 
9.36 
16.10 
16.58 
16.80 
16.63 

25 
11.29 
17.14 
17.77 
18.05 
17.89 

36 
12.88 
18.06 
18.75 
19.05 
18.97 

image, our method achieved only a slight improvement, up to 0.2dB over the MMSE es
timation method, and up to 0.7dB over the Bayesian soft thresholding technique for the 
intensity format. The improvement gets moderately better for the amplitude format. The 
reason why the proposed method failed to yield significant improvement is as follows. We 
assume a Gaussian mixture density for the wavelet coefficients of natural images. Subse
quent log-compression decreases the dynamic range of the data, making it very difficult to 
estimate the hyperparameters that specify the mixture model for images in which texture 
only comprises a small fraction of the total image, which is the case for the House image. 

When the image is corrupted by single-look speckle in intensity format, soft threshold
ing achieves slightly better performance than the other two wavelet-based algorithms. There 
are two reasons for this: first, when the noise level is very high, the log-transformed speckle 
noise deviates strikingly from the Gaussian distribution; and second, the EM algorithm is 
not able to provide accurate estimates of the three hyperparameters for the Gaussian mix
ture model, whereas estimation is more robust in the case of soft thresholding since only 
one parameter is needed. 

Compared with the refined Lee filter, we observe that our method has higher SNRs at 
high noise levels. As the noise level decreases, they achieve almost equivalent performance 
with respect to SNR. In terms of the algorithm complexity, the refined Lee filter appears 
to be much simpler and more straightforward than the proposed method. However the de-
noising performance of the proposed method can be further improved by the cycle spinnng 
technique [7]. 

To implement cycle spinning, a total of 64 shifts (8x8 shifts in row and column di
rections) were used, corresponding to the 3-level wavelet decomposition conducted in this 
study. In Fig. 3.2, the SNR values as a function of shifts using the proposed method are 
plotted for the Lena image. We find that cycle spinning can substantially improve the de-
noising performance. With 2x2 shifts, SNR can be increased by up to ldB, and a further 
0.5dB increment can be achieved with 4x4 shifts. However 8x8 shifts do not result in sig
nificant improvement over 4x4 shifts. In most cases, the gain is marginal, less than O.ldB. 
Therefore cycle spinning with 4x4 shifts is sufficient for a 256x256 image. 

Method 
Region 1 
Region 2 

Speckled 
16.9 
15.5 

Baye. Thr 
155.5 
138.2 

Baye. MMSE. 
221.9 
186.8 

This Study 
287.5 
228.2 

Refined Lee 
244.6 
212.6 
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The number of looks (L) 

Fig. 7. SNR as a function of the number of shifts in cycle spinning for the Lena image. Figure is from [53], 
©2002 IEEE, used with permission. 

Fig. 8 presents a comparison of the denoised Lena image corrupted with speckle noise 
(L = 16) in intensity format. Cycle spinning with 4x4 shifts was implemented for the three 
wavelet-based denoising algorithms. It is observed that many isolated specks in smooth 
regions present in Fig. 8(c) disappear from Fig. 8(d) due to the MRF-based optimization 
procedure. Table 6 lists the equivalent number of looks estimated within two statistical 
homogeneous areas in the Lena image for different filters. It indicates that the proposed 
filter achieved the most successful noise reduction in homogeneous areas. On the other 
hand, we find that the refined Lee filter produced sharper edges, but in the homogeneous 
areas, due to the effect of sliding windows, artifacts are visible. Pixel profiles at column 
185 are plotted in Fig. 3.2 for the original noise-free image and the filtered images by the 
proposed method and the refined Lee filter respectively. 

Test Areas 
Region 1 
Region 2 
Region 3 

Orig. 
4.2 
4.2 
4.4 

Baye. Thr. 
30.1 
32.3 
33.8 

Baye. MMSE 
52.8 
58.4 
59.6 

This Study 
63.7 
70.3 
76.1 

Refined Lee 
51.0 
56.3 
62.2 

All the computation was carried out using programs written in C and running on a 
SUN Ultra 1 machine. Using a three-level DWT, the CPU time for denoising the Lena 
image is about 0.9s, 7.5s, and 8.7s for the Bayesian soft thresholding, the Bayesian MMSE, 
and the proposed method, respectively. The refined Lee filter requires about 2.0s. For both 
the Bayesian MMSE and the proposed method, it was found that a large portion of their 
execution time is spent on Gaussian mixture parameter estimation using the EM algorithm. 
When the cycle spinning technique is added, we can assume these parameters are the same 
for different shifts, therefore the time-consuming EM algorithm only need be applied once. 
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(a) Noisy observation (b) Bayesian soft thresholding 

(c) Bayesian MMSE estimation (d) The proposed method 

(e) Reined Lee 

Fig. 8. Comparison of different despeekling methods for Lena image with L = 16. Figure is from [53], ©2002 
IEEE, used with permission. 
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Fig. 9. Profile comparison (column 185) for the Lena image. Figure is from [53], ©2002 IEEE, used with 
permission. 

Real SAR images 
Shown in Fig. 10(a) is a 400x400 Ku-band SAR image over the Rio Grande river 

near Albuquerque, New Mexico, acquired by the Sandia National Laboratories Twin Otter 
aircraft [43]. An enlarged part of the despeckled image is shown in Fig. 10(b)-(e) for the 
three wavelet-based filters and the refined Lee filter, respectively. The wavelet transform 
was performed with four levels of decomposition and the cycle spinning technique was 
applied with 4 x 4 shifts. 

Since the noise-free image is not available, we only use the ENL to assess the filter's 
noise reduction performance in homogeneous areas. As illustrated in Fig. 10(a), three uni
form areas are selected for the quantitative analysis. Table 7 lists the ENL values before and 
after filtering. In all cases, the proposed filter outperforms the other three filters with the 
highest ENL values, which is consistent with the simulation results. The proposed method 
provides comparable edge preservation performance as the other two wavelet-based meth
ods, however the refined Lee filter is able to reconstruct edges with better visual quality. 

4. Speckle Reduction Using a Low-Complexity Wavelet Denoising Process 

While considerable effort has been devoted to adopting more and more complicated wavelet 
denoising algorithms for speckle reduction, in which the logarithmic transform is applied, 
so far there exist only a few studies where the problem of wavelet despeckling without per
forming the logarithmic transform has been addressed and investigated. In [11], the authors 
showed how a signal corrupted by multiplicative noise can be expressed mathematically 
as a signal with additive noise, which suggests that with such an approach, wavelet-based 
filters originally designed for additive noise should perform equally well for SAR speckle 
reduction. The authors then propose a wavelet-based filter that works directly on SAR im
ages containing multiplicative speckle noise. The filter differs from most existing wavelet-

200 

100 

Proposed method | 

200 

100 
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(a) SAR image (b) Bayesian soft thresholding 

(c) Bayesian MMSE estimation (d) The proposed method 

(e) Refined Lee 

Fig. 10. Comparison of different despeckling methods for the SAR image. Figure is from [53], ©2002 IEEE, 
used with permission. 
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based filters in that noise reduction is achieved via a recursive use of the wavelet transform 
smoothing function. Another example of a wavelet-based speckle filter that does not in
volve a log transformation is presented in [18], where the possibility of feature preserva
tion by selectively thresholding the wavelet coefficients is investigated. After the wavelet 
transform, the algorithm classifies each pixel in each detailed image as an "edge" or "non-
edge" pixel based on a predefined threshold. Wavelet denoising is then accomplished by 
applying different shrinkage factors to "edge" and "non-edge" pixels. Algorithms in [11] 
and [18] are both highly heuristic in nature. Although experimental results show that they 
both provide satisfactory despeckling performance, the limitation arises from the fact that 
neither one takes advantage of the known statistical properties of speckle noise. For exam
ple, in [11] the degree of feature preservation is controlled mainly by a threshold applied at 
the wavelet transform level. Wavelet despeckling without a log-transform can also be seen 
in very recent work of Foucher, etal. [16]. The authors assume the Gamma distribution for 
both the speckle and the underlying radar reflectivity, and then use the Pearson distribution 
to approximate the probability density function (pdf) of the wavelet coefficients. Among 
wavelet-based despeckling approaches that do not involve a log transformation, the tech
nique presented in [16] is the first attempt we are aware of where MAP-based wavelet 
despeckling uses a realistic prior model. 

Because of the aforementioned problems associated with the described methods, an ef
ficient and yet rigorous approach based on the multiplicative model is still lacking. In [39], 
a simple wavelet denoising algorithm is developed for images corrupted by film-grain type 
noise which is additive but signal-dependent. In this section, we will extend that method 
to SAR images and develop a low-complexity speckle reduction method without perform
ing a log-transformation and the resultant mean adjustment and exponential operations. 
The difference between the proposed algorithm and the one in [39] are: 10 we focus on 
the development of a filter for SAR images with the inherent multiplicative speckle noise 
model, whereas in [39] the images under analysis had an additive observation model with 
signal-dependent noise; and 2) we estimate the shrinkage factor from the support region of 
the wavelet basis functions rather than the point-wise approximation used in [39]. Exper
imental results demonstrate that the denoising performance can be improved significantly 
by these modifications. 

In what follows, first, we derive the shrinkage factor based on the MMSE (Minimum 
Mean Square Error) estimator in the wavelet domain for a general additive noise model. 
Next, we introduce the wavelet denoising algorithm developed in [39] for film-grain noise, 
then we modify this algorithm to SAR speckle reduction. Lastly, we quantify the improve
ment of the proposed approach over the method presented in [39]. In addition, we compare 
it with a standard spatial speckle filter, as well as another log-transform-based wavelet de
speckling algorithm that has comparable computational complexity. 

In the context of wavelet denoising (see equations 1 and 2), retrieving f from the noisy 
observation w is generally accomplished by shrinking the wavelet coefficients y. If we 
apply the MMSE technique to wavelet denoising, our goal is to seek optimal shrinkage fac
tors {j]i j } that minimize the mean square error between the estimated and original wavelet 
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coefficients. That is: 

rjij = argminE{(x t j - xitj) }. (33) 
Vi,j 

The optimal shrinkage factor rjij can be sought by solving: 

7^-E{(xitj-rhjyiJ)
2} = 0. (34) 

arli,j 

By expanding the above formula, the MMSE solution of rjij can be derived as: 

_ E(xijyij) _ Ejylj) - EimjVij) 

* " • - E{yl0) ~ E{yl1) " ^ 

For wavelet coefficients representing homogeneous areas, we expect the value of r\ to be 
close to zero to reduce noise. On the other hand, for edges or real textures, the value of rj 
should approach one to preserve image details. 

4.1. Formulation 

Film-grain noise usually occurs when scanning an image recorded on photographic film. 
An observed image corrupted by this type of noise is modeled by: 

w = / + f £ , (36) 

where e is AWGN with zero mean and variance a\, f is the original signal, and 7 is a 
constant between 1/3 and 1/2. The authors of [39] assumed the wavelet basis functions to 
be short enough so that f can be treated as constant within the support region of the basis 
functions. The optimal shrinkage factor was derived as: 

E{y\^-olxV 

where E{yfJ) is estimated by: 

E(Vi,i)'vvh- (38) 

For SAR imagery, we have a multiplicative speckle model: 

w = / e , (39) 

„ . . = '"-^' " *'J f37) 

where f is the noise-free signal, w is the observation and e is the speckle random noise 
with unit mean. SAR images are usually produced in two formats. In intensity format, 
the random variable e follows the Gamma distribution, whereas in amplitude format, it 
obeys a multi-convolution of the Rayleigh probability density function [48]. We can easily 
decompose the multiplicative noise model in (39) into an additive model by expressing it 
in the following form: 

w = / + / (e - 1), (40) 
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with the DWT of y = x + N, and where (e — 1) is a random variable with zero mean, and 
f (e — 1) is the signal-dependent noise imposed on the underlying unknown signal / . 

In [39], except for zero mean and being independent of the original signal, no other 
statistical property of the noise e in (36) plays a role in the derivation of the shrinkage factor 
given by (37). As a result, if N denotes the wavelet transform of the signal-dependent noise 
f (e — 1), the optimal shrinkage factor for SAR images can be deduced in a similar manner 
as [39]. The core of Oktem's method is represented by (37), in which if we set 7 = 1, 
and replace an with <7/ (the speckle noise standard deviation), then that method can be 
directly extended to SAR speckle reduction. The primary advantage of Oktem's method is 
its simplicity due to the fact that both E(yjj) and E(Nijyij) are estimated in a point-wise 
fashion. In what follows, we will expand their method by incorporating spatial information 
into the estimation process and apply it to the problem of SAR speckle reduction. 

For the wavelet coefficient at pixel (i,j), we use neighboring pixels to estimate its 
variance 

_1 

DM 
E(yh) = -H7, E <v (41) 

where Af(i, j) denotes the neighborhood system of pixel (i, j), and DM is the correspond
ing dimension. 

At level 1 of a 2-D dyadic wavelet transform, we have: 
M - l t f - l 

Nl,(tfjPWT{f (e - 1)}^. = ^2 ^2 hphqf2i+p,2j+q(e2i+p,2j+q ~ 1), (42) 
p=0 q=0 

M - 1 M - 1 

(43) 
p=0 q=0 

where h (h = h or g) and h (h = h or g) denote the two wavelet filters applied to the row 
and column directions, respectively, and M is the length of the wavelet filters. Using the 
above two formulas, the correlation function between iVi^j) and yi^ij) can be expressed 
by: 

A f - l M - 1 A T - 1 M - 1 
E(Nl,(.i,j)yi,(i,^)'^2 E E E ftphqfrmhn 

p=0 q=0 m=0 n=0 

• E(f2i+p,2j+q(c2i+p,2j+q ~ ^)f2i+m,2j+n^2i+m,2j+n)- (44) 

Since speckle e is independently distributed with unit mean, we obtain: 
M - 1 M - 1 M - 1 M - 1 

E(^l,(i,j)yi,{i,j)) — 2—/ E E E hphqhrnhnf2i+p,2j+qf2i+m,2j+n 
p=0 q=0 m=0 n=0 

• E(e2 - e)6(p - m)5{q - n) 

N-1N-1 

= rf E E hl~h2qfl+P,2j+q> <45> 
p=0 g=0 
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where 5(-) is the discrete delta function, and <rj is the variance of the speckle noise. For 
SAR images in the intensity forma 

t, a2. = 1/L; while for the amplitude format, cr2 = ( | - 1)/L [48]. In both cases, L is 
the number of looks. 

We assume that the wavelet basis functions are short enough so that f can be treated as 
constant within the support region of the basis functions. By using the orthogonal property 
of the wavelet filter: 

M - l M - l 

^2 9k9k+2i = S(l), ^2 hkhk+ii = 5(1), (46) 
k k 

we can prove that at level I > 1, 

M - l M - l 

E(Nmtj)yli(iJ)) ~<T2
f^2Y, hlKfiH+2^P,vj+2^q'

 l > l (47) 
p=0 q=0 

See our paper [55] for the details. 
As seen both in (37) and (47), the unknown noise-free signal f is a prerequisite for com

puting the shrinkage factor for every wavelet coefficient. We apply the shrinkage function 
only to wavelet subbands HH, HL and LH, in the meantime we incorporate the denoised 
approximation subband LL into the denoising procedure to approximate the noise-free sig
nal f. 

Due to the admissibility condition that the scaling filter g must satisfy, we estimate the 
original signal at level I by linearly decreasing LLi by a factor of (\/2)21: 

/2'i+2'-ip,2'j+2'-1
9 ~ 77/^21 LLlS+[i] J+[f ])' ' = 1 ' 2> •••£' ( 4 8 ) 

where the [•] function rounds the argument to the nearest integer towards minus infinity. 
The power of two is to take account of the admissibility condition in both the row and 
column directions. 

The overall image despeckling procedure is summarized as follows: 

(1) Perform a £-level 2-D discrete wavelet transform. 
(2) Start from level £. At level /, for each wavelet coefficient 2/j,(i,j) in each wavelet sub-

band of {LHi, HLi, H Hi}: 

• Estimate the local variance E(Yl
2,i 0 using (41); 

• Approximate the original signal f at the current level by the denoised approxi
mation subband LLi using (48) (at level £, i.e, the coarsest resolution, LLc = 
LLc)- Then estimate the correlation function E(Ni^i^yit^j)) using (45) or 
(47); 

• Calculate the shrinkage factor ??;,(i,j) according to (35) for each individual 
wavelet coefficient; 

• Shrink the noisy wavelet coefficient yi^ij) by: 

£i,(i,j)=max(0^Vi,(i,j))yi,(i,j), xi = {LHi,HLi,HHi}. (49) 
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(3) Perform a 2-D inverse wavelet transform at the current level: 

LLi-! = TDWT(LLt,LHi, HLU HHi). (50) 

The resulting approximation subband LLi-i will be used at the next level. 
(4) Repeat step 2 and step 3 until level 0 is reached. 

The above procedure clearly demonstrates the difference between this algorithm and the 
one proposed in the previous section. For the latter, denoising each detail subband requires 
the denoised approximation subband at the current level that is a result from the immediate 
upper level within the DWT framework, therefore it can only be performed in a sequential 
manner. On the contrary, the former algorithm can be naturally structured in a parallel way 
since denoising any specific detail subband needs no information from other subbands. 

4.2. Experimental Results and Discussions 

In this section, we illustrate the performance of our proposed wavelet despeckling algo
rithm for simulated SAR images in both intensity and amplitude formats. 

As shown in Fig. 11, four standard test images, including House, Peppers, Lena and 
Barbara ordered with increasing degree of texture content, were used for comparison. All 
images have dimensions of 256 x 256. With regard to the wavelet family, the length of 
the wavelet filter, the decomposition level and the image border extension mode, we em
ployed exactly the same settings as used in the previous section. In addition to the method 
developed by Oktem, we also compare our method with two other despeckling methods 
described briefly below. 

In [37], a low-complexity wavelet denoising algorithm called LAWML (Locally Adap
tive Window based denoising using ML), is developed for reducing additive white Gaussian 
noise. In the algorithm, wavelet coefficients y are modeled as conditionally independent 
zero-mean Gaussian random variables given their variances. For the wavelet coefficient at 
pixel (i, j) denoted by y^j, the variance is estimated in a local neighborhood: 

°ij = max I °> JTr 5Z yli - an I ' (51) 

where Af(i, j) and Dj\r are defined as in (41) and erf is the variance of the noise. Then of • 
is used in the MMSE estimator to obtain the noise-free wavelet coefficients £ij: 

a- • 4- o" 
i,3 n 

As (35) and (52) both resemble the classic Wiener filter in the wavelet domain, we form 
another despeckling method using LAWML as a kernel. This despeckling method starts 
with the conventional logarithmic transform, and is concluded by the mean bias correction 
and the exponential operation. 
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To make the connection with those statistical filters that are applied directly in the 
image domain, we also include the refined Lee filter as a reference against which to asses 
the performance of the proposed speckle filter. 

We corrupted the test images by multiplying simulated spatially uncorrelated speckle 
noise. Quantitative comparison is carried out in the sense of the signal-to-noise ratio (SNR). 

For simplicity, we only deploy 3x3,5x5 and 7x7 local square windows to estimate the 
local variance of the wavelet coefficient E(y2j). Our results indicate that a local window 
with size 5x5 offers the best performance in terms of the tradeoff between noise suppres
sion and detail preservation. We therefore only report the results using the 5 x 5 window. 
The SNR results of applying these four despeckling algorithms to two of the four test im
ages are listed in Tables 1.8 and 1.9. Fig. 11 presents the visual comparison of the four 
speckled test images with speckle noise (L = 3) in amplitude format and their respective 
denoised versions by the proposed method, the LAWML method and the refined Lee filters, 
respectively. Based on these results, we note the following observations: 

• Under all conditions, the proposed method achieves remarkable improvement over the 
method by Oktem et al.. 

• For amplitude SAR images, the proposed method outperforms both the refined Lee 
filter and the LAWML. 

• For single-look intensity SAR images, the refined Lee filter provides better perfor
mance than any of the three wavelet-based filters. 

• The proposed method is based on the assumption that the underlying signal is piece-
wise constant with respect to the support region of the wavelet filters. This is not true 
for images containing high frequency textural variations such as the Barbara image, 
which explains why the proposed method only achieves comparable performance to the 
LAWML method for intensity images. On the other hand, for images mainly contain
ing homogeneous areas (House and Peppers) and images with medium texture contents 
(Lena), for which our assumption is valid, the proposed method achieves much better 
performance that the other two methods. 

• For the Barbara image, some small-scale structure has been lost in the reconstruction 
by the refined Lee filter, as expected from its less spatially adaptive template over 
which the weighted averaging is performed. On the other hand, the wavelet multiscale 
denoising algorithms appear to give better structure preservation in the area of excess 
variations. 

As mentioned in the previous section, the discrete wavelet transform is a shift-variant 
system due to the downsampling operation. We have applied a cycle spinning technique [7], 
which reduces artifacts like specks and Gibbs phenomena, and consequently the denoising 
performance can be further improved. We have used a total of 4x4 shifts in both rows and 
columns, as before. 

The proposed algorithm requires more computational time at each wavelet coefficient 
than LAWML when computing the shrinkage factor. If the wavelet filter has a length N, 
the proposed method needs N2 more multiplications and (N2 — 1) more additions for 



192 

each wavelet coefficient. All the computation was carried out using programs written in 
C and running on a SUN Ultra 1 machine. In the framework of a three-level DWT with 
Daubechies' filter of length 6, the CPU time for despeckling the 256x256 Lena image 
is about 1.1s, 2.4s, and 4.0s for the method developed by Oktem, the method based on 
LAWML, and the proposed method, respectively. The refined Lee filter requires about 2.0s. 

Looks 

This Study 
The method based on [39] 

The method based on LAWML 
Refined Lee 

This Study 
The method based on [39] 

The method based on LAWML 
Refined Lee 

1 2 3 16 25 36 
Intensity format 

4.36 
0.72 
2.93 
4.99 

6.81 
3.97 
6.23 
6.85 

8.23 
5.65 
7.63 
7.95 

13.37 
11.79 
12.85 
12.76 

14.73 
13.26 
14.16 
14.04 

15.74 
14.46 
15.23 
15.08 

Amplitude format 
8.87 
6.52 
7.52 
8.56 

11.01 
9.13 
10.20 
10.50 

12.20 
10.50 
11.49 
11.63 

17.29 
16.11 
16.66 
16.52 

18.57 
17.65 
18.04 
17.84 

19.75 
18.93 
19.18 
18.93 

Looks 

This study 
The method based on [39] 

The method based on LAWML 
Refined Lee 

This Study 
The method based on [39] 

The method based on LAWML 
Refined Lee 

1 2 3 16 25 36 
Intensity format 

2.07 
-0.12 
1.34 
2.56 

4.22 
2.73 
4.17 
3.99 

5.35 
4.18 
5.38 
4.85 

9.51 
9.00 
9.49 
8.65 

10.64 
10.21 
10.58 
9.80 

11.55 
11.19 
11.52 
10.79 

Amplitude format 
5.86 
4.93 
5.29 
5.35 

7.63 
6.89 
7.42 
6.83 

8.60 
7.99 
8.49 
7.74 

12.86 
12.54 
12.76 
12.18 

14.12 
13.86 
14.03 
13.54 

15.22 
15.05 
15.11 
14.73 
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In this work, a wavelet representation of multispectral images is 
presented. The representation is based on a multiresolution extension 
of the First Fundamental Form that accesses gradient information of 
vector-valued images. With the extension, multiscale edge information 
of multispectral images is extracted. Moreover, a wavelet representation 
is obtained that, after inverse transformation, accumulates all edge infor
mation in a single greylevel image. In this work, a redundant wavelet rep
resentation is presented using dyadic wavelet frames. It is then extended 
towards orthogonal wavelet bases using the Discrete Wavelet Transfor
mation (DWT). The representation is shown to be a natural framework 
for image fusion. An algorithm is presented for fusion and merging of 
multispectral images. The concept is successfully applied to the problem 
of multispectral and hyperspectral image merging. 

1. In troduct ion 

With the evolution of imaging technology, an increasing number of imaging 

modalities becomes available. In remote sensing, sensors are available tha t 

measure light reflectance at different wavelengths simultaneously. Multi

spectral images are generated by positioning each measurement in a sep

arate band. When the number of bands is so high tha t a more or less 

continuous reflectance spectrum is obtained, one refers to hyperspectral 

imagery. 

Much work has been devoted to the classification and/or segmentation 

of multispectral images for identification purposes.1 '2 However, usually only 

a fraction of the da ta provides unique or useful information. Moreover, re

ducing the da ta set reduces the complexity of a classification procedure. For 
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this reason, it is common practice to select a limited number of bands or 
extract a limited number of features from the entire multispectral set. Also 
a fusion of several bands into one or a few greylevel images is performed.3'4 

A similar procedure merges different images (e.g. a high resolution panchro
matic image with a low resolution multispectral image) for enhancement.5 

Other image processing procedures to facilitate the classification and seg
mentation of multispectral images include noise filtering6'7'8 and image 
enhancement.9'10'11 

It is obvious that all these image processing and analysis techniques 
would benefit from the combined processing of the different bands involved. 
Nevertheless, in most cases single-valued processing and analysis techniques 
are applied to each of the bands separately. The results for each band are 
then combined in a usually heuristic manner. 

A large part of image processing and analysis techniques makes use of 
the image edge information, that is contained in the image gradient. A nice 
way of describing multispectral edges was given12. Here, the images "first 
fundamental form", a quadratic form, is defined for each image point. This 
is a local measure of directional contrast based upon the gradients of the 
image bands. This measure is maximal, at each image point, in a particular 
direction, that in the greylevel case is the direction of the gradient. Based 
on this definition, a color edge detection algorithm was described13 and a 
color image anisotropic diffusion algorithm was described14. 

In single-valued images, multiresolution techniques are used to describe 
edges. The wavelet transform e.g. is successfully applied to compression, 
noise-reduction, enhancement, classification and segmentation of greylevel 
images. However, when applied to multispectral images, it is applied to each 
band separately. 

In this paper, a new multispectral image wavelet representation is pre
sented. This representation allows for a multiscale edge description of mul
tispectral images. The idea for the representation is based on the first fun
damental form 12 and the dyadic wavelet representation of Mallat.15 The 
latter decomposes an image into detail images that are convolutions of the 
image with derivatives of a smoothing function. These detail images can 
be written as the derivatives of the image, smoothed at different scales. 
This observation allows for a definition of multiscale fundamental forms. 
The eigenvectors and eigenvalues of these quadratic forms describe the di
rections and rates of change of the multispectral image at that particular 
scale. 

This extension has the advantage of allowing for a reconstruction to-
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wards a single-valued image, combining multiscale edge information of all 
bands involved16. Applications were developed for multispectral image fu
sion and merging17, anisotropic diffusion filtering of color images18, color 
image segmentation19 and image denoising.20 

A disadvantage of the presented technique is the use of a redundant 
wavelet transform with large computing power and memory requirements. 
For this reason, an orthogonal multispectral wavelet representation will be 
developed as well, based on the Discrete Wavelet Transform (DWT). For 
this, the concept of maximal gradient is generalized towards linear vec
tor operators in the image plane with equal components along rows and 
columns. The generally applied separable conjugate mirror filter decompo
sition of the DWT is modified in order to include such operators. In this 
way, an orthogonal wavelet representation of multispectral images is ob
tained such that detail images from different bands are combined into one 
single representation. 

To demonstrate the proposed representations, we will apply the con
cepts to the problem of fusion and merging of multispectral images. A 
recent overview of the problem of multispectral image fusion and merg
ing is given21. We define image fusion as the combination of several bands 
of a multispectral image into one grey level image. Applications are image 
enhancement for visualization and reduction of the complexity of classifica
tion tasks.22 '23 '24 '25 Another important application in the literature is the 
fusion of multisensor imagery as for instance provided by ground based or 
airborne (military) platforms and surveillance devices.26'27'25 

We will refer to image merging as the process of combining a greylevel 
image with each band of a multispectral image in order to improve the spa
tial resolution of the multspectral image. Applications are the combination 
of a high-resolution greylevel image with a low-resolution multispectral im
age to obtain high-resolution multispectral information.5'28'29 An example 
is given by the merging of SPOT Panchromatic data with Landsat The
matic Mapper multispectral images.30 '31 '32 '33 '34 

Most of the fusion and merging techniques described in the literature 
are pixel-based. Many techniques are based on multiresolution processing. 
The multiresolution approach allows for a combination of edge informa
tion at different scales. A very popular paradigm is given by the wavelet 
transform.5'22'31'25 Other methods, like pyramid-based fusion were also 
described.35'36 The rule for combining the detail information is an impor
tant issue. The most common rule for fusion is to take the detail coefficient 
from one of the bands (e.g. the one with highest energy). For merging the 
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most common rule is substitution (e.g. substitution of the detail images of 
a high-resolution greylevel image into the wavelet representation of a lower-
resolution multispectral image). In a concept, called ARSIS, the statistics 
of the detail coefficients are modelled before substitution.34 In both cases, 
fusion as well as merging, using the simple combination rules, important 
information can be lost. In the case of fusion, other bands than the one con
taining the maximum can contribute to an improved visualization. In the 
case of merging, the low-resolution band can contain important directional 
information, that is not present in the substituted image. 

Instead, we propose to use other rules, based on the proposed multi-
spectral image wavelet representations. This concept allows for a detailed 
simultaneous description of directional information of all bands involved. 
The new representations are applied to combine a (high resolution) greylevel 
image with one band of a (low resolution) multispectral image. The obtained 
representations are reconstructed to replace the original band. This proce
dure is repeated for all the bands. It is demonstrated that this technique 
improves spatial resolution while maintaining the spectral resolution from 
the multispectral image. 

The outline of the paper is as follows. In Sec. 2, the concept of Mul-
tiscale Fundamental Forms is introduced, leading to a redundant multi
spectral wavelet representation. In Sec. 3, the concept is extended towards 
orthogonal wavelet representations. In Sec. 4, we describe the application 
of multispectral image fusion and merging. 

2. The redundant multispectral image wavelet 
representation 

2.1. Multispectral edge representation using the first 
fundamental form 

For the derivation of the first fundamental form, we will follow 12. Let 
I(x,y) be a multispectral image with domain R2 and real-valued compo
nents In(x, y), n — 1, ...N. The value of I at a given point is a iV-dimensional 
vector. To describe the gradient information of I, let us look at the differ
ential of I, which is assumed to exist. In the Euclidean space E^ : 

,T 9 1 , 9 1 , 
dI = YxdX + ^ (1) 

and its squared norm is given by (sums are over all bands of the image): 
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This expression is called the first fundamental form. The matrix 

(2) 

(G**G*v\ ( ) 

I Gxy Gvy ) 

is a 2 x 2 symmetric, nonnegative definite matrix, which ensures that its 
eigenvalues are real and nonnegative. It reflects the change in a multispec-
tral image. The direction of maximal and minimal change are given by 
the eigenvectors of G. The corresponding eigenvalues denote the rates of 
change. For a greylevel image (N = 1), it is easily calculated that the 
largest eigenvalue is given by A+ = | |V/| |2 , i.e. the squared gradient mag
nitude. The corresponding eigenvector lies in the direction of the gradi
ent. The other eigenvalue A - equals zero. For a multispectral image, the 
eigenvectors and eigenvalues describe an ellipse in the image plane. When 
A+ 3> A~, the gradients of all bands are more or less in the same direction. 
When A~ ~ A+, there is no preferential direction, i.e. the eigenvectors can 
be chosen arbitrarily. The conjecture is that A - can be ignored and that 
the multispectral edge information is reflected by the first eigenvalue and 
corresponding eigenvector of the first fundamental form. 

A particular problem that occurs is that the diagonalization does not 
uniquely specify the sign of the eigenvectors. This has been extensively 
studied13. It was proven that the eigenvectors can be uniquely oriented in 
simply connected regions where A~ ^ X+. Based on this, an algorithm was 
proposed to orient the eigenvectors, keeping the angle-function continuous 
in local regions. 

2.2. The dyadic wavelet transform 

The first fundamental form of the previous section reflects only edge in
formation at a single scale. Many greylevel image processing applications 
make use of higher scale edge information using multiresolution techniques. 
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The aim of this paper is to extend the multispectral edge representation 
towards multiscale edges. 

The wavelet transform employed in this work is based on non-orthogonal 
(redundant) discrete wavelet frames introduced by Mallat.15'37 Define a 2-D 
smoothing function 9(x,y), i.e.: 

lim 0(x,y) = 0 
x,y-±oo 

J 8{x,y)dxdy = l (4) 

Supposing 9 is differentiable, define 

1( . d0(x,y) 2 dO(x,y) 
tp (x, y) = — — — and ip {x, y) = — ^ (5) 

The fact that 9 satisfies (4) guarantees that ipl{x,y) and ip2(x,y) are 
wavelets, i.e. have zero mean. The wavelets that were chosen in15, and 
that we also will apply, are quadratic spline wavelets of compact support, 
and 8 is a cubic spline smoothing function. The wavelet transform of an 
image I(x, y) is then defined by: 

D\ (x, y) = I* 4>l (x, y) and D2 (x, y) = I * if>2
s (x, y) (6) 

where * denotes the convolution operator and 

r!>l(x,y) = -V(£>-) ™*tf(x,y) = \^{-,V-) (7) 
sz s s sz s s 

denote the dilations of the functions ip1. s is the scale parameter which 
commonly is set equal to 2J with j = l,...,d. This yields the so called 
dyadic wavelet transform of depth d. D^ and D^ are referred to as the 
detail images, since they contain horizontal and vertical details of 7 at scale 
3-

In practice, for digital images detail values are only required at integer 
positions (m, n) E Z2. For finite image sizes, border problems are solved by 
imposing periodic boundary conditions. A fast algorithm has been designed 
for this transform by iterative filtering with a set of 1-dimensional low and 
high pass filters H, G, K and L associated with the wavelets tjj1 and ip2 (for 
this, it is necessary that the wavelets can be written as separable products 
of 1-D functions).37 These filters have finite impulse responses, because xpl 

and ip2 have compact support, which makes the transform fast and easy to 
implement. We denote Ap the discrete filter obtained by putting 2P — 1 zeros 
between each of the coefficients of the filter A. We denote by (A, B)*C the 
separable convolution of the rows and columns, respectively, of the discrete 
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image C with the discrete 1-D filters A and B. L\ = I and D is the unit-
impulse filter whose impulse response equals 1 at 0 and 0 otherwise. The 
procedure at scale j is given by: 

L2j+i (m, n) = (Hj,Hj) * L2i (m, n) 

£>2J+I (m, n) = (D, Gj) * L2j (m, n) 

D| i + 1 (m, ra) = (Gj, D) * L2; (m, n) (8) 

For a proof, we refer to 15. Thus the wavelet representation of depth d 
of the image I consists of the low resolution image L2d and detail images 
{Dl

2iYjZz\ d- Similarly, a reconstruction algorithm was designed, to recon
struct the original image from its wavelet representation. At scale j : 

L2j~i(m,n) = (Kj-i,Lj-i) *D\j{m,n) 

+ (Lj-i,Kj-i) * D2
2i(m,n) 

+ (Hj-1,Hj-1)*L2i(m,n) (9) 

with Hp the filter whose fourier transform is the complex conjugate of the 
fourier transform of Hp. 

Substitution of (5) and (7) in (6) yields the following interesting prop
erty: 

Dh (x, y) 
Dh (x, y) 

= 2j ! < / ' : £ ) & ! ! ) = **'**'><*•»> (io> 

This stipulates that the wavelet transform of a greylevel image consists 
of the components of the gradient of the image, smoothed by the dilated 
smoothing function 92j. 

2.3. The multiscale fundamental form 

Based on (10), for multispectral images a fundamental form can be con
structed at each scale. Similar to (2), and applying (10), the squared norm 
of the differential of (I * 02j)(x, y) is given by: 

| |d(I*M||2 

\ 
= 2~2j 

2 - 2 j 

dx 
dy 

dx 
dy 

dx 
dy 

' fixx /~txy 
{Jr2' 2J 

- ^2i 2J 

dx 
dy (11) 
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where Dl
n 2j and D2

n 2j are the j-th scale detail coefficients of the n-th band 
image. The matrices 

( QXX Qxy \ 

nxy nyy 1 (12) 
U2i ^2i J 

are 2 x 2 symmetric, nonnegative definite matrices, with real and non-
negative eigenvalues. Expression (19) will be referred to as the j - th scale 
fundamental form. It reflects the change in the j-th. scale smoothed image 
and therefore the edge information at the j-th. scale. The direction of max
imal and minimal change are given by the eigenvectors v j and v~ of G. 
The corresponding eigenvalues A J and A~ denote the rates of change. The 
eigenvectors and eigenvalues describe an ellipse in the image plane, where 
the longest axis denotes the direction of the gradient at scale j and the 
shortest axis the variance of gradient at scale j around that direction. For 
a greylevel image, one obtains 

A+ (x,y) = 2-^ [(Dl
2jf(x,y) + (D2

21f(x,y)] = | | V ( / * M | | 2 

v + (x v) - V ( J * M f13) 

i.e. the first eigenvector denotes the direction of the gradient of the j-th scale 
smoothed image, while its corresponding eigenvalue denotes its length. For 
N — 1, the matrices G^i have rank 1, i.e. X2j(x,y) = 0. Remark that: 

D\j{x,y) = y A + u + ^ y ) 

D% (x,y) = yfi&v+j >y (x, y) (14) 

i.e. the original representation is obtained in terms of the first eigenvalue 
and corresponding eigenvector. In multispectral images the edge informa
tion is contained in both eigenvalues. The eigenvectors and eigenvalues of 
the multiscale fundamental forms describe the edge information of a mul
tispectral image in a multiresolution way. As in the single-scale case, A~ 
is ignored. The multispectral image is then represented at each scale by 2 
detail images: 

D\f(x,y) = yA+-u+-iS(a:,y) 

Dl+{x,y) = ^jV+y{x,y) (15) 

In Fig. 1, a schematic overview of the Multispectral Image Wavelet 
Representation (MIWR) is given. It is important to remark that this repre-
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sentation is by no means complete, i.e. the original bands cannot be recon
structed from this representation. It is not the goal of this work to derive 
a complete representation but merely to describe the edge information of 
multispectral images. 

The same problem as in the single-scale case occurs with calculating the 
MIWR: the matrix diagonalization does not uniquely specify the signs of 
the eigenvectors. This phenomenon translates in the multispectral image 
problem as arbitrariness of the gradients orientation. From (15), this orien
tation reflects on the sign of the detail coefficients that can flip incoherently 
from one pixel to another. Therefore the orientation must be determined 
before a reconstruction can be calculated. Instead of following the proposal 
of 13, we propose the following (more simple) solution to this problem. The 
orientation of the gradient is approximated by the orientation of the gra
dient of the average of all bands. The average of the bands is calculated 
and wavelet transformed. The scalar product of the obtained detail coeffi-

1 2 

cients D2j and D2i with the first eigenvectors then determines the signs: if 
^2iv% x + ^2iv2i — 0 then the sign of the eigenvectors is not changed, if 
the scalar product is negative, then the sign of v j is flipped. The sign of 
v~j is chosen so that the angle of its direction is | more than the angle of 
v+. 

3. The orthogonal multispectral image wavelet 
representation 

3.1. Multispectral maximal length of linear vector operators 
in the image plane 

Define a vector operator L in the (x, y)-plane, with components Lx and 
Ly, both linear operators. The components are taken to be identical op
erators, applied in ID, Lx applied in the x-direction and Ly applied in 
the y-direction. Examples of such operators are the gradient operator 
V = (d/dx, d/dy), or any vector operator, consisting of two identical trans
lation invariant convolution operators. When such an operator works on a 
scalar image I(x,y), the result is a vector, with components LX(I) and 
Ly(I). This vector has length ^(LX{I))2 + (Ly(I))

2 and direction, given 
by (cos a, sin a) , 
with a = arctan(L2/(7)/La;(7)). 

How to apply such operator on a multispectral image? One obvious 
procedure would be to apply it on each band separately, and average the 
resulting vectors, i.e. L(I) = -^ ^ n - ^ ( ^ ) - ^n other cases, one is interested 
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D^ 

m 

Fig. 1. Schematic overview of the Multispectral Image Wavelet Representation (MIWR) 

in the maximum effect of the operator, e.g. in case of the gradient operator, 
this would lead to the most dominant edges. Therefore, the operator can 
be applied on each band separately, and the resulting vector with largest 
length: L(I) = L(Lj);j = argmaxn | |L(In)| |2 can be chosen. However, both 
procedures do not take the bands into account simultaneously. In case of the 
average, opposite resulting vectors will annihilate the effect of the operator. 
In case of the maximum, important 'next-to' largest effects can get lost. 

In this section, a multispectral 'maximal length' and 'direction of max
imal length' of vector operators is defined, taking into account all bands 
simultaneously. The procedure is derived from a concept similar to that of 
the First Fundamental Form in Sec. 2. 

Define the infinitesimal displacement vector: 
dr = (dx, dy). Then, the scalar product in R2: L(I) -dr = Lx(I)dx+Ly(T)dy. 
Its squared norm in RN, using the Euclidean metric is given by: 

|L(I) • dr| 
dx\ 

dy) 

Mxx Mxy\ 
Mxy Myy J 

dx 
dy 

(16) 
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This expression is a quadratic form. The matrix 

/ | |LX(I) | |2 M I ) - L „ ( I ) 

\LX(I) • Ly{1) \\Ly(I)\\
2 

\E(LMn))(Ly(In))E(Ly(In))2 

(17) 

(sums are over n — 1,...,N) is a 2 x 2 symmetric, nonnegative definite 
matrix, which ensures that its eigenvalues are real and nonnegative. For 
varying dr, this form has a maximum and a minimum given by the largest 
eigenvalue A+ and smallest eigenvalue A - of the matrix M. The maximal 
and minimal directions are given by the corresponding eigenvectors v+ and 
v~. 

For a greylevel image (N = 1), it is easily calculated that the largest 
eigenvalue is given by A+ = | |L(/)| |2 and v + = (cos a, sin a) , with a = 
arctanLy(I)/LX(I). The other eigenvalue A - equals zero. Therefore: 

For a multispectral image, the second eigenvalue generally differs from 
zero. The first eigenvalue denotes the maximal squared length of the vector 
L(I), while the corresponding eigenvector lies in the direction of the maxi
mal length. The second eigenvector lies in the opposite direction of maximal 
length. The corresponding eigenvalue denotes the minimal length. We will 
ignore the second eigenvalue and define: 

The same problem as in Sec. 2 with the signs of the eigenvectors occurs, 
and the same solution is proposed. The scalar product of the two vectors 
L(I) and l/NJ2nJj(In) is evaluated. If the sign of the scalar product is 
positive, the direction of the eigenvectors is maintained, else it is flipped. 

As already mentioned, the most obvious vector operator on which the 
proposed technique can be applied is the gradient operator, where the 
quadratic form is referred to as the first fundamental form. In Sec. 2, we have 
extended this concept to multiscale gradients, defining multiscale funda
mental forms. One major drawback was that the applied wavelet transform 
was redundant, leading to large computer power and memory requirements. 
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With the proposed extension of the fundamental form towards general lin
ear operators, an orthogonal multispectral wavelet representation can be 
constructed, making use of the DWT. In the next section, we will show 
how to develop such an orthogonal multispectral wavelet representation. 

3.2. An orthogonal multispectral wavelet representation 

In the dyadic separable orthogonal wavelet decomposition 38, an image 
f(x,y) is decomposed at different scales j into a lower resolution image 
A2i f and three detail images D^f^D^f and D^f. This is done with a 
uniform sampling of two-dimensional convolution products. At each scale 
- 1 > j > -J; (n,m) € Z2: 

Mif = / f e l / ) ® f e H f e ( - ! / ) ( 2 " i n , 2 - i m ) 

Dhf = f(x,y) ® <M-*)V2; ( -y) (2- J n,2-^m) 

Dlf = f(x,y)®^2j(-x)<f>2i(-y)(2-in,2-im) 

D%f = f{x,y)®^2i{-x)^{~y){2^n,2^m) 

(20) 

Here, <f> and ip are perfect low and bandpass filters, that are separably ap
plied along x and y-directions. This wavelet representation can be computed 
in practice with a pyramidal algorithm, making use of ID quadrature mir
ror filters H (lowpass) and G (bandpass), that are applied separably in the 
x and y-directions. In Fig. 2, the algorithm is illustrated by a block diagram 
for one scale. The process consists out of separable 1-D convolutions along 
row (column) and subsampling, by skipping one row (column) out of two. 

The wavelet representation is complete, and reconstruction of the orig
inal image is accomplished by putting zero's between each sample of the 
detail images and convolution with filters H and G, which are symmetric 
filters, with impulse responses, given by h(n) = h{—n) and g(n) = g(—n). 
Again, for images this is separably applied on the rows and columns. In 
Fig. 3, the reconstruction scheme is illustrated by a block diagram for one 
scale. 

A representation for multispectral images will be developed by combin
ing detail information of the different bands into one set of detail images. 
For this, let us define the following linear vector operator: 

L = ( « • ) » (21) 
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: convolve with filter B along direction z 

: keep one column out of two 

: keep one row out of two 

Fig. 2. the pyramidal orthogonal wavelet decomposition 

i.e. an operator, with components the bandpass filters Gx and Gy. This 
operator is applied on a multispectral image by using (19). 

Actually, L is the first operator that is applied within the pyramidal 
decomposition. In order to see this, the following modification is required 
(see Fig. 4). In the modified algorithm, the order of applying Hx and Gy is 
reversed when calculating D\3f • In this way, the bandpass filter is applied 
first in x and y directions. Remark that this modification is allowed, since 
it only changes the order of convolution with ip and <f> for calculating D\j f 
in (20). Remark also that the calculation of the D3 images can be done in 
two ways, leading to exactly the same results. 

The multispectral image wavelet representation at each scale is denned 
in three steps. In the first step, the lowpass images A23+iIn of the bands 
In,n = 1, • • • N are bandpass filtered with Gx and Gy (see Fig. 5), leading 
to detail images D^In and Dv

2iIn. The operator L is defined as in (21), 
which means that in fact: 

Dy I 
J-^23 n 

Lx A.23+1 In 

LyA.2i+i In 

(22) 
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Fig. 3. the pyramidal orthogonal wavelet reconstruction 

In the second 
step, we calculate L(A2j+iI) = L(A2J+III,A2J+II2J • • • ,A2J+IIN)T To do 
so, the matrix: 

(J2 (LxA2i+iIn) 
\ Yl LxA2j+i InLyA2j+i In Y2 {LyA2i+i In) 

= (E (D^In)
2 Emin)(Dlln)\ 

\E(DX
23In)(Dy

2JIn)E(DX
2JIn)2 J 

(23) 

is diagonalized, leading to eigenvalues Aj and A~, with corresponding 
eigenvectors v+- and v~ . Then, according to (19), 

LA 2 j+ i I 
f \+•>&''• 

s\2j u2j 

s\2j
 v

2i 

(24) 

Thirdly, the images D2JIn and D2JIn are replaced by D^'xl and D2/
VI. 

These detail images are then treated as being detail images from a represen-
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Fig. 4. a modified pyramidal orthogonal wavelet decomposition 

tation of one greylevel image. Then, the remaining of the pyramidal algo
rithm of Fig. 2 is calculated (see Fig. 6). This leads to detail images D*/1!, 
D^j' I and D^- I. Remark that the two ways of calculating D2/ I generally 
will lead to (slightly) different results. In the following, we will take the av
erage of both results. Also remark that the low resolution images A2jln are 
calculated for each band separately. After decomposition, the following im
ages are generated: one set of detail images {D^- I, D~£/ I,D^' I}_i>j>_j 
and for each band the lowest resolution images A2jln-

In this way, an orthogonal wavelet representation of multispectral im
ages is obtained, similar as the redundant representation of Sec. 2, but 
with the advantage of reduced computational complexity and memory re
quirements. Reconstruction can be accomplished by using the pyramidal 
reconstruction scheme of Fig. 3, with the detail images, obtained by the 
presented decomposition scheme. 



212 

> L^Aa+i In= D ^ In 

* LyA2J+i In = Dy
2Jln 

Fig. 5. the first step: bandpass filtering 

4. Applications 

4 .1 . Multispectral image fusion 

In this work, the redundant representation as well as the orthogonal repre
sentation of multispectral images are applied for fusion. Using the proposed 
redundant representation, a fusion algorithm can be constructed in the fol
lowing way. All bands are wavelet transformed using (8). For each scale, 
the multiscale fundamental forms are calculated using (19). After diagonal-
ization, the wavelet representation (15) is obtained. A low resolution image 
is obtained by averaging the low resolution images of the original bands: 
^2d = jf Z)n=i Ln,2

d- The obtained representation is then given by: L2d 
and {D^j }*Z.1' d- This representation is reconstructed by inverse wavelet 
transformation. 

Using the proposed orthogonal representation, a fusion algorithm is con
structed in the following way. First, all bands are transformed using the 
first step of the modified transform (see Fig. 5). The obtained detail im
ages D^jln and D2vin are combined into D2/

XI and D^'yI by diagonalizing 
(23). On these detail images, the remaining of the transform is applied (see 
Fig. 6). The low resolution images of all bands are averaged. The obtained 
representation is given by: {D^/ I,£)+•' I,D2- I } _ I > J > _ J and the lowest 
resolution image < A2jln >• Reconstruction is performed, as in Fig. 5. 

A 2 J + 1 I n — • 

G. 

G, 
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Fig. 6. the remaining of the pyramidal decomposition 

To demonstrate the proposed fusion technique, the following experiment 
is conducted. As a test image remote sensing data is used: a Thematic Map
per image, containing 7 bands of 512x512 images from the U.S. Landsat se
ries of satellites39. The first four images are fused into one greylevel image. 
In Fig. 7, the result using the redundant wavelet representation is shown. 
On the left, the proposed technique is applied. On the right, the wavelet 
fusion technique of 22 is applied where the same redundant wavelet trans
form is applied. In both applications, the images were wavelet decomposed 
into 4 levels of resolution. On the right image, for each pixel position and 
at each scale, the largest detail coefficient is taken to be the detail coeffi
cient of the fused image: Dl

2j (x, y) = maxn Dl
n 2j (x, y). One can observe an 

improved overall contrast using the proposed technique. This effect can be 
attributed to the superior description of the edge information in the MIWR 
representation. The same experiment was repeated using the orthogonal 
representation, with results that did not differ visually from Fig. 7. 

At first sight, it might seem surprising that the fused images are recon
structed without visual artifacts. After all, the detail images {Dl'^~} are 
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Fig. 7. Fusion of the first 4 bands of a Landsat image; a: using the proposed redundant 
representation; b: using wavelet maxima fusion 

constructed pixel wise, irrespective of detail values at neighbouring posi
tions and scales. This seems not to affect the reconstruction. We are not 
able to give rigorous mathematical evidence for this, but several arguments 
are listed below. 

For most positions, A~ are small compared to A J . This is the case 
because most edge positions appear in more than one band and are 
equally oriented. If edge positions of different bands are equally 
strong, they are fused accordingly. If an edge position of one of 
the bands is stronger than the others, it will dominate the fusion 
process. In those cases where A~ ~ A j , the gradients are mostly 
weak. These positions correspond to noisy and locally textured 
areas. 
Real edges have continuous behaviour both in space and scale. This 
means that a strong gradient at one position at a particular scale 
will also be found at the same or a neighbouring position at the 
other scales, and this will be also the case for all positions along 
the edge. This is probably the main reason for the fused reconstruc
tion to work properly. In 15, a thorough study of the behaviour of 
edges accross scales is performed, revealing e.g. that an image can 
almost perfectly be reconstructed from the local maxima of the 
detail images only. 
Most of the other wavelet-based fusion techniques that have been 
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described in the literature, all are based on fusion rules that do not 
take into account neighbouring detail information in space or scale. 
No visual artifacts of the reconstructions were reported in these 
cases. The continuity arguments are also valid in those cases. The 
fact that the proposed technique combines gradient information of 
the different bands is an extra argument for a more continuous 
behaviour of the values of {D^} accross space and scale. 

This experiments merely shows that the proposed fusion technique visu
ally leads to similar results as the wavelet-based fusion techniques from the 
literature. The proposed technique appears to have an improved overall con
trast compared to the wavelet maxima procedure, but it is hard to quantify 
these results. For this, human observer experiments should be performed. 
For fusion, particular task performance has been studied.40 '41 '42 '43 '44 In the 
next section, we will demonstrate using specific task performance that the 
proposed technique is extremely useful for a specific fusion process, namely 
the merging of multispectral images. 

4.2. Multispectral image merging 

In this section, we will discuss an application, closely related to fusion, 
which is the process of merging of different images. By merging we mean 
the exchange of useful information between two (or more) images, with the 
purpose of enhancing one or both images. One can e.g. merge a monochro
matic image of high spatial resolution with a multispectral image of lower 
spatial resolution, with the purpose of enhancing the spatial resolution of 
the multispectral image. Applications are found in satellite imagery, where 
e.g. a monochromatic SPOT image (10 m resolution) can be merged with 
a 7-band LANDS AT image (30 m resolution). 

Most merging techniques from the literature are developed within a 
multiresolution framework. When using the wavelet transform, merging is 
performed by wavelet transforming the monochromatic image and all bands 
of the multispectral image. A standard merging rule is to replace the de
tail images from the multispectral bands by the detail images from the 
monochromatic image. 

Let us first introduce the merging procedure based on the presented 
representation. Suppose that we want to merge a greylevel image f(x,y) 
and a multispectral image g(x,y) = (gi(x,y),g2(x,y), • • • ,gN(x,y))T. The 
merging will be performed by combining the greylevel image and one of 
the bands of the multispectral image with the presented representation, to 
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obtain an enhanced band. This is then repeated for all of the bands of the 
multispectral image. In concreto, the following procedure is performed: 

for i = 1 to N 

• Regard the greylevel image f(x,y) and the image gi(x,y) as the 
two bands of a 2-valued image I, and calculate the presented rep
resentation. 

• Reconstruct the merged image g%(x,y), using its original lowest 
resolution image A2jgi and the obtained detail images from the 
representation Dp1!, Dp2I and Dp I. 

In this way, a merged multispectral image is obtained that contains 
combined detail information from the greylevel image and the original mul
tispectral image. This information may be high spatial resolution infor
mation from the greylevel image or local resolution information from the 
specific bands of the multispectral image. Two goals are pursued: the im
provement of the spatial resolution from the multispectral image, which is 
accomplished by including detail information from the greylevel image, and 
preservation of the spectral information from the multispectral image. The 
latter is accomplished by retaining the band at the coarsest scale and by 
including local detail information from the multispectral image, when not 
present in the greylevel image. 

As an application, merging is applied to multispectral satellite imagery. 
The proposed merging technique will be applied. To compare, the substitu
tion techniques from the literature are applied. Three different techniques 
are used. In the first, the detail images of each band of the multispectral 
image are replaced by the detail images of the panchromatic image.30 We 
will refer to this technique as MERGE1. In the second approach, the same 
replacement takes place, but on top of this, the low-resolution wavelet im
ages of each band of the multispectral image are replaced by the original 
bands.31 We will refer to this technique as MERGE2. We also compare 
with a standard merging method, based on the Intensity-Hue-Saturation 
transformation.45 Here, the multispectral image is IHS-transformed, and 
the panchromatic image is merged into the I-component. We will refer to 
this technique as IHS. 

In the experiment, A SPOT Panchromatic image is merged with a three-
band Landsat multispectral image. The SPOT image has a resolution of 
10m, while the Landsat images have a resolution of 30771. In Fig. 8, the 
original SPOT and Landsat images are displayed. In Fig. 9, the merged 
results are shown, using IHS (a), MERGE1 (b), MERGE2 (c) and the 
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merged result using the proposed technique (d). 

Fig. 8. a: Original SPOT and b: Landsat images 

With respect to the spatial resolution, results are visually not really 
different. All four techniques clearly improve the spatial resolution of the 
multispectral image. With respect to the spectral resolution the results are 
visually different. IHS, MERGE1 and MERGE2 display a poor spectral 
resolution. The spectral information of the proposed technique very much 
resembles that of the original Landsat image. In most of the image only 
small color differences are visible, while at small specific area's, the color 
differences become large. To quantify the results, a correlation measure is 
applied. 

The correlation between 2 images A and B is defined as: 

Cor{A, B) 
((A-(A))(B-(B))) 

y/{{A-{A))*)((B-(B))*) 
(25) 

where (.) denotes the average over all pixels. The correlation between origi
nal and merged multispectral images is calculated for each band separately. 
Although it is not really clear whether this metric has any relation with 
visual perception, it is used regularly for multispectral imagery. Recently, 
there have been some attempts to include perception-based metrics.23 '46,47 

In table 1, correlation results are shown. It is clear that all wavelet-based 
techniques better preserve spectral information than the IHS technique. 
The obtained values from the IHS technique and the wavelet techniques 
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Fig. 9. Merged images from Fig. 3, using a: IHS; b: MERGE1; c: MERGE2; d: proposed 
technique 

from the literature agree with perviously reported results.30 The proposed 
technique outperforms the other two wavelet mergers. 

R 
G 
B 

IHS 
0.69 
0.69 
0.66 

MERGE1 
0.81 
0.83 
0.78 

MERGE2 
0.78 
0.80 
0.76 

Proposed 
0.92 
0.92 
0.90 

Spectral preservation is an important issue, not only for visual purposes, 
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but also for specific task performance. Many applications perform classifi
cation based on the spectral information. It is clear from the images and 
from the correlation measure that the proposed technique will outperform 
the others with respect to classification. To show this, we measured the 
average spectral response of a small homogeneous green area in the original 
Landsat image (pointed to by an arrow in Fig. 8b, and the same area in the 
merged images. The (Euclidean) distance in the RGB-space between the 
cluster centers of the original and the merged results where 269, 180, 169 
and 74 for IHS, MERGE1, MERGE2 and the proposed technique. Similar 
experiment were performed at other regions, leading to similar results. 

Finally, the following classification experiment is performed. The origi
nal Landsat image is segmented by clustering its RGB-space. For this, we 
applied the k-means clustering algorithm, with k = 4. The pixels, belonging 
to one of the clusters are shown in Fig. 10a, revealing the objects that have 
a spectral response, corresponding to that specific cluster. In Fig. 10b and 
c, we measure the same spectral response (i.e. display all the pixels that 
belong to the same cluster), on the merged images, using MERGE2 and the 
proposed technique respectively. One can notice that most of the objects 
have disappeared when using MERGE2, while most of the objects have 
been classified using the proposed technique, due to its ability to preserve 
spectral resolution. Moreover, the objects clearly have improved in spatial 
resolution. 

The proposed merging technique will apply to images with different 
variations of spatial and spectral resolution. As an example, we apply it 
to a hyperspectral image (220-band AVIRIS)(see Fig. 11a). Since there 
was no high-resolution panchromatic image available, we simulate one. As 
the original panchromatic image, the average of all bands is calculated 
(Fig. l ib ) . To obtain the low-resolution original hyperspectral image, all 
bands are blurred (averaged over 3x3 pixels)(Fig. l ie) . Then, the proposed 
merging procedure was applied (Fig. l id ) . One can notice that the spatial 
resolution of the hyperspectral image is improved by the merging procedure. 

5. Conclusions 

We have proposed 2 new wavelet representations for multispectral images. 
A redundant representation using dyadic wavelet frames is based on the 
concept of multiscale fundamental forms, a multiresolution extension of 
the first fundamental form, that describes edge information of multispec
tral images. An orthogonal representation based on the Discrete Wavelet 
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Fig. 10. Spectral response after k-means clustering a: on the original Landsat image; 
b: on the merged image, using MERGE2; c: on the merged image, using the proposed 
technique. 

Transform is obtained by extending the concept of multiscale gradients to 
any linear vector operator in the image plane, having 2 identical compo
nents. The representations combine detail information from all the bands 
into one representation. 

Based on the representation, multispectral image fusion and image 
merging techniques are proposed. Experiments are conducted for fusion 
and merging of multispectral satellite images. A Landsat TM image is fused 
and merged with a SPOT panchromatic image. The proposed techniques 
are demonstrated to outperform other wavelet-based merging techniques. 
Finally the merging technique is demonstrated on a hyperspectral image. 
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Fig. 11. Hyperspectral image merging; a: original hyperspectral image, band 170; b: 
panchromatic image; c: low-resolution hyperspectral image, band 170; d: merged hyper
spectral image, band 170. 

Other possible applications do not reconstruct the obtained multispec-
tral representations, but only make use of the accumulated detail informa
tion. Applications include: anisotropic filtering of color and multispectral 
images18, wavelet-based denoising of multispectral images20, edge-based 
(e.g. watershed) multispectral image segmentation.19 
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CHAPTER 10 
AUTOMATING THE ESTIMATION OF VARIOUS 

METEOROLOGICAL PARAMETERS USING SATELLITE DATA AND 
MACHINE LEARNING TECHNIQUES 

R.L. Bankert, M. Hadjimichael, A.P. Kuciauskas, K.A. Richardson, F.J. Turk, 
and J.D. Hawkins 

Naval Research Laboratory 
7 Grace Hopper Ave., Monterey, CA 93943-5502 

E-mail: bankert@nrlmry.navy.mil 

Automated algorithms are being developed to assist U.S. Navy operational weather 
assessment and forecasting. Using supervised machine learning techniques, patterns 
and relationships are discovered in various satellite and meteorological data from which 
relevant classification and parameter estimation algorithms can be developed. Three 
applications of these techniques are discussed. A Geostationary Operational 
Environmental Satellite (GOES) image cloud type classifier is developed using expert-
labeled data, specific image characteristic features and a 1-nearest neighbor 
classification routine. A tropical cyclone intensity estimation algorithm is developed 
using brightness temperatures and derived features of Special Sensor Microwave Imager 
(SSM/I) data, best-track intensity (ground truth) and a AT-nearest neighbor routine. 
Knowledge Discovery from Databases (KDD) methodology is employed to develop 
algorithms to estimate cloud ceiling height at remote locations. Developed over a two-
year period, the database consists of hourly location-specific records of satellite data, 
numerical weather prediction data, and ground truth (METAR) cloud ceiling height 
observations. Data mining techniques are applied to produce cloud ceiling height 
estimation algorithms. All of the algorithms mentioned above exist at various stages of 
development and each has shown promising potential for operational use. 

1. Introduction 

Automated satellite interpretation algorithms and diagnostic tools that provide 
meteorological parameter estimation are being developed to assist the U.S. Navy 
weather observer and forecaster. Having reliable tools that can quickly analyze data 
from satellite, radar, numerical weather prediction models, ground observations, etc and 
provide specific information about the weather conditions of interest at a remote location 
would be very useful for any operational meteorologist. The algorithms discussed in this 
chapter are a small subset of the possible tools that could be created and focus on 
satellite data applications. Algorithms are developed using specific data patterns and 
relationships, discovered by pattern recognition and supervised learning techniques. 

The advances in data collection made in recent years have indicated a need for a 
wide selection of sophisticated methods of data reduction and analysis. At the same 
time, significant increases in computer storage and computing power have made new 
artificial intelligence methods and procedures feasible. These methods are collectively 
referred to as data mining tools and include both traditional statistical methods and 
artificial intelligence machine learning algorithms. The work presented here relies on 
this set of tools. 

Geostationary Operational Environmental Satellite (GOES) data is used to develop a 
cloud classification algorithm that can be used for both land and sea scene 
classifications. The algorithm takes advantage of all five GOES spectral channels (for a 
daytime classifier) and can be used for both GOES-8 (East) and GOES-10 (West) 
imagery. Training sample characteristic feature vectors are computed from the channel 
data. A nearest-neighbor routine is used to compute the similarity of the characteristic 
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feature vector of a testing sample with those of the samples in the training set [1]. 
Analysis of remotely-sensed data has become an increasingly valuable tool for 

determining tropical cyclone location and structure, formulating tropical cyclone 
intensity estimates, and predicting strength and movement. Aircraft reconnaissance 
missions stopped in 1987 in the western Pacific, leaving the Atlantic basin as the only 
region where tropical cyclones are routinely monitored by aircraft. As upper-level 
(nonprecipitating) clouds are essentially transparent within the passive microwave 
imagery [2], the low-level structure and circulation of tropical cyclones can, in most 
cases, be detected in Special Sensor Microwave/Imager (SSM/I) data. A A"-nearest 
neighbor, where K>1, classification algorithm is developed to estimate the intensity of a 
tropical cyclone using 85-GHz channel and derived rain rate features. The algorithm is 
designed to work on tropical cyclones in any ocean basin. As opposed to the single 
nearest-neighbor used in the GOES cloud classifier, multiple training set neighbors can 
be used by the A"-nearest neighbor algorithm to estimate the intensity of any tropical 
cyclone (as seen in the SSM/I imagery). 

Knowledge Discovery from Databases (KDD) methods are used to study the 
feasibility of estimating cloud ceiling height at remote locations where ground 
observations are not available. Data mining tools are applied to a database of 
environmental records to uncover patterns that represent physical laws implicit in the 
data. The goal is to find relationships in satellite and numerical weather prediction data 
that can provide estimates of cloud ceiling height, an important aviation parameter. 
Over a two-year period, hourly records of data from various geostationary and polar-
orbiting satellites and output from the Coupled Ocean/Atmosphere Mesoscale Prediction 
System (COAMPS™) at a total of 45 specific locations in three geographic regions (U.S. 
West Coast, Adriatic Sea, and Korean Peninsula) were collected and processed. Data 
relationships that estimate cloud ceiling height were uncovered through data mining 
processes and the resulting algorithms tested. Precipitation rate and accumulation will 
be studied and discussed in future papers. 

2. GOES Cloud Classification 

Automated scene classification of satellite imagery is well researched. 
Meteorological applications include classification of surface and cloud types in polar 
regions [3, 4, 5], the discrimination of ice and water clouds [6], the separation of clouds 
and snow [7, 8], the classification of ocean clouds [9], and the discrimination between 
single- and multi-layered clouds [10]. 

Using the research and development of an Advanced Very High Resolution 
Radiometer (AVHRR) cloud classifier [11] as a guide, a cloud type classification 
algorithm is developed for GOES daytime imagery. Similar to the AVHRR classifier, 
supervised learning and pattern recognition methodologies are used to establish a 
training data set, characteristic feature vector, and classification technique. Since 
nonparametric and nonlinear classification methods such as neural networks and K-
nearest neighbor provide superior classification analysis [12] as compared to algorithms 
such as linear discriminant analysis, A'-nearest neighbor is chosen as the classification 
algorithm. In this application, K=l. 

Taken from a time period of February, 1999 through August, 2000, a training set of 
expert-labeled 16x16 km samples (Figure 1) is created from GOES-8 and GOES-10 data 
for the daytime classifier. These training samples were independently classified by three 
satellite interpretation experts. The class types from which the experts had to choose are 
listed in Table 1. No mixed cloud-type classes are used. Only those samples given the 
same classification by all three experts were saved in the training set. The daytime 
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Figure 1. GOES-10 image (central California coast) with red 
boxes indicating example 16x16 km boxes used as training 
samples in GOES cloud classifier. 

training data was separated into two sets - land (5313 samples) and water (5937 
samples). Since the visible channel data is not valid at night, training data for a 
nighttime classifier will be developed separately using data from the infrared channels. 

GOES imagery consists of five spectral channels (in microns): 0.55-0.75 (channel 1 
- visible), 3.8-4.0 (channel 2), 6.5-7.0 (channel 3), 10.2-11.2 (channel 4), and 11.5-12.5 
(channel 5). Data from channel 1, the visible channel, has a resolution of 1 km at nadir. 

Table 1. Class types assigned for GOES cloud classification training data set. 

Stratus (St) 

Stratocumulus (Sc) 
Cumulus (Cu) 

Altocumulus (Ac) 
Altostratus (As) 

Cirrus (Ci) 

Cirrocumulus (Cc) 

Cirrostratus (Cs) 

Cumulus Congestus (CuC) 

Cs associated with deep convection (CsAn) 
Cumulonimbus (Cb) 
Clear skies (CI) 

Haze, sand, smoke, or dust (Hz) 
Ground snow (Sn) 

Sunglint (Sg) 

Channels 2, 4, and 5 are at 4 km resolution, and channel 3 has a 4 km x 8 km resolution. 
Using data from all five channels, over 100 characteristic features are computed for each 
training sample. These features include maximum, minimum, mean, median, mode, and 
standard deviation within the sample for each channel and selected channel differencing 
images (e.g, channel 2 - channel 4). The higher resolution of the visible channel allows 
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textures (contrast, homogeneity, entropy, etc) to be computed for that channel [13]. 
Textures provide a representation of the spatial distribution of the data within the 
sample. Latitude, longitude, time-of-year, and climatological sea surface temperature 
(water samples only) are also added as features for each sample. 

In addition to increasing classifier processing time, using a large number of features 
degrades classifier performance due to the introduction of redundant and irrelevant 
information. For these reasons, a feature selection algorithm is applied to the training 
data to determine a subset of features which optimizes classification accuracy. In 
general, there are three components to a feature selection routine: the search algorithm, 
the evaluation function, and the classifier [14, 15]. The classifier uses the feature subset, 
found by the search algorithm, that maximizes the evaluation function. The feature 
selection algorithm employed here is a variation of the backward sequential selection 
(BSS) algorithm1 and a 1-nearest neighbor evaluation function. Since the classifier and 
evaluation function are the same, the problem of bias in either algorithm is avoided. 
Using multiple feature subsets (as defined by the BSS algorithm), leave-one-out cross 
validation tests are performed on the training data set. Leave-one-out cross validation 
involves testing on each individual sample while using the remaining samples as the 

Table 2. GOES Classifier Selected Features (Daytime). 

LAND 

Satellite (GOES-8, 10) 

Latitude 

Time-of-year 

Channel 2 minimum 

Channel 2 median 

Channel 3 median 

Channel 4 maximum 

Channel 4 range 

Channel 4 median 

Channel 5 minimum 

Channel 5 median 

Channel 1 std dev texture 
(mean of 4x4 km boxes) 

Channel 1 entropy 

Channel 1 mean sum texture 

Channel 1 mean sum texture 
(std dev of 4x4 km boxes) 

WATER 

Satellite (GOES-8, 10) 

Latitude 

Time-of-year 

Channel 1 median 

Channel 1 standard dev 

Channel 2 maximum 

Channel 2 mean 

Channel 3 maximum 

Channel 4 minimum 

Channel 4 range 

Channel 4 mean 

(Channel 4 - Channel 5) mean 

Channel 1 mean difference texture 

Channel 1 entropy 

Sea surface temperature (climo) 

1 The BSS algorithm is a process in which features are progressively removed from the 
feature subset until performance does not improve. 
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training set. The feature subset that produces the highest leave-one-out cross validation 
classification accuracy is the final selected set. Table 2 is a list of the selected features 
used in the GOES daytime classifier. With the selected feature subset, leave-one-out 
cross validation testing on both land and water training sets produced approximately 
90% overall accuracy. 

When an unclassified (testing or operational) 16x16 km GOES image sample is 
presented to the classifier, the similarity distance (equation 1) is computed between that 
sample and each training set sample. 

Zi(testing feature - training features)2 (1) 

Each feature value used in (1) has been normalized, and the summation is over all 
features. The class type of the training sample with the minimum similarity distance is 
assigned to each pixel in the 16x16 km testing sample (at the visible channel 1 km 
resolution). See the 1-nearest neighbor illustration in Figure 2. 

Feature Space 

£ Training sample (class known) 
^ Testing sample (class unknown) 

Figure 2. l-nearest neighbor illustration. Testing 
sample ("?") is assigned to be Cu since the nearest 
training sample in feature space is a Cu type. 

2.1 Real-Time Image Processing 

For a complete GOES image classification, the 16x16 km classification boxes 
overlap each other such that each individual pixel is classified by the algorithm four 
times (excluding those pixels on image edges). The final classification of an individual 
pixel is determined by simple majority with ties broken by random selection. In 
addition, the training set choice (land or water) for classification boxes that fall over a 
coastline is determined by whichever type (land or water) covers the most pixels in that 
box. 

To present a more accurate classification of an image on the pixel level, the visible 
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channel albedo (corrected for the solar zenith angle) for each pixel is checked. If that 
value is less than 12%2, then the pixel is re-classified as clear (CI), regardless of the 

Figure 3a. GOES-10 visible image of Hurricane Flossie (28 Aug 
2001,1700 UTC) in the Eastern Pacific Ocean. 

Figure 3b. Cloud classification image of Figure 3a. 

2 The albedo threshold of 12% was chosen as a conservatively low value for which the 
non-clear classes would not fall below. 
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initial classification. Additionally, due to observed classifier problems with ground 
snow misclassifications and known satellite-sensed properties of snow [7], pixels 
initially classified as snow are checked, using the reflectance portion of channel 2 and 
the visible channel. If the channel 2 reflectance is greater than 3%, the pixel is re
classified as stratocumulus (Sc) or if the channel 1 albedo is less than 30%, the pixel is 
re-classified as clear. 

Classification images are created using color-coded representations of the various 
classes. See Figures 3a and 3b for an example classification image. 

Known limitations of the GOES daytime cloud classifier include the inability of the 
system, in its present form, to classify mixed cloud samples. Every 16x16 km box is 
classified with one of the "pure" classes even if it is a truly mixed sample. Situations 
such as thin cirrus (Ci) over low clouds (St or Sc) have been noted to be classified as As 
or Ac. The classifier is also limited by the amount and variability of the training data in 
each class. Representing the entire universal set of these classes as they are distributed 
over time (seasons) and space (latitude and longitude) is virtually impossible. A web 
page of real-time GOES daytime cloud classification output can be found at 

http://www.nrlmrv.navv.mil/sat-bin/clouds.cgi 

2.2 Future Plans 

A GOES nighttime cloud classifier is currently in development. Similar to the 
daytime classifier, expert-labeled samples are being collected to provide land and water 
training sets with features to be computed from four of the five spectral channels (no 
visible channel data). Alternative feature selection and classification algorithms will 
also be studied. Other plans include examining the use of a surface albedo look-up table 
for pixel postprocessing (replacing 12% threshold) and developing automated 
classification algorithms for other geographical regions. Using data from the next 
generation of geostationary satellites would be the logical choice to accomplish this goal. 
These satellites include the European Meteosat Second Generation (MSG-1, successful 
August 2002 launch) and the Japanese Multifunctional Transport Satellite (MTSAT-1R). 

3. SSM/I Tropical Cyclone Intensity Estimation 

The reliable Dvorak method [16, 17] provides manually estimated tropical cyclone 
intensity from visible and infrared satellite imagery using subjective pattern recognition 
and applicable rules. An objective Dvorak technique (ODT) [18] was developed to 
eliminate much of the subjectivity of the Dvorak method. 

Using SSM/I images to examine tropical cyclone structure has an advantage when 
compared with the limitations of other imagery types [19]. Rainbands and a tropical 
cyclone center (when it exists) can be seen in the 85-GHz channel images when this 
structure is obscured by upper-level clouds as seen in visible and infrared imagery. 
Figures 4a-c illustrate this contrast in image types as the structure of Typhoon Joan is 
obscured in the visible and infrared imagery, but is apparent in the SSM/I 85-GHz 
image. Extracting this tropical cyclone structural information will be invaluable in 
developing an automated algorithm to estimate tropical cyclone intensity. 

One attempt to automate tropical cyclone intensity with SSM/I data used empirical 
orthogonal functions as inputs to a neural network [20] and demonstrated the potential of 
using SSM/I data in an automated system. The research described here examines the 
viability of using SSM/I image characteristic features and local information to estimate 
tropical cyclone intensity (as measured by the maximum wind speed). Similar to the 

http://www.nrlmrv.navv.mil/sat-bin/clouds.cgi
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Figure 4c. SSMII 85-GHz image of Typhoon Joan. The red 
areas indicate low brightness temperatures (high scattering 
due to large ice particles - convective precipitation) and 
blue areas indicate higher brightness temperatures (no or 
limited convection). 

GOES cloud classification algorithm, a set of SSM/I tropical cyclone training data is 
needed. Using the available data and information, including Dvorak estimates, surface 
observations, and reconnaissance reports (Atlantic and eastern Pacific), a best-track 
maximum wind speed has been determined for each SSM/I training sample by either the 
Joint Typhoon Warning Center (JTWC) or the National Hurricane Center (NHC). This 
best-track intensity will serve as the ground truth for this application development and 
has an estimated error range of +/- 15 kts. 
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The SSM/I instrument uses a suite of passive microwave channels: 19, 22, 37, and 
85 GHz. The 85-GHz channel has an advantage over the other microwave channels with 
its ability to detect convective precipitation due to high scattering from ice particles. 
The 85-GHz image data have a spatial resolution of 13 km x 15 km. Applying an 
interpolation algorithm [21], this data can be mapped to 1-2 km resolution. In addition 
to the 85-GHz data, rain rate "image" data is also used to extract feature characteristics 
that will be presented to a i^-nearest neighbor algorithm. The rain rate "image" is a 
derived product from multiple SSM/I channels [22]. Example 85-GHz and rain rate 
images are shown in Figure 5. 

Figure 5. 512x512 SSM/185 GHz image (left, in degrees K) and 512x512 
SSMIl-derived rain rate image (right, in mm/hr) for Hurricane Andrew 
(2252 UTC 25 Aug 1992). 

3.1 SSM/I Data and Features 

SSM/I data from 175 tropical cyclones that comprise the period of 1988-2001 and 
all relevant ocean basins are used to train and test the tropical cyclone intensity 
estimation algorithm. Features are computed from 1297 SSM/I images that are 512x512 
(pixels at approximately 1 km resolution), centered on the tropical cyclone center, and 
have an associated best-track intensity. Over 100 characteristic features are computed 
from the 85-GHz and rain rate data for each image. These features include spectral 
characteristics which are simple statistical measurements (maximum, minimum, mean, 
median, mode, range of values, and standard deviation) of both 85 GHz and rain rate 
imagery. Textural feature values of the 85 GHz data are also computed and include 
contrast, entropy, angular second moment, and local homogeneity [13]. As noted for the 
GOES cloud classifier, they provide a representation of the spatial distribution of the 
brightness temperatures within the image. 

Both the entire image and the inner 150x150 pixel region are divided into quadrants 
to extract information, in a general sense, about the convective organization in the 
tropical cyclone environment. Summations of all pixel values within each quadrant 
(both 85-GHz and rain rate) are saved as features. Features that are more tropical 
cyclone specific include: enclosed eye (yes, no), size of enclosed eye, and banding and 
concentric ring features. Latitude, longitude, and date (relative to peak activity) are also 
features [23]. A summary of all features can be found in Table 3. 
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Table 3. Summary list of extracted image (85 GHz and rain rate) features. 

General 
Spectral 

Textures 

Pixel value summation (complete image, quadrants, inner region) 

Local 
Latitude 

Longitude 

ABS(Yearday - 237) 

Sea surface temperature (climatological) 

Segmented Image 
Pixel count 

E-W, N-S extent 

Tropical Cyclone Specific 
Enclosed eye (yes/no) 

Size of enclosed eye 

Max/min/range of thresholds for enclosed eyes 

Warmest pixel value in tropical cyclone center (WPC) 

Representative surrounding temperature (ST) 

WPC-ST 

Banding and concentric ring features 

3.2 Feature Selection and K-Nearest Neighbor 

Similar to the manner in which it was applied to the GOES cloud classification 
training data, a feature selection algorithm is applied to the SSM/I tropical cyclone data. 
The notable difference here is that the evaluation function and classifier is a AT-nearest 
neighbor algorithm, where K>1. 

Using the single nearest-neighbor distance (see Figure 2) as the standard for 
inclusion, those training samples within a distance factor (1.75 X nearest-neighbor 
distance) are used to estimate the testing sample intensity. A simple averaging technique 
is performed on those A'-nearest neighbor best track intensities. A leave-one-out cross 
validation test is applied to a selected training set (942 of the 1297 samples) and the 
intensity root mean square error (RMSE) is computed relative to each feature subset. 
The error for any given training sample is the difference between the A'-nearest neighbor 
estimated intensity and the best-track intensity. The reduced subset that produces the 
minimum RMSE after the search and A'-nearest neighbor evaluation is the final selected 
set. These selected features are listed in Table 4. 

3.3 Testing Results 

The final training set increased by 237 samples (with the addition of tropical 
cyclones from 1999-2001), after completion of the feature selection, for a total of 1199 
training samples. The testing set consists of 98 samples from four tropical cyclones: 
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Table 4. SSM/I tropical cyclone selected feature list. 

Latitude 
Longitude 
ABS(Yearday- 237) 
85-GHz - Pixel summation - NE quadrant (512x512) 
85-GHz - Pixel summation - NE quadrant (inner 150x150) 
85-GHz - Segmented - normalized mean radius 
85-GHz - Range of pixel values (512x512) 
85-GHz - Range of temperature thresholds for which enclosed eye exists 
Rain rate - Average pixel value for those > 0 mm/hr (512x512) 
Rain rate - Number of pixels > 0 mm/hr (inner 150x150) 
Rain rate - Pixel summation - SE quadrant (512x512) 
Rain rate - Pixel summation - NW quadrant (inner 150x150) 
Rain rate - Mean pixel value (512x512) 
Rain rate - Mode pixel value (512x512) 
Rain rate - Banding feature - maximum summation of pixels on concentric 
rings (> 3 mm/hr) 

Hurricane Guillermo (August, 1997), Supertyphoon Oliwa (September, 1997), 
Supertyphoon Paka (December, 1997), and Supertyphoon Babs (October, 1998). 

Using the 15 selected features (Table 4) as the representative vector for all of the 
training and testing samples, the testing set intensities are estimated within the ^-nearest 
neighbor algorithm and compared to the best-track ground truth intensity estimates. For 
the 98 testing samples, the overall RMSE is 19.0 kts with an average absolute error 
(AAE) of 15.3 kts, and an average percentage error (APE) of 25.0%. A majority of the 
samples (56%) had an intensity estimate within 15 kts of the best-track intensity, but 7% 
had an error greater than 30 kts. See Table 5 for a summary of the errors statistics for 
each of the four tropical cyclones in the testing set. 

Many of the high intensity estimation errors can be found with images associated 
with Supertyphoon Oliwa. As an example, an 85-GHz image of Oliwa in the early 
stages of development (best-track intensity of 35 kts) can be seen in Figure 6. The 
tropical cyclone intensity estimation algorithm is apparently doing a poor job of 
interpreting the convective area around the center of the cyclone. The convective 
banding (or lack thereof) is not being adequately handled by the algorithm. The 
algorithm produced an intensity estimate of 99.1 kts (64.1 kt error) for this image. 

Figure 7 is a time series plot of the best-track intensity and ^-nearest neighbor 
intensity estimation for Supertyphoon Paka. All four tropical cyclones had ^-nearest 
neighbor time series plots that exhibited "spikes" during the lifetime of the cyclone. 
This high variability in the SSM/I intensity estimate is inconsistent with the best-track 
data and contributes to the computed error. However, some of these spikes could be 
representing actual strengthening or weakening of the cyclone that is not captured in the 
smooth best-track data. 

3.4 Discussion 

The snapshot approach (no historical information) used in this first version of the 
SSM/I tropical cyclone intensity estimation algorithm can be improved upon when 
adding the history of past intensity to the set of features [23]. This is one experiment 
that could be performed in future work on the recently expanded data set. Additionally, 
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Table 5. K-NN testing results (98 total samples). RMSE - Root Mean Square Error; 
AAE - Average Absolute Error; APE - Average Percent Error. 

Tropical Cyclone 

Oliwa 
(25 samples) 
Guillermo 

(24 samples) 
Paka 

(27 samples) 
Babs 

(22 samples) 

OVERALL 

RMSE (kts) 

25.9 

19.3 

14.1 

14.3 

19.0 

AAE (kts) 

20.1 

17.3 

11.7 

12.2 

15.3 

APE (kts) 

39.3 

25.8 

17.1 

17.5 

25.0 

35 Knots 1619 

OLIWA 97 F11 

1GO 173 186 199 212 225 238 251 264 277 290 
Figure 6. A 512x512 85-GHz image centered on tropical cyclone Oliwa 
(2007 UTC 6 Sep 1997) at a time of relatively low intensity with extensive 
areas of cold brightness temperatures (blue and green areas) around the 
tropical cyclone center. 

if the larger training data set were used in the feature selection algorithm, a more 
optimum feature subset may have resulted. This possibility is worthy of investigation. 

While improvement in the methodology described here is needed to provide accurate 
intensity estimates in an operational environment, it is important to note that 
development and evaluation of the algorithm is dependent upon the accuracy of the best-
track intensity of the training and testing samples. These intensities are estimated to 
have an error range of+/- 15 kts. 
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Figure 7. Time series plot of best track intensity and K-nearest neighbor intensity estimate for 
Supertyphoon Paha. 

Given the wide variety of possible imagery characteristics, continuing to increase the 
number of unique training samples will improve the estimation algorithm. Examining 
the use of feature characteristics from other SSM/I channels, using variations of K-
nearest neighbor estimation, and studying other methods to use tropical cyclone history 
or other ancillary information may produce alternative procedures to improve the 
algorithm. 

Beyond experimentation with the current algorithm, investigating the use of other 
data sources and the use of output from other methodologies (e.g., Advanced Microwave 
Sounding Unit (AMSU) data and Advanced Objective Dvorak Technique (AODT) 
output) is anticipated. Additionally, other pattern recognition and artificial intelligence 
technologies (e.g., fuzzy rule-based system) should be applied to compare performance 
and find the best approach for estimating tropical cyclone intensity using SSM/I data. 

4. KDD - Cloud Ceiling Height Estimation 

Currently, the primary approach for correcting numerical weather prediction model 
output is via model output statistics (MOS) [24, 25]. MOS is a technique for 
postprocessing numerical weather prediction output. MOS correlates model output and 
other climatic variables with surface observations using multiple linear regression, in 
order to predict observed variables such as cloud base height [25, 26, 27, 28]. Several 
drawbacks can be identified with using only MOS for model correction: 

1) The latest surface observation predictors are often the most important terms in 
MOS forecast equations and dominate over all model-based terms [24, 25], In the 
application described in this section, situations when no local observations are 
available is of primary interest. 

2) MOS methodology is generally limited to multiple linear regressions. Thus, any 
nonlinear solutions will be missed. In particular, any MOS result will be limited 
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by the statistical model imposed on the solution. 

The field of knowledge discovery from databases, KDD, refers to the overall process 
of discovering useful information from data, including issues of storage and access, all 
forms of data preparation, addition of necessary domain knowledge, and interpretation 
and visualization of the results. Data mining refers to the specific algorithms applied to 
the data in order to extract patterns [29]. Data mining techniques include both traditional 
statistical methods and artificial intelligence machine learning algorithms. Some of the 
commonly used data methods include inductive machine learning, regression, clustering, 
summarization, generalization, dependency modeling, and link analysis [30, 31]. KDD 
has been successfully applied in both business and scientific fields. The mining of 
scientific data is most relevant to this application, and is well reviewed in [32]. Some 
notable systems and results include SKICAT [33], JARtool [34], and OASIS [35]. 
SKICAT (Sky Imaging Cataloging and Analysis Tool) uses decision tree methods to 
predict the classes of faint astronomical objects in photographic image data. JARtool 
(JPL Adaptive Recognition Tool) learned to recognize small volcanoes in satellite 
images of the surface of Venus. The OASIS data mining environment was designed for 
discovery and visualization in large geophysical datasets. It has been applied 
successfully in the study of spatio-temporal features of cyclonic storms. The project 
described in this section applies the complete KDD process to the problem of 
determining remote meteorological parameters. 

4.1 Meteorological Application Background 

U.S. Navy weather observing and forecasting operations would be greatly assisted 
with the immediate assessment of remote meteorological parameters when ground 
observations are not available. To this end, numerical weather prediction data and 
satellite data from various sensors and platforms are being used to develop automated 
algorithms to assist in operational weather assessment and forecasting. Data mining 
methods, used in a Knowledge Discovery from Databases (KDD) procedure, are applied 
to cloud ceiling height estimation at remote locations using appropriate geostationary 
and polar orbiting satellite data in conjunction with Coupled Ocean/Atmosphere 
Mesoscale Prediction System (COAMPS™) data. Data mining methods have 
determined an algorithm to diagnose these sensible weather elements more accurately 
than numerical weather prediction or satellite methods alone. Further detail about the 
initial design of the study, data, methods, and comparisons to other methods can be 
found in [36]. Methodology overview and results from the data mining work are 
presented here. 

4.2 Data Sources 

In order to discover the relationships between a variety of physical variables, both 
calculated and measured, a database must be created from a "fusion" of data from 
various sources. A unique meteorological research tool consisting of a database of 
numerical weather prediction (COAMPS™) output, satellite data, climatology, and 
ground truth observations (METAR) has been created for use in data mining. 
COAMPS™ output parameters, coincident satellite parameters (including both 
geostationary and polar-orbiting data) and climatological information are 
extracted/computed at 45 METAR observation sites. Automated data collection routines 
have been written and data has been collected hourly for over two years (July, 2000 
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through September, 2002). Data mining techniques have been applied to study cloud 
ceiling height and rain accumulation diagnosis. The cloud ceiling height study will be 
discussed here. 

4.2.1 Numerical Model Data 

COAMPS™ is the numerical weather prediction model used to generate output 
values of selected relevant parameters. The model is run in three geographic regions, 
U.S. west coast, Adriatic Sea, and Korean peninsula, and configured with three nested 
grids (Figure 8) with 81 km, 27 km, and 9 km resolution from outermost to innermost 
grid. There are 33 grid levels in the vertical depth of the atmosphere. COAMPS™ is run 
for a 12-hour forecast cycle for each of these domain configurations at 00 UTC and 12 
UTC every day. Interested readers can find additional COAMPS™ details in [37]. 

The closest land grid point (within each of the 9 km domains) to the 45 (18 West 
Coast, 14 Adriatic, 13 Korea) METAR stations is determined and COAMPS™ output 
values at those grid points for each hour are extracted and written to the database. Table 
6 is a list of those COAMPS™ parameters. 

In addition to extracting values for the database, COAMPS™ output can be viewed 
in static or animated 2D form over the appropriate domains for further interpretation and 
analysis. 

4.2.2 Satellite Data 

Data from three geostationary satellites, GOES-10, European Meteosat-7 
(Meteorological Satellite), and the Japanese GMS-5 (Geostationary Meteorological 
Satellite) are extracted and added to the appropriate records in the database. This data 
will consist of all channel data at a given pixel whose center is closest to the 
latitude/longitude of each of the METAR stations. All visible channel data is corrected 
for the solar zenith angle. In addition to the channel data, a cloud optical depth algorithm 
[38] is applied and a GOES-only low cloud product [39] is derived, with their respective 
values extracted and stored. 

National Oceanic and Atmospheric Administration (NOAA) polar-orbiting 
Advanced Very High Resolution Radiometer (AVHRR - local area coverage (LAC) and 
global area coverage (GAC)) data and Defense Meteorological Satellite Program 
(DMSP) Special Sensor Microwave Imager (SSM/I) polar-orbiting data are also 
extracted and stored in the database. The AVHRR LAC and GOES data records include 
a derived cloud classification in addition to the channel data. In addition to the various 
microwave channel values, environmental data records (EDRs) are computed from the 
SSM/I channel data. These parameters include rain rate, cloud liquid water, and 
precipitable water. 

Using appropriate COAMPS™ and satellite data, a cloud top height value is derived 
for all sensors except the SSM/I. Using satellite-based algorithms [40], rain rate and 
accumulation values are computed from a combination of geostationary infrared and 
passive microwave satellite data. Similar to the COAMPS™ output, satellite imagery can 
be viewed in static or animated 2D form. In addition to this visualization, monitoring 
tools have been developed to allow for a quick view of model and satellite retrieval 
performance. 
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Figure 8. COAMPS nested grid locations 
for U.S. West Coast (top), Adriatic 
(middle), and Korea (bottom). Locations 
of interest (METAR stations) are inside the 
inner-most mesh. 

4.2.3 Ground Truth Data 

All collected hourly METAR reports 
for the 45 selected stations are parsed, with 
sensible weather elements stored in the 
database. These weather parameters 
represent the ground truth and are the 
dependent variables in the subsequent 
search for patterns which relate satellite 
and model variables to locally observable 
parameters. Cloud ceiling height is the 
first parameter examined in the data 
mining portion of the KDD process. Rain 
rate and rain accumulation analysis will 
follow. 

4.3 Database Development 

All parameters discussed in Section 
4.2 are computed, processed, collected, 
and stored in a single database. The 
database tables are updated once a day 
after all COAMPS™ model runs and post
processing has been completed. Each table 
row represents the available information 
for a particular location at a specific hour. 

The flow of data involves five steps: 
1. Data generation/collection. 
2. Data cleaning and pre-load processing. 
3. Data loading in each individual, 

source-specific table. 
4. Data post-load processing 

(calculate/update various derived 
fields). 

5. Data consolidation: generating an 
Event record for each date/time where 
complete information is available (i.e., 
data from all three sources). 
The database is organized in a star 

schema as shown in Figure 9. The key of 
each table is the day-time group and the 
location ID. The Climatology and 
Location tables are constant-valued 
reference tables, while the NWP 
(COAMPS™), OBS (METAR), and 
Satellite tables are updated daily with new 
data, consisting of records for each specific 
location and day-time group. 



243 

Some pre-load steps include: 
• Time rounding: adjusting the time stamp of METAR reports and satellite points to 

the closest hour, to correspond with the model data. 
• Satellite filtering: recognizing missing data. 
• Satellite derived products: low clouds, cloud optical depth, cloud classifications, 

environmental data records, etc. 
• METAR report processing: computation of vapor pressure, cloud/no cloud, variable 

wind directions, etc. 
• METAR cleaning: removing duplicate, later corrected, or mislabeled reports. 
• COAMPS™/Satellite combination products: using satellite infrared temperatures 

together with CO AMPS™ profiles to determine cloud top height. 
The data mining tools used here require as input a denormalized (flat) table. In other 

words, rows representing the location of interest will be selected from all database tables 
containing the required information and joined together to form a single Event record of 
up to 90 variables. Each row will represent all available information for one day/time at 
one location. 

Table 6. CO AMPS parameters extracted for each of the 45 locations. 

10m u-wind 

10m v-wind 

10m temperature 

10m dewpoint 

10m potential temperature 

PBL depth 

Surface wind stress 

Total downward radiation 

Net radiation 

10m relative humidity 

10m sensible heat flux 

10m latent heat flux 

Ground temperature 

Total rain 

u* 

t* 

q* 
Surface roughness 

10m, sfc temperature diff 

10m, sfc mixing ratio diff 

Cloud base height (qc) 

Cloud top height (qc) 

Cloud top (qc) temperature 

Cloud base height (RH) 

Sea level pressure 

Topography height 

LCL 

CCL 

Visibility (derived) 

Ceiling height (derived) 

Bulk Richardson number 

Ground wetness 

Surface albedo 

Surface mixing ratio 

Total heat flux 

z/L 

Max vert, velocity in PBL 

Max TKE in PBL 

10m, 1500m temp diff 

Precipitable water 

Cloud coverage 

Max mixing ratio in PBL 

1000mb, 850mb thickness 

Cloud/No Cloud 
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Figure 9. Data flow and schema. The three continuous data sources (COAMPS, 
Satellite, METARs), are stored for visualization through a web interface as two 
dimensional images, and are post-processed for storage in the database management 
system. 

4.4 Methodology 

The primary tools selected for data mining are C5.0 and Cubist [41]. These were 
selected for their ease of use and well-recognized robustness. C5.0 generates decision 
trees, which are used for classification into categories. The Cubist program creates a set 
of rule-based predictive models, which are used for regression-type estimation of 
continuous values. Data was extracted from the database as a flat, ASCII text format file. 
Studies were done on each focus area independently, but combining each data from all 
locations within each focus area. Studies examining each individual station location 
independently rarely showed any improvement. This result is mostly likely because of 
the much smaller training set available for an individual location. 

The data was randomly evenly divided into training and testing sets, although 10-
fold cross validation was also used for error estimates. To achieve the best results, each 
experiment was decomposed into three components: 

1. Determination of cloud ceiling presence. We used C5.0 to create a decision 
tree which could classify each record as "Cloud Ceiling" or "No Cloud 
Ceiling" to indicate cloud ceiling presence. 

2. In locations with cloud ceiling presence, determination of low cloud ceiling 
(< 1000m) versus high cloud ceiling. Once again we used C5.0 to create a 
decision tree to classify the "Cloud ceiling presence" records. 
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Table 7. Classification and regression error comparisons. 

West Coast 
Locations 

Method 

COAMPS 
ceiling 

COAMPS 
variables 

Satellite 
variables 

Fused 
variable set 

Error 

Cloud 
presence 

25.5 

21.0 

12.2 

11.1 

(%) 

Low cloud 
detection 

50.2 

21.9 

22.2 

19.9 

Avg. error 

correlation 

Cloud base 
height 

213.0 

0.5 

128 

.73 

170 

.52 

126 

0.7 

3. In locations with low cloud, determination of cloud ceiling height is 
performed using a rule set generated by Cubist. 

Learning experiments were based on three different sets of variables: 
1. COAMPS™ variables only. 
2. Satellite variables only (geostationary satellite for each region). 
3. Fused (combined) COAMPS™ and Satellite variables. 

4.5 Results 

The initial test has focused on cloud ceiling height for the U.S. West Coast locations 
during daylight hours. Overall, the data mining method outperformed all other methods. 
The data mining derived algorithm was compared to a COAMPS™ derived (using 
known physical relationships) cloud ceiling calculation, as well as the single source 
variable sets described above. 

Figures 10 through 15 are plots of a sample location, KMRY (Monterey, CA 
METAR site), in several variations. Figure 10 is a comparison of KDD-diagnosed 
ceiling height for low clouds ("Predicted"), versus the true observed (METAR) ceiling 
height ("Ceiling_Ht"). Figure 11 reflects the same data, but smoothed using a Bezier 
technique. The smoothed plots hide the individual variability, and expose a clear 
relationship between the cloud ceiling height determined through the KDD process and 
the ground truth values. The next two figures show the same plot, but with COAMPS™-
derived ceiling estimates included: both the COAMPS™-derived ceiling, and a cloud 
base derived using the water mixing ratio. Note that, because COAMPS™ has difficulty 
determining low cloud ceiling cases, there are a great many cases plotted which are 
actually high cloud ceiling, or no ceiling captured in that data set. The smoothed plot 
shows this bias clearly. The final pair of figures plot only that data where both 
COAMPS™ and the KDD method indicate low ceiling. Once again, the smoothed plot 
shows a close correspondence between the KDD method and ground truth, and indicates 
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Figure 10. Plot of data mining-predicted low cloud ceiling heights ("Predicted") vs. 
ground truth ("Ceiling_Ht"). In this and all following graphs, the x-axis denotes a 

observation record number, and the y-axis denotes the height in meters. 
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Figure 11. Same as previous figure, but with Bezier smoothing ofdatapoints. 
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Figure 12. Plots of observed ceiling ("Ceiling Jit"), data mining predicted ceiling 
("Predicted"), CO AMPS derived ceiling parameter ("Ceiling"), and CO AMPS water 

mixing ratio derived cloud base height ("corrCBHqc"). 
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Figure 13. Same figure as previous, but with Bezier smoothing. 
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KMRY low clouds (0 <= nwp <= 1000) 
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Figure 14. All plots, with only cases where COAMPS ceiling < 1000m.. 
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Figure 15. Same as previous plot, with Bezier smoothing.. 
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a bias in the COAMPS™ estimates. Note that all the data was randomly shuffled and 
replotted, resulting in a similar correspondence in Bezier-smoothed plots, suggesting that 
the degree of correspondence is independent of any temporal information in the data. 

Table 7 shows error comparisons for the entire west coast. The COAMPS™ ceiling 
method is the derived calculation produced by COAMPS™. The remaining three 
methods are all created using C5.0/Cubist, on different sets of variables: COAMPS™ 
variables only (except the ceiling product), satellite variables only, and the fused set of 
variables. It is clear from the results, the data mining method outperforms COAMPS™-
derived parameter in average error, and the benefit of using fused COAMPS™ and 
satellite variables is demonstrated. 

4.6 Conclusion and Future Work 

The initial results demonstrate the viability of using KDD to discover algorithms 
which can locate cloud ceiling presence, and calculate cloud ceiling height more 
successfully than numerical weather prediction models. Furthermore, results indicate 
that both COAMPS™ and satellite variables make contributions to the final results, 
indicating the value of a "fused data" approach. Still remaining is a study of night-time 
hours, and the other focus areas. Also, we are still in the process of applying these 
methods to rain rate and rain accumulation. 
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Microwave remote sensing instruments such as radiometers and scatterometers 
have proven themselves effective in a variety of Earth Science studies. The resolu
tion of these sensors, while adequate for many applications, is a limiting factor to 
their application in other studies. As a result, there is a strong interest in devel
oping ground processing methods which can enhance the spatial resolution of the 
data. A number of resolution enhancement algorithms have been developed based 
on inverse filtering and irregular sampling reconstruction. This Chapter discusses 
the use of resolution enhancement and reconstruction algorithms in microwave 
remote sensing. While the focus is on microwave instruments, the techniques and 
algorithms considered are applicable to a variety of sensors, including those not 
originally designed for imaging. 

1. I n t r o d u c t i o n 

There are many types of remote sensing instruments, including optical, infrared, and 

microwave sensors. Microwave remote sensing instruments can be divided into two 

broad classes: passive (radiometers) and active (radars) 5 5 . Active microwave sensors 

can be further divided into four general classes: synthetic aper ture radar (SAR) 

systems, scatterometers, altimeters, and weather radars. SAR systems are generally 

high resolution (100 m and finer) while spaceborne radiometers and scatterometers 

tend to be low resolution sensors (12 km to 75 km). The resolution of these latter 

sensors is suitable for the oceanic and atmospheric applications for which they were 

designed, but there is growing interest in applying such microwave sensor da t a to 

new applications requiring bet ter resolution. 

Further, while the next generation of spaceborne microwave sensors may have 

somewhat higher resolution, the extensive datasets of radiometer and scatterometer 

da ta offer an important baseline for studies of global change. This has resulted in 

interest in enhancing the resolution of historic microwave sensor da ta to facilitate 

comparison with higher resolution sensor data . To meet this need a number of 

algorithms for spatial resolution enhancement have been successfully developed and 

enhanced resolution microwave da ta is now being used operationally. 
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This Chapter considers the theory and methods of spatial resolution enhance
ment of microwave remote sensing data. While the focus is on spaceborne radiome
ters and scatterometers, the general reconstruction and enhancement theory dis
cussed can be applied to a variety of sensors and applications, including creating 
images from sensors not originally designed for imaging. Section 2 provides back
ground on the sensors considered. Section 3 provides background in resolution en
hancement, contrasting inverse filtering, extrapolation, and reconstruction methods. 
The theory of irregular reconstruction is developed and algorithms for enhanced 
resolution reconstruction are considered. Section 4 considers the application of the 
technique to data from Earth Resources Satellite (ERS) -1 and -2 Active Microwave 
Instrument (AMI) scatterometer mode (hereafter termed ESC AT). Simulations are 
used to evaluate the effectiveness of the algorithms, along with actual data. A con
clusion is provided in Section 5. 

2. Spaceborne Microwave Sensors 

A variety of active and passive microwave remote sensing instruments have flown 
in space. Some of these have collected long time series such as the Special Sensor 
Microwave Imager (SSM/I) radiometer18, flown on Defense Meteorological Satellite 
Program (DMSP) spacecraft since the early 1980's, ESCAT2 operating from 1982, 
and the SeaWinds instrument50 operating aboard QuikSCAT since 1999. Prior sen
sors include the NASA Scatterometer (NSCAT)38 which operated in 1996 and 1997, 
the Seasat Scatterometer (SASS)23 and Multichannel Microwave Radiometer39 both 
in 1978, and the Nimbus radiometer series operating in the late 1970's, among oth
ers. Together these instruments have demonstrated the utility of microwave sensors 
in the study and monitoring of the Earth's land, ocean, and atmosphere. The global 
coverage, but low resolution, of these sensors complements the high resolution, but 
limited coverage, of SAR systems. 

Radiometers are passive, receive-only sensors which measure the thermal emis
sion (brightness temperature) of the target in the microwave band55. The apparent 
scene brightness temperature is related to the emissivity and temperature of the 
surface and is modified by the intervening atmosphere. By appropriate selection 
of operating frequencies in several microwave bands, the temperature and mois
ture content of the atmosphere22, as well as key surface properties such as land 
surface temperature37, soil and plant moisture20'42, sea-ice mapping54, snow cover 
classification16, and wind speed (over the ocean)57, can be retrieved. Radiometer 
data is being operationally used in weather forecasting and sea-ice monitoring. 

Scatterometers are real aperture radars that operate by transmitting a pulse of 
microwave energy towards the Earth's surface and measuring the reflected energy. 
The backscattered energy is related to the normalized radar cross-section (a0) via 
the radar equation55. The spatial response function of the sensor determines the 
spatial resolution of the a° observation, with typical resolutions varying from 25 
to 50 km. Originally designed for retrieval of near-surface winds over the ocean, 
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scatterometer data is also being applied to the study of tropical vegetation, po
lar ice, and global change26 '29 '33,34,59. Like radiometer data, scatterometer data is 
operationally used in weather forecasting and sea-ice monitoring. 

2.1. Radiometers 

A radiometer measurement is the integral of the product of the scene brightness and 
the antenna pattern. The ith measurement Ta(i) (in K) is obtained by integrating 
the product of surface brightness response Tb{x, y) and the antenna gain pattern at 
the surface G{(x, y),13 '55 

Ta(i) =G,_1 J JGt(x,y)Tb(x,y)dxdy, (1) 

where 

Gi= ffGi(x,y)dxdy. (2) 

The integrals are over the surface area corresponding to the non-negligible gain 
of the antenna. The dependence of G on i arises from the boresight pointing of 
the antenna which changes as the antenna scans the surface. Note that the antenna 
pattern acts as a low pass filter of the surface brightness, limiting the effective spatial 
resolution of the measurement to approximately the 3 dB beamwidth. Radiometer 
measurements are "noisy" due to the limited integration time available for each 
measurement. 

2.2. Scatterometers 

A radar scatterometer is designed to determine the normalized radar cross section 
(a°) of the surface. The primary application of spaceborne scatterometers have been 
the measurement of near-surface winds over the ocean. By combining a° measure
ments from different azimuth angles, the near-surface wind vector over the ocean's 
surface can be determined using a geophysical model function23'38 which relates 
wind and a0. The scatterometer directly measures a° via measuring the backscat-
tered power from a transmitted pulse. Due to thermal noise in the receiver, radio
metric noise and speckle, the power measurement is corrupted by noise. A separate 
measurement of the noise-only power is subtracted from the signal+noise measure
ment to yield the backscattered power "signal" measurement Ps- The observed a° is 
then computed using the radar equation55. Ignoring the incidence angle dependence 
of a°, the radar equation can be approximately expressed as 

where Pr is the transmit power, G(x, y) is the antenna gain pattern on the surface, 
dA is the differential area, R(x,y) is the slant range, a°(x,y) is the surface er°, 
h(x,y) is the equivalent spatial response function, and the integrals are over the 
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Fig. 1. Scatterometer Comparison 

surface area corresponding to the non-negligible gain of the antenna and/or signal 
processing filters. Given P$, the observed a° is computed as a° = X~lPg where 

X 
PTG(x,y)X 

(47r)3i?4(x,y) 
dA II h(x,y)dA. (4) 

A summary comparison of the wind scatterometers that have flown in space is 
shown in Fig. 1. SASS, NSCAT and ESCAT used a fan-beam antenna configuration 
while SeaWinds employs a dual rotating pencil-beam antenna. In a fan-beam scat
terometer, along-track resolution is obtained by a combination of a narrow antenna 
pattern and the timing of transmit pulses integrated into a single measurement 
cell. Cross-track resolution is obtained either by range gate filtering (ESCAT) or by 
Doppler filtering (SASS and NSCAT)38. ESCAT is described in greater detail later. 

While a scanning scatterometer collects measurements at a constant incidence 
angle50, fan-beam scatterometers measure a° at a variety of incidence angles. Since 
the target response is varies with incidence angles, a model for the incidence angle 
dependence of the target response is used to generate normalized images. Over most 
natural surfaces within the incidence angle range 20° < 6 < 60°, corresponding to 
the range of scatterometer measurements, a linear model for a° (in dB) as a function 
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of incidence angle can be useda, i.e. o£B(0) =A + B(6- 40°) where A is the 40° 
incidence angle-normalized a° and B is the dependence of a° on the incidence angle 
9. The A and B coefficients are functions of the geophysical properties of the surface. 
Note that 40° is the approximate center incidence angle over the swath and is a 
convenient angle for making comparative analyses. 

As previously noted, scatterometer measurements are noisy. The measurement 
accuracy is frequently expressed in terms of the normalized standard deviation, or 
Kp of the measurements36. Kp is sometimes known as the "scatterometer radio
metric accuracy". For ERS-1 Kp(k) is approximately 5%. For SASS, NSCAT, and 
Sea Winds Kp(k) varies from as low as 1% to 15%, though it is sometimes higher. 

Reconstruction and resolution enhancement methods can be applied to other real 
aperture radars as well. For example, the Tropical Rain Mapping Mission (TRMM) 
Precipitation Radar24, while it employs range resolution to map the vertical profile 
of rain, it also makes real-aperture surface backscattering measurements which can 
be applied in scientific studies8 '30,51. 

3. Reconstruction and Resolution Enhancement 

The resolution of scatterometers and radiometers is adequate for ocean applica
tions but is too coarse for many land and ice applications. However, because of 
frequent global coverage, they are desirable candidates for resolution enhancement 
algorithms. Since the data from these instruments is used in geophysical studies, ac
curacy is crucial in resolution enhancement. Further, an improvement in the actual 
effective resolution of the data is expected from such algorithms. While it is tempting 
to interpolate the available data onto a high resolution grid in an attempt to make 
the pixel size (sometimes called the pixel resolution) finer, this does not improve 
the effective resolution of the resulting image. While various definitions of effective 
resolution exist21'25, a common working definition is the resolving capability for two 
closely spaced objects. The objects are considered individually "resolved" if there 
is a 3 dB change in image value between them against a high contrast background. 
The gap between the objects defines the effective resolution. 

Algorithms for spatial resolution enhancement can be divided into three broad 
categories: extrapolation, ad hoc techniques, and reconstruction. Extrapolation al
gorithms can be further divided into two classes: pure extrapolation and multi
channel extrapolation. The former includes algorithms which use maximum entropy 
to extrapolate techniques the signal spectrum. Based on our common experience in 
polynomial extrapolation, extrapolation must be used with caution since it can 

aWhile not applicable for all targets, over the Amazon Rainforest (which exhibits high volume 
scattering) a "gamma" normalization may be used with some success, i.e., 

l{k) = a°{k)/cose{k) 

where 6(k) is the incidence angle of the kth measurement of a°. Over the incidence angle range 
[20°,60°], -y(k) is approximately constant. 
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produce misleading results. 
Multi-channel extrapolation algorithms have been used with success with mi

crowave data3 '48. These algorithms rely on the collection of observations at several 
different frequency channels which have differing spatial resolutions. The goal of 
the algorithm is to extrapolate the signal characteristics of the coarse resolution 
channels to be commensurate with the resolution of the fine resolution channels 
based on the correlation in the target response between the channels. As can be 
expected, decorrelation from target variability and modeling uncertainty between 
the channels is a key limitation of this approach. 

A number of image restoration and ad hoc enhancement techniques have been 
developed14,47'48'49'58. An example of an ad hoc technique is simple linear inter
polation to increase the pixel density followed by noise addition. The perceptual 
"resolution" of the interpolated image is improved by adding white noise to the 
image. This results in the image appearing to have more higher spatial frequency 
information than is actually supported by the underlying data. 

Reconstruction algorithms rely on reconstructing the original signal based on 
sampled observations. A classic reconstruction algorithm is the well-known Nyquist 
uniform sampling theorem. Given uniformly-spaced ideal samples of a band-limited 
signal, the original signal can be exactly reconstructed by ideal low pass filtering of 
the samples so long as the sample spacing is at least twice the highest frequency 
present in the signal. Reconstruction algorithms become more complicated with the 
introduction of irregular sampling and variable apertures, a common problem in 
microwave remote sensing9. 

We note that in the signal and image processing literature, the term "image en
hancement" generally refers to inverse filtering techniques: to enhance a pre-existing 
image, an inverse filter is applied by convolution. This approach generally requires 
a constant (over the image to be processed) aperture function and a pre-existing, 
uniformly sampled image. The general theory for this approach is well-known21'25 

and the literature is replete with examples of variations of this method, including 
techniques to estimate the aperture function from the image. The approach has 
been successfully applied in remote sensing3'4. As noted, many microwave sensors 
do not produce data on a uniform grid, and the data must be converted to an im
age prior to applying such methods. Simple gridded images can be generated with 
the widely used "drop-in-the-bucket" technique by assigning each measurement to 
a grid element in which its center falls, or some variation thereof. However, the 
effective resolution of such images is dictated by the aperture response rather than 
the grid spacing. 

In effect, using reconstruction techniques creates optimal images and performs 
the function of "image enhancement" at the same time; hence our interest in 
reconstruction-based techniques. As a result, the remainder of this Chapter focuses 
exclusively on reconstruction based techniques. Irregular sampling and reconstruc
tion theory are emphasized to support the often non-rectilinear grid sampling of 
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microwave sensors. 

3.1. Microwave Sensor Sampling and Resolution Enhancement 

Typical microwave sensor observations can be modeled as an array of samples of 
spatially filtered surface data. The aperture function for each measurement is de
fined by the sensor antenna pattern and/or the signal processing techniques used to 
resolve the antenna illumination pattern into smaller spatial elements, e.g. Doppler 
filtering or range gating. Spatial sampling is typically obtained via pulsed opera
tion and antenna scanning. While ideally such sampling is on a regular sampling 
grid, this is not the case for past and present sensors which generally have irregular 
or varying sampling grids and spatially varying aperture functions. Some sensors 
(e.g., SASS) can not even be considered 'imaging sensors' since the aperture filtered 
samples do not completely cover the surface for a single pass. 

Resolution enhancement algorithms provide improved resolution images by tak
ing advantage of oversampling and the response characteristics of the aperture func
tion to reconstruct the underlying surface function sampled by the sensor. The goal 
of the algorithm is to generate images from the observations at an effective spatial 
resolution better than the 3 dB resolution of the sensor; hence the term "resolution 
enhancement". When single-pass sampling has inadequate sampling density, multi
ple observation passes can be combined to improve the sampling density, producing 
the required oversampled observations for spatial resolution enhancement at the 
cost of reduced temporal resolution3'9,35. 

3.2. Irregular Sampling and Reconstruction 

Let f(x,y) represent the true surface image (e.g., a° or brightness temperature) at 
a location (x,y). The measurement system is modeled by 

z = Hf + noise (5) 

where H models the measurement system (including the sample spacing and the 
system's spatial response function, hereafter termed the aperture response function) 
and z is the vector of observations made by the sensor. The measurements z are a 
discrete sampling of / convolved with the aperture function (which may be different 
for each measurement). An individual measurement Zi can be written as 

Zi= hi(x,y)f(x,y)dxdy + noise (6) 

where hi(x, y) is the aperture response function of the ith measurement. The aper
ture response is also called the point-spread function. hi(x,y) is a function of the 
the antenna pattern and the effective signal processing filter response for the ith 

measurement, see Eqs. (1) and (3). 
Reconstruction and resolution enhancement involves inverting Eq. (5) 

/ = H~xz (7) 
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where / is the estimate of / derived from the measurements z. The inverse of H, 
H~l, is exact if H is invertible. If H is not invertible, an approximate solution 
must be used. The low-pass nature of typical aperture functions passes low spa
tial frequencies, but attenuates and may even null out higher spatial frequencies. 
Full reconstruction from sufficiently dense sampling can be considered resolution 
enhancement since high frequency information suppressed (but not nulled out) by 
the aperture function is recovered. 

Because the sensor measurements are noisy, a tradeoff between resolution en
hancement and the noise level in the reconstructed signal exists since high frequency 
noise tends to be amplified along with the signal in the reconstruction process. 

3.3. Sampling and Reconstruction 

The traditional approach to sampling and reconstruction is founded on uniform 
sampling and the well-known Nyquist sampling theorem: a low pass (band limited) 
function can be completely reconstructed from regularly spaced samples if the sam
ple rate exceeds twice the maximum frequency present in the signal41. In typical 
application, signal reconstruction from the samples is accomplished with only a low 
pass filter and the aperture function is treated as an ideal low pass filter ignored in 
the reconstruction. For this case, the recovered frequencies are deemed limited to 
1/2 the sampling frequency or the cutoff frequency (e.g. the 3 dB rolloff point) of 
the aperture function, depending on which is lower. The aperture function filters 
out high frequency components of the signal that might otherwise cause aliasing in 
the reconstructed signal. 

Since the aperture function of a microwave sensor is the result of the antenna 
pattern and signal processing, it has side lobes. The resulting measurements thus 
contain information regarding higher frequency components of the original signal. 
If the (possibly irregular) sampling is sufficiently dense, this information can be 
recovered by inverting the effects of both the aperture function and the sampling. 
The reconstruction compensates for the aperture filtering by amplifying attenuated 
frequencies, though the aperture function may limit the reconstruction due to nulls 
in its spectrum. 

If the sampling is regular (uniform) with a fixed aperture function, reconstruc
tion can be accomplished with low pass filtering and Wiener filtering, a well-known 
inverse filtering technique that also accounts for noise in the measurements41 (see, 
for example, Alvarez-Perez et al.1 for an application of such a technique to ERS 
scatterometer data). However, inverse filter methods are difficult to apply when the 
sample spacing is irregular or when the aperture functions vary between different 
observations. Instead, irregular reconstruction methods must be applied. 

While the theory of uniform sampling and reconstruction is well-known, irregular 
sampling and reconstruction theory is much less familiar. Here we review the general 
theory for irregular sample reconstruction. 

As in uniform sampling, the sample spacing, or sampling density, limits the 
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(a)! (b) 

Fig. 2. Graphical illustration of <5-dense in 2-D. A box of size A is centered at each sample point, 
(a) With S = (Ai , A i ) , the union of the boxes around each sample point is too small to cover the 
image space, (b) 5 = (A2, A2) is sufficiently large. 5-dense corresponds to the smallest 5 which 
covers the full image [from Early and Long (2000)]. 

signal reconstruction. A simple method for parameterizing the sampling density for 

an arbitrary irregular grid is based on (5, the maximum sample spacing. A formal 

definition and discussion of (5-dense sampling is provided in Early and Long9; here a 

less formal approach is adopted. In one dimension, 5 specifies the maximal spacing 

of the samples. In two dimensions (5-dense is defined as the minimum sized rectangle 

centered at each sample point such tha t the union of the boxes completely fills the 

image space (see Fig. 2). 

Grochenig15 derives a relationship between the sample grid parameter <5 and the 

recoverable frequencies (a band limited frequency range denoted by f2 = [ w i , ^ ] ) 

of the original signal, showing tha t the signal can be completely reconstructed if 

S • u) = y^ SiOJi < ln(2). 

If the spectrum of the original signal has a region of support ft — [—UJ0,UJO]2, 

the (5-dense sampling grid has (5i = 62, the sampling density must satisfy 

Si< 
ln(2)_ 

2LU0 ' 

(8) 

and 

(9) 

This requires tha t the minimum irregular sampling density must be higher than the 

Nyquist uniform sampling density, i.e., l / l n ( 2 ) s=s 1.44 times the Nyquist rate for 

uniformly spaced samples. This 'oversampling' is required to ensure reconstruction 

from the irregular sampling grid. 

Thus, for irregular sampling, Grochenig's theory is equivalent to the well-known 

Nyquist theory of sampling and reconstruction for uniform sampling: for complete 

reconstruction (1) the original signal must be bandlimited or aliasing and informa

tion loss results and (2) the sampling must be sufficiently dense. While the original 

signal can be recovered only if the maximum frequency is less than sampling den

sity, the aperture function used to create the samples can introduce information 

loss, restricting the frequencies which can be reconstructed. 
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3.4. Reconstruction Algorithms 

Grochenig's proof is constructive, with an algorithm for reconstructing the orig
inal signal from the samples (in effect, inverting H). As demonstrated by Early 
and Long9 Grochenig's algorithm is equivalent to block additive Algebraic Recon
struction Technique (ART) when used with a suitably defined operator H based on 
the sampling, the aperture function and the signal bandwidth. ART methods have 
been extensively studied6'12'17 and a number of practical numerical algorithms have 
been developed. Such methods thus form a basis for the practical reconstruction of 
irregularly sampled signals in remote sensing. 

As previously noted, the sensor observations or measurements can be viewed 
as ideal samples of an aperture filtered image where the aperture filtered image 
is the true image convolved with an aperture function. In general, each observa
tion can use a different aperture function. For a given aperture function, nulls in 
the frequency response of the aperture function result in lost information. For a 
single aperture, this information is permanently lost and cannot be recovered via 
reconstruction. However, when multiple aperture functions are used, a net effec
tive aperture function can be defined from the appropriately averaged individual 
measurement aperture functions9. Nulls in the effective aperture function corre
spond to the intersection of the nulls of individual aperture functions. So long as 
the sampling density requirements are met for the remaining frequencies, only the 
frequencies corresponding to the nulls in the net effective aperture function are lost. 
All other frequencies can be recovered in the reconstruction, subject to the sam
pling considerations. Though information in spectral nulls of the aperture function 
is permanently lost, some ART-based reconstruction algorithms can "fill-in" data 
for missing frequencies based on particular mathematical criteria. 

Here we develop the ART algorithm. For convenience the original signal is 
treated as discrete with uniformly-sized pixels, but at a very fine scale (much smaller 
than the sample spacing). Each measurement or observation s^ covers a number of 
these small pixels [compare Eq. (6)] 

3 

where aP are elements of the vector a of row-scanned image pixels of the true signal 
image and hij is the effective aperture response function for the ith measurement on 
the j t h pixel. The sum is computed over the pixels for which h^ is non-negligible. 

Block additive ART (AART) can be written as17 

, , Hi(sj-Pi)h. L^j^l fl)<H3 ,^s 

where an is the n iterative estimate of a, and Pi is the back projection 

'Hju-n S__ hijaJn (12) 
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corresponding to the ith measurement at the n iteration. In effect, all measure
ments that cover the pixel of interest are summed and normalized to create the 
per-pixel update. 

The update on the right side of Eq. (11) is a function of the measurement vector 
s and the back projection vector p computed from the n iterative estimate. The 
vector s is the sampled convolution of the true image and the aperture function(s), 
expressed in matrix form as s = Ha where H (with elements hij) is the sampled 
aperture function for each measurement. Then, Eq. (11) becomes (noting p = Han) 

an+i = an + H'(s-p) 

= an + H'(Ha - Han) 

= an+H{a-an) (13) 

where the a's are row-scanned image vectors, H' is the row-normalized transpose 
of H with elements hji/ J^fc hkj- To perform reconstruction consistent with the 8-
dense sampling, a low pass filter is applied to the rows of H. The resulting TL is 
invertible over the frequency range defined by the aperture function and sampling9. 

As previously noted, noise in the measurements tends to be amplified along with 
the desired signal. In Wiener filtering, the reconstruction filter response is modified 
so that when a specified noise-to-signal ratio threshold is exceeded, the response is 
set to zero to minimize noise amplification25. A similar approach can also be used 
to modify the rows of H in the reconstruction. 

Since the reconstruction algorithm is iterative, computational considerations 
may limit the number of iterations, resulting in a less-than-optimal reconstruction. 
Thus, there is a tradeoff between the reconstruction accuracy and resolution and 
the number of iterations. Increasing iterations improves the resolution. Truncation 
of the iterations can also be considered a method of regularization25. 

In general, iterative reconstruction suffers from two forms of error: reconstruc
tion error and noise amplification. The former is the difference between the iterative 
image estimate and the noiseless true image. Noise amplification results from the 
inverse filtering since the reconstruction algorithm acts as a high pass filter. Excess 
measurements (due to over sampling or repeated observations) contribute to an im
provement in the signal to noise ratio of the estimated image due to averaging in the 
reconstruction algorithm. Thus, increasing the number of measurements improves 
the noise level, even if the effective sampling density is not increased. 

To avoid having to solve for and explicitly compute within the space delin
eated by the aperture function, regularization techniques can be used to compute a 
unique solution on the full space. The AART algorithm includes least squares reg
ularization, though a variety of regularization schemes can be applied to generate 
an estimate of the signal. 

As noted by Early and Long9 AART and multiplicative ART (MART) solutions 
differ only by regularization implicit in the algorithms. AART is equivalent to a least 
squares estimate in the limit based on the minimization of j|:r2|| subject to y = Hx 
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while MART with damping maximizes the signal entropy — Y^j=i xi m x i "with the 
same constraint. The AART estimate is strictly contained within the band limited 
space defined by the aperture function and sampling, while the MART estimate 
is not confined to this space - additional frequency content in the null space may 
be added by the algorithm to create a sharper image21, subject to the constraint 
y = Hx. The difference between the AART and MART solutions (in the iteration 
limit) is contained in the null space of Ji. 

Alternate variations of these reconstruction algorithms can also be used effec
tively. The Scatterometer Image Reconstruction (SIR) algorithm is a derivative 
of MART developed for scatterometer image reconstruction35. It includes a non-
linearity in the update to minimize the effects of noise on the reconstruction and 
is preferred over MART9 '58. The SIR algorithm has been widely applied to both 
scatterometer and radiometer data29 '31 '35. When applied to scatterometer data, 
the multivariate form of SIR estimates the incidence angle dependence of the scat
terometer data35 and is used below. Another reconstruction approach is based on 
the Backus-Gilbert technique13,46 '52 '53, contrasted with SIR by Long et al.31. 

While the overall performance of AART, MART and SIR algorithms are similar, 
at lower reconstruction errors MART and SIR have lower noise amplification than 
AART, and at the lowest reconstruction errors, SIR has the lowest noise. Thus, SIR 
is more robust in the presence of noise, particularly at low signal to noise ratios9. 
Further, the subjective image quality for SIR at a given reconstruction error level is 
better than corresponding MART or AART products when used with scatterometer 
data. The ultimate limits to resolution enhancement are the sampling density, nulls 
introduced by the aperture function(s), the acceptable noise level, and the temporal 
stability of the study area9'35. Inverse filtering of the reconstructed SIR image can 
further improve the quality of the image7. 

4. Application Example: ESCAT Resolution Enhancement 

As has been noted, reconstruction-based resolution enhancement is based on restor
ing attenuated information in the sidelobes of the spatial response function within 
the support of the sampling. High side lobes in the spatial response make this eas
ier, though information can be recovered even from sensors with low sidelobes. To 
illustrate this we consider a particular application example: ESCAT, which uses a 
processing window designed to minimize sidelobes. ESCAT also has a much narrower 
swath than other sensors and thus requires many more passes over the target to 
achieve a similar high sampling density. Application of resolution enhancement tech
niques to ESCAT is thus more demanding than for other scatterometers9'10'29,35. 

For ESCAT, ground processing is used to spatially filter and resample the raw 
instrument measurements. Several pulses corresponding to each along-track cell are 
integrated into a single "50 km" resolution measurement. Nominally 50 km er° mea
surements are reported on a 25 km grid for each antenna. A spatial smoothing filter 
(Hamming window) is applied when integrating the pulses. This filter smoothes the 
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Fig. 3. a) Plot of the ESCAT response along a section of the spatial resampling filter, b) Spatial 
spectrum of a). 
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Fig. 4. a) Locations of the a° measurement centers for a single pass over a small study area, b) 
Locations of the <r° measurement centers over a 6 day period. 

u° response so that it corresponds to the average a° response for a 50 km circle (see 
Fig. 3)b. This weighting function, chosen to minimize sidelobes and aliasing, is the 
primary factor in determining the effective measurement response or aperture func
tion. The windowed spatial resampling has the desirable dual effects of 1) reducing 
the noise level (i.e., decreasing Kp and improving the radiometric resolution) and 2) 
compensating for the varying areas and resolutions of the individual measurements. 
For each 25 km grid element there are three measurements of a°, one from each 
antenna beam. In many land and ice applications these may be combined; however, 
care must be used for surfaces exhibiting azimuthal variation in a°. 

E. Attema, Personal communication. 
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Based on the Nyquist theorem, frequencies up to 0.02 kmT1 (1/50) can be recon
structed from uniform 25 km sampling. If multiple passes over a given study region 
are combined, the effective sampling density can be improved. Combining multiple 
passes results in a dense, but irregular sampling grid. For example, Fig. 4a illus
trates the ESCAT measurement locations for a single pass over a particular study 
area. These are on a 25 km uniformly spaced sampling grid. Figure 4b shows the 
locations of all measurements collected over the study area in a 6 day period. Note 
that NSCAT and SeaWinds achieve significantly denser sampling during a simi
lar period9 (see also Fig. 1). Of course, in order to usefully combine the multiple 
passes to achieve the dense sampling the following assumptions must be made: 1) 
the instrument calibration is stable, 2) the surface a° remains essentially constant 
for the combination period, 3) the surface u° does not vary with azimuth angle 
since different passes may observe the surface at different azimuth angles, and 4) 
the location and response function(s) of the measurements are accurately known35. 

To address these considerations we note that both ERS-1 and ERS-2 scatterom-
eters have demonstrated excellent calibration stability32, satisfying assumption 1. 
Applying assumption 2 limits the multiple pass combination technique to station
ary or very slowly evolving targets such as land10; ocean or rapidly moving sea ice 
regions are unsuited for combining multiple passes. Assumption 3 can be applied for 
much of the Earth's surface, although there are known regions of Antarctic glacial 
ice which exhibit significant azimuth dependence in C-band a° i1.1^26.27,28,45 a n c[ 
caution must be exercised in such cases. Given care in the implementation of the 
ground processing of the ESCAT data, assumption 4 is reasonable. 

Proper reconstruction involves inverting the effects of the sampling and aper
ture function (i.e. the resampling window for ESCAT) over the frequency range 
supported by the sampling. Windowing introduces nulls in the measurement spec
tra (see Fig. 3) and at such frequencies the original signal cannot be recovered. 
However, over frequencies supported by the sampling at which the signal spectra is 
merely attenuated, the original signal can be completely recovered: the reconstruc
tion algorithm can compensate for the attenuation introduced by the resampling 
filter-even in the highly attenuated sidelobe regions. Simulations demonstrate that 
sidelobe compensations of over 60 dB are possible using SIR with this aperture, 
sufficient sampling, and long enough iteration. 

We note that the original SIR algorithm was developed for SASS where the 
aperture function could be approximated by a boxcar or rect function, simplifying 
the algorithm35. However, for the SSM/I and ESCAT it is appropriate to use the 
actual response function in the SIR algorithm. As a general rule, the lower sidelobes 
of the ESCAT aperture function require more iterations to achieve the same level 
of resolution enhancement compared to more rect-like aperture functions. 

The noise performance of SIR can optionally be improved via use of a median 
filter, a modification known as SIRF (SIR with Filtering)35; however, this has the 
side effect of reducing the effective resolution. SIRF was used with SASS measure-
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Fig. 5. a) Plot of (5-dense versus time for two study areas, b) Average number of a° measurements 
per square km as a function of time for two locations. In both plots the solid line is for a polar 
location while the dotted line corresponds to an arbitrary mid-latitude location. 

ments due to their high noise level. ESCAT measurements are much less noisy than 
SASS measurements due to the better SNR and so the median filter is not used with 
ESCAT. A previous author56 erroneously stated that resolution enhancement can 
not be applied to ESCAT data due to the windowing applied in the measurement 
process. However, as we have shown the windowing primarily only degrades the 
signal to noise ratio and information in even very low sidelobes can be recovered if 
desired and the noise enhancement can be tolerated. The same author attributed 
the resolution enhancement of SIR to the use of a median filter; however, SIR does 
not include a median filter. The primary limitations of ESCAT resolution enhance
ment are the degradation of the signal to noise ratio and the computational time, 
which limits the number of iterations. 

4.1. Sampling Density 

We now consider the sampling density achievable for ESCAT. Combining multi
ple passes increases the sampling density, quantified by S. However, due to the 
ERS orbit and swath geometry, the number of passes in a given time period and 
their relative orientation and spacing varies considerably over different regions of 
the Earth. Further, since the scatterometer mode can not be used when SAR data 
is being collected, there are gaps and missing data. In any case, the multi-orbit 
sampling is suboptimum. Nevertheless, as the number of overpasses is increased, 
5 decreases in a location-dependent manner. To illustrate the relationship between 
the S parameter and time, Fig. 5 plots 5 computed over two study regions, one at 
mid latitudes in the Northern Hemisphere and the other in the polar region, which 
gets more frequent coverage. The value of S and the average number of measure
ments per square km are both shown. A tradeoff between S and time is apparent. 
There is a general linear trend in the number of measurements while S exhibits an 

15 20 
Days 
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exponential decay with time. We note that the reconstruction resolution limit is 
approximately 2.9 x 8 (see Eq. 9). Because of concerns about temporal variations in 
the surface, we desire to minimize the temporal period of the measurements to be 
combined. However, to achieve a given sampling density (and therefore resolution 
in the resulting reconstructed image), a minimum time interval is required, termed 
the 'imaging period.' 

It should be clear that the selection of the imaging period depends on the in
tended application. However, the point of inflection in the S versus time curve 
provides a good tradeoff between length of the imaging period and sampling den
sity. Examining Fig. 5 we see that six days provides a S of 10 km (corresponding to 
an effective reconstruction resolution of approximately 29 km) for the polar region 
while nearly a month is required for the particular mid latitude region evaluated. 
For the same period a 6 of approximately 6 km near the poles is achieved. Higher 
density sampling is possible but requires longer time periods. 

We note that 5 is dependent on the worst-case sample spacing over the study 
area, which may occur at only one point; the sample density elsewhere is higher. 
While 5-dense defines the sample spacing required to guarantee the reconstruction 
resolution everywhere, regions of the image with denser sampling can yield higher 
enhancement in practice due to locally denser sampling. For example, the area 
covered by a single pass has a 6 of 25 km, even if the remainder of the image area is 
not covered at all. (This explains the high starting value of S in Fig. 5.) Thus, the 
reconstructed resolution can vary over the image. 

4.2. Simulated Performance 

To illustrate the application of SIR to ESCAT measurements, simulation is initially 
used. In the simulation, the geometry and response function from actual ESCAT 
measurements over a small study region in Antarctica are used with synthetic A and 
B "truth" images (see Fig. 6) to generate simulated a° measurements. Monte Carlo 
noise with the expected ESCAT Kp is added to the measurements. The synthetic 
images include a number of features to aid in evaluating the resolution enhance
ment including various width lines, a pyramid feature and two small, closely spaced 
squares. The squares are approximately 25 km in size and spaced 25 km apart. We 
note that' the synthetic images are not bandlimited (as is required by reconstruc
tion theory). This enables us to evaluate the effects of attempting to reconstruct a 
non-bandlimited image. 

The result of applying the SIR algorithm is shown in Fig. 6. The pixel resolution 
used in these images is 4.45 km. The effective resolution is, of course, less than the 
pixel resolution. The results after 30 and 100 iterations of the SIR algorithm are 
shown when 6 days and 30 days of data are used. For comparison, nonenhanced 
ESCAT images with a pixel resolution of approximately 25 km (5 x 4.45 km) are also 
shown. To generate the nonenhanced images, all measurements whose center falls 
within a given pixel are used to estimate A and B using linear (in dB) regression. 
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Fig, 6. ESCAT resolution enhancement simulation results. The pixel resolution is 4.45 km. The 
upper panel contains A images while the lower panel contains B images. The subimages in each 
panel are: a) true synthetic image, b) simulated NSC AT SIR result, c) simulated ESCAT result 
for 30 iterations with 6 days of data, d) simulated ESCAT result for 1000 iterations with 6 days 
of data, e) nonenhanced (see text) results for 6 days, f) non-enhanced for 30 days of data, g) 
simulated ESCAT result for 30 iterations with 30 days of data, and h) simulated ESCAT result 
for 1000 iterations with 30 days of data. 

For ease of display and comparison, each pixel of the nonenhanced images was 
replicated five times in each direction to expand its size to match the equivalent 
area of the other images. Also shown are NSCAT comparison images, the result of 
SIRF processing 6 days of synthetic NSCAT measurements generated in a manner 
similar to the synthetic ESCAT measurements. The NSCAT images use 50 iterations 
of SIRF44. 

Examining Fig. 6 we note that the NSCAT image has better resolution than 
the ESCAT image. Due to the lower sidelobes of ESCAT data, the improvement in 
the ESCAT resolution is lower than NSCAT for the same number of iterations. The 
effective resolution of the ESCAT images improves for both increasing iterations 
and also when more measurements are incorporated. As more measurements are 
included, the noise level in the images drops. Also, the SIR-processed images are 
subjectively better than the nonenhanced images both in terms of resolution and 
noise level. Careful examination reveals low amplitude artifacts due to low pass 
filtering of the true image in all of the enhanced resolution images. This effect will 
be discussed in greater detail later. We note that the B images exhibit somewhat 
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lower resolution than the A images, an effect previously noted' 
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Fig. 7. a) Plot of the standard deviation of the difference between the images versus iteration 
number, b) Plot of the correlation coefficients of the images version iteration number. In both plots 
the solid line is the true-ESCAT 6 day image, the long dash line is the true-ESCAT 30 day image, 
the short dash line is the 6 day ESCAT-NSCAT, and the dotted line is the 30 day ESCAT-NSCAT. 
In a) the latter two lines lie nearly on top of each other and can not be distinguished in this plot. 

To objectively quantify the resolution enhancement, we compare the error be
tween the ESCAT and true images and, to gain insight with later comparisons of 
actual data, with NSCAT images. As a metric, we compute the standard deviation of 
the difference of the respective images. We also compute the correlation coefficients. 
These metrics are computed for the A images as a function of the iteration number 
in Fig. 7. After an initially steep decrease, the ESCAT-true standard deviation of 
the 6 day measurement set bottoms out at about 75 iterations and begins a slow 
rise. The ESCAT-true 30 day set is similar, with a much slower rise and a minimum 
at about 200 iterations. The ESCAT-NSCAT standard deviation for both the 6 day 
and 30 day cases, look similar, though lower and with a minima at approximately 
500 iterations. The correlation coefficient exhibits a behavior consistent with the 
standard deviation, with a rapid initial increase in correlation, a peak and then a 
gradual decrease in the correlation. The minima for the ESCAT-true correlation 
is at approximately 100 and 150 for the 6 day and 30 day cases, respectively. For 
ESCAT-NSCAT, the peak is at 500 iterations. 

Detailed examinations of the images and their spectra at each iteration (not 
shown) suggest that the initial standard deviation decrease and correlation increase 
are due primarily to the recovery of the signal in the main lobe of the aperture 
function response. As the iterations continue, the difference between the reference 
signal and the image decreases. The image component due to the noise begins small 
and gradually increases with iteration. Eventually, the increasing noise begins to 
dominate over the decreasing signal error, leading to the increase in standard devi
ation and decrease in correlation. Consideration of the sensitivity of the particular 
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Fig. 8. A image comparison using six days of data. Actual measurement locations over a small 
polar region are used to create noisy synthetic a° measurements of the true image, a) True synthetic 
A image containing variously sized targets, b) True image low pass filtered to 25 km resolution. 
Note ringing artifacts due to the low pass filter, c) Non-enhanced resolution image (see text), d) 
Result after 30 iterations of SIR. e) Result after 100 iterations of SIR. f) Result after 840 iterations 
of SIR. 

application of the image data dictates the level of noise enhancement that can be 
tolerated and hence the resolution enhancement. The available computational re
sources may also be a factor, particularly for large images. While more iteration 
leads to better resolution, it also increases the noise level which is the primary 
limitation for ESC AT enhancement. 

To better understand the tradeoff between resolution and the number of iter
ations, the results of a second simulation are shown in Fig. 8. Only the A images 
are shown. The simulation procedure is identical to the previous one but with a 
different synthetic image. Six days of data are used (though as could be expected, 
better results are obtained with 30 days of data). The synthetic image (Fig. 8a) 
contains a set of different sized boxes to aid in the evaluation of the resolution of 
the resulting images. The boxes range in size from 8.9 to 71 km. Along the top row 
the boxes increase from 17.8 km to 35.6 km. The simulated a° measurements are 
generated from this image. A lowpass filtered version of the true image is shown in 
Fig. 8b. This reflects an ideally reconstructed image using an ideal lowpass filter 
with a cutoff at 25 km. For reference Fig. 8c shows the corresponding nonenhanced 
A image. Figures 8d-f show the results of SIR after 30, 100, and 840 iterations. The 
bright edge around the SIR images is a simulation artifact. The increasing sharpness 
of the SIR images with increasing iteration is apparent. 

While the larger diameter of the dark rings for the SIR images initially suggests 
that the resolution is not as good as the lowpass filtered true image, examination 
of the 3 dB widths of the boxes in the image estimates suggests otherwise. Figure 9 
plots the A values in the images in Fig. 8 along a line through the top row of boxes. 
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Fig. 9. Plot of A. values extracted from the images in the previous figure across the top row of 
spots. The light solid line is the true image. The dark solid line is the SIR estimate. The dotted 
line is the 25 km low-pass filtered true image. The dashed line is the nonenhanced image data, a) 
30 iterations, b) 100 iterations, c) 840 iterations. 
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Fig. 10. Plot of the peak .4 value in the SIR image over each of the top row of squares as a 
function of the number of iterations. The dotted line is at -7.5 dB, the 3 dB point. 

Three plots are shown, one for each SIR iteration count considered. In these plots 
the dark solid line is the SIR image estimate while the dotted line is the lowpass 
filtered true image. Comparing the three plots, the adaptation of the SIR image 
with iteration is apparent. Examining the SIR plot and the lowpass filtered plot, 
it can be seen that the box peaks for SIR are above the lowpass peaks for small 
objects and somewhat below for large objects. The closest overall match occurs 
for 100 iterations. Figure 10 plots the heights of each of the boxes as a function 
of iteration. The dotted line corresponds to the 3 dB point. Thus, using a 3 dB 
effective resolution criterion, we conclude that the smallest resolvable box for 6 
days of data and 100 iterations is approximately 25 km. However, smaller features 
are more readily apparent (as a larger peak) than predicted by the lowpass filtered 
image suggesting that there is, in fact, information at higher frequencies than this. 
Further, as the algorithm is iterated longer, the effective resolution continues to 
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Fig. 11. A image resolution enhancement results for actual data over a small study region in 
Antarctica. The pixel resolution is 4.45 km. a) ESCAT A result for 35 iterations, b) ESCAT A 
result for 1000 iterations, c) NSCAT A result, d) ESCAT B result for 35 iterations, e) ESCAT B 
result for 1000 iterations, f) NSCAT B result. 

improve, albeit slowly. Based on these simulations, it is possible to obtain enhanced 
resolution images from ESCAT measurements even for short imaging periods. 

4.3. Actual Data 

Having used simulation to evaluate the resolution enhancement of ESCAT data, 
actual data is now considered. One of the difficulties with using actual data is that 
the true values of A and B are not known, making a quantitative evaluation of the 
resolution enhancement very difficult. Instead, we compare the enhanced resolution 
images to data from other sensors. This comparison is complicated by the fact that 
sensors operate at different frequencies and so the surface response characteristics 
vary. Nevertheless with this limitation in mind, the correlation between the sen
sors can provide a measure of the resolution enhancement. Two study regions are 
considered: polar (Antarctica) and mid-latitude (Amazon). 

In the polar region example, 6 days of data are used to generate A and B images 
of Wilkes land in Antarctica. The results are shown in Fig. 11 for two different SIR 
iterations. An NSCAT-derived image of the same location and time is shown. Plots 
of the ESCAT-NSCAT standard deviation and correlation are shown in Fig. 12. 
We note that ESCAT and NSCAT operate at different frequencies (5.6 GHz versus 
14.0 GHz) which can be expected to have somewhat different responses to surface 
features. Nevertheless, similar features are observed in the A images from both sen
sors, with the ESCAT images appearing like lowpass versions of the NSCAT images. 
Greater differences are evident in the B images. While this is not well-understood, it 
may be due to the differences in scattering at different frequencies from interannual 
layers in the Antarctic firn or azimuth modulation of the backscatter with azimuth 
angle. Careful examination of the ESCAT A images reveals somewhat sharper edges 
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Fig. 12. a) Plot of the standard deviation of the difference between the ESCAT and NSCAT A 
image results versus iteration number, b) Plot of the correlation coefficient between the ESCAT 
and NSCAT A image results versus iteration number. 

on the features in the image resulting from more iterations, suggesting higher effec
tive resolution. As in the simulations, the ESCAT-NSCAT standard deviations and 
correlations show rapid initial improvement, more gradual improvement, a minimum 
and then very gradual degradation with iteration due to noise enhancement. 

For the Amazon region, a small study region covering part of the Amazon river is 
considered. Non-enhanced and resolution enhanced images from ESCAT, NSCAT, 
and SeaWinds data are compared in Fig. 13. This image compares the output of both 
the SIR and AVE algorithms. The AVE algorithm35 is denned as the first iteration 
of SIR. In this example, images from both types of SeaWinds measurements are 
shown. SIR with the actual antenna response was used with SeaWinds 25 km 'egg 
measurements' while SIRF was used on SeaWinds 6 x 25 km 'slice measurements'. 
SIRF was also used for NSCAT. For this comparison the number of iterations was 
limited to 30 for SIR and 50 for SIRF. Again, note that additional iteration improves 
the resolution, but also increase the noise. However, this comparison restricts the 
number of iterations to a small number. The imaging period varies from 4 days 
for SeaWinds to 6 days for ESCAT and NSCAT. The pixel resolution is 4.45 km. 
Examining these images it is apparent that SIR yields improved resolution images 
compared to both AVE and non-enhanced. While the resolution improvement for 
ESCAT is less than the other sensors, ESCAT resolution enhancement is effective. 

5. Conclusion 

This Chapter has considered spatial resolution enhancement by reconstruction from 
irregularly sampled microwave sensor observations. Given sufficiently dense sam
pling, an enhanced resolution image of the surface can be generated using recon
struction from the sensor observations. In the resulting image the attenuation re
sulting from effective aperture function is compensated for, exclusive of the spectral 
nulls in the effective aperture function. The aperture function arises from the net 
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ing high frequency information a t tenuated by the aper ture function in oversampled 

data . The enhancement is limited by nulls in the aper ture function and the sam

pling density. Noise enhancement in the reconstruction can also be a limiting factor. 

When required, the sample density can be increased by combining da ta from multi

ple passes, at the expense of temporal averaging and reduced temporal resolution. 

The reconstructed images have "enhanced resolution" since the effective resolution 

can be much finer t h a n the nominal 3 dB sensor resolution. Additive and multi

plicative ART can be used as reconstruction algorithms, though the derivative SIR 

algorithm is more robust in the presence of noise. SIR has been successfully applied 

to scatterometer and radiometer da ta 9 , 2 9 , 3 1 ' 3 5 . 

As an illustration, the technique is applied to ESCAT data , which is a very 

demanding application due to the windowed aper ture function in the data . Tradeoffs 

for ESCAT are considered and SIR is shown to improve the resolution of the ESCAT 

da ta when multiple orbits are combined. ESCAT results are compared to NSCAT 

and Seawinds. 
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Advanced classification techniques for a regular updating of land-cover maps are 
proposed that are based on the use of multitemporal remote-sensing images. Such 
techniques are developed within the framework of partially supervised approaches, 
which are able to address the updating problem under the realistic but critical 
constraint that, for the image to be classified (i.e., the most recent of the con
sidered multitemporal data set), no ground truth information is available. Two 
different approaches are considered. The first approach is based on an independent 
analysis of the information contained in each single image of the considered mul
titemporal series; the second approach exploits the temporal correlation between 
pairs of images acquired at different times in the classification process. In the 
context of such approaches, both parametric and non-parametric classifiers are 
considered. In addition, in order to design a reliable and accurate classification 
system, multiple classifier architectures composed of partially supervised algo
rithms are investigated. Experimental results obtained on a real multitemporal 
data set confirm the effectiveness of the proposed approaches. 

1. I n t r o d u c t i o n 

One of the major problems in geographical information systems (GISs) consists in 

defining strategies and procedures for a regular updat ing of land-cover maps stored 

in the system databases. This crucial task can be carried out by using remote-

sensing images regularly acquired by space-born sensors in the specific investigated 

areas. Such images can be analyzed with automatic classification techniques in order 

to derive updated land-cover maps.The classification process can be performed by 

considering either the information contained in a single image1 or the information 

contained in a mult i temporal series of images of the same area2 , 3 '4(i .e. , by exploit-

285 

mailto:lorenzo.bruzzone@ing.unitn.it
mailto:roberto.cossu@ing.unitn.it


286 

ing the temporal correlation between images acquired at different times). The latter 
approach is called "cascade classification" and allows one to increase the categoriza
tion accuracy. However, at the operating level, both aforementioned approaches are 
usually based on supervised classification algorithms. Consequently, they require 
the availability of ground truth information for the training of the classifiers. Un
fortunately, in many real cases, it is not possible to rely on training data for all the 
images necessary to ensure an updating of land-cover maps that is as frequent as 
required by applications. This prevents all the remotely sensed images acquired in 
the investigated area from being used to update land-cover maps. For these rea
sons, the process of temporal updating of land-cover maps results in a complex and 
challenging problem. 

In this chapter, we present two different classification approaches that overcome 
the above-described drawback of land-cover monitoring systems. These approaches 
are based on novel partially supervised classification techniques that permit the 
classifier to generate an accurate land-cover map from the new image even when 
the related training set is not available. The first approach we present performs 
the classification process by considering independently the information contained in 
each single image of the available multitemporal series, whereas the second approach 
is developed within the framework of cascade classification. 

It is worth noting that, given the intrinsic complexity of the problem addressed, 
the aforementioned approaches may result in classifiers that are less reliable and less 
accurate than the corresponding supervised ones. In order to overcome this draw
back, in this chapter, we also investigate the effectiveness of the use of a multiple 
classifier system (MCS) composed of partially supervised classifiers4. The considered 
MCS is made up of both parametric and non-parametric classifiers neural-network 
classification approaches. It is worth noting that the use of non-parametric classifi
cation approaches in the MCS allows one to analyze multisensor and/or multisource 
remote-sensing images, which often play a fundamental role in complex classification 
problems. 

Experimental results obtained on a multitemporal data set related to the Is
land of Sardinia (Italy) confirm the effectiveness of the proposed approaches in the 
framework of both independent and cascade classification. 

The chapter is organized into seven sections. Section 2 reports the formulation 
of the problem. Section 3 and Section 4 present the partially supervised classi
fication problem in the framework of the independent-classification and cascade-
classification approaches, respectively. In Section 5 an MCS composed of partially 
supervised classifiers is described. Experimental results are reported in Section 6. 
Finally, in Section 7, discussion is provided and conclusions are drawn. 

2. General Formulation of the Problem 

Let us consider a classifier for the periodical monitoring of a specific geographical 
area. Let X i = {x\,x\, ..,xl

B} and X 2 = {x\,x\, . . , x | } denote two multispectral 
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images composed of B pixels and acquired in the area under analysis at the times 
t\ and £2, respectively. Let x1 and x | be the l x d feature vectors associated with 
the j - t h pixels of the images (where d is the dimensionality of the input space), 
and f2 = {ui,u>2, •••,UJc} be the set of C land-cover classes that characterize the 
geographical area considered at both t\ and £2- Let Zj and l"j be the classification 
label of the j - t h pixel at the time t\ and £2, respectively. Finally, let X\ and X2 
be two multivariate random variables representing the pixel values (i.e., the feature 
vector values) in Xi and X2, respectively. 

In the formulation of the proposed approach, we make the following assumptions: 

• the same set of C land-cover classes (i.e., $7) characterize the area considered 
over time (only the spatial and spectral distributions of such classes are 
supposed to vary); 

• a reliable training set Yi for the image Xi acquired at t\ is available; 
• a training set Y2 for the image X2 acquired at £2 is not available. 

It is worth noting that the first assumption, even if not verified in all possible 
applications, is reasonable in a wide range of real problems. Examples of such ap
plications include studies on forestry, territorial management, and natural-resource 
monitoring on a national or even continental scale7'8'9. 

In the aforementioned hypotheses, the proposed system aims at performing a 
robust and accurate classification of X2 by exploiting the image Xi , the training 
set Y i , and the image X2. 

3. Partially Supervised Independent-Classification Approach 

In the context of the Bayes decision theory, the decision rule adopted by a classifier 
is expressed as follows1'10: 

l) = w m e ( l i / and only if Pi(wm |x1) = m a x j P i ^ l x 1 ) } (1) 

where PI (WJ |X]) is the value of the probability that the j - t h pixel of the image Xi 
belong to the class u>i given the observation xj . It is worth noting that the subscript 
1 is used here to stress the dependences of statistical terms on the considered image 
Xi . Equation 1 can be rewritten as1 '10: 

l] = iom G ft if and only ifPi(ujm)pi(x)\uim) = m a x ^ i ^ ^ x 1 ^ ) } (2) 
men J 

where Pi (WJ) is the a priori probability of the class Wi in the image Xi and p\ (x] |WJ) 
is the value of the conditional density function for the pixel xj , given the class Wj G 
Q.. According to (2), the training phase of the classifier consists in the estimations of 
the a priori probability P\{u)i) and the conditional density pi{X\\LUi) for each class 
u>i G fl. Such estimates can be obtained by using classical supervised approaches, 
which exploit the information that is present in the considered training set Yi 1 ' 1 0 . 
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Let us now assume that, at the time £2, a new land-cover map of the study area is 
required. Let us also assume that at £2 the corresponding training set is not available. 
This prevents the generation of the required land-cover map as the training of the 
classifier cannot be performed (i.e., both the a priori probability P2(u>i) and the 
conditional density function ^2(^2!^,) of each class u>i G fl in the new image X2 
cannot be estimated by traditional supervised approaches). At the same time, it 
is not possible to apply the classifier trained on the image Xi to the image X2 
because, in general, the estimates of statistical class parameters at t\ do not provide 
accurate approximations for the same terms at £2- This is due to several factors 
(e.g., differences in the atmospheric and light conditions at the image-acquisition 
dates, sensor nonlinearities, different levels of soil moisture, etc.) that alter the 
spectral signatures of land-cover classes in different images and consequently the 
distributions of such classes in the feature space. 

In this context, we propose an unsupervised retraining technique to derive, for 
each class uii € £1, reliable estimates of both /^(^j) and ^2(^2!^) , starting from 
the current classifier parameters obtained in a supervised way at the time t\. 

The main idea of the proposed technique is that the first approximate estimates 
of the parameter values that characterize the classes considered at the time £2 can 
be obtained by exploiting the classifier parameters estimated at the time t\ by 
supervised learning. In particular, for each class w, <G fi, the initial values of both 
the prior probability P^i^i) and the conditional density function p\{Xi\ui) can be 
approximated by: 

P 2 V i ) = P^tOi); p%(X2\u>i)=pi(X1\ui). (3) 

where Pi{u)i) and pi{Xi\ui) are the prior probability and the conditional density 
function, respectively, estimated for the class u>i at the time £1 by supervised learn
ing. As already pointed out, generally such first estimates .do not provide accurate 
approximations for the statistical parameters of the classes at £2- Therefore, we sug
gest improving such rough estimates by exploiting the information associated with 
the distribution ^2(^2) of the new image X2. In particular, the proposed method is 
based on the observation that the statistical distribution of the pixel values in X2 
can be described by a mixed density distribution with as many components as the 
classes to be recognized: 

c 
P2(X2) = ^ P 2 ( ^ ) P 2 ( X 2 | ^ ) , (4) 

where the mixing parameters and the component densities are the a priori proba
bilities and the conditional density functions of the classes, respectively11. In this 
context, the retraining of the Bayesian classifier at the time £2 becomes a mixture 
density estimation problem. In our case, this problem involves the estimation of the 
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parameter vector 0 = [9\,P2{u}\),Q\,P2{u2), , ^ ,P2 (wc) ] , where each compo
nent Of represents the vector of parameters that characterizes the density function 
P2(X2\ui), which, given its dependence on Of, can be rewritten as p2{X2\oJi, Of). The 
components of 0 can be estimated by maximizing a log-likelihood function £(X.2\0) 
defined as: 

£(X2\0) = X > g { ^ P 2 W ) ^ 2 ! ^ ) } - (5) 
3=1 %=i 

The EM algorithm12'13'14 is one of the most powerful solutions to this type of 
problem. It consists of two main steps: an expectation step and a maximization 
step. Both steps are iterated so that, at each iteration, the estimated parameters 
provide an increase in the log-likelihood function £(H.2\9) until a local maximum is 
reached. An important aspect of the EM algorithm concerns its convergence prop
erties. Even though convergence can be ensured, it is impossible to guarantee that 
the algorithm will converge to the global maximum of the log-likelihood function 
(only in few specific cases is it possible to ensure the convergence to the global 
maximum). A detailed description of the EM algorithm and its theoretical aspects 
is beyond the scope of this chapter. We refer the reader to the literature for a 
more detailed analysis of such an algorithm and its properties12'14. In the follow
ing subsection, we describe in greater detail the partially supervised independent 
classification approach for a parametric classification technique. 

3.1. Independent Normal Bayesian Classifier 

To further explain the proposed approach, let us consider, for simplicity, the case 
in which all classes included in f2 can be described by Gaussian distributions. Un
der this common assumption (widely adopted for multispectral image classification 
problems), the density function associated with each class wr at U (i = 1, 2) can be 
completely described by the mean vector fil

r and the covariance matrix E*. There
fore, the vector of parameters to be estimated becomes: 

0= [ /if,E2,P2(o;1), ,M
2

7 ,E2
7 ,P2(wc)]. (6) 

It can be proven that the equations for estimating the statistical terms associated 
with a generic class u>r are the following12'13'14 : 

p2 K ) - ; ^ - ^ (7) 
J — 1 J 
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" P 2 ' ( ^ , ) P | ( * > , . ) 2 

( 2 ] t+l = ^ 1 ( 8 ) 

E ^ # f ^ { * 2 - ^]< + 1}T{^ - I^]t+1} 
[E?]t+1 = 3— *-^—= (9) 

Z Pt{ulr)pi{x2]uJr) 

where the superscripts t and t + 1 refer to the values of the parameters at the 
current and next iterations, respectively, and the superscript T refers to the vector 
transpose operation. The estimates are obtained starting from the initial values of 
the considered parameters and iterating the above equations up to convergence. 

The estimates obtained for each class ur G Q. at convergence are the new pa
rameters of the Normal Bayesian classifier at the time t%. 

At this point, a land-cover map of the analyzed area at the time £2 can be 
generated by labeling each pixel x2- in accordance with the Bayesian decision rule: 

I2 = ujm e fi if and only i /P2(wm)p 2(^ |wm) = max{P2(oJh)p2(x'2\ojh)} (10) 

4. Partially Supervised Cascade-Classification Approach 

In this section, we propose en extension of the approach described in Section 3. 
In particular, the methodology described in this section, unlike the previous one, 
makes use of a cascade-classifier approach2'3'4 to the categorization of multitemporal 
remote-sensing images, thus allowing the exploitation of the temporal correlation 
between successive scenes. 

The standard supervised cascade-classifier approach (proposed by Swain2) ex
ploits the correlation between multitemporal images in order to increase the classi
fication accuracy in the cases in which training data are available for all the images 
considered. In our method, we extend the application of the standard supervised 
cascade-classifier approach to partially supervised classification problems. In partic
ular, we exploit the temporal dependence between land-cover classes to increase the 
reliability and the accuracy of the partially supervised estimation of the parameters 
related to the image X2 . 

The cascade-classifier decision strategy associates a generic pixel x2 of the image 
X2 with a land-cover class according to the following decision rule2: 

I2 = L0m e^ if and only ifP(uim\x^,x2) = max{P(tOh\xj ,x2)} (11) 
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where P(UJH\X),X]) is the value of the probability tha t the j - t h pixel of the image 

belongs to the class Uh at £2, given the observations x1- and x2. Under the conven

tional assumption of class-conditional independence2 '2 0 , the decision rule (11) can 

be rewritten as3 : 

1% — <^m S f2 if and only if 
c c (12) 
X) p(x)\LUn)p(x2Aujm)P(ujn,LUm) = m a x { ^2 p(x)\ujn)p(x2\ujh)P(u)n,ioh)} 

where p(xlj \u)r) is the value of the conditional density function for the pixel x j , given 

the class uir G fi , and P(uin,u>h) is the prior joint probability of the pair of classes 

(un,tOh)- The latter term takes into account the temporal correlation between the 

two images. 

We propose to integrate the partially supervised classification of the image X2 

in the context of the above-described classification rule. As the training set Y2 is 

not available, the density functions of the classes at the t ime t\ (i.e., p(X\\u)n), 

ujn G Q.) are the only statistical terms of (12) tha t we can est imate in a completely 

supervised way. This means tha t , in order to accomplish the classification task, we 

should estimate both the density functions of the classes at £2 (jp{X2\Uh), ^h € fi) 

and the prior joint probabilities of the classes (P(w„,w^,), u>n £ SI, w/, £ f2) in 

an unsupervised way. It is worth noting tha t usually the estimation of p(Xi\cor) 

(ojr G f2, i =1,2) involves the computat ion of a parameter vector. The number and 

nature of the vector components depend on the specific classifier used. Consequently, 

the procedure to be adopted to accomplish the unsupervised estimation process 

depends on the technique used to carry out the cascade classification, in particular, 

on the vector of parameters required by the classifier. In the following subsection, we 

describe the procedure for the estimation of the above terms for a Normal-Bayesian 

cascade classifier. 

4 . 1 . Normal-Bayesian Cascade Classifier 

Let us assume tha t the probability density function of the generic class u>r at the t ime 

U (i.e., p(Xi\uir), u)r G f2, i =1,2) can be described by a Gaussian distribution (i.e., 

by a mean vector \±\ and a covariance matr ix SJ.). Under this common assumption, 

the mean vectors and the covariance matrices tha t characterize the conditional 

density functions of the classes at t\ can be easily computed by a s tandard procedure 

using the training set Y i . Concerning the parameter vector •& of the classifier to be 

estimated in a partially supervised way, it consists of the following components: 

•& = \n\, S 2 , P (wi , wi) , . . . , nl, E2
C, P{LOC,LOG)} (13) 

where the superscript "2" denotes the parameters of the conditional density func

tions of the classes at the t ime £2- To carry out the partially supervised estimation 
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process, we propose to adopt a procedure based on the observation that, under the 
assumption of class-conditional independence over time, the joint density function 
of the images Xi and X2 (i.e., p{X\X2)) can be described as a mixture density 
with C x C components (i.e., as many components as possible pairs of classes): 

c c 
p(X1,X2) ^ ^ ^ p ( X i | w n ) p ( X 2 | w h ) P K , w h ) . (14) 

n=lh=l 

In this context, the estimation of the above terms becomes a mixture-density 
estimation problem, which can be solved via the EM algorithm12'13'14'18. By apply
ing such an algorithm, we can derive the following iterative equations to estimate 
the components of the vector 1? necessary to accomplish the cascade-classification 
process3: 

E EP'K^lz 1 ,* 2 )* 2 

[A\t+1 = ^ (15) 

E EP'K^K1,*2) 

E g P*K,^|^,^ 2)(X 2 - [^]t+1)TK2 - H]t+1) 
K]t+1 = ^ ^ jr-c (16) 

E E P ' ^ n ^ f e l x 1 , ^ 2 ) 
j=l n=\ 

1 B 

Pt+1(ujn,u;h) = -Y,Pt("n,ujh\x
1
J,x

2
j) (17) 

i= i 

where the superscripts t and t + 1 refer to the values of the parameters at the current 
and next iterations, respectively, the superscript T refers to the vector transpose 
operation, and the joint posterior probabilities of the classes are approximated by: 

P'K^I*),*?) * / ^ K ^ ^ M ^ K . ^ ) . (18) 
E T, P(xj\u}g)Pt(x2

j\uJf)P
t(uJg,u)f) 

s = i / = i 

It is worth noting that all the previous equations implicitly depend on •&. Con
cerning the initialization of the components of the vector #, the initial values of 
the parameters of the density functions of classes at £2 are obtained by considering 
the corresponding values estimated at time t\ by supervised learning, whereas all 
the prior joint probabilities of classes are assumed to have the same values. It is 
possible to prove that, at each iteration, the estimated parameters evolve from their 
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initial values to the final ones by maximizing the following log-likelihood function 
(the convergence to a local maximum can be proven)12: 

B c c 
£{X1,X2\$) = ^ l o g ^ ^ p ^ K J p ^ V f c j f k , ^ ) . (19) 

j=l n=lh=l 

The estimates of the parameters obtained at convergence and those achieved by 
the classical supervised procedure at the time t\ are then substituted into (12) in 
order to accomplish the Normal Bayesian cascade-classification process. We refer 
the reader to Bruzzone and Fernandez Prieto3, for greater details on the Normal 
Bayesian partially supervised cascade classifier and on alternative initialization con
ditions of the iterative estimation algorithm. 

5. A Multiple-Classifier System for a Partially Supervised 
Updating of Land-Cover Maps 

As already pointed out, given the intrinsic complexity of the problem addressed, 
the partially supervised classifiers described in Sections 3 and 4 are less reliable and 
less accurate than the corresponding supervised classifiers. In order to alleviate this 
drawback, in this section, we propose an advanced classification system aimed at 
obtaining an accurate and robust partially supervised updating of land-cover maps. 
Such a system extends the approaches proposed in Sections 3 and 4, defining an 
effective classification framework based on a multiple classifier system (MCS). Both 
the above-described approaches (i.e., the independent-classification approach and 
the cascade-classification approach) can be considered in defining such an MCS. In 
the following, we give a detailed description of the system within the framework 
of the cascade-classification approach, thus defining a multiple cascade-classifier 
system (MCCS). We refer the reader to Bruzzone et al.6 for a description of the 
system in the framework of partially supervised independent classification approach. 

The use of an MCCS requires the definition of an ensemble of partially super
vised classification techniques. In our case, the ensemble of classifiers is derived 
from Normal Bayesian and radial basis function (RBF) neural-network cascade-
classification approaches. Three important methodological aspects are associated 
with the presented MCCS: i) all the partially supervised classifiers of the ensemble 
are defined in the framework of cascade classification; ii) a novel non-parametric 
partially supervised cascade classifier based on RBF neural networks is proposed; 
iii) hybrid Normal Bayesian and RBF neural classifiers are defined by exploiting 
the characteristics of the cascade-classification approach in order to generate an ef
fective ensemble of classifiers. It is worth noting that, thanks to the non-parametric 
nature of the RBF neural-network cascade classifiers, the proposed system is able 
to analyze multisensor and/or multisource data. 

This section is organized into 4 subsections. Subsection 5.1 describes the general 
architecture of the proposed MCCS system. Subsection 5.2 presents the partially 
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supervised classification problem in the framework of the cascade-classification ap
proach for an RBF neural-network classification technique. Subsection 5.3 addresses 
the problem of defining suitable ensembles of cascade classifiers, and describes the 
proposed hybrid classifiers. Subsection 5.4 deals with the unsupervised strategies 
used for the combination of the results yielded by the cascade classifiers included 
in the considered ensemble. 

5.1. System Architecture 

The proposed system is based on a multiple cascade classifier architecture com
posed of N different classification algorithms (see Fig.l). The choice of this kind 
of architecture is due to the complexity of the partially supervised classification 
problem addressed. By taking into account that, in general, ensembles of classifiers 
are more accurate and more robust than the individual classifiers that make them 
up22, we expect that a multiple-classifier approach may increase the reliability and 
the accuracy of the global classification system. 

Multispectral ima 
acquired at tt 

Multispectral image 
acquired at t2 

Cascade Classifier 
" 1 " 

Cascade Classifier 
"N" 

Combination 
Strategy 

Updated land-cover 
map 

Partially Supervised 
Estimation of the 

Parameters of Classifiers 

Training set YL 

Fig, 1. G e n e r a l a r c h i t e c t u r e of t h e p roposed mult iple-cascade-class i f ier sy s t em. 

5.2. Partially Supervised Classifiers Composing the Ensemble 

Let us focus our attention on the choice of each partially supervised cascade classifier 
to be included in the multiple-cascade-classifier architecture. 
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The possibility of establishing a relationship between the classifier parameters 
and the statistical terms involved in (12) is a basic constraint that each classifica
tion technique should satisfy in order to permit the use of the cascade-classification 
decision rule. To meet this requirement, we propose to use two suitable classification 
methods. The first is the parametric approach based on the Normal Bayesian classi
fier described in Section 4; the second consists of a non-parametric technique based 
on radial basis function (RBF) neural networks16'17. For the Normal Bayesian cas
cade classifier we refer the reader to subsection 4.1. Concerning the architecture of 
the RBF cascade classifier and the procedure for the partially supervised estimation 
of the related parameters, they are described in the following. 

5.2.1. RBF Neural Network Cascade Classifier 

The problem of partially supervised cascade classification by using RBF neural 
networks is much more complex than the one associated with the Normal Bayesian 
cascade classifier. The increased complexity mainly depends on the non-parametric 
nature of RBF neural networks. In our case, we have to resolve two critical issues 
in order to develop the cascade classifier in the framework of RBF neural networks: 
i) we should define a specific architecture that is able to implement the cascade-
classification decision rule; ii) we should devise a partially supervised procedure for 
the training of the proposed architecture. 

First of all, let us briefly recall the standard architecture of an RBF neural 
classifier to be used for the classification of a generic image X^ (see Fig. 2). This 
architecture is made up of three layers: an input layer (composed of as many units 
as input features), a hidden layer (composed of S neurons) and an output layer 
(composed of as many units as land-cover classes). The input layer just propagates 
the input features to the hidden layer. Each unit of the hidden layer applies a simple 
non-linear transformation to the input data according to a symmetric radial basis 
function <ps (usually a Gaussian function characterized by a mean value ns and a 
width as). The connections between the hidden and output units are associated 
with a numerical value called weight (let wr

s denote the weight that connects the 
s-th hidden neuron to the r-th output neuron). The output neurons apply a linear 
transformation to the weighted outputs of the hidden neurons. It can be proven that, 
if the classifier has been properly trained19, the outputs of an RBF neural network 
can be related to the conditional densities of the classes, which are expressed as 
a mixture of the kernel functions associated with the units of the hidden layer. In 
addition, the statistical terms computed by the neural classifier can be related to 
the global density function p{X{) of the image Xj as follows: 

c s 
p(Xi) = J^ppM^Pfo^PKI^) (20) 

r=l s=l 

where p(Xi\(ps) is the conditional density of the variable Xi given the kernel function 
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8=1 

Fig. 2. Standard architecture of a supervised RBF neural-network classifier. 

(ps, P(ujr\ips) is the conditional probability of the class uir, given the kernel tps, P(<pa) 
is the prior probability of the kernel ips, and 5 is the number of kernels considered. 
It is worth noting that the statistical terms in (20) can be associated with the 
parameters of the RBF neural architecture as follows19: 

<pa(Xi) = P(Xi\<Ps) (21) 

vfa = P{ipa)P{wr\<pa) (22) 

We refer the reader to Bruzzone and Fernandez Prieto16 and to Bishop17 for 
more details on standard RBF neural classifiers. 

In order to define a cascade classifier in the context of the RBF neural-network 
theory, let us approximate the joint density function p(Xi,X2) of the two images 
Xi and X2 as a mixture of Gaussian kernel functions. To this end, let us consider 
K kernel functions ip\ and Q kernel functions <pi associated with the statistics of 
the images Xi and X2, respectively. Accordingly, under the assumption of kernel-
conditional independence in the temporal domain, we can write: 

c c K Q 

pfX^j) ^ ^ ^ ^ ( X i l v D ^ I ^ P f ^ ^ l P K . ^ l r i y , ) (23) 
h=l n=l k=l g = l 

where p(Xi\(fl
r) is the value of the conditional density function of the variable Xi, 

given the kernel (pl
r, P(uJn, w l̂Vfci <p\) is the joint conditional probability of the pair 

of classes (wn,Wh) given the pair of kernels (^\, <p2), and P{<p\,<p%) is the joint prior 
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probability of the kernels (ip\,ip2). In this context, the cascade classification decision 
rule can be rewritten as: 

I2 = um G fi if and only if 

n=lk=lq=l \Zq:) 

uh.eu n = 1fc= 1 q—i 

It is worth noting that the temporal correlation between the two images is taken 
into account by the terms P(<p\,<p*) and P(ujn,ujh\(p\,(p^). By analyzing equation 
(24), we can observe that p{x1j\^p\) and p(x2\tp2) can be derived by applying two 
standard RBF neural-network classifiers to the t\ and £2 images, respectively. In 
particular, we can apply an RBF neural-network classifier with K hidden units to 
the image Xi and an RBF neural-network classifier with Q hidden units to the 
image X2 (see Fig. 3). If a proper training algorithm is used, the terms p(x^\ipj.) 
and p(x^\ip2) are given by the outputs of the hidden neurons of the aforementioned 
neural classifiers. However, in order to implement the cascade classification decision 
rule, a non-conventional architecture should be considered, which involves the joint 
statistical terms P(tpj.,tf2) and P{wn,uJh\Lp\,ip2

q}
 m the classification process. To 

this end, the outputs of the hidden neurons of the t\ and £2 networks are given as 
input to a specific block (let us call it "cascade classification" block) that presents 
as many outputs as land-cover classes (i.e., C outputs). In particular, the output 
Uh,which is associated with the land-cover class Uh, is given by: 

C K Q 

n=lfe=lq=l 

According to equation (24), each pixel is classified as belonging to the land-cover 
class associated with the maximum output value. 

The main problem that remains to be solved is the estimation of all the param
eters considered in the proposed architecture in a partially supervised way (i.e., by 
using only the joint density function p(X\, X2) and the training set Yi). Concerning 
the parameters of the p(Xi\<p\) (i.e., the centers 7r£ and the widths a\ of the Gaus
sian kernel functions that process the image Xi) , they can be estimated according 
to the statistical procedure described in Bruzzone and Fernandez Prieto16 and in 
Bishop17. Consequently, the parameter vector 1? that remains to be estimated in a 
partially supervised way is composed of the following terms: 

•& = [^l,a2
l,...,n

2
Q,a2

Q,P{^\,ip2),...,P{^]i,ip
2
Q), 

P(wi,wi|<^,v9?),..., P(LVC,^C\^K^Q)} 
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Cascade 
Classification Block 

uc(x\,x2j) 

Fig. 3. Architecture of the proposed partially supervised RBF neural cascade classifier (solide 
line). The architecture of the standard RBF neural network used for the supervised estimation of 
the *i statistical parameters is also shown (dashed line). 

where n2 and a2 are the centers and the widths characterizing the kernel functions 
ifq that process the image X2. In order to estimate the components of the parameter 
vector, we propose to apply the EM algorithm to (23). Accordingly, it is possible 
to prove that part of the components of the parameter vector can be estimated by 
using the following iterative equations: 

B K 

2l t + 1 _ J = l f c = l 
E Z P'ivl'Pfch**) 91 3' 3> 3 

(27) 

E Z nti,^},^-K)t+1\\2 

T2] t+1 = j = 1 k = l 

3=1 k=l 

(28) 
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Pt+\<pltf) = ̂ P'ifPWy^) (29) 
i= i 

where d is the dimensionality of the input space, the superscripts t and t + 1 refer 
to the values of the parameters at the current and next iterations, respectively, and 
the Pt((pl,ip2\x^,x2) are approximated by: 

P VPk^q\XVXj) = -£ Q • \A^> 

2 = 1 V = l 

Concerning the initialization of the aforementioned components of the parameter 
vector $, the initial values of the parameters of the conditional density functions 
of kernels at £2 can be obtained by applying a standard unsupervised clustering 
algorithm to the X2 image16, whereas the initial values of prior joint probabilities 
of the kernels can be easily computed in the assumption of independence between 
the kernels at two dates (i.e., P(ipk,^q) = P{fk) • P(<Pq))-

As we have already pointed out, the estimation of RBF cascade neural-network 
classifier parameters is significantly more complex than the estimation of Nor
mal Bayesian cascade-classifier parameters. Despite the parameters n2, a2 and 
P(<p].,<p2)oi the vector 1? can be estimated in a fully unsupervised way, the esti
mation of the joint conditional probabilities P(un,ciJh\<p\, (f%) requires other infor
mation in addition to the one contained in the training set Yi (it is worth noting 
that the terms P(un,ujh\ip}.,<p%) express the relationship between kernel functions 
and land-cover classes). To solve this problem, we propose to exploit some of the 
information obtained (at convergence) by the Normal Bayesian cascade classifier 
described in the previous subsection. In particular, a set Y2 of pixels, which is 
composed of the patterns that are most likely correctly categorized by the Nor
mal Bayesian cascade classifier, is used for the initialization of the P(ujn, cohlfj., <p2) 
conditional probabilities. These patterns are selected on the basis of the values of 
the posterior probabilities provided by the Normal Bayesian classifier. In greater 
detail, pixels associated with values of the posterior probabilities above a prede
fined threshold e are chosen. Let Yn:Tn be the set of pairs of pixels (x^x?) such 
that a:] € Yi belongs to the land-cover class un and x2 € Y2 is categorized by the 
Normal Bayesian cascade-classifier as belonging to the class u>m. Let Yn<o be the 
set of pairs of pixels (xj, x2) such that x}- £ Yi belongs to the land-cover class u)n 

and x2 £ Y2. Analogously, let Yo,m be the set of pairs of pixels (xj,x2) such that 
xlj £ Yi and x2 e Y2 is categorized by the Normal Bayesian cascade-classifier as 
belonging to the class u/m. The iterative equations to be used to estimate the joint 
conditional probabilities P(un,LJh\<PkilP'q) a r e ^ n e following: 
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+ E f:pt(«>g,<»h\<pi<pi
q)P

t(<pi,<p2
q\ x\, x])+ (31) 

+ E E PKwAvWJFivWM^)} 
K,x=)6y0 ,h/=i 

where the normalizing factor A is equal to: 

=̂E E i*(^l^) + E E ^(^I^H 
ft=i (x],x^) ey0,h «=i (*},*?) ey„,„ 

+ E E E P'blrtlx),*}) . 
n = l h = l ( x i i a ; 2 ) 6 y „ | h 

It is worth noting that this iterative procedure significantly improves the initial 
estimates biased by the patterns included in Y2-

Analogously to the Normal Bayesian cascade classifier, also in this case the 
estimated parameters evolve from their initial values to the final ones by maximizing 
the following log-likelihood function (the convergence to a local maximum can be 
proven): 

£(x1,x2W) = E logE Ep(x1
j\<p1Mx2M)p(<pltf)+ 

(x},^2) €Y0,o (==19=1 

+ E E logE E ip{x)Wl)p{x^l)p^l^l)p{uJn^h\^l,^q)+ 
«=1 (x),x*) £Y„,o h=\ fc=l g=l 

+ E E logE E ip{x}Wl)p{x]\^)p^l^l)p^n^hw\^l)+ 
h=l (x)^) 6Y 0 , h n = l fc=l g=l 

C C K Q 

EE E logEE 
n = l h=l (x),!2) 6 Y „ | t fe=l 9 = 1 

EE . E logE Ep(^%l)p(^l^)%i,^klW^^) 
. (33) 

where Yo,o is the set of pairs of pixels (a;], x?) such that x^ ^ Yi and X2A ̂  Y2 . 
The estimates of the parameters obtained at convergence and the ones achieved 

by the classical supervised procedure are used to accomplish the RBF cascade-
classification process. 

5.3. A Strategy for Generating Ensembles of Partially Supervised 
Cascade Classifiers: Hybrid Normal Bayesian and RBF 
Neural-Network Classifiers 

The selection of the pool of classifiers to be integrated into the multiple cascade-
classifier architecture is an important and critical task. In the literature, several 
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different strategies for defining a classifier ensemble have been proposed15,21,22 '23 '24. 
From a theoretical viewpoint, necessary and sufficient conditions for an ensemble 
of classifiers to be more accurate than any of its individual members are that the 
classifiers should be accurate and different25. In our case, we can control only the 
second condition, since no training set is available to verify the first one. 

The main issue to be resolved for the definition of the ensemble concerns the 
capability of different classifiers to incur uncorrelated errors. In practice, several 
strategies have been proposed to make up pools of classifiers that incur uncorre
lated errors. These strategies involve the selection of different classification algo
rithms, the choice of different initial training conditions for a given classification 
algorithm, the use of different architectures for the same kind of classifier (e.g., 
neural networks), the manipulation of the training examples, the manipulation of 
the input features, the manipulation of the output targets, the injection of ran
domness, etc.25. In our system, the choice of both a parametric (Normal Bayesian) 
and a non-parametric (RBF) classifier guarantees the use of two classification algo
rithms based on significantly different principles. For this reason, we expect these 
classifiers to incur sufficiently uncorrelated errors. However, two classification al
gorithms are not enough to define an effective multiple classifier architecture. To 
increase the reliability of the system, we need to generate a pool of N classifiers 
(N>2). According to the literature, we could define different RBF neural-network 
architectures in order to derive different classification algorithms for the ensemble26. 
However, as we are dealing with cascade-classifier techniques, we propose to adopt 
an alternative, deterministic, and simple strategy for making up the ensemble. This 
strategy is based on the characteristics of the cascade-classification approach, in 
which a set of key parameters, estimated by the partially supervised process, is 
composed of the prior joint probabilities of classes P(tun,uJh) (they are associated 
with the temporal correlation between classes). The different cascade classifiers (i.e., 
Normal Bayesian and RBF neural networks) perform different estimations of the 
aforementioned probabilities, on the basis of the different classification and esti
mation principles. According to this observation, we propose to introduce in the 
ensemble hybrid classifiers obtained by exchanging the estimates of the prior joint 
probabilities of classes performed by different algorithms. In our case, given an Nor
mal Bayesian cascade classifier and an RBF neural-network cascade classifier, this 
strategy results in an ensemble composed of the two "original" classifiers and of 
two hybrid Normal Bayesian and RBF algorithms obtained by exchanging the prior 
joint probabilities estimated in a partially supervised way by the original classifiers. 
These hybrid classifiers are described in the following. 

Let PNB(ujn,u>h), PNB(Xi\u)n) and pNB(X2\u)h) denote the joint probabilities 
and the conditional densities of classes estimated by the Normal Bayesian cas
cade classifier, respectively. Analogously, let PRBF(u)n,Uh\<p\, </?„), PRBF{'•p\, (fi'^) i 
pRBF(Xi\con) and pRBF(X2\u}h) denote the joint probabilities of the classes con
ditioned to the kernels, the joint probabilities of the kernels, and the conditional 
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densities of the classes at the times t\ and £2 estimated by the RBF cascade classifier, 
respectively. 

The first hybrid classifier (let us call it Normal Bayesian-hybrid cascade classi
fier) is obtained by merging the joint probabilities estimated by the RBF cascade 
classifier with the conditional densities estimated by the Normal Bayesian cascade 
classifier. Hence, the corresponding classification rule is the following: 

lj = Mm & CI if and only if 

g pNB(x)\u,n)p>fB(32\u>m)PRBF(wn,um) = 
n = l 

max{ £ pNB{x)\ujn)p
NB{x]\oJh) PRBF{wM)} 

when n=1 

(34) 

where: 

^'K^) = EE^K.^I^-^)^^.^). (35) 
fc=l g = l 

Analogously, the second hybrid classifier (let us call it RBF-hybrid cascade classi
fier) is obtained by merging the joint probabilities estimated by the Normal Bayesian 
cascade classifier with the conditional densities pRBF(xh x?\un, Wh) that can be es
timated by using the RBF cascade classifier parameters. Hence, the corresponding 
classification rule is the following: 

Zj = ujm € CI if and only if 

£ pRBF{x),x2\wn,ujm)PNB{ujn^m) = 
n=l 

ma,x{f:pIiBF(x},x2
j\u;n,ioh)P

NB(Lon,ioh)} 
"hen n = 1 

j ) ~ j l ~ n > — m / - v - " J - m y / g g \ 

where the conditional densities pRBF (x), x2\ujn, u>h) can be approximated by: 

pRBF{x),x2\un,ujh)^ 

f i j | ip
J , B F(«»,«hi*.i ,v . ;)PM F(V i ,^)pM F(xjiv,i)P

M ' ,(xji^) ( 3 7 ) 

E £ PRBF{"n^HWl^l)PRBF{v1
k,'Pl) 

q=l fc = l 

The use of these hybrid classifiers allows one to obtain a multiple classifier 
architecture composed of four classifiers. It is worth noting that it is possible to 
further increase the number of classifiers by extending the aforementioned procedure 
to the case of more RBF neural network architectures with different numbers of 
hidden units. 
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5.4. Multiple Cascade Classifier Architecture: Unsupervised 
Combination Strategies 

In the proposed system, the classification results provided by the N members of 
the considered pool of cascade classifiers are combined by using classical multiple-
classifier strategies. In particular, we consider two simple and widely used combi
nation procedures: Majority Voting and Combination by Bayesian Average15. Both 
procedures exhibit the common characteristic of requiring no prior training to carry 
out the combination process. This is a mandatory requirement in our approach, as 
we have no ground truth information (and hence no training set) for the image X2. 
The Majority Voting procedure faces the combination problem by considering the 
results of each single classifier in terms of the class labels assigned to the patterns. 
A given input pattern receives N classification labels from the MCCS: each label 
corresponds to one of the C classes considered. The combination method is based 
on the interpretation of the classification label resulting from each classifier as a 
"vote" to one of the C land-cover classes. The data class that receives the largest 
number of votes is taken as the class of the input pattern. 

The Combination by Bayesian Average strategy is based on the remark that, 
given the observations a;j and x2,, the N classifiers considered provide an estimate 
of the posterior probability P(wh\x^,x^) for each class u>h € fi- Therefore, a possible 
strategy for combining these classifiers consists in the computation of the average 
posterior probabilities, i.e., 

1 N 

P—KI^) = -Y.P-rMxp**) (38) 
7=1 

where Py(uih\xl,x2) is the estimate of the posterior probability P(ujh,\Xj,x?) pro
vided by the 7-th classifier. The classification process is then carried out according 
to the Bayes rule by selecting the land-cover class associated with the maximum 
average probability. 

6. Experimental Results 

To assess the effectiveness of the proposed approaches, different experiments were 
carried out on a data set made up of two multispectral images acquired by the 
Thematic Mapper (TM) sensor of the Landsat 5 satellite. The selected test site 
was a section (412x382 pixels) of a scene including Lake Mulargias on the Island of 
Sardinia, Italy. The two images used in the experiments were acquired in September 
1995 (ti) and July 1996 (^)- Figure 4 shows channels 5 of both images. Five land-
cover classes (i.e., urban area, forest, pasture, water body, and vineyard), which 
characterize the test site at the above-mentioned dates, were considered. The avail
able ground truth was used to derive a training set and a test set for each image 
(see Table 1). To carry out the experiments, we assumed that only the training set 
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associated with the image acquired in September 1995 was available. We used the 
training set of the July 1996 image only for comparisons with completely supervised 
classifiers. 

Experimental results are organized into two different subsections. Subsection 6.1 
presents the results obtained by the independent-classification approach proposed 
in Section 3. Subsection 6.2 gives the results yielded by the cascade-classification 
approach and the MCCS proposed in Sections 4 and 5, respectively. 

Fig. 4. Bands 5 of the Landsat-5 TM images utilized for the experiments: image acquired in 
September 1995 (left); image acquired in July 1996 (right). 

Table 1. Number of patterns in the training and 
test sets for both the September 1995 and July 
1996 images. 

Number of patterns 

Land-cover class 

Pasture 
Forest 

Urban area 
Water body 

Vineyard 
Overall 

Training set 

554 
304 
408 
804 
179 

2249 

Test set 

589 
274 
418 
551 
117 

1949 

6.1 . Results Obtained by the Independent-Classification Approach 

The Normal Bayesian classifier was trained (in a supervised way) on the September 
1995 image to estimate the a priori probabilities and the parameters that character
ize the density functions of the classes at the time t\. After training, the effectiveness 
of the classifier was evaluated on the test sets for both images. The classification 
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accuracies obtained are given in Table 2. On the one hand, as expected, the classi
fier provided a high classification accuracy (90.97%) for the test set related to the 
September 1995 image. On the other hand, it exhibited very poor performances for 
the July 1996 test set. In particular, the overall classification accuracy for the July 
test set was equal to 50.43%, which cannot be considered an acceptable result. 

Table 2. Classification accuracies obtained for the September 1995 and 
July 1996 test sets by a classical supervised Normal Bayesian classifier 
trained on the September 1995 training set. 

Land-cover class 

Pasture 
Forest 

Urban area 
Water body 

Vineyard 
Overall 

Classification ; 

September 1995 test set 

82.51 
97.44 
94.73 
100.00 
62.39 
90.97 

accuracy 

July 

(%) 

1996 test set 

19.52 
95.62 
90.43 
36.11 
24.78 
50.43 

At this point, the proposed technique was applied to the ti image (July 1996) 
in order to compute, in an unsupervised way, the new estimates of the a priori 
probabilities and density-function parameters of the considered land-cover classes. 
The parameters of the Normal Bayesian classifier trained on the t\ image (Septem
ber 1995) were exploited to initialize the EM algorithm. At the end of the iterative 
process, the resulting estimates were associated with the new parameters of the 
Normal Bayesian classifier. In order to evaluate the accuracies of the new estimates, 
the classifier was tested again on the July 1996 test set. For the sake of comparison, 
a supervised Normal Bayesian classifier was trained and subsequently tested on the 
July 1996 image by using the classical approach (i.e., exploiting the training set for 
a supervised parameter estimation). The results obtained are given in Table 3. As 
one can see, the classification accuracy provided by the proposed classifier for the 
July test set increased by about 42%, as compared with the one exhibited by the 
classifier trained on the September image (92.76% vs. 50.43%). It is worth noting 
that this improvement was shared by most of the considered classes. A comparison 
with the supervised Normal Bayesian classifier trained and tested on the July image 
showed that such a classifier provided an overall accuracy (92.66%) very similar to 
the one yielded by the proposed technique (92.76%). 

A further insight into the behavior of the proposed method is provided by Fig. 
5, where the trend of the overall classification accuracy versus the number of EM-
algorithm iterations is plotted. As can be seen, the overall classification accuracy 
increases significantly from 50.43% (i.e., for the initial estimates) to 88.19% in only 
10 iterations, and reaches the final value of 92.76% in 23 iterations. 
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Table 3. Classification accuracies obtained for the July 1996 test set by the proposed Normal 
Bayesian classifier retrained on the July 1996 image. For the sake of comparison, the classification 
accuracies achieved by a classical supervised Normal Bayesian classifier trained and tested on the 
July 1996 image are also given. 

Classification accuracy (%) 

Land-cover class Proposed independent Supervised Normal Bayesian classifier 

partially supervised technique trained on the July training set 

Pasture 94.06 92.02 
Forest 87.22 92.70 

Urban area 93.06 93.30 
Water body 100.00 100.00 

Vineyard 64.10 58.97 
Overall 92.76 92.66 
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Fig. 5. Classification accuracy obtained by the proposed Normal Bayesian classifier for the July 
1996 test set versus number of iterations of the EM algorithm. 

6.2. Results Obtained by the Cascade-Classification Approach and 
the MCCS 

Partially supervised Normal Bayesian and RBF neural-network cascade classifiers 
were applied to the September 1995 and July 1996 images. For the Normal Bayesian 
cascade classifier, the assumption of Gaussian distributions was made for the den
sity functions of the classes (this is a reasonable assumption as we considered TM 
images). Concerning the RBF neural cascade classifier, in order to exploit its non-
parametric nature, five texture features based on the Gray-Level Co-occurrence ma
trix (i.e., sum variance, sum average, correlation, entropy and difference variance)28 

were computed and given as input to the classifier in addition to the six TM chan-
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nels. These features were obtained by using a window size equal to 7x7 and an 
interpixel distance equal to 1. 

As regards the Normal Bayesian cascade classifier, the parameters of the Gaus
sian density functions of the classes at t\ were computed in a supervised way by 
using the available training set for the September 1995 image (i.e., Y i ) . These values 
were also used to initialize the parameters of the conditional density functions of the 
classes at i2- Concerning the RBF cascade classifier, several trials were carried out 
in order to derive an effective number of neurons to be used in the hidden layer. To 
this end, experiments were carried out using a standard RBF architecture trained 
by the available set Yi and applied to the ii test set. The highest accuracy was 
obtained by an architecture composed of 35 hidden units. On the basis of this result, 
an architecture composed of 70 hidden units was used for the RBF cascade classifier 
(i.e., 35 units related to the t\ image and 35 units related to the t<x image). It is 
worth noting that the parameters of the 35 hidden units associated with Xi were 
fixed according to the values achieved in a supervised way in the aforementioned 
experiment. The values of the parameters of the 35 hidden units used to process the 
image X2 were initialized by applying an unsupervised clustering to that image. 

The parameters of the vectors 1? related to the Normal Bayesian and RBF cas
cade classifiers were estimated in an unsupervised way by using the proposed for
mulations of the iterative EM algorithm (see (15)-(17), and (27)-(32)). Firstly, the 
Normal Bayesian cascade classifier was trained, and the patterns classified with a 
posterior probability higher than the threshold value e=0.98 were used to gener
ate the set Y2 in order to support the RBF training process. The EM algorithms 
adopted for the Normal Bayesian and RBF partially supervised training processes 
converged in 11 and 25 iterations, respectively. At the end of the iterative process, 
the resulting estimates were used to perform the classification of the July 1996 im
age. In addition, from the considered Normal Bayesian and RBF cascade classifiers, 
the two hybrid Normal Bayesian and RBF neural-network cascade classifiers were 
derived according to the strategy described in subsection 5.3. Also these hybrid 
classifiers were applied to the July 1996 image. 

The classification accuracies exhibited by the aforementioned four partially su
pervised cascade classifiers on the £2 test set are given in Table 4. As one can see, the 
performances of all the classifiers are very good. In particular, the overall accuracies 
exhibited by both the RBF and RBF-hybrid classifiers are very high (i.e., 96.10% 
and 95.38%, respectively), and also the overall accuracies provided by the Normal 
Bayesian and Normal Bayesian-hybrid classifiers are satisfactory (i.e., 91.48% and 
91.79%, respectively). This confirms the effectiveness of the partially supervised 
training process. Comparisons between standard and hybrid classifiers (i.e., RBF 
vs. RBF-hybrid and Normal Bayesian vs. Normal Bayesian-hybrid) point out that 
these classifiers provided very similar overall accuracies. However, a deeper analysis 
of the results reveals some important differences between the considered classifica
tion techniques. For example, the accuracy exhibited by the RBF-hybrid cascade 
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classifier on the vineyard class is significantly higher than the one exhibited by the 
RBF neural cascade classifier (i.e., 66.67% vs. 61.54%). If one considers the confu
sion matrices resulting from the aforementioned experiments (see Tables 5 (a)-(d)), 
one can verify other significant differences in the behaviors of the classifiers on the 
different classes. For example, the RBF classifier misclassifies 30 pasture patterns 
as belonging to urban areas, whereas the RBF-hybrid classifier never incurs such a 
classification error. This confirms that the assumption that the four classifiers incur 
quite uncorrelated errors is reasonable. 

Table 4. Classification accuracies obtained by the four partially supervised cascade classifiers 
included in the proposed multiple classifier architecture (July 1996 test set). 

Land-cover class 

Pasture 
Forest 

Urban area 
Water body 

Vineyard 
Overall 

Normal Bayesian 

83.53 
97.45 
95.69 
100.00 
62.39 
91.48 

Classification accuracy (%) 

RBF Normal-Bayesian-hybrid 

94.91 
100.00 
99.76 
100.00 
61.54 
96.10 

85.23 
97.45 
94.98 
100.00 
61.54 
91.79 

RBF-hybrid 

94.40 
98.91 
96.41 
100.00 
66.67 
95.38 

At this point, the four classifiers were combined by using both the Majority-
Voting and the Combination by Bayesian Average strategies (concerning the 
Majority-Voting strategy, in the case where more than one class received the same 
maximum number of votes, the class with the maximum posterior probability was 
chosen). The accuracies obtained on the July 1996 test set are given in Table 6. 
Both combination strategies provided very high accuracies on all the land-cover 
classes, with the exception of the vineyard class, which is a minority one. By com
paring Tables 4 and 6, one can conclude that the classification accuracies obtained 
combining the results of the partially supervised cascade classifiers by the two com
bination strategies considered are significantly higher than the accuracy exhibited 
by the worst single classifier (i.e., 96.56% and 94.77% vs. 91.48%). In particular, 
the classification accuracy obtained by applying the majority rule strategy is also 
higher than those exhibited by all the single classifiers making up the ensemble. 

As stated in the methodological part of the chapter, the objective of the multiple-
classifier approach is not only to improve the overall classification accuracy of the 
system but also to increase its robustness. In order to investigate this aspect, an 
experiment was carried out in which the failure of the training process of the RBF 
neural cascade classifier was simulated. In particular, in order to simulate this situa
tion, the partially supervised training of the parameters of the RBF architecture was 
carried out by replacing the image X2 with the image X i . It is worth noting that the 
resulting incorrect estimation of the RBF parameters also affects the hybrid classi
fiers. Table 7 presents the classification accuracies obtained by this experiment. As 
can be seen, even though the overall accuracies exhibited by both the RBF and the 
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Table 5. Confusion matrices that resulted from the classification of the July 1996 test set by 
using the proposed partially supervised techniques: a) Normal-Bayesian cascade classifier; b) 
RBF neural cascade classifier; c) Normal-Bayesian-hybrid cascade classifier; d) RBF-hybrid 
neural cascade classifier. 

Pasture 
Forest 
Urban area 
Water body 
Vineyard 

Pasture 
Forest 
Urban area 
Water body 
Vineyard 

Pasture 
Forest 
Urban area 
Water body 
Vineyard 

Pasture 
Forest 
Urban area 
Water body 
Vineyard 

Pasture 

492 
2 
5 
0 
23 

Pasture 

559 
0 
0 
0 
31 

Pasture 

502 
2 
5 
0 
21 

Pasture 

556 
0 
15 
0 
21 

Forest 

12 
267 
5 
0 
11 

Forest 

0 
274 
0 
0 
11 

Forest 

15 
267 
7 
0 
11 

Forest 

23 
271 
0 
0 
0 

(a) 

(b) 

(c) 

Urban 
area 
85 
2 
400 
0 
10 

Urban 
area 
30 
0 
417 
0 
3 

Urban 
area 
72 
2 
397 
0 
13 

Urban 
area 
0 
0 
403 
0 
3 

Water 
body 
0 
0 
0 
551 
0 

Water 
body 
0 
0 
1 
551 
0 

Water 
body 
0 
0 
0 
551 
0 

Water 
body 
10 
2 
0 
551 
15 

Vineyard 

0 
3 
8 
0 
73 

Vineyard 

0 
0 
0 
0 
72 

Vineyard 

0 
3 
9 
0 
72 

Vineyard 

0 
1 
0 
0 
78 

(d) 

Table 6. Overall classification accuracies exhibited by the 
proposed multiple cascade classifier system. 

Classification accuracy (%) 

Land-cover class 

Pasture 
Forest 

Urban area 
Water body 

Vineyard 

Bayesian Average 

91.51 
99.27 
98.09 
100.0 
64.10 

Majority rule 

94.06 
99.64 
99.28 
100.0 
76.06 

Overall 94.77 96.56 
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RBF-hybrid cascade classifiers are very poor (i.e, 67.68% and 72.75%, respectively), 
both combination strategies (i.e., the Combination by Bayesian Average strategy 
and the majority rule) allow the presented system to achieve classification accuracies 
(i.e., 92.46% and 95.90%) higher than the ones yielded by all the single classifiers. 
This confirms that the proposed architecture based on multiple cascade classifiers 
permits one to increase the robustness of the system versus possible failures of the 
partially supervised training process of single cascade-classification techniques. 

Table 7. Overall classification accuracies exhibited by the four partially supervised cas
cade-classifiers included in the proposed multiple classifier architecture (July 1996 test set). The 
results are related to the case in which a failure in the partially supervised training of the RBF 
cascade-classifier was simulated. The overall accuracy obtained after combining the proposed clas
sifiers is also given. 

Normal 
Bayesian 

91.48 

RBF 

67.68 

Classification 
RBF-
hybrid 

72.75 

accuracy (%) 
Normal 
Bayesian-
hybrid 
91.74 

Bayesian 
average 

92.46 

Majority 
rule 

95.90 

Finally, in order to completely assess the effectiveness of the proposed methodol
ogy, two additional experiments were carried out using a fully supervised standard 
RBF classifier. In the first experiment, the RBF classifier was trained on the Septem
ber 1995 training set and tested on the July 1996 image. The obtained results are 
given in Table 8. As one can see, the standard supervised RBF neural-network clas
sifier trained on the "old" training set was unable to classify the "new" image with 
an acceptable accuracy, thus confirming that the use of a more complex classification 
methodology based on a partially supervised training process is mandatory. In the 
second experiment, the RBF classifier was trained on the July 1996 training set and 
applied to the test set related to the same image (it is worth noting that this train
ing set was not considered in the previous experiments as we assumed that it was 
not available). Table 9 gives the obtained results. A comparison of these results with 
the ones provided in Table 6 points out that the proposed system outperforms the 
standard supervised RBF classifier. This surprising result, which mainly depends 
on the ability of the proposed approach to exploit the temporal correlation between 
the two images considered, confirms the effectiveness of the presented methodology. 

7. Discussion and Conclusions 

In this chapter, partially supervised approaches to classification of multitemporal 
remote-sensing images have been presented. The proposed approaches allow one 
to produce accurate land-cover maps of a specific study area also from images for 
which a reliable ground truth (hence a suitable training set) is not available. They 
can be used in applications in which the area of interest is characterized by the same 
kinds of land-cover classes over time. This means that only the spatial distributions 
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Table 8. Classification accuracies exhibited by a stan
dard supervised RBF neural classifier trained on the 
September 1995 image and tested on the July 1996 im
age. 

Land-cover class 

Pasture 
Forest 

Urban area 
Water body 

Vineyard 
Overall 

Classification accuracy (%) 

47.70 
94.16 
66.27 
100.00 
45.30 
72.85 

Table 9. Classification accuracies exhibited by a stan
dard supervised RBF classifier trained and tested on 
the July 1996 image. 

Land-cover class 

Pasture 
Forest 

Urban area 
Water body 

Vineyard 
Overall 

Classification accuracy (%) 

89.64 
99.27 
88.28 
100.00 
67.52 
92.30 

of land-covers are assumed to change over time. 
The presented methods are based on the assumption that the estimates of the 

distributions of classes derived from a supervised training on a previous image of the 
considered area can represent rough estimates of the class distributions in the new 
image to be categorized. Then the EM algorithm is applied in order to improve such 
estimates iteratively on the basis of the global density function of the new image. 
It is worth noting that when the initial estimates are very different from the true 
ones (e.g., when the considered image has been acquired under atmospheric or light 
conditions very different from the ones in the image exploited for the supervised 
initial training of the classifier), the EM algorithm may lead to inaccurate final 
values. Therefore, in order to overcome this problem, we recommend the application 
of a suitable pre-processing phase aimed at reducing the main differences between 
images due to the above-mentioned factors (simple relative-calibration techniques, 
which do not require any atmospheric data, can be adopted29 '30). In addition, the 
sequence of images to be classified should be acquired in similar periods of the 
year, as the spectral responses of the related land covers (hence the corresponding 
distributions in the feature space) may significantly change in different seasons. 

Experiments carried out on different multitemporal data sets confirmed the va
lidity of the proposed techniques (in this chapter only experiments carried out on 
a data set have been reported). In particular, the resulting classifiers revealed very 
effective, and attained high classification accuracies for the new images, without 
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relying on the corresponding training sets. 

It is worth noting tha t , despite in the results given in Section 6 the accuracies 

yielded by the independent-classification approach and by the cascade-classification 

approach are similar, in general it is reasonable to expect tha t the cascade-

classification approach results more reliable than the independent-classification one, 

thanks to its ability to exploit the temporal correlation between the two considered 

images. 

Although the independent and the cascade approaches have proven effective, 

they exhibit some limitations. In particular, given the intrinsic complexity of the 

problem addressed, these approaches may result in classifiers less reliable and ac

curate than the corresponding supervised classifiers. To overcome this limitation, 

the use of an ensemble of partially supervised classifiers has been proposed. In this 

chapter, a multiple classifier architecture has been presented in the framework of the 

cascade classification. The main features exhibited by the resulting system are: i) 

robustness to the partially supervised training process, thanks to the use of different 

partially supervised classifiers; ii) capability to consider multisensor and multisource 

da t a in the process of updat ing of land-cover maps (thanks to the availability of 

non-parametric classification algorithms in the ensemble). 

The proposed approaches seem very promising tools to be integrated into a 

GIS for a regular updat ing of land-cover maps. It is worth noting tha t , in the case 

where an "old" ground t r u t h is not available, the land-cover map itself a t t ime 

t\ can be considered as the training set Y i required for the partially supervised 

training process of the proposed system (however, in this situation, the possible 

errors present in the original land-cover map may affect the accuracy of the system). 
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A classifier based on the k-NN rule is known as the one that offers a very good performance. 
Learning of such kind of classifiers consists in determination the value of k. Some modification of 
the standard k-NN rule may lead to the improvement of the classification quality. The relatively new 
k Nearest Centroid Neighbor (&-NCN) decision rule uses an interesting concept of surrounding 
neighborhood, that is such a neighborhood, which takes into account not only the proximity of 
neighbors, but also their spatial location. Neighbors should be located not only close to a query 
sample, but also possibly around it in the space. In this chapter we present our decision rule called k 
Near Surrounding Neighbors (£-NSN), which "improves" the neighborhood used in £-NCN with 
respect to both described aspects. Moreover, we present a voting technique which finds several k 
parameters for k-NN, &-NCN and £-NSN rules learnt from random partitions of the training set and 
utilizes them in an ensemble of classifiers. As opposed to most ensemble methods, our algorithms 
require moderate computational increase in relation to the base classifiers, and even almost negligible 
computation increase in the voting k-NN case. We test the aforementioned methods on a remote 
sensing dataset (already used in several experiments) and obtain results which show attractiveness of 
the presented concepts in applications where prediction accuracy is of primal importance. The main 
disadvantage of the k-NN decision rale and its modified versions is a necessity of keeping the whole 
training set, as the reference set, in the computer memory during a classification phase. Numerous 
procedures, which have been already proposed for reference set reduction, concern the 1-NN rule. 
Although most proposed methods were originally devised for the 1-NN rule, there is no obstruction 
to use the received reduced sets with k-NN classifiers. It is also possible to reclassify the original 
reference set by applying the k-NN rule, standard or modified, and then to use the simple 1-NN rule 
with the reclassified set. The effectiveness of these approaches will be studied in relation to four 
different algorithms of reference set size reduction. 

1 Introduction 

Remote sensing image analysis, in its final stage, consists in classification of pixels. The 
construction of a classifier is based on the large training set. Furthermore, not only a 
good performance but also the speed of classification phase plays a very important role in 
a choice of the classifier type. The best possible decision rule offers the Bayes classifier 
that operates according to the formula: pQ/x)=pQ)-fi\/j)/fix), where p(j/x) is a probability 
of the class j under assumption that the classified object is described by a feature vector x, 
f(x/j) denotes the density of probability distribution for the classy and/(x) is the density of 
probability distribution of the feature vector x. The vector x is assigned to the class j that 
corresponds to the maximum value of p(j/x). For convenience, the feature vectors x will 
be treated also as points in the feature space. 

All functions which appear on the right side in the above mentioned Bayes formula 
are unknown. To approximate them one can use the neighborhood containing the k 
nearest neighbors of the classified point x. In this way, pty-mjm, /(x//)=£j/(wij-V(x,A:)), 
f(x)~k/(m-V(x,k)), where m\ is a number of objects from the class j in the training set, m is 
a numerical force of the training set, kt means a number of points from the class j among k 
nearest points (neighbors) of the classified point x and V(x,k) is a volume occupied by a 
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hypersphere containing these k nearest neighbors. Thus, the left side can be calculated. 
The probability function that occurs on the left side of the Bayes formula is then 
approximated by the ratio kjk, i.e. p(j/x)~k^/k. In this way the k nearest neighbor (&-NN) 
decision rule has been obtained. The classified point x is assigned to the class j that 
corresponds to the highest value of kjk. It is proved by others authors [1] that if the size 
m of the training set gets larger (m—»°°), k—¥°° and k/m—>0 then the performance of the k-
NN rule converges to the performance of Bayes' classifier. That is why the classifier 
based on k-NN rule has been chosen as a subject of the present paper. The k-NN rule was 
originally proposed in [2]. 

The training set containing points with known class membership is the set that is used 
for the classifier construction. In the case of the k-NN rule, it may serve for experimental 
determination a value of the parameter k. For instance, we can used the well known 
leave-one-out misclassification rate estimation or a cross-validation technique [3] to 
select the value of k which offers the best performance. 

In recent years the concept of so-called surrounding neighborhood has been 
introduced. Such neighborhood can intuitively be understood as an item subject to two 
complementary constraints. Firstly, the neighbors of a query point q should be as close to 
it as possible. Secondly, the neighbors should also be located as symmetrically around q 
as possible. The k-NN ignores the latter aspect. Let us concentrate on one practical 
proposal fitting into this framework. 

The idea of Chaudhuri [4], later developed to a decision rule [5], seems to be an 
interesting attempt to focus on neighbors, which are located not only close enough to the 
given sample, but also possibly homogeneously distributed around the sample. It is the 
concept of Nearest Centroid Neighborhood (NCN). The k nearest centroid neighbors of a 
query point q are obtained as follows: 

- first neighbor of q is its nearest neighbor, «i; 
- the i'th neighbor, n„ i > 2, is such that the centroid (i.e. the mean) c, of this and 

previously selected neighbors, n l f..., «,_i, is the closest to q. 
Because of the centroid criterion, the spatial distribution of neighbors is taken into 

account. On the other hand, the incremental nature of the way in which successive 
neighbors are obtained guarantees their proximity to the query sample q. 

Experiments conducted by Sanchez et al. ([5, 6]1) confirm attractiveness of the k-
NCN decision rule, especially in applications where classification accuracy is more 
important than classification time. The £-NCN usually outperformed the standard k-NN 
rule. 

Just like for k-NN, also for k-NCN the number of neighbors must be estimated with 
respect to the training set, preferably with the leave-one-out method. 

In [7] we proposed another surrounding neighborhood based decision rule, called k 
Near Surrounding Neighborhood (£-NSN), which tries to optimize both criteria used by k-
NCN. 

In this chapter we propose an ensemble of k-NN (or k-NCN, or k-NSN...) classifiers 
in which the values of k are diversified via estimations performed on various random 
partitions of the training set. We believe such an approach is, to a certain degree, a 
protection from overfitting. An experimental confirmation of the idea is presented in 

1 In our experiments on the remote sensing dataset used in the paper and on several UCI 
datasets, the better of the two modifications to the &-NCN rule proposed in [6], offered a 
notably worse accuracy than the original rule. 
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Section 5. Moreover, as opposed to most classification schemes with voting over 
multiple classifiers, the proposed technique does not require an increase in computational 
resources directly proportional to the number of components. 

2 The k Near Surrounding Neighbors (fc-NSN) decision rule 

The heuristic nature of fc-NCN encourages us to search for other decision rules which 
would take into account both described aspects of neighborhood. As the centroid 
criterion from £-NCN seems really good, we decided not to change it, but only optimize 
the set of neighbors according to both criteria: one related to proximity and the other to 
the distance of the neighbor set's centroid to the test sample. 

Our classifier first searches for k NCN neighbors of a test sample and then in a loop 
tries to exchange some neighbors with other samples which are both closer and better in 
the sense of the centroid criterion to the test sample. 

More precisely, the proposed decision rule, which we called k Near Surrounding 
Neighbors (£-NSN), operates as described in Fig. 1. 

Note it is a random mutation hill climbing algorithm; the neighbor exchanging idea is 
analogous to the one applied by Skalak to prototype selection [8]. 

In our experiments the learning phase for £-NSN was performed with use of the k-
NCN rule, which is faster. 

Find k nearest centroid neighbors of a test sample q. Call the neighbors nu ..., nk. Call 
their centroid c. 
For counter = 1 to ITERATIONS do 
{ 

Select a random neighbor nu \<i<k 
Select a random sample s, such that d(q,s)<d(q,nfarthest), where nfarthest is the fc'th, 

according to the distance, NCN neighbor of q 
lfd(q,s)<d(q,n,) 

{ 
Let tentative_c = centroid(«i,..., n,-_i, s, ni+i,..., nk) 
If d(q,tentative_c)< d{q,c) 
{ 

Let n, = s 
Let c = tentative_c 

} 
} 

} 
Return the set of neighbors nlt..., nk. 

Figure 1: The k Near Surrounding Neighbors (&-NSN) decision rule 

3 Voting over multiple classifiers 

An essential problem in all classification tasks is the danger of overfitting. This 
phenomenon consists in choosing the classifier and its parameters (comprising e.g. some 
numeric values, its reference set(s) etc.) so well fitting the learning data that it does not 
actually fit the real concept. The trouble „as such" is inevitable since in practice we 
always deal with finite datasets, however ways to mitigate it have been developed. 
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One of the most attractive approaches to increase accuracy and/or minimize error 
variance (i.e. generate classification models which are more trustworthy to be safe from 
excessive overfitting) is the idea of combining classifiers. It has attained a vivid interest 
in the past decade, which resulted in a number of theoretical and practical achievements, 
especially in the domain of decision trees (for a survey see e.g. [9, 10]). 

The success of ensembles can be explained in following words: if each particular 
voter (=component classifier) produces different approximation to real decision 
boundaries, then during the voting (which is kind of averaging process) the noise is 
supposed to be smoothed out, especially if the number of voters is large. This, however, 
holds true when the voters are independent. The condition of independence is not only 
hard to fulfill but even to measure in a real-life (finite) task. In practice we thus rather 
strive to select weakly correlated ("diverse"), but still quite accurate classifiers. Several 
heuristic measures of diversity between component classifiers have been proposed and 
tested [11, 12], but any stronger guidelines on how to choose the classifiers for the 
ensemble still cannot be given. 

Fig. 2 shows a case where an ensemble of five simple classifiers under majority 
voting solves the classic XOR problem. Note the components are not independent (e.g. 
classifiers 1 and 5 have same predictions on the whole domain). 

classifier 1 classifier 2 classifier 3 classifier 4 classifier 5 

majority voting 

final decision 

Figure 2: An ensemble of classifiers solves the XOR problem 

Little has been done specifically in combining nearest neighbor classifiers. We are 
aware only of a few papers in this domain, namely Skalak's combining 1-NN classifiers 
with radically reduced prototype sets [8, 13], voting over Hart's condensed nearest 
neighbor classifiers [14], Multiple Feature Subsets (MFS) algorithm [15] and 
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decomposition of a multi-class problem into a net of dichotomizers [16, 17] (the last idea 
is of more general use and in fact has been known for years in neural network community 
[1]). 

In this chapter we attempt to overcome the problem of selecting k in k-NN (or 
another k neighbors' based classifier) through using a number of k-NN (or such like) 
classifiers, each working on the whole reference set, but with its own value of k. Final 
decision is obtained via simple voting. The component k-NN classifiers are trained on 
random partitions of the whole learning set. Our goal is to increase accuracy rather than 
to decrease training costs (which in fact must be greater in our version compared to plain 
/t-NN). Beneath we refer to the algorithm as to voting k-NN. 

How does the learning in voting k-NN proceed in detail? A known technique which 
allows to estimate a classifier during the learning stage (i.e. in design time) is partitioning 
the whole learning set into two parts: a „real" training set and a validation set. The 
models for the classifier under design are applied for the former set but tested on the latter 
one. Of course, an obvious deficiency of such a technique is shrinking the training set. 
This, however, seems a price we must pay for the comfort of some estimation of the 
classifier yet in the learning stage. The question arises: how the given set should be 
divided into those two parts? Too few samples in the training set results in a very weak 
approximation of the underlying distribution. Too few samples in the validation set, on 
the other hand, implies an unreliable estimation of the generated classifier. 

Our decision was to divide the learning set into halves. The optimal k for the training 
half was then sought with respect to the validation half. Such a random split followed 
with a k-NN learning session was performed L times to obtain L values: k\, ..., kL. The 
learning routine is also presented in Fig. 3 in a pseudo-Pascal code. 

{ TV - training set } 
for /:=1 to L do { L trials } 
begin 
RS(i) := random_select(size(7>) / 2); 
{ RS(i) - random subset of Tr } 
CVS(i) := Tr\RS(i); { CVS(i) - current validation set } 
k(i) :=find_best_k_for_kNN(/?S(0, CVS(i)); 
{ on RS(i), with respect to CVS(i) } 

end; 
{ output: learnt parameters £(1),..., k(L) } 

Figure 3: Finding parameters for voting &-NN 

The classification of a query sample q consists in producing L class labels for q 
according to £,-NN, i=l..L, and finally assigning q to the class most frequently appearing 
among those L labels. By analogy we construct voting fc-NCN and voting &-NSN rules. 

4 Computational issues 

What is the time complexity of finding k nearest neighbors? In practice, usually a naive 
implementation is used. During the search a sorted list of k NN's for a query sample is 
kept and updated when needed. Although typically (and for small enough values of k) the 
search time is about \.\n..\.2n (i.e. only some 10-20% longer than 1-NN search time), in 

worst case it will be 0(d • n • k), d — dimension. To protect from the worst case, another 
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implementation can be used. First, distances to all n samples from the reference set are 
calculated and sorted, and then voting over classes of the first k neighbors incurs the 
classification decision. The classification time is therefore 0(d • n + nlogn + k + c), d 

- dimensionality, c - number of classes. As k < n and c < n (typically k « n and 
C « n), and usually log n is on the order of magnitude of d, the overall cost is close to 

0(dn). 
The classification in voting £-NN may follow the latter of the described 

implementations. The difference is in the final stage: instead of scanning k neighbors, we 

have to take into account & aT :=maxA; neighbors. The overall cost is 
1 = 1..L 

0{d -n + n log n + £max +L-c). For reasonable values of L (in our tests L= 10 seemed 

fairly good) the cost is practically comparable to the cost of original £-NN in worst-case 
protecting version. If the naive neighbor search is used, then voting k-NN is slightly 
slower than plain &-NN, because kmax is often about twice greater than the globally 
selected k. 

In the case of voting &-NCN, the slow-down related to the conventional rule is equal 
to the ratio of kmax and the globally selected k. The slow-down factor for voting £-NSN is 
close to an analogous ratio. 

5 About the data 

Our considerations concern images obtained by two sensors installed on an aircraft: a 
Daedalus 1268 Airborne Thematic Mapper scanner and a fully polarimetric PLC band 
NASA/JPL airborne radar system. The geographical location was the Feltwell area. The 
average registration error was on a pixel level. The ATM images were filtered by a linear 
smoothing and context-sensitive enhancement filter; then they were segmented by a 
multiband region-growing technique. Five following regions, i.e. classes, were selected: 
carrots, potatoes, stubble, sugar beet and wheat. Each pixel was described by 9 features, 
obtained from optical and radar channels. Below a brief feature description is given: 
features 1 - 6 are responses of the Daedalus sensor for bands from 2 to 7 respectively, 
feature 7 is a response for the band C with HH polarization, feature 8 is a response of the 
radar sensor for L band and HV polarization and the feature 9 is a response of the radar 
sensor for the band P and VV polarization. More detailed description of the data can be 
found in [18]. 

Originally, the authors of [18] considered 15 features. However, our experiments 
have been constrained to the first 9 features out of 15. Our goal is to present rather the 
new approaches than search for the features, which would enable the smallest error rate. 
A data set, we deal with, contains 5 classes, 9 features and 5124 pixels. 

6 Experimental comparison of the classifiers 

We conducted experiments on real data taken from a remote sensing application 
described in the previous section. 

Experiments were performed for training sets with sizes of 500, 750 and 1250 
samples, each class represented with the same number of instances; the remaining 
samples formed respective test sets. For each training set size, ten partitions have been 
made; the presented results are averages over 10 runs. The city-block metric was used in 
all tests. 
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The k's for plain &-NN and k-NCN were found with leave-one-out cross-validation. 
As mentioned earlier, the &-NSN experiments benefited from learning sessions of fc-NCN. 
The £-NSN based tests were run with the number of mutations for £-NSN sessions equal 
to 500 and 2500. All voting algorithms were tested in the described manner with 10 
component classifiers. In all trials, both for plain and voting classifiers, the values of k 
were inspected in the interval 1..30. The results, in per cent, are presented in Table 1. 

size 
500 

size 
750 

size 
1250 

error (%) 
st. dev. (%) 

error (%) 

st. dev. (%) 

error (%) 
st. dev. (%) 

k-NN 

23.1 
1.0 

22.6 
0.5 

21.4 
0.8 

voting 
Jfc-NN 

23.4 
0.6 

22.2 
0.6 

20.7 
0.9 

k-NCN 

23.5 
1.1 

21.5 
0.9 

20.2 
0.9 

voting 
k-NCN 

22.7 
0.7 

20.9 
0.6 

19.7 
0.5 

k-NSN, 
500 
mut. 

22.8 
0.6 

21.1 
0.7 

20.0 
0.8 

voting 
k-NSN, 

500 
mut. 

22.0 
0.6 

20.5 
0.5 

19.2 
0.5 

£-NSN, 
2500 
mut. 

22.9 
0.8 

21.2 
0.6 

19.9 
0.6 

voting 
/t-NSN, 

2500 
mut. 

22.2 
0.6 

20.5 
0.5 

19.2 
0.4 

Table 1: Comparison of described algorithms on remote sensing data 
It should be noticed that the described voting technique decreased the test errors of 

all respective base classifiers in all cases, and also decreased the error variance in most 
cases. The average errors for the most successful classifier (i.e. voting k-NSN with 500 
mutations) were lower than the errors offered by the plain k-NN rule by more than 2%. 

In Table 2 we compare the numbers of NCN neighbors used for each partition of the 
datasets and the maximal numbers of NCN neighbors in the voting scheme. For example, 
the ratio of about 1.6 means exactly that on the given dataset the voting algorithm is on 
the average slower than plain fc-NCN by the factor of about 1.6. 

size 

500 

750 

1250 

classifier 
case 

k in plain 
k-NCN 

kmax in voting 
k-NCN 

k in plain 
k-NCN 

kmax in voting 
k-NCN 

k in plain 
k-NCN 

kmax in voting 
k-NCN 

partition number 

01 

11 

19 

14 

17 

15 

22 

02 

10 

26 

11 

28 

13 

15 

03 

21 

24 

11 

16 

11 

24 

04 

14 

27 

14 

29 

14 

18 

05 

7 

25 

15 

12 

27 

16 

06 

10 

13 

10 

14 

7 

19 

07 

15 

20 

21 

20 

11 

21 

08 

21 

19 

7 

13 

12 

29 

09 

11 

20 

20 

20 

14 

23 

10 

17 

22 

10 

17 

13 

20 

mean 

13.7 

21.5 

13.3 

18.6 

13.7 

20.7 

ratio 
*-max 1 

global k 

1.6 

1.4 

1.5 

Table 2: The values of k selected for each partition 

7 Remarks about the k-NN, k-NCN and fc-NSN classifiers 

The goal of our work was to create a homogeneous ensemble of £-NN-like classifiers 
which would differ only in the number k of neighbors used for prediction by each 
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component. The ensemble was expected to be less prone for overfilling the training data 
and an additional motivation was a modest increase of the classification time. 

We obtained quite promising results. There is some resemblance between our 
method and the old idea of weighted £-NN [19, 20]. Nearer neighbors generally affect 
more component decisions than farther ones. This is similar (but not equivalent) to 
setting weights. One difference to the referenced concept must be however stressed: our 
"weights" are rank-based, not distance-based. Although the pointed effect may shed 
some light on why the scheme can work, definitely much more insight is required. 

In our previous paper [21] we conjectured the introduced voting idea may be applied 
also to classifiers more complex than &-NN. Indeed, the results of voting £-NCN and k-
NSN presented here confirm attractiveness of the approach. The classification speed 
decrease, really small in the voting £-NN case, is however greater now, reaching in our 
experiments about 50% penalty with £-NCN. This, however, still contrasts with most 
ensemble methods, where the slow-down compared to a single component classifier is 
usually proportional to the number of components. 

We have not tried to combine the voting idea with any pairwise scheme for 
multidecision tasks [16, 22]. This is going to be a subject of our future experiments. 

A separate contribution of this paper are further tests of the £-NCN and &-NSN rules. 
The surrounding neighborhood concept and in particular its Nearest Centroid realization, 
poses several interesting questions: 

• Does the centroid criterion reflect the neighborhood homogeneity really well? (Note 
a set of points (=neighbors) on a line could have a gravity center exactly at the test 
sample q, but intuitively we would not call this set as lying symmetrically around q.) 

• Even with the centroid criterion in mind, are there possible other efficient methods of 
optimizing the neighborhood? 

• What about voting over several (different) surrounding neighborhoods? 

• For a given set, is it possible to predict if a given method succeeds or fails? 

Of course, the last question is of much more general importance. 

8 Reference set size reduction problem 

The classifiers for remote sensing problems are usually constructed with the use of the 
large date sets. For this reason the classification speed may be not satisfactory. The most 
promising way to make the classification faster consists in reference set reduction. It is 
an interesting problem how to reduce the reference set or to replace it by a smaller one 
without a remarkable decrease of the classification quality. Numerous effective reference 
set reduction algorithms have been devised only for the 1-NN rule that usually yields 
worse performance as compared to the standard &-NN rule. For this reason the classical 
&-NN rule may first be approximated by the 1-NN rule. To do this, it is sufficient to 
reclassify the original reference set, i.e. training set, and then to reduce it and use with the 
1-NN rule. However, it is also worth to check how behaves the £-NN rule operating with 
the reduced sets obtained for the 1-NN rule. 

Three most popular reference set reduction [23,24,25] algorithms based on 
consistency idea will be compared with the approach that consists in reference set 
partitioning. The consistency means that 1-NN rule operating with the reduced set 
classifies correctly all points from the original reference set. These algorithms determine 
the size of the reduced set. The procedure based on reference set partitioning described in 
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[26] can also define the size of the condensed reference set. The term condensed is used 
to stress that the obtained set is not a subset of the primary reference set. A slight 
modification of this procedure allows to condense the reference set to the desired size. In 
the next two sections the detailed description of the analyzed methods of the reference set 
size reduction will be given. 

9 Reference set reduction algorithms 

Hart's algorithm. The first point from the reference set is qualified to the (initially 
empty) reduced reference set. Next, the remaining points of the primary reference set are 
classified by the 1-NN rule with the current reduced reference set. Each misclassified 
point is added to the reduced reference set. Such classification of all points from the 
primary reference set is repeated as long as m subsequent classifications do not increase 
the size of the reduced reference set. The first points selected to the reduced reference set 
can lie far away from the class boundary. This disadvantage of Hart's algorithm has been 
removed by Gowda-Krishna modification. The Hart algorithm was originally proposed in 
the paper [23]. 

Gowda-Krishna's algorithm. A mutual distance measure mdm(x) is associated with 
each point x of the primary reference set. The mdm(x) is calculated in the following way. 
For the point x the nearest point y from the opposite class is found. A number of points 
from the same class as x that lie closer to y than x to y is the value of mdm(x). Next, all 
the points of the primary reference set are arranged according to growing values of 
mdm{x). Finally, the Hart algorithm is applied to the reference set ordered in this way. 
This modification of Hart's algorithm was proposed in the work [24]. 

Tomek's algorithm. Each point x for which exists a point y, from another class than 
x, such that the internal part of the ball spanned by the points x and y does not contain any 
points from the reference set, is qualified to the reduced reference set. Originally [25], 
this algorithm was defined in a different way. Furthermore, the two class problem and the 
Euclidean distance function was assumed. 

The authors of the three above described algorithms tried to construct the so called 
consistent reduced reference set, i.e. the set which, when used as the reference set with 
the 1-NN rule leads to correct classification of all points from the primary reference set. 
However, in the case of Tomek's algorithm the consistency is not guaranteed. 

Gowda-Krishna algorithm produces the smallest size of the reduced set, the Hart's 
algorithm is the fastest and the Tomek's procedure generates the separating hypersurfaces 
close to the ones based on the whole reference set. 

10 Reference set condensation algorithm 

To describe the algorithm it will be convenient to introduce the notion of a diameter of 
the set, which is understood as the Euclidean distance between its two farthest points. 

Condensation by multiple reference set partitioning. At the start point the 
condensed set contains only one point G(l), equal to the reference set gravity center and 
labeled as the majority of its points. So, the label of this point corresponds to the class 
most heavily represented in the training set. Then two farthest points P! and P2 of the 
reference set are found. The first partition is performed by a hyperplane passing in the 
middle between Pj and P2 and orthogonal to straight line that joins these points. The 
points, which lie closer to the point Pj than to the point P2 or in the same distance form 



324 

the set C(l) and the remaining points create the set C(2). The previous point G(l) is 
replaced by the gravity center of C(l). The point G(l) and the gravity center G(2) of 
C(2) assume the labels as the majority of points in the sets C(l) and C(2) respectively. 
Now, the condensed set contains two points, G(l) and G(2). 

Let us assume that the original reference set has been dropped into m-\ subsets C(/). 
The current condensed set contains then m-\ points G(i), gravity centers of C(/). From 
among all C(i') containing at least two points from different classes the set C(/) with the 
largest diameter is selected. This set with the help of its two farthest points Pj and P2 is 
divided into two parts D! and D2. The old C(/) is replaced by D! and the new set 
C(m)=D2 is created. Thus, the number of subsets C(/) has been increased from m-\ to m. 
Taking new G(/) as the gravity center of D! and computing G(m) as the gravity center D2, 
the size of the current condensed set will be increased to m. In this way, by virtue of the 
described recursion scheme, the number of subsets can get larger and larger until all C(0 
with at least two points from different classes will be exhausted. So, the size of the 
condensed reference set is determined. A more formal description of this algorithm can 
be found in [26]. 

11 Computational results 

Five hundred pixels (one hundred from each class) were randomly selected to be used as 
the training set, and the remaining 4624 pixels were treated as the testing set. Such an 
experiment was repeated 10 times. In each experiment all the algorithms presented in the 
previous two sections were applied. 

The optimum value of k was found first for the whole training set by use of the leave 
one out method. If more then one value of k offered the smallest error rate then largest 
one was selected since such a choice promises a lower standard deviation of the 
misclassification rate. Then this k was used to reclassify all ten training sets. The raw 
and the reclassified training sets were separately applied for the reduced and condensed 
reference set constructions. The values of k for the reduced (condensed) sets were 
calculated also by the leave one out method only on the basis of these sets. Error rates 
were calculated by use of corresponding testing sets. Results of the computations were 
gathered in Table 3. The most interesting results have been marked by the bold font. 

One can notice that Tomek's algorithm gives very weak reduction. The error rates 
are nearly the same as the ones offered by the complete reference set, but the reduction 
degree is very small. The use of 1-NN rule with the reclassified set instead of &-NN with 
raw data is fruitful. The former results in 205 points in the reduced set and error rate 
equal 26.5%, while the latter produces 294 points and the misclassification rate equal 
32.9%. No significant difference is observed between the Hart and the Gowda-Krishna 
procedures. 

Remarkably better results, taking into account the reduction degree as well as the 
error rate, promises the approach based on reclassified reference set dividing. It offers 
twice smaller reference set size reduction saving nearly the same performance as Tomek's 
algorithm. The solution with fc-NN rule, k>\, costs slightly more time in comparison to 
the case when k=l. A suitable modification of the well known Quick Sort algorithm 
allows very fast search of the nearest neighbors. 

The result of Hart's and Gowda-Krishna's approaches are also worth of attention 
because of strong reduction. 
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Decision rule —> 

Reduction type 4 

Column 0 

No reduction, mean value 
Standard deviation 
Tomek, mean value 
Standard deviation 

Hart, mean value 
Standard deviation 

Gowda-Krishna, mean value 
Standard deviation 

Partitioning, mean value 
Standard deviation 

Reference set 
Original 

1-NN 

mred 

l 

500 
0 

473 
4.9 

255 
10 

245 
12 

294 
13 

error 
rate % 

2 

30.0 
1.0 

29.9 
0.9 

34.7 
1.0 

35.0 
0.6 

32.9 
1.0 

fc-NN 

k 

3 

9 
2 

8 
5 
15 
4 

26 
72 

11 
5 

/««<* 

4 

500 
0 

473 
4.9 

255 
10 

245 
72 

294 
75 

error 
rate % 

5 

23.1 
0.8 

23.5 
7.0 

27.4 
2.4 

29.3 
2.9 

25.1 
7.5 

Reclassified 
1-NN 

Wrerf 

6 

500 
0 

419 
72 

162 
77 

149 
77 

205 
14 

error 
rate % 

l 

26.1 
0.6 

26.1 
0.6 

28.3 
1.3 

28.9 
1.3 

26.5 
7.2 

Table 3: Results of reference set size reduction 

12 Conclusions 

As it was explained in Section 1, the classifiers based on &-NN rule promise the 
performance close to the one offered by the Bayes classifier if the training sets are 
sufficiently large. We have shown that some modifications of the fc-NN rules can 
outperform the original standard version, it depends on the data we deal with. The larger 
are the training sets, the smaller difference between the standard and the modified version 
of the NN type classifier can be expected. We feel that also the performance of the £-NN 
rules or 1-NN rule operating with the reduced or the condensed sets converge to the 
performance of the Bayes classifier. Thus, for the very large data there will be no reason 
to use the reference set of the original size. 

In the case of the rules based on the reduced reference sets we have used the standard 
k-NN rule with the raw data or 1-NN rule with the reference sets reclassified by the £-NN 
rule. It would be interesting to examine the results, which could be obtained by 
association the reduced reference sets with the proposed £-NSN classifier. The classifier 
for remote sensing problems can be based on several time larger data that the ones used in 
the present paper. The reference set reduction can not only accelerate the classification 
phase but also the training stage. 

It is worth to notice that reference set condensation algorithm starts with one point in 
the condensed set and stops when each subset of the original reference set contain points 
from the one class only. So, there is a possibility to control the classification quality after 
each sequential increasing of condensed set by one point. In this way we can find the 
most appropriate compromise between the speed and the quality of the classification 
phase. 
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CHAPTER 14 

UNSUPERVISED SEGMENTATION OF 
HYPERSPECTRAL IMAGES USING GAUSS-MARKOV 

RANDOM FIELDS AND PCA 

C. H. Chen and Hao Chen 

University of Massachusetts Dartmouth, N. Dartmouth, MA 02747-2300 USA 
E-mail: cchendcbumassd.edu 

Processing, analysis and transmission of the remote sensing data require large amounts 
of computation and storage space. Both the Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA) are useful to reduce the remote sensing data 
size. Both are globally optimum according to some criteria. This chapter introduces the 
Gauss-Markov random field, which is assumed to be the model of observed terrain, and 
the maximum a posteriori (MAP) estimation for remote sensing data compression and 
unsupervised classification. The PCA with MRF method and clustering algorithms are 
applied to an AVIRIS data (Hyperspectral imagery data). By comparing with the result 
of PCA/ICA and k-mean algorithm, remote sensing data compressed with PCA and 
MRF can be more easily classified by the unsupervised classification algorithm. 
However the popular FCM (Fuzzy-c-means) algorithm does not perform significantly 
better in the remote sensing data than the k-mean method though it needs larger amount 
of computation. 

1. Introduction 

The remote sensing imagery data can provide high qualify information about observed 
ground, which can be utilized for background characterization, object recognition etc. 
The high dimensionality of remote sensing data, such as Hyperspectral Image Data (HSI) 
with hundreds of spectral bands, promises to provide better background information and 
other potential applications such as target detection. However, high dimensional data 
brings new problem in data storage, transmission and analysis. To obtain the information 
of background characterization of observed region, the supervised or un-supervised 
classification can be performed according to the data type and attributes. No matter what 
classification method is used, the reduction of data dimensionality should be conducted 
first to allow effective feature extraction for classification because the redundancy of 
remote sensing data will cause unacceptable storage and computation. Reduced feature 
dimension will also minimize the problem with the Hughes phenomenon in pattern 
classification [1]. Principal Component Analysis (PCA) is generally used to de-correlate 
data and maximize the information content in a reduced number of features. This 
maximization of information is based on the covariance matrix of different spectral 
bands. But the principal components contain only the background of observed terrain due 
to its global optimization. Some small targets or small edges are possibly smoothed out. 

Markov random field (MRF) theory provides a basis for modeling contextual 
constraints in signal/image processing, analysis and interpretation [2]. Several methods 
are introduced and published about 2-D image restoration or reconstruction with MRF 
model [3-7]. Also, MRF is used in remote sensing data classification [8-11]. In this 
chapter, we will use MRF model in the remote sensing data for data compression. With 
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MRF model, not only the correlation of different bands but also the correlation of 
neighborhood pixels is exploited to reduce remote sensing data size. The observed 
ground region is assumed to satisfy the MRF model and the maximum a posteriori 
(MAP) estimation is used to compress and construct the remote sensing data with PCA 
method [12,13]. The results on one Hyperspectral Image Data (HIS) data set will be 
presented to illustrate the effectiveness of the proposed approach. 

2. Markov Random Field And PCA 

Various vision/image models using MRF have been introduced to solve the practical 
problems such as image restoration and reconstruction, edge and region segmentation, 
texture, stereo and motion, object matching and recognition. The Markov Random Field 
(MRF) is first used to restore/reconstruct noisy image by Geman and Geman [3]. The 
simulated annealing algorithm is introduced from the Gibbs distribution, which is 
equivalent to the MRF, and has a good performance to reconstruct the badly degraded 
images. Based on this work, the compound Gauss Markov random field (CGMRF) 
introduced by Jeng and Woods[4] provides a faster convergence algorithm compared to 
the previous ones that have good performance in practical image restoration. 

2.1 Neighborhood System 

Let x = { xtj e 3i: i=l, 2, •••, M; j 1, 2, —, N }, containing MxN real valued pixels, be a 
sample of the image. Let L denote the set of the pixels in the image. Each pixel xtJ in the 
image are related to others via a neighborhood system. The neighborhood system of L, 
denoted as ft = { fijj : (i, j) e L, ^, ;cL }, can be defined as any subsets of L, which satisfy 
[15], 
1. The pixel is not neighboring to itself: (i, j) <£ /J.; 
2. The neighboring relationship is mutual: if (k, I) e fl and 7J is the neighborhood system 
of (k, /), then 0,7) e 77. 

The neighborhood system with a definitive order is shown in Figure 1 (a), where 1, 
2, denote the order of neighborhood system. The second order neighborhood system 
has eight neighboring pixels as Figure 1 (b). Therefore, it is also called the 8-
neighborhood system. 

2.2 Markov Random Fields 

The image x is a Markov random field on L with respect to the neighborhood system 77 if 
and only if the following two conditions are satisfied: 
1. P(x)>0, VxeX 
2. P(Xjj\xkJ: (k, /)eL; (k, l)HUjD = P(xUj I xM: (k, /)e 77,-_,) 

Those conditions are introduced for some applicable reasons and can be satisfied in 
practice. When the second condition is satisfied, the joint probability P(x) will be 
uniquely determined by its local conditional probabilities. So the MRF represents the 
local characteristics of x. In other words, only neighborhood pixels have direct 
interactions with each other. A MRF can have other properties such as homogeneity and 
isotropy. It is said to be homogeneous if P(xit j I x^ (. (k, I) e 77,- / ) is independent of the 
position of current pixel (/, j) in L. The random field satisfying the above condition is 
called Markov random field with the neighborhood system r\. 
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Figure 1 (a) ordered neighborhood system for MRF. 

(b) The second order neighborhood (c) The clique types of the second order neighborhood system 

2.3 Gibbs Random Fields 

A set of random variables x is said to be a Gibbs random field (GRF) on L with respect to 
77 if and only if its configurations obey a Gibbs distribution. A Gibbs distribution takes 
the following form: 

1 ( U(x)^ 
/>(*) = —exp (1) 

where Z is a normalizing constant called the partition function, T is a constant parameter 
called the temperature which is usually assumed to be 1 unless otherwise stated, and U(x) 
is the energy function [15][16], which is the sum of clique potentials. The cliques of the 
image are defined to be the subset of the L. The clique types of the second-order 
neighborhood system are shown in Figure 1 (c). 

It is said to be isotropic if the clique potentials are independent of the orientation of 
clique. The isotropy is a property of direction independent regions. To assume the data 
homogeneous and isotropic will considerably simplify the model description and reduce 
the complexity of algorithm. The MRF is characterized by its local property (the Markov 
chain) whereas a GRF is characterized by its global property (the Gibbs distribution). By 
the Hammersley-Clifford theorem, these two types of random fields are equivalent. In 
this chapter, the remote sensing data is assumed homogeneous and isotropic. 

2.4 Principal Component Analysis (PCA) 

The PCA (Karhunen-Loeve transform) is a linear transformation for a sample in n-
dimensional space which makes the new coordinate axes uncorrelated. So PCA method 
has in practice been used to reduce the dimensionality of problems, and to transform 
interdependent coordinates into significant and uncorrelated ones. Let x denote an n-
dimensional random vector and assume it has zero mean, E(x) = 0 where E() is statistical 
expectation. The covariance matrix Cxx of the sample x is defined as: 

C^Eix-x7) (2) 
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Let Ai, A2, ••• , A„ be the eigenvalues of the matrix C« and Ai > A2 > ••• > A„. Also the 
matrix V = [vi, v2, •••, vm ] (m < ri) is constructed by the eigenvectors vu v2, - , vm of C^, 
where Vi, v2, — , vm are associated with Ab A2, — , An, respectively. The matrix V is 
orthogonal and its column vectors satisfy the orthonormal condition. We project x onto 
the principal directional axes by matrix V: 

z = VTx; Zj = vjx 7=1, 2, •••, m; m<n (3) 
Here z, is the projections of x onto the 7-th principal directional axis and called the 7-th 
principal component. When m<n, data dimension is reduced in the minimal mean square 
error sense, the error being equal to the sum of the Ai+i, An+2, — , An, . So it can be said 
that the PCA method uses second order statistics information to reduce the data 
dimension in the minimal mean square error sense. 

3. Gaussian MRF for Remote Sensing Data Compression 

With good qualify remote sensing data such as SAR data, multi-spectral imagery data etc, 
the detail of a ground region can be obtained. In general, data compression is necessary to 
extract desired information from remote sensing data especially for HSI data, which 
consisted of hundreds of spectral bands. In this section, the compound Gaussian Markov 
field will be used to compress the remote sensing data with PCA method. 

3.1 Compound Gaussian MRF Data Model [4] 

Under the homogeneous MRF assumption of image model with respect to a certain 
neighborhood system 77, in our experiments the second-order neighborhood system is 
chosen, any pixel xit; of image can be predicted by the linear combination of the its 
neighborhood system: 

xiJ= !Lci-k,Hxk,i+nij (4) 
kfcV 

where the parameter c,.^.; is independent of the position of pixel (i, j) if the model is 
homogeneous and n i ; is a Gaussian random field. The conditional probability function of 
pixel XQ given its neighboring system is a Gaussian distribution: 

'{xtj^ijY- Jlno~n 
•exp 

( 

' ZJ Ci-k'J-
k,ler] 

X 
•lAk,l 

lot 
(5) 

The image sample is arranged initially into a column vector x=[xt, x2, , XM*N]T in 
the lexicographic order. M and N are row size and column size of image data respectively. 
This column vector will then be a set of jointly Gaussian random variables that also 
possess the Markov property. Thus the joint probability density function of the random 
variables constituted by the pixel values in x has the form: 

p(x)-. 
\A\2 

M 
MN/2 

exp-{—xTAx (6) 

where A is the inverse of the covariance matrix of the random variable x. IAI is its 
determinant. Since x can be represented by a GMRF model, the conditional probability 
density function will be only dependent on its neighbor rj. 
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As proposed by Jeng and Woods [4], the relationship of a pixel in compound GMRF 
and its neighborhood system is presented by the collection of binary variables C = {ck

m „: 
k=\,2, •••, 8; m = 1, 2, ••-, M; n = 1, 2, —, N }, where kis the same as the Figure 1 (b). If 
the neighbor pixels are independent, the associated c mn is set to be one and otherwise 
c*m>„ is equal to zero. The conditional probability density function of x given the edge 
configuration C is given by: 

( ? ) 1 \ a " M 

IC^f1,.-1-.,-!) + J-2Z 
where ,u is the "global smoothness" of the compound GMRF, the inverse of the "global 
variance". The wu w2, ••• , vv8 control its relative "smoothness" of eight directions which 
correspond to eight neighborhood pixels in the second order neighbor system. In general, 
the MRF model for image data can be assumed as homogeneous. So the wt is independent 
of the position of the pixel in the image. Z2(C) is the normalizing constant called partition 
function. We can rewrite equation (7) in vector form as: 

,_Hc| P ( X \ C ) = > K ')2cxV\-^xTA(C)x\ (8) 

3.2 Observed Data and Maximum a Posteriori (MAP) Estimation 

Each observed data y can be regarded as the noisy version of original data JC. we can write 
y = x + n, where n is a sample of a white Gaussian noise field with variance o„2. The 
conditional probability density function of y given JC can be easily given by: 

p(ylx)=-,—^M]2exv\-^r(y-x)T(y-x)\ (9) 
(27ia2

n) [ 2°„ J 
The estimation problem is to obtain the original data x from the observed data. With 

the compound MRF image model of x in the previous section, the estimation of original 
image x would be acquired with observed y and the matrix A(C), which should be 
estimated/obtained from the observed y. In general, we have /?(jdC,jO <* p(x\C)p(y\x): 

p(*\C,y)~- — ^ exJ-lxTA(C)x--±-T(y-X)T(y-X)\ (10) 
(2na2

n) *Z2{C) I 2a* 2°n J 

where ox
2 represents a "global variance" of the image. 

Maximizing the equation should satisfy: 

( a2 T1 

/ + -*-A(C) y = (l + kA(C))~1y (11) 

where / is the identity matrix and the variance ratio k has to be estimated. 

3.3 Compound MRF and PC A for Remote Sensing Data 

Let Y denote the remote sensing data set containing L dimensionality which can be 
composed of different spectral bands or polarized directions. The size of observed region 
is MxN pixels which are real valued pixels. With the PCA method, we can reduce the data 
size with equation (3). 
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z=vx 

With PCA method, the remote sensing data is projected onto the m principal 
directions and the data dimensionality is reduced. Because maximizing information is 
based on the covariance matrix of different spectral bands, this method is just the global 
optimization and does not keep the small target or small edge information well, which is 
mainly the local information. 

The introduction of the compound MRF model to compress the remote sensing data 
will keep the small features of a terrain. Each image of the remote sensing data can be 
considered as one noisy version of observed terrain. Let Z be the L independent 
information sources of terrain and N the noise vector introduced from the total sensor 
system. The remote sensing data can be presented as: 

Y=U*Z + N (12) 
where each image data is arranged initially into a row vector of Y in the lexicographic 
order. The data Z is what we wanted. With the description in previous section, the final 
estimation with reduced data dimension can be written as: 

= VY({l + kA(C ))~1J (13) 

where V is defined in equation (3). Applying equation (13) to reducing dimensionality of 
the estimating data Z , the parameter k and matrix A(C) play a fundamental role in the 
problem at hand. 

3.4 Parameter Estimation and Selection 

The parameter estimation and selection are important for the MRF data model [17]. In 
general, the Maximum likelihood estimator (MLE) [5], Least Squares estimator and 
Minimum Description Length Principle [6] can be applied in the parameter estimation in 
a single image. Because of its high dimensionality of the remote sensing data, a distinct 
method should be used to estimate the parameter. 

3.4.1 The matrix A(C) 
The A(C) is dependent on the parameter wt and c'„,m («=1, 2, •••, N; m=l, 2, •••, M and i=\, 
2, •••, 8). The parameter c'„,m is the binary value with edge information. Each of those, 
when set to zero, breaks the direct bond between pixels in the clique. The C should be 
obtained through parameter estimation. With a large data dimensionality of remote 
sensing data, C can be obtained from the correlation of pixel pairs within the 
neighborhood system. 

Let v denote a K dimensional random vector, which can be a column vector of 
remote sensing data y and assume it has zero mean. The cosine of the angle between two 
vectors is defined by: 

coS(0(yi,3'2))=ir%irT- w 
NI2NI2 

where (x, y) is the Euclidean inner product ((x,y) = xTy ); and lbdl2 is the Euclidean norm 
of vector x (llxll2= (xj:)1'2). Using the Cauchy-Schwarz inequality, the cosine of any two 
vectors will be over [-1, 1] internal. So we can set the parameter c'„,m can be set as: 

C = { ' C O S W J - < - > ) ^ ,15, 
[0 otherwise 

where y'nm is the /-th neighbor of the pixel _y„>m (see Figure 1), a is the threshold and can 
set between [-1, 1]. The a is decided according to the smoothness of remote sensing data. 
The smoother the data the larger the a is. 
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The condition l - 2 ^ w t >0 is sufficient for A(C) to be nonsingular for any c'„,m 

[4]. The Wi, ( i =1, 2, —, 8 ) denotes the relative "smoothness" of its direction. In usual 
and practical situations, the MRF model is isotropic for image data. So all w, will be 
equal. This indicates the 'smoothness' is independent of the directions. Thus the 
condition can be simplified as w < 1/16. We set the w equal to 0.062 for the all 
experiments in this paper. 

3.4.2 Coefficients 
With the equation (11), we can see that the coefficient k is the ratio of noise variance and 
"global variance" of image data and should be estimated with the original data. The noise 
variance can be obtained from the estimated value and observed data by: 

1 N M 2 

ff-=T77XX(^.-.-^) (16) 
iVlIY n=[ m=i 

Because each remote sensing data set is only a sample of observed region, the exact 
"global variance" cannot be obtained with just one data set. Figueiredo uses the minimum 
description length to estimate the global variance of 2D image [6]. The remote sensing 
data can be regarded as data set of several 2D image data. For hyperspectral image data, 
there are hundreds spectral bands. Estimating the global variance with MDL will mean 
huge amount of computation. At the same time, the remote sensing data have abundant 
information. So we can consider using other method to estimate this parameter. Although 
the exact equation for global variance couldn't be obtained, we can say that the global 
variance of remote sensing data with Gaussian MRF model can satisfy following relation: 

1 ji o:~— XXI>; NM *-"-"-* < \ • i 

where c'„m is the same in the equation (15), xnjm is an estimate of current pixel. With this 

relation, the coefficient k will satisfy the relation: 

n=\ m=\ 
1 N M 8 2 

rT7 2-12-12-1 C",m \Xn,m~ Xn,m ) 

(18) 

NM n=lm=u=1 

The coefficient k is belonging to the region [0, 1]. This can be satisfied in most 
situations because the noise power is less than the image data power. So the determinant 
of kA(C) will be much smaller than one especially with the large size image data because 
only the position near the diagonal of matrix is non-zero and the each element of the 
matrix is not greater than one. 

In practice, when k is equal to the real ratio of on
2 and ox

2, k will be stable in its 
neighbor region. It's said that the right side of (18) should be local maximum or 
minimum. In the previous description, k is selected in the region [0, 1]. So, we can 
determine the coefficient k with the iteration: initializing the k and increasing k with a 
variable step, which will decrease slowly according to the estimation error, until the left 
side of (19) is stable. Figure 2 (left) shows the k taking a maximum value over [0, 1]. 

The simulation result is presented as follows. The parameter a, which is located in 
equation (15), is equal to 0.4. The white Gaussian noise is added to the remote sensing 
data and estimated by previous method. The standard deviation of noise is 5, 6, 7 and 8 
respectively. The estimates of cn approach the real values when the iteration increases. 
Table 1 shows the final estimates of an. The error of estimates is below 3%, which can be 
considered as reasonable. 
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o„ 

Estimate 

Estimation error (%) 

5.00 

5.09 

1.8 

6.00 

6.00 

0 

7.00 

6.90 

1.4 

8.00 

7.82 

2.2 

Table 1 The Std of noise and its estimation 

0.45 

* 0.3 

1 
i 
S..= 
s 

,°« 
«„ 

0.05 

^ 

• i K " 1 ~ 

171 i 
j / : 

/': ;i • 

w 

£ 

** 8 

i" i 
20 

10 

! ; • raalSld = 2S 
> rM)Vir = 36 
+ raIVir-49 

» + 
+ 

i • + 
• 

• - * * 

* 
t 

• 

. • 

' 

! 
! 

* 
, .. ... .• 

i * 

• , r 

: . ' 

', 1 

t 

+ 

• 
, • .*...*...•. .# ..* : 

« » * . i * 

, . « , » 

2 4 6 A 10 12 

Figure 2 (left) the estimated ratio of "noise variance" and "global variance" relative to the 
coefficient k; (right) The estimation of on and iteration number 

3.5 Simplifying the Algorithm 

There is a matrix inverse operation in equation (13). When the size of observed region 
increases with n, the size of matrix A will increase with n2. For example, the matrix A 
will be 10,000x10,000 when the data size is just 100x100. So the inverse operation of 
such matrix will need huge computation unless most elements in the matrix A are zeros. 
Because only the elements near the diagonal of A are nonzero and their values are much 
smaller than 1 (w, is equal to 0.062) and coefficient k is less than one, the determinant of 
kA is greater less than one especially when the data size is great. So we can simplify 
Equation (11) 

((M(C) + /)-1)r=f/+i(-M(C))'J-/-*A(C) (19) 

Note also that the matrix A{C) is symmetrical because neighborhood system is mutual: 
A(C)T = A(C) (20) 

With this simplified equation (21), we always can obtain the estimate X from the HSI 
data Y whether the ( / + kA(C)) is singular or nonsingular. 

3.6 Algorithm Structure 

Equation (13) presents the basic idea on how to compress the remote sensing data with 
compound MRF and PCA method. Several parameters should be estimated before 
applying this equation. The total algorithm is carried out in the following steps: 
1. Estimate the potential matrix A(C) from remote sensing data Y with equation (15); 
2. Estimate the coefficient k given A(C) and remote sensing data Y; 
3. Get the transform matrix V with PCA method; 

4. Obtain Z with the reduced data dimensionality. 

This algorithm includes one loop which is basically an iterative parameter 
estimation scheme. The complete structure of the algorithm is depicted in Figure 3. 
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Get the A(C) matrix by Eq (16) 

Initialize k 

Updataxby Eq(14) 

Adjust step k 

Increase k with step k 

Get the Vwith Eq(3) 

1 
Get the Z with Eq(14) 

Figure 3 The structure of the proposed algorithm 

4. FCM and its Extension 

4.1 Fuzzy-C-Mean Algorithm (FCM) 

Clustering is the process to group a sample set of feature vectors into K cluster sets via an 
appropriate similarity criterion in the self-organizing mode. The k-mean algorithm and 
the ISODATA algorithm are two common clustering algorithms which use classical 
(crisp) logic. An element either belongs or does not belong to a set. In a fuzzy set, 
however, the elements can have the partial membership in multiple classes, which has a 
value anywhere between 0 and 1. The membership grade is associated with each element 
to indicate the degree to which the element belongs to the set. 

The fuzzy c-means (FCM) [18] algorithm also is an iterative clustering method for 
unsupervised classification of the cluster data set. Given a data set of samples Y = {yu y2, 
..., yN] and each element v, is a cluster with m real values. This data set should be 
classified into c class. So the objective of FCM segmentation is to generate the cluster 
centers V = {vl5 v2, ..., vc} and the class membership matrix. The class membership 
matrix, also called fuzzy partition, has the form U={ui, u2,..., uN). Each element ut-[ My, 
ui?2, -.., w,,c]

r is a c-dimensional vector with real value, in which u ,- j represents that y, 
belonging to the class j , whose center cluster is v,, with the membership grade u, j . Also 
the fuzzy partition of Y is defined as: 

c 

{ Ue3ic>N : Uij e [0, 1] }; £ « ; J = 1 for any i; (21) 

c 

The condition ^K,-_y = 1 means that the sum of fuzzy partition should be equal to 1 
H 

for each sample cluster. The cost function Jm of FCM algorithm is defined as a function 
which projects the fuzzy partition matrix into the real interval [0, °°]. That is Jm is 
defined as: 

Update x and » by 
Eq(17)andEq(18) 
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Jm(U,v) = f£(ukJ)
m\\yt-Vi\f (22) 

k=l i = l 

where \\yk - v,ll2 are square of the Euclidean distance between yk and v,-. Therefore, the task 
of algorithm becomes minimizing of Jm with weighting exponent m. This leads to the 
well known FCM clustering algorithm introduced by Bezdek in 1984. The weighting 
exponent m has the effect of reducing the squared distance error by an amount that 
depends on the membership grade in the cluster. A s m - ) 1, the partitions that minimize 
Jm become increasingly hard. Conversely, higher values of m tend to soften a samples 
cluster membership, and the partition becomes increasingly blurred. Generally m must be 
selected by experimental means. The m is equal to 3 in all experiments of this paper. 

The number of clusters c is an important parameter for FCM algorithm, which 
should be determined beforehand. The appropriate number of clusters depends on 
modeling goals, required accuracy and the distribution of data. For example, the number 
of clusters should be two when the FCM algorithm is used to make binary decision. 

4.2 Extended FCM with Cluster Merging and Splitting 

In applying FCM algorithm, the cluster number k and initial cluster center play important 
roles. Their initial values should be determined beforehand and will affect the 
performance of the algorithm. Cluster merging and/or cluster splitting are often needed 
to determine the final set of clusters. 

4.2.1 Cluster Merging 
The cluster merging is based on the similarity of two clusters. The cluster similarity can 
be defined through several methods [19]. In this section, one new definition will be given 
out. If the two cluster centers are very close, the fuzzy partition for those cluster centers 
will be very similar. So the cluster similarity coefficient between cluster center v,- and 
cluster center v;- can be defined by: 

1 N 
Ii.j=ljljutj-Uk.j\ ( 2 3 ) 

" t=i 

The similarity between clusters is evaluated pair wise and the most similar pair is 
merged according to the previous cluster similarity coefficient and a threshold X. Two 
clusters v, and cluster y,- are merged simply by adding up the row i and j of the fuzzy 
partition U and remove the two original rows. 

uk,i = ukii + ukil k= 1,2, . . . ,N (24) 
where / is the fuzzy partition of new cluster. 

4.2.2 Cluster Splitting 

When the number of clusters is less than the low limit, which is set before application, 
cluster splitting is performed to guaranteed number of clusters. Set each cluster with m 
real values. The cluster / with largest the class radius will be split into two clusters by 
following step: 
1. Get the m-\ nearest clusters from the cluster / and the difference vector v; - v, (i = 1, 

2, ..., m-\) between the cluster / and those clusters; 
2. Find the unit vector w which is vertical to all the difference vector v; - v,• (/ = 1,2, ..., 

m-X) 
3. Two new cluster centers are equal to (v/ +r-w/2) and (v; - rw/2), where r is class 

radius obtained by the following equation: 
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N N 
r = X"wlv/-3'i||/XMw 

k=\ I k=\ 

where II- II the Euclidean norm of vector. 

(25) 

4.2.3 Extended FCM Algorithm 
The FCM algorithm with the cluster merging is carried out in the following steps: 

1. Set the upper limit to the number of clusters; initialize the cluster centers V according 
to this limit and set t = 0; 

2. If t ̂  0, calculate the c cluster centers V*f) with fuzzy partition matrix l/!): 

M=±a 
x(»sr yk 

WiJ 
/ = 1, 2, ..., c 

3. Update the fuzzy partition matrix U(t): 
If yk *• Vj for any i (i = 1,2,... ,c), then: 

,('+!) 
( i \n-\ 

lk,j 

i= 1, 2, ...,c 

Else, set: 

4. Compare C/'+1) and {/° 

(i+i) 
u • —u (') 

(26) 

(27) 

(28) 

If 4f/ < e, continue; 
Otherwise, set t = M-l and go to step 2 

5. Compare the similarity coefficient k and the similarity threshold X 
If k < X, merge the similar clusters and go to step 2; 
Otherwise, continue 

6. If the class number is less than the lower limit, split the largest cluster; 
Otherwise, stop iteration and output the fuzzy partition matrix. 
The FCM algorithm with cluster merging and splitting can be considered as the 
extended FCM. So the total algorithm is carried out according to Figure 4. 

(29) 
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The input sample set 

Initialize the upper and 
low limit of cluster number 

Initialize the cluster center 

Apply the FCM algorithm until the 
convergent Fuzzy partition U 

Cluster emerging 

Cluster splitting 

Output Fuzzy partition 

Figure 4 Structure of the extended FCM algorithm 

5. Application to Hyperspectral Images 

5.1 HIS Imagery Data 

Hyperspectral Image Data (HSI), with hundreds of high resolution spectral bands, is 
usually utilized for background characterization. No matter what classification method is 
used, the reduction of HSI data dimensionality is first conducted to allow effective 

AVIRIS stands for the Airborne Visible Infrared Imaging Spectrometer. That is an 
optical sensor to deliver calibrated images of the upwelling spectral radiance in 224 
contiguous spectral channels (bands). The AVIRIS instruments contain 224 different 
detectors, each with a wavelength sensitive range of approximately 10 nanometers (nm). 
AVIRIS data used in this experiment is AVIRIS flight number f970620t01p02_r03, over 
Moffett Field, California. Image size for each channel is 614*1024 pixels. We only select 
one region with size 360*560 for experiments in this paper. Three images from three 
spectral bands of the data base are shown in Fig. 5. The truth information about ground 
cover is unavailable. So we cannot use the quantitative measurements to evaluate the 
result. 

5.2 HSI Data Compression with PCA+MRF 
Here, we use PCA+MRF to reduce the HSI data size. Figure 6 is first component with 
the PCA+MRF method. The first component gives the global information about ground 
cover. The ground cover can be main divided into two types: architecture (dark) region 
and bare land /plant (bright) region. The following components (Figure 7 and Figure 8 ) 
give more information about small feature, such as road, building etc. The gray contrast 
of the fourth component becomes less compared with previous three components. So we 
just select three components for k-mean algorithm to obtain the ground cover 
information. 
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Spectral Band 4 

Spectral Band 143 

Spectral Band 207 

Figure 5 
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Figure 6 The first component of PCA+MRF method 

Figure 7 The second component of PCA+MRF method 

Figure 8 The third component of PCA+MRF method 
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5.3 Unsupervised Classification with K-mean Algorithm 

From the experimental results on the hyperspeetral image data as well as SAR image 
data, we have determined that the FCM algorithm may not be better than k-mean 
algorithm in remote sensing data classification. So we use the k-mean algorithm to do 
unsupervised classification for HSI data. The first three components are used for 
classification and the class number k is 8. The result is shown in Figure 10. The bare 
land/plant region and architecture region in the HSI data can be easily distinguished in 
Figure 10. However, some small features, such as building blocks, roads, are blurred and 
hard to identify. Just several wide roads can be seen in this figure. To get more detail 
about ground cover, the entire method should be improved. 

Because PCA is the algorithm to achieve a global minimal mean square error, the 
first component will contain the most global information. At the same time, the first 
component has predominated signal power compared with the second and third 
components. The power of the first components is 31 times of that of second one and 27 
times of that of third one for this HSI data set. When we use the first three components to 
classify the ground cover, the first component will be predominant. So the result will be 
mostly about global feature of observed region. To avoid this problem, we should 
equalize the power of those components. In this chapter, pre-classifieation is introduced 
before data unsupervised classification. The structure is shown in Figure 11. Each 
component goes through a k-mean classification and is segmented into 8 classes. With 
those processing, the power of the three components is comparable. The data is then 
classified by the k-mean algorithm. The final result is shown in Figure 12. The ground 
cover contains mainly two classes: architecture region (dark) and bare land/plant region 
(bright). The road and building block in the architecture region is very distinguished and 
can be easily identified. 

It can be said that the PCA+MRF method with k-mean algorithm can provide good 
ground cover information with the remote sensing data. 

Figure 9 The 8 classes from three components with k-mean algorithm 
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The 1 st Component—m k-means 

The 2nd Component—W k-means 

The 3rd Component- k-means 

*H 8 gray level data w k-means > Class Types 

Figure 10 The structure for the improved classification with k-mean algorithm" 

Figure 11 The 8 classes from three components with improved algorithm 

6. Conclusion 

In remote sensing data processing and analysis, the interpretation of pixels' relation is 
complicated. In this chapter, we have developed a new approach using MRF model in 
remote sensing image data compression. The new method presented is to compress 
remote sensing data according to the MRF model and PCA method. The method has been 
able to provide large between-class-variation and thus a good unsupervised segmentation 
performance. Also, the chapter reviews the FCM algorithm and presents its extension 
with cluster merging and splitting. However, for the remote sensing data considered the 
popular FCM algorithm does not provide better performance than the simpler k-mean 
algorithm. With a large amount of computation required, the FCM algorithm thus is not 
recommended for remote sensing data processing and analysis. 
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Fusing information from sensors with very different phenomenology is an attractive and chal
lenging task for automatic target acquisition (ATA) systems. Sensor fusion improves results when 
correct target detections correlate between sensors while false alarms do not (due to different proper
ties of targets such as shape and signature of targets). In this paper, we present a series of algorithms 
for detecting and segmenting targets from their background in passive millimeter wave (PMMW) 
and laser radar (LADAR) data. PMMW sensors provide a consistent signature for metallic targets, 
however their angular resolution is too limited to support further target classification. LADAR sen
sors provide the ATA systems with high angular resolution and 3-dimensional geometric shape in
formation supporting accurate target identification. However, the shape-based segmentation can give 
very high probability of false alarm under structured clutter scenarios. Sensor fusion techniques are 
applied with the goal of maintaining high probability of detection while decreasing the false alarm 
rate. 

1 Introduction 

Sensor fusion is an attractive option for reducing false alarm rates while retaining 
high probability of detection. This statement leads to the problem of how to best fuse the 
information. A wide range of sensor fusion methods exist [1, 2, 3] and have been success
fully applied to automatic target detection and segmentation. However, the best fusion 
techniques for a given domain, a set of sensors, a dataset, and a set of algorithms for the 
specific sensors are generally not immediately obvious. 

The focus of this paper is an empirical performance comparison of fusion algorithms 
for combining the output of segmentation algorithms for PMMW, LADAR reflectance, 
and LADAR range imagery. First, the performance for each image type is evaluated inde
pendently on a substantial dataset containing co-registered images of the same target ar
rays. Both LADAR segmentation algorithms are capable of reliably locating almost every 
target instance in the dataset, but at a very high false alarm rate. The PMMW algorithm 
produces two to seven times fewer false alarms while maintaining a high detection rate, 
but that false alarm rate is still too high. Therefore, fusion across every combination of 
segmentation algorithm output was tried (PMMW & LADAR range, PMMW & LADAR 
reflectance, LADAR range & reflectance, and all three). Four different pixel-level fusion 
methods were applied in each case: 1) binary "AND", 2) Bayesian fusion, 3) Dempster-
Shafer, and 4) majority voting. We then compare and contrast the different combination 
mechanisms. The results indicate that sensor fusion is critical to robust performance in the 
presence of structured clutter, and a variety of fusion algorithms should be considered to 
find the right method for a given dataset. 

2 Background 

The most relevant previous work fuses PMMW and LADAR range for target detec
tion [4]. In this work, jump edges in the LADAR range (discontinuities in range in the 
vertical and horizontal direction) were measured and fused with temperature gradients in 
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the PMMW imagery. Dempster-Shafer evidence combination was used to reduce the 
number of false alarms and increase the number of correct detections. On the general 
topic of sensor fusion, [1] summarizes past work and notes that typically sensor fusion 
has emphasized single modality sensors, with comparatively little work on different sen
sor modalities. The paper goes on to state that relating data from different modalities is 
more difficult, in part because of issues of sensor alignment and registration. While [5] 
and [6] have examples of successful mixed-modality fusion, this is still a young research 
area. Dasarathy has rigorously studied fusion at the feature and decision level in order to 
replace multiple ad hoc methods with a formal methodology [7]. Waltz and Llinas' book 
on multi-sensor data fusion is still considered among the standards in the field [3]. 

Our previous work has also addressed multi-sensor target detection and recognition. 
We have used a model-based approach, where the pose of an object is iteratively recov
ered using heuristic search [8, 9, 10]. The error function being minimized measures the 
quality of match between 3D model-features and the projection of those features into 
color charge coupled device (CCD), forward looking infrared (FLIR) and LADAR im
agery. Target recognition, sensor registration, and pose determination all happen simul
taneously thus improving reliability and robustness. We have also performed pilot studies 
and refinements to all of the segmentation algorithms discussed in this paper [11, 12] as 
well as preliminary sensor fusion analysis (binary combination only) [11]. 

Finally, there exists an extensive body of literature covering the detection of targets 
using just LADAR range data or range and reflectance data. These approaches can be 
classified as feature based [13], model-based [14], and template based. Techniques for 
invariant analysis also have been examined [15]. 

3 The Segmentation Algorithms 

The fundamental differences between an Automatic Target Segmentation (ATS) 
system and an Automatic Target Detection (ATD) system are in 1) the type of output pro
duced, 2) the types of failures that can occur, and 3) the kind of evaluation that must be 
performed. An ATD system specifies locations of potential targets, typically in terms of 
image coordinates of the target centroid. The three types of failures that can occur are 
false negative mistakes (missed targets), false positive mistakes (false alarms), and loca
tion errors (target correctly detected but with inaccurate centroid). An ATS system speci
fies regions representing potential targets. The first two failure types are the same, missed 
targets and false alarms, but the third type is the quality of segmentation: does the seg
mented shape accurately match the image-truthed shape? To characterize segmentation 
accuracy, we use the quality evaluation criteria of over- and under-segmentation, as dis
cussed in Section 3.4. 

Another difference between ATS and ATD—at least in our work—is that ATS is just 
a module in a larger ATR system, while ATD is typically a stand-alone system. This leads 
to a difference in the amount of false positive mistakes that can be tolerated. In an ATR 
system, the ATS component provides potential targets to be run through a classifier that 
performs the desired level of target recognition. A substantial false positive, or clutter rate 
from an ATS system is therefore acceptable, so long as the following classifier can relia
bly label clutter (trees, bushes, non-military vehicles, etc.) as objects to be ignored from 
all further processing. A high false alarm rate from an ATD system is never acceptable, 
because it ruins the operator's confidence in the ATD systems (for human-in-the-loop 
systems) or causes erroneous decisions (in fully automated weapon systems). 
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Our ATS system uses three different segmentation algorithms to isolate probable tar
gets in the sensor imagery (see Figure 1.) Each of the three algorithms processes a differ
ent sensor channel, and can segment the image at approximately the frame-rate of the 
sensor. Since the channels differ in the types of information they measure and the algo
rithms to treat this information are vastly different, we can treat the produced results of 
the three segmentation algorithms as independent. This is a required assumption for some 
of the fusion algorithms discussed in Section 4. 
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Figure 1: Overview of segmentation algorithms 

Since the focus of this paper is not the segmentation algorithms, but rather the fusion 
of the segmentation results, only a short summary of each algorithm is provided (full de
tails of the algorithms have been published elsewhere [11, 12]). All three algorithms con
sist of pixel by pixel classifiers, followed by thresholding and connected components 
grouping to produce target regions. Each algorithm produces two outputs: a segmentation 
mask designating regions of pixels belonging to the same potential target and a likelihood 
image representing the belief per pixel that it belongs to a target. 

3.1 PMMW Segmentation 

The PMMW imagery is segmented using a series of steps. Each step is more compu
tationally demanding then its predecessor, but processes far fewer pixels. An analogy is a 
series of filters where each layer removes incorrect pixels and allows smaller amounts of 
information to pass through. The first algorithm in the pipeline is a noise reduction step. 
Analysis of the sensor data indicated that the lower order bits from the 12-bit input sensor 
image contained mostly noise and very little signal information. Hence, the four lowest 
order bits were removed from each pixel, converting the image to 8 bits. Next, a global 
image threshold (two standard deviations below the image mean) was used. Assuming the 
mode and mean are approximately equal (which we have verified on several different 
scenes), every pixel in the image is given one of two labels: 

class (p) = { target 

background 

p< ji-ka 

otherwise 
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where jl is the mean of the entire image, p is a pixel in the image, G is the standard 

deviation of the entire image, and k is a parameter dictating how far below the mean to 
place the threshold. Template matching is then used to detect potential target centroids by 
determining if a local region of image data closely matches the expected target signature. 
Finally, the correlation values produced by the template matcher are thresholded to binary 
and a connected components algorithm extracts target regions. Figure 2 shows an exam
ple PMMW image, the likelihood map output and the segmentation mask output. (Note 
that in this figure and the following ones, different gray-levels are shown in the segmen
tation masks to indicate each region's unique label.) 

3.2 LADAR Reflectance Segmentation 

The first step in LADAR reflectance segmentation is to pre-process the image to re
move the sensor's fixed-pattern noise (the particular sensor used to collect data for this 
work suffered from vertical stripes due to gain variance across the laser diodes). Next, a 
multi-scale variance algorithm is used. The motivation for using variance is based on the 
observation that man-made objects—such as military vehicles—in LADAR reflectance 
images of outdoor scenes are characterized by one of three conditions: 

• Reflectance values are significantly higher than the local image average 
• Reflectance values are significantly lower than the local image average 
• Reflectance characteristics are highly varying with a relatively high spatial fre

quency 
Multi-scale variance captures all three of these conditions and tends to segment target 

and some clutter regions from the rest of the image. Local variance estimates the devia
tion from the mean in a local neighborhood. Therefore, our three criteria above can be 
uniquely measured by computing local variance over the whole image using different 
window sizes. Computing variance using a small window (such as 3x3) emphasizes the 
high spatial frequency regions, while the variance measure for a large window (such as 
11x11) emphasizes solid outlines of the regions that are significantly lighter or darker 
than average. One image is produced for each window size, and the images are added and 
thresholded to binary. The two window sizes and the threshold value were determined 
empirically, based on Receiver Operator Characteristic (ROC) curve analysis. The final 
step is to clean up the thresholded image (remove very small isolated regions and filling 
in small holes using binary morphology) and apply the connected components algorithm. 
Figure 3 shows an example LADAR reflectance image, the likelihood map and the seg
mentation mask output. 

3.3 LADAR Range Segmentation 

The first step in the LADAR range segmentation is to median filter the image to re
move dropouts. Then the 3D location of each pixel in the scene is determined. The 
LADAR records range and angle in a spherical coordinate system, so each pixel is first 
converted to Cartesian coordinates <x,y,z> using the depression & azimuth angles, 
placement of the pixel (row, column) within the focal plane array, range, and the angle 
resolution of the sensor. Once the coordinate transform has been performed, each range 
pixel has a corresponding <x,y,z> component. We define x and y to be the horizontal 
ground plane and z to be the height above that plane. 

Next, orthographic projection is used to generate a top-down view of the scene. 
When constructing this view, multiple range samples measured from the same vertical 
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surface (such as the side of a target) are likely to project to the same pixel because the x 
and y values of these samples are tightly clustered. For such pixels, only the smallest 
height value is retained. This image therefore contains an estimate of the local ground 
plane around each such pixel. The range data is then projected into top-down view again, 
this time recording the distance of each pixel above the local ground plane. This distance 
is converted to a likelihood measure by assuming the target height is a Gaussian random 
variable having mean of 2.5 meters and a standard deviation of 3 meters. Finally, the 
likelihood is thresholded and converted to a target region mask using connected compo
nents. Figure 4 shows an example LADAR range image, the likelihood map and the seg
mentation mask output. 

Figure 2: Example PMMW segmentation showing input image (left), likelihood 
map output (center), and segmentation mask output (right) 

w 

Figure 3: Example LADAR reflectance segmentation showing input image (left), 
likelihood map output (center), and segmentation mask output (right) 

Figure 4: Example LADAR range segmentation showing input image (left), 
likelihood map output (center), and segmentation mask output (right) 

3.4 Evaluating Segmentation Algorithms 

We have decided upon five different performance metrics for our evaluation. These 
metrics were inspired by a significant and substantial range image segmentation evalua
tion performed on a large number of algorithms [17]. Table 1 defines the five different 
metrics. 

Problems arose in the straightforward application of the metrics used in [17], due to 
symmetry. Originally, a correct detection was defined as T percent of a ground truth re
gion matching a machine segmented region and T percent of that same machine seg
mented region matching the target [17]. For our ATS application, this is too stringent: we 
need to assure that all targets are labeled as targets, but are not concerned with assuring 
that the machine segmentation algorithm does not over explain the target. Therefore, we 
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reduced the symmetric relationship so that only the percentage of target overlap is meas
ured. 

Correct detections can be formally specified using set notation. If M is a region of 
pixels labeled as target by the ATS algorithm and N is a region labeled by hand as target, 
then the number of total correct detections is given as: 

Correct Detection = ^ 
l |M,.uAr|>:r|M,. 

0 otherwise 

which implies that the target region must overlap T percent of the segmented region. To 
prevent double counting, once a segmented region has been labeled as a correct detection, 
it is removed from further consideration as over and under segmented. For our experi
ments, T was set to 0.5 due to slight registration errors between the two sensors. An over 
segmentation is defined as: 

Over Segmentation = ^ 
\jMtuNj >T\M 

0 otherwise 

which implies that a target is over segmented if multiple segmentations overlap the true 
target region. An under segmentation is defined as: 

Under Segmentation = ^ 
\jM,vNj >T\N: 

otherwise 

which measures over segmentation of image truthed regions. 
True targets that do not fall into any of the above categories (correctly detected, over 

segmented, or under segmented) are then defined as missed targets. Finally, by symmetry, 
machine segmented regions that do not fall into any of the above categories are defined as 
clutter. Note that from the calculation of these five metric values, any possible evaluation 
metric can be computed. 

Performance l)e>cription 
Measure 

Correct Detection 

Over Segmentation 

Under Segmentation 

Missed Targets 

Clutter 

A machine-segmented region overlaps a target truth region such that at 
least 50% of the truth region is correctly labeled 

The number of segmented regions matching to a single truth region 

The number of truth regions matching to a single segmented region 

A truth target is not correctly detected, or is not over segmented, or is 
not under segmented 

A machine-segmented region is not correctly detected, or is not over 
segmented, or is not under segmented 

Table 1: Segmentation evaluation metrics 
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4 The Sensor Fusion Algorithms 

Numerous techniques exist for fusing information from multiple sensors [2]. Out of 
the plethora of techniques that exist, we have chosen to implement a subset of four and 
evaluate them using the metrics proposed in Section 3.4. These techniques, described in 
the following subsections, are: 1) binary AND fusion, 2) Bayesian fusion, 3) Dempster-
Shafer fusion, and 4) majority voting fusion. Figure 5 shows example results for each of 
the four fusion methods on the same image pair. 

4.1 Binary AND Fusion 

Binary AND fusion takes as input the segmentation mask produced by each segmen
tation algorithm. Each region mask is then converted to a binary image by setting all tar
get region pixels to 1 and all background pixels to 0. The resulting images are then all 
ANDed together to produce a new segmentation mask. A likelihood image is formed 
from this mask by passing a box filter over it and computing the average number of 1 -bits 
in an 1 lxl 1 window. Connected components are then run on this likelihood image. Using 
binary AND fusion, we expect regions to be produced only where all sensors agree on the 
presence of a target. This should produce a very low clutter rate, but will miss a target if a 
single sensor misses that target. 

4.2 Bayesian Fusion 

Bayesian sensor fusion combines evidence according to Bayes chain rule with the as
sumption that the segmentation algorithms produce independent outputs. Once a likeli
hood image is produced, it is converted to a probability map by looking up the probability 
that each measurement is a target in a constructed histogram. This histogram is built using 
a series of hand-segmented images. This gives an estimate of P(tlm) where t is target and 
m is the value present in the histogram. Counting pixels in hand-segmented images is 
used to estimate of P(t). Evidence is then combined across sensors using: 

m 

X\p(t\mk)p(mk) 

p(t\Ml =mlk,M2 =m2k,---,Mm =mmk) = ̂  

Y,P(t\mk)p(mk) 
k=l 

The output of this computation is a likelihood image. Connected components are then 
run on this likelihood image. Using Bayesian fusion, we expect only those regions with a 
high probability of target across all three channels (LADAR range, LADAR intensity and 
PMMW) to be retained in the result. However, if two segmentation algorithms have an 
extremely high likelihood and the third does not, the target region may still be preserved 
in the output. We also expect a higher clutter rate than binary AND fusion since clutter 
objects that correlate in two of the sensors are preserved. 

4.3 Dempster-Shafer Fusion 

Dempster-Shafer evidence combination [18] examines the belief in several hypothe
ses for each specific pixel. The segmentation algorithms all produce a likelihood image 
representing the belief that each pixel, P(T), belongs to a target. We can estimate the like
lihood the pixel is not part of a target by counting the number of neighboring pixels in the 
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connected components output. Pixels that do not have a large number of neighboring pix
els classified as target have a high likelihood of being not target. We accomplish this by 
computing P(NT) = 1 - R / C for each pixel, where R is the number of target pixels in an 
11x11 region about each pixel and C is 121 (the total number of pixels). Finally, we 
measure the plausibility, or confidence that the pixel is explained properly, as P ^ ) = 1 -
P(T) - P(NT) where P(T) is the likelihood the pixel is target (from the likelihood seg
mentation image) and P(NT) is the likelihood the pixel is not target (from the neighbor 
analysis.) The three hypothesis (target, not target, and other) are then combined for each 
pair of segmentations according to the Dempster-Shafer evidence combination rule: 

5>,(X)my(F) 
mu(A)- XnY=A 

V _ 1- 5>,(X)m,(7) 

where m represents a hypothesis about a pixel, X and Y are the measurements for each 
hypothesis, and A is the desired hypothesis output. This amounts to computing the total 
evidence for each of three hypotheses (target, not target, other) and normalizing by the 
inconsistent explanations (one sensor says target, the other not-target). This rule is applied 
to pairs of segmentation outputs. The result produces a new set of measurements that can 
then be combined with other segmentation results. For our specific three-hypothesis 
problem, the evidence combination rules are: 

P ,T) = Pi^PjW)+Pj(T)Pjm+ptmPj(T) 
ij \-P. (T)Pj (NT) - P. (NT)Pj (T) 

p = Pt (NT)Pj (NT) + P. (NT)Pj m + P, (®)Pj (NT) 
ij l-P^PjiN^-P^N^PjiT) 

i>(0)P.(0) 
/>.(<&) = ' ; 

" l-Pi(T)Pj(NT)-Pi(NT)Pj(T) 

Note that these values always sum to one. The best explanation for the pixel is the 
hypothesis with the highest belief. Only the pixels labeled as target are retained and 
placed in a likelihood image and connected components can then be used to produce a set 
of regions. Using Dempster-Shafer fusion, we expect to have a high probability of detec
tion while minimizing clutter. 

4.4 Majority Voting Fusion 

Majority voting takes as input each target region mask and converts it to binary in the 
same manner as described above for the binary AND fusion. A new image is produced 
that is the sum of all binary segmentation images. If each pixel's value is larger than half 
the total number of segmentation images used, the pixel is labeled as target. A likelihood 
map is formed from this image by passing a box filter over the binary result image and 
computing the average number of 1-bits in an 11x11 window. Connected components are 
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then computed for this likelihood map. This algorithm will operate like a binary OR fu
sion if only two images are present. It is expected to have a high rate of detection, but also 
a high clutter rate. 

Dempster-Shafer fusion results Majority Vote fusion results 

Figure 5: Sensor fusion results for one reflectance & PMMW image pair 

5 Results 

We have applied the three segmentation algorithms and four fusion algorithms to a 
database containing 519 target instances of 9 different target classes (including clutter) in 
95 images. The dataset consists of numerous static scenes as well as scenes where multi
ple vehicles are moving. While the optical axes of the LADAR and PMMW sensors were 
not perfectly boresight-aligned, some effort was made to have the axes coincide. Slight 
errors in registration were corrected by hand selecting tie-points in all pairs of images and 
computing a warping of one image onto another. This allows pixel level sensor fusion to 
take place. The images were all hand segmented into target vs. non-target regions to pro
vide image truth information. 

First, each segmentation algorithm was applied to each image and then evaluated 
using the segmentation evaluation criteria discussed in Section 3.4, producing the results 
in Table 2. The detection rate is the number of correct detections over the total number of 
targets present. The clutter rate is the number of clutter objects over the total number of 
regions detected. Note that while very few targets are missed, the clutter count for each 
sensor is high and there are many over and under segmentations (meaning multiple targets 
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are grouped into the same region or multiple regions cover the same target). Since the 
over and under segmented regions further characterize the correct detections, the correct 
detections plus clutter is the total number of regions extracted by the algorithm. 

The four different sensor fusion techniques are then applied to all combinations of 
segmentation algorithm outputs (4 combinations) giving 16 different fused results. Table 
3 shows all of the fusion results, and Figure 6 shows the detection rate versus clutter rate. 

Using the definitions for "correct detection" and "clutter" from Table 2, we define 
the detection rate as: 

Detection Rate = -
Correct Dections 

Correct Detections + Missed Targets 

and the clutter rate as: 

Clutter Rate = 
Clutter 

Correct Detections + Missed Targets +Clutter 

There are several interesting trends in this table which are highlighted in the accom
panying figure: 

• LADAR range by itself produces a near perfect detection rate (0.998), but with a 
very high clutter rate (0.76). For any fusion method other than voting, adding 
PMMW information lowers the clutter rate by about 0.65, while only lowering 
the detection rate by about 0.05. The further addition of LADAR reflectance 
lowers both detection and clutter rates by about 0.01. 

• In all cases, majority vote fusion produces the highest probability of detection. 
However, using this type of fusion also produces a high clutter rate. (Result A in 
Figure 6.) 

• The second highest detection rate is always produced by the Bayesian fusion. 
For PMMW and range (with or without reflectance), this coincides with low 
clutter rate. (Results B in Figure 6 represents the overall best jointly optimized 
detection and clutter rates.) 

• The least useful combination for decreasing clutter rate is to fuse LADAR re
flectance and LADAR range segmentation (Result C in Figure 6). This result 
makes intuitive sense: the information for range and reflectance comes from the 
same LADAR sensor and is therefore more correlated with each other than with 
information from the PMMW sensor. 

Sensor : Detection ' Clutter Correct ; Over Under Missed Clutter 

Rate Rate Detection : Segment Segment Targets 

PMMW 

Reflectance 

Range 

0.96 

0.99 

1.00 

0.35 

0.45 

0.76 

469 

516 

518 

12 

39 

88 

12 

39 

88 

21 

3 

1 

248 

415 

1677 

Table 2: Segmentation results of each algorithm without fusion 
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0.14 
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0.15 

0.68 

0.09 

0.12 

0.11 

0.56 

0.58 

0.57 

0.63 

0.38 

0.08 

0.10 

0.11 

0.43 

451 

469 

450 

479 

459 

467 

453 

479 

513 

517 

485 

519 

448 

464 

452 

478 

23 

14 

13 

44 

16 

25 

11 

34 

44 

25 

21 

2 

23 

15 

12 

29 

11 

15 

12 

17 

11 

12 

13 

13 

36 

31 

32 

73 

11 

12 

12 

13 

31 

13 

32 

3 

23 

15 

29 

3 
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2 

34 

0 
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34 

18 

30 

4 

71 

261 

79 

1012 

48 

66 

57 

617 

696 

678 

820 

314 
' 
39 

52 

54 
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Table 3: Segmentation fusion results, with clutter rates below 0.15 highlighted 
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Figure 6: Probability of detection versus probability of clutter for all four fusion 
algorithms, same data shown with full scale Y-axis (left) and zoomed-in Y-axis 
(right). 
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6 Conclusions 

We have presented a series of segmentation algorithms for a multisensor ATS task. 
In our results, LADAR range by itself produced a near perfect detection rate, but with a 
very high clutter rate. Adding information from a PMMW sensor lowered the clutter rate 
significantly, while only slightly lowering the detection rate. The further addition of 
LADAR reflectance information had little effect, slightly lowering both detection and 
clutter rates. Four fusion methods were tried, with Bayesian fusion performing best in 
terms of jointly optimizing detection and clutter rates. Dempster-Shafer fusion and binary 
AND fusion also performed well, while majority voting fusion did not. 

These results also demonstrate the need for future work. Specifically, object level fu
sion should be examined to measure attributes of segmented regions in an effort to further 
reduce clutter and avoid the inherent problems associated with pixel level sensor fusion 
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CHAPTER 16 

CATEGORY CLASSIFICATION USING NEURAL NETWORKS 

Michifumi Yoshioka, Toru Fujinaka, and Sigeru Omatu 

Osaka Prefecture University 
599-8531, Sakai, Osaka, Japan 

In this chapter, we deal with the land cover mapping using neural networks and 
introduce some methods to improve the classification accuracy. These methods 
are competitive neural networks, Jeffries-Matusita distance, and textures. Com
petitive neural networks introduced here are Learning Vector Quantization and 
Self Organizing Map which are powerful tools for categorization. Jeffries-Matusita 
distance and textures are also adopted for the feature selection or extraction from 
pixels of the target image which are an important factor for the classification ac
curacy. Finally, we will show some simulation results to confirm the effectiveness 
of these methods. 

1. I n t r o d u c t i o n 

Remote sensing da ta includes reflectional and radiational characteristics of naturally 

occurring features found on earth. It is possible to categorize the da ta by analyzing 

its spectral information. The categorization employs a pa t te rn recognition method, 

where a category corresponds to a pat tern. There are two types of recognition 

methods, i.e., supervised and unsupervised methods. The former method picks up 

some training da ta from the remote sensing da ta in advance and defines a category 

for each of them. This method then classifies the whole da ta based on a specific 

feature of each category. The lat ter method does not require selection of the training 

data, and this method classifies the remote sensing da ta based on similarities among 

the pixels1. 

The maximum likelihood (ML) method has often been applied to the classi

fication of remote sensing da ta as a supervised classification method 2 , 3 . The ML 

method uses a statistical approach based on the Bayesian theorem. It can be ap

plied theoretically to any probability distribution. In real da ta processing, however, 

the discrimination function works under the assumption tha t the probability distri

bution for each category is an n-dimensional normal distribution where n denotes 

the number of spectral bands. The categories are determined from the land cover 

information. The probability distribution of real da ta for each category does not al

ways follow normal distribution, which is essential to the conventional ML method. 

365 
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Therefore, a non-parametric classification method becomes important for real data 
processing. Recently, a method using the multi-layered neural network has been 
applied to the analysis of remote sensing data4 '5 '6. The neural network is trained 
by the well-known error back-propagation (BP) method4 '7. However, in the neural 
network approach to remote sensing analysis, the convergence of a learning pro
cess is sensitive to the selection of the training data set. Furthermore, the learning 
method often requires a large number of iterations and much computational time. 
Since the error back-propagation method is a black-box approach, it is difficult to 
give physical meaning to the weights connecting the neurons. 

The remote sensing techniques have various advantages in monitoring the global 
environments on the earth surface in a short time. However, they also have a dis
advantage that a successful monitoring depends on the weather condition. Rainy 
days are unfavorable in general, which becomes especially serious in the analysis of 
a tropical rain forest. Recently, multi-frequency and multi-polarimetric Synthetic 
Aperture Radar (SAR) data can be obtained by using airborne or spaceborne SAR 
sensor systems. Calibration techniques for the SAR data have been established, 
so that it may be used for such applications as terrain detection and environmen
tal research. With several basic approaches, the SAR data classification methods 
have been gradually developed. These methods classify the SAR data into specific 
categories. The data observed by the quadruple polarization, i.e., the combination 
of horizontal and vertical polarization in the transmitting and receiving signals, 
includes the polarization backscattering coefficients and relative phases between 
polarizations8'9. Thus, better classification accuracy may be expected by using the 
polarimetric SAR data instead of mono-polarization data. 

Supervised classification methods for the polarimetric SAR data can be divided 
into statistical and neural network approaches. The Bayesian methods reported 
in [10], [11], and [12] belong to the former approach. In recent years, the latter 
approach has been recognized for its classification performance. Algorithms using 
layered neural networks have been considered in [13], [14], and [15]. Algorithms 
using competitive neural networks have been considered in [2], [3], [16], and [17]. 

In general, the layered neural networks have a problem that they need much 
learning computation time in comparison with competitive neural networks. When 
adopting competitive neural networks to the classification of remote sensing data, it 
is difficult to accomplish sufficient classification accuracy using only basic learning 
algorithms. Hence, Hara et al.2 proposed a classification method that incorporates 
both the neural network and the maximum likelihood methods. Ito and Omatu17 use 
a classification method that integrates several competitive neural networks trained 
by a conscience algorithm. Although the classification accuracy is improved in these 
methods, they are more complex than the basic learning algorithms, and consider
able adjustments are often needed in real applications. Furthermore, a feature vector 
must be selected appropriately before the classification phase. Otherwise, satisfac
tory accuracy cannot be obtained even if all the observation values are applied. In 
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Chen et al .1 3 , experiments using airborne SAR (AIRSAR) da ta for several types 

of feature vectors have been carried out, and their accuracies have been compared. 

Unfortunately, there exists no detailed discussion up to date concerning a method 

of selecting a suitable combination. 

In Section 2, we explain a classification method using a competitive neural net

work trained by only two Learning Vector Quantization (LVQ) algori thms 1 8 ' 1 9 ' 2 0 . 

We discuss a method in which a suitable feature vector is selected using the J M 

(Jeffries-Matusita) distance1 . Moreover, we introduce a pseudo-relative phase be

tween polarimetries in order to obtain higher classification accuracy. Finally, we 

propose a method using textures which are composed of pixels. Using textures, we 

can obtain more information in the same area, while the resolution for analysis 

decreases. The polarimetric SAR da ta observed by Shuttle Imaging Radar-C (SIR-
C) is employed for the experiments2 1 . The proposed and conventional methods are 

compared with respect to classification accuracy and quality of the resulting im

ages. The neural network approach can be applied to more general area of image 

classification, while its effectiveness may depend on the specific features of the given 

data . 

2. Po lar imetr i c S A R D a t a Class i f icat ion b y N e u r a l N e t w o r k s 

This section is concerned with the SAR da ta analysis in which the da ta are observed 

by measuring the active radar signals. Here, the da ta belong to the range of mi

crowave, and it is difficult to get the geographical scenary like a picture. Therefore, 

a kind of da ta mining approaches should be used. In this section, we adopt various 

types of the LVQ methods to achieve this purpose. At last, we employ the method 

using texture to improve the classification accracy. 

2 .1 . The Classification Algorithm 

We consider a classification algorithm using a competitive neural network. The 

competitive neural network is trained by the Learning Vector Quantization (LVQ) 

method 1 8 , 1 9 ' 2 0 . The LVQ method will cyclically upda te the weight vectors so as to 

reward correct classifications and punish incorrect ones. Kohonen 1 8 ' 1 9 , 2 0 proposed 

the LVQ1, LVQ2.1, and OLVQ1 (Optimized-learning-rate LVQ1) algorithms for the 

LVQ method. We will first describe the LVQ1 learning algorithm. Let Wj(£) denote 

a sequential value of Wj in the discrete-time, t = 0 , 1 , 2, . . . , where i = 1,..., M. After 

the training da ta x(t) is presented, competition occurs in the competitive layer 

where neuron c ultimately becomes the winner. Let x(i) belong to a category u>x 

and let neuron c be assigned to a category LOC. The LVQ1 updates the weight vectors 

as follows: 

w c ( t + 1) = w c( t ) + a(t)[x(t) - wc(i)] 

W i ( t + 1) = Wj(t), J / C ' 
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w c ( t + 1) = w c ( t ) - a( t )[x(t) - wc(t)] \ 

W j ( t + 1 ) =Wi(t), J / C J 

Here, a ( i ) denotes the learning rate such tha t 0 < a(t) < 1 and a(t) —> 0 if 

i —• oo. This learning algorithm tends to push weight vectors away from the decision 

surfaces of Bayes rule2 2 . To accelerate the convergence of the network, the OLVQ1 

updates the weight vectors by means of the individual learning rate in every neuron. 

Learning rate oti(t) in a neuron i is updated as follows: 

/ „ OLc(t) 

ac(t + l)= c( ' 1 + ac{t) } ifujx= uji (3) 
ttj(i+ 1) = cei(t), i ^ c 

( otJt) N 

ac(t + 1) = mm —• — , a0 

\l + ac(t) y 
ai(t+ 1) = ai{t), i ^ c 

if ux ^ uii (4) 

where the initial learning rate is given by «j(0) = a0, i = 1, . . . ,M. Thus, weight 

vectors in the center of the category will have rapidly decreasing learning rates and 

conversely those near category boundaries will have increasing rates. The LVQ2.1 

approximates the Bayes rule by adjusting category boundaries. It updates only the 

weight vectors in a window region. The window region is defined by a parameter 

w, 0 < w < 1. Eu and Ev denote pa t te rn distances from x(i) to the nearest weight 

vector wu(t) and the second nearest weight vector mv(t), respectively. Either of the 

weight vectors, m„(i ) or m„(i) belongs to the same category as x(i) and the other 

belongs to a separate category. It is known tha t the window region is represented 

as 

. (Eu Ev\ 1-w 
m m —-, —— > (5) 

\EV' EUJ 1 + w W 

Then the LVQ2.1 updates the weight vectors as follows: 

mu(t + 1) = mu(t) + a(t)[x(t) - mu(tj 

mv(t + 1) = mv(t) + a{t)[x(t) - mv(t)} 

In this chapter, we employ the following learning approach: 

[Step 1] Move the weight vectors roughly by LVQ1 or OLVQ1. 

[Step 2] Tune up the weight vectors in category boundaries by LVQ2.1. 

In Step 2, an improvement in the classification ability is expected by re-training 

the weight vectors using LVQ2.1. The proposed classification method is applied to 

the SAR da ta with unknown category to the trained neural network, and the da ta 

is classified to the category where the winner neuron belongs. 

(6) 
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2.2. Feature Vector Selection 

Next, we describe the selection method of an appropriate feature vector using the 
JM distance for the classification. The JM distance is a divergence which measures 
the separability of a pair of probability distributions. The multi-looking polarimetric 
SAR data has a nine-dimensional real vector x given by 

x = [£>hvbhv, DVVDVV, £>hh&hhi ™\Shhbtlv}, •3\Dhhbhvii 

}] T (7) 

Here, Shv denotes the complex scattering coefficient, where the transmitting and 
receiving polarization are vertical and receiving, respectively. The symbols 5ft and 
9 indicate the real and imaginary parts of a complex number, and * the complex 
conjugation. Note that x is derived from the Stokes matrix. The relative phase 4>hhw 
between Shh and Svv is given by 

^L=tan"^l^Sr °° - ̂ < 3 6 0 ° (8) 

Since divergences using 4>hlvv between categories may be small, we introduce 

pseudo-relative phase 4>hhvv defined by 

/,(<0 _ »„„-i ^{ShhS*v} n 0 ^ jc) 
\/ShhShhSvvb* 

"HHw - ^ s - 1 : i T ; J
o T , 0° < C < 360° (9) 

Note that (pfilvv suffers from a mirror effect such that values of 4>hhvv in 180° < 
fihlw < 3 6 0 ° a r e r e n e c t e d t 0 t n e r a n S e o f °° < </>hhw < 1 8 0 ° - Relative phases 
^hhw a n d ^hiw between Shh and Shv, and 4%lvv and <p^vv between Shv and Svv 

are defined in the same manner16 '17 '23 '24. An appropriate feature vector is selected 
from the nine elements in (7) and six relative phase elements according to the 
following method. First, we estimate one-dimensional probability density function 
(PDF) for each category in every element based on data collected from test sites. 
JM distances between all category pairs for each element are computed and their 
averages are obtained. Thus, the feature vector elements can be selected in order of 
magnitudes of the average JM distance. 

2.3. Experimental Results 

In this section we will show some numerical results for the preceeding methods 
presented. 

2.3.1. SAR Data and Study Area 

The experimental study area is a rectangular stretch of land (approximately 8.7 
km by 12.5 km) in Sakaide, Japan. Figure 1 illustrates the study area. The area 
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includes vegetation, industrial area, and densely populated districts. We perform 
experiments using this area in particular, as it is possible to obtain training and 
test data easily. "Data take 61:40" indicated in Table 1 was acquired in quadruple 
polarization mode (both horizontal and transmission and reception polarizations) 
at C-band (5.7 cm) and L-band (24.0 cm) wavelengths. The study area is covered 
by the SIR-C data. A gray scale image with 696 x 1,000 pixels corresponding to 
the study area is shown in Fig. 2. In relatively high relief areas, foreshortening and 
layover effects may occur if side looking radar is used. Backscattering coefficients 
from these areas may be different from observation values estimated by target shapes 
and dielectric characteristics. Thus, in this chapter classification of only the smooth 
areas is considered. When referring to the topographical map corresponding to Fig. 
1, the high relief areas in Fig. 2 are masked. These areas will not be classified but 
called masked areas. We define five categories (L=5), u)\ : factory, ui2 : golf course, 
W3 : vegetation, W4 : urban, and U5 : water, respectively. Therefore, the number of 
output neurons M is a multiple of five in the competitive neural network. In the 
experiments, the training and test data set with 500 samples for each category was 
used. Figure 3 shows a location diagram of the training and test data where the 
white regions represent unselected areas. The training data are denoted by • , A, 
and T where • and • show 10 by 10 and 5 by 5 pixels areas, respectively and T is a 
closed region of 25 pixels. The reason for using T is that it shows an area of category 
LO2 consisting of golf courses where the area shape is too complex to be described by 
squares. The training data consisting of 500 pixels for each category was obtained 
from a field survey. We adopt the entire part of LO\ and W2 areas as the test data 
since there are not so many pixels. The remaining categories W3, 0J4, and W5 range 
over wider areas whose scales are different. To make the adopted test data equal in 
size, we pick up one pixel at intervals of 3, 4, and 32 pixels from the U3, 014, and W5 
areas, respectively. Here, all classification methods employ the same training and 
test data in order to compare classification accuracies. The scoring matrix called 
confusion matrix2,12 is computed for each classification result. We will evaluate the 
classification methods using average accuracy defined by averaging the trace values 
of the confusion matrix. It is not meaningful to evaluate confusion matrices using 
the overall accuracy and miss-classification rate in this experiment, since the test 
data for some parts of the study area are missing, as can be seen in Fig. 3. 

Table 1. SIR-C data characteristics 

Data take No. 
Date 
Time 
Wavelength 
Polarizations 
Scene center 
Incidence angle range 
Image size 

61:40 
April 13, 1994 
4:26:00.981 (GMT) 
C-band (5.7cm), L-band (24.0cm) 
HH, W , HV, VH 
34°9.4' N, 133°58.6'E 
26.3° - 29.6° 
Range 16.2 km/Azimuth 99.9 km 

Digital image dimensions 1,296 pixels x 7,995 lines 
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Fig. 1. Study area (Sakaide, Japan) for category classification. 

2.3.2. Feature Vector 

The JM distances for all category pairs are computed by using the test data of each 
element for appropriate selection of a feature vector. The average JM distances with 
all category pairs using C-band and L-band backscattering are calculated. The C-
band and L-band backscattering data have a similar tendency. As the JM distances 
of the backscattering coefficients become larger, inclusion of these elements leads 
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Fig. 2. Gray scale image of SIR-C data for the study area. 

to greater effectiveness. Moreover, the JM distance of the pseudo-relative phase 
4^hhvv i s considerably larger than the other relative phases. Therefore, we select 

[mog(shvstv)> wiog(svvszv), ioiog(shvs*hv) hhvvl for both C-band and L-band 
as the best combination, i.e., there are eight elements in the selected feature vector. 
The input layer also has eight neurons (N = 8). Next, we note that ^hw i s inferior 

to k(«) hhw W ^ n r e s P e c t to the divergence between categories. Investigation of the 
1 of 4^hlw f° r e a c n c a t e g ° r v using the C-band revealed that the phase <t>hlvv for 
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Fig. 3. Training and test data area 

factory area (wi) differs from other categories by about 180°. The phase 4>hhvv f° r 

water area (ws) has a concentration around 0°, and 4>hhvv °f w2> ^>3, and w^ vary 
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with the PDF peaks. Hence, applying <phlvv to a classification method would be 
(c) 

significant. The differences of the PDFs for 4>hhvv
 a r e significant among most of the 

categories compared with those of <phhvv • 

2.3.3. Classification Results 

Table 2 indicates four kinds of learning algorithms applied to the LVQ methods in 
the experiments. Each algorithm includes either LVQ1 or 0LVQ1, and the latter 
two algorithms incorporate LVQ2.1 as the second step of the algorithm. The number 
of training iterations for each step of the algorithm is determined by preliminary 
experiments. We set the initial learning rates to 0.03 for LVQ1 and LVQ2.1 and to 
0.3 for OLVQ1. The window parameter is set to 0.3 in LVQ2.1. 

Table 2. Training iterations 

Learning algorithms Number of training iterations 
Stepl Step 2 

LVQ1 40,000 
OLVQ1 10,000 
LVQ1+LVQ2.1 40,000 40,000 
OLVQ1+LVQ2.1 10,000 40,000 

The LVQ methods are compared with the conventional methods of maximum 
likelihood (ML) method and the back-propagation (BP) method. The BP method 
employs three-layered neural network, where the number of neurons H in the hid
den layer varies from 3 to 15. For the LVQ methods, five times as many, i.e., 15 to 
75 neurons are used in the competitive layer for the LVQ methods. The selected 
eight-dimensional feature vectors are then adopted for each method and their test 
data classified. Figure 4 shows this comparison with respect to the average accu
racies. Improvement of classification accuracy by adding LVQ2.1 to LVQ1 is 1.95% 
on average as shown in Fig. 4(a). Similarly, improvement of classification accu
racy by adding LVQ2.1 to OLVQ1 is 1.42% on average as shown in Fig. 4(b). 
LVQ1+LVQ2.1 can produce higher average accuracies than the ML method. How
ever, OLVQ1+LVQ2.1 can only produce similar average accuracies to the ML 
method. Thus, LVQ1+LVQ2.1 having M(35 < M < 70) produces better results 
than other methods as shown in Fig. 4(c). Especially, when the number of output 
neurons M is 40, it yields a highest accuracy reading of 86.40%. In most cases, the 
LVQ methods outperform the BP method. The resultant image of LVQ1-I-LVQ2.1 
turns out to be more distinguishable than those obtained by the ML method where 
comparisons of the image quality are made. 

2.4. The Method using Textures 

In this section, we will apply the method using textures to the same SIR-C data 
used in the previous scetion and show some simulation results. 
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2.4.1. Textures 

In general, many feature indicators using textures are proposed. In this study, we 
adopt two types of indicators which have large variance in target categories. These 
texture indicators are known as Energy (E) and Local homogeneity (L) which are 
defind as follows: 

E = EC^ (10) 

L=T,T^hr^ (11) 

where dj denotes the joint probability of the appearance of pixel combinations 
which are composed of the gray levels i and j in the target area. In this study, 
we adopt 2 pixels as the distance between combined pixels and 8 directions as the 
direction from one pixel to another shown in Fig. 5. 
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Fig. 5. Texture Structure. 
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2.4.2. Classification Algorithm using SOM 

We adopt Self Organizing Map(SOM) as the classification method for the texture 
information because the distribution of texture features is too far from the normal 
distribution to apply statistical methods. SOM is composed of an input layer and a 
competitive layer figured in Fig. 6. In the input layer, the texture information made 
of pixels in the target area is fed and, in the competitive layer, the winner node 
is selected according to the Euclid distance between the input data and weights of 
competitve layer nodes. The node which has the weight of the minimum distance 
from the input becomes a winner. The weights of neighbour nodes surrounding the 
winner are chanegd according to the equs (12)-(14). After the training using all 
input data, some categories are automatically organized in the competitive layer. 

a(t) = ao ( 1 - | ) (13) 

N(t)=NQ(l-fj (14) 

where U(t), E(t), t, T, a(t), ao, N(t) and iV0 denote a current weight of the j - t h 
node in competitive layer, the current input data, the current iteration step, the 
total learning iteration, the current and initial learning parameter, the current and 
initial radius in the neighborhood area, respectively. The parameters used here are 
shown in Table 3. 

Table 3. SOM Parameters 

Number of neurons in the competitive layer 
Total learning iteration 
Initial learning parameter 
Initial radius of neighborhoods 

7 x 7 
56000 

0.3 
3 

2.4.3. Simulation Results 

The results of simulations are shown in Table 4 and an example of classification 
result is shown in Fig. 7 and Table 5. In this case, we try five simulations and adopt 
the average of these simulations as the final result since the weights used in SOM 
are randomly initialized. The simulation result shows that the classificion accuracy 
is improved by about 10% comparing with the mehods mentiond in the previous 
sections by introducing textures while the resolution decreases. 
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Fig. 6. SOM Structure. 

Table 4. Classification Accuracy us
ing Texture 

Simulation No. 
1 
2 
3 
4 
5 

Average 

Accuracy(%) 
97.4 
95.0 
96.6 
96.9 
96.2 
96.4 

Table 5. Classification Score (Number of regions classified to each cagetory) 

Classifed 
Category 

Water 
Factory 
Urban 

Vegitaion 
Total 

Reference category 
Water 
1393 

0 
0 
4 

1397 

Factory 
0 
23 
8 
0 

31 

Urban 
0 
14 
137 
5 

156 

Vegitaion 
5 
0 
12 

213 
230 

3. Conclusions 

We have proposed a new classification method of the remote sensing data, which 
uses the self-organizing neural network constructed from several neural network 
blocks, corresponding to the categories. In the experimental study, these blocks 
worked well as vector quantizers. The unknown pixels are successfully classified as 
well. We could demonstrate that the proposed method generally yields higher clas
sification accuracies compared to other methods. If all neurons in the competitive 
layer have equal firing probability, the network works well as the vector quantiza-
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Fig. 7. Simulation result (Upper Left: Water, Upper Right: vagetaion and golf cource, Lower 
Left: Urban, Lower Right: factory) 

tion of the training data. Then we proposed a classification method that employs 
a competitive neural network and a procedure to select a suitable feature vector. 
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After a preliminary experiment, three backscattering coefficients and a pseudo-

relative phase between Shh and Svv are selected, using the J M distances. Among 

the methods considered, the neural network trained by LVQ1+LVQ2.1 produces 

the best classification results. Finally, we applied the method using textures to the 

SAR-C da ta and the improvement of the classification accuracy was confirmed by 

the simulation results. For future study, we will consider a classification algorithm 

which can classify the da ta into more detailed categories using multi-frequency and 

multi-polarimetric SAR da ta as well as physical backscattering models. 
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CHAPTER 17 

APPLICATION OF MULTIRESOLUTION REMOTE 
SENSING IMAGE ANALYSIS AND NEURAL TECHNIQUES TO 

POWER LINES SURVEILLANCE 

Elisabetta Binaghi, Ignazio Gallo*, Monica Pepe* 

Dep. of Information and Communication Science, University oflnsubria, Varese -Italy. 
* National Research Council-ITC, Milan- Italy 

The larger availability of high resolution remotely sensed data, provided by novel 
aircraft and space sensors, offers new perspective to image processing 
techniques, but it introduces also the need for operational tools in order to 
completely exploit the potentialities of these data. These tools can be useful in 
many applicative contexts, in particular technological network surveillance, 
which involves specific requirements, such as accuracy in object recognition and 
positioning together with minimal demand of ground truth. The application 
presented deals with the recognition of features of interest for the surveillance of 
power transmission lines using IKONOS imagery. We proposed a methodology 
in which multi-scale and neural techniques are synergically combined to identify 
features at different scales and to fuse them for class discrimination. As seen in 
our experimental context, the results obtained on a pilot area in Northern Italy 
proved that the combination of multi-window feature extraction and neural soft 
classification produced a robust and flexible model that can act as a classifier of 
objects that vary in shape, size and structure. 

1. Introduction 

Recent advances in space techniques determine more and more diffused and 
diversified use of new types of data, in particular, very high resolution optical 
sensors such as Ikonos sensors and Earthwatch's Quick Bird1. The availability 
of these type of data offers new perspective to Remote Sensing creating the 
premise for new fields of application such as technological network surveillance 
and management. 

The management and monitoring with high level of security of 
networks such as pipelines and power transmission lines include several tasks 
such as urban planning, water resources management, natural risk assessment. 
High resolution remote sensing imagery play a key role in all these activity. 

383 
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In order to move towards adequate classification methodology one 
issue that has received particular attention within the remote sensing community 
is the development of contextual classification models in alternative to 
conventional quantitative classification techniques. The interest moves from the 
consideration that in high resolution imagery spectral values of neighboring 
pixels are strongly related or correlated since certain classes are likely to occur 
in the context of others and base their classification decisions on local and/or 
global spatial arrangement of pixel spectral values. 
Several works have been proposed. Among early approaches, we found the use 
of local windows or surrounding pixels considered at a given distance and/or 
direction3. Other approaches based on relaxation labeling technique have been 
deeply investigated, dealing with context in a post-classification mode and 
addressing the critical problem of identifying land use patterns4. More recently 
works introduce the use of transforms methods, such as wavelet transform, for 
classifying urban patterns in high resolution remote sensing images5. 

Despite the relevant achievements obtained, the use of contextual 
classification procedures is still limited by critical aspects, in particular 
complexity in methodology development, problem dependency, high demand 
of supervised data for training phase. In this work attention is focused on multi-
scale approaches allowing to extract the spatial information from an image over 
a range of scales, from coarse details (large features), to fine details in local 
area. Multiscale image processing has a cognitive motivation: when we look at 
images with small and large objects, and/or low and high contrast objects, it 
can be advantageous to study them at several resolutions operating different 
zooming on the image; the appeal of this approach is that features that may go 
undetected at one resolution may be easy to spot at another . Within the 
multiresolution approach the problem is addressed by two main strategies: -
proposing methodology in which filters of fixed size are applied to iteratively 
scaled versions of the original image or -scaled versions of the original filter are 
applied to the original unvaried image7. 

Various approaches have been reported in literature adopting different 
solutions for feature extraction and decision phase: image pyramids, filter banks 
and wavelet techniques have been deeply investigated achieving a significant 
interest in Remote Sensing8'910'11. 

In this chapter we introduce contextual techniques and present a 
methodology for object recognition in high resolution remote sensing imagery. 
The salient aspect of the methodology is the integration of multi-scale and 
neural techniques to identify features at different scales and to fuse them for 
class discrimination. Results obtained by applying the methodology to the field 
of power transmission lines surveillance are reported. In order to satisfy 
application requirements, the solution proposed move from the objective of 
finding contextual methods of analysis capable of optimizing the balance 
between high accuracy and limited design and computational complexity and 
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providing also good generalization capabilities together with low training 
requirements in terms of examples provided and learning charge. 

2. Contextual classification procedures 

Contextual classification procedures can be categorized in a typology of 
context12 by the use of raw as opposed to classified data, resulting in a major 
subdivision between contextual classifiers and contextual re-classifiers. The 
first branch are either based on the use of local windows13"15 or consider the 
pixels at a given distance and/or direction16. 

The second type of branch is based on the application of certain 
processes following the results of a preliminary per-pixel classification, such as 
in relaxation labeling and knowledge-based systems17"22 : pixels are considered 
either separately (pixel-based), or arranged to form discrete objects (object-
based) using connectivity, distance, direction and containment properties. 

A common characteristic of these methods is the explicit 
representation of spatial relationships involving complex mathematical 
descriptions, whatever the representation framework may be. 

An interesting experiment conducted by Paola and Showengerdt23 

consisted in providing spatial information within a classification procedure by 
presenting directly a 3 x 3 window of image data as an input to a Multilayer 
Perceptron (MLP) classifier. Even within the limits of the experiment, which 
did not aim to define a complete contextual classification procedure, the 
important finding was that, although the training time required for each iteration 
was high, the network converged much faster due to the extra information used. 

3. Classification Strategy 

The classification strategy here proposed takes the origin from a previous work 
where a classification strategy based on MLP model and fixed windows was 
defined and tested24. It uses a moving window to evaluate the neighboring 
influences during classification in such a way that spatial relationships among 
the window pixels to be classified are not explicitly formalized. Instead, the 
corresponding window is directly presented as input to the neural network 
classifier. The classification strategy is area-based associating the input moving 
window, of fixed size and step, with a corresponding output window. Moreover 
the area-based character of the methodology, which provides the classification 
of a group of pixels rather than a single one, reduces complexity and 
computational costs, typical of contextual paradigms. 

The results obtained in the experimental application were encouraging, 
however certain limitations of the strategy were identified in the use of a single 
window of fixed size to model the context. 
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This research project attempts to generalize the previously investigated 
approach in two perspectives: 

the use of a set of input concentric windows, instead of a single one, to 
evaluate the neighbouring influences during classification; 
to define the output of classification in terms of a target element consisting 
of one pixel or a group of pixels, providing for a strategy that would act 
either as a pixel-based or area-based contextual classification. 

When dealing with windows both contextual classifiers and re-
classifiers refer to a single pixel or to a group of pixels, i.e. they are pixel-based 
or area-based, and this choice affects the overall methodology configuration; 
our strategy generalises by introducing a more abstract concept, the target 
element, which represents the element to be classified defined as the 
fundamental KxK frame (with K > 1) around which contextual windows 
will be built and considered. 

3.1 Contextual information extraction by cognitive -pyramid 

Consistent with the cognitive foundation of contextual approaches, the question 
of determining the appropriate window size should be addressed both from the 
computational and human perceptual perspective. In remote sensing literature, 
works dealing with contextual per-pixel classifications calibrate the appropriate 
window size for operating on spectral data in a range from a 3 by 3 to a 9 by 9 
matrix of pixels25,26,27 considering that larger window sizes increase 
computational demands without increasing classification accuracy. However, 
cognitive-based studies suggest that humans require windows of considerably 
larger sizes than those used in digital image classification studies. This is 
confirmed in experiments conducted by Hodgson showing that the 
photointerpreters use windows of about 40 by 40 pixels (corresponding to about 
60 m by 60 m) for identifying urban patterns in high spatial resolution imagery. 

To take into account both computational and cognitive perspectives our 
strategy adopts the solution of considering a large "perceptually-dimensioned" 
window centered on the target element, and then reducing size by compacting 
the neighboring information contained before entering the classifier. 

We extend this base solution adding the consideration that human 
interpreters may simultaneously use dynamic windows of a variety of sizes to 
build evidence for recognizing image patterns6 (Figure 1-A). 

To include this perceptual aspect in the classification strategy the 
single window of fixed size is replaced by a set of concentric windows centred 
on the target element. Each concentric window is then resampled before 
entering the classifier (Figure 1-B). 

The overall contextual information considered for each target element 
is therefore the result of the processes of enlarging the field of view (FOV) -
starting from the target element - and compacting information at each step of 
the procedure. 
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The number of concentric windows and their sizes depend on the 
image resolution and the specific recognition target characteristics. For 
example, recognition of continuous targets requires larger context fields and 
more enlarging steps than those required for recognition of isolated, localized 
targets. 

At each enlarging step [tM ) the window dimension is independent of 
the former, so that the procedure can be extended to any object detection on the 
basis of perceptual needs alone. 

When using a moving window to define the neighborhoods of a pixel, 
or a group of pixels, the problem of the border region needs to be addressed. 

Although there are various possible solutions to this problem, we chose 
to reflect the source image pixels in the border area outward to effectively 
increase the size of the source image, taking the largest concentric window 
dimensions, thus providing a neighborhood for each target element, even in the 
border positions (see Figure 2). The rationale behind this choice is related to the 
use of cognitively-dimensioned windows, which are often considerably large, 
so any methodology that reduces the source image dimensions is unsuited to the 
purpose. 

The compacting process is aimed at making the strategy 
computationally efficient, reducing the dimensions of window data that must 
simultaneously be considered for each step of the moving window procedure, 
besides reducing redundancy and noise among neighboring pixels by extracting 
some meaningful signals from the background. These objectives can be reached 
by using an image resampling pyramidal approach28. 

In particular, the resampling technique chosen is the Gaussian image 
resolution pyramid29. It is a scale-space transform which makes it possible to 
efficiently include global, intermediate and local scales in the analysis without 
requiring a full convolution of the image, and avoiding the discontinuities 
characteristic of aliasing, due to resampling. 
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Figure 1. Contextual information extraction by cognitive - pyramid procedure. 

(A) Around the target element (TE) to be classified a set of concentric windows {Fj , . , , F j ^ } each 

of them with dimensions D^ ,i = 1,...,M , is defined on the basis of the human interpreters' 

attitude during pattern recognition. 

(B) Each concentric window Fj is then compacted by a Gaussian image resolution pyramid, 

starting from original image \Cjj I dimensions D\ X D\ and reaching the root image (G N^ J 

dimensions DAT XDAT before entering the classifier, to reduce data dimensions as well as 
NM NM

 B 

redundancy and noise among neighbouring pixels 

It is based on a multi-resolution image representation obtained through 
a recursive reduction - lowpass filtering and decimation - of the image data set. 
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Let G0 be a grey-level square image (see Figure 1-B), the Gaussian pyramid, 
for a decimation factor of 2, is defined according to Burt and Adelson8 as: 

2 2 

Gk(ij)=REDUCE(Gk^)= £ £w(m,n)-G^_1(2i + ̂ 2 i + /i) 
m=-2n=-2 

where: 
k = 1,..., N ; N being the number of pyramid levels, 

GN being the top, or root, of size u x u , 

= y=o,-,-
w-2 iV 

-1 and 

Wl (m,n)= 

[0.0025 0.0125 0.02 0.0125 0.0025] 

10.0125 0.0625 0.1 0.0625 0.01251 

0.02 0.1 0.16 0.1 0.02 

0.0125 0.0625 0.1 0.0625 0.0125 

[0.0025 0.0125 0.02 0.0125 0.0025] 

The number of columns and rows in the G0 image is D0 x D 0 , related 

to the root dimensions by the following: 

D0=w2N 

The number of Gaussian-pyramid levels (iV/; i = 1,...,M ) for each 
enlarging step (Ft•; i = 1,...,M ) is fixed with a view to the possible enhancing 
of the signal in relation to background, taking advantage of the reduction 
process, and stopping before any meaningful details are lost. 

gk+i 

Figure 2. Solution adopted for the border region problem during the compacting process: the source 
image pixels in the border area were reflected outward to increase the size of the source image itself 

3.2 Soft neural classification 

The application of the feature extraction strategy presented in the previous 
section provides inputs for the classification. 
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Our strategy adopts a soft classification paradigm, a choice motivated 
by the acknowledgment that the spatial variability of images results from the 
soft gradual character of the natural categories and that human interpretation is 
based on approximate modes of reasoning. 

The strategy is based on the Multi-Layer Perceptron model: the use of 
this model is motivated by: 

the experimentally-proven effectiveness of the model when run as a soft 
classifier, dealing with intrinsic uncertainties in assigning elements to 

-I 30,31 

classes ; 
the well-documented capability of MLP in dealing with patterns described 
by complex features; 
the good performances demonstrated by the model in classifying window 
input data23; 

The result of the context feature extraction procedure is constituted by 
the set of windows{Ft,..,FM }, each of them with dimensions Dl

N,i = l,...,M 

(see Figure 1). These data are presented in input to the MLP; the input layer is 
structured in such a way that each pixel belonging to each window (Ft) is 
represented by a node (see Figure 3). 

Input Hidden Output Layer 
Layer Layer or 

LTE 

Figure 3. Neural network configuration. The input layer is structured in such a way that each pixel 

belonging to each root window \GlNM J resulting from the contextual feature extraction 

procedure is represented by an input node. The number of output nodes is expressed by: 

KxKxC , where KxK represents the labelled target element dimensions and C is the 

number of classes. The number of hidden nodes in the single hidden layer is given by an empirical 

rule 
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For a classification problem in which the target element "to be 
classified" has dimensions KxK, and the output should represent the 
membership of each pixel in the KxK frame to a defined class, the dimension 
of the output layer is expressed by: KxKxC, where C is the number of 
classes. 

The output of the network, which is usually interpreted to crisp class 
assignment according to the winner-take-all rule, is softened here considering 
the value of output neurons directly as classification results, and interpreted as 
degrees of possibility or compatibility to classes . 

The size of the hidden layer should be determined as a compromise 
between specialization (more hidden nodes) and generalization (fewer hidden 
nodes). According to Kannelopoulos and Wilkinson we apply an empirical rule 
that implements this criteria: fixing the number of hidden neurons may be equal 
to the largest value resulting from doubling the number of inputs and the 
number of outputs32. 

The MLP classifier requires a supervised learning procedure. In our 
context the supervised training set is constituted by labelled target-elements 
(LTE). Labelling must be performed considering that classification will produce 
soft results in terms of gradual membership to classes. Indeed, unlike hard 
conventional classification, a supervised soft classification requires training 
data with a quantified degree of membership in the concerned classes, to allow 
the soft classifier to interpret pattern indeterminacy as membership in more than 
one class. 

Various different methods have been put forward in literature to 
produce adequate soft training3 . 

Since we are addressing high spatial resolution data and gradual 
memberships are mainly related to boundary conditions, we adopt a simple 
interpolation method. In particular the compatibility in the inner part of the 
training polygons, selected by the expert, is labelled 1, and values decrease as 
they move towards their boundaries by a linear function. The values obtained 
express the degree of membership to a given class; this procedure is applied for 
each class considered. 

Formally the training set T is defined as: 

T ={tt I ti = Gl
N ,...,G^ ;LTEU...,LTEC } where Gl

N. is the root 

for each enlarging level, Fi, 

LTEk is the labelled target element for each class and 

0<LTE(i,j)<l 

The same sampling procedure is employed for the selection of the 
testing set to be used in the accuracy assessment phase. 

During the generalisation phase the image to be classified is presented 
in input to the trained network as an arrangement of contiguous target elements, 
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each associated with the corresponding root images G'N providing contextual 

information. 

4. Classification of Synthetic Images 

A set of experiments were conducted using synthetic images to determine how 
well the model proposed works in an easily controlled domain. 

Figure 4. (a)-Synthetic image of 289x289 pixels used in shape-based classification experiment; 
(b)-Desired classification output 

Figure 4-a shows the synthetic image used to determine the capacity of 
the strategy to extract geometric, shape information, and basing on them to 
classify objects in the image. Three configurations of the strategy were 
considered distinguished by an increasing number of enlarging steps in the 
configuration of the strategy. Figure 5 illustrates the solutions adopted and the 
corresponding results obtained. In all the three cases the network was trained 
for 200 epochs and training data have been selected from the image 
representing the desired output (Figure 4-b) in a proportion of 10% on the total 
number of pixels. 

As seen in this experimental context, the classification benefits from 
the insertion of more than one level (enlarging step) in the pyramidal feature 
extraction procedure until the dimensions of the starting window of the level 
are large enough to avoid ambiguities in proximity to border. 
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Figure 5. Solutions adopted and results obtained in shape-based classification experiment 
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Figure 6. (a)-Source image composed of 5 natural textures; (b) Classification result (c) Desired 

classification output; (d) Configuration of the classification strategy 

A second experiment has been conducted aimed to develop a texture-
based classification. The source image used in the experiment was composed of 
five natural textures. Figure 6 shows the source and output images together 
with the configuration of the strategy employed in the experiment. Three 
enlarging steps have been considered (Fl, F2, F3) each with a different image 
source. Fl and F2 steps have been applied on the image convoluted with Sobel 
filter to enhance edges before the compacting process; F3 step has been applied 
on the image resulting from the application of the median filter to the original 
image to facilitate the blob object detection. The network was trained for 100 
epochs and training data have been selected from the image representing the 
desired output (Figure 6-c) in a proportion of 10% on the total number of pixels. 
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Results shown in Figure 6-b were encouraging considering the complexity 
inherent in the texture-based discrimination task. 

5. Object Recognition for Power Transmission Line Surveillance 

The method has been applied to recognition of power transmission lines 
structures - i.e. towers and lines. The study area was located in Northern Italy, 
corresponding to the northern part of the second largest basin of the Subalpine 
lacustrine district: Lake Maggiore. The landscape is typical subalpine: 
dominated by mixed forest, associated to pastures in the most elevated areas, 
and to small lawn patches or cultivated areas as moving forward to the lake. 

Experimental data were taken from the original 5005 x 8993 IKONOS 
image set, including: Panchromatic product (1-meter pixel size - acquired at 
libit and processed as remapped at 8 bit), Multispectral (red, green, blue, NIR 
at 4 meter resolution) and Pan-Sharpened (NIR, green, red at 1 meter 
resolution) products. 

5.1 Recognition of towers 

The experiments were conducted on a particular typology of transmission 
towers, those related to 380kV lines (Figure 7). 

Figure 8 reports the image sources considered for positioning the 
concentric windows. Other than Red and Green planes, an additional image 
plane - obtained by a Sobel filter - was introduced to provide an enhancement of 
details and to balance the low pass effect of resampling. The Red and Green 
images were scaled to 1 meter resolution by bicubic resampling 

Unfortunately only three towers can be observed in the overall image 
and the experiment has been conducted taking into account the low availability 
of target objects. The classifier processes the same objects in learning and 
allocation phase but with testing areas considerably larger then training areas. 
Omission errors was interpreted as learning errors and commission errors as 
generalisation ones. 

Figure 9 shows the configuration of the pyramidal model (a) together 
with desired (b) and obtained results (c). 



Figure 7 Sub-image taken from the original 5005 X 8993 IKONOS multi-spectral product 

5.2 Recognition of lines 

Lines recognition is a support for the recognition of towers. In fact, the 
superimposition of the of the two classification results - lines and towers -
would allow to discart all towers which do not intersect lines. On IKONOS 
imagery only 380kV lines are detectable. The pyramidal set is configured with 
two levels: 3 x 11 and 16 x 16 from the pancromatic and red channels 
respectively (Figure 10). 

In Figure 11 the desired and obtained outputs are reported. 
To improve classification results the strategy had been applied a 

second time using as inputs the first classification results and the original red 
channel. In Figure 12 the strategy configuration as well as results obtained are 
reported. 

Experiments conducted with real imagery, confirmed the feasibility of 
an automatic detection of power transmission lines structures on IKONOS 
imagery. The classification strategy, based on contextual feature extraction and 
neural networks, proved to be an useful tool, either for its flexibility in detecting 
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different objects (towers, lines) and for the operational level achieved (few 
parameters for the learning phase configuration, low computational charge). 

Figure 8 Image sources considered for extracting contextual information by cognitive pyramid 

6. Conclusions 

The present work illustrates methodological 1 and application results in the 
field of high resolution remote sensing object recognition. The contextual 
classification strategy proposed is considered a cognitive process capable of 
exploiting and integrating spatial and spectral information for object recognition 
in remote sensing images. Feature extraction is based on the use of concentric 
multi-windows and a Gaussian pyramid in an attempt to mimic human 
perceptual procedures in identifying objects of different shape and structure. 
Classification is performed by a multi-layer perceptron acting as a soft classifier 
to deal with unavoidable uncertainty in class discrimination. 

As seen in our experimental contexts, recognition benefits from the 
combined use of multi-resolution feature extraction and neural soft 
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classification. This combination produced an agile and flexible model for high 
accuracy discrimination of objects that vary in shape, size and structure. 
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Figure 9 Configuration of the model (a) together with desired (b) and obtained results (c) 



399 

Pan 

Red 

filil 
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Figure 10 Image sources and configuration of the model for lines recognition 
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Figure 11 Desired and obtained results in lines recognition 
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Figure 12 Re-classification results in line recognition experiment 
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The analysis of remote-sensing images has proved to be a powerful tool for mon
itoring the state of the Earth surface in several applications. Consequently, the 
availability of accurate and reliable algorithms for the detection of changes in 
remote sensing images is an important issue of growing interest. After a brief 
survey of previous work in change detection (including unsupervised, supervised 
and partially supervised approaches), two new unsupervised techniques, recently 
proposed by the authors, are described. The first is based on a modification to 
a thresholding algorithm originally proposed in the context of computer vision 
applications. The second involves the combination of the Fisher transform with 
the Expectation-Maximization algorithm. Experimental results on both simu
lated and real data sets and a comparison with another unsupervised approach 
are presented and discussed. 

1. I n t r o d u c t i o n 

The development of effective methodologies and efficient tools for the analysis of 

mult i temporal remote-sensing images represents one of the most important chal

lenges tha t the remote-sensing community will face in the next years. In this con

text, a strategic role is played by approaches devoted to detecting changes in images 

acquired in the same geographical area but at different times. The growing inter-
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est in change detection is mainly motivated by two reasons. The first is related to 
the large number of potential applications of change-detection methods, like en
vironmental monitoring,1 urban studies,2 hazard monitoring,3 forest monitoring,4 

etc. The second is associated with the characteristics of recent and future Earth-
observation sensors, which aim to sharply reduce the revisit time from weeks to 
days or less, thus making it possible to realize several new applications related to 
change detection. 

Change detection in multitemporal remote-sensing images is characterized by 
several peculiar factors that render ineffective most of the multitemporal image-
analysis techniques typically used in other application domains. The main difficul
ties with change detection in remote-sensing images arise from: the lack of a-priori 
information about the shapes of changed areas; the absence of a reference back
ground; differences in light conditions, atmospheric conditions, sensor calibration, 
and ground moisture at the acquisition dates; problems of registration of multitem
poral images.5,6'7'8'9 These factors restrict the use of most classical multitemporal 
image-analysis techniques to few particular remote-sensing applications and make 
change detection in multitemporal remote-sensing images a challenging problem 
requiring ad hoc methodologies. 

Generally, two main kinds of objectives can be pursued in change detection 
problems: 1) detection and location of the changes that have occurred in a pair 
of images between the related acquisition dates; 2) identification of typologies of 
land-cover transitions. The former objective is usually attained in a completely 
unsupervised way, whereas the latter is generally accomplished in a supervised or 
partially supervised way. 

In the present chapter, after a brief survey of existing change-detection tech
niques for remotely sensed imagery, we describe two unsupervised change-detection 
methodologies. The first methodology is based on a thresholding algorithm35 origi
nally developed in the context of computer vision applications. The second method
ology represents a modification to a recently proposed unsupervised14 technique 
based on the Expectation-Maximization (EM) algorithm. In particular, we aim to 
apply EM in a transformed space, computed by the Fisher transform. In addition, 
we propose to exploit the improved version of EM developed by Jackson et al.i2 

For experimental investigations, a study area damaged by a forest fire is considered. 
Two Landsat TM images of the area (acquired before and after the event) are uti
lized to detect the burnt zones and to assess the proposed techniques and compare 
them with the above unsupervised approach.14 

2. Previous work 

Any change-detection problem can be defined as a classification problem where a 
"change" class and a "no-change" class have to be distinguished, given two in
put images. In order to generate change/no-change maps, completely unsupervised 
approaches are generally used, as they do not require the "expensive" process of 
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ground truth collection. Therefore, no prior information about the statistics of the 
aforesaid classes is available to the classification algorithm. Actually, the application 
of any unsupervised change detection method to two registered (possibly multispec-
tral) images of the same area does not directly detect changes in the land cover; 
instead, it detects changes in the radiance that reaches a sensor. Therefore, unsu
pervised change detection algorithms generally imply a fundamental assumption, 
i.e., variations in radiance due to land-cover changes are greater than those due to 
sensor noise, different atmospheric conditions or different soil moisture, etc.10 Under 
this assumption, a significant variety of unsupervised change detection methods has 
been proposed, such as image differencing, image regression, image ratioing, change 
vector analysis (CVA), and methods based on principal component analysis (PCA) 
or on the analysis of band ratios and vegetation indexes.10 One of the most widely 
used approaches is image differencing, according to which the images acquired at 
two dates are subtracted in order to produce a "difference image" to be analyzed. 
When input data are multispectral, the CVA technique, which subtracts the two 
(vectorial) images in order to produce a "spectral change vector" image, can be 
applied. Changes are identified by computing and analyzing the modulus of this 
change vector, whereas its direction gives information about the kind of changes. 
Both the difference image and the modulus image have to be processed in some way, 
in order to obtain a final change map. The underlying idea is that no-change pixels 
exhibit small values in the modulus image, whereas change areas exhibit larger val
ues. Therefore, a simple thresholding algorithm can be used in order to distinguish 
between these two possibilities. However, the thresholding approach involves a fur
ther problem, i.e., the choice of an appropriate threshold, which should be optimized 
according to some criterion for the correct detection of changes. 

An alternative to the thresholding method for the solution of an unsupervised 
change-detection problem is the unsupervised classification approach, which as
sumes a given mathematical model for the statistics of the "change" and "no-
change" classes, performs some kind of estimation of the model parameters, and uses 
these estimates to apply a classification or detection procedure (e.g., MAP, Neyman-
Pearson, etc.11 '12 '13). For example, Bruzzone and Prieto14 proposed a classification 
method based on the analysis of the modulus of the multispectral difference im
age, assuming a Gaussian model for both the "change" and "no-change" classes. 
Therefore, the parameters to be estimated were the means, the variances and the 
prior probabilities of the distributions of the modulus for the two classes. These es
timations were performed by using the Expectation-Maximization (EM) algorithm, 
which is an iterative procedure converging, under appropriate assumptions, to max
imum likelihood (ML) estimates of the unknown parameters.15 '16 In Aach et al.17 

the change-detection problem is viewed as an inverse ill-posed problem that is solved 
by using prior knowledge of typical properties of change masks, described as sam
ples derived from two-dimensional Markov Random Fields (MRFs). Bruzzone and 
Prieto18 developed an MRF-based adaptive semiparametric technique that makes 
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use of the Reduced Parzen Estimate (RPE) and the Expectation-Maximization 
(EM) algorithm to estimate (in an unsupervised way) the changes that may occur 
in a temporal sequence of images. In Kasetkasem et al.19, the observed temporal 
images are modeled as MRFs in order to search for an optimal image of changes by 
means of the maximum a posteriori probability (MAP) decision criterion and the 
Simulated Annealing (SA) energy minimization procedure. Finally, in Melgani et 
al.20, a comparative study between several basic thresholding algorithms developed 
for pattern-recognition or computer-vision problems (like image binarization) and 
more sophisticated thresholding methods based on the EM algorithm is made in 
the context of change detection in remote-sensing images. 

When an application requires the identification of the kinds of land-cover tran
sitions that have occurred, it becomes necessary to integrate the prior knowledge 
about the study area (ground truth) into the image-analysis process. This can be 
done in a supervised or a partially supervised way. In the former way, it is assumed 
that the ground truth is available for all acquired temporal images. In comparison 
with a completely unsupervised method, such an approach usually leads to more 
accurate and more reliable results, especially if one uses advanced multitemporal 
methods capable to take into account temporal correlation between images. We 
note that any technique for the classification of multitemporal images that allows 
changes to occur between acquisition dates fall into this category. One of the early 
classifier is the "cascade" classifier introduced by Swain,21 which extends the Bayes 
criterion for the minimum error to the case of multitemporal data. The stochas
tic model-based approach proposed by Kalayeh et al.22 uses a stochastic system 
representing land-cover types through a non-stationary Gaussian process as input 
and the temporal spectral behavior as output. An iterative technique, derived from 
the Bayes rule for the minimum error, was proposed by Bruzzone et al.23 to esti
mate the matrix of the probabilities of transitions (TPM). In Bruzzone et al.2i, the 
TPM is replaced with the Joint Probability Matrix (JPM), computed by applying 
a specific formulation of the Expectation-Maximization algorithm. Two techniques, 
based differently on the notion of the minimum expected cost and dealing with the 
multitemporal aspect at the decision level, were presented by Jeon et al.25. In Tian 
et al.26, a temporal updating approach to cloud classification is developed. In order 
to track temporal changes in a sequence of images, a Probabilistic Neural Network 
(PNN) classifier is updated using the maximum likelihood criterion. The use of 
spatial information to further improve multitemporal classification accuracy was 
also adopted in the literature. In this context, an interesting (but computationally 
expensive) autocorrelation model was proposed by Khazenie et al.27 Jeon et al.28, 

developed a cascade spatio-temporal contextual classifier that involves Markov Ran
dom Fields to model spatial correlation. A general model using Markov Random 
Fields (MRFs) to deal with a sequence of temporal images was proposed by Solberg 
et al.29 This model is of great interest for its ability to easily integrate different 
kinds of information (e.g., derived from a GIS), in addition to the temporal one, 
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into a scene model by using the concept of energy functions. In Melgani et al. , 
a simple statistical model was proposed to merge spectral information with spatial 
and temporal contextual information. In Yang et al.A3 a change-detection method 
is developed, which integrates clustering information with several typologies of ref
erence data through interactive photointerpretation, under the assumption that no 
new classes apper between the considered acquisition dates. In Prieto et al.32, the 
requirements for ground-truth availability at the two dates were partially relaxed, 
in the sense that the ground truth was necessary only for the land cover transitions 
of interest to the end-user. In this context, a partially supervised technique based 
on Markov Random Fields was proposed that exploits training samples belonging 
exclusively to the land covers involved in the specific kind of changes to be mapped. 

Especially when a repetitive detection of changes is needed to monitor a given 
geographical area, on the basis of periodical acquisitions of new images, the availabil
ity of ground-truth information at all acquisition dates appears to be too onerous. 
In contrast to the supervised approach, detection of land-cover transitions by the 
partially supervised approach is based on the more realistic assumption that the 
ground truth is available for at least one of the multitemporal images. Despite this 
is a crucial issue in developing effective methods to be used in real applications, in 
the scientific literature scant attention has been devoted to such an issue. In Bruz-
zone et al.31 a partially supervised methodology was proposed able to update the 
parameters of an already trained parametric maximum-likelihood (ML) classifier 
whenever a new image lacking the corresponding ground truth has to be analyzed. 
Under the assumption that no new class is contained in the new image, the updating 
is performed by means of the EM algorithm, which allows one to tune the parame
ters of the trained ML classifier on the basis of the distribution in the new image. 
In this way, it is possible to classify multitemporal data of a given area and hence 
to obtain land-cover transition maps. Moser et al.33 proposed a partially supervised 
change-detection scheme based on the exploitation of the ground truth availability 
for at least one temporal image. Considering the case of two images acquired at 
different dates, they applied first a clustering algorithm to both images, and then 
a thresholding-based unsupervised change-detection algorithm35 to each separate 
cluster of the second image. As a result, their approach not only made it possible 
to identify the presence of changes but also to distinguish the different typologies 
of changes. 

3. A thresholding approach to unsupervised change detection 

The thresholding approach34 to the classification problem aims at splitting the 
pixels of a scalar image Z = {zmn : m = 0 , 1 , . . . , M — 1, n = 0 ,1 , , N — 1} into 
two classes, namely, wi and u>i, by fixing a threshold value T € R and generating a 
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classification map £ = {£mn : m = 0 , 1 , . . . , M - 1, n = 0 , 1 , . . . , N - 1} such that: 

^ l if zmn<T 

ui if zmn > T 

This approach has been employed for computer-vision classifi
cation problems,35,36'37 for instance, for separation of the "foreground" from the 
"background" . In the present chapter, we consider thresholding as a solution to 
change-detection problems for remotely sensed multitemporal imagery in order to 
separate the "change" class from the "no-change" class in the difference image. The 
problem of how to transform the difference image (which is vectorial) into a scalar 
image will be addressed later on. 

In particular, we assume to operate in a purely unsupervised context, character
ized by a complete lack of prior knowledge about the classes under consideration. In 
a supervised context, the selection of a suitable threshold value, aimed at minimizing 
the error probability in the binary classification map, would be simply performed 
by applying the Bayes decision theory,34 after estimating the class statistics on 
the available training set. In the present work, an unsupervised threshold-selection 
method is instead proposed. 

3.1. Kittler and Illingworth's thresholding method 

For the unsupervised change-detection problem under investigation, we adopt an 
unsupervised threshold selection approach, originally proposed for artificial vision 
purposes. The method assumes the input scalar image Z to present L possible grey 
levels (namely, { 0 , 1 , . . . , L — 1}) and the image histogram h(z) (z = 0,1,... ,L — 1) 
to be the only available information about the image itself (i.e., the method uses only 
grey-level information). The class-conditional probability density functions (pdfs) 
Pi(z) = p(z\ui) (i = 1, 2) of the grey level z are not known in advance, nor the prior 
probabilities Pj = P{uji) (i = 1, 2) of the classes. As a consequence, in place of the 
pdf: 

p(z) = PlPl(z) + P2p2{z) (2) 

obtained by the total probability theorem,13'39 the histogram h(z) itself is computed 
and utilized. 

The selection of an appropriate threshold T is based on the optimization of a 
given predefined criterion function J(T) that averages a cost function c(z, T) with 
respect to the feature z. This means that the threshold is assumed to be fixed at 
some value T G { 0 , 1 , . . . , L — 1}, and that a cost function c(z, T) is introduced that 
measures the cost of classifying pixels by comparing their grey levels z with the 
threshold T. The criterion function is then computed by averaging over the feature 
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histogram h(z): 

L-l 

J(T) = ^h(z)c(z,T) (3) 

and the optimal threshold that minimizes the criterion function is defined as follows: 

T* 4 arg min J(T) (4) 
T=0, . . . ,L -1 

We have considered several algorithms that can be formalized within this frame
work, depending on the specific model adopted for the cost function.34'20 Otsu's 
method37 defines a cost function performing a discriminant analysis of the image 
histogram; Kittler and Illingworth's algorithm35 applies the Bayes decision theory 
to derive a minimum-error criterion; and Huang and Wang's procedure36 optimizes 
a fuzzy-based criterion function. In this chapter, we focus our attention on Kittler 
and Illingworth's algorithm35, as, in a previous comparative analysis of the consid
ered methods,20 '38 it obtained very good accuracy results, thus proving to be an 
effective unsupervised classification tool and to perform much better than the other 
two algorithms. 

Kittler and Illingworth define a cost function according to the MAP (maxi
mum a posteriori) classification rule, under the Gaussian assumption for the class-
conditional probabilities (i.e., pi(z) = Af(m,i, of) for i = 1, 2). Under this hypothesis, 
the only parameters to be estimated are the class prior probabilities Pi and P2, the 
class-conditional means m\ and m,2, and the class-conditional variances o~\ and erf. 
Given the threshold value T, the following estimates are introduced: 

T L-l 

A ( T ) = $ > ( * ) , P2(T)± £ h(z) (5) 
z=0 z=T+l 

rf T 1 

m i ( T ) ^ - ^ - 5 > ( ^ m 2 ( T ) 4 1 £ zh(z) (6) 

np T i 

* ? ( T ) ^ ^ £ [ z - m i C T ) ] 2 M * ) , ^(T)^-^— J2 \z-m2(T)fh{z) 
^n1) z=o - p 2 ( i j 2 = T + 1 

(7) 

Hence, the estimates pi(z\T) (i = 1,2) of the Gaussian class-conditional pdfs 
Pi{z) are implicitly defined, and the estimates P^'(z,T) of the posterior proba
bilities pW(z) = P(u>i\z) of the grey level z belonging to the class Wj (i — 1,2) 
are computed by applying the Bayes rule.13'39 In order to penalize incorrect pixel 
classification, Kittler and Illingworth define their cost function as follows: 

, & \-2]nP(-1Uz,T) if z<T 
c(z,T)± I •>, , ~ ( 8 ) V ^ \ - 2 1 n P ( 2 ) ( z , T ) if z>T y ' 
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Except for an additive constant, the result is 

[ ' - * f ) l a - 2 1 n M iiz<T 
c(z,T) 

2 In £ £ R if z > T 
(9) 

which is a pair of parabolic arcs (centered in the class-conditional means), whose 
shapes depend on the threshold T (Fig. 1): 

c(Z, T) 

Fig. 1. Plot of the cost function c(z,T). 

Except for additive and multiplicative constants, the resulting criterion function 
is proved to be: 

J(T) = A (T) In <7! (T) + A (T) In a2 (T) - A (T) In A (T) - A (T) In A (T) (10) 

In the following, we shall refer to Kittler and Illingworth's algorithm simply as 
K&I. 

3.2. Unsupervised change detection by the K&cl algorithm 

As thresholding is per se a scalar operator (i.e., the thresholding operator accepts 
only scalar images as input), it cannot be directly applied to the difference im
age, which is typically multispectral. Therefore, we propose to use the K&I method 
after a preliminary <i-to-l feature transform from the d-dimensional space of the 
difference-image bands into a one-dimensional transformed space (Fig. 2). Specifi
cally, for this processing stage we considered two unsupervised transforms, namely, 
the modulus (i.e., Euclidean norm) operator and the first component of the Principal 
Component Analysis (PCA).12 '13 

From the linearity of the PCA operator it results that, if the difference image is 
assumed to be a Gaussian mixture of two components corresponding to the " change" 
and "no-change" areas, the PCA first component image is Gaussian, too. On the 
contrary, due to the non-linearity of the Euclidean norm, the modulus of a Gaussian 
mixture is not a Gaussian mixture any more. This is a drawback of the modulus used 
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difference 
image 

Unsupervised cMo-1 
feature transform (i.e., 

modulus or PCA-1) 
K&l 

change 
map 

Fig. 2. Block diagram of the unsupervised change-detection method based on K&I . 

as an unsupervised transform for the proposed algorithm, as K&I assumes the class-
conditional normality of the input image. On the other hand, the PCA transform is 
data-dependent (as it is computed by diagonalizing the sample-covariance matrix 
of the image), whereas the modulus is not. Hence, the PCA first component image 
may be affected by more deviations than the assumed two-component Gaussian 
mixture model. In the following, this transformed feature will be simply denoted by 
PCA-1. K&I applied to the modulus or to the PCA-1 image is the first technique 
that will be experimentally investigated. 

4. Classification-based approach to unsupervised change detection 

An alternative to the thresholding method for the solution of an unsupervised 
change-detection problem is an unsupervised parametric classification approach, 
which postulates a given mathematical model for the statistics of the " change" and 
"no-change" classes and estimates the parameters of the model. 

In the present unsupervised context, also the parameter-estimation stage must 
be unsupervised. A feasible method is the Expectation-Maximization (EM) algo
rithm, which can be applied to any estimation problem affected by some kind of 
incompleteness of the available data,15 '16 that is, when it is not possible to have 
access directly to the complete data but only to a set of incomplete data. Other ap
plications of EM can be found in the literature,16 such as active noise cancellation, 
hidden Markov models, spread-spectrum multiuser communication, etc. This large 
variety of applications stems from the considerable generality of the EM algorithm 
for the solution of incompleteness problems, and witnesses its effectiveness as an 
estimation tool. 

The approach based on EM followed by classification was proposed by Bruzzone 
et al.14. In this paper, we develop two modifications to that approach, one involving 
a different version of the EM algorithm itself42, the other related to the space where 
the EM-based estimation procedure is to be applied. 

4.1. EM-based unsupervised classification 

The Expectation-Maximization (EM) algorithm15'16 provides a general solution to 
the problem of the estimation of the parameters of a pdf in the presence of incom
plete data. It is implemented in a pair of steps, namely, the E-step, which com
putes a pseudo-likelihood function, and the M-step, which maximizes the pseudo-
likelihood itself. These steps are iterated up to convergence,38 and it has been 
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demonstrated15'41 that, under quite general assumptions, the algorithm converges 
to a maximum-likelihood (ML) estimate of the parameter vector. Even though it 
may suffer from local minima and saddle points, the EM algorithm has proved to 
be effective, in particular, for the kind of problems considered here, i.e., estimation 
of mixture-component parameters.15 '40,42 '38 

Focusing on the specific problem of unsupervised classification, given an M x N 
multispectral image Z = {zmn e Rd : m = 0 , 1 , . . . , M — 1, n = 0 , 1 , . . . , AT — 
1} consisting of d bands, for the pixel-intensity random vector we assume a K-
component Gaussian mixture model, i.e., 

K 

p(z)=^PiPi(z) (11) 
t = l 

where Pi(z) = p(z\u>i) = J\f(m,i,Y,i) is the pdf of the pixel-intensity vector z con
ditioned by the class u>j, and Pi = P{tOi) is the prior probability of Uj e ft = 
{wi, . . . ,U>K}- The parameters characterizing this statistical model are the prior 
probabilities {Pi : i = 1,2,... ,K}, the components of the d-dimensional mean 
vectors {rrii : i = 1,2,... , K}, and the elements of the d x d covariance matrices 
{Ej : i = 1,2,... ,K}. We collect these parameters in the vector 6, and denote 
explicitly pt(z) and p{z) by Pi{z\9) &a.&'p{z\d), respectively. 

It is possible to show that a standard application of the EM algorithm leads 
to a set of iterative equations such that, at each iteration step t, all pixel values 
are used to update the parameters of all classes.38'42 Jackson and Landgrebe42 

suggested adding an intermediate classification step between the classic E-step and 
the M-step: at each iteration, the current values of the pdf parameters are used 
to classify the pixels, and the parameters of a given class are updated considering 
only the pixels assigned to that class. The use of such "semi-labeled" samples aims 
at reducing the overlapping between classes, also integrating parameter estimation 
and classification. Specifically, Jackson et al.42 adopted an ML classifier and made 
use of a training set. In the present work, we adapt their version of EM iterations 
to our completely unsupervised context and to the use of a MAP classifier.38 Thus, 
at the i-th iteration, the following operations are performed: 

• Expectation step: for all z e Z and i = 1,... ,K, the i-th step EM 
estimate of the posterior probability P(ui\z) (z e Z, i = 1 , . . . , K) is com
puted: 

• Classification step: according to a MAP classifier, the decision region for 
the class u>i, i.e., the subset of samples that MAP assigns to the class CJ», 
is: 

lf] = {zeZ:P{uJi\z,e^)>P{uJj\z,6^) Wj^i} (13) 
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• Maximization stepa: for all i = 1,2,... , K: 

pyt+1> — f5±* (14) 
£ f = i £ , e I w P t o | z , 6 K ' ) ) 

} £ ^ , P ( ^ , ^ ) ( « - ^ ) ) ( , - m i ^ ) r 

4.2. Fisher/EM unsupervised change-detection method 

For change-detection purposes, we assume the multispectral difference image to 
be a mixture of two Gaussian populations, corresponding to "change" and "no-
change" pixels, respectively. The EM algorithm could be applied to estimate the 
parameters of the two Gaussian distributions directly in the d-dimensional space of 
the difference image. However, especially in a completely unsupervised context (i.e., 
with no training samples), the results may turn out to be more sensitive to deviations 
from the assumed distributional model. As a consequence, we propose to apply EM 
in a one-dimensional space. We do not apply EM to the modulus image because the 
modulus is nonlinear and strongly affects the data normality. On the contrary, linear 
transformations improve the data Gaussianity,44 making a parametric Gaussian-
mixture model more realistic and more accurate, thus increasing the effectiveness 
of Eqs. 12-16 in the estimation stage. In particular, we have selected the Fisher 
transform, as it performs a discriminant analysis, mapping the d-dimensional feature 
vector z of the bands of the difference image into a scalar transformed feature v. 

v = wTz (17) 

where the weight vector w is chosen such as to maximize the class separation and 
to minimize the class dispersion12'13. In Melgani et al.20 we have also considered 
the application of the EM algorithm after transforming the difference image by 
another linear operator, that is, simultaneous diagonalization.13 Results on real 
and simulated data38 have proved that the Fisher transform is more effective. 

The Fisher transform is inherently supervised, i.e., it requires an input training 
set to estimate class-conditional means and scatter matrices.12 Therefore, as a first 
step, we propose to apply Kittler and Illingworth's algorithm to some <i-to-l dimen
sional unsupervised transform (e.g., modulus or PCA-1) in order to obtain a first 
classification map. This map is utilized to generate a training set to compute the 

aAll vectors are assumed to be column vectors and the apex "T" denotes the matrix transpose 
operator. 



416 

Fisher transform image V = {wTzmn : m — 0 , 1 , . . . ,M-l,n — Q,l,... ,N-1} and 
to provide the first estimates of the parameters of the Gaussian mixture components 
in the Fisher domain to initialize the EM algorithm. 

In particular, denoting by U = {umn : m = 0 , . . . , M - 1, n = 0 , . . . , N - 1} 
the unsupervised transformed image and by u the corresponding scalar feature, 
the training set for the "no-change" class w\ is defined fixing a threshold T\ and 
selecting the pixels lying in U to the left of T±. For the "change" class OJ2, a second 
threshold T2 is introduced and the pixels lying in U to the right of T2 are employed 
as training samples. Hence, the training sets for the two classes are: 

V1(T1)±{{m,n):umn<Tl}, V2{T2) ± {{m,n) : umn > T2} (18) 

Denoting by fi\ and jl2 the K&I -based estimates of the class-conditional means 
Hi = E{u\u>\} and fj,2 = E{u\io2}, T\ is computed such that X>i(Ti) contains a 
percentage s of the number of samples that lie to the left of fix and T2 is such that 
T)2(T2) contains the same percentage s of the samples that lie to the right of jl2

h: 

\V1(T1)\=s\V1(ji1)\, \V2{T2)\ = s\V2{jl2)\ (19) 

As a result, biased estimates are obtained, but the most critical area, where 
the two distributions overlap, is discarded. In the following, we shall synthetically 
refer to this methodology as Fisher/EM. A complete block diagram of this change-
detection algorithm is shown in Fig. 3. 

difference 
image 

Unsupervised d-to-1 
feature transform (i.e., 

modulus or PCA-1) 

Generate 
training 

map 

P,(T,).I>2(T2)L 

^ change 
map 

Fig. 3. Block diagram of the Fisher/EM change-detection method. 

5. Experimental results 

5.1. Experiments with synthetic data sets 

For a preliminary assessment of the potentialities and limitations of the proposed 
unsupervised techniques, several experiments were performed with two-dimensional 
synthetic data sets, generated in order to focus on specific issues.38 We briefly 
describe here the main experiments and draw the related conclusions. 

bGiven a finite set A, we denote by \A\ the number of elements (i.e., the cardinality) of A. 



417 

Fig. 4. Two-dimensional histograms for synthetic data sets A (left), B (middle) and C (right). 

The first synthetic data set, called "data set A", was generated to simulate a 
situation in which a fundamental assumption about CVA is not satisfied, i.e, it is 
not true that low intensity values in the modulus image correspond to "no-change" 
areas, whereas high values are related to the "change" class. Data set A consists 
of two well-separated Gaussian classes (Fig. 4). Low error rates were achieved by 
both proposed methods when using PCA-1 as an unsupervised transform with error 
probabilities Pe = 8.7 • 10"4 for K&I and Pe = 8.1 • 1(T4 for Fisher/EM. On the 
contrary, very poor results were obtained by employing the modulus image. This 
failure of the modulus operator is due to the fact that, in the case of the modulus 
operator, the above fundamental assumption about CVA is critical. In particular, 
the two-dimensional histogram of data set A (Fig. 4) shows that the two Gaussian 
modes lie in the feature space at about the same distance from the origin (which 
is placed at point O in Fig. 4). Therefore, the required separation in the modulus 
space is not available for this data set, i.e., the resulting modulus histogram is 
essentially unimodal. On the contrary, the two classes are well-separated in the 
PCA-1 domain, as, for this data set, the histogram in the direction of the maximum 
dispersion (which always corresponds to the first principal component) is bimodal 
with quite a small overlap. 

Data set B (Fig. 4) consists of well-separated normal classes, with independent 
features. We employed this data set in an experimental study of the stability of the 
proposed algorithms in the presence of noise. Specifically, classifying data set B is 
expected to be an easy task for all methods, as both algorithms exhibit no classifi
cation errors. Then, starting from this easy situation, we added to both features a 
Gaussian noise of growing variance, testing the performances of the described meth
ods as a function of the amount of noise. The results show that the error probabilities 
of K&I and Fisher/EM regularly increase with the variance of the additive noise, 
without oscillations or non-monotonic behaviors.3'8 Hence, in this experiment, K&I 
and Fisher/EM exhibited regular and stable behaviors in the presence of undesired 
additive Gaussian noise. 

Finally, data set C (Fig. 4) shows a non-standard situation, where the class-
conditional pdfs are not Gaussian but uniformly distributed. This data set was 
generated in order to evaluate the sensitivity to deviations from model statistics, 
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since both proposed algorithms assume a two-component Gaussian mixture model 
as a basic hypothesis. Hence, the classification performances are expected to be 
affected by the inaccuracy of this model. This is confirmed by the results: both 
proposed methods generated several erroneously classified pixels, despite the good 
separation between the classes in the feature space. In particular, K&I obtained 
error probabilities equal to 0.01037 with PCA-1 and equal to 0.005289 with the 
modulus, whereas Fisher/EM achieved Pe = 0.00544 with PCA-1 and Pe = 0.00538 
with the modulus. Therefore, at least for this data set, the most sensitive technique 
seems to be K&I when applied to the PCA-1 image. 

5.2. Results on real data 

In the experiments with real data, we used a multitemporal data set consisting of 
a couple of multispectral Landsat 5 Thematic Mapper (TM) images of the western 
part of the Island of Elba, acquired in August and September 1994. The images show 
a 414 x 326 portion of a scene representing part of the island and the surrounding sea 
(the September image was registered to the August one). During the period between 
the acquisition dates, a fire destroyed a vegetation zone, visible in the considered 
area. Bands 4 and 7 were used in the experiments, as they are the most effective 
to detect forest areas damaged by fire.14 Band 4 and the ground truth image are 
shown in Fig. 5. Before using the image differencing approach, a simple running 
mean filter (with a 3 x 3 window) was applied to each of the two considered bands 
to reduce the noise. 

It is important to point out that the difference image did not represent a two-
class scene (i.e., "burnt vegetation" and "non-burnt vegetation") but, more realisti
cally, a three-class scene, where "burnt vegetation," "sea," and "non-burnt vegeta
tion" were contained. The presence of three classes (corresponding to three modes 
in the difference image) can strongly affect the classification accuracies of the previ
ously described algorithms, which refer to bimodal contexts. Therefore, we repeated 
the experiments also on a reduced portion of the same data set, from which it was 
obtained by cutting only a 228 x 228 zone of the island in order to keep the " burnt 
vegetation" and " non-burnt vegetation" classes and to leave out the " sea" class (the 
cutting window is shown in Fig. 5). 

Given the bispectral images (bands 4 and 7) acquired in August and September, 
the vectorial difference image was computed as well as the modulus and the PCA-1 
images (Fig. 6). K&I and Fisher/EM were tested employing both the modulus and 
the PCA-1 images as input, considering both the 414 x 326 and 228 x 228 versions. 
Fisher/EM was applied using different values of the related thresholds (i.e., for 
different choices of the percentage s). The resulting accuracies were compared with 
the ones provided by Bruzzone and Prieto's algorithm.14 In all the experiments, 
the probabilities of false alarm, detection, and error (denoted by Pp, PD and Pe, 
respectively) were computed by comparing the output classification maps with the 
ground truth. The values obtained for both versions of the data set are given in 
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Fig. 5. Multitemporal data set: band 4 of a Landsat-5 TM image, acquired in August 1994 (left); 
band 4 of a Landsat-5 TM image, acquired in September 1994 (middle); ground t ruth for the study 
case with the burnt area represented in white (right). The white square indicates the reduced data 
set (228 x 228 pixels in size). 

Tables 1-3. 

Fig. 6. Modulus (left) and PCA-1 (right) of the difference image (after histogram stretching). 

We used Bruzzone and Prieto's algorithm (which was originally developed ac
cording to the standard version of the EM iteration scheme) both for a comparison 
with the proposed methods and for a comparison between the performances of the 
standard and modified versions of EM. Therefore, for this algorithm only, in our 
experiments we adopted both versions of EM. 

Table 1. Performances of the K&I algorithm applied to 
the PCA-1 and modulus images. 

PF 

PD 

Pe 

228 x 228 data set 

PCA-1 

0.00167 
0.95568 
0.00366 

modulus 

0.00135 
0.92088 
0.00496 

414 x 326 data set 

PCA-1 

0.00042 
0.86993 
0.00273 

modulus 

0.00042 
0.91135 
0.00200 
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Table 2. Performances of the Fisher/EM algorithm, with the 
PCA-1 image or the modulus image as unsupervised trans
forms: Pp, Pp and Pe are the error probabilities obtained for 
s = 0.6; std(P e) is the standard deviation of Pe for s in the 
range [0.2,1]. 

PF 

PD 

Pe 
std(P e) 

228 X 228 data set 

PCA-1 

0.00190 
0.96189 
0.00358 
0.00018 

modulus 

0.00178 
0.96230 
0.00344 
0.00024 

414 x 326 data set 

PCA-1 

0.00099 
0.96935 
0.00152 
0.00021 

modulus 

0.00125 
0.97225 
0.00172 
0.00034 

Table 3. Performances of Bruzzone and Prieto's algorithm applied to the 
modulus image. 

PF 

PD 

Pe 

228 x 228 data set 

standard EM 

0.00464 
0.97142 
0.00575 

modified EM 

0.00135 
0.92046 
0.00498 

414 X 326 data set 

standard EM 

0.00179 
0.97349 
0.00223 

modified EM 

0.00042 
0.91052 
0.00202 

All the compared methodologies proved to be able to yield very accurate results. 
In particular, Fisher/EM provided the best overall classification performances (Ta
ble 2) and proved to be quite insensitive to the choice of the initial thresholds Ti 
and Ti for large variations in the parameter s, that is, from 0.2 to 1. Specifically, 
the highest accuracies were obtained for s £ [0.3,0.6], whereas a slight increase in 
the error probability occurred at the extremes of the range. Table 2 provides the 
performance parameters PF, PD, and Pe for s = 0.6 and the standard deviations of 
Pe for values of s in the range 0.2 to 1. As an example, one of the Fisher-transformed 
images is shown in Fig. 7. 

Fig. 7. Fisher-transformed image (initialization with PCA-1 and s = 1). 
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Also K&I obtained very good results on both versions of the data set, although 
at slightly higher error rates. In particular, in the 2-mode experiment, K&I attained 
better results when applied to the PCA-1 image than to the modulus image, whereas 
in the 3-mode experiments it achieved higher performances when applied to the 
modulus image. The reason for this difference can be deduced from Fig. 8, which 
displays the positions of the PCA transform axes in the feature space. It is evident 
that, in the 2-mode context, projecting in the PCA first component direction ei 
ensures a good class separation. In the 3-mode data set, the direction ei is influenced 
by the presence of the third mode and is almost coincident with one of the original 
axes, thus discarding a large part of the information conveyed by the other feature, 
and resulting in a reduced separation between the "change" and "no-change" classes. 
Hence, in the 3-mode experiment, better results are obtained with the modulus 
operator, which is data-independent. As an example, Fig. 9 shows the change map 
and the criterion function provided by K&I for the 414 x 326 modulus image. 

Fig. 8. Original axis and PCA directions in the feature space for the bimodal (228 x 228) data 
set (left) and for the trimodal (414 x 326) data set (right). The dark cluster close to the origin 
corresponds to the "no-change" class, whereas the light-gray one corresponds to the "change" 
class. 

Similar results to those of the K&I and Fisher/EM methods were also yielded 
by Bruzzone and Prieto's method on the 3-mode data set. The performances of 
their algorithm were slightly worse than those of the Fisher/EM method and of 
K&I with PCA-1, in the case of the 2-mode data set. On the considered data set, 
Bruzzone and Prieto's algorithm proved to be insensitive to the choice of the initial 
thresholds, Tc and Tn (see Section 2). 

6. Conclusions 

In this chapter, two unsupervised change-detection methodologies, operating in the 
context of image differencing, have been described and compared with another refer
ence algorithm. Two unsupervised transforms, namely, the first component of PCA 
(PCA-1) and the modulus, have been used, in a preliminary step, to transform the 
difference image and obtain scalar images. 
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Fig. 9. Results of the K&I algorithm applied to the modulus image of the 414 X 326 data set: 
change map (left) and criterion function (right). 

A difference between the PCA-1 and modulus operators, both applied to an input 
Gaussian mixture, lies in the fact that the PCA-1 is linear, whereas the modulus 
is not. Therefore, PCA-1 images save the Gaussian property, whereas the modulus 
image does not maintain normal statistics. The consequences are shown by the 
experimental results on the reduced data set (which exhibits a 2-mode distribution): 
the thresholding K&I algorithm performed better when applied to PCA-1 than when 
applied to the modulus. However, in the experiments with the complete data set 
(which exhibits a 3-mode distribution), K&I seemed to suffer from the trimodality 
more when applied to PCA-1 than when applied to the modulus image. This can be 
explained considering that the presence of a third mode may reduce the capability of 
PCA-1 to maintain the separation between the "change" and "no-change" classes 
in its first component. From a general viewpoint, PCA-1 is an image-dependent 
operator, and is consequently influenced by the data statistics. On the other hand, 
the modulus operator is effective in separating the classes only under an important 
assumption, i.e., low modulus values should correspond to the "no-change" class 
and high values to the "change" one. This is usually true for change detection in 
remote sensing. However, especially when there are changes in radiance also for the 
"no-change" class, this assumption should be properly checked. 

The considered thresholding method, i.e., K&I, provided very good results with 
the two-mode reduced data set. Moreover, it is a very fast approach, as no iterations 
are needed but only the calculation of the criterion function, which is defined for L 
values (e.g., 256 values). In addition, given the histogram, the computation time is 
independent of the image size, for it depends only on the number of grey levels in 
the input image. 

The Expectation-Maximization algorithm proved to be an effective approach to 
parameter estimation, robust and highly insensitive to the initial parameter vector. 
Therefore, it appears to be an appropriate estimation tool on which the classifica
tion step may rely (at least for the problem faced in this paper). In particular, the 
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EM modified version42 exhibited overall bet ter performances in all the experiments, 

and resulted in more precise parameter estimates. Moreover, it always reached con

vergence faster than the s tandard version. E M iterations use only grey-level infor

mation, so they can be implemented in such a way tha t , given the input image 

histogram, the computat ion t ime turns out to be independent of the image size. 

Concerning the method based on the Fisher transform, utilized in conjunction 

with the EM algorithm, the achieved results were slightly bet ter than those yielded 

by K M after the unsupervised transform. Furthermore, the F i sher /EM methodol

ogy exhibited a slightly lower sensitivity to the inaccuracy of the Gaussian model for 

the class-conditional distribution as compared with K M using PCA-1 . F i she r /EM 

and K M showed a stable and regular behavior in the presence of additive Gaussian 

noise in the image. 

Comparing F isher /EM with Bruzzone and Prieto 's method, the slightly bet ter 

results obtained by the former method suggest tha t the use of the Fisher transform 

can improve the discrimination between the two classes "change" and "no-change" 

thus leading to a more accurate thresholding. From a computat ional viewpoint, 

the complexity of F i she r /EM is slightly higher t han tha t of Bruzzone and Prieto 's 

method, whereas K M was by far the least time-consuming technique. 

To sum at, the K M technique, originally developed for artificial-vision problems, 

turned out to be a valuable tool for change detection in remote-sensing images, as, 

in spite of its simplicity, it provided very accurate change maps. The results re

ported in this chapter confirm tha t improved results can be obtained by Bruzzone 

and Prieto 's method, adopting the Jackson-Landgrebe version of E M . Finally, the 

proposed combination of feature transformation by the Fisher transform with pa

rameter estimation by EM appears to be a powerful approach able to provide the 

best change-detection results among the considered techniques. 
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The reflection seismic method is an instrument for remote detection that uses traveling waves to find 
the structure of an inaccessible body. The model used consists of flat horizontally layers subjected to 
seismic compressional waves at normal incidence. Both the source and receiver are buried below the 
surface with the receiver below the source. Dual attributes of the seismic wavefield are particle 
velocity and pressure. A receiver to measure these dual attributes is made up of two sensors. One 
sensor is a geophone, which measures particle velocity. The other sensor is a hydrophone, which 
measures pressure. Einstein deconvolution makes use of these dual attributes. The method is called 
Einstein deconvolution because the mathematics involved is similar to the mathematics of the 
special theory of relativity. Einstein deconvolution consists of two steps. The first step is the use of 
the d'Alembert equations to convert the received particle-velocity signal and the received pressure 
signal into the downgoing and upgoing waves. This step requires knowledge of the acoustic 
impedance of the material at the receiver. The second step in the Einstein deconvolution process is to 
deconvolve the upgoing wave by the downgoing wave. This operation removes the unknown source 
signature (which may or may not be minimum-phase) as well as the reverberations and ghosts due to 
the layers above the receiver. The output of the Einstein deconvolution process is the unit-impulse 
reflection response of the layers below the receiver. This unit-impulse reflection response can be 
subjected to dynamic deconvolution to yield the individual reflection coefficients. 

1 Introduction 

The reflection seismic method considered as an instrument for remote detection has much 
in common with other disciplines that use non-invasive techniques to find the structure of 
an inaccessible body. Other such disciplines are medical imaging and non-destructive 
evaluation. Generally some sort of wall or barrier protects the remote body. In the seismic 
case the wall is made up of the surface layers of the earth; in the medical case the wall is 
the human skin. A source of energy must be chosen to penetrate the wall and to reach the 
structure beyond. Receivers are placed to pick up the information-bearing signals. Often 
the source and receivers are restricted to lie outside of the wall; sometimes they can be 
placed a certain distance inside the wall. For example, in the case of an echocardiogram, 
the source and receivers are placed on the surface of the skin. In certain laser applications 
the source and receiver are on an instrument that penetrates the skin. In vibroseis seismic 
prospecting on land, the source and receivers are placed on the surface of the earth. In 
seismic prospecting at sea, the source and receivers are placed below the surface of the 
water. 
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The work of the geophysicist is to look beneath the surface of the earth in the search 
for new deposits of oil and natural gas. The subsurface geologic structures of interest can 
be as deep as four or five miles. The exploration geophysicist illuminates the subsurface 
by means of an energy source that generates seismic waves. The subsurface rock layers 
transmit and reflect the seismic waves. A seismic survey consists of collecting data over a 
selected geographic area, called the prospect. Essential features of seismic data 
acquisition are: At a fixed point on or near the surface of the earth, a source of energy, 
such as arrays of dynamite charges, or air guns, or chirp-signal (vibroseis) generators, is 
activated. An activated source is called a shot. Seismic waves from the shot propagate 
downward from the source point deep into the earth. The waves are reflected from 
geologic interfaces. The reflected waves propagate upward from the reflecting interfaces. 
A primary reflection has a wavepath that goes directly down to the reflecting interface, 
and then directly back up to the surface. A multiple reflection (or reverberation) has a 
wavepath that goes back and forth among various interfaces as the wave proceeds on its 
trip. Receivers at or near the surface detect the reflected waves, both primaries and 
multiples. It the source is buried below the surface of the earth, the surface layers reflect 
the upward traveling blast of the source energy, thereby producing a secondary blast of 
downgoing energy in addition to the direct blast of downgoing energy from the source. 
This secondary blast produces what are know as ghost reflections. The digitized signal 
recorded at a receiver is called a trace. After one shot is completed, the source point and 
the corresponding receiver points are moved so that another shot can take place. This 
acquisition method is repeated again and again until the entire prospect is covered. 

The traces as recorded by the receivers constitute the raw data, which are then fed 
into computers for processing. The purpose of digital seismic processing is to transform 
the raw data into computer-generated images of the subsurface geological structures. The 
high dynamic range of the receivers available today makes possible the use of precise 
signal processing methods that give excellent image quality. Geologists and geophysicists 
then interpret the images in the form of maps and cross-sections in order to choose the 
most favorable drilling sites for new oil wells, either wildcats or field-extension wells. 

Geophysicists have at their disposal the most advanced computer power available. By 
using commercially available seismic processing packages, a geophysicist can process 
seismic data even if he knows little or no mathematics at all. The results obtained are of a 
quality that would have been beyond the reach of the most skilled mathematician in the 
days before the computer. Consequently, a geophysicist now can dispense with much of 
the complicated type of mathematics that is needed to describe and analyze seismic wave 
propagation. What can be said about the value of mathematics in geophysics today? A 
geophysicist with a practical knowledge of mathematics is more able to solve those 
difficult problems that inevitably arise from time to time in seismic processing. A 
geophysicist can use mathematics to sort out the effects of the various processing 
operations. In this way, mathematics gives a geophysicist something that is quite difficult 
to obtain through the use of commercially available software alone. That illusive 
something is insight. 



431 

A word should be said about velocity, as the term is used in two different contexts in 
geophysics. Particle velocity refers to the velocity of a small particle of rock, as the 
particle moves back and forth about its equilibrium position due to the passage of a wave. 
Propagation velocity (or wave velocity) refers to the velocity of a traveling wave as it 
propagates from one place to some other place. 

In this paper the Z-transform is the main mathematical vehicle used. The Z-transform 
as used in geophysics is, in fact, the generating function as used in mathematics and 
statistics, To convert a geophysical Z-transform to the corresponding electrical 
engineering Z-transform, replace each Z in the expression by z~\ We represent waves 
by their respective Z-transforms. Much can be learned about geophysical signal 
processing through the relatively simple mathematics of the Z-transform. The operations 
of convolution and deconvolution for signals become respectively the multiplication and 
division of their Z-transforms. Robinson (1966) gives two geophysical processing 
methods, which he describes in terms of the mathematics of the Z-transform. One is the 
method for the elimination of seismic ghost reflections, and the other is the method of 
predictive deconvolution for the elimination of water-confined reverberations. These two 
processing methods are still in use today in the same form as originally given. The reason 
is that the robustness of the two methods makes their application much wider than 
otherwise would be expected. 

The purpose of the present paper is to meld the above two processing methods into 
one overall deconvolution method that makes use of the dual attributes of particle 
velocity and pressure. This overall deconvolution method is called Einstein 
deconvolution (Robinson, 1999). The method is named after Albert Einstein because the 
mathematics involved is similar to the mathematics used in the special theory of 
relativity. Einstein deconvolution eliminates the near-surface reverberations, the ghost 
reflections, and the unknown source signature. We treat the case where both the source 
and the receiver are placed below the surface. In the case of land exploration, the surface 
is the surface of the ground. In the case of marine exploration, the surface is the surface 
of the water. Einstein deconvolution removes all the extraneous effects above the 
receiver. For this reason, the receiver should be placed below the source, so that all the 
extraneous effects due to the source are removed as well. In this paper we use a model 
based upon compressional waves traveling at normal incidence to flat horizontal 
interfaces. 

The complete solution of the wave equation requires that two boundary conditions be 
satisfied. Measurement of the dual attributes of particle-velocity and pressure by a dual 
sensor can satisfy that requirement. According to the classical result of d'Alembert, the 
general solution of the wave equation in any rock layer yields wave motion that is the 
sum of two components. One component is the downgoing wave and the other 
component is the upgoing wave. In the first step, Einstein deconvolution converts the 
recorded particle-velocity signal and the recorded pressure signal (as measured by the 
dual sensor) into the downgoing traveling wave and the upgoing traveling wave. In order 
to carry out this step the acoustic impedance of the rock layer at the receiver must be 
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known or estimated. In the second step, Einstein deconvolution uses the downgoing wave 
to deconvolve the upgoing wave. This step removes the unknown source signature, which 
may be minimum-phase or may not be. (The term minimum-delay, often used in 
geophysics, means the same thing as minimum-phase.) This step also removes the 
reverberations and ghosts due to the layers above the receiver. Since this type of noise is 
the most harmful on a marine seismogram, Einstein deconvolution has widespread 
applications in exploration. In fact, the output of Einstein deconvolution is the unit-
impulse reflection response of the layers below the receiver. If desired, this unit-impulse 
reflection response can be subjected to dynamic deconvolution to yield the individual 
reflection coefficients. 

2 Background on the Use of Dual Sensors 

Einstein deconvolution requires the acquisition of seismic data making use of dual 
sensors. The main use of dual sensors today is in connection with ocean bottom cable 
(OBC) work. Haggerty (1956) did fundamental work on dual sensors for exploration at 
sea. A typical dual sensor is made up of a geophone and a hydrophone. Such a dual 
sensor simultaneously records two signals. The geophone measures the particle velocity, 
whereas the hydrophone measures the pressure. Haggerty also describes a marine seismic 
reflection surveying system in which two seismometer spreads are disposed at two 
distinct depths in the water such that water column reverberations received by them are 
180 degrees out of phase. By combining the output of the detectors, the reverberations 
cancel. Silverman et al (1963) describe a multiple-reflection analog computer, which 
produces all primary and multiple reflections, and which allows pressure and particle-
velocity detectors to be placed at any depth. Schneider and Backus (1964) describe the 
use of a dual sensor on the ocean floor as part of the Vela Uniform program to measure 
and study ocean-bottom seismic phenomenon in the frequency range of 0.5 Hz to 10 Hz. 
White (1965) describes a dual sensor located near a water-solid interface and considers a 
fluid-borne wave as well as a compressional wave arriving at normal incidence from the 
solid. White then derives the response when the geophone trace is multiplied by a scale 
factor and the product is added to the hydrophone trace. Robinson (1966) introduces 
predictive deconvolution for the removal of water-column reverberations with the 
requirement that a transducer that measures both the downgoing wave-motion and the 
upgoing wave-motion should be utilized. In the usual embodiment of predictive 
deconvolution the upgoing wave is deconvolved. Robinson (1984, p. 113) derives the 
d'Alembert equations that give the downgoing traveling motion and upgoing traveling 
motion in terms of particle-velocity, pressure, and the acoustic impedance at the receiver. 

Pavey (1966) describes the placement of dual sensors in a towed marine streamer for 
the elimination of ghost reflections. Furthermore Pavey (1967) provides a method for 
canceling the ghost wave reflected downward from the surface of the water by the use of 
particle-velocity sensing detectors interspersed with pressure sensing detectors within the 
streamer. Gal'perin (1971) in his work on vertical seismic profiling considers the use of a 
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dual sensor in a borehole to simplify the wavefield observed at interior points of the 
medium. Loewenthal (1975), as a general method to remove unwanted signals, put forth 
the first systematic use of dual data in connection with the magnetotelluric inverse 
problem. Robinson (1975) shows that the Einstein addition formula (Einstein, 1905) has 
the same mathematical structure as the equation for the unit-impulse reflection response 
obtained when an additional layer is added to the medium. Cowles (1979) describes a 
method and apparatus for measuring and identifying up-traveling and down-traveling 
waves. Both a particle-velocity sensitive transducer and pressure sensitive transducer are 
placed at a point below the earth's surface, as for example, in a borehole that is refilled. 
Ziolkowski et al. (1980) present a method for the extraction of the source wavelet from 
the reflection seismogram. They generate two different seismograms from each source-
receiver pair where the source used to generate one seismogram is a scaled version of the 
source used to generate the other. 

Ruehle (1984) gives a technique for reducing ghosting in which a pressure detector 
and a particle-velocity detector are positioned in close proximity to one another in the 
water. The pressure detector produces a positive output in response to upwardly traveling 
compressional waves and a negative output in response to downwardly traveling 
rarefaction waves. The particle-velocity detector produces a positive output in response to 
upwardly traveling compressional waves and a positive output in response to 
downwardly traveling rarefaction waves. These outputs are filtered so that the impulse 
response of the rarefaction waves cancels. The filtered outputs are combined to produce 
an output in which the ghost reflection is substantially suppressed. Berni (1984) 
describes the use of a vertical component accelerometer in combination with a 
hydrophone for canceling surface-reflected ghosts in marine seismic operations. Berni 
(1985) gives a method for eliminating ghosts from seismic signals detected at a 
predetermined depth. The method employs both a pressure sensor and a motion sensor. A 
seismic signal and its corresponding ghost signal detected by a pressure sensor is filtered 
as a function of depth of the sensor to provide a band-limited spike signal at an arrival 
time midway between the seismic and ghost arrival times. Similarly, a seismic signal and 
its corresponding ghost signal detected by a motion sensor is filtered as a function of 
depth of the sensor to provide a band-limited spike signal at an arrival time midway 
between the seismic and ghost arrival times. The filtered motion and pressure spikes are 
then added together in proportion to their respective signal-to-noise ratios. The 
proportionally added signal is a ghost free seismic signal having a maximum signal-to-
noise ratio for each frequency component and may be employed in further seismic 
processing steps. Szaraniec (1985) uses the odd-depth layered-earth model in the Z-
transform domain directly to find the impulse response. Gutowski and Treitel (1987) 
construct a normal-incidence synthetic seismogram in the case of arbitrary source and 
receiver positions. Adair et al. (1988) compare signal-to-noise ratios obtained on 
bottomed seismometers, bottomed hydrophones, and buried seismometers from near-
surface explosions. Using the concept of a fictitious surface source, Shtivelman and 
Loewenthal (1989) give an alternative and more intuitive process of construction of a 
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normal-incidence synthetic seismogram. Their final results are similar to those of 
Gutowski and Treitel (1987) but are obtained quite differently. 

Loewenthal and Jakubowicz (1983) and Loewenthal et al. (1985) demonstrate a 
deterministic approach for estimating the wavelet and reflectivity for one-dimensional 
seismograms. The technique enables the signature of any point source or, in principle, 
any horizontal source array to be determined for a one-dimensional earth. The resulting 
signature is of the far-field form and includes the source ghost. Provided the source 
wavelet is space-invariant, that wavelet is convolved in both the recorded pressure and 
particle-velocity fields. It follows that the ratio of the Fourier transform of particle 
velocity to that of pressure is always source independent. Due to the cancellation of the 
source term, the method always yields an impulse response. This can be equivalently 
viewed as an extrapolation of the wavefields from receivers at depth to receivers placed 
at the surface. Barr and Sanders (1989) give a method to remove multiples through the 
combination of pressure and particle-velocity measurements. They show that the dual-
sensor method eliminates notches in the recorded OBC data's amplitude spectra that 
would otherwise be generated by the receiver's location below the water's surface. Towed 
streamer data, however, continue to contain such notches, resulting in reduced 
bandwidth. The dual-sensor method records both particle-velocity and pressure signals in 
ocean-bottom cable surveys. Elimination of surface reflected energy is obtained by 
simple summation of the pressure and velocity signals. Barr and Sanders (1989) and Barr 
(1990) show that if a suitably scaled particle-velocity trace is used in the summation, both 
the upward and the downward traveling parts of the wavefield trapped in the water layer 
can be eliminated Their scaling factor is a function of the ocean-bottom reflectivity. Early 
dual-sensor surveys used a separate calibration survey to measure the ocean-bottom 
reflectivity. In the calibration survey a low-energy source was fired over each receiver 
pair and the scalar was taken as the ratio of the first break amplitudes of the hydrophone 
and geophone signals. The added cost of such a survey led to the development of 
methods to estimate the reflectivity from the production data itself. 

Barr (1990) describes a marine seismic system that reduces coherent noise by 
applying a scale factor to the output of a pressure sensor and a particle-velocity sensor 
positioned adjacent to one another in the water. The sensors can be placed at a point in 
the water above the bottom in order to eliminate downgoing components of the 
reverberation. Alternatively, they can be placed on the water's bottom in order to 
eliminate both upgoing and downgoing components of the reverberation. The scale 
factor, which depends upon the acoustical impedance of the water or water-bottom 
material, can be determined either deterministically or statistically. The deterministic 
method involves measuring and comparing the responses of the pressure and particle-
velocity sensors to a pressure wave induced in the water. The statistical method involves 
comparing the magnitude of the pressure-signal autocorrelation to the crosscorrelation of 
the pressure-signal and the particle-velocity-signal at selected lag values or, alternatively, 
comparing the magnitude of the pressure-signal autocorrelation to the particle-velocity 
signal autocorrelation at selected lag values. Paffenholz and Barr (1995) point out that 
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one of the primary goals of the dual-sensor technology is the elimination of the receiver 
ghost response that corrupts single hydrophone ocean-bottom cable data. The dual-sensor 
data allow separation of the wavefield into upward and downward traveling components. 
They show how the elimination of the surface reflected energy can be achieved by 
summation of the pressure and particle-velocity signals. They show that this dual-sensor 
processing requires the use of scale factors that are functions of the ocean-bottom 
reflectivity. They give a new method to derive the ocean-bottom reflectivity from 
production seismic data. Their method eliminates the need for a separate calibration 
survey and is stable in the presence of random and shot-generated noise. They also 
discuss methods for determining the receiver depths from production seismic data. 

Barr, Paffenholz, and Rabson (1996) make important contributions to the ocean-
bottom cable (OBC) method. They discuss the advantages of not using streamers, but 
placing the detectors on the ocean bottom. They show that the method can safely deal 
with obstacles like oil-field equipment platforms. In addition, they show that OBC data, 
enhanced with numerous data acquisition and processing technologies, have a resolution 
that surpasses the resolution achievable with today's towed streamer technology. Because 
the OBC method employs a stationary array of receiver stations on the ocean bottom and 
a marine vessel towing only a seismic energy source, they show that the physical 
separation of the energy source from the recording spread provides the flexibility to 
record virtually any geometry. Also they show that the OBC method's stationary receiver 
spread also yields a surface consistent recording geometry. Sun (1997) describes the 
vertical cable method for acquiring and processing prestack 3-D marine seismic data. The 
method is based on technology developed by the US Navy for antisubmarine warfare. 
Processing schemes used for the separation of upgoing and downgoing wavefields of 
vertical cable data are quite different from the schemes for separation of the upgoing and 
downgoing wave fields in standard VSP data processing. Sun (1997) develops a new 
method for the separation of upgoing and downgoing wave fields. The method achieves 
the maximum utilization of vertical cable field data. In tests with synthetic data and field 
vertical cable data, the method not only performs well but it is computationally simple 
since it assumes a stratified earth model and requires only the water-layer velocity. Other 
papers on dual-field techniques include Shtivelman and Loewenthal (1988), Loewenthal 
and Shtivelman (1989), and Loewenthal and Stoffa (1991), Loewenthal (1991, 1994), 
Barr (1997), and Dragoset and Barr (1994). Canales and Bell (1996) combine 
hydrophone and geophone data to separate the upgoing and downgoing waves. Then they 
use the downgoing wave as the effective source wavelet and minimize the energy of the 
upgoing wavefield deconvolved by the downgoing wavefield. Their method improves 
continuity and attenuates the ghost. 

The Einstein deconvolution method described in the paper is limited to compressional 
waves, flat interfaces, and normal incidence. Standard techniques such as the Radon 
transformation can be used for the case of non-normal incidence. Aminzadeh (1984) 
develops a recursive algorithm to obtain the layer parameters of an elastic medium 
(density, P-wave velocity, S-wave velocity) from reflection coefficient matrices in terms 
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of energy flux ratios for a non-normal incidence case. Recent work is moving the 
technology to non-normal incidence approximations and includes correct scaling of data 
through knowledge of the sea-floor parameters. Recent works also addresses four-
component data recording. The principal value of OBC data is the recording of 
converted waves to help characterize the sub-surface. A generalization is required in 
order to make the present methods applicable to converted-wave multi-component OBC 
data. 

3 The Source Signal 

^ Upgoing impulse 
Negative particle velocity 
Positive pressure 

( shot J 

v^ S Downgoing impulse 
Positive particle velocity 
Positive pressure 

Fig. 1. The convention used. 

Let us now consider an explosion in a shot hole buried below the surface of the ground 
or, alternatively, an air-gun discharge below the surface of the water. See Fig. 1. For the 
moment assume that the shot produces an upgoing spike and a downgoing spike. The 
positive direction of the vertical axis is downward, and the negative direction of the 
vertical axis is upward. Let the downgoing spike in particle velocity be denoted by o . 
Particle velocity has a direction associated with it, so the upgoing spike 8" in particle 
velocity has the opposite sign to the downgoing spike in particle velocity; that is 
S" — —d .On the other hand, pressure is not a directional quantity, so the upgoing spike 
in pressure has the same sign as the downgoing spike in pressure. In summary, according 
to our convention, an ideal shot has this characteristic: the downgoing spike (which 
travels in the positive vertical direction) has positive particle velocity and positive 
pressure, and the upgoing spike (which travels in the negative vertical direction) has 
negative particle velocity but still a positive pressure. In actuality a physical seismic 
source produces not a spike, but a signal S of some duration called the signature. As a 
result the downgoing source signature in particle velocity produced by a realistic source 
can be written as S. The upgoing source signature in particle velocity can be written as 



437 

-S. For Einstein deconvolution, the signature is not required to be minimum-phase. In 
fact, for Einstein deconvolution, the signature can be a completely unknown signal. 

4 Fresnel Reflection and Transmission Coefficients 

A seismic wave involves both pressure and particle velocity. Augustin Jean Fresnel 
(1788-1827) provided the basic concepts for the definition of a reflection coefficient. In 
seismic work, the reflection coefficient of an interface is found by requiring that (a) the 
particle velocity be continuous across the interface and (b) the pressure be continuous 
across the interface. In this paper we make use of the classical one-dimensional 
homogeneous isotropic parallel-layered-earth model (Robinson, 1967). 

The layered-earth model can be described as follows. Layer / is defined as the layer 
between upper interface i -1 and lower interface i. Denote the density, or mass per unit 
volume, of layer i by pr Let the propagation velocity of the wave motion in that layer be 
Cr The product pi Ct is called the acoustic impedance of the layer. In that layer, denote 
the solution of the wave equation for particle velocity by Vi (which we call the particle-
velocity signal), and denote the solution of the wave equation for pressure by p. (which 
we call the pressure signal). These two signals represent the dual field. 

1 
Layer i 

Layer i+1 

Interface i 

Fig. 2. The Fresnel reflection coefficient r. and the transmission coefficient T,. 

Consider a single interface, say interface i, in isolation. See Fig. 2. When a 
downgoing wave strikes the interface, part of the energy is reflected back into the same 
layer and the rest of the energy is transmitted into the next layer. For an incident 
downgoing particle-velocity signal striking the interface from above, the particle-velocity 
Fresnel reflection coefficient r. and the particle-velocity Fresnel transmission coefficient 
T. are given by 

A c> - P,+1 CM r. = • 

A Ct + pM C 
r = 1 + r. = • 

2 P, C 

Pi Ct + A+i Ct (1) 

These reflection coefficients are called Fresnel coefficients because they deal with 
only the interface between the two layers in question, and not with the entire system 
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which can have many layers. Each Fresnel coefficient carries the number of the interface 
as a subscript. It is seen that the reflection coefficient must be less than one in magnitude. 
Consider next an incident upgoing particle-velocity signal in layer / + 1 striking the 
interface from below. The resulting Fresnel reflection and transmission coefficients carry 
a prime, and are given by 

r:=-r. ; T . = l + r / = l - r = P i+ 'Cff1 %. 
PA (2) 

5 Elimination of Seismic Ghost Reflections 

Robinson (1966) derives a filter for the elimination of ghost reflections. In seismic 
exploration the explosion is set off in a shot hole drilled below the surface of the ground. 
The existence of a large velocity discontinuity above the seismic shot can act as the 
source of ghost reflections in the following way. The primary reflections on the 
seismogram are caused by the reflection from deep strata of the energy moving directly 
downward from the shotpoint. Meanwhile the energy moving directly upward from the 
shotpoint is reflected from the overlying discontinuity, and thus there is a source of 
secondary energy moving directly downwards. This secondary energy in turn is reflected 
from the deep strata, thereby producing corresponding ghost reflections on the 
seismogram. Thus a deep reflecting horizon appears on the seismogram as two reflection 
wavelets, displaced in time by twice the traveltime from the shot to the overlying 
discontinuity. Any differences in shape between the primary and ghost reflections can be 
attributed to various causes. However, in many instances the primary and ghost have 
approximately the same shape. In such a case, the two most important parameters become 
r'A and n. The constant r'A (of magnitude less than unity) is the Fresnel reflection 
coefficient of the overlying interface A subject to an upgoing incident wave, and the 
constant n (assumed to be an integer) representing the time-delay of the ghost with 
respect to the primary. 

Interface A 

Primary S 

Fig. 3. Ghost-producing couplet. 
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The downgoing source signature in particle velocity is S and the upgoing source 
signature in particle velocity is —5. See Fig. 3. Hence the ghost-producing couplet (in 
particle velocity) may be represented as 

S-S/AZn = S(l-rAZn) ( 3 ) 

It follows that the ghost-producing filter is the couplet 

G = \-r'AZn
 ( 4 ) 

This couplet is minimum-phase because its initial coefficient is greater in magnitude than 
its final coefficient, so more of the energy is concentrated at the front than at the end. A 
filter F to eliminate ghost reflections would be one that converts a primary-ghost 
couplet at the input into a primary alone at the output. The ghost elimination filter is the 
inverse of the couplet (4) as given by 

1 
F = (5) 

l-rAZ 

Because of the linear property of the filter, a train of overlapping primary reflections plus 
their ghosts is transformed by the filter into a train of primary reflections only. There are 
various ways of estimating the required parameters from the seismic data for the design 
of the prototype ghost elimination filter described above. Also more refined designs of 
ghost elimination filters may be used. For example, a ghost elimination filter may be 
designed as the least-squares shaping filter whose input is the waveform made up of the 
primary with its ghost, and the desired output is the waveform of the primary only. 

6 Elimination of Water Reverberations 

Robinson (1966) gives the method of predictive deconvolution for the elimination of 
water reverberations. The water reverberation problem in marine seismic operations may 
be described as follows. The water-air interface is a strong reflector. Let the water-bottom 
interface also be a strong reflector. In such a case the water layer approximates a medium 
bounded by two strong reflecting interfaces and hence represents an energy trap. A 
seismic pulse generated in this energy trap will be successively reflected between the two 
interfaces. Consequently, the water reverberations will obscure reflections from deep 
horizons below the water layer. 

water surface 

Fig. 4. Downgoing reverberation train. 
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Let rB be the Fresnel reflection coefficient for a downgoing incident particle-velocity 
upgoing incident particle-velocity signal striking the water surface. Let the source 
produce a downgoing unit spike only. Let us suppose that we have a transducer that 
measures only down-traveling motion in the water layer. The signal received by the 
transducer represents the successive reverberations in the water layer. It is assumed that 
the two-way traveltime in the water layer is n time units. First let us consider the 
downgoing reverberation resulting from the downgoing unit spike source. The coefficient 
1 occurs at time 0 and represents the initial downgoing source spike. The coefficient rB r'A 

occurs at discrete time n and represents the second downgoing spike, which has suffered 
a reflection at the bottom interface (reflection coefficient rB) and a reflection at the top 
interface (reflection coefficient r'A). The coefficient (rB r'Af occurs at discrete time 2n 
and represents the third downgoing spike, which has suffered two reflections at the 
bottom and two reflections at the top. The coefficient (rB r'Af occurs at discrete time 3tl 
and represents the fourth downgoing spike, which has suffered three reflections at the 
bottom and three reflections at the top, etc. Thus the water-confined reverberation spike-
train is of the form 

M=l + rB r'A Z" +(rB r'A Z" ) 2 +(rB r'A Znf +••• ( 6 ) 

This expression may be summed to give the following expression for the 
reverberation-producing filter 

1 
M- 1 — ' 7n 

1 rBrA ^ (7) 

The expression (7) holds for either downgoing or upgoing waves. The water-confined 
reverberation elimination filter would therefore have the form 

H = l-rBr'AZr (8) 

This couplet is minimum-phase. Because the inverse of a minimum-phase wavelet is 
also minimum-phase, it follows that the water-confined reverberation spike-train (6) is 
minimum-phase. 

7 Dual Fields 

In 1742 Jean Le Rond d'Alembert (1717-1783) in the Memoirs of the Berlin Academy 
gave a solution to the wave equation that provides considerable insight into wave 
propagation phenomenon. He showed that a disturbance satisfying the wave equation is 
equal to the sum of two traveling waves, one of which travels downward and the other 
upward. The definition of the Fresnel reflection coefficient requires the consideration of 
both the particle-velocity attribute and the pressure attribute of the wave motion. 
Robinson (1983) discusses the various conventions used when dealing with pressure and 
particle velocity. The downgoing and upgoing waves of d'Alembert transport the energy 
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to and from a reflecting horizon, and the particle velocity and the pressure attributes of 
Fresnel determine the partition of energy at that horizon. Thus in seismic exploration 
there is an interplay of two dualities, namely the duality of the upgoing and downgoing 
waves of d'Alembert and the duality of the particle velocity and pressure of Fresnel. 
These two dualities represent a fundamental symmetry that should be respected in the 
acquisition of seismic data. 

Let a dual sensor be placed at the top of layer /3, that is, at a point just below interface 

p-l. The sensor measures the particle-velocity signal and the pressure signal at that 

depth. Let Dp denote the downgoing component of the particle-velocity signal and let Up 

denote the upgoing component of the particle-velocity signal. Similarly, let dp denote the 

downgoing component of the pressure signal and let Up denote the upgoing component 

of the pressure signal. Robinson (1984, p. 113) gives the d'Alembert equations 

Vp=Dp + UP 

pp=dp + Up 

Up ~~ Pp ^/3 Up 

The third equation in (9) says that the downgoing pressure wave has the same polarity 
as the downgoing particle-velocity wave and that the two are related by a scale factor 
given by the acoustic impedance. The fourth equation in (9) says that the upgoing 
pressure wave has the opposite polarity as the upgoing particle-velocity wave and that the 
two are also related by the same scale factor. This convention is the same as the 
convention given by Berkhout (1987, pp. 199-200). 

The d'Alembert equations (9) may be written in the form 

Va+iP^PsCs) TT VB-(pB/p8Cg) 

2 
Dy^C' ? . UB =

 VP-W^P> (10) 

This form gives the expressions for the downgoing and upgoing particle-velocity 
waves. Given the geophone data alone, the separation of the wave motion into its 
component downgoing and upgoing waves can be made only under special 
circumstances. Given the hydrophone data alone, the separation of the wave motion into 
its component downgoing and upgoing waves can be made only under special 
circumstances. Given the geophone data and the hydrophone data, as well as the acoustic 
impedance at the location of the receiver, the d'Alembert equations (10) can be used to 
separate of the wave motion into its component downgoing and upgoing waves. 

The d'Alembert equations are fundamental. For a dual sensor planted in a given layer, 
the geophone records the particle-velocity signal Vp and the hydrophone records the 
pressure signal Pp. If the acoustic impedance of that layer is known, the d'Alembert 
equations can be used to find the downgoing component Dp and the upgoing component 
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Up of the particle-velocity signal. In this paper we deal with these two components. 
Alternatively, one could deal with the corresponding d'Alembert equations for the two 
components dp and Up of the pressure signal. 

The layered-earth system, as shown in Fig, 5, has n flat interfaces. A fictitious 
interface (interface 0) located on top is called the datum. Because the datum does not 
physically exist, its Fresnel reflection coefficient is zero, and its Fresnel transmission 
coefficient is one. The actual interfaces are numbered 1, 2, 3, . . . , n in order of 
increasing depth. 

Datum 

I D1 = source 
Interface 1 

T Interface k 

Interface n 

u, = trace A 

u- t 

Layer 1 

Layer 2 

• • • 

Layer k 

• • • 

Layer n 

| D n + 1 Un+1 = 0 f Basement ' " 

Fig. 5 The layered-earth model. 

The respective reflection coefficients (for downgoing incident waves) are rQ, rv r2, 
r3, ..., rn. The individual interfaces separate the layers. The upper layer is called layer 1, 
the layer between interfaces 1 and 2 is called layer 2, the layer between interfaces 2 and 3 
is called layer 3, and finally, the lower half-space is called layer n + 1 or the basement. 
All waves are assumed to travel at normal incidence to the parallel interfaces. The waves 
are digitized with equal time spacing. For example, a time unit of 4 milliseconds might be 
used. The two-way travel time in each layer is taken to be this discrete unit of time. A 
wave in a given layer carries the number of the layer as a subscript. Although the waves 
exist throughout the layers, we will only be concerned with them as measured at points 
just below each interface. The convention is to measure a wave in layer k at the top of the 
layer; that is, at a depth point just below interface k — 1. A wave in layer 1 is measured 
at a depth point just below the datum. 
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8 System Reflection and Transmission Coefficients 

Now let us turn our discussion of reflection and transmission coefficients from the case of 
just two layers to the case of a system of many layers. Instead of the so-called Fresnel 
reflection coefficient and Fresnel transmission coefficient we now obtain what are called 
the system reflection coefficient and the system transmission coefficient. The system 
coefficients are, of course, functions of the Fresnel coefficients that make up the system. 
The derivations given here are good for any system made up of multiple layers. More 
specifically, consider a stack of n layers in isolation from any other layers. For the 
purpose of exposition let the system have interfaces 1, 2, 3, . . . , n with the respective 
Fresnel reflection coefficients rv r2, rv ..., rn. The one-way downgoing system 
transmission factor and the one-way upgoing system transmission factor are defined 
respectively as 

a -x T3 T2 T t o: = T : ' T 3 T 2 T l (11) 

The fundamental polynomials Pn(Z) and Qn (Z) are defined by the matrix equation 

(Robinson, 1967) 

iQn 

Q: 

p. 

Z ~rn 

-r.Z 1 -r2Z rhZ 

Here the reverse polynomials (with the superscript R for reverse) are given by 

Pn\Z)=Z" Pn(Z~l) QR
n(Z)=Z"Qn(Z-1) 

(12) 

(13) 

The polynomial Pn(Z) is minimum-phase. The polynomials P„(Z) and Qn (Z) 

are each of degree n—\ whereas the polynomials QJZ) and rJZ) are each of degree 
n. The relationship between the waves in layer n +1 to the waves in layer 1 are given by 
the matrix equation 

D n+l 

u n + U 

-nil pR QR 

Q P 

A 

(14) 

This equation is the matrix form of Lorentz transform (Robinson, 1967,1982). 
The reflection coefficient for the datum is zero. See Fig. 6 (left). Let the source be a 

downgoing unit spike at the datum. The system reflection coefficient R(Z) is the 
resulting upgoing escaping wave at the datum, and the system transmission coefficient 
T(Z) is the resulting downgoing escaping wave into the basement, that is, 

R(Z) = UAZ) T(Z) = Dn+AZ) (15) 
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system 

TV 

datum 

basement 
nt 

t 
system 

T7~T R' 

Fig. 6 (left). Downgoing source, (right) Upgoing source. 

There is no upgoing wave in the lower half-space; that is, Un j = 0 . Because the 

datum (interface 0) has a reflection coefficient of zero, the upgoing escaping wave is not 
reflected back into the system. Thus the downgoing wave at the datum is simply the 
initial unit source pulse; that is, D l = 1. Thus equation (14) becomes 

-nil 1
 Q: 

<*'n VQn Pn (16) 

The solution of this equation gives the system reflection coefficient and the system 
transmission coefficient as 

R(Z) = Hg,(Z) 
P(Z) 

T(Z) = 
oZ nil 

Pn(Z) (17) 

Now let the source be an upgoing unit spike just below interface n . See Fig. 6 (right). 
The system reflection coefficient R'(Z) is the resulting downgoing wave just below 
interface n, and the system transmission coefficient T'(Z) is the resulting upgoing wave 
at the datum; that is, 

R'(Z) = Dn+l(Z) ; T\Z) = UX{Z) (18) 

Thus 

l \~ o' \Q P \ IT' (19) 

The solution of this equation gives the upgoing system coefficients 
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R'(Z) = Qim a' Znl2 

r(z) = -^ Pn(Z) Pn(Z) ( 2 Q ) 

The system transmission coefficients T and T are each minimum-phase. 

9 Reverberations Between Two Systems 

Choose a system with n interfaces, numbered 

1,2,3, ... ,a-l,a,a + l, ... ,n (21) 

Interface 1 is the surface of the ground or the surface of the water as the case may be. 

The source is in layer CC, which is the layer between interface Of—1 and interface CC. 

More specifically, the source is at the top of layer CC, so the source is just below interface 

OC—1. Layer Otis called the source layer. The lowermost interface is interface n. All the 

material below interface n is referred to as basement rock. See Fig. 7. 

I \ 1 

Source layer a 

System A 

a - l 

*a - i 

n-1 

System B 

Fig. 7. The two component systems separated by the source layer. 

The Fresnel reflection coefficients of the system are given by rv r2, ••••,Tn. Break 

the given system into two component systems, denoted by A and B. System A contains 
all the interfaces above the source. System B contains all the interfaces below the source 
and above the basement rock. System A has the series of reflection coefficients rv 

r2, ..., ra-\. System B has the series of reflection coefficients ra, ra-i,..., J~n 

The fundamental polynomials can be found from the reflection coefficients for each 
system in isolation from the other systems. The fundamental polynomials for any system 
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are identified by the subscript. For example, PA and QA are the fundamental polynomials 
for the upper system A. Similarly PB and QB are the fundamental polynomials for the 
lower system B. From the fundamental polynomials, the system reflection and 
transmission coefficients can be found. For example, we have 

R*(Z)-pA(Z) • R>(Z)-p,iZ) m 

System A (namely, the system above the source) has the system reflection coefficient 
R'A for waves striking the system from below. System B (namely, the system below the 
source) has the system reflection coefficient RB for waves striking the system from 
above. The source is excited, producing a downgoing particle-velocity signal S as well as 
an upgoing particle-velocity signal — S. The ghost-producing filter can be obtained from 
equation (4) by replacing r'AZ" by R'A. Thus the ghost-producing filter for this case is 

G = \-R'A (23) 

The source produces reverberations in the source layer, that is, in layer (X. The 
mathematical structure is the same as given for the case of reverberations between two 
interfaces. However, now system coefficients must be used instead of Fresnel 
coefficients. Thus the system reflection coefficient R'A is used for the layers above the 
source. Likewise, the system reflection coefficient RB is used for the layers below the 
source. The reverberation-producing filter can be obtained from equation (7) by replacing 
rBr'AZ by RB R'A. Thus the reverberation-producing filter for this case is 

M = - l 

I-RBK (24) 

-S M S RB M 

SM 
-S R'A M 

Fig. 8. (left) Components of Da. (Right) Components of Ua. 

It follows that the downgoing particle-velocity wave in the source layer is as shown in 
Fig. 8 (left), which is 
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D =SGM= S(^ RA)=SM-SR'M 

a-RBR'A) (25) 

The upgoing reflected wave Ur
a in the source layer is the reflection of the downgoing 

particle-velocity wave from System B. This upgoing reflected wave is given by 

K = RBDtt = SRBGM 

Td . 
The direct upgoing wave U in the source layer due to the source is 

Ut=-S 

(26) 

(27) 

The entire upgoing wave is sum of the direct upgoing wave (27) plus the upgoing 
reflected wave (26) is as shown in Fig. 8 (right), which is 

U„ = Ud„+Ur„=-S + SRRGM=-SM+SRBM (28) 
'a ^ a w a 

10 Dual-Field Deconvolution 

Receiver layer [3 

r„ __ 

a - l 

P-1 

rR — 

n-1 

System E 

System F 

System B 

Fig. 9. The two component systems making up system B with the separation at the source 
layer. 

Fig. 9 shows the receiver in layer j8. The receiver (a dual sensor) could be above the 

source, or at the source, or below the source. However, we treat only the case where the 

receiver is strictly below the source, so )6 > OC. Recall that system B contains all the 
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interfaces below the source; that is, system B has the series of reflection coefficients 
raJa+ 1, • • •, f„- Break system B into two systems, where the top system E is made up of 
the interfaces between source and receiver, and the lower system F is made up of the 
interfaces between the receiver and the basement rock. Thus system E has Fresnel 
reflection coefficients t"a,ra+1>..., Yp-\ and system F has Fresnel reflection 
coefficients Tpt rp+\t rn. 

Let the downgoing and upgoing waves in the receiver layer be Da and Up 

respectively. They are related by 

utt RFDp (29) 

where RF is the reflection impulse response of the layers below the receiver. Consider 

subsystem E alone. From the Lorentz transform (14) we have 

Dfi 

h\ 
£-(P-a)/2 

C'E 

PR 

rE 

YQE 

Ql 
PE\ 

Da 

kr (30) 

From equations (25), (26) and (30), we obtain the following expressions for the waves 
Ug and Dp in the receiver layer 

Dfi = 

U
P = 

z 

z 

- 0 3 -

a 
<p-

«) /2 

r 
E 

a)/2 

(PR
F+QR

FRB)SGM 

(QE + PFRB)SGM 

(31) 

Equation (29) may be written as 

F Dn 
(32) 

System F, namely, the system between the receiver and the basement rock, contains 
the reflection coefficients of interest in exploration. The near-surface reflection 
coefficients, that is, those of the interfaces above the receiver, give rise to the 
reverberations and ghosts that we want to eliminate. The dual sensor measures both the 
particle velocity signal Vp and the pressure signal Pp in layer /?. In addition the acoustic 
impedance pp Cp at the receiver layer must be obtained or estimated. 

The Einstein deconvolution method can be described in two steps. The first step is to 
convert the particle velocity and pressure signals into the downgoing wave Dp and the 
upgoing wave Up in layer /3. In order to carry out this step the d'Alembert equations (10) 
are used. The second step is to deconvolve the upgoing wave by the downgoing wave. In 
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order to carry out this step the right hand side of equation (32) is used. The result of 
Einstein deconvolution is the unit-impulse reflection response RF of system F. 

Another expression for RF can be obtained as follows. From equations (31) we have 

£a. (QE/PE) + RB 
•.« / r . x s^R (33) 

Dp (PE/PE)+(QE/PE)RB 

The quantity Q.E = P£ / PE is an all-pass system. The all-pass system adjusts the •E E I E 

phase spectrum without changing the amplitude spectrum. Because 

RF = Up/Dp, RE=-QE/PE, R'E = QR
EIPE (34) 

equation (33) becomes 

„ ~Rj? "i" RR 

RF = , (35) 
Q £ + RE RB 

The novelty of expression (35) rests in the appearance of the all-pass system Q £ . In 
summary, the deconvolution of the upgoing wave recorded at the receiver by the 
downgoing wave recorded at the receiver gives the unit-impulse reflection response RF of 
the subsystem below the receiver. The Einstein deconvolution process strips away the 
multiples and ghosts caused by upper system. It should be emphasized that the Einstein 
deconvolution process also strips away the unknown signature wavelet S. 

11 Dynamic Deconvolution 

Dynamic deconvolution (Robinson, 1967, 1975) is a form of layer stripping. See also 
Darby and Neidell (1967). Let us consider the simplest case of layer stripping, namely, 
the case of layer stripping for a downgoing unit-spike source incident on the surface. The 
resulting upgoing wave measured on the surface represents the reflection unit-impulse 
response R of the medium. Because the wave motion incident on the surface is a 
downgoing unit spike, it follows that the first primary reflection is equal to the reflection 
coefficient of the surface. Knowing the first reflection coefficient we can strip off the 
layer between the surface and the next interface. The next interface now appears as the 
new surface, and thus the layer-stripping process can be repeated to obtain the next 
reflection coefficient. This layer-stripping process can be repeated over and over to 
determine all the reflection coefficients, one by one, as the scheme probes deeper and 
deeper into the earth. Immediately one sees the weakness of this layer stripping scheme 
as well as other similar approaches. All layer-stripping schemes assume that the unit-
impulse reflection response is available, that is, the response of the layered earth to a unit 
spike. Certainly, in seismic acquisition, a perfect unit spike source is never available. In 
actuality, the source produces some kind of signature S, and an accurate estimate or 
measurement of this signature is difficult to obtain at best. The making of such 
measurements is fraught with troubles. Hagedoorn (1964) discusses the difficulties of 
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detecting the first arrival against a background of seismic disturbances due to sources 
other than the explosion. Because dynamic deconvolution is a nonlinear process, an 
accurate estimate is mandatory. Because of this shortcoming, dynamic deconvolution and 
other similar layer stripping methods have found little or no use in practice. Clearly, for 
dynamic deconvolution to work, a superior estimate of the unit-impulse reflection 
response is needed. 

As we have seen Einstein deconvolution removes the (unknown and not necessarily 
minimum-phase) source signature as well as the reverberations and ghosts due to the 
layers above the receiver. The resulting deconvolved record is the unit-impulse reflection 
response of the geological interfaces below the receiver. Thus the output of Einstein 
deconvolution is precisely the input required for dynamic deconvolution. The output of 
dynamic deconvolution is the refection coefficient series. Thus Einstein deconvolution 
followed by dynamic deconvolution yields a good estimate of the series of reflection 
coefficients of the interfaces below the receiver. 

12 Conclusions 

A receiver made up of dual geophone-hydrophone sensors measures two attributes of the 
wavefield. One attribute is particle velocity and the other attribute is pressure. In this 
paper, the dual-sensor receiver is buried at a level below the level of the buried source. 
Einstein deconvolution, which requires the dual-sensor data, removes all the 
reverberations and ghosts due to interfaces above the receiver. Einstein deconvolution 
also removes the unknown source signature in the same operation. The resulting 
deconvolved seismogram is the unit-impulse reflection response that would be produced 
as if there were no layers at all above the buried receiver. If desired, dynamic 
deconvolution can then be performed on the unit-impulse reflection response obtained by 
Einstein deconvolution. The output of the dynamic deconvolution process is the sequence 
of reflection coefficients for the interfaces below the receiver. Because its theory is based 
on the Z-transform, it follows that Einstein deconvolution operates under the same 
limitations as predictive deconvolution, namely flat horizontally layers subjected to 
seismic compressional waves at normal incidence. As a result, the limitations for Einstein 
deconvolution can be addressed by the same means as is done for predictive 
deconvolution. 

The common goal of both predictive deconvolution and Einstein deconvolution is to 
obtain the reflection coefficient series as the deconvolved signal. Predictive 
deconvolution requires the unknown source signature to be minimum-phase, whereas 
Einstein deconvolution does not. Both predictive (spiking) deconvolution and Einstein 
deconvolution carry out the deconvolution process on the upgoing signal. Both predictive 
deconvolution and Einstein deconvolution have the same deconvolution operator, namely 
the inverse of the downgoing signal. Thus these two methods of deconvolution look like 
each other. The difference is in the fundamental assumptions that determine the way the 
deconvolution operator is obtained. The small white reflectivity hypothesis allows the 
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predictive deconvolution operator to be computed by least-squares from the upgoing 
signal. In addition the small white reflectivity hypothesis eliminates the necessity for the 
final dynamic-deconvolution step. Predictive deconvolution has the advantage of nearly 
fifty year's usage. It is robust and stable in the presence of noise. Einstein deconvolution 
has the advantage the small white reflectivity hypothesis is not required. In this way 
Einstein deconvolution is more general. However Einstein deconvolution is more 
sensitive to noise. Ideally both methods can be used in conjunction with one another to 
obtain better results. 
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CHAPTER 20 

EDGE-PRESERVING SMOOTHING FOR ENHANCING 
3-D SEISMIC IMAGES 

Yi Luo, Maher Marhoon, Saleh Al-Dossary and Mohammed Alfaraj 

Saudi Aramo, Dhahran, 31311, Saudi Arabia 
E-mail: yi.luo@aramco.com 

We present a new noise-reduction method, named Edge-Preserving Smoothing 
(EPS), to reduce noise in 3-D seismic data. The EPS method simply attempts to 
suppress random noise and some acquisition artifacts in seismic data while 
preserving sharp boundaries or edges; these edges often correspond to important 
geological features, such as faults, fractures and channels. By applying EPS as 
a pre-processing step before running algorithms to detect edges in seismic data, 
we have obtained seismic edge-detection results with much-improved S/N ratio 
and resolution. 

1 Introduction 

Suppressing random noise is an important pre-processing step before applying seismic 
edge-detection (or coherence-cube) algorithms (Bahorich and Farmer, 1995; 
Gersztenkorn and Marfurt, 1996; Luo et al., 1996; and Luo et al., 2002). The reason is 
that reflection data near faults/fractures are usually more complex and noisier than in 
other areas, and most edge-detection algorithms, which attempt to highlight local rapid 
changes in seismic data, are sensitive to noise. 

Usually, Prediction-Error Filtering (PEF) or fx-deconvolution (Claerbout, 1998) is used to 
precondition the data before attempting edge detection. Although PEF has been very 
successful in many areas, it tends to inadequately remove noise in areas close to faults 
and fractures, where reflection signals are usually not highly predictable. 

A simple and robust alternative method for reducing noise is to use moving-window or 
running-average smoothing filters. Unlike the PEF method, such smoothing does not 
strongly depend on the predictability of signals. The drawback of this smoothing, 
however, is that it tends to blur sharp edges associated with faults and channels, which 
one would ideally want to enhance with seismic-edge detection algorithms. 

The EPS method attempts to resolve the conflict between noise reduction and edge 
degradation. This method is obtained by a simple modification of the running-average 
smoothing method. Such modification enables EPS to suppress noise while keeping 
sharp edges intact. 

The EPS method was proposed (Nagao, 1980) to reduce noise in 2-D images in the 
remote sensing field. We extended this method to 3-D images, which represent 
subsurface structures of the earth, and applied extended EPS method to seismic data. 
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2 EPS Method 

In principle, EPS looks for the most homogeneous fragment around each sample in an 
input data set and assigns the average value of the selected fragment to that sample. The 
method was proposed for reducing noise in 2-D photographs. In this section, we will 
extend the method into 1-D function for simplifying the description of the basic idea, and 
3-D volume of subsurface seismic images. 

2.1 1-D EPS Method 

Figure 1 shows a vertical synthetic seismic section with an ideal fault in it. The 
amplitudes on a time slice, which cross the faults, form a step function. This step 
function is used in Figure 2 to illustrate the concept and benefits of EPS. Figure 2A 
displays a noise-free step function, and IB shows the same function after adding random 
noise. 

Amplitude on the marked time slice 

/ I 

Figure 1: Ideal fault. The amplitudes on a time slice form a step 
function. 

Applying a 21-point running-average smoothing filter to the noisy function of Figure 2B 
yields the result shown in Figure 2C. The random noise is obviously reduced in Figure 
2C, but the sharp step is severely altered. Figure 2D depicts the result after applying a 
21-point EPS operator to the noisy step function in Figure 2B. It is clear from Figure 2D 
that the sharp edge/step is well preserved while the noise is reduced successfully. 
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Figure 2: Concept of EPS. Input step function (A); noise-added 
step function (B); result after regular smoothing (C) and result 
after EPS(D). 

To simply clarify how the EPS method works, let us take a 3-point EPS operator instead 
of 21 points as an example. In this case, for any given output location at index i, we first 
calculate standard deviations (Caswell, 1995) for the following five shifted windows: 

window 1: ( Ai-2, Ai-1, Ai+0 ), 

window 2: ( Ai-1, Ai+0, Ai+l ), 

window 3: ( Ai+0, Ai+l, Ai+2 ), 

Here, Ai represents the amplitude of the ith sample in the input data. Next, we select the 
window which has the minimum standard deviation, calculate the average over the 
selected window and assign the average as output at the ith output location. Repeating 
this process for all the output locations will yield the result shown in Figure 2D (assuming 
a 21-point window is used). For a N-point window, we will get N elective average 
values for each output location, the one calculated on the window with minimum standard 
deviation will be chosen and output. 

This procedure described above is illustrated in Figure 3. In the figure, the current output 
location under working is indicated by the "star" in the output signals. Three elective 
windows are shown in between the input and output signals. The average value of the top 
window will be used as the output due to the top window has minimum zero standard 
deviation. 
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Figure 3: Discrete operators of 1-D EPS. 

2.2 2-D EPS Method 

This general scheme can be readily extended to 2-D and 3-D cases. For any output 
location (x,y) in the 2-D case, for example, we divide its vicinity into small fragments, 
and calculate the standard deviation of the input data for each fragment, respectively 
(Figure 4). The fragment corresponding to the smallest standard deviation will be 
selected, and its average value is used as the output for the location (x,y). 

Output 

Figure 4: Concept of 2-D EPS. 
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Various numerical approaches can be adapted for implementing the concept shown in 
Figure 4. Figures 5 and 6 show a discrete implementation of 3X3 window a 5X5 window 
respectively. Larger windows (7X7, 9X9 etc.) can be used for noisier input data, and the 
vicinity of a output point can be divided into more then nine pieces as we did in Figures 5 
and 6. 

O • ! • 

1 o • 

» • • < • 

» 1 1> • 

00 (b) 
Figure 5: Discrete realization of 2-D EPS operator in a 3X3 
window, (a) One triangle and one square operator. There should 
be four triangle and four square operators in total (not depicted), 
(b) Central operator. 
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(a) (b) 
Figure 6: Discrete realization of 2-D EPS operator in a 5X5 
window, (a) One pentagonal and one hexagonal operator. There 
should be four pentagonal and four hexagonal operators in total 
(not depicted), (b) Central operator. 
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Figure 7 illustrates how the EPS can remove random noise without hurting sharp edges in 
the data. Figures 7A and 7B show a 2-D input array without and with noise, respectively. 
Figure 7C displays the output array after applying a 5X5 running window to the noise-
added array shown in Figure 7B, while Figure 7D depicts the result of the 5X5 2-D EPS. 
It is evident that the EPS can preserve sharp boundaries while suppressing noise 

Figure 7: (a) 2-D input array without noise, (b) 2-D input array 
after adding random noise, (c) 2-D output array after applying 2-
D running-window smooth. Blurring between adjacent box 
functions is obvious, (d) 2-D output array after applying 2-D EPS 
smooth. The boundaries between adjacent box functions are well 
preserved while the noise is well suppressed. 

2.3 3-D EPS Method 

Seismic data used in interpretation nowadays are often 3D volume, which manifest the 
structures of subsurface in 3D sense. Applying the method discussed above to 3-D 
seismic data, we have to extend EPS from 2D to 3D. Figure 8 illustrates the concept of 3-
DEPS. 
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Figure 8: Concept of 3-D EPS. 

In Figure 8, the surrounding area of a output point is divided into number of wedge-shape 
pieces (imaging cutting a thick pizza). For every wedge, a average and a deviation value 
can be calculated. The average value generated in the wedge with minimum standard 
deviation will be assigned as the output at the point under working. The discrete 
implementation for 3-D EPS can be the same as for 2-D (Figures 5-6), except each 
sample in 2-D EPS is a scalar (a value), but a vector in 3-D. The vector consists of a few 
samples (say 11 samples) in the vertical direction; or it is a segment of a seismic trace. 

3 Field Data Demonstrations 

We test the EPS method by applying an edge-detection algorithm (Luo et al., 2002) to 
seismic data with and without EPS applied. In these experiments, we held constant all the 
input parameters used in the edge-detection algorithm, so that any differences in the 
results would be solely attributed to the EPS algorithm. Besides us, Kurt Marfurt et. al 
(2002) had applied this method to real cases, and some good examples can be found in his 
work. 

Figure 9 shows time slices produced by applying the edge-detection algorithm to a 3-D 
post-stack seismic cube. Figure 9A is the edge-detection result without EPS being 
applied to the 3-D input cube, while Figure 9B is obtained with EPS being applied. Since 
noise in the input data is significantly reduced by the EPS, many lineation features stand 
out which are hardly seen in Figure 9A. However, if these features are true or not 
remains to be a question. 
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Figure 9: Time slice produced by applying edge detection to input data without 
(left) and with (right) EPS applied. 

To answer this question, Figures 10 and 11 are used within which, as you will see, their 
imbedded channels and faults can be recognized with certain. Figure 10A shows an 
amplitude time slice extracted from a 3-D seismic cube,. Figure 10B displays the time 
slice of the edge-detection result without applying EPS, while 5C shows the edge-
detection result with EPS at a pre-processing stage. Figure 11 is a close-up of Figure 10. 
In Figure 11D, we marked two channels and two fault zones, these features are clearer 
and sharper in Figure 11C than in Figure 1 IB. 

Figure 10: (a) Amplitude time slice of input data, (b) Time slice produced by applying edge-
detection algorithm to input data without EPS. (c) Time slice produced by applying edge-
detection algorithm to input data with EPS. 
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Figure 11: (a) Amplitude time slice of input data. It is a close-up of Figure 10A. (b) Time 
slice produced by applying edge detection to input data without EPS. It is a close-up of Figure 
10B. (c) Time slice produced by applying edge detection to input data with EPS applied. It is 
a close-up of Figure IOC. (d) Interpretation of time slice in Figure 11C, which is produced by 
applying edge detection to input data with EPS applied. The channels are marked using blue 
lines and the faulting arrears are circled by red curves. 

Besides being helpful for defining faults and channels, EPS also can help interpreters 
mapping fractures. It has been found that the edge-detection (coherence-cube) attribute is 
very helpful for mapping zones containing fractures and faults in Saudi Arabia 
(Lawrence, 1998). The area depicted by Figures 12 and 13 shows an area where fracture 
mapping is critical since the reservoir in this region is very tight (i.e., porosity of the 
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reservoir is less than 5%) and most of the hydrocarbon accumulates in highly fractured 
zones. 

Figure 12A shows an amplitude time slice extracted from a 3-D seismic volume, Figure 
12B displays the time slice of the edge-detection result without applying EPS, while 7C 
shows the edge-detection result with EPS applied before running the edge-detection 
algorithm. The edges in 7C are clearer and sharper than those in 7B. 

Figure 12: (a) Amplitude time slice of input data, (b) Time slice produced by applying edge-
detection algorithm to input data without EPS. (c) Time slice produced by applying edge-
detection algorithm to input data with EPS. 

Figure 13 is a close-up of Figure 12. The zooms confirm that the edge-detection results 
generated using data pre-processed with EPS are clearer and sharper than those using data 
without EPS applied. We have found that edge detection results enhanced by EPS (e.g., 
Figure 13C) allow us to see more details while interpreting fracture zones. 
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Figure 13: (a) Amplitude time slice of input data. It is a close-up of Figure 12A. (b) Time slice 
produced by applying edge detection to input data without EPS. It is a close-up of Figure 12B. 
(c) Time slice produced by applying edge detection to input data with EPS applied. It is a close-
up of Figure 12C. 

In addition to suppress random noise, the EPS can also be used to suppress certain type of 
coherence noise and acquisition artifacts. Figures 14A and 14B display the edge-
detection results generated using field data without and with EPS applied, respectively. 
In 9A, strong acquisition footprints are clearly apparent, whereas they are barely visible in 
9B after including EPS in the processing sequence. In this case, the footprints, which are 
not really random, can be suppressed by the EPS method because their width is smaller 
than the length of the EPS smoothing window in the cross-line direction. 

In the experiment shown in Figure 14, we applied a 2-D square window on time slices in 
the 3-D seismic data volume. This square window is further divided into small wedge-
shaped segments; the average over the segment with the minimum standard deviation is 
taken as the output at the center of the window. The window size used to get the result in 
Figure 14 is 5X5 samples. It is worth noting that such artificial footprints cannot be 
suppressed well if a smaller, say 3X3, window was used. That is, the noise, which may 
not be random in a strict definition, can be reduced as along as its character length is 
smaller than the size of the EPS window. 
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Figure 14: Time slice produce by applying edge-detection algorithm to input data 
without EPS (a) and with EPS (b). 

In figure 14, the acquisition footprint can be suppressed by EPS method with a 5X5 
smoothing window. This means that EPS can reduce the undesired noise as shown in 
Figure 14, on the other hand, genuine geological features (e.g., channels) would be 
suppressed if their width were smaller than the window size. 

If small-size features are the desired output after running edge-detection, one should 
design a smaller EPS window (smaller than the character length of the expected features), 
or simply drop EPS from the processing sequence. Moreover, a new EPS method, which 
will not hurt non-random small features, has been developed and will be published in a 
separate paper as it is out of the scope of this paper. 
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4 Conclusions 

The EPS technique, if designed properly, can reduce random noise without altering 
genuine sharp boundaries that are related to geology. Unlike PEF or other similar 
methods, EPS does not heavily depend on the predictability of signals. For these reasons, 
the EPS method is an ideal pre-conditioning process for seismic edge-detection (or 
coherence-cube) algorithms. 
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The objective of seismic depth imaging is to produce a spatially accurate map of 
the reflectivity below the Earth's surface. Current methods for performing depth 
imaging require accurate an accurate velocity model in order to place reflectors 
at their correct locations. Existing techniques to derive the wave velocity can fail 
to provide this information with the necessary degree of accuracy, especially in 
areas that are geologically complex. 

The inverse scattering series, a multi-dimensional direct inverse procedure, has 
the potential to perform the task of imaging reflectors at depth without needing 
to specify the exact velocity. The primary objective of the research described here 
is to further define the concept and to progress the development of an algorithm 
to perform the task of imaging in the absence of accurate velocity information. As 
has been recently reported, the strategy employed involves isolating a subseries 
of the inverse series with the specific purpose of imaging reflectors in space. 

In this paper, analytic and numerical results of an imaging subseries algo
rithm are further examined. This algorithm is being evaluated with regards to its 
convergence properties and data requirements. 

1. I n t r o d u c t i o n 

Seismic reflection surveying is a very useful tool in the exploration and production of 

hydrocarbons. In the seismic experiment, a controlled source at the Ear th ' s surface 

produces a wavefield tha t propagates in the Ear th , reflects at subsurface interfaces, 

and is recorded by an array of receivers at the surface (Fig. 1). This experiment 
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Source Receivers 
'kZ v w v v 

g 

*Reflected 
wave 

Reflector 
Fig. 1. Illustration of the seismic experiment. A seismic source sends an incident wave into the 
Earth. The wave reflects in the Earth and is recorded at one of many receivers. The recorded 
wavefield contains information about the source that created it, and the Earth through which it 
has traveled. 

is repeated for many locations at the surface during the course of a survey. The 
seismic data measurements are processed to reveal information about the Earth's 
subsurface. These processed data are usually interpreted alongside regional geologic 
and other available geophysical data in the course of deciding where, and where not, 
to drill for hydrocarbon reserves. 

At its core, seismic data processing is an inverse method: the data are inverted 
for the Earth's subsurface properties. These properties include the spatial location 
of reflectors and the contrasts in density and mechanical properties at these reflec
tors. In practice, processing of seismic data is carried out in a sequence of steps, 
e.g., random noise attenuation, source wavelet deconvolution, removal of free sur
face multiples, removal of internal multiples, imaging (also called migration), and 
inversion for changes in Earth properties. The order in which these steps are car
ried out can be important because most algorithms assume that the data have been 
preconditioned by the preceding processes. The research described here concerns 
the single step of imaging primaries. Imaging is the process which transforms the 
recorded primary seismic wavefield into a spatially accurate picture of the Earth's 
subsurface structure. 

This paper represents progress in a long-term project to develop multi
dimensional algorithms that have an increased ability to achieve processing objec
tives while lowering the demands on (often inaccessible) a-priori information about 
the subsurface. As with earlier analysis of algorithms for multiple attenuation, the 
evaluation of new concepts and theory progresses from simple, analytic examples to 
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complex, numerical models and ultimately to field data. To avoid numerical, stabil
ity or discreteness issues, we begin testing with analytic data for one-dimensional 
examples. We are thereby able to isolate and characterize the results and attribute 
them to the inverse procedure only. 

The following section explains the motivation for studying the particular prob
lem of imaging when the exact velocity model is unknown. Then, in the next section, 
the inverse scattering series is derived and the strategy of isolating subseries of the 
inverse series that perform seismic processing tasks is described. Finally, in the re
maining sections, analytic and numerical examples are used to demonstrate how 
a subseries of the inverse series is able to locate reflectors at their correct depths 
without specifying the velocity. 

2. Motivation for an accurate imaging algorithm when the velocity 
is unknown 

Reflectors exists where there is a sharp contrast in Earth material properties. Re
flectors are attributed to geological horizons or boundaries between different types 
of rocks and fluids. Oil and gas are often trapped below the surface by impermeable 
rocks. Seismic imaging produces a map of subsurface reflectors. The accuracy of 
this reflector map has a direct impact on our ability to predict the location, volume 
and even type of hydrocarbon reserves. Hence seismic imaging plays a key role in 
exploration and production of natural resources. 

Traditional methods for imaging combine Green's Theorem with the wave equa
tion to predict the wavefield inside the Earth from measurements on its surface1-4. 
This wavefield at depth is then transformed into a map of reflectivity using an 
imaging condition that asks for the seismic amplitude recorded in the limit of a 
small recording time for a hypothetical experiment where a source and receiver are 
coincident in the Earth. 

These methods require the precise velocity model in order to compute the 
Green's functions that back-propagate the measured wavefield into the Earth. With
out the true propagation velocity, the wavefield in the Earth will not be correctly 
predicted, and the imaging condition will fail to locate the reflectors. It is for this 
reason that the quality of the results from current methods for depth imaging are 
critically dependent on the accuracy of the velocity model. 

Velocity information itself can be derived from seismic reflection data by picking 
reflection travel times5 or using reflection tomography6. For current depth imaging 
algorithms, a velocity model is constructed consisting of interval velocity values 
that vary with subsurface location. The recorded wavefield is propagated through 
the velocity model to construct the wavefield in the Earth. In practice, the seismic 
interval velocities can be in error by 5-10%7 depending on data quality, geologic 
complexity, and the sophistication of the algorithm being used to derive them. 

The failure of current methods to produce accurate depth images below complex 
overburdens, such as below salt, basalt, and karsted or gas-saturated sediments, is 
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the motivation for the research described here. Under these geologic conditions, 
current velocity estimation procedures fail to yield the velocity model with the nec
essary degree of accuracy to place reflectors at their correct locations. The objective 
of this research is to develop a new method to accurately image seismic data that 
is less dependent on our ability to describe the precise velocity model. 

3. Scattering theory and seismic data processing 

The research described in this chapter applies inverse scattering theory to the seis
mic inverse problem8. In scattering theory, the difference in the behaviour of an 
incident wave in two media (referred to as the reference medium and the actual 
medium) is described in terms of the difference between the physical properties of 
these two media. 

The wave equations for the actual and reference wavefields are expressed by 

Li> = A(u)8{rg - rs) (1) 

LoV'o = A{w)8{rg - rs) (2) 

where L and LQ are the differential operators that describe wave propagation in 
the actual and reference media, respectively, ip is the actual wavefield, ipo is the 
reference wavefield, and A(u>) is the source wavelet. The variables rg and fs are 
the receiver and source position vectors, respectively. The Green's functions for the 
reference medium and actual medium satisfy 

L0G0 = S(fg - rs ) (3) 

LG = 8(rg-rs) (4) 

resepctively, and so t/j — A{w)G and XJJO = A(LO)GQ. The scattering potential and 
the scattered wavefield are defined by 

V = L0 - L (5) 

tps=%j)-l))Q (6) 

respectively. The equation that relates the actual and reference wavefields to the 
scattering potential is the Lippmann-Schwinger equation: 

/

oo 
G0(fg \f';w)V(r'; w)^(r ' \fs;u)dr'. (7) 

-oo 

Equation 7 can be successively iterated for ip m the integral. This results in the 
forward, or Born, series for the actual wavefield ip 

V> = Vo + Ipl + fa + • • • (8) 
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where 

/

oo 

G0(rg \f'; u)V{f'; wty 0(r ' ft i w)dr' (8a) 
-OO 

/ O O 

Go(rg\r';u)V(r';u;) x 
-OO 

/
OO 

G 0 ( r ' |r " ;«)V(r " ; a # o ( r " | r s ; o;)df' dr" (8b) 
-oo 

The forward series is a solution for tp in terms of Go, ipo and V'. In other words, 
the wavefield that propagates in the actual medium is described in terms of an 
infinite series of propagations in a chosen reference medium and interactions with 
the potential V. Conversely, the inverse series is a solution for V in terms of the 
scattered field on the measurement surface (tp — ipo)m = (ips)m and Go- The inverse 
series can be derived by first writing V as the sum of constituent components9 

OO 

V = V1 + V2 + V3 + ... = Y/Vn (9) 
71 = 1 

where Vn is the portion of V that is n t h order in the measured values of the scattered 
field, (ips)m. Substitution of equation 9 into the forward series (equation 8) and 
matching terms that are equal order in {ips)m yields the inverse series: 

(GoVi^m = (lps)m (9a) 

(G0V2</>o)m = -(GoViGoViVo)™ (9b) 

(GoVsi>0)m = -{GoViGMGoVrfoU - (G0V2G0V1^0)m - (G0V1G0V2^o)m (9c) 

See, e.g., Weglein et al. (1981)10 for references to the development of the inverse 
series. To calculate only the first term in the inverse series (i.e., solving equation 
9a) and to treat Vi pa V is to make the inverse Born approximation. However, it 
is important to note that the inverse series does not make that assumption. V\ is 
assumed to be the first order approximation to V and equation 9a is the exact 
equation for that quantity. The inverse Born approximation forms the basis of all 
current techniques employed to perform seismic inversion11, i.e., normal moveout 
(NMO) stack, amplitude variation with offset (AVO) analysis, migration (imaging) 
and migration-inversion12. Linear approximate inverse methods are also the basis 
of medical imaging and other non-destructive evaluation methods. For the seismic 
problem, the inverse Born is a reasonable approximation for precritical primary 
reflections, for small contrasts in material properties, and for a reference medium 
that is close to the actual medium. Second and higher terms in the inverse series can 
been viewed as correcting V\ towards V when the series convergences. The tasks 
of removing multiples, imaging primaries at their correct depth, and inverting for 
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large changes in Earth properties reside in the second and higher order terms in the 
inverse series. 

The inverse scattering series (equation 9) is a multi-dimensional direct inversion 
procedure. The scattering medium's properties are directly determined from the 
recorded data without iterative updating of the reference medium towards the actual 
medium. Alternative approaches, e.g., iterative linear inversion, involve updating 
the reference model so that the reference wavefield, in some sense, fits the observed 
data13. The inverse series is a distinct and separate method from iterative linear 
inversion. Equation 9 solves for V±, V2 • • • and hence for V = V\ + V2 + • • • directly 
in terms of (ips)m and Go-

Emprirical evaluation and tests of the entire inverse series have shown that it 
does not converge for contrasts between actual and reference medium properties 
greater than about 10 %14. Hence, it had been concluded that the radius of con
vergence was too small to be of direct practical use when no a-priori information is 
supplied. Rather than abandon the inverse series, research has been undertaken to 
isolate convergent subseries that perform individual tasks associated with inversion. 
Inversion of seismic data can be viewed as performing a sequence of four tasks: 

(1) Removal of free-surface multiples; 
(2) Removal of internal multiples; 
(3) Positioning of reflectors in space (imaging); and 
(4) Inverting reflectivity for changes in Earth parameters (target identification). 

The inverse series accomplishes these tasks using only measured data and reference 
medium properties. Isolating specific subseries that perform these tasks is less am
bitious than directly inverting for Earth properties in one step and so convergence 
properties may be more favorable. Also, by carrying out these tasks in sequence, 
tasks 2-4 benefit from the fact that previous tasks have already been performed, 
which constitutes valuable a priori information. At each step, the simplest possible 
reference medium is chosen that allows rapid convergence of the specific subseries. 

This strategy first produced a multi-dimensional free surface multiple removal 
algorithm. Free surface multiples are events that have reflected in the subsurface, 
and then traveled back up, hit the free surface (at least once) and traveled back into 
the Earth. These events usually have large amplitudes (due to the high value of the 
reflection coefficient at the Earth's surface) and can obscure reflection events that 
have traveled further into the Earth but arrive at the same time as the multiples. 
Also, the presence of multiples often precludes accurate estimation of reference 
medium properties. The second task-specific subseries to be isolated was the one 
that predicts and attenuates internal multiple reflections. Internal multiples are 
events that have all their downgoing reflections below the free surface. 

The multiple removal algorithms derived using the inverse series15 have the 
unique property that they expect the recorded seismic data and the source wavelet 
as input, but do not require the propagation velocity or any other subsurface in-
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formation. For marine seismic data, both the free surface and internal multiple 
subseries converge for a homogeneous acoustic reference medium - water - which 
makes the algorithms computationally efficient. More importantly, they predict and 
attenuate multiples generated by actual Earth model types that are much more 
complicated than the homogeneous acoustic reference medium and include elastic, 
heterogeneous, anisotropic and certain forms of anelastic media. 

An important prerequisite of these inverse scattering algorithms is knowledge 
of the source wavelet. Methods for estimating the wavelet include direct near-field 
measurements16 or an estimation from the recorded data1 7 - 1 9 . 

The strategy employed in this research is to first remove the multiples with their 
task-specific subseries, and then to use the source wavelet free demultipled data as 
input to the subseries that act on primaries. This represents a staged approach 
where tasks are carried out in an order that progresses from easy to hard and that 
uses the successful completion of earlier tasks to improve the chances of the next 
more difficult task being successful. 

Weglein et. al. (2000)20 have proposed using the inverse scattering series to 
perform the third and fourth tasks of imaging reflectors in depth and inverting for 
Earth parameters, both in terms of reference medium information. The theory and 
concepts surrounding the task of imaging using the inverse series have been set out 
by Weglein et al. (2002)21. In this paper, the first numerical examples of an imaging 
subseries are presented and analyzed. 

4. Imaging using the inverse series 

4 .1 . 1-D inverse series and task separation 

Wave propagation in a 1-D constant density variable velocity acoustic medium is 
described by the equation 

(j^ + k2{z)^{z;w) = Q (10) 

where k(z) = u>/c(z), u> is the angular frequency, c(z) is the velocity, and z is 
the field point of the wavefield. Assume that the region that equation 10 describes 
does not contain the source. If the reference medium is chosen to be an acoustic 
wholespace with velocity Co, then the perturbation has the form 

V = L0-L 

= kl - k2(z) 

= k2
0a(z) (11) 

where a(z) = (l — c^/c2{z)). In this context, the inverse problem is to solve for a 
where 

oo 

a = «i + a2 + a3 + ... = ^ an (12) 
7 1 = 1 
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The first term in the inverse series (equation 9a) is then 

foo eik0\zm-z 'I 

i>s{zm;u) — 
2ik(j 

k0a1(z')if)0(z';k0)dz' 

where zm is the measurement depth and the reference wavefield is ipo — elk°(z 

Solving for a± yields 

ai(z)=4 f 1>t(z')dz' 
Jo 

(13) 

(14a) 

where z' = (c0t/2 — zm) and t is the travel time. Time zero (t — 0) corresponds to 
when the downgoing incident wave passes zm. Equations 9b and 9c become 

a2(z) = - - \a{{z) + 
dz 

otz{z) = - - [ 2a1a2{z) 

dat(z)] fz , ,N 

/ a\(z )dz 
Jo / 

f a2(z')dz' 
Jo 

dai(z) 

dz 

da2(z 
dz 

f ai{z')dz' + ..\. 

(14b) 

(14c) 

The equation for a.?, consists of two terms that correspond to "self-interaction" 
(af) and "separated" (a[ Jai) scattering diagrams as represented in Fig. 2. All 
higher order terms can be broken up in a similar manner. As has been reported21, 
separated diagram terms with a single "upward scattering point" contribute to a 
subseries that images reflectors at their correct spatial location, and self-interaction 
terms lead to the subseries that corrects the amplitude of ot\ towards a. This will 
be illustrated in the next sections through analytic and numerical examples. 

4.2. Analytic example of the imaging subseries 

In this section, the ability of the inverse series to perform the task of imaging without 
needing to specify the velocity is illustrated using a simple 1-D acoustic example. 
Consider the experiment illustrated in Figure 3, with a source and receiver at the 
surface zm = 0. The reference velocity is chosen to be constant Co, whereas the 
actual Earth velocity is an unknown function c(z). 

In accordance with the strategy, all multiples (i.e., free-surface and internal 
multiples) have been removed from the input data14. Hence, for this example, the 
data consist of two primary reflections that arrive at times ii and £2 

il>a(t) = RiSit - h) + R2S{t - t2). (15) 

R\ is the reflection coefficient at the first interface for a downgoing wave and R2 = 
T01.R2T10 where R2 is the downgoing reflection coefficient at the second interface 
and T0i and Tw are the transmission coefficients for a wave propagating down and 
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a,: 

a,: 

®® 

Self-interaction 

®®® 

Fig. 2. The terms in the inverse series can be interpreted using scattering diagrams. The circles 
represent a i and the line represents a propagation in the reference medium. Self-interaction occurs 
when two or more scattering points are at the same location. Separated diagrams refer to scattering 
between points that are at different locations. Diagrams shown here perform inverse tasks on 
primary events. 

up, respectively. Therefore 

Ri = 
Cl - Cp 

Cl +C0 

Toi = 1 — R\ 

Tw = 1 + Ri 
C2 - C l 

and i?2 = 
C2 + C l 

(16) 

(17) 

(18) 

(19) 

Ci 

Fig. 3. A single layer with velocity ci between two homogeneous half-spaces with velocity Co and 
C2 • The depth of the first interface is za and the depth of the second interface is z;,. 
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Fig. 4. Given the reference velocity co, the first term in the inverse series, a i , places the second 
interface at the incorrect depth zy rather than the actual depth z j . For the case where Co < c\, 
Zy will be shallower than z j . The task of imaging is the process of moving the interface from zy 
to Zj, whereas the last task in the inversion for a must correct the amplitude of <x\. Both of these 
tasks reside in the higher order terms of the inverse series. 

Substitution of equation 15 into equation 14a yields 

oi(z) = ±RxH{z - za) + 4:R2H(z - zb.) (20) 

where zy is the pseudo depth at which the event with travel time ti images with 
velocity CQ. This pseudo depth is equal to 

Zb' = Za + 7 (^6 - Za) (21) 

where 7 = Co/ci. Figure 4 illustrates a.\ for the case where Co < c±. The second 
reflector is imaged at a depth that is too shallow because the reference velocity 
is less than the actual velocity in the layer. Furthermore, the amplitude of ai is 
different from that of a. These differences between « i and a are corrected by the 
higher order terms in the inverse series. 

Evaluating a.2 using equation 14b leads to 

a2(z) = - 8 R\H{z - za) + £3(2^1 + R2)H{z - zv 

- 8 RiR2(z — za)H(z - a)S(z — zy (22) 
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The terms consisting entirely of weighted Heaviside functions come from the self-
interaction diagram (see Fig. 2) and act to correct the amplitude of cti towards a. 
The 8 function comes from the separated diagram and is the first term in a series 
that shifts the deeper interface from zv to zb. The imaging subseries algorithm 
accomplishes this shift through a Taylor Series for the difference of two Heaviside 
functions expanded about the mislocated interface. The Taylor Series for this shift 
may be written 

B{z) = H(z-zv)-H(z-Zb) 

= (zb - zv)8(z - zv) + ( Z 6 ~ 2
Z b ' ) S'(z - zv) + ... (23) 

where we see that the first term in this series is a S function that relates to the one in 
equation 22. The coefficients of the Taylor Series contain the correct depth Zb to the 
interface. In the inverse series, these coefficients are constructed order by order in 
the measured values of the scattered field, and are a function of the amplitudes and 
travel times down to the reflector being imaged. For example, combining equations 
16 and 21 provides the first coefficient 

(zb - zv) = 2 {zv - za) (R1+R2
1+R3

1 + ...) (24) 

Convergence properties of the Taylor Series for a shift can be analyzed by per
forming a Fourier transform of B(z) 

^£^gfc>T. 
and recognizing that the series 

oo n 

converges for any finite x where x = ik(zv — zb) in equation 25. The quantity 
(zv — zb) will be smaller when the reference velocity is closer to the actual velocity. 
From this Taylor Series analogy, it may be anticipated that the imaging subseries 
is convergent for any finite frequency, and for large contrasts between actual and 
reference medium velocity. Furthermore, from this analysis, we can expect that the 
rate of convergence will be greater for lower frequencies and when the perturbation 
is small. Hence, in practice, there will be a trade-off between rate of convergence and 
image resolution and the series will converge faster when the difference between the 
reference velocity and the actual velocity is small. Since the strategy is to remove 
multiples before processing primaries, then velocity analysis can be employed to 
derive a proximate velocity model. 

In the next section, numerical examples illustrate how the imaging subseries 
terms act to shift the reflectors towards the correct depth for band-limited synthetic 
input data. 



Fig. 5. Five terms in an imaging subseries. The solid black line is the actual perturbation a and 
the dashed red line is a\, the first approximation to a. The thinner blue lines are the non-linear 
imaging subseries terms. The cumulative sum of these imaging terms is shown in Figure 6. 

5. N u m e r i c a l E x a m p l e s 

Consider the 1-D model depicted in Fig. 3 with the following parameters: CQ =2000 

m / s , c\ =2200 m / s , c2 =2020 m / s , za =100 m and Z£,=140m. Choosing a reference 

velocity Co =2000 m / s , and simulating da ta for a 0 — 125 Hz band-limited source, 

then the computed a.\ is shown as the dashed red line in Fig. 5. 

The depth tha t the reference velocity images the second reflector at is Z6<=136m. 

The band-limited singular functions of the imaging subseries act to extend the 

interface from zy to z\,. The cumulative sum of these imaging subseries terms is 

illustrated in Fig. 6. After summing five terms, the imaging subseries has converged 

and the deeper reflector has moved towards its correct depth zj,. 

Figure 7 shows the results of the imaging subseries for four possible velocity 

functions tha t are summarized in Table 1. In each case, the imaging subseries has 

imaged to the correct depth within seven terms. It has been found numerically tha t 

the subseries converges for large contrasts between actual and reference velocities. 

For example, when the actual velocity in the layer is 3000 m / s and the reference 

velocity is chosen to be 1500 m / s (i.e., a 100 % contrast) then the imaging series 
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Fig. 6. Cumulative sum of five terms in an imaging subseries. The black solid line is the pertur
bation a. and the red line is the linear approximation to a or the first term in the inverse series, 
a\. The blue line is the cumulative sum of the imaging subseries terms, e.g. in panel (ii) the sum 
of two terms in the subseries is shown, and in panel (v) the sum of five terms in the subseries is 
displayed. 

Table 1. Velocity model parameters for 
the model illustrated in Fig. 3. The two 
reflectors are at za — 100m and z^ = 
140m. Results of the imaging subseries al
gorithm in each case are shown in Fig. 7. 

Figure 

7(i) 
7(ii) 
7(iii) 
7(iv) 

Velc 
co 

2000 
2000 
2000 
2000 

city (m/s) 
C\ C2 

2200 2200 
1800 1980 
2100 2200 
1900 1800 

will still converge. As expected, the number of terms required for convergence is 

found to be proportional to the contrast and the thickness of the layer. 
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Fig. 7. Results of an imaging subseries for the velocity models summarized in Table 1. The solid 
black line is a and the dashed red line is a\. The blue line is the cumulative sum of seven terms 
in the imaging series. 

6. Conc lus ions 

The inverse scattering series, a multi-dimensional direct inversion procedure, has the 

potential to achieve all the tasks normally associated with seismic inversion without 

requiring knowledge of the actual medium parameters . Recently, progress has been 

made in isolating a subseries of the inverse series tha t is responsible for imaging 

reflectors at their correct spatial location without knowledge of the actual velocity. 

This imaging subseries algorithm has been tested on 1-D analytic and synthetic 

data . 

Further conceptual and algorithmic analyses, including the multi-dimensional 

extension, and generalizations for elastic wave propagation and spatially varying 

reference media, are the subjects of current research focus. 
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Two methods for processing time-series of satellite sensor data are presented. 
The first method is based on an adaptive Savitzky-Golay filter, and the sec
ond on non-linear least-squares fits to asymmetric Gaussian model functions. 
Both methods incorporate qualitative information on cloud contamination from 
ancillary datasets. The resulting smooth curves are used for extracting pheno-
logical parameters related to the growing seasons. The methods are applied to 
NASA/NOAA Pathfinder AVHRR Land Normalized Difference Vegetation Index 
(NDVI) data over Africa giving spatially coherent images of phenological parame
ters such as beginnings and ends of growing seasons, seasonally integrated NDVI, 
seasonal amplitudes etc. The results indicate that the two methods complement 
each other and that they may be suitable in different areas depending on the 
behavior of the NDVI signal. 

1. I n t r o d u c t i o n 

To extract seasonality information it is necessary to generate smooth time-series 

from noisy satellite sensor da ta . This can be achieved by applying simple niters 

or by function fitting. A commonly used filtering method, BISE 1 , is easy to im

plement, but makes the usually erroneous assumption tha t all noise is negatively 

biased. Methods based on e.g. Fourier series2 '3 or on least-squares fits to sinusoidal 

funct ions 4 - 6 perform well if the shape of the time-profile is characterized by a well-

defined annual cycle of growth and decline, but may fail when the time-profile is 

more ambiguous. Although most vegetation-covered areas are characterized by a 

clear annual growth and decline pat tern , the shape of the time-profile may vary 

significantly between different bio-climatic zones. In some areas the time-profile is 

simple, allowing for the fitting of sinusoidal or bell-shaped functions. In other ar

eas, particularly arid areas where the growing season is very short, the time-profile 
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has quite a different shape, and simple functions are often unable to describe the 
data. For this reason it is necessary to consider methods that are based on different 
assumptions regarding the shape of the annual time-profile. We present and test 
two new methods; adaptive Savitzky-Golay filtering with no prior assumptions on 
the time-profile, and non-linear least-squares fits to asymmetric Gaussians with the 
rather weak assumption that the growing season is characterized by a well-defined 
increase up to a peak level from which it declines until its end. 

2. Data 

The new methods are tested with the NASA/NOAA Pathfinder AVHRR Land 
(PAL) 8 km by 8 km database7 '8. These data are well documented and have been 
used for global and regional studies for a number of years. Normalized Difference 
Vegetation Index (NDVI)9, rather than single-channel data, are used due to the ob
served relationships between the index and vegetation productivity10-13. Data are 
10-day (decadal) maximum-value composites to reduce the effects of cloudiness14. 
Most remaining noise in the time-series is negatively biased, however, some pos
itively biased noise occurs, e.g. due to anisotropic effects, sensor problems etc15. 
Although efforts have been made to calibrate PAL data for sensor differences, geom
etry and atmospheric disturbances, quality problems remain16. The CLAVR cloud 
flag channel is used as a simple indicator of data quality. In CLAVR universal 
thresholds in all the five AVHRR channels are used to classify pixels as clear, mixed 
and cloudy17. CLAVR data has been shown to underestimate clear pixels18. Despite 
this deficiency the information can be used to improve NDVI estimates19. 

3. Methodology 

We start by a general description of least-squares fits to an upper envelope. This is 
followed by an account on how to determine the number of annual seasons together 
with the approximate positions of their maxima and minima. The details of the 
adaptive Savitzky-Golay filter and the non-linear fitting to asymmetric Gaussians 
are given, and finally the extraction of seasonality information is discussed. The 
presented methods are implemented in a Fortran 90 program named TIMESAT 
and we refer to Jonsson and Eklundh20 '21 for computational aspects. 

3.1. Least-squares fits to an upper envelope 

Suppose that we have a time-series (U, /»), i — 1,2,..., N and a model function f(t) 
of the form 

/(*) = cupiit) + c2ip2(t) + •••+ cMcpM(t), (1) 

where <pi(t), ip2(t),..., <fM(t) are given basis functions. Then the best values, in the 
least-squares sense, of the parameters c\, c2, • • •, CM are obtained as the solution of 



489 

the system of normal equations 

where 

A T A c : 

fj(U) 

A T b , (2) 

(3) 

Here, <r, is the measurement uncertainty of the ith data point. If these are not 
known they may all be set to the constant value a = 1. To estimate the uncertainty 
of the NDVI data points, the PAL cloud flag channel (CLAVR) can be used. There 
are no general rules as for how the cloud information should be transformed into 
uncertainty estimates and judicious settings are up to the user. For the runs over 
Africa presented in this paper the uncertainty parameters are set to 1.0, 1.5 or 
100.0 for data values corresponding to the CLAVR classes clear, mixed and cloudy. 
To take into account the fact that most noise, even for data classified as clear by 
CLAVR, is negatively biased, the determination of the parameters ci,C2,.. . ,CJV 
of the model function is done in two steps20 '21. In the first step the parameters 
are obtained by solving the system of normal equations with Oi obtained from the 
ancillary data. Data points above the model function of the first fit are thought of 
as being more important, and in the second step the system is solved with the <jj of 
the high data points decreased by some factor. The multi-step procedure leads to a 
model function that is adapted to the upper envelope of the data (Figure 1). 

40 60 
time (decads) 

Fig. 1. Fitted functions from a two-step procedure. The dashed line shows a fitted function from 
the first step, and the solid line the fit from the second step. 

3.2. Determination of the number of seasons 

The high level of noise often makes it difficult to determine the number of annual 
seasons based on data for only one year. Including data from surrounding years 
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reduces the risk for erroneous determinations dramatically. In this work data values 
(ti,Ii), i = 1,2,..., N for three years are fitted to a model function 

f(t) = c\ + c-it + czt2 + C4 sin (art) + C5 cos(iot) 

+ c$ sin(2u;£) + C7 cos(2wi) + eg sin(3Ljt) + eg cos(3wt) (4) 

where u> = 6n/N. With 10-day data used in this study N = 108. The first three 
basis functions determine the base level and the three-year trend whereas the three 
pairs of sine and cosine functions correspond to, respectively, one, two and three 
annual seasons. The fitting procedure always gives three primary maxima and min
ima. In addition, secondary and tertiary maxima and minima may be found. If the 
amplitude of the secondary maxima exceeds a certain fraction of the amplitude of 
the primary maxima, there are two annual seasons. If the amplitude of the sec
ondary maxima is low the number of annual seasons is set to one. In Figure 2 (a) 
the primary maxima and minima dominate and the number of seasons is set to one. 
In Figure 2 (b) the secondary maxima and minima are comparatively large and the 
number of annual seasons is set to two. 

time (decads) time (decads) 

Fig. 2. Fits of sinusoidal functions and second order polynomials to three years of data in regions 
dominated by (a) one annual season and (b) two annual seasons. The thin solid line represents the 
original NDVI data. The thick solid line shows the fitted function. 

3.3. Locally adapted Savitzky-Golay filtering 

Savitzky-Golay filters are based on local polynomial fits22. For each point i = 
1, 2 , . . . , TV a quadratic polynomial 

f(t) = ci + c2t + c3t
2 (5) 

is fit to all 2n + 1 points in a window. The filtered value is then set to the polynomial 
value at this point. To account for the negatively biased noise, the fitting is done in 
multiple steps as described in the previous section. The result is a smoothed curve 
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that follows the upper envelope of the NDVI values. The width n of the moving 
window determines the degree of smoothing, but it also affects the ability to follow a 
rapid change. In TIMESAT two values of n can be set by the user. The first is used 
for data representing one annual season and the second for data representing two. 
Since, for large geographical areas, we are dealing with NDVI curves of different 
character it is desirable to use an adaptive method for n. Even if the global settings 
of the moving window work fairly well, it is sometimes necessary to locally tighten 
the window. A typical situation is in arid areas where the vegetation sometimes 
responds almost instantaneously to rainfall. To capture the corresponding sudden 
rise in data values, only a small window can be used. In TIMESAT the Savitzky-
Golay filtering is performed using the global value n of the window. The filtered data 
are then scanned and if there is a large increase or decrease in an interval around a 
data point i, this data point will be associated with a smaller window. The filtering 
is then redone with the new locally adapted sizes of the window. Savitzky-Golay 
filtering with and without the adaptive procedure is illustrated in Figure 3. 

40 60 
time (decads) 

40 60 
time (decads) 

Fig. 3. Upper envelope Savitzky-Golay filtered data. Time is in ten day steps. In (a) the filtering 
is done with n = 5, which obviously is too large for the filtered data to follow the sudden increase 
and decrease of the underlying data values. A scan of the filtered data identifies the data points 
for which there is a large increase or decrease in surrounding intervals. Setting n = 3 for these 
points and redoing the filtering gives the curve in (b). Note the improved fit at the rising edges 
and at the narrow seasonal peaks. 

3.4. Least-squares fits to asymmetric Gaussian functions 

In the asymmetric Gaussian method local model functions 

/(*) = /(*! ci, c2, a±,..., a5) = ci + c2g(t; ai , . . . , a5), (6) 
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are fitted to data in intervals around maxima and minima. Here 

exp 
g(t;ai , . . . ,a5) 

exp 

if t > a,\ 

if t < a\ 
(7) 

is a Gaussian-type function. The linear parameters c\ and C2 determine the base 
level and the amplitude. For the Gaussian function, ai determines the position of 
the maximum or minimum with respect to the independent time variable t, while 
ai and 03 determine the width and flatness (kurtosis) of the right function half. 
Similarly, 04 and 05 determine the width and flatness of the left half. The local 
model functions are well suited for describing the shape of the scaled NDVI time-
series in overlapping intervals around maxima and minima. Given a set of data 
points in an interval (U,Ii), i = m,...,ri2 around a maximum or a minimum, the 
parameters ci, c2 and a\,...,a^ are obtained by minimizing the merit function 

2 

X £ 
f(ti;c1,c2,ai,...,a5) - U 

(8) 

The function depends non-linearly on the parameters a\, ...,05 and in the program 
the minimization is done using an adaptive quasi-Newton method23. As in the 
previous cases the fitting is done in steps to account for the negatively biased noise. 
Given three local asymmetric Gaussian functions describing the left minimum, the 
central maximum and the right minimum (Figure 4 a), a global function fit can be 
built that describes the central season (Figure 4 b). The merging of local functions 
to a global function is a key feature of the method that increases the flexibility and 
allows the fitted function to follow a complex behavior of the time-series20. 

position 350 263 position 350 263 

40 60 
time (decads) time (decads) 

Fig. 4. (a) left (L), central (C) and right (Ft) local Gaussian functions, (b) merged global function. 
Note that the merged function in (b) only describes the vegetation of the central season from round 
decade 50 to decade 83. To describe vegetation of the left or right season additional local functions 
should be fitted and merged to global functions. 
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3.5. Extraction of seasonality parameters 

Seasonal data are extracted for each of the growing seasons of the central year (Fig
ure 5). Starting from the left base level or minimum, the beginning of a season is 
defined from the filtered or fitted functions as the point in time for which the value 
has risen by a certain amount, currently set to 10 % of the distance between the 
left base level and the maximum. The end of the season is defined in a similar way. 
The mid or the peak of a season is difficult to define, but a reasonable estimate is 
obtained as the position midway between the 90 % level positions above the left 
and right base levels. The annual integrated NDVI is frequently used in estimates 
of net primary production25-27 through the relationship between NDVI and ab
sorbed photosynthetically active radiation (APAR)12. To give a good estimate of 
the production of the phenologically dominant vegetation type it is also of interest 
to compute the integrated NDVI over the growing season, i.e. between the start and 
end of the season. In TIMESAT a small integral is defined as the area under the 
curve down to the mean of the left and right base levels. A large integral, extending 
to zero, is also defined. 

Fig. 5. Seasonality parameters computed in TIMESAT: (a) beginning of season, (6) end of season, 
(c) left 90 % level, (d) right 90 % level, (e) peak, (/) amplitude, (g) length of season, (h) integral 
over the growing season giving the area between the fitted function and the average of the left 
and right minimum values, (i) integral over the growing season giving the area between the fitted 
function and the zero level. 

Other phenological parameters extracted are the peak values and the amplitude. 
The rate of increase in NDVI during the beginning of the season is theoretically 
related to the physiognomy of the vegetation and can be estimated by looking at 
the ratio between the amplitude and the time difference between the season start 
and the mid of the season. Another interesting quantity is the asymmetry, which 
can be defined as the ratio of the time differences between the mid of the season 
and the start and end of the season. A value of the asymmetry that is smaller 
than one indicate a rapid rise and a slow fall. Asymmetries larger than one, on the 
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other hand, are indicative of a slow rise and rapid fall. This type of behavior is 
often seen in areas with agricultural practices such as harvesting. Seasonal data can 
be extracted for single pixel locations and for whole images. Single pixel data are 
written to file and displayed with MATLAB. This is useful for testing the setting 
of parameters in specific locations. Image data are written to binary or ASCII files, 
and can be displayed with MATLAB or some suitable image processing software, 
like IDRISI, Easi/Pace or Erdas. 

3.6. Results 

We analyzed 1100 by 1060 pixels PAL image windows covering Africa over the 
period 1982-2000. For the sake of brevity, only a few examples are shown in this 
paper. These examples are selected to be representative of the differences between 
the two presented methods. Figure 6 shows the number of seasons, derived with the 
procedure outlined in Section 3.2. Areas characterized by two growing seasons (bi-
modal) are mainly found in the Nile delta, parts of East Africa, along the Equator 
in central Africa, and in small areas along the coasts of West Africa. The sizes 
of these zones will vary somewhat with the parameter settings in the TIMESAT 
program. In Figure 6, pixels were classified as bi-modal if the amplitude of the 
secondary maxima were more than 40 % of the amplitude of the primary maxima. 
The observed pattern agrees well with what is expected given the general climatic 
circulation over Africa28. 

Fig. 6. Number of vegetational seasons in Africa 1999. Arrows point to uni-modal and bi-modal 
areas. 
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Figure 7 shows original NDVI and Savitzky-Golay filtered data for two areas, 
whose locations are indicated by the arrows in Figure 6. Figure 7 (a) is from a 
predominantly uni-modal (one season) area. Although there is a depression around 
the center of the central year, that might indicate the presence of two seasons, 
data is classified as uni-modal since the three years of data that have been used 
indicate that the area is dominated by a one seasonal cycle. Figure 7 (b), however, 
is bi-modal with two clearly developed growing cycles. 

position 675 775 position 500 848 

(b) 

40 
time (decads) 

40 60 
time (decads) 

Fig. 7. NDVI and Savitzky-Golay filtered data from (a) uni-modal and (b) bi-modal areas, as 
indicated in Figure 7. Starts and ends of seasons are marked with circles. 

Figure 8 displays original NDVI, Savitsky-Golay filtered data and asymmetric 
Gaussian functions for three pixels in Africa. The time-series in Figure 8 (a) is 
from the fringe of the Saharan desert, where the short annual season is dominated 
by a very rapid increase and decrease, followed by a slowly decreasing plateau. 
This composite behavior is typical for many extremely arid areas, and it is very 
well represented by the adaptive Savitzky-Golay method. However, the asymmetric 
Gaussian method has not represented the peak and the plateau of this time-series 
accurately. Figure 8 (b) is from a humid area with frequent cloudiness, resulting in 
a noisy time-series. The asymmetric Gaussian method has here generated a curve 
that is considerably smoother than the Savitzky-Golay filtered data. This smooth 
curve may be considered a better representative of the phenological curve of the 
vegetation, since some of the rapid changes seen in the Savitzky-Golay curve would 
not be expected to result from any physiological growth process, but rather from 
remaining noise due to clouds or other disturbances. Although the Savitzky-Golay 
curve follows the original data better, the smoothness of the asymmetric Gaussian 
curve might here be preferred. Figure 8 (c) was extracted from the Sahelian zone, 
well south of the Sahara. In this zone both the Savitzky-Golay and the asymmetric 
Gaussian function have modeled the time-series very well. Note that the beginnings 
and ends of seasons are located fairly close to each other in all three cases. 
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position 310 350 position 573 480 

40 60 
time (decads) 

40 60 80 
time (decads) 

position 384 238 

40 60 
time (decads) 

Fig. 8. Comparisons between Savitzky-Golay and asymmetric Gaussian curves for selected pix
els. Beginnings and ends of seasons are marked by circles (Savitzky-Golay) and squares (asym. 
Gaussian). In (a) the Savitzky-Golay (dashed line) is superior to the asymmetric Gaussian (dotted 
line), which fails at following the rapid increase of the narrow central peak. In (b) the Gaussian 
method generates a smoother curve that better represents the behavior of vegetation than the 
curve generated by the Savitzky-Golay method. In (c) the both methods generate similar curves 
that both follow the data very well. 

Figure 9 displays a number of parameters obtained with the Savitzky-Golay 
method, (a) gives the start of the first season in western Africa for 1999. Near the 
coast the season starts around decad 5 (end of February). The starting date then 
shifts towards later dates until the border of the Sahara, where it falls at about 
decad 25 (beginning of October). The observed pattern seems to be in general 
agreement with a climatic pattern dominated by the movements of the Inter Tropical 
Convergence Zone (ITCZ). In (b) the skewness or asymmetry is displayed. Note 
the belt with strong negative skewness that indicates a very rapid response to 
precipitation, (c) gives the peak value and (d) the amplitude for central Africa 
for the first growing season of 1999. In this area NDVI values are generally high. 
The seasonality of the evergreen vegetation, however, is not well developed and the 
resulting amplitudes are correspondingly small. 
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Fig. 9. Phenological parameters for the first growing season of 1999 extracted using Savitzky-
Golay filtered data, (a) start of the growing season, (b) asymmetry or skewness. (c) peak value for 
the season, (d) amplitude of the season. 

In order to investigate if there were any systematic differences between the two 
methods, values for some key phenological variables were extracted and averaged for 
each of the land-cover classes of the USGS digital land cover map29 ,30. Results for 
all classes, except those smaller than 5 % of the land area, are displayed in Table 1. 
The table indicates that the Savitzky-Golay method consistently generates higher 
values of amplitude and integrated NDVI than the asymmetric Gaussian method. 
Maximum values are also larger, but here the difference between the methods is 
smaller than for the other variables. 

3.7. Discussion 

Based on time-series of Pathfinder NDVI data the methods presented in this pa
per yield information about the seasonality of the underlying vegetation. Despite 
the high level of noise present in the original data the methods generate data that 
are spatially coherent and makes intuitive sense. AVHRR NDVI data are used in 
this study but other and newer sensor data are equally possible. The methods al
low for ancillary data to be incorporated, and CLAVR cloudiness data is used as 
an indicator of uncertainties in the NDVI values. Although the effect of CLAVR 
was not explicitly tested, it is believed that new and better data quality indica
tors will improve the data fits. The seasonality patterns generated with the two 
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methods largely correspond to each other with respect to the timings of seasonal 

events. However, some derived phenological parameters , notably the amplitude and 

the seasonal integrals, differ. The consistently lower values generated by the asym

metric Gaussian fits are believed to be underestimates due to the slower response 

to rapid phenological events. Although the timing of events is not much affected, 

amplitudes and integrals are. The possibility to modify the fits to handle these situ

ations will have to be explored in future work. The asymmetric Gaussian functions 

generate smoother time-profiles tha t may represent the phenological behavior of 

vegetation bet ter in some areas, notably when the time-series are very noisy. Thus, 

the two methods presented complement each other and the choice between them 

should be made based on the type of application and the behavior of the time-

series in the specific area in mind. Other differences between the two methods are 

tha t the Savitzky-Golay algorithm is faster than the asymmetric Gaussian fit, and 

tha t it never fails to converge. This can happen with the non-linear Gaussian fit. 

However, of the 19 years of da ta over Africa analyzed, the asymmetric Gaussian 

fit only failed for a few hundred pixels, mostly over desert areas. The possibility to 

generate explicit information about the seasonality of the vegetation increases the 

potential use of time-series of satellite-derived spectral databases. It also underlines 

the importance of storing and maintaining long da ta series for the benefit of studies 

of phenological changes. Changes in key seasonality parameters might be used as 

early indicator of regional climatic changes. 
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CHAPTER 23 
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This paper describes data compression algorithms capable to preserve the scien
tific quality of remote-sensing data, yet allowing a considerable bandwidth reduc
tion to be achieved. Unlike lossless techniques, by which a moderate a compression 
ratio (CR) is attainable, due to intrinsic noisiness of the data, and conventional 
lossy techniques, in which the mean squared error of the decoded data is glob
ally controlled by user, near-lossless methods are capable to locally constrain the 
maximum error, either absolute or relative, based on the user's requirements. Ad
vanced near-lossless methods rely on differential pulse code modulation (DPCM) 
schemes, based on either prediction or interpolation. The latter is recommended 
for lower quality compression (i.e., higher CR), the former for higher-quality, 
which is the primary concern in remote sensing applications. Experimental re
sults of near-lossless compression of multispectral, hyperspectral, and microwave 
data from coherent imaging systems, like synthetic aperture radar (SAR), show 
the advantages of the proposed approach compared to standard lossy techniques. 

1. Qual i ty I ssues in R e m o t e - S e n s i n g D a t a C o m p r e s s i o n 

Data compression is gaining an ever increasing relevance for the remote sensing 

community5 5 . Since technological progresses allow observations of the Ear th to be 

available at increasing spatial, spectral, radiometric, and temporal resolutions, the 

associated da ta volume is growing much faster than the transmission bandwidth 

does, either bandwidth of the downlink with the ground station for satellite plat

forms, or of the digital network supporting the da ta distribution. The introduction 

of da ta compression can alleviate bandwidth requirements at the price of a compu

tational effort for encoding and decoding, as well as of a possible loss of quality. 

Da ta compression consists of a decorrelation, aimed at generating a memoryless 

version of the correlated information source, followed by quantization, which intro

duces a distortion to yield a reduction in the information rate, and entropy coding3 8 . 

If the decorrelation is achieved by means of an orthonormal transformation, e.g., 
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the discrete cosine transform (DCT)46, or the discrete wavelet transform (DWT)39, 
the variance of quantization errors in the transformed domain is preserved when 
the data are transformed back to the spatial domain. Thus, the mean square er
ror (MSE) can be easily controlled through the step sizes of quantizers. However, 
quantization errors in the transformed domain, which are likely to be uniformly 
distributed and are upper bounded in modulus by half of the step size, are spread 
by the inverse transformation and yield heavy-tailed distributions, whose maximum 
absolute amplitude cannot be generally known a priori. Therefore, lossy encoders, 
e.g., that proposed by the Joint Photographic Experts Group (JPEG)46, are unable 
to control the distortion but in the MSE sense, which means that relevant image 
features may be locally distorted by an unpredictable and unquantifiable extent54. 

Compression methods can be either reversible, i.e., lossless, or irreversible 
(lossy), depending on whether images are exactly reconstructed after decoding or 
some distortion is introduced. A variety of image compression methods exists for 
applications in which reconstruction errors are tolerated. In remote sensing applica
tions data modeling, features extraction, and classifications are usually performed24. 
Hence, the original quality of the data must often be thoroughly preserved after 
compression/decompression. As a matter of fact, however, the intrinsic noisiness of 
sensors prevents strictly lossless techniques from being used to obtain a considerable 
bandwidth reduction. In fact, whenever reversibility is recommended, compression 
ratios larger than two can hardly be obtained, because the attainable bit rate is 
lower bounded by the entropy of the sensor noise50'51'14. 

Noteworthy are those lossy methods that allow to settle "a priori" the maximum 
reconstruction error, not only globally, but also locally. The maximum absolute 
error, also known as peak error (PE), or L^ distance between original and decoded 
image, is capable to guarantee a quality that is uniform throughout the image. If 
the I/QO error is user denned, besides being constrained to be small, the current 
definition of near-lossless compression13, established for the medical community28, 
applies. 

The evaluation of the maximum allowable distortion is an open problem. In 
the medical field objective measurements may be integrated with qualitative judge
ments of skilled experts, e.g., expressed in terms of Receiver Operating Characteristic 
(ROC) curves5. In remote sensing applications, however, photoanalysis is not the 
only concern45. The data are often postprocessed to extract information that may 
not be immediately available by user inspection. In this perspective, an attractive 
facility of near-lossless compression methods is that, if the L^ error is constrained 
to be, e.g., one half of the standard deviation of the background noise, assumed 
to be additive and independent of the signal, the decoded image will be virtually 
lossless9. This term indicates not only that the decoded image is visually indistin
guishable from the original, but also that possible outcomes of postprocessing are 
likely to be practically the same as if they were calculated from the original data. 
Thus, the price of compression will be a small and predictable increment in the 
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equivalent sensor's noisiness . 
Focusing on images generated by coherent systems, like synthetic aperture radar 

(SAR) systems, lossless compression methods are little effective for reducing the 
data volume, because of the intrinsic noisiness which weakens the data correlation16. 
On the other hand, unpredictable local distortions introduced by lossy compression 
methods, though specifically tailored to SAR imagery32'63, may be unacceptable 
in many applications. Furthermore, the signal dependent nature of speckle35 makes 
an LQO error control inadequate, since the errors to be bounded should not be 
absolute but relative, i.e., measured as pixel ratios, not as differences. In fact, larger 
errors should be encountered on homogeneous brighter areas than on darker ones. 
Hence, upper bounding of the PE no longer guarantees a quantifiable loss of quality. 
Therefore, near-lossless compression of SAR images should indicate that the pixel 
ratio of original to decoded image is strictly bounded within a prefixed interval17. 
If such an interval is comprised within the speckle distribution, then the decoded 
image will be virtually lossless as well12. 

When multispectral or better hyperspectral data are being dealt with, spectral 
distortion becomes a primary concern, besides spatial and radiometric distortions. 
Spectral distortion is a measurement of how a pixel vector (i.e., a vector having as 
many components as spectral bands) changes because of an irreversible compres
sion of its components. A widely used measurement is the angle between the two 
vectors. More sophisticated measurements based on information-theoretic criteria 
have recently proven themselves more effective in discriminating spectral classes27. 
For multiband data, whenever a virtually-lossless compression is unaffordable, a rel
ative error-constrained compression may be rewarding in terms of scientific quality 
preservation of the decompressed data52. The rationale is that automatic analysis 
algorithms may be more sensitive to relative errors on pixels, than to absolute er
rors. For best performance, however, relative error-constrained compression requires 
logarithmic quantization15, which is penalized with respect to linear quantization 
in the Rate Distortion (RD) sense, with an MSE distortion measure38. 

The problem of data transmission to ground stations is crucial for remote-sensing 
imaging systems orbiting on satellite platforms. Recent developments of advanced 
sensors originate huge amounts of data; however, once these data were lossy com
pressed, they would not be available as they were acquired for the user community. 
The Consultative Committee for Space Data Systems (CCSDS) has issued a recom
mendation for the lossless compression of space data29. Such a proposal has been 
recently adopted as an ISO standard36. Consequently, for what concerns on-board 
data compression, only lossless methods are presently recommended43. On the other 
side, to expedite dissemination and utilization of multispectral and especially hy
perspectral images, near-lossless methods yielding constrained pixel error, either 
absolute or relative, are more suitable for obtaining a considerable bandwidth re
duction and for preserving, at the same time, the spectral discrimination capability 
among pixel vectors, which is the principal source of spectral information. 
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2. Distortion Measures 

2.1. Radiometric Distortion 

Let {g(i,j)}, with 0 < g(i,j) < gfs, denote an iV-pixel digital image and let {g(i,j)} 
be its possibly distorted version achieved by compressing {g(i,j)} and decompress
ing the outcome bit stream. Widely used distortion measurements are the following: 
Mean absolute error (MAE), or L\ (norm), 

MAE = ^EEl^i)-s(M)l; (i) 
i 3 

Mean Squared Error (MSE), or L| , 

MSE = iEEW'j)-^j)f; (2) 
* 3 

Root MSE (RMSE), or L2, 

RMSE = VMSE; (3) 

Signal to Noise Ratio (SNR) 

5 ^ ^ = 1 0 . 1 0 ^ ^ 1 ^ ; (4) 

Peak SNR (PSNR) 

PSNR{dB) = 10- log 1 0 ] l 7 J^- ; (5) 

Maximum absolute distortion (MAD), or peak error, or L oo> 

MAD = max{\g(i,j)-g(i,j)\}; (6) 
i,3 

Percentage maximum absolute distortion (PMAD) 

PMAD = max ( | g ( U ) ~ ~9fJ)l } x 100. (7) 

Both in (4) and in (5) the MSE is incremented by the variance of the integer roundoff 
error, to handle the limit lossless case, when MSE = 0. Thus, SNR and PSNR will 
be upper bounded by 10 • log10(12 • g2) and 10 • log10(12 • g"js), respectively. 

When multiband data are concerned, let vi = gi(i,j), I = 1, • • • ,L, denote the 
Ith component of the original multispectral pixel vector v and vi — gi(i,j), I — 
l,--- ,L, its distorted version. Some of the radiometric distortion measurements 
(l)-(7) may be extended to vector data as: 
Average RMSE (A-RMSE), or L\{L2) (the innermost norm refers to vector space 
(/), the outer one to pixel space (i,j)), 

ARMSE = ^ £ fe[s/(U)-&(i,j)]2; (8) 
N 

i,3 
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Peak RMSE (P-RMSE), or Loo (£2), 

PRMSE = max /53[ff/(*,j)-ffj(*,j')]2; • (9) 

SNR = 1 0 - l o g 1 0 = r '/: ,. .,12; (10) 

PSNR = 10-log10 — / ! , . ; 11) 
J2itj,ii9i(hj)-9i(hj)? 

Three-dimensional MAD, or Loo(£oo), 

MAD = max{\g,(i,j)-gi(i,j)\}; (12) 

Three-dimensional PMAD 

PMAD = max ( \^J)-9i^J)\ 1 x m ( 1 3 ) 

*.?'.' I SUM) J 

In practice, A-RMSE (8) and P-RMSE (9) are respectively the average and maxi
mum of the Euclidean norm of the distortion vector. SNR (10) is the extension of 
(4) to the 3-D data set. PSNR is the maximum SNR, given the full-scale of vector 
components. MAD (12) is the maximum over the set of pixel vectors of the maxi
mum absolute component of the distortion vector. PMAD (13) is the maximum over 
the set of pixel vectors of the maximum percentage error over vector components. 

2.2. Spectral Distortion 

Given two spectral vectors v and v both having L components, let v = 
{vi,V2,--- ,VL} be the original spectral pixel vector vi = gi(i,j) and v = 
{«i,«2, • • • , vi} its distorted version obtained after lossy compression and decom
pression, i.e., vi = gi(i,j). Analogously to the radiometric distortion measurements, 
spectral distortion measurement may be defined. 

The spectral angle mapper (SAM) denotes the absolute value of the spectral 
angle between the couple of vectors: 

SAM(v,v) A arccosf < V , | > ) (14) 

in which < •, • > stands for scalar product. SAM can be measured in either degrees 
or radians. 

Another measurement especially suitable for hyperspectral data (i.e., for data 
with large number of components) is the spectral information divergence (SID)27 

derived from information-theoretic concepts: 

SID{v,v) = Z>(v||v) + D(v||v) (15) 
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with Z)(v||v) being the Kullback-Leibler distance (KLD), or entropic divergence, or 
discrimination38, defined as 

£(v||v) 4 X>log(^) (16) 

in which 
A Vl A Vi 

Pl = Tnr a n d ii = TT̂ TT (17) 
IMk ||v||i 

In practice SID is equal to the symmetric KLD and can be compactly written as 

SID(v,v) = JT(pi-qi)log fa) (18) 

which turns out to be symmetric, as one can easily verify. It can be proven as well 
that SID is always nonnegative, being zero iff. pi = qi, VZ, i.e., if v is parallel to v. 
The measure unit of SID depends on the base of logarithm: nat/vector with natural 
logarithms and bit/vector with logarithms in base two. 

Both SAM (14) and SID (18) may be either averaged on pixel vectors, or the 
maximum may be taken instead, as more representative of spectral quality. It is note
worthy that radiometric distortion does not necessarily imply spectral distortion. 
Conversely, spectral distortion is always accompanied by a radiometric distortion, 
that is minimal when the couple of vectors have either the same Euclidean length 
(L2) for SAM, or the same city-block length (£1), for SID. 

3 . Compress ion of Ras t e r D a t a 

The term raster data denotes digitized samples of signals produced by sensors capa
ble to detect and measure a physical property defined in a multidimensional domain. 
Examples of such signals are audio signals (1-D), scanned monochrome images (2-
D), video signals (3-D), and generally most of remote-sensing data, including those 
produced by multispectral scanners and imaging spectrometers. A common feature 
of all raster data is noisiness, autocorrelation along each of their dimensions and a 
generally large number of digitization levels (at least 256, but usually more). Con
versely, other data types, like ASCII texts, executable program codes, and other 
non-raster data files are characterized by a low number of symbols (usually < 256), 
absence of observation noise and statistical dependencies among symbols resulting 
in the presence of repetitive patterns. 

The classical lossless compression scheme consists of an optional decorrelator, 
followed by an entropy coding stage. A near-lossless scheme is similar and differs 
only for the presence of a quantizer. Hence, lossless compression can be regarded as 
a limit case in which the quantization step size A is equal to 1. The decorrelator 
has the purpose of removing redundancy (when applicable, e.g., for raster data), 
and must hence be tailored to the specific characteristics of the data to be com
pressed. Examples are reversible integer transforms, e.g., integer wavelets25'47, and 
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causal/noncausal prediction46. Once a signal has been decorrelated, it is necessary 
to find a compact representation of its coefficients, possibly after they have under
gone a quantization. Therefore an entropy coding algorithm is selected, which maps 
such coefficients into codewords, aiming at minimizing the average codeword length. 

3.1. Source Decorrelation 

When the statistical characteristics of the data to be compressed are known 
in advance (e.g., multimedia images, radar backscatters, seismic signals, 
multi/hyperspectral data), entropy coding techniques are seldom used standalone, 
but rather applied after a decorrelation stage, able to capture and remove the re
dundancy inherent in the nature of the data. 

A large number of decorrelation techniques have been proposed in the scientific 
literature for different kinds of data. In the following we describe linear fixed pre
diction. A linear prediction is a finite impulse response (FIR) filter which, given 
the last P (the prediction order) received signal samples, attempts to estimate the 
value of the next one. The prediction error (i.e., the difference between each sample 
and its predicted value) tends to exhibit a lower dynamic range than the original 
signal, and can be hence quantized with lower distortion for a given bit rate. At the 
decoder, after initialization, the prediction error is added to the predicted signal, 
thus obtaining the original signal. In order to cope with the losses due to quantiza
tion, prediction is usually made from the quantized signal, both at the encoder and 
at the decoder. The coefficients of the prediction filter are generally computed on 
the basis of the second-order signal statistics (autocorrelation); hence the predictor 
ability to exploit knowledge of the signal correlation. This compression technique 
is usually referred to as Differential Pulse Code Modulation (DPCM), and is used 
in several compression algorithms for speech, images, and video. With respect to 
other decorrelation techniques, prediction has the advantage of being very simple 
and flexible, yet effective. 

3.2. Entropy Coding Algorithms 

A number of entropy coders, or reversible source coders, have been proposed in the 
past, such as Huffman and arithmetic coding, which have been established as "de 
facto" standards for the entropy coding stage of compression algorithms. Nearly 
all of them, more or less explicitly, exploit the concept of "variable length encod
ing". The rationale is that, since the symbols of the input alphabet are usually not 
equiprobable, one can asymptotically attain the minimum average codeword length 
by assigning shorter codewords to symbols with higher probability of occurrence in 
the data stream. Among such coders, some deserve being considered in more detail. 
In the following we briefly describe Huffman coding, Golomb-Rice coding, arith
metic coding, dictionary coding and context-coding, and point out their suitability 
as entropy coding stages for raster data. 
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3.2.1. Huffman coding 

Huffman coding38 is perhaps the simplest example of a variable-length coder. This 
technique operates by sorting the symbols of the input alphabet according to their 
probabilities of occurrence in the message. In a first phase a tree is built by com
bining, at each pass, the two least probable symbols; a zero is assigned to the least 
probable of the two, and a one to the other. Then the codewords are obtained by 
walking from the root of the tree to the leaves, and writing down the zeroes and 
ones encountered. Due to its near-optimality in the exploitation of the first-order 
statistics of the input alphabet, Huffman coding has gained much popularity, and 
has been used as the entropy coding stage of several compression standards (e.g., 
JPEG)4 6 . 

3.2.2. Golomb-Rice coding 

Given two integers, I > 0 and m > 2, Golomb coding34 of I is the binary representa
tion of I mod m (remainder of the integer division of / by m) followed by the unary 
coding of [l/m\, i.e., [l/m\ zeroes followed by a one or vice-versa. Golomb coding 
is asymptotically optimum for geometrically distributed ergodic sequences42, where 
m depends on the variance of the distribution. Golomb-Rice (GR) codes48 are a 
subclass of Golomb codes in which m = 2k: hence / mod 2k are the k LSBs of the 
binary representation of / and if n = |"log2(Z)"|, then \l/2k\ are the n — k MSBs of 
I. GR codes, although suboptimal with respect to Golomb codes42, are suitable for 
space applications due to their simple structure. GR codes can be made adaptive by 
properly chosing k, e.g., based on the spatial context of prediction errors (remapped 
to positive integers). In the following GR codes will be referred to as as Rice codes, 
as indicated by CCSDS30. 

3.2.3. Arithmetic coding 

Arithmetic coding59 recasts the transmission of symbols into the representation of 
the intervals of the cumulative distribution associated to the probability of occur
rence of the symbol. Each interval, and hence symbol, is specified by its extrema, and 
is coded by means of the number in the interval exhibiting the shortest representa
tion in the desired basis, e.g., binary. Very likely symbols have the largest intervals, 
and large intervals are more likely to contain numbers with compact representa
tions. Therefore, more frequent symbols will be represented by shorter codewords. 
Arithmetic coding is known to be closer than Huffman coding to the optimal perfor
mance, but its implementation may be critical, especially in a space environment. 

3.2.4. Dictionary coding 

Huffman, Golomb-Rice, and arithmetic encoders rely either on the knowledge of the 
probabilities of the data to be encoded, or equivalently on an assumed probability 
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model, e.g., Laplacian. Dictionary coding belongs to the class of universal coding 
algorithms, in which a symbol string is compressed without a priori knowledge on 
the distribution of the source that has generated the data. Unlike other variable-
length coders, dictionary-based algorithms encode variable-length strings of symbols 
(phrases) as single tokens, or better fixed-length indexes into some dictionary. A 
dictionary can be defined as a list of phrases that are expected to occur most 
frequently. The well-known Lempel-Ziv algorithm,64 which is successfully applied 
to text compression, is perhaps the most popular dictionary encoder. The Lempel-
Ziv algorithm achieves asymptotically optimum compression for strings generated 
by any stationary ergodic source and, in many cases, it performs the task in a quite 
practical manner. Unfortunately the algorithm does not ensure good compression 
results when the alphabet of the original source is large, as in the case of lossless 
coding of raster data in general. 

3.2.5. Context coding 

Context coding49 is another universal coding algorithm devised to encompass the 
limitations of dictionary coding. Consider a data string (xi,X2,- • • ,xn) generated 
by a source with memory. A context is assigned to each symbol xj, 1 < i < n based 
on the past x±, £2, • • • , £i- i symbols. A context is nothing else than an equivalence 
class selected on some relevant feature of the past sequence. Classifying the original 
data into contexts aims at skewing the empirical distribution given by symbol oc
currence counts in order to lower the conditional entropy. The application of context 
coding to image compression57 has launched the new generation of advanced image 
encoders26. 

4. Advanced Near-Lossless Image Compression Algorithms 

Considerable research efforts have been recently spent in the development of loss
less image compression techniques. The first specific standard has been the lossless 
version of JPEG46 , which may use either Huffman or arithmetic coding. More in
terestingly, a new standard, which provides also near-lossless compression, has been 
recently released under the name JPEG-LS58. It is based on an adaptive nonlinear 
prediction and exploits context modeling followed by Golomb-Rice entropy coding. 
A similar context-based algorithm named CALIC has also been recently proposed60. 
The simple adaptive predictors used by JPEG-LS and CALIC, however, the median 
adaptive predictor (MAP) and the gradient adjusted predictor (GAP), are empiri
cal. Thorough comparisons with more advanced methods21 have revealed that their 
performance is limited and still far from the entropy bounds. Eventually, it is worth 
mentioning that Part I of the JPEG2000 image coding standard37 foresees a loss
less mode, based on reversible integer wavelets, and capable to provide a scalable 
bit stream that can be decoded from the lossy (not near-lossless) up to the loss
less level. However, image coding standards are not suitable for the compression 
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of 3-D data sets: in spite of their complexity, they are not capable to exploit the 
three-dimensional signal redundancy featured, e.g., by multi/hyperspectral imagery. 

Besides a number of integer-to-integer transforms 2>3>2M7>53
; capable of ensur

ing a perfect reconstruction with integer arithmetics, DPCM schemes, either causal 
(prediction-based) or noncausal, i.e. interpolation-based or hierarchical, are indeed 
the only algorithms suitable for lossless compression of 2-D data, or more generally 
for Loo-constrained (near-lossless) compression. It is noteworthy that, unlike a lo
cally MMSE linear prediction, a nonlinear prediction, like GAP of CALIC and MAP 
of JPEG-LS, that may occur to minimize the Mean Absolute Error (MAE), does not 
ensure local entropy minimization40. Therefore only linear prediction, yet adaptive, 
will be concerned in the following for a 3-D extension suitable for multispectral and 
hyperspectral data. 

DPCM basically consists of a decorrelation (see Sect. 3.1) followed by entropy 
coding of the outcome prediction errors. The simplest way to design a predictor, 
once a causal neighborhood is set, is to take a linear combination of the values of 
such a neighborhood, with coefficients optimized in order to yield minimum mean 
squared error (MMSE) over the whole image. Such a prediction, however, is optimum 
only for stationary signals. To overcome this drawback, two variations have been 
proposed: adaptive DPCM (ADPCM)46, in which the coefficients of predictors are 
continuously recalculated from the incoming new data, and classified DPCM33, in 
which a preliminary training phase is aimed at recognizing some statistical classes 
of pixels and at calculating an optimized predictor for each class. Such predictors 
are then adaptively combined31'8 (as limit case the output is switched among one of 
them6 '15), to attain the best space-varying prediction. This strategy will be referred 
to as adaptive combination/switching of adaptive predictors (ACAP/ASAP). 

While details of up-to-date ASAP schemes, both 2-D22 and 3-D15 will be re
viewed in Sect. 5, the ACAP paradigm underlies the development of a novel fuzzy 
logic-based prediction21 (FMP) in which images are first partitioned into blocks 
and an MMSE linear predictor calculated for each block. From the large number of 
predictors obtained, a fuzzy-clustering algorithm produces an initial guess of a user 
specified number of prototype predictors to be fed to an iterative procedure in which 
to each predictor pixels are given degrees of membership measuring the fitness of 
prediction on another causal neighborhood larger than the prediction support; then 
predictors are recalculated from pixels depending on their degrees of membership. 
The overall prediction will be fuzzy, being given by the sum of the outputs of each 
predictor weighted by the memberships of the current pixel to that predictor. The 
linearity of prediction makes it possible to formulate the above approach as a prob
lem of approximating the optimum space-varying linear predictor at each pixel by 
projecting it onto a set of nonorthogonal prototype predictors capable to embody 
the statistical properties of the image data. 

The ACAP paradigm has been extended also to 3-D data16, same as ASAP15, 
by simply changing the 2-D neighborhood into a 3-D one spanning up to three 
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Fig. 1. Flowchart of DPCM with quantization noise feedback loop at the encoder, suitable for 
error-bounded near-lossless compression: (a) encoder; (b) decoder. 

previous bands. To enhance the entropy coding performance, both schemes exploit 
context modeling (see Sect. 4.1) of prediction errors followed by arithmetic coding. 
It is noteworthy that the original 2-D FMP2 1 achieves lossless compression ratios 
5% better than CALIC and 10% than JPEG-LS, on an average. Although RLPE 
(2-D) is slightly less performing than FMP (2-D), its feature of real-time decoding 
is highly valuable in application contexts, since an image is usually encoded only 
once, but decoded many times. Details of this scheme can be found in Sect. 5. 

4.1. Context Modeling 

A notable feature of all the advanced data compression methods 22,21,26,31,53,58,60 
is statistical context modeling for entropy coding. The underlying rationale is that 
prediction errors should be similar to stationary white noise as much as possible. As 
a matter of fact, they are still spatially correlated to a certain extent and especially 
are non-stationary, which means that they exhibit space-varying statistics. The 
better the prediction, however, the more noise-like prediction errors will be. 

Following a trend established in the literature, first in the medical field 44, then 
for lossless coding in general 53>60>58

; and recently for near-lossless coding20'61, pre
diction errors are entropy coded by means of a classified implementation of an 
entropy coder, generally arithmetic or Golomb-Rice. For this purpose, they are ar
ranged into a predefined number of statistically homogeneous classes based on their 
spatial context. If such classes are statistically discriminated, then the entropy of a 
context-conditioned model of prediction errors will be lower than that derived from 
a stationary memoryless model of the decorrelated source57. 

A context function may be defined and measured on prediction errors lying 
within a causal neighborhood, possibly larger than the prediction support, as the 
RMS value of prediction errors (RMSPE). The context function should capture 
the nonstationary of prediction errors, regardless of their spatial correlation. Again, 
causality of neighborhood is necessary in order to make the same information avail
able both at the encoder and at the decoder. At the former, the probability density 
function (PDF) of RMSPE is calculated and partitioned into a number of intervals 
chosen as equally populated; thus, contexts are equiprobable as well. This choice is 
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motivated by the use of adaptive arithmetic coding for encoding the errors belong
ing to each class. Adaptive entropy coding, in general, does not require previous 
knowledge of the statistics of the source, but benefits from a number of data large 
enough for training, which happens simultaneously with coding. The source given 
by each class is further split into sign bit and magnitude. The former is strictly ran
dom and is coded as it stands, the latter exhibits a reduced variance in each class, 
-null if the context (RMSPE) of the current pixel is always equal its magnitude; 
thus, it may be coded with few bits. It is noteworthy that such a context-coding 
procedure is independent of the particular method used to decorrelate the data. 
Unlike other schemes, e.g., CALIC60, in which context-coding is embedded in the 
decorrelation procedure, the above method20 can be applied to any DPCM scheme, 
either lossless or near-lossless. 

5. Near-lossless Compression Through 3-D Causal D P C M 

Whenever multispectral images are to be compressed, advantage may be taken from 
the spectral correlation of the data for designing a prediction that is both spatial 
and spectral, from a causal neighborhood of pixels 8>23,4i,5i,56,62 c a u s a i m e a n 8 that 
only previously scanned pixels on the current and previously encoded bands may 
be utilized for predicting the current pixel value. This strategy is as more effective 
as the data are more spectrally correlated, as in the case of hyperspectral data8. If 
the interband correlation of the data is weak, as it usually occurs for data with few 
and sparse spectral bands, a 3-D prediction may lead to negligible coding benefits. 
In this case, advantage may be taken from a bidirectional spectral prediction10, in 
which once the (k — l)st band is available, first the fcth band is skipped and the 
(k + l)st band is predicted from the (k — l)st one; then, both these two bands are 
used to predict the fcth band in a spatially causal but spectrally noncausal fashion. 

The DPCM encoder utilized in this work is based on a classified linear-regression 
prediction according to the ASAP paradigm, followed by context-based arithmetic 
coding of the outcome residues. Image bands are partitioned into blocks, typically 
8 x 8 , and an MMSE linear predictor is calculated for each block. Given a prefixed 
number of classes, a clustering algorithm produces an initial guess of as many clas
sified predictors that are fed to an iterative labeling procedure which classifies pixel 
blocks simultaneously refining the associated predictors. 

In order to achieve reduction in bit rate within the constraint of a near-lossless 
compression1, prediction errors are quantized with odd valued step sizes, A = 2E+1, 
with E denoting the induced L^ error, with a quantization noise feedback loop 
embedded into the encoder, so that the current pixel prediction is formulated from 
the same "noisy" data that will be available at the decoder (see Fig. 1(a)). 

For the case of a relative-error bounded compression a rational version of pre
diction error must be envisaged. Let us define the relative prediction error (RPE) 
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Fig. 2. Flowchart of the causal DPCM encoder with context coding referred to as relaxation-
labeled prediction encoder (RLPE) in the following. 

as ratio of original to predicted pixel value: 

r(n) = 
9{n) 

(19) 

The rational nature of RPE, however, makes linear quantization unable to guarantee 
a strictly user-defined relative-error bounded performance. 

Given a step size A G M, with A > 0 and A ^ 1, let us define as logarithmic 
quantization (Log-Q) of t £ M, t > 0, 

QA(t) = round [logA(i)]= round [log(i)/log(A)] 
(20) 

Q A 1 ( 0 = A ' 

Applying (20) to (19) yields 

"logfaW) -log(g(n))~ 
Q A [»"(«)] = round 

log A 
(21) 

If a Log-Q with a step size A is utilized to encode pixel RPEs, it can be proven 
that the ratio of original to decoded pixel value is strictly bounded around one 

minjyA,^} < - < max 
9 

VK, (22) 

Now, let us introduce a peak measurement of rational error, namely the peak rational 
error, defined as 

PRE{dB) ± 201og10 
max 

V min 

?(") 
5(") 
fl(") 
s(«) 

(23) 

It is easily verified that if Log-Q is utilized, then 

PRE{dB) = 20 • log10 (A) (24) 

thus, the peak rational error it may be easily user-defined. 
Quantized prediction errors are then arranged into activity classes based on the 

spatial context, which are entropy coded by means of arithmetic coding. Fig. 2 shows 
the flowchart of the encoder. As it appears, the refined predictors are transmitted 
along with the label of each block and the set of thresholds defining the context 
classes for entropy coding. 
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(a) (b) 

Fig. 3. (a) Gaussian pyramid and (b) rational Laplacian pyramid of test SAR image. 

6. Near-lossless Image Compression Through Noncausal D P C M 

Laplacian pyramids are multiresolution image representations obtained through re
cursive reduction (lowpass filtering followed by downsampling) and expansion (up-
sampling followed by lowpass filtering). 

Start with Go(i,j) = g(i,j)', define the Gaussian pyramid (GP) as 

Gk+1 = reduce2{Gft} k = 0,1, • • • ,K - 1 (25) 

in which 2K is the largest power of two in which the image size can be factorized, 
and 

r educe 2 {G,}^ (G, ® r 2 ) | 2 (26) 

in which the symbol (g> indicates linear convolution, \. 2 decimation by two, and r2 

is the anti-aliasing (lowpass) filter. 
Define the enhanced Laplacian pyramid (ELP)4 as 

Lk =Gk -expand-jjCfc+i} k = 0,1, • • • ,K - 1 (27) 
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Fig. 4. Flowchart of a hybrid encoder with quantization noise feedback loops on levels 2 (causal 
DPCM) and 1 (noncausal DPCM). VLC stands for variable length coding. 

with 

expand2{Gfc+i} = (Gk+i t 2) ® e2 (28) 

in which t 2 stands for upsampling by two, i.e., interleaving samples with zeroes, 
and e2 is the interpolation (lowpass) filter, which can be the same as r2, apart from 
a dc gain equal to two. 

A spatial DPCM can also be noncausal, i.e., interpolation-based, or hierarchical: 
a coarse image version, i.e., the base band of the GP, GK, is encoded followed by 
the ELP, Lft, k = K — 1, • • • ,0. Quantization error feedback at each layer allows 
Loo error control via the quantization step at the finest resolution layer4. 

A rational (E)LP (RLP), matching the multiplicative nature of the speckle noise, 
was defined from the GP (25) and utilized for denoising 7 . The ratio, instead of the 
difference, between the fcth level of the GP and the expanded version of the (& + l)st 
level, yields a pyramid 

Gk+i(i,j) 
(29) 

in which Gk+i is a shortcoming for expand2{Gfc+i} and the domain of subscripts 
is the same as for (27). Fig. 3 shows GP and RLP of a test SAR image. 

The RLP approximates a bandpass image representation, thus retaining all the 
benefits of multiresolution analysis, including those for data compression. The idea 
is to causally DPCM encode the small baseband bitmap icon and to quantize and 
encode the RLP layers11. The quantizer step sizes except on the bottom layer may 
be chosen arbitrarily because of the quantization noise feedback loop at the encoder, 
which consists of interpolating the same noisy data, i.e., affected by the distortion 
introduced during reconstruction, which will be available at the decoder. 
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Fig. 4 shows that Gk, the GP that will be reconstructed at the decoder for k < K, 
is recursively given by the product of the expanded Gk+i and of an approximate 
version of L\, namely L*k, due to quantization errors, in which L*k = Gk/Gk+i; 
L*K = GK for the pyramid top or baseband. 

For the baseband and intermediate layers, linear quantizers are utilized. The 
step sizes of the linear quantizers are calculated for k = K, K — 1, • • • , 1, so as 
to minimize the bit rate for a given distortion, by exploiting the mechanism of 
quantization noise feedback. Following the procedure reported for the ELP4, the 
entropy-minimizing step sizes are found out to be: 

Afe = ^ = i k = K,K-l,---,l (30) 

in which o*k_x is the average standard deviation of L*kl and PE is the power gain 
of the 1-D interpolation filter ei. 

The last step size, Ao, as well as the type of quantizer, is crucial when an error 
bounded encoder is required, since it rules the peak error: absolute for the ELP 
and relative for the RLP. In fact, Go cannot be exactly recovered from GK and 
L*k, k = K — 1, • • • , 1,0, unless quantization on the last layer is extremely fine, 
which implies a large code rate. Thus, unlike the ELP4 , the RLP is unsuitable for a 
strictly lossless compression. Furthermore, the rational nature of RLP makes linear 
quantization unable to guarantee relative-error bounded encoding. 

Since the term Go recursively accounts for previous quantization errors and 
LQ = Go/Go, a logarithmic quantization (20) of LQ with a step size A0 ^ 1 implies 
that the pixel ratio of original to decoded image is strictly bounded through the 
step size Ao of the last quantizer, as in (22). Hence, a relationship identical to (24) 
is found between the step size of the last quantizer, Ao, and the dynamic range of 
relative errors. 

7. Experimental Results 

7.1. Multispectral Data 

The optical data set comprises a Landsat Thematic Mapper (TM) image, with 
8 bit/pel and 6 bands out of the 7 available. In fact, the 6th band (thermal infrared) 
was omitted mainly because of its poor resolution (120m x 120m instead of 30m x 
30m) and scarce spectral correlation with the other bands. The test site is shown 
in Fig. 5, which portrays a part of the valley of the Adige river, near Trento, in 
Northern Italy. 

TM bands do not span the visible/infrared wavelength interval continuously. 
Apart from the visible spectrum, the infrared region is coarsely sampled. Thus, all 
the infrared bands are little correlated, both with the visible bands and with one 
another. To achieve an optimal multispectral decorrelation, the different bands 
available should be arranged in a sequence that maximizes the average cross corre
lation between any couple of consecutive bands56. 
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(a) (b) (c) 

Fig. 5. 512 x 512 details from test TM image: (a) Band 1 (blue), (b) Band 2 (green), (c) Band 3 
(red), (d) Band 4 (near infrared), (e) Band 5 (short-wave infrared), (f) Band 7 (middle infrared). 

Table 1. Average variance (&i), estimated noise variance 
(<T^), SNR (dB), and lossless bit rates (in bit/pel) of the 
six 30 m bands of the test TM image achieved by RLPE. 

Band (mode) 
TM-1 (I) 
TM-2 (B) 
TM-3 (P) 
TM-4 (P) 
TM-5 (B) 
TM-7 (P) 
Avg. 

a'l a'i SNR (dB) Bit Rate 
130.49 1.77 18.67 3.46 
52.82 0.37 21.55 1.78 
106.72 0.49 23.38 2.61 
448.09 5.20 19.35 4.41 
769.79 5.57 21.41 3.61 
178.44 1.99 19.53 3.27 
281.06 2.56 20.41 3.19 

The optimum causal sequence was found t o b e l — > 2 —» 3 —>- 7 —̂  5 —> 4. 
Band 6, when utilized, is always encoded standalone. A bidirectional, i.e., spectrally 
noncausal, prediction yields bit rates that are slightly lower, on an average10. The 
optimum bidirectional sequence, was found tobe: l—>-3, 1—>• 2 <— 3—> 7 —> 4 —• 
5-̂ —7. The difference in rate between causal and noncausal prediction, however, is 
moderate: the latter provides an average gain of four hundredths of bit per pixel for 
the optical bands and of nearly eight hundredths for the infrared channels. 
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(a) (b) 

(c) (d) 

Fig. 6. (a) 512 x 512 test image from Landsat TM band # 5; prediction errors (stretched by 2 
and biased by 128 for displaying convenience) produced by: (b) intraband lossless JPEG (predictor 
# 7); (c) intraband predictor (2-D RLPE); (d) interband predictor (3-D RLPE) with bidirectional 
prediction from TM bands # 4 and # 7. 

Table 7.1 reports the estimated parameters for the six bands, the first of which is 
encoded in intra mode, i.e., without reference to any other previously encoded band. 
The noise variance is larger in the visible than in the infrared wavelengths; also the 
signal variance follows such a trend; thus, the intrinsic SNRs are all comparable 
among the bands. 

Bands # 2 and # 5 are bidirectionally predicted to a larger extent than the 
others bands of the visible and infrared group, respectively. The extremely fitting 
prediction is demonstrated by the associated prediction residues of Fig. 6(d), which 
practically comprise the background noise only in most of the image. The work 
parameters of the algorithm are noncrucial22 and have been chosen so as to balance 
coding performances with encoding time (decoding is always real-time). 

Rate Distortion plots are reported in Fig. 7(a) for the RLPE scheme, both in 
intraband (2-D RLPE) and in interband mode (3-D RLPE), and for the DCT-based 



521 

Bit Rate (bit/pixel) Bit Rate (bit/pixel) 

(a) (b) 

Fig. 7. Band # 5 of TM image (see Fig. 6(a)) compressed by means of RLPE, in intraband mode 
(2-D DPCM) and in bidirectional interband mode (3-D DPCM) from bands # 4 and # 7, and 
JPEG (intraband): (a) PSNR vs. bit rate; (b) peak error vs. bit rate. 

lossy JPEG. The test image is the 512 x 512 detail from band # 5 (Fig. 6(a)). In 
the interband mode (3-D) the image is bidirectionally predicted from bands # 4 . 
and # 7. 2-D RLPE gains over JPEG for rates above 0.8 bit/pel; 3-D RLPE crosses 
the RD plot of JPEG at 0.4 bit/pel. The knee for low rates is typical of all causal 
DPCM schemes and is an effect of quantization noise feedback in the prediction 
loop. From Fig. 1(a) it appears that, since the "noisy" data reconstructed at the 
decoder are utilized for prediction, prediction becomes poorer and poorer as the 
bit rate, and hence the quality of dequantized samples, decreases. The near-lossless 
performance, shown in the peak error vs. bit rate plots of Fig. 7(b), demonstrates 
that the two Loo-bounded encoders are far superior to JPEG, which is I/2-bounded 
through the user-definable quality factor46. The standard deviation of the sensor's 
noise was found19 to be approximately equal to 3 (2.36); hence the virtually lossless 
case, corresponding to a quantization step size A = 3, with an induced MAD equal 
to 1, is achieved at 3.45 bit/pel by 2-D RLPE and at 2.43 bit/pel by 3-D RLPE, 
with a PSNR gain over JPEG of 7.5 dB and 11 dB, respectively. 

The meaning of the virtually lossless term is highlighted in Fig. 8, reporting 
the bitmaps and the histograms of pixel differences between original and decoded 
images, for 3-D RLPE and JPEG, respectively, both at 2.43 bit/pel. Besides the 
11 dB PSNR gain of RLPE over JPEG, the error is practically uniformly distributed 
in [-1,1], as well as uniformly spread over the whole image. In the latter case the 
error is roughly Gaussian in [-15,17] and spatially heterogeneous, much larger 
around edges and in textured areas than on the background. 

7.2. Hyper spectral Data 

The data set includes also a sequence of hyperspectral images collected in 1997 
by the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), operated by 
NASA/JPL, on the Cuprite Mine test site, in Nevada. The sequence is consti-
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Fig. 8. Error between original and decoded TM band # 5, at same bit rate of 2.43 bit/pel 
(stretched by a factor 7 and biased by 128 for displaying convenience): (a) 3-D RLPE; (b) JPEG; 
error distribution: (c) 3-D RLPE; (d) JPEG. 

tuted by 224 bands recorded at different wavelengths in the range 380 -r 2500 nm7 

with an average spectral separation between two bands of 10 nm. The image size 
is 614 x 2048 pixels. A 614 x 512 subimage was used in this experiment. The raw 
sequence was acquired by the 12 bit analog-to-digital converter (ADC) with which 
the sensor was equipped in 1995, in place of the former 10-bit ADC. Band # 48 
(808 nm) is shown in Fig. 9. The raw data from the digital counter have been radio-
metrically calibrated by multiplying by a gain and adding an offset (both varying 
with wavelengths), and are expressed as radiance values, rounded to integers, and 
packed in a 16-bit wordlength, including a sign bit. Band # 48 (808 nm) is shown 
in Fig. 9. The second spectrometer, covering the near-infrared (NIR) spectrum, 
was analyzed in a recent work by the authors14. It was found that the noise af
fecting AVIRIS data is somewhat correlated spectrally and across track, and less 
along track, due to the "wisk-broom" scan mechanism, as well as to postprocessing. 
Firstly, the 3-D RLPE was run on the test AVIRIS sequence in the reversible mode, 
i.e., with A = 1. Each of the 224 bands was decorrelated and encoded with refer-
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Fig. 9. Band # 48 (808 nm wavelength) of NASA/JPL AVIRIS Cuprite Mine, collected in 1997 
with size 614 x 512 pixels and and a wordlength of 16 bits. 
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Fig. 10. Bit rates (in bit/pel) produced by 3-D RLPE and by the 3-D fuzzy-clustered DPCM (FC-
DPCM), for the reversible encoding of the 224 bands from the test AVIRIS sequences, varying 
with the wavelength. Each band is predicted both spatially and spectrally from the two previous 
bands. 

ence to its two previous bands. A larger number of bands for prediction is useless8, 
besides being computationally more onerous. Fig. 10 reports the bit rate produced 
by the encoder varying with the wavelength, for the proposed scheme and for the 
interband fuzzy-clustered DPCM encoder (3-D FC-DPCM)8. The number of pre
dictors M = 4 and the size of prediction support S = 18 are the same for both the 
encoders. As it appears, the former is slightly superior to the latter, which requires 
encoding time more than ten times greater, and does not allow real-time decoding. 

A distortion analysis varying with coding bit rate was carried out also on AVIRIS 
data. The test image is band # 48 (808 nm) of Cuprite '97 and is portrayed in Fig. 
9. It is somewhat detailed and richly textured. In fact, on a vegetated area the near-
infrared spectrometer captures perhaps the largest amount of spectral information. 
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Fig. 11. Band # 48 of AVIRIS Cuprite'97 compressed by means of the RLPE causal DPCM, 
in 2-D, i.e., intraband mode (INTRA), and 3-D, i.e., interband (INTER) from one (IB) and two 
(2B) previous bands, with either linear (Lin-Q), or logarithmic quantizer (Log-Q): (a) PSNR vs. 
bit rate; (b) peak error vs. bit rate. 

The bit rates obtained are representative of the average bit rates of the sequence. 
RD plots are reported in Fig. 11(a) for RLPE operating with M — 4 predictors, in 
both intraband (2-D RLPE) mode (5 = 8 coefficients per predictor), and interband 
mode (3-D RLPE), with reference to either one or two previous bands, with S = 12 
and S = 16, respectively. Due to sign bit, the full scale gjs in (5) was set equal to 
215 — 1 = 32767 instead of 65535 (negative values introduced by calibration never 
occur in the sample band). Hence, the PSNR attains a value of 101og10(12 • g\s) « 
102 dB, due to integer roundoff noise only, when the reversibility is reached. 3-D 
RLPE gains 16 through 18 dB over 2-D RLPE, corresponding to almost 3 code 
bit, depending on whether one or two previous bands are exploited for the 3-D 
prediction. Two-band 3-D prediction, instead of one-band, gains about 2 dB for 
medium-high bit rates, and up to 4 dB for low rates. Notice that according to RD 
theory38, when a uniform quantizer is employed, all the SNR/PSNR-bit rate plots 
are straight lines with slope as 6 dB/bit, for rates larger than, say, 1 bit/pel. This 
does not happen for Log-Q which loses about 2 dB and drifts from the theoretical 
line as the lossless case is approached. The near-lossless performance is shown in 
the peak error vs. bit rate plots of Fig. 11(b). Values of peak error are far larger 
than those reported in Fig. 7(b), because the full scale is now 32767 instead of 
255. The trends are in accordance with those of PSNR, except for the Log-Q which 
achieves a performance much poorer than that of Lin-Q for the intra experiment. 
The standard deviation of the noise was found14 to be approximately 10; hence, 
the virtually-lossless case is given by the 3-D encoder (2B) at a bit rate around 
3 bit/pel, yielding a compression ratio CR > 5. 

Another experiment concerns assessments of PMAD-constrained coding perfor
mances. Bands 35 to 97, covering the NIR wavelengths have been compressed in 
both MAD-constrained mode (linear quantization) and PMAD constrained mode 
(logarithmic quantization). The work parameters of RLPE have still been chosen so 
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Fig. 12. Bit rates produced by 3-D RLPE on the data produced by the second spectrometer 
(NIR) of AVIRIS Cuprite Mine '97: (a) linear quantization to yield user-defined MAD values; (b) 
logarithmic quantization to yield user-defined PMAD values. 

as to balance performances with encoding time. The outcome bit rates varying with 
band number, together with the related distortion parameters are shown in Fig. 12. 
As it appears the bit rate plots follow similar trends varying with the amount of dis
tortion, but quite different trends for the two types of distortion (i.e., either MAD or 
PMAD). For example, around the water vapor absorption wavelengths (w Band 80) 
the MAD-bounded plots exhibit pronounced valleys, that can be explained because 
the intrinsic SNR of the data becomes lower; thus the linear quantizer dramatically 
abates the noisy prediction errors. On the other hand the PMAD-bounded encoder 
tends to quantize the noisy residues more finely when the signal is lower. Therefore 
bit rate peaks are generated instead of valleys. More generally speaking, bit rate 
peaks from the PMAD-bounded encoder are associated with low responses from the 
spectrometer. This explains why the bit rate plots of Fig. 12(b) never fall below one 
bit per pixel per band. 

Eventually, some of the distortion measures defined in Sect. 2 have been calcu
lated on the distorted hyperspectral pixel vectors achieved by decompressing the bit 
streams generated by the near-lossless encoder, both MAD- and PMAD-bounded. 
RMSEs of the vector data, both average RMSE (8) and peak, i.e., maximum, RMSE 
(9) are plotted in Fig. 13(a) as a function of the bit rate from the encoder. The 
MAD-bounded encoder obviously minimizes both the radiometric distortions: aver
age (A-RMSE) and maximum (P-RMSE) Euclidean norm of the pixel error vector. 
A further advantage is that A-RMSE and P-RMSE are very close to each other for 
all bit rates. The PMAD-bounded encoder is somewhat poorer: A-RMSE is com
parable with that of the former, but P-RMSE is far larger, due to the high-signal 
components that are coarsely quantized in order to minimize PMAD. Trivially, the 
MAD of the data cube (12) is exactly equal to the desired value (see Fig. 12(a)), 
whereas the PMAD, being unconstrained, is higher. Symmetric results, not reported 
here, have been found by measuring PMAD on MAD-bounded and PMAD-bounded 
decoded data. 
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Fig. 13. Radiometric distortions versus bit rate for compressed AVIRIS Cuprite Mine '97 data: 
(a) RMSE; (b) MAD. 
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Fig. 14. Spectral distortions versus bit rate for compressed AVIRIS Cuprite Mine '97 data: (a) 
spectral angle mapper (SAM); (b) spectral information divergence (SID). 

As far as radiometric distortion is concerned, results are not surprising. Radio
metric distortions measured on vectors are straightforwardly derived from those 
measured on scalar pixel values. The introduction of such spectral measurements as 
SAM (14) and SID (18) may overcome the rationale of distortion, as established 
in the signal/image processing community. Fig. 14 shows spectral distortions be
tween original and decompressed hyperspectral pixel vectors. The PMAD-bounded 
algorithm yields plots (maximum and average SAM in Fig. 14(a)) that lie in the 
middle between the corresponding ones produced by the MAD-bounded algorithm 
and are very close to each other too. Since the maximum SAM is a better clue of 
spectral quality of the decoded data than the average SAM may be, a likely con
clusion would be that PMAD-bounded compression optimizes the spectral quality 
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Fig. 15. Comparisons on test SAR image (8 bit/pel): (a) PSNR vs. bit rate; (b) PRE vs. bit rate. 

of the data, while MAD-bounded is superior in terms of radiometric quality. The 
considerations expressed for SAM are emphasized by the plots of Fig. 14(b) re
porting average and maximum SID. The latter is capable of discriminating spectral 
quality more finely than SAM does, as previously noticed by Chan27 in the case of 
multiband classification. 

7.3. SAR Data 

A thorough performance comparison aimed at highlighting the rational near-lossless 
approach was carried out among causal RLPE DPCM (2-D) with either linear or 
logarithmic quantization and noncausal DPCM achieved by RLP with linear quanti
zation except on bottom layer where it is logarithmic. The current standard JPEG 
(block DCT-based)46 and the upcoming standard JPEG 2000 (wavelet-based)37 

where also considered. 
The well known test NASA/JPL AIRSAR image of San Francisco (4 looks am

plitude) remapped to 8 bit/pel, was used for the coding experiment. The test SAR 
image is shown as the bottom layer of the GP in Fig. 3(a). 

Fig. 15(a) shows the PSNR vs. the bit rates produced by the five different 
encoders starting from the test SAR image. For the RLP and the RLPE-DPCM 
(Log-Q) the rightmost part of the plots (say, bit rate > 2 bit /pel) correspond to a 
virtually lossless coding. As it appears, RLPE DPCM gains more than 1.5 dB PSNR 
over RLP. The two plots are parallel for medium-high rates and cross each other at 
approximately 1 bit/pel. This is not surprising because both encoders utilize Log-Q, 
and it is widely known that noncausal DPCM is preferable to causal DPCM for low 
rates only4. Concerning the schemes utilizing linear quantizers, RLPE-DPCM and 
JPEG2K share the best Rate Distortion (RD) performances: the former outperforms 
the latter for rates higher than 1.5 dB, and vice-versa. However, it is evident that 
the logarithmic quantizer, introduced to allow relative error-bounded coding, yields 
poorer RD performances than a linear quantizer does, especially for low rates. JPEG 
and JPEG2K having similar quantizers (psychovisual) follow similar RD trends. 
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Fig. 16. Ratio of original to reconstructed image at the same bit rate of 2.45 bit/pel: (a) RLP; 
(b) JPEG; distribution of original-to-decoded ratio: (c) RLP; (d) JPEG. 

However, the two plots are closer for lower rates and farther apart as the rate 
increases, unlike what usually happens for "optical", i.e., noncoherent, images. The 
visual quality of the decoded images, however, is quite different. For lower rates 
JPEG2K takes advantages from despeckling the image; instead JPEG introduces 
severe blocking impairments, especially annoying on the sea. 

The relative-error bounded near-lossless performance of the two encoder utilizing 
logarithmic quantization is highlighted in the plots of Fig. 15(b) reporting PRE (23) 
vs. bit rate between original and decoded versions of the test SAR image. PRE is 
user defined and far lower than that of the other schemes, including RLPE-DPCM 
which exhibits the best results among the three encoders using linear quantization. 
Again RLP and RLPE-DPCM cross each other around 1 bit/pel. 

The meaning of the virtually lossless term is demonstrated in Fig. 16, reporting 
the bitmaps and the histograms of pixel ratio between original and decoded images, 
for RLP and JPEG, both at 2.45 bit/pel Although the PSNR gain of RLP over 



529 

JPEG is only 2 dB at 2.45 bit /pel, in the former case the relative error is small and 
uniformly spread; in the latter case it is heterogeneous, much larger around image 
edges. The variance of the ratio is less than one tenth of that of speckle (nominally 
4-look amplitude), for RLP. Hence, the definition of virtually lossless applies12. 

8. Conclusions 

This work has demonstrated the potential usefulness of near-lossless compression, 
i.e., with bounded pixel error, either absolute or relative, when it is applied to 
remote-sensing data. Unlike lossless compression achieving typical CRs around two, 
near-lossless compression can be adjusted to allow a virtually lossless compression 
with CRs larger than three for 8-bit multispectral data and larger than five for 
16-bit hyperspectral data. The main result of this analysis is that, for a given CR, 
near-lossless methods, either MAD- or PMAD-constrained, are more suitable for 
preserving the spectral discrimination capability among pixel vectors, which is the 
principal outcome of spectral information. Therefore, whenever a lossless compres
sion is not practicable, near-lossless compression is recommended in such application 
where spectral quality is a crucial point. Furthermore, since the maximum recon
struction error is defined by the user before compression, whenever higher CRs are 
required, the loss of performance expected in application tasks can be accurately 
modeled and predicted. Eventually, an original approach to near-lossless compres
sion of detected S AR images is based on encoding the Rational Laplacian Pyramid of 
a speckled SAR image, after linearly quantizing its upper layers and logarithmically 
quantizing its bottom layer, to achieve near-lossless compression with constrained 
relative error. Besides virtually lossless compression, for which causal DPCM is 
recommended, noncausal pyramid-based DPCM outperforms causal DPCM when 
near-lossless compression at low-medium rates is desired. 
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CHAPTER 24 

I M A G E E N H A N C E M E N T I N G R O U N D P E N E T R A T I N G R A D A R 
S I G N A L P R O C E S S I N G T O D E T E C T L A N D M I N E S 

Xiaoyin Xu and Eric L. Miller 

Center for Subsurface Sensing and Imaging Systems 
Northeastern University 

Boston, Massachusetts, USA 

The use of ground penetrating radar (GPR) array for detecting and localizing 
buried objects has received considerable attention in recent years in areas such as 
landmine and unexploded ordnance remediation, utility line mapping, and archae
ological discovery. A typical GPR array is implemented by moving a transmitter 
and receiver along a linear track. At every stop of the system, the transmitter 
emits a short pulse of electromagnetic energy which interacts with the surround
ing medium. Based on observations of scattered fields collected by the array the 
objective of the problem is to determine if an object is present in the field of view 
of the array and, furthermore, to localize its position. 

From the perspective of image enhancement, we can apply image processing 
methods such as histogram modifications to improve the quality of GPR imagery. 
Histogram modification is a family of point operation methods that modify the 
pixels to enhance the contrast of the images. Using histogram modification meth
ods to process GPR images can enhance the landmine reflected signals, which are 
usually weaker than the specular ground reflection. Enhanced landmine reflected 
signals allow better detection and localization. On the other hand, histogram 
modification inevitably generates noise and some undesirable artifacts in the im
age. To remove the noise and artifacts, we use median filtering and adaptive 
filtering techniques to remove the noise, usually in the form of speckle noise, 
and the artifacts, usually in the form of horizontal streaks. The resulting image 
then has enhanced landmine reflected signals and an approximate homogeneous 
background, which allows better detection of buried landmines. 

1. I n t r o d u c t i o n 

The problem of detecting and localizing buried landmines has received considerably 

amount of research interest in recent years. Subsurface sensing techniques such as 

G P R 1>2, infrared imaging 3 ' 4 , electromagnetics/magnetics 5 '6 , laser-induced acous

tic imaging 7 '8 , and nuclear quadrupole resonance 9 have been applied to landmine 

detection. Among these techniques, G P R is widely used because it is sensitive to 

variations of all three electromagnetic parameters of a medium, i.e., electrical con

ductivity, electrical permittivity, and magnetic permeability. Therefore G P R is able 
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to detect both metallic and non-metallic objects. In addition GPR is able to localize 
buried objects in a three-dimensional space and obtain discrimination information 
based on the received signals. In spite of the advantages of GPR, proper signal pro
cessing techniques are needed to extract information from GPR data because there 
is clutter in the GPR signals. Here clutter is denned as any unwanted signals in the 
received GPR data. Clutter can come from the reflection by the ground surface and 
scattering in the soil. 

In this section, we give a brief description of GPR and its operation principles. 
Readers who are interested in detailed GPR description are referred to the book 
by Daniels 10. GPR can be defined as a radar whose goal is to detect and identify 
structures underground 1. It has been in use for about 20 years in contrast to the 
more than 50 year history of conventional radar 1 . 

A simple diagram of a GPR is given in Fig. 1(a). It consists of a transmitting 
antenna (transmitter) and a receiving antenna (receiver). The transmitter radiates 
a pulse into the ground and the receiver collects the echo for a certain time period, 
usually 10 to 20 ns. The transmitted pulse may be any transient signal, sine wave, 
steps, and Gaussian waves are all possible. Pulse widths are usually in the order of 
a few nanoseconds x. Compared with conventional radar, GPR has a much broader 
bandwidth, from a few megahertz to a few gigahertz. GPR operates at high fre
quency so that it can provide images of high resolution of subsurface reflectivity. 
At such high frequencies, electromagnetic waves are extremely vulnerable to inter
ference. This interference can be reduced by averaging a number of GPR returns 
obtained as a function of time without moving the GPR 1 . The most critical part 
of a GPR is the transmitting and receiving antennae. The antennae are usually in 
the form of dipoles, which are heavily loaded to reduce as much as possible an
tenna ringing. Usually the transmitter and receiver are separated, i.e., the GPR is a 
bistatic radar. For typical GPR, the receiver takes the forms of a sampling system. 
The sampling system constructs the received signal from discrete samples of suc
cessive periods of the reflected waveform. "The sampling system makes it possible 
to use an amplifier with time- (or range-) dependent gain controlled by a computer 
prior to the sampler in order to minimize sampling noise" 1 . 

Field operation of a GPR system is very simple. Commonly, a vehicle mounted 
GPR system (VMGPR) surveys an interested area step by step along a linear track. 
A VMGPR may consists of a single GPR or an array of GPRs. At each step, the 
VMGPR operates in the following sequence: 1) the transmitter radiates a pulse 
into the ground and turns off, 2) the receiver turns on to collect reflected signal, 
3) the receiver turns off after a short time, usually 10 to 20 ns. The data that are 
recorded by one receiver at one step is called a trace (or a time-series). Fig. 1(b) 
shows a typical received GPR signal. Denote the direction of VMGPR movement 
as x, then the VMGPR will collect reflections in the (x, t) plane. If the VMGPR 
is a GPR array, a three-dimensional image of the subsurface will be generated in 
the (x, y, t) space. Depending on the task to perform, the step size of the VMGPR 
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Fig. 1. GPR and its signal, (a) a single GPR, (b) a single trace of received GPR signals, (c) a 
GPR array, each circle represents a pair of transmitters and receivers, (d) image obtained by the 
GPR array after subtracting background. Note that for the purpose of illustration we chose to use 
a GPR image with a strong landmine reflected signals, i.e., the manifest hyperbolic curve seen in 
the image. The landmine reflected signals are so obvious in this image there is little need of image 
processing. However, in most cases, GPR image contains a much weaker landmine reflected signals 
and therefore image processing are needed to enhance the image. 

can vary from a few centimeters to a fractions of meters. Fig. 1(c) and (d) show 
a GPR array and its received signals. At positions close to the object, the array 
registers stronger reflections at small time-delays. At farther away positions, the 
reflections are weaker and time-delays are large. Thus typical GPR signals show a 
manifest hyperbolic curve around the position of an object. Fig. 1(d) confirms that 
the object (landmine) reflected signals are transient in two directions, the signals 
are clearly visible between 15 to 35 cm in the horizontal position and 6 to 14 ns in 
the time axis. 

GPR is different from the conventional radar in that 1) GPR operates in near-
field scenario, 2) most GPR antenna are close to the air/ground interface and ground 
reflection cannot be ignored, 3) the medium GPR operates in is highly lossy. At a 
frequency of / , the attenuation factor is 

a=la{f)S (i) 
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where /i is the permeability, e is the permittivity, and a is the conductivity of 
the medium. Note that the conductivity is frequency-dependent. Depending on the 
shape of antenna and the way it works, a spreading function may also be used to 
model GPR signal accurately. 

Because soil is usually inhomogeneous and air/ground interface is rough, there 
are multipath reflection and refraction in GPR signal. When one includes frequency 
dependent conductivity at the soil, it becomes prohibitive to process the GPR signal 
based solely on physics principles. On the other hand, we can overcome the difficulty 
in modeling by exploiting the data diversity provided by a GPR array and use some 
basic physics principles and image processing methods to look for some specific 
features in the GPR signals. 

2. Image Processing Methods To Enhance Detection from GPR 
Data 

A GPR trace consists of measurement noise, specular reflection from ground surface, 
clutter, and possibly object reflected signals. Measurement noise comes from imper
fections of the GPR hardware, approximation in analog to digital conversion, and 
human error. Specular reflection is the electromagnetic waves which have bounced 
off of the air-ground interface. Specular reflection can be reduced by some GPR 
configurations such as forward-looking GPR u , but it cannot be totally eliminated. 
In GPR signal processing the biggest challenge is to remove the specular reflection. 
In practice, a GPR moves along a linear track to collect a series of traces in order 
to find subsurface objects. A synthesized GPR image consists of a number of traces 
obtained at different positions. 

Here we investigate using histogram modification methods to enhance GPR im
agery. Specular reflections from the air-ground interface are the strongest compo
nents in the GPR images. Compared with the specular reflection, landmine reflect 
signals are of low amplitude and hard to observe. Histogram modification is very 
useful in enhancing weak signals 12. Using iterative contrast stretch and background 
removal method, we can obtain better GPR images to improve landmine detection. 
Examples are given in Section 3.2 and 4.2. 

The histogram of a signal represents the relative frequency of occurrence of the 
various amplitude levels in the signal. Obviously the signal can be of one-dimensional 
or multi-dimensional. In GPR image enhancement, histogram modeling techniques 
modify a GPR image so that its histogram has a desired shape. For example, in 
most cases, we would like to enhance the low-contrast part of the image which 
contains the landmine reflect signals. Histogram modeling techniques fall into three 
categories, contrast stretch, histogram modification, and histogram specification, 
respectively 12. Here we use contrast stretch to obtain better GPR images in order 
to improve detection of landmines. 

At this point, some observation about landmine detection are helpful to under
stand the challenges of the problem. To the contrary of intuition, it is usually the 
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Fig. 2. Contrast stretch enhances the contrast of mid-region pixel values. Pixel values in the 
mid-region [a, 6) are given a larger contrast range, whereas pixel values outside the mid-region are 
compressed to a small range. 

shallowly buried landmines that are difficult to detect because they are close to the 
surface and their signals are mixed with the specular reflection from the ground. For 
the deep buried landmines, time-gating is often sufficient to separate the landmine 
reflected signal from the ground bounce, i.e., by throwing away signals arrived in 
the first few nanoseconds one will have only the landmine reflected signal left and 
detection is not very difficult. 

Returning to the detection of shallowly buried landmines, we note that simple 
background subtraction does not always produce satisfactory results (c.f. Fig. 4, 7, 
and 8). On the other hand, using contrast stretch, we can enhance the landmine 
reflected signal and then background subtraction will be more constructive. Better 
result can be obtained by iteratively applying the contrast stretch and background 
removal (c.f. Fig. 7 and 8). In the next section, we introduce an iterative contrast 
stretch method to enhance GPR images. The field data used in this chapter are 
collected by BRTRC, Inc. at Fort AP Hill test site in Virginia, USA. 

Fig. 2 shows how the contrast stretch increases the contrast of mid-region pixel 
values of an image U. Mathematically, contrast stretch changes the contrast of the 
image U by 

( all 0 < U < a 

b(U-a)+c a<U <b (2) 

7(t/ - b) + d b<U 
where a and b are the lower and upper boundaries defining the mid-region. Pixel 
values falling into [a, b) will be given a large contrast region, making them more 
observable. For pixel values less than a or greater than b, they are given a smaller 
range of contrast. The boundaries can be chosen in an ad-hoc manner or by an 
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iterative method, which we will introduce later on. In specific cases, those pixel 
values are set to zero and 255 as we will do in the GPR image processing. The 
reason for setting pixel values smaller than a to zero and larger than b to 255 is 
that we are interested in enhancing the landmine reflected signals only, which fall 
into the mid-region. In this case, the slope of the mid-region is determined from 
Fig. 2. 

3. Iterative Contrast Stretch with Median Filtering 

3.1. Method 

In landmine detection using GPR, the desired signal is the reflected wave from 
buried landmines. To enhance the landmine reflected signals, we use contrast stretch 
to increase the contrast of the GPR image. After the contrast stretch, background 
removal is carried out by subtracting the ensemble average of the equalized image 
and a median filter is applied to remove any speckle point in the image. The whole 
process is iterated to give better result before it diverges. The flowchart of iterative 
contrast stretch (ICS) is shown in Fig. 3. The median filter is taken over a window 
of 3 x 3. For a received GPR image y(m, n) of size M x N, the mean subtraction 
is carried out as 

z ( : , n ) = y ( : , n ) - y , n=l,...,N (3) 

where y = ^ 52n=i y(:, n) is the ensemble average of y along the column direction. 
The median filter is defined as 

z(m, n) = median{y(m — k,n — I), (k, I) G W} (4) 

where W is a pre-chosen filter window, usually of size 3 x 3, 5 x 5, or 7 x 7. The 
median filter is able to remove a single very unrepresentative pixel in the filter 
window. The algorithm for median filtering requires arranging the pixel values in 
the filter window in ascending or descending order and picking the middle value. 
If the number of pixels in the filter is an even-number 2k, the median value is 
calculated as the average of the arranged pixels at position k and k + 1. Because the 
average of two numbers is usually different from either of the two numbers, median 
filter is almost always taken over a filter window consisting of an odd-number of 
pixels such that the median is an actual pixel value in the filter window. For this 
reason the median filter is better at preserving sharp discontinuities. Because in 
increasing image contrast, the histogram stretch does not discriminate the desired 
details from the landmine reflected signals and other small undesirable disturbance, 
interference will appear as the iteration goes on. The interference appears in the 
form of speckle noise and can be well removed by the median filter. The whole 
process can be stopped after a few iterations. In the next section, we use examples 
to compare the performance of ICS with and without median filtering. 
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Contrast Stretch Mean Subtraction Median Filtering 

Fig. 3. Flowchart of iterative contrast stretch. 

3.2. Examples 

3.2.1. 2-D examples 

In this section we use some examples from field data to show the performance of the 
ICS. Fig. 4(a) displays a GPR image from a buried EM12 landmine at depth of 2.54 
cm (1 inch). Output of subtracting the ensemble average is shown in Fig. 4(b). Fig. 4 
(c) and (d) plot the output of energy detector, i.e., columnwise Li norm, of Fig. 4(a) 
and (b). Energy detector essentially compares the energy of each column to a preset 
threshold. If the threshold is exceeded, a landmine detection is declared. Otherwise 
the detector proceeds to the next position to process more data. Comparing Fig. 4(c) 
and (d) we see that there is not too much improvement. Results of contrast stretch 
are shown in Fig. 5 where the images generated with and without median filtering 
are compared. It is seen that in both cases the landmine is readily observable after 6 
iterations but the images generated without median filtering have speckle noise. The 
stripes to the left and right side of the landmine signal are due to the background 
removal method, which is a subtraction of the ensemble average. 

Fig. 6 shows how median filtering can help to improve detection. Fig. 6(a) shows 
the output of energy detector without median filtering. Fig. 6(b) shows the output 
of energy detector with median filtering. It is seen that applying median filtering 
helps to lower the noise floor in Fig. 6(a) and therefore reduce the probability of 
false-alarm in detection. Fig. 7 shows results of applying the ICS over a buried M21 
landmine. It is seen that as iteration increases, the ICS produces better images. 
Another example is shown in Fig. 8. In the figure, a VS-1.6 landmine is buried at 
2.54 cm. The landmine is easily observable in Fig. 8 (d). The bright spot at the 
upper left corner can be eliminated because in most cases we know the height of the 
GPR and signals arrived much earlier than the ground bounce can be safely ignored. 

3.2.2. 3-D examples 

The ICS can be expanded to three dimensions in a straight-forward manner. Again 
we use data collected at Fort AP Hill test site to demonstrate the performance of the 
ICS. The data were collected by a single GPR running down a linear track, starting 
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Fig. 4. (a) Original GPR image over an EM12 landmine, (b) image after subtracting the ensemble 
average, (c) columnwise L2 norm of (a), (d) columnwise L2 norm of (b). 

from different cross-track position. The whole data set is of size 416 x 21 x 8 or 
416 x 24 x 8, which means that at each stop the GPR takes 416 samples in time and 
makes 21 or 24 stops along the track, covering roughly one meter to 1.2 meters. In 
both cases, the GPR starts again in one of eight different cross-track positions. Two 
•examples are given in Fig. 9 and 10, over an M15 and a VS-2.2 landmine. While in 
both cases there are speckle noises in some frames, it is seen that by combining the 
eight images we can easily detect the landmine. 

4. Contrast Stretch with Entropy Regularization 

4 .1 . Method 

The percentage linear contrast stretch uses a specified minimum and maximum 
values that lie in a certain percentage of pixels from the mean of the histogram. 
Applying the contrast stretch in GPR image will enhance the contrast of the ob
ject reflected signals and make them easy to detection. Consider an image with a 
minimum brightness value of 0 and a maximum value of 255. Assume we choose 
a lower boundary of 10 and a upper boundary of 200 in the contrast stretch, the 
pixels in the original image with a pixel value less than 10 or greater than 200 are 
changed to 0 and 255, respectively. And the image is linearly stretched between 0 
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Fig. 5. Left column, images of the ICS without median filtering at iteration 1, 3, and 6. Right 
column, images of the ICS with median filtering at iteration 1, 3, and 6. 

and 255. Therefore, part of the original image that is of low-contrast now is of higher 
contrast. The difficulty in the percentage linear contrast stretch is to determine the 
lower and upper percentage boundaries. Boundaries that are too far apart will have 
little effect on the GPR images while boundaries too close will inadversely enhance 
a lot of details of the GPR images while most of them are noise and clutters. There
fore it is important to have a criterion in choosing the proper boundaries. We can 
write the CS as an operator such that 

Y = CS(X,a,b) (5) 
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(a) (b) 

Fig. 6. (a) Norm of the ICS result without median filtering at iteration 6, (b) norm of the ICS 
result with median filtering at iteration 6. The landmine is buried at position 50 cm. 
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(a) (b) 

Position (cm) Position (cm) 

(c) (d) 

Fig. 7. (a) Original GPR. image over an M21 landmine, (b) image after subtracting the ensemble 
average, (c) image of contrast stretch, (d) image of the ICS result at iteration 6. 

where Y is the resulting image of size M x N and a and b are the lower and upper 
boundary, respectively, and 0 < a < b < 255. 

For the purpose of detection, we look for the CS that decomposes a GPR image 
into three parts, the specular reflection, the object reflected signals and possibly 
a homogeneous background. A measurement of the homogeneity of an image is 
its entropy. Entropy measures amount of information carried in an image. A large 
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Fig. 8. (a) Original GPR image over a VS-1.6 landmine, (b) image after subtracting the ensemble 
average, (c) image of contrast stretch, (d) image of the ICS at iteration 6. 

entropy corresponds to a large amount of information and vice versa. Intuitively, a 
homogeneous image has a smaller entropy than an inhomogeneous image. Assume 
that the image X of size M x N takes discrete values 1,2,3, ••• with respective 
probabilities Pi,P2,P3, • • * • Then the entropy is given by 

E(X) = - ^ ft log ft. (6) 

Calculating the entropy using (6) has two computational problems, first, it is time-
consuming to compute the pi for a large image, second, if the discrete values of X are 
predetermined, then there is possibility that Pi = 0 for some i and logarithm of zero 
cannot be computed. To circumvent the above problems, we use an approximation 
to the entropy, namely, the varimax norm. The varimax norm of an image is defined 

i\", 13 

n(x) = KE;;*2(m,n)]- (7) 

An image of small entropy has a small varimax norm and vice versa. An identically 
homogeneous image, i.e., a constant image, has an entropy of one, which is the 
smallest varimax norm. Any inhomogeneous image will have a varimax norm larger 
than one. In entropy optimized CS, we start with a small lower boundary a and a 
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Fig. 9. (a) Cascaded GPR images over an M15 landmine, (b) cascaded images of the ICS at 
iteration 1, (c) cascaded images of the ICS at iteration 6. 
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Fig. 10. (a) Cascaded GPR images over a VS-2.2 landmine, (b) easeaded images of the ICS at 
iteration 1, (c) cascaded images of the ICS at iteration 6. 
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large upper boundary b. Then we increase a and decrease b at the same rate and 
calculate the varimax norm of the resulting image. When a minimum is reached, it 
is believed that at least a sub-optimal set of boundaries has been encountered and 
the above process stops. 

(1) Initialize a® and 60 
(2) Choose step size /J, 
(3) FOR k = l:K 

(a) ak=a0 + fik, bk = b0 -
(b) Contrast stretch image 

- [ik 

* b y 

Y--

(c) Compute the varimax norm 

(d) IF v(k - 2) > v(k -
Yopt = CS(X, ak 

STOP 
ENDIF 

(4) ENDFOR 

-1) 

' 

AND 

= CS(X,ak,bk) 

oiY 

v(k) = 

v(k -

= il(Y) 

-1) < v(k) 

Fig. 11. Entropy optimized contrast stretch. 

In theory a and b can be found by exhaustive search through all the possible 
combinations. In practice we use entropy optimized CS to find a and b in a sub-
optimal way. As the examples show, the results are, nevertheless, very good and 
make detection easy. Therefore we can conclude that the sub-optimal searching 
does not compromise the final results as landmine detection is concerned. Details 
of the entropy optimized CS is shown in Fig. 11. To find the optimal boundaries 
corresponding to the minimum entropy, we need to find the point k such that 
varimax norm v(k — 1) < v(k) < v(k + 1). 

4.2. Examples 

Using field data, we demonstrate that our method is able to produce results of high 
quality, i.e., the object reflected signals are enhanced. Fig. 12(a) and (b) display 
a raw GPR image and the resulting image of subtracting its columnwise ensemble 
average. In both images, it is difficult to observe the object, a buried landmine. As a 
way of seeing how difficult to detect the object using these two images, we plot the 
corresponding outputs of the energy detector in Fig. 13(a) and (b). It is seen that 
the energy detector cannot make the correct decision. In Fig. 13(c) to (h) we display 
the resulting images of entropy optimized CS. Because the original GPR image takes 
discrete values between 0 and 1.0, we start with a lower boundary ao = 0.01 and 
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upper boundary b0 = 0.99 and a step size fi = 0.01. The lower boundary is increased 
as 

ak=a0 + fik (8) 

where k = 1, • • • ,20. Similarly the upper boundary is decreased as 

bk = b0- iik. (9) 

As the two boundaries close in, the object reflected signals, i.e., the hyperbolic curve 
in the image, becomes clearer and details begin to come forward. On the other hand, 
when the two boundaries get too close to each other, too much details of the GPR 
image is brought up and actually affect the detection. The resulting image with the 
smallest varimax norm is obtained at k = 16, Fig. 12(f). Fig. 13(c) to (h) show 
the outputs of the energy detector. For comparison, all the outputs are normalized 
to one and we can see that Fig. 13(f) has the lowest noise level than all the other 
plots. For larger k, the output of the energy detector becomes worse. Changes in the 
varimax norm is plotted in Fig. 14. The curve has a bowl-shape and the minimum 
happens at k = 13. From Fig. 12 and 13 we see that at k = 13 we obtain both 
a homogeneous image and lowest noise level in the output of the energy detector. 
Another examples is shown in Fig. 15. The GPR image is taken over a buried 
landmine TMA4. Because of the dominance of the specular reflection, the landmine 
reflected signal is not observable either in the original image or the image after 
subtracting the mean. Using CS with entropy regularization, the optimal resulting 
image is shown in Fig. 15(c). The landmine reflected signals can be easily detected, 
Fig. 15(d). 

5. Conclusions 

Landmine detection and localization using GPR is an active research area. Many 
methods have been developed to remove clutters in GPR image and to obtain better 
detection and localization performance. In this chapter we introduce two methods 
based on histogram modification, which is a popular image enhancement technique. 
As we have shown, using a proper technique can greatly improve the quality of 
GPR image. In some cases, enhanced GPR image makes landmine detection an 
easy and straightforward task. In other cases, post-processing are needed to obtain 
better results. 
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Fig. 12. (a) Observed GPR image, (b) subtracted by the ensemble average, (c) - (h), resulting 
images of CS at k — 7,9,11,13,15,17. 
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Fig. 13. Output of the energy detector from (a) the observed GPR image, (b) the GPR image 
subtracting the ensemble average, (c)-(h) the resulting images of CS at k = 7,9,11,13,15,17. 
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Fig. 14. Varimax norm versus lower boundary a. 

(a.) (b) 

Position (cm) 

(d) 

Fig. 15. (a) Observed GPR image, (b) subtracted by the ensemble average, (c) resulting imag 
of CS at optimal stage, (d) output of the energy detector of (c). 
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Abstract: Infra-red (IR) technology is applied in a wide range of application domains, e.g. 
military, medical, security and others. All objects, live or dead and of any colour, emit 
infra-red radiation by virtue of their temperature; the exact degree of radiation is 
determined by the absolute temperature and the thermal characteristics of the material from 
which it is made. The radiation is present day or night with or without external 
illumination. Infra-red technology is concerned with the detection and imaging of this 
emitted infra-red radiation. It helps to visualise objects that cannot be seen by the naked 
eye. Infra-red imaging is therefore a method for producing an image of the heat emitted 
from any object's surfaces. A thermogram is a calibrated graphic record of the temperature 
distribution obtained by thermography. 

1. Introduction 

Infra-red (IR) technology is applied in a wide range of application domains, e.g. 
military, medical, security and others. All objects, live or dead and of any colour, 
emit infra-red radiation by virtue of their temperature; the exact degree of 
radiation is determined by the absolute temperature and the thermal 
characteristics of the material from which it is made. The radiation is present day 
or night with or without external illumination. Infra-red technology is concerned 
with the detection and imaging of this emitted infra-red radiation. It helps to 
visualise objects that cannot be seen by the naked eye. Infra-red imaging is 
therefore a method for producing an image of the heat emitted from any object's 
surfaces. A thermogram is a calibrated graphic record of the temperature 
distribution obtained by thermography. 

In this chapter, both the hardware and some of the processing techniques 
associated with infra-red technology are discussed. Examples of military and 
medical applications will demonstrate the versatility of infra-red imagery. 

/ . / Infra-red Wavebands 

Spectrally infra-red radiation is located between the visible and radio 
frequencies. Infra-red radiation is generally thought of in three spectral bands: 
Short Wavelength Infra-red (SWIR) also called near infra-red, lying between 0.7 
- 2.0(0,m; Medium Wavelength Infra-red (MWIR) ranging from 3.0(0,m to 5.0|im; 
and Long Wavelength Infra-red (LWIR) between 8.0 - 14.0|J.m. Both the MWIR 
and the LWIR are strongly absorbed by water and organic compounds. Infra-red 
sources are either thermal (i.e. emitted by matter in the temperature range 100-
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3000 K) or electronic (i.e. emitted by high-energy electrons interacting with 
magnetic fields) [1-4]. 

1.2 Infra-red Detectors 

There are two types of infra-red detectors, those that require cooling (cooled) and 
those that do not (uncooled). Cooled infra-red detector systems are bigger and 
more expensive than uncooled detector systems but are more sensitive and can 
produce higher resolution images. Uncooled detectors on the other hand are 
cheaper, lighter, more compact and hence more portable; at present, however, 
they tend to be less sensitive and are commonly used for 8-14|am only. 

The heart of a cooled thermographic camera is an infra-red photo-detector 
typically made of indium antimonide (InSb) or mercury cadmium telluride 
(MCT). InSb allows larger more uniform arrays at present, while MCT allows 
access to the long and short wavelength bands and also allows higher operating 
temperatures. The detector lies in the focal plane of the camera and is cooled by 
liquid nitrogen. Uncooled infra-red detectors use pyroelectric bolometer 
techniques. The infra-red radiation from an object is focused on the detector -
the focusing system can be based on either refractive or reflective optics. The 
thermogram can be produced by an array of detectors which converts the infra
red radiation directly into an image. The signal can be represented as a grey-
level or colour coded image [5]. 

Alternatively, a scanning system can be used in which an image is built up by 
mechanically scanning the scene onto a single detector or a linear or two-
dimensional array. Indeed the generation II systems based on scanned linear 
arrays of photodiodes, have very high spatial resolution with good thermal 
sensitivity and are available commercially. An example of such system is the UK 
STAIR 'C system which has an array of 768x8 LWIR MCT detectors [6]. The 
system produces an image of 1280x768 pixels with a noise equivalent 
temperature difference (NETD) of 50mK. 

Long linear array detectors can be used with simple scanning mechanisms to 
generate high performance imaging over wide fields of view. Two-dimensional 
focal plane arrays increasingly provide the basis of systems which require no 
scanning and offer high sensitivity. There is a wide and developing range of 
infra-red focal plane array sensors using different detector technologies. 
Common to the development of all these arrays is the continual increase in 
thermal sensitivity. This enhanced sensitivity may be used directly or 
compromised to provide different operating designs. The available optical system 
and the required frame rate determine the choice of read-out process required to 
achieve a given sensitivity [7-9]. 

Recently medium wavelength infra-red arrays have been developed which 
have 1024*768 pixels on a 26 micron pitch [6]. These arrays are made from 
epitaxially grown indium antimonide instead of the more conventional InSb. 
There are two advantages of this approach, namely the photodiodes can be grown 
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on degenerately doped InSb substrates which a high degree of transparency, so 
the requirement for the substrate to be thinned is much reduced, this means 
simplified manufacture. It also offers the potential for an increase in operating 
temperature of many tens of degrees, through elimination of contact leakage 
currents. At present the operation of these devices has been focussed on 
temperatures of 80K so that they can be compared with the conventional 
structures. Initial results have shown that the arrays have high operability, despite 
the need to stitch reticules in the fabrication of the silicon read-out circuit and the 
temperature sensitivity, which is close to the theoretical limit. Furthermore, 
imaging from the arrays has compared very favourably with those taken using 
generation II cameras and it is likely that this approach could offer a cost 
effective way to large format MWIR system. Examples of images are shown in 
Figures 1 and 2. In the case of Figure 1, which was taken indoors, the depth of 
field was 174.5 and the integration time was 3ms. In Figure 2 an outdoor scene 
was captured during an early December evening, the depth of field was f/23 and 
the integration time was 1.8ms. 

Fig. 1: An Indoors Image from 1024 x 768 InSb arrays at 77K 

Fig. 2: An Outdoors Image from 1024 x 768 InSb arrays at 77K 

2. Military Infra-red Imaging 

Infra-red technology is applied in a variety of military applications and there is a 
need for both cooled and un-cooled systems. Cooled IR detectors offer high 
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performance when required, for example in; weapon sights, surveillance systems, 
remote ground sensors, imaging IR seekers, non-co-operative target recognition, 
mine sensors, driving aids, fire fighting and rescue. Where lower performance is 
acceptable, un-cooled infra-red detectors reduce the logistic burden and their low 
power and compactness is particularly useful for highly portable, remote and 
autonomous operation. 

3. Military Surveillance: Downward Looking IR Imagery 

The fundamental task here is generically defined as the location of some region 
of interest in an image, for example, the fast and automatic detection of urban 
regions. This could be used as a cueing aid for more detailed processing, such as 
the detection of road networks or junctions and buildings in order to allow 
registration of imagery to maps for navigation, for change and target detection, 
image distortion correction as well as map-update. It could also be an attention 
cueing device for human image interpreters. 

This section describes the use of the Pearl Bayes Networks (PBN's) for the 
automatic extraction of knowledge about regions from infra-red linescan 
imagery, i.e. surveillance imagery. 

3.1 Infra-red Linescan Imaging and Correction 

The aerial infra-red linescan imagery used in this application is produced by a 
sensor which has a single detector. Scanning in the x direction is achieved by via 
a rotating mirror which has a uniform angular velocity and gives a 120° field of 
view. Scanning in the y-direction is achieved by the aircraft motion. The scanner 
arc introduces a characteristic (Sec2) distortion into the imagery at either extreme 
of the 120°arc. This can be corrected with a relatively simple trigonometric 
transformation. Figure 3 illustrates the relationship in which h is the height of 
the aircraft, |3 is the bank angle of the aircraft, Ax is the ground resolution of a 
single pixel with A9 being the corresponding swathe angle for that pixel. The 
equation for the correction is Ax = A8h / cos2 (0 + (3). 

Ax 
Fig. 3: Linescan Sensor Distortion 
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3.2 Pearl's Bayes Networks (PNB) 

Pearl's Bayes networks [10] are directed acyclic graphs, see Figure 4. In this 
graph nodes B, C and E represent different statistical information extracted from 
the image, whilst node A represents the ' belief"' in detecting, say, an urban patch 
in an image. A graph G is a pair of sets (V, A) for which V is non-empty. The 
elements of V are vertices (nodes) and the elements of A are pairs (x,y) called 
arcs (links) with x e V and y e V. 

Consider the simple network that is shown in Figure 4. Here the symbol JI 
represents the causal support {or evidence) whilst X represents the diagnostic 
support (or evidence). G+

BA and G~BA are sub-graphs as described in the next 
section, equations for computing belief and propagation of information are given 
in the following sections1. 

G B A 

7CA(B) 

\ \ 

\ A..(C) 

VA> 

7TL (A) 

Fig. 4: Network 

3.2.1 Belief Equations 

Consider the link from node B to A then the graph G consists of the two 
subgraphs G+

BA and G~BA. These two subgraphs contain the datasets D+
BA and 

D"BA respectively. 

From Figure 4 it can be observed that node A separates the two subgraphs 
G+

BA u G+CA u G+
EA and G"AF- Given this fact we can write the equation: 

P(D~AF \A, , D;A , D+
CA ,Dl) = P(DAF \A, ) 

by using Bayes rule the belief in A; can be defined as: 

(1) 

1 The equations are derived along similar lines to those derived by Pearl [10] where in his example 
node A has just two predecessors and two successors. 
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BEL{At) = P{A\D+
BA,D*CA,DEA,D'AF) 

= a.p{Ai\D
+

BA,DlA,DlA).p{D-AF\A) (2) 

= a. P{DAF \A,). I P(Ai \Bj ,CK,E, ). P{Bj \D
+

BA )p(Ck \D+CA ). P(E, \DEA ) 

where oc is taken to be a normalising constant and i, j , k and / range of the number 
of variables in A, B, C and E respectively. It can be seen Eq. (2) is computed 
using three types of information: 

• Causal support 7t (from the incoming links). 

• Diagnostic support X (from the outgoing links). 

• A fixed conditional probability matrix {which relates A with its 
immediate causes B, C and E). 

Firstly, the causal support equations: 

KA{BJ) = P{B]\DIA) (3) 

*,(C*) = P ( Q | Z ^ ) (4) 

KA{E,) = P{E\D+
M) (5) 

Secondly, the diagnostic support equation is given by 

lF{A<) = p{D~AA) (6) 

Finally, the conditional probability matrix is defined to be 

P(A\B,C,E) (7) 

The belief Eq. (2) can now be rewritten to obtain the belief at node A based on 
the observations at B, C and E, e.g. the belief that an urban region is detected: 

BEL(A,) = akF(A,). XP(A,\B,,Ct,E,UA{BJ).nA(Ck\nA(E,) (8) 
i.tJ 

The belief at nodes B, C and E can be obtained from the equations: 

BEL{Bj) = anA{Bj).XA{Bj) (9) 

BEL{Ck) = anA(Ck).XA{Ck) (10) 

BEL(E,) = aKA{E,).XA(E,) (11) 

In other words the belief is the resultant product of causal support information, 
diagnostic support information (belief) and prior knowledge. The propagation 
equations described below are iterated to support belief of a certain event. 

3.2.2 Propagation Equations 

The propagation equations for the network are derived as follows, firstly the 
diagnostic support. From a previous analogy with Eq. (6) we can write 

XA{B,) = P{D-BA\B) (12) 
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by partitioning DBA into its component parts, namely A , D^ , D+
CA , D*EA we can 

obtain 

nA{Cj).nA(Ek).^XF{A,).p(A\Bi,Cj,Ek) 

likewise for A^C,) and XA(Ek) 

^CJ) = azUA(Bl).nA(Et).'Z*-F(4)-IiA>\B<'CJ>E') 
i,k L ' 

and 

A, (£*) = « £ ^(a,>ff,(cy)5:^(^)-^/|A.c,,£t) 

(13) 

(14) 

(15) 

3.2.3 Causal Equations 

These are defined using a similar analogy as follows. 
KF{AI) = P{A\DI,D+

CA,DIA) 

and from this we then derive the equation 

7iF(A,) = a ^piA^Cj^XK^B^K^C^K^E,) 
j.k.l 

(16) 

(17) 

An important point to realise from these Eqs. (13 -15 & 17) is the fact that they 
demonstrate that the parameters X and 7t are orthogonal to each other, i.e. 
perturbation of one will not affect the other. Hence evidence propagates through 
a network and there is no reflection at boundaries. 

3.3 Region Segmentation Using Pearl's Bayes Networks 

The above Pearl's Belief network approach [10] has been adapted for the 
detection of urban regions [11] using a high powered parallel processing system 
for improved performance. The belief network is used in a multi-resolution sense 
to combine statistical measures of texture into the detection (or belief) of the 
required region2 see Figure 5. The problem is approached by taking several 
statistical measures from small patches of an image which are treated as a set of 
judgements about the content of the patches. These statistics are the number of 
edges, the number of extrema and grey level distribution type. These statistics are 
quantised down into a smaller number of levels. The number of edges and 
extrema are both reduced to five levels, whilst the distribution type has four 
possibilities. It is important to stress that any suitable measure that provides the 
required textural or thermal discrimination could have been used. 

The statistics are then used to produce a set of judgements; for example, an 
expert might, upon looking at a particular window, issue a report of the form 
(0.0,0.7,0.9,0.6,0.0). This means that he believes there is a 70 % chance that 

2 

The authors have also carried out work into using the Belief Network approach at a higher level 
of abstraction, i.e. for combination of several region finding algorithms. 
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level 2 describes the number of edges, 90% chance that its level 3 will do the 
same and 60% for level 4. But he believes there to be no chance of it being 
levels 1 or 5. 

SI and S3: Edges, extrema, distribution type 
From fine resolution image 
S4-S6: Edges, extrema, distribution type 
From coarse resolution image 
Bf: Belief from fine resolution 
Be: Belief from coarse resolution 
B: Belief 

Fig. 5: Multi-resolution Approach 

For the purpose of the system described here the Belief at nodes Bf, Bc and B 
in Figure 3 is quantised to three levels, namely (low, medium, high). 

The fixed conditional probability matrices (i.e. P(Bj\sl,s2,s3) etc.), which are 
the prior information and relate the given node with its causal information, are 
created along similar lines to the approach used in [12] and [13]. They are based 
upon the assumption that the probability of an event at a given node should be 
greater if its causal information is more tightly clustered together than it should 
be if the causal information is further apart. For the P(B\Bf,Bc) matrix (which 
relates the beliefs from the fine and coarse resolutions) slightly more emphasis is 
given to the causal information received from the coarse resolution belief. 

p{Bf \s\j,s2t,s3,\ is described formally as 

p(Bf\s\j,s2k,sl>)=^ 

0.75 

0.25/a 

1.0/)8 

0.0 

if i = j = k = I 

if (i*j = k = I)A(0<\i-j\<C) 

if <j = k = l) 

A (max(y, k, I) - min(y, k, I) < 2C) 

A (mm(j,k,l) < i < max(j,k,l)) 

otherwise 

(18) 
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such that X ^ K K ' 5 2 * " * 3 ' ) ^ M where C = 1 and i, j , k, I range over the 
jjcj 

number of variables in Bf, si, s2 and s3 respectively, a and (3 represent the 
number of different values of i satisfying the constraint. 

p(s\Bf, Be} is defined as 

p(Bi\Bfj9BCk) = 

such that Xp(Bi\Bfj>Bck)^ l> yi where i, j , k range over the number of variables 

in B9 Bf and Bc respectively. 

3.4 Performance 

An example result is shown in Figure 6, this demonstrates the location of urban 
regions in a near infra-red image. The image was taken during the night at 
approximately 4000 feet. An outline has been drawn around the areas labelled as 
most likely to be urban. It is possible to post-process such a result to remove 
small isolated regions, which are likely to be erroneous classifications, this has 
not been done here. A probability surface could also have been integrated into the 
image to produce a smoother transition between the areas of different 
classification. 

This system can be easily adapted to alternative applications of a broadly 
similar nature, i.e. classifying or clustering regions. The only change necessary 
may be a different set of statistics which more accurately describe the detail 
required in the image. In addition, if the number of input nodes alter, then the 
prior knowledge in the fixed conditional probability matrix will need to change, 
however, the set of basic equations given previously can be used to automatically 
generate this information. 

0.9 if i = j = k 

0.7 if (i = j)A(\i-k\<\) 

03 if (i = * ) A ( | / - y | < l ) 

0.6 if (i = j)A(\i-k\>l) 

0.1 if (i = k)A(\i-j\>l) 

0.0 otherwise 
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This approach has been demonstrated successfully for the texture segmentation 
of driveable regions for autonomous land vehicles, and for urban region 
segmentation in both SPOT, and Russian Satellite imagery in [11,14 and 15]. 

4. Target Detection and Tracking in Forward looking IR Imagery 

4.1 Introduction 

One of the most powerful features in any modern battlefield surveillance system 
is the ability to carry out automatic detection and tracking of targets. The amount 
of information being presented to human operators is increasing at an alarming 
rate and needs to be reduced. Any system that can simply filter the data and 
present filtered/screened results of possible targets will be of significant benefit. 

The task here is generically defined as the detection of small point sized 'hot' 
targets in wide area IR surveillance imagery. These potential targets will be 
within some operator specified sizes, typically 2><2 to 10x10 pixels. The resulting 
detection can be used to aid subsequent target recognition through cueing for a 
narrow field of view imager and/or a human operator. The requirement for the 
system described here was not necessarily to locate all targets or indeed just the 
targets, but rather to locate possible areas of interest for further analysis. The 
wide field of view sensor used produces very small potential targets. 
Furthermore, these targets have low contrast and low signal-to-noise ratios which 
makes their detection difficult. 

4.2 System Overview 

The system combines some 'conventional' image processing techniques with 
morphological analysis to perform automatic cueing and tracking of small 
objects/targets. Most stages of the process have been specifically chosen because 
of their suitability for implementation in special hardware modules. The process 
is shown schematically in Figure 7. Only the main elements of this system are 
considered below. 

Ima 
A cqu i 

ge 
si t ion D e s t r i p i n g 

L o g i c a l M o r p h o l o g i c 
D i la t ion ( F e e d b a c k 

A k. 

al 

^ ' 
M o r p h o l o g i c a l 

C l o s i n g 

+ C o n n e c t e d C o m p o n e n t 
L a b e l l i n g 

+ T a r g e t 
E lim ina l ion 

+ T r a c k i n g and 
P r e d i c t i o n 

•< ' 
D i s p l a y 

A n n o 

Fig. 7: Algorithm Block Diagram 
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4.2.1 Destriping 

Sensor imperfections mean that the imagery contains marked fixed pattern stripe 
artifacts. A destriping stage is therefore required to reduce or even to eliminate 
the banding effects that occur in this type of imagery. It is likely that future 
generations of infra-red imagers for this application will produce images of 
improved quality with imperceptible striping artifacts and hence such a destriping 
algorithm will become unnecessary. 

The destriping algorithm [16] removes bias variation between adjacent scan 
lines. Two adjacent scan lines / and i+1 are equalised by determining the 
distribution differences between adjacent pixels along the scans. The majority of 
entries should reflect differences in the baseline between the two scan lines. An 
additive correction to scan line i+1 is obtained from the median of the difference 
distribution, the median being used as it is a statistically robust measurement. 
This process is then repeated using scan lines i+1 and i+2 and so on. 

The disadvantage of this approach is that the software implementation is 
relatively slow. However, an alternative scheme was developed as an 
intermediate measure (prior to hardware design and implementation of the full 
destriper). The approach is to model the sensor responses in order to estimate a 
set of corrective factors. If it is assumed that the image is uniform over a number 
of neighbouring scan lines then any differences should be due to the sensor itself. 
The median of each image row is obtained and the maximum of all medians is 
taken as the maximum sensor response. The difference of the maximum response 
and the median of each row can then be used as an additive amount for that row. 
The analysis can be done on the first frame in the sequence and then at 
successive frames the corrective (held as a look up table) amounts are simply 
added to each row. 

4.2.2 Median Filter 

The median filter [17, 18] is used to remove salt-and-pepper type noise. In a 
small window over an image the pixel values are likely to be homogeneous with 
only a small number of them being attributable to noise. These noisy pixels tend 
to be at either extreme of the grey level distribution and therefore are unlikely to 
be selected as the output from a median filter (the output being the median of the 
ranked input values). This filter has the advantage of reducing noise without 
having a smoothing effect on the image. In this instance, since the possible 
targets are very small, only a 2 x 2 median filter3 is applied; despite this small 
window size the filter is successful in removing as noise. 

An important point to be considered is that a median filter when used for noise suppression could 
be replaced by grey scale morphology. This point does not really apply to this particular algorithm 
as the filter used only has a small kernal. It is, however, important and worth mentioning. A 
morphological opening followed by a closing operator can achieve the same effect as a median 
filter. Morphology has two distinct noise suppression stages, the opening suppresses positive noise 
impulses whilst the closing suppresses negative noise impulses. 
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4.2.3 Thresholding 

Thresholding [18, 19] is used to segment objects from the background. It is 
useful, whenever possible, to calibrate detected feature values (e.g. grey level) so 
that a given amplitude interval represents a unique object characteristic. There 
are various useful adaptive thresholding schemes, for instance, based on the 
examination of local neighbourhood histograms or other measures. 
Unfortunately, these approaches tend to produce a significant amount of noise 
and in this application such noise would pose a major problem due to the small 
target sizes. In an effort to minimise the problem for this application the 
thresholding scheme used here is therefore based upon the global mean and 
variance of the portion of the imagery being processed. The threshold is set at 
U,+3G. This proved to be an acceptable level for this application domain, but an 
option has been provided in the algorithm for this to be varied interactively at run 
time (see also the section below on local morphological dilation). 

4.2.4 Morphological Closing 

The term morphology originally comes from the study of forms of plants and 
animals. In image processing it means the study of topology or structure of 
objects from their images. Morphological processing refers to certain operations 
where an object is 'hit' with a structuring element and hence reduced to a more 
revealing shape. Most morphological operations are defined in terms of two basic 
operations, namely erosion and dilation. Erosion is a shrinking operation, 
whereas dilation is an expansion operation; erosion of an object is accompanied 
by enlargement or dilation of the background. If X the object and K the 
morphological structuring element are thought of as sets in two-dimensional 
Euclidean space, then the erosion of X by K is the set of all points x such that Kx 

is included in X, where Kx is the transformation of K so that its origin is located 
at x. The dilation of X by K is the set of all points x such that Kx intersects at X. 
The morphological closing operator is defined as a dilation followed by an 
erosion. 

Closing aims at blocking up narrow channels and thin lakes and is ideal for the 
study of inter-object distance. The reasons for applying a morphological closing 
operator in this application are twofold. Consider the thresholding of an image, 
this can and does result in the fragmentation of objects. Firstly, an object which 
is a target could be fragmented into several parts thus leading to the possibility of 
several targets being detected instead of one. Secondly, an object which is not a 
target (perhaps by virtue of its size) could be fragmented into small parts which 
are then likely to be identified as possible targets. To resolve this problem a 
morphological closing operator is applied in an attempt to piece the fragments 
back together. The kernel use is deliberately kept small to try to avoid merging 
several genuine targets. 

A fuller and more detailed description of morphology can be found in 
numerous papers in the literature, see, for example [19-23]. 
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4.2.5 Connected component labelling 

The objective of connected component labelling (CCL) is to take a binary image 
and apply a segmentation in order to obtain a set of connected regions, each of 
these disjoint regions being labelled with a unique identifier. Although this stage 
is currently performed in software a design and hardware module exists for future 
use [24]. This fundamental process is important in many applications and can be 
used as an input to shape recognition tasks. 

4.2.6 Target Elimination 

Once a labelled image has been obtained regions can be discarded according to a 
number of criteria. The human operator will initially have specified a set of 
bounds for targets of interest. Regions which have a width, height or total area 
outside these constraints are discarded. It is not possible to discard objects based 
upon shape without knowledge of the type of targets which is unknown in this 
application domain. 

4.2.7 Tracking/Prediction 

Once an acceptable set of regions has been obtained the co-ordinates of the 
centre points are passed to the tracking process. Tracking introduces an element 
of temporal consistency into the algorithm. This is used to resolve a number of 
issues such as false targets {due to segmentation errors or genuine noise in the 
imagery), targets appearing and disappearing, and overlapping targets. Once 
these issues have been resolved a prediction stage is performed to estimate the 
target's position in the next frame. Targets develop a "history" after n frames and 
therefore isolated noise which appears for n-1 frames or less will not be tracked 
and can be eliminated. 

The initial part of the tracking is actually an association stage where 
observations are associated with tracks. This uses a standard assignment 
optimisation algorithm [25] which was modified by [26] to deal with targets 
which appear and disappear. It was also modified by the authors to resolve the 
problem of several observations being identical distances from a given track but 
outside the permittable (gated) regions for all other tracks. This condition 
appeared to cause the standard algorithm to fail to converge to an optimum 
assignment. 

Kalman filtering [27] is the classical approach for the prediction of a target's 
new position. It is the optimal predictor for tracking. If the x and y target co
ordinates can be decoupled then it has been shown [28 ,29] that the Kalman filter 
can reduce to the so called a-[3 filter which is much simpler and requires no 
matrix multiplication. 

4.2.8 Local Morphological Dilation (Adaptive Feedback) 

An important point arising from the thresholding is the difficulty in setting a 
threshold level at just the correct level for detection of all targets. As has been 
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mentioned previously it is possible for noise to be included and also for a genuine 
target (but maybe one which is very small and/or emitting low thermal radiation) 
to be excluded from the thresholded image. The effect of this has been reduced 
by incorporating feedback from the tracking algorithm and essentially using the 
track confidence to adapt the output from the thresholded image. This is 
achieved simply by performing a local morphological dilation in an area around 
known targets (targets that developed a history). This attempts to enlarge the 
thresholded output to a point where it would be accepted by the target 
elimination stage and effectively reduces the number of drop-outs due to weak 
targets. If a target genuinely disappears then this approach will have no effect. 

Fig. 8: Target detection 

4.3 Performance 

Targets (or rather areas of possible interest) are indicated by a diagonal line in 
Figure 8, the lower part of which points towards the targets centre whilst the 
upper part has a unique target identifier. 

5. Medical Applications 

5.1 Infra-red Imaging in Medicine 

It was not until the early 1970s that an application of infra-red imaging was 
found in the field of medicine when military cameras were used as a means of 
examining the human body. Infra-red thermography has been used clinically 
since then. It provides a means of obtaining high quality images of thermal 
patterns on the surface of the human body. The IR systems used for medical 
applications should have a sensitivity that varies from 0.01°C to 1°C responding 
from 5°C to 40°C depending on the particular system and the part of the body to 
be examined [30]. Thermal images are observed in a greyscale or colour 
gradation. There is no defined colour scheme for the various temperature ranges; 
it is, however, common to use a spectrum of colours from darker to lighter as 
temperature increases. In these systems any error caused by variation in the 
detector's response can be calibrated out, for example, by alternatively detecting 
the radiation from the object and the radiation from a reference source. 



569 

The correlation between the skin temperature and underlying malignant 
disease was first realised in the case of breast cancer. This inevitably resulted in 
initial infra-red thermographic studies being concentrated on breast diseases [31]. 
However, there were problems, for instance, with limited sensitivity to deep lying 
tumours and poor control of environmental conditions during examination and 
recording. 

The majority of the detected radiation comes form the topmost layers, i.e. body 
surface to 300 microns depth. The surface temperature of the skin is affected by 
both internal and external factors. The internal factors can be pathological or 
physiological, while the external factors are a function of ambient conditions, 
such as temperature, humidity and air flow [32]. Indeed ambient air flow is very 
important in medical thermography, and a uniform environment without any 
cooling draught, direct warmth of sunlight, or radiators etc. is essential. In 
general an ambient air temperature of between 18°C and 20°C has been found to 
be appropriate. Temperatures below 18°C may induce a cold stress response and 
shivering, resulting in 'flicker' thermograms. While temperatures above 20°C 
may cause sweating and create other anomalies and noise on the image. It is also 
important for the area of the body under examination to reach a steady state in 
controlled environmental conditions. In some cases, it is necessary for the 
patient to partially undress so as to expose the area of the body to be examined 
directly to the ambient temperature for a short stabilisation period (10 -15 
minutes is usually enough). Loose clothing and underwear are required to avoid 
altering the local blood flow (and thus the overlying skin temperature) through 
the pressure and restriction caused by tight-fitting garments. Dressings, ointment 
or any other surface moisture will accentuate, to a certain degree, the infra-red 
emission from the skin and must be eliminated prior to equilibration if 
thermograms are to be used in a controlled manner. This sensitivity is due to the 
fact that infra-red radiation in the wavelength typically used (between i.e. 3-5 and 
8-12um) are strongly absorbed by water and organic compounds [32]. 

If environmental conditions are adequately controlled, heat emission from the 
skin is largely determined by the underlying blood supply. In the absence of 
deeper lying organic disease or other factors, which may indirectly alter skin 
blood flow, the thermographic image of the heat emitted by the skin may be 
interpreted in terms of the status of the underlying peripheral circulation [33-36]. 
Thermography can therefore be used for detecting peripheral arterial disease, 
diabetic angiography, Raynaud's phenomenon and related conditions, 
inflammatory conditions, and determination of amputation level etc. For deeper-
seated pathological conditions, radio-isotope imaging, ultrasound or radiography 
is more suitable. 

At present IR thermography is most widely used in applications associated 
with the vascular system [37,38], peripheral and cutaneous circulations as well as 
relatively superficial tissue lesions. In some cases thermography provides a 
beneficial preliminary or complementary aid to examination, in others it fills in 
gaps in the existing armoury of assessments. However, its use in clinical 
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assessment is still considered by some to be controversial, partly due to the wide 
range of temperatures of lesions or diseases (this is particularly true in breasts) 
and also due to the lack of understanding of the basic principles of thermography 
(i.e. characteristics and limitations). The work described in sections 7 addresses 
some of these recognised problems. 

5.2 Static and Temporal Sequences of Thermograms 

Various methods have been used for the presentation, analysis and classification 
of thermograms, these include; functional images [33], spatial signatures and 
texture signatures. Historically these methods have been applied to individual 
static thermograms for diagnosis. Many conditions, however, are not evident 
from such single static images. Historically, also, the assessments from a static 
thermogram would normally be based on an individual patient's data only, much 
like the common use of X-ray pictures. Diagnostic results would be in the form 
of an index or some form of written report, with or without graphical 
explanation. These approaches do not fully utilise the information available from 
thermography. 

It has been found that useful information can be obtained by observing the 
thermal behaviour of the body over time. In order to do this the technique of 
temperature stress testing has been developed whereby a temporal thermal 
response is induced in the body under controlled conditions. A sequence of 
thermograms is taken to record the body's thermal behaviour and the 
correspondence between different thermograms is built up by aligning the body 
in the images with a stretching and aligning process. An elastic stretching 
approach described in the following section was developed to address the 
alignment problem described. Two diagnostic systems will be described both of 
which use analysis of the temporal thermal response and wider statistical data for 
automatic classification and diagnosis. The first, in section 6, is concerned with 
diagnosing joint disease, namely arthritis, Raynaud's syndrome and rheumatism. 
It is based on analysing the body's thermal behaviour after a 'cold stress'. The 
second system, described in section 7, is concerned with the diagnosis of breast 
cancer after a 'heat stress'. 

5.3 Advantages and Disadvantages of Thermography in Medical Applications 

There are numerous advantages in applying infra-red thermography in clinical 
and medical investigations. They include: 

• The recording of a patient's thermogram is inexpensive to perform, although initial 
equipment costs can be relatively high. 

• The technique is simple, and can be repeated at frequent intervals, allowing real time 
assessment (especially compared with radiological images), this often results in good 
patient co-operation. 

• It is non-invasive and involves no radiation hazard. 
• It is a non-contact imaging approach 
• Thermography may indicate lesion too small to be seen on a roentgenogram. 
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• Each patient has a unique thermogram, useful in a follow-up analysis. 
• Thermographic images are opaque and do not contain the overlapping objects present 

in radiographic images. 
• Thermographic image are inherently quantitative in nature due to the direct 

representation of the physical temperature. 
• Only rudimentary knowledge of anatomy and pathology is necessary to interpret a 

thermogram. Diagnostic criteria involve essentially measures of symmetry and 
relative temperature distributions and patterns. 

• Since the temperature signal is available directly in an electrical form, it is simple to 
connect the thermographic equipment directly to a computer via an analogue-to-
digital converter for automatic image acquisition and storage. 

There are, of course, disadvantages, which include: 

• Lack of specificity. 
• Provides limited range of image brightness. 
• Low spatial resolution. 
• Not all abnormalities exhibit observable thermal phenomena. 
• Thermal variations do not necessarily have a spatial relationship to the disease 

investigated. 
• Thermographic signs can occur in benign as well as malignant conditions (e.g. breast 

thermography). 
• Occasionally, an anatomical aberration can give a false positive reading. 
• Simultaneous, bi-lateral symptoms could be diagnosed as negative. 

6. Joint Disease Diagnosis Using Dynamic Infra-red Thermography 

6.1 System Overview 

The objective of this work was to automate the analysis and classification of a 
temporal series of thermograms recording the response of the hand to a cold 
stress into different classes, namely, normal, Raynaud's and inflammatory. 
Various other quantitative imaging systems have been used for assessment of 
inflammation in joint disease, for example: the differential thermistor 
thermometer, the infra-red thermometer, radiography and arteriography. Their 
limitations lie in the technical difficulties, expenses and/or their invasive nature. 

In this system statistical pattern recognition techniques are used to analyse the 
results of a temperature stress test. Immersing the hand in a cold water bath at 
20°C for 1 minute (cold stress) induces the temperature stress. The body's 
response to the stress is recorded by thermograms taken at regular two-minute 
intervals over about twenty minutes. In order to study the thermal response of 
the hand it is, in general, necessary to track the thermal behaviour over time of 
every point on the hand. It is therefore necessary to have knowledge of the 
correspondence between points in each of the series of images. The simplest way 
to do this would be to ensure that there was no movement of the hand over the 
twenty minutes period, thus the thermal response of each object pixel could be 
tracked in a straightforward manner. Unfortunately, it is not possible to restrain 
the hand in a way that does not affect its thermal response. The patient must 
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simply hold the hand in front of the camera and the correspondence must be built 
up by aligning the images of the hand with a stretching and aligning algorithm 
[39]. 

The thermograms used in this study were taken at a distance between 0.75 -
1.5 metres, depending on the size of hand in question. The thermograms were 
digitised into a 128 x 128 square image with 256 grey-levels. In this work only 
the anterior view of the hand (back of the hand) was used, and no attempt was 
made to analyse thermograms taken from posterior or lateral views. 

The feature extraction method developed in this application is based on the 
Kittler & Young transformation [33]. The function of which is to extract those 
features that appear most important for classification. A 7-Nearest Neighbour (7-
NN) classifier, built using the Condensed Nearest Neighbour (CNN) technique, is 
applied to the features. It was recognised that it would be desirable for the 
resultant classification {diagnosis) to be presented as a colour coded diagnostic 
image not only to be classified into appropriate disease categories, but also for 
the 'hot spot' (inflammatory condition), or 'cold spot' (Raynaud's) to be 
identified appropriately. The severity of the disease should be indicated through 
the intensity of the colour in the diagnostic image on a display. For example, 
using green colour for normal case, red for inflammatory cases and blue for 
Raynaud's. In the case of uncertainty, the resultant image would have a non-
primary colour. The system achieved about 96% accuracy at pixel level. 

6.1 Iterative Elastic Object Stretching and Aligning 

The objective of this technique is to align the series of thermograms of hands 
[39] for subsequent analysis. The series of thermograms are taken over a period 
of approximately 20 minutes in order to study the thermal response of the body to 
a temperature stress. The temperature stress is induced by immersing the hand in 
a cold water bath at 20°C for 1 minute {cold stress). The body's response to the 
stress is recorded by thermograms taken at regular two-minute intervals over 
about twenty minutes. In order to study the thermal response of the hand it is, in 
general, necessary to track the thermal behaviour over time of every point on the 
hand. It is therefore necessary to have knowledge of the correspondence between 
points in each of the series of images. The simplest way to do this would be to 
ensure that there was no movement of the hand over the twenty minutes period, 
thus the thermal response of each object pixel could be tracked in a 
straightforward manner. Unfortunately, it is not possible to restrain the hand in a 
way that does not affect its thermal response. The patient must simply hold the 
hand in front of the camera and the correspondence must be built up by aligning 
the images of the hand with a stretching and aligning algorithm. 

The thermograms used in this study were taken at a distance between 0.75 -
1.5 metres, depending on the size of hand in question. The thermograms were 
digitised into a 128 x 128 square image with 256 grey-levels. In this work only 
the anterior view of the hand (back of the hand) was used, and no attempt was 
made to analyse thermograms taken from posterior or lateral views, Figure 7. 
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The approach developed was based on the ideas first presented by [40] and 
based on the basic principle of Burr's technique [41, 42]. It works on a pair of 
hand image, one rigid, and the other elastic image. The elastic image is 
iteratively stretched and relaxed by "forces" derived from local feature 
association between the elastic image and a rigid target image. Two sets of 
"Local Difference Vector" (LDV) are derived using nearest neighbour 
relationships between the outline pixels of the two hand images. One set from 
the elastic image to the target image and the other set from the target to the 
elastic image {the magnitudes of these vectors decrease as misregistration 
decreases). Weighted sums of local LDVs are used to create "Corrected 
Difference Vectors" (CDV). These CDVs are used as the "forces" applied to the 
whole the elastic image to create an intermediate image for further matching with 
the target images. 

The elastic image is iteratively distorted to match the target at each iteration, 
the rigidity of the elastic image is reduced giving a sequence of modified images, 
each a better match to the target. At the beginning the image pair can be 
expected to be vastly mis-aligned and therefore initially rigid matching is 
preferred so as to avoid incorrect alignment. However, as the images become 
more closely matched finer details and more localised feature alignment can be 
achieved with increased reliability. 

Although there is no theoretical proof of convergence, experiments show that 
mis-registration decreases with each iteration. 

6.1.1 Outline Derivation 

Derivation of the outline is necessary for two reasons. Firstly the temperature 
pattern on the hand varies with time, it is therefore, impossible to attempt to align 
the series of images on the basis of the whole hand, where there is nothing to 
align. The outline of the hand must therefore be used to provide accurate and 
representative information about the position of the hand, so as to allow matching 
to be performed efficiently. Secondly elastic matching is computationally 
intensive and so it is desirable to minimise the number of pixels, which 
participated in the matching process. 

Here, a single pixel width outline is derive using an adjacent neighbour 
thresholding technique which is simple and provides a single pixel wide outline 
suitable for the stretching process. 

The input image is converted into a binary image using a straightforward 
histogram based threshold as it has a very uniform background. A value " 1" is 
assigned to all object pixels of the hand {displayed in white), while a "0" is 
assigned to all background pixels {displayed in black) as shown in Figure 9a. 
The sum of the four adjacent neighbours of each hand pixels (above, below, left 
and right) is calculated in Figure 9b. If the sum is 4 then the corresponding pixel 
is labelled as the background and is assigned a value of "1" , otherwise "0" is 
assigned for the outline of the hand. At the end of this process, an image of a 
single pixel wide hand outline is produced, with the pixel coordinates recorded 
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for the matching process. The base line of the hand was not included in the 
matching, as shown in Figure 9c, to further reduce the dimension of the outline. 

E2EJE3 
MWM 

Fig.9a-9f 
6.1.2 Dynamic Corrective Matching 
6.1.2.1 Local Difference Vectors 
Define the outline of the hand in Image I| (i.e. the elastic image) as the string: 

OL, = IX,(n), IY,(n), where n=l,...N (20) 

IX] (n), IYi(n) are the X, Y coordinates of the nth outline pixel, and N is the total 
number of outline pixels in OLj is defined as: 

OL2 = IX2(m), IY2(m), where m= 1,... M (21) 

M is the total number of outline pixels in OL2. The distanced DNM between the 
n* element of OLj and the mth element of OL2 is defined as: 

DNM = IDC^n) - IX2(m)| + (IY^n) - IY2(m)| (22) 

For a given outline pixel, n, the corresponding point m' on the other outline for 
which DNM is minimum is the nearest neighbour giving the local difference 
vector LDVi at point n in image l\\ 

LDVX(n) - (IX2(m') - IX,(n)) in x direction (23) 

LDV,Y(n) - (IY2(m') - IY^n)) in y direction (24) 

Similarly, for image I2, the LDV2 for the x and y directions are: 

LDV2X(m) - (rX,(n') - IX2(n)) in x direction (25) 

LDViY(m) - (IYi(n') - IY2(n)) in y direction (26) 
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Where n' is defined as the index n (n=l,...N) that minimised DNM for a fixed 
m in I2. The x and y local difference vectors are treated independently so as to 
ensure that x and y movements are not dependent on each other. 

In general the vectors LDVi will be different from the vectors LDV2 (Figure 
10) and the local errors in the LDVs could lead to extreme mismatches especially 
around sharp corners, i.e. the nearest neighbour pair for Ii with respect to 12 is 
not necessarily the same as the corresponding nearest neighbour pair for I2 with 
respect to Ii. Matching association using such error prone or misleading 
difference is unreliable and disappointing. In order to minimise such errors, both 
LDVi and LDV2 are used to compute a corrected difference estimate where the 
two measures complement each other, the combination of both helps to pull 
together the mis-alignments. 

Fig. 10: LDV, ofII and LDV2 of 12 (Black II and Red 12) 

6.1.2 Corrective Difference Vectors 

In order to achieve a desirable match the errors found between the corresponding 
local nearest neighbour difference vectors (LDVs) have to be eliminated or at 
least minimised. Furthermore, if the LDVs were to be a complete set of labels 
for relaxation updating it can easily be seen that it is necessary to reduce the 
computational load and storage requirements. Both these requirements can be 
met by realising that in general objects such as hand pixels lying close to an 
outline should be more influenced by its movement than by movement of outline 
pixels further away. To effect this an averaging scheme can be used in which a 
Gaussian weighting with distance allows a gradual decrease in effect with 
distance. Thus a corrected difference vector (CDV) at an image point (X,Y) in II 
can be defined in x and y directions, i.e. CDVx and CDVy: 

CDVx(X,Y) = (EN
n=i F,(n) * LDV,X(n))/ (2 ZViF^n)) - ( IM

m.i F2(m) * LDV2X(n))/ (2 lV iF 2 (m) ) (27) 

CDVy(X,Y) = (IN
n . , F,(n) * LDX,Y(n))/ (2 SViF.Oi)) - ( I M

m . i F2(m) * LDV2Y(n))/ (2 £M
m=,F2(m)) (28) 

Where N and M are the number of outline pixels in i! and I2 respectively, and 
Fi(n) and F2(m) are the Gaussian weighting functions define as: 

F^n) = exp - (X - IX^n))2 - (Y - IY^n))2/ SCL2
; (29) 

F2(m) = exp - (X - LX2(m))2 LDV2X(m))2 - (Y - IY2(m) - LDV2(m))2/ SCL2
X (30) 
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LDVl(n) and LDVs(m) are the local difference vectors at points n and m in I] 
and I2 respectively. The coordinates (IX^n), IYi(n)) and (IX2(m), IY2(m)) 
represent the location of the outline pixels in n and m respectively in the two 
images and SCL is the scaling factor. 

The effective correcting SCL, should initially be roughly the dimension of the 
image to achieve an overall correction of mean difference between the two 
image, i.e. a rigid translation. This is because, as mentioned above, detailed 
matching at an early stage can lead to erroneous registration due to incorrect 
alignments. Subsequently SCL should be decreased at each iteration. The average 
difference between the corrected difference vectors varies inversely with SCL. 
The SCL used in this application is determined dynamically based on the amount 
of difference between the two image pair and hence SCL for the iteration is 
defined: 

SCLj = VlN
n=i (LDV!X(n)2 + LDV! Y(n)2) (31) 

The CDV of L is evaluated for all the hand pixels, taking into account the 
iteration between the target outline (OL2) and its outline (OL^. It is then used to 
calculate the new stretched coordinated position for each corresponding pixels. 
The new stretched coordinate position in image Ii is defined as: 

S(X,Y) = L(X,Y) + CDV(X,Y) (32) 

Which can then be used for further matching with respect to 12. 

The iterative process terminates either when a pre-defined satisfactory match is 
achieved or if the strectching process begins to oscillate. The latter situation 
might arise when the object is halfway between the target outline (Figure 11). 

By restricting the local difference vectors, LDVs, to the nearest neighbours the 
influence exerted by other local vectors is ignored. Since deformation is 
restrictive in this application, i.e. the possible different positionings and 
movements of the fingers and the rest of the hand are limited, a straightforward 
nearest neighbour measure proved to be appropriate. It is possible that for more 
strongly deformed and complex images, more sophisticated local feature measure 
would be required, e.g. rotation. The averaging method, equations 27 and 28, was 
chosen because mis-matches counteract each other on average while correct 
matches enhance each other, since they are well correlated. 

Fig. 11: Oscillation occurs when matching between two equidistant target outlines 
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The summation equations 27 and 28 can calculated over all the object pixels in 
each image or restricted within a neighbourhood, for example, a 30 x 30 pixel. 
However, using the square meant that the area of influence was uneven, varying 
from a maximum, the diagonal to the four corners, to a minimum, the 
perpendicular to the centre of the four sides. In order to produce a more evenly 
distributed area of influence and increase the area of influence while also 
reducing the computational load, a more even approach was developed. In this 
even approach a circular Gaussian function with the radius of half the width of 
the image area, i.e. covering the entire image, was used. Smaller radii were tried 
to limit the computation but were found to be unsatisfactory. 

The two-dimensional Gaussian weighting function G(X,Y) in this application 
is dynamic, i.e. it is different from each iteration to iteration and dependent on 
the degree of alignment between the two images, so that more detailed or 
localised matching can be achieved by adjusting the scale value, a in G(X,Y) 

G;(X,Y) = iNln exp - ((x2 - R)2 +tf- Rfyia1 (34) 

Centred at (R,R) and where: 

o = FIT(I)/2.57 (35) 

FIT as defined in equation is associated with the 99% confidence level. 

This Gaussian distribution can be viewed as an image (Figure 12) as can the 
CDVs. Consider the CDV(X;, Y;) calculated at the j " 1 outline pixel, i.e. at (X;, Y;) 
the displacement in the x and y directions at a pixel given separately are 
independent of each other. In fact, these x and y directional displacements 
(CDVs) at the outline's pixels can be viewed as two separate x and y images, as 
shown in Figure 13. The value at each outline pixel becomes the amount of 
appropriate directional displacement at that pixel. Thus, there are 3 images 
available: the movements at the outline in the x and y directions, and the 
Gaussian weighting function. The movement of the interior of the hand is 
determined by the movement of its outline. In effect, each hand pixel's 
movement is a linear combination of all the outline pixels' movements scaled by 
the Gaussian weighting function as defined: 

CDV'x(X,Y) = IN
p=1ZN

a=1CDVx(a,p)(X-a, Y-p) in x direction (36) 

CDV'y(X,Y) = I N
p = 1 I N

a = 1 CDVy (a,p)(X-a, Y-P) in x direction (37) 

Equations 32 and 33 represent the convolution of the two-dimensional 
Gaussian function with the CDVs in z and y directions respectively. Such spaital 
convolutions are computationally expensive. The computationally cheaper 
frequency domain technique of convolution was therefore applied in this 
application to evaluate CDV'X(X,Y) and CDV'y(X,Y). 
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Fig. 13: CDVs evaluated at outline in x Direction andy Direction 

Briefly, the required convolution is achieved by taking the two-dimensional 
Fourier transformation of each CDV image (in x and y directions) and G(X,Y), 
multiplying the transformations together, and then calculating the inverse 
transformation of the result. 

The choice of two independent CDV images rather than for instance, using the 
complex notation (real for x direction and imagery for y directions), means that x 
and y movements are independent. This is an important feature of the stretching 
approach, which allows the desired stretching to be obtained by means of the 
combined effect of the independent x and y movements. The resultant CDV'X 

and CDV'y are then used to stretch the elastic image. 

6.1.4 Stretched Image Refinement Process 

When the elastic image is aligned iteratively with a target image through 
intermediate "stretched" images some of the pixels in the stretched image might 
be left out due to the compression, thus leaving gaps in the hands, Figure 14a, 
while some new pixels might be generated for expansion. These new expanded 
pixels could in general be stretched outside the boundary of the image, and 
should be ignored. It is however, necessary to replace "blank" pixels in the hand. 
The blank pixel value is replaced by the average of its 3x3 hand pixel values if 
the total number of the non-blank hand pixels is more than three, otherwise it is 
left (i.e. becomes part of the background). This is deemed a logical approach as 
all the pixels (temperatures) in the hand are related to each other and influenced 
by each other. This refinement process was applied to all the examples in this 
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sections and the refined version of the image in Figure 14a is shown in Figure 
14b. 

Fig, 14a and 14b: Refinement Scheme 

6.1.5 Experimental Results and Discussion 

As can be observed in Figure 15, the detailed matching of the frequency domain 
elastic matching approach perform well in matching a pair of hands taken at 
different times. In general it takes only 3 iterations to achieve a good match. 
This dynamic approach has been shown to be an effective means of automatic 
matching of two or more objects based on gradual and sequential deformation of 
an elastic image onto a target image. An efficient but simple nearest neighbour 
rule is used to supply sufficient information to carry out the matching. 

Fig. 15: Matching Images 

6.2 Thermographic Colour Coding Schemes 

6.2.1 Gradual Natural Scale (GN) 

The use of grey-scale (e.g. Figure 16) or pseudo-colour (e.g. Figure 17) in 
medical images has been the subject of debate [33]. Some believe that colour-
coding is artificial and mis-leading and can create confusion which leads to mis
interpretation. While others find that the use of grey-scale in some images makes 
it difficult to differentiate pathological areas from normal areas. This controversy 
could partly be due to the use of inappropriate pseudo-colouring systems which 
are insensitive to the particular information required and the requirement for 
special expertise to interpret the colour codes. 
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Fig. 16: A Grey-Scale Hand Thermogram 

Two different colour coding schemes are considered here [40]. The first, 
Gradual Natural (GN) coding scheme is shown in figure 17. It is a smooth 
gradual scale ranging from black (cold) to white (hot) with blue, green and red 
gradually intermixing with one another over the inter-mediate range. Such a 
scheme conveys the overall temperature range of an image in an easily identified 
and recognised colour spectrum, giving a general idea of where the temperatures 
lie. The semi-circular disc shown on the left of the image is the temperature 
standard. 

The encoding is based on three primary colours - red, green and blue, and has 
8 bits to represent all the colours, i.e. 256 levels. These levels are split into 3 
ranges, one for each colour, and within the range the intensity can be varied 
uniformly and gradually. At the boundary between any two primary colours (e.g. 
green and red), a gradual mixing of the two colours (e.g. a decrease in green 
colour intensity accompanied by an increase in red colour intensity) results in the 
perception of a non-primary colour (e.g. yellow). This non-primary colour is 
necessary to create smooth changes over the boundary of the two different 
colours, this providing an overall gradual and smooth colour spectrum. 

6.2.2 Randomised Blocking Scale (RB) 

The second coding scheme, Randomised Blocking, is illustrated in Figure 18; as 
its name suggests it uses randomised colour blocks. As before black and white 
are at either end but the intermediate colours are small repetitive blocks with 
different colours and intensity. Adjacent temperatures are represented by 
significantly different colours, so that slight temperature differences will be 
accentuated; such differences would otherwise be undetected. 

The coding scheme is constructed as follows. The 8-bit control byte is split 
into three fields, one for each primary colour; red, green and blue. Thus in the 
example of Table 1, bits 0, 3, and 6 are associated with red (R), bits 1, 4, and 7 
for green (G) and bits 2 and 5 for blue (B). This 3-3-2 combination means that 
there are 7 possible intensities for both red and green but only 3 for blue. An 
example is given in Table 1, here level 7 of green is combined with level 7 of red 
and no blue, e.g. resulting in a yellow colour. 
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Fig. 17: Gradual Natural Scale Fig. 18: Randomised Blocking Scale 

Bit 

Colour 

Example 

7 

G 

1 

6 

R 

1 

5 

B 

0 

4 

G 

1 

3 

R 

1 

2 

B 

0 

1 

G 

1 

0 

R 

1 

Table 1 

This coding scheme is also useful for coding disease classification categories 
because in such applications there is not necessarily a uniform continuum of 
information to be encoded (i.e. just blue of some degree, just red of some degree 
or just green) but rather, as in this case, any possible combination of red and 
green or blue and green. 

6.3 Observed Hand Thermal Characteristics 

During the course of data collection, some thermal characteristics or behaviour 
patterns were noted. It is these patterns that the system must be able to extract, 
analyse and quantify. 

6.3.1 Normal Condition 

It is known that in a normal hand all the fingers remain at similar temperatures 
(27°C ± 2°C) and display a positive gradient, i.e. temperature increases towards 
the finger tips. Most showed hypothermia during the 15 - 20 minutes 
stabilisation period, which resulted in an increase in hand temperature and which 
decreased the temperature differences between a normal and an inflamed hand. 

After the cold stress the hand rewarmed quickly and throughout the test the 
hand maintained its temperature distribution with hotter fingers. An example of 
a normal hand is shown in Figure 19. In some normal cases a diagonal gradient 
pattern could be noted while in other cases isolated cold fingers were found 
which did not necessarily relate to the symptoms. 
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Fig. 19: Normal Hand Fig. 20: Raynaud's Hand Fig. 21: Inflammatory Hand 

6.3.2 Raynaud's Conditions 

In Raynaud's phenomenon (primary and secondary) the mean temperature was 
always lower than 27°C (approximately 22°C - 23 °C) and during the cold stress 
the temperature range across the hand was up to 10°C, whereas in normal hands 
it was no more than 6°C. The symptoms were characterised by a well banded 
isothermal pattern with negative gradient (i.e. colder towards the finger tips). In 
some patients with severe cases of secondary Raynauds' the gradient could be 
over as much as 12°C. Similar, but less marked, banded patterns over the hand 
were found in patients with primary Raynaud's. The hands of patients with 
Raynaud's condition tended to cool down during the stabilisation period prior to 
the cold stress. In patients with primary Raynaud's, the hands rewarmed after the 
stress and in the end the gradient differences were reduced. In patients with 
severe secondary Raynaud's they could cool down further in response to the cold 
stress. An example is given in Figure 20. 

6.3.3 Inflammatory Conditions 

Higher temperature is often recorded (29°C - 34°C) for arthritic hands due to the 
inflammatory mechanism. Classic symptoms being swelling, slight deformity 
and the presence of a "hot spot". The temperature rise on the overlying skin at 
the affected joint can be up to 5°C. The precise nature and extent of such 
hypothermic areas are determined by the underlying pathology. For example, 
synovitis may cause a localised area of increased temperature, while chronic 
rheumatoid arthritis may result in a generalised hypothermia over the whole joint. 
Gout also causes dramatic and characteristic increase in temperature over 
affected joints. Inflamed areas remained at higher temperatures after cold stress. 
During the "warm up" period the affected hand warmed up as in the normal hand 
but less markedly. In fact, due to vasodilation, the temperature difference 
between the two classes was less prominent in the early stage of cold stress 
response [38]. An example is given in Figure 21. 
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6.4 Application oftheKittler & Young Method to the Analysis of Sequences of 
Hand Thermograms 

6.4.1 The Kittler & Young Method 

Ideal classification criterion should be based on the discriminatory potential of 
both the class means and class variances, scaling them according to their relative 
significance. Such criteria are, however, complex and difficult to formulate. In 
many practical situations the contribution of the differential ability of class 
variances is neglected. This simplicity is assumed by all standard variants of the 
Karhunen-Loeve transformation based methods [43]. The Kittler & Young 
method [44] is a feature extraction method based on two Karhunen-Loeve 
transformations, and is intended to overcome this problem. 

6.4.2 The Application of Kittler & Young Method 

The Kittler & Young method was applied to a series of thermograms (e.g. those 
in Figure 22) to compress the differential thermal information, based on both the 
thermal means and variances (of different classes), of thermograms into the first 
few transformed "Eigen" images. 

In order to accentuate the features of the first 3 resultant transformed images 
for visual inspection and for further use as diagnostic images, the following 
colour coding scheme, based on the RB scale, was applied: 

1. The first transformed image (Figure 23) was coded into 7 different levels of green, 
where the maximum value corresponded to the darkest green and vice versa. The 7 
levels of green are given the following values: 0, 2, 16, 18, 128, 130, 144, 146 
respectively. These values coincided with the colour 'bits' assignment in Table 1. 

2. The second transformed image (Figure 24) was coded into 7 different levels of red, as 
described above but given the following values: 0, 1,8, 9, 64, 65, 72, 73. 

3. The third transformed image (Figure 25) was coded into 3 different levels of blue, 0, 
4, 32, 36. 

Individually the three colour coded transformed images with different 
intensities of the corresponding colour accentuates the variations in thermal 
behaviour of different parts of the hand, with the highest intensity corresponding 
to the maximum variation. Among them the green image conveyed the most 
discriminatory information about the variation in the corresponding parts of the 
hand over the time series, as well as within the hand anatomy. 

The coding matched quite well with the diagnosis of the physician and could 
be used as a general guidance diagnostic image. In order to make the most of the 
three transformed images, however, a composite transformed diagnostic image 
was developed (Figure 26). This is created by summing the three colour-coded 
eigen-images together. From this composite image, the difference in thermal 
responses in the hand could be seen more clearly than in any of the three colour 
coded transformed images individually. The "hot spot" (in inflammatory 
conditions) and "cold spot" (in Raynaud's conditions) could be identified more 
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easily than using the three individual transformed images. This composite 
transformed image was found to match closely the clinician's diagnosis. 

Fig. 22: Series of Thermograms 

Fig. 23: First Transformed Image 
Coded in Green 

Fig. 24: Second Transformed Image 
Coded in Red 

Fig. 25: Third Transformed Image 
Coded in Blue 

Fig. 26: Composite Transformed 
Image 
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6.5 Classification 

6.5.1 Training and Testing Data 

The available data came from three diagnostic classes; inflammatory, normal and 
Raynaud's. Some of the affected areas were localised, though mixed classes 
commonly occur in the same patient (for example only parts of the hand might be 
affected by a disease while the rest of the hand is normal). The training data for 
the Kittler & Young therefore consisted of appropriate diagnostic classes only, 
not all the pixels in a classified hand. This meant, for example, that only the 
inflamed areas of a hand were used in the inflammatory training set, and 
similarly, for the normal and Raynaud's classes. The training data thus contained 
only representative data of its class and was not mixed with other classes. The 
selection of different class representative vectors was carried out by visual 
inspection of the diagnostic composite eigen-images. Square or rectangular areas 
were annotated manually on the displayed composite eigen-image and the 
corresponding regions in the original series of thermograms were then extracted. 
These selected areas formed the training data and the optimal co-ordinate system 
was then obtained by applying the Kittler & Young analysis to this data. 

In order to reduce the storage and computational requirement for the 
classification a Condensed Nearest Neighbour (CNN) classifier [45] was used. 

6.5.2 Classification Results 

Three CNN classifiers were built based respectively on the Eigen images 
corresponding to the first 2, 3, and 4 Eigen vectors. These were tested using the 
7-NN classification technique with a Euclidean distance measure and a majority 
vote system. The testing samples were transformed using the eigen-vector matrix 
derived from the training data set. It was found that the best performance was 
achieved when three-dimensional CNN classifier was used giving an error rate of 
only 4.3% in terms of pixels as classified by a clinician. It was found that the 
majority of errors came form the mis-classification of the Raynaud's class as 
normal. This is possibly due to the similarity in behaviour of a "cold had 
complaint" and that of a mild Raynaud's condition. 

It can be concluded from the above that only 3 dimensions are needed because 
the Kittler & Young method has succeeded in compressing most of the 
discriminatory information into the first three components of the transformed 
feature vectors, making the rest of the components in the transformed space 
redundant. 

The performance of the system compares favourably with a clinician's 
diagnosis. Moreover, the majority of the errors came from the 4-3 tie condition 
of the 7-NN classifier where the correct category was in the 3-minor vote 
position. Hence, although they were mis-classified their correct classification 
could still be identified when presented in the colour representation technique 
developed in this study and described below. 
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6.6 Presentation of Classification Results for Diagnosis 

The resultant classified thermal features were used to produce diagnostic images; 
in these the colour coded "classification pixels" or "diagnostic pixels" were used 
to replace the corresponding pixels in a thermogram. The degree of confidence 
in the classification was denoted by the different intensity of the assigned disease 
class colour. For example, in the 4-3 tie condition of normal-Raynaud's 
classification, then 4th degree intensity of green (normal) together with 3rd 
degree intensity of blue (Raynaud's) were summed together, giving a 'greenish -
blue' colour as the final 'diagnosis colour' to the pixel in question. In fact this 
'greenish-blue' colour was found to be associated closely to those patients with 
complaints of cold hands (so to some extent a mild primary Raynaud's). While 
'yellowish' cases were found to be the patients with mild inflammatory 
conditions, i.e. when there was a tie between normal (green) and inflammatory 
(red). 

The resultant diagnostic images in Figure 27 indicated the locations of the 
affected areas on the hands as well as the degree of "truthfulness" (severity and 
certainty) of classification by means of different colours and varying degrees of 
intensity. 

The diagnostic results compared extremely well with the clinician's diagnosis. 
The effect of the error rate was that the exact dimensions of the affected area 
might not be precisely defined, but the locations were identified. The 
classification errors were most likely to be at the boundary between two different 
classes on the hand. The majority of errors came from assigning Raynaud's class 
into normal control class, i.e. the group of people with cold hand complaint. 

Fig. 27: Classified Normal Hand, Raynaud's Hand and Inflammatory Hand 

7. Breast Cancer Detection 

7.1 Breast Cancer Detection 

Every year 1500 women in the UK alone die of breast cancer [46, 47]. The 
success of a breast screening programme depends heavily on the 
quality/effectiveness of the clinical service. At present, when the assessment is 
carried out each speciality (radiography, surgery, pathology and ultrasonography) 
carries out its examination/test independently. Studies have shown that early 
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detection is crucial to survival in breast cancer, and it is believed that the use of 
appropriate image processing can make screening and diagnosis easier. 
Currently X-ray mammography is the most commonly used imaging technique 
for diagnosis [45]. Due to their invasive nature X-ray mammograms can not be 
acquired regularly. An alternative complementary technique using non-invasive 
infra-red thermography [48] together with low-level microwave radiation is 
described here [50]. Neither thermography nor mammography can detect breast 
cancer, they are used for indicating abnormalities which could be related to 
cancer or other diseases, such as fibrocystic disease, infection, etc. 

Thermography, unlike x-ray mammography, does not involve painful breast 
compression, i.e. it is a non-contact imaging procedure. Furthermore, it is non
invasive, it does not use any radiation, and can be repeated as often as required. 

There are many means of collecting breast thermograms, but fundamentally 
the breast image is captured by an infra-red detector together with an infra-red 
imaging system, typically with an 8-bit dynamic range, a lOOmK sensitivity at 
30°C and a spectral range of 8-12 microns. The infra-red thermogram can then 
be examined by a clinician [48]. 

Typically, [48], the breast thermogram is divided into four quadrants, namely; 
upper outer, upper inner, lower outer and lower inner by drawing lines on the 
infra-red images from the chin of the patient to each nipple and then two 
horizontal lines left and right to the edge of the breast. Finally, a fourth line is 
drawn to the lowest contour of the breast. The mean, standard deviation, 
minimum, and maximum temperature are measured for each quadrant of both 
breasts and then they are compared to detect any differences between breasts. In 
[48] it was shown that if the mean temperature difference is equal to or greater 
than 0.5 °C, then the patient is considered to exhibit an "abnormal" asymmetrical 
thermal pattern. It was found that in the cases examined breast abnormalities 
were detected before they could be detected by self-examination or by 
mammograms. However, this approach posses a problem when both breasts are 
abnormal and exhibit symmetrical thermal patterns, then the underlying problems 
will remain undetected until they manifest themselves through self-examination 
or in the mammograms. 

7.2 System Overview 

This work is concerned with the thermal analysis of normal and abnormal infra
red mammograms [50]. The analysis is based on a series of infra-red 
mammograms of the breast subjected to a warming temperature stress. The 
temperature stress is induced using a very low level of microwave radiation. This 
produces a higher heating rate in tumourous tissue than in normal healthy tissue. 
The technique uses a sequence of mammograms taken during the cooling process 
to classify abnormal conditions that manifest themselves as body temperature 
abnormalities. The image analysis and processing is basically the same as that 
described for the diagnosis of joint diseases in Section 6 above. 
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73 Temperature Stress Technique and Data Collection 

It has been found that the static infra-red mammogram provides insufficient 
information for diagnosis due to the limited transmission of IR radiation through 
fatty tissues. Therefore, in this study again a temperature stress is applied to 
induce a thermal response of the breasts to aid diagnosis. Here the body is 
exposed to a micro-wave heating (frequency: 0.45Ghz, power density: 80 -100m 
W/cm2) for two minutes. The irradiation penetration is typically 1.7cm in muscle 
and 10cm in fatty tissue, so the heating process can penetrate the breast fairly 
deeply. In order to reduce excessive heating of the subcutaneous fat layer an 
active convective cooling of the skin is necessary. The use of this cooling means 
that the ambient temperature control is more relax in this application than in the 
previous study. After the stress there is a temperature transient in the breasts. It 
is the nature of this transient upon which the analysis is based. Thermograms are 
taken at 30 second intervals for about 8 minutes in order to observe this transient, 
Figure 28. Tumours appear as hot spots on the recorded thermograms, this is due 
to differences in the dielectric constants, vascularization, density and specific 
heat. The result of this process is that small and/or deep tumours can be detected. 
Furthermore, these infra-red mammograms are easier to interpret than X-ray 
mammograms; radiographer interpretation of X-ray mammograms is known to 
highly variable. Another advantage of this approach is that it takes less time to 
record the series of thermograms, approximately 8 minutes, than the 30 minutes 
typically required to set up a single conventional thermogram (allowing time for 
acclimatisation etc.). 

Fig. 28: Infra-red Mammogram Frame 3 and Frame 5 

7.4 Observed Thermal Characteristics of Breasts 

During the course of data collection, some thermal characteristics or behaviour 
patterns were observed. It is these patterns that the system must be capable of 
analysing, extracting and quantifying [50]. 

® Normal tissues - Temperature does not rise as high as the abnormal tissues. 
Temperature drops linearly with time 

® Veins - Temperature rises slightly higher than the abnormal tissues. Temperature 
drops more rapidly with time 
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• Nipple - Temperature does not rise as high as the abnormal tissues. Temperature 
drops quickly with time. 

• Tumours - Temperature is generally 0.3°C - 1.5°C higher than normal tissues. 
Temperature remains high but sometimes drops a little. 

7.5 Experimental Results 

Initial results from this work showed that in some severe cases the 'hot spots' 
(tumours) could be identified easily using a colour coded composite eigen images 
from the Karhuenen-Loeve transformation. Also, that the vascular pattern can be 
identified to a certain extent, this can also help diagnosis because it indicates if 
micro-calcification exists. However, this approach can only be used as a 
supplementary diagnostic for breast cancer detection and the following-up 
treatment. At present X-ray mammography still must be used as the main 
diagnostic aid. It must be stressed that these are only experimental results. 
Before such a technique can be applied in practice a far larger evaluation would 
required, c.f. the 30 patients used this study. 

8. Other Medical Infra-red Applications 

Infra-red thermograms can be used very effectively to assess the depth of a burn. 
Often the burns are examined by a clinician to decide the degree of burn and the 
need of surgery [50]. It is also useful in the detection of melanoma as tumourous 
areas will have a higher temperature than surrounding normal tissues. 

Infra-red imaging is widely used in post-operative monitoring. One of the main 
concerns after an operation is the patient's healing progress and complications 
such as an infection. After plastic or reconstructive surgery the clinician is 
concerned with how well the biomaterial is being accepted by the patient's body. 
Thermal images can help identify areas of inflammation or infection. 

9. Other Infra-red Applications 

Infra-red technology is used in many application domains other than defence and 
medicine, for example: infra-red security systems to detect intruders through 
their bodies' heat and movement; fire fighting; rescue and driving aids. 

It is also widely used for machine condition monitoring. The main advantages 
apart from those mentioned in the above sections are: 

• It is immune to electromagnetic noise 
• It can be used in explosive environments 
• It is conducted in real-time and is only limited by the processing time 

9.1 Fire Fighting 

In fire fighting airborne imaging systems often provide high-resolution data in a 
more timely fashion than can space-based systems. Aircraft with on-board 
infrared and thermal multi-spectral instruments are used for example in fighting 
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forest fires to acquire images and data on the fire's perimeter, hot spots and 
direction. Information from this type of imagery can help fire fighters to 
suppress the fire significantly more efficiently than through the use of space-
based imaging systems. This type of infra-red and multi-spectral thermal 
imaging system can also be applied in law enforcement (e.g. marijuana detection) 
and forestry (e.g. identification of diseased tress within a forest). Often the 
collected images or video sequence of images acquired at the site are transmitted 
to a home base. Image processing, computer vision, pattern processing 
techniques etc. are then used to analyse the images to develop strategies and 
action plans. 

9.2 Monitoring Radioactive Waste 

One way of dealing with radioactive waste is to pour a mixture of molten glass 
and waste into canisters for storage. An infra-red detection system has been used 
to monitor the mixture level inside the canisters during filling, thus prevent spills. 
The system feeds live thermal video to a remote control room where operators 
can monitor the hot-glass level during the filling operation. The main advantage 
of using infra-red technology is this application is that is does not require 
radiation reference sources. This allow non-radioactive start-up testing of the 
process and facilitates safe worker entry into the vitrification cell before actually 
processing the radioactive waste. 

10. Future Infra-red Sensor Technology 

Most current thermal imaging systems require complex cooling techniques with 
concomitant penalties in system size and weight and a significant logistic burden. 
Therefore, much research focuses on un-cooled, compact, low power and cheaper 
solutions. Ferroelectric detectors are the most promising devices for un-cooled 
or ambient temperature IR imaging. Good performance can be achieved with 
large arrays where there is a single ferroelectric detector element for each image 
pixel. The performance can be further enhanced by reductions in detector noise 
bandwidth through advanced element and integrated circuit readout design. For 
the present however, cooled technology is still required for applications which 
need the highest performance. 

A major problem associated with current infra-red sensors is the non-
uniformity inherent in the detector array. This requires correction prior to any 
subsequent image processing. At present correction is achieved using off-focal 
plane and processing electronics. However, the continuing advances in silicon 
integrated circuit technology will now allow more functionality, including non-
uniformity correction, to be included within each pixel of the focal plane array. 
Transferring this function onto the focal plane will result in more cost effective 
solutions, giving improved performance and reliability together with reduce size 
and weight. In addition, the background pedestal current can be removed, on a 
pixel by pixel basis, resulting in systems benefits such as improved range and 
image quality. Moreover, there are opportunities to implement novel and 
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advanced image processing and pattern recognition techniques on the focal plane 
array. This will result in new capabilities such as motion detection, clutter 
rejection, etc. which will significantly enhance the performance of IR systems. 

The third generation of infra-red thermal imaging is aiming at large two-
dimensional detector arrays, higher operating temperatures, smart focal plane 
processing and multi-band operation to increase detection and identification 
performance. 
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CHAPTER 26 

HYPERSPECTRAL IMAGING ANALYSIS AND APPLICATIONS 
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Hyperspectral sensing technology has advanced in recent years. There are a number of 
experimental aircraft platforms that routinely collect hyperspectral-imaging (HSI) data 
both for civilian and military applications. Space borne data have also become a reality. 
The realization of utility of HSI data requires coordinated activities by both the 
development and user communities. In this chapter, examples of hyperspectral 
application scenarios are discussed. The principle focus is terrain characterization and 
object detection. Additionally, examples of HSI fusion with other sensors, such as 
synthetic aperture radar (SAR) and panchromatic imagery, will also be shown to 
demonstrate the effect of sensor fusion in target detections. 

1. Introduction 

Through the use of dispersive media (prisms, gratings, etc.) or through transform 
techniques (Fourier, Sagnac, etc.), one can measure a contiguous spectrum with narrow 
(WAA, ~ 100) spectral bands for each pixel in an image and generate a hypercube. 
Covering the VNIR/SWIR spectral region (0.4 to 2.5 urn), both the NASA Airborne 
Visible-InfraRed Imaging Spectrometer (AVIRIS)a and the DoD HYperspectral Digital 
Imagery Collection Experiment (HYDICE)b sensors have collected a significant amount 
of data over a variety of military and civilian target scenes1' . A sample scene collected 
by HYDICE is shown in Figure 1. NASA EO-1, launched in November 2000, is a space-
borne platform providing simultaneous HSI (Hyperion), MSI and panchromatic (ALI) 

AVIRIS contains 224 different detectors, each with a spectral bandwidth of approximately 10 
nanometers (nm), allowing it to cover the entire range between 380 nm and 2500 nm. AVIRIS uses 
a scanning mirror to sweep back and forth in a whiskbroom fashion, producing 614 pixels for each 
scan. Each pixel produced by the instrument covers a 20x20 meter square area on the ground (with 
some overlap of pixels), yielding a ground swath width of approximately 10 kilometers for a flight 
altitude of 20 km. 

HYDICE is push broom, imaging spectroradometer. HYDICE has a 2-d focal plane array of 
320x210. The second dimension of the array records in 210 spectral bands, approximately 10 nm 
of bandwidth each, covering the range from 400 nm to 2500 nm. Each pixel in the cross-track 
dimension covers a ground distance of 3 meters, yielding a ground swath width of approximately 1 
kilometer for a flight altitude of 6 km. 
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data0. Hyperspectral systems in the LWIR (8-14 |im) are less mature due to challenges of 
focal plane and cooling technologies. Nonetheless, it has been demonstrated that LWIR 
HSI sensors can provide additional capability such as sensing trace amounts of gaseous 
emissions and distinguishing some unique geologic features. It also offers the day/night 
operational capability. For the rest of the chapter, however, only HSI in the reflective 
solar region (0.4 to 2.5 um or known as VNIR/SWIR, visible-near IR-shortwave IR) will 
be discussed. 

Sample HSI Data Cube 

Figure 1. Example HSI data cube collected by HYDICE. Through the use of dispersive media 
(prisms, gratings, etc.) or through transform techniques (Fourier, Sagnac, etc.), one can measure a 
contiguous spectrum with narrow (k/AX . ~ 100) spectral bands for each pixel in an image and 
generate a hypercube. 

Currently hyperspectral imaging sensors are routinely used for research and 
development and in some semi-operational scenarios. HSI offers unique applications 
such as terrain delimination, object detection, material identification, and atmospheric 
characterization. Figure 2 illustrates a taxonomy of HSI applications. Recent processing 
advances, via hardware and software, as well as the development of automated target 
detection algorithms, have progressed significantly so that near real-time applications are 
also within reach. 

c EO-1 (Earth-Observing 1) is part of NASA's New Millennium Program. The EO-1 spacecraft was 
launched on November 21,2000. The instrument payloads on board are Hyperion (HSI), ALI 
(Advanced Land Imager, MSI and Panchromatic) and AC (atmospheric corrector). Hyperion is a 
pushbroom, imaging spectrometer with 256 detectors in cross-track, each pixel covers an area of 
30x30meter square on the ground, and a complete spectrum from 400 to 2500 nm in 220 bands. It 
yields a ground swath width of approximately 7.65 kilometer for a 705 km orbit. 



597 

Figure 2. A taxonamy of HSI applications. HSI offers unique applications such as terrain 
delimination, object detection, material identification, and atmospheric characterization. The 
highlighted boxes are discussed in the section of HSI Application Examples. 

A passive HSI sensor does not effectively penetrate surface, however, making targets 
under camouflage and tree canopies difficult to detect. Additionally, to maintain required 
SNR, HSI spatial resolutions are in general coarser than broadband imagery resolutions. 
There is great potential to enhance the overall HSI system performance if fusion with 
other remotely sensed data could be accomplished. For example, in the application of 
counter camouflage, concealment and deception (CC&D)d, HSI can be used to identify 
ground coverage and surface material and a Foliage Penetration Synthetic Aperture Radar 
(FOPEN SAR) can determine if any threat objects are under concealment. In the surface 
surveillance application, HSI can be augmented with High-Resolution broadband 
panchromatic Imagery (HRI) to optimize simultaneous high spectral and spatial 
information for enhanced target detection and identification. 

The following sections give an overview of HSI processing algorithms, then describe a 
number of hyperspectral imaging applications, and finally illustrate examples of HSI 
fusion with other sensors. 

2. HSI Algorithms 

HSI systems produce large data sets that are not easily interpretable by visual analysis 
and therefore require automated processing algorithms. A wide range of algorithms can 
be applied for HSI data analysis3'4. Figure 3 illustrates a taxonomy of HSI algorithms. In 
this section, sample algorithms of principal component analysis (PCA), anomaly 
detection (RX filtering), matched filtering (CEM) and iso-data clustering will be 
illustrated. 

d Counter Camouflage, Concealment and Deception (Counter CC&D) is the ability to detect 
moving and stationary obscured targets in foliage, under camouflage or in shallow hide, and those 
utilizing deception techniques. 
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Figure 3. A taxanomy of HSI algorithms of preprocessing, feature extraction and classification. The 
highlighted ones are discussed in this section. 

2.1 Principal Component Analysis (PCA) 

To reduce the HSI data dimensionality and therefore the computational complexity, 
feature extraction can be performed on the spectral data before application of image pixel 
clustering. Principal component analysis is used to de-correlate data and maximize the 
information content in a reduced number of features5'6. The covariance matrix is first 
computed over the pixel spectra contained in the HSI data cube of interest. Eigenvalues 
and eigenvectors are then obtained for the covariance matrix E as given below: 

Z = E{(X- XJ(X - Xj} = ®A4>T, 

X represents the spectral vector data; Xm the mean spectral vector over the data cube 
and E the average operator over the entire data cube. 0 is a matrix consisting of columns 
of eigenvectors and A is a diagonal matrix of eigenvalues. 

Using the eigenvectors as a new coordinate system, the HSI data cube is then 
transformed into principal components called eigenimages. The eigenimages associated 
with large eigenvalues contain most of the image information while the eigenimages 
associated with small eigenvalues are noise-dominated. Principal component transform 
allows determination of the inherent dimensionality and segregation of noise components 
of the HSI data. The components are ranked in descending order of the eigenvalues 
(image variances). Since backgrounds constitute the majority of information in the scene, 
they are contained in the first few principal components. Anomalies, which comprise 
only a small fraction of the scene, are in higher numbered principal components. Figure 4 
displays the 1st, 2nd and 3rd principal components of a sample HYDICE image. The first 
component shows the overall intensities of features such as bright treetop and dark tree 
shade and roads. Area of vegetation is apparent in the 2nd component. In the 3rd 

component, image pixels of vehicles and roads are in contrast to the image backgrounds. 
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RGB Image 1"PC 2"" PC 3fd PC 

Figure 4. The first three principal components of a sample HSI image. The first component shows 
the overall intensities of features such as bright treetop and dark tree shade and roads. Area of 
vegetation is apparent in the 2nd component. In the 3rd component, image pixels of vehicles and 
roads are in contrast to the image backgrounds. 

2.2 Iso-data Clustering 

Iso-data clustering, also called iterative migrating means clustering, is an iterative process 
to cluster image pixels into classes7'8'9. A flow diagram of the algorithm is depicted in 
Figure 5. A number of class centers are first initialized in the feature space. The feature 
space may be the original spectral space or a transformed space in which spectral feature 
extraction have been performed such as principal component analysis. An image pixel is 

Figure 5. Flow chart of iso-data clustering. A number of class centers are first initialized in the 
feature space. An image pixel is assigned to the class with minimum Euclidean distance. When all 
image pixels are classified, the class centers are recalculated. Using the new class centers, the 
image is reclassified and compared with the classification in the previous iteration. The process is 
terminated if the changes in classification are less than a threshold or a maximum number of 
iterations have been reached. Otherwise, the class centers are recalculated for further iterations. 
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assigned to the class with minimum Euclidean distance. When all image pixels are 
classified, the class centers are recalculated. The class size and distribution are examined. 
Closely separated classes are merged and widely distributed classes are split according to 
specific input criteria. Using the new class centers, the image is reclassified and 
compared with the classification in the previous iteration. The process is terminated if the 
changes in classification are less than a threshold or a maximum number of iterations 
have been reached. Otherwise, the class centers are recalculated for further iterations. 

The algorithm gives spectral classifications by iterative convergence without a priori 
knowledge of the classes in the image. It is conceivable that the process can be extremely 
slow to converge in a large dimensional space such as the spectral space of HSI data. In 
practice, the iso-data clustering is often applied on a selected number of spectral features 
such as a subset of principal components. 

2.3 RX Filtering 

RX filtering is a spatial-spectral processing algorithm for anaomaly detection10. A 
spatially moving window is used to calculate local background mean and covariance. 
The RX filtered value at the center of the window is detected on differences from the 
local background. The RX filtered value is calculated as the following: 

RX = (x - m)Tz-1 (X - m) 

x: Data spectrum 
m: Local background mean 
R Local background covariance 

Since large covariance matrix inversion is required at each image pixel, direct 
implementation of RX filtering on HSI data may be impractical. In practice, the RX 
filtering is also applied on a selected number of spectral features such as a subset of 
principal components. 

2.4 Constrained Energy Minimization (CEM) 

CEM, a type of matched filtering, is a spectral processing algorithm for object detection 
and material identification11'12. The CEM value of a spectral vector X is calculated as: 

(X-m)T %' (M-m) I (M-m)T 1? (M-m), 

where M is the reference material spectrum, m and 2J, represent the background mean 
and covariance matrix. The vector '%' (M-m) I(M-m)T %' (M-m)" in the formula is the 
CEM filter. The matched filtering attempts to maximize the energy in the test data 
associated with the reference spectrum with the constraint of whitening the background 
clutter. The CEM value is indicative of the fraction content of the reference material in 
the spectral data X. 
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3. HSI Application Examples 
To exploit the full value of HSI data in many applications (e.g., identify material, detect 
unresolved targets), one needs to map the data as measured by the sensor to the same 
units as the library spectra against which it is compared. This is typically accomplished 
by performing atmospheric compensation to convert the sensor data to units of surface 
reflectance13. As will be discussed later, this also leads to another application: 
simultaneous atmospheric characterization. In addition to robust and efficient detection 
and classification algorithms, a robust and comprehensive material reflectance/emissivity 
database must be developed. 

In this section, key applications for HSI data such as anomaly detection, material 
identification and background classification will be illustrated with examples followed by 
a discussion of atmospheric characterization. 

3.1 Anomaly Detection 

An example of anomaly detection is illustrated in Figure 6 as the result of RX filtering on 
a HYDICE image. The left panel shows the RGB image of a forest scene. Several 
vehicles were laid out in the open area. The vehicles are approximately 5-pixel x 11-
pixel in size. The RX filtering is implemented using a 21x21 spatial window on four 
principal components. Due to the rich spectral information, the vehicles are detected by 
differences from the local background. The right panel of Figure 6 shows detection of 
the vehicles. Note that other objects in the scene are either not detected or only partly 
detected due to their larger sizes than the processing window. 

3.2 Material Identification 

For target detection and material identification, the HSI radiance data are converted to 
reflectance via atmospheric compensation. The transformation to reflectance allowed the 
use of matched filtering algorithm in conjunction with material library spectra. Figure 7 
shows sample spectral signatures and identification results of fabric net and vehicle paint 
in the HYDICE forest scene. Material Signatures from a spectral library were used to 
construct the CEM match filters. The filtered images were thresholded for detection and 
material identification. In Figure 7, pixels matched with fabric net are marked in red and 
vehicle paint in green. 

3.3 Background Classification 

Land-cover characterization and classification is an application of HSI data. Delineation 
of open area, heavy vegetation of trees and tree lines provides contextual information of 
the target and background environment. The incorporation of background classification 
in matched filtering algorithms for material identification has also proven to enhance the 
filtering performance. Since the background delineation allows for better estimation of 
background covariance used in the matched filtering algorithms. Figure 8 shows 
background classification results of the HYDICE forest scene in Figures 6 and 7. 
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FRI Run 5 Anomaly Detection 

Figure 6. Anomaly detection example. The left panel shows the RGB image of a forest scene. The 
right panel shows detection of the vehicles with RX filtering.The vehicles are approximately 
5-pixel x 11-pixel in size. The RX filtering is implemented using a 21x21 spatial window on four 
principal components. Due to the rich spectral information, the vehicles are detected by differences 
from the local background. 
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Figure 7. Material identification. Sample spectral signatures are shown on the left and identification 
results of on the right. Material Signatures from a spectral library were used to construct the CEM 
match filters and applied to the HYDICE forest scene. The filtered images were thresholded for 
detection and material identification. In the right panel, pixels matched with fabric net are marked 
in red and vehicle paint in green. 



603 

Figure 8. Example background classification. The left panel is a band image at A. = 0.55 nm. The 
right image is the background classification of iso-data clustering based on 5 principal components. 

Principal component analysis (PCA) was employed for image feature extraction. For 
the background classification, five principal components were retained. Iso-data 
clustering divides the image into separate background classes. The eight background 
classes include road, shade, two ground classes, and several vegetation groups. 

3.4 Atmospheric Characterization 

Conventionally, atmospheric compensation algorithms are first applied to HSI data in 
order to retrieve surface and target material properties. Unlike conventional EO/IR 
systems that have to rely on other sources for weather information while data becomes 
limited during adverse weather, HSI data also allows for atmospheric characterization 
due to the contiguous spectral coverage. The diagram in Figure 9 illustrates the 
architecture for theater weather support and delineation of manmade vs. natural 
obscurants (smoke versus clouds). Certain HSI bands are also transparent to haze and 
smoke, which allows for battle damage assessment14. 

The example below illustrates the potential for identifying active fires, smoke plumes 
and a water cloud in HSI. An AVIRIS scene collected on 20 August 1992 in the foothills 
east of Linden, CA is employed for illustration of smoke plume and cloud delineation. 
The scene consists of a grass fire producing a thick plume of smoke extending toward the 
east (see Fig. 10a). A cloud produced by the thermal properties of the fire overlies the 
smoke plume. Northwest of the main fire, two smoldering fires are producing a thin veil 
of smoke that covers much of the upper half of the scene. The southwest portion of the 
scene is cloud and smoke free; a golf course, lake, roads and rivers can be identified. 
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Figure 9. Diagram of architecture for theater weather support and cloud/smoke delineation. 

Small shadowed areas are also observed just to the north of the cloud. This scene 
provides a variety of atmospheric and surface features from which to orient and 
characterize. A plot of the spectral characteristics of various identified features in the 
scene is shown in Fig. 10b. The legend displays the user identified features. The cloud is 
significantly brighter than the smoke over the entire spectral region. The hot area is 
brightest in the spectral region 2000 to 2500 nm, while the fire pixels are bright for 
wavelengths greater then 1150 nm. A small dip at 700 nm followed by a rise at 740 nm in 
the spectrum of large particle smoke indicates its partial transparency to the vegetative 
background. 
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Figure 10. (a) AVIRIS RGB image for the Linden, CA scene collected on 20-Aug-1992, denoting 
location of various features of interest and (b) a plot of the spectral distribution of the apparent 
reflectance for those features. 
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Figure 11 displays the 1st, 2nd and 5th principal components of the AVIRIS data for the 
Linden Scene. The first component shows the overall intensities of features such as bright 
clouds and smoke plumes over backgrounds. A dark area that appears to be the source of 
the thick smoke is apparent in the 2nd component. In the 5th component, a small fraction 
of the image pixels are in contrast to the image backgrounds. It is apparent in the PCA 
that the first two principal components of the Linden AVIRIS data contain background 
information and the 5th component shows an anomaly. A classification can be obtained 
from these components as shown in Figure 12 with visual identification. All major 
atmospheric and surface features are identified as to location, extent and type. 

1s ' PC (Clouds/background) 2"d PC (Hot area) 5th PC (Fire) 

Figure 11. The 1st, 2nd and 5th principal components of AVIRIS data for the Linden scene. 
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Figure 12. Classification result using the 1st, 2" and 5 principal components. All major 
atmospheric and surface features are identified as to location, extent and type. 
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4. HSI Fusion with Other Sensors 

To demonstrate the fusion potential of HSI and other sensors, fusion examples of HSI 
with SAR and HSI with high-resolution panchromatic imagery (HRI) are shown here15. 

4.1 HSI and SAR Fusion 

There have been many examples in which both SAR and HSI systems collected data in 
support of military operations. Principles of low frequency SAR and HSI are different 
and their detection capabilities often complement each other. SAR, an active sensor, 
penetrates foleage and camouflage nets and detects vehicles but has many false alarms 
from trees16. HSI, on ther other hand, does not penetrate surface, but is capable of terrain 
classification and material identification. A combined SAR and HSI system could have 
the imaging sensors cue each other in joint observations. 

A common data set collected over Vicksburg, Mississippi (Dixie-97, May 1997) is 
used here to demonstrate the framework of SAR and HSI fusion. Both P-3 UWB (Ultra 
Wide Band) radar and HYDICE collected data at the target site. Several fabric nets were 
populated along the tree line around an open area. One fabric net at the tree line covered 
a vehicle. All other nets were empty or covered non-radar reflecting decoys. 

The fusion example is illustrated in Figure 13. SAR and HSI data were first processed 
separately for detection and terrain classification, respectively. Then co-registration was 

P-3 UHF SAR 
6 dBsm Thresholded 

HYDICE HSI 
Open area/Fabric net 

Detection 

Combined SAR/HSI Data 
Vehicle under Net 

Identified 

SAR detection 
confirmed and 

material identified 
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Figure 13. SAR and HSI fusion example. The left panel shows SAR detection; the middle panel 
shows HSI detection of fabric nets and delineation of open and tree area; the right panel is the 
combined SAR and HSI results. Terrain mapping reduced SAR false alarm from trees. Detection of 
concealed targets under nets was verified and detection of partially exposed targets was further 
confirmed with material identification by HSI. 
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performed to allow overlay of the images. Terrain mapping reduced SAR false alarm 
from trees. Detection of concealed targets under nets was verified and detection of 
partially exposed targets was further confirmed with material identification by HSI. The 
combined exploitation of HSI with SAR data result in enhanced detection and reduced 
false alarms. 

4.2 HSI with High Resolution Panchromatic Imagery 

From a sensor system perspective, integrating HSI with a high-resolution panchromatic 
imager (HRI) is relatively straightforward and provides synergistic enhancements. While 
the sensors are similar in spectral coverage, an HRI sensor can offer much finer spatial 
resolutions than their companion HSI. The rich spectral information from HSI further 
enhances material identification and target classification. Figure 14 depicts a spatial-
spectral analysis approach. Background classification and anomaly detection are first 
obtained from HSI data. HSI provides background classification and target detection 
while the HRI provides background and target boundaries with spatial edge detection . 
These boundaries, combined with results from HSI, spatially enhance the definition of 
targets and backgrounds. Applied with spectral matched filtering, HSI further identifies 
the background and target materials. 

Figure 14. Diagram of a spatial and spectral analysis approach. Background classification and 
anomaly detection are first obtained from HSI data. HSI provides background classification and 
target detection while the HRI provides background and target boundaries with spatial edge 
detection. These boundaries, combined with results from HSI, spatially enhance the definition of 
targets and backgrounds. Applied with spectral matched filtering, HSI further identifies the 
background and target materials. 
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Combined exploitation of HSI and Panchromatic imagery is demonstrated here using 
the HYDICE Forest data. Data are first generated emulating a high altitude aircraft or a 
space platform that would provide simultaneous HSI data with a resolution of 4m and 
panchromatic data with a resolution of 0.8m. The scene consists of several fabric samples 
and a number of vehicles of two different sizes and two different paint types. Using a 
combination of image sharpening and spatial/spectral analysis approach results in 
identification of objects in cued areas18'19'20'21'22'23'24. Testing with spectral matched 
filtering confirms and identifies pieces of fabric and two types of paints on the vehicles in 
these regions as illustrated in Figure 15. An enlarged view of the vehicle detections is 
also shown in the figure. The vehicle size and orientation can be determined from the 
bounding edges. It is classified as large (4x8 m2) in size if it is 4 to 7 pixels wide and 8 to 
11 pixels long or as small (3x6 m2) in size if it is 3 to 5 pixels wide and 6 to 7 pixels long. 
The colored bar next to each vehicle in the enlarged image depicts its type of paint, size 
and orientation. 

The example of combined HSI and HRI illustrates that in addition to background 
classification, target size, shape and orientation are also determined; results not possible 
by either of the sensing modalities alone. 

Figure 15. Combined HSI and HRI results of background classification and enhanced spatial and 
spectral target features. An enlarged view of the vehicle detections is also shown on the right. The 
vehicle size and orientation can be determined from the bounding edges. The colored bar next to 
each vehicle in the enlarged image depicts its type of paint, size and orientation. 
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5. Conclusion 

In this chapter, the status of VNIR/SWIR hyperspectral sensing and selected algorithms 
together with several of its applications are discussed. It is important to recognize that 
the utility of HSI varies depending on the sensor spatial resolutions. For example, a high 
altitude surveillance sensor with coarse spatial resolution provides functions such as 
terrain characterization and trafficability analysis. For focused area analysis with high 
spatial resolution, HSI provides target detection and identification applications. 

Perhaps the greatest power of the HSI technology is its combined use with data from 
other types of sensors. Sensor fusion results demonstrated better context information and 
false alarm mitigation when used in conjunction with SAR. When combined with higher 
spatial resolution panchromatic imagery, additional information regarding size, shape, 
and orientation about surface objects can be derived than those with data from either 
sensor alone. 
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learning vector quantization 

(LVQ) 365 
multi-layered 366,385 
probabilistic (PNN) 408 
radial basis function (RBN) 295 
self-organizing map (SOM) 365 
support vector machine (SVM) 67 

nonlinear least square fit 487 
normalized difference vegetation 

index (NDVI) 487 

O 
ocean remote sensing 102,141 
ocean surface slope estimation 101 
oil slicks 147 
outline derivation 573 

parametric contour tracing 70 
Pearl's Bayes network 589 
phenological parameters 493 
piecewise linear polygonal 

approximation 63 
pixel level fusion 349 
polarization angle estimation 89 
polarization decomposition theorem 109 
power line surveillance 383 
prediction error filtering 455 
predictive deconvolution 431 
principal component analysis 23, 

329,407 
probability of detection 359 

R 
reference set condensation algorithm 323 
reference set reduction algorithm 322 
reflection seismic method 429 
region relationships 45 
remote detection 429 
remote sensing, v, 3 

active 6 
active microwave 255 
passive 6 

resolution enhancement 255 
RX filtering 600 

sampling density 
scale dependency 
scattering mechanisms, 

canonical 
dominant 

scattering theory 
scatterometer image reconstruction 

(SIR) 

262 
169 

122 
106 
473 

255 
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scene modeling 35 interferometric data 105 
seasonality parameter extraction 487 polarimetric data 89,366 
segmentation, SAR speckle filter 167 

Bayesian 
range 
reflectivity 
region 
shape-based 
unsupervised 

seismic data processing 
seismic edge-detection algorithm 

41 
352 
352 
561 
349 
329 
472 
455 

seismic ghost reflection elimination 488 
seismic reflection data 
sensor, 

altimeters 
AVIRIS 
hyperspectral 
infrared 
laser radar 
microwave 
optical 
radar 
radiometer 
scatterometer 

sensor characteristics 
sensor fusion 
sensor technology 
shape analysis and retrieval 
shape similarity measure 
source decorrelation 
spatial resolution 
speckle noise 
speckle reduction 
spectral resolution 
SPOT Panchromatic image 

14, 

subsurface geological structure 
subsurface sensing 
support vector machine (SVM) 
SVMLB library 
Synthetic Aperture Radar (SAR), 

image despeckling 
141, 

469 
3 

255 
521, 595 

8 
555 
349 
255 

7 
10 

255 
255 

3 
349, 609 

4,590 
63 
77 

509 
6 

163 
166 

4 
199 
430 
535 

13,64 
68 
89, 

505,595 
163 

T 
temporal correlation 
terrain delimination 
thermogram 
three-dimensional seismic images 
transform methods, 

Fisher 24 
orthogonal 
orthonormal 
scale-space 

tropical cyclone intensity estimation 
two-dimensional histogram 

U 
unit-impulse reflection response 
unsupervised change detection 

V 
visual grammar 

W 
wavelet coefficients, 

thresholding 
wavelet decomposition 
wavelet denoising 
wavelet despeckling 
wavelet reconstruction 
wavelet representation, 

orthogonal multispectral 
wavelet transform, 

discrete 168, 197 
dyadic 
Gaussian 
inverse discrete 
Maxican-hat 
two-dimensional 

Wiener filtering 
Wishart statistics 

285 
596 
555 
455 

23 
,415 

25 
503 
387 
233 
417 

429 
405 

35 

170 
169 
167 
167 
166 
209 
197 
197 
31 

,504 
201 
141 
169 
157 
141 
262 
107 


