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PREFACE

In the past few decades, the principles and techniques of digital signal processing
(DSP) have been used in applications such as data and wireless communication,
voice and speech analysis and synthesis, and video and image compression and ex-
pansion. Radar image processing is considered the primary application of the remote
sensing field and is a new and emerging area for DSP applications. Although the
primary application of satellite-based radar imaging is military surveillance, the low
cost and real-time processing capability of radar imaging, together with its capability
to operate under any environmental conditions (e.g., night or day, rain or snow, fog
or clear sky) have opened up many commercial applications. Sea ice monitoring and
disaster monitoring of events such as forest fires, floods, volcano eruptions, earth-
quakes, and oil spills are examples of satellite-based radar imaging applications.
Airborne-based radar systems also have made radar imaging more affordable and
popular. Furthermore, exploration of underground natural resources is an example of
a new application.

The processing of radar images, in general, consists of three major fields: DSP
principles and communication theory, knowledge of antenna and radar operation, and
algorithms used to process the radar images. The purpose of this book is to include
the material in these fields in one publication, to provide the reader with a thorough
understanding of how radar images are processed. To further familiarize the reader
with the theories and techniques used in processing radar images, MATLAB*-based
programs are utilized extensively in this book in both the synthesis and analysis of
the radar image. In this way, the signal waveforms are therefore made visible at
various stages during computer simulation, and the capability of three-dimensional
(3D) graphical displays makes many abstract results easier to understand. This book
is aimed at engineers or students who have some knowledge of DSP theory and
limited knowledge of communication theory and/or antenna theory, but are interested
in advanced DSP applications, especially in the remote sensing field.

This book consists of three major groups of chapters. Chapters 1 and 2 pro-
vide an overview of DSP principles, reviewing signal characteristics in both analog
and digital domains and describing some DSP techniques that serve as key tools in
radar images processing. Chapters 3–5 discuss the basics of antenna theory, radar

*MATLAB is a registered trademark of math Works, Inc., Natick, MA 01760.

xiii
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xiv PREFACE

operation principles, modulation/demodulation, and radar target detection tech-
niques. Chapters 6–9 discuss the properties and formation of radar images and then
try to model the processing of radar images. The principles of radar image data syn-
thesis are presented and demonstrated with computer-simulated examples. Both the
range–Doppler and the Stolt interpolation algorithms are described and applied to the
simulated image data and satellite radar-based image data. The results are analyzed
and compared. MATLAB∗ programs are used extensively during the generation of
various waveforms of signal processing, radar detection, and synthesis/simulation of
radar image processing.

The first two chapters briefly review the DSP principles. Chapter 1 describes the
characteristics of signals, followed by Fourier series representation of periodic sig-
nals. Fourier transform is then introduced to represent a signal, whether in periodic
or nonperiodic form. Sampling theory and interpolation filter are derived, and some
advanced sampling and interpolation techniques are reviewed. Resampling from un-
evenly spaced data to obtain evenly spaced data is briefly discussed at the end of the
chapter. Chapter 2 addresses the discrete signal transformation in both time and fre-
quency domains. Discrete Fourier transform (DFT), together with some of its charac-
teristics, are reviewed. Windowing functions and the well-known fast Fourier trans-
form (FFT) technique are covered. The discrete cosine transform (DCT), which is
the byproduct of DFT, is introduced. A graphical representation of DFT provides an
overview of the relationship between a continuous signal and a discrete signal. It also
provides signal variations in both time and frequency domains. The chapter ends with
an example of resampling with fractional interpolation based on DFT technique.

Chapters 3–5 provide a background review on antenna theory and radar operation
principles. Chapter 3 starts the review of the electromagnetic field with the Maxwell
equation, followed by the electromagnetic (EM) fields generated from the infinitesi-
mal dipole. Finite-length dipole- and half-wavelength dipole-based linear antenna ar-
rays are described. Some commonly used antennas, including the microstrip antenna,
are also covered. Chapter 4 deals with the basic theory of radar signal processing. The
radar range equations and other related parameters are reviewed. The Doppler fre-
quency due to relative movement between radar and target is briefly discussed with
respect to the wavefront. Some target range and motion direction detection tech-
niques are also revealed at the end of chapter. Chapter 5 provides broad coverage
of modulation/demodulation and target detection techniques used by radar systems.
Amplitude modulation (AM)-based pulse Doppler frequency radar is first reviewed,
followed by discussion of target detection techniques. Frequency modulation (FM)-
based radars, which include pulsed linear FM (LFM), continuous-wave LFM and
stepped LFM signals, are then briefly discussed. Also covered in this chapter are
in-phase–quadrature-phase (I–Q) demodulator and pulse compression (or matched
filtering), which serve as important tools in radar signal processing

Chapters 6–9 discuss the main topic of this book: radar image formation and
processing. Chapter 6 starts with a survey of some popular imaging radars and pos-
sible applications, followed by the description of the geometry of stripmap synthetic
aperture radar (SAR), which consists of broadside SAR and squint SAR. The role of
Doppler frequency in radar image formation is analyzed. Also covered are the range
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migraion, geometric distortion, and resolution of image radar. Chapter 7 discusses
the ideal system model of radar imaging. The reconstruction of 2D target function is
modeled by two independent 1D functions. The model of 1D range imaging is first
described, followed by discussion of the 1D cross-range imaging. Data acquisition
and the frequency spectrum of radar image are also reviewed. Chapter 8 discusses
the principles of radar image generation and how to synthesize the radar image. Ex-
amples of synthesizing radar image data for broadside SAR and squint SAR are
presented, which include single and multiple targets. The range–Doppler algorithm
on processing radar images is then reviewed and applied to the synthesized data.
Chapter 9 reviews some radar image processing techniques in the wavenumber do-
main. The Stolt interpolation technique on radar image processing is briefly reviewed
and applied to some simulated image data. The real satellite radar signal is then pro-
cessed by both range–Doppler and Stolt interpolation algorithms. A comparison on
these two algorithms is also provided.

Some of the material in this book was presented to graduate students in Su-Zhou
University in China, and the feedback from the students was incorporated into this
book. It is my hope that this book can provide enough knowledge for readers to
become familiar with radar image processing. Although I have made every effort
to make this a thorough and accurate book, errors and mistakes are inevitable. Any
comments or feedback from readers will be welcomed and appreciated.

Acknowledgment

I would like to thank Dr. Russell Hsing of Telcordia for his support and inspiration
throughout the process of writing this book. His advice made the publication of this
book possible and is greatly appreciated.

Finally, I owe a lot to my family for their patience and understanding as I worked
on this book. My wife, Rhoda, my children, Anna and David, my son-in-law, Scott
Chong, and granddaughter, Jocelyn, all helped make this book possible in numerous
ways, and I am grateful to them.

Bu-Chin Wang, PhD
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f0(x) Ideal target function along range or x axis
f0(y) Ideal target function along azimuth or y axis
f (x) Target function along range or x axis
f (y) Target function along azimuth or y axis
F0(k) Fourier transform of f0(x)
F0(ky), F0(ku) Spatial Fourier transform of f0(y)
F(k) Fourrier transform of f (x)
F(ky), F(ku) Spatial Fourier transform of f (y)
hr (t) Range matched filter
haz(s) Azimuth matched filter
haz(t,s) 2D azimuth matched filter
Haz(�, �D) 2D spatiotemporal Fourier transform of haz(t,s)
Im(ku) Gating function in wavenumber ku domain due to mth target
im(u) Inverse spatial Fourier transform of Im(ku)
kx Spatial wavenumber, corresponding to spatial Fourier transform of

x , 1/meter (m−1; reciprocal meter)
ku Spatial wavenumber, corresponding to spatial Fourier transform of

u, m−1

kum Spatial wavenumber, corresponding to mth target
k ′

u Spatial wavenumber changing rate
ky Same as ku , m−1

k Wavenumber, corresponding to f , m−1

kb Wavenumber in baseband corresponding to fb, m−1

k0 Wavenumber, corresponding to f0, m−1

kc Wavenumber, corresponding to fc, m−1

� Wavelength of electromagnetic wave, m
L Antenna length, m
Ls Synthetic aperture length, m
Lsa Ls for target located at range R0a , m
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Lsx2 Half size of Lsx, m
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L total Sum of Lsx from all targets, m
M Number of rows in a 2D data array
Mamb Doppler ambiguity
N Number of columns in a 2D data array
Naz Number of azimuth lines within the synthetic aperture length Ls
Nazi Number of azimuth lines within Ls for target located at range R0i

Nr Number of samples within the transmitter pulse duration
Nr x Number of sample difference between range Rx , for x = b, c . . . ,

and range reference Ra

p(t) Transmitted radar signal
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P(�) Fourier transform of p(t)
pb(t) Baseband transmitted radar signal
psf(t) Pont spread function in time domain
psf(�) Fourier transform of psf(t)
R0 Shortest distance between target and radar, m
R0a R0 with target located at range x = a, m
R0i R0 with target located at range x = b, c . . . , m
Rui n Slant range between target n and radar located at ui , m
Rc Distance between target and radar when target is under

illunination of radar center beam, m
R1 Distance between target and radar when radar starts to illuminate

the target, m
R3 Distance between target and radar when radar stops to illuminate

the target, m
Rs Slant range sample spacing, m
RS shortest distance from radar to ground along the range (x-axis)

direction, m
RL Longest distance from radar to ground along the range (x-axis)

direction, m
R(s) Slant range in terms of slow time s, m
R(u) Slant range in terms of radar position u, m
� R Slant range difference with respect to R0 (broadside SAR case) or

R3 (squint SAR case), m
� Rr Slant range resolution, m
� Rgr Ground range resolution, m
� Ra Angular resolution, m
s Slow time variable along radar moving direction, seconds (s)
sc Slow time when target is illuminated by center beam of radar, s
s(t) Target reflected signal
sb(t) Baseband signal of s(t)
S(�) Fourier transform of s(t)
Sb(�) Fourier transform of sb(t)
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S(�, �D) 2D Spatiotemporal Fourier transform of s(t,u)
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Sm(�, �D) 2D spatiotemporal transform of sm(t,u)
sbm(t,u) Baseband version of sm(t,u)
Sbm(�, �D) Baseband version of Sm(�, �D)
sr0(u) Range reference fouction for radar located at (0, u)
Sr0(ku) Spatial Fourier transform of sr0(u)
� Pulse duration time or echo delay time, s
�ui Echo delay time when radar is located at ui , s
�ui n Echo delay time due to target n and when radar is located at ui , s
T, T0 Period of periodic signal, s
Ta Time duration when target is under illumination of radar beam, s



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

xx LIST OF SYMBOLS

Tp Pulse duration time, s
u Radar position variable along the azimuth or y axis, m
ui Radar position at u = ui , m
u2 Radar location when target is under illumination of radar center

beam, m
u1 Radar location when radar begins to illuminate target, m
u3 Radar location when radar ceases to illuminate target, m
V Radar velocity, a vector along azimuth direction m/s
Vr Radar’s radial velocity, a scalar along the target direction, m/s
W Antenna width, m
Xc Centerpoint of target area along x axis, m
X0 Half size of target area along range (x-axis) direction, m
Y0 Half size of target area along azimuth (y-axis) direction, m
Yc Centerpoint of target area along y axis, m
yi Target location along y axis, m
�rn� 2D signal array corresponding to target n
� Angular frequency, Hz
�b Angular baseband frequency, Hz
�0 Angular reference frequency, Hz
�c Angular carrier frequency, Hz
	i Reflection coefficient from i th target

 Angle, radians, or degrees

H Horizontal beamwidth = �/L , radians or degrees

V Vertical beamwidth = �/W , radians or degrees

3dB Antenna 3-dB beamwidth, radians or degrees

m(u) Aspect angle with respect to mth target when radar is at location

y = u, radians or degrees

u Equal to 
m(u) for single target

q Radar squint angle, radians or degrees
�(t) Delta or impulse function
sinc(t) Sampling or interpolation filter function
Rect(t) Time-domain rectangular pulse with duration |t | ≤ 1

2|� (�, fD)| Radar ambiguity function
F Fourier transform operator
F−1 Inverse Fourier transform operator
J (u) Jacobian of transformation



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

LIST OF ILLUSTRATIONS

Figures

1.1 A sinc (t) function. 2

1.2 A linear system. 3

1.3 Graphical representations of a function in terms of pulses. 3

1.4 A time-invariant linear system. 4

1.5 A periodic signal gp(t). 7

1.6 Fourier series coefficients of a periodic pulse. 9

1.7 A single pulse g(t) and its Fourier transform G(�). 14

1.8 A single-pulse frequency spectrum G(�) and its inverse Fourier
transform g(t). 15

1.9 A periodic impulse train and its Fourier transform. 17

1.10 Fourier transform of a periodic pulse train. 19

1.11 Graphical representations of the sampling theory. 20

1.12 Interpolation filters. 22

1.13 Original and half-sample-shifted digital signals. 23

1.14 Frequency spectra of a digitized bandpass signal. 25

1.15 Downsampling with a FIR filter. 26

1.16 Interpolation with zero insertion and FIR LPF. 27

1.17 Fractional rate interpolation with M = 2.5. 28

1.18 Interpolation on evenly spaced data. 30

1.19 Generation of unevenly spaced data index. 31

1.20 Relationship between evenly and unevenly spaced data. 32

1.21 Interpolation on unevenly spaced data. 33

2.1 A periodic sequence. 36

2.2 Linear convolution. 40

2.3 Circular convolution. 41

2.4 Linearized circular convolution. 42

2.5 Convolution using overlap-and-add method. 43

xxi



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

xxii LIST OF ILLUSTRATIONS

2.6 Convolution using overlap-and-save method. 44

2.7 Hanning window with different sampling frequencies. 45

2.8 A 32-point Hanning window. 46

2.9 Hanning window with time-domain zero padding. 46

2.10 Hanning window with frequency-domain zero padding. 47

2.11 DFT with sliding (overlapping). 49

2.12 Hamming and Blackman window functions. 50

2.13 Three-stage computation of an 8-point DFT. 52

2.14 An 8-point FFT with decimation-in-time algorithm. 52

2.15 First stage of the decimation-in-frequency FFT algorithm. 54

2.16 The 8-piont decimation-in-frequency FFT algorithm. 54

2.17 Input block (a) and end effects in DFT (b) and DCT (c). 56

2.18 Graphical representations of DFT. 59

2.19 Example of resampling. 61

3.1 Potentials generated by current/charge distribution. 66

3.2 Radiation from a point radiator. 67

3.3 Far-field approximation of z-oriented dipole. 71

3.4 Radiation pattern of a half-wavelength dipole. 74

3.5 A 10-element linear array. 75

3.6 Normalized linear antenna array factor for N = 10. 77

3.7 Normalized linear antenna array factor for N = 10, d = �/2. 78

3.8 Field pattern in rectangular format for N = 6. 81

3.9 Field pattern in polar format for N = 6. 82

3.10 Graphical representation of a solid angle. 83

3.11 Antenna radiation pattern approximated as a rectangular area. 86

3.12 Antenna radiation pattern approximated as an elliptical area. 88

3.13 Polarized fields. 89

3.14 Popular antennas: (a) circular loop antenna; (b) linear polarized horn
antenna; (c) parabolic antenna. 90

3.15 Printed patch antenna. 91

3.16 Configuration of a 4-dipole linear array. 92

3.17 Half-wavelength dipole-based 2D antenna array. 92

4.1 Transmitter and receiver pulse trains. 94

4.2 Pulse repetition period and range ambiguity. 95

4.3 Range resolution. 95

4.4 Block diagram of a radar system. 96

4.5 Key elements of radar range equation. 99

4.6 Surface clutter and volume clutter. 102



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

LIST OF ILLUSTRATIONS xxiii

4.7 Wave propagation for stationary source and stationary receiver. 103

4.8 Wave propagation for moving source and stationary receiver. 104

4.9 Wave propagation for stationary source and moving receiver. 105

4.10 Wave propagation for moving source and moving receiver. 106

4.11 Doppler radar with separate source and receiver. 107

4.12 Example of Doppler frequency. 109

4.13 Rectangular pulse and its frequency spectrum. 112

4.14 Ambiguity function of a rectangular pulse in 3D view. 113

4.15 Cross-sectional view of Fig. 4.14 with � = 0 (a) and � = 0.5Tp (b). 114

4.16 Cross-sectional view of Fig. 4.14 with fD = 0 (a) and fD = 2.5/Tp (b). 114

4.17 A 3-dB contour of ambiguity function of a rectangular pulse in 3D view. 115

5.1 Transmitter block diagram of a pulse-modulated radar system. 118

5.2 Time- and frequency-domain waveforms of pulse-modulated
radar signal. 119

5.3 Time- and frequency-domain waveforms of two video pulses. 120

5.4 Block diagram of Doppler frequency extraction. 121

5.5 Block diagram of an offset carrier demodulation. 122

5.6 Block diagram of a pulse–Doppler radar system. 122

5.7 Time-domain waveform (a) and time–frequency relation (b) of a
pulsed LFM signal. 125

5.8 Time- and frequency-domain waveforms of a pulsed symmetric
LFM signal. 128

5.9 Time- and frequency-domain waveforms of a pulsed nonsymmetric
LFM signal. 128

5.10 Block diagram of a PLFM radar system. 129

5.11 Block diagram of a CWLFM radar system. 129

5.12 Time–Frequency relationship of a CWLFM radar signal. 130

5.13 Waveforms of (a) a CWSFM radar signal and (b) a pulsed SFM
radar signal. 131

5.14 Time–frequency relationship of (a) CWSFM radar signal and (b) a
PSFM radar signal. 132

5.15 Block diagram of a stepped frequency modulation radar. 132

5.16 In-phase–quadrature-phase (I–Q) demodulator. 133

5.17 DFT-based processing of chirp signal. 136

5.18 Waveforms of Tx signal and matched filter function. 137

5.19 Waveforms of Tx signal and Rx signal. 138

5.20 Frequency spectrum of Tx signal. 139

5.21 Frequency spectrum of matched filter (MF) function. 140

5.22 Frequency spectrum of Rx signal. 141



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

xxiv LIST OF ILLUSTRATIONS

5.23 Comparison of pulse compression based on convolution and DFT. 142

5.24 Waveforms of Tx signal and MF function. 143

5.25 Frequency spectra of Tx signal and MF function. 144

5.26 Time- and frequency-domain waveforms of Rx signal. 145

5.27 Comparison of pulse compression based on convolution and DFT. 146

5.28 Time–frequency relationship of Tx, reference, and echo signals. 147

5.29 Block diagram of dechirp processing. 147

5.30 Time–frequency relationship of Tx and echo signals from two
stationary targets. 148

5.31 Time–frequency relationship of Tx and echo signals from two moving
targets. 149

5.32 Baseband echo response from PSFM signal. 150

5.33 A single-target range profile based on PSFM signal. 151

5.34 Stepped frequency pulse train and echoes returned in one pulse period. 152

5.35 A multiple-target range profile based on PSFM. 153

6.1 Configurations of (a) a stripmap SAR and (b) a scan SAR. 156

6.2 Imaging radar for (a) a spotlight SAR and (b) an interferometric SAR. 156

6.3 Geometry of stripmap imaging radar. 157

6.4 Geometry of (a) a broadside SAR and (b) a squint SAR. 158

6.5 (a) Imaging radar and (b) radar pulse and received echo. 159

6.6 (a) Single channel radar range data; (b) M × N radar imaging
data array. 161

6.7 Configuration of a broadside SAR system. 162

6.8 A simplified broadside SAR system. 162

6.9 Echo signal from the point target before (a) and after (b)
range compression. 163

6.10 Broadside SAR with multiple targets. 164

6.11 Slant range R(u) versus radar position u for three targets at equal (a)
and different (b) ranges. 164

6.12 Broadside SAR with single point target. 165

6.13 (a) Radiation pattern from a typical antenna array; (b) real part of a
LFM signal. 169

6.14 (a) 3-dB beamwidth of a radiation pattern from a typical antenna array;
(b) real part of amplitude-weighted LFM signal. 169

6.15 Doppler frequency and multiple targets 170

6.16 Doppler frequency versus slant range for single target. 172

6.17 Doppler frequency versus slant range for multiple targets. 173

6.18 Geometry of a forward-looking radar system with nonzero squint angle. 174

6.19 Small 
q Doppler frequency versus slow time s (a) and slant range r (b). 179



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

LIST OF ILLUSTRATIONS xxv

6.20 Low 
q Doppler frequency versus slow time s (a) and slant range r (b). 183

6.21 Comparison of Doppler frequencies for different SAR systems. 184

6.22 (a) Multiple-target squint SAR system; (b) plot of Doppler frequency
fD versus radar displacement u. 185

6.23 A simplified single-target squint SAR system. 186

6.24 Single-target trajectory in squint SAR system. 187

6.25 Geometric distortions of radar image. 188

6.26 The resolution cell of a side-looking radar. 190

7.1 Geometry of a range imaging radar. 195

7.2 An ideal target function. 195

7.3 Matched filtering for range imaging. 197

7.4 A reconstructed target function f(x). 198

7.5 (a) A typical cross-range radar imaging system; (b) a simplified system. 199

7.6 Relationship between radar beams and targets. 200

7.7 Relationship between received signal and reference signal. 203

7.8 Computation of spatial frequency band limitation. 208

7.9 Matched filtering for cross-range imaging. 213

7.10 A squint mode cross-range imaging system. 213

7.11 Relationship between targets and squint radar beam. 214

7.12 Computation of spatial frequency band limitation for squint radar. 217

7.13 I–Q radar signal generation. 222

7.14 Doppler frequency spectra of a broadside SAR. 223

7.15 Doppler frequency spectra of a squint SAR. 224

8.1 Major tasks of SAR radar image processing. 227

8.2 System model of radar image generation. 229

8.3 A simplified broadside SAR system for radar image generation. 230

8.4 A simplified squint SAR system for radar image generation. 231

8.5 Single-target broadside SAR system for radar image generation. 231

8.6 Received signal array from Fig. 8.5. 232

8.7 A simplified and digitized received signal array from Fig. 8.6. 233

8.8 Waveforms of the real and imaginary parts of a baseband symmetric
LFM signal. 235

8.9 Waveforms of received baseband signal from Fig. 8.5. 235

8.10 Received signal arrays from Fig. 8.3. 236

8.11 A simplified and digitized signal array from Fig. 8.10. 236

8.12 Waveforms of the individual received signal from Fig. 8.10. 238

8.13 Waveforms of the received signals from Fig. 8.10. 239

8.14 System model of a single-target squint SAR. 240

8.15 A received signal array from Fig. 8.14. 241



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

xxvi LIST OF ILLUSTRATIONS

8.16 A digitized signal array from Fig. 8.15. 241

8.17 Waveforms of a received baseband signal from Fig. 8.14. 242

8.18 System model of a three-target squint SAR. 243

8.19 The received signal arrays from Fig. 8.18. 244

8.20 The digitized signal arrays from Fig. 8.19. 245

8.21 Waveforms of the individual received signal from Fig. 8.18. 246

8.22 Waveforms of the received signals from Fig. 8.18. 247

8.23 Flow diagram of the range–Doppler algorithm. 247

8.24 (a) An M × N 2D data array; (b) mth row of 2D data array. 248

8.25 Operation of a corner turn. 249

8.26 A range-compressed signal array in range–Doppler frequency domain. 252

8.27 A range-compressed signal array after fractional interpolation. 253

8.28 A range-compressed signal array after sample shift. 253

8.29 Waveforms of transmitter baseband signal, range reference function,
and azimuth reference function. 256

8.30 Frequency spectra of range and azimuth matched filters. 257

8.31 3D view of a range-compressed signal array based on Fig. 8.5. 258

8.32 2D view of a range-compressed signal array based on Fig. 8.31. 258

8.33 3D view of a range–Doppler frequency spectrum based on Fig. 8.31. 259

8.34 2D view of a range–Doppler frequency spectrum based on Fig. 8.33. 259

8.35 3D view of a reconstructed single-target function based on Fig. 8.33. 260

8.36 Cross-sectional view of a reconstructed single-target function based on
Fig. 8.35. 261

8.37 3D view of a range-compressed signal array based on Fig. 8.3. 262

8.38 2D view of a range-compressed signal array based on Fig. 8.37. 263

8.39 3D view of a range–Doppler frequency spectrum based on Fig. 8.37. 264

8.40 2D view of a range–Doppler frequency spectrum based on Fig. 8.39. 264

8.41 3D view of a reconstructed target function based on Fig. 8.39. 265

8.42 Cross-sectional view of Fig. 8.41 at range samples 181 and 211. 266

8.43 Cross-sectional view of Fig. 8.41 at azimuth lines 563, 818, and 939. 267

8.44 Waveforms of the real and imaginary parts of azimuth
reference function. 268

8.45 Frequency spectrum of azimuth reference function. 269

8.46 3D view of a range-compressed signal based on Fig. 8.14. 270

8.47 2D view of a range-compressed signal from Fig. 8.14. 270

8.48 3D view of a spatial Fourier transformed signal from Fig. 8.46. 271

8.49 2D view of a spatial Fourier-transformed signal from Fig. 8.46. 272

8.50 3D view of Fig. 8.46 after range cell migration correction. 273

8.51 2D view of Fig. 8.46 after range cell migration correction. 274



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

LIST OF ILLUSTRATIONS xxvii

8.52 3D view of a reconstructed target function from Fig. 8.14. 275

8.53 Cross-sectional view of Fig. 8.52 at range sample 181 and azimuth line
571, respectively. 275

8.54 3D view of a range-compressed signal from Fig. 8.18. 277

8.55 2D view of a range-compressed signal from Fig. 8.18. 277

8.56 3D view of spatial Fourier-transformed signal from Fig. 8.54. 278

8.57 2D view of a spatial Fourier-transformed signal from Fig. 8.54. 279

8.58 3D view of Fig. 8.56 after range cell migration correction. 281

8.59 2D view of Fig. 8.56 after range cell migration correction. 282

8.60 3D view of a reconstructed target function from Fig. 8.18. 282

8.61 Cross-sectional view of Fig. 8.60 at range samples 181 and 211. 283

8.62 Cross-sectional view of Fig. 8.60 at azimuth lines 571, 786, and 947. 284

9.1 Data distribution before (a) and after (b) transformation. 287

9.2 Data distribution before (◦) and after ( �) interpolation. 288

9.3 Block diagram of the Stolt interpolation algorithm. 294

9.4 System model of a six-target broadside SAR. 295

9.5 Received signal array based on Fig. 9.4. 295

9.6 Waveforms of the real part of individual echo signal based on Fig. 9.4. 298

9.7 Waveforms of received signal based on Fig. 9.4. 299

9.8 3D view of s1c(t, �D) in range–Doppler frequency domain. 300

9.9 2D view of s1c(t, �D) in range–Doppler frequency domain. 300

9.10 3D view of the roughly compressed six-target function. 302

9.11 Side view, from the range direction, of Fig. 9.10. 302

9.12 Side view, from the azimuth direction, of Fig. 9.10. 303

9.13 3D view of refocused six-target function. 304

9.14 Side view, from the range direction, of Fig. 9.13. 304

9.15 Side view, from the azimuth direction, of Fig. 9.13. 305

9.16 System model of a 6-target squint SAR. 306

9.17 Received signal array derived from Fig. 9.16. 306

9.18 Waveforms of the real part of individual echo signal from Fig. 9.16. 309

9.19 Waveforms of received signal from Fig. 9.16. 310

9.20 3D view of s1c(t , �D) in range–Doppler frequency domain. 310

9.21 2D view of s1c(t, �D) in range–Doppler frequency domain. 311

9.22 Synthesized 1D azimuth reference function for squint SAR system. 312

9.23 3D view of roughly compressed target function. 313

9.24 Side view, from the range direction, of Fig. 9.23. 313

9.25 Side view, from the azimuth direction, of Fig. 9.23. 314

9.26 3D view of refocused target function. 315



P1: OTA/XYZ P2: ABC
fm JWBK230/Wang June 20, 2008 1:9 Printer Name: Yet to Come

xxviii LIST OF ILLUSTRATIONS

9.27 Side view, from the range direction, of Fig. 9.26. 316

9.28 Side view, from the azimuth direction, of Fig. 9.26. 316

9.29 3D view of Haz(t, �D). 317

9.30 2D view of Haz(t, �D). 318

9.31 3D view of reconstructed target function. 319

9.32 Side view, from the range direction, of Fig. 9.31. 319

9.33 Side view, from the azimuth direction, of Fig. 9.31. 320

9.34 Waveforms of the real and imaginary parts of a received satellite
baseband signal. (With permission from MDA Geospatial Services.) 322

9.35 Image of a received satellite signal after range compression. 323

9.36 Image of a range-compressed signal in range–Doppler
frequency domain. 323

9.37 Radar image after bulk compression. 324

9.38 Radar image after differential azimuth compression. 326

9.39 Radar image processed by range–Doppler algorithm. 327

9.40 Radar image processed by Stolt interpolation technique. 328

9.41 Radar image processed by range–Doppler algorithm. 328

Table

1.1 16 sets of 8-tap interpolation filters 23



P1: OTA/XYZ P2: ABC
c01 JWBK230/Wang July 8, 2008 1:3 Printer Name: Yet to Come

1

SIGNAL THEORY
AND ANALYSIS

A signal, in general, refers to an electrical waveform whose amplitude varies with
time. Signals can be fully described in either the time or frequency domain. This
chapter discusses the characteristics of signals and identifies the main tools used
for signal processing. Some functions widely used in signal processing are described
in Section 1.1. A quick review of the linear system and convolution theory is covered
in Section 1.2. Fourier series representation of periodic signals is discussed in Section
1.3. Fourier transform of nonperiodic signals and periodic signals are covered in
Sections 1.4 and 1.5, respectively. Section 1.6 describes sampling theory together
with signal interpolation. Some advanced sampling and interpolation techniques are
reviewed in Section 1.7.

1.1 SPECIAL FUNCTIONS USED IN SIGNAL PROCESSING

1.1.1 Delta or Impulse Function δ(t)

The delta function or impulse function δ(t) is defined as

δ(t) = ∞ for t = 0,

= 0 for t �= 0.

and ∫ ∞

−∞
δ(t)dt = 1. (1.1)

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.

1
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2 SIGNAL THEORY AND ANALYSIS

On the basis of this definition, one can obtain

∫ ∞

−∞
f (t)δ(t)dt = f (0)

and

∫ ∞

−∞
f (t)δ(t − t0)dt = f (t0).

1.1.2 Sampling or Interpolation Function sinc (t)

The function sinc (t) is defined as

sinc (t) = 1 for t = 0

= sin (π t)

π t
otherwise

and

∫ ∞

−∞
sinc (t)dt = 1. (1.2)

A sinc (t) function for t = −4 to 4 is depicted in Fig. 1.1. Notice that sinc (t) = 0
for all integers of t, and its local maxima corresponds to its intersection with the
cos (π t).

−3−4 −2 2 3 4

t
0

1−1

1

sinc (t)

0.5

0.25

0.75

−0.25

FIGURE 1.1 A sinc (t) function.
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LINEAR SYSTEM AND CONVOLUTION 3

1.2 LINEAR SYSTEM AND CONVOLUTION

A linear system, as shown in Fig. 1.2, can be represented as a box with input x, output
y and a system operator H that defines the relationship between x and y. Both x and
y can be a set of components.

H
x y

FIGURE 1.2 A linear system.

A system is linear if and only if

H(a x + b y) = a H x + b H y. (1.3)

where a and b are constants, x is the system’s input signal, and y is the output signal.
In addition, a linear system having the fixed input–output relation

Hx(t) = y(t)

is time-invariant if and only if

Hx(t − τ ) = y(t − τ )

for any x(t) and any τ . In the following discussion, only the linear and time-invariant
system is considered.

Let pτ (t) be a pulse with amplitude 1/�τ and duration �τ ; then any function f (t)
can be represented as

f (t) ≈
∞∑

n=−∞
f (n�τ )pτ (t − n�τ )�τ. (1.4a)

Figure 1.3 illustrates the relationship between pτ (t) and the function f (t). Figure
1.3a shows a rectangular polygon with amplitude 1/�τ and duration�τ ; Fig. 1.3b

f(t)

tt

pτ(t)

1/∆τ

∆τ0

(a) (b)

0
3∆τ

f(3∆τ)

FIGURE 1.3 Graphical representations of a function in terms of pulses.
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4 SIGNAL THEORY AND ANALYSIS

displays how a function f (t) can be approximated by a series of delayed rectangular
polygon pτ (t− n�τ ) with amplitude f (n�τ )�τ .

As �τ → 0, n�τ → τ . Therefore

pτ (t) → δ(t)

and

pτ (t − n�τ ) → δ(t − τ ).

The summation of Eq. (1.4a) then becomes

f (t) =
∫ ∞

−∞
f (τ )δ(t − τ )dτ . (1.4b)

Let h(t) be the impulse response of a system:

H δ(t) = h(t).

Then, for any input function x(t), the output function y(t) can be expressed as

y(t) = H x(t)

= H
∫ ∞

−∞
x(τ )δ(t − τ )dτ

=
∫ ∞

−∞
x(τ )h(t − τ )dτ

= x(t) ∗ h(t). (1.5)

where the asterisk (symbol ∗) refers to convolution. If x(t) = δ(t), then

y(t) = x(t) ∗ h(t)

= δ(t) ∗ h(t)

= h(t).

Equation (1.5) states the relationship between the input function x(t), the impulse
response or system function h(t), and the output function y(t). It serves as a funda-
mental equation and is widely used in linear and time-invariant systems. A simple
block diagram that illustrates this relationship is shown in Fig. 1.4

y(t)x(t)
h(t)

FIGURE 1.4 A time-invariant linear system.
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1.2.1 Key Properties of Convolution

1.2.1.1 Commutative
By letting λ = t − τ , Eq. (1.5) becomes

y(t) =
∫ ∞

−∞
x(τ )h(t − τ )dτ

=
∫ ∞

−∞
x(t − λ)h(λ)dλ

= h(t) ∗ x(t).

Therefore

y(t) = x(t) ∗ h(t)
= h(t) ∗ x(t). (1.6)

1.2.1.2 Associative
If

y(t) = [x(t) ∗ h(t)] ∗ z(t),

then

y(t) = x(t) ∗ [h(t) ∗ z(t)]
= [x(t) ∗ z(t)] ∗ h(t). (1.7)

1.2.1.3 Distributive
If

y(t) = x(t) ∗ h(t) + x(t) ∗ z(t),

then

y(t) = x(t) ∗ [h(t) + z(t)]. (1.8)

1.2.1.4 Timeshift
If

y(t) = x(t) ∗ h(t),

then

y(t − τ ) = x(t − τ ) ∗ h(t)
= x(t) ∗ h(t − τ ). (1.9)



P1: OTA/XYZ P2: ABC
c01 JWBK230/Wang July 8, 2008 1:3 Printer Name: Yet to Come
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1.3 FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS

A signal gp(t) is called a periodic signal with period T0 if it remains unchanged after
it has been shifted forward or backward by T0, that is

gp(t) = gp(t +/− T0),

where T0 = 2π /ω0.
There are three different Fourier series representations for a periodic signal. The

first two representations are in terms of trigonometric functions, while the third is in
exponential form. The three Fourier series representations of a periodic signal gp(t)
are described below.

1.3.1 Trigonometric Fourier Series

A periodic signal gp(t) can be represented as

gp(t) = a0 +
∞∑

n=1

ancos (nω0t) +
∞∑

n=1

bn sin (nω0t), (1.10a)

where an and bn for n = 1,2, . . . can be computed as

a0 = 1

T0

∫ T0

0
gp(t) dt, (1.10b)

an = 2

T0

∫ T0

0
gp (t)cos (nω0t) dt, (1.10c)

bn = 2

T0

∫ T0

0
gp (t)sin (nω0t) dt. (1.10d)

1.3.2 Compact Trigonometric Fourier Series

Alternatively, a periodic signal gp(t) can be represented as

gp(t) = c0 +
∞∑

n=1

cn cos(nω0 + θn), (1.11a)

where

c0 = a0, (1.11b)

cn =
√

a2
n + b2

n, (1.11c)

θn = tan−1 bn

an
. (1.11d)
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1.3.3 Exponential Fourier Series

A periodic signal gp(t) can also be represented as

gp(t) =
∞∑

n=−∞
Gne jnω0t , (1.12a)

where

Gn = 1

T0

∫ T0

0
gp (t)e− jnω0t dt,

or

G0 = a0, (1.12b)

Gn = an − j bn

2
, (1.12c)

G−n = an + j bn

2
. (1.12d)

Example 1.1 Figure 1.5 shows a periodic signal gp(t), which is expressed as

gp(t) =
∞∑

n=−∞
g(t − nT0),

with

g(t) = A for − τ

2
≤ t ≤ τ

2
,

= 0 otherwise.

t

g
p
(t)

A

τ/2−τ/2
(0,0) T

0 2T
0

−T
0

−2T
0

FIGURE 1.5 A periodic signal gp(t).
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The Fourier series coefficients of gp(t) in terms of these three representations can be
computed as the following equations show:

1. From Eq. (1.10)

gp(t) = a0 +
∞∑

n=1

an cos (nω0t) +
∞∑

n=1

bn sin (nω0t).

a0 = 1

T0

∫ T0

0
gp(t)dt

= 1

T0

∫ τ/2

−τ/2
A dt

= Aτ

T0
.

an = 2

T0

∫ T0

0
gp (t) cos (nω0t) dt

= 2

T0

∫ τ/2

−τ/2
A cos nω0 t dt

= 2A

nπ
sin

nπτ

T0
.

bn = 2

T0

∫ T0

0
gp (t) sin (nω0t) dt

= 2

T0

∫ τ/2

−τ/2
A sin (nω0t) dt

= 0.

2. From Eq. (1.11)

gp(t) = c0 +
∞∑

n=1

cn cos (nω0 + θn).

c0 = a0

= Aτ

T0
.

cn =
√

a2
n + b2

n

= an

= 2A

nπ
sin

nπτ

T0
.

θn = tan−1 bn

an

= 0.
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3. From Eq. (1.12)

gp(t) =
∞∑

n=−∞
Gne jnω0t .

G0 = a0.

Gn = G−n

= an

2

= A

nπ
sin

nπτ

T0

= Aτ

T0

sin (nπτ/T0)

nπτ/T0

= Aτ

T0
sinc

(
nτ

T0

)
.

Figure 1.6 displays the Gn for the case when A = 1 and τ = T0 / 2. Notice that
the Fourier series coefficients of {Gn} are discrete and the dashed line represents the
envelope of {Gn}.

G
n

−3−7
−5 5

3 7

1/2

n
0 1−1

FIGURE 1.6 Fourier series coefficients of a periodic pulse.

Example 1.2 Let the periodic signal gp(t) in Example 1.1 be modified with τ = 0
and A = ∞, such that Aτ = 1:

gp(t) =
∞∑

n=−∞
g (t − nT0)

=
∞∑

n=−∞
δ(t − nT0).
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The three Fourier series representations of a periodic impulse train can be com-
puted as follows:

1. From Eq. (1.10)

a0 = 1

T0

∫ T0

0
gp(t)dt

= lim
τ→0
A→∞

1

T0

∫ τ/2

−τ/2
δ(t)dt

= 1

T0
.

an = lim
τ→0
A→∞

2

T0

∫ τ/2

−τ/2
δ (t) cos (nω0t) dt

= 2

T0
.

bn = 0.

Therefore

gp(t) =
∞∑

n=−∞
δ(t − nT0)

= 1

T0
+

∞∑
n=1

2

T0
cos (nω0t).

2. From Eq. (1.11)

c0 = a0

= 1

T0
.

cn =
√

a2
n + b2

n

= an

= 2

T0
.

θn = tan−1 bn

an

= 0.
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Therefore

gp(t) =
∞∑

n=−∞
δ(t − nT0)

= 1

T0
+

∞∑
n=1

2

T0
cos (nω0t).

3. From Eq. (1.12)

G0 = a0

= 1

T0
.

Gn = G−n

= an

2

= 1

T0
.

Therefore

gp(t) =
∞∑

n=−∞
δ(t − nT0)

=
∞∑

n=−∞

1

T0
e jnω0t .

1.4 NONPERIODIC SIGNAL REPRESENTATION
BY FOURIER TRANSFORM

A periodic signal gp(t) can always be represented in one of the three Fourier series
forms described in the previous section. Consider the signal based on exponential
representation as shown in Eq. (1.12a), that is

gp(t) =
∞∑

n=−∞
Gne jnω0t ,

where Gn can be derived as

Gn = 1

T0

∫ T0

0
gp(t)e− jnω0t dt
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or

Gn = 1

T0

∫ T0/2

−T0/2
gp(t)e− jnω0t dt.

A nonperiodic signal g(t) can be considered as a periodic signal gp(t) with the
period T0 → ∞:

g(t) = lim
T0→∞

gp(t).

Notice that T0 → ∞ implies ω0 = (2π/T0) → 0.
Let ω0 ≈ �ω; then

T0Gn =
∫ T0/2

−T0/2
gp(t)e− jn �ωt dt.

From the integration shown above, it can be seen that T0Gn is a function of n�ω;
therefore, one can define

T0Gn = G(n�ω),

and

gp(t) =
∞∑

n=−∞

G(n�ω)

T0

e jn �ωt

=
∞∑

n=−∞

G(n�ω)�ω

2π
e jn �ωt .

Now

g(t) = lim
T0→∞

gp(t)

= lim
T0→∞

1

2π

∞∑
n=−∞

G(n�ω)e jn �ωt�ω

= 1

2π

∫ ∞

−∞
G(ω)e jωt dω. (1.13)

Similarly

G(ω) = lim
�ω→0

G(n�ω)

= lim
T0→∞

T0Gn

=
∫ ∞

−∞
g(t)e− jωt dt. (1.14)
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Equations (1.13) and (1.14) are referred to as the Fourier transform pair. G(ω)
in Eq. (1.14) is considered as the direct Fourier transform of g(t), while g(t) in
Eq. (1.13) is the inverse Fourier transform of G(ω). The transform pair can also be
expressed as

G(ω) = F [g(t)]

and

g(t) = F−1[G(ω)].

The Fourier transform pair can also be expressed symbolically as

g(t) ↔ G(ω).

Some key properties of the Fourier transform are listed below:

1. G(−ω) = G∗(ω) (1.15)

where the asterisk (*) denotes complex conjugate of .

2. If g(t) ↔ G(ω), then

G(t) ↔ 2πg(−ω). (1.16)

3. g(at) ↔ 1

|a|G
(ω

a

)
. (1.17)

4. g(t − t0) ↔ G(ω)e− jωt0 . (1.18)

5. g(t)e jω0t ↔ G(ω − ω0). (1.19)

6. If g1(t) ↔ G1(ω) and g2(t) ↔ G2(ω), then

g1 (t) ∗ g2 (t) ↔ G1(ω)G2(ω), (1.20)

where the asterisk denotes convolution.

7. If g1(t) ↔ G1(ω) and g2(t) ↔ G2(ω), then

g1(t)g2(t) ↔ 1

2π
G1 (ω) ∗ G2 (ω) . (1.21)

where the asterisk denotes convolution.
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Example 1.3 Let g(t) be defined as

g(t) = 1 for − τ

2
≤ t ≤ τ

2
,

= 0 otherwise.

The Fourier transform of g(t) can be computed as

G(ω) = F [g(t)]

=
∫ ∞

−∞
g(t)e− jωt dt

=
∫ τ/2

−τ/2
e− jωt dt

= τ
sin ωτ/2

ωτ/2

= τ sinc (ωτ/2π ).

Figure 1.7 displays the time domain function g(t) and its Fourier transform G(ω).

g(t)

t

1

τ/2−τ/2

(0,0)

G(ω)

ω(0,0)

τ

4π/τ

2π/τ 6π/τ

−4π/τ
−2π/τ−6π/τ

FIGURE 1.7 A single pulse g(t) and its Fourier transform G(ω).

By comparing Figs. 1.6 and 1.7, one can see that the Fourier series coefficients
of a periodic pulse train is the discrete version of the Fourier transform of a single
pulse.

Example 1.4 Let G(ω) be defined as

G(ω) = 1 for − 2π fm ≤ ω ≤ 2π fm,

= 0 otherwise.
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The inverse Fourier transform of G(ω) can be computed as

g(t) = F−1[G(ω)]

= 1

2π

∫ ∞

−∞
G(ω)e jωt dω

= 1

2π

∫ 2π fm

−2π fm

e jωt dω

= 2 fm
sin 2π fmt

2π fmt

= 2 fm sinc (2 fmt).

Figure 1.8 displays the frequency domain function G(ω) and its inverse Fourier
transform g(t).

g(t)

t

1

(0,0)

G(ω)

ω (0,0)−2πfm
2πfm

2fm

−1/fm

−3/2fm
−1/2fm 1/2fm 3/2fm

1/fm−2/fm
2/fm

FIGURE 1.8 A single-pulse frequency spectrum G(ω) and its inverse Fourier transform g(t).

Example 1.5 Let g(t) = δ(t), the Fourier transform of g(t) can be computed as

G(ω) = F [g(t)]

=
∫ ∞

−∞
g(t)e− jωt dt

=
∫ ∞

−∞
δ(t)e− jωt dt

= 1.
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Therefore, δ(t) and 1 are a Fourier transform pair:

δ(t) ↔ 1.

Similarly, if G(ω) = δ(ω), then

g(t) = F−1[G(ω)]

= 1

2π

∫ ∞

−∞
δ(ω)e jωt dω

= 1

2π
.

Therefore, 1 and 2πδ(ω) are a Fourier transform pair:

1 ↔ 2πδ(ω).

1.5 FOURIER TRANSFORM OF A PERIODIC SIGNAL

Although the Fourier transform was derived from the nonperiodic signal, it can also
be used to represent the periodic signal. The Fourier transform of a periodic sig-
nal can be computed by first representing the periodic signal in terms of a Fourier
series expression, then transforming each Fourier series coefficient (represented in
exponential form) into the frequency domain. The following examples illustrate the
Fourier transform of periodic signals.

Example 1.6 Let gp(t) be a periodic impulse train, expressed as

gp(t) =
∞∑

n=−∞
δ(t − nT0).

The Fourier transform of gp(t) can be computed by first expressing the periodic signal
gp(t) in terms of the Fourier series in the exponential form. Thus, from Example 1.2,
we obtain

gp(t) =
∞∑

n=−∞
Gne jnω0t

= 1

T0

∞∑
n=−∞

e jnω0t ,
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where ω0 = 2π/T0. From Example 1.5, the Fourier transform of gp(t) can then be
computed as

G(ω) = F [gp(t)]

= 1

T0

∞∑
n=−∞

∞∫
−∞

e− j(ω−nω0)t dt

= 2π

T0

∞∑
n=−∞

δ(ω − nω0).

Figure 1.9 displays the time-domain impulse train gp(t) and its Fourier transform
G(ω). Both gp(t) and G(ω) appear to be impulse trains. Notice that the amplitude of
the impulse train in the frequency domain is ω0 and its spectrum repeated at ± nω0

with n = 1,2, . . . and ω0 = 2π/T0.

1

t

g
p
(t)

T0
(0,0)

G(ω)

ω

ω0

−2ω0
2ω0

ω0
−ω0 (0,0)

FIGURE 1.9 A periodic impulse train and its Fourier transform.

Example 1.7 Consider the signal gp(t) shown in Example 1.1, expressed as

gp(t) =
∞∑

n=−∞
g (t − nT0),

where

g(t) = A for − τ

2
≤ t ≤ τ

2
,

= 0 otherwise.

The Fourier transform of the periodic pulse train gp(t) can be computed in two
steps:

Step 1 A periodic signal should first be expressed in terms of the Fourier series
in exponential form:

gp(t) =
∞∑

n=−∞
Gne jnω0t .
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The Fourier series coefficients Gn can be computed as

G0 = Aτ

T0
.

Gn = G−n

= an

2

= A

nπ
sin

nπτ

T0
.

Therefore, gp(t) can be expressed as

gp(t) =
∞∑

n=−∞

A

nπ
sin

(
nπτ

T0

)
e jnω0t .

Step 2 The Fourier transform of gp(t) can then be computed as

G(ω) = F [gp(t)]

=
∞∫

−∞

∞∑
n=−∞

A

nπ
sin

(
nπτ

T0

)
e jnω0t e− jωt dt

=
∞∑

n=−∞

A

nπ
sin

(
nπτ

T0

) ∞∫
−∞

e− j(ω−nω0)t dt .

Example 1.5 has shown that

1 ↔ 2πδ(ω).

Therefore

G(ω) = 2π

∞∑
n=−∞

A

nπ
sin

nπτ

T0
δ(ω − nω0)

= A
2πτ

T0

∞∑
n=−∞

sin(nπτ/T0)

nπτ/T0
δ (ω − nω0).

If τ = T0 /2 and A = 1, then

G(ω) = π

∞∑
n=−∞

sinc (n/2) δ(ω − nω0).
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G(ω)

ω−ω0

−3ω0−7ω0

−5ω0
5ω0

ω0

3ω0
7ω0

π

FIGURE 1.10 Fourier transform of a periodic pulse train.

Notice that G(ω) is a discrete signal that exists when ω = nω0 with n equal to an
integer. Figure 1.10 demonstrates the frequency spectrum of G(ω) for n = −8 to 8,
and its envelope is shown as sinc (n/2).

Note that from Figs. 1.6 and 1.10, for the same periodic sequence gp(t), the am-
plitude of Fourier series coefficients Gn and the amplitude of Fourier transform G(ω)
are the same with a scaling difference of only 2π .

1.6 SAMPLING THEORY AND INTERPOLATION

The sampling theory states that any signal that is frequency band-limited to fm can
be reconstructed from samples taken at a uniform time interval of Ts ≤ 1/(2fm).
The time interval Ts = 1/(2fm) is called the Nyquist interval, and the corresponding
sampling rate is known as the Nyquist rate. The sampling theory can be derived as
explained below.

Consider a signal x(t) with its Fourier transform as X(ω) and its frequency spec-
trum band-limited to fm. Let gp(t) be a unit impulse train as described in Example
1.6. Multiplication of x(t) with gp(t) yields the sampled signal xs(t):

xs(t) = x(t)gp(t)

= x(t)
∞∑

n=−∞
δ(t − nTs). (1.22)

As shown in Example 1.6, a periodic pulse train can be expressed in terms of the
Fourier series; that is, with ωs = 2π /Ts, are obtains

xs(t) = x(t)
1

Ts

∞∑
n=−∞

e jnωs t

= 1

Ts

∞∑
n=−∞

x(t)e jnωs t .
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t

x(t)
|X(ω)|

ωωm
−ωm

(0,0)
(0,0)

(b)(a)

t

gp(t)

1

Gp(ω)

ω
−ωs−2ωs 2ωsωs(0.0)

Ts

(0,0)

(d)(c)

xs(t)

t
(0,0)

Ts

|Xs(ω)|

ω−ωm ωm 2ωsωs−2ωs
−ωs

(0.0)

LPF
Ts

1/Ts

(f)(e)

ωs

FIGURE 1.11 Graphical representations of the sampling theory.

By taking the Fourier transform of xs(t), one obtains

Xs(ω) = 1

Ts

∞∑
n=−∞

X (ω − nωs). (1.23)

This equation states that after multiplication of x(t) by the unit impulse train gp(t),
the new frequency spectra Xs(ω) consists of X(ω), plus replica located at ω = ± nωs,
for n = 0,1,2, . . . . The amplitude of Xs(ω) is attenuated by a factor of 1/Ts.

Figure 1.11 illustrates the sampling theory. The original signal x(t) and its analog
frequency spectrum |X(ω)| are shown in Figs. 1.11a and 1.11b. A periodic impulse
train gp(t) and its spectra are shown in Figs. 1.11c and 1.11d. By multiplying x(t) with
gp(t), one can then display the resultant xs(t) in Fig. 1.11e with the corresponding
spectra shown in Fig. 1.11f.

From Fig. 1.11f, one can see that to prevent overlap between the neighboring
spectra, the sampling frequency ωs = 2π /Ts must satisfy the requirement that ωs ≥
(2 × 2π fm) = 2ωm.

To reconstruct the original signal x(t) from the digitized signal xs(t), one needs to
filter out the spectrum X(ω), as shown in Fig. 1.11b, from the spectra Xs(ω), as shown
in Fig. 2.11f. A lowpass filter (LPF) with a cutoff frequency at 2π fm and a gain equal
to Ts meets the filtering requirement. By passing the xs(t) through this lowpass filter,
one can reconstruct the original signal x(t).
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Letting H(ω) be such a rectangular LPF, one can compute the time-domain func-
tion h(t) as

h(t) = 1

2π

∫ 2π fm

−2π fm

Tse jωt dω

= 2 fm Ts
sin (2π fmt)

2π fmt
.

Let the sampling frequency fs = 2fm; then

h(t) = sinc (2 fmt). (1.24)

In the time domain, passing the signal xs(t) through the filter h(t) is equivalent to
having xs(t) convolved with h(t):

x(t) = xs(t) ∗ h(t)

=
[

x (t)
∞∑

n=−∞
δ (t − nTs)

]
∗ h(t)

=
∞∑

n=−∞
x (nTs)δ(t − nTs) ∗ sinc (2 fmt)

=
∞∑

n=−∞
x(nTs) sinc (2 fmt − 2 fmnTs)

=
∞∑

n=−∞
x(nTs) sinc (2 fmt − n). (1.25)

Equation (1.25) states that x(t) can be reconstructed from its discrete samples
x(nTs) and the interpolation function sinc (2fmt –n). Notice that x(nTs) are all equally
spaced with time interval Ts for integers n = −∞ to ∞, and also that x(t) is a con-
tinuous function in the time domain. Thus, Eq. (1.25) can be used to find x(t1), for
t1 = nTs + �Ts with � < 1, based on the discrete values of x(nTs). The new discrete
time sequence x(t1) can be considered as a resampling of x(t), or interpolated from
x(nTs).

In practical applications, the resampling process that utilizes the interpolation fil-
ter sinc (2fmt) is simplified by two approximations. First, the interpolation filter is
chosen with a finite number of sidelobes. For radar image processing, an 8-tap sinc
filter is normally used to generate a new interpolated sample. The second approxima-
tion involves choosing a finite number of interpolation intervals (or fractional shifts).
This means that the value of � < 1 is discrete and finite. A set of 16 sinc filters with
a minimum of 1

16 interpolation sample intervals, or � = 1
16 , serves well for radar
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FIGURE 1.12 Interpolation filters.

image processing. This set of 16 sinc filters provides a fractional sample shift from
1

16 , 2
16 , . . . , 15

16 . The 16
16 = 1 is not considered a sample shift.

Figure 1.12 displays the waveforms of 16 sets of interpolation filters with each
having 8-tap coefficients. Figure 1.12a shows a reference sinc (t) function with 5
sidelobes around the mainlobe. The window function is normally applied to the inter-
polation filter, yet no window or rectangular window is used here for simplification.
Figure 1.12b displays four interpolation filters with delays equal to 1

16 , 5
16 , 9

16 , and 13
16

sample intervals with respect to the top reference function, respectively. Figure 1.12c
displays the digitized version of all 16 interpolation filters, and each one corresponds
to a 1

16 sample delay from each other.
Table 1.1 lists the coefficients of the 16 interpolation filters, with each one having

8 coefficients. The first row of filters has a shift of 1
16 sample interval, while the last

one has 16
16 = 1 or no sample shift. From Table 1.1 and Fig. 1.12c, one can see that

the interpolation filters are symmetric; that is, filter coefficients of row 1 with 1
16

sample shift are the same as that of row 15 with 15
16 sample shift, except that they are

time-reversed. The filter coefficients of rows 1, 5, 9, and 13 of Table1.1 correspond
to the four sinc filters shown in Fig. 1.12b.

To illustrate the principle of resampling based on an interpolation filter, consider
a signal x(n) that consists of three normalized frequencies, f 1 = 0.15, f 2 = 0.25, and
f 3 = 0.45, and is expressed as

x(n) = 0.35 cos (2πn f1) + 0.2 sin (2πn f2) − 0.4 cos (2πn f3),

where n = 1,2, . . . , 32.
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TABLE 1.1 16 sets of 8-tap interpolation filters

−0.0203 0.0301 −0.0584 0.9936 0.0662 −0.0321 0.0211 −0.0158
−0.0390 0.0573 −0.1083 0.9745 0.1392 −0.0650 0.0424 −0.0314
−0.0555 0.0808 −0.1489 0.9432 0.2177 −0.0976 0.0629 −0.0464
−0.0693 0.1000 −0.1801 0.9003 0.3001 −0.1286 0.0818 −0.0600
−0.0799 0.1144 −0.2016 0.8469 0.3850 −0.1568 0.0985 −0.0718
−0.0871 0.1238 −0.2139 0.7842 0.4705 −0.1810 0.1120 −0.0811
−0.0908 0.1281 −0.2172 0.7136 0.5550 −0.1998 0.1218 −0.0876
−0.0909 0.1273 −0.2122 0.6366 0.6366 −0.2122 0.1273 −0.0909
−0.0876 0.1218 −0.1998 0.5550 0.7136 −0.2172 0.1281 −0.0908
−0.0811 0.1120 −0.1810 0.4705 0.7842 −0.2139 0.1238 −0.0871
−0.0718 0.0985 −0.1568 0.3850 0.8469 −0.2016 0.1144 −0.0799
−0.0600 0.0818 −0.1286 0.3001 0.9003 −0.1801 0.1000 −0.0693
−0.0464 0.0629 −0.0976 0.2177 0.9432 −0.1489 0.0808 −0.0555
−0.0314 0.0424 −0.0650 0.1392 0.9745 −0.1083 0.0573 −0.0390
−0.0158 0.0211 −0.0321 0.0662 0.9936 −0.0584 0.0301 −0.0203
−0.0000 0.0000 −0.0000 0.0000 1.0000 −0.0000 0.0000 −0.0000

To resample x(n) to obtain a new set of digitized samples with a 0.5 sample
shift, row 8 of the interpolation filter from Table 1.1 is chosen. The new set of data
x(n + 0.5) is computed from Eq. (1.25) by convolving the eight old data samples of
x(n) with the interpolation filter. Figure 1.13 displays the results of the resampling
process. Only the effective samples from samples 4–28 of the convolution output are
displayed for comparison.
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FIGURE 1.13 Original and half-sample-shifted digital signals.
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Figure 1.13a shows the digitized signal x(n), marked by hollow circles (◦), to-
gether with the original analog signal x(t). Figure 1.13b shows the interpolated (or
half-sample-shifted) signal x′ (n), marked by asterisks (*), together with the origi-
nal analog signal x(t). As can be seen, the interpolated and digitized signal closely
matches the original signal.

The sampling theory discussed so far is based on a unit impulse train. In practice,
the impulse train is replaced with a finite-time-duration pulse train. Assuming, that
all conditions are the same except that the narrow pulse train with duration τ is used,
the only difference will be that the amplitude of the Fourier series coefficient 1/Ts is
replaced with sin (nπτ /Ts)/nπ . This, in turn, causes Eq. (1.23) to become

Xs(ω) =
∞∑

n=−∞

sin (nπτ/Ts)

nπ
X (ω − nωs) (1.26)

The lowpass filter defined in Eq. (1.24) can then be applied to the digitized signal
xs(t). Accordingly, the x(t) can again be reconstructed from its digitized samples xs(t)
by passing the xs(t) through a lowpass filter h(t). The new reconstruction equation,
based on a pulse train with duration τ , can be obtained by modifying Eq. (1.25) to
become

x (t) =
∞∑

n=−∞

sin (nπτ/Ts)

nπ
x (nTs) sinc (2 fmt − n) (1.27)

1.7 ADVANCED SAMPLING TECHNIQUES

1.7.1 Sampling with Bandpass Signal

The sampling theory discussed in Section 1.6 generally applies to baseband signals
with a maximum frequency component fm. In the case where a signal is band-limited
with fl ≤ f ≤ fm and its center frequency is greater than zero, the Nyquist sampling
period Ts ≤1/(2fm) must be modified to reduce the sample rate for signal processing.

Figure 1.14 shows the frequency spectra |G(ω)| of a bandpass signal g(t).
Figure 1.14a shows the frequency spectra |G(ω)| of g(t), while Fig. 1.14b shows
the frequency spectra |Gs(ω)| of a sampled signal gs(t). From the sampling the-
ory, the spectrum of the sampled signal will consist of the attenuated spectrum from
the original signal and its replica located at ± nωs, where n = 0,1,2, . . .. The two-
sided spectra, a and b, shown in Fig. 1.14a are repeated around ± ωs, ± 2ωs . . . in
Fig. 1.14b. The spectra na and nb are the repeated spectra around ± nωs.

From Fig. 1.14, it can be seen that no spectrum is overlapped as long as the con-
ditions of fs = 2 (fm − fl) and fl = kfs with k as an integer are satisfied. If the latter
condition is not true, then a higher sampling frequency of fs > 2 (fm − fl) will be
needed.
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FIGURE 1.14 Frequency spectra of a digitized bandpass signal.

Resampling is necessary for some applications, such as digital communication or
audio/video processing. Resampling is used to reduce the computation complexity
for signals with a finite bandwidth. Some resampling techniques will now be
discussed.

1.7.2 Resampling by Evenly Spaced Decimation

Evenly spaced sample decimation can be used to reduce the sample rate by an inte-
gral factor. Consider the case of downsampling on a sequence x(n) by an integer M =
f old/f new, where f old and f new are the old and new sampling rates, respectively. Such
a downsampling process can simply retain every Mth sample and discard the others
if the frequency aliasing does not occur after downsampling. However, frequency
overlap indeed occurs in most downsampling processes. Therefore, a lowpass Finite
Impulse Response (FIR) filter is normally used to limit the bandwidth of the signal at
a new sampling rate. Both the input sequence x(n) and the FIR filter function h(n) op-
erate at an old sample rate f old, but the output sequence y(m) operates at a new sample
rate f new. Figure 1.15a shows the block diagram of downsampling with a FIR filter-
ing. Figures 1.15b and 1.15c show the signal frequency spectra before and after the
decimation for the case when M = 2. As can be seen from Fig. 1.15c, the signal fre-
quency spectra must be band-limited with f new ≥ 2fm to avoid the aliasing problem.

1.7.3 Resampling by Evenly Spaced Interpolation

Evenly spaced sample interpolation can be used to increase the sample rate by an
integral factor. Consider the case of upsampling on a sequence x(n) by an integer
M = f new/f old, where f old and f new are the old and new sampling rates, respectively.
Upsampling by M can be implemented by inserting M−1 zeros for every sample of
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FIGURE 1.15 Downsampling with a FIR filter.

x(n), and then passing it through a lowpass filter operating at the f new sampling rate.
The lowpass filter is required to filter out the frequency spectra at sampling rate f new.

Figure 1.16 illustrates the process of interpolation with the sample rate increased
by M = 3. The overall system diagram is shown in Fig. 1.16a, with x(n) as the
input and y(m) as the output. Figures 1.16b and 1.16c show the original signal x(n)
and its corresponding spectra |X(ω)| with sample rate f old. By inserting two zeros
for every sample of x(n), one obtains a new signal sequence x′(m). Figures 1.16d
and 1.16e show the new sequence x′(m) and its corresponding spectra |X′(ω)| with
sample rate f new. After passing x′(m) through a lowpass filter (LPF), one obtains the
interpolated signal y(m) as shown in Fig. 1.16f, and its frequency spectra are shown
in Fig. 1.16g.

1.7.4 Resampling by Fractional Rate Interpolation

The interpolation process described in the previous section increases the sample rate
with an integral factor. In cases where the sample rate change factor M is not an
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FIGURE 1.16 Interpolation with zero insertion and FIR LPF.

integer, interpolation followed by decimation can be used to obtain any sample rate
change. Let the new sample rate change factor be M = I + F, where I is an inte-
ger and F is a fractional value. Then M = U/D, where U and D correspond to the
upsampling and downsampling rates, respectively.

Consider the case of M = 2.5 with U = 5 and D = 2. Let the original digitized
signal and sampling frequency be x(n) and fs, respectively. To implement the in-
terpolation at a resampling rate of 2.5, one can first upsample x(n) with sampling
frequency equal to 5fs by inserting four zeros between each sample of x(n). The new
sequence of samples x′(n) are then lowpass-filtered (operating at 5fs) and followed
by downsampling with sampling frequency equal to 2fs. Figure 1.17a illustrates the
overall process of interpolation with U = 5 and D = 2. Figure 1.17b shows the origi-
nal signal spectra |X(ω)| with sample rate fs. By inserting four zeros for every sample
of x(n) followed with a lowpass FIR filter operating at new sampling rate f new = 5fs,
one obtains a new sequence x′(m). Figure 1.17c shows the spectra of |X′(ω)|. The
new sequence x′(m) is then decimated by dumping one out of every sample of x′(m).
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FIGURE 1.17 Fractional rate interpolation with M = 2.5.

The spectra of interpolated signal y(n′) running at 2.5fs is shown in Fig. 1.17d. Al-
ternatively, one can just compute one FIR filter output for every two samples shifted
into the FIR filter.

1.7.5 Resampling from Unevenly Spaced Data

Before discussing the resampling method based on unevenly spaced data, the Jaco-
bian of transformation will be explained. This process is used extensively during the
transformation between different coordinate systems.

1.7.5.1 Jacobian of Transformation. A signal can be transformed from one
coordinate system into a different coordinate system. Variables inevitably change
during a transformation from one system to another. The transformation can be linear
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or nonlinear. The transformation from one system to another may therefore cause an
extra factor to appear. This extra factor is called the Jacobian of transformation.

Consider the case where u = g(v), then (du/dv) = (dg(v)/dv) = g′(v) and

b∫
a

f (u)du =
d∫

c

f (g(v))g′(v)dv.

The extra factor g′(v) in this integration is called the Jacobian of transformation.
In general, let x = g(u,v) and y = h(u,v) be a transformation from (x,y) domain to

(u,v) domain. Then, the Jacobian of transformation, or simply Jacobian, is defined
as

J (u, v) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
= ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
. (1.28)

Let f (x,y) be a function in the R(x,y) region, and a transformation of x = g(u,v)
and y = h(u,v) transforms f (x,y) from R(x,y) into S(u,v) region. If g(u,v) and h(u,v)
have continuous partial derivatives such that the Jacobian is never zero, then∫∫

R

f (x, y) dx dy =
∫∫
S

f (g(u, v), h(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv

=
∫∫
S

f (g(u, v), h(u, v))J (u, v) du dv.

As an example, let x = g (r, θ ) = r cos θ and y = h(r,θ ) = r sin θ . From Eq. (1.28),
the Jacobian of transformation is

J (r, θ ) = ∂x

∂r

∂y

∂θ
− ∂x

∂θ

∂y

∂r
= cos θ · r cos θ + r sin θ · sin θ

= r.

Therefore, the integration shown above becomes∫∫
R

f (x, y) dx dy =
∫∫
S

f (g(r, θ ), h(r, θ )) r dr dθ.

This is the well-known rectangular-to-polar coordinate transformation.
The operation of integration in the analog domain is equivalent to summation in

the digital domain. The principle of the Jacobian of transformation can therefore be
applied to the interpolation or resampling in the digital signal processing field.
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FIGURE 1.18 Interpolation on evenly spaced data.

The sampling theory states that given a set of evenly spaced data x(n) with sam-
pling frequency fs = 2fm, one can interpolate x(n) with another set of evenly spaced
data x(k). Assume that the sampling frequency is normalized to one, that is, t =
kTs = k. Then Eq. (1.24) becomes

x(k) =
∞∑

n=−∞
x(n) sinc (k − n); k = −∞ to ∞. (1.29)

The interpolated data x(k) and the original data x(n) can be considered as in k and
n coordinate systems, respectively, and they are related as

n = k − �

= g(k),

where � is a fractional number and 0 < � < 1. The summation of Eq. (1.29) is the
discrete convolution of x(n) with sinc (n), and the data sequence x(n) is transformed
from n space to k space. Figure 1.18 shows the interpolation of evenly spaced sam-
ples from the view point of transformation between coordinate systems.

The Jacobian of transformation is then

J (k) = dn

dk
= 1.

Therefore, Eq. (1.29) holds without any extra factor for transformation from an
evenly spaced system to another evenly spaced system.
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Now, consider the case where one tries to resample a set of evenly spaced data f (k)
from a set of unevenly spaced data f (n) with no aliasing. Before the resampling pro-
cess, the unevenly spaced signal f (n) must be defined and generated. As an example,
the index n of data f (n) is generated nonlinearly through the transformation g(k) as

n = g(k)

=
√

(2k)2 − s2, (1.30)

where k is an evenly spaced variable and equal to half of the radius of a circle with
origin at (0,0). The symbol s is a constant and s < 2k.

Figure 1.19 shows the mapping relation of Eq. (1.30), with the unevenly spaced
data index n obtained from Eq. (1.30) when k = 1,1.25,1.5, . . . , 3, and s = si < 1.
The evenly spaced data index k is the intersection point between the circle with radius
r = 2k and the horizontal axis (abscissa), which is labeled as 1,2,3, . . . . The unevenly
spaced data index n is obtained by mapping the intersection point between the circle
of radius r = 2k and the line s = si to the horizontal axis, which is labeled as a, b, c. . .

The Jacobian of transformation from the n space to k space is therefore

J (k) = dg(k)

dk

= 4k√
4k2 − s2

i
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This Jacobian is then used to transform the data f (n) in n domain to f (k) in k do-
main. The interpolation equation for evenly spaced data shown in Eq. (1.29) therefore
becomes

f (k) =
∞∑

n=−∞
J (k) f (n) sinc (k − n)

= 4k√
4k2 − s2

i

∞∑
n=−∞

f (n) sinc (k − n); k = −∞ to ∞, 2k > si .

(1.31)

Notice that in this equation, the variable n shown in summation serves as an index
of the unevenly spaced sample. Figure 1.20 shows, as an example, how the unevenly

n

k

k

s

n
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FIGURE 1.20 Relationship between evenly and unevenly spaced data.
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FIGURE 1.21 Interpolation on unevenly spaced data.

spaced data f (n) and the evenly spaced data f (k) were transformed from the data
indices n and k. Given the unevenly spaced data f (n), shown as dots (•), the interpo-
lated and evenly spaced data f (k) can therefore be generated from Eq. (1.31), which
are denoted by small hollow circles (◦).

The evenly spaced signal f (k) shown in Fig. 1.13 will now be used to illustrate
the interpolation on the basis of the unevenly spaced samples. The signal f (k) is
expressed as

f (k) = 0.35 cos (2πk f1) + 0.2 sin (2πk f2) − 0.4 cos (2πk f3),

where f 1 = 0.25, f 2 = 0.45, and f 3 = 0.15 are all normalized frequencies. We will
reverse the process by generating an unevenly spaced data f (n) from f (k) first, then
try to interpolate from f (n) to obtain f (k).

The unevenly spaced samples f (n) are generated by computing the unevenly
spaced index n for various k from Eq. (1.30). Once the index n is computed, the
value of f (n) can be obtained.

Consider the case of k ranging from 0.5 to 6.5 with �k = 0.25 and s = 0.75; the
corresponding Jacobian can be computed as

J (k) = 4k√
4k2 − (0.75)2

.
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The 8-tap filters shown in Table 1.1 will be used in this example, and Eq. (1.31)
then becomes

f (k) = 4k√
4k2 − (0.75)2

4∑
n=−3

f (n) sinc (k − n) .

Figure 1.21a shows the plot of unevenly spaced f (n) with n =
√

4k2 − (0.75)2 ≈
2k − �k and k = 0.5,0.75, . . . , 6.5, 0 < �k = (0.75)2/(4k) < 1. A total of 25 sinc (x)
functions are generated, each corresponding to different �k. Figure 1.21b displays
the interpolated plot of evenly spaced samples f (k), k = 0.5,0.75, . . . , 6.5. For com-
parison purposes, the original evenly spaced signal is displayed in Fig. 1.21c. Notice
that Fig. 1.21a is plotted based on the index n′ = 2n, Figs. 1.21b and 1.21c are plotted
based on the index k′ = 4k −1. Notice also that f (n) appears to be unevenly spaced at
the left part of the display, and becomes approximately evenly spaced at the right end
of the plot as expected. Just like the original digitized samples shown in Fig. 1.21c,
the interpolated signal is evenly spaced and matches quite well with the bottom sig-
nal. Only a few samples at both ends differ from the original, because of the edge
effect of convolution, which is covered in the next chapter.
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2
DISCRETE TIME

AND FREQUENCY
TRANSFORMATION

This chapter addresses discrete signal transformations in both time and frequency
domains. The relationship between continuous and discrete Fourier transform is
discussed in Section 2.1. Section 2.2 reviews several key properties of discrete
Fourier transform. The effect of Window functions on discrete Fourier transform is
described in Section 2.3, and fast discrete Fourier transform techniques are covered
in Section 2.4. The discrete cosine transform is reviewed in Section 2.5. Finally,
the relationship between continuous and discrete signals in both time and frequency
domains is illustrated graphically with an example in Section 2.6.

2.1 CONTINUOUS AND DISCRETE FOURIER TRANSFORM

It was shown in Chapter 1 that a periodic signal gp(t) can be expressed as

gp (t) =
∞∑

k=−∞
g (t − kT0),

where T0 is the period of g(t), and

g(t) = A for − τ

2
≤ t ≤ τ

2
,

= 0 otherwise.

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.
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It also was shown that gp(t) can be represented in terms of Fourier series coefficients
as

gp (t) =
∞∑

n=−∞
Gne jn ω0t

Gn = 1

T0

∫ T0

0
gp (t) e− jnω0t dt,

where ω0 = 2π /T0.
Now, let t = n�T and τ = N1�T , where �T = 1/fs, and fs is the sampling

frequency that satisfies the Nyquist requirement. Assume that all frequencies are
normalized with respect to fs, or fs = 1. Then t = n�T = n, T0 = N�T = N,
τ = N1�T = N1, and ω0 = 2π / (N�T) = 2π /N. The analog or continuous
signal gp(t) therefore becomes discrete or digital signal gp(n), which can be
expressed as

gp (n) =
∞∑

k=−∞
g (n − k N ).

and

g(n) = A for − N1

2
≤ n ≤ N1

2
,

= 0 otherwise.

A graphical representation of a periodic signal or sequence gp(n) is shown in
Fig. 2.1.

A digitized and periodic signal gp(n), with period N, can therefore be expressed
as

gp (n) =
∞∑

k=−∞
G p (k)e jk(2π/N )n . (2.1a)

g
p
(n)

n
0 N−2N 2N−N

A

N
1
/2−N

1
/2

g(n)

FIGURE 2.1 A periodic sequence.
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Let k = k0 ± m N, where

k ∈ [−∞,∞] ,

k0 ∈ [0, N − 1] .

Then

e j(2π/N )(k0±m N )n = e j(2π/N )k0n · e± j(2π/N )m Nn

= e j(2π/N )k0n.

Similarly, the variable n can also be represented as n = n0 ± m N , and the ex-
ponential term shown above also holds true for n0. For simplicity, we will drop the
subscript 0 and use k and n directly. Equation (2.1a) then becomes

gp (n) =
N−1∑
k=0

G (k)e jk(2π/N )n . (2.1b)

Here G(k) is the N-term sequence of the periodic sequence Gp(k).
Let g(n) be the N-term sequence of gp(n) in the region for n = 0 to N−1. By taking

summation of gp (n) e− jr (2π/N )n for n = −∞ to ∞, we see that Eq. (2.1b) becomes

∞∑
n=−∞

gp(n)e− jr (2π/N )n =
N−1∑
n=0

g(n)e− jr (2π/N )n

=
N−1∑
n=0

N−1∑
k=0

G (k)e j(k−r )(2π/N )n

=
N−1∑
k=0

G (k)
N−1∑
n=0

e j(k−r )(2π/N )n . (2.2a)

The second summation of Eq. (2.2a) satisfies

N−1∑
n=0

e j(k−r )(2π/N )n = N for k = r,

= 0 for k �= r.

Equation (2.2a) then becomes

N−1∑
n=0

g (n)e− jr (2π/N )n = N G (r ) ,
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or

G (r ) = 1

N

N−1∑
n=0

g (n)e− jr (2π/N )n . (2.2b)

Equations (2.1b) and (2.2b) constitute a discrete Fourier transform pair. Equation
(2.2b) serves as the discrete Fourier transform (DFT) from {g(n)} to G(r) and Eq.
(2.1b) serves as the inverse discrete Fourier transform (IDFT) from {G(r)} to g(n).
Notice that g(n) = gp(n) for n = 0 to N−1 and G(r) = Gp(r) for r = 0 to N−1.

To comply with the popular notation of analog domain Fourier transform, Eqs.
(2.1b) and (2.2b) are then modified to become

IDFT : g (n) = 1

N

N−1∑
k=0

G (k)e jk(2π/N )n, (2.2c)

DFT : G (k) =
N−1∑
n=0

g (n)e− jk(2π/N )n . (2.2d)

Here n = 0 to N−1 and k = 0 to N−1. Equations (2.2c) and (2.2d) serve as the
discrete Fourier transform pair.

By defining WN = e− j(2π/N ), Eqs. (2.2c) and (2.2d) can be modified to become
another form of DFT:

DFT : G (k) =
N−1∑
n=0

g (n)W nk
N , (2.2e)

IDFT : g (n) = 1

N

N−1∑
k=0

G (k) W −nk
N . (2.2f)

The definition of WN satisfies the following two basic properties:

W k+N/2
N = −W k

N ,

W k+N
N = W k

N .

2.2 KEY PROPERTIES OF DISCRETE FOURIER TRANSFORM

The discrete Fourier transform serves as a very important tool in the digital signal
processing fields. Some important and useful properties of DFT will now be
described.
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2.2.1 Shifting and Symmetry

As shown in Eq. (1.18), a delay in the time domain will cause a phase shift in the
frequency domain. Similarly, for a periodic sequence, a shift in discrete time will
cause a phase shift in the discrete frequency domain. This phase shift characteristic
can be derived as shown below.

Let g(n) be a N-sample periodic sequence with the corresponding DFT as G(k).
Then the g(n−m) will have its DFT as follows, from Eq. (2.2c):

g (n − m) = 1

N

N−1∑
k=0

G(k)e jk(2π/N )(n−m)

= 1

N

N−1∑
k=0

[
G(k)e− j(2π/N )km

]
e jk(2π/N )n.

This implies that g(n − m) and G(k)e− j(2π/N )km form a DFT transform pair, and
the exponential term represents a phase shift in frequency domain.

If the values of periodic sequence g(n) are real numbers, then the real part of G(k)
for k = 1 to k = (N/2) − 1 are identical to that of G(k) for k > (N/2). This can be
seen from Eq. (2.2d):

G(N − k) =
N−1∑
n=0

g(n)e− j(N−k)(2π/N )n

=
N−1∑
n=0

g(n)e jk(2π/N )ne− j2πn

=
N−1∑
n=0

g(n)e jk(2π/N )n,

G∗(N − k) =
N−1∑
n=0

g(n)e− jk(2π/N )n

= G(k).

Furthermore, if g(n) is real and symmetric around its center, that is, if g(n) = g(N−n),
then G(k) can easily be proved to be real and G(N−k) = G(k).

2.2.2 Linear and Circular Convolution

Leting x(n) and h(n) be two nonperiodic N-sample sequences, the linear convolution
of x(n) and h(n) is defined as

y (n) =
N−1∑
m=0

h (m)x (n − m) , (2.3)
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FIGURE 2.2 Linear convolution.

where h(m) and x(n−m) are zero outside the duration of N samples. Figure 2.2 dis-
plays the linear convolution of x(n) and h(n) with y(n) as the output and N = 8. As
can be seen in the figure, the output y(n) has duration of 2N – 1 samples and is free
of spectrum aliasing. The symbol ⊗ in Fig. 2.2 represents convolution.

Now, consider the two new sequences x(n) and h(n), which are periodic with pe-
riod N = 8. These two sequences are identical to the above two nonperiodic se-
quences for n = 0,1, . . . , N−1. The DFTs of these two new sequences are

X (k) =
N−1∑
n=0

x(n)e− jk(2π/N )n,

H (k) =
N−1∑
n=0

h(n)e− jk(2π/N )n .

The circular convolution of x(n) and h(n) with output y(n) is defined as

y(n) = 1

N

N−1∑
k=0

X (k)H (k)e jk(2π/N )n . (2.4)

where y(n) is the IDFT of Y(k) = H(k)X(k). The function y(n) is also a periodic
sequence with period N.

Figure 2.3 displays the circular convolution of two sequences x(n) and h(n) with
n = 0,1, . . . , 7. By comparing the values of y(n) with those shown in Fig. 2.2, one
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FIGURE 2.3 Circular convolution.

can see that the N-term circular convolution output y(n) is distorted by the overlap
with a neighboring sequence when performing multiplication and summation. This
type of distortion is called “the edge effect of circulation convolution.”

The edge effect of circular convolution is a built-in characteristic of DFT. To
ensure that the circular convolution of any two sequences with period N will have
nonaliased output with 2N – 1 samples, one can establish the length of both x(n)
and h(n) at 2N samples by padding N zeros after the N-term sequence. For practical
applications, L = 2N is chosen to be a power of 2. The same N-point data sequences
x(n) and h(n) used in Figs. 2.2 and 2.3 are again used in Fig. 2.4 to demonstrate the
process of linear convolution based on a circular convolution scheme. As expected,
the output y(n) is identical to that of linear convolution as shown in Fig. 2.2.

2.2.3 Sectioned Convolution

For most applications, the two sequences x(n) and h(n) may not have the same length
of non-zero-valued samples. For some applications, one could have a much longer
sample length than the other has. In that case, the above mentioned zero-padded
2N-term sequence with 2N = L for both x(n) and h(n) may not be practical to compute
the convolution. To solve this problem, two techniques are developed. These methods
partition the larger sequence into several smaller sequences and compute the partial
result first and add them together later to form the complete results. This will be
discussed next.
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FIGURE 2.4 Linearized circular convolution.

2.2.3.1 Overlap-and-Add Method. Let x(n) be the input time sequence with
N1 samples and h(n) be the impulse response with N2 samples. Assume that
N1 � N2 and N1 can be equally divided into M blocks with each block having
N0 samples, that is, N1 = M N0. The samples of the ith data block, xi(n), is de-
fined to be equal to x(n) for n ∈ [(i − 1)N0, . . . , iN0 – 1] and zero elsewhere, where
i = 1, 2, . . . , M. The output of linear convolution with input data xi(n) and impulse
response h(n) equals yi(n), which has length L = N0 + N2 – 1. The linear convolution
can be implemented by circular convolution if L is chosen to be a power of 2.

Figure 2.5 demonstrates how the Overlap-and-Add method performs the convo-
lution. As can be seen, the ith block of x(n), or xi(n) with i = 1,2, . . . , M, convolves
with h(n) to generate an ith data block yi(n). The section of yi(n) that extends beyond
the range n ∈ [(i−1)N0, . . . , iN0–1] will coincide with part of the next yi+1(n). This
extra portion, with N2−1 samples in length, is called the overlap part, which will be
added to yi+1(n) to form the convolution sum for the (i + 1)th section of output y(n).

2.2.3.2 Overlap-and-Save Method. Unlike the overlap-and-add method, the
overlap-and-save method requires that the input blocks overlap with each other to
process the convolution. Consider the input time sequences x(n) and the impulse
response h(n), which have N1 and N2 samples, respectively. Assume that N1 � N2,
and the input data blocks can be divided into M sections of data blocks xi(n)
with size of N0 + N2 –1 samples each. The end portion of the input data xi(n) is
overlapped with N2 –1 samples of the next block of input data xi+1(n). Samples
of the ith data block xi(n) are defined to be equal to x(n) over n ∈ [(i − 1)N0, . . . ,
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FIGURE 2.5 Convolution using overlap-and-add method.

iN0 + N2 − 1], where i = 1,2, . . . , M. The data blocks xi(n) are then circularly
convolved with the impulse response h(n). Because of the overlap redundancy at
the input, the circular artifacts in the output (the last N2 − 1 samples) can simply be
discarded. Figure 2.6 illustrates the overlap-and-save method.

2.2.4 Zero Stuffing and Discrete Fourier Transform (DFT) Resolution

One of the fundamental characteristics of discrete signals is that zero padding in
one domain results in an increased sampling rate in the other domain. The N-sample
Hanning window will be used to illustrate the zero-padding technique. Mathemati-
cally, the Hanning window is expressed as follows:

w(n) = 0.5 − 0.5 cos

(
2π

N

)
for n = 0,1,2, . . . , N ,

= 0 otherwise.

The discrete time sequence w(n) with N = 32 is shown in Fig. 2.7a. By taking a
32-point DFT on w(n), the power spectrum of Hanning window, WdB(m), is shown in
Fig. 2.7b. For comparison, a 128-point Hanning window w(n) and its corresponding
power spectrum WdB(m) are also displayed in Figs. 2.7c and 2.7d, respectively. Note
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FIGURE 2.6 Convolution using overlap-and-save method.

that, for convenience, the zero-frequency components have been moved to the center
of the spectra.

On comparison of the two sets of power spectra, discribed above, it is clear that
at a higher sampling rate in the time domain (increasing from 32 samples to 128
samples), the frequency spectrum was hardly improved. The number of frequency
samples inside the signal spectrum over –60 dB is about the same in both cases.
The signal’s frequency bandwidth stays the same in both cases, although it appears
wider in the 32-point plot than in the 128-point plot. This is because the sampling
frequency for the 128-point is 4 times higher than that of the 32-point.

The zero-padding technique can be used to increase a signal’s resolution in either
time or frequency domain. The 32-point w(n) is again shown in Fig. 2.8a, together
with the real and imaginary parts of its 32-point DFT, X(m), shown in Figs. 2.8b and
2.8c, respectively. For convenience, the zero-frequency components are moved to the
center of the spectra in Figs. 2.8b and 2.8c, respectively.
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FIGURE 2.7 Hanning window with different sampling frequencies.

Now, by padding (appending) 96 zero-valued samples to the end of w(n), a
new 128-sample w′(n) sequence is obtained (Fig. 2.9a). By computing the DFT of
w′(n), one obtains a more detailed power spectrum as shown in Fig. 2.9b. This new
128-point spectrum provides a frequency structure that is more detailed than that of
Fig. 2.7d. The number of frequency components inside the signal spectrum over –60
dB is about 4 times that of Figs. 2.7b or 2.7d. Figures 2.9c and 2.9d display the real
and imaginary parts of the frequency spectrum corresponding to the zero-padded
Hanning window.

Again, the power spectrum was displayed with the zero-frequency component
moved to the center of the spectrum. The real and imaginary parts of the frequency
spectrum are also rearranged accordingly.

The preceding example demonstrates that zero padding in the time domain re-
sults in an increased sample rate in the frequency domain. Here, the zero-padding
technique increased the frequency-domain sample rate (or resolution) by a factor of
4 (=128/32).

It is interesting to see that doubling the sampling rate in the time domain did not
improve the signal’s frequency resolution when compared to that of the zero-padding
method for an identical new sample rate. This is due to the fact that doubling the
sampling rate in the time domain from N samples to 2N samples also increases the
number of frequency samples in the frequency domain from N to 2N. The bandwidth
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of the signal remained the same, but the sampling frequency was increased twofold.
In the frequency domain the signal spectrum was still represented by N samples only;
the extra N samples were wasted to represent the stretched frequency region.

The zero-padding technique used in the frequency domain is similar to that in the
time domain, we will use a 64-point interpolation, not 128-point interpolation as in
the time domain for illustration. The same 32-point w(n) is first Fourier-transformed
to become W(m). Then, 32 zero-valued complex samples are inserted in the middle of
W(m) to form a new 64-point complex spectrum W′(m). The real and imaginary parts
of W′(m) are shown in Figs. 2.10a and 2.10b, respectively. Notice that the complex
data shown in Figs. 2.8b and 2.8c are used to insert zeros as shown in Figs. 2.10a and
2.10b. However, Figs. 2.8b and 2.8c were arranged with zero frequency in the center,
while Figs. 2.10a and 2.10b are zero-padded directly on DFT outputs W(m) with
zero frequency at bin 1. In general, the zeros are inserted after the first N/2 spectrum
samples in order to maintain spectrum symmetry. A 64-point IDFT is then operated
on the zero-padded W′(m) to generate the interpolated time sequence w′(n) as shown
in Figs. 2.10c and 2.10d. Since |W(m)| is an even function and the phase of W(m)
is an odd function, the IDFT outputs are all real numbers with all imaginary parts
equal to zeros. The 64 samples shown in Fig. 2.10c represent the new interpolated
sequence w′(n). It is obvious that zero padding in the frequency domain results in an
increased resolution in the time domain.

The filter-based time-domain interpolation technique, discussed in Chapter 1,
inserts zero-valued samples between each of the original time samples; the zero-
inserted sequence is then lowpass-filtered to attenuate the sidelobes of spectrum
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FIGURE 2.10 Hanning window with frequency-domain zero padding.
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caused by the inserted zeros. The accuracy of this technique depends on the quality of
the filter. The greater the stopband attenuation by lowpass filtering, the more accurate
the interpolation becomes. The zero-padding technique does not require lowpass fil-
tering, yet the sidelobe rejection is ideal in the sense that all sidelobes have zero val-
ues due to zero padding in the frequency domain. Therefore, this frequency-domain
zero-padding technique is called “exact interpolation” for periodic time-domain se-
quences. This technique fails if the sampling rate of w(n) violates the Nyquist
requirement.

2.3 WIDOWS AND DISCRETE FOURIER TRANSFORM

Let the N-sample discrete time sequence x(n) be a sinusoidal function with frequency
equal to f 0, and let fs be the sampling frequency. If the sampling frequency fs is not
an integer multiple of f 0, the frequency spectrum of x(n) will not show up as a sharp
pulse at frequency f 0. Instead, the spectrum expands wider over several frequency
bins around f 0. One practical solution to reduce this type of energy spreading prob-
lem is to use a windowing function. The windowing function involves the imposition
of a prescribed profile on the time signal prior to performance of the Fourier trans-
formation. Let x(n) and w(n) be the original time sequence and windowing function,
respectively; the new sequence is then given as

x ′(n) = x(n)w(n). (2.5)

When the windowing function is applied to x(n), the resultant frequency spectrum
will suffer because of the loss of energy at both ends of time sequence x(n). An
averaging scheme that is used to compensate the loss of energy is discussed next.

Assume that an N-sample data block with appropriate window function is used to
compute the DFT. To generate the ith block of data DFT, the (i − 1

2 )th data DFT, the
ith data DFT and (i + 1

2 )th data DFT must be added together and divided by 3. That
is, using i = 2 as an example, one obtains

DFT2 (k) = Re {DFT1.5 (k)} + Re {DFT2 (k)} + Re {DFT2.5 (k)}
3

+ j
Im {DFT1.5 (k)} + Im {DFT2 (k)} + Im {DFT2.5 (k)}

3
.

(2.6)

Figure 2.11 illustrates the generation of DFT based on the averaging scheme.
There are many windowing functions available for different types of applications.

The following are four popular ones, and their mathematical expressions are shown
below:

1. Rectangular windowing function:

w(n) = 1 for n = 0,1, . . . , N − 1,

= 0 otherwise.
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2. Hanning windowing function:

w(n) = 0.5 − 0.5 cos
2π

N
for n = 0,1, . . . , N − 1,

= 0 otherwise.

3. Hamming windowing function:

w(n) = 0.54 − 0.46 cos
2π

N
for n = 0,1, . . . , N − 1,

= 0 otherwise.

4. Blackman windowing function:

w(n) = 0.42 − 0.5 cos
2πn

N
+ 0.08 cos

4πn

N
for n = 0, . . . , N − 1,

= 0, otherwise.

When a long sequence of a signal is partitioned into smaller sections for process-
ing, this partition process is equivalent to multiplying the long sequence by the rect-
angular windowing function, which in fact serves no purpose. The Hanning window
function has been discussed extensively in previous sections. The two new window-
ing functions, namely, the Hamming window and the Blackman window, are shown
in Fig. 2.12, where the time-domain waveforms and frequency spectra are displayed.
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FIGURE 2.12 Hamming and Blackman window functions.

2.4 FAST FOURIER TRANSFORM

The fast Fourier transform (FFT) is a time-saving computation technique of the dis-
crete Fourier transform (DFT). Various schemes are used to realize the FFT. The
radix-2 is the most popular one and is discussed next.

2.4.1 Radix-2 Fast Fourier Transform (FFT) Algorithms

Consider the computation of N = 2L points DFT by the divide-and-conquer ap-
proach. Let f 1(n) and f 2(n) be the two N/2-point data sequences, corresponding to
the even-numbered and odd-numbered samples of N-point data sequence x(n); that is

f1(n) = x(2n),
f2(n) = x(2n + 1),

(2.7)

for n = 0,1, . . . , N/2−1.
Since f 1(n) and f 2(n) are obtained by decimating x(n) by a factor of 2, the resulting

FFT algorithm is called the “decimation-in-time” algorithm.
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The N-point DFT can be expressed in terms of the decimated sequences as
follows:

X (k) =
N−1∑
n=0

x(n)W kn
N

=
∑

n even

x(n)W kn
N +

∑
n odd

x(n)W kn
N

=
(N/2)−1∑

m=0

x(2m)W 2mk
N +

(N/2)−1∑
m=0

x(2m + 1)W k(2m+1)
N ,

where k = 0,1,2, . . . , N. With W 2
N = WN/2 and leting f 1(m) = x(2m), f 2(m) =

x(2m+1), this equation becomes

X (k) =
(N/2)−1∑

m=0

f1 (m) W mk
N/2 + W k

N

(N/2)−1∑
m=0

f2 (m) W km
N/2

= F1 (k) + W k
N F2 (k) , for k = 0, 1, . . . , N − 1,

(2.8)

where F1(k) and F2(k) are the N/2-point DFTs of the sequences f 1(m) and f 2(m),
respectively.

Since F1(k) and F2(k) are periodic with period N/2, we have F1(k + N/2) = F1(k)
and F2(k + N/2) = F2(k). In addition, W k+N/2

N = −W k
N ; hence, Eq. (2.8) can be

expressed as

X (k) = F1 (k) + W k
N F2 (k) , k = 0, 1, . . . ,

N

2
− 1,

X

(
k + N

2

)
= F1 (k) − W k

N F2 (k) , k = 0, 1, . . . ,
N

2
− 1. (2.9)

The procedure used in this computation can be repeated through decimation of the
N/2-point sequences X(k) and X(k + N/2). The entire process involves L = log2 N
stages of decimation. The computation of N-point DFT via the decimation-in-time
FFT requires (N/2)log2 N complex multiplications and Nlog2 N complex additions.

Figure 2.13 depicts the computation of N = 8 points DFT. The computation is
performed in three stages, beginning with the computations of four 2-point DFTs,
then two 4-point DFTs, and finally one 8-point DFT.

Figure 2.14 illustrates the implementation of FFT through the decimation-in-time
algorithm for the case of N = 8. The 8-point DFT is split into two 4-point DFTs and
then four 2-point DFTs. The well-known butterfly pattern is clearly visible.

Another important radix-2 FFT scheme, called the “decimation-in-frequency” al-
gorithm, is obtained by also using the divide-and-conquer approach. This method
splits the DFT formula into two summations, one involving the sum over the first
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FIGURE 2.13 Three-stage computation of an 8-point DFT.
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FIGURE 2.14 An 8-point FFT with decimation-in-time algorithm.



P1: OTA/XYZ P2: ABC
c02 JWBK230/Wang July 1, 2008 21:23 Printer Name: Yet to Come

DISCRETE COSINE TRANSFORM (DCT) 53

N/2 data points and the second sum involving the last N/2 data points:

X (k) =
(N/2)−1∑

n=0

x(n)W kn
N +

N−1∑
n=N/2

x(n)W kn
N

=
(N/2)−1∑

n=0

x (n) W kn
N + W Nk/2

N

(N/2)−1∑
n=0

x

(
n + N

2

)
W kn

N .

(2.10)

Since

W k N/2
N = e− j(2π/N )(k N/2),

It follows that

e− jπk = (−1)k .

Therefore

X (k) =
(N/2)−1∑

n=0

[
x (n) + (−1)k x

(
n + N

2

)]
W kn

N .

By splitting (or decimate) X(k) into even- and odd-numbered samples, one obtains

X (2k) =
(N/2)−1∑

n=0

[
x (n) + x

(
n + N

2

)]
W nk

N/2, k = 0,1, . . . ,
N

2
− 1,

X (2k + 1) =
(N/2)−1∑

n=0

{[
x (n) − x

(
n + N

2

)]
W n

N

}
W nk

N/2, k = 0,1, . . . ,
N

2
− 1.

(2.11)

Here we have used the fact that W 2
N = WN/2.

The computational procedure shown above can be repeated through decimation of
the N/2-point DFT data sequences X(2k) and X(2k+1), k = 0,1, . . . , (N/2 – 1). The
entire process involves L = log2 N stages of decimation, where each stage involves
N/2 butterflies. The first stage of an 8-point butterfly is shown in Fig. 2.15.

Consequently, the computation of N-point DFT via the decimation-in-frequency
FFT requires (N/2)log2 N complex multiplications and Nlog2 N complex addi-
tions, the same as in the decimation-in-time algorithm. An 8-point decimation-
in-frequency example is shown in Fig. 2.16.

2.5 DISCRETE COSINE TRANSFORM (DCT)

The rapid growth of digital imaging applications, including desktop publishing,
multimedia, teleconferencing, high-definition television (HDTV), and radar imag-
ing, has increased the need for effective and standardized image compression tech-
niques. Among the emerging standards are JPEG (Joint Photographics Expert Group)
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FIGURE 2.15 First stage of the decimation-in-frequency FFT algorithm.

for compression of still images, MPEG (Moving Picture Experts Group) for com-
pression of motion video, and CCITT [International Consultative Committee on
Telecommunications and Telegraphy (now ITU-T)] H.261 (also known as Px64) for
compression of videotelephony and videoteleconferencing. All three standards em-
ploy a basic technique known as the discrete cosine transform DCT. We will start our
discussion with the regular DCT, followed by the two-dimensional (2D) DCT later.
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FIGURE 2.16 The 8-piont decimation-in-frequency FFT algorithm.
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The DCT of a periodic and finite-length sequence x(n) is defined as

y(k) =
√

2

N
α(k)

N−1∑
n=0

x(n) cos
(2n + 1)kπ

2N
, k = 0,1, . . . , N − 1,

α (k) = 1 for k �= 0,

= 1√
2
, for k = 0.

(2.12)

The DCT is closely related to the discrete Fourier transform (DFT), but has better
energy compaction properties. This implies that the majority of the signal energy in
time sequence can be represented by just a few of the DCT-transformed coefficients.
The energy compaction properties of the DCT also make it useful in applications of
data communication.

The inverse discrete cosine transform (IDCT) computes the inverse DCT of a
finite length sequence. It reconstructs a signal from a complete or partial set of DCT
coefficients. The IDCT is defined as

x(n) =
√

2

N

N−1∑
k=0

α(k)y(k) cos
(2n + 1)kπ

2N
, n = 0,1, . . . , N − 1,

α (k) = 1 for k �= 0,

= 1√
2
, for k = 0.

(2.13)

Comparing Eqs. (2.12) and (2.13), one can see that the forward and backward
(inverse) DCT have identical transformation kernels. These basis vectors are sampled
cosines and can be expressed as

bk =
[√

2

N
α(k) cos

(2n + 1)kπ

2N

]
n=0,1,...,N−1

, for k = 0,1, . . . , N − 1. (2.14)

The attractiveness of the DCT is twofold: (1) it is nearly optimal with high positive
values of adjacent-sample correlation, and (2) it can be computed via the DFT using
a FFT algorithm. The computation of DCT through FFT consists of extending the
N samples of DCT to form a 2N-block data with even symmetry and then taking a
2N-point DFT and saving N terms in it. The following procedure is used to compute
DCT through FFT:

Step 1. Define a 2N data block samples {x′(n)} as

x ′(n) = x(n) for n = 0,1, . . . , N − 1,

= x(2N − 1 − n) for n = N , N + 1, . . . , 2N − 1, (2.15)
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Step 2. Compute the 2N DFT of x′(n) as

y′(k) = 1√
2N

2N−1∑
n=0

x ′(n)e− j(2πkn/2N )

= 1√
2N

[
N−1∑
n=0

x(n)e− j(2πkn/2N ) +
2N−1∑
n=N

x(2N − 1 − n)e− j(2πkn/2N )

]

=
√

2

N
e jkπ/2N

N−1∑
n=0

x (n) cos

[
(2n + 1) kπ

2N

]
. (2.16)

By comparing y′(k) with y(k) of Eq. (2.12), it is clear that

y (k) = α (k) e− j(kπ/2N ) y′ (k) . (2.17)

Figure 2.17 illustrates the end effects of DFT and DCT. Figure 2.17a shows the
original N-sample data block, while Fig. 2.17b shows the end effect of the N-sample-
based DFT. Figure 2.17c shows how 2N data sequence x′(n) is formed from an

n

x(n)

0 N−1
(a)

(b)

(c)
n0 N−1 2N−1

x'(n)

n0 2N−1N−1

FIGURE 2.17 Input block (a) and end effects in DFT (b) and DCT (c).
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N data sequence x(n). It also shows the end effect of DCT. One can see that the 2N-
extension DCT has a smaller end effect (caused by a discontinuity at the border of
one block and its repetition) compared to DFT operations based on the N-sample data
block.

Since the N-sample DCT can be computed through the FFT by extending the
input samples to 2N, the computation requirement for N-sample DCT is then 2N
log2 N multiply–add operations. Notice that the computation requirements for the
regular N-sample FFT is (N/2) log2 N complex multiplications and N log2 N complex
additions.

2.5.1 Two-Dimensional DCT

The one-dimensional DCT is useful in processing one-dimensional signals such as
speech waveforms. For two-dimensional (2D) signals such as images, a 2D version
of the DCT is needed. The 2D DCT can be expressed as follows:

Forward 2D DCT:

y (k, l) = 2

N
α (k) α (l)

N−1∑
m=0

N−1∑
n=0

x (m, n) cos
πk(2m + 1)

2N
cos

πl(2n + 1)

2N
. (2.18)

Inverse 2D DCT:

x (m, n) = 2

N

N−1∑
k=0

N−1∑
l=0

α (k) α (l) y (k, l) cos
πk(2m + 1)

2N
cos

πl(2n + 1)

2N
, (2.19)

where

α(0) = 1√
2
, α( j) = 1 for j �= 0.

Here x(m, n) is an N × N data array. The parameters k, l, m, and n are all integers and
range from 0 to N − 1. Since the transformation kernels are separable, the 2D DCT
can be performed in two steps, each involving a 1D DCT. Similar to the 1D case, the
2D DCT image coding with an even symmetry has fewer-edge effect problems than
that of 2D DFT image coding.

2.6 CONTINUOUS AND DISCRETE SIGNALS IN TIME
AND FREQUENCY DOMAINS

2.6.1 Graphical Representation of DFT

In the following discussion, a signal is assumed to be of finite length in the time do-
main and band-limited in the frequency domain. In general, the frequency spectrum
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of a finite-length time signal will extend to infinity. The assumption here is that if the
frequency components of a finite-length time sequence exceed a certain range, they
are considered small enough to be neglected. The relationship between a continuous
signal and a discrete signal in both time and frequency domains, based on Fourier
transform, leads to the definition of the discrete Fourier transform, described next.

Let an analog sinusoidal function s(t) with single frequency f 1, namely, s(t) =
cos(2π f 1t), be the band-limited time-domain signal. The time-limited, or gated, sig-
nal of s(t) can then be represented as s(t)g(t), where g(t) is a gate function with time
duration Tp and is defined as

g (t) = 1 for |t | ≤ Tp

2
,

= 0 for |t | >
Tp

2
.

The band-limited signal s(t) is shown on the left side of Fig. 2.18a, and its fre-
quency spectrum S(f ) is shown on the right side of Fig. 2.18a. For simplicity, the
time duration Tp of g(t) is chosen to be Tp = 4/f 1. The gate function g(t) and the
gated signal s(t)g(t), together with their corresponding frequency spectra, are shown
in Figs. 2.18b and 2.18c, respectively. An impulse train i1(t) with period �t = 1/(2f 1)
is shown on the left side of Fig. 2.18d, together with its frequency spectrum, shown
on the right side of Fig. 2.18d. The gated signal s(t)g(t) is then multiplied by an im-
pulse train i1(t) to become a finite-length discrete signal as shown on the left side
of Fig. 2.18e, together with its spectrum shown on the right side of Fig. 2.18e. An
impulse train I2(f ) with period �f = 1/Tp is shown on the right side of Fig. 2.18f,
together with its time-domain signal shown on the left side of Fig. 2.18f. The signal
spectrum shown on the right side of Fig. 2.18e becomes discrete by multiplying it
by I2(f ) and is shown on the right side of Fig. 2.18g, together with its time-domain
signal shown on the left side of Fig. 2.18g.

Leting Tp = N�t, with N = 8 in this example, one can express the gated and
digitized signal as

s(t) · g(t) · i1(t) = s(t)g(t)
∞∑

n=−∞
δ(t − n�t)

=
3∑

n=−4

s (n�t) δ (t − n�t).

Notice that this discrete and finite-time signal has a continuous frequency spectrum
and is repeated at the sampling frequency fs = 1/�t, where �t = 1/(2f 1). The pulse
train in the frequency domain, displayed on the right side of Fig. 2.18f, has �f =
1/Tp = f 1/4. The digitized and periodic spectrum is obtained by multiplying the ana-
log (or continuous) and periodic spectrum by the pulse train in the frequency domain.
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FIGURE 2.18 Graphical representations of DFT.
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The corresponding digitized and periodic time-domain signal is shown on the left
side of Fig. 2.18g.

The preceding discussion, which starts with an analog or continuous time signal
and goes through various gating and multiplications with impulse trains in either
time or frequency domain, finally comes to the results of two discrete and periodic
signals in both time and frequency domains. These two discrete and periodic sig-
nals, shown on left and right sides of Fig. 2.18g, form the discrete Fourier transform
pair!

From the preceding discussion and graphical representation on time–frequency
and analog–discrete relations for a time-gated and frequency band-limited signal, the
following observations can be obtained: (Assume that the signal x(t) is bandlimited
with f < 2fm, and the sampling frequency fs > 2fm)

1. By digitizing x(t) in the time domain to render a discrete sequence x(n) with
each time sample spaced by �t, the corresponding Fourier spectrum will be a
periodic and continuous (or analog) waveform of Xp(f ) with period equals to
fs = 1/�t.

2. By digitizing the analog (or continuous) frequency spectrum X(f ) to render
a discrete sequence X(m) with each frequency component spaced by �f , the
time-domain signal x(t) becomes a periodic signal xp(t) with period T = 1/�f .

3. If one tried to digitize the periodic waveform of frequency spectra Xp(f ) in
observation 1, with the frequency bin spaced by �f , then the time sequence
x(n) would become a periodic signal xp(n) with period T = 1/�f .

4. Similarly, if one tried to digitize the periodic signal x(t) in observation 2, with
the time sample spaced by �t, then the digitized frequency spectrum X(m)
would become a periodic signal Xp(m) with period fs = 1/�t.

5. If fs = N � f and T = N �t, then observations 3 and 4 would both lead to the
same results contained in the definition of the discrete Fourier transform. Here
N is the number of samples in both time and frequency domains.

2.6.2 Resampling with Fractional Interpolation Based on DFT

Hardware implementation of real-time resampling and interpolation on a discrete
time sequence based on FIR filtering was addressed in Section 1.6 (of Chapter 1).
A second method of zeropadding in the frequency domain followed by IDFT was
described in Section 2.2. This section describes another method for fractional in-
terpolation, which is based on DFT and provides some advantages over other
methods.

The interpolation on an N-sample data sequence x(n) to generate a new N-sample
sequence x′(n) = x(n + �), where n = 0,1, . . . , N − 1 and 0 < � < 1, is shown
in Fig. 2.19. The continuous signal x(t) appears as an envelope of the discrete signal
x(n), and is shown as a dashed curve line. The discrete signal x(n) is shown as a
vertical solid line with a dot on top. The new interpolated signal x′(n) = x(n + �) is
the signal with � away from the signal x(n) and is shown as a dashed vertical line.
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n

x(n)
x(n+∆)

∆

x(t)

FIGURE 2.19 Example of resampling.

To compute x′(n) from x(n), we will use Eqs. (2.2c) and (2.2d),which are repeated
here:

DFT : X (k) =
N−1∑
n=0

x (n)W nk
N ,

IDFT : x (n) = 1

N

N−1∑
k=0

X (k) W −nk
N .

Leting x′(n) = x(n + �), Eq. (2.2d) becomes

x ′ (n) = 1

N

N−1∑
k=0

X (k)W −(n+�)k
N

= 1

N

N−1∑
k=0

X (k) W −�k
N W −nk

N .

Defining X′(k) = X(k)W −�k
N , then

x ′ (n) = 1

N

N−1∑
k=0

X ′ (k) W −nk
N .

Therefore

X ′ (k) =
N−1∑
n=0

x ′ (n)W nk
N .

This implies that the interpolated signal x(n+�) can be obtained by

1. Computing X(k), k = 0,1, . . . , N−1, by applying FFT on x(n) for n = 0,1, . . . ,
N−1.
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2. Computing X′(k) = X(k)W −�k
N for every k where k = 0,1, . . . , N−1.

3. Applying IFFT on X′(k) = X(k)W −�k
N for k = 0,1, . . . , N−1, to obtain the

interpolated signal x(n+�) = x′(n) for n = 0,1, . . . , N−1.

This DFT–based resampling scheme can be applied to any fractional interpolation
based on evenly spaced data. It fails on unevenly spaced data.
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3

BASICS OF
ANTENNA THEORY

The antenna is a device that radiates or receives electromagnetic waves. In general,
antennas can be classified as either single-element radiators or multiple (usually iden-
tical) radiating elements. Dipoles, horns, printed patch radiators, and reflectors are
considered single-element radiators. Linear, circular, and area arrays consist of mul-
tiple (usually identical) radiating elements. Antennas play a very important role in
radar-related applications. In this chapter, antenna theory is reviewed, starting with
the Maxwell equation in Section 3.1. The infinitesimal dipole is described in Section
3.2, and the half-wavelength dipole is covered in Section 3.3. The 1D linear phase ar-
ray is briefly reviewed in Section 3.4, and the 2D linear array is discussed in Section
3.5. The key antenna-related parameters are covered in Section 3.6. Some commonly
used antennas, including the microstrip antenna, are reviewed in Section 3.7.

3.1 MAXWELL AND WAVE EQUATIONS

The classical Maxwell equations serve as the fundamental basis for all electromag-
netic phenomena and are shown below:

∇ × ⇀

E = −∂
⇀

B

∂t
,

∇ × ⇀

H = ⇀

J + ∂
⇀

D

∂t
,

∇ · ⇀

D = ρ,

∇ · ⇀

B = 0.

(3.1)

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.
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Since ∇ · ∇ × ⇀

A = 0 for any vector
⇀

A, the equation ∇ · ⇀

B = 0 implies the exis-
tence of

⇀

A, such that
⇀

B = ∇ × ⇀

A; that is

∇ × ⇀

E = −∂
⇀

B

∂t
= −∇ × ∂

⇀

A

∂t

or

∇ ×
(

⇀

E + ∂
⇀

A

∂t

)
= 0.

The quantity
⇀

E + (∂
⇀

A/∂t) is curlless and, mathematically speaking, ∇ × ∇ϕ = 0
for any scalar ϕ. Thus

⇀

E + (∂
⇀

A/∂t) can be represented as the gradient of a scalar
potential ϕ, namely,

⇀

E + (∂
⇀

A/∂t) = −∇ϕ. Therefore, the two Maxwell equations

∇ · ⇀

B = 0

∇ × ⇀

E = −∂
⇀

B

∂t

imply the existence of the magnetic and electric potentials
⇀

A(
⇀

r , t) and ϕ(
⇀

r , t), such
that

⇀

E = −∇ϕ − ∂
⇀

A

∂t
⇀

B = ∇ × ⇀

A.

(3.2)

The potentials
⇀

A and ϕ are not uniquely defined and may be changed by adding
constants to them. This freedom in selecting the potentials allows us to impose some
convenient constraints between them. In discussing radiation problems, it is custom-
ary to impose the Lorenz condition:

∇ · ⇀

A + 1

c2

∂ϕ

∂t
= 0 (Lorenz condition). (3.3)

The remaining two Maxwell equations become, with
⇀

D = ε
⇀

E ,
⇀

B = µ
⇀

H and
c2 = 1/µε,

∇ · ⇀

E = 1

ε
ρ

∇ × ⇀

B = µ
⇀

J + 1

c2

∂
⇀

E

∂t
.

(3.4)
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Substituting Eqs. (3.2) and (3.3) into Eq. (3.4), together with the equation
∇ · (∇ ⇀

A) = ∇2
⇀

A and ∇ × ∇ × ⇀

A = ∇∇ · ⇀

A − ∇2
⇀

A, one obtains the Maxwell equa-
tions as the equivalent wave equation forms, in terms of electric and magnetic poten-
tials ϕ and

⇀

A:

1

c2

∂2ϕ

∂t2
− ∇2ϕ = 1

ε
ρ

1

c2

∂2
⇀

A

∂t2
− ∇2 ⇀

A = µ
⇀

J

(3.5a)

It is assumed that sinusoidal time dependence exists for all quantities ϕ, ρ,
⇀

A, and
⇀

J:

ϕ(r, t) = ϕ(r )e jωt , ρ(r, t) = ρ(r )e jωt , . . . .

With the sinusoidal time dependence characteristics, Eq. (3.5a) can be further sim-
plified as

∇2ϕ + k2ϕ = −1

ε
ρ,

∇2
⇀

A + k2
⇀

A = −µ
⇀

J ,

(3.5b)

where k = ω/c. The Maxwell equations will now be explored further.

3.1.1 Harmonic Time Dependence

Consider the following equation, where δ(3)(
⇀

r ) is the delta function and serves as the
excitation source:

∇2G + k2G = −δ(3)(
⇀

r ). (3.6)

The solution G(
⇀

r ) of Eq. (3.6) can be considered as an impulse response of the system
to have the form

G(
⇀

r ) = e− jkr

4πr
. (3.7)

Equation (3.6) states that δ(3)(
⇀

r ) can be considered as the excitation source, while
G(

⇀

r ), from Eq. (3.7), is the impulse response of Eq. (3.6). With ρ/ε and µ�J as the
excitation sources, from linear system theory, the solutions of ϕ and

⇀

A in Eq. (3.5b)
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x

y

z

ρ

(0,0,0)

−ϕ( r, t)

A ( r , t)−−

r−

R
−

r'
−

FIGURE 3.1 Potentials generated by current/charge distribution.

can be obtained as the convolution of excitation function with the impulse response
function:

ϕ(
⇀

r ) =
∫
V

1

ε
ρ(

⇀

r ′)G(
⇀

r − ⇀

r ′) d3 ⇀

r ′

⇀

A(
⇀

r ) =
∫
V

µJ (
⇀

r ′)G(
⇀

r − ⇀

r ′) d3 ⇀

r ′.

Figure 3.1 shows the geometry of magnetic and electric potentials
⇀

A(
⇀

r , t) and
ϕ(

⇀

r , t), located at distance
⇀

r and caused by the excitation source ρ located at
distance

⇀

r ′.
With R = |⇀r − ⇀

r ′|, then

ϕ(
⇀

r ) =
∫
V

ρ(
⇀

r ′)e− jk R

4πεR
d3 ⇀

r ′

⇀

A(
⇀

r ) =
∫
V

µ
⇀

J (
⇀

r ′)e− jk R

4π R
d3 ⇀

r ′
(3.8)

Following replacement of ∂/∂t with jω, the Lorenz condition takes the form

∇ · ⇀

A + jωµεϕ = 0. (3.9)

The electric and magnetic fields of Eq. (3.2) then become

⇀

E = −∇ϕ − jω
⇀

A
⇀

H = 1

µ
∇ × ⇀

A.
(3.10a)
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From Eqs. (3.9) and (3.10a), with ω2µε = ω2/c2 = k2, one obtains the
⇀

E and
⇀

H
fields as

⇀

E = 1

jωµε
[∇(∇ · ⇀

A) + k2 ⇀

A],

⇀

H = 1

µ
∇ × ⇀

A.

(3.10b)

In the following sections, we will investigate the electric and magnetic fields due
to various current sourcing dipoles. We will start from the point source, followed by
the line source, and then the planar source. Fields as a function of distance will also
be discussed.

3.2 RADIATION FROM AN INFINITESIMAL CURRENT DIPOLE

The infinitesimal dipole is a dipole whose length dl is much smaller than the wave-
length λ of the excited wave, namely, dl � λ. An infinitesimal dipole is equivalent
to a current element Idl with I as the current. The infinitesimal dipole, with dl ≈ 0,
serves as a point radiator or excitation source of the electric and magnetic fields. A
point radiator is also called an isotrope. Physically, it does not exist. Yet, theoretically
it serves as a reference for many types of antennas whose performance is expressed
in terms of a basic radiator. It is used as a building block to solve many problems
related to complicated antenna design. It radiates energy equally in all directions,
and the radiation pattern in any plane is a circle.

Figure 3.2 is a graphical representation of radiation from an infinitesimal dipole
(point radiator), where the point radiator is located at the origin of the coordinate.

o

r

θ

ϕ

x

y

z

FIGURE 3.2 Radiation from a point radiator.
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3.2.1 Magnetic Vector Potential Due to a Small but
Finite Current Element

The magnetic vector potential
⇀

A due to a current source and observed at point P,
with distance R from the dipole, can be obtained from Eq. (3.8) as

⇀

A(
⇀

r ) =
∫
V

µ
⇀

J (
⇀

r ′)e− jk R

4π R
d3 ⇀

r ′.

For a linear current source,
⇀

J (
⇀

r ′)d3 ⇀

r ′ = I d
⇀

l , it follows that

⇀

A(P) =
∫
L

µI e− jk R

4π R
d

⇀

l . (3.11a)

Since current I is a constant along 
l, and the dipole is very small, the integra-
tion shown above can be approximated to its integrand. In addition, the distance
R ≈ r will be replaced by r in both the exponential term and in the denominator.

Therefore, with d
⇀

l = 
l ẑ,

⇀

A(P) = µI
l
e− jkr

4πr
ẑ,

which can be represented in spherical coordinates as

Ar = Az cos θ

= µI 
l
e− jkr

4πr
cos θ,

Aθ = −Az sin θ

= −µI 
l
e− jkr

4πr
sin θ,

Aϕ = 0,

(3.11b)

where θ is the angle between
⇀

A(
⇀

r ) and the z axis.
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3.2.2 Field Vectors Due to Small but Finite Current Radiation

From Eqs. (3.10b) and (3.11b), the fields
⇀

E,
⇀

Hcan then be obtained as

⇀

H = 1

µ
∇ × ⇀

A

= 1

µr2 sin θ

∣∣∣∣∣∣∣∣∣

r̂ r θ̂ r sin θϕ̂

∂

∂r

∂

∂θ

∂

∂ϕ

Ar r Aθ r sin θ Aϕ

∣∣∣∣∣∣∣∣∣
= 1

µr

[
∂

∂r
(r · Aθ ) − ∂ Ar

∂θ

]
ϕ̂.

Therefore

Hϕ = jk · (I
l) · sin θ ·
[

1 + 1

jkr

]
e− jkr

4πr
Hθ = Hr = 0.

(3.12a)

Since

⇀

E = − jω
⇀

A − j

ωµε
∇∇ · ⇀

A,

it follows that

Er = 2η(I 
l) cos θ

[
1

r
+ 1

jkr2

]
e− jkr

4πr
,

Eθ = jηk(I 
l) sin θ

[
1 + 1

jkr
− 1

(kr )2

]
e− jkr

4πr
,

Eϕ = 0,

(3.12b)

where η = √
µ/ε is the impedance of free space.

The radiation field vectors can then be tabulated as

Hϕ = I
l

2λ
· sin θ ·

[
j
e− jkr

r
+ e− jkr

kr2

]
,

Er = −ηI
l

λ
· cos θ ·

[
−e− jkr

kr2
+ j

e− jkr

k2r3

]
,

Eθ = −ηI
l

2λ
· sin θ ·

[
j
e− jkr

r
+ e− jkr

kr2
− j

e− jkr

k2r3

]
,

Hθ = Hr = 0,

Eϕ = 0.
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3.2.3 Far-Field Region

The far-field region is defined as a region with kr � 1. By neglecting the second
order term 1/r2 and keeping only the first order term 1/ r, one can obtain the far field
of the infinitesimal dipole from Eqs. (3.12a) and (3.12b) as

Hϕ = jk · (I
l) · sin θ · e− jkr

4πr
,

Eθ = jηk(I
l) sin θ · e− jkr

4πr
,

(3.13)Er = Eϕ = 0,

Hθ = Hϕ = 0.

From these electric and magnetic fields, one can see that no radial component exists
at the far field and that the E field is perpendicular to the H field.

As an example, consider a case where a time-varying standing wave with the
current distribution along the dipole’s length is the sinusoidal one:

I (z′) = I0 sin

[
k

(
l

2
− z′

)]
, 0 ≤ z′ ≤ l/2

= I0 sin

[
k

(
l

2
+ z′

)]
, −l/2 ≤ z′ ≤ 0

(3.14)

The finite-length dipole can be considered as formed by an infinite number of in-
finitesimal dipoles with length dz′. Each infinitesimal dipole produces the elementary
far field and can be described as follows, from Eq. (3.13):

d Eθ ≈ jηk Ie(z′)
e− jk R

4π R
sin θ · dz′,

d Hϕ ≈ jk Ie(z′)
e− jk R

4π R
sin θ · dz′,

d Er = d Eϕ = 0,

d Hr = d Hθ = 0.

Here, Ie(z′) is the current value of the current element at dz′. Using the far-field
approximations, as shown in Fig. 3.3, then

R ≈ r, for the amplitude factor.

R ≈ r−z′ cos θ , for the phase factor.
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x

y

z

P(r,θ,ϕ)

r−
R
−

θ'=θ

θ

dz'

ϕ

l/2

FIGURE 3.3 Far-field approximation of z-oriented dipole.

Therefore

d Eθ ≈ jηk Ie(z′)
e− jk(r−z′ cos θ)

4πr
sin θ · dz′

= jηk Ie(z′)
e− jkr

4πr
e jkz′ cos θ · sin θ · dz′,

and

Eθ =
l/2∫

−l/2

d Eθ

≈ jηk
e− jkr

4πr
· sin θ ·

l/2∫
−l/2

Ie(z′)e jkz′cos θdz′

Hϕ =
l/2∫

−l/2

d Hϕ

≈ jk
e− jkr

4πr
· sin θ ·

l/2∫
−l/2

Ie(z′)e jkz′ cos θdz′.

For current distribution as defined in Eq. (3.14), the integration factor expressed
above becomes

l/2∫
−l/2

Ie(z′)e jkz′ cos θdz′

= I0




0∫
−l/2

sin

[
k

(
l

2
+ z′

)]
e jkz′ cos θdz′ +

l/2∫
0

sin

[
k

(
l

2
− z′

)]
e jkz′ cos θdz′
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By utilizing the following two integrals,

∫
eax sin bx dx = eax

a2 + b2
(a sin bx − b cos bx)

∫
eax cos bx dx = eax

a2 + b2
(a cos bx + b sin bx) ,

one obtains the far field of the finite-length dipole as follows

Eθ = jηI0
e− jkr

2πr




cos

(
kl

2
cos θ

)
− cos

(
kl

2

)
sin θ


 ,

Hϕ = j I0
e− jkr

2πr




cos

(
kl

2
cos θ

)
− cos

(
kl

2

)
sin θ


 ,

Er = Eϕ = 0,

Hθ = Hϕ = 0.

(3.15)

3.2.4 Summary of Radiation Fields

On the basis of the preceding discussion, we can divide the antenna radiation field
into three regions, which are functions of wavelength λ and dimension of antenna D.
The definition of these three regions are listed below.

Reactive Near-Field Region. This is the region immediately surrounding the an-
tenna where the reactive field (stored energy – standing waves) is dominant. In
this region, r � λ, fields with 1/r3 term will prevail and remain. This region is
defined by a sphere with radius R1 = 0.62

√
D3/λ.

Near-Field (Fresnel) Region. This is the region between the reactive near field and
the far field where the radiation fields predominate and the field distribution is
dependent on the distance from the antenna. In this region, r < λ, fields with
1/r2 term will prevail and remain. This region is defined by a sphere with radius
R2 = 2D2/λ.

Far-Field (Fraunhofer) Region. In this region, the field distribution is essentially
independent of the distance from the antenna. In this region, r � λ, fields with
the 1/r term will prevail and remain. This region is defined by a sphere with
radius R3 > R2.
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3.3 RADIATION FROM A HALF-WAVELENGTH DIPOLE

For current distributed along a dipole with length l = λ/2, the electric and magnetic
fields can be obtained from Eq. (3.15) as follows:

Eθ = jηI0
e− jkr

2πr

cos
(π

2
cos θ

)
sin θ

,

Hϕ = Eθ

η
,

Er = Eϕ = 0,

Hθ = Hϕ = 0.

(3.16)

The received power density, or far-field power density, is defined as

W (θ, ϕ) =

∣∣∣⇀

E(θ, ϕ)
∣∣∣2

η
, (3.17)

where η is the impedance of the free space, or η = |E/H |. For a half-λ dipole, this
is

W (θ, ϕ) = ηI 2
0

(2πr )2


cos

(π

2
cos θ

)
sin θ




2

.

The normalized power pattern is the ratio of received power density to the maxi-
mum power density:

Wn(θ, ϕ) =


cos

(π

2
cos θ

)
sin θ




2

≈ sin3 θ.

(3.18)

The radiation pattern can be either a normalized field | ⇀

E(θ, φ)| or a normalized
power density | ⇀

E(θ, ϕ)|2/η. The radiation pattern can be plotted as either a 2D or 3D
pattern. Figure 3.4 displays the radiation pattern of a half-wavelength dipole in both
3D and 2D views. Figure 3.4a is a 3D cross-sectional view. The left side of Fig. 3.4b
shows the azimuth pattern, looking down from the z axis into the 3D pattern. The
right side of Fig. 3.4b shows the elevation pattern, looking from the x axis into the
3D pattern.
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FIGURE 3.4 Radiation pattern of a half-wavelength dipole.

3.4 RADIATION FROM A LINEAR ARRAY

A single antenna with a given radiation pattern may be grouped and arranged to yield
a different radiation pattern. There are several design variables that can be modified
to achieve the desired antenna radiation pattern. These variables consist of the array
shape (linear, planar, and circular), element spacing, element-exciting amplitude and
phase, and element radiation pattern.

Linear array is one of the patterns that utilize identical radiating elements arranged
along a straight line. Figure 3.5 is an example of a 10-element linear array, with the
infinitesimal dipole serving as the radiating element. Each dipole is equally spaced
with distance d along the x axis. Assuming that the current amplitudes and phases are
all equal for the array elements, the far field at observation point P(r,θ ,0) due to the
infinitesimal dipole located at the origin is, from Eq. (3.13), expressed as follows:

Eθ0 = jηk(I
l) sin θ · e− jkr

4πr
= E0.
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FIGURE 3.5 A 10-element linear array.

Notice that Eθ0 = E0 is a fictitious field with no radiating element at the origin and
serves as a reference field. Notice also that θ is the observation angle between the
receiver (point P) to origin vector �r and the z axis. The far field due to the individual
element n of the 10-element array is

Eθn = jηk(I
l) sin θ · e− jkrn

4πrn
,

where the parameter rn can be approximated as rn ≈ r for the magnitude term. For the
phase term, rn can be replaced with rn ≈ r – (n − 5.5) d sin θ . In terms of reference
signal E0, the immediately preceding equation becomes

Eθn ≈ jηk (I
l) sin θ · e− jk[r−(n−5.5)d·sin θ ]

4πr
= E0e j(n−5.5)kd·sin θ .

The array’s far field can then be obtained as

Eθ = Eθ1 + Eθ2 + . . . + Eθ10

= E0
(
e− j4.5kd·sin θ + e− j3.5kd·sin θ + . . . + e j3.5kd·sin θ + e j4.5kd·sin θ

)
.

Let

ψ = kd sin θ ;
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then

Eθ = E0e− j4.5ψ

10∑
n=1

e j(n−1)ψ

= E0e− j4.5ψ 1 − e j10ψ

1 − e jψ

= E0
sin (5ψ)

sin (ψ/2)
.

In general, if the number of radiating elements in the array is N, then the total
field observed at far distance can be derived as

Eθ = E0
sin(Nψ/2)

sin(ψ/2)

= Fθ (θ )FA(ψ).

(3.19)

Here Fθ (θ ) = E0 = jηk(I
l) sin θ · (e− jkr/4πr ) is the element factor, and

FA (ψ) = sin (Nψ/2)

sin (ψ/2)

is the array factor.
The array factor FA(ψ) has its maximum value equal to N, which occurs at the

peak of the mainlobe. Therefore, the normalized array factor is

FA(ψ) = 1

N

sin(Nψ/2)

sin(ψ/2)
. (3.20a)

Figure 3.6 displays the magnitude of normalized array factor FA(ψ) in terms of
degrees for N = 10.

As can be seen in Fig. 3.6, there are one mainlobe and eight sidelobes for the angle
ψ ranging from 0◦ to 360◦. The nulls of the array function can be computed by deter-
mining the zeros of the numerator term where the denominator is not simultaneously
zero:

sin(Nψ/2) = 0 or Nψ/2 = ± nπ.

Therefore

ψ = kd · sin θn = ±2nπ

N
,
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FIGURE 3.6 Normalized linear antenna array factor for N = 10.

and

θn = sin−1

[
±2πn

N
· λ

2πd

]
, n = 1,2, . . . but n �= 0, N , 2N , . . . .

(3.20b)

The peaks of the array factor can be found by determining the zeros of the numer-
ator term where the denominator is simultaneously zero:

sin(ψ/2) = 0 or ψ/2 = ±mπ,

ψ = kd · sin θm

= ± 2 mπ.

Therefore

θm = sin−1

[
±mλ

d

]
, m = 0,1,2, . . . . (3.20c)

The phase of the linear array elements, based on the infinitesimal dipole, may be
chosen such that the mainlobe of the array pattern lies along the array axis (x axis
in Fig. 3.5) or normal to the array axis (z axis in Fig. 3.5). The former is known
as the end-fire array, while the latter is called the broadside array. For finite-length
dipoles with the same configuration as shown in Fig. 3.5, each dipole is equally
spaced along the x axis but is oriented along the y axis direction in the end-fire array



P1: OTA/XYZ P2: ABC
c03 JWBK230/Wang July 2, 2008 13:2 Printer Name: Yet to Come

78 BASICS OF ANTENNA THEORY

|FA(θ)|

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 65

θ (in radians)

N=10, d = λ/2

FIGURE 3.7 Normalized linear antenna array factor for N = 10, d = λ/2.

for the mainlobe along the x axis, and along the z axis direction in the broadside
array for mainlobe along the y axis. The dipoles in the end-fire array are usually
closer together than they are in the broadside array, and the currents are usually 180◦

out of phase with each other. The dipoles in the broadside array usually are driven
by currents with the same phase.

From Eq. (3.20), one can observe that by varying the angle θ , the received far
field will change. Figure 3.7 displays the plot of normalized FA(θ ) versus θ for a
broadside array with radiating elements separated by d = λ/2 and N = 10. As can be
seen, the total-field array factor has the maximum value at θ = 0 and π , which is the
angle when the receiver is perpendicular to the antenna array.

3.4.1 Power Radiation Pattern from a Linear Array

The normalized power radiation pattern of a linear array is defined as the square
of the normalized array factor. According to Eq. (3.20a), the power radiation
pattern,

Ga(θ ) = |FA(θ )|2

= 1

N 2

sin2

[
Nπd

λ
sin θ

]

sin2

[
πd

λ
sin θ

] . (3.21a)
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Since (Nπd/λ) sin θ � (πd/λ) sin θ for large N, with Nd = L (the length of the
antenna) and sin θ ≈ θ for small angle θ , the radiation pattern becomes

Ga(θ ) ≈
sin2

[
π L

λ
sin θ

]
[
π L

λ
sin θ

]2 . (3.21b)

Let [(L sin θ )/λ] = x ; then

Ga (θ ) ≈ sin2 [πx]

[πx]2

= sinc2x .

(3.21c)

The half-power beamwidth θ3dB is computed by setting Ga(θ = θ3dB)= 0.5:

sin2

[
π L

λ
sin θ3dB

]
= 0.5

[
π L

λ
sin θ3dB

]2

. (3.21d)

This equation can be solved graphically, resulting in

π L

λ
sin θ3dB = ± 1.39 in radians

or

sin θ3dB = ±0.44 λ

L
.

If θ3dB is small, then sin θ3dB ≈ θ3dB. Therefore, the one-way half-power beamwidth
can be computed as follows:

θ3dB = 0.88
λ

L

≈ λ

L
in radians

= 50.5
λ

L
in degrees.

(3.22)

Equation (3.22) serves as a very important parameter used in radar detection and
radar image processing.

For a N-element linear array with d = λ/2, Nd = L implies λ/L = 2/N, and

sin θ3dB = ±0.88

N
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With small-angle approximation, one obtains

θ3dB ≈ 1.76

N
in radians.

θ3dB ≈ 102

N
in degrees.

If N is sufficiently large, the antenna can be considered as a uniformly illuminated
aperture.

The peak of the first sidelobe of Ga(θ ), from Eq. (3.21c), can be computed
by finding the first sidelobe peak of sinc(x). Since sinc(x) equals zeros at x =
1,2,3, . . . , the peak of the first sidelobe of Ga(θ ) appears at x = 1.5; therefore

Ga(θ ) = [sin(3π/2)]2

[(3π/2)]2

= 4

9π2

or

Ga(θ ) |dB = 10 log

(
4

9π2

)

= −13.2 dB.

3.5 POWER RADIATION PATTERN FROM A
2D RECTANGULAR ARRAY

The 2D power radiation pattern may be approximated as the product of the patterns
of the two planes that contain the principal axes of the 1D antenna, namely

G(θ, ϕ) = G(θ )G(ϕ),

=
sin2

[
π L

λ
sin θ

]
sin2

[
πW

λ
sin ϕ

]
[
π L

λ
sin θ

]2 [
πW

λ
sin ϕ

]2 ,
(3.23)

where L and W are the lengths of the two arrays in the θ and ϕ directions, respec-
tively.

The half-power beamwidth of G(θ ,ϕ) in the θ and ϕ directions are, from
Eq. (3.22), θ3dB ≈ λ/L and ϕ3dB ≈ λ/W, respectively.
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3.6 FUNDAMENTALS OF ANTENNA PARAMETERS

The antenna parameters describe the antenna performance with respect to space dis-
tribution of the radiated energy. Key antenna parameters are radiation beamwidth,
directivity, gain, antenna efficiency, antenna impedance, and radiation efficiency. A
brief description of these parameters now follows.

3.6.1 Radiation Beamwidth

The radiation beamwidth can be defined in two ways, namely, the half-power
beamwidth and the first-null beamwidth. The half-power beamwidth (HPBW) is the
angle between two vectors where the electric field intensity equals 0.707 of the max-
imum mainbeam field intensity. The first-null beamwidth (FNBW) is the angular
difference between the first null on each side of the mainbeam. In general, FNBW is
about twice the size of the HPBW. Radiation beamwidth can be defined in terms of
either power radiation pattern or field pattern. The field pattern (the absolute value
of array factor) will be used for illustration.

A graphical representation of the radiation beamwidth, together with the rela-
tive power level against the angle θ , is shown in both rectangular and polar for-
mats in Figs. 3.8 and 3.9, respectively. A linear array with 6 dipoles, located at half
wavelength from each other, is used here for illustration. Figure 3.8 displays the
field pattern in rectangular format. Here the mainlobe with normalized field = 1 is

FNBW
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θ
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FIGURE 3.8 Field pattern in rectangular format for N = 6.
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FIGURE 3.9 Field pattern in polar format for N = 6.

located at angle θ = 0◦. A backlobe with normalized field = 1 is located at angle
θ = 180◦. In between, there are 4 sidelobes symmetrically located at angles θ = 0◦

to θ = 180◦, and θ = 180◦ to θ = 360◦, respectively. The HPBW and FNBW are
also shown around the mainlobe at θ = 0◦.

Figure 3.9 shows the same field pattern of Fig. 3.8 with relative field level plotted
against the angle θ in polar format. The outside circle, shown as a solid line, corre-
sponds to the field level of 1. The inner circles, shown as dashed lines, correspond to
various levels of the field.

3.6.2 Solid Angle, Power Density, and Radiation Intensity

Given a sphere of radius r (see Fig. 3.10), the solid angle � is defined to be a spherical
surface S� divided by r2:

� = S�

r2
. (3.24)

The definition of one steradian (1 sr) is the solid angle with its vertex at the center
of a sphere with radius r, which is subtended by a spherical surface area equal to that
of a square with each side of length r. There are 4π steradians in a sphere.

The infinitesimal area ds on a surface of a sphere, with radius r, in spherical
coordinates is

ds = r2 sin θ dθ dϕ.
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FIGURE 3.10 Graphical representation of a solid angle.

Therefore

d� = ds

r2

= sin θ dθ dϕ.

Letting PT be the radiator transmitting power, the power density Pd is defined as

Pd = d PT

ds
. (3.25)

The radiation intensity U is defined as the power per solid angle:

U = d PT

d�
. (3.26)

For an ideal isotropic point radiator, the power densities Pd at all points on the
surface of the sphere of radius r are equal, and can be expressed as

Pd = PT

4πr2
. (3.27)

The radiation intensity on any surface surrounding the sphere is given by

U = PT

4π
. (3.28)

The relationship between power density and radiation intensity is then

U = r2 Pd . (3.29)
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3.6.3 Directivity and Gain

The directivity D of an antenna is defined from the radiation pattern as

D = Umax

U0
= maximum radiation intensity

average radiation intensity

or

D = maximum power density
average density from an isotropic radiator

= Pd,max

PT /4πr2
.

(3.30)

The antenna gain is defined as the ratio of the maximum radiation intensity Umax

to the maximum radiation intensity of a reference antenna Uref, which has the same
power input to the measured antenna:

G = Umax

Uref
. (3.31)

Quite often, the terms directivity and the gain are used interchangeably. The dif-
ference is that the directivity ignores antenna losses, which are quite small for most
classes of antennas.

The radiation intensity averaged over all directions is equal to the total power
radiated by the antenna divided by 4πr2. The radiation intensity averaged in a given
direction is equal to r2θ3dBϕ3dB. The antenna gain is then equal to the area of the
isotropic sphere divided by the sector (cross section) area:

G = area of sphere

area of antenna pattern

= 4π

ϕ3dBθ3dB
,

(3.32)

where ϕ3dB and θ3dB are the azimuth and elevation beamwidths in radians, respec-
tively.

3.6.4 Antenna Impedance

An antenna is seen from the generator as a load with impedance ZA represented as

Z A = (RL + Rrad) + j X A,

were RL represents the ohmic resistance where energy is lost (or transformed into
heat) in the antenna structure and Rrad represents the radiation resistance where
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energy radiates into space. XA is frequency dependent and represents energy stored
in electric and magnetic fields.

The maximum power is delivered to or from the antenna when the impedance
of an antenna is matched to the impedance of an equivalent generator or load.
Impedance-matching devices, such as a balum or matching transformer, are used
to serve this purpose.

3.6.5 Antenna Efficiency

The antenna power radiated into air is represented as

Prad = I 2 Rrad

2
.

The antenna power loss is represented as

Ploss = I 2 RL

2
.

The antenna efficiency ηa is a measure of the power dissipated in the ohmic losses
of the antenna. It is the ratio of the total power radiated from the antenna to the power
delivered to the antenna from the transmission line. It can be expressed as follows:

ηa = P rad

P loss + P rad
. (3.33)

3.6.6 Effective Area and Antenna Gain

The antenna has an effective area Ae by which the power density is multiplied to
obtain power delivered to the load. The effective area is also referred to as the capture
area of the antenna. The effective area is related to the physical size and shape of the
antenna.

From Eqs. (3.32) and (3.22), the antenna gain is expressed as

G = 4π

ϕ3dBθ3dB
,

and

θ3dB = λ

L
,

θ3dB = λ

W
.
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Therefore

G = 4π

(λ/L) · (λ/W )

= 4π Ae

λ2
,

where Ae = LW.
The effective area and antenna gain are therefore related as

Ae = λ2

4π
G. (3.34)

The following examples are used to illustrate the above mentioned antenna
parameters.

Example 3.1 By approximating the antenna pattern as a rectangular area, with
θ3dB = ϕ3dB = 1◦ and an average efficiency of 70%, the antenna gain G can be
computed as follows.

From Eq. (3.32), one obtains

G = area of sphere

area of antenna pattern

The area of the antenna radiation pattern can be computed as follows, from Fig. 3.11:

a = r sin θ3dB,

b = r sin ϕ3dB,

Area = ab,

= r2 sin θ3dB sin ϕ3dB.

a

b

r

θ

ϕ

FIGURE 3.11 Antenna radiation pattern approximated as a rectangular area.
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Therefore

G = 4πr2

r2sin θ3dB sin ϕ3dB

= 4π

sin θ3dB sin ϕ3dB
.

For a small angle θ , sin θ ≈ θ and sin ϕ ≈ ϕ. Therefore

G ≈ 4π

ϕ3dBθ3dB
in radians

= 41,253

ϕ3dBθ3dB
in degrees

= 10 log10
41,253

ϕ3dBθ3dB
in decibels.

Given θ3dB = ϕ3dB = 1◦, one obtains

G = 41,253 in degrees,

GdB = 10 log10 41,253

= 46.2 dB.

For antenna efficiency equal to 70%, one obtains

G = 0.7(41,253)

= 28,877 in degrees,

GdB = 44.6 dB.

Example 3.2 By approximating the antenna radiation pattern as an elliptical area
with θ3dB = ϕ3dB = 1◦, and an average efficiency of 55%, the antenna gain G can be
computed using Eq. (3.32):

G = area of aphere

area of antenna pattern
.

From Fig. 3.12, the area of ellipse can be computed as

Area of elliptical area = πab

= π

(
r sin θ3dB

2

r sin ϕ3dB

2

)
= (πr2 sin θ3dB sin ϕ3dB)/4.
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a
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ϕ

FIGURE 3.12 Antenna radiation pattern approximated as an elliptical area.

The antenna gain is then computed as

G = 4πr2

(πr2 sin θ3dB sin ϕ3dB)/4

= 16

sin θ3dB sin ϕ3dB
.

For small values of θ3dB, one can approximate sin θ3dB ≈ θ3dB and sin ϕ3dB ≈ ϕ3dB.
Therefore

G ≈ 16

θ3dBφ3dB
in radians

= 52,525

θ3dBφ3dB
in degrees

= 10 log10
52,525

θ3dBφ3dB
in decibels.

Given the values θ3dB = ϕ3dB = 1◦, one obtains

G = 52,525 in degrees

GdB = 10 log10 52,525

= 47.2 dB.

With efficiency equal to 55%, the antenna gain becomes

G = 0.55(52,525)

= 28,888 in degrees.

GdB = 44.6 dB.
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3.6.7 Polarization

The orientation of the fields in the wave is called polarization. For a dipole antenna,
the original electric field is oriented along the axis of the antenna, and therefore the
induced magnetic field will be perpendicular to both the electric field and the direc-
tion of travel. As the wave propagates outward, the electric and magnetic fields will
remain perpendicular to each other; they will also be perpendicular to the direction
of propagation (Fig. 3.13).

E field

H field

c

x

y z

FIGURE 3.13 Polarized fields.

When the wave propagates outward and the field remains in a particular di-
rection, as in the case of waves from the dipole antenna, the wave is consid-
ered to be linearly polarized. The field direction will be aligned to the antenna. A
vertical antenna will create a vertically, linearly polarized electromagnetic wave.
A receiving antenna that is aligned with the polarization will have the greatest
sensitivity.

In the case of circular polarization, the electric field rotates as it travels along.
If the rotation is clockwise as seen when looking in the direction of propaga-
tion, it is called right-hand circular polarization (RHCP). The other possibility is
left-hand circular polarization (LHCP). Circular polarization is often used in satel-
lite communications because it eliminates the need to match the receiving antenna to
the orientation of the satellite’s antenna.

3.7 COMMONLY USED ANTENNA GEOMETRIES

3.7.1 Single-Element Radiators

Many antennas are designed with a single-element radiator. A half-wavelength dipole
antenna is an example of a single-element radiator. The circular loop antenna is an-
other example of a wired single-element radiator. Although this type of antenna is
easy to implement, its dimension is wavelength-dependent. Therefore, it has some
restrictions on high-frequency applications—typically a few GHz.
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An open-ended waveguide is inefficient in radiating energy because of a mismatch
of impedance at its mouth. By flaring out the sides into a horn to match the intrinsic
impedance of free space, the open-ended waveguide becomes a horn antenna. Horns
flared in the E or H plane are called sectoral horns and if flared in both E and H
plane, pyramidal horns.

The parabolic antenna normally consists of a parabolic reflector and a small feed
antenna. The reflector is a metallic surface having a focal point. The small feed an-
tenna is typically a half-wavelength dipole or a horn-based antenna.

Figure 3.14 displays the typical shapes of a circular loop antenna, linear polarized
horn antenna, and the parabolic antenna. There are many other well-known antennas
and their radiation patterns can easily be found in various books or journal publica-
tions on antennas, and will not be repeated here.

x

y

z

(a)

(b)

(c)

x

y

z

x

y

z

FIGURE 3.14 Popular antennas: (a) circular loop antenna; (b) linear polarized horn antenna;
(c) parabolic antenna.
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3.7.2 Microstrip Antennas and Antenna Array

There are many types of microstrip antennas; and the most common one is the printed
patch antenna, consisting of thin metallic patches etched on a dielectric substrate,
with a ground on the other side of the substrate. The dimensions of the patch are
usually a fraction of the wavelength, while the thickness of dielectric substrate is
normally less than a few percent of the wavelength. Because of its size, the mi-
crostrip antenna is usually used for high-frequency applications in the range from a
few gigahertz (GHz) to 100 GHz.

The feeding signal to the microstrip patch antenna is an important issue in de-
signing a high-performance antenna. There are four popular techniques for feeding
the signal to a microstrip patch antenna: (1) the microstrip transmission line, (2)
coaxial probe, (3) aperture coupling, and (4) proximity coupling. Methods 1 and 2
utilize a direct-contact approach, while methods 3 and 4 are noncontacting with the
patch antenna. A printed patch antenna with a coaxial probe feed is shown in Fig.
3.15. Figure 3.15a is a 3D view of the circuit; Fig. 3.15b is a side view of the mi-
crostrip antenna. The size of the patch, the method of current feed, the thickness and
characteristics of the substrate, and the geometry of the circuit will decide both the
operating frequency and the radiation pattern of the microstrip antenna.

The radiation pattern of a microstrip antenna is normally shown in both the E and
H planes. The E plane is the plane in parallel with the E field of the antenna, while
the H plane is the plane perpendicular to the E field.

An antenna array consists of multiple (usually identical) radiating elements. Ar-
ranging the radiating elements in an array achieves unique radiation characteristics,
which cannot be obtained through a single element. Phased array is the antenna ar-
ray with multiple radiating elements. It changes the radiation pattern electronically

h

Metallic patch

Dielectric
substrate

W

L

Patch

Ground Coaxial connector

Probe

(a)

(b)

FIGURE 3.15 Printed patch antenna.
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FIGURE 3.16 Configuration of a 4-dipole linear array.

by carefully choosing and controlling the phase shift and the magnitude of the signal
fed to each radiating element.

A planar circuit-based dipole can be used to implement the phased antenna ar-
ray. Figure 3.16 shows a simple configuration of a linear phased array based on four
units of planar half-wavelength dipole, each spaced λ/2 apart from other units and fed
with in-phase signal to each of the 4 dipoles. Sean Hum and Rob Randall designed
such an array in 2003. [ENEL 619.50 Project: Self-Phased Array System; available
at http://www.enel.ucalgary.ca/People/Okoniewski/ENEL619-
50/Projects2003/SPAS; accessed on 1/10/07.] The metal (copper) strip–based
dipole has one layer of substrate and an integrated planar balun. For λ/2 dipole array
with N = 4, the antenna length L = 4 × λ /2 = 2λ; therefore the 3-dB beamwidth
can be calculated as θ = λ /L = 0.5 in radians or 28.64◦. A measured beamwidth of
28.6◦ along the x axis matches the theoretical result quite closely.

To design a 2D planar circuit-based antenna array, the signal line must be aligned
with equal distance to provide an in-phase signal to each radiating element. One
possible implementation of a 4 × 4 antenna with half-wavelength dipole is shown in
Fig. 3.17. Figure 3.17a is a front–back view of the planar circuit-based dipole array;
Fig. 3.17b shows the configuration of a 2D antenna array.

Upper side view Bottom side view

Connector

d

Microstrip
(Signal) line

Metal strip

λ/2(a) (b)

d

FIGURE 3.17 Half-wavelength dipole-based 2D antenna array.
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4

FUNDAMENTALS OF RADAR

This chapter reviews basic theories of radar signal processing. Section 4.1 describes
the principles of radar operation. Section 4.2 covers the basic configuration of a radar
system. Section 4.3 and 4.4 discuss radar range equations, radar cross section, and
clutter. Section 4.5 explains the Doppler frequency shifts from the wave propagation
viewpoint. Radar resolution and ambiguity function are covered in Section 4.6.

4.1 PRINCIPLES OF RADAR OPERATION

By transmitting and receiving electromagnetic waves at regular time intervals, the
radar is capable of identifying the distance from the target to the radar and/or the
moving speed of the target. The detection and ranging functions can be accomplished
either by timing the delay between transmission of a radio pulse and its subsequent
return, or by calculating the difference in frequency between the transmitted sig-
nal and the echo signal. The pulse-based timing delay normally employs the ampli-
tude modulation (AM) technique. Conversely, the frequency-difference-based rang-
ing and detection method usually employs the linear frequency modulation scheme.

Consider the simple case of a radar system where a sequence of an AM pulse is
transmitted. In this case, the information signal is a single pulse repeated at regular
time intervals. The commonly used radar carrier-modulated pulse train is shown in
Fig. 4.1.

In Fig. 4.1, the pulse repetition interval (PRI) is represented as T , which is the
time interval between the start of one pulse and the start of the next pulse. The pulse

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.
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FIGURE 4.1 Transmitter and receiver pulse trains.

repetition frequency f PRF is the inverse of PRI; that is, f PRF = 1/PRI. The pulse
repetition interval T is equal to the sum of the pulsewidth time Tp and the receiver
listening time. If the target delay time is τ , then its range can be computed by the
following equation with c as the speed of light or EM wave:

R = cτ

2
. (4.1a)

The minimum and the maximum unambiguous detection range can be computed as
follows:

Rmin = c (pulsewidth + radar recovery time)

2

= c(Tp + tr )

2
, (4.1b)

Rmax = cT

2
.

Range ambiguity occurs when continuous pulse streams are sent and continuous
echoes from the targets are received by the radar. Since all the pulses are identical,
the radar cannot identify which echo originated from which pulse, and this gives rise
to an ambiguity in the range measurement.

Figure 4.2 shows the problem of range ambiguity due to short pulse repetition
period T , where a series of transmitted pulses and received echoes are displayed. In
this case, target 2 exceeds the maximum unambiguous range. Echoes from target 1
show up after every transmitted pulse, but echoes from target 2 appear only after the
second pulse was transmitted. For this type of pulsed radar waveform, the radar does
not have sufficient data to decide which range corresponds to the correct target.

The most common method for resolving range ambiguity involves using multiple
f PRF values. Since the amount of range ambiguity depends on the f PRF, it will change
when the f PRF is changed, as stated in Eq. (4.1b). Switching f PRF gives the additional
advantage of uncovering targets that are at the blind range for one or some of the
f PRF values. Such targets would be invisible at one or some f PRF levels but clearly
visible at the others.
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Target

Range

21

Received
signal

Time
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Tx pulse

Time
T

p

T

1
2

FIGURE 4.2 Pulse repetition period and range ambiguity.

Range resolution is the ability of a radar system to distinguish between two or
more targets at different ranges. Two pulses with duration Tp and separated by a time
interval �t are resolvable if �t ≥ Tp. As shown in Fig. 4.3, the range resolution is
then equal to one-half of the pulsewidth time, or

Range resolution = cTp

2
, (4.1c)

where the 1
2 factor comes from the round-trip traveling time of the radar pulse.

Tx pulse

t

t

t

Received signal

Received signal

Tp

< 2Tp

Tp Tp

FIGURE 4.3 Range resolution.
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The duty cycle of a radar pulse stream is defined as the ratio of the time on to the
time off of the transmitter. The equation for computing a duty cycle is

Duty cycle = Tp

T
.

4.2 BASIC CONFIGURATION OF RADAR

A typical radar system can be functionally divided into six essential blocks as shown
in Fig. 4.4. These blocks and their interrelationships are depicted in Fig. 4.4.

Waveform generator

Transmitter Timing and control

Receiver

Computer/Signal
      processor

Data display

Antenna system

FIGURE 4.4 Block diagram of a radar system.

4.2.1 Waveform Generator

The waveform generator produces and controls the waveform to be modulated and
transmitted by the transmitter. Depending on the application, amplitude modulation,
linear frequency modulation, and stepped frequency modulation are three examples
of signal modulation techniques provided by waveform generators.

4.2.2 Transmitter

The transmitter generates powerful pulses and/or waveforms of electromagnetic en-
ergy at precise time intervals and sends them to the antenna block. Radar transmis-
sion normally utilizes either resonating microwave tubes or solid-state devices for
high-powered transmission.

4.2.3 Antenna System

The antenna system routes the energy from the transmitter and radiates it in a direc-
tional beam. It also picks up the returning echo energy and passes it to the receiver



P1: OTA/XYZ P2: ABC
c04 JWBK230/Wang July 1, 2008 21:38 Printer Name: Yet to Come

THE RADAR RANGE EQUATION 97

with minimal loss of energy. The antenna system includes a transmitting function and
a receiving function. The transmitting function has an antenna, as well as a transmis-
sion line or waveguide from the transmitter to the antenna. The receiving function
consists of the transmission line or waveguide from the antenna to the receiver. When
the transmitter and receiver operate on separate antennas for signal transmission and
receiving, the system is called a bistatic radar system. When the same antenna is
used for both transmitter and receiver, it is called a monostatic radar system. In this
situation, a duplexer, which is essentially a microwave circuit or electronic switch,
is required. The duplexer connects the antenna to the transmitter and disconnects the
antenna from the receiver for the duration of the transmitted pulse. After the trans-
mitting pulse has ended, the duplexer immediately disconnects the transmitter and
connects the receiver to the antenna.

4.2.4 Receiver

The receiver receives the target reflected energy from the antenna block. It then per-
forms amplification, filtering, and demodulation on the received signal. The prepro-
cessed signal is then sent to a computer or signal processor for further processing.

4.2.5 Computer/Signal Processor

The computer/signal processor performs complex mathematical computations on the
demodulated signal to extract target velocity and/or range information.

4.2.6 Timing and Control

The timing-and-control block provides timing information to synchronize various
signals and to control the operation of other radar components.

After the echo signal is processed, the targets’ range and/or speed information
are/is sent out for display on cathode ray tube–liquid crystal display (CRT/LCD)-
based devices.

4.3 THE RADAR RANGE EQUATION

The power density at range R from the transmitter is defined as the transmitted power
divided by the surface area 4πR2 of an imaginary sphere of radius R. Let PT be the
power transmitted by the antenna through an isotropic radiator (one that radiates
uniformly in all directions); then the power density can be expressed as

Power density from an isotropic antenna = PT

4π R2
in watts per square meter (W/m2).
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Let GT be the radar transmitter antenna gain; the power density SI received by the
target from a transmitter with antenna gain GT then becomes

SI = PT GT

4π R2
in W/m2

Let σ be the target’s scattering coefficient or radar cross section (which is in units
of m2 and will be discussed later); then the power density back at the input of the
receiver antenna will be

SR = PT GT

4π R2
· σ

4π R2
in W/m2

In Chapter 3 we defined the effective area of receiving antenna Ae as the ratio
of the received power at the antenna terminals to the power density of the incident
wave. We also mentioned that Ae affects the received power. Therefore, let S be the
power received by the receiving antenna; then

S = PT GT σ

(4π R2)2
Ae in watts

Let GR be the gain of receiving antenna, from Eq. (3.34), the gain GR is then
related to its effective area by the expression

G R = 4π Ae

λ2
.

The total received power S scattered by a target is then

S = PT GT σ(
4π R2

)2 · G Rλ2

4π

= PT GT G Rλ2σ

(4π )3 R4
.

For a monostatic radar where the antenna performs both transmitting and receiv-
ing functions, then GT = GR = G. Therefore

S = PT G2λ2σ

(4π )3 R4
. (4.2a)

There is always some energy loss due to circuit or equipment power dispassion.
This energy loss will reduce the total amount of power received. They are lumped
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together and are denoted by L, where L < 1. The total received power then becomes

S = PT G2λ2σ

(4π )3 R4
L . (4.2b)

This equation can also be expressed in dB values as

SdB = PT dB + 2GdB + 10 log10

(
λ2

(4π )3

)
+ σdB − 40 log10 R − LdB. (4.2c)

Figure 4.5 illustrates the power density relationships between the transmitter, the
target, and the receiver.

Tx

Rx
GR

PT

GT

SC =σ
4πR2

PTGT

SI =
4πR2

PTGT

SR=
4πR2
PTGT

4πR2
σ

R

R

Target

FIGURE 4.5 Key elements of radar range equation.

Equation (4.2b) or (4.2c) is called the Radar range equation, which can be used
to compute the range of the target. The maximum detection range Rmax is the range
at which the received power just equals the minimum detectable signal Smin. By
equating Rmax for S = Smin, the maximum range can be computed as follows, from
Eq. (4.2b):

Rmax =
[

PT G2λ2σ

(4π )3 Smin
L

]1/4

. (4.3)

Example 4.1 Calculation of Maximum Radar Range Given the following pa-
rameters of a range detection radar,

� Antenna gain: 34 dB
� Transmit peak power: 2 kW
� Radar carrier frequency fc: 10 GHz
� Overall system losses: 5 dB
� Target RCS: 5 m2

� Minimum detectable signal power: 1.6 × 10−13 W
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The maximum detection range of the radar can be calculated as follows:
For a 10-GHz carrier frequency, the wavelength λ = c/f = 3 × 10–2 m. By apply-

ing the radar range equation (4.2c), with SdB = −128, one obtains

−128 = 33 + 2 · 34 + 10 log10

[
9 · 10−4

(4π )3

]
+ 7 − 40 log10 R − 5

≈ 40 − 40 log10 R.

Therefore

Rmax ≈ 15,848 m.

4.4 CROSS SECTION AND CLUTTER

4.4.1 Target Cross Section

The “cross section” of a target relates the amount of transmitting power that strikes
the target to the amount of power that is reflected back to the receiver. Let the power
density of a plane wave incident on the target be Si W/m2, and the amount of power
scattered isotropically be Sc; then the cross section σ is defined in terms of Si and Sc

as follows:

Sc = σ Si .

Notice that the incident power density Si is referred back to the transmitting antenna.
For a large value of range R, the power density received at the target can be roughly
considered as the amount of power received at the target. The reflected power Sc is
therefore a fraction of the incident power Si.

The power density Sr of the scattered wave at the receiving antenna is

Sr = Sc

4π R2
.

Here Sr is referred back to the target.
The cross section can be rearranged in terms of the power densities Sr and Si as

σ = 4π R2 Sr

Si
.

To ensure that the receiving antenna is in the far field and that the waves are planar,
the cross section is expressed as

σ = lim
R→∞

4π R2

∣∣∣∣ Sr

Si

∣∣∣∣ .
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In terms of the various fields that make up EM waves, this equation can be expanded
as follows:

σ = lim
R→∞

4π R2

∣∣∣∣ E2
r

E2
i

∣∣∣∣
= lim

R→∞
4π R2

∣∣∣∣ H 2
r

H 2
i

∣∣∣∣ .
(4.4)

Here Er and Hr are the respective electric and magnetic fields at the radar receiver,
while Ei and Hi are the respective electric and magnetic fields at the target.

4.4.2 Cross Section and the Equivalent Sphere

If a target scatters power uniformly over all angles, its cross section would be equal
to the area from which power was extracted from the incident wave. Since the sphere
has the ability to scatter isotropically, it is convenient to interpret its cross section in
terms of the projected area of an equivalent sphere.

A sphere with radius a � λ will intercept power contained in πa2 of the incident
wave. The cross section of a sphere is therefore equal to the area πa2 even though the
actual area that returns power to the receiver is a very small area where the surface
lies parallel to the incident wavefront. The cross section of a sphere is therefore one-
quarter of the surface area, and it can be shown that the average cross section of any
large object that consists of continuous curved surfaces will be one-quarter of its total
surface area.

4.4.3 Cross Section of Real Targets

Target cross section is a complicated function of the viewing aspect, incident wave
frequency, and polarization. It is often related to target physical size, and under cer-
tain circumstances, it may be significantly larger. The effective surface roughness
of a target (as a function of λ) also plays an important role in determining its cross
section. There are two popular reflection mechanisms: diffuse reflection and specu-
lar reflection. The diffuse reflector, such as a cornfield, scatters the EM waves in all
directions and returns only a fraction of the energy back to the radar antenna. The
specular reflector, such as a smooth paved surface, acts as a mirror and reflects the
energy from the EM wave in one well-defined direction. The energy returned to
the radar antenna could be either nonexistent or very strong, depending on whether
the reflecting surface is at a right (90◦) angle to the radar beam. These two reflection
mechanisms determine individually, or in combination, the target reflection charac-
teristics.

4.4.4 Radar Cross Section (RCS)

The radar cross section (RCS) of an object is a measure of its size as seen at a partic-
ular radar wavelength and polarization. RCS has units of m2 and is often expressed
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in decibels relative to a square meter (dBsm),

σ (dBsm) = 10 log10[σ (m2)].

The characteristics of RCS, or scattering coefficient, depend on the field polarity
of the transmitter and the receiver. Since a radar receiver detects electric fields, the
RCS is a function of polarity on Er and Et. Here Er and Et refer to the receiver and
transmitter E field, respectively. The relationship between RCS and polarity of the
transmitted and received electric fields can be expressed as[

Er
H

Er
V

]
=

[
σH H σV H

σH V σV V

] [
Et

H

Et
V

]
, (4.5)

where the subscripts V and H refer to the respective vertical polarized and horizontal
polarized E fields. The first subscript of σ HH refers to the scattering coefficient σ

due to a transmitted horizontal polarized E field, or Et
H . The second subscript of

σ HH relates the scattering coefficient σ to the received horizontal polarized E field,
or Er

H . Similar relations apply to σ VH, σ HV, and σ VV. For most applications, the
radar transmitter and receiver are arranged to possess the same polarity. The target
RCS is therefore simplified as a single value that corresponds to either σ HH or σ VV

depending on whether the transmitted polarization is horizontal (H) or vertical (V).
The following list displays the radar cross section of some well-known objects for

comparison purpose:

Unit Insects Birds Humans Aircraft Ships

m2 0.001 0.01 0.1 100 10,000
dBsm −30 −20 −10 20 40

4.4.5 Clutter

The EM waves reflected from the objects around the target are referred to as “clutter.”
These returns may be from the surface surrounding the target (ground), or from the
volume of space around it (rainfall) as shown in Fig. 4.6.

Surface clutter

Volume clutter

FIGURE 4.6 Surface clutter and volume clutter.
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Clutter is thus defined as the undesired return from a physical object or a group of
objects. Clutter may be divided into sources distributed over a surface (land or sea),
within a volume (weather or chaff), or concentrated at discrete points (structures,
birds, or vehicles). The magnitude of the signal reflected from the surface is a func-
tion of the material, roughness, and angle. Two main scattering types of clutter are
diffuse and specular, as described before. Rain and dust are the two main contributors
of volume backscatters.

In addition to detecting the target range, radar is also used extensively to detect
the speed of a target. The detection of target speed is primarily based on the detection
of Doppler frequency, which is discussed next.

4.5 DOPPLER EFFECT AND FREQUENCY SHIFT

For stationary and separate wave receivers and wave sources, such as sound or light,
the frequency or wavelength generated by the wave source will be the same at the
receiver site; that is, fr = fs or λr = λs, where the subscripts r and s refer to wave
receiver and wave source, respectively. Only electromagnetic waves are considered in
this book. Figure 4.7 shows a wave source S and a wave receiver R at some distance
away. The concentric circles are the wavefronts emitted from the wave source S
located at the center of the circles. The symbol ri, for i = 1,2,3, denotes the radius
corresponding to the wavefront generated at time Ti = (i − 1)T with T = 1/fs as
the wave period. The symbol Si is the origin of the circle ri. For a stationary wave
source, Si = S for every Ti, and the distance between any two circles has the same
wavelength λs = λr.

S R

λs

r3

r2
r1

FIGURE 4.7 Wave propagation for stationary source and stationary receiver.
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FIGURE 4.8 Wave propagation for moving source and stationary receiver.

4.5.1 Doppler Frequency

When the wave source moves, either toward or away from the receiver, the center of
the concentric circles will move as well. As a consequence, a frequency difference
occurs between the wave source and the wave receiver. This frequency difference or
shift is called the Doppler frequency.

Figure 4.8a shows a situation where the wave source S is moving at the speed Vs

toward the receiver R. For a wave period of T , the origin of the wave source S has
moved to two locations, from S1 to S2 at time T2 = T , and to S3 at time T3 = 2T .
The distances between S1, S2, and S3 are S2 – S1 = d and S3 – S2 = d.

Figure 4.8b shows the effects of the waveforms generated at different locations
by the moving source. Consider the circle of r1, which has origin S1 at time t = 0.
At time t = T , the source S moves to a new position S2 with a radius of r2 and
having d = VsT away from S1. A dotted circle corresponding to the stationary case
generated at time T with the same radius r2 is shown for comparison. The difference
between radii r1 and r2 along the direction between S and R is the wavelength as seen
by the receiver. In other words, the received wavelength λr is related to the source
wavelength λs by

λr = λs − d

= λs − Vs T

= λs − Vsλs

c

= λs(c − Vs)

c
,

where c is the speed of the wave, in this case the speed of light.
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Since λ = c/f , the received frequency can be computed from the source frequency
by

fr = fsc

c − Vs
.

The frequency difference between receiver and source, or Doppler frequency fD, is

fD = fr − fs

= fs Vs

c − Vs
.

(4.6)

The positive value of fD means that the received frequency is higher than the
frequency emitted by the approaching source. If the receiver is stationary, then, after
the source passes the receiver, the “speed of approach” Vs becomes negative, and the
frequency recorded by the receiver becomes lower than the frequency emitted by the
now-receding source. The Doppler frequency, caused by relative movement between
source and receiver, is also called the Doppler frequency shift.

The same principle applies when the source is stationary but the receiver is ap-
proaching it at a speed Vr. For one receiver wave period T′, which equals to 1/fr,
the receiver will move a distance of d = VrT′. This means that the receiver will
receive the source wave by less distance d than when the receiver is stationary.
Figure 4.9 displays an example of a receiver moving toward the wave source at a
speed Vr.

S R

λs

r3

r2
r1

d

λr

Vr

FIGURE 4.9 Wave propagation for stationary source and moving receiver.
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The new received wavelength is related to the source wavelength by

λr = λs − d

= λs − Vr T ′

= λs − Vrλr

c

λr = λsc

c + Vr
.

Since the moving receiver now determines the period of the wave, the received
frequency is related to the source frequency by

fr = fs(c + Vr )

c
.

The frequency difference between the receiver and source or Doppler frequency is

fD = fr − fs

= fs Vr

c
.

(4.7)

Consider the case when both the wave source and the wave receiver are moving
and Vs and Vr are the speeds with which they are approaching each other. Figure 4.10
displays a scenario in which the source moves toward the receiver at speed Vs for a
time interval t = T = 1/fs, with a distance d1 = VsT . It also shows that the receiver
moves toward the source at speed Vr for the same time interval T with a distance
d2 = VrT .

S1

R

λr
r2

r1

S2

d1

d
1r2

d
2

Vs

Vrλs

FIGURE 4.10 Wave propagation for moving source and moving receiver.
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The received wavelength λr is related to the source wavelength λs by

λr = λs − d1 − d2

= λs − Vs T − Vr T

= λs − Vsλs

c
− Vrλs

c

= λs

(
1 − Vs

c
− Vr

c

)
.

The received frequency is related to the source frequency by

fr = fs

1 − (Vs + Vr )/c

= fs

(
1 − Vrs

c

)−1

,

where Vrs = Vr + Vs. For Vrs 	 c,

fr ≈ fs

(
1 + Vrs

c

)
.

The frequency difference between receiver and source, or Doppler frequency, is

fD = fr − fs

= fs Vrs

c

= Vrs

λs
.

(4.8)

Notice that the value of Vrs, and therefore fD, is positive if the wave source and wave
receiver are moving toward each other; otherwise, it is negative.

For most Doppler frequency detectors, both the transmitter and the receiver are
stationary. Figure 4.11 illustrates one possible application where the transmitter
(source) and the receiver are stationary, while the target is moving at speed V .

Target

V

Transmitter

Receiver

θsθr

FIGURE 4.11 Doppler radar with separate source and receiver.
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As shown in the figure, the radial velocity of the target relative to the transmitter
(source) is −V cos θ s, and the radial velocity of the target relative to the receiver is
−V cos θ r. The Doppler frequency arising under these circumstances can be calcu-
lated by assuming that

� The target is moving away from the transmitter with a velocity −V cos θ s.
� The receiver is moving away from the target with a velocity −V cos θ r.

These two assumptions are equivalent to the receiver moving away from the trans-
mitter (source) with velocity −V cos θ s − V cos θ r, even though both are stationary.

The Doppler frequency of the separated transducers described above can be com-
puted as follows, from Eq. (4.7):

fD = − fs V

c
(cos θs + cos θr )

= −2 fs V

c
cos

(
θr + θs

2

)
cos

(
θr − θs

2

)
.

If the transmitter (source) and the receiver are collocated, then θ r = θ s = θ and the
formula for the Doppler frequency becomes

fD = −2 fs V

c
cos θ

= −2V

λs
cos θ. (4.9)

Equation (4.9) is a very important formula for computing the Doppler frequency,
which serves as the basis for detecting the speed of a target.

An alternative way to derive the Doppler frequency and the corresponding rel-
ative velocity between the radar and target is as follows. Assume that the distance
between radar and target is R, and that the wavenumber over the transmitted and
reflected paths is then 2R/λs, where λs is source wavelength. Since one wavelength
λs corresponds to an angular phase of 2π , the total phase φ is 4πR/λs. The rate of
change in φ with respect to time t is the angular Doppler frequency ωD, which is
then

ωD = 2π fD

= dφ

dt

= 4π

λs

d R

dt

= 4πVr

λs
.
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Therefore

fD = 2Vr

λs
. (4.10)

Here fD is the Doppler frequency and Vr is the relative velocity of the target with
respect to the radar. The value of Vr, and therefore fD, is positive if the radar and
target are moving toward each other; otherwise, it is negative.

Example 4.2 Computation of Doppler Frequency Figure 4.12 shows a radar-
carrying vehicle flying along the y axis at (velocity) V = 800 kilometers per hour
(km/h), with a ground target located at (r0, 0). Let r0 = 20 km and the carrier fre-
quency of radar be 3 GHz. The distance from the three radar positions A, B, and
C to the target are r1, r0, and r3, respectively. Position B is at (0,0), and the angles
between the x axis and positions A and C are α and β, respectively. Letting α =
β = 30◦, the Doppler frequency at positions A, B, and C can be computed as follows.
The wavelength of a radar signal is computed as

λ = c

fc

= 3 × 108

3 × 109

= 0.1 m.

r0

r3
r1

A B

C(0,0)

V
V

V

(r0,0)

x

y

α β

Vr

Vr

Radar RadarRadar

Target

Ground

FIGURE 4.12 Example of Doppler frequency.

The radial velocity Vr at position A is

Vr = V sin α

= 800 sin (30◦)

= 111.11 m/s.
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Given Vr and λ, from Eq. (4.10), the Doppler frequency can be obtained as

fD = 2Vr

λ

= 2.222 kHz.

The radial velocity at position B equals zero; therefore the Doppler frequency
fD = 0. The radial velocity at position C is

Vr = −V × sin β

= −800 km/h × sin (30◦)

= −111.11 m/s.

therefore,

fD = 2Vr

λ

= −2.222 kHz.

4.6 RADAR RESOLUTION AND AMBIGUITY FUNCTION

The primary function of a modern radar system is to detect targets of interest while
estimating each target’s position and velocity. Range and velocity determinations de-
pend on the accuracy of measuring the time delay and the Doppler frequency, which
in turn are related to the fundamental properties of radar waveform. The continuous-
wave (CW) waveform and the pulse waveform are two of the most frequently used
techniques in the radar applications. The advantage of CW radar is unambiguous
Doppler measurement; that is, each target velocity produces a single unique Doppler
frequency of the CW carrier. However, the target range measurements using CW
radar are entirely ambiguous. This is because that all the returned waveforms are
continuous; the radar cannot identify which echo came from which waveform, and
thus an ambiguity in the range measurement occurs.

Most modern radars employ a pulse waveform technology, where a single antenna
serves for both transmitting and receiving functions. A pulse-based radar waveform
will provide both the range and the velocity information for a target. The waveform
of a pulse-based radar can be single-carrier-frequency-based, frequency-modulated,
or phase-modulated, as described in more detail in next chapter.

The target range of a pulse-based radar, with echo delay time τ , is computed as
R = cτ/2.

Letting T be the pulse repetition period, the maximum unambiguous target range
R occurs at τ = T , namely, Rmax = cT/2. The range ambiguity arises if the target is
located at a range exceeding Rmax.
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The Doppler frequency fD, which causes carrier frequency shift, is induced by a
target having velocity V relative to the radar, specifically, fD = 2V/λ.

For moving targets, the differential phase change between successive pulses, de-
noted as �φ, is given by �φ = 2π (2�R/λ), where �R is the change in target range
between successive radar pulses. When the phase change between radar pulses ex-
ceeds 2π , the Doppler measurement becomes ambiguous.

The most common method for resolving range and Doppler ambiguities involves
using multiple f PRF values. This has the effect of changing the apparent target range
estimated by each pulse or pulse burst, and allows for some ambiguity resolution in
either Doppler frequency or range, depending on the particular application.

The ambiguity function (AF) is widely used in radar waveform analysis which
shows the distortion of a matched filter output due to the Doppler shift of the
echo signal from a moving target. It reveals the range–Doppler position of an
ambiguous response and defines the range and Doppler resolution. The ambi-
guity function χ (τ , fD) is defined as the cross-correlation between a waveform
s(t) and s∗ (t − τ ) exp ( j2π fDt), which is a time-delayed and complex-conjugated,
frequency-shifted replica of s(t):

χ (τ, fD) =
∞∫

−∞
s (t) s∗ (t − τ ) exp ( j2π fDt) dt. (4.11)

Along the delay τ axis, χ (τ , fD) represents the autocorrelation function of s(t);
along the fD axis, χ (τ , fD) is proportional to the spectrum of s2(t):

∣∣∣∣∣χ (τ, fD = 0)

∣∣∣∣∣
2

=
∣∣∣∣∣

∞∫
−∞

s(t)s∗ (t − τ )dt

∣∣∣∣∣
2

(4.12a)

∣∣∣∣∣χ (τ = 0, fD)

∣∣∣∣∣
2

=
∣∣∣∣∣

∞∫
−∞

|s(t)|2exp ( j2π fDt)dt

∣∣∣∣∣
2

. (4.12b)

It is common to refer to the absolute value of χ (τ , fD) as the ambiguity surface of
the waveform. A normalized expression of the ambiguity surface requires that

∞∫
−∞

|s (t) |2dt = 1. (4.13)

A short monotone pulse will now be used as an example to show the ambiguity
surface |χ (τ , fD)|. Let the envelope of the rectangular pulse be

s(t) =
√

1

Tp
Rect

(
t

Tp

)
, (4.14)
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where

Rect

(
t

Tp

)
= 1, |t | ≤ Tp

2

= 0, |t |>Tp

2

(4.15)

The rectangular pulse and its frequency spectrum are shown in Fig. 4.13. The
frequency spectrum is a sinc function with its maximum occurring at the origin,
while the first zero is located at 1/Tp and −1/Tp away from the origin. It is clear
that the narrower the rectangular pulse is, the wider the bandwidth of the spectrum
becomes.

s(t)

t

f

|S( f )|

(0,0)

(0,0)−1/Tp−2/Tp 2/Tp1/Tp

Tp /2−Tp /2

Tp

1
Tp

FIGURE 4.13 Rectangular pulse and its frequency spectrum.

The ambiguity surface |χ (τ , fD)| of the rectangular pulse can be expressed as

|χ (τ, fD)| =
∣∣∣∣∣∣

∞∫
−∞

s (t) s∗ (t − τ ) exp ( j2π fDt)dt

∣∣∣∣∣∣
= 1

Tp

∣∣∣∣∣∣∣
Tp∫

τ

exp ( j2π fDt) dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣
(

1 − |τ |
Tp

)
sin

[
π fDTp

(
1 − |τ |/Tp

)]
π fDTp

(
1 − |τ |/Tp

)
∣∣∣∣∣

=
[

1 − |τ |
Tp

]
sinc (x) , |τ | < Tp,

= 0, |τ | ≥ Tp,

(4.16)

where x = fDTp(1 − |τ |/Tp).
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FIGURE 4.14 Ambiguity function of a rectangular pulse in 3D view.

The ambiguity surface |χ (τ , fD)| is a function of both the time delay τ and the
Doppler frequency fD. For |τ | < Tp and at a given value of τ , the sinc function has its
maximum occurring at the origin and zeros located at x = ±n, where n = 1, 2, 3, . . . .

Figure 4.14 is a 3D display of |χ (τ , fD)|. The magnitude of the sinc function de-
creases along the delay-time τ axis and reaches zero when |τ | equals Tp. The band-
width of the sinc function along the fD axis is stretched as the value of |τ | increases
from zero to Tp.

Figure 4.15 displays the cross-sectional view of Fig. 4.14. The waveform in Fig.
4.15a shows the magnitude of |χ (τ = 0, fD)| against the Doppler frequency with
τ = 0. The waveform in Fig. 4.15b shows the magnitude of |χ (τ = 0.5Tp, fD)| against
the Doppler frequency with τ = 0.5Tp. The 3-dB bandwidth doubles at τ = 0.5Tp

when compared with the one at τ = 0. The Doppler frequency is used to compute the
speed of target, which has higher magnitude and narrow bandwidth at τ = 0 than do
those at τ = 0.5Tp. This implies that the accuracy of the target’s speed measurement
is adversely affected when the delay time increases.

Figure 4.16 displays another cross-sectional view of Fig. 4.14. The waveform
in Fig. 4.16a shows the magnitude of |χ (τ , fD = 0)| against the time delay with
fD = 0. The waveform in Fig. 4.16b shows the magnitude of |χ (τ , fD = 2.5/Tp)|
against the time delay with fD = 2.5/Tp. As can be seen, the magnitude of |χ (τ , fD)|
equals zero at time delay τ = Tp and τ = –Tp in both cases. The function
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0

1

|χ(τ, f
D
)|

2.5/Tp

−2.5/Tp

0
0

Doppler frequency fD

0.4T p
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−T p
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FIGURE 4.15 Cross-sectional view of Fig. 4.14 with τ = 0 (a) and τ = 0.5Tp (b).
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FIGURE 4.16 Cross-sectional view of Fig. 4.14 with fD = 0 (a) and fD = 2.5/Tp (b).
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FIGURE 4.17 A 3-dB contour of ambiguity function of a rectangular pulse in 3D view.

|χ (τ , fD = 0)| corresponds to the output of pulse compression, which is used to
measure the target’s range. As shown in Fig. 4.16b, the outputs of pulse compression
values are reduced at increased fD, and therefore cause errors or ambiguity in target
range measurement.

The 3-dB energy contour of the magnitude of |χ (τ , fD)| is shown as a 3D view
in Fig. 4.17. This is the region where the target’s speed and range should both be
measured.
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5
RADAR MODULATION AND

TARGET DETECTION
TECHNIQUES

In Chapter 4, we mentioned that various waveforms can be used by radars to detect
the range and/or speed of a target. In this chapter, we discuss several types of
these waveforms. Section 5.1 reviews amplitude modulation (AM)-based radars,
including continuous–wave radar and pulse–Doppler radar. Section 5.2 describes
target detection techniques on AM-based radar. Frequency modulation (FM)-based
radars are covered in Section 5.3, including linear frequency modulation (LFM),
pulsed LFM, continuous-wave LFM (CWLFM), and stepped frequency modulation
(SFM). The target detection techniques for FM-based radar, which utilize the
in-phase–quadrature-phase demodulator and matched filtering, are discussed in
Section 5.4.

5.1 AMPLITUDE MODULATION (AM) RADAR

Amplitude modulation (AM) is a modulation technique in which the amplitude of the
carrier is varied in accordance with some characteristics of the baseband modulating
signal. It is the most common form of modulation because of the ease with which
the baseband signal can be recovered from the transmitted signal.

An AM signal p(t) can be described in terms of carrier frequency fc and baseband
signal pb(t) by the following equation:

p (t) = At [1 + pb (t)] cos (2π fct) . (5.1)

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.
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Letting the modulating signal pb(t) be a sinusoidal signal as pb(t) = Am cos(2π fat),
Eq. (5.1) then becomes

p (t) = At [1 + Amcos (2π fat)] cos (2π fct) . (5.2)

In general Am < 1; otherwise a phase reversal occurs and demodulation becomes
more difficult. The extent to which the carrier’s amplitude has been modulated is
expressed in terms of a percentage modulation that is calculated by multiplying Am

by 100.

5.1.1 Continuous-Wave (CW) Radar

A radar system that continuously transmits a signal is referred to as continuous-wave
(CW) radar. CW radar is normally used to detect the speed of a moving target.
When a CW radar waveform continuously strikes a target that is moving either to-
ward or away from the transmitting radar, the frequency of the reflected waveform
is changed; this is known as the Doppler frequency. To detect the moving target
speed, the CW radar receiver mixes (or homodynes) the received signal with a replica
of the transmitted signal. After lowpass filtering, the only remaining component is
the Doppler frequency, which can be used to calculate the speed of the target. The
continuous-wave radar is the best means of detecting fast-moving objects that do not
require range resolution. The disadvantage of the CW Doppler radar system is that
it does not determine the range of the object, nor is it able to differentiate between
objects when they lie in the same direction and are traveling at the same speed.

5.1.2 Pulse Modulation Radar

The pulse–doppler radar is identical to the CW radar except that the transmitted sig-
nal is a sequence of pulses. This technique allows the radar to measure both range as
well as velocity of the target. A key requirement for any Doppler radar is coherence;
that is, the transmitted signal frequency and the locally generated reference signal
frequency must be kept the same with fixed phase difference. This reference signal is
then used to detect both the range and the Doppler frequency of the received signal.

The pulse-modulated radar uses a sequence of narrow pulses to serve as a modu-
lating signal and modulates the carrier frequency to form the transmitting waveform.
Let pN(t) be the pulse train, consisting of N pulses with period T , and assume that
each pulse has time duration Tp and amplitude A. Then pN(t) can be expressed as

pN (t) =
N−1∑
n=0

pT (t − nT )

and

pT (t) = A for 0 < t < Tp,

= 0 otherwise. (5.3)



P1: OTA/XYZ P2: ABC
c05 JWBK230/Wang July 8, 2008 1:6 Printer Name: Yet to Come

118 RADAR MODULATION AND TARGET DETECTION TECHNIQUES

Modulated
amplifier RF oscillator

Pulse generator

FIGURE 5.1 Transmitter block diagram of a pulse-modulated radar system.

The pulse-modulated signal then becomes

p (t) = pN (t) cos (2π fct) . (5.4)

The pulse modulation radar transmits radiofrequency energy in very short bursts,
usually on the order of 0.1 to approximately 50 microseconds (µs). It is sometimes
called the pulse–doppler radar. The carrier frequency fc normally ranges from sev-
eral hundred megahertz to tens of gigahertz. Figure 5.1 shows the transmitter block
diagram of a typical pulse-modulated radar system.

The spectrum of a narrow pulse, as discussed in Chapter 1, is a sinc function.
The first minimum (or zero) of the sinc function is located at both sides of the peak,
which are displaced from the peak by 1/Tp with Tp as the pulsewidth. For a pulsed
radar signal, the relationship between frequency bandwidth B and Tp can therefore
be represented as

B ≈ 1

Tp
.

The radar range resolution is determined as follows, from Eq. (4.1c):

�R = cTp

2

= c

2B
.

(5.5)

Figure 5.2 shows the pulse-modulated signal and its corresponding spectrum. As
can be seen, the frequency spectrum of the pulse train is discrete and centered on the
carrier frequency fc. The envelope of the spectrum is a sinc function. For a periodic
signal of period T , the frequency resolution is equal to 1/T . Figure 5.2 is plotted with
T = 2Tp, and the first zero of the sinc function appears at f = 1/Tp away from the
peak center fc.

Another type of high-resolution radar is the impulse or short-pulse radar. The time
duration of these radars is usually 0.25–1 nanoseconds (ns). The pulses are transmit-
ted without carriers, so they are often called carrierless impulses or baseband video
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FIGURE 5.2 Time- and frequency-domain waveforms of pulse-modulated radar signal.

pulses. The resulting pulses are often called monocycle pulses. These types of radar
are used for stationary target ranging only. No radial speed detection is required. Two
popular pulses and their corresponding power spectra are shown in Fig. 5.3.

Since radar range resolution depends on the bandwidth of the received signal, and
because the bandwidth of a time-gated sinusoid is inversely proportional to the pulse
duration, the short pulse provides better range resolution. However, since short-pulse
duration requires a high-powered transmitter in order to ensure good reception, this
type of radar has the disadvantage of causing hardware problems and safety issues.

5.2 TARGET DETECTION TECHNIQUES OF AM-BASED RADAR

This section presents some techniques for detecting Doppler frequency in a received
signal based on amplitude modulation.

5.2.1 Doppler Frequency Extraction

The transmitted signal of an amplitude modulated radar pulse can be represented as

p(t) = At cos(2π fct),

where fc is the carrier frequency. The corresponding received signal from a single
moving target will be

s(t) = Ar cos[2π ( fc + fD)t + φ],
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FIGURE 5.3 Time- and frequency-domain waveforms of two video pulses.

where fD is the Doppler frequency, φ is a phase term dependent on the distance to
the target, and Ar < At.

To extract the Doppler frequency fD, the p(t) and s(t) are multiplied together:

p(t)s(t) = At Ar cos(2π fct)cos[2π ( fc + fD)t + φ]

= At Ar

2
{cos(2π fDt + φ) + cos[2π (2 fc + fD)t + φ]}.

By passing the signal described above through a lowpass filter, one can re-
move the high-frequency component at 2fc and leave only the Doppler frequency
signal

sD(t) = At Ar

2
cos(2π fDt + φ).

A block diagram illustrating this Doppler frequency extraction procedure is shown
in Fig. 5.4.
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Transmitter
        fc

Receiver
    fc+fD

Mixer
Lowpass
   filter

2fc+fD fD

Waveform 
generator

FIGURE 5.4 Block diagram of Doppler frequency extraction.

5.2.2 Motion Direction Detection

The Doppler process discussed above provides an absolute value of frequency differ-
ence; it contains no information regarding the direction of target motion. A number
of techniques can be applied to preserve this directional information. Among them is
a simple offset carrier demodulation method based on the AM technique, described
next.

As shown in Eq. (4.8), the Doppler frequency fD is positive if the target moves
toward the receiver, while fD becomes negative if the target moves away from it.
This also implies that with amplitude modulation, the returned echo signal, which
consists of frequency component fc + fD, will be greater than fc if fD is positive, and
less than fc if fD is negative.

Let the received signal s(t) be represented as

s(t) = Ar cos[2π ( fc + fD) t + φ],

where Ar and φ are the amplitude and phase of the received signal. Let p0(t) be a
reference signal and represented as

p0 (t) = A0 cos[2π ( fc + f0)t],

where A0 and f 0 are the amplitude and frequency of the reference signal, and f 0 is
chosen to be greater than the maximum possible value of fD.

The offset carrier demodulation method mixes the received signal s(t) with the
reference signal p0(t), and the resulting signal becomes

s(t)p0 (t) = Ar A0

2
{cos [2π (2 fc + f0 + fD) t + φ] + cos [2π ( f0 − fD) t + φ]} .

This signal is then passed through a lowpass filter to remove the high-frequency part
of 2 fc + f0 + fD . If the target is approaching the receiver, then fD is positive and the
filter output will have frequency f 0 − fD < f 0. If the target is moving away from the
receiver, then fD is negative and the filter output will have frequency f 0 − fD > f 0.
Figure 5.5 is a block diagram illustrating the process discussed above.
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FIGURE 5.5 Block diagram of an offset carrier demodulation.

As an example, Fig. 5.6 shows the block diagram of a pulse–doppler radar, which
can be used to detect the range and speed of multiple targets. A 5.0-GHz sinusoid
wave is gated by a narrow pulse generator with period T = 0.1 ms to produce a
pulsed transmitter waveform. The pulse generator is controlled by the “Timing &
sync” circuit. The 5.0-GHz sinusoid wave is also used to mix with a 30-MHz co-
herent oscillator (COHO) to generate a 4.97-GHz signal, which is then mixed with
the returned echo signal. The returned echo signal consists of the 5.0-GHz Tx signal
plus a Doppler frequency. Multiple targets will cause multiple echoes with multiple
Doppler frequencies. The output of the receiver mixer, which consists of the 30-MHz
intermediate-frequency (IF) signal with Doppler frequencies, is fed to another mixer.
The output of this mixer, which is the baseband target echo signal with Doppler fre-
quency, is then fed to an A/D converter and the range gate. The dashed-line box that

Duplexer Transmitter

Oscillator (5 GHz)

Pulse generator

Timing & sync.

COHO (30 MHz)

A/D & range gate

2D data buffer

FFT

4.97 GHz
5.0 GHz + fD

30 MHz + fD

fD

DSP

300 kHz

10 kHz

400 Hz
f1 ... f32

R1 ... R30

Antenna

Multiplier & filter

10 kHz

Multiplier & filter

Multiplier & filter

Decision circuit

FIGURE 5.6 Block diagram of a pulse–Doppler radar system.
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includes the mixer, A/D converter and range gate, 2D data buffer, FFT, and decision
circuit can be implemented by a firmware-based DSP processor.

The A/D converter outputs 30 samples per radar pulse period. The magnitude of
each sample (or range bin) corresponds to the strength of the returned echo signal
at that range. The resolution of each range bin depends on the sampling frequency
of the A/D converter. The 30 range samples per period will be stored as one row
in the 2D databank. After 25 radar pulse periods, a 25 × 30 data array will be pro-
cessed by fast Fourier transform. Each column of the 2D array corresponds to one
target response. The output of column-based FFT is used to determine the value
of the Doppler frequency for the corresponding target. Once the Doppler frequency
is found, the moving target’s speed can be computed accordingly. The number of
samples in each column of the 2D databank represents the number of pulse periods
needed for computation. To increase the frequency resolution without increasing the
number of radar pulse periods, the time-domain zero-padding method, as described
in Chapter 2, can be used. This is a combination of time- and frequency-domain co-
processing on a pulse–Doppler radar and is commonly used in many modern radar
systems.

A method that has the advantage of both the high energy of a long pulsewidth and
the high resolution of a short pulsewidth is discussed next.

5.3 FREQUENCY MODULATION (FM)-RADAR

Frequency modulation (FM) is a technique in which the frequency of the carrier
is varied in accordance with some characteristic of the baseband modulating signal
pb(t):

p (t) = A0 exp


 j


ωct + β

t∫
−∞

pb (t) dt




 . (5.6)

The instantaneous frequency of p(t) can be obtained by differentiating the instanta-
neous phase of p(t):

f = 1

2π

d

dt


ωct + β

t∫
−∞

pb (t) dt




= fc + 1

2π
βpb (t) . (5.7)

The baseband-modulating signal pb(t) normally is a sinusoidal function. Therefore
Eq. (5.6) can be expressed as

p (t) = A0 exp [ j (2π fct + βsinωat)] ,
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where fc is the carrier frequency and β is referred to as the modulation index and is
the maximum value of phase deviation.

The linear frequency modulation (LFM) technique involves a transmitter fre-
quency that is continually increasing or decreasing from a fixed reference frequency.
That is, the transmitted FM signal is modified so that the frequency is modulated in
a linear manner with time. In other words, from Eq. (5.7), one obtains

f = fc + αt

and

βpb(t) = 2παt,

where α is the frequency changing rate or chirp rate, and is defined as

α = d f

dt
.

Substituting these equations into Eq. (5.6), one obtains

p (t) = A0 exp
[

j
(
2π fct + παt2)] . (5.8)

Two types of LFM signals are commonly used in radar applications: the pulsed
LFM (also called “chirp”) and the continuous-wave LFM (CWLFM). The pulsed
LFM signal is described first.

5.3.1 Pulsed Linear Frequency Modulation (LFM) Radar

Let a1(t) and a2(t) be defined as

a1(t) = Rect

(
t − Tp/2

Tp

)
,

a2(t) = A0 exp
[

j
(
2π fct + παt2

)]
,

(5.9)

where Rect(t) is a rectangular gate function, defined as

Rect(t) = 1 for − 1

2
≤ t ≤ 1

2
,

= 0 otherwise.
(5.10)
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A pulsed symmetric LFM signal a(t) with duration Tp can be written as follows, from
Eq. (5.8):

p (t) = a1 (t) a2

(
t − Tp

2

)

= Rect

(
t − Tp/2

Tp

)
· A0 exp

[
j

(
2π fc

(
t − Tp

2

)
+ πα

(
t − Tp

2

)2
)]

.

(5.11a)
The pulsed nonsymmetric LFM signal p(t) with duration Tp can be written as

p (t) = a1 (t) a2 (t)

= Rect

(
t − Tp/2

Tp

)
· A0 exp

[
j(2π fct + παt2)

]
.

(5.11b)

A baseband nonsymmetric pulsed LFM waveform with pulse duration Tp and pe-
riod T is shown in Fig. 5.7a. The corresponding frequency–time relationship is shown
in Fig. 5.7b. As can be seen, the LFM signal frequency increases from 0 to f max
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FIGURE 5.7 Time-domain waveform (a) and time–frequency relation (b) of a pulsed LFM
signal.
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during the pulse duration time Tp, where f max = αTp and the frequency bandwidth is
B = f max = αTp.

Analytically, the frequency spectrum of p(t), in the nonsymmetric LFM case, can
be considered as the convolution of the two spectra A1(f ) and A2(f ), where A1(f ) and
A2(f ) are the Fourier transform of a1(t) and a2(t), respectively; that is

A1( f ) = F [a1(t)]

= Tp
sin
(
π f Tp

)
π f Tp

exp
(

jπ f Tp
)

= Tp sinc
(

f Tp
)

exp
(

jπ f Tp
)
,

A2( f ) = F [a2(t)]

=
∞∫

−∞
exp
[

j
(
2π fct + παt2

)] · exp (− j2π f t) dt

=
∞∫

−∞
exp

{
jπα

[(
t − f − fc

α

)2

− ( f − fc)2

α2

]}
dt

= exp

[
− j

π ( f − fc)2

α

]
· 1√

π

∞∫
−∞

exp( jαx2)dx,

where

x = √
π

(
t − f − fc

α

)
.

Let –u2 = jαx2, or u = √− jαx ; then

∞∫
−∞

exp( jαx2)dx = 1√− jα

∞∫
−∞

exp(−u2)du

=
√

π

α
exp
(

j
π

4

)
.

Therefore

A2 ( f ) = exp
(

j
π

4

)
·
√

1

α
exp

[
− j

π ( f − fc)2

α

]
,
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and

P ( f ) = Tpexp
(

jπ f Tp
)

sinc
(

f Tp
)⊗ exp

(
j
π

4

)
· 1√

α
exp

[
− j

π ( f − fc)2

α

]
,

(5.12)

where the symbol ⊗ represents convolution.
In practical applications, the frequency spectrum of LFM-based signals is gener-

ated by applying DFT on the signals. As an example, the following parameters are
used to generate the pulsed LFM waveforms together with their frequency spectra.
Both symmetric and nonsymmetric LFM signals are covered:

Frequency chirp rate α = 3 × 1012

Pulse duration time Tp = 5 × 10−6 s

Period of pulse train T = 1.024 × 10–5 s

Sampling frequency fs = 50 × 106 Hz

Bandwidth: Tp × α = 15 MHz

Figure 5.8 displays the symmetric pulsed LFM signal and its frequency spectrum.
The real and imaginary parts of the time-domain pulsed LFM waveform are shown
in Figs. 5.8a and 5.8b. Both drawings are symmetric around the center of pulse du-
ration. Figures 5.8c and 5.8d show the real and imaginary parts of the frequency-
domain spectrum. Figures 5.8e and 5.8f illustrate the absolute value (or magnitude)
and phase of the frequency spectrum. As can be seen, the spectrum is almost flat
from frequency bins 175 to 325 for a total of approximately 150 bins. Notice that
the frequency spectrum was shown with the origin located at the center of display,
or realigned between –fs/2 and fs/2. Given the sampling frequency fs = 50 MHz,
which corresponds to frequency bin 512, the bandwidth of the pulsed LFM is ap-
proximately (325 – 175) × 30/512 ≈ 15 MHz. The “sinc”-like shape at the two
band edges of the LFM spectrum is caused by the convolution of the sinc func-
tion of A1(ω) with A2(ω), which is a constant in magnitude and is a band-limited
signal.

Figure 5.9 displays the nonsymmetric pulsed LFM signal and its frequency spec-
trum. Figures 5.9a and 5.9b show the real and imaginary parts of the time-domain
pulsed LFM waveform. Both drawings are no longer symmetric around the cen-
ter pulse duration. Figures 5.9c and 5.9d show the real and imaginary parts of the
frequency-domain spectrum; Figs. 5.9e and 5.9f illustrate the magnitude and phase
of the frequency spectrum. Again, the spectrum is almost flat between frequency bins
260 and 410, for a total of ∼150 bins. The frequency display is centered around the
origin, or from –fs/2 to fs/2. The bandwidth of the pulsed nonsymmetric LFM is ∼15
MHz. Notice that no negative frequency component exists in this case, which differs
from the symmetric LFM case.
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FIGURE 5.8 Time- and frequency-domain waveforms of a pulsed symmetric LFM signal.
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FIGURE 5.9 Time- and frequency-domain waveforms of a pulsed nonsymmetric LFM signal.
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FIGURE 5.10 Block diagram of a PLFM radar system.

A block diagram of pulsed LFM radar system is shown in Fig. 5.10. Here the
transmitter consists of a pulse generator, chirp signal generator, mixer, power ampli-
fier, and local oscillator. The receiver consists of a low-noise amplifier (LNA), mixer,
in-phase–quadrature-phase detector (or demodulator), local oscillator, analog–digital
(A/D) converter, and signal processor. The antenna is connected to either the
transmitter or the receiver through a duplexer. The in-phase–quadrature-phase
(I–Q) detector and other target-detection-related processing are discussed in later
sections.

5.3.2 Continuous-Wave Linear Frequency Modulation Radar

Continuous-wave linear frequency modulation (CWLFM) radar transmits and re-
ceives signals continuously. The transmitting frequency is first increased then de-
creased, and the same pattern is repeated at time interval T . Figure 5.11 is the block
diagram of a CWLFM radar system.

fc

Signal generator
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oscillator

Lowpass
filter

    A/D
converter

f

t

Antenna

Antenna

FIGURE 5.11 Block diagram of a CWLFM radar system.
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FIGURE 5.12 Time–Frequency relationship of a CWLFM radar signal.

A CWLFM signal has a triangular shape of frequency change with respect to time.
The upsweep and downsweep frequencies of the triangle are defined as

f = fc + αt for 0 < t < Tp,

f = fmax + β(Tp − t) for Tp < t < T0,

where f max = fc + αTp and α, β are the two chirp rates of the upsweep and down-
sweep frequencies. If T0 = 2Tp, then the triangle is symmetric and α = β. In this
case, the signal frequency increases from fc to f max during the first half of the triangle,
and decreases from f max to fc for the second half. The sweep frequency bandwidth
B = f max − fc = αTp. Figure 5.12 displays the time–frequency relationship of a
CWLFM signal when α = β.

A third type of frequency-modulation-based technique for radar application is
stepped frequency modulation, discussed next.

5.3.3 Stepped Frequency Modulation Radar

The stepped frequency modulation (SFM) radar has been used extensively in short-
range measurements to study the scattering properties of geophysical surfaces and
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FIGURE 5.13 Waveforms of (a) a CWSFM radar signal and (b) a pulsed SFM radar signal.

other nontransparent media. It computes the target range by measuring the magni-
tude and phase response over a number of stepped frequencies (N) within a given
frequency band.

There are two types of stepped-frequency-based radar: the continuous-wave
stepped frequency (CWSFM) radar and the pulsed SFM (PSFM) radar. Both the
CWSFM radar and PSFM radar transmit and receive a sequence of N-frequency
waveforms changed by the frequency step �f . However, each section of the N-
frequency waveforms is consecutive for the CWSFM radar, but in a pulsed form
for the PSFM radar. Figure 5.13 shows the SFM waveforms in the time do-
main; Fig. 5.13a displays the CWSFM signal, while Fig. 5.13b shows the PSFM
signal.

The starting frequency of the CWSFM or PSFM signal called the base frequency
f 0 is the lowest frequency transmitted. The frequency change or step is a constant
increment from the preceding frequency, and is denoted by �f . The bandwidth B of
a stepped frequency radar is fU− f 0 = (N−1)�f , where fU is the highest frequency
and N is the number of frequency steps. Each single stepped frequency signal lasts
for a period of time T , which is also considered as the pulse repetition interval (PRI),
which serves as the time window where both transmitting and receiving signals are
used to detect the targets. The N-frequency section group is considered as one burst,
and each burst lasts for a time period NT .

Figure 5.14 displays the time–frequency relationship for the N-frequency
CWSFM waveform (Fig. 5.14a) and PSFM waveform (Fig. 5.14b), respectively. The
target detection and range computation schemes for both CWSFM and PSFM signals
are quite similar; only the hardware implementation is different.
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The block diagram of a stepped-frequency-based radar system is shown in
Fig. 5.15. The receiver box normally consists of an intermediate-frequency (IF) de-
modulator as shown in Fig. 5.6. Compare this with the CWLFM case shown in Fig.
5.11, where an extra system box, namely, the quadrature mixer, or the I–Q demod-
ulator, is used. The I–Q demodulator generates the in-phase and quadrature-phase
signals from the received signal, discussed next.
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concerter

IFFT
Lowpass
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Quadrature
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I Q
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FIGURE 5.15 Block diagram of a stepped frequency modulation radar.
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5.4 TARGET DETECTION TECHNIQUES OF FM-BASED RADAR

5.4.1 In-Phase Quadrature-Phase Demodulator

Consider the LFM signal represented by Eq. (5.8):

p (t) = A0 exp
[

j
(
2π fct + παt2

)]
.

The observed and real-valued signal of this equation is represented as

p(t) = cos(2π fct + παt2)

= cos[2π fct + φ(t))].

In general, the carrier frequency fc has a high value and αt has a relative low
value. The phase term φ(t) = παt2 is presented for illustration purposes. In a digi-
tal communication system, a complex-valued signal is needed to perform functions
such as phase detection of a QAM signal, adaptive equalization, and many other
functions. The complex-valued signal is required to transmit the time-varying phase
information, and an in-phase–quadrature-phase (I–Q) demodulator is used to receive
the correct phase information.

Figure 5.16 displays a typical I–Q demodulator where the input signal v(t) is a
general LFM signal as described above, and the output are the real and imaginary
parts of the phase signal φ(t). The two carrier signals, cos(2π f ct) and sin(2π f ct), are
locally generated. The lowpass filter is designed to retain the low-frequency compo-
nent φ(t), but will filter out the high-frequency component 4π fct + φ(t). The A/D
converter is used to digitize the real and imaginary parts of the low-frequency phase
signal φ(t).
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FIGURE 5.16 In-phase–quadrature-phase (I–Q) demodulator.
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The intermediate signals v1c(t), v1s(t), v2c(t), and v2s(t) can be derived as follows:

v1c(t) = {cos[4π fct + φ(t)] + cos[φ(t)]}
2

,

v1s(t) = {sin[4π fct + φ(t)] + sin[φ(t)]}
2

,

v2c(t) = cos[φ(t)]

2
,

v2s(t) = sin[φ(t)]

2
.

The phase signal φ(t) can then be computed as follows:

φ(t) = tan−1

[
v2s (t)

v2c (t)

]
.

5.4.2 Matched Filter and Pulse Compression

The matched filter technique is widely used in digital communication fields to re-
cover a signal that is corrupted by additive white Gaussian noise. In radar applica-
tions, a matched filter is applied on received signals to identify a target by deter-
mining whether the filter output, which is a compressed pulse, exceeds a specific
threshold. Multiple targets will produce multiple pulses with varying magnitudes.
The magnitude of a compressed pulse depends on the duration time of the receiv-
ing pulse (Tp), the reflectivity of target (σ ), and the distance from radar to target
(D). The effective width of a compressed pulse is determined by the duration time
and frequency bandwidth (B) of the receiving pulse, or the time–bandwidth (TpB)
product. In the following discussion, a target is assumed to be an ideal target with
reflectivity σ = 1, with no signal attenuation occurring between radar and target.

Given an input signal s(t) and its Fourier transform S(f ), the matched filter h(t)
and its Fourier transform H(f ) are defined as

h(t) = s∗(−t) (5.13a)

and

H ( f ) = S∗( f ). (5.13b)

Let the output of a matched filter be f (t); then its Fourier transform satisfies the
relation

F( f ) = S( f )H ( f )
= |S( f )|2. (5.14a)
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Therefore

f (t) = F−1[|S( f )|2]
= s(t) ∗ h(t)

=
∫

s (τ ) h (t − τ ) dτ .

(5.14b)

Since h(t) = s∗(−t), it follows that

f (t) =
∫

s (τ ) s∗ (t + τ ) dτ , (5.14c)

which is the definition of autocorrelation of s(t). In other words, the matched filtering
of s(t) is equivalent to the autocorrelation of s(t) with itself.

Let the echo signal from a single target be the pulsed nonsymmetric LFM signal
described in Eq. (5.11b):

p (t) = a1 (t) a2 (t)

= Rect

(
t − Tp/2

Tp

)
· A0 exp

[
j
(
2π fct + παt2

)]
.

With A0 = 1 and h(t) = p
∗
(−t), the matched filter output becomes

f (t) =
Tp∫

0

p (τ ) · p∗ (τ + t))dτ

=
Tp∫

0

exp
[

j
(
2π fcτ + πατ 2

)] · exp
{− j
[
2π fc (t + τ ) + πα (t + τ )2

]}
dτ

= exp
[− j
(
2π fct + παtTp + παt2

)] · Tp · sin
(
παtTp

)
παtTp

. (5.15)

Let x = αtTp = Bt; then the absolute value of f (t) becomes

| f (x) | = Tp · sinπx

πx= Tp · sinc (x) .
(5.16)

The function |f (x)| has a maximum value at x = 0, and its magnitude equals Tp.
From the discussion in Chapter 2, the first x value of sinc(x) = 0 occurs at x =
Bt = 1, or t = 1/B. It is also true that the 3-dB mainlobe width of sinc(x) equals the
first x value of sinc(x) = 0. Therefore, the 3-dB mainlobe width or the compressed
pulsewidth is t = 1/B, where B = αTp is the bandwidth of an LFM signal with time
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duration Tp. The pulse compression ratio is therefore

Original LFM pulse duration

Compressed pulse duration
= Tp

(1/B)
= Tp B. (5.17)

Notice that TpB is the time–bandwidth product.
Since the time-domain convolution of two signals is equivalent to the multiplica-

tion of two signals in the frequency domain, the matched filter can be implemented
by transforming both the received signal and the matched filter function into a fre-
quency domain using FFT. The two frequency-domain functions are then multiplied
together and followed by IFFT to convert back to the time domain. Because the
matched filter function is normally shorter than the received signal (due to multiple
targets at different ranges), zero padding on the matched filter function is required
when computing the FFT on the matched filter function.

Figure 5.17 illustrates the process of DFT-based pulse compression (or matched
filtering). Here the reference chirp signal is the matched filter function h(t), which
equals p∗(−t), with p(t) as the transmitting signal.

Examples 5.1 and 5.2 (below) illustrate the implementation of pulse compres-
sion in two approaches; one through direct convolution in time domain and the other
through DFT in the frequency domain. The first example is based on a symmetric
pulsed LFM with a single target, while the second example is based on a nonsym-
metric pulsed LFM with dual targets. The signal and target related parameters are
listed here:

Frequency chirp rate α = 2 × 1012

Pulse duration time Tp = 4 × 10−6 s

Frequency bandwidth of pulsed LFM B = α Tp = 8 MHz

Sampling frequency fs = 20 MHz

Number of samples in Tp = 80 (81 was used in simulation)

Time bandwidth product TpB = 32

Delay time between Tx pulse and Rx signal:

Example 5.1: 5 × 10−6 s (or 100-sample delay)

Example 5.2: First target: 5 × 10−6 s (or 100-sample delay)

Second target: 7.5 × 10−6 s (or 150-samples delay)

FFT IFFT

Reference chirp
(Frequency domain)

Received 
signal

Compressed
signal

FIGURE 5.17 DFT-based processing of chirp signal.
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Example 5.1 Symmetric Pulsed LFM with Single-Target Response Fig-
ure 5.18 displays the waveforms of both the transmitter (Tx) signal and the matched
filter (MF) function. Since the Tx signal is symmetric, the real part of the MF func-
tion is identical to that of the time reversed Tx signal, while the imaginary part of the
MF function becomes negative of that of the time reversed Tx signal.
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FIGURE 5.18 Waveforms of Tx signal and matched filter function.

Figure 5.19 displays the relationship between the transmitter signal and the re-
ceived signal. The Rx and Tx waveforms are identical except that the former is de-
layed by 100 samples relative to the Tx. Here an ideal target is assumed, and the
received signal has the same magnitude as the transmitter.

The frequency spectrum of a transmitter signal is shown in Fig. 5.20. Figures
5.20a and 5.20b display the real and imaginary parts of the spectrum, while Figs.
5.20c and 5.20d display the spectrum in terms of magnitude and phase. A 256-point
FFT is used to compute the frequency spectrum with bin 128 as the center or origin
of the spectrum. As can be seen, the frequency spectrum is symmetric around the
origin (bin 128). Since the sampling frequency is 20 MHz, which corresponds to 256
frequency bins, the bandwidth is ∼8 MHz (from bins ∼80 to 180).
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FIGURE 5.19 Waveforms of Tx signal and Rx signal.

The frequency spectrum of a matched filter is shown in Fig. 5.21. Figures 5.21a
and 5.21b display the real and imaginary parts of the spectrum; Figs. 5.21c and
5.21d display the spectrum in terms of magnitude and phase. When comparing the
spectrum of a matched filter with that of the Tx signal, one can see that the real part
is identical to that of the Tx signal, and the imaginary part is negative of that of the
Tx signal. The magnitude is the same, but the phase is negative of that of the Tx
signal. Again, a 256-point FFT is used to compute the frequency spectrum with bin
128 as the origin of the spectrum.

Figure 5.22 displays the frequency spectrum of the received signal Rx. Although
the received signal is a delayed version of the transmitter signal, the real and imagi-
nary parts of the frequency spectrum are quite different from those of the Tx signal.
The phase of the Rx spectrum also differs from that of Tx, but the magnitude is
identical to that of Tx.

Figure 5.23 displays the compressed receiving signal, or matched filter output.
Figures 5.23a and 5.23b show results based on time-domain processing; this is the
direct convolution of received signal Rx with the MF function. Figures 5.23c and
5.23d show results based on frequency-domain processing, where the received sig-
nal and the MF function are first transformed into the frequency domain. The two
frequency spectra are then multiplied together, followed by inverse DFT to obtain
the final result as shown in Figs. 5.23c and 5.23d. Both time-domain and frequency-
domain processing of pulse compression yield the same results.
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FIGURE 5.20 Frequency spectrum of Tx signal.

Notice that the magnitude of the compressed pulse is 80, which equals the sample
number of the LFM pulse. The peak of the compressed pulse occurs at time cell 180.
This number corresponds to the sum of the Rx signal sample delay (100 in this
example) and the sample number of LFM pulse (80 in this example).

The sample number in the compressed pulse, which equals the number between
the peak of the pulse and the first zero crossing, is about 2.5 samples. Compared
with the sample number in Tx pulse duration time, which equals 80, the pulse
compression ratio is 80/2.5 = 32. This is the same number as the time–bandwidth
product, or TpB = 32.

Example 5.2 Nonsymmetric LFM Pulse with Dual-Target Response Fig-
ure 5.24 displays the time-domain waveforms of a pulsed LFM transmitter signal and
the matched filter (MF). Figures 5.24a and 5.24b show the real and imaginary parts
of the Tx signal. The waveform is nonsymmetric, and there are 80 samples within the
pulse duration time Tp. Figures 5.24c and 5.24d show the real and imaginary parts of
the MF. Both the real and imaginary part of MF waveforms are time-reversed relative
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FIGURE 5.21 Frequency spectrum of matched filter (MF) function.

to those of the Tx signal. In addition, the magnitude is negated for the imaginary part
of the MF. Similar to the symmetric pulsed LFM matched filter, the nonsymmetric
LFM MF is flipped around the origin (time cell 1), and appears from time cells 178
to 256 and cell 1 for a 256-point DFT computation.

Figure 5.25 displays the frequency spectra of a pulsed LFM Tx signal and the MF
signal. Figures 5.25a and 5.25b show the magnitude and phase parts of the Tx signal,
while Figs. 5.25c and 5.25d show the magnitude and phase parts of the MF signal.
As can be seen, the magnitude of the MF spectrum is identical to that of Tx, while
the phase of the MF spectrum is the negated version of the Tx spectrum. Given the
sampling frequency fs = 20 MHz and the 256-point DFT used, the Tx bandwidth is
approximately 8 MHz (from about bins ∼130 to 230).

The received signal consists of two target responses. One occurs at time cell 100
and the other, at time cell 150. These two target-reflected signals are added together
and shown in Figs. 5.26a and 5.26b. The magnitude and phase of the frequency
spectrum corresponding to the Rx signal are shown in Figs. 5.26c and 5.26d. A 512-
point DFT is used to compute the spectrum of the received signal. Given the sampling
frequency fs = 20 MHz, the bandwidth of Tx is approximately 8 MHz (from about
bins ∼260 to 460).
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FIGURE 5.22 Frequency spectrum of Rx signal.

Figure 5.27 displays the received signal after compression; Figs. 5.27a and 5.27b
show results based on convolution of the Rx signal with the MF function, while
Figs. 5.27c and 5.27d show results based on frequency-domain processing. Both
time-domain and frequency-domain processes yield the same results.

Similar to the case of symmetric LFM, the magnitude of the compressed pulse
is 80. There are two pulses appearing at time cells 180 and 230, respectively. Time
cells 180 and 230 correspond with respect to the sum of the sample numbers of the
LFM pulse (80) and the sample delay of the first Rx target (100); and also to the sum
of the sample delay of the second target (150) and the sample number of the LFM
pulse (80).

Similar to the case in Example 5.1, the sample number in the compressed pulse is
∼2.5 samples and the pulse compression ratio is 80/2.5 = 32.

5.4.3 Target Detection Techniques of LFM Radar

A pulsed LFM signal with duration Tp can be represented as follows from Eq. (5.8):

p (t) = A0 exp
[

j(2π fct + παt2)
]
.
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FIGURE 5.23 Comparison of pulse compression based on convolution and DFT.

The frequency spectrum of the signal is bounded as

f ∈ [ fc, fmax]

= [ fc, fc + αTp],

and its frequency bandwidth is B = αTp.
Assuming ideal targets and A0 = 1, the received signal can then be expressed as

s (t) =∑
n

exp
[

j2π fc (t − tn) + jπα (t − tn)2
]

=∑
n

exp [ j2π fc (t − tn)] exp
[(

παt2 − 2παtnt + παt2
n

)]
,

(5.18)

where tn = 2Rn/c is the round-trip echo delay from the nth target.
To dechirp the received signal, the complex conjugate of the echo signal s(t) is

multiplied with a locally generated chirp signal, which is the same as the transmit-
ting chirp signal, except that it is a continuous LFM signal with a much greater
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FIGURE 5.24 Waveforms of Tx signal and MF function.

bandwidth:

r (t) = s∗(t) exp
(

j2π fct + jπαt2
)

=
∑

n

exp
(

j2π fctn − jπαt2
n

)
exp ( j2παtnt). (5.19)

The dechirped signal r(t) has a frequency component αtn, which carries informa-
tion on the round-trip delay tn, and is generally called the beat frequency fbn. As an
example, Figure 5.28 shows the time–frequency relationship of both the local chirp
signal and the echo signals from two targets. Figure 5.28a shows the instantaneous
frequency versus time, while Fig. 5.28b show beat frequencies of two targets versus
time.

As can be seen in Fig. 5.28, the transmitted chirp signal with pulse duration Tp and
period T has two echoes returned from targets at t1 and t2. After dechirp processing,
the beat frequencies of the two targets become fb1 and fb2, respectively. The target
range Rn can then be derived from the beat frequency fbn and the delay time tn as
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FIGURE 5.25 Frequency spectra of Tx signal and MF function.

follows:

d f

dt
= fmax − fc

Tp
= αTp

Tp
= α,

d f

dt
= fbn

tn
= fbn

(2Rn) /c
.

Therefore

Rn = c · fbn

2α
. (5.20)

The minimum beat frequency can be computed, from Fig. 5.28, as f bmin = f max –
fc = αTp, which corresponds to the minimum detectable range. The maximum beat
frequency is fbmax = α(T − Tp), which corresponds to the maximum detectable range.
The bandwidth of the reference chirp signal is then αT . The block diagram of dechirp
processing is shown in Fig. 5.29.
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FIGURE 5.26 Time- and frequency-domain waveforms of Rx signal.

Since the maximum beat frequency is α(T − Tp), the Nyquist sampling frequency
for the A/D converter is therefore 2α(T − Tp), which could be much smaller than the
2(fc + αTp) required for direct sampling on received signals. The output of the A/D
converter is then processed through FFT to obtain the beat frequencies fbn, and the
target range can be computed using Eq. (5.20).

The pulsed LFM radar has a cost-effective way to detect the target range, yet it
has a relatively lengthy pulsewidth and shares the same antenna for transmitting and
receiving; therefore, it has poor minimum/blind range detection capability.

The CWLFM radar uses separate antennas for transmitting and receiving. It con-
sumes less power than that of the pulsed LFM radar, yet still maintains the same
signal-to-noise ratio as that of the pulsed LFM radar. It operates at a lower sampling
frequency and therefore at a lower system cost. In addition, it can also detect target
velocity, described next.

Consider the CWLFM waveform shown in Fig. 5.12 with Tp = T0/2. Let p(t) be
the transmitted signal of CWLFM radar:

p (t) = exp
[

j
(
2π fct + παt2

)]
. (5.21)
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FIGURE 5.27 Comparison of pulse compression based on convolution and DFT.

The returned echo signal from a single target with a time delay τ will have the fol-
lowing form:

p (t − τ ) = exp
{

j
[
2π fc (t − τ ) + πα (t − τ )2

]}
. (5.22)

By multiplying the transmitted signal with the complex conjugate of the echo signal,
one obtains

r (t) = p (t) · p∗ (t − τ )

= exp[ j(2π fct + παt2)] · exp{− j[2π fc(t − τ ) + πα(t − τ )2]}
= exp

[
j
(
2π fcτ − πατ 2

)] · exp [ j2πατ t] .

(5.23)

The first item is a constant phase that depends on the delay time only, while the
second item is a time-varying signal with a beat frequency

fb = ατ. (5.24)
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The maximum beat frequency occurs at τ = Tp and equals to fbmax = αTp =
αT0/2. The dechirped signal r(t) can then be sampled by an A/D converter with
sampling frequency fs ≥ 2 fbmax = αT0. Since τ = 2R/c, the target range R can then
be computed as

R = c fb

2α
. (5.25)

Figure 5.30 shows an example of dechirping with two stationary targets;
Fig. 5.30a shows the time–frequency relationship corresponding to the transmitting
signal and two echo signals, while Fig. 5.30b shows the time–frequency relation-
ship of the two dechirped or beat frequencies. The beat frequencies fb1 and fb2,
corresponding to delay times t1 and t2, respectively, are positive values during the

Lowpass
   filter

     A/D
converter

Reference
    chirp

Received 
signal

s(t) r(t)
FFT

fbn

FIGURE 5.29 Block diagram of dechirp processing.



P1: OTA/XYZ P2: ABC
c05 JWBK230/Wang July 8, 2008 1:6 Printer Name: Yet to Come

148 RADAR MODULATION AND TARGET DETECTION TECHNIQUES

Tx wave Target 2

Beat frequency

(a)

(b)

Frequency

fmax

fc

T0Tpt2t1

fb2
fb1

(0,0) 2T0

t

t

Target 1

FIGURE 5.30 Time–frequency relationship of Tx and echo signals from two stationary targets.

upsweep and the downsweep periods. However, during the crossover between the
Tx signal and the echo signal, the echo’s beat frequency value reduces to zero first
and then increases to the original beat frequency. This is graphically represented in
Fig. 5.30. Since T0 = 2Tp, the beat frequency values in the upsweep and downsweep
periods are identical.

As discussed in Chapter 4, when a target approaches the radar, the received signal
frequency is increased by an amount of the Doppler frequency fD. This increment in
fD reduces the beat frequency in the upsweep region and increases the beat frequency
in the downsweep region, that is

In upsweep region: fbu = fb − fD, (5.26a)

In downsweep region: fbd = fb + fD, (5.26b)

where fbu and fbd are the observed or measured frequencies. The true range-related
beat frequency and Doppler frequency could then be computed as follows:

fb = fbu + fbd

2
. (5.27a)

fD = fbd − fbu

2
. (5.27b)

A similar situation applies if the target is moving away from the radar. Once the
beat frequency fb and the Doppler frequency fD are known, the target range and
velocity can be computed accordingly.

As an example, Fig. 5.31 displays the time–frequency relationship of Tx and echo
signals from two moving targets. Figure 5.31a displays three triangular-shape plots,
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corresponding to the time–frequency relationship of the transmitting signal, the echo
signal with target approaching, and the echo signal with target receding. The lighter
(dotted) line shows the target approaching the radar while the darker (solid) line
shows the target moving away from the radar. Figure 5.31b shows the beat frequen-
cies corresponding to the targets both approaching and receding. Again, the dotted
line refers to the approaching target and the solid line refers to the receding target.

5.4.4 Target Detection Techniques of SFM Radar

The SFM-based radar is used primarily for short-range measurement. This is because
its detection range is limited to R ≤ (cT/2), where T is the time interval between
each stepped frequency and T is normally a small number. Consider a target with
distance R from a PSFM radar with stepped frequency fk, where k = 0, 1,. . ., N – 1.
The transmitted PSFM signal pk(2π fkt) and the returned echo signal sk(2π fkt,τ ), with
time delay τ = 2R/c, can be expressed as follows:

pk(2π fk t) = Ak exp( j2π fk t),

sk(2π fk t, τ ) = Bk exp[ j2π fk(t − τ )].

The returned signal sk(2π fkt,τ ) is then coherently downconverted by multiplying it
by a portion of the transmitted signal, follows by a lowpass filter:

sk(2π fk t, τ )pk(2π fk t) = Ak Bk exp[ j2π fk(t − τ )]exp( j2π fk t)

= Ak Bk exp( j4π fk t)exp(− j2π fkτ ).
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Let Ck be the lowpass filter output, which can be expressed as

Ck = Ak Bk exp(− j2π fkτ ).

= Ak Bk exp

(
− j2π fk

2R

c

)
.

(5.28)

Figure 5.32 shows an example of the digitized and normalized baseband echo
signal Ck.

For simplicity, we let AkBk = 1 in the following discussion. The frequency-domain
baseband signal Ck = exp(−j2π fkτ ) is then transformed into the time domain, using
IFFT, as a range profile; that is

yn = 1

N

N−1∑
k=0

Ck exp

[
j
2πnk

N

]

= 1

N

N−1∑
k=0

exp

[
j
2πnk

N
− j2π fkτ

]
,

(5.29)

where n = 0, 1,. . ., N–1. With fk = f 0 + k�f and τ = 2R/c, yn becomes

yn = 1

N

N−1∑
k=0

exp

[
j
2πnk

N
− j2π ( f0 + k� f )

2R

c

]

= exp (− j4π f0 R/c)

N

exp [ j2πn − j4π N� f R/c] − 1

exp [ j (2πn/N ) − j (4π� f R/c)] − 1
.

Let a = (n/N ) − (2� f R/c); then

yn = exp (− j4π f0 R/c)

N
exp[ j(N − 1)πa]

sin (π Na))

sin (πa)
. (5.30)
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The magnitude response of the IFFT becomes

|yn| = 1

N

∣∣∣∣ sin (π Na)

sin (πa)

∣∣∣∣ . (5.31)

Note that the magnitude response of the IFFT, called the synthetic pulse, consists
of N components and is repeated for each N time interval. The peaks of the mainlobes
of Eq. (5.31) occur at a = ± l, or np = 2NR�f/c + lN, l = 0,1,2, . . . .

The range of target R, which corresponds to the peak of Eq. (5.31), can then be
computed as follows:

R = cn p

2N� f
. (5.32)

As an example, Fig. 5.33 shows the simulated plot of |yn|, where N = 64, �f =
20 × 103 Hz, and R = 1.5 × 103 m were used. According to this plot, the peak of
|yn| appears between time cells 13 and 14, which corresponds to n ≈ 12.8 = 13.
(Notice that n is an integer and n = 0,1,. . ., N–1.) The range R can be calculated
from Eq. (5.32), which is 1.52 × 103 m. This result is very close to the data R used
to plot Fig. 5.33.

The range resolution can be computed as follows, with np = 1 in Eq. (5.32):

�R = c

2N� f
. (5.33)
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FIGURE 5.33 A single-target range profile based on PSFM signal.
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It is clear that the range resolution of step frequency depends on both the fre-
quency step size and the number of steps that are used. This is different from the
range resolution of single-frequency pulse radar with pulse duration Tp, which is

�R = cTp

2
.

If a number of closely spaced targets are present, but the distance between each
target is greater than �R, then each target will have its own unique frequency-
dependent phase and baseband signal Ci. The final target function (or range profile)
is the superposition of the synthetic pulses obtained from each target.

Figure 5.34 displays N-section stepped frequency radar pulses, together with three
echo signals corresponding to each frequency pulse. The group consists of N stepped
frequencies, starting from f 0 and ending at fN−1, with each frequency separated by
time interval T , shown in the top row of the figure. For each stepped frequency fi,
there exist three echo responses, Ci,1, Ci,2, and Ci,3. The first subscript i of echo
response Ci,,j denotes the ith stepped frequency. The second subscript j refers to the
jth target. The individual frequency component fi and its associated target echoes
are shown under the top row. They were displayed for a period of T without being
synchronized with the transmitted pulses.
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FIGURE 5.34 Stepped frequency pulse train and echoes returned in one pulse period.
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FIGURE 5.35 A multiple-target range profile based on PSFM.

Figure 5.35 displays the synthesized range profile, which consists of three targets.
Figure 5.35a shows the target 1 range profile |yn,1|, which is generated by taking
IFFT on {Ck,1} for k = 0,1, . . . , N–1. Figure 5.35b shows the target 2 range profile
|yn,2|, and Fig. 5.35c shows the target 3 range profile |yn,3|. Both |yn,2| and |yn,3| are
obtained by taking IFFT on {Ck,2} and {Ck,3}, respectively, for k = 0,1, . . . , N–1.
The three range profiles are then superimposed to become the complete range profile
|yn|, which is shown in Fig. 5.35d.

In summary, the following steps are used by the stepped frequency radar to obtain
a high-resolution synthetic range profile (SRP) based on stationary targets:

1. Transmit a burst of N pulses (or sections), with each pulse shifted in frequency
by a fixed step size �f. (Assume that N is a number the power of 2.)

2. Collect the in-phase (I) and quadrature-phase (Q) complex value samples of the
target’s baseband echo response in each coarse range bin for every transmitted
pulse. These samples are considered as the frequency-domain measurements
of the target’s spectral profile.

3. Apply IFFT to the N-complex samples of each coarse range bin to obtain an
N-element SRP of the target in the range bin.

4. Repeat steps 1–3 for each multiple target.

5. The final range profile is the superposition of the SRP from each target.

In case the target is moving at speed vt(n), n = 1,2,3, the target will be at a slightly
different position with displacement �ri on a pulse-to-pulse basis. This position shift
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will generate an extra phase factor on the frequency response signal Ci; that is

Ci (2π fi ) ⇒ Ci (2π fi ) exp (− j2π fi�ti ) ,

where �ti = 2�ri/c and �ri = ri – r0 is the target displacement at the stepped
frequency fi.

The target radial velocity vt(n), n = 1,2,3, can be computed as follows. By apply-
ing M bursts of N-section SFM signal on the three targets described above, let r1N(n)
and rMN (n) be the range profiles corresponding to the first and the Mth bursts of the
N-section signal, and let �rMN(n), n = 1,2,3 be the range difference corresponding
to targets 1, 2, and 3. Then

�rM N (n) = rM N (n) − r1N (n)

= (M − 1)N T vtn

and

vt (n) = �rM N (n)/[(M − 1)N T ] for n = 1,2,3.
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6

BASICS OF
RADAR IMAGING

In this chapter, Section 6.1 surveys several popular imaging radars and possible
applications. Section 6.2 covers the geometry of stripmap SAR, which consists of
broadside SAR and squint SAR. Section 6.3 describes the relationship between
Doppler frequency and radar image processing, where both broadside SAR and
squint SAR are covered. A key problem of radar image processing is range migra-
tion, which is described in Section 6.4. Radar image distortion and resolution are
covered in Sections 6.5 and 6.6. Most hand drawings in this chapter are for illustra-
tion purposes and are not to scale.

6.1 BACKGROUND

Imaging radar has been used to measure the motion of the earth’s surface to help
us better understand earthquakes and volcanoes. It can be used to study the move-
ments and changing size of glaciers and ice floes to understand long-term climate
variability. The development of highly detailed and accurate elevation maps is based
on imaging radar. Imaging radar is also used to find oil or other natural resources, to
study land cover and land use change, to assess the health of crops and forests, and
to plan for urban development.

In early 1950, scientist Carl Wiley found that the use of Doppler frequency anal-
ysis could improve radar image resolution of side-looking radar. This new finding
led to the development of the SAR (synthetic aperture radar) technique. The SAR
technique derives from the along-track (or azimuth) processing of the signal data

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.
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V

Radar Flight path
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V

FIGURE 6.1 Configurations of (a) a stripmap SAR and (b) a scan SAR.

by synthesizing an aperture that is longer than the actual physical antenna to yield
a higher resolution. Depending on the system’s configuration, SAR has been used
to acquire data in three major modes: (1) stripmap SAR, which images a long strip
terrain during the full transit distance; (2) scan SAR, which scans the ground in wider
swaths by varying the elevation angle of the antenna beam along the flight path; and
(3) spotlight SAR, which images a scene with finer resolution at multiple viewing
angles during a single pass.

Figure 6.1 displays two configurations of the SAR system: the stripmap SAR
and the scan SAR. Figure 6.1a shows that with fixed antenna angle, the radar scans
through the ground with a fixed width of strip along the flight path. Figure 6.1b shows
that the antenna varies the angle along the flight path and scans through a wider swath
on the ground.

Figure 6.2a shows the spotlight SAR, which achieves finer resolution on the target
by rotating the antenna and aiming at a target along the flight path. In addition to the
stripmap, scan, and spotlight modes, other techniques are also used for radar image
processing. Interferometric SAR (InSAR) has been widely used in many applications

(a) (b)

Radar Flight path

Target
Ground

A1

A2
D

Ground

FIGURE 6.2 Imaging radar for (a) a spotlight SAR and (b) an interferometric SAR.
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by applying multiple radar antennas and/or different acquisition geometries. InSAR
may also achieve the same purpose by scanning the same ground with a single an-
tenna but at different flight paths. Figure 6.2b displays an example of InSAR, where
A1 and A2 are two radars separated by distance D. The inverse SAR (ISAR) is an
imaging system that deals with moving targets while the radar is stationary.

The following chapters focus only on discussion of the stripmap SAR, which
consists of the broadside-mode SAR and the squint-mode SAR.

6.2 GEOMETRY OF IMAGING RADAR

Figure 6.3 shows an imaging radar that operates on a flying vehicle, which could be
a satellite or an airplane. The radar antenna is oriented parallel to the flight direction;
that is, it is looking sideward to the ground. The radar is moving along the flight path
above the earth with height H at velocity V . The radar antenna, which is assumed to
be a phased array, has dimensions of length L and width W. The ground surface area
from which the radar pulse is reflected is called the footprint. Swath is the ground

θH=λ/L

Swath

W
g

L

W

Flight path

Radar

V

H

θV = λ/W

Nadir track

Tp

Radar pulses

PRI

R0

θi

Footprint

FIGURE 6.3 Geometry of stripmap imaging radar.
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FIGURE 6.4 Geometry of (a) a broadside SAR and (b) a squint SAR.

surface area covered by the consecutive radar pulses. The radar transmits short pulses
with duration Tp and repeats at period PRI = T = 1/f PRF to the ground, where f PRF

is the pulse repetition frequency. The 3-dB beamwidth along the track is θH = λ/L,
while across the track it is θV = λ/W and the wavelength of the transmitted signal
is λ. The pulse is directed at some angle off nadir (directly below the radar) called
the look angle or incident angle θ ι. The distance from radar antenna to center of
footprint is represented by R0.

Imaging radar is extremely sensitive to the ground surface roughness of the area
being imaged. It does not detect the visible color of the surface, but detects the mois-
ture and electrical properties of the surface. Ground targets are illuminated numerous
times by the radar beams. The time interval during which the target is illuminated
depends on the beamwidth of the radar antenna and the speed of the flying vehicle,
namely, �T = R0θH/V . The returned signals from ground targets at the same slant
range will arrive at the same time. These equal-slant-range targets are separable only
in Doppler frequency, because of the radial velocity difference of the radar relative
to the target.

Figure 6.4a shows the geometry of a broadside-mode side-looking aperture radar
system, where the center of the radar beams is perpendicular to the flight path. The
radar moves at speed V along the flight path, which is parallel to the y axis. The
three radar positions A, B, and C are the locations where the radar transmits a signal
and receives an echo from the ground targets at three pulse periods. The length of
the center beam between radar and ground target is R0. The radar–target distance is
called slant range; however, when the target is under the center beam of the radar
and the center beam is perpendicular to the flight path, the distance is called range.
The radar beam covers the ground with an elliptical shaped area. The two axes of the
elliptical shape are determined by R0θH = R0λ/L and R0θV = R0λ/W, respectively,
where θH and θV are the radar beamwidths and L and W are the antenna sizes. The
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consecutive radar beams cover the ground and form a rectangular area, which can be
processed to form a rectangular-shape radar image.

Figure 6.4b shows the geometry of a forward-looking aperture radar system with
nonzero squint angle, where the center of the radar beam forms an angle θq with
the axis perpendicular to the flight path. All other parameters are the same as in
Fig. 6.4a, except that the radar beams cover the ground with a rhombus area, which
can be processed to form a rhombus-shape radar image.

6.3 DOPPLER FREQUENCY AND RADAR IMAGE PROCESSING

The radar image is formed by processing the 2D raw data collected by range radar.
Each row of 2D raw data is formed by the target echo returned from every radar pulse,
which is transmitted at the rate of f PRF. The 2D radar image data are represented in
complex numbers and normally can be processed separately by processing range data
first, followed by azimuth data. Various algorithms are available to process the 2D
raw data to generate a radar image, and they are discussed in later chapters.

Figure 6.5 shows the configuration of imaging radar and the corresponding radar
transmitter and receiver signal. Figure 6.5a shows a radar pulse that covers an
elliptical-shape ground area. The two axes of the elliptical shape are R0λ/L, and
R0λ/W, respectively, where L and W are the length and width of radar antenna. The
two slant ranges from the radar to the closest target and farthest target along the
x axis are represented as RN and RF, respectively. R0 is the distance from the radar
center beam to the target. The radar moves at speed V in the y direction at x = 0
and height z = H. Figure 6.5b shows the relationship between the transmitted pulse
and the returned echoes from all targets within the elliptical shaped area in one pulse
period. All targets with equal distance from the radar will superimpose on each other
and share the same data from the range viewpoint. Delay time t and slant range r
are related by t = 2r/c, where c is the speed of light; therefore, t and r are used
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FIGURE 6.5 (a) Imaging radar and (b) radar pulse and received echo.
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interchangeably for convenience. Notice that the parameter x in Fig. 6.5b refers to
the slant range, while in Fig. 6.5a it refers to the ground range.

The transmitter signal from a pulsed LFM radar can be written as follows, from
Eq. (5.8):

p (t) = a (t) Rect

(
t

Tp

)
exp

(
j2π fct + jπαt2) .

Here a(t) is the amplitude of the signal, Rect
(
t/Tp

)
is a rectangular function with

|t | ≤ (Tp/2), and Tp is the pulse duration time. The symbol fc is the carrier frequency,
and α is the LFM pulse chirp rate.

The echo signal from a single target, with distance R from the radar and target
reflection coefficient σ , can be represented as

s(t) = σa

(
t − 2R

c

)
Rect

(
t − 2R/c

Tp

)
exp

[
j2π fc

(
t − 2R

c

)
+ jπα

(
t − 2R

c

)2
]

.

(6.1)

The baseband signal sb(t) can be obtained by removing the carrier frequency fol-
lowed by a lowpass filter through the quadrature demodulation process. The demod-
ulated baseband signal can be represented as:

sb(t) = σ

∣∣∣∣a
(

t − 2R

c

)∣∣∣∣
2

Rect

(
t − 2R/c

Tp

)
exp

[
− j2π fc

2R

c
+ jπα

(
t − 2R

c

)2
]

.

(6.2)

Let the single target and the imaging radar be located at (X0,0,0) and (0,u,H)
respectively, where X0 and H are constant but the radar position u is a variable. The
slant range R can be represented as follows:

R(u) =
√

X2
0 + u2 + H 2. (6.3)

The slant range R(u) is a function of both target location and radar position; therefore
the 2D received signal can be represented as follows:

sb(t, u) =

σ

∣∣∣∣a
(

t − 2R (u)

c

)∣∣∣∣
2

Rect

(
t − 2R (u) /c

Tp

)
exp

[
− j2π fc

2R (u)

c
+ jπα

(
t − 2R (u)

c

)2
]

.

(6.4)

The data collected along the flight path, or y axis, are discrete, with sampling
frequency equal to f PRF. The sample spacing along the y axis can be computed as
�y = V/f PRF.
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FIGURE 6.6 (a) Single channel radar range data; (b) M × N radar imaging data array.

Figure 6.6 displays the formation of raw data for the radar image. Figure 6.6a
represents a single channel of slant range data, which corresponds to a given radar
position u = u0 from an echo signal as shown in Fig. 6.5b. This is a 1D data dig-
itized with N samples starting from ground location x0 to xN−1. Figure 6.6b shows
an M × N radar image data array, which corresponds to M radar positions of u = ui

for i = 1,2, . . . , M. At each position ui, the radar receives a returned signal with N
samples. A more detailed analysis of radar image data is addressed later.

The principle of using radar to determine target reflectivity and range distance
has been addressed in Chapters 4 and 5. The following sections discuss the key pa-
rameters of Doppler frequency, which serves as the basis to synthesize a LFM signal
along the azimuth direction. Broadside SAR is addressed first, followed by squint
SAR later.

6.3.1 Broadside SAR

In a broadside SAR system, the radar beam is perpendicular to its direction of move-
ment. Figure 6.7 displays a broadside SAR system with three radar positions, A, B, C,
together with a ground point target located at (D,0,0). At radar position A, the radar
beam begins to illuminate the target. At position B the center of the radar beam is on
the target. At position C the radar beam ends the illumination on the target. Position
B is chosen to be at (0,0,H), with beamwidth θH = λ / L. The distance between posi-
tions A and C is Ls, which is the synthetic aperture length, and Ls = R0θH = R0λ/L.

A simplified version of Fig. 6.7 is shown in Fig. 6.8a, where the plane covered
by points A,B,C and the point target on the ground forms a new x′–u coordinate
system. The distance D from the target to the y axis in Fig. 6.7 is replaced by the
slant range D′ in Fig. 6.8, where D′ = (D2 + H2)1/2 = R0, and R0 is the closest
distance between target and radar. Radar positions A and C are the two ends of radar’s
3-dB beamwidth, and the slant range r between position A (or C) and the point target

equals R =
√

R2
0 + (Ls2/4).

Figure 6.8b shows the relationship between the slant range r and the point target.
Here radar position B is chosen to be the origin of the x′–u coordinate system, and
θ is the angle between the slant range r and the x′ axis. In practical applications
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|u| � R0, the slant range r can be computed as

r =
√

R2
0 + u2

= R0

√
1 + u2

R2
0

≈ R0 + u2

2R0
(6.5a)
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or

r − R0 ≈ u2

2R0
. (6.5b)

Equation (6.5b) expresses a parabolic function, with the vertex located at r = R0

and u = 0. Figure 6.9 shows the slant range r versus the radar movement along
the flight path. The origin of the r–u coordinate is set at r = R0. The plot is based
on Eq. (6.5b) with the assumption that both slant range r and radar position u are
normalized with respect to R0, and the transmitted signal is a pulsed signal. For il-
lustration purposes, we set θH = 0.0349 (2◦) and Ls = 0.0349R0. Notice that the
x′ axis in Fig. 6.8 is a reference axis connecting point B and the ground target,
which is perpendicular to the flight path. The r axis of Fig. 6.9 is a slant range axis
connecting the radar and the ground target. For a radar pulse with finite duration,
the returned echo signal will last for the same time interval. Figure 6.9a shows a
pulse duration equivalent to R0/200. Figure 6.9b shows the range-compressed ver-
sion of Fig. 6.9a. Only range-compressed signals are considered in the following
discussion,
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FIGURE 6.10 Broadside SAR with multiple targets.

Figure 6.10 displays the geometry of two cases of broadside SAR with three tar-
gets on the ground. The corresponding slant ranges between radar and targets are
shown as r1, r2, and r3, respectively.

Figure 6.10a shows the three targets, labeled as 1, 2, and 3, and located at (u1, R0),

(u2, R0), and (u3, R0), respectively, where R0 is the closest distance between targets
and flight path. Figure 6.10b displays the three targets aligned along the x′ axis with
the same cross-range u0, and located at (u0, R01), (u0, R02), and (u0, R03), respectively.
Each target corresponds to one of the three targets to flight path distances R01, R02,
and R03, respectively. The trajectories of echo signals in the u–r or azimuth–slant
range domain corresponding to target 1–3 of Fig. 6.10 are shown in Fig. 6.11, where
θH = 10◦ is assumed.
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Figure 6.11a displays the trajectories of echo signals due to three targets, which
share the same distance R0 but are located at three different positions, u1, u2, and u3,

along the u axis. For simplicity, we have made u3 = 0. The peaks of the three curves
appear at u1, u2, and u3 where the radar has the closest distance to the ground targets,
respectively. Since the three targets have the same closest distance R0 from the radar,
the parabolic trajectories appear to have the same curvature for all three targets. In
addition, the synthesized aperture lengths Ls1 = Ls2 = Ls3.

Figure 6.11b shows the trajectories of echo signals due to three targets, which
line up in the direction perpendicular to the flight path (u axis) but have different
distances R0i from the radar. The parabolic trajectories appear to have a different
curvature for different targets. The greater the distances R0i is, the flatter the parabolic
trajectory becomes and the wider the synthetic aperture length is. The peaks of the
three parabolic trajectories are all aligned along the r axis with u = u0. For simplicity,
we have made u0 = 0.

In general, the ground targets are randomly distributed; therefore the trajectories
of echo signals will be a combination of those in both Figs. 6.11a and 6.11b.

In the SAR system described above, the radar moves along the flight path, or u
axis. The Doppler frequency therefore occurs and can be expressed in terms of the
radar position u, the slow time s (along the u axis), and the slant range r. Discussion
of the Doppler frequency in terms of u or s will lead to synthesis of pulsed LFM
along the azimuth direction, while the representation of Doppler frequency in terms
of slant range r will serve as the basis for “range cell migration correction.”

Figure 6.12 shows a broadside SAR with radar moving at velocity V = V û, where
û is the unit vector along the u axis. The radar position B is set to be the origin of the
x′–u coordinate, and has the shortest range R0 from the target. This is also the po-
sition where the target is under the center beam of radar. The radar positions A and
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FIGURE 6.12 Broadside SAR with single point target.
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C are two endpoints of the 3-dB beamwidth. The angle between radar position u
and the x′ axis is represented as θu. At radar position A or C, the angle θu equals
θH/2, where θH is the radar’s 3-dB beamwidth and the synthetic aperture length
Ls = R0θH.

At any radar position u = uû, the radial velocity of radar is defined as Vr = Vr r̂ .
The symbol r̂ is the unit vector from radar position to the target. The dot product of
û and r̂ is defined as û · r̂ = sinθu . At position B the radar’s radial velocity Vr = 0.

Given the radar position u, where |u| ≤ Ls/2, the relationship between Vr and u
can be expressed as follows:

Vr = V · r̂

= V sinθu

= −V
u√

R2
0 + u2

sgn (u).

(6.6a)

Here sgn (u) denotes “sign of u.” The value of Vr is positive when the radar is located
at the left side of the origin (or u is negative) and becomes negative when the radar
is at the right side of the origin (or u is positive).

Normally R0 � |u|; therefore Eq. (6.6a) becomes

Vr ≈ −V
u

R0

(
1 − u2

2R2
0

)
sgn (u)

≈ − V

R0
u sgn (u).

(6.6b)

As discussed in Chapter 4, the relationship between the radial velocity Vr and the
Doppler frequency is fD = 2Vr/λ. The Doppler frequency fD is positive for inward
velocity Vr and becomes negative for outward velocity Vr . Therefore, at any radar
position u, the Doppler frequency can be expressed as

fDu = 2Vr

λ

= − 2V u

λ

√
R2

0 + u2
sgn (u)

= −2V

λ
sinθu sgn (u)

≈ −2V u

λR0
sgn (u) .

(6.7a)
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The change rate of fD with respect to the radar position u is

ḟDu = ∂ fDu

∂u

= − 2V

λR0
cos3θu

≈ − 2V

λR0
.

(6.7b)

Given the parameters V and λ, Eq. (6.7b) states that the change rate of fDu is
always negative and its magnitude decreases when R0 increases. The subscript u
used in fDu and ḟDu indicates that fDu and ḟDu are associated with variable u. Here
θu ≈ 0 for small beamwidth.

Equation (6.7a) states that the Doppler frequency fDu = 0 when u equals zero.
The maximum value of Doppler frequency occurs at both ends of the 3-dB radar
beamwidth, which implies um = ±Ls/2; that is

fDum = fDu

∣∣
u=um

= ± VLs

λR0

= ± V

L
,

(6.7c)

where Ls = R0λ/L.
The bandwidth of the Doppler frequency therefore becomes

BDu = 2V

L
. (6.7d)

Since the slow time s = u /V , the Doppler frequency fD and associated parameters
can also be represented in terms of s as follows, from Eq. (6.7a):

fDs = −2V sin θu

λ
sgn (u)

= −2V 2s

λR0
sgn (u) .

(6.8a)

ḟDs ≈ −2V 2

λR0
. (6.8b)

fDsm = 2V 2 ± (Ls/2V )

λR0

= ± V

L
.

(6.8c)

BDs = 2V

L
. (6.8d)
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The total time duration during which the Doppler frequency is observable along
the flight path can be computed as

Ta = Ls

V
. (6.9)

From Eqs. (6.8a) and (6.8b), it is clear that for a single target with a small radar
beamwidth, the following conditions apply:

1. The Doppler frequency fDs is linearly propositional to the slow time s.

2. The rate of Doppler frequency change ḟDs is independent of the slow time s.

These two characteristics of Doppler frequency associated with slow time s fit the
characteristics of the linear frequency modulation waveform discussed in Chapter 5.
In other words, a new signal along the flight path can be derived, and it can be con-
sidered as a synthesized pulsed linear frequency-modulated (LFM) signal in terms
of slow time s. This LFM signal has the following characteristics:

Center of frequency: fDc = 0

Frequency change rate:α = ḟD

= −2V 2

λR0

Maximum frequency: fDm = ± V

L

Pulse duration:Ta = Ls

V

Bandwidth:BDop = ḟDTa

= 2V

L
.

Here the subscript s is dropped from fD and related parameters for convenience.
Derivation of the synthesized LFM waveform is based on the 3-dB beamwidth of

the radar antenna. Therefore it is amplitude-modulated by the antenna’s 3-dB radi-
ation pattern. Figure 6.13 shows a typical radiation pattern of antenna array and a
pulsed LFM waveform along the azimuth direction.

Figure 6.14 displays the 3-dB beamwidth of the antenna radiation pattern shown
in Fig. 6.13a. This radiation pattern serves as a built-in windowing function on
the synthesized LFM waveform. By multiplying the data of Fig. 6.14a by those of
Fig. 6.13b, one obtains the synthesized and symmetric LFM waveform along the az-
imuth axis, which is shown in Fig. 6.14b. The synthesized LFM signal has a duration
time Ta = Ls/V, and its maximum frequency fDm = ±(V/L) occurs at two ends of
the synthetic aperture length Ls.
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FIGURE 6.15 Doppler frequency and multiple targets

Figure 6.15 displays the relationship between the Doppler frequency and the radar
displacement u under multiple target situations. Figure 6.15a shows the geometry of
the SAR system with three targets located at (u1, R0), (u2, R0), and (u3, R03), respec-
tively. The slant ranges r1, r2, and r3 are the respective target–radar distances. The
origin of the u–x′ coordinate system is chosen with radar position u3 = 0 and x′ = 0.
The radar moves at velocity V = V û along the u axis, and the x′axis is perpendicular
to the u axis.

Figure 6.15b plots the Doppler frequency fD against the radar position along the
u axis or azimuth direction. Equations (6.7a), (6.7b), and (6.7c) are used for this
illustration. Targets 1 and 2 have identical slopes, namely, −2V/ (λR0). Their fre-
quency bandwidth and the synthetic aperture length are also the same: BD1 = BD2 =
(2V Ls/λR0) = (2V/L) and Ls1 = Ls2 = (R0λ/L). However, the zero-frequency
positions of targets 1 and 2 are different and located at u1 and u2,, respectively. Tar-
get 3, has a shorter closest distance to radar R03, and its aperture duration time is
shorter than those of targets 1 and 2. The frequency bandwidth of target 3 is identical
to those of targets 1 and 2. The zero frequency occurs at u3 = 0. The center frequency
fDc is zero for all three targets.

Since the slow time s = u/V , Fig. 6.15b can also be considered as fD versus slow
time s by dividing u with V . All parameters discussed above will apply, except the
slope of fD becomes −(2V 2/λR0).

The preceding descriptions are based on a Doppler frequency related to the radar
position u, or slow time s, along the azimuth direction. The correlation between
Doppler frequency and slant range r is discussed next.
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Consider the point target case and use Fig. 6.12 for illustration. Given the radar
position u and the slant range r, Eq. (6.6a) can be rewritten as follows:

Vr = V sin θu

= −V
u

r
sgn (u)

= −V
1

r

√
r2 − R2

0 sgn (u) .

(6.10a)

Equation (6.7) then becomes

fDr = 2Vr

λ

= −2V

λr

√
r2 − R2

0 sgn (u),

(6.10b)

ḟDr = ∂ fDr

∂r

= −2V

λ

R2
0

r2
√

r2 − R2
0

sgn (u),
(6.10c)

fDrm = ±2V

λ

√
Ls2

4R2
0 + Ls2

≈ ± V Ls

λR0

= ± V

L
.

(6.10d)

Let fDU and fDL represent the upper and lower bounds of the Doppler frequency
spectrum. These two frequencies occur at both ends of the radar 3-dB beamwidth
where a target is under illumination. For a forward-looking SAR, the Doppler fre-
quency fDU occurs at the position where the radar beam begins to illuminate the
target, while fDL occurs at the position where the radar beam ends the illumination
on the target. Their values are fDU = V/L and fDL = −V/L in the broadside case.

The bandwidth of Doppler frequency for broadside SAR can then be computed as

BD = fDU − fDL

= 2V

L
.

(6.10e)
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FIGURE 6.16 Doppler frequency versus slant range for single target.

Figure 6.16 displays the correlation between the Doppler frequency and the slant
range r. The plotted is based on the single-target model shown in Fig. 6.12 and with
the help of Eq. (6.10b). The following parameters are used for the plot: fc = 2.0
GHz, V = 300 m/s, R0 = 10,000 m, L = 1 m, and θH = 0.15 radian or 8.59◦. As can
be seen, both ends of the curve have values V/L = 300 Hz and −V/L = − 300 Hz,
respectively. The center of the curve is located at range R0 = 10,000 m, where the
Doppler frequency fDc = 0.

The plot in Fig. 6.17 is similar to that of Fig. 6.16 except with multiple targets. The
plot reflects the three-target model shown in Fig. 6.15a. The left curve represents tar-
get 3, and the right one represents targets 1 and 2. The maximum slant range occurs
at both ends of the curve, which correspond to the two ends of the Doppler frequency.
Both curves have the same Doppler frequency center fDc = 0. The start and end of
the Doppler frequencies are fDU = V/L = 300 Hz and fDL = − V/L = −300 Hz, re-
spectively, and are the same for both curves. The bandwidth BD = 2V/L = 600 Hz are
also identical for both curves. The slant ranges R01 =10,000 m and R02 = 10,025 m
are used to plot the drawing.

Up to this point, we have shown that fD, ḟD, fDU, fDL, and BD can be represented in
terms of spatial position u, slow time s, and slant range r. Although fD and ḟD are in
different forms when expressed in terms of u, s, or r, they all share the same results
of fDU, fDL, and BD.



P1: OTA/XYZ P2: ABC
c06 JWBK230/Wang July 2, 2008 15:55 Printer Name: Yet to Come

DOPPLER FREQUENCY AND RADAR IMAGE PROCESSING 173

−400

−300

−200

−100

0

100

200

300

400
Broadside SAR 

0.998 1 1.002 1.004 1.006 1.008 1.01

x 104

fD (Hz)

Slant range r
R02R01

r2max
r1max

λ=0.15, V=300 m/s;
L=1 m, θH=λ/L=0.15

Targets 1,  2 

Targets 3 

V/L

−V/L
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The following are part of the technical specifications of the ERS-1/2 satellite sys-
tems. They will be used to compute the parameters related to Doppler frequency
discussed in this section.

Antenna size (L × W): 10 × 1 m

Velocity (V): 7125 m/s

Sampling rate (fs): 18.96 MHz

LFM chirp rate ( ḟ ): 4.1778 × 1011 Hz/s

Radar wavelength (λ): 0.0566 m

Pulse duration time (T): 37 µs

f PRF: 1680 Hz

The bandwidth and resolution of range imaging can be computed as

Bt = ḟ × T

= 4.1778 × 1011 × 37 × 10−6

= 15.46 MHz

�x = c/(2B)

≈ 10 m
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The related parameters of Doppler frequency can be computed as

fDU: V/L = 712 Hz

fDL: −V/L = −712 Hz

BD: 2V/L = 1424 Hz

�u: V/f PRF = 4.24 m

Notice that the cross-range Doppler frequency bandwidth of 1424 Hz is much
less than that of the range (time-domain) LFM signal, which has a bandwidth of
15.46 MHz.

6.3.2 SAR with Squint Angle

For the broadside SAR systems, the radar beam is perpendicular to the flight path.
For satellite SAR systems, the earth’s rotation induces an effective squint angle that
varies by about ±3◦ for each orbit. Some applications require the radar beam to
look forward or aft on the ground targets. A nonzero squint angle SAR system is
discussed next.

Figure 6.18 shows the geometry of a typical forward-looking radar with squint
angle θq and a point target located at (0, R0) in a u–x′ coordinate system. A small-
squint SAR system is considered as θq < 0.5θH, while a low-squint SAR system is
considered as 0.5θH < θq < 10◦. The three radar positions of u1, u2, and u3 corre-
spond to the start, center, and end of the radar beam illuminated on the target. Narrow
beamwidth θH is assumed in our discussion.

Figure 6.18a shows a small-squint SAR; Fig. 6.18b, a low-squint SAR. The slant
ranges R1, R2, and R3 correspond to the three radar positions u1, u2, and u3, respec-
tively. The three shaded areas in Fig. 6.18 represent the 3-dB radar beamwidth corre-
sponding to positions u1, u2, and u3, respectively. The slant range R2, corresponding
to the center beam of radar at position u2, is also represented as Rc. The distance
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FIGURE 6.18 Geometry of a forward-looking radar system with nonzero squint angle.
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between u1 and u3 equals the synthetic aperture length Ls. The closest distance be-
tween the radar and the target is R0 = Rc cos θq. The radar beamwidth is shown as
θH, and the squint angle θq is the angle between the radar center beam at position
u2 and the x′ axis. The radar moves from left to right at speed V along the u axis. If
the radar moves from right to left, the same geometry becomes a backward-looking
radar. Forward looking radar is the major configuration discussed in the following
chapters.

For a squint angle that satisfies θq < θH/2, as shown in Fig. 6.18a, the radar
moves from u1 to u2, then from u2 to u = 0. The slant range r decreases from R1

to R2 = Rc and then to R0. When the radar moves from u = 0 to u3, the slant range
r increases from R0 to R3. The radar positions u1, u2, and u3, can be represented as
follows:

u1 = −R0 tan(0.5θH + θq ),

u2 = −R0 tan(θq ),

u3 = R0 tan(0.5θH − θq).

(6.11a)

The corresponding slant range R1, R2 (=Rc), and R3 can be represented as

R1 = R0

cos(θH/2 + θq )
,

Rc =
√

R2
0 + u2

2

= R0

cos θq
,

R3 = R0

cos(θH/2 − θq )
.

(6.11b)

In the case of θq > θH/2, as shown in Fig. 6.18b, Eq. (6.11b) remains the same,
but u3 in Eq. (6.11a) changes to become

u3 = −R0 tan(0.5 θH − θq ). (6.11c)

In the broadside case, we have shown that the Doppler frequency fD and the related
parameters can be expressed in terms of the radar position u, slow time s, or slant
range r. Those equations used in the broadside case are now extended to the squint
angle case by factoring in Eq. (6.11). Since u = sV , the radar position u will be
dropped in the following discussion.

The small-squint-angle SAR and the low-squint-angle SAR are considered sepa-
rately in the following sections to derive the Doppler frequency fD and other associ-
ated parameters.
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6.3.2.1 SAR with a Small Squint Angle. Figure 6.18a serves as a small-
squint-angle SAR that satisfies θq ≤ 0.5θH. The Doppler frequency and related pa-
rameters fD, ḟD, and BD can be derived as follows:

1. When radar moves from s1 to s3, from Eq. (6.7), the Doppler frequency and
the change rate of fD with respect to the slow time s can be derived as

fDs = 2Vr

λ

= − 2V 2s

λ

√
R2

0 + s2V 2
sgn (u)

= −2V

λ
sin θu sgn (u) ,

ḟDs = ∂ fDs

∂s

= − 2V 2 R2
0

λ 3

√
R2

0 + s2V 2

= −2V 2

λR0
cos3 θu .

(6.12a)

From Eq. (6.10), the Doppler frequency and the change rate or slope of fD with
respect to slant range r can be derived as follows:

fDr = 2Vr

λ

= −
2V

√
r2 − R2

0

λr
sgn (u) ,

ḟDr = ∂ fDr

∂r

= −2V

λ

R2
0

r2
√

r2 − R2
0

sgn (u) .

(6.12b)

Although fDs and fDr appear to differ, one can observe that fDs = fDr = fD, but
ḟDs �= ḟDr . Notice that ḟDr is dependent on sgn (u), but ḟDs is not.
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2. When s = 0, r = R0; therefore

fDs = 0

ḟDs = −2V 2

λR0

and
fDr = 0

ḟDr = ∞.

3. The cenroid of the Doppler frequency fDc occurs when s = s2, r = r2 = Rc, and
θu = θq:

fDcs = −2V sin θq

λ
sgn (u2)

= 2V

λ
sin θq ,

ḟDcs = −2V 2

λR0
cos3θq ,

(6.13a)

fDcr = −2V sin θq

λ
sgn (u2)

= 2V

λ
sin θq

ḟDcr = 2V

λRc

cos2 θq

sin θq
.

(6.13b)

Here, sgn (u2) = −1 is applied, as can be seen from Fig. 6.18a. Therefore, the
center of the Doppler frequency fDc = fDcs = fDcr.

4. The upper bound of the Doppler frequency occurs at s = s1 and r = R1, and the
lower bound of the Doppler frequency occurs at s = s3 and r = R3; therefore

fDUs = fDs

∣∣
s=s1

= −2V sin(0.5θH + θq )

λ
sgn (u1)

= 2V

λ
sin(0.5θH + θq ),

fDLs = fDs

∣∣
s=s3

= −2V sin(0.5θH − θq )

λ
sgn (u3)

= −2V

λ
sin(0.5θ H − θq ),

(6.14a)
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and

fDUr = fDr

∣∣
r=R1

= −2V sin(0.5θH + θq )

λ
sgn (u1)

= 2V

λ
sin(0.5θH + θq ),

fDLr = fDr

∣∣
r=R3

= −2V sin(0.5θ H − θq )

λ
sgn (u3)

= −2V

λ
sin(0.5θ H − θq ).

(6.14b)

Here, sgn (u1) = −1 and sgn (u3) = 1 are applied as can be seen from Fig.
6.18a. Therefore the upper bound and the lower bound of fD satisfy the relation
fDU = fDUs = fDUr and fDL = fDLs = fDLr.

5. The bandwidth of the Doppler frequency is then

BD = fDU − fDL

= 2V

λ
sin(0.5θH + θq ) + 2V

λ
sin

(
0.5θH − θq

)
= 4V

λ
sin(0.5θH ) cos θq .

(6.15a)

For a small beamwidth θH, cos (0.5θH) ≈ 1, sin(0.5θH) ≈ 0.5θH, and θH =
λ/L; therefore

fDU ≈ 2V

λ

[
0.5θH cos θq + sin θq

]
= 2V

λ
sin θq + V

L
cos θq

= fDc + V

L
cos θq ,

fDL ≈ −2V

λ

[
0.5θH cos θq − sin θq

]
= 2V

λ
sin θq − V

L
cos θq

= fDc − V

L
cos θq ,

BD = fDU − fDL

= 2V

L
cos θq .

(6.15b)
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In the case where the small radar beamwidth is used and the squint angle is
zero, the bandwidth BD of Eq. (6.15b) becomes identical to that of the broad-
side case as shown in Eq. (6.10e).

The synthetic aperture length Ls can be computed as

Ls = R1 sin(0.5θH + θq ) + R3 sin(0.5θH − θq ).

The pulse duration time is computed as follows:

Ta = Ls

V
.

The correlation between Doppler frequency and slow time s and slant range r is
shown in Fig. 6.19. Both plots are based on the small-squint-angle SAR with a rela-
tively large radar beamwidth under a single-target situation for illustration purposes.
The following parameters are used to generate the drawings: V = 300 m/s, L × W =
1 × 1 m, fc = 2.0 GHz, R0 = 10,000 m, and θq = 3◦ and θH = λ/L = 0.15 radian
or 8.59◦.

Figure 6.19a shows the Doppler frequency distribution in terms of the slow time
s, which decreases linearly from slow times s1 to s3. The linear relation reflects the
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FIGURE 6.19 Small θq Doppler frequency versus slow time s (a) and slant range r (b).
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linear FM characteristics under the squint-mode radar in terms of slow time s. Figure
6.19b, based on Eq. (6.12c), illustrates Doppler Frequency distribution in terms of
slant range r and appears to be a hyperbolic format. The two plots shown in Fig. 6.19
share the same parameters of the Doppler frequency spectrum, namely, the same fDU,
fDL, fDc, and BD values.

6.3.2.2 SAR with a Low Squint Angle. A low-squint-angle SAR that satisfies
0.5θH < θq <10◦ is shown in Fig. 6.18b. For such a configuration, the Doppler
frequency and related parameters fD, ḟD, and BD can be derived as follows:

1. At any radar position u, where u1 < u < u3 and R1 < r < R3, one obtains

fDs = 2V

λ
sin θu

= 2V 2s

λ

√
R2

0 + (sV )2
Sgn(u)

ḟDs = − 2V 2 R2
0

λ 3

√
R2

0 + s2V 2

= −2V 2

λR0
cos3 θu,

(6.16a)

fDr =
2V

√
r2 − R2

0

λr
,

ḟDr = 2V

λ

cos2 θu√
r2 − R2

0

.

(6.16b)

Equations (6.16a) and (6.16b) show that fDs = fDr = fD, but ḟDs �= ḟDr . Both
fD and ḟDr are positive because the value u, shown in Fig. 6.18b, is always
negative.

2. The centroid of the Doppler frequency, which occurs at s = s2 and r = R2 =
Rc, can be computed as follows:

fDcs = 2V

λ
sin θq ,

fDcr = 2V

λ

√
1 −

(
R0

Rc

)2

= 2V

λ
sin θq .

(6.16c)

Therefore fDcs = fDcr = fDc.
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3. The upper bound of the Doppler frequency occurs at s = s1 and r = R1 and the
lower bound, at s = s3 and r = R3; therefore

fDUs = − 2V 2s1

λ

√
R2

0 + V 2s2
1

sgn (u1)

= 2V

λ
sin(0.5θH + θq ),

fDLs = − 2V 2s3

λ

√
R2

0 + V 2s2
3

sgn (u3)

= 2V

λ
sin(θq − 0.5θH ),

(6.16d)

and

fDUr = 2V

λ
sin(0.5θH + θq ),

fDLr = 2V

λ
sin(θq − 0.5θH ).

(6.16e)

Therefore fDUu = fDUr = fDU and fDLu = fDLr = fDL.

4. The bandwidth of the Doppler frequency can be computed as follows:

BD = fDU − fDL

= 2V

λ
sin

(
0.5θH + θq

) + 2V

λ
sin(0.5θH − θq )

= 4V

λ
sin (0.5θH ) cos θq .

(6.17a)

Comparing Eqs. (6.15a) with (6.17a), one can see that the Doppler fre-
quency bandwidth BD is identical for both small- and low-squint-angle SAR
radars.
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For small radar beamwidth θH, the following approximations can be derived:

fDU ≈ 2V

λ

[
sin θq + 0.5θH cos θq

]

= 2V

λ
sin θq + V

L
cos θq

= fDc + V

L
cos θq ,

fDL ≈ 2V

λ

[
sin θq − 0.5θH cos θq

]

= 2V

λ
sin θq − V

L
cos θq

= fDc − V

L
cos θq

BD = fDU − fDL

= 2V

L
cos θq .

(6.17b)

Again, the bandwidth BD shown in Eq. (6.17b) is identical to that of Eq. (6.15b).
The synthetic aperture length, or equivalently the beamwidth, can be computed

as

Ls = R1 sin(θq + 0.5θH ) − R3 sin(θq − 0.5θH )

and the pulse duration time, as Ta = Ls/V.
Figure 6.20 displays two drawings of the Doppler frequency based on the low-

squint-angle SAR with a relatively small radar beamwidth. Figure 6.20a is plotted in
terms of slow time s and Fig. 6.20b, in terms of slant range r. A single target is as-
sumed, and the following parameters are used to generate the drawings: V = 300 m/s,
L × W = 1 × 1 m, fc = 6 GHz, R0 = 10,000 m, and θq = 9◦ and θH = λ/L = 0.05
radian or 2.865◦.

Figure 6.20a, based on Eq. (6.16a), shows that the Doppler frequency linearly
decreases from slow times s1 to s3. Figure 6.20b, based on Eq. (6.16b), also ap-
pears to be in linear format. This is because the slant range R0 is a large value
relative to the movement of radar. Unlike the fD shown in Fig. 6.16, where both
positive and negative fD exist, only positive fD exist for both plots of Fig. 6.20. The
Doppler centroid fDc is located in the middle of the bandwidth of fD. Again, the
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FIGURE 6.20 Low θq Doppler frequency versus slow time s (a) and slant range r (b).

two plots shown in Fig. 6.20 share the same parameters of fD, namely, fDU, fDL,
and BD.

For comparison purposes, three drawings of the Doppler frequency are displayed
in Fig. 6.21. The drawings are in terms of the slant range r and squint angles θq.
Figure 6.21a corresponds to the broadside SAR; Fig. 6.21b, a small-squint-angle
SAR; Fig. 6.21c, a large-squint-angle SAR. The parameters used to generate the
drawings are listed below:

Radar carrier frequency fc = 2 GHz; (wavelength λ = 0.15 m)

Antenna array size L × W = 1 × 1 m

Radar beamwidth θH = 8.6◦

Small squint angle θq = 3◦

Large squint angle θq = 15◦

Shortest target–radar distance, R0 = 10,000 m

Radar direction of movement (orientation) = from left to right

Radar speed (velocity) V = 300 m/s
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FIGURE 6.21 Comparison of Doppler frequencies for different SAR systems.

The key Doppler frequency–related parameters for the three cases shown in Fig.
6.21 can be computed and are listed below:

θ q 0◦ 3◦ 15◦

fDc, Hz 0 209.3 1035.28
fDU, Hz 300 508.3 1322.1
fDL, Hz −300 −90.7 742.7
BD, Hz 600 599 579.4

Although the three cases from Fig. 6.21 share the same radar beamwidth θH = 8.6◦,
the frequency bandwidth is different in all three cases. Since the Doppler frequency
bandwidth is squint-angle-dependent, the larger the squint angle θq, the smaller the
Doppler frequency bandwidth BD becomes.

Figure 6.22 displays the relationship of the Doppler frequency of a forward-
looking squint SAR with respect to radar positions u. Figure 6.22a shows the ge-
ometry of a squint radar with three ground targets located at (u1, R01), (u2, R02), and
(u3, R03), respectively, with R01 = R02 = R0 and u3 = 0. The slant ranges between
radar and targets 1, 2, and 3 are r1, r2, and r3, respectively.

Figure 6.22b shows that the Doppler frequency fD varies linearly along the u axis.
The two lines on the left, which correspond to targets 1 and 2, have the same slope.
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FIGURE 6.22 (a) Multiple-target squint SAR system; (b) plot of Doppler frequency fD versus
radar displacement u.

The third line has a steeper slope and is related to target 3. The centers of all three
lines are identical, and serve as the centroid of Doppler frequency fDc. The intersec-
tions of the three lines with the u axis are ua, ub, and uc, which are the radar positions
when the targets are under the center beam of the radar. Because of the nonzero
squint angle, ua, ub, and uc are different from u1, u2, and u3. The Doppler frequency
bandwidths of all three lines are identical. Targets 1 and 2 have the same synthetic
aperture length, while target 3 has a shorter one.

6.4 RANGE MIGRATION AND CURVATURE

To help the reader better understand range migration and curvature, Fig. 6.23 is pre-
sented as a simplified version of Fig. 6.18. Notice that radar position u is at the left
side of the point of origin and is a negative value. Leting θ = π /2 − θq, one can
obtain the following equation:

R2(u) = R2
c + (uc − u)2 − 2Rc(uc − u) cos θ

= R2
c + (u − uc)2 + 2Rc(u − uc) sin θq .

Therefore

R(u) = Rc

√
1 + 2 (u − uc) sin θq

Rc
+ (u − uc)2

R2
c

= Rc + (u − uc) sin θq + (u − uc)2

2Rc
− Rc

8

[
(u − uc)2

R2
c

+ 2 (u − uc) sin θq

Rc

]2

+ · · ·
(6.18)
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FIGURE 6.23 A simplified single-target squint SAR system.

Ignoring the higher-order items following the square bracket, Eq. (6.18) becomes

R(u) ≈ Rc + (u − uc) sin θq + (u − uc)2

2Rc
. (6.19)

The range migration �R is defined as the difference between R(u) and Rc, that is,
�R = R(u) – Rc. The linear part of Eq. (6.19) is called range walk, and the quadratic
part of Eq. (6.19) is called range curvature. Because |u − uc| ≤ Ls/2, the maximum
range migration can be obtained from Eq. (6.19) as follows:

�Rmax = Rmax(u) − Rc

= | sin θq | Ls

2
+ Ls2

8Rc

=
(

λRc

2L

) (
| sin θq | + λ

4L

)
.

(6.20)

Given a range resolution �Rr, in general, there will be no range migration correc-
tion required if �Rmax is less than �Rr/4. Therefore, the criterion for determining
whether range migration correction is required, is to check whether

(
2λRc

L

) (
|sinθq | + λ

4L

)
< �Rr . (6.21)
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FIGURE 6.24 Single-target trajectory in squint SAR system.

For the broadside mode, θq = 0 and Rc = R0, this criterion becomes

R0λ
2

2L2
< �Rr . (6.22)

Figure 6.24 is a graphical representation of a point target range migration under
the squint SAR. Figure 6.24a shows slant range R(u) plotted against radar position u.
The two slant range points R1 and R3 are the start- and endpoints where the target is
under the radar’s illumination. R2 is the point at which the center beam of the radar
is on the target, which is normally represented as R2 = Rc. The corresponding radar
positions are u1, u2, and u3. The difference between R1 and R3 is the total range
migration. The distance between the curve R(u) and the line linking R1 and R3 is the
range curvature. The vertical dashed line represents the range cell lines; the horizon-
tal dashed lines, the radar positions or azimuth cell lines. The intersection points of
these two lines are the radar image data points. R(u) represents a single-target trajec-
tory seen by the radar through the synthetic aperture length. It migrates from range
cell R1 to range cell R2, then stops at range cell R3. The total range migration in this
example is 5 range cells, which will cause distortion of the image if not corrected.

Figure 6.24b shows the corresponding range migration in the Doppler frequency
domain, namely, the target trajectory R(fD) plotted against the slant range r. It il-
lustrates the Doppler frequency migration through different range cells. The vertical
dashed lines denote the range cell lines; the horizontal dashed lines, the Doppler fre-
quency bin lines. R(fD) migrates from fDU at range cell R1 to fDc at range cell Rc, then
stops at fDL at range cell R3. The total Doppler frequency migration in this example
is 5 range cells.

In general, the range migration is relatively small for airborne-based platforms;
yet for satellite-based platforms, the range migration is severe. The requirement for
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range migration correction depends on the choice of radar platforms, the methods
used to process the radar image, and the waveform of radar (frequency bandwidth
and beamwidth of the transmitted signal).

Imaging radar records the phase and polarization of the reflected signal. The
radar image consists of pixels, which represent the radar backscatter from the ground
targets. Darker areas represent low backscatter, while bright areas represent high
backscatter. The radar images come with certain geometric distortions, such as slant
range to ground distortion, image layover, and shadowing. This is discussed in the
next section.

6.5 GEOMETRIC DISTORTIONS OF THE RADAR IMAGE

Because the image radar measures the distance to features in slant range rather than
the true horizontal distance along the ground, this results in a varying image scale.
Consider the example shown in Fig. 6.25, where the radar maps the three features
with different height and shapes on the ground. The three features, described and
labeled as a,b,c, . . . , j, are mapped and appear as b′, a′, c′, . . . , j′, to the radar
image plane. On the basis of Fig. 6.25, the geometric distortions of radar image are
described below.

6.5.1 Layover

Layover occurs when the radar beam reaches the top of a tall feature (point b in Fig.
6.25) before it reaches the base (point a in Fig. 6.25). The return signal from the top
of the feature will be received before the signal from the bottom will. As a result, the
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FIGURE 6.25 Geometric distortions of radar image.
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top of the feature is displaced toward the radar from its true position on the ground,
and “lays over” the base of the feature (b’ to a’).

6.5.2 Foreshortening

Foreshortening occurs when the radar beam reaches the base of a tall feature tilted
toward the radar (e.g., a mountain) before it reaches the top. Because the radar mea-
sures distance in slant range, the slope (d to e) will appear compressed and the length
of the slope will be represented incorrectly (d′ to e′).

6.5.3 Shadowing

The shadowing effect occurs when the radar beam cannot reach part of a tall feature
(h to i). In the image plane, h to i will appear as dark. In addition, any target between
i and j will also be shown as dark.

In addition to the distortions mentioned above other distortions can occur in the
radar image, and they are described below.

6.5.4 Slant-to-Ground Range Distortion

The slant range is the distance seen by radar to the point target and is represented
by Rs. The ground range distance is the horizontal distance along the ground corre-
sponding to the point target measured in the slant range and is represented as Rg. The
relationship between Rs and Rg is Rg sinθ = Rs, where θ is the radar incident angle.
Features of the radar image displayed in slant range must be converted into ground
range to reflect their real-world positions relative to one another.

6.5.5 Speckle

Speckle appears as a grainy “salt and pepper” texture in an image. This is caused
by random interference from the multiple scattering returns that occur within each
resolution cell and produce random bright and dark areas in the radar image. In order
to clearly identify objects within an image, it may be necessary to clean up the image
through speckle reduction. Speckle reduction can be achieved in either of two ways:

1. By multilook processing—multiple measurements of an object’s (pixels)
backscatter from different locations

2. By spatial filtering—calculating the average (often median) value of adjacent
pixels to average out speckle

6.6 RADAR IMAGE RESOLUTION

The resolution of radar image consists of both range and angular resolutions. A res-
olution cell in the slant range is formed by �Rs by �Ra, while on the ground it is
formed by �Rg by �Ra. Figure 6.26 displays the resolution cell in both slant range
and on the ground.
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The term resolution cell refers to an area of the image, while a pixel (picture ele-
ment) corresponds to the location of a digital sample in an image. Normally, at least
2 pixels per range resolution are needed. This is similarly true for angular resolution.

The range resolution of imaging radar is determined by the ability of the radar to
distinguish between two point targets on the ground in the range direction. For real
aperture radar (RAR), it is dictated by the time duration of the radar pulse Tp, and the
angle of incidence θ , such that two targets on the ground can be distinguished only
if they are separated by more than one pulsewidth.

For pulse-based RAR, the resolution in slant range depends on the transmitted
pulse duration Tp or on the frequency bandwidth B of the pulse:

�Rsr = cTp

2

= c

2B
.

(6.23a)

The 1
2 factor originates from the two-way travel of the radar signal. The correspond-

ing ground range resolution is

�Rgr = cTp

2 sin θ
(6.23b)

or

�Rgr = c

2B sin θ
. (6.23c)

Along the flight track or azimuth direction, RAR resolution corresponds to
the size of the antenna footprint on the ground. From Fig. 6.26, the footprint on
the ground is RsθH, where Rs is the slant range from the radar to the center of the



P1: OTA/XYZ P2: ABC
c06 JWBK230/Wang July 2, 2008 15:55 Printer Name: Yet to Come

RADAR IMAGE RESOLUTION 191

footprint and θH is the 3-dB beamwidth with θH = λ/L. The RAR angular resolution
in the azimuth direction is then

�Ra = RsθH

= Rsλ

L
.

(6.24)

6.6.1 Example of Real Aperture Radar (RAR) Resolution:
ERS-1/2-Imaging Radars

Major specifications of ERS-1 and ERS-2 radars are:

Pulse duration time Tp: 0.0371 ms

Average angle of incidence θ : 20◦

Signal wavelength λ: 0.056 m

Mean range to a target on the earth Rs: 850 km

Radar moving speed V: 7 km/s

Antenna size L × W: 10 × 1 m

Without considering the LFM signal for radar pulse, the ERS-1/2 radars yield the
following results:

Resolution in slant range �Rsr = cTp/2

= 5.56 km

Resolution in ground range �Rgr = cTp/(2sinθ )

= 16 km

Resolution in azimuth �Ra = Rs λ/L

= 4.76 km

Now consider linear frequency modulation. The ERS-1/2 satellite radars utilize
the LFM signal with frequency bandwidth at 15.46 MHz and compressed pulse du-
ration Tp = 1/B. The slant and ground range resolutions can be computed as

�Rsr = c

2B

= 9.7 m

�Rgr = c

2B sin θ

= 28.4 m

(6.25)

This is much better than the pure pulse case of �Rsr = 5.56 km and �Rgr = 16 km.
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Equation (6.24) shows that the azimuth resolution can be improved if the length
of the antenna L increases. A synthetic aperture radar with a small physical antenna
achieves a high resolution by synthesizing a long length of antenna. A long length of
synthesized aperture corresponds to wider bandwidth of Doppler frequency, which
in turn improves the azimuth resolution.

Computation of the Doppler frequency bandwidth requires computing the syn-
thetic aperture length Ls and the upper and lower bounds of the Doppler frequency
fDU and fDL.

The synthetic aperture length Ls equals the product of a 3-dB beamwidth multi-
plied by slant range Rs:

Ls = RsθH

= Rs
λ

L
.

Consider the broadside SAR case. The upper bound of the Doppler frequency fDU

can be obtained as follows:

fDU = fD

∣∣
u=−Ls/2

= −2V

λ

u

Rs

∣∣
u=−Ls/2

= V

λ

Ls

Rs

= V

L
.

Similarly, the lower bound of the Doppler frequency fDL can be obtained as

fDL = −2V

λ

Ls

2Rs

= − V

L
.

The bandwidth of the Doppler frequency is

BD = fDU − fDL

= 2V

L
.

The along-track spatial resolution is the product of the synthesized LFM pulse
duration Ta and the relative velocity of the flying vehicle; that is

�Ra = V Ta, (6.26a)
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where Ta = 1/BD. Therefore

�Ra = V

BD

= L

2
.

(6.26b)

For an antenna length equal to 10 m, the azimuth resolution becomes 5 m, which
is much smaller than the RAR case of 4.76 km.

The cross-range resolution for SAR is independent of the slant range Rs. Equation
(6.26b) states that an arbitrarily high resolution can be obtained by using a shorter
antenna. However, smaller radar antennas output less power, which reduce the target
signal-to-noise power ratio. Therefore, a tradeoff between the antenna length and
cross-range resolution must be made in designing the SAR antenna.

The criteria used to check whether range migration correction is required will now
be applied on ERS-1/2 radars.

Given the wavelength λ = 0.056 m, the satellite–earth distance R0 = 850 km,
the antenna length L = 10 m, and—assuming that the squint angle θq = 0◦—the
maximum range migration amount can be computed as follows, from Eq. (6.20):

R0λ
2

8L2
= 850 × 103 × 0.0562

8 × 102

= 3.333 m.

From Eq. (6.22), no range migration correction is required if

R0λ
2

8L2
<

�Rsr

4
.

However, the slant range resolution �Rsr/4 = 2.425 m, from Eq. (6.25), is less than
(R0λ

2/8L2) = 3.333 m. Therefore, range migration correction is required.



P1: OTA/XYZ P2: ABC
c07 JWBK230/Wang July 8, 2008 1:8 Printer Name: Yet to Come

7
SYSTEM MODEL AND

DATA ACQUISITION
OF SAR IMAGE

The two-dimensional target locations (or function) of radar image can be obtained
by processing the target-reflected signals in both the cross-range (azimuth) and range
directions. Range migration correction may be required for some applications. The
principles and basic characteristics of radar image processing have been covered in a
previous chapter in terms of Doppler frequency. This chapter describes radar image
processing in the wavenumber domain. Section 7.1 describes the range radar imaging
in the wavenumber domain; Section 7.2 discusses the cross-range radar imaging.
Both the broadside SAR and the squint SAR are covered. Section 7.3 reviews data
acquisition and the frequency spectrum of radar images.

7.1 SYSTEM MODEL OF RANGE RADAR IMAGING

7.1.1 System Model

Figure 7.1 shows a radar system configuration for range processing. The radar beam
is assumed to be narrow enough in the azimuth direction that all targets are located
at y = 0 and randomly distributed along the range (or x axis) direction.

Figure 7.1a is a 3D display of the radar system. The radar, moving at speed V
along the y axis, is located at (0,0,H) and emits a pulse at t = 0. The ground area
covered by the radar pulse in the range direction will reflect the pulse wave after a
short delay. The shortest distance to the ground is RN, and the longest distance is
RF. The echo delay time due to the target at RN is t0 = (2RN /c) = (2x0/c sin θ ).
The echo delay time due to the target at RF is tN−1 = (2RF/c) = (2xN−1/c sin θ ).

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.
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FIGURE 7.1 Geometry of a range imaging radar.

The corresponding ground ranges of t0 and tN−1 are x0 = [(ct0 sin θ )/2] and xN−1 =
[(ctN−1 sin θ )/2]. The swath Dx, which ranges from x0 to xN−1, is related to the radar
beamwidth as Dx ≈ θV (RN + RF)/2 = λ (RN + RF)/ (2W).

Figure 7.1b shows the relationship between radar pulse and returned echoes. Here
the horizontal axis indicates the echo return time. The radar pulse emits at t = 0 and
the echo returns at time t0 through tN−1. Since parameters t and x are linearly related
by t = 2x/c, they are used interchangeably in the following discussion.

Consider a set of N discrete point targets, each located at xn with a reflectivity σ n,
where n = 0,1,2, . . . , N − 1. The ideal target function, which identifies the location
of each target along the x axis, is defined as follows:

f0(x) =
N−1∑
n=0

σnδ(x − xn). (7.1)

Figure 7.2 is an example of the ideal target function f 0(x). The targets are ran-
domly located along the x axis between x0 and xN−1. The magnitude of each target

f
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0
xN-1x

1 x
2
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σ2

σN-1
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FIGURE 7.2 An ideal target function.
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denotes reflectivity σ n, and eventually reflects as a bright or dark dot on the radar
image.

Let p(t) be the radar signal illuminated on a one-dimensional target area in the
range (x) direction as shown in Fig. 7.1. The returned echo signal s(t) becomes

s(t) =
N−1∑
n=0

σn p(t − tn). (7.2)

The Fourier transform of Eq. (7.2), with tn = 2xn/c, can be expressed as

S(ω) =
N−1∑
n=0

σn P(ω)exp

(
− jω

2xn

c

)
, (7.3)

where P(ω) is the Fourier transform of p(t).
Since the delay time tn and range xn are linearly related and interchangeable, the

Fourier transform of Eq. (7.1) can be expressed as

F0(ω) =
N−1∑
n=0

σnexp

(
− jω

2xn

c

)
. (7.4)

From Eqs. (7.3) and (7.4), one obtains

S(ω) = P(ω)F0(ω). (7.5)

The corresponding equation in time t or range x domain becomes

s(t) = p(t) ∗ f0(t)

or

s(x) = p(x) ∗ f0(x). (7.6)

where the asterisk denotes convolution.

7.1.2 Reconstruction of Range Target Function

Mathematically, given the received signal spectrum S(ω), the ideal target function
f 0(x) can be derived from Eq. (7.5) as

f0

(
ct

2

)
= F

−1
[

S(ω)

P(ω)

]
=

N−1∑
n=0

σnδ(t − tn), (7.7)
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or

f0(x) =
N−1∑
n=0

σnδ(x − xn).

However, for Eq. (7.7) to work properly, the function P(ω) must satisfy two
conditions: (1) the bandwidth must be infinite, and (2) no zeros can exist in P(ω).
Since P(ω) is the frequency spectrum of a radar pulse, its envelope has the sinc-like
function. Therefore P(ω) cannot meet conditions 1 and 2 (above) to make Eq. (7.7)
work correctly.

One practical method of finding the target function f (x) for range imaging is to
utilize the concept of a matched filter as discussed in Chapter 5. Let the matched
filter function P*(ω) be chosen as the complex conjugate of the transmitted pulse
function P(ω), with the time-domain representation of p*(ω) as p*(−t). The returned
echo signal s(t) can be considered as the output of a system (or target) function f 0(t)
with input p(t). This output signal s(t) is then applied to the matched filter to obtain
the target function f (t). The block diagram for solving the target function f (t) is
shown in Fig. 7.3.

p(t)
f
0
(t)

s(t)

Matched filter

p*(−t)
f(t)

FIGURE 7.3 Matched filtering for range imaging.

The output of the matched filter can be expressed, in the frequency domain, as
follows:

F(ω) = S(ω)P∗(ω)

= F0(ω)P(ω)P∗(ω)

= F0(ω)|P(ω)|2. (7.8)

Let psf(t) be a point spread function; that is

psf (t) = F−1[|P(ω)|2]

or

psf (ω) = |P(ω)|2, (7.9)

where psf(ω) is the Fourier transform of psf(t); then

f (t) = f0(t) ∗ psf (t)

=
N−1∑
n=0

σn psf

(
t − 2xn

c

)
.

(7.10a)
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Alternatively, the target function can be expressed in terms of range x as

f (x) =
N−1∑
n=0

σnpsf(x − xn). (7.10b)

The point spread function psf (t) depends on the spectral shape of the transmit-
ted radar signal p(t). As an example, let |P(ω)| = 1 for ω ∈ [−ω0, ω0]; then psf(t)
becomes

psf(t) = sinc

(
ω0t

π

)
. (7.11)

An example of a matched filter output, or reconstructed target function f (x),
is shown in Fig. 7.4. As can be seen, each target appears at a different location
xn with different magnitude, which corresponds to the reflection coefficient σ n.
When comparing Fig. 7.2 with Fig. 7.4, one can see that the nth target location
changed from a point δ(x − xn) in the ideal target function f 0(x) to a segment
occupied by psf(x − xn) in the real target function f (x). The point spread func-
tion psf(t) becomes sharper, from Eq. (7.9), if the bandwidth of p(t) increases. A
sharper psf(x) improves the range resolution, and therefore the quality of the radar
image.

The discussion above shows that range image processing detects the returned echo
signal on the basis of a given transmitted signal. It depends only on the target distance
or range, and is independent of the squint angle of the radar. Therefore, the prior
discussion applies to both broadside SAR and squint SAR systems.

f (x)

Range
x0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xN-1x1 x2

σ2

σN-1

σ1

σ0

FIGURE 7.4 A reconstructed target function f (x).
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7.2 SYSTEM MODEL OF CROSS-RANGE RADAR IMAGING

This section discusses two cases of cross-range radar imaging. The broadside SAR
is addressed first, followed by squint SAR.

7.2.1 Broadside Radar Case

7.2.1.1 System Model. The geometry of a typical radar system for cross-range
image processing is shown in Fig. 7.5. Similar to but somewhat different from range
image processing, the radar pulse is assumed to be narrow enough along the range
direction so that all targets are located at the same range x = Xc and randomly dis-
tributed along the y axis direction. It is assumed that all targets are located within the
radar beamwidth.

Figure 7.5a shows a broadside SAR imaging system with M ground targets lo-
cated along the cross-range (or y axis) direction. Each target has a reflection coef-
ficient σ m, where m = 0,1,2, . . . , M − 1. The imaging radar is located at (0,u,H)
and moves at speed V along the y axis. The radar illuminates the target area with
beamwidth θH. The triangular shaded area shows a 2D plane where both radar and
ground targets are in the same plane. Certainly the assumption that all targets have
a range distance Xc is not practical in the real world. However, as will be discussed
in Chapter 8, the radar image can be processed in range and cross-range directions
independently if the range migration problems can be ignored. Therefore, the as-
sumption that all targets in the cross-range direction are located at the same range Xc

will not lose any generality in our future discussions.
Figure 7.5b is a simplified model based on the triangular shaded area of Fig. 7.5a.

The x′ axis is perpendicular to the flight path. The y direction is the cross-range
direction, and the targets are all located within the beamwidth of the radar signal.
All M targets are located at x′ = Xc

′, where Xc
′ = (H2 + Xc

2)1/2, and y = ym for
m = 0,1, . . . , M − 1. We will use x and Xc instead of x′ and Xc

′ in the following

x

z

y

Flight path

H

(0,0,0)

(0,u,0)

Xc

Ls

R1

R3

σ1
σ0

σM-1

θ

Radar

V

Rc

θH

L

Ls

R1

θH

Radar
V

x'

y

(0,0)

σ1σ0

σM-1

Rc

Xc'

(0,u)

(a) (b)

R
3

FIGURE 7.5 (a) A typical cross-range radar imaging system; (b) a simplified system.



P1: OTA/XYZ P2: ABC
c07 JWBK230/Wang July 8, 2008 1:8 Printer Name: Yet to Come

200 SYSTEM MODEL AND DATA ACQUISITION OF SAR IMAGE

discussion. With the radar located at y = u, the M targets are represented by their
reflection coefficients as σ 0, σ 1, . . . , σ M−1.

Let f 0(y) be an ideal target function in the cross-range domain, which identifies
a group of M targets located along the y axis. Then f 0(y) can be defined as follows,
similar to the ideal target function described in range domain:

f0(y) =
M−1∑
m=0

σmδ(y − ym). (7.12)

Cross-range image processing is based on the phase history of returned signals
from the targets, which are located along the y axis and illuminated under the radar
beam. Consider a single target at distance R from the radar, which has a 3-dB
beamwidth θH. The single-target phase history is computed during the time inter-
val T1 = Ls/V , where Ls = RθH is the synthetic aperture length and V is the velocity
of the moving radar. For a group of M targets spread over a range of length Dy, the
time interval for computing phase history becomes Ta = (Ls + Dy)/V .

Figure 7.6 shows the relationship between the radar beam and the targets. The
M targets are assumed to be distributed between –Dy/2 and Dy/2. The radar moves
between –Lu and Lu along the y axis and continuously illuminate the targets, where
Lu = (Ls + Dy)/2.

Also shown in Fig. 7.6 are the aspect angles of radar with respect to a particular
target. The aspect angle is defined as the angle between the x axis and the line that
connects the radar to the target. With radar located at u, the aspect angle with respect

x

y

(0,0)

u

−Lu

Dy

θm(u)

Lu

Ym σM(u)

σ0(u)

σM-1(u)

Xc

θm(Lu)

θm(−Lu)

Ls

Ls

FIGURE 7.6 Relationship between radar beams and targets.
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to the mth target is defined as

θm(u) = tan−1

(
ym − u

xm

)
, (7.13)

where xm = Xc in our discussion.
Consider a system with radar located at (0,u), where u is within the range

−Lu ≤ u ≤ Lu , and the M targets are located at {(Xc, y)} for y = y0,y1, . . . , yM−1.
Let p(t) be the transmitted signal and Rm(u) be the slant range between the radar and
the mth target:

Rm(u) =
√

X2
c + (ym − u)2.

The radar echo signal from M targets can then be expressed as

s (t, u) =
M−1∑
m=0

σm p

[
t − 2Rm(u)

c

]

=
M−1∑
m=0

σm p

[
t − 2

√
X2

c + (ym − u)2

c

]
. (7.14)

For purposes of simplicity and to preserve generality, the radar signal p(t) is as-
sumed to be a single-frequency signal. Thus, p(t) = exp(jωt), and Eq. (7.14) becomes

s (t, u) = exp ( jωt)
M−1∑
m=0

σmexp

[
− j2k

√
X2

c + (ym − u)2

]
, (7.15)

where k = ω/c = 2π /λ. After a baseband conversion, Eq. (7.15) becomes

sb(t, u) = s(t, u) exp(− jωt)

=
M−1∑
m=0

σm exp

[
− j2k

√
X2

c + (ym − u)2

]

=
M−1∑
m=0

sbm (t, u) , (7.16)

where

sbm(t, u) = σm exp

[
− j2k

√
X2

c + (ym − u)2

]

= σm exp

[
− j

4π Rm(u)

λ

]
. (7.17)

To simplify the notation, s(u) and sm(u) will be used to represent sb(t,u) and sbm(t,u)
in the following discussion.
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The instantaneous spatial frequency of sm(u) for u in the synthetic aperture region,
−Lu ≤ u ≤ Lu , is

kum(u) = ∂

∂u

[
−2k

√
X2

c + (ym − u)2

]

= 2k(ym − u)√
X2

c + (ym − u)2

= 2k

√
R2

m(u) − X2
c

Rm(u)

= 2k

√
1 −

(
Xc

Rm

)2

= 2k sin θm(u), (7.18)

where θm(u) is the aspect angle of radar for the mth target when radar is located at
(0,u) and can be computed as follows, as defined in Eq. (7.13):

θm(u) = tan−1

(
ym − u

Xc

)
.

Let an ideal reflector be located at (Xc,0) with reflection coefficient σ r = 1. Also
let sr0(u) be a reference signal, which is the echo signal from this ideal reflector when
radar is located at (0,u):

sr0(u) = exp

[
− j2k

√
X2

c + u2

]
. (7.19)

From Eq. (7.12) with y = u, the ideal target function becomes

f0(u) =
M−1∑
m=0

σmδ (u − ym) . (7.20)

The convolution of sr0(u) with f 0(u) turns out to be

f0(u) ∗ sr0(u) =
∞∫

−∞
f0(τ )sr0(u − τ ) dτ

=
∞∫

−∞

M−1∑
m=0

σmδ(τ − ym) exp

[
− j2k

√
X2

c + (u − τ )2

]
dτ

=
M−1∑
m=0

σm exp

[
− j2k

√
X2

c + (u − ym)2

]

= s(u), (7.21)

where s(u) is the baseband signal shown in Eq. (7.16).
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f
0
(u)

s
r0

(u) s(u)

FIGURE 7.7 Relationship between received signal and reference signal.

Equation (7.21) states that the baseband echo signal s(u) can be considered as
the output function of a system, where f 0(u) and sr0(u) are the system function and
input function, respectively. Note that since the radar location u is a variable along
the y axis, the parameters y and u are therefore interchangeable. Figure 7.7 shows
the relationship between sr0(u), f 0(u), and s(u) for the cross-range target (image)
processing, which is similar to that of the range target processing discussed in the
previous section.

The purpose of cross-range target processing is to find the target location and its
corresponding reflection coefficient. Equation (7.21) states that the target-reflected
signals are formulated as the convolution of the ideal target function with the refer-
ence function.

The spatial frequency (or spatial Fourier) transform converts the signal from the
spatial (y or u) domain to the spatial frequency (ky or ku) domain. In other words,
given a signal g(y), the spatial frequency transform of g(y) is defined as

G
(
ky

) =
∞∫

−∞
g(y)exp

(− jky y
)

dy. (7.22)

The spatial frequency transform of sm(u), expressed in Eq. (7.17), can then be ex-
pressed as

Sm(ku) =
∞∫

−∞
σm exp

[
− j2k

√
X2

c + (ym − u)2

]
exp(− jkuu)du

= σm

∞∫
−∞

exp

[
− j2k

√
X2

c + (ym − u)2 − jkuu

]
du. (7.23)

As discussed previously, the radar movement is limited from u = −Lu to u =
Lu for a group of M targets. It is difficult to obtain a closed form of the integration
shown in Eq. (7.23). Instead, the integration will be approximated by the “principle
of stationary phase.” This method ignores the integration regions at the far ends and
is concerned only with some limited narrow regions, which are explained in the next
section.

7.2.1.2 Principle of Stationary Phase. Consider a general waveform

s(t) = a(t) exp[ jφ(t)], (7.24)

where a(t) is a slow time-varying amplitude function relative to the phase function
φ(t).
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The Fourier transform of s(t) is

S(ω) =
∞∫

−∞
a(t)exp {− j [ωt − φ(t)]} dt . (7.25)

Since a(t) is a slow varying function relative to the phase function ωt − φ(t),
the contribution to the integral value from regions of fast fluctuation of ωt − φ(t)
will nearly cancel. The integral expressed above is therefore approximately equal
to the integrand at the points where the phase function is nearly constant, or the
instantaneous frequency of the phase function is zero. In other words, the time ranges
around t = ts that satisfy

d [ωt − φ(t)]

dt
= 0 or ω = dφ(t)

dt
(7.26)

will contribute to the integration in Eq. (7.25). Therefore, one can expand the inte-
grand of Eq. (7.25) as a Taylor series around ts:

a(t) = a(ts) + (t − ts)a′(ts) + (t − ts)2

2
a′′(ts) + · · ·

ωt − φ(t) = ωts − φ (ts) + (t − ts)
[
ω − φ′ (ts)

] − (t − ts)2

2
φ′′ (ts) + · · ·

= ωts − φ(ts) − (t − ts)2

2
φ′′(ts) + · · · . (7.27)

Because a(t) is a slow varying function, only the zeroth-order term of a(t) will
be retained. However, both the zeroth- and second-order terms of phase function
ωt − φ(t) will be used for integration. Assume that only one stationary point exists,
Equation (7.25) then becomes

S(ω) = a (ts) exp {− j [ωts − φ (ts)]}
∞∫

−∞
exp

[
j
(t − ts)2

2

d2φ (ts)

dt2

]
dt. (7.28)

Let

(t − ts)2

2
φ′′ (ts) = ±s2, (7.29)

where ± sign depends on the sign of φ′′(ts). Substituting Eq. (7.29) into Eq. (7.28),
one obtains

S(ω) = a (ts) exp {− j [ωts − φ (ts)]}
√

2

|φ′′ (ts) |

∞∫
−∞

exp
(± js2

)
ds. (7.30)
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Consider the following two cases of exp
(± js2

)
;

1. Let exp(js2) = exp(−u2); then

∞∫
−∞

exp
(

js2
)
ds = 1√− j

∞∫
−∞

exp
(−u2

)
du

= √
πexp

(
j
π

4

)
.

2. Let exp(−js2) = exp(−u2); then

∞∫
−∞

exp
(− js2

)
ds = 1√

j

∞∫
−∞

exp
(−u2

)
du

= √
πexp

(
− j

π

4

)
.

Therefore

∞∫
−∞

exp
(± js2

)
ds = √

πexp
(
± j

π

4

)
. (7.31)

Equation (7.30) then becomes

S(ω) = a (ts)

√
2π

|φ′′ (ts) |exp
{
− j

[
ωts − φ (ts) − sgn

[
φ′′ (ts)

] π

4

]}
. (7.32)

Example 7.1 Fourier Transform of Pulsed LFM Signal Consider a pulsed
LFM signal, which is represented in Eq. (5.9) as follows:

p(t) = A0 Rect

(
t − Tp/2

Tp

)
exp

[
j
(
2π fct + παt2

)]
.

Comparing it with Eq. (7.24), one obtains

a(t) = A0 Rect

[
t − Tp/2

Tp

]
,

φ(t) = 2π fct + παt2.
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From Eq. (7.26), one can compute the time parameter ts as

ω = dφ

dt

∣∣∣∣ t=t s

= 2π fc + 2παts

or

ts = f − fc

α

and

d2φ

dt2

∣∣∣∣ t=ts = 2πα

a (ts) = A0 Rect

(
ts − Tp/2

Tp

)

= A0 Rect

{
[( f − fc) /α] − (

Tp/2
)

Tp

}
.

Therefore, the Fourier transform of p(t) becomes

P(ω) =
∞∫

−∞
A0 Rect

(
t − Tp/2

Tp

)
exp

[− j
(
ωt − ωct − παt2

)]
dt .

This equation can be approximated as follows, from Eq. (7.32):

P(ω) = A0

√
1

α
Rect

(
ts − Tp/2

Tp

)
exp

[
− j

(
ωts − ωcts − παt2

s − π

4

)]

= A0 Rect

(
ω − ωc

2παTp
− 1

2

)
exp

(
j
π

4

) √
1

α
exp

[
− j

(ω − ωc)2

4πα

]
.

If the constants of exp (jπ /4) and α−1/2 are ignored, the Fourier transform of p(t)
becomes

P( f ) = A0 Rect

(
f − fc

αTp
− 0.5

)
exp

[− jπ ( f − fc)2

α

]
.

This equation shown is an approximate form derived from the principle of sta-
tionary phase, which differs from that shown in Eq. (5.12). However, it is reasonably
accurate as long as the time–bandwidth product of p(t) is greater than 100, which
normally is true in practical radar applications.
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7.2.1.3 Spatial Fourier Transform of Cross-Range Target Response.
The computation of spatial Fourier transform of Eq. (7.23) will now be approximated
by using the principle of stationary phase. For illustration purpose, we will use kum,
instead of ku, to represent the spatial frequency corresponding to the mth target. Thus,
to compute

Sm (kum) = σm

∞∫
−∞

exp

[
− j2k

√
X2

c + (ym − u)2 − jkumu

]
du,

based on Eqs. (7.25) and (7.32), one can change t to u, ω to kum. In addition, letting

a(t) = σm,

φ(t) = −2k
√

X2
c + (ym − u)2,

(7.33)

one can then obtain the corresponding us in ku domain by using Eq. (7.26), that is

d [ωt − φ(t)]

dt
= 0,

or

d

[
kumu + 2k

√
X2

c + (ym − u)2

]
du

= 0.

Therefore

kum = 2k
ym − us√

X2
c + (ym − us)2

. (7.34)

By solving Eq. (7.34) for us, which corresponds to ts in the time domain, one obtains

us = ym − kum Xc√
4k2 − k2

um

. (7.35)

One can then compute the corresponding φ(us) and (d2φ/du2)
∣∣
u=us as follows:

φ(us) = −2k
√

X2
c + (ym − u)2

∣∣
u=us

= −4k2 Xc√
4k2 − k2

um

d2φ

du2

∣∣∣∣ u=us = −4k2 − k2
um

4k2

√
4k2 − k2

um .

The symbol kum is the spatial wavenumber related to the spatial frequency along
the cross-range direction, which is quite small. The parameter k = 2π /λ is the
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wavenumber related to the carrier frequency and is much larger than kum. Therefore,
for kum 	 k, one obtains

d2φ

du2

∣∣∣∣ u=us ≈ −
√

4k2 − k2
um

a(us) = σm . (7.36)

The spatial frequency transform of sm(u), from Eq. (7.23), then becomes

Sm (ku) = σm

√
2πexp (− jπ/4)√

4k2 − k2
um

exp

(
− j

√
4k2 − k2

um Xc − jkum ym

)
. (7.37a)

The term

√
2πexp (− jπ/4)√

4k2 − k2
um

is a known and slowly-fluctuating amplitude function. It can be ignored in the cross-
range imaging process. The spatial frequency spectrum of the echo signal due to the
mth target located at (Xc,ym) can then be expressed as

Sm(kum) ≈ σmexp

(
− j

√
4k2 − k2

um Xc − jkum ym

)
. (7.37b)

The characteristics of the spatial frequency kum are examined next.
Figure 7.8 shows the configuration of radar beams to be used for computing the

spatial frequency band limitation. Figure 7.8a displays radar moving along the u- or
y-axis direction with two radar beams at different locations, and one ground target

x

y/u

(0,0)

Radar beam 1

Radar beam 2

Ls/2

(0,ym)

Xc

0.5θH(0, ym+Ls/2)

(0, ym−Ls/2)

Radar

Radar

Target
•

0.5θH

Xc

Ls/2

2)2/(
2

LscX +

Radar Target
•

θH

(a) (b)

FIGURE 7.8 Computation of spatial frequency band limitation.
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located at (Xc,ym). Radar beam 1, originating from (0, ym − Ls/2) and shown as the
shaded area with beamwidth θH, has its upper edge as the first beam illuminating
the target. Beam 2, originating from (0, ym + Ls/2), has its lower edge as the last
beam illuminating the same target. Figure 7.8b displays the geometric relationship
between the beam angle θH, Xc, and Ls. Notice that Ls is the synthetic aperture length
with beamwidth θH.

From Eq. (7.18), the spatial frequency kum is expressed as

kum = 2k sinθm(u), (7.37c)

where θm(u) is the aspect angle of the mth target located at (Xc,ym). For a group
of M targets occupying an area with length Dy, the radar movement is within the
range [−Lu,Lu], where Lu = (Ls + Dy)/2. However, for any single target located at
(Xc,ym), the radar movement is within [ym−Ls/2, ym + Ls/2]. The spatial frequency
kum corresponding to a single target m is therefore band limited to

kum ∈
[

2k sin θm

(
ym + Ls

2

)
, 2k sin θm

(
ym − Ls

2

)]

=
[
−2k sin

θH

2
, 2k sin

θH

2

]
.

(7.38a)

Refer to Fig. 7.8b, with R = [Xc
2 + (Ls/2)2]1/2 and θH = λ/L and Ls = XcθH, then

sin(θH/2) = Ls/ (2R). Therefore

kum =
[
−kLs

R
,

kLs

R

]

=
[
−k Xcλ

RL
,

k Xcλ

RL

]
.

(7.38b)

The bandwidth Bku and the center of the spatial frequency kuc can be computed as
follows:

Bku = 2k Xcλ

LR
(7.38c)

kuc = 0. (7.38d)

Equation (7.38c) states that the bandwidth of spatial frequency kum is constant and
independent of the target location. In other words, all targets occupying an area of
length Dy in the cross-range direction will have the same spatial frequency spec-
trum, but with different phases. Therefore ku, will be used instead of kum for future
discussion.
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For a small beamwidth of θH, sin(θH/2) ≈ θH/2 or R ≈ Xc. Equations (7.38a) and
(7.38b) then become

ku ≈ [−kθH , kθH ]

=
[
−2π

L
,

2π

L

]
.

(7.39a)

The bandwidth Bku and the center of the spatial wavenumber kuc therefore become

Bku ≈ 4π

L
(7.39b)

kuc = 0. (7.39c)

One can compute the changing rate of the spatial frequency ku, from Eq. (7.34):

k ′
u = ∂ku

∂u

= −2k X2
c

3

√
X2

c + (ym − u)2
.

Normally Xc 
 (ym − u); therefore

k ′
u ≈ − 2k

Xc
= − 4π

λXc
. (7.39d)

The slope of the spatial frequency is a constant, which implies that ku varies lin-
early with the two ends of the ku equal to 2π /L and −2π /L, respectively. From Eqs.
(7.39a)–(7.39d), it is clear that the spatial frequency band limitation, bandwidth, cen-
ter of band, and rate of change are all identical for all targets with the same slant range
(x = Xc in this case).

Since ku in the spatial frequency domain corresponds to ωD in the Doppler fre-
quency domain, it is interesting to see that the parameters derived in the spatial fre-
quency domain match those derived from the Doppler frequency discussed in Chap-
ter 6. In other words, the spatial frequency ku, the bandwidth Bku and kuc (the centroid
of ku) derived from Eqs. (7.37c), (7.39a), and (7.39b) match ωD, BD, and ωDc, respec-
tively, derived in Eq. (6.8). This match comes from the conditions set by assigning
R0 = Xc, r = Rm, and ku = ωD/V .

7.2.1.4 Reconstruction of Cross-Range Target Function. Once the spa-
tial frequency spectrum of the mth target located at (Xc,ym) is known, the spatial
frequency spectrum for all target responses [sm(u), m = 0,1, . . . , M−1] can be
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obtained:

S(ku) =
M−1∑
m=0

σm exp

(
− j

√
4k2 − k2

u Xc − jku ym

)

= exp

(
− j

√
4k2 − k2

u Xc

) M−1∑
m=0

σm exp (− jku ym).

(7.40)

The spatial frequency spectrum of reference signal sr0(u), defined in Eq. (7.19),
can be obtained by letting m = 0 and ym = 0 in Eq. (7.40):

Sr0(ku) = exp

(
− j

√
4k2 − k2

u Xc

)
. (7.41)

The spatial frequency transform of an ideal target function, defined in Eq. (7.20), is

F0 (ku) =
M−1∑
m=0

σmexp (− jku ym) . (7.42)

From Eqs. (7.40)–(7.42), one obtains

S(ku) = F0(ku)Sr0(ku). (7.43)

Again, the ideal target function f 0(u) can be derived as the inverse spatial fre-
quency transform of S(ku)/Sr0(ku), where S(ku) and Sr0(ku) are the spatial frequency
transforms of s(u) and sr0(u), respectively. However, because of the bandwidth lim-
itation, it cannot be solved in this way as discussed in the range imaging case, and
a practical reconstruction method is again via the matched filter, which is defined as
the complex conjugate of the reference function Sr0(ku). Multiplication of the spatial
frequency function S(ku) by the matched filter function S*

r0 (ku), yields the following
product:

F (ku) = S (ku) S∗
r0 (ku)

=
M−1∑
m=0

σmexp (− jku ym).
(7.44)

Since the spatial frequency transform of each target is band-limited, one can
rewrite Eq. (7.37b) as

Sm (ku) = σm Im (ku) exp

(
− j

√
4k2 − k2

u Xc − jku ym

)
, (7.45)
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where

Im(ku) = 1 for ku ∈
[
−2π

L
,

2π

L

]
,

= 0 otherwise.
(7.46)

Equation (7.44) then becomes

F (ku) =
M−1∑
m=0

σm Im (ku) exp (− jku ym). (7.47)

Assuming a small beamwidth, the inverse spatial frequency transform of Im(ku) is

im(u) = 1

2π

∫ 2π/L

−2π/L
Im(ku) exp( jkuu)dku

= 1

j2πu

[
exp

(
ju2π

L

)
− exp

(− ju2π

L

)]

≈ 2

L
sinc

(
2u

L

)
.

(7.48)

Since u and y are interchangeable, the inverse spatial frequency transform of F(ky)
becomes

f (y) =
M−1∑
m=0

σmim(y − ym)

=
M−1∑
m=0

2

L
σm sinc

(
2(y − ym)

L

)
.

(7.49)

Let psfm(y) = im(y) be difined as the point spread function of the mth target, sim-
ilar to the point spread function used in range imaging shown in Eq. (7.11), the
reconstructed cross-range target function becomes

f (y) =
M−1∑
m=0

σmpsfm(y − ym). (7.50)

Comparing Eqs. (7.49) and (7.50) with Eqs. (7.10) and (7.11) in Section 7.1.2,
one obtains the following observations:

� In both cases, the target functions are a group of sinc functions in the range x
and cross-range y directions, respectively.
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s
r0

(y) s(y) f(y)
f
0
(y) s

r0
*(−y)

Matched filter

FIGURE 7.9 Matched filtering for cross-range imaging.

� The function im(y) in the cross-range y direction can be considered as the point
spread function psfm(y), while the point spread function psf(x) in the range x
direction is computed as F−1{|P(ω)|2} .

� In both cases, a reference function is needed for reconstruction purposes. A
matched filter defined as the complex conjugate of the time-reversed transmitted
signal is chosen as the reference function in range image processing. For the
case of cross-range image processing, a matched filter is chosen as the complex
conjugate of the reversed slow time of the echo signal from an ideal reflector
located at (Xc,0) (or at the center of the cross-range targets).

On the basis of the discussion above, the cross-range image processing under the
broadside case can be represented in a system block diagram as shown in Fig. 7.9.

7.2.2 Squint Radar Case

7.2.2.1 System Model. Figure 7.10 displays the geometry of a squint-mode
radar system for cross-range imaging. Similar to the broadside mode, all targets are
located at x = Xc and spread along the y axis with all targets located within the radar
beamwidth. Each target is represented by its reflection coefficient σ m, m = 1,2, . . . ,
M. The radar is located at (0,0,H) and moves at speed V along the y axis. However,
in contrast to the broadside-mode radar, the center beam of the squint mode radar
aims at the target area with a squint angle θq, which is the angle between the range
axis and the center beam of the radar.
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V
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σM−1
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θq

•

•• •
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•
•
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FIGURE 7.10 A squint mode cross-range imaging system.
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Figure 7.10a shows the configuration of a cross-range imaging system, while
Fig. 7.10b shows a simplified 2D model of Fig. 7.10a; Fig. 7.10b can also be consid-
ered as the overhead view of Fig. 7.10a. The center of the target area along the y axis
is at (Xc

′, Yc) in Fig. 7.10b, with R2 as the distance from the radar to the center of
the target area. The distance R2 equals (Xc

2 + Yc
2 + H2)1/2 in Fig. 7.10a and equals

(Xc
′2 + Yc

2)1/2 in FIg. 7.10b, where Xc
′ = (Xc

2 + H2)1/2. To simplify the discussion,
Xc will be used instead of Xc

′ in the following discussion. R1 and R3 are the shortest
and the longest distances from the radar to the target, respectively. The squint angle
can be computed as θq = tan−1(Yc/Xc).

Figure 7.11 displays the relationship between the target area and radar beam. All
targets are located at x = Xc, and spread along the y axis with the center of the target
area at y = Yc. The length of targets spreading around Yc is Dy. The radar moves
along the y axis from y = −Lu to y = Lu, where it continuously illuminates the
targets located inside the region of Dy. The length 2Lu = 2Ls + Dy, where Ls is the
synthetic aperture length. Here the length Dy is assumed to be less than Ls.

Consider the case when the radar is located at y = u, −Lu ≤ u ≤ Lu . Let the
targets be located at {(Xc, ym)}, where m = 0,1, . . . , M−1, and

ym ∈
[

Yc − Dy

2
, Yc + Dy

2

]
.
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FIGURE 7.11 Relationship between targets and squint radar beam.
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The received echo signal due to the target located at (Xc, ym) is

sm (t, u) = σm p

[
t − 2Rm(u)

c

]
.

The received echo signal due to a group of M targets can then be expressed as

s (t, u) =
M−1∑
m=0

σm p

[
t − 2Rm(u)

c

]
,

where

Rm(u) =
√

X2
c + (ym − u)2.

The pulsed LFM signal is normally used for radar image processing. Again, we
will assume that the transmitted signal is a single frequency; that is, p(t) = exp(jωt).
The baseband received signal becomes

sb (t, u) = s (t, u) exp (− jωt)

=
M−1∑
m=0

σmexp

[
− j2k

√
X2

c + (ym − u)2

]
,

(7.51)

which is identical to Eq. (7.16) for the broadside case.
By defining an ideal reflector with reflection coefficient σ r = 1, located at (Xc,

Yc), one can express the reference signal sr0(u) received by a radar located at y = u
as

sr0(u) = exp

(
− j2k

√
X2

c + (Yc − u)2

)
. (7.52)

Notice that the value of ym ∈ [Yc − (Dy/2), Yc + (Dy/2)], where Yc is nonzero
in the squint radar case. Similar to the broadside radar case, the ideal target func-
tion f 0(u) for squint radar is also defined with Yc = 0. Therefore, by defining y′

m =
ym – Yc, one can see that all targets are located at y′

m ∈ [−Dy/2, Dy/2
]

and the ideal
target function becomes

f0(u) =
M−1∑
m=0

σmδ
(
u − y′

m

)

=
M−1∑
m=0

σmδ (u − ym + Yc) .

(7.53)
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The convolution of sro(u) with f 0(u) turns out to be

f0(u)∗sr0(u) =
∞∫

−∞
f0(τ )sr0(u − τ )dτ

=
∞∫

−∞

M−1∑
m=0

σmδ (τ − ym + Yc) exp

[
− j2k

√
X2

c + (Yc + τ − u)2

]
dτ

=
M−1∑
m=0

σmexp

[
− j2k

√
X2

c + (ym − u)2

]

= s(u). (7.54)

By comparing Eqs. (7.51) and (7.54), one can see that the baseband signal sb(t,u)
is identical to s(u), which is the output of a system with input signal sr0(u) and system
function f 0(u). Therefore, the same system block diagram used for broadside-mode
radar, as shown in Fig. 7.7, can also be applied to squint-mode radar.

7.2.2.2 Spatial Fourier Transform of Cross-Range Target Response.
From Eq. (7.23), the spatial Fourier transform of sm(u) can be expressed as

Sm (ku) =
∞∫

−∞
σmexp

[
− j2k

√
X2

c + (ym − u)2

]
exp (− jkuu) du

= σm

∞∫
−∞

exp

[
− j2k

√
X2

c + (ym − u)2 − jkuu

]
du.

Based on Eqs. (7.33) and (7.34), and following the same steps as used in the broad-
side case, one obtains

a(t) = σm

φ(t) = −2k
√

X2
c + (ym − u)2

and

ku = 2k
ym − u√

X2
c + (ym − u)2

= 2k
ym − u

Rm(u)
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or

ku = 2k sinθm(u),

where θm(u) is the aspect angle of the target at (Xc, ym). The spatial Fourier transform
Sm(ku) can then be approximated as follows:

Sm(ku) = exp

(
− j

√
4k2 − k2

u Xc

)
exp (− jku ym) . (7.55)

Given a group of targets that occupies a length Dy and centers on y = Yc, the radar
movement must be within [−Lu, Lu] with Lu = Ls + Dy/2 for the targets to be under
radar beam illumination. However, for a single target located at (Xc, ym), the radar
movement is in the range [−Ls/2+ym−Yc, Ls/2+ym−Yc]. The spatial frequency kum

for the mth target is therefore band-limited to

kum ∈
[

2k sin θm

(
ym − Yc + Ls

2

)
, 2k sin θm

(
ym − Yc − Ls

2

)]
. (7.56a)

Figure 7.12 shows the configuration of radar beams used for computing the spatial
frequency band limitation based on a single target located at (Xc,ym), where the radar
moves upward along the y axis. Radar beam 1, shown as the shaded area, has its upper
edge as the first beam illuminating the target. Beam 2, also shown as the shaded area,
has its lower edge as the last beam illuminating the same target. The squint angle θq is
the angle between the x axis and the line from the origin (0,0) to the center of targets
(Xc,Yc). The squint angle can be computed as θq = tan−1(Yc/Xc). The corresponding
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FIGURE 7.12 Computation of spatial frequency band limitation for squint radar.
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sin θm(ym−Yc+Ls/2) and sin θm(ym−Yc−Ls/2) can be computed as

sin θm

(
ym − Yc + Ls

2

)
= Yc − Ls/2√

X2
c + (Yc − Ls/2)2

sin θm

(
ym − Yc − Ls

2

)
= Yc + Ls/2√

X2
c + (Yc + Ls/2)2

.

For a radar with small beamwidth and small squint angle, Xc 
 Ls and Xc 
 Yc;
therefore

sin θm

(
ym − Yc + Ls

2

)
≈ Yc

Xc
− Ls/2

Xc
≈ θq − θH

2
,

sin θm

(
ym − Yc − Ls

2

)
≈ Yc

Xc
+ Ls/2

Xc
≈ θq + θH

2
.

The spatial frequency kum is then band-limited as

kum ∈
[

2k

(
θq − θH

2

)
, 2k

(
θq + θH

2

)]

=
[
−2π

L
+ 2kθq ,

2π

L
+ 2kθq

]
,

(7.56b)

which is independent of the location of the mth target. The bandwidth and the center
of the spatial frequency kum or simply ku can then be computed as follows:

Bku = 4π

L
,

kuc = 2kθq .

(7.56c)

The change rate of ku is similar to Eq. (7.39d), and can be expressed as

k ′
u ≈ − 2k

Xc
= − 4π

λXc
. (7.56d)

Therefore, all targets at the same range distance (x = Xc in this case) will share
the same band limitation, bandwidth, center of band, and rate of spatial frequency
change as shown in Eqs. (7.56a)–(7.56d). The spatial frequency bandwidth Bku and
the slope of the spatial frequency k′

u are identical to those in the broadside case.
However, the center of the spatial frequency kuc = 2kθq is different from that in the
broadside case.
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The spatial frequency spectra corresponding to all received signals {sm(u), m =
0,1, . . . , M −1} can therefore be expressed as follows, from Eq. (7.55):

S(ku) = exp

(
− j

√
4k2 − k2

u Xc

) M−1∑
m=0

exp (− jku ym). (7.57)

7.2.2.3 Reconstruction of Cross-Range Target Function. The reference
signal received from an ideal reflector is shown in Eq. (7.52) as

sr0(u) = exp

(
− j2k

√
X2

c + (Yc − u)2

)
.

The corresponding spatial Fourier transform can be obtained as

Sr0 (ku) = exp

(
− j

√
4k2 − k2

u Xc − jkuYc

)
. (7.58)

The ideal target function for a group of M targets can be expressed as follows, from
Eq. (7.53):

f0(u) =
M−1∑
m=0

σmδ(u − y′
m)

=
M−1∑
m=0

σmδ (u − ym + Yc) .

The spatial frequency transform of the ideal target function is

F0 (ku) = exp ( jkuYc)
M−1∑
m=0

σmexp (− jku ym) . (7.59)

From Eqs. (7.57)–(7.59), one obtains

S(ku) = F0(ku)Sr0(ku),

which is identical to Eq. (7.43) derived in the broadside case.
The matched filter, defined as the complex conjugate of the reference function

Sr0(ku), is again used to reconstruct the target function. The output of the matched
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filter is

F(ku) = S(ku)S∗
r0(ku)

= exp ( jkuYc)
M−1∑
m=0

σmexp (− jku ym) .
(7.60a)

By comparing Eq. (7.60a) with Eq. (7.44), one can see that the only difference
is the phase function exp(jkuYc). The phase factor exp(jkuYc) of F(ku) implies that
in the spatial domain the target function f (u) is shifted downward along the u or y
axis by Yc. This is because of the ideal target function f (u) in the squint case was
defined with Yc = 0, which in turn caused the phase factor exp(jkuYc) to appear in
the spatial frequency function F(ku). Since the true squint target area is centered on
y = Yc, therefore, the correct target function in the squint case is to remove the phase
factor exp(jkuYc) from Eq. (7.60a). Thus, the true target function in the squint radar is
obtained by taking the inverse spatial frequency transform of F′(ku), which is defined
as follows:

F ′(ku) = F(ku) exp(− jkuYc)

=
M−1∑
m=0

σm exp (− jku ym) .
(7.60b)

The spatial frequency transform of each target is band-limited as shown in Eq.
(7.56b); therefore one can rewrite Eq. (7.60b) as

F ′(ku) =
M−1∑
m=0

σm Im (ku) exp (− jku ym) , (7.61a)

where

Im(ku) = 1 for ku ∈=
[
−2π

L
+ 2kθq ,

2π

L
+ 2kθq

]

= 0 otherwise.

(7.61b)

The band limitation of Im(ku) is the same as that shown in Eq. (7.56b). Notice that
Im(ku) is a bandpass signal with the center of the spatial frequency kuc = 2kθq and
bandwidth Bku = 4π /L. Let Ibm(ku) be the baseband signal of Im(ku):

Ibm (ku) = 1 for ku ∈
[
−2π

L
,

2π

L

]
= 0 otherwise.

(7.62)
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Then, Ibm(ku) = Im(ku−2kθq), and the inverse spatial frequency transform of Ibm(ku)
can be computed as follows:

ibm(u) = 1

2π

2π/L∫
−2π/L

Ibm(ku) exp( jkuu) dku

= 1

j2πu

[
exp

(
ju

2π

L

)
− exp

(
− ju

2π

L

)]

= 2

L
sinc

(
2u

L

)
.

Therefore, the inverse spatial frequency transform of Im(ku) becomes

im(u) = ibm(u) exp( j2kθqu).

The final reconstructed cross-range target function can be obtained as

f ′(y) =
M−1∑
m=0

2

L
σmexp( j2kθq y) sinc

(
2(y − ym)

L

)
, (7.63)

which is similar to Eq. (7.49), except for an extra phase factor exp(j2kθqy).
From the preceding discussion, one can see that the techniques used for cross-

range image processing are quite similar for both broadside radar and squint radar.
However, there are two major differences: (1) the reference function is defined
differently—the broadside radar deals with an ideal reflector located at (Xc,0), and
the squint radar deals with an ideal reflector located at (Xc,Yc); and (2) the nonzero
squint angle θq causes an extra phase factor exp(j2kθqy) in the squint radar case.
Overall, the system block diagram of Fig. 7.9 works for both broadside and squint
radar cases.

7.3 DATA ACQUISITION, SAMPLING, AND POWER SPECTRUM
OF RADAR IMAGE

The 2D radar imaging data is formed by digitizing the received radar signal at sam-
pling frequency fs, which satisfies the Nyquist requirement. This signal in general is
a pulse or linear FM signal with carrier frequency ranges from tens of megahertz to
tens of gigahertz, and its bandwidth could be a few megahertz to hundreds of mega-
hertz. The 2D radar imaging data are arranged in a matrix-like array of complex
numbers. Each row of data corresponds to one reflected radar pulse, while each col-
umn of data contains information on the same target from successive reflected radar
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FIGURE 7.13 I–Q radar signal generation.

pulses at a constant time interval. Each column of data serves as the along-track di-
rection imaging data, and is equivalently sampled by the pulse repetition frequency
f PRF.

The received radar signal is a downconverted intermediate signal. It is first
passed through an in-phase–quadrature–phase splitter to produce the in-phase and
quadrature-phase (or I–Q) components. These two signals are then lowpass-filtered
and digitized to render a complex number pair that serves as one row element of
the 2D radar image data. Figure 7.13 displays the generation of I–Q signals from
a received radar signal, where the reference signal is dependent on the transmitted
signal.

The sampling frequency fs in the range direction must satisfy the Nyquist require-
ment; that is, fs ≥ B, where B is the bandwidth of the transmit signal. Assuming fs =
B, the range sample spacing is therefore

�x = c

B
.

Along the azimuth direction, the radar moves with speed V and transmits a pulse
at the time interval PRI = 1/f PRF. The sampling frequency is therefore equal to f PRF.
In the spatial frequency domain, the wavenumber ku or ky equals ωD/V in the Doppler
frequency domain. Given the bandwidth of Bku = 4π /L, the corresponding Doppler
frequency bandwidth BDop = 2V/L. The along track sampling frequency f PRF must
satisfy the relationship f PRF ≥ BDop. Assuming f PRF = BDop, the azimuth sample
spacing can then be computed as follows:

�u = V

fPRF

= L

2
.
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7.3.1 Digitized Doppler Frequency Power Spectrum

7.3.1.1 Broadside SAR. For broadside SAR, the Doppler centroid fDc = 0, and
the bandwidth of Doppler frequency is

BDoP = 2V

L
.

Since each point of the azimuth data corresponds to the received signal along
the flight path at a fixed-range cell, the Doppler frequency power spectrum is dis-
crete and equivalently sampled at the rate of f PRF. The observed Doppler frequency
power spectrum is therefore centered on the origin with replicas appearing at mul-
tiples of the sampling frequency f PRF. To prevent the Doppler frequency spectrum
from aliasing to each other, the pulse repetition frequency f PRF must be chosen to
be greater than BD. As an example Fig. 7.14 displays the Doppler frequency spectra
of the broadside SAR image, where the true or absolute Doppler spectrum is shown
inside the dotted box. The maximum Doppler frequencies appear at two sides of the
absolute Doppler spectrum but with opposite signs. Their values are − V/L and V/L,
respectively.

0

Magnitude

V/L−V/L f
PRF fD

−f
PRF

Observed/True
spectrum

FIGURE 7.14 Doppler frequency spectra of a broadside SAR.

7.3.1.2 Squint SAR. For a nonzero squint angle θq, the Doppler frequencies
corresponding to the two ends of the 3-dB radar beamwidth, namely, fDU and fDL,
can be computed as follows, from Eq. (6.16d) or (6.16e):

fDU = 2V

λ
sin(θq + 0.5 θH ),

fDL = 2V

λ
sin(θq − 0.5 θH ).

The Doppler frequency bandwidth is then

BD = fDU − fDL .
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The Doppler frequency centroid for a nonzero squint angle is as follows, from Eq.
(6.16c):

fDc = 2V

λ
sin θq .

The Doppler frequency centroid computed above is the true or absolute centroid
frequency, with fDU and fDL located at two sides of fDc. Because of the built-in sam-
pling frequency f PRF, the absolute Doppler frequency power spectrum is then re-
peated at the multiples of f PRF. Let fDc be the absolute Doppler centroid and fDC

′

be the observed Doppler centroid. The relationship between the absolute Doppler
centroid and the observed Doppler centroid is given by

fDc = fDc
′ + Mamb fPRF,

where Mamb is the Doppler ambiguity and is the smallest integer defined by

Mamb =
[

fDc

fPRF

]
.

As an example, Fig. 7.15 displays both the true (absolute) Doppler frequency
spectrum and the digitized and observed spectra of a squint SAR with Mamb = 2.

f
D
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/2−f
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FIGURE 7.15 Doppler frequency spectra of a squint SAR.
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Figure 7.15a shows the true frequency spectrum, where the Doppler frequency cen-
troid fDc is nonzero with fDU and fDL located at two sides. Figure 7.15b shows the
digitized and observed Doppler frequency spectra. The observed Doppler frequency
centroid is located away from the origin and labeled as fDC

′. The true Doppler fre-
quency centroid fDc differs from the observed Doppler frequency centroid fDci by 2
times the sampling frequency f PRF. The observed spectrum is no longer symmetric
around the origin because the Doppler frequency centroid fDc is not a multiple integer
of f PRF.

Both the true and the observed Doppler frequencies serve as important parameters
for radar image reconstruction, which is discussed later.
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8
RANGE–DOPPLER
PROCESSING ON

SAR IMAGES

In Chapters 6 and 7, we discussed the basics of radar images and provided a system
model for analyzing and processing them. The M × N array of 2D radar image
raw data is formed by M bursts of radar pulses with N samples each. The radar
signal itself is a pulsed LFM waveform, which can be used to measure the target’s
range or identify its location through the matched filtering. The phase variation for
various pulsed LFM waveforms in the azimuth direction leads to the concept that
another LFM type of signal exists in the azimuth direction. This signal is not directly
generated from the radar, but derived indirectly from the many LFM pulses sent and
received by the radar within the synthetic aperture length. This azimuth-direction-
based LFM signal plays a key role in fine-tuning the target function in the azimuth
direction, and greatly improves the radar image quality.

Also mentioned previously is that radar image processing can be independently
processed in the range and azimuth direction if range migration can be neglected.
However, as we described in Section 6.6 (of Chapter 6), the range migration could
become severe for radar with large synthetic aperture length (or wide antenna
beamwidth), or when the radar beam has a nonzero squint angle toward the tar-
get. Therefore, the range cell migration correction is needed to decouple the azimuth
process from that of the range.

The SAR image processing therefore can be summarized as three major tasks: (1)
range compression, (2) range cell migration correction, and (3) azimuth compression.
Figure 8.1 shows the block diagram for SAR image processing. Here the raw data
refer to the demodulated in-phase–quadrature-phase (I–Q) baseband data.

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.

226



P1: OTA/XYZ P2: ABC
c08 JWBK230/Wang July 8, 2008 1:11 Printer Name: Yet to Come

SAR IMAGE DATA GENERATION 227
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Range cell
migration correction

Azimuth
compression

Radar
image

FIGURE 8.1 Major tasks of SAR radar image processing.

The raw data, after range compression, provide valuable information on the tar-
gets’ locations in the range direction but do present two problems: (1) the range-
compressed signal is spread in the azimuth direction, and (2) the signal migrates
to other range cells. The purpose of SAR processing, ideally, is to convert the raw
data into a single pixel in the final processed image. Several techniques are available
to deal with the three tasks listed in the preceding paragraph. Each technique has
its advantages in either computation efficiency or high-quality imaging, and has its
own beamwidth limitation and/or bandwidth restriction. In this chapter and Chap-
ter 9, two SAR image processing techniques will be presented: the range–Doppler
and the Stolt interpolation. The former technique processes the SAR image based on
Doppler frequency shifts, while the latter is based on the wavefront reconstruction
theory. The range–Doppler algorithm, developed in the early 1980s, has been the
most commonly used algorithm for processing SAR data images. It is computation-
ally efficient and is an accurate approximation for processing radar images. The Stolt
interpolation technique was applied to SAR image processing in the early 1990s.
It is computation-intensive, but provides some advantages over the range–Doppler
method. The range–Doppler algorithm is described in this chapter, and the Stolt in-
terpolation technique is covered in Chapter 9.

We start the SAR image data generation in Section 8.1, where the principles of
radar image formation and the method for synthesizing radar image data are re-
viewed. Section 8.2 provides a description and examples of how broadside SAR
data are synthesized. Both single target and multiple targets are covered. Section 8.3
provides the same discussion and examples as in Section 8.2, but for the squint SAR
case. The algorithm of range–Doppler processing on an SAR image is reviewed in
Section 8.4, and the simulation results for both broadside and squint SAR are de-
scribed in Section 8.5.

We will focus only on airborne-based radar image data processing; therefore, the
estimation of Doppler centroid and Doppler frequency ambiguity, which is critical
for satellite-based squint SAR systems, is not addressed here.

8.1 SAR IMAGE DATA GENERATION

The pulsed LFM radar transmitted waveform can be written as follows, from
Eq. (5.11)

p (t) = A0 Rect

(
t − Tp/2

Tp

)
exp

[
j2π fct + jπαt2

]
, (8.1)

where A0 is the amplitude of the transmitter signal and Rect (t/Tp) is a rectangu-
lar gate function with Tp as the pulse duration time. The symbol fc is the carrier
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frequency, and α is the LFM pulse chirp rate. Equation (8.1) states that the signal
p(t) starts at t = 0 and ends at t = Tp; therefore, for simplicity, we will use a(t) to
substitute the gate function and let A0 = 1 in the following discussion.

The echo from K reflectors with reflection coefficient σ k at ranges Rk, for k = 1,
2, . . . , K can be represented by a sum of delayed signals as

s (t) =
K∑

k=0

σka

(
t − 2Rk

c

)
exp

[
j2π fc

(
t − 2Rk

c

)
+ jπα

(
t − 2Rk

c

)2
]

=
K∑

k=0

σka (t − τk) exp
[

j2π fc (t − τk) + jπα (t − τk)2
]
, (8.2)

where τ k = 2Rk/c is the echo delay time due to the kth target. For a target located at
(xk,yk) and with the radar position at (0,0) and assuming the radar height H = 0, the
delay time can be computed as follows:

τk = 2Rk

c
=

2
√

x2
k + y2

k

c
. (8.3a)

If the delay time τ k were known, the range Rk could be computed as

Rk = cτk

2
. (8.3b)

The baseband signal sb(t) can be obtained by removing the carrier frequency fol-
lowed by a lowpass filter through the guadrature demodulation process. The demod-
ulated baseband signal can be represented as:

sb (t) =
K∑

k=0

σk |a (t − τk)|2 exp
[− j2π fcτk + jπα (t − τk)2] . (8.4a)

Letting n be the time index of the received and digitized LFM signal, one can then
express sb(tn) as

sb (tn) =
K∑

k=0

σk |a (tn − τk)|2 exp
[− j2π fcτk + jπα (tn − τk)2

]
, (8.4b)

where n = 0,1,2, . . . , N − 1. Here N is the total number of received range samples,
which is a function of the pulse duration time, sampling frequency, and number of
targets.

Derivation of Eq. (8.4b) is based on one short duration pulse transmitted from one
radar position. If the radar moves along a direction perpendicular to or at some angle
from the radar beam, and emits signal at the rate of f PRF, then a 2D received data
array can be generated.
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FIGURE 8.2 System model of radar image generation.

Let ui be the moving radar position along the flight path or y axis, with i = 1,2, . . . ,
M. Here M is the total number of processed azimuth lines, which must be equal to or
greater than the number of azimuth lines (Naz) within the synthetic aperture length
Ls.

Equation (8.4b) can then be modified as

rb (ui , tn) =
K∑

k=0

σk

∣∣a (
tn − τui k

)∣∣2
exp

[− j2π fcτui k + jπα(tn − τui k)2
]
, (8.4c)

where τui k = (2Rui k/c) is the received signal delay time from the kth target with the
radar located at position ui.

A system model used to generate a broadside SAR image is shown in Fig. 8.2,
where the radar is at height H above the ground (or x–y plane) and moves at speed
V along the y-axis direction. The symbol θH is the radar beamwidth along the
y-axis direction, while θV is the radar beamwidth along the x-axis direction. The
radar center beam is always perpendicular to the flight path in the broadside SAR
system. The squint SAR system is similar to that shown in Fig. 8.2, except that the
radar center beam is not perpendicular to the flight path, but has a squint angle θq.

The following assumptions are made to simplify the system model of Fig. 8.2:

� Ignore the background objects, so that the received signal is noise-free.
� The target is an ideal reflector and stationary; therefore, motion compensation

is not required.
� Ignore the effect of the inclination angle. The slant range is considered equal to

the ground range.
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FIGURE 8.3 A simplified broadside SAR system for radar image generation.

A simplified 2D version of Fig. 8.2 is shown in Fig. 8.3, where the radar height
H = 0 and the y axis and flight path are merged.

Three targets are shown in Fig. 8.3, and they are located at (R0a,y1), (R0b,y2), and
(R0a,y3), respectively. The vertical axis represents the radar moving direction, while
the horizontal axis corresponds to the range, which is perpendicular to the flight path.
The 3-dB radar beamwidth is represented as θH. The three radar positions y1, y2, and
y3 are the positions when the corresponding targets are illuminated under the center
beam of the radar. The synthetic aperture length for the targets at range R0a is Lsa =
R0aθH, and for the target at range R0b this length is Lsb = R0bθH. The total synthetic
aperture length of the three targets is Ltotal = Lsa + (y3 − y1).

Figure 8.4 is a simplified 2D version of Fig. 8.2 for a squint SAR system. Here
a squint angle θq is shown as the angle between the radar center beam to the target
and the range axis. The three radar positions with the center beam on the correspond-
ing targets are u1, u2, and u3. The three targets are located at (R0a,y1), (R0b,y2), and
(R0a,y3), respectively. The synthetic aperture length for the targets located at range
R0a and R0b can be computed as follows:

Lsa = R0a[tan(θq + 0.5θH ) − tan(θq − 0.5θH )]
Lsb = R0b[tan(θq + 0.5θH ) − tan(θq − 0.5θH )].

The total synthetic aperture length in this case is

L total = Lsa + (y3 − y1)

Figure 8.3 will now be used to synthesize the broadside SAR image data. The
single target case will first be described, followed by a case with three targets.
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FIGURE 8.4 A simplified squint SAR system for radar image generation.

8.2 SYNTHESIS OF A BROADSIDE SAR IMAGE DATA ARRAY

8.2.1 Single-Target Case

The radar image generated from a single-target response can be modeled as shown
in Fig. 8.5 with a target located at (R0,y2) and y2 = u2. The three radar positions
u1, u2, and u3, are the positions where the radar beam is starting, in the center, and
ending to illuminate the target, respectively. The symbols R1 and R3 denote the slant
ranges when the radar is at locations (0,u1) and (0,u3), respectively. The slant range
R2 equals R0, which is the shortest distance between target and radar.

Range

Flight path / y

θH

θH

θH

R1

R3

R2

R0(0,0)

u1

u2

u3

Ls

Radar

V (R0, y2)

FIGURE 8.5 Single-target broadside SAR system for radar image generation.
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FIGURE 8.6 Received signal array from Fig. 8.5.

Figure 8.6 displays the model of a received radar signal array. The vertical axis
m represents the azimuth samples. The horizontal axis t represents the delay time of
the radar pulse returned from the target. Each azimuth sample (or line) corresponds
to the radar position u as shown in Fig. 8.5. There are Naz number of azimuth lines
within the synthetic aperture length Ls, and Naz = integer of (Ls/As), where As is
the sample spacing between the azimuth lines. The azimuth location m = 1 is the
position where the radar beam starts to illuminate the target, and m = Naz is the
last position when the radar beam ceases to illuminate the target. At radar position
m = Naz/2, the target is under the center beam of the radar. This is also the position
when the target has the shortest distance from the radar. The return time of the radar
pulse starts at t1 and ends at t1 + Tp + δt. Here t1 = 2R0/c = 2R2/c is the closest
target reflection time after the radar beam is transmitted. Tp is the time duration of
the radar transmitting signal, and δt = 2(R1 − R2)/c = 2(R3 − R2)/c is the echo
time difference between the center radar beam and the two edges of the 3-dB radar
beamwidth.

The curved lines inside the two vertical dotted lines, which occur at both t = t1

and t = t1 + Tp, correspond to the echo time for different slant ranges when the radar
moves within the synthetic aperture length Ls. It is also the target trajectory seen
by radar during the radar movement within Ls. For most airborne-based broadside
SARs, the time difference δt is negligible (within 1/4 range resolution time limit);
therefore, a straight line will be used instead. However, the phase differences among
various slant ranges must be preserved.

The time sample n and the slant range sample n′ are defined as follows:

n = t

�t
= t fs

n′ = R

Rs
= R fs

c
.
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FIGURE 8.7 A simplified and digitized received signal array from Fig. 8.6.

In general, time t and slant range R are related by t = R/c; therefore n = n′.
However, when time t refers to the target echo time, the relationship of the time and
slant range becomes t = 2R/c. Therefore the relation between the time sample and
the slant range sample becomes n = 2n′. In the equation displayed above, fs is the
sampling frequency and Rs is the slant range sample spacing.

For purposes of illustration, the time sample will be used for discussions on SAR
image processing in this chapter, and the slant range sample will be used in Chapter 9.

Figure 8.7 shows a simplified and digitized plot of Fig. 8.6. The horizontal time
axis is replaced with time sample n. For simplicity, the received time sample n = 1
starts from t = t1 and ends at n = Nr = integer of (Tpfs), where Tp is the pulse
duration time.

The following airborne-based SAR radar parameters are used for synthesizing
the received signal array. The same set of parameters, with minor differences, will be
used for both the single target and multiple target cases, and serves both the broadside
and squint SAR systems:

Radar beam carrier frequency fc = 1 × 1010 Hz

Speed of wave c = 3 × 108 m/s

Radar beam carrier wavelength λ = c/fc = 3 cm

Symmetric LFM time duration Tp = 6.033 µs

Range FM rate α = 4 × 1012 Hz/s

Closest range of target R0 = 7500 m

Range sampling frequency fs = 30 MHz

Range bandwidth = αTp = 24.13 MHz

Radar moving speed V = 200 m

Azimuth FM rate = −2V2/(R0λ) = −355.56 Hz/s

Pulse repetition frequency f PRF = 500 Hz

Antenna length L = 1 m
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On the basis of these parameters, the following data can be computed:

Slant range sample spacing Rs = c/fs = 10 m

Radar 3-dB beamwidth θH = λ/L = 0.03 radian

Azimuth sample spacing As = V/f PRF = 0.4 m

Synthetic aperture length Ls = R0 θH = 225 m

Doppler frequency bandwidth BDop = 2V/L = 400 Hz

Number of azimuth samples = integer of (Ls/As) = 563

Number of time samples within the LFM pulse Nr = (fsTp) = 181

Number of time samples N tot = Nr = 181

The slant range R1 = R3 = R0/cos(0.5θH) = 7500.8 m

The slant range difference, namely, R1 − R0 = 7500.8 − 7500 = 0.8 m, is less than
1/4 of the range resolution, which is (c/2B)/4 = 1.56 m in this setup. Therefore, range
migration correction is not needed in this broadside SAR case.

Let both the reflection coefficient and the amplitude of the transmitted signal be
equal to one. The baseband signal returned from a single target can then be expressed
as follows, from Eq. (8.4c):

rb (ui , tn) = exp�− j2π fcτui + jπα(tn − τui )
2�. (8.5a)

For a target located at (R0,y1) with the radar position at (0,ui), the echo delay time
τui can be computed as

τui =
2
√

(ui − y1)2 + R2
0

c
(8.5b)

Figure 8.8 shows the baseband signal waveform of LFM radar with the parameters
and assumptions listed above. Figure 8.8a displays the real part of the signal and Fig.
8.8b displays the imaginary part of the signal.

The received signal array based on Eq. (8.5) is displayed in Fig. 8.9; Fig. 8.9a
shows the real part of the received signal array, while Fig. 8.9b displays the imag-
inary part of the signal array. The vertical axis (ordinate) shows the number of az-
imuth lines (or cross-range samples), where one out of every 30 azimuth lines was
sequentially selected throughout the synthetic aperture length. The azimuth lines run
from line 1 to Naz, with Naz = integer of (Ls/As) = 563, where As is the azimuth
sample spacing. The horizontal axis (abscissa) shows the time samples, with sam-
pling rate at 30 MHz. The total number of time samples Nr equals the sampling
frequency times the pulse duration, that is, fsTp = 181 time samples for each az-
imuth line. Although there is no range migration, the phase changes due to the slant
range difference among various azimuth lines are obvious.



P1: OTA/XYZ P2: ABC
c08 JWBK230/Wang July 8, 2008 1:11 Printer Name: Yet to Come

SYNTHESIS OF A BROADSIDE SAR IMAGE DATA ARRAY 235

1

0.5

−0.5

−1
0 50 100 150

Time samples 

A
m

pl
it

ud
e

181 200 250

0

1

0.5

−0.5

−1
0 50 100 150

Time samples 

(a)

(b)

A
m

pl
it

ud
e

181 200 250

0

FIGURE 8.8 Waveforms of the real and imaginary parts of a baseband symmetric LFM signal.

8.2.2 Multiple-Target Case

A 2D broadside SAR signal array based on Fig. 8.3 is depicted in Fig. 8.10, with three
targets located at (R0a,y1), (R0b,y2), and (R0a,y3), respectively. Here the vertical axis
(ordinate) represents the azimuth lines (or cross-range samples), while the horizontal
axis (abscissa) shows time. Again, the curved lines occur at the beginning and end
of the pulse duration time, which can be neglected as described before. Lsa and Lsb
are the synthetic aperture lengths corresponding to range R0a and R0b, while <r1>,
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FIGURE 8.9 Waveforms of received baseband signal from Fig. 8.5.
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FIGURE 8.10 Received signal arrays from Fig. 8.3.

<r2>, and <r3> are the received signal arrays corresponding to targets 1, 2, and 3,
respectively. The time variables t1 and t2 are the target echo time, with t1 = 2R0a/c
and t2 = 2R0b/c. Tp is the transmitted LFM pulse duration time.

A simplified version of Fig. 8.10 is shown in Fig. 8.11, where the time axis
is digitized to become a time sample axis. Naza and Nazb are the number of
azimuth lines corresponding to Lsa and Lsb, respectively. Namely, Naza = integer
of (Lsa/As) and Nazb = integer of (Lsb/As) with As as the azimuth sample spacing.
D1 is the sample number of overlapped segment in azimuth direction between signal
arrays <r1> and <r3>; that is, D1 = integer of ((Lsa − (y3 − y1))/As). D2 is the
azimuth line difference between the two starting lines of <r1> and <r2>; that is
D2 = integer of ((y2 − y1) − (Lsb2 − Lsa2))/As. NRb is the range sample difference
between R0a and R0b, which is defined later.

The size of the received signal array is M × N, with M = 2 × Naza − D1 and
N = integer of (fsTp) + 2NRb.
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FIGURE 8.11 A simplified and digitized signal array from Fig. 8.10.
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Using the same radar parameters used in the single target broadside case, the
additional data of target locations and associated data are listed below:

Target 1 location: (R0a,y1)

Target 2 location: (R0b,y2)

Target 3 location: (R0a,y3)

Synthetic aperture length corresponding to R0a:

Lsa = R0a θH

Synthetic aperture length corresponding to R0b:

Lsb = R0b θH

Naza = integer of (Lsa/As)

Nazb = integer of (Lsb/As)

Number of range sample difference between R0a and R0b

NRb = integer of

(
R0b − R0a

Rs

)
.

Again, let both the reflection coefficient and the amplitude of the transmitted sig-
nal be equal to one; the baseband signal returned from the three targets can be ex-
pressed as follows, from Eq. (8.4c):

rb (ui , tn) = exp�− j2π f0τui 1 + jπα(tn − τui 1)2�
+ exp�− j2π f0τui 2 + jπα

(
tn − τui 2

)2�
+ exp�− j2π f0τui 3 + jπα(tn − τui 3)2�.

(8.6a)

Given the three targets located at (R0a,y1), (R0b,y2), and (R0a,y3), and the radar
position (0,ui), the time delay amounts τui1 , τui2 , and τui3 can be computed as follows:

τui 1 = 2 ·
√

(ui − y1)2 + R2
0a

c
,

τui 2 = 2 ·
√

(ui − y2)2 + R2
0b

c
,

τui 3 = 2 ·
√

(ui − y3)2 + R2
0c

c
.

(8.6b)

The three targets locations are listed below.

y1 = 0 m

y2 = 100 m

y3 = 150 m

R0a = 7500 m

R0b = 7650 m
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Accordingly, the following data can be computed.

Lsa = 225

Lsb = 229.5

Naza = Lsa/As = 563

Nazb = Lsb/As = 573

D1 = integer of [(Lsa − (y3 − y1))/As] = 187

D2 = integer of {[(y2 − y1) − (Lsb2 − Lsa2)]/As} = 244

NRb = integer of [(R0b − R0a)/Rs] = 15

Number of azimuth lines Mtot = 2 × Naza − D1 = 939

Number of time samples N tot = c × Tp + 2NRb = 211.

The received signal arrays corresponding to targets 1–3, in terms of time sam-
ples, are shown in Fig. 8.12: Figs. 8.12a and 8.12b show the real and imaginary
parts of the signal array <r1>, Figs. 8.12c and 8.12d show the real and imaginary

FIGURE 8.12 Waveforms of the individual received signal from Fig. 8.10.

1000

500

0
0 50 100 150

Time samples

A
zi

m
ut

h 
li

ne
s

200 250

1000

500

0
0 50 100 150

Time samples
(a) (b)

(c) (d)

(e) (f)

A
zi

m
ut

h 
li

ne
s

200 250

1000

500

0
0 50 100 150

Time samples

A
zi

m
ut

h 
li

ne
s

200 250

1000

500

0
0 50 100 150

Time samples

A
zi

m
ut

h 
li

ne
s

200 250

1000

500

0
0 50 100 150

Time samples

A
zi

m
ut

h 
li

ne
s

200 250

1000

500

0
0 50 100 150

Time samples

A
zi

m
ut

h 
li

ne
s

200 250



P1: OTA/XYZ P2: ABC
c08 JWBK230/Wang July 8, 2008 1:11 Printer Name: Yet to Come

SYNTHESIS OF A BROADSIDE SAR IMAGE DATA ARRAY 239

parts of the signal array <r2>, and Figs. 8.12e and 8.12f show the real and imagi-
nary parts of the signal array <r3>. The vertical axis shows the number of azimuth
lines, where one out of every 30 azimuth lines was sequentially selected throughout
the synthetic aperture length. The horizontal axis shows the time samples, with a
30 MHz sampling rate. The size of signal arrays <r1> is 1–563 (1 to Naza) in
the azimuth direction and 1–181 (1 to Nr) in the time sample direction. The size of
the signal array <r2> is 244–817 (D2 to D2 + Nazb) in the azimuth direction and
30–211 (30 to N tot) in the time sample direction. The size of signal array <r3> is
377–939 (Naza − D1 +1 to 2Naza − D1) in azimuth direction and 1–181 in the time
sample direction.

The overall received signal array, which is the sum of the three signal arrays
<r1>, <r2> and <r3>, is displayed in Fig. 8.13. The real part is shown in
Fig. 8.13a; the imaginary part, in Fig. 8.13b. Again, the vertical axis (ordinate) shows
the number of azimuth lines, where one out of every 30 azimuth lines was sequen-
tially selected throughout the total synthetic aperture length. The horizontal axis (ab-
scissa) shows the time samples. The size of the overall received signal array is from
rows 1–939 (2Naza − D1) in the azimuth direction, and from column 1 to column
211 in the time sample direction.
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FIGURE 8.13 Waveforms of the received signals from Fig. 8.10.
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8.3 SYNTHESIS OF A SQUINT SAR IMAGE DATA ARRAY

8.3.1 Single-Target Case

The squint radar image generated from a single target response can be modeled as
shown in Fig. 8.14, with the target located at (R0,0). The three radar positions, u1,
u2, and u3, are the locations where the radar beam is beginning, in the center, and
ceasing to illuminate the target. The symbols R1 and R3 denote the slant ranges when
the radar beam is at locations (0,u1) and (0,u3), respectively. The symbol R2 de-
notes the slant range when the radar beam is at location (0,u2). The symbol θq is the
squint angle between the range axis and the radar center beam when the radar is at
position (0,u2).

Figure 8.15 displays the time–azimuth relationship of the received signal ar-
ray. The vertical axis shows the positions of the radar, while the horizontal axis
shows the return time of the echo signal. The received signal array appears as a
curved parallelogram. The longest time for echo to arrive occurs at radar posi-
tion u1, with t1 = 2R1/c; and the shortest time to arrive occurs at radar position
u3, with t3 = 2R3/c. At radar position u2, the echo arrival time is in between t1

and t3.
Figure 8.16 shows a simplified plot of Fig. 8.15. The time is replaced with time

samples, and the radar position u is replaced with azimuth sample number. As can
be seen, the slant range difference causes significant range migration. The maximum
range migration amount is �N = (R1 − R3)/Rs.

Radar

V

Ls

θH

θH

θH

Range

Flight path

(0, 0)
R0

θq

Target

u1

u2

u3

R3

R2

R1

FIGURE 8.14 System model of a single-target squint SAR.
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FIGURE 8.15 A received signal array from Fig. 8.14.
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FIGURE 8.16 A digitized signal array from Fig. 8.15.

The same radar parameters used in the single-target broadside case, together with
the squint angle θq = 6◦, are used to compute the following data:

Synthetic aperture length Ls = R0[tan(θq + 0.5 θH) − tan(θq − 0.5 θH)]

= 227.5 m

Longest slant range R1 = R0/cos(θq + 0.5θH)

= 7554.1 m

Shortest slant range R3 = R0/cos(θq − 0.5θH)

= 7530.3 m

The maximum range migration amount, namely, (R1 − R3) = 7554.1 − 7530.3 =
23.8 m, is larger than 1/4 of the sample spacing, range resolution, which is (c/2B)/4
= 1.56 m) in this setup. Therefore, range migration occurs, and range migration cor-
rection is needed in this squint SAR case.
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FIGURE 8.17 Waveforms of a received baseband signal from Fig. 8.14.

With the same baseband transmitting signal shown in Fig. 8.8, the received base-
band signal array can be derived, from Eq. (8.5), and is shown in Fig. 8.17: Fig. 8.17a
shows the real part of the received signal array; Fig. 8.17b, the imaginary part of the
signal array. The vertical axis shows the number of azimuth lines, where one out
of every 30 azimuth lines was sequentially selected throughout the synthetic aper-
ture length. The azimuth line runs from line 1 to line Naz, with Naz = integer of
(Ls/As) = 569. The horizontal axis represents the time samples. The total number of
time samples Nr = 181 for each azimuth line.

As can be seen in Fig. 8.17, the range migration exists and range cell migration
correction is therefore needed to process this type of SAR signal.

8.3.2 Multiple-Target Case

A three-target squint SAR system based on Fig. 8.4 is shown in Fig. 8.18, where
the three targets are located at (R0a,y1), (R0b,y2), and (R0a,y3), respectively. The radar
position of u1 and u3 corresponds to the place where the radar beam starts and ends
its illumination of the target areas. Position u2 is where the radar center beam illu-
minates the target 2. The vertical axis represents the azimuth lines; the horizontal
axis, the range. Lsa and Lsb are the synthetic aperture lengths corresponding to the
targets located at range R0a and R0b. R1a and R3a are the longest and shortest slant
ranges from the radar to the targets located at range R0a, while R1b and R3b are the
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FIGURE 8.18 System model of a three-target squint SAR.

longest and shortest slant ranges to the target located at range R0b. The squint angle
is represented as θq.

From Fig. 8.18, the following parameters can be derived:

Naza = Lsa

As
,

Nazb = Lsb

As
,

R1a = R0a

cos(θq + 0.5θH )
,

R3a = R0a

cos(θq − 0.5θH )
,

R1b = R0b

cos(θq + 0.5θH )
,

R3b = R0b

cos(θq − 0.5θH )
,

NRb = integer of

(
R0b − R0a

Rs

)
,

�r = R0b − R0a .
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FIGURE 8.19 The received signal arrays from Fig. 8.18.

In addition, the echo arrival time can be computed as follows:

t1 = 2R1

c
,

t3 = 2R3

c
.

On the basis of the three-target squint SAR system and parameters, the
time–azimuth relationship of the received signal array can be plotted as shown in
Fig. 8.19.

Figure 8.20 shows the simplified and digitized signal array based on Fig. 8.19 with
abscissa (horizontal axis) changes from time to discrete time sample and ordinate
(vertical axis) changes from radar position to azimuth line. The data array size is
M × N, with M = 2 Naza − D1 and N = �Nb + Nr + �Nr.

The parameters �Na, �Nb, �Nr, D1, and D2 are defined below:

�Na = integer of [2(R1a − R3a)/Rs]

�Nb = integer of [2(R1b − R3b)/Rs]

D1 = integer of [Lsa − (y3 − y1)]

D2 = integer of [y2 − R0b tan θq]

�Nr = integer of [2�r/Rs]

By applying all data and parameters used in multiple targets for the broadside
SAR system, with the additional squint angle θq = 6◦, the following parameters can
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FIGURE 8.20 The digitized signal arrays from Fig. 8.19.

be computed:

Lsa = 227.5

Lsb = 232

Naza = Lsa/As = 569

Nazb = Lsb/As = 581

R1a = R0a/cos(θq+ 0.5θH) = 7554.1

R3a = R0a/cos(θq− 0.5θH) = 7530.3

R1b = R0b/cos(θq+ 0.5θH) = 7705.2

R3b = R0b/cos(θq− 0.5θH) = 7680.9

D1 = integer of ((Lsa − (y3− y1))/As) = 193

D2 = integer of [y2 − R0b tanθq − (Nazb − Naza)/2] = 204

�Na = integer of [2(R1a − R3a)/Rs] = 5

�Nb = integer of [2(R1b − R3b)/Rs] = 5

Nr = integer of (fs Tp) = 181

�Nr = integer of [2�r/Rs] = 30

Number of azimuth lines M = 2Naza − D1 = 945

Number of time samples N = �Nb + Nr + �Nr = 216

Using the data presented above, the received signal array waveforms correspond-
ing to targets 1–3 can be synthesized and are shown in Fig. 8.21: Figs. 8.21a and
8.21b show the real and imaginary parts of signal array <r1>; Figs. 8.21c and
8.21d, the real and imaginary parts of signal array <r2>; Figs. 8.21e and 8.21f,
the real and imaginary parts of signal array <r3>. The dimensions of signal arrays
<r1> and <r3> are the same, namely, from row 1 to row 569 (Naza) and from
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FIGURE 8.21 Waveforms of the individual received signal from Fig. 8.18.

column 1 to column 181 (Nr). Signal array <r2> ranges from row 244 to row 817
(D2 + Nazb) and from column 30 [2�r/Rs] to column 216.

The waveform of received signal array, which is the sum of three targets, is shown
in Fig. 8.22. The real and imaginary parts of the waveform are shown in Figs. 8.22a
and 8.22b, respectively.

8.4 RANGE–DOPPLER PROCESSING OF SAR DATA

The synthesis of 2D SAR data discussed in the previous section shows that the re-
ceived data from a point target have a waveform with size M × N in both time and
azimuth directions. The spread in time is caused by the time duration of the trans-
mitted LFM pulse. The spread in azimuth is because the target is under the radar
illumination, which causes the radar to receive the echo signal for the period during
which the radar moves through the whole path of synthetic aperture length.

The three major functions of SAR data processing—namely, range compression,
range cell migration correction, and azimuth compression—can be implemented by
a typical range–Doppler processor shown as a block diagram in Fig. 8.23.
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FIGURE 8.22 Waveforms of the received signals from Fig. 8.18.
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FIGURE 8.23 Flow diagram of the range–Doppler algorithm.
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The 2D raw data in Fig. 8.23 refer to the received baseband signal, which is a
complex number after in-phase–quadrature-phase (I–Q) demodulation. The range
compression is performed by the blocks of range FFT (on 2D raw data), FFT (on
range reference function), range window function, multiplier, and inverse range FFT.
The “corner turn” operation is a data management scheme, that converts the range
compressed 2D data from row-based to column-based data for the subsequent oper-
ation of azimuth FFT. After azimuth FFT, the 2D data will be in the range–Doppler
frequency domain. range cell migration correction, if required, is performed at this
stage. Azimuth compression is performed by the blocks of FFT (on azimuth refer-
ence function), azimuth window function, multiplier, and inverse azimuth FFT. The
output of azimuth compression is the reconstructed image of focused targets.

A discussion of the range–Doppler processor now follows.

8.4.1 Range Compression

Figure 8.24 displays an M × N raw data array together with the mth row of data.
Each row consists of N digitized data, which serve as 1D range signal for image
processing.

Range compression performs the matched filtering on every row of range samples.
The matched filter h(t) is designed with h(t) = s(−t)*, where s(t) equals the trans-
mitted signal, which has been explored in detail in Chapter 5 and is not repeated
here. The matched filter serves as a reference function and is operated on every
row of data during the range compression process. A window function, such as the
Hanning window, is normally applied to the range reference function in order to re-
duce the sidelobe effect. After matched filtering on every row of 2D data, which is
implemented in the frequency domain using the FFT technique, the inverse FFT is
then applied to obtain the 2D time-domain range compressed signal again.
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M × N

(a)

Row m x
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x

m,N
(b)

m

1 × N

FIGURE 8.24 (a) An M × N 2D data array; (b) mth row of 2D data array.



P1: OTA/XYZ P2: ABC
c08 JWBK230/Wang July 8, 2008 1:11 Printer Name: Yet to Come

RANGE–DOPPLER PROCESSING OF SAR DATA 249

8.4.2 Corner Turn

Range compression processes the M × N data array on a row basis, namely, 1 × N,
and the output remains the same quantitatively. Appropriate zero padding on the
data array and the selection of FFT size is needed to reduce the edge effect of cir-
cular convolution. After range compression, the corner turn is required to shuffle the
row-based data to become column-based data, which is needed for the azimuth FFT
operation.

Figure 8.25 demonstrates the “corner turn” operation. The nth column data, which
are shown in Fig. 8.25a as an M × 1 array, are rotated horizontally and appears as a
1 × M row data array in Fig. 8.25b.

x
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x
n,2

x
n,3

x
n,M

x
n,Mx

n,2
x

n,1

(a) (b)

M × 1

1 × M

FIGURE 8.25 Operation of a corner turn.

The fast, modular, and multiple memory banks addressing schemes and mass
memory storage capability due to the rapid evolution of digital signal processor
(DSP) and integrated circuit (IC) technology, have made the corner turn much easier
and faster to operate on column-based data.

8.4.3 Range Cell Migration Correction

Range cell migration correction operates on the range-compressed data in the
time or range domain. The amount of range migration can be corrected either in
range–Doppler frequency or range–spatial (or slow time) domain. However, as dis-
cussed in Chapter 6 and shown in Fig. 6.17, the multiple equal slant range targets and
their trajectories appear randomly along the azimuth direction in the range–spatial
domain, but show up as one only in the range–Doppler frequency domain. There-
fore, only the range–Doppler frequency domain is discussed here.

8.4.3.1 Computation of Range Migration Amount. The range (which is dif-
ferent from slant range) axis is the line passing the target and perpendicular to the
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radar flight path. Let R0 be the closest distance between radar and target and r be
the slant range between the radar and the target. The slant range difference can be
computed as follows:

�R = r − R0

= R0

cos φ
− R0.

(8.7a)

Here φ is the angle between the range axis and the line connecting the radar to the
target. Equation (8.7a) shows the amount of range migration required for correction
with respect to R0. From Eq. (6.3a), one obtains

fD = 2V

λ
sin φ.

Therefore

�R = R0

(
1 −

(
λ fD

2V

)2
)−(1/2)

− R0. (8.7b)

Let N be the sample length of FFT and f PRF be the pulse repetition fre-
quency along the azimuth direction; then the kth bin of Doppler frequency can be
expressed as

fDk = k
fPRF

N
,

and

�Rk = R0

(
1 −

(
λk fPRF

2VN

)2
)−(1/2)

− R0.

For a high-frequency LFM signal, λkf PRF � 2VN; therefore

�Rk ≈ R0λ
2k2 f 2

PRF

8V 2 N 2
. (8.7c)

The number of range cells required for correction becomes

�NRk = 2�Rk

Rs

≈ R0λ
2k2 f 2

PRF

4V 2 N 2 Rs

(8.7d)
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Equation (8.7d) is then computed for k = 1, 2 . . . N with respect to the target-
dependent closest distance R0. It works well for broadside SAR systems, where
fDc = 0. Modifications of Eqs. (8.7) are required for the squint SAR system to make
the range cell migration correction with respect to the slant range distance R3. Notice
that R3 is the shortest slant range between the radar and target, which corresponds to
the Doppler frequency fDL. Therefore

�R = r − R3

= R0

cosφ
− R0

cos
(
θq − 0.5θH

) (8.8a)

and

�NRk = 2�Rk

Rs

≈ R0λ
2

4V 2 Rs

(
fDL + k fPRF

N

)2

− R0λ
2 f 2

DL

4V 2 Rs

(8.8b)

After range migration correction, the range differences among slant ranges are
corrected and aligned along either with the reference range R0 or slant range R3.
If R0 is chosen, as is true for the broadside SAR system, the range cell migration
correction is equivalently converts the slant range (not perpendicular to the flight
path) to the range (perpendicular to the flight path). Notice that fDL in Eq. (8.8b)
refers to the true, not folded, low band edge of Doppler frequency.

Since the arrival time of the target-reflected signal varies while the radar moves
through the whole synthetic aperture length, the peak of the range-compressed pulse
may not be sampled accurately by the A/D converter with sampling frequency fs. In
other words, the peak of the range-compressed pulse may appear as a fraction of the
sample away from the the sample digitized by the A/D converter, and may become
unavailable for image processing.

Two major steps are used to correct the range cell migration: (1) fractional range
sample interpolation and (2) range sample shift. These two steps can be performed
in one process; however, for illustration purposes, they will be described separately.

Figure 8.26 shows an example of a 2D data array before range migration
correction. This 2D data array resembles the range-compressed radar signal from
a single-target squint SAR case. As can be seen, the range-compressed pulsed data
along the Doppler frequency direction do not line up but spread along the range
direction, and the magnitude of the pulse peaks varies because the data are not
correctly sampled at the peak points. The correction process first computes the range
migration amount on all row data corresponding to each Doppler frequency bin. The
fractional part of the range migration amount is used to interpolate the digitized row
samples. The integer part of the range migration amount is then used to shift the row
data with respect to a reference sample. Further examples dealing with the squint
SAR system are given later.
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FIGURE 8.26 A range-compressed signal array in range–Doppler frequency domain.

8.4.3.2 Fractional Range Sample Interpolation. The fractional part of the
range sample migration amount, which is computed from Eq. (8.8b) in this example,
is used to interpolate the digitized row samples. The set of 16 sinc filters with 8-tap
coefficients, as discussed in Section 1.5 of Chapter 1, serves as a good example of
this interpolation process. Each computed fractional sample is first quantized with a
16-step quantizer. On the basis of this quantized amount, a corresponding sinc filter
is then chosen. The entire row of the data is then convolved with this sinc filter, and
the output of convolution is the interpolated signal with the peak positioned appro-
priately. This process continues for every row of the data array along the Doppler
frequency axis. Notice that for multiple targets, multiple pulses will appear in the
row-based data. However, in the range–Doppler frequency domain, they all share the
same amount of range migration. Therefore, one sinc filter works for all the fractional
sample interpolation processes.

Figure 8.27 displays the 2D data array after the fractional range sample interpo-
lation process. By comparing the plots between Figs. 8.26 and 8.27, one can see that
the peaks of the compressed and interpolated pulses in Fig. 8.27 appear to be aligned
along time samples 181–185.

8.4.3.3 Range Sample Shift. The integer part of �NRk, shown in Eq. (8.8b),
serves as the base for the range sample shift. In this example, range sample 181 is
chosen as the reference sample R3. The peaks previously aligned on different range
samples are shifted left, based on integer part of �NRk, to align with sample 181.
Figure 8.28 displays the compressed pulse array after the sample shift.
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FIGURE 8.27 A range-compressed signal array after fractional interpolation.
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FIGURE 8.28 A range-compressed signal array after sample shift.
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8.4.4 Azimuth Compression

On completion of range cell migration correction, a matched filter or reference func-
tion in the azimuth direction is applied to further compress the 2D data array. As
discussed in Section 6.4, the received signal along the azimuth direction also appears
as a LFM waveform. This LFM signal serves as a reference function or matched filter
in the same way as in range compression.

Similar to the ordinary LFM signal, the LFM signal in the azimuth direction
is specified by three parameters: the Doppler frequency centroid fDc, the Doppler
frequency-changing rate β, and the pulse duration time Ta. These are discussed next.

8.4.4.1 Doppler Frequency Centroid. The Doppler frequency centroid fDc

equals zero for a broadside SAR system. For a squint SAR system with given squint
angle θq, fDc is nonzero and can be computed as follows, from Eq. (6.13a) or (6.16c):

fDc = 2V

λ
sinθq .

8.4.4.2 Doppler Frequency Change Rate β. The Doppler frequency chang-
ing rate β in terms of slow time s can be computed as, from Eq. (6.16a):

β = ḟD = −2V 2

λR0
cos3θu .

Since only small radar beamwidth and small squint angle are considered, the value
of cos3 θu ≈ 1. Therefore

β ≈ −2V 2

λR0
.

8.4.4.3 Pulse Duration Time Ta. The pulse duration time of azimuth LFM
signal can be computed as

Ta = Ls

V
,

where Ls is the synthetic aperture length and V is the velocity of radar. Given the
radar beamwidth θH, the synthetic aperture length Ls can be computed as

1. Broadside SAR:

Ls = 2R0 tan(0.5θH )

2. Squint SAR with squint angle θq:

Ls = R0 tan(θq + 0.5θH ) − R0 tan(θq − 0.5θH ).

Since R0 is dependent on target location, the synthetic aperture length Ls and con-
sequently the pulse duration time Ta are range-dependent. Therefore, the azimuth
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matched filter is also range-dependent, and the azimuth compression must be per-
formed with a different matched filter, which is very time-consuming. In practical
applications, only a limited number of azimuth matched filters are used, with each
filter shared by a small segment of range samples.

8.5 SIMULATION RESULTS

The radar image data synthesized in Section 8.2 will now be processed by the
range–Doppler algorithm. The broadside SAR system with one and three targets is
described first, followed by the squint SAR system with one and three targets.

8.5.1 Broadside SAR with Single Target

The parameters and data array described in Section 8.2.1 for a single-target broadside
SAR will be adopted for target reconstruction. Since the baseband signal of an LFM
radar is represented as

pb (t) = exp( jπαt2),

where α = 4 × 1012 Hz/s and Tp = 6 × 10−6 s, the range matched filter is chosen as

hr (t) = p∗
b (−t)

= exp(− jπαt2).

The azimuth matched filter can be designed as

ha (s) = exp(− jπβs2).

The parameters Ls, Ta and β can be computed as follows:

Ls = 2R0 tan (0.5θH )

= 225 m

Ta = Ls

V

= 1.125 s

β = −2V 2

λR0

= −355.56 Hz/s
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FIGURE 8.29 Waveforms of transmitter baseband signal, range reference function, and
azimuth reference function.

Figure 8.29 displays the waveforms of baseband signal pb(t) together with the
range reference function hr(t) and the azimuth reference function ha(s). The real
part of the signal is shown in Figs. 8.29a, 8.29c, and 8.29e; the imaginary part, in
Figs. 8.29b, 8.29d, and 8.29f. The pb(t), hr(t) and ha(s) are shown in Figs. 8.29a and
8.29b, 8.29c and 8.29d, and 8.29e and 8.29f, respectively. The sampling frequency
is 30 MHz for range (or time) signal and 500 Hz for azimuth signal. Notice that no
windowing function is used in generating the reference functions.

As can be seen, there are 181 samples in the range reference function, which
corresponds to the sample numbers in the 6-µs pulse duration time. The real part
of the range reference function hr(t) is identical to that of the transmitting baseband
signal pb(t), while the imaginary part of hr(t) is negative to that of pb(t). The sample
number of azimuth reference function is Naz = Ls/As = 563. The azimuth pulse
duration time is Ta = 1.125 s.

Figure 8.30 shows the frequency spectrum of both the range and azimuth refer-
ence functions. The spectrum of the range reference function is based on a 256-point
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FIGURE 8.30 Frequency spectra of range and azimuth matched filters.

DFT with origin at bin 128 and sampling frequency of 30 MHz. The Doppler fre-
quency spectrum of azimuth reference function is based on a 1024-point DFT with
origin at bin 512 and sampling frequency of 500 Hz.

The synthesized single-target received data array shown in Fig. 8.9 will be used
for range compression. The operation of range compression transforms every row
of the time sample data into the frequency domain using a 256-point DFT. The
frequency-domain data are then multiplied by the 256-point Fourier-transformed
range reference function. The result is then inverse-Fourier-transformed back to the
time-domain. The time-domain range-compressed data are shown in two displays,
the 3D view in Fig. 8.31 and the 2D view in Fig. 8.32.

Figure 8.31 shows the magnitude of range-compressed data in the spatiotemporal
domain. All compressed pulses are aligned along time sample 181 with equal mag-
nitude and span through the whole synthetic aperture length Ls. The number 181 is
the sample length of transmitter pulse.

Figure 8.32 is another view of the range-compressed data array. The horizon-
tal axis (abscissa) shows the time samples; and the vertical axis (ordinate), the az-
imuth lines, together with magnitudes of the compressed pulses for each azimuth
line. There are 563 rows along the vertical axis, and only 1 out of every 30 rows is
displayed here. As can be seen, all compressed pulses align at time sample 181.

From Fig. 8.32, one can see that the range migration problem does not occur.
Therefore, no range cell migration correction is required in this case.
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FIGURE 8.31 3D view of a range-compressed signal array based on Fig. 8.5.

The number of azimuth samples within the synthetic aperture length is Naz =
Ls/As = 563. Transformation of the range-compressed signal array into Doppler fre-
quency domain is performed by applying a 1024-point DFT on every column of the
range-compressed signal array. Since Naz = 563, zero padding is required for the
1024-point DFT. The magnitude of the center-shifted Doppler frequency spectrum,
with origin at bin 512, is shown as a 3D view in Fig. 8.33. The two perpendicular axes
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FIGURE 8.32 2D view of a range-compressed signal array based on Fig. 8.31.
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FIGURE 8.33 3D view of a range–Doppler frequency spectrum based on Fig. 8.31.

of the base plane are the time samples and the Doppler frequency bins, respectively.
As can be seen, the Doppler frequency spectrum aligns along time sample 181, and
the center of the Doppler frequency spectrum is at bin 512 with a bandwidth of ∼800
frequency bins. Given the azimuth sampling frequency f PRF = 500 Hz, the Doppler
frequency bandwidth can be computed as 500 × 800/1024 ≈ 400 Hz.

Another way to view the display of the center-shifted Doppler frequency spec-
trum is shown in Fig. 8.34. Here the horizontal axis shows time samples; the vertical
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FIGURE 8.34 2D view of a range–Doppler frequency spectrum based on Fig. 8.33.
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axis, Doppler frequency bins. There are 1024 rows along the vertical axis, and only
1 out of every 30 rows is displayed here. Similar to that of Fig. 8.32, the Doppler fre-
quency spectrum aligns at time sample 181, and the center of the Doppler frequency
spectrum is at bin 512 with ∼400 Hz bandwidth.

The azimuth compression is performed by applying the range-dependent azimuth
matched filter to every column of the Doppler frequency data array. Only one az-
imuth matched filter is used in this single-target example. The azimuth matched
filter haz(s) is first transformed into the Doppler frequency domain, using a 1024-
point DFT, to become Haz(ωD). Without using any windowing functions, the az-
imuth matched filter Haz(ωD) is then multiplied with every column of the data ar-
ray in the range–Doppler frequency domain. A 1024-point IDFT is then applied
on every column of the azimuth-compressed data array to obtain the reconstructed
target.

Figure 8.35 is a 3D view of the reconstructed target. The two axes of the base
plane correspond to time samples and azimuth lines. The reconstructed target appears
as an impulse-like signal with very narrow sidelobes around the peak. The impulse-
like target appears at time sample 181 and azimuth line 563. These two numbers
correspond to the sample length of range pulse duration and azimuth pulse duration,
respectively.

Figure 8.36 shows the cross sectional view of Fig. 8.35: Fig. 8.36a shows the
display in terms of the azimuth lines with time sample 181; Fig. 8.36b, in terms of
the time samples with azimuth line 563. The magnitude of the pulse is 181, which
matches the sample length of the range pulse duration.
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FIGURE 8.35 3D view of a reconstructed single-target function based on Fig. 8.33.
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FIGURE 8.36 Cross-sectional view of a reconstructed single-target function based on
Fig. 8.35.

8.5.2 Broadside SAR with Multiple Targets

The system model for broadside SAR with three targets shown in Fig. 8.3, together
with the received data array shown in Fig. 8.13, will be used to reconstruct the targets.

Both the LFM transmitter signal and the matched filter for range compression will
remain the same as in the single-target case:

hr (t) = p∗
b (−t)

= exp
(− jπαt2

)
.

The azimuth matched filter haz(s) and the Doppler frequency change rate β are
range-dependent. There are three targets located at two different ranges in this exam-
ple: therefore, two sets of haz(s) and β must be designed:

haz1 (s) = exp
(− jπβ1s2

)
,

haz2 (s) = exp
(− jπβ2s2

)
,

β1 ≈ − 2V 2

λR0a

= −355.56 Hz/s,

β2 ≈ − 2V 2

λR0b

= −348.58 Hz/s.
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The azimuth pulse duration times Ta1 and Ta2, corresponding to haz1(s) and
haz2(s), respectively, are computed as follows:

Ta1 = Lsa

V

= 2R0a tan (0.5θH )

V

= 1.125 s,

Ta2 = Lsb

V

= 2R0b tan (0.5θH )

V

= 1.148 s.

The synthesized three-target data array, shown in Fig. 8.13, is then range-
compressed by first transforming every row of range data into the frequency do-
main using a 256-point DFT. The frequency-domain data are then multiplied by the
256-point Fourier transformed range reference function. The result is then inverse-
Fourier-transformed back to the time domain.

Figure 8.37 is a 3D view of the range-compressed data array. There are two
columns of a thin wall-like array. The first array has two magnitudes and lines up
along time sample 181; the second array has one magnitude and aligns along time
sample 211. The first array corresponds to two targets located at the same range

FIGURE 8.37 3D view of a range-compressed signal array based on Fig. 8.3.
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FIGURE 8.38 2D view of a range-compressed signal array based on Fig. 8.37.

R0a = 7500 m. The larger magnitude portion of the first array occurs at the over-
lapped region between the two synthetic aperture lengths Lsa1 and Lsa2. The second
array corresponds to the target located at range R0b = 7650 m.

Figure 8.38 shows a different view of the same range-compressed data array. The
horizontal axis represents time samples; the vertical axis, azimuth lines, together
with magnitude of the compressed pulse for each azimuth line. There are 2Naza −
D1 = 939 rows along the vertical axis, and only 1 out of every 30 rows is displayed
here. As can be seen, there are two sets of column arrays: one extending through the
whole length of azimuth samples (939) and aligning at time sample 181, the other
extending with shorter azimuth samples (563) and lining up at time sample 211.
Again, the range migration problem does not occur here, and range cell migration
correction is not required in this case.

The next step in reconstructing the targets is transformation of the data array
from the range–azimuth domain into the range–Doppler frequency domain. The to-
tal synthetic aperture length along the azimuth direction due to targets 1 and 3 is
2Naza − D1 = 949, the sample length of the azimuth matched filter is Naza = 563,
and the output sample length of the azimuth matched filter is (949 + 563 − 1) =
1511. Therefore, a 2048-point DFT with zero padding on azimuth samples
is adopted. By applying 2048-point DFT to every column of the range-compressed
data array, the magnitude of the center-shifted Doppler frequency spectrum, with
origin at bin 1024, is displayed in Fig. 8.39. The two perpendicular axes of the
base plane are the time samples and the Doppler frequency bins, respectively. As
expected, two columns of the Doppler frequency spectrum array exist; one lines
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FIGURE 8.39 3D view of a range–Doppler frequency spectrum based on Fig. 8.37.

up along time sample 181, and the other aligns at time sample 211. The left one
has larger magnitude than the right one, due to the existence of multiple targets.
Both columns of the Doppler frequency spectrum array are centered on frequency
bin 1024 with a bandwidth of ∼1600 frequency bins. Since the sampling fre-
quency fs = f PRF = 500 Hz, the Doppler frequency bandwidth can be computed
as 500 · (1600/2048) ≈ 391 Hz.
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FIGURE 8.40 2D view of a range–Doppler frequency spectrum based on Fig. 8.39.
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Figure 8.40 shows another view of the center-shifted Doppler frequency spectrum.
Here the horizontal axis represents time samples; and the vertical axis, Doppler fre-
quency bins. Similar to that of Fig. 8.38, both columns of the Doppler frequency
spectrum array align at two time samples: one at 181 and the other at 211. Both ar-
rays are centered at Doppler frequency bin 1024. The magnitude of the left column
array seems to have a smaller value at some part of the frequency bins. This is due
to the phase cancellation of two targets located at the same range of R0a. Actually,
both spectrum arrays have about the same bandwidth, but the left one has larger
magnitude than the right one because of the existence of two targets.

The azimuth matched filter is then applied on every column of the data array
in the Doppler frequency domain to perform the azimuth compression. Because
of the existence of two targets, two azimuth matched filters, haz1(s) and haz2(s),
are used. They are first transformed into the Doppler frequency domain, using
a 2048-point DFT with zero padding. One is applied to the region around time
sample 181, and then multiplied by every column of the data array in that re-
gion. The other is applied to the region around time sample 211, and then mul-
tiplied by every column of the data array in that region. A 2048-point IDFT is
then applied on every column of the whole data array, and the reconstructed targets
appear.

Figure 8.41 is a 3D view of the reconstructed targets. The x and y axes denote time
samples and azimuth lines, respectively. The z axis represents magnitude. There are
three impulse-like targets with about the same magnitude; two of them are located at
(181, 563) and (181, 939), respectively, while the third one is located at (211, 818).

Figure 8.42 displays a cross-sectional view of Fig. 8.41 at two different time sam-
ples. Figure 8.42a shows the magnitude of the target distributed along the azimuth
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FIGURE 8.41 3D view of a reconstructed target function based on Fig. 8.39.
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FIGURE 8.42 Cross-sectional view of Fig. 8.41 at range samples 181 and 211.

axis at time sample 181; Fig. 8.42b shows the magnitude of the target distributed
along the azimuth axis at time sample 211. There are two pulses (or targets) appear-
ing in Fig. 8.42a, one at azimuth line 563 and the other at azimuth line 939. Only one
pulse (or target) appears in Fig. 8.42b, located at azimuth line 818. The two targets,
appearing at azimuth lines 939 and 563, are located at range distance R0a. They are
separated by 376 samples in the azimuth direction and correspond to 376 × 0.4 m =
150.4 m in distance. This number matches closely to the target location specification
(y3 − y1 = 150 m). The third target is located at range distance R0b and appears at az-
imuth line 818. This target is 255 samples away from the first target (818–563) in the
azimuth direction, which corresponds to 255 × 0.4 m = 102 m. Since two azimuth
matched filters were used at targets located at R0a and R0b; therefore, adjustment of
the range ratio, R0a/R0b = (7500/7650) = 0.98, should be made. The number 102 m
should be adjusted to become 102 m × 0.98 = 100 m, which matches well with the
target specification (y2 − y1 = 100 m).

Figure 8.43 displays a cross-sectional view of Fig. 8.41 at three azimuth lines.
Figure 8.43a shows the magnitude of the target distributed along the time sample
axis at azimuth line 563; Fig. 8.43b, at azimuth line 818; and Fig. 8.43c, at azimuth
line 939. In Figs 8.43a, 8.43b, and 8.43c one pulse (or target) is located at range
samples 181, 211, and 181, respectively. The sample length of the transmitting pulse
is 181, which is where the targets in Figs. 8.43a and 8.43c are located. The target of
Fig. 8.43b is located at time sample 211, which is 30 time samples away from targets
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FIGURE 8.43 Cross-sectional view of Fig. 8.41 at azimuth lines 563, 818, and 939.

1 and 3, and corresponds to 10 × (30/2) = 150 m. It matches well with specification
[R0b − R0a = (7650−7500) = 150 m].

8.5.3 Squint SAR with Single Target

The signal array of the single-target squint SAR described in Section 8.3.1 will be
used to reconstruct the target. The baseband signal and the matched filter used in
the single-target broadside SAR system will also be used in this case, and they are
expressed as

pb (t) = exp( jπαt2),

hr (t) = exp(− jπαt2).

Here α = 4 × 102 Hz/s and Tp = 6 × 10−6 s.
The azimuth matched filter with squint angle θq can be designed as

haz (s) = exp(− j2π fDcs − jπβs2),
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where fDc is the centroid of Doppler frequency, and s refers to slow time. The param-
eters fDc, Ta, and β can be computed as follows:

fDc = 2V sin θq

λ

= 1393.7 Hz,

Ls = R0
[
tan

(
θq + 0.5θH

) − tan
(
θq − 0.5θH

)]
= 227.5 m,

Ta = Ls

V

= 1.1375 s,

β = −2V 2

λR0

= −355.56 Hz/s.

The waveform of azimuth reference function haz(s) is shown in Fig. 8.44. The
waveform was plotted with 5 times the sampling frequency f PRF for a better view.
The real part of the signal is shown in Fig. 8.44a; the imaginary part, in Fig. 8.44b.
No windowing function is used in generating the reference function.

From the LFM waveforms described above, one can observe that the signal is
no longer symmetric about the center point as it is in the broadside case. The
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FIGURE 8.44 Waveforms of the real and imaginary parts of azimuth reference function.
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FIGURE 8.45 Frequency spectrum of azimuth reference function.

azimuth reference function has a total of Naz = Ls/As = 569 azimuth samples, and
the azimuth pulse duration time is Ta = 1.1375 s.

The Doppler frequency spectrum of the azimuth reference function haz(s) is shown
in Fig. 8.45. Since the azimuth signal is naturally digitized at pulse repetition fre-
quency f PRF, only the digitized spectrum is observable, and its replicas are duplicated
at the rate of f PRF (=500 Hz). The Doppler frequency spectrum shown in Fig. 8.45 is
the observed spectrum. It is the fallback version of the true spectrum (located at pass-
band) and is obtained by applying a 1024-point DFT on haz(s) with origin at bin 1.
As described in Section 7.3.1.2, and shown as an example in Fig. 7.15, the true spec-
trum folds from passband to baseband and splits into two portions to become the
observable spectrum. The spectrum shown in Fig. 8.45 consists of two parts; one
extends from frequency bin 1 to about bin 190 and represents the upper portion of
the frequency band, while the other extends from bin 410 to bin 1024 and represents
the lower portion of the frequency band.

The synthesized data array with a single target shown in Fig. 8.17 will be used
for range compression. Every row of the time sample data is first transformed into
the frequency domain using a 256-point DFT. The frequency-domain data are then
multiplied by the Fourier-transformed range reference function. The result is then
inverse-Fourier-transformed back to the time domain. A 3D view of the time–spatial-
domain range-compressed data array is shown in Fig. 8.46.

The range-compressed data shown in Fig. 8.46 differ significantly from those of
the broadside SAR shown in Fig. 8.31. The compressed range data array no longer
lines up at time sample 181, but migrates to several time samples around it. In addi-
tion, they are no longer equal in magnitude as those shown in Fig. 8.31. The differ-
ences are due primarily to the range migration in the squint SAR system.

Figure 8.47 shows a different view of the range-compressed data array. Here,
the horizontal and vertical axes are again defined in the same way as in Fig. 8.32.
However, the data array migrates to several time samples away from time sample 181
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FIGURE 8.46 3D view of a range-compressed signal based on Fig. 8.14.
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FIGURE 8.47 2D view of a range-compressed signal from Fig. 8.14.
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FIGURE 8.48 3D view of a spatial Fourier transformed signal from Fig. 8.46.

for the same reason of range migration. Range cell migration correction is therefore
required in this squint SAR case.

To correct the range cell migration problem, the range-compressed data array in
the range–azimuth domain is transformed into the range–Doppler frequency domain.
Since the number of azimuth samples is 569, the 1024-point FFT is chosen and
applied to every column of the range–azimuth data array.

Figure 8.48 is a 3D view of the range-compressed data array in the range–Doppler
frequency domain with origin at bin 1. The x axis represents the time sample axis
with sample numbers 1–256, the y axis represents the Doppler frequency axis with
frequency bins 1–1024, and the z axis represents the magnitude of the data ar-
ray. For squint SAR system, the data array has a Doppler frequency bandwidth of
BD < f PRF and a center frequency of fDc. Similar to the previous discussion when
azimuth reference filter was used for squint SAR, the Doppler frequency spectrum is
folded into two parts in the baseband display. The upper frequency part, starting from
bin ∼400 to bin 1024, is the lower portion of the true frequency spectrum, while the
lower part, starting from bin 1 to bin ∼200, is in fact the upper portion of the true
frequency spectrum. The center frequency fDc is located at bin ∼800.

A different view of the range-compressed signal in the range–Doppler frequency
domain is shown in Fig. 8.49, where 1 out of 30 frequency bins are displayed. The
range-compressed data array along the Doppler frequency direction is no longer
aligned at time sample 181; instead, it migrates from time samples 181 to 185. A
range cell migration correction is therefore required.

For the squint SAR system, the range migration correction with respect to slant
range R3 in the time sample domain equivalently involves aligning the frequency bins
with respect to fDL in the Doppler frequency domain, where the maximum amount
of range migration occurs at fDU. Since the squint angle θq is greater than 0.5θH,
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FIGURE 8.49 2D view of a spatial Fourier-transformed signal from Fig. 8.46.

Eq. (6.16d) can be applied to compute the true or unfolded fDU and fDL:

fDU = 2V sin
(
θq + 0.5θH

)
λ

= 1593 Hz,

fDL = 2V sin
(
θq − 0.5θH

)
λ

= 1195 Hz.

Given a 1024-point DFT and sampling frequency f PRF = 500 Hz, the Doppler
frequency bin spacing can be computed as �fD = (500/1024) = 0.488 Hz. Therefore
the folded fDL corresponds to bin number 1 + (1195 − 2 × f PRF)/0.488 = 401, while
the folded fDU corresponds to bin number 1 + (1593 − 3 × f PRF)/0.488 = 191.
The bandwidth of Doppler frequency spectrum then has a total number of frequency
bins = (1024 − 401 + 191) = 814.

The maximum amount of range cell migration can be computed from Eq. (8.8b)
as

�Nk ≈ R0λ
2

4V 2 Rs

(
fDL + k fPRF

N

)2

− R0λ
2 f 2

DL

4V 2 Rs

= 4.67.

where k = 814, fDL = 1195, and Rs = 10 were used.
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Alternatively, one can also compute the maximum amount of range migration by
computing the difference between slant ranges R1 and R3, which corresponds to fDU

and fDL, respectively; that is, from Eq. (6.11b)

R1 = R0

cos (0.5 θH + θq )

= 7554.07

R3 = R0

cos (0.5 θH − θq )

= 7530.28.

The maximum number of range cells that need to be corrected becomes

�Nmax = 2(R1 − R3)

Rs

= 4.76.

This matches closely with the result based on Eq. (8.8b).
The fractional range sample interpolation and range sample shift are then applied

on the signal array of Fig. 8.48. An 8-tap interpolation sinc filter with 1
16 sample reso-

lution as described in Section 1.6 (of Chapter 1) is applied here for fractional sample
interpolation. A 3D view of the range cell migration corrected Doppler frequency
spectrum is shown in Fig. 8.50.

FIGURE 8.50 3D view of Fig. 8.46 after range cell migration correction.
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FIGURE 8.51 2D view of Fig. 8.46 after range cell migration correction.

As can be seen, the magnitudes of the spectrum are about equal, and the spectrum
consists of two parts: one extending from frequency bins 1 to ∼190 and the other,
from frequency bins 390 to ∼1024. The range cell migration corrected Doppler fre-
quency spectrum now lines up at time sample 181.

A different view of the range migration corrected signal spectrum is shown in
Fig. 8.51. Here the horizontal axis represents time samples, and the vertical axis
represents Doppler frequency bins with 1 out of 30 bins displayed. Compared to
Fig. 8.49, the new plot shows that all Doppler frequency bins are aligned along time
sample 181.

The range cell migration corrected data array in the range–Doppler frequency
domain is then processed for azimuth compression. Different range-dependent
azimuth matched filters haz(s) should be applied to every column of the signal ar-
ray. However, only one filter is used in this simulation. Once the azimuth compres-
sion is completed, the data array is inverse-Fourier-transformed back to the range–
azimuth domain. A 3D view of the final range–azimuth data array is shown in
Fig. 8.52, where an impulse-like signal appears at time sample ∼181 and azimuth
sample ∼571.

Two cross-sectional views of Fig. 8.52 are shown in Fig. 8.53. Figure 8.53a is a
cross-sectional view at time sample 181. The signal distributed along the azimuth di-
rection appears as an impulse at azimuth sample 571, with a very narrow pulsewidth.
Figure 8.53b is a cross-sectional view at azimuth sample 571. The signal distributed
along the time sample direction appears as an impulse at time sample 181, with a
similarly narrow pulsewidth. Again, the number 181 matches the time sample length
of the range matched filter, while the number 571 differs slightly from the sample
length used in the azimuth matched filter, which has 569 samples. The reconstructed
signal appears quite accurately as expected.
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FIGURE 8.52 3D view of a reconstructed target function from Fig. 8.14.

8.5.4 Squint SAR with Multiple Targets

The system model shown in Fig. 8.18 for the multiple-targets squint SAR system, to-
gether with the synthesized data array shown in Fig. 8.22, will be used to reconstruct
the targets.

Again, the range matched filter remains the same as before:

hr (t) = exp(− jπαt2).
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FIGURE 8.53 Cross-sectional view of Fig. 8.52 at range sample 181 and azimuth line 571,
respectively.
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Similar to the multiple targets of the broadside SAR system, two azimuth matched
filters will be used in this example:

haz1 (s) = exp
(− j2π fDcs − jπβ1s2

)
haz2 (s) = exp

(− j2π fDcs − jπβ2s2
)
.

The parameters fDc, Ta1, Ta2 β1, and β2 can be computed as follows:

fDc = 2V sin θq

λ

= 1393.7 Hz,

Ta1 = Lsa

V

= R0a
[
tan(θq + 0.5θH ) − tan(θq − 0.5θH )

]
V

= 1.1375 s,

Ta2 = Lsb

V

= R0b
[
tan(θq + 0.5θH ) − tan(θq − 0.5θH )

]
V

= 1.16 s,

β1 ≈ − 2V 2

λR0a

= −355.56 Hz/s,

β2 ≈ − 2V 2

λR0b

= −348.58 Hz/s.

The synthesized data array shown in Fig. 8.22 serves as raw data for range com-
pression. Every row of the range data is first transformed into the frequency do-
main using a 256-point DFT. The frequency-domain data are then multiplied by the
256-point Fourier-transformed range reference function. The result is then inverse-
Fourier-transformed back to the time domain. Figure 8.54 displays a 3D view of the
range-compressed data in the time–spatial (range–azimuth) domain. There are two
column-like data arrays along the azimuth direction. The left array corresponds to
two targets located at range R0a, while the right array corresponds to one target lo-
cated at range R0b. The magnitudes of the two data arrays appear to be unequal and
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FIGURE 8.54 3D view of a range-compressed signal from Fig. 8.18.

show several peaks. This is due to the range migration that occurs in the squint SAR
system, and range migration correction is required.

A different view of the range-compressed data array is shown in Fig. 8.55,
where 1 out of 30 azimuth lines are displayed. There are two columns of data
arrays in the plot: one located at time sample ∼181 and the other, at time sam-
ple ∼211. The first column of the data array corresponds to two targets located at
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FIGURE 8.55 2D view of a range-compressed signal from Fig. 8.18.
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FIGURE 8.56 3D view of spatial Fourier-transformed signal from Fig. 8.54.

range R0a. The dual-magnitude portion of the array is the beamwidth-overlapped
region from the two targets. The second column of the data array corresponds to
the target located at range R0b. The first column of the data array extends in the
azimuth direction for a total of 2Naza − D1 = 945 azimuth samples;. the second
one extends in the azimuth direction for a total of Nazb = 581 azimuth samples.
Range migration is clearly visible from either the first or second column of the data
array.

To correct the range migration problem, the data array in the range–Azimuth
(time–spatial) domain is first transformed into the range–Doppler frequency domain.
Since the azimuth sample length of the first column data array is 2Naza − D1 = 945
and the sample length of the azimuth matched filter is 569, a 2048-point DFT is cho-
sen to transform every column of the range-compressed data array into the Doppler
frequency domain. A 3D view of the range–Doppler frequency spectrum is displayed
in Fig. 8.56 with Doppler frequency origin at bin 1.

There are two arrays of the Doppler frequency spectrum: one along time sam-
ple ∼181 and the other, along time sample ∼211. Both spectrum arrays are folded
into two parts as a result of the natural digitization at the pulse repetition fre-
quency f PRF, and their magnitudes are unequal because of the range migration
problem.

A different view of the Doppler frequency spectrum described above is shown
in Fig. 8.57. As can be seen, the two spectrum arrays have the same size along the
Doppler frequency direction. Because of phase cancellation from the two targets
located at the same range distance R0a, some portions of the spectrum array in the left
column appear to have smaller magnitude than do those in the rest of the spectrum
array. The magnitude of the left column array is higher than that of the right one
because there are two targets.

Doppler frequency bins

M
ag

ni
tu

de

Time samples



P1: OTA/XYZ P2: ABC
c08 JWBK230/Wang July 8, 2008 1:11 Printer Name: Yet to Come

SIMULATION RESULTS 279

0
0

800

600

400

200

2000

1800

1600

1400

1200

1000

D
op

pl
er

 f
re

qu
en

cy
 b

in
s

50 100 150 200 250
Time samples

FIGURE 8.57 2D view of a spatial Fourier-transformed signal from Fig. 8.54.

Range cell migration correction is then performed on the Doppler frequency spec-
trum arrays described above. For a squint SAR system, the amount of range migra-
tion will be corrected with respect to the slant range R3. The maximum amount of
range migration occurs at fDU. Both fDU and fDL can be computed as follows, from
Eq. (6.16d):

fDU = 2V sin
(
θq + 0.5θH

)
λ

= 1593 Hz,

fDL = 2V sin
(
θq − 0.5θH

)
λ

= 1195 Hz.

The frequency fDU corresponds to bin number 1 + (1593 − 3 × f PRF) ×
(2048/500) = 382. The frequency fDL corresponds to bin number 1 + (1195 − 2
× f PRF) × (2048/500) = 802. The Doppler frequency spectrum then has a total num-
ber of frequency bins equal to (2048 − 802 + 382) = 1628, and the bandwidth is
(1628 × 500)/2048 = 397.5 Hz.
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The maximum amount of range cell migration correction for the two column data
arrays can be computed from Eq. (8.8b) as

�Nk1 ≈ R0aλ
2

4V 2 Rs

(
fDL + k fPRF

N

)2

− R0aλ
2 f 2

DL

4V 2 Rs

= 4.67,

�Nk2 ≈ R0bλ
2

4V 2 Rs

(
fDL + k fPRF

N

)2

− R0bλ
2 f 2

DL

4V 2 Rs

= 4.76,

where k = 1628, fDL = 1195, R0a = 7500, R0b = 7650, and Rs = 10 were used.
Alternatively, the maximum amount of range migration can also be obtained by

computing the difference between slant ranges R1 and R3; that is, from Eq. (6.11b),
one obtains

R1a = R0a

cos (0.5θH + θq )

= 7554.07,

R3a = R0a

cos (0.5θH − θq )
= 7530.28,

R1b = R0b

cos (0.5θH + θq )

= 7705.15.

R3b = R0b

cos (0.5θH − θq )

= 7680.89.

The maximum number of range cells that need to be corrected becomes

�Na max = 2(R1a − R3a)

Rs

= 4.76,

�Nb max = 2(R1b − R3b)

Rs

= 4.85.

The results closely match those based on Eq. (8.8b).
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FIGURE 8.58 3D view of Fig. 8.56 after range cell migration correction.

Both fractional range cell interpolation and range sample shift are then applied on
the signal array of Fig. 8.56. For simplicity, only �Nk1 was used in simulation and
the result is shown in Fig. 8.58.

As can be seen, the magnitudes of the range migration corrected spectrum array
become equal for both columns of the spectrum array. The magnitude of the left
column array doubles that of the right one because there are two targets.

A different view of the range migration corrected spectrum is shown in Fig. 8.59.
The horizontal axis shows the time samples, and the vertical axis represents the
Doppler frequency bins with 1 of 30 bins shown. The new plot shows that the two
spectrum arrays are aligned at two time samples, one at sample 181 and the other
at sample 211. The bandwidth of both arrays is about equal, yet the magnitude of
the left column is greater than that of the right column because there are two tar-
gets. Again, some portions of the left column appear smaller than the rest of the
same array because of phase cancellation from the two targets at the same range
distance R0a.

Azimuth compression is then performed on the range migration corrected spec-
trum array in the range–Doppler frequency domain. The range-dependent az-
imuth matched filter haz1(s) is applied to columns of time samples 1–190 of the
spectrum array, and haz2(s) is applied to columns (time sample) 191–256 of the
spectrum array. After the azimuth compression, the Doppler frequency spectrum ar-
ray is inverse-Fourier-transformed back to the range–azimuth (or time–spatial) do-
main. A 3D view of the final data array in the spatiotemporal domain is shown in
Fig. 8.60 with two impulse-like signals appearing at (181,571) and (181,947), re-
spectively, and the third one at (211,786). All three targets appear to have the same
magnitude.
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FIGURE 8.59 2D view of Fig. 8.56 after range cell migration correction.

Figure 8.61 displays a cross-sectional view of Fig. 8.60 at two time samples:
Fig. 8.61a shows the magnitude of the targets distributed along the azimuth axis at
time sample 181; Fig. 8.61b, at time sample 211. Two pulses (or targets) appear in
Fig. 8.61a: one at azimuth sample 571 and the other at azimuth sample 947. Only
one pulse (or target) appears in Fig. 8.61b, located at azimuth sample 786. The
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FIGURE 8.60 3D view of a reconstructed target function from Fig. 8.18.
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FIGURE 8.61 Cross-sectional view of Fig. 8.60 at range samples 181 and 211.

difference between samples 947 and 571 along the azimuth direction is 376, which
corresponds to 376 × 0.4 m = 150.4 m. This number closely matches the specifi-
cation (y3 − y1 = 150 m). The difference between samples 786 and 571 along the
azimuth direction is 215, which corresponds to 215 × 0.4 m = 86 m. This number
is 14 m shorter than the specification, y2 − y1 = 100 m. This discrepancy is due to
two factors: (1) the two targets are located at different range distances, with one
located at range R0a and the other at range R0b (range differences require the use
of different azimuth matched filters and adjustment of the range ratio); and (2) the
nonzero squint angle is θq = 6◦, which shortens the azimuth distance by an amount
δy = �x tan θq.

Therefore, adjustment of the range ratio R0a/R0b = (7500/7650) = 0.98 should
be applied to the number 86 to become 86 × 0.98 m = 84.28 m. In addition, with
�x = 150 m in the range direction and θq = 6◦, the azimuth distance �y is reduced
by an amount δy = �x tan θq = 15.76 m. Therefore, the theoretical result should be
(100 − 15.76) = 84.24 m. The simulation result, 84.28 m, matches the specification
well in this case.

Figure 8.62 shows a cross-sectional view of Fig. 8.60 at three azimuth lines: Fig.
8.62a shows the magnitude of the target distributed along the time sample axis at
azimuth line 571; Fig. 8.62b, at azimuth line 786; and Fig. 8.62c, at azimuth line
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FIGURE 8.62 Cross-sectional view of Fig. 8.60 at azimuth lines 571, 786, and 947.

947. A single target is located at the same time sample (181) in both Figs. 8.62a and
8.62c. The single target in Fig. 8.62b is located at time sample 211. The time sample
difference between these two sets of targets is (211−181) = 30, which corresponds
to range difference 10 × (30/2) = 150 m. The simulation result closely matches the
target specification (R0b − R0a = 150 m).
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9
STOLT INTERPOLATION

PROCESSING ON
SAR IMAGES

This chapter discusses an alternative approach for processing radar images from the
wavenumber (or spatial frequency) domain. Section 9.1 reviews the general back-
ground of wavenumber theory. Section 9.2 describes the direct interpolation based
on unevenly spaced samples. Section 9.3 reviews the algorithm of Stolt interpolation.
Computer simulation for six-target broadside SAR system based on the Stolt interpo-
lation technique is covered in Section 9.4. Computer simulation for six-target squint
SAR system is described in Section 9.5. Section 9.6 shows the results of a satel-
lite image file processed by both range–Doppler and Stolt interpolation algorithms.
Comparison between range–Doppler and Stolt interpolation algorithms is discussed
in Section 9.7.

9.1 WAVENUMBER DOMAIN PROCESSING OF SAR DATA

Several algorithms are used to process SAR image data in wavenumber domains.
Examples are direct interpolation from unevenly spaced data, Stolt interpolation (or
mapping), time-domain correlation and backprojection, and range stacking.

Consider a group of N targets randomly distributed on the ground with each target
located at (x,y) = (xn,yn), n = 1,2, . . . , N. Assume that the radar is located at (x,y) =
(0,u), and moves at speed V along the y axis. Let p(t) be the transmitting signal; then
the total received signal s(t,u) can be expressed as

s (t,u) =
∑

n

σn p


t −

2
√

x2
n + (yn − u)2

c


 , (9.1)

Digital Signal Processing Techniques and Applications in Radar Image Processing, by Bu-Chin Wang.
Copyright C© 2008 John Wiley & Sons, Inc.
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where s(t,u) is a function of both t and u, and p(t) is the transmitting signal. The
Fourier transform of s(t,u) with respect to time variable t becomes

S (ω,u) = P (ω)
∑

n

σnexp

[
− j

2ω

c

√
x2

n + (yn − u)2

]
, (9.2)

where P(ω) is the Fourier transform of p(t).
By taking the spatial Fourier transform of S(ω,u) with respect to spatial variable

u, as discussed in Section 7.2.1.3 (of Chapter 7), one obtains

S(ω,ωD) = P(ω)
∑

n

σnexp


− j

√
4
ω2

c2
− ω2

D

V 2
xn − j

ωD

V
yn




= P (ω)
∑

n

σnexp

[
− j
√

4k2 − k2
u xn − jku yn

]
, (9.3)

Here ωD is the Doppler angular frequency with respect to the radar position u and
ku = ωD/V is the spatial wavenumber in the Doppler frequency domain.

Letting kx be defined as

kx =
√

4k2 − k2
u (9.4)

and ky = ku, one can then rewrite Eq. (9.3) as follows:

S
(
k, ky

) = P(k)
∑

n

σnexp
[− jkx xn − jky yn

]
. (9.5)

Consider an ideal target function in the spatial domain defined as

f0 (x,y) =
∑

n

σnδ (x − xn, y − yn) . (9.6)

Here δ(x − xn, y − yn) corresponds to an ideal impulse-like target located at (x,y) =
(xn,yn). By applying the 2D spatial Fourier transform on f 0(x, y), one obtains

F0
(
kx ,ky

) =
∑

n

σnexp
(− jkx xn − jky yn

)
. (9.7)

Here kx and ky are the wavenumber in the spatial frequency domain, and correspond
to x and y in the spatial domain, respectively.

Since we are dealing with a moving spatial variable u, which represents a moving
radar position, the corresponding spatial frequency will be considered as Doppler
frequency in the following discussion.
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Comparing Eqs. (9.5) and (9.7), one can see that if the signal S(k,ky) can be
mapped, or transformed into a spatial frequency kx as shown in Eq. (9.4), then the
target function can be obtained by taking the 2D inverse spatial Fourier transform on
S(kx,ky). However, the measured signal S(k,ky) is evenly spaced in the time–frequency
(ω) and spatial wavenumber (ky = ωD/V) domains, but the transformation from k
to kx, as shown in Eq. (9.4), causes the data to become unevenly spaced in the kx

domain. The inverse 2D spatial transform on S(kx,ky) cannot work correctly with
a 2D data array, where the data are evenly spaced in the ky domain but unevenly
spaced in the kx domain. This issue must be resolved to correctly reconstruct the radar
image.

Figure 9.1 illustrates the data relationship before and after the square root trans-
formation defined in Eq. (9.4). The black dots in Fig. 9.1a represent the data S(k,ky)
distributed in the (k,ky) or (ω,ωD) domain. The white circles in Fig. 9.1b represent
the same but transformed data S(kx,ky) distributed in the (kx,ky) domain. As can be
seen, the evenly spaced black dots become unevenly spaced white circles.

In order to use the inverse 2D spatial transform to obtain the target function, the
unevenly spaced data in the kx domain must be interpolated to become evenly spaced
data. Figure 9.2 displays the ideal relationship of the data distribution before and
after interpolation. The white circles shown in Fig. 9.2 are the unevenly spaced data
S(kx,ky) after transformation. The black dots are the evenly spaced data S′(kx,ky) after
interpolation.

The conversion of unevenly spaced data to evenly spaced data in the (kx,ky)
domain, based on the received data in the (k,ky) domain, is addressed next.

ky(or ω
D
)

k(or ω)kckmin kmax

S(k, ky)

(0,0)

ky

kx

S(kx, ky)

2kc2kmin 2kmax
(0,0)

(a) (b)

FIGURE 9.1 Data distribution before (a) and after (b) transformation.
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FIGURE 9.2 Data distribution before (◦) and after (•) interpolation.

9.2 DIRECT INTERPOLATION FROM UNEVENLY SPACED SAMPLES

As discussed in Section 1.7.5 (of Chapter 1), the unevenly spaced data can be inter-
polated to obtain the evenly spaced data. Let Sc

′(kx,ky) and Sc(kx,ky) be the evenly
spaced and unevenly spaced 2D data in the (kx,ky) domain, respectively. Let Sc(k,ky)
be the linearly measured samples in the (k,ky) domain, with the unevenly spaced data
Sc(kx, ky) as the direct transformation, through Eq. (9.4), from Sc(k,ky).

In order to obtain the 2D spatial domain (x,y) signal from the inverse 2D transform
on signals in the (kx,ky) domain, one method is to interpolate the unevenly spaced
samples of Sc(kx,ky) to obtain the evenly spaced data S′

c(kx,ky), as illustrated in Fig.
9.2. Let the received signal be an array of (M × N) data. With respect to the mth row
of data array {Sc(kxmn,kym)}, n = 1,2, . . . , N, the direct interpolated S′

c(kxm,kym) can
be expressed as

S′
c

(
kxm, kym

) ≈
∑

n

Jm (k) Sc
(
kxmn, kym

)
h (kxm − kxmn) , (9.8)

where

Jm (k) = d

dk

√
4k2 − k2

ym

= 4k

c
√

4k2 − k2
ym

,

h (kx ) = sin c

(
kx

�kx

)
.
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Here Jm(k) is the Jacobian of transformation from k to kx, and index n must satisfy
|kxm − kxmn| ≤ Ns�kx , with Ns as half the number of sinc lobes used for interpola-
tion. The parameters �k and �kx are described below.

Let fs be the sampling frequency, with 2X0 as the swath of target area; then �k
and �kx can be expressed as follows:

�k = k

N
,

�kx = π

X0
.

(9.9a)

Let the carrier frequency and the bandwidth of the transmitting signal be fc and 2f 0;
then

k ∈ [kc − k0, kc + k0] ,

ky ∈
[ωD min

V
,
ωD max

V

]
.

(9.9b)

The corresponding kx is therefore band-limited as

kx ∈
[√

4 (kc − k0)2 −
(ωD max

V

)2
,

√
4 (kc + k0)2 −

(ωD min

V

)2
]

. (9.9c)

For broadside SAR, the minimum value of Doppler frequency is zero and 2(kc −
k0) � ωDmax/V; therefore, the range of kx becomes

kx ∈
[√

4 (kc − k0)2 −
(ωD max

V

)2
, 2 (kc + k0)

]

≈ [2(kc − k0), 2(kc + k0)].

The number of samples in the new kx domain is then

Nkx = 4k0

�kx

The interpolation function h(kx) is similar to the one used in range cell migration
correction (RCMC). In practical applications, only a finite number of resolution and
sidelobes are adopted for interpolation filtering. In the RCMC case, the interpolation
filter is chosen with the number of fractional sample shifts equal to 16, and the num-
ber of sidelobes equal to 7; therefore the variable n is chosen to be n = 1,2, . . . , 8.
The direct implementation of Eq. (9.8) is time-consuming. An alternative wavenum-
ber domain processing technique, namely, the Stolt interpolation (or transformation),
is discussed next.
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9.3 STOLT INTERPOLATION PROCESSING OF SAR DATA

To simplify the discussion, only the targets with ideal reflection coefficients, that is,
σ n = 1 for n = 1,2, . . . , N, are considered here. Let s0(t,u) be the received signal
from a reference target located at (x,y) = (X0,0). Then the 2D Fourier transform of
s0(t,u) can be expressed as follows:

S0 (ω,ωD) = P(ω)exp


− j

√
4
ω2

c2
− ω2

D

V 2
X0


 . (9.10)

The function S0(ω,ωD) serves as a 2D reference function for matched filtering on
both the ω and ωD domains. Here P*(ω) is considered as the range matched filter,
while

exp


 j

√
4
ω2

c2
− ω2

D

V 2
X0




is the azimuth matched filter. The 2D compressed function Sc(ω,ωD) can be repre-
sented as

Sc(ω,ωD) = S (ω,ωD) S∗
0 (ω,ωD)

= P(ω)P∗(ω)
∑

n

exp


− j

√
4ω2

c2
− ω2

D

V 2
(xn − X0) − j

ωD

V
yn


 ,

or

Sc(k, ku) = |P(k)|2
∑

n

exp

[
− j
√

4k2 − k2
u (xn − X0) − jku yn

]

= |P(k)|2
∑

n

exp
[− jkx (xn − X0) − jky yn

]
, (9.11)

where k = ω/c, kx = √4k2 − k2
u , and ky = ku = ωD/V .

The 2D compressed signal Sc(k,ku) shown in Eq. (9.11) serves as the basis for
wavenumber domain image processing. Since the azimuth reference function was
chosen at (X0,0), only the target located at (X0,0) can be correctly focused. Other
targets away from (X0,0) will be unfocused and require more accurate compression
or correction.

Let fb, fc and 2f 0 be the baseband frequency, carrier frequency, and bandwidth of
transmitting signals, which satisfy the relationship ωc − ω0 ≤ ω = ωc + ωb ≤ ωc +
ω0, or, in terms of wavenumber representation kc − k0 ≤ k = kc + kb ≤ kc + k0.
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The square root term in Eq. (9.11) can then be approximated as

√
4k2 − k2

u (xn − X0) = 2kc�xn

[
4(kc + kb)2 − k2

u

4k2
c

]1/2

= 2kc�xn

[
D2 + 2kb

kc
+ k2

b

k2
c

]1/2

= 2kc�xn

[
D + kb

Dkc
+ k2

b

2Dk2
c

− · · ·
]

, (9.12)

where

D2 = 1 − k2
u

4k2
c

,

�xn = xn − X0.

Since kc �ku and kc > kb, Eq. (9.12) can be represented as follows:

√
4k2 − k2

u (xn − X0) ≈ 2kc�xn

[
D + kb

Dkc

]

= 2�xn

[
kc D + kb

D

]
.

Equation (9.11) therefore becomes

Sc(k, ku) = |P(k)|2
∑

n

exp

[
− j2�xn

(
kc D + kb

D

)
− jku yn

]
. (9.13)

Letting kx = kc +kxb, where kxb is the baseband of kx, and from Eq. (9.13), one
obtains

kx = 2

(
kc D + kb

D

)

= kc + kxb.

(9.14a)

Therefore

kxb = kc (2D − 1) + 2kb

D
. (9.14b)
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The function D =
√

1 − (k2
y/4k2

c ) can be approximated as

D ≈ 1 − k2
y

8k2
c

and

1

D
≈ 1 + k2

y

8k2
c

.

Equation (9.14b) then becomes

kxb = kc − k2
y

4kc
+ 2kb

(
1 + k2

y

8k2
c

)
(9.14c)

This equation illustrates the transformation from k to kx in the baseband situation.
The Stolt interpolation simplifies the nonlinear transformation of kx = kc + kxb =√

4k2 − k2
y into the form shown in Eq. (9.14c). The baseband component kxb consists

of three items: (1) a constant kc that is independent of k or ky; (2) a shift that varies for
different ky in the k domain, namely, −(k2

y/4kc); and (3) a stretch of kb in the k domain
with stretch factor 2 + (k2

y/4k2
c ). In other words, to perform the transformation of

received baseband data from (kb,ky) domain to (kxb,ky) domain, the received baseband
data must be adjusted as shown in Eq. (9.14c).

By assuming that |P(k)| = 1, and substituting Eq. (9.14c) in Eq. (9.11), one
obtains

Sc
(
kb,ky

) =
∑

n

exp
[− jkxb�xn − jky yn

]

=
∑

n

exp

{
j

{[
−kc + k2

y

4kc
−
(

2 + k2
y

4k2
c

)
kb

]}
�xn − jky yn

}

=
∑

n

exp
[− j

(
k ′

b − k0
)
�xn − jky yn

]
, (9.15)

where k ′
b = [2 + (k2

y/4k2
c )]kb and k0 = (k2

y/4kc) − kc.
The term

exp

(
− j

(
2 + k2

y

4k2
c

)
kb�xn

)
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in Eq. (9.15) represents a stretched and new spatial frequency k ′
b = [2 + (k2

y/4k2
c )]kb

in spatial domain signal sc(x,ωD). The amount of stretched frequency is constant for
a given value of ky. It can be implemented by varying the sampling frequency fs.
This item can be neglected if only the magnitude of the radar image reconstruction
is concerned.

Given s(x) and S(k) as the Fourier transform pair, the well-known modulation and
shift property shows that

S (k − k0) ⇔ s (x) exp ( jk0x) .

The term k0 in Eq. (9.15) states that in the wavenumber (kb) domain, Sc(kb,ky)
has a ky-dependent shift of k0 = (k2

y/4kc) − kc. This implies that the corresponding
spatial domain function sc(x, ku), which is in the range–Doppler domain, must be
multiplied by a factor

exp

[
− j

(
k2

y

4kc
− kc

)
�xn

]

to correct or compensate the constant frequency shift:

s ′
c

(
x,ky

) = sc
(
x,ky

)
exp

[
− j

(
k2

y

4kc
− kc

)
�xn

]
. (9.16a)

Since kc is a constant wavenumber corresponding to the carrier frequency of the
radar-transmitting signal, it will not cause any difference in the reconstructed image
quality. Therefore, Eq. (9.16a) can be simplified as follows:

s ′
c

(
x,ky

) = sc
(
x,ky

)
exp

[
− j

k2
y

4kc
�xn

]
. (9.16b)

Equation (9.16) is considered as differential azimuth compression (DAC) because it
not only performs the spatial shift of �xn on sc(x,ky) but also provides a shift quan-
tity of k2

y/4kc that depends on the azimuth value of ky. This technique, originally
developed by Stolt for seismic data processing, is called Stolt interpolation (or ap-
proximate Stolt interpolation in other textbooks).

Alternatively, the Stolt interpolation can be derived in a simple way as

√
4k2 − k2

u (xn − X0) = 2k

(
1 − k2

u

4k2

)1/2

�xn

≈ 2k

(
1 − k2

u

8k2

)
�xn.

=
(

2k − k2
u

4k

)
�xn.
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FIGURE 9.3 Block diagram of Stolt interpolation algorithm.

Equation (9.15) can then be expressed as, assuming |P(k)| = 1.

Sc(k, ku) =
∑

n

exp[− jkx (xn − X0) − jky yn]

=
∑

n

exp[− j(k ′ − k0)�xn − jky yn],

where k′ = 2k and k0 = k2
u/4k. Again, the parameter k′ can be considered as a stretch

of the k-axis; while k0 is a constant phase and depends on both ku and k. Since k =
kc + kb and kc � kb; therefore k 
 kc. This is the same results as derived by Stolt
interpolation.

Figure 9.3 shows the block diagram representation of the Stolt interpolation pro-
cessing of SAR data.

The Stolt interpolation technique will be used to process some synthesized im-
age data, employing the same radar and signal parameters as listed in Section 8.2.
The broadside SAR with six targets is described first, followed by the squint SAR
system.

9.3.1 System Model of Broadside SAR with Six Targets

A 2D system model of a broadside SAR with six targets is depicted in Fig. 9.4,
where the six targets are located at (R0a,y1), (R0b,y2), (R0c,y2), (R0d,y2), (R0e,y2), and
(R0a,y3), respectively. The vertical axis represents the azimuth lines (or cross-range
samples), and the horizontal axis shows the range that is perpendicular to the flight
path. Lsa, Lsb, Lsc, Lsd, and Lse are the synthetic aperture lengths corresponding to
ranges R0a, R0b, R0c, R0d, and R0e, respectively. The total synthetic aperture length
that covers the six-target region is Ltot = Lsa + (y3 – y1).
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FIGURE 9.4 System model of a six-target broadside SAR.

The received echo signal array based on Fig. 9.4 is displayed in Fig. 9.5. The
horizontal axis is changed from time samples, as discussed in Chapter 8, to slant
range samples. The slant range sample is shown with index n, where n = r/Rs with
r and Rs as the slant range and slant range sample spacing, respectively. Normally,
the curved line will occur at the beginning and end of the received signal array due
to slant range differences at various radar positions. The differences are negligible
for broadside SAR and are replaced with straight lines instead. The slant range is
therefore considered approximately equal to range in the broadside case.
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FIGURE 9.5 Received signal array based on Fig. 9.4.



P1: OTA/XYZ P2: ABC
c09 JWBK230/Wang July 9, 2008 20:54 Printer Name: Yet to Come

296 STOLT INTERPOLATION PROCESSING ON SAR IMAGES

The symbols <r1>, <r2> . . . <r6> are the received signal arrays corresponding
to targets 1,2, . . . ,6, respectively. Naza, Nazb, Nazc, Nazd, and Naze are the number
of samples within the associated synthetic aperture length, which corresponds to
ranges R0a, R0b, R0c, R0d, and R0e, respectively. The parameters D1,D2, . . . , D5 are
defined as follows:

D1 = integer of {[Lsa − (y3 − y1)]/As}
D2 = integer of {[(y2 − y1) − (Lsb2 − Lsa2)]/As}
D3 = integer of {[(y2 − y1) − (Lsc2 − Lsa2)]/As}
D4 = integer of {[(y2 − y1) − (Lsd2 − Lsa2)]/As}
D5 = integer of {[(y2 − y1) − (Lse2 − Lsa2)]/As}

Here As is the sample spacing along the azimuth axis (or m axis), and Lsx2 equals half
of Lsx with x equal to a, b, c, d, and e, respectively. The size of total array samples
along the vertical axis (or m axis) is 1 to 2Naza – D1. NRb, NRc, NRd, and NRe are the
sample differences between R0a and R0i for i = b, c, d, e. They are defined as follows:

NRb = integer of ((R0b − R0a)/Rs)

NRc = integer of ((R0c − R0a)/Rs)

NRd = integer of ((R0d − R0a)/Rs)

NRe = integer of ((R0e − R0a)/Rs)

The array size along the horizontal axis (or n axis) is 1 to NRe + Nr. The sizes of
signal arrays for <r1> to <r6> are listed below:

Signal Azimuth Slant range

<r1> 1 to Naza 1 to Nr

<r2> D2 to (Nazb + D2) (1 + NRb) to (Nr + NRb)
<r3> (Naza – D1) to (2Naza – D1) 1 to Nr

<r4> D3 to (Nazc + D3) (1 + NRc) to (Nr + NRc)
<r5> D4 to (Nazd + D4) (1 + NRd) to (Nr + NRd)
<r6> D5 to (Naze + D5) NRe to (Nr + NRe)

9.3.2 Synthesis of Broadside SAR Data Array

The following target location parameters are used to generate the received data array
<ri>, i = 1,2, . . . ,6 for the broadside SAR system.

y1 = 0 m

y2 = 100 m

y3 = 150 m

R0a = 7500 m
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R0b = 7650 m

R0c = 8000 m

R0d = 8350 m

R0e = 8500 m

In terms of the given parameters of target locations and radar signals, the follow-
ing data can be computed:

Lsa = 225 m

Lsb = 229.5 m

Lsc = 240 m

Lsd = 250.5 m

Lse = 255 m

Naza = Lsa/As = 563

Nazb = Lsb/As = 573

Nazc = Lsc/As = 601

Nazd = Lsd/As = 627

Naze = Lse/As = 637

D1 = integer of ((Lsa − (y3 − y1))/As) = 187

D2 = integer of ((y2 − y1) − (Lsb2 − Lsa2))/As = 244

D3 = integer of ((y2 − y1) − (Lsc2 − Lsa2))/As = 231

D4 = integer of ((y2 − y1) − (Lsd2 − Lsa2))/As = 218

D5 = integer of ((y2 − y1) − (Lse2 − Lsa2))/As = 212

Number of azimuth lines M = 2 × Naza – D1 = 939

Number of range samples N = Nr + NRe = 281

The waveforms of the real part of the synthesized signal arrays <r1>,
<r2>, . . . ,<r6> are shown in Fig. 9.6. From left to right, Figs. 9.6a and 9.6b are
<r1> and <r2>, Figs. 9.6c and 9.6d are <r3 > and <r4>, and Figs. 9.6e and
9.6f are <r5> and <r6>. The vertical axis represents the number of azimuth lines,
where 1 out of every 30 azimuth lines is sequentially displayed throughout the to-
tal synthetic aperture length. The horizontal axis represents the range samples, with
sample spacing of 10 m each and corresponding to a 30-MHz sampling rate.

Let {Nai : Naf, Nri : Nrf} be the size of a signal array, where Nai is the starting
sample number and Naf is the ending sample number along the azimuth axis (or
y axis), while Nri is the starting sample number and Nrf is the ending sample number
along the range axis (or x axis).

The sizes of signal arrays for <r1> to <r6> can be computed as follows:

<r1> {1:563, 1:181}
<r2> {244:817, 16:196}
<r3> {376:939, 1:181}

<r4> {231:832, 51:231}
<r5> {218:845, 86:266}
<r6> {212:849, 101:281}
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FIGURE 9.6 Waveforms of the real part of individual echo signal based on Fig. 9.4.

The overall received signal array s(t,u), which is the combination (or sum) of six
signal arrays <r1>, <r2>, . . . ,<r6>, is depicted in Fig. 9.7. The real part is in Fig.
9.7a; the imaginary part, in Fig. 9.7b. The size of the overall received signal array is
{1:939, 1:281}. Accordingly, the FFT size used to process this time-domain signal
array will be chosen as Ny = 2048 and Nx = 512.

9.3.3 Simulation Results

The data array s(t,u), represented by Eq. (9.1) and shown in Fig. 9.7, is first 2D
Fourier-transformed to become S(ω,ωD) as shown in Eq. (9.3). The range reference
function P*(ω), which is the complex conjugate of the transmitting function P(ω),
is then multiplied by the data array S(ω,ωD) to become the range-compressed data
array S1c(ω,ωD). The range-compressed data are then inverse-Fourier-transformed to
become s1c(t,ωD). Figure 9.8 displays the range-compressed data array s1c(t,ωD) in
the range–Doppler frequency domain. The origin of the Doppler frequency spectrum
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FIGURE 9.7 Waveforms of received signal based on Fig. 9.4.

is at bin 1024. The pulse repetition frequency (or sampling frequency) along the
azimuth axis is f PRF, and equals 500 Hz in this example.

Figure 9.9 is the top view of s1c(t,ωD) in the range–Doppler frequency domain.
Only 1 out of every 50 rows along the Doppler frequency bins is displayed. As can
be seen, the range-compressed signal has five columns of spectrum array along the
range axis. Each spectrum array extends uniformly (about 80%) along the Doppler
frequency axis. The first column array is located at range sample 181, which corre-
sponds to the number of samples within the LFM pulse duration. The second col-
umn array appears at range sample 196 and is 15 range samples away from the
first column array. Given the range sample spacing Rs = 10 m, the 15 range sam-
ples equal 150 m. The third column array appears at range sample 231, and is 50
range samples away from the first column array, which corresponds to a range dis-
tance of 500 m. The fourth column array appears at range sample 236, has a range
sample number difference of 85 from the first column array, and corresponds to a
range distance of 850 m from the first column array. The fifth column array appears
at range sample 281 and is 1000 m away from the first column array with a range
sample number difference of 100. Notice that the Doppler frequency spectrum ap-
pears similar for column arrays 2–5, but column array 1 seems different from the
remaining four column arrays. This is because two targets contribute to the Doppler
frequency spectrum on column array 1, and their phases cancel each other at some
frequency bins.
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FIGURE 9.8 3D view of s1c(t,ωD) in range–Doppler frequency domain.
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FIGURE 9.9 2D view of s1c(t,ωD) in range–Doppler frequency domain.

Range samples

Doppler frequency bins

M
ag

ni
tu

de



P1: OTA/XYZ P2: ABC
c09 JWBK230/Wang July 9, 2008 20:54 Printer Name: Yet to Come

STOLT INTERPOLATION PROCESSING OF SAR DATA 301

Since the simulated targets are located between x = 7500 m and x = 8500 m,
the center of the target locations is chosen at X0 = R0c = 8000 m. The ideal target
location used by the reference function (or matched filter) for azimuth compression
is then chosen at (8000, 0). The corresponding azimuth reference function can be
synthesized in two ways.

1. The 1D azimuth reference function in s (slow time) domain, given the fDc (=
0 for broadside case) and frequency changing rate β, can be designed as

β = − 2V 2

λR0c
,

haz (m) = exp
[

jπβ(m�s)2
]
,

where �s = 1/f PRF is the pulse repetition interval and −Nazc2 ≤ m ≤ Nazc2.
The sample number Nazc corresponds to the reference point located at X0 =
R0c = 8000 m. The reference function Haz(ωD) can be obtained by taking FFT
on haz(s), with s = m�s.

2. The 2D azimuth reference function can be obtained by substituting X0 = 8000
in Eq. (9.10) and discarding the range matched filter function P*(ω):

Haz (ω,ωD) = exp


 j

√
4
ω2

c2
− ω2

D

V 2
8000


 .

Notice that the frequency ω is in passband; that is, ωc − ω0 ≤ ω ≤ ωc + ω0

with ωc as the carrier frequency and 2ω0 as the bandwidth of the transmitting
signal. The frequency ωD corresponds to the true Doppler frequency.

Since no range migration correction is needed in broadside case, the 2D azimuth
reference function Haz(ω, ωD) will be approximated by 1D function Haz(ωD), while
both 1D and 2D reference functions will be applied to the squint SAR case later.

The azimuth compression is performed by multiplying every column of the range-
compressed data array s1c(t,ωD) by the reference function Haz(ωD) to become the 2D
compressed signal sc(t,ωD). Since only one azimuth reference function is used to
perform the azimuth compression on the whole data array, the result is roughly com-
pressed along the azimuth direction. Figure 9.10 is a 3D view of the target function
after taking the inverse FFT on the roughly compressed signal sc(t,ωD).

Figures 9.11 and 9.12 display two side views of Fig. 9.10, one from the range
direction into the targets and the other from the azimuth direction into the targets,
respectively.

Figure 9.11 shows that the targets appear as pulses located at five different ranges.
The center one is located at range sample 231, and corresponds to the reference point
located at x = X0 = 8000 m. The large magnitude of this narrow pulse proves that it
is accurately compressed in both range and azimuth directions. The other four pulses,
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FIGURE 9.10 3D view of the roughly compressed six-target function.

appearing at range samples 181, 196, 266, and 281, have smaller magnitudes and are
the targets roughly compressed in the azimuth direction.

Figure 9.12 shows three pulses located at different positions along the azimuth
axis. The center pulse is at azimuth sample 832, and corresponds to the reference
target for azimuth compression. This position corresponds to the reference function
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FIGURE 9.11 Side view, from the range direction, of Fig. 9.10.
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FIGURE 9.12 Side view, from the azimuth direction, of Fig. 9.10.

located at y = 0. The other two pulses appear at azimuth samples 582 and 958, and
correspond to targets located at y = −100 m [(582 – 832) = −250 samples away]
and y = 50.4 m [(958 − 832 = 126 samples away], respectively.

The roughly compressed data array sc(t,ωD) will now be processed by the Stolt in-
terpolation, which improves the image quality through the differential azimuth com-
pression (DAC) technique. The DAC technique is based on the implementation of
Eq. (9.16b), which requires computation of two items. The first item is the range
difference �xn = xn – X0, where xn is the range value along the range axis and
X0 = 8000 m corresponds to range sample 231 as shown Fig. 9.11. For n = 1,2, . . . ,
Nx along the range axis with Nx = 512 in this example, the range difference can be
computed as

�xn = (n − 231)Rs .

The second item is k2
y/4kc, where kc = ωc/c and ky = (2πm fPRF/V Ny). Here

m = 1,2, . . . , Ny and Ny = 2048 in this example. For a given value of m along the
Doppler frequency axis, one can compute ky first, then multiply every range sample
of sc(t,ωD) by e− j(k2

y/4kc)�xn .
After the Stolt interpolation process, the final target locations can be obtained by

taking the IFFT with respect to ωD. The more accurately compressed and recon-
structed target function is obtained and shown in Fig. 9.13.

By comparing the two plots in Figs. 9.10 and 9.13, the difference is obvious. The
new plot with DAC improves greatly in both magnitude and sidelobe compression of
the target pulses.
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FIGURE 9.13 3D view of refocused six-target function.

Figures 9.14 and 9.15 display two side views of Fig. 9.13. The first view is from
the range direction into the targets, and the second is from the azimuth direction into
the targets. The magnitudes of the compressed pulses, located at the two sides of
the center one, reach about 130 in Figs. 9.14 and 9.15. In Figs. 9.11 and 9.12, their
magnitudes are less than 40.
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FIGURE 9.14 Side view, from the range direction, of Fig. 9.13.
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FIGURE 9.15 Side view, from the azimuth direction, of Fig. 9.13.

The principles of synthesizing radar image data and the radar signal parameters
used in broadside SAR will be applied to the squint SAR system. In addition, a
nonzero squint angle θq and different specification of target locations will be incor-
porated into the squint SAR system. These are described next.

9.3.4 System Model of Squint SAR with Six Targets

The 2D system model of a squint SAR with six targets and a squint angle θq is
shown in Fig. 9.16. Here the vertical axis represents azimuth samples (or lines), and
the horizontal axis represents range. The six targets are located at (R0a,y1), (R0b,y2),
(R0c,y3), (R0d,y4), (R0e,y5), and (R0a,y6), respectively. The synthetic aperture length
labeled as Lsa, Lsb, Lsc, Lsd, and Lse corresponds to targets located at ranges R0a,
R0b, R0c, R0d, and R0e, respectively.

The radar signal array based on the system model described above is displayed in
Fig. 9.17. The horizontal axis is changed from the range to slant range sample index
n with n = r/Rs, where r is the slant range. The vertical axis is changed from the
azimuth position to azimuth lines (or cross-range samples). The curved lines, which
appear at the beginning and end of the radar pulse duration, are caused by the slant
range difference during the time period when the target is illuminated by the radar
beam. The slant range sample difference at two ends of the curved line is represented
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FIGURE 9.16 System model of a 6-target Squint SAR.

as �x with x = a,b, . . . ,e. The symbol �a is defined as,

�a = integer of



[

R0a

cos(θq+0.5θH ) − R0a

cos(θq−0.5θH )

]
Rs


 .

Other symbols, �b, �c, �d, and �e, can be computed accordingly.
The symbols <r1>,<r2>, . . . ,<r6> are the received signal array corresponding

to targets 1,2, . . . ,6, respectively. Naza, Nazb, Nazc, Nazd, and Naze are the number
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FIGURE 9.17 Received signal array derived from Fig. 9.16.
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of samples within the associated synthetic aperture length. The parameters D1, Dae,
Dbe, Dce, and Dde are defined as follows:

D1 = integer of {[Lsa − (y6 − y1)]/As}
Dae = integer of [(Lse2 − Lsa2)/As]

Dbe = integer of [(Lse2 − Lsb2)/As]

Dce = integer of [(Lse2 − Lsc2)/As]

Dde = integer of [(Lse2 − Lsd2)/As]

The parameters NRb, NRc, NRd, and NRe are defined in the same form as in the
broadside SAR case.

9.3.5 Synthesis of Squint SAR Data Array

The following are the specifications of target locations used to generate the received
data array:

R0a = 7500 m

R0b = 7650 m

R0c = 8000 m

R0d = 8350 m

R0e = 8500 m

θq = 6◦

y1 = R0a × tanθq = 788.3 m

y2 = R0b × tanθq = 804 m

y3 = R0c × tanθq = 840.8 m

y4 = R0d × tanθq = 877.6 m

y5 = R0e × tanθq = 893.4 m

y6 = y1 +150 = 938.3 m

Given the target locations and the radar signal parameters, the following data can
be obtained:

Lsa = R0a × [tan(θq + 0.5 θH) − tan(θq − 0.5 θH)]

= 227.5 m

Lsb = 232 m

Lsc = 242.6 m

Lsd = 253.3 m

Lse = 257.8 m

Naza = Lsa/As = 569

Nazb = 581
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Nazc = 607

Nazd = 633

Naze = 644

D1 = 193

Dae = 37

Dbe = 32

Dce = 18

Dde = 5

NRb = 15

NRc = 50

NRd = 85

NRe = 100

�a = 2

�b = 2

�c = 3

�d = 3

�e = 3

Number of azimuth lines M = 2 × Naza – D1 + Dae = 982

Number of slant range samples N = c × Tp + (R0e – R0a)/Rs = 281

The real parts of the synthesized signal waveform corresponding to targets 1–6
are shown in Fig. 9.18. The vertical axis shows the number of azimuth lines, where 1
out of every 30 azimuth lines is sequentially displayed throughout the total synthetic
aperture length. The horizontal axis shows the slant range samples, with a sample
spacing of 10 m and corresponding to a 30 MHz sampling rate.

The sizes of signal arrays for <r1> to <r6> are shown below.

Signal Azimuth Slant range

<r1> (1 + Dae) to (Naza + Dae) 1 to Nr + �a

(38:606, 1:183)
<r2> (1 + Dbe) to (Nazb + Dbe) (1 + NRb) to (Nr + NRb + �b)

(33:613, 16:198)
<r3> (1 + Dce) to (Nazc + Dce) (1 + NRc) to (Nr + NRc + �c)

(19:625, 51:234)
<r4> (1 + Dde) to (Nazd + Dde) (1 + NRd) to (Nr + NRd + �d)

(6:638, 86:269)
<r5> 1 to Naze (1 + NRe) to (Nr + NRe + �e)

(1:644, 101:284)
<r6> (Naza + Dae – D1) to (2Naza + Dae – D1) 1 to Nr + �a

(413:982, 1:183)
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FIGURE 9.18 Waveforms of the real part of individual echo signal from Fig. 9.16.

The overall synthesized signal array s(t,u), which is the combination (or sum) of
the six signal arrays <r1> to <r6>, is displayed in Fig. 9.19. The real part is shown
in Fig. 9.19a; the imaginary part, in Fig. 9.19b. The size of the overall synthesized
signal array is {1:982, 1:283}. Accordingly, the FFT size used to process this signal
array remains the same as in the broadside SAR case; that is, Ny = 2048 and Nx =
512.

9.3.6 Simulation Results

The data array s(t,u), represented by Eq. (9.1) and shown in Fig. 9.19, is first
2D Fourier-transformed to become S(ω,ωD). The range reference function P*(ω)
is multiplied by the received baseband signal S(ω,ωD) to become the range-
compressed signal S1c(ω,ωD). The result is then inverse-Fourier-transformed to be-
come s1c(t,ωD). Figure 9.20 is a 3D view of the range-compressed function s1c(t,ωD)
in the range–Doppler frequency domain with frequency origin at bin 1. Comparing
the spectrum with that in the broadside case, one can see that (1) the magnitude of the
spectrum varies significantly along the Doppler frequency axis, and (2), the spectrum
splits into two portions. As discussed previously, this is because the squint angle θq

causes significant range migration, and the observed spectrum is the fallback version
of the true spectrum of s1c(t,ωD).

Figure 9.21 is a 2D view of s1c(t,ωD) in the range–Doppler frequency domain.
Only 1 out of every 30 rows is displayed. There are five columns of spectrum array
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FIGURE 9.19 Waveforms of received signal from Fig. 9.16.
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FIGURE 9.20 3D view of s1c(t,ωD) in range–Doppler frequency domain.
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FIGURE 9.21 2D view of s1c(t,ωD) in range–Doppler frequency domain.

in the display, and each array corresponds to one of the targets located at ranges
R0a,R0b, . . . ,R0e (there are two targets contribute to the spectrum at location R0a). In
addition, every column array splits in two parts and occupies about 80% of the whole
Doppler frequency range.

The first column array of the Doppler spectrum corresponds to targets 1 and 2 and
tilts from range samples 181 to 185. The number 181 corresponds to the number of
samples in the LFM pulse duration. The second column array of the Doppler spec-
trum tilts from range samples 196 to 200, which corresponds to a target that is 150 m
away from the first column array. The third column array tilts from range samples
231 to 235, and corresponds to the target located 500 m away from the first column
array. The fourth column array tilts from range samples 266 to 270, and corresponds
to the target that is 850 m away from the first column array. The fifth column array
tilts from range samples 281 to 285, and corresponds to a target that is 1000 m away
from the first column array. The Doppler frequency spectrum looks similar for col-
umn arrays 2 to column 5, but column array 1 seems different from the other four
column arrays. This is because two targets contribute to the Doppler spectrum on
column array 1, and their phases cancel each other out at some frequency bins.

The matched filter for azimuth compression is chosen with a target located at the
center of the target area, namely, (x,y) = (R0c, 0) = (8000, 0). For image quality com-
parison purpose, both the 1D reference function Haz(ωD) and 2D reference function
Haz(ω,ωD) will be designed as the azimuth matched filter to reconstruct the targets.
The 1D azimuth filter Haz(ωD) will first be used to reconstruct targets, and the 2D
azimuth filter Haz(ω,ωD) will be used later.
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FIGURE 9.22 Synthesized 1D azimuth reference function for squint SAR system.

The azimuth matched filter Haz(ωD), used in Chapter 8 for squint SAR processing
based on the range–Doppler algorithm, is adopted here to serve as the 1D azimuth
reference function. The frequency spectrum of Haz(ωD) is shown again in Fig. 9.22
for convenience.

Azimuth compression is performed by multiplying every column of s1c(t,ωD) by
the reference function Haz(ωD) to become the 2D compressed signal sc(t,ωD). Fig-
ure 9.23 is a 3D view of the reconstructed target function after taking the inverse
spatial DFT on the roughly compressed signal sc(t,ωD). The roughly reconstructed
signal array has five targets located at the same y value along the azimuth direc-
tion as expected from the slant range viewpoint. The relative positions between
the targets are not reconstructed correctly and will be corrected through the Stolt
interpolation.

Two side views of Fig. 9.23, one from the range direction into the targets and the
other from the azimuth direction into the targets, are displayed in Figs. 9.24 and 9.25.
Figure 9.24 shows that the targets appear as pulses located at five different ranges.
The center pulse is located at range sample 233, and corresponds to the azimuth
reference function with range sample chosen to be x = X0 = 8000. It appears to be
accurately compressed in both range and azimuth directions. The other four pulses
appear at range samples 183, 198, 233, and 283 and have smaller magnitudes. These
four pulses are roughly compressed in the azimuth direction.

Figure 9.25 shows that the targets appear as two pulses located along the
azimuth axis. The left pulse is at azimuth sample 626 and corresponds to the az-
imuth reference function located at y = 0. The right pulse appears at azimuth sample
1002. This pulse corresponds to 376 samples, or 150.4 m, away from the reference
target.
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FIGURE 9.23 3D view of roughly compressed target function.
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FIGURE 9.24 Side view, from the range direction, of Fig. 9.23.
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FIGURE 9.25 Side view, from the azimuth direction, of Fig. 9.23.

The Stolt interpolation algorithm requires computation of two parameters:

1. The range difference �xn = xn − X0. Given that X0 corresponds to a range
sample 233, the range difference between any range sample n and the reference
target can be computed as �xn = (n − 233) Rs.

2. The ratio k2
y/4kc. Here, kc = (ωc/c) and ky is more complicated than in the

case of the broadside SAR. As shown in Fig. 9.20, the Doppler frequency
spectrum of the squint SAR system has two characteristics: (1) the true or
original Doppler spectrum is a passband signal having a lower frequency edge
fDL and upper frequency edge fDU; and (2) because of the natural digitization
at sampling frequency f PRF, the Doppler frequency spectrum folds from pass-
band to baseband and splits into two parts to become the observable base-
band frequency spectrum. The high-frequency part appears at the lower side
of the baseband spectrum. Accordingly, the observed Doppler baseband fre-
quencies fDL and fDU need to be adjusted to obtain their true values in the
passband. Given squint angle θq, wavelength λ, and radar speed V , as shown
in Eq. (6.16), the true values of fDL and fDU can be obtained. Let Ny be the
FFT size used to transform the Doppler frequency spectrum, and NyL and NyU

be the Doppler frequency bin numbers corresponding to the true (or pass-
band) fDL and fDU. The corresponding true value of ky can be computed as
ky = m �ky, where �ky = (2π fPRF/VNy) and m = NyL to NyU. Differential az-
imuth compression is then implemented by multiplying every range sample of
sc(t, ωD) by exp[− j(k2

y/4kc)�xn].
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FIGURE 9.26 3D view of refocused target function.

After the Stolt interpolation, the final target function can be obtained by taking
the inverse FFT with respect to the Doppler frequency. The result is shown in Figure
9.26.

By comparing Fig. 9.26 with Fig. 9.23, it can be seen that the new target function
with differential azimuth compression improves greatly in magnitude with the target
pulses. It also displays the correct target positions along the azimuth axis.

Two side views of Fig. 9.26, one from the range direction into the targets and the
other from the azimuth direction into the targets, are depicted in Figs. 9.27 and 9.28,
respectively.

Figure 9.27 shows that there are five pulse-like signals along the range axis, with
the center signal located at range sample 233 and corresponding to the azimuth ref-
erence function. The magnitude of this center signal remains the same as the one in
Fig. 9.24, while the magnitudes of the other four signals are improved from less than
30 in Fig. 9.24 to over 40 in Fig. 9.27.

Figure 9.28 shows that there are six pulses located at different azimuth lines
(or y axes), which differ from the two pulses shown in Fig. 9.25. This demon-
strates that the differential azimuth compression accurately compressed the tar-
gets and reconstructed the target locations correctly. The six pulses, corresponding
to targets 1–6, are located at azimuth samples 495, 535, 626, 718, 758, and 871
respectively.

By setting target 1 at the position of y = 0, the sample number differences be-
tween target 1 and targets 2–6 are 40, 131, 223, 263, and 376, respectively. Given
the azimuth sample spacing As = 0.4 m, the positions of y2 to y6 (corresponding
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FIGURE 9.27 Side view, from the range direction, of Fig. 9.26.
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FIGURE 9.28 Side view, from the azimuth direction, of Fig. 9.26.
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to targets 2–6) can be computed and compared against the specifications listed
below:

Simulated Specification

y1 = 0 0
y2 = 16 m 15.7 m
y3 = 52.4 m 52.5 m
y4 = 89.2 m 89.3 m
y5 = 105.2 m 105.1 m
y6 = 150.4 m 150 m

The second azimuth reference function Haz(ω,ωD), based on Eq. (9.10) with
X0 = 8000 m, is now applied to process the same image data. By taking the inverse
DFT on the 2D azimuth reference function Haz(ω,ωD) with respect to the frequency
domain, the range–Doppler frequency-domain view of Haz(t,ωD) is shown in
Fig. 9.29 with bin 1 as the Doppler frequency origin. As can be seen, the Doppler
frequency spectrum of Haz(t,ωD) is folded from passband to baseband and divided
in two portions, the upper one representing the low-frequency band and the lower
one, the high-frequency band. The thin-wall-like Doppler frequency spectrum is not
equal in magnitude and aligns around range sample 440.

A different view of Fig. 9.29 is shown in Fig. 9.30, where 1 out of 50 rows along
the Doppler frequency axis is displayed. As can be seen, the column-like Doppler
frequency spectrum has two portions along the Doppler frequency axis and tilts to
the left, opposite to the squint targets spectrum shown in Fig. 9.21. The column
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FIGURE 9.29 3D view of Haz(t,ωD).
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FIGURE 9.30 2D view of Haz(t,ωD).

spectrum is located at range sample 442 and tilts toward the left at range sample 438
along the Doppler frequency direction.

The 2D azimuth reference filter Haz(ω,ωD) is then multiplied by the 2D range
compressed data array S1c(ω,ωD). The result becomes the roughly compressed data
array. By using the same process of differential azimuth compression as in the 1D
azimuth matched filtering case, the final target function can be obtained.

Figure 9.31 shows the reconstructed targets based on the 2D azimuth reference
function. Compared with the results from the 1D azimuth matched filter, the 2D
azimuth filter appears to have a better pulse compression ratio, and therefore better
image quality.

Two side views of Fig. 9.31, one from the range direction into the targets and the
other from the azimuth direction into the targets, are depicted in Figs. 9.32 and 9.33,
respectively.

By comparing Figs. 9.32 and 9.33 with Figs. 9.27 and 9.28, one can see that the
targets appear sharper in Figs. 9.32 and 9.33 than those in Figs. 9.27 and 9.28. The
magnitudes of five pulses are near or above 70 in Figs. 9.32 and 9.33, while in Figs.
9.27 and 9.28, the pulse magnitudes are around 43 only.

From Figs. 9.32 and 9.33, one can see that the reference target, located at range
sample 161 and azimuth sample 377, is different from that using a 1D azimuth
matched filter. The range sample 161 is the result of the convolution of 2D reference
function Haz(t,ωD) and the 2D range-compressed data array s1c(t,ωD). The Haz(t,ωD)
peaks around range sample 442, while in the 2D range-compressed data array
the reference target is located at range sample 231. The convolution of these two
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FIGURE 9.31 3D view of a reconstructed target function.

functions will have a peak at Mod[(442 + 231), 512] = 161. Similarly, azimuth sam-
ple 377 can be computed accordingly. The relative positions among other targets are
quite accurate. The third (center and reference) target, located at range sample 161,
is 50 range samples (50 × 10 = 500 m) away from target 1 (located at range 111)
and targets 5 (at range 211). The distance between the targets 1 and 2 is 15 samples
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FIGURE 9.32 Side view, from the range direction, of Fig. 9.31.
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FIGURE 9.33 Side view, from the azimuth direction, of Fig. 9.31.

(15 × 10 = 150 m), which is also true for targets 4 and 5. Similarly, the locations of
six targets along the azimuth direction are 244, 284, 377, 469, 509, and 620, respec-
tively. With target 1 be assigned as y1 = 0 and with azimuth sample spacing As =
0.4 m, the simulated results and original specifications are listed below:

Simulated Specification

y1 = 0 0
y2 = 16 m 15.7 m
y3 = 53.2 m 52.5 m
y4 = 90 m 89.3 m
y5 = 106 m 105.1 m
y6 = 150.4 m 150 m

9.4 RECONSTRUCTION OF SATELLITE RADAR IMAGE DATA

A satellite-based (RADARSAT-1) raw radar image file, generated by the Canada
Space Agency and processed and distributed by MDA Geospatial Services Inc., will
be used to reconstruct the radar image. The key parameters of this radar image data
are listed below:

Antenna size (L × W): 15 × 1.5 m

Closest range between target and radar R0 = 989,340 m
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Radar image data array size:

Number of azimuth lines = 1536

Number of range samples = 2048

Effective radar velocity Vr = 7062 m/s

Radar signal:

fc = 5.3 GHz

θH = λ/L = 0.0377 (radian)

θq = −1.6◦

Pulse duration time Tp = 41.74 µs

Range FM rate α = 0.72135 MHz/µs

Pulse bandwidth: 30.111 MHz

Data format: baseband complex data, 4 bits each

A/D sampling frequency fs = 32.317 MHz

Pulse repetition frequency f PRF = 1257 Hz

On the basis of this information, the following data can be computed:

Number of range samples in LFM pulse = fs Tp

= 1349

Doppler frequency bandwidth BDop = 2Vcos θq /L

= 940 Hz

Doppler frequency centroid fDc = 2Vsin θq /λ

= − 6968 Hz

Doppler ambiguity number M = −5

Azimuth FM rate (β) = 2V2cos3 θq/(λR0)

= 1780 Hz/s

Synthetic aperture length Ls = R0θH

= 3733 m

Range sampling space Rs = c/fs
= 9.28 m

Azimuth sampling space As = V/f PRF

= 5.62 m

Number of azimuth samples within Ls = 664.

The complex baseband data, which appear in an in-phase–quadrature-phase for-
mat with 4-bit accuracy each, is first decoded and modified with automatic gain con-
trol provided with the data set. The real and imaginary part of the received signal,
sb(m,n) with m = 1,2, . . . ,1536 and n = 1,2, . . . ,2048, is shown in Fig. 9.34: Fig.
9.34a shows the real part and Fig. 9.34b the imaginary part, of the baseband signal.
Only 1 out of 50 azimuth lines is shown in the plot.
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FIGURE 9.34 Waveforms of the real and imaginary parts of a received satellite baseband
signal. (With permission from MDA Geospatial Services.)

A range matched filter is required to perform range compression on the received
raw data. Given the sampling frequency fs, the chirp rate α, and the radar beamwidth,
the range matched filter can be designed as

hr (n) = exp
[

jπα (n�t)2
]
,

where �t = 1/fs is the sampling interval, α = 0.72135 MHz/µs, and −674 ≤ n ≤
674.

Range compression is then performed by first transforming both the matched fil-
ter hr(n) and every line of the range signal sb(m,n) into the frequency domain us-
ing a 4096-point FFT. The product of the transformed signal and matched filter is
then inverse-Fourier-transformed to become a time-domain range-compressed signal
s1c(m,n). The range-compressed signal s1c(m,n), which appears in the range-azimuth
(or time–spatial) domain, is shown in Fig. 9.35 for n = 1349–3396. Here the plot is
shown in image format, with a gray level used to represent the magnitude of the sig-
nal (the white color corresponds to a large magnitude and the dark color corresponds
to a small magnitude).

Since the sample length of the range matched filter is 1349, the range-compressed
signal s1c(m,n), which is obtained through 4096-point IFFT, will have range samples
1–4096. Because of the edge effect of circular convolution of IFFT, only range sam-
ples 1349–3396, corresponding to n′ = 1,2, . . . ,2048, are chosen for further image
compression.

The range-compressed signal array s1c(m,n′), for n′ = 1,2, . . . ,2048, is then trans-
formed into range–Doppler frequency-domain signal S1c(m,n). This is done by taking
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FIGURE 9.35 Image of a received satellite signal after range compression.

a 2048-point FFT on every column of the range–compressed signal. Since the sample
length of the azimuth pulse is Ls/As = 664, and the number of azimuth lines of raw
data is 1536, MFFT = 2048 is chosen as the azimuth FFT length. Figure 9.36 displays
an image of the range-compressed signal S1c(m,n) in the range–Doppler frequency
domain.
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FIGURE 9.36 Image of a range-compressed signal in range–Doppler frequency domain.
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The range-compressed data array S1c(m,n) in the range–Doppler frequency do-
main serves as the basis for image reconstruction. This data array will first be pro-
cessed in the wavenumber domain based on Stolt interpolation, followed by the
range–Doppler algorithm.

The Stolt interpolation starts with a reference function serving as the azimuth
matched filter to perform the bulk azimuth compression, followed by differential
azimuth compression. The 2D azimuth matched filter is designed as follows:

Haz(ω,ωD) = exp


 j

√
4ω2

c2
− ω2

D

V 2
X0


 .

Here X0 = 1,000,000 m is the reference range, ω = 2π [fc + (nfs/2048)] and ωD

= 2π f PRF(m + 2048(M − 1))/2048. The row and column variables m, n = 1,2, . . .,
2048, and M = −5. The variable ω refers to the passband frequency of the time-
domain signal, and ωD is the true Doppler frequency along the azimuth direction.

The range-compressed signal S1c(m,n), in range–Doppler frequency (t,ωD) do-
main, is then transformed into (ω,ωD) domain by taking a 2048-point FFT on every
row of S1c(m,n) to become S2(m,n). The 2D matched filter Haz(ω,ωD) is then applied
on S2(m,n) to become the roughly compressed signal S2c(m,n) in the (ω,ωD) domain.
A roughly reconstructed image u(m,n) can then be obtained by taking 2D IFFT on
the bulk compressed signal S2c(m,n) with respect to ω and ωD, and the result is shown
in Fig. 9.37. As can be seen, the roughly reconstructed image provides quite detail
and accurate map of the ground. Since the azimuth matched filter has sample length
664, and the data file along the azimuth direction is 1536, the edge effect of circu-
lar convolution will cause distortions on both ends of the image. Only azimuth lines
ranging from 332 to 1867 will provide a correct image.

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

FIGURE 9.37 Radar image after bulk compression.
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The bulk compressed signal S2c(m,n) in the (ω,ωD) domain is then inverse Fourier
transformed into (t,ωD) domain as S(m,n). It is then further processed by the dif-
ferential azimuth correction, which requires computation of �xn and dk(m) and are
defined as

�xn = c
(
n − Nr f

)
fs

.

dk (m) = k2
y

4k f c

where

ky = (m + 2048M) (2π fPRF)

2048V
,

k f c = (2π fc/c), M = −5, and m = NDL, . . ., NDU, n = 1,2, . . . ,2048.
The reference sample Nrf = 1148 is chosen and corresponds to the slant range

X0 = 1,000,000 m. On the basis of the estimated Doppler frequency centroid fDc =
−6968 Hz and Doppler bandwidth = 940 Hz, the true upper and lower frequency
band edges can be computed as fDU = −7338 Hz and fDL = −6398 Hz. The cor-
responding folded or observed baseband frequencies are fDc

′ = −683 Hz, fDU
′ =

−1153 Hz and fDL
′ = −213 Hz. Given the Doppler sampling frequency f PRF =

1257 Hz and NFFT = 2048, differential azimuth compression is operated on S(m,
n) from NDL = 347 (corresponding to fDL

′) to NDU = 1879 (corresponding to fDU
′),

and for the whole range samples from 1 to 2048. That is, for every Doppler frequency
column, only Doppler frequency bin numbers from 347 to 1879 will be adjusted with
a phase factor of exp [−jdk(m)�xn]. In equation form,

U (m,n) = S(m,n) exp[− jdk(m)�xn]

After the differential azimuth compression, the reconstructed image is obtained
by taking IFFT on (m,n). The result is shown in Fig. 9.38.

The image quality after differential azimuth compression is about the same as
compared with the bulk compressed image shown in Fig. 9.37. This implies that the
Stolt interpolation with bulk compression provides good quality of images for radar
with steady moving speed V and stable squint angle θq, and for ground targets that
cause smooth variation in the Doppler frequency centroid fDC .

The range–Doppler algorithm will now be applied to the same image file. It op-
erates on data in the range–Doppler frequency domain, namely, S1c(m,n) as shown
in Fig. 9.36. The sample length of azimuth matched filter equals Naz = R0θH/As =
674, where R0 = 1000,000 m, θH = 0.00377 radian, and As = V/f PRF = 5.62 m are
used. Given the slant range sample spacing Rs = 9.28 m, for a swath of 2048 range
samples, the maximum slant range difference is 9.28 × 1148 = 10654 m, which
is less than 1.1% of R0. Therefore, the same azimuth matched filter haz(m) can be
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FIGURE 9.38 Radar image after differential azimuth compression.

used throughout the whole image frame without significant errors. The 1D azimuth
matched filter is designed as follows:

haz(m) = exp
[− j2π fDC m�s + jπβ(m�s)2

]
.

Here �s = 1/f PRF is the pulse repetition interval, β = 1780 Hz/s, fDc = −6968 Hz,
and −332 ≤ m ≤ 332. The Doppler frequency-domain filter Haz(m), for m = 1,2. . .,
2048, is obtained by taking a 2048-point DFT on haz(m).

The range migration of the squint SAR system is caused by the slant range differ-
ence at the edges of the 3-dB radar beamwidth. The amount of range migration can
be computed, from Eq. (8.8b) as follows:

�NRk = 2�Rk

Rs

≈ R0λ
2

4V 2 Rs

(
fDL + k fPRF

N

)2

− R0λ
2 f 2

DL

4V 2 Rs
.

The integer part of �NRK will be used for the range sample shift, while the frac-
tional part will be used for interpolation on the range samples. In this example, the
16-set 8-tap sinc filter is adopted again as the interpolation filter. The maximum
amount of range migration is 22 samples in this example.

After computing the range migration amount, every row of the range-compressed
signal S1c(m,n) along the Doppler frequency axis is then filtered with the correspond-
ing sinc interpolation filter. The sinc-filtered output is then further adjusted by two
elements. The first one is 4-sample delays caused by the 8-tap sinc filter. The second
one is the range sample shift, which varies along the Doppler frequency axis. Every
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FIGURE 9.39 Radar image processed by range–Doppler algorithm.

column of the adjusted output of the sinc filter is then multiplied by the azimuth ref-
erence filter Haz(m) to become U(m,n). The inverse DFT is then applied on U(m,n),
and the result is shown in Fig. 9.39.

By comparing Figs. 9.38 (or 9.37) and 9.39, it is difficult to tell which one has
better image quality. Both the range–Doppler and Stolt interpolation algorithms gen-
erate good quality of radar images.

For comparison purposes, a different image data file was used and processed by
the two algorithms described above. Figure 9.40 displays the image using the Stolt
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FIGURE 9.40 Radar image processed by Stolt interpolation technique.
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FIGURE 9.41 Radar image processed by range–Doppler algorithm.

interpolation technique (without DAC), while Fig. 9.41 presents the image using
the range–Doppler technique. Again, both algorithms appear to have similar image
quality.

9.5 COMPARISON BETWEEN RANGE–DOPPLER AND STOLT
INTERPOLATION ON SAR DATA PROCESSING

The difference between the range–Doppler and Stolt interpolation algorithms on
processing SAR data can be summarized as follows: (1) the range–Doppler algo-
rithm requires different range-dependent reference functions for azimuth compres-
sion, while the Stolt interpolation uses only one reference function for azimuth
compression; (2) the range–Doppler algorithm uses a synthesized 1D azimuth refer-
ence function, while the Stolt interpolation utilizes a 2D azimuth reference function;
(3) the range–Doppler algorithm corrects the range cell migration problem based
on interpolation filtering of range samples for all Doppler frequency bins in the
range–Doppler domain, while the Stolt interpolation algorithm corrects the prob-
lem through the multiplication of an azimuth and range-dependent phase factor, with
respect to a reference point, on Doppler frequency samples for every range column
in the range–Doppler domain.

The major computation requirements for range–Doppler and Stolt interpolation
algorithms are based on the following general assumptions:

1. The basic computation requirement of a radix-2 FFT (or IFFT) are

One complex multiplication (four real multiplications and two real addi-
tions)
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Two complex additions (four real additions)

2. The sample length of the range matched filter is Nfr.

3. The range matched filter is predesigned in the frequency domain and stored
in memory as a table ROM (read-only memory)

4. The radar raw image data array is Mi × Ni.

5. The FFT (or IFFT) length used along the range or x axis is N ≥ Ni + N f r −
1, and N is chosen to be a power of 2.

6. The reconstructed radar image data array is Mi × Ni.

In addition, the following assumptions are made for the range–Doppler algorithm:

� The sample length of the azimuth 1D matched filter is Mfa.
� The FFT (or IFFT) length used along the y axis is M ≥ Mi+ Mfa − 1, and M is

a power of 2.
� The interpolation filter coefficients are real numbers, and the filter length is Nfi.
� The group of interpolation filter is predesigned in the range domain and stored

in memory as a tabular ROM.

The major computation requirements for range–Doppler processing algorithms are

1. Range compression

a. FFT along x axis for N range samples

(1) Complex multiplications: 0.5MiN log2N

(2) Complex additions: MiN log2N

b. Range matched filtering on Mi × N data array (azimuth–Doppler domain)

(1) Complex multiplications: MiN

c. IFFT along x axis for N range samples

(1) Complex multiplications: 0.5MiN log2N

(2) Complex additions: MiN log2N
(After the IFFT operation, the range-compressed output data are in a
range–azimuth domain, and the size of the data array is rescaled to M × Ni. The
azimuth sample length is zero-padded to render M ≥ Mi + M f a − 1 sample
length for the following range cell migration correction and azimuth compres-
sion.)

2. Range cell migration correction

a. FFT along y axis for M azimuth samples

(1) Complex multiplications: 0.5NiM log2M

(2) Complex additions: NiM log2M

b. Fractional interpolation and sample shift

(1) Complex multiplications:* 0.5MNi Nfi
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(2) Complex additions:* MNi(Nfi – 1.5)
(* Since the interpolation filter coefficients are real, only two real mul-
tiplications are needed instead of 4 multiplications and two additions.)

3. Azimuth compression

a. Azimuth matched filtering on M × Ni data array

(1) Complex multiplications: MNi

b. IFFT along y axis for M azimuth samples

(1) Complex multiplications: 0.5NiM log2M

(2) Complex additions: NiM log2M
The data array is rescaled to Mi × Ni.

In summary, the total computation requirements for the range–Doppler algorithm
are

Complex multiplications: MiN(log2N + 1) + NiM(log2M + 1 + 0.5Nfi)

Complex additions: 2MiNlog2N + N iM (2log2M + Nfi − 1.5)

For the Stolt interpolation algorithm, two additional assumptions are made:

1. The 2D matched filter is in the (ω,ωD) domain, and its array size is M × N.

2. The FFT (IFFT) length used along the y axis is M ≥ Mi+ Mfa − 1, and M
is a power of 2. Here Mfa is the azimuth sample length within the synthetic
aperture length.

The major computation requirements for the Stolt interpolation algorithm are

1. Range compression

a. FFT along x axis for N range samples

(1) Complex multiplications: 0.5MiN log2N

(2) Complex additions: MiN log2N

b. Range matched filtering on Mi × N data array

(1) Complex multiplications: Mi × N
(The range-compressed output data are in the azimuth–frequency domain with
array size Mi × N. The data array is rescaled to M × N by zero-padding
the azimuth sample to render M ≥ Mi+ Mfa − 1 with M equal to a power
of 2.)

2. Rough azimuth compression

a. FFT along y axis for M azimuth samples

(1) Complex multiplications: 0.5NM log2M

(2) Complex additions: NM log2M



P1: OTA/XYZ P2: ABC
c09 JWBK230/Wang July 9, 2008 20:54 Printer Name: Yet to Come

COMPARISON BETWEEN RANGE–DOPPLER AND STOLT INTERPOLATION 331

b. 2D Matched filtering for M × N data array

(a) Complex multiplications: MN

c. IFFT along x axis for N range samples

(a) Complex multiplications: 0.5MN log2N

(b) Complex additions: MN log2N
(The 2D bulk-compressed output data are in the range–Doppler domain with
array size M × N. The data array is rescaled to M × Ni, which corresponds
to the effective values of 1D convolution between the 1D range matched filter
and 2D data.)

3. Differential azimuth compression

a. Complex multiplications: MNi

b. IFFT along y axis for M azimuth samples

(1) Complex multiplications: 0.5NiM log2M

(2) Complex additions: NiM log2M
(The 2D differential azimuth-compressed output data are in a range–azimuth
domain with an M × Ni array. The data array is rescaled to Mi × Ni, which
corresponds to the effective values of 2D convolution between the 2D matched
filter and 2D data.)

In summary, the total computation requirements for the Stolt interpolation algorithm
are

Complex multiplications: 0.5MiN(log2N + 2) + 0.5MNi (log2M + 2)

+ 0.5MN(log2MN+ 2)

Complex additions: MiNlog2N + MN log2MN + MNi log2M

For comparison purposes, letting the input image array be 1536 × 2048 (Mi =
1536 and Ni = 2048), the intermediate array M × N be 2048 × 4096, and the inter-
polation filter be an 8-tap filter, one obtains the following data:

For the range–Doppler algorithm:

Number of complex multiplications: 1.42 × 108

Number of complex additions: 2.58 × 108

For the Stolt interpolation without DAC:

Number of complex multiplications: 1.42 × 108

Number of complex additions: 2.56 × 108

For the Stolt interpolation algorithm:

Number of complex multiplications: 1.68 × 108.

Number of complex additions: 3.0 × 108.
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Since the range–Doppler algorithm and the Stolt interpolation algorithm process
the Mi × Ni image data array in the same spatiotemporal and frequency–Doppler
frequency domains, both algorithms require roughly the same memory capacity for
SAR processing. Taking the double-buffering requirement for the FFT/IFFT process,
the range cell migration correction, and the differential azimuth correction, the total
memory required for SAR processing can be estimated at about 2.5MN complex
samples. For a data array of M × N = 2048 × 4096, the memory requirement is 2 ×
107 complex samples.
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INDEX

Airborne-based, 187, 227, 232, 233
Aliasing, 25, 31, 40, 223
Ambiguity

Doppler, see Doppler ambiguity
function, 93, 110
range, 94, 95, 110, 115
resolution, 111,
surface, 111–113
number, 224, 321, 325

Amplitude modulation, 93, 96, 116–121
Angle

aspect, 200, 202, 209, 217
solid, 82, 83
squint, 159, 174–185, 193, 198, 213–230,

240–244, 254, 267, 271, 283, 305,
309, 314, 325

Antenna geometries
single element radiators, 89
microstrip antennas, 91
antenna array, 78, 91, 92, 168, 169,

183
linear array, 63, 74–81, 92

Antenna parameters
radiation beamwidth, 81
solid angle, 82
power density, 83
radiation intensity, 83
directivity, 84
gain, 84, 85
impedance, 84
efficiency, 85
effective area, 85

Array factor, 76–78, 81

Autocorrelation, 111, 135
Azimuth

compression, 226, 227, 246–274, 281,
293, 301–303, 311–331

matched filter, 255–267, 274–283, 290,
311, 312, 318, 324–330

reference function, 247–257, 268, 269,
290, 294, 301, 312–318, 328

signal, 256, 259

Backscatter, 103, 188, 189,
Bandwidth, 25, 44, 45, 112–144, 167–198,

206–234, 259–290, 301, 321, 325
Baseband signal, 24, 116, 150, 152, 160,

202, 216–267, 309, 321, 322
Bistatic radar, 97
Blackman window, 49, 50
Broadside SAR, 155–174, 183, 184,

192–199, 223–235, 244, 251–255,
261, 267, 269, 276, 285, 289,
294–296, 301–314

Beamwidth, 79–84, 92, 158, 161, 166–200,
209–234, 254, 278, 322, 326

Bulk azimuth compression, 324

Chirp rate, 124–136, 160, 173, 228, 322
Chirp signal, 129, 136, 142–144
Circular convolution, 39–42, 249, 322,

324
Compression

azimuth, see Azimuth compression
range, see range compression
pulse, see pulse compression
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Continuous wave (CW), 110, 116, 117
LFM, 116, 124, 129, 142, 145
SFM, 131, 132

Convolution, 3, 5, 13, 23, 30, 34, 40–44, 66,
126, 127, 136–146, 196, 202, 203,
216, 249, 252, 318, 324, 331

Circular, see circular convolution
Linear, see linear convolution

Correlation, 55, 170, 172, 179, 285
auto, see autocorrelation
cross, 111

Cross range, 164, 174, 193–216, 249, 252,
318, 324, 331

Cross-range imaging, 213, 214

Dechirp, 142–147
Decimation, 25–28, 51, 53

in-time, 50–53
in-frequency, 51–54

Differential azimuth compression, 293, 303,
314–318, 324–326, 331

Dipole, 63–81, 89, 92
infinitesimal dipole, 63–77
finite length, 77
half-wavelength, 63, 73, 74, 89–92

Delta function, 1, 65
Discrete cosine transform, 35, 53, 54
DCT, 53–57
Discrete Fourier transform, 35, 38, 43, 50,

58, 60
DFT, 51–62, 127, 136–146, 257–278, 312,

317, 326
Doppler ambiguity, 224, 227, 321
Doppler centroid, 182, 223–227
Doppler frequency, 103–123, 148–194, 210,

222, 227, 248–289, 299–332
bandwidth, 174, 181–185, 192, 222–234,

259, 264, 271, 321
centroid, 168, 172, 177, 185, 224, 225,

254, 268, 321, 325
lower bound, 171, 177–181, 192
changing rate, 254, 261
spectrum, 171, 180, 223, 224, 257–281,

298, 299, 311–317
upper bound, 171, 177–181, 192

Duplexer, 97, 129

Echo, 93–97, 110, 111, 121–123, 135,
142–165, 194–215, 228, 232–246,
295, 298, 309

Electromagnetic (EM) wave, 63, 89, 93, 94,
101, 103

ERS-1/2, 173, 191, 193

Far-field, 70–75, 78, 100
Fourier series, 6–19, 24, 36
Fourier transform, 11– 20, 126, 134, 196,

197, 203–207, 286, 293, 298
Frequency modulation, 116, 123, 130

Linear, see Linear frequency modulation
Stepped, see Stepped frequency

modulation
Frequency spectrum, 194, 226

Doppler, 171, 180, 223–225, 257–281,
298, 299, 311–317

Fourier, 15, 19, 20, 44–48, 57, 60, 112,
118, 126, 127, 137–142, 197

Spatial, 208–211
Frequency step, 131, 152

Geometric distortion
foreshortening, 189
layover, 188
shadow, 188, 189
slant to ground range, 189
speckle, 189

Geometry, 66, 91
cross-range imaging radar, 199
backward looking radar, 175
broadside SAR, 158, 164, 170
forward looking radar, 159, 174
imaging radar, 157, 159
squint SAR, 158, 184, 213
stripmap SAR, 155, 157
range-imaging radar, 195

Ground range, 160, 189, 191, 195, 229

Hamming window, 49, 50
Hanning window, 43–49, 248

Ideal target function, 195–203, 211–220, 286
Impulse response, 4, 25, 42, 43, 65, 66
Incident angle, 158, 189
In-phase Quadrature-phase, 116, 129,133,

222, 226, 248, 321
Interpolation, 2, 21–33, 47, 48, 60, 62,

251–253, 273, 281
filter, 21–23, 289, 326–331
Stolt, see Stolt interpolation

Interferometric SAR (InSAR), 156
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Intermediate-frequency (IF) signal, 122
Inverse Discrete cosine transform, 55
IDCT, 55
Inverse discrete Fourier transform, 38,

257–281, 298, 309, 322, 325
IDFT, 60, 61, 138, 260, 327
ISAR, 157

Jacobian, 28–33, 289

Layover, 188
Linear convolution, 39–42
Linear frequency modulation, 93, 96, 116,

124, 129, 168, 191
Linear system, 3, 4, 65
Lorenz condition, 64, 66

Main lobe, 22, 76–82, 135, 151
Matched filter, 134

azimuth, 211–219, 254–267, 274–283,
290, 311–330

range, 111, 134–144, 197, 198, 213, 226,
248–275, 290, 301, 322, 329–331

2D, 324, 330, 331
Maxwell equation, 63–65
Monostatic radar, 97, 98
Multilook processing, 189

Nadir, 157, 158, 229
Nyquist, 19, 24, 36, 48, 145, 221, 222

Overlap-and-add, 42, 43
Overlap-and-save, 42–44

Point spread function, 197, 198, 212, 213
Polarization, 89, 101, 102, 188
Principle of stationary phase, 203, 206, 207
Pulse compression, 115, 134, 136–142, 146,

318
Pulse repetition frequency (PRF), 158, 222,

223, 233, 250, 269, 278, 299, 321
Pulse repetition interval (PRI), 93, 94, 131,

301, 326

Quadrature mixer, 132

Radiation, 64, 67, 69, 91
from an infinitesimal current dipole, 67,

69
far-field Region, 70

from a half-wavelength dipole, 73
from a linear array, 74

Radiation beamwidth, 81
Radiation efficiency, 81, 85
Radiation field, 69, 72
Radiation intensity, 82–84
Radiation pattern, 67, 73, 74, 78–91, 168,

169
Range compression, 163, 226, 227,

246–261, 269, 276, 322–330
Range-Doppler, 226, 227, 246–264,

271–285, 293, 298–300,
309–332

Range imaging, 173, 195, 197, 211,
212

Resolution, 43–45, 118, 123, 155, 156, 173,
189–191, 273, 289

ambiguity, 111
angular, 189–191
azimuth, 192, 193
cell, 189, 190
Doppler, 111
frequency, 45, 118, 123
image, 155, 189–193
radar, 93, 110
range, 45, 117–119, 151, 152, 186,

190–193, 198
spatial, 192

Sampling,
downsampling, 25, 26, 27
frequency, 20–30, 36, 44–48, 58, 60, 123,

145, 147, 160, 221–233, 251, 289,
293, 314, 322

resampling, 21–31, 60–62
theory, 19–24, 30
upsampling, 25, 27

Scattering coefficient, 98, 102
Sidelobe, 21, 22, 47, 48, 76, 80, 82, 248,

260, 289, 303
Simulation,

broadside SAR, 255, 261, 294
squint SAR, 267, 275, 305

Sinc
filter, 21, 22, 252, 273, 326, 327
function, 2, 112, 113, 118, 127, 212

Slant range, 156–165, 170–183, 187–193,
201, 210, 229–234, 240, 241,
249–251, 271, 279, 295, 296, 305,
308, 312, 325, 326
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Slow time, 165–183, 203, 213, 249, 254,
268, 301

Spatial frequency, 202–222, 285–287,
293

Spatial Fourier transform, 203, 207,
216–219, 271–287

Speckle, 189
Specular reflection, 101
Spotlight SAR, 156
Squint SAR, 155–161, 174, 184–199,

223–233, 240–244, 251–255,
267–285, 294, 301–314, 326

Stepped frequency modulation, 96, 116, 130,
132

Stolt interpolation, 227, 285–294, 303,
312–315, 324–332

Stripmap SAR, 155–157
Synthetic Aperture Radar (SAR) signal

broadside, see broadside SAR
squint, see squint SAR

Synthetic Aperture Radar (SAR) system
broadside, 161, 162, 229–231, 244,

251–255, 267, 276, 285, 296
squint, see squint SAR

Swath, 156–159, 195, 289, 325

Time-bandwidth product, 134–139, 206

Wave equation, 65
Wavelength, 67, 72, 81, 89, 91, 100–109,

158, 173, 183, 191, 193, 233, 314
Wave number, 108, 194, 207–210, 222,

285–293, 324
Window, 22, 35, 48, 131, 247, 248

Blackman, see Blackman window
Hamming, see Hamming window
Hanning, see Hanning window

Zero padding, 43–48, 123, 136, 249, 258,
263, 265, 330




